AD?Y37347

A Modular Organization of a Digital
Integrating Computer for the Numerical

Solution of Differentiai Equations

by
E.J.Schulz

December 1971

Technical Report No. 3606-6

Reproduction in whole or in part
is permitted for any purpose of
ths United States Governaent.

This document has been approved for public
release and sale; its distribution is unlimited.

This work was supported in part by the

Joint Services Electrenics Program
(U.S.Army, U.S.Navy and U.S, Air Force)
under Contract NOOO14-67-A-0112-0044

Reproduced by
NATIONAL TECHNICAL

INFORMATION SERVICE RADIOSCLIERCE LZBORARTORY
STRNFORD ELECTRONICS LABCARTORIES

STRNFORD UNIVERSITY - STANFORD, CRLIFORRIN

SU-SEL-71-057

e

UNCIASSIFIED

Secarity Classification

DOCULENT CONTROL DATA-RA&D

Secuntt clas aficatior of sivde, hody ol whe trine and sndexaing annotation nast bhe entered when the overall report is classilied)
TORIGINATING &0 v Ty (Corporate austhor) 23, REFPORT SECURITY CLASSIFICA TICN
Sianford Electronics Laboratories Unclassified
Stanford University EL R
Stanford, California 94305

¢ RLFORT TITLE

A MODUIAR ORGANIZATION OF A DIGITAL INTEGRATING COMPUTER FOR THE NUMERICAL SOLUTION
OF DIFFERENTIAL EQUATIONS

4 STRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report No. 3606-6, December 1971

& AL THORI(S! (First name, middie initial, last name)

E. J. Schulz

6 REPORTY CATE 7a. TOTAL NC. OF PAGES 7b. NO. OF REFS
December 1971 83 42
8a. CONTRACT OR GRANT NO 9a8. ORIGINATOR'S REPORT NUMBE R(S)

N00014~-67~-A-0112-0044

b. PROJECT NO.

TR No. 3606-6
SEL-71-057

c. 95. OTHER REPORT NO{S) (Any other numbers that may be assigned
this report)

d.

10 OISTRIBUTION STATEMENT

Reproductior in whole or in part is permitted for any purpose of
the United States Goverument. This document has been approved for public release and
sale; its distribution is unlimited.

1t. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Joint Services Electronics Program
U.S. Army, U.S. Navy, U.S. Air Force

\
T3, ABGTRACT

The automatic solution of differential equations may be accomplished by either
modeling the equation on an analog computer or by solving it numerically on a gen-
eral-purpose computer. Both methods are cumbersome and have the disadvantages of
low accuracy and slow speed, respectively. The development of the digital differen-
tial analyzer promised a machine with improved accuracy and speed. The difficulty
in programming and the reliance on complex switching networks or patch boards brought
about by ever-increasing parallelism, however, have prevented the full exploitation
of the DDA capabilities.

A modular machine structure emplcying serial-parallel processing and using in-
cremental integration as its basic algorithm has been developed. The system consists
of self-contained modules which may be operated independently or may be combined to
solve numerically one or more differential equations. Modularity and serial-parallel
processing simplify the communication methods within and between modules to permit
automatic programming; the hardware requirements are reduced aéﬂin serial processing,
but the iteration time cannot exceed a fixed maxiuum regardless of the problem.() .

To eliminate some of the masked instabilities inherent in circular number~sy§ -
tems, a two-loop number system is presented. An extension of the two-loop system
leads to number systems with a hysteresis. Except for the case of multi-bit commu-
nication, it is possible to predict the outcome of the integrating cycle sufficiently
to permit post-multiplication of the integral increment by a constant or a variable
simultaneously with the integrating cycle. This capability considerably reduces the
solution time and required hardware. (Continued)

DD |F~00Rr651 4 73 (PAGE 1) UNCLASSIFIED
S/% 0101.807-6801 Security Classification

-

UNCIASSIFIED

Security Classification

y {(PAGE 2)

N
14 . _ “‘.'NK'- LIk B LINR C
— ROC—E.T wT ROLE wT ROLE wT
DIGITAL INTEGRATION
NUMERICAL SOLUTIONS
INCREMENTAL COMPUTATION
ABSTRACT (continued)
Combining the machine with a general-purpose
computer allows automatic programming and scaling.
In this environment, the user-generated progrem
consists oniy of the difrerential equations entered
in a standard format, declarations of dependent and
independent variables, the number of coupled equa-
tions to be solved, and some control statements.
FORM
DD "2..1473 sacx) UNCLIASS IF [ED

Security Classification

e em—

- T RN S

SEL-71-057

A MODUIAR ORGANIZATION CF A DIGITAL INTEGRATING COMPUTER
FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

by

E. J. Schulz

December 1971

Reproduction in vhole or in part
is permitted for sny purpose of
the United Ststes Government.

This document has been approved for public
release and sale; its distribution is unlimited.

Technical Report No. 3606-6

This work was supportedin part by the
Joint Services Electronics Program
(U.S. Army, U.S. Navy and U.S. Air Force)
under Contract N00014-67-A-0112-0044

Radioscience Laboratory
Stanford Electronics Laboratories
Stanford University Stanford, California

Rt L ias s i A

o B R il 1) e e | L S i

ey ———

SEL-71-057

(© Copyright 1972
by

Eckhard Josef Schulz

ii

B Wy T o

ABSTRACT

The autonatic solution of differential equations may be accomplished
by either modeling the equation on an analog computer or by solving it
numeric4lly on a general-purpose computer. Both methods are cumbersome
and huve the disadvantages of low accuracy and slow speed, respectively.
The development of the digital differential analyzer promised a machine
with improved accuracy and speed. The difficulty in programming and the
reliance on complex switching networks or patch boards brought about by
ever-increasing parallelism, however, have prevented the full exploitation
of the DDA capabilities.

A modular machine structure employing serial-parallel processing and
using incremental integration as its basic algorithm has been developed.
The system consists of self-contained modules which may be operated inde-
pendently or may be combined to solve numerically one or more differen-
tial equations. Modularity and serial-parallel processing simplify the
communication methods within and between modules to permit automatic pro-
gramming; the hardware requirements are reduced as in serial processing,
but the iteration time cannot exceed a fixed maximum regardless of the
problem.

To eliminate some of the masked instabilities inherent in circular
number systems, a two-loop number system is presented. An extension of
the two-loop system leads to number systems with a hysteresis. Except
for the case of multi~bit communication, it is possible to predict the
outcome'of the integrating cycle sufficiently to permit post-multiplica-
tion of the integral increment by a constant or a variable simultaneously
with the integrating cycle. This capability considerably reduces the
solution time and required hardware.

Combining the machine with a general-purpose computer allows auto-
matic programming and scaling. In this environment, the user-generated
program consists only of the differentlial equations entered in a standard
format, declarations of dependent and independent variables, the number

of coupled equations to be solved, and some control statements.

iii SEL-71-057

JIT.

III.

Iv.

CONTENTS

INTRODUCTION « . &

g O w »

AT IR

Numerical Solution of Differential Equations .

Background
Statement of the Problem .

Approach « . + &

PRINCIPLES OF DIGITAL DIFFERENTIAL ANALYZERS . . .

A.

D.

Principles of Numerical Solution .

1. Rectangular Integration

.

2. Modified Trapezoidal Integration .

DDA Solution of Differential
Examples . . . « ¢ « « o o &

1, Example 1
2, Example 2

Construction Parameters . .

CONCEPT OF THE PROPOSED MACHINE

A.
B.
C.

© D.

E.
F.
G.

Requirements
Accuracy and Solution Speed
Ease of Programming
Solution Repeatability . . .
Solution Reversibility . . .
Modularity and Expandability
Adaptability

NUMBER REPRESENTATION

A.
E.
C.
D.
E.

Binary Number System . . .
Circular Number System . . .
Two~Loop Number System . .
Overlapping loops
Logical Implementation . . .

1. Circular Number System .
2. Two-Loop Number System .

Equations

.

-

.

3. Multi-Bit Transfer Two-Loop Number

ey

B 1 o ey s S

Page
. . . 1
. . . 1
. . 2
. L] . 3
L . . 5
112 It 7
. . . 7
. . 7
%) Mol o PO
o o o O
R U &
* . . 11
P <
. Ll . 15
. 17
. . Ll 17
. L] . 17
. L] . 18
. . 19
. . 19
L) . Ll 20
. . 20
. . Ll 21
a o 21
o0 o 21
. 23
5 . 24
e o o 29
o o 29
5 29
. . . 31

SEL-71-057

CONTENTS (Cont)

V. THE FUNCTIONAL BLOCK . . . &« &+ ¢ s & o 4 « « o o o @
A. The Integrating Function v « « o o &
B. Constant Multiplication . ., « . . .
C. Implementation « ¢ ¢ ¢ ¢ v ¢ o+ o o o »
D. Post-Multiplication by a variable, . .
E. Simultaneous Integration and Post-Multiplication
F. Extended Simultaneous Integration and Post-

Multiplication ¢ &« v ¢ &+ o o o o o o &
G. Multi-Bit Transfer « .+ .
H. Floating~-Point Arithmetic
I. Floating Point Post-Multiplication

VI. THE MULTI~-MODULE SYSTEM . « ¢ ¢ & o ¢ « o o o o o &

Processing Methods « ¢« &+ ¢« + « o o « &

B. Inter-Module Communication Methods

1. Vertical-Communication Approach
2. Horizontal-Communication Approach . . .

VII. THE MODULE . . . + v v o ¢ o « o o o o ¢ « o o o o &
A. Processing Methods « + « & o & &

B. Intra-Module Communication Methods

1, Function Output Storage « +. + + &

2, Function Input Storage + ¢ ¢ s o + &

C. Memory Organization ¢ ¢ ¢ « + . &
VIII. THE PROPOSED MACHINE &+ o « o o o o o ¢ o &
A. Operating Procedure ¢ o ¢ o o ¢ o o
B. Communication within the Module
C. Communication between lodules + &
D. External Function Input « ¢ ¢ ¢ &+ o « &
E. Iteration Time + ¢« ¢ ¢ o ¢ o o & o &
F. The Processor . . . + o « « o o o s o o o o o o
G. Programming and Interface . . . « « o o &+ o ¢ &
H. Computer Simulation ¢ ¢ ¢ ¢ ¢ o & &
SEL-71-057 vi

Page
35

35
37
39
42
46

48
49
51
52

55

55
56
56
57
59

59
60

60
61

61
63

63
64
66
68
68
59
71
75

CONTENTS {(Cont !

IX. CONCLUSION . « . ¢ & o o v o o ¢ v & &«

BIBLIOGRAPHY

e e s e ¢ 2 e & e e e e v s+ @

vii

1 TR RS PR AR XY B AL, -2

Page

SEL-71-057

il

W Seur, et

T

13.

14.

15.

16.

17.

18.

19.

20.

21,

22.

23.

ILLUSTRATIONS

Rectangular integration . . . « « ¢ & ¢« ¢« &« ¢« o . &
Digital integrator for rectaungular integration . .
Digital integrator symbol + « + « ¢ + &
Solution diagram for Van der Pol's equation . ., . .,

Digital integrator symbol with scaling parameters .

1]
[«]

Solution diagram for y§-+§2-+1
Circulay number system . . « ¢« ¢ o o o o ¢ o o o

Two-loop number system ¢ « « ¢ ¢ o & &

Incremental integration, using circular number system

Incremental integration, using two-loop number system

Two-loop number system with overlapping loop . . .

Incremental integration, using a number system with
1-bit hysteresis « ¢« ¢ ¢« ¢ ¢« ¢ ¢ ¢ &« o o &

Increrental integration, using a number system with
2-bit hysteresis . « . ¢ o ¢ ¢ o o o o ¢ ¢ ¢ ¢ o o

Karnaugh maps for integral overflow generation . .

Increment detection for multi-bit transfer two-loop
system . L] L] * L) L) L L] . . L . L) L) * L] . . L] * * *

Functional block of proposed machine
Structure of functional block . « « « ¢« « « ¢ ¢ & &
Functional block symbol . . . ¢« o ¢« ¢ ¢ ¢ ¢ ¢ ¢ o &
Generation of 1/y . . + 4 4 ¢ 4 6 o e 0 e o o o e
gin Wx apd COS WX . 4 4 4 4 . . .

1/2 2 2.-1
Generation of d(xz-faz) / , d(x” +a") ’

dzn(x2+a2) 0o 80000 0 S BRI

Generation of

Channeling in vertical communication

Horizontal conmunication . . .« . « ¢« o ¢ ¢ ¢ o ¢ o

ix

Page
A
ol s 9
e . 9
oo o 12
C.o. 12
S e
- oo 22
o . 128
v v . 26
o 44 26
. 26
ol 128
.« o . 28
... 30
.o . 82
... 35
e 135
R
... 43
.. 44
... 45
o . BT
... 58
SEL-71-057

ILLUSTRATIONS (Cont)
Figure
24, Channeling in horizontal communication . . .
25. Block diagram of a module . ,
26. Flow chart for module operation
27. Matrix showing communication between modules
28, Solution diagram for y§-+§2-+1 =0 , .
29, Block diagram of GPC-DIC combined system . .

30. FORTRAN simulation program of DIC module . .

TABLES

Number
. 2 2 2
1, Scaling for dv/dt™ - (1-v) dv/dt + v =20
. 2 2 2
2, Scaling for y . dy/dx + (dy/dx) + 1 =0
3. Binary representation of numbers

4, Generation of increments for circular and
two-loop number systems o . o o

5. Generation of increments for systems with

overlapping loops . . ¢ ¢ ¢ o s o o s s s
6. DIC program for d§ = =y «dy/y =dx/y
SEL-71-057 X

Page

58

63

65

67

73

75

76

13

15

22

25

27

74

ACKNOWLEDGMENT

I wish to express my sincere appreciation to my research advisor,
Professor Allen M. Peterson, for his guidance and suggestions and to
Professors E. Davidson and O. Buneman for their thorough reading of
this manuscript. I want to acknowledge also the many helpful discus-

sions on automatic programming with my colleague,B. Parasuraman.

xi SEL-V1-057

v T

R e —

.

- — T e e - T e ol Lo o i

Chapter 1

INTRODUCTION

A. Numerical Solution of Differential Equations

The quantitative study of physical systems requires the expression
of the system characteristics in mathematical form. This expression
usually resulis in some differential equation which, when evaluated,
shows behavior corresponding to that of the original system., The equa-
tions may be linear, nonlinear, or partial differential equations.

The solution of differential equations requires that we find some
function y = y(x,C) such that if the function y is substituted in
the differential equation [say, dy/dx = £(y,x)] the result is an
identity. Since the function y can be found analytically only in a
small number of cases, we resort to numerical methods of finding the
solution. Numerical solutions require the complete specification of
the differential equation (initial conditions and parameters) and there-
fore are always particular solutions. The numerical solution may be
found by either differentiating or integrating, but integration is em-
ployed almost exclusively because differentiation involves the genera-
tion of the difference between two very small quantities (which ideally
tend toward zero) and therefore introduces unnecessary errors.

Numerical integration is achieved by replacing the integrand with
some quadrature formula and evaluating this over the required interval
of the independent variable. In this process the independent-variable
interval is div'ded into subintervals which are usually of equal lengths.

Traditionally, two basic methods have been available to obtain the
numerical solutions of differential equations. The first is to solve
the equation on a general-purpose computer, using such numerical tech-
niques as the modified Euler integration, Adam's trapezoidal integration,
or summation of the Taylor series. The second is to model the equation
on an analog computer. Given that we desire high-solution speeds and
accuracies, neither of these methods is ideal. The general-purpose com-
puter is often too slow, and the analog computer simply cannot provide

the accuracy.

1 SEL-71-057

If, in the system urder study, the dependent variables vary only
with respect to time or some other single independent variable, we have
an ordinary differential equation; if, on the other hand, the dependent
variables vary with respect to two or more independent variables, the
equations will contain partial derivatives. Because in the analog com-
puter all integration is with respect to time only, these partial differ-
ential equations cannot be solved directly. The use of the "generalized
integrator, " which includes a multiplier, allows in effect integration
with respect to a variable other than time, but the multiplier also in-
troduces additional errors and represents additional hardware and cost.

Because the analog computer is a completely parallel machine (it
consists of many processors operating simultaneously), its programs must
be hard wired for continuous operation. This requires the use of plug

boards.

B. Background

The earlif ° development of the digital differential analyzer (DDA),
which is essentially the digital equivalent of the analog integrator, al-
lowed the modification of analog computers. Replacing analog integrators
with DDA integrators resulted in systems capable of high-speed solutions
and the desired high accuracies; in addition, the independent variable
was no longer restricted to time as in the analog integrator.

The first such machine to be built was the MADDIDA (Bartee et al,
1962), developed in 1950. It was considered a low-cost device, employ-
ing a magnetic drum memory to allow arbitrary stored interconnections
such that any DDA integrator could be connected to any other integrator,
including itself. The MADDIDA used binary communication, which requires
a single bit and restricts both the independent variable input and the
integral output increment to the values of +1 and -1.

Since 1950, the need for higher speed and accuracies has produced
many technological improvements. More accurate algorithms were intro-
duced (Yu, 1968; Nilsen, 1968) and, to increase operating speed, subse-
quent systems had high degrees of parallelism. This latter trend made
it practically impossible to retain stored programs, leading to the

alternatives of single-purpose computers or patch-board programming.

SEL~-71-057 2

G Sy b TR

e T ey g ERT

The TRICE (Trarsistorized Real Time Incremental Computer - Expandable),
developed by Packard Eell Corporation in 1958 (Mitchell, Ruhman, 1958),
was such a machine using plug-board programming and parallel processing
at a rate of 100,000 iterations/sec.

Past and present DDAs have been designed essentially in the manrner
of analog computers, and it is this analog approach which, in my opinion,
has prevented the development of a truly general DDA machine which can
find wide acceptance. Existing DDAs are for the most part "one applica-
tion" computers, solving the same equations or sets of equations with
different initial conditions or parameters. They are used for naviga-
tional calculations, for computation of projectile trajectories, or for
high-o~der control-system equations. Any change in programming involves
either hardware modifications (such as plug-board reprogramming) or com-
plex time and/or space multiplexing schemes to effect the proper inter-
connection of the various integrators. As a result, these methods se-
Qerely limit the application of the machines because they require either
a great amount of time and skill on the part of a programmer or enormous
amounts of multiplexing hardware. Such disadvantages have acted as
strong deterrents to the full exploitation of the inherent capabilities

of digital incremental integration.

()8 Statement of the Problem

This investigation has sought a new approach to the problem, di-
rected toward the development and organization of a special-purpose
machine to solve differential equations numerically. The goal is a
high-speed high-accuracy system that will be compact, adaptable, and,
above all, easy to use. Although the proposed system has not yet been
constructed as hardware, it has been simulated on the Stanford Computa-
tion Center IBM 360 Model 67.

A new machine structure, the digital incremental computer (DIC),
based on a modular concept, is proposed. Each module is a separately
self-contained device that can operate independently or connected to
other modules on one or several problems simultaneously. Its structure

is such that if the system is employed in conjunction with a general

(2]

SEL-71-057

purpose computer, it will not only be easy to use but in fact will
require substantial effort on the part of the programmer to avoid
using it. A software package, developed by B. Perasuraman (Schulz,
Parasuraman, 1971), will be employed in conjunction with the DI to
accept the problem statement virtually in the form that differential
equations are normally written. Additional statements required are
the number of equations to be solved, a declaration of the dependent
and independent variables, and specification of the range and preci-
sion of the desired solution. The software package will generate the
program, load the system, and store the solution output for subsequent
use or for printout and display.

The system employs serial-parallel processing which, although
slower than total parallel processing, does not allow the iteration
time to exceed the time required to process all integrals in one mod-
ule. The solution time of equations that do not require all available
modules can be decreased by distributing the various integral functions
over several modules. Serial-parallel processing also allows total com-
munication within the modules and restrictive communication between mod-
ules without the necessity of resorting to patch boards or extensive
time or space multiplexing. Here, “total communication" means that any
integral output can be used as the dependent variable input, or as a
component thereof, to any or all integrals; this output also can be
used as the independent variable input to any two integrals.

Other innovations are the two-loop number system and simultaneous
integration and multiplication. It is shown that the two-loop number
system eliminates instabilities and oscillations encountered when em-
ploying a circular number system. Increasing the size of the two loops
while maintaining the total number-range constant results in number sys-
tems containing a hysteresis.

Simultaneous integration and multiplication can decrease the total
solution time by one half. With the given number system, it is possible
to make a partial prediction of the outcome of the integration at the
beginning of each integrating cycle. This prediction is sufficient to
allow initiation of the multiplication process of the output by either
a constant or a function and to complete the multiplication befure the

integral output is generated.

SEL-71-057 4

| MR B AR EEG

e - e e e o T S NS TP TN N P TS I Y

A simplified method is developed that allows floating-point arith-
metic yet requires the storing and recalculating of only a single expo-
nent for each integral. Furthermore, this floating-point method does

permit simultaneous integration and post-multiplication.

D. Approach

Chapter II deals with the principles of numerical solutions and,

in particular, centers on solutions using digital differential analyz-

ers. This and the consideration of the basic DDA construction parame-
ters introduce the proper background for subsequent chapters.

Chapter iII describes the concept of the proposed machine. The
design goal is outlined, and the necessary requirements to meet this
goal are established. In Chapter IV several number systems are inves-
tigated. The two-loop number system is introduced, and an extension of
this system leads to a system of overlapping loops. The logical imple-
mentation is presented for both the circular and two-loop number systems,
as well as for a multi-bit transfer two-loop system.

Chapter V considers the conceptual functional block. Several inno-
vations such as pre- and post-multiplication are incorporated into the
basic block, and simultaneous integration and post-multiplication are
introduced. It is shown that the outcome of the integral function in
single-bit transfer machines can be predicted. In addition, a floating-
point arithmetic method is introduced, which requires the storage of only
a single exponent for the total functional block,

The multi-module system with serial-parallel processing is presented
in Chapter VI. Two basic approaches, "horizontal communication” and
"vertical communication,'" are considered for inter-module communication.

Chapter VII discusses the module; processing, intra-module communi-
cation methods, and the memory organization are examined. Chapter VIII
outlines the proposed machine. Operating procedures, communication meth-
ods within and between modules, and the externally generated function in-
puts are explained. An example illustrates the programming. Chapter IX
summarizes the work and presents conclusions and suggestions for further

study.

5 SEL-71-057

= S > 7 AR ATy YR LI S

Chapter II

PRINCIPLES OF DIGITAL DIFFERENTIAL ANALYZERS

A, Principles of Numerical Solution

To solve numerically for the integral of a function f£f(x), the
function is replaced by a formula that approximates f(x) over a small
interval of the independent variable x, and the result is integrated
over that interval. The equations employed vsuaily require knowledge
of the previous values of the integral, the function, and some of its
derivatives. The newly calculated value of the integral then can be
used as a factor to compute other functions and to repeat the above
process. When the integral has been formed over the interval for which
the quadrature formula is valid, that formula must be updated by obtain-
ing new values for the function and its derivatives. These methods are
well described in the literature (Scarborough, 1966; Cunningham, 1958).

In incremental integration, we do not obtain the whole integral
but only the change of the integral during the subinterval. This change
then is transmitted to be used as a factor to calculate other functionms,
or it can be accumulated to yield the whole integral value.

The most commonly used incremental integrating algorithms are rec-

tangular and modified trapezoidal.

1. Rectangular Integration

If, in the Taylor series

1 att 2
— \] —
f(xi+1) = f(xi) + £ (xi) Axi + 57 % (xi) Axi
]-_ tey 3
+ 3 f (xi) Axi FRrers (2.1)

we drop all . rms on the right-hand side that contain powers of Ax

greater than e, we have

f(x) = f(xi) + f'(xi) Axi (2.2)

i+l

Preceding page hlank | 7 SEL-71-057

where

£f'(x,)
1

Equation (2.2) represents rectangular integration of f'(x)
with respect to x. Figure 1 is the graphical representation of this
process. The ~rea that is
l bounded by the curve y, the

abscissa, and the ordinates at

Yi— ———— 4 the end points of ths desired

finite interval (xo,xn) is

divided into small rectangles

of height Yy and width Axi =
X, -X,. If n is made to be
i+l i

,422% | o very large, which is equivalent

*o Xj- X| Xp
Axo

to making Ax very small, and

if the function y is well be-
Fig. 1. RECTANGULAR INTEGRATION. hiaived, SRehe Reun ot SthSFedrosivans
gles is an approximation to the

integral of y with respect to x over the specified interval:

X
2im Y Y X, = ["y dx (2.3)
n 5o 1“0 0

If the integral fgnydx =2, then the individual Y X, are the in-
crements Azi of the integral, and Azi = YiAXi.

The digital differential analyzer (DDA) is a device that im-
plements this incremental integration. Figure 2 illustrates the basic
construction of a DDA, which requires two registers and two arithmetic
units, and Fig. 3 is its schematic symbol. The inputs to the DDA are
the dependent and independent variable increments AY and AY, re-

spectively. In the following, all variables are normalized to unity.

SEL-71-057 8

-~ S— A SR AL T AT 1 A O BRI R SN TN)
:_ ________ 1
e T
0 TPUT} i |
U
l A : INPUT
|
|
|

e ﬁrJP Ay,
. INPUT E—— Ay,

""-——Ayn

Fig. 2. DIGITAL INTEGRATOR FOR RECTANGUIAR INTEGRA-

TION.
AX -t R AZ=v.AX Fig. 3. DIGITAL
Ay Y INTEGRATOR SYMBOL.

The value of AX 1is restricted to +1, -1, and 0. The accumulation of
the AY increments is stored in the Y register and Y is added to
the content of the R register if AX is positive and subtracted if
it is negative. The process then is described by

i
Yi = 32:1 AXJ + Yo (2.4)
and
i
Ri = 321 YJAXJ + Ro (2.5)

where Yo and Ro are the initial values of the integrand and integral,

respectively. These equations can be rewritten as difference equations:

Y. =Y. ., 4+ AY : (2.6)

9 ’ SEL-71-057

and

R, =R, + Y. AX 2.7)

where Ri is a whole word and is the summation of Y with respect to .
X. 1If we consider the maxim.m allowable absolute value of R to be N,

then, whenever 'Ri| exceeds N, an overflow or underflow occurs which

represents the output AZ of the DDA. An accumulation of all AZ in

some other register will again be equal to the summation of YiAXi with

the remainder Ri in the R register:

Ri = Ri-l + Yiaxi - N Azi (2.8a)
i i
R, = z Y .NX, - Z N AZ (2.8b)

2. Modified Trapezoidal Integration

The approximation of the integral can be improved by using
trapezoids or some other geometrical areas instead of the elementary
rectangle. The .ost frequently used higher order integrafing rule is
the modified trapezoidal algorithm; this is an extrapolating algorithm
rather than interpolating and is physically realizable for a fast sys-
tem whereas the interpolating system is not (Yu, 1968). In extrapolat-
ing trapezoidal integration, we make a correction to the calculated in-
crement of the integral based on the value of the function derivative
during the previous interval. The equations for modified trapezoidal

integration are

Y, =Y 44 A . (2.9)
and .
R, =R + Y XX, + L AY AX (2.10)
i i-1 i1 2717 - A
SEL-71-057 10

o Wt 9l

Because the inherent delays in serial processing systems are
less than those in parallel systems, the modified trapezoidal integra-
tion rule is not a proper algorithm for serial machines. The Rieman

integrating rule should be used (Monroe, 1962) for these systems.

B. DDA Solution of Differential Equations

A single DDA solves the differential equation dz = ydx. To solve
more complex equations, several integrators must be interconnected such
that the resulting circuit models the equation. The basic programming
techniques are similar to those used for analog computers (Sizer, 1968,
Forbes, 1956)'gnd are well known. The equation to be solved is rewrit-
ten in differential form with the highest order derivative on the left-
hand side and all other terms on the right-hand side. Using the highest
order differential term as the dependent~variable increment input, it is
integrated with respect to the independent variable. With successive
integration, all derivatives of the function can be found, and the terms
on the right-hand side of the equation can be generated. The sum of
these terms is equal to the highest order differential and the loop is
closed. [Other approaches may result in a simpler program for certain
problems (Yu, 1968)]. Some examples will be instructive and will serve

as a comparison to the program and hardware requirement for the proposed

system.
C. Examples
1. Example 1

We will consider the programming of Van der Pol's equation

W, e = vy e e . (2.11)
dt2 dt

with the initial conditions vo = 1.5 and Go = 0. The maximum v&lue

of v and v will be less than 2 if ¢ is near unity. Multiplying

11 SEL-71-057

o AT AT I

N R

this equation by dt and moving all terms but the highest order term

to the right-hand side yields
. 2
dv = Edv - Ev dv - vdt (2.12)

where dv = &dt. Letting d& be the dependent-variable input to the
first integrator and dt its independent-variable input, the output
becomes vdt = dv. Integrating dv with respect to t results in
vdt as the output of integrator 2. With the two terms dv and vdt,

we can now generate dv and close the loop as shown in Fig. 4.

@\ vdt
e

24

-

v_Ov

&

a:-’-—e“'vz)%“:o

Fig. 4. SOLUTION DIAGRAM FOR VAN DER POL'S EQUATION.

The program connection is now determined. To complete the
program, we must still scale all variables; several methods are possible.
One approach is to solve a set of algebraic equations for each integrator.
A single integrator is illustrated in Fig. 5, with the scaling quantities

i M, N, ¥, Y, and Z. If the maximum value

M z y+N:=M ; M
)}_‘- S of the integrand is ym, then 2 > ym.

rin The number of bits used in the integrand

i N; d Z a the

Fig. 5. DIGITAL INTEGRATOR reglotes 18 N X, W, @D b E

SYMBOL WITH SCALING PARAM- exponents of 2 such that there are 27,

ETERS. 2Y, and 27 increments for each unit of
the independent-variable input, dependent-variable input, and integral

output, respectively. The integrator is scaled correctly if

SEL-71-)57 i2

e S A SO O NPT RN

Y+ N=M (2,13)

and

X+ M=2 (2.14)

All scale factors in the above example are shown in Table 1. In this
case, the maximum number of bits was taken to be 16. Note that the
independent-variable input for integrator 2 has a scale factor differ-

ent from that of integrator 1. This situation usually arises if the

Table 1
2 o,
SCALING FOR S’ - 1 -vH) T, v =0
dat2 dt
Integrator Function
M N X e z
(No.) (y) Ym
1 v 2 1 14 -1 -13 -15
2 v 1.5 1 16 =-14 =15 -13
3 1 2 16 =15 === =13
4 v 1,5 1 16 =-15 =15 -14
5 v 1.5 1 16 =-14 -15 =13
6 -t -1 0 16 =-13 =--- =13

original equation is mrghitude and frequency scaled i1 a fashion similar
to equations being programmed for analog computers. Unless automatic
scaling is available, this mgthod is very aften‘the easiest and simplest
because it eliﬁinates the need to solve the several sets of algebraic
equations (Peterson, 1968). If the machine does not allow t..e use of
different machine times, the X input for integrator 2 may be gener-
ated by an additional integrator with a constant multiplication factor

and M = 2,

2, Example 2

A second example is the equation of a circle:

13 SEL-71-057

yy + §2 +1=0 (2.15)

Assume that we want to solve this equation for values of x from x=0
to x = 2.1; then, yo =1, i 2, ymax = 2,236, and ymax = 2,
Figure 6 is the connection diagram, and the scaling factors are given

in Table 2 (again for a maximum of 16 bits).

dzx—

— 9y
y
\/ GD
d(17y)
— Iy (:)
dx 4
=] > y
ily (:)

___.j_ . ®
1 o—

g2 2
yv-;-%-i-(%) +120

o 2
Fig. 6. SOLUTION DIAGRAM FOR Yi+y +1 =0,

SEL-71-057 14

—— S p—

D e

- gt e

o e - —— 2 e e TP T IY

a2 day \?
SCALING FOR y . =¥ 4+ (l> +1=0

2
dx dx
Integrator Function
o v) M N X Y Z
1 y 1 14 -15 -13 -14
2 1/y 0 14 -14 -14 -14
3 1/y 0 14 -14 -14 -14
4 1/y 2 16 -15 -14 -13
5 y 1 14 -14 -13 -13
6 y 2 16 -15 -14 -13

D. Construction Parameters

DDAs can be classified by three basic construction parameters

(Wood, 1965):

(1) parallel/serial--input-output
(2) parallel/serial--arithmetic

(3) parallel/serial--processing of integrators

Although they do influence system performance, parameters (1) and (2)
chiefly represent possible trade-offs between solution speed and hard-
ware on a fixed-ratio basis. For example, if it takes Kl clock pulses
to process an integrator with parallel arithmetic and it takes K, clock

pulses to process one integrator of the same bit length with seriil arith-
metic, then for a given machine (serial or parallel) the solution time us-
ing serial arithmetic will be KZ/KI multiplied by the solution time us-
ing perallel arithmetic regardless of the equation being solved. The
third parameter, however, represents trade-offs of variable ratios be-
tween solution speed and hardware complexity. Parallel processing re-
sults in the highest possible solution speed, and the iteration rate for

a given word length is coustant regardless of the equation being siolved.

15 SEL-71-057

A machine that has a fixed number of integrators can solve any problem
as long as the availability of integrators is not exhausted. For a
practically sized machine, this might constitute a severe limitation
on the type of problems that can be solved.

Programs for parallel-processing machines must of necessity be .
hard wired and the machine, therefore, cannot use stored programs.

The usual programming method in this case is either permanently wiring
for a machine that solves only one problem with different equation pa-
rameters (or initial conditions) or plug-board programming as used on
analog computers.

Plug-board programming requires an excessive amount of time compared
to the solution time. Although this may be acceptable, if the particular
program is a standard program to be used many times, this method is not
feasible in a situation where the machine is to be employed by many users
with different problems. In addition, wiring errors may easily occur,
especially in problems requiring a high wiring density.

The solution time for serial processing DDAs varies directly with
the complexity of the problem because only one integrator is processed
at any one time. This, however, considerably simplifies the problem of
programming. Only one pair of input variables and one output variable
must be generated or transmitted with stored programs. imitations on
size or complexity of problems that can be solved on a particular machine
are, in this case, set by the size of the available program storage. The
machine requires only a single processor.

When programming any DDA, the programmer must be able to manipulate
the ditferential equation to be solved in such a way that he can set up
a solution diagram. This often requires recognition of functions as so-
lutions to differential equations which, in turn, are necessary for the
overall solution of the given problem. This requirement on the program-
mer in itself restricts the practical use of DDA machines to a relatively
small number of users. One of the most important considerations in this
work, therefore, has been to develop a machine enviromment that would

eliminate the most difficult and time-consuming programming tasks.

SEL-71-057 186

- 3 T A S P TI L SCR S I N

Chapter III

CONTEPT OF THE PROPOSED MACHINE

A, Requirements

The objective of this work was to develop a machine that would
satisfy the following goels. (1) It is to operate in the environment
of a computer center mated to either a small or large computer. (2)

It must be capable of operating with user-generated programs that spec-
ify little more than the equation to be solved, the dependent and inde-
pendent variables, and the accuracy and range of the solution desired.
The mapping of the equation and the generation of the machine program,
therefore, must be accomplished automatically. (3) In addition to act-
ing as an external device to a general-purpose computer (GPC), it must
be able to operate independently in the environment of control systems;
this is important because many control systems are complex enough to
require the solution of differential equations but do not warrant the
expenditure of a large high-speed general-purpose computer.

The basic requirements selected were

(1) high accurescy (5) solution reversibility

(2) high operating speed (6) modularity
(3) ease of programming (7) expandability
(4) solution repeatability (8) adaptability

Their import in configuring the DIC is discussed in the following sec-

tions.

B. Accuracy and Solution Speed

With incremental computation, the largest errors encountered are
the result of quantization and truncation. Typically, the worst possi-
ble error should not exceed 2™ if n is the length of a whole word
in number cof bits (Mayorov, 1964). In rectangular integration, the er-

ror ¢ for a monotonic continuous curve is given by € < (yn - yo) N

17 SEL-71-057

(Braun, 1963). The precision of the computation varies directly with

the length of the word and, unlike general-purpose computers with bit-

parallel word serial processing, the solution speed is inversely propor-

tional to the word length and therefore to precision. Basically, preci-

sion can be increased without limit by using longer words at the expense .
of more time, or solution speed can be increased by sacrificing precision.
Both alternatives are attractive and their advantages can be selectively
exploited, depending on the application.

As noted in Chapter II, the accuracy of calculations can be improved
by using higher order integrating algorithms such as extrapolating trape-
zoidal integration. Another method is to employ multi-bit increment
transfers to reduce the errors introduced by truncation of the integral
increment. Nilsen (1968) has shovn that multi-bit increment transfers
permit the use of shorter word lengths and resultant savings in solution
time without the normally associated penalty of loss of accuracy. His
method, however, does introduce the restriction that integration can be
accomplished only with respect to time. Other problems associated with
multi-bit transfer are discussed in Chapter 1IV.

In addition, accuracy can be improved by the use of floaling-point
arithmetic. Although this improvement is less than that achieved by
multi-bit transfer, floating-point arithmetic does have the additional
benefit of considerably reducing and possibly eliminating the often very
difficult problem of scaling.

High operating speed can be achieved by total parallel processing;
the result, however, would be incompatible with requirement 3. Serial-
processing machines operate at high solution speeds for simple equations
(equations whose solution requires only a few integrations per iteration)
but, as the complexity of the equation increases, the solution time in-
creases proportionately without bound. One solution to this dilemma is

a machine that employs serial-parallel processing.

C. Ease of Programming

The usefulness of any device is directly related to the ease of use

by the programmer. By incorporating provisions that allow for automatic

SEL-71-057 18

e

e : B s e s s i A et e e i i

editing and programming wherever possible, the proposed system can be
employed without any extra effort when attached to a GPC; in fact, given
a DIC/GPC system with a built-in translator program and given a problem
that contains differential equations, it would require considerably more
effort on the part of the programmer to avoid using the DIC.

The automatic-editing capability is one of the key features neces-
sary for successful operation of the system in the computer-center en-

vironment.

D. Solution Repeatability

Repeatability of operations or calculations is necessary to ensure
accuracy; furthermore, it allows for some fault detection. Because the
operating parameters and the initial ccaditions stored in the DIC are
not modified or destroyed during processing, it is always possible to
stop at any point and repeat the solution from its initial value.

In control-system applications, a given equation often must be
solved repetitively with only a few changes in parameters, and only these
initial conditions or parameters must be entered while all others are
retained. A similar situation occurs when searching for the solution
of problems with given initial and terminal boundaries, where some ini-

tial conditions must be changed until the proper solution is found.

E. Solution Reversibility

The DIC is capable of reversing the direction of computation; there-
fore, we can stop the solution at some point, reverse, and retrace it to
its initial value. Given the function value at some point in time tj’
we can compute the solution by using a negative time derivative and find
the solution for the interval from ti to t‘j where 1 < j.

1t should be noted, however, that not all solutions are reversible.
The conditions of reversibility for the solution of linear difference
equations with constant coefficients are that the highest and lowest

ordered difference terms of the functions must have coefficients of

unity (Monroe, 1962),

19 SEL-71-057

N

)30 Modularity and Expandability

The size of the DIC sets a limit on the complexity of problems that
can be solved. This complexity varies with the order, degree, and the
number of equations. The question then is how small the machine can be
without severely restricting its usefulness. In addition, to retain b
high speeds, we wanted to avoid continuously increasing solution time
with increasing complexity of the equations to be solved. The answer
proved to be a modular system with serial-parallel processing. Each
small module is large enough only to solve a reasonable range of prob-
lems; for more complex problems, it is cnly necessary to add additional
modules. The required connection between modules is minimal and, if not
used by another module, each module can operate independently on differ-
ent problems. The result is a modular system that can be closely matched

to the needs of the user.

G. Adaptability

It is important that the system be adaptable. The design is such
that with a proper I/0 buffer the DIC can be connected to almost every
existing GPC because the actual operation of the DIC is independent from
the GPC; the general-purpose computer is used only to translate the equa-
tion to be solved into a machine program and as an I/0 device for the DIC,
In this configuration, the length of time required for the programming
and execution of problems containing differential equations can be re-
duced considerably. The efficiency of the total computing system is
greatly increased because the DIC can solve the differential equations
much faster than the GPC and, as a result, the GPC is free to execute
other portions of the program simultaneously. As noted above, the DIC
can operate totally independently, which is particularly useful in con-
trol systems and circuit applications. The DIC can realize filters, ex-
tract Fourier coefficients from some signal, or monitor and control pro-
cesses (Yu, 1967; Raimondi, 1971). In these applications, the program

is usually used repetitively and can be entered or changed manually.

SEL~71-057 20

Ry, i A

i " R = N Y S T Cm = I WP

Chapter IV

NUMBER REPRESENTATION

A, Binary Numver System

Of the mauy possible number systems, the binary number system using
2's complement arithmetic is the most logical choice not only for the DIC
operation but to ensure compatability with other computing systems. Be-
cause the basic-unity increments represent the smallest possible change
of a word (a binary numberj;, the value of the increment is limited to O,
+1, or -1, 1If a single bit is used to represent these increments, then
a "1" represents +1, a "0" represents -1, and an alternating string of
"1" and "0" represents 0. Generally, this method is called "binary com-
munication of increments”"and was introduced with the design of the MADDIDA.

To avoid the problem of hzero oscillations,"” ternary representation
of increments can be emploved. Here we use two bits, usuall/ one sign-
bit and one magnitude-bit, allowing the representation of the three de-

gired states (0, +1, -1) and leaving one unused state (-0).

B. Circular Number System

Binary numbers and 2's complement arithmetic leads to a circular
number system (Braun, 1963; Mayorov, 1964), If we start with some number
and continuously add positive increments, it will eventually reach the
positive maximum; with the next positive increment, the number will go
to the minimum value. The reverse process occurs if we have negative
increments. For example, if the range of a number is -N to N-1, ' then
when increasing we would have O, 1, 2, ..., (N-1), -N, -(N-1),...,-2,
-1, 0,...; decreasing, we find the same series but in the reverse order.

This can be illustrated by considering a simple example of a binary
number register restricted to three bits. Starting from zero, we add a
single bi* .1 a time to obtain a series of eight states, as shown in Ta-
ble 3. The resp.2ctive decimal values are tabulated in the tiird column.
If we consider the highest order bit to be the sign-bit of a 2’s comple-
ment representation, then the decimal values of the binary numbers appear

in the fourth column and we obtain (0 1 1) + (0 0 1) = (1 0 0) which,

21 SEL-71-057

PN WO R

Table 3

BINARY REPRESENTATION OF NUMBERS

State Binary Decimal Decimal Value for 2's
Numbers Value Complement Representation
a 000 0 0
b 001 1 1
c 010 2 2
d o111 3 3
e 100 4 -4
f 101 5 -3
g 110 6 -2
h 111 7 -1

in decimals, is (+3) + (+1) = (~4).

would show eight states connected in

from every state to both of its nearest neighbors.

A state diagram for this table
a ring such that there is a path

One can see that

using 2's complement representation and allowing overflows will result

in a circular number system,
Figure 7 is
tem. Increasing

ing (positive or

-M_+M-l

0

Fig. 7. CIRCULAR NUMBER SYSTEM.

if taken over a long period of time.

ties, however, if the increment of a

SEL~-71-057 22

negative) numbers move clockwise.

a graphical representation of the circular number sys-

numbers move counter-clockwise on the circle; decreas-

An overflow occurs

whenever point S is prossed in
the counter-clockwise direction
ard the value of the number goes
from M-1 to -M;

S

an underflow
occurs whenever is crossed in
the clockwise direction and the

number value goes from -M to
M-1. The negative portion of the

circle is larger by one unit incre-
ment because, for some n-bit number,
M-1 corresponds to 2n -1 and -M

_zn'

corresponds to
This circular number system

produces generally accurate results

It can result in masked instabili-

number is zero averaged over a period

T e R s s e

of time (but not instantaneously) and if the value of the number is at

or near either the positive or negative limit.

Cl. Two-Loop Number System

The remainder of this chapter deals with a solution to this diffi-
culty. Let the states in Table 3 be rotated such that the column begins
with state e and ends with state d. We break the ring by not allow-
ing any transition to go from e to d or from d to e; instead,
let the (+1) transition from d go to a and the (-1) transition from
e go to h. The result represents a two-loop number system, with the
two loops joined by transitions between states a and h.

If the range of a number is =-N to N-1, for example, &nd if the
number continuously increases starting with some negative value -k, we
obtain the series -k, (-k+1),...,-1, 0, +1, +2,...,(N-1), O, +1, +2,:..,
and so on. A continuously decreasing number starting with some positive
value k results in a similar series: +k, k-1,..., +2, +i, 0, -1, =2,.,.,
(-N+1), (-N), -1, -2... .

Using binary numbers with 2's compilement representation, we have
one more negative state than positive states for any given number of
bits. If the word length is n bits {(plus sign-bit), therefore, the
maximum value is (2n -1) and the minimum value (pregative) is -2n.
The loop interval, however, must be the same for the positive and nega-
tive loops. As shown in Fig. 8, the return in the po~nitive loop is to
zero and the return in the negative loop is to -1, This results in a
one-unit increment separation of the two loops but ensures equal loop
intervals. It is also possible to consider the 2's complement repre-

sentation of (-2“) to represent, instead, the negative equivalent of

1
-2" -1 O +I +2"-1

Fig. 8. TWO-LOOP NUMBER SYSTEM.

23 SEL-71-057

T f ats RV VARG ;
T wﬂ&ﬁ&ﬁ&@ﬁ&&

e

e o sty Yo R

zero (-0); in the negative loop, we would have (2n -1) steps going
from -0 to -(2n -1) instead of going from -1 to -2“.

This two-loop number system eliminates any instabilities or oscil-
lations such as those that occur in the circular number system because
the return after an overflow or underflow is to a value other than the
minimum or maximum. Table 4 compares the behavior of the two systems
for a series of increments of the dependent variable which in two places
contains an "average zero derivative." Figures 9 and 10 illustrate the
staircase approximations of this function, emphasizing the difference
between the circular and two-loop number systems. The respective
f(n)i = jél Azj are plotted. As can be seen from both the table and
Fig. 10, the "zero oscillations” of the circular number system are not
predictable.

Since the weight of the increment AZ is determined by the loop
length, it is clear that, given the same number of bits for both sys-
tems, the weight of AZ in the two-loop system will be 1/2 the weight
in the circular number system and AZ will occur on the average at

twice the rate of that in the circular system.

D. Overlapping Loops

The two number systems described can be considered to be two ex-
tremes. An interesting variation occurs if we extend the two loops
such that they overlap but are not identical, as shown in Fig. 11. As
an example, let the positive loop return to -3 and the negative loop
return to +2, Continuously positive increments would resulf in the

following series:

-n, -n+1, ..., -3, -2, -1, 0, +1, +2, +3, ..., n-1, -3, -2, -1, 0, +1. ...
and negative increments would generate

n-1, n-2, ..., +3, +2, +1, 0, -1, -2, ..., -n+1, -n, +2, 41, 0, -1, ...

he second column in Table 5 tabulates the behavior of this number

-3

system for the same series of increments used in Table 4 and can be

SEL-71-057 24

——

REPEDH.

LDk TRy S o

Table 4

GENERATION OF INCREMENTS FOR CIRCUIAR AND TWO-LOOP NUMBER SYSTEMS

=} +
Q 2
@ g9
> eM_ OC0COoOrMOHOHOOOOOHOOOOOOHMOOOHOOHOOOQOCOC
) 7 + + + + + [[
C(
8 |2
-
Em
N(
a o
) .m OrH M HHHHOHM OO HOH OHOH O HHHFHOHOHOHOMH
._m .n OCOoOrMOHMHOHOHOHOHOHOHOHHOOHOrHM OO M HHMe™O
) m OO0 000000 HOHOOCOOCOOCOCOOOO M ™ ™ rird vl vl o
& @
=} +
Q 2
13 g S
> eM_ COO0CHOOOHHFMMMMOOOOOOOOHOHOOOOHWHOOOOOO
wn) + + 1 + 1 + i + 1 1
c{\
1 =2
) Yt
2
g
N(
b o
h .M OCr M HHAHHOHOHOHHOHOHOH OH MMM OHOH O™ O
= - COHOHOHOHOHOHOHOHOHMHHOOHOHOOHMM®MS-O
,m m CO0OO0OHHOOHOHOHHOODOOOOOH HOOHHHOOOO2O0O
(8] -4
MJ
e —
8 ¥ .1vﬁr
.HW.M_ CrH AN ANNNNHHEH AN o NN e e
- 85 + + 4+ ++++1 4+ A+ A+ A+ T+ +0 0 I
g -
A ”~~
=
A4
“

SEL-71-057

25

o

a5

oty

f(n)

n
n
-y

L S L

E

-Ib‘?"_“__r_?"
—

[
T

FS VR T (R L NN SR T T U G U S S

4 B 12 16 20 24 28t

cO

Fig. 9. INCREMENTAL INTEGRA-
TION, USING CIRCUIAR NUMBER
SYSTEM.

e e A T e e e o

fin)

>
T

L T L] L] L] T

4 B 12 16 20 24 281t

Fig. 10. INCREMENTAL INTEGRA-
TION, USING TWO-LOOP NUMBER
SYSTEM.

| |

-n -0-1 -1 (o]

Fig. 11. TWO-LOOP NUMBER SYSTEM WITH OVERIAPPING LOOP,

SEL-71-057 26

o

S

- A

Table 5

GENERATION OF INCREMENTS FOR SYSTEMS WITH OVERIAPPING LOOPS

n
o o - - — — HOHOHOMHO
» + + + 1
u HrHOOHHOGC
= cocooHHHH
» O HHAANHOHOHOHHOHOHOHOHHHAAHOHO
m | = COHHOHMHOHOHOHHOHOHOOHHOHOOOHH
1 MU HOHNMY
N 0 COoOHOOHOHOHOOHOHOHOOOOOHHOOHH + + + T
w
@

z .
ol = _. 4_
o o - — — - HOHOHOHO
» + + + 1
3 HHOOHHOO
o ocoCOHHMH®MH
s CHHOOOHOHOHOHHHOHOHOHOOOOOHOH
m | e COHHOHOHOHOHOHOOOOOHHOHOHOHHO
1 NN =Or- NN
- coo0oHOOHMHHAHAAHOOHHMHAAAAHOHHOOHHH + + + "R
25 o
o a8 OHNANNNH A AN A NN
o8 N A T T I R T i N N A
(3
<

SEL-71-057

27

I S e

compared to the behaviors of those systems. Figure 12 illustrates the
staircase approximation for the same function, using the number system
witn a slight hysteresis of one-bit. "Hysteresis" here means that the
loops are not separated by one or more bits and that the returns from
the maximum and minimum are to two different values. The third column
in Table 5 lists the same function, using a number system with a two-bit
hysteresis; its staircase approximation is shown in Fig. 13. Although
these sycstems do not eliminate all instabilities, they do prevent oscil-
lations in the case of very small function changes at or near the maxi-
mum or minimum level. Input sequences that conceivably could cause in-

stabilities are not likely to be encountered.

fin) f(n)

24r 2ar
22F 22|
20 20 A
8| 18-
16 16
14 1
12 12l
o W
8 8f-
3 sl
4

2

B U | U N S S N S0 NS D SR N (SN SR N
O 4 B8 12 16 20 24 281 O 4 8 12 16 20 24 281t

Fig. 12. INCREMENTAL INTEGRA- Fig. 13. INCREMENTAL INTEGRA-
TION, USING A NUMBER SYSTEM TION, USING A NUMBER SYSTEM
WITH 1-BIT HYSTERESIS. WITH 2-BIT HYSTERESIS.

SEL-71-057 28

N L S

E. Logical Implementation

i, Circular Number System

The logical implementation of the circular number system re-
gquires only 2's complement arithmetic and normal overflow detection.
This means that an increment is generated whenever there is a carry-bit
(or borrow when subtracting) into but not out of the most significant
bit (the sign-bit) or when there is a carr -bit out of but not into the
most significant bit. The sign of the increment is always equal to the
sign of the number before addition or subtraction. The implementation
of the two-loop system varies slightly.

2. Two;Loop Number System

let R, Y, and R* be the sign-bits of the previous remain-
der, the integrand, and the new remainder, respectively, using 2's com-
plement representatinn ("'0" = positive, "1" = negative). Here, C 1is
the carry into the sign-bit when adding or the borrow when subtracting;
S 1is the add/subtract control bit and is "1" for addition and "0" for
subtraction. We then want R* and |AZ| as a function of R, Y, and
S. The function F 1is necessary to eliminate C.

From the map of R¥ and AZ (Fig. 14a), we can derive the

equation

R*

RY'S' + RYS + RY'C'S + R'YC'S + R'Y'CS' + RYCS' (4.1a)
or

R*

{lROY@®SRI' [ROYDOR DY ®)N (4.1p)

if F 1is the output of a full adder/subtracter on R, Y, C, and S,
we see from the map of F (Fig. 14b) that

F = R¥* if |az] =0 (4.2a)
and
F # R¥* if |az] =1 (4.2b)
In the latter case F =R’.
29 SEL-71-057

RY RY
00 01 11 10 00 01 11 10
o0 | 0,0 | 0,+1 0,0 1,0 00 0 1 0 1)
o1 | 1,0 0,0 1,0 | 1,-1 01 1 0 1 0
sC scC
11 { 0,+1 | 0,0 1,0 0,0 11 1 0 1 0
io | 0,0 1,0 | 1,-1 1,0 10| o0 1 0 1
R¥, Az F
(a) (b)

RY
00 01 11 10

00 0 1 0 1

01 0 1 0 1

sC Fig. 14. KARNAUGH MAPS FOR
11 1 0 1 0 INTEGRAL OVERFLOW GENERA-
TION.

10 1 0 1 0

ROY®S

(c)

The function R@ Y@ S (Fig. 14c) covers all the cases where

F #Z R¥; therefore, R* can be expressed as
R*=FROY®S)'+ ROAOY ® SR (4.3)
Similarly from the maps,

|AZ| = R'Y'SC+ R'YS'C' + RYSC' + RY'S'C = RO Y@ S)(Y D C) (4.4)

but

Y@C=F @R (4.5)

SEL-71-057 ' 30

because

F=ROYSDC (4.6)
Therefore,
&z = ROYDS)FOR) 4.7)
Again from the maps,
aZ| = ROYDS)FOR) =R*@F (4.8)

This can be checked quickly by manipulation of R*@® F:

R*QF = [ROYD®SR+ ROYDS)FIPF

=(ROYOF)RF' + [ROY®S)R]' [R®Y D S)'FI'F

= ROYDS)RF' + RO Y @ S)R'F (4.9)
R*OQF = ROYDS)FOR) . (4.9b)

The sign of AZ must always be equal to the sign of R. The AZ gen-
eration of the two-loop system then is identical to that of the circular
number system, but the sign-bit of R is inhibited from changing when-
ever |aZ| = 1.

3. Multi-Bit Transfer Two-Loop Number System

The above equations were based on unity-increment transfers,
which means that AZ can only be 0, +1, or -1. To allow the increment
of AZ to take on values such that (-n) <Az < (+n), the AZ genera-
tion must be changed from detecting single-bit overflows or underflows
to multi-bit detection. Clearly, we could duplicate the logic described
for single-bit detection and use this same logic for every AZ bit. For

small n, this may not be too costly but, as n increases, this approach

31 ZEL-71-057

would become uneconomical; furthermore, each detection stage introduces
some additional delay that must finally propagate up to the highest or-
der bit.

Proper multi-bit over- or underflow detection for the two-loop
number system can be accomplished by using the previously described logic
inserted between the most significant bit of R and its sign-bit in the
same manner as in the unity-increment case. ILet that portion of R which

is to be read out as AZ be AZ¥, as shown in Fig. 15.

SIGN DE- LEAST
of TECTOR N SIGRIBCANT
R B'T

v
R

Fig. 15, INCREMENT DETECTION FOR MULTI-BIT TRANSFER TWO-~LOOP SYSTEM.

All the previous equations hold, with the exception of the

equations for [AZ[, and their terms refer to the same variables as

before. Again,
R*= [ROYO SR [ROYOORDYDS)'1'}" (4.10)
and

R*®F = ROYODSFAOR) (4.11)

however, here R* @ F does not give the magnitude of AZ but rather
serves to indicate whether [AZ| ie at its maximum. If & is the

most significant magnitude bit of AZ, then

AZm =R « (R*@F)' (4.12a)
or
AZm =RI(Y® S) + F] (4.12b)

SEL-71-057 32

o eln e hrbe——

Therefore, if ER¥*@ F = 0, we can determine AZ by taking the sign-
bit of R, copying this bit twice as the sign and highest order bits
of AZ, and reading out the remaining AZ* bits. Ail AZ* bits must
then be reset to be equal to the sign-bit of AZ. For example, let the

R register contain

Sign AZ¥ R - AZ*
rf 1 r 1 L L]
0 010 10110 ...

and let AZ* contain three bits; then, if the least significant bit of
R is on the right, the left-most bit is the sign-bit of R, the next
three bits are AZ¥ and the remaining bits are R-AZ¥, If R*@F=0,
then
M= dvo 010
and the new value for the R register is
0] 000 10110 ...
For an example with negative R, let R be
1 101 10101...
If R¥ + F =0, then
A =11 101
and the new R 1is given by
R=1 111 10101...
If R¥*@®F =1, we have a carry (or borrow) into the sign-bit which,

however, is inhibited from changing. This means that AN can now be

determined by again taking the sign of R as the sige of AZ, copying

33 SEL-71-057

the inverse sign of R into the mecst significant bit of AZ, and read-
ing out the remaining AZ* bits. Again, all AZ¥* bits should be reset
to be equal to the sign-bit of AZ.

In the case where R¥* @ F = 1, however, it should be noted -
that all bits in the AZ* register will always be equal to the sign of
AZ and therefore need no resetting because the AZ¥* register is always
reset after readout, and the maximum value that can be added to a AZ¥*
register of n bits (excluding the sign-bit) is (2n -1) plus a carry
(or borrow) from the lower order bits of K. As a result, because AZ
is a word that is longer by one-bit than AZ¥, the maximum value achieved
by a AZ of n bits (plus sign-bit) is 2n-1 and the minimum value is

2" 1oy,

SEL-71-057 34

Chapter V

THE FUNCTIONAL BLOCK

Conceptually, the basic DIC module is made up of a number of iden-

tical functional blocks, each containing

(1) memory locations for tne integrand, integral, and the
dependent-and independent-variable increments ’

(2) an arithmetic unit (processor) which, when given the
integrand increments and independent-variable incre-
ments as inputs, will produce the integral increments
and remainder

Each block (Fig. 16) receives four inputs ANi, Axi’ A, and B

and generates as its output

Awi ~ A B ViAXi (5.1
where Vi is the dependent variable AX —
v
being integrated with respect to X. ﬂ. AW =ABVAX
The processor contains the functions 8

of integrand-increment and integral-
increment multiplications by A é&nd Fig. 16. FUNCTIONAL BLOCK OF
B, respectively. PROPOSED MACHINE.

A, The IntegratingﬁFunction

Figure 17 is a flow diagram of the functional block. We shall
first consider the integration without multiplications by A or B.

Av Aw

Fig. 17. STRUCTURE OF FUNCTIONAL BLOCK.

35 SEL-71-057

P

The flow diagram of this sub-block is that portion of Fig. 17 which is
enclosed by the dotted line. The inputs are AX and AY and the out-
put is AZ = Y AX. The equations describing the operation of the sub-

block are
i
Yi = Y0 + _{, QxJ (5.2a)
J=1
Y. =Y, + AY, (5.2b)
i i-1 i
and
R1 =R -1 + YiAXi -M AZi (5.3)
Yt R Ry
N, = (5.4)
i M
Explicitly,
Azi = (Ri-l + YiAXi >M - (Ri-l + Y,lAX.1<-M) (5.5)
and
i
Zi = z AZj M+ Ri (5.6)
J=1
Substituting for AZJ,
i
LD
= = = R 5.7a
Z1 M % Y;jAXj + Rj—l Rj + i ()
j=1
or
i
Z, = 2 Y AX + R (5.7b)
i §=1 g3 o
SEL-71-057 36

which is approximately

b
Zi = <fa y dx) + R,o (5.7c)

In these equations, M is the capacity of the integrand and re-
mainder words and is 2n, where n is the number of bits not including
the sign-bit. Equations (5.3) to (5.5) implement the two-loop number

system. Equation (5.3) can be rewritten as

Ri = Ri-l + YiAXi - sign (Ri-l) M (5.8)

since the sign of Azi is always equal to the sign of R, ., as shown

in Eq. (56.5), and the magnitude of Azi is equal to 1 oriof The effect
is that if R 1is in the neighborhood of but less than M and the YiAXi
are positive, then R will reach (M-1) and with the next unit incre-
ment will go to zero instead of to the most negative value (-M). A sim-
ilar but reverse process occurs if R and the YiAXi are_negative. In
this case R will eventually reach -M and with the next increment will
go to -1. Thus we have two separate loops, the positive going from O to

M-1 and the negative going from -1 to -M.

B. Constant Multiplication

Now let us consider the total functional block. Even linear differ-
ential equations with constant coefficients require thatr some terms be
multiplied by constants. In addition, a method of problem scaling relies
on constant multiplication of the integrand and the integral increments.
The functional block therefore contains both of these multiplicatiomns.

Multiplication by A will be called "pre-multiplication’ since it
occurs before integration; similarly, multiplication by B will be
called "post-multiplication"” because it is an operation on the integral
result. Pre-multiplication is limited to positive constants (A) which

a

are pusitive integar powers of 2 (A =2, a = positive integer); post-

multiplication is limited to positive cr negative constants (B) whose

37 SEL-71-057

s e

absolute value is equal to or less than 1 (-1 < B < +1). Using the

multiplication factors A and B simultaneously allows the integral

to be multiplied by any desired constant; for example, the multiplica-
tion factor of -3 is derived by setting A = 4 and B = -3/4.

The limitations set on A and B are dictated by the operating
principle of the DIC. Considering post-multiplication first, it is
clear that the integral increment is generated at some rate determined
by both the dependent and independent variables and that this rate can-
not exceed the maximum machine rate which is equal to the maXximum num-
ber of iterations/sec. The highest possible rate occurs when the inde-
pendent-variable increment has a rate 2qual to the maximum machine rate
and when the absolute value of the corresponding dependent variable is
at a maximum. Under these corditions, the integral-increment rate is
approximately equal to the maximum machine rate. Any rate multiplica-
tion, therefore, must be limited to factors whose absolute values are
equal to or less than 1.

Similar arguments apply to pre-multiplication. Given an integrand
word with maximum length of n bits, the highest precision is achieved
by setting the unit increment equal to 1/(2n-1) of the maximum possi-
ble integrand value. The unit increment is de./ined to be the smallest
allowable increment oi a variable or function. If in some celculation
we desire raximum accuracy and if the dependent-variable increment con-
sists of a single-unit increment, then it is not possible to multiply
this iucrement by any factor less than 1. The restriction of the factor
A to powers of 2 is a practical consideration and simplifies the logical
implementation. Since the pre-multiplying factor appears mathematically
outside the integral, it is not necessary to include sign reversal if
that is available in post-multiplication.

If, in some calculation, precision is to be sacrificed for speed,
the maximum length of the integrand words may be scaled down by uniformly
pre-multiplying the integrand increments of 211 integrands by tne same
factor. This new factor then is considered to be the unity multiplica-
tion factor and any further multiplication necessary for the function is
superimposed. In this case, the factor A may be less them 1 (A = Za,

a =0, ¥1, 2 ,,.) but still positive.

SEL-71-057 38

Cr implementation

The implementations of pre- and post-multiplication are quite dif-
ferent “-om each other. In pre-multiplication, the value of the incom-
ing increment is multiplied by the multiplication factor and the result
is immediately added to the integrand (pre-multiplication is the normal
multiplication of two numbers). For post-multiplication, this method
is only possible and necessary for multi-bit transfer machines. If we
want the output to be a single magnitude hit which limits it to the val-
ues of +1, -1, or 0, then some form of rate multiplication is required.
We could use a second identical functional block, set the value of the
integrand to be equal to the desired post-multiplication factor, and use
the output of -the first block as the independent-variable increment in-
put. The dependent-variable increment would remain zero. This, in fact,
is the method normally used in DDA machines.

In a parallel-processing machine the use of integrators for constant
multiplication becomes rather expensive and the availability of integra-
tors is quickly exhausted. In a serial-processing machine this method
causes the solution speed to decrease considerably, since in this case
the time required for constant multiplication is equal to that required
for integration.

Incorporating post-multiplication into the basic functional block
somewhat reduces the extra hardware required otherwise, and also decreases
the total time spent on multiplication. Both time and hardware can be
saved, for example, by eliminating the circuit function which for the in-
tegration function adds the dependent-variable increment to the integrand.

Including the ‘wn multiplication functions in the functional block
results in the equations below describinrg its operation. 1In these equa-
tions, M and M2 are the scale factors, R and R2 are the remain-
ders of the integrating function and post-multiplication, respectively,
and AV and AW are problem variables and are the dependent-variable

increment and the multiplied integral increment.

AV =AV°+ZAAV (5.9)

39 SEL-71-057

Y =AV =AYV + A uvi (5.10)

Ri = Ri-l + \iahi - M AZi (6.11)
2. = -
R i R2i_1 + B AZi M2 AMi (5.12)
A ViAXi + Ri-l - R
A‘,i = M (5.13)
B AZi + R2i_1 - Rzi
Awi = e (56.14)

This equation is implemented thus:

W = A - = .
P\ i (Rzi_1 + B Azi > M2) (R2i_1 + B AZi < -M2) (5.15)
The algorithm then yields
i
V. =M ZE AW I M2 + R2, | + R (5.16)
i 4 Jj i i
j=1
Substituting for ij we have
F i
B AZJ + R2,_1 - R2
W, = M2 2 J Jire | +r (5.17a)
i M2 i i :
j=1
&S
W, = :L - R2 .
i M L (B Azj + R2j_1 R j) + Rzi + Ri (5.17b)
or
'i‘]
W =M Z BAZ. + R2 § + R, (5.17¢)
i s J o i

SEL-71-057 40

Substituting for AZ., results in

1 s VX, + R, R
W, = M|B :E i J < iR |+nr (5.188)
i M o i
j=1
or
i
W =B 2{ v R - &
i A jAXj + 5 Ri + M R2o + Ri (5.18b)
j=1
which finally can be written as
i
¥ = z .
i AB & Vjaxj + Ro + M RZO (5.19)

In the preceding sections all numbers were considered to be integers.
It is customary, however, to normalize all values such that the maximum
absolute value of the inte rand may not exceed unity. In this case, M=1
and the smallest possible increment of Y is AY = 1/2n, where n is
again the number of bits excluding the sign-bit. It is clear, bhowever,
that the largest posivive and negative values which may bé contained in
Y are (1 -1/2n) and (-1), respectively. It is therefore not possi-
ble to multiply by +1 without some modification. A simple method to
allow multiplication by +1 is to include an additional bit in the post-~
multiplier representing unity. This is not a problem in the case where
separate integrators are used for constant multiplication because the
second integrator in that case is deleted.

Using normalized values, the equations of the functional block are

B 2
Y, =AY, , +ALV, (5.20)
Ry =R, _, + Y M -4z (5.21)

41 SEL-71-057

A SO N W By "‘:h?«"g;

R2. = R2. + BAZ - AW, (5.22)
i i-1 i i

i

Z. =A :Z V.. | +R (5.23)
i j=i JJ o
L
i
W. =AB ‘;. v |+ R + R2 {(5.24)
i 5;1 i3 o o

D. Post-Multiplication by a Variable

let us agaih consider the basic functional block with inputs AY,AX
and output AZ = Y AX and let us assume that the equation solution re-
gquires the generation of g dz = G AZ = AW. Taking a separate integra-
tor, we may obtain the increments AW by using AZ as the independent-
variable increment and AG as the dependent-variable increment, thus
giving AW =G AZ =G Y AX. The same result may be achieved by using a
built-in post-multiplier; however, the required input would be G and
not AG which means that G must have been generated elsewhere in the
problem solution. In problems requiring function multiplications, the
capability of built-in post-multiplication by a function can save con-
siderable time and hardware. A few simple examples will demonstrate
potential time savings. The functional klock symbol (Fig. 18) of the

proposed machine has one extra output A Y AX which will be discussed

later.
AX r avAX)
. A Fig. 18. FUNCTIONAL
B ABVAX
AV Al Av BLOCK SYMBOL.
Example 1,

Inversion: Given dy, generate 1/y. Figure 19a is the conven-
tional DDA disgram, and Fig. 19b is the diagram using built-in post-

multiplication. The inverse is generated by solving

SEL-71-057 42

d(l) = -(l) dy (5.25)

dy""T

2
\/y ~i/y dysdlizy)

a. Conventional DDA solution

b. Solution,using
built~in post-
multiplication

‘ S ———
’ ‘\ da(1/7y)
-U»/

\/y

Fig. 19. GENERATION OF 1/y.

Example 2.

Generate the functions sin wx and cos Wx by solving the differ-

ential equation

2
ay = -2y (dx)? (5.26)
Then
dz(sin wx) = -wz sin wx(dx)2 (5.27)
and
2(sin Wx) = W cos Wx dx (5.28)

Figure 20a is the solution diagram in which beth sin Wwx and cos Wx
are available as whole words and in incremental form. Figure 2Cb is an
alternate diagram which uses one less integrator but genera<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>