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PREFACE

A central part of Rand's Soviet Cybernetics Technology

Project has been the development of the Relational Data

File (RDF), "a computer-based system for the storage,

retrieval, and logical analysis of factual data." Integral

to the actual construction and implementation of the system

was the theory originated by J. L. Kuhns [8, 9] to select

the formulas of the predicate calculus that supposedly

embody features facilitating machine processing. This

theory governed the design of the programming language

associated with the RDF. Accordingly, the classes of

definite and proper formulas were defined. The definite

formulas are characterized by a special semantic property

and were proposed as the formalization of the "reasonable"

inquiries to be processed by the RDF. Emphasis in the

program was placed on the classes of proper formulas, each

a subclass of the definite formulas, that also satisfy

certain syntactic conditions judged to render them especially

suitable for machine processing. The subclasses of proper

formulas, in contradistinction to the class of definite

formulas, depend on which logical primitives are employed.

Different sets of primitives give rise to different classes

of proper formulas. A formula is admissible if it is

effectively transformable into a proper equivalent. Kuhns

conjectured that every definite formula is admissible relative

to a particular class of proper formulas. We have previously

A07
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shown [4] that the decision problem for the class of

definite formulas is recursively unsolvable. Hence, no

algorithm exists by which to determine whether an arbitrary

formula is definite.

Also, in R-661 we showed that the decision problem

for several classes of proper formulas is solvable. In

this Report we go further and show that the decision

problem for the class r of proper formulas on the connectives

"-i, V, &, D, 3 is solvable. Hence, the decision problem for

any class of proper formulas based on a subset of these

connectives is solvable. Thus, there is a mechanical

decision procedure which determines whether an arbitrary

formula is a member of the class r. In addition, a repre-

sentation theorem for the members of r is proven which lays

bare the reason for the existence of an algorithm which

solves the decision problem for r.

This study should be of particular interest to those

concerned with the application of mathematical logic to

data retrieval systems and to those responsible for the

design and construction of retrieval systems intended for

intelligence analysis.

W ..



SUMMARY

In this Report we show that the decision problem for

the class r of proper formulas on the connectives -1,v, &,

, 4 is solvable. It follows that the decision problem for

any class of proper formulas based on a subset of these

connectives is solvable. Thus, for each of these classes

there is a mechanical decision procedure which determines

whether an arbitrary formula is a member of the class.

In addition, a representation theorem for the members of

r is proven which lays bare the reason for the existence

of an algorithm which solves the decision problem for r.
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THE SOLVABILITY OF THE DECISION PROBLEM FOR CLASSES OF
PROPER FORMULAS AND RELATED RESULTS

1. INTRODUCTION

The Relational Data File (RDF) of The Rand Corporation

is among the most developed of question-answering systems

in terms of the size of the data base, the design or

generation, and documentation of the associated files, and

the specially constructed programming languages [6, 10, 11,

12, 13]. The "information language" of this system is an

applied predicate calculus. The atomic units of informa-

tion are binary relational sentences. The system has an

inference-making capacity of the following sort: retrieval

specifications embodying the rule of modus ponens are made

by a user by means of the programming language Inferex.

As an integral part of the design and implementation of

this storage and retrieval system, a theory was developed

by J. L. Kuhns to identify and systematically study the

formulas of this calculus that represent the "reasonable"

questions to put to a computer implementation of this

system, with emphasis placed upon those representations

that are supposedly especially suited for machine proces-

sing [8,9]. Accordingly, three classes of formulas were

defined--definite, proper, and admissible. The classes

of definite formulas are defined semantically and are

invariant under the sentential and quantificational rules

of the predicate calculus. Moreover, the notion of a

sic"
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definite formula is essentially independent of the logical

operators taken as primitives of the language, as is to be

expected of a semantic notion. Indeed, languages £C

and Z C2 based on finite, functionally complete sets C1

and C2, respectively, of propositional and quantificational

connectives satisfy the following property. There is an

effective transformation of the formulas F of C intoC1

formulas ep(F) of Z C such that the formula F m r(F) is

valid in all interpretations of the language Z

A fortiori, if AC1 and C are the classes of definite

formulas on C1 and C2 , respectively, then F e ACI iff

q)(F) e AC 2 and for each interpretation I of F and ep(F),

F and qp(F) are satisfied in I at exactly the same instances.

Therefore, we shall often write, "the class A of definite

formulas."

As has been stated, the members of A share a semantic

condition judged in [8] as being necessarily possessed

by the symbolic representations of reasonable inquiries.

To elaborate, the notion of a data base as defined in [8]

amounts to the common notion of a structure with a finite

number of relations; or, from the vantage point of a formal

language, it is an interpretation of a finite number of

predicate and constant symbols. The formulas F with free

variables that are definite have the property that the sets

of true instances of F in an interpretation I of F and in

a special extension I of I are the same. The formulas

NJ
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without free variables are definite if their truth value

is always preserved on passage from an interpretation I to

an extension I' of I of the aforesaid special type. The

precise definition is given in Sec. 2 below. In a paper

which appeared in an earlier issue of this journal, we

showed that the decision problem for the class A of definite I

formulas is recursively unsolvable [4].

The proper formulas are those definite formulas that

satisfy a certain syntactic condition--namely, their

principal subformulas must also be proper. Thus, all

subformulas must be definite. The rationale behind this

definition presumably runs as follows: The definite

formulas mirror the reasonable inquiries, while the proper

formulas are such that all their parts, i.e., subformulas,

also have this desirable property. The admissible formulas

are those that can be transformed into proper equivalents;

that is, if F is admissible, there is a proper formula

G such that for each finite interpretation I, with domain

D, F and G are satisfied in I at exactly the same instances.

Of course, it is clear a priori that the admissibility of

a formula P is of little or no value unless the transforma-

tion e of P into a proper equivalent G is effective.

The concept, then, of a proper formula involves the

notien of a subformula. But determining which consecutive

parts of a given formula are subformulas is, of course, a

syntactic notion and depends on the identity of sentential

"Ilk
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and quantificational connectives employed. Thus, the sub-

classes of proper formulas, in contradistinction to the

class of definite formulas, depend on which of the logical

connectives are taken as primitives. In this paper we

show that the decision problem for various classes of

proper formulas is solvable. We previously showed in [5]

that the class of proper formulas on -1 , V, 3, or-I, D, 3,

or-1, v, D,3 is recursive. However, the results of the

present paper go beyond those of [5], allowing us to

include conjunction among the connectives. Indeed, the

proofs presented in [5] do not suffice to establish the

results contained herein, while the latter results sub-

sume those of [5].

In (8,9], stress is placed upon the particular class

Wo of proper formulas on v, &, j (*but noto), 3. At this

writing, the question of the decision problem for •o

remains open. We point out that for us the interest of

these questions lies in this: They constitute a number

of mathematical problems naturally arising in a practical

context which have required the use of nontrivial theorems

of mathematical logic for their resolution.

Y
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2. DEFINITIONS

The language £ that we use is the language of the full,

pure first-order predicate calculus without equality, aug-

mented with infinitely many individual constants. A formula
nI n2  n

in the predicate symbols P1 , P2 2 ' Pt , where the super-

script denotes the rank or degree of the predicate symbol,

and in the constants cl, c 2 , ... , ck is any formula F whose

only symbols, other than sentential connectives, quantifiers,
n1  n2 nt

and individual variables, occur among P 1 , P2 p '.0, Pt

cs, ... , ck. An interpretation of F is a system
n n

I-<D; Rll, ... , Rtt;d ... , d, where D is a nonempty
n* n.

set; each relation R.i is defined on D - and assigned to
n.

Pi ; and each dj is assigned to cj, i = 1, ... , t; djcD,

j = 1, ... , k. An interpretation I of F is said to be

finite if the domain D of I is finite. Developments of the

notion of interpretation ox structure may be found in [14]

or [15].

2.1. Definition
If F is a formula with m free variables and I -

nI n2 nt
<D , ... , Rt dI, ... , dk. is a finite interpre-

tation of F, T(F, I) is the set of members of Dm that

satisfy F, if m > 0& If m - 0, we call F a sentence, and

T(F, I) - t (truth) and T(F, I) - f (falsity) according to

whether F is satisfied or not satisfied in I. We say a

sentence F is finitely satisfiable if there is a finite

interpretation in which it is satisfiedl F is finitely valid

if it is satisfied in all finite interpretations.

....... .-------
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2.2 Definition

Let F be a formula and I = <D; R1 , t ; dI, ... ) d

a finite interpretation of F. Let * be an individual not in

D. A *-extension I' of I for F is the interpretation
nI nt

I' = <D'; S1, ... , St ; dI, ... , dk>, where D' D U f*Jn. n.i ni. ni

and S.' is the extension of R 1i from'Dn to D',such that

Sni n.
1 is false on any member of D' ' that has * among its

components.

2.3. Definition

A formula F is said to be definite if, for all finite

interpretations I of F, T(F, I) = T(F, I'), where 1' is a

*•-extension of I for F. This definition is given in [81

in a different terminology.

Thus, the theorems and refutables of the predicate

calculus that are sentences are definite. Clearly, all

atomic formulas of Z are definite. Closure properties of

the class of definite formulas are investigated at length

in [8].

To describe the informal situation that this last

definition is meant to reflect, we quote from 18]:

Consider the question
Who did not write Meaning and Necessity?

We would certainly regard this as unreasonable,
but how is the computer to know this? Should
the computer simply list all the names in the
dictionary (except 'R. Carnap') or should it
somehow prohibit the question?

The symbolic form of (1) is the formula

NOT(Wkb) (2)

4J



-7-

The difficulty with this expression is that its
value set depends on more than the value set of
the component 'Wxb'; it depends on other names
in the dictionary. That is, if we add a new name
to the dictionary the value set of (2) will change.
A formula without this objectionable property
will be called definite.

Other examples of indefinite formulas are
easy to construct in terms of procedural requests.
For example, the request

EXTRACT (x,y): x wrote Meaning and Necessity
or y wrote Meaning and Neces-
sity.

leads to the formula

(Wxb) or (Wyb) (4)

This is indefinite because any ordered pair of
names gives a member of the value set providing
only that 'a' is in the first or second position.

Let us now replace the rather vague notion
of what constitutes a 'reasonable' request by the
specific notion of definite formula. The problem
is then to invent algorithms for identifying
definite formulas and calculating their value
sets [8], pp. 8-9.

(The) data base is a set of elementary
sentential formulas of degree zero. This dis-
tinguished set is called the file. The motiva-
tion is that the file shall consist of our stock
of "true" sentences....

Value sets of Elementary Sentential Formulas.
We begin with the definition of value set. Sinc
the generation of value set& will be a machine
routine, we assign a special designation °'w to
this operation. The first step is to define
M(f) for every f of degree zero.

What value should we assign to such a
formula? We would like the value to correspond
somehow to the "true value" . . *

One method is to assume that the file gives
an exhaustive description of the state of our
universe of discourse. That is, the elementary
formulas in the file tell us exactly which of the
given individuals have the given properties, and
which have the given relations between them.
The value of an elementary formula is then "true"
if the formula is in the file, and "false* other-
wise [8], pp. 30-31.

.0 "AIN..
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Here the terms "data base," "dictionary," "file," "ele-

mentary sentential formulas of degree zero," and "value set

of a formula* correspond, respectively, in our terminology

to "interpretation," *constant symbols naming elements of

an interpretation," "set of relations of an interpretation,"

"atomic formula without free variables (atomic sentence),"

and "set of satisfying instances of a formula." The truth

definition given in [8] of an elementary sentential formula A

requires that any elementary sentential formula having the

same predicate symbol as A be false if it contains a name

not present in the file. This is reflected in the require-

ment of Definition 2.2 that the relation which interprets

an atomic formula in a finite interpretation I be false on

members of the relation which contain * in an *-extension I'

of I. In 18] the truth definition of an arbitrary formula

is built from that of elementary sentential formula by the

rules of substitution, and the sentential and quantifica-

tional conmectives in the usual way.

2.4. Remark

We recall again the following theorem [4]s

If A k, k > O, is the class of definite formulas

on 2 with k free variables, then Ak is not recursively

enumerable.

Thus, the decision problem for each Ak is recursively

unsolvable.
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2.5. Examples

Consider the following formula F:

VxjyP(x, y) = 4yVxP(x, y). Let D = (1, 23 and P be inter-

preted in D by the binary relation R true on the pairs (1, 2)

and (2, 1), and false on the pairs (1, 1) and (2, 2). Thus,

in this case I = -MI R>. It is easily seen that VxlyP(x, y)

is true in I, whereas 3yVxP(x, y) is false in I. By the

truth-table for implication, VxiyP(x, y) = 3xvxP(x, y) is

consequently false in I.

We form the *-extension 1' = MD'; S> of I by taking

DI - (1, 2, *J and S to be the binary relation which agrees

wtih R on D x D and is false on the pairs (1, ), (, 1),

(2, *), (*, 2), and (*, *). Thus, Vx~yP(x, y) is false in

I' since S(*, *), S(*, 1), and S(*, 2) are all false in D'.

Similarly, 3yVxP(x, y) is false in I'. Hence F is true in

I'. Since F is false in I but true in the *-extension I'

of I we see that F is finitely satisfiable, is not finitely

valid, and is not definite.

Consider the formula G:

3xP(x) & VxIP(x) n Q(x)]. Let D be any nonempty finite set.

Suppose I - vD; RI, R2 > is an interpretation in which R, and

R2 are unary relations serving as the interpretations of P

and Q, respectively. If R1 is false throughout D, then

IxP(x) and hence G are false in I. Thus, G is not finitely

valid. But if, for example, R1 holds for but a single

member of D and R is universally true in D, the G holds

in I. Thus, G is finitely satisfiable*

•...o
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Suppose that V' < D'; S 1 1 S?> is a *-extension of 1.

Assume that G is false in 1. If 3xP(x) is false in I, then

since SIMis false, 3xP(x) and hence G are false in 11.

If 3xP(x) is true in I but VIx(P(x) --.Q(x)) is false in I,

then there is an element d e D such that S is true on d
1

and S2is false on d. Hence S Md is true and S2(dM is

false in D'. Thus, Vx(P(x) :D Q(x)) is false in I's There-

fore, G is false in IV. Assume, now, that G is true in Is

Then 3xP(x) is true in I and hence true in V'. By assump-

tions, Vx(P~x) D)Q(x)) is true in Is S 1 and S2are both

false on *. So, Vx(P(x) =)Q(x)) is true in IV. Therefore

G is true in 11. Since I is arbitrary, it follows that G

is definite.

2.6. Definition

Let u 1 1 u2, ... , u k be the unary connectives and f

b F.... b. the binary connectives of the language t. It

is assumed that at least one of 3 (the existential quantifier)

and V (the universal quantifier) is among u 1, u 2 0 ... , uk.

We inductively define the property of being a subformula,

of a formula A of t.

(1) A is a subformula of A.

(2) If A is u i(B) and u i is a propositional connective,

then each subformula of B is a subformula of A, 1 1, 2,

..,k.

(3) If A is u i x(B) Uj iis either 3or V, and x is a

variable that occurs free in B, then each subfoxuuula of 9

is a subformula of A, i 1p 2, *so, k.
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(4) If A is b.(B, C), then each subformula of B is a

subformula of A and each subformula of C is a subformula

of A, j = 1, 2, ... , A.

(5) A formula B is a subformula of A only as prescribed

by (1) through (4) above.

2.7. Notation

To facilitate the frequent use of certain terms, we

shall write "fv," "fs," "nfv,""nfs," "re," for "finitely

valid," "finitely satisfiable," "not finitely valid," "not

finitely satisfiable," and "recursively enumerable," respect-
I I

ively. Also, we write "F 1 * F2 " to mean that, for each

finite interpretation I, the formulas F1 and F2 hold at

exactly the same instances of the domain of I. If D is

among our primitive connectives, we write "A a B" for

"(ArB)&(B=&)." "AcB" means A is a proper subset of B.

2.8. Definition

A formula A of £ is proper on a set C of connectives iff

each subformula of A is definite on C. This definition differs

from the definition of "proper formula" given in (8, 91, but

the two are easily seen to be equivalent.

Suppose C is a set of logical connectives which has

v, &, -- , j, and 3 among its members. For purposes of sub-

sequent reference we state here a characterization theorem

for proper formulas [9]:

If A and B are proper formulas on C, then

(1) A v B is proper on C if (a) Fv(A) - Fv(B), or (b) if

S+ +i .. .
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for one of A, B, say A, Fv(A) c Fv(B) and A is nfs, or (c)

both A and B are nfs, where "Fv(F)" denotes the set of free

variables of the formula F.

(2) A & B is proper on C.

(3) -1 A is proper on C iff A is a sentence.

(4) A = B is proper on C iff (a) A and B are sentences,

or (b) A is fv. (If A is fv, since A is proper, A is definite

and fv, and hence a sentence.)

(5) 3xA is proper on C, where x is any variable.

This theorem is stated in [9] with all occurrences of

"proper" replaced by "definite." As stated in [9], the present

version follows at once from the definition of proper

formula.

By (1) (a), (2), and (5) the sentence dxly((P(x)&Q(x,y))

AR(x,y)) is a proper formula in prenex form. The formula

-j3y(3xP(x,y)NQ(y)) is proper by (5), (l)(a), (5), and (3).

The formula 3x3y((P(x)&Q(x,y)),Q(x,y)):,R(y) is proper by (4)(b),

and (5). The formula - - P(x)}P(x) is not proper, though it

is truth-functionally equivalent to the proper formula

P(x)%Q(x). In the following, we are mainly interested in

proper formulas on the more familiar sets of connectives.

2.9. Definition

We define the depth d of a formula F.

(1) if F is atomic, d(F) - 0.

(2) If u is a unary primitive connective of the language

£, and F is u(A), then d(F) - d(A)+l.

VN-
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(3) if b is a binary primitive connective of Z~, and

F is b (A, B), then d (F) d d(A) +d (B) +1.
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3. RESULTS

We have previously noted that the classes of proper

formulas depend on which logical connectives are taken as

primitives. Thus, classes w and Y2 of proper formulas

employing different but, in the usual sense, equivalent

sets of connectives may have different properties. A

result proven in [5] shows that this dependence is not

absolute, and we cite it here for the sake of complete-

ness.

THEOREM 3.1. The class np of proper formulas in

prenex form defined on any complete set of connectives

is recursive.

Before proceeding to the proof that various classes

of proper formulas are recursive, we make some general

observations which bear on the matter. Suppose that A

is some nonrecursive class of formulas and that r is the

subclass of A consisting of those formulas A all of whose

subformulas are also members of A. We may ask whether

r is recursive? Suppose further that E, the complement

of A in the class of all formulas, is re. Thus, under an

arithmetization of our formalism the predicate of natural

numbers denoting membership in A is the negation of an

re predicate. Hence, the natural predicate denoting member-

ship in r is also the negation of an r" predicate. Thus,

one might expect the decision problem for r to also be
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recursively unsolvable, that is, that r not be recursive

and, hence, not re, since if E is re, so is F. Moreover,

there are instances of classes of A and the derived class

r, which are not re with E and f both re. There are also

instances in which both A and r are re but not recursive

with E and f both not re. We came upon these examples as

a result of our attempts to prove that the decision problem

for various classes of proper formulas is unsolvable. Indeed,

these examples arise naturally as a result of considera-

tion of the decision problem for any class of proper formulas.

We therefore include them here for the sake of completeness,

and because they are of some interest in their own right.

Thus, let us take A to be the class of all formulas which

are not valid. By the Godel completeness theorem, A consists

of the formulas of the predicate calculus which are not

theorems. By the fundamental result of Church and, in-

dependently, Turing, A is not re [2,171. r is the class

of all formulas none of whose subformulas is valid. With

these definitions of A and 1r, we have

THEOREM 3.2. r is not re.

Proof. Let us recall the basic fact that a formula

F is valid in a nonempty domain D if and only if the Skolem

normal form of F is valid in D (3, pp. 224, 2301. We define

A to be the class of those members G of A such that G is i -

in prenex form and each existential quantifier of F precedes
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every universal quantifier. (We do not say that As consists

of those members of A in Skolem normal form because the

Skolem normal form of a formula has no free variables 131.

Under our definition, As may include formulas with free

variables and quantifier-free formulas. Of course, formulas

in Skolem normal form are also in A s.) Consider an arbitrary

formula F. Let SK(F) be the Skolem normal form of F. By

Godel's completeness theorem and the result cited above,

F is a nontheorem if and only if SK(F) is a nontheorem;

that is, F e A "- SK(F) e A . Therefore since A is not
5

recursive, it follows that As is not recursive. The class

A of formulas which are either not in prenex form, or, if

in prenex form, have a prefix in which some universal quan-

tifier precedes some existential quantifier, is recursive.

The class 9 of valid formulas (theorems) is re. Now,

As = A U A. Thus A is re. Hence, Aa is'not re. We

define rs to be the class consisting of those members of

Aa all of whose subformulas are also members of A a. Of

course, Dr c A.. But, each subformula of a member of As

is itself a member of A5 . Hence, r. - A., and therefore

r8is not re. A recursive enumeration f of rais con-

structible from any recursive enumeration g of r by simply

discarding those values of g which are in A. But r1 is

not re. Hence, r is not re. Q.E.D. .4

S, .
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COROLLARY 3.3. To decide of an arbitrary formula

whether it has at least one valid subformula is recur-

sively unsolvable.

By using the Skolem normal form for satisfiability

[3, pp. 230-231], one can similarly prove

THEOREM 3.4. The Class r of formulas all subformulas

of which are satisfiable is not re.

COROLLARY 3.5. To decide of an arbitrary formula

whether it has at least one unsatisfiable subformula is'

recursively unsolvable.

There are examples of classes A and r with unsolvable

decision problems in which A is re. Let us take A to

the class of formulas which are nfv (We remind the reader

of the notational conventions stated in 2.7). r is the

class of those members of A all of whose subformulas are

also members of A; thus r is the class of all formulas

all subformulas of which are nfv.

With these definitions of A and r we have

THEOREM 3.6. r is not recursive.

Proof. We note in passing that A in re, and it

follows easily that r is also re. We again define As as

the class of all those members of A which are in prenex:

form such that each existential quantifier precedes every

S4j.

• • i~,: •,'; ; • ' r- '7771%..
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universal quantifier. As in the proof of Theorem 3.2,

if F is an arbitrary formula, F e A #-# SK(F) c A., where

"SK(F)" again designates the Skolem normal form of F.

rs is defined as in Theorem 3.2 as the class of all those

members of A8 each of whose subformulas is in A8 . Again,

as in Theorem 3.2, As = rs. By the well-known result

of Trachtenbrot, A is not recursive [16). Therefore,

since again F e A +-# SK(F) e r.s, r. is not recursive.

Consequently, r is not recursive. For, suppose that Ir were

recursive. Let A be defined as in the proof of Theorem 3.2.

So A is recursive. To test if a formula F e rs, we ask

first if F is in A. If Fe A,F j' F. If F O A, then

F e rs if and only if F e r. Thus, if r is recursive,

then rs is recursive. But rs is not recursive. Hence

r is not recursive. Q.E.D.

COROLLARY 3.7. The class r of all formulas which

have at least one subformula which is fv is not re.

Similarly, using the Skolem normal form for satis-

fiability one can prove

THEOREM 3.8. The class r of formulas all subformulas

of which are fs is not recursive.

COROLLARY 3.9. The class r of formulas which have at

least one subformula which is nfa is not re.

A
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We note that all of the above results are independent

of which logical operators are taken as the primitives of

the language Z. Now, if C is any functionally complete

set of connectives, let AC be the class of definite

formulas on C and r the class of members of A all sub-C C
formulas of which are also members of A C. Thus, rc is

the class of proper formulas on C. Then A is not re [41,

and by the above considerations, one might not expect TC to

be re either. Nevertheless, taking C = CO = [- , v, &, 3],

we shall prove that rCo is recursive.
0i

DEFINITION 3.10. A formula F is said to be universal

if F is in prenex form and if each quantifier occurring in

the prefix of F is universal. A universal sentence is a

universal formula with no free variables.

DEFINITION 3.11. A formula F is said to be existential

if F is in prenex form and if each quantifier occurring

in the prefix of F is existential. An existential sentence

is an existential formula with no free variables. Universal

(existential) formulas are said to be nonvacuous if they

contain at least one universal (existential) quantifier.

DEFINITION 3.12. The class & of formulas (on

-, v , 3, • ) consists of all formulas F such that

(1) All occurrences of quantifiers are in either /

universal or existential subformulas of F.

I k'JILL-
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(2) Each occurrence of a negation sign occurs

in subformulas of F which are nonvacuous universal or

existential sentences.

(3) No free variable of F occurs within the scope

of a universal quantifier.

(4) Each bound variable of F is bound by only a

single occurrence of a quantifier and no variable in F

occurs both free and bound.

We note that it follows from (1) that each subformula

of F in prenex form is either universal or existential.

Thus a typical F in & consists of universal sentences,

existential sentences, and existential formulas with free

variables joined together by occurrences of & or v.

EXAMPLES

The formula

[3xay ((P (x) &Q (y)) vR(y,z) )&uVvVw(-u ( (P (u)vs (u,v)) &R(wv)) ) I

v3r3s ( (R(r,s)IP (s))vQ(r))

is a member of &, whereas the formula

[(3xly(P(x)IQ(y))v3yR(y,z))aVuVvVw(-,((P(u)vS(u,v))aR(w,v)))]

v~r3s((R(r,s)&P(s) )vQ(r))

is not, since condition (4) is violated. Nor is the formula

4f

AA.
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[3x3y((P(X)&Q(y))VR(y,z))&VuVVWf,( (P(u)VS(u,V))&R(W,,r)))]

V3v3v ( (R(V, w) &P (w) ) VQ (v))

since again (4) is violated.

The formula Vx(-gP(x)&(3yR(x,y)VQ(z))) fails to be in

.&on three counts; conditions (1), (2), and (3) are violated.

The formula

Yx-,P(x,x)&3zP(t,z)&Yuy'vyw((-IP(u,v)v--,P(v,w))vP(u,w))

is a member of .&.

We recall that UrN designates the class of proper
0

formulas on Co - I-To Vf fig 3 $. We now establish a re-

presentation theorem for rc , which we state as
0

LEMMA 3.13. Each member of rc0is provably equiva-

lent to some member of & (in some standard axiomatization

of the predicate calculus on Z); equivalently, for each

formula F c C , there is a formula G g .# such that the

formula F a G is valid (See 2.7). Also F and G have

the samen free variables.

Proof. Cons ider a formula F e r The proof proceeds
0O

by induction on the depth d of F. Suppose d - 0. Then F

is atomic. Conditions (1) to (4) defining membership iii f

are clearly satisfied by atomic formulas, so F *) if 4 - 0.

Since F.w F is of course valid, the lemois holds for 4 -0.
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Suppose that the lemma holds for all members of FC of
0

depth d' < d, d > 0. Consider a formula F in rc of
0

depth d.

Case 1. F is A v B. Then d(A) < d and d(B) < d.

By the induction hypothesis, there are formulas A' and

B' in & such that the formulas A a A' and B a B' are

valid. Also, Fv(A) = Fv(A') and Fv(B) = Fv(B'), where

"Nv(F)" denotes the set of variables occurring free in a

formula F. It is immediate that (AvB) a (A'vB') is valid.

Consider a formula B" obtained from B' by a change of

bound variables such that (1) every bound variable of B"

differs from every bound variable of A' and also from every

free variable of A' and (2) so that condition (4) of 3.12

remains satisfied. B' and B" differ in at most their bound

variables, so that B' a B" is valid. (In terms of [7] p. 153,

B" is congruent to B'.) Also, B" e h. The formulas A V B

and A' V B" have the same free variables and (AVB) a (A'VB")

is valid, since (A'VB") a (A'VB') is valid. It is not

difficult to see that A'vB" is a member of .. Also

Fv(F) = Fv(A'VB").

Case 2. F is A & B. To treat this case we proceed

just as in Case 1 and by induction hypothesis obtain formulas

A' e & and B' e & such that A a A' and B a B' are valid

formulas and Fv(A) - Fv(A') and Fv(B) - Fv(9'). Again, a

formula is defined as in Case 1 so that A & B and A' & B"

have the same free variables and (A&B) a (A'&B*) is valid.

It is easy to see that (A'&BO) J .o

," AN . ., ./••-!•

)!



-23-

Case 3. F is 3xA. By the induction hypothesis, there

is a formula A' in . such that the formula A a A' is valid

and Fv(A) = Fv(A'). We may assume that x occurs free in A.

Since A' e .6 all bound variables of A' differ from x. Suppose

that SI, $2 , ... , Sn are all the nonvacuous universal or

existential sentences that occur as subformulas of A'.

Suppose that F1 , F2 , ... , Fm are all the nonvacuous exis-

tential formulas with free variables that occur as subformulas

in A' such that no Ff, j = 1, 2, ... , m, occurs as a sub-

formula of any existential subformula of A' other than

itself. Thus, the F are the "biggest" existential sub-

formulas of A' that are not sentences and not subformulas

of existential sentences. No S. is a subformula of any F.,

and, from the definition of the Fi, no F. is a subformula

of any Sip i = 1, 2, ... , n J = 1, 2, ... , m. We note that

all occurrences of negation signs in A' are internal to

some Si, i a 1, 2, ... , n. By the definition of h, the

remaining subformulas of A' are quantifier-free, that is,

those which are subformulas of no Si or F., i - 1, 2, ... , n;

j 1, 2, ... , M. i

Consider m, + n proposition letters P1 ' F2, "'*' Pn'

al' Q2 1 w" ' QM' none of which occurs in F. Let As be

the formula which results from A' by replacing each occur-

rence of Si in A' by Pi and each occurrence of P in A'

by Qj, i s 1, 2, ... , n. J - 1, 2, ... , m. Let B be a

disjunctive normal form of A" and A" the formula which

results by replacing each occurrence of Pi in B by 8i li&

* d • ' •i• - /.,•,, •• :,
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each occurrence of Qjin B by Fir i =1, 2, .. ,n

j - 1, 2, ... , m. Thus, A'" amounts to putting A' into

disjunctive normal form, treating the S.i and F as atoms.

A'" has the form D 1vD2v ... V D k; each D a is of the

form C 1 & C 2  & C. & Ci, where each C b is either an atom

which occurs in A' outside of any S. or F.i (Such an atom

may occur in some S or F as well, but this is irrelevant),

orCb isoeF or C b is some Si b = 1, 2, ... , P.

Without loss of generality we may assume that for some q

1 < q S p, each of C q C q+1f ... I C pis an atom not con-

taining x, an F.i not containing x free, or an Si; and that

all atoms not containing x, all Pj not containing x free,

and all the S i that occur in D a occur among C q C q 1 & ... & CP

The formulas 3xA a 3xA' and 3xA' n 3xA'" are valid. Also,

3xAI" a xD 1 V 3xD2 v ... v 
3x k) is valid. No, xD ais

'1(C & s . q &Cq+1 . CP) By the above, the

formula *3x ( C 1 & C 2 & ... & C q-1 & Cq & C q+1&... & C p

is valid. Using the fact that A' s . and hence that each

bound variable of C 1 A C 2 & ... a C q-1. is bound by a single

quantifier, we bring all existential quantifiers

xl, 3 x2 l .*** 3zr which occur in C 1 & C 2  G.. C q-.1 to

the front and arrive at the formula

Ba : x~x,.~..axrB1 &lB 2 £OB q-1 )& C q A C q+1 &"'& Cp,

and note that IxD a * is valid. Also, it is easy to

check that REa is in J5. This analysis applies to each

formula xD aU a lp1 2,p.. ke Thus, we arrive at

-4
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El, E2 , ... , Ek, all in.&t, such that (3xDlv3xD2 v...vlxDk)

(E1VE 2V...VEk) is valid. Fiw, we perform in the obvious

way a change of bound variables on each Ea in consecutive

order, a = 1, 2, ... , k, arriving at formulas E , E , .... k

so that- () each E; is congruent to Ea and hence Ea a Ea

is valid and Eal e5, a = 1, 2, ... , k; (2) no bound

aavariable occurs in both members of any pair Ea, E•,

1 < a,b < k, a # b; and (3) no variable occurs free and

bound in Ev v Ej v...V Ek. It follows that Ej V Ej V...V Ek

is a member of .0. We designate El V Ej V...V Ek as Fk. From

the above, it follows that 3xA' a Fk is valid, and hence

3xA a Fk is valid. Also, since throughout the argument

no free variables have been deleted or introduced,

Fv(F) - Fv(Fk).

Case 4. F is -A. Since F e rCO, by (3) of 2.8 we

see that A is a sentence. By the induction hypothesis,

there is a sentence A' in -& such that the formula A m A'

is valid. By repeated use of the standard facts that for

any formulas B, C, the formulas -, BxB w Vx" B, -, VxB a 3x-I B,

,(B&C) a (--BV-,C), -1 (BvC) a (- 1 B&- C) are valid, we move

the left-most negation sign in -,A A' inward until we arrive

at a sentence G in which all negation signs occur in quantifier-

free subformulas of G, that is, no occurrence of -,in G

has a quantifier within its scope. By these transformations

each existential sentence of A' is transformed into a

universal sentence and each universal sentence into an

existential sentence. It is not hard to see that -, A' a G is

7*
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valid. Hence, F a G is valid and, Fv(F) = Fv(G), and G c 5.

Q.E.D.

LEMMA 3.14. If F e rCo, then F has a prenex form in
0

which every universal quantifier precedes every existential

quantifier, and a prenex form in which every existential

quantifier precedes every universal quantifier.

Proof. By the preceding lemma, there is a formula

G in & such that the formula F a G is valid, where F and

G have the same free variables. In G no existential

quantifier occurs within the scope of any universal quan-

tifier, and no universal quantifier occurs within the scope

of an existential quantifier. Also, no quantifier falls

within the scope of a negation sign. These conditions

follow from the fact that G is a member of .. Consequently,

in performing prenex operations on G we are able to first

pull out all the existential quantifiers and then pull out

all the universal quantifiers. (There is no difficulty in

pulling an existential quantifier over an occurrence of &,

or a universal quantifier over an occurrence of V, since

in G no bound variable occurs in more than one quantifier.)

Consequently, G has a prenex form 3xl3x 2 ... XnVYlvy 2 ... vymM

where M is quantifier free. Likewise, all universal quan-

tifiers can be pulled out before all existential quantifiers

are pulled out, resulting in a prenex form

Vy1Vy2 . .. Vy• 3x 1 x2 . .. 2 XnK K quantifier free.

But, since F a G is valid, any prenex form of G is a prenex

form of F. Q.E.D.

AL,

4';\ ~
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LEMMA 3.15. If F I , it is decidable whether F

is fv or F is fs (See 2.7).

Proof. By the preceding lemma, F has a prenex form

of the type VylYY2...VYm Xl3X2...3XnM, M quantifier free.

By [1], pp. 70-71, if a formula F has a prenex form with a

prefix of this type, then F is universally valid if it is

valid in domains with 1, 2, 3, ... , m elements. Thus, F is

finitely valid iff F is universally valid. This is decided

by testing successively whether F is valid in domains with

1, 2, ... , m elements. Hence it is decidable whether F is fv.

A formula G is fs iff -, G is not fv. F has a prenex

form 3x1 3x 2. .. 3 xnVYlvY 2 ... VYM, M quantifier free. Hence,

-IF has a prenex form YxlYx 2 ..-. Vxn3yl3y2 .. y"m "• M. But

as noted in the preceding paragraph it is decidable whether

formulas having a prenex form of this type are fv; in fact,

by testing for validity in domains with 1, 2, ... , n elements.

Hence, it is decidable whether - F is fv. Therefore, it is

decidable whether F is fs. Q.E.D.

We define the proposition P(d): for each formula F

on CO of depth d, if all subformulas F of depth d' C d are

proper on Co, then it is decidable whether F is proper on Co.

LEMMA 3.16. P(d) holds for each d.

Proof. If d - 0, then F is atomic and proper on any

met of connectives. Hence, P(O) holds. Consider an arbitrary

formula F of depth d, d > 0. Assume the hypothesis of the

~~ 44

4 , A

A Ig,

• • •, =• •E.
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assertion; that is, that any subformula of F of depth d' < d

is proper on C 0 . We recall that for any formula G, we

designate the set of free variables in G by "Fv(G)."

Casel1. F is A vB. Since d(A) <d, A e r and
0

B e rc. If Fv(A) = Fv(B), then by (1)(a) of 2.8, F e r.

If Fv(A) c Fv(B), then F e rC0iff A is nfs by (1) (b) of

2.8. By Lammu 3.15, it is decidable whether A is fs. Thus,

it is decidable whether A is nfs. Hence, it is decidable

whether F e . Similarly, if Fv(B) c= Fv(A). Suppose

Fv (A) # Fv(),Fv()S Fv (B) , Fv (B) 9t Fv(A) . Then F e c
iff A is nfs and B is nfu by (1) (c) of 2.8. By Lemma 3.15

it is decidable whether A is is and B is is. Hence, it is

decidable whether A is nfs and B is nf a. We conclude it

is decidable whether F e
rc0

Case 2. F is A & B. Again by our assumption, since

d(A) c d, d(B) < d, we have A e a and B e r o* But then

it follows by (2) of 2.8 that F e
rc0

Case 3. F in -1 A. Then d(A) < d and by our assumption

A e Hence, by (3) of 2.8 F e rCif VA - 0.
0c( 0

Case 4. F is 3xh. Then d(A) <dand A erc By
0

(5) of 2.8 we conclude F e * .ED.*2

We finally obtain4

THEOREM 3.17. r ois recursive.
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Proof. Consider an arbitrary formula F. Suppose

that the depth of F is d: d(A) - d. By Lemma 3.16 we can

successively determine whether all subformulas of F of

depth d' < d are proper on C0 . Hence, we can decide whether

F is proper on Co, that is, whether F e r
0 C 0

We now consider the decision problem for the class

FCI of proper formulas on C1 = [-I,, v, &, 3, 3). First we

define a translation q of the class of formulas on C1 into

the class of formulas on Co.

q7(A) = A if A is atomic.

Cp(AVB) = q(A) V.p(B).

qp (A&B) - rp(A) &qcp(B) .

r (A..S) ,- q (n A) V cp (B) .

S(3xA) - 3m (A).

By induction on the depth d of a formula F on CI, we see

that qi is defined for every formula on C1 .

LEIMA 3.18. For each formula F, the formula F a ep(F)

is valid.

Proof. This is obvious. A detailed proof proceeds

by induction on the depth d of F, employing a case analysis

of just the sort given in the proofs of preceding leimas.

Q.E.D.

- . ,' ,- • .'•:..••:• •'.,••:
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LEMMA 3.19. A is proper on C1 iff (p(A) is proper

on C . In other words, A e rC1 iff CP(A) C 'c

Proof. The proof proceeds by induction on the depth

d of A. If d = 0, then A is atomic and q,(A) = A; hence,

the assertion holds. Suppose the statement is true for

all formulas B of depth d' < d, d > 0. Consider a formula

A of depth d.

Case 1. A is -, B. Then rp(A) is -1 qp(B). Assume A is

proper on Cl; then B is proper on C1 ° Then, by the in-

duction hypothesis, qp(B) is proper on CO. Since -,B is

proper, A is a sentence by (3) of 2.0. Hence, cp(B) is

a sentence and (P(A) is proper on C0 . Likewise, if qp(A) =

-nq(B) is proper on C0 , q)(B) is proper on C0 and a sentence.

By definition of q, B is a sentence; by the induction

hypothesis, B is proper on CI. Hence, A is proper on C1 .

Case 2. A is 3xB. Then qp(A) = 3xp(B). A and q)(A)

are proper on Cl, Co, respectively, iff B and qp(B) are

proper on CI, Co, respectively. By the induction hypothesis,

B is proper on C1 iff p(B) is proper on C0. Hence, A is

proper on C1 iff q(A) is proper on C.

Case 3. A is B n C. Then q(A) is -1 (B)vWp(C)-

Subcase 1. B and C are both sentences. Then 4p(B) .. A

and c(C) are sentences. A is proper on C1 iff both B and

C are proper on C1 by (4)(a) of 2.8. By the induction

hypothesis, B and C are proper on C1 iff q(B) and q(C) are

S.. .. 4 ... . : ,~ ••,•• , .. .

• :• / •,, •.. ... j.g-
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proper on Co. Since B is a sentence, B is proper on C.

iff qp(B) is proper on C 0. But -1 q,(B)vrp(C) is proper on C 0
iff tp(B) and qi(C) are proper on C by (1)(a) of 2.8.

Therefore A is proper on CI iff -jp(B)vcp(C) is proper on Co.

Subcase 2. At least one of B, C is not a sentence.

In this subcase, A is proper on C1 iff B is a proper fv

sentence on C1 and C is proper on C1 by (4)(b) of 2.8.

Thus, if A is proper on CI, C is not a sentence. Hence,

q)(C) is not a sentence and, by the induction hypothesis,

(p(C) is proper on C0 . Also, if B is a proper, fv sentence

on C1 , then n ,q(B) is a nfs proper sentence on C0 by Lemma

3.18 and (3) of 2.8. Hence, -,q(B)v}(C) is proper on C0

by (1)(b) of 2.8. Similarly, since one of B, C is not a

sentence, if -,q(B)ve,(C) is proper on Co, then - 1q(B) is

a proper sentence on CO by (3) of 2.8. Thus, C and qp(C)

have free variables, and hence at least -Iq(B) is nfs by

(1) (b) of 2.8. Hence, B is, by the induction hypothesis,

a proper sentence on C1 and C is a proper formula on C1

with free variables. Since F w cp(F) is valid in the

predicate calculus for each formula F by Lemma 3.18, B

is fv. Hence, A is proper on C1 by (4) (b) of 2.8. We

conclude that A is proper on C1 iff , (B)vp(C) is proper

on C0 . Q.E.D.

Case 4. A is B & C. By (2) of 2.8 A is proper on

C1 iff B is proper on C1 and C is proper on C1 . By the

induction hypothesis, B is proper on C1 and C is proper

%L
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on C1 iff qp(B) is proper on C0 and r(C) is proper on Co,

respectively. Consequently, A is proper on C1 iff q)(A)

is proper on C0 . Q.E.D.

We thus obtain

THEOREM 3.20. rC is recursive.

Proof. Indeed, an arithmetization of our formalism,

together with Lemma 3.19, shows that the decision problem

for the class of proper formulas on C1 is 1-1 reducible

to the decision problem for the class of proper formulas

on C0 . By Lemma 3.17, the latter class, that is, PC , is
0

recursive. Hence, rC1 is recursive. Q.E.D.

We note that by Lemma 3.13 and Lemma 3.18, the asser-

tion of Lemma 3.13 holds also for ;CI; that is, if F is

any member of rC there can be effectively found a member

S(F) of the class . such that the formula F a c (F) is valid.

* 7I
,>*;

Q 1
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4. REMARKS

In [81 p. vi it is stated that

Among the definite formulas in a class of
particular interest--the proper formulas. These
formulas, because of their structure, are especially
suitable for machine processing.... Finally, the
important class of definite but improper formulas
is studied. The approach is to transform these
into proper equivalents. Those formulas for which
this transformation can be done are called admissible.
It is conjectured that every definite formuTla i
admissible....

Here, by "proper formulas," the author refers to the

class of proper formulas on C = [v, &, j ("but not"), 31.

Part of Chapter 6 of 18] is devoted to defining admissibility

transformations for various subclasses of definite formulas.

By Theorem 3.20, it follows that if A is any class of

definite formulas on any functionally complete set of

connectives, then the analogue of this conjecture, as

applied to A and the class rCI, is fhlse in the following

sense. There is no effective transformation q such that

F c a * q(F) e rC1. The existence of such a q) would

imply that A is recursive, which is not the case. In

fact, for the same reason, A is not even Turing reducible

to r . Since rC is recursive, if C is any set of con-

nectives such that C C Cl, then rc is recursive. A is

therefore not Turing reducible to any such class "C.

All of the results of (5) on solvable classes of

proper formulas are subsumed under Theorem 3.20. The

principal advance of the present paper over [53 is embodied
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in Lemmas 3.13, 3.14, and 3.15. These results correspond

to Lemma 3.2 of [5] which establishes that if F is a proper

formula on C = [-I, V, 3), then it is decidable whether F

is fv or fs. However, if & is included azong the connec-

tives the proof of 3.2 of [5] does not suffice to establish

that it is decidable whether F is fv or fs. This is ac-

complished by Lemmas 3.13, 3.14, 3.15.

4.

't4 ....
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