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PREFACE

A central part of Rand's Soviet Cybernetics Technology
Project has been the development of the Relational Data
File (RDF), "a computer-based system for the storage,
retrieval, and logical analysis of factual data." Integral
to the actual construction and implamentation of the system
was the theory originated by J. L. Kuhns [8, 9] to select
the formulas of the predicate calculus that supposedly
embody features facilitating machine processing. This
theory governed the design of the programming language
associated with the RDF. Accordingly, the classes of

definite and proper formulas were defined. The definite

formulas are characterized by a special semantic property

and were proposed as the formalization of the "reasonable"
inquiries to be processed by the RDOF. Emphasis in the
program was placed on the classes of proper formulas, each

a subclass of the definite formulas, that also satisfy
certain syntactic conditions judged to ren?er them especially
suitable for machine processing. The subclasses of proper
formulas, in contradistinction to the class of definite
formulas, depend on which logical primitives are employed.
Different sets of primitives give rise to different classes
of proper formulas. A formula is admissible if it is
effectively transformable into a proper equivalent. Kuhns
conjectured that every definite formula is admissible relative

to a particular class of proper formulas. We have previously
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shown [4] that the decision problem for the class of !

definite formulas is recursively unsolvable, Hence, no

algorithm exists by which to determine whether an arbitrary

formula is definite.

Also, in R-661 we showed that the decision problem
for several classes of proper formulas is solvable. 1In
this Report we go further and show that the decision
problem for the class I of proper formulas on the connectives
-1, v, &, o, 3 is solvable. Hence, the decision problem for
any class of proper formulas based on a subset of these
connectives is solvable. Thus, there is a mechanical
decision procedure which determines whether an arbitrary
formula is a member of the class I'. In addition, a repre-

sentation theorem for the members of I is proven which lays

bare the reason for the existence of an algorithm which
solves the decision problem for I.

This study should be of particular interest to those
concerned with the application of mathematical logic to
data retrieval systems and to those responsible for the
design and construction of retrieval systems intended for .#

intelligence analysis.
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SUMMARY

In this Report we show that the decision problem for

the class I of proper formulas on the connectives -,v, &,
>, ¥ is solvable, It follows that the decision problem for
any class of proper formulas based on a subset of these

connectives is solvable. Thus, for each of these classes

there is a mechanical decision procedure which determines
whether an arbitrary formula is a member of the class.

In addition, a representation theorem for the members of
I is proven which lays bare the reason for the existence

of an algorithm which solves the decision problem for I.
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THE SOLVABILITY OF THE DECISION PROBLEM FOR CLASSES OF
PROPER FORMULAS AND RELATED RESULTS

l. INTRODUCTION

The Relational Data File (RDF) of The Rand Corporation
is among the most developed of question-answering systems
in terms of the size of the data base, the design or
generation, and documentation of the associated files, and
the specially constructed programming languages {6, 10, 11,
12, 13]. The "information language™ of this system is an
applied predicate calculus. The atomic units of informa-
tion are binary rglational sentences. The system has an
inference-making capacity of the following sort: retrieval
specifications embodying the rule of modus ponens are made
by a user by means of the programming language Inferex.

As an integral part of the design and implementation of
this storage and retrieval system, a theory was developed
by J. L. Kuhns to identify and systematically study the
formulas of this calculus that represent the "reasonable"
questions to put to a computer implementation of this
system, with emphasis placed upon those representations
that are supposedly especially suited for machine proces-
sing [8,9]. Accordingly, three classes of formulas were
defined--definite, proper, and admissible. The classes
of definite formulas are defined semantically and are
invariant under the sentential and quantificational rules

of the predicate calculus. Moreover, the notion of a

[ T RN
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definite formula is essentially independent of the logical
operators taken as primitives of the language, as is to be
expected of a semantic notion. Indeed, languages £c

and.l!c based on finite, functionally complete sets Cl
2

and Cz, respectively, of propositional and quantificational

connectives satisfy the following property. There is an

Cl into

formulas o(F) of.Cc such that the formula F = o(F) is
2

valid in all interpretations of the language §

effective transformation of the formulas F of £

SN

A fortiori, if AC and AC are the classes of definite
2

formulas on Cl ané Cz, respectively, then F ¢ Acl iff
o(F) ¢ ACZ, and for each interpretation I of F and ¢(F),
F and ¢(F) are satisfied in I at exactly the same instances.
Therefore, we shall often write, "the class A of definite
formulas.”

As has been stated, the members of A share a semantic
condition judged in [8] as being necessarily possessed
by the symbolic representations of reasonable inquiries,
To elaborate, the notion of a data base as defined in [8]
amounts to the common notion of a structure with a finite
number of relations; or, from the vantage point of a formal
language, it is an interpretation of a finite number of
predicate and constant symbols. The formulas F with free
variables that are definite have the property that the sets

of true instances of P in an interpretation I of F and in

a special extension I' of I are the same. The formulas

R o
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without free variables are definite if their truth value !
is always preserved on passage from an interpretation I to

an extension I' of I of the aforesaid special type. The

precise definition is given in Sec. 2 below. 1In a paper
which appeared in an earlier issue of this journal, we
showed that the decision problem for the class A of definite
formulas is recursively unsolvable [4].

The proper formulas are those definite formulas that
satisfy a certain syntactic condition--namely, their
principal subformulas must also be proper. Thus, all
subformulas must be definite. The rationale behind this
definition presumably runs as follows: The definite
formulas mirror the reasonable inquiries, while the proper

formulas are such that all their parts, i.e., subformulas,

also have this desirable property. The admissible formulas
are those that can be transformed into proper equivalents; '
that is, if F is admissible, there is a proper formula
G such that for each finite interpretation I, with domain
D, F and G are satisfied in I at exactly the same instances.
Of course, it is clear a priori that the admissibility of .+
a formula F is of little or no value unless the transforma-
tion ¢ of P into a proper equivalent G is effective.

The concept, then, of a proper formula involves the

notica of a subformula. But determining which consecutive vg};

parts of a given formula are subformulas is, of course, a ?ﬁ;{

syntactic notion and depends on the identity of sentential
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and quantificational connectives employed. Thus, the sub-
classes of proper formulas, in contradistinction to the
class of definite formulas, depend on which of the logical
connectives are taken as primitives. 1In this paper we
show that the decision problem for various classes of
proper formulas is solvable. We previously showed in [5]
that the class of proper formulas on =, VvV, 3, or -, D, 3,
or |, V, 2,3 is recursive. However, the results of the
present paper go beyond those of [5], allowing us to
include conjunction among the connectives. Indeed, the-
proofs presented in [5) do not suffice to establish the
results contained herein, while the latter results sub-
sume those of [5].

In [8,9], stress is placed upon the particular class
m_ of proper formulas on V, &, $ ("but not"), 3. At this
writing, the question of the decision problem for LI
remains open. We point out that for us the interest of
these questions lies in this: They constitute a number
of mathematical problems naturally arising in a practical
context which have required the use of nontrivial theorems

of mathematical logic for their resolution.

et B e
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2. DEFINITIONS

The language £ that we use is the language of the full,

pure first-order predicate calculus without equality, aug-

mented with infinitely many individual constants. A formula i
n n n

in the predicate symbols Pll, P22, ceey Ptt, where the super-

script denotes the rank or degree of the predicate symbol,

and in the constants Cyr Cor ey C is any formula F whose

only symbols, other than sentential connectives, quantifiers,

A h M2 R ]
and individual variables, occur among P1 ’ P2 ¢ seeyp Pt v
/

Cis eoer Cpo An interpretation of F is a system

n n .
I = {D; Rll, cees R.Y7 dy, ooey 4>, where D is a nonempty

RN

nj . n, .
set; each relation Ril is defined on D ' and assigned to
n,

P.*; and each d. is assigned toc.,, i =1, ..., t; d

i J J 3
j=1, «ver, ke An interpretation I of F is said to be

eD,

finite if the domain D of I is finite. Developments of the
notion of interpretation or structure may be found in [14] | T

or [15]).

2.1. Definition

If F is a formula with m free variables and I = i

nom ne ‘
{D; Ry%o Ry%y eeey RT3 gy oees di) is a finite interpre-
tation of F, T(F, 1) is the set of members of D™ that
satisfy F, ifm> 0, If m = 0, we call F a sentence, and
T(F, I) = t (truth) and T(F, I) = £ (falsity) according to
whether F is satisfied or not satisfied in I, We say a

gsentence P is finitely satisfiable if there is a finite

interpretation in which it is satisfied; F is finitely valid
if it is satisfied in all finite interpretations.
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2,2 Definition \
ny Ry
Let F be a formula and I = <D; Rl e ccep Rt ; dl’ csey dk;

a finite interpretation of F, Let * be an individual not in

D. A *-extension I' of I for F is the interpretation

nl nt .
I' = <D'; Sl g eveyp St H dl' seo 0 k>' Where D' = D U {*\} .
n, n, . n, n
and Si1 is the extension of Ril from D * to D' i, such that o

n, n,
Si! is false on any member of D'  that has * among its

components.

2.3. Definition

A formula F is said to be definite if, for all finite

DRI ey

interpretations I of F, T(F, I) = T(F, I'), where 1' is a
*—extension of I for F. This definition is given in [8]
in a different terminology.

Thus, the theorems and refutables of the predicate
calculus that are sentences are definite. Clearly, all
atomic formulas of £ are definite. Closure properties of

the class of definite formulas are investigated at length

in [8]. - f
To describe the informal situation that this last

definition is meant to reflect, we quote from [8]: %iT
Consider the question v %4

Who did not write Meaning and Necessity?
We would certainly regar 8 as unreasonable,
but how is the computer to know this? Should
the computer simply list all the names in the
dictionary (except 'R. Carnap') or should it
somehow prohibit the question?

The symbolic form of (1) is the formula

NOT (WxDb) (2)
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The difficulty with this expression is that its
value set depends on more than the value set of
the component ‘'Wxb'; it depends on other names
in the dictionary. That is, if we add a new name
to the dictionary the value set of (2) will change.
A formula without this objectionable property
will be called definite.

Other examples of indefinite formulas are
easy to construct in terms of procedural requests.
For example, the request

EXTRACT (x,y): X wrote Meaning and Necessity
or y wrote Meaning and Neces-

sity.

leads to the formula
(Wxb) or (Wyb) (4)

This is indefinite because any ordered pair of
names gives a member of the value set providing
only that 'a' is in the first or second position.

Let us now replace the rather vague notion
of what constitutes a 'reasonable' request by the
specific notion of definite formula., The problem
is then to invent algorithms for identifying
definite formulas and calculating their value
sets [8], pp. 8-9.

« » «» (The) data base is a set of elementary
sentential formulas of degree zero. This dis-
tinguished set is called the file. The motiva-
tion is that the file shall consist of our stock
of "true" sentences,...

Value Sets of Elementary Sentential Formulas.
We begin with the definition of value set, BSince
the generation of value sets will be a machine
routine, we assign a special designation ‘'w' to
this operation. The first step is to define
w(f) for every £ of degree zero.

What value should we assign to such a
formula? We would like the value to correspond
somehow to the "true value" . ., . .

One method is to assume that the file gives
an exhaustive description of the state of our
universe of discourse. That is, the elementary
formulas in the file tell us exactly which of the
given individuals have the given properties, and
which have the given relations between them.

The value of an elementary formula is then “true"
if the formula is in the file, and "false" other=-

O

> N

Ll R TR




Here the terms "data base," "dictionary,"” "file," "ele-
mentary sentential formulas of degree zero,"™ and "value set
of a formula® correspond, respectively, in our terminology
to "interpretation,"™ “constant symbols naming elements of
an interpretation,® "set of relations of an interpretation,”
"atomic formula without free variables (atomic sentence),”
and “"set of satisfying instances of a formula." The truth
definition given in [8] of an elementary sentential formula A
requires that any elementary sentential formula having the
same predicate symbol as A be false if it contains a name
not present in the file. This is reflected in the require-
ment of Definition 2.2 that the relation which interprets
an atomic formula in a finite interpretation I be false on
members of the relation which contain * in an *-extension I'
of I. In [8] the truth definition of an arbitrary formula
is built from that of elementary sentential formula by the
rules of substitution, and the sentential and guantifica-

tional connectives in the usual way.

2.4. Remark

We recall again the following theorem [4]:

If Ak' k > 0, is the class of definite formulas
on £ with k free variables, then A, is not recursively

enumerable.

Thus, the decision problem for each A is recursively

unsolvable.

e
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2.5. Examples

Consider the following formula F:

VxIyP(x, y) > dyVxP(x, y). Let D = {1, 2} and P be inter-
preted in D by the binary relation R true on the pairs (1, 2)
and (2, 1), and false on the pairs (1, 1) and (2, 2). Thus,
in this case I = <®; R>, It is easily seen that Vx3dyP(x, y)
is true in I, whereas 3IyVxP(x, y) is false in I. By the
truth-table for implication, VxJyP(x, y) o IxvxP(x, y) is
consequently false in I,

We form the *-extension I' = <D'; S> of I by taking

D' = {1, 2, *} and S to be the binary relation which agrees

e v W e

wtih R on D x D and is false on the pairs (1, *), (*, 1),
(2, =), (*, 2), and (*, *). Thus, vx3yP(x, y) is false in
I' gince s(*, *), S(*, 1), and S(*, 2) are all false in D°*,
Similarly, 3kaP$x, y) is false in I', Hence F is true in
I', Since F is false in I but true in the #*-extension I'
of I we see that F is finitely satisfiable, is not finitely
valid, and is not definite.

Consider the formula G:

IxP(x) & vx[P(x) > Q(x)]. Let D be any nonempty finite set,

Suppose I = <D; R,, R,> is an interpretation in which Rl and
R, are unary relations serving as the interpretations of P , ‘J
and @, respectively. If R; is false throughout D, then S
IxP(x) and hence G are false in I. Thus, G is not finitely

valid. But if, for example, Rl holds for but a single
member of D and R, is universally true in D, the G holds
in I. Thus, G is finitely satisfiable.
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Suppose that I*' = <D'; s, S,> is a *-extension of I.

1
Assume that G is false in I. If 3xP(x) is false in I, then
since Sl(*) is false, IxP(x) and hence G are false in I',
If IxP(x) is true in I but vx(P(x) o Q(x)) is false in I,
then there is an element 4 e¢ D such that s1 is true on d
and S, is false on d. Hence Sl(d) is true and Sz(d) is
false in D'. Thus, Vx(P(x) o> Q(x)) is false in I'. There-~
fore, G is false in I', Assume, now, that G is true in I.
Then 3xP(x) is true in I and hence true in I', By assump-
tions, Vx(P(x) o Q(x)) is true in I. Sl and S2 are both
false on *, So, Vx(P(x) > Q(X)) is true in I'. Therefore
G is true in I'., Since I is arbitrary, it follows that G

is definite.

2,6, Definition

Let Uys Ugy ooy Uy be the unary connectives and bl'

b,y ««.y b, the binary connectives of the language £. It

is assumed that at least one of 3 (the existential quantifier)

and V (the universal quantifier) is among Ugr Uy ooy o
We inductively define the property of being a subformula
of a formula A of £.

(1) A is a subformula of A.

(2) If A is ui(B) and uy is a propositional connective,

then each subformula of B is a subformula of A, i = 1, 2,
'..’ k.

(3) If A is nix(Bl, uy is either3or V, and x is a
variable that occurs free in B, then each subformula of B

is a subformula of A, i =1, 2, ..., k.
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(4) If A is bj(B, C), then each subformula of B is a
subformula of A and each subformula of C is a subformula
of A, =1, 2, ..., £.

(5) A formula B is a subformula of A only as prescribed

by (1) through 14) above.

2.7. Notation

To facilitate the frequent use of certain terms, we
shall write "“fv," "fs," "nfv,""nfs," "re," for "finitely
valid," "finitely satisfiable,"” "not finitely valid,” "not
finitely satisfiable,” and "recursively enumerable,”™ respect-
ively. Also, we write “Fl i Fz" to mean that, for each
finite interpretation I, the formulas Fl and F2 hold at
exactly the same instances of the domain of I. If o is

among our primitive connectives, we write "A = B" for

"(A-B)&(B-A)." "AcCB" means A is a proper subset of B.

2.8. Definition

A formula A of £is proper on a set C of connectives iff
each subformula of A is definite on C. This definition differs
from the definition of "proper formula" given in [8, 9], but
the two are easily seen to be equivalent.

Suppose C is a set of logical connectives which has
V, & =, O, and 3 among its members. For purposes of sub-
sequent reference we state here a characterization theorem
for proper formulas [9]:

If A and B are proper formulas on C, then

{1) A vB is proper on C if (a) Fv(A) = Pv(B), or (b) it

v s i
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for one of A, B, say A, Fv(A) c Fv(B) and A is nfs, or (c)
both A and B are nfs, where "Fv(F)" denotes the set of free ~

variables of the formula F.

(2) A & B is proper on C.

(3) — A is proper on C iff A is a sentence.

(4) A o B is proper on C iff (a) A and B are sentences,
or (b) A is £fv. (If A is fv, since A is proper, A is definite
and fv, and hence a sentence.)

{5) 3IxA is proper on C, where x is any variable.

This theorem is stated in [9] with all occurrences of
*"proper"” replaced by "definite.” As stated in [9], the present

version follows at once from the definition of proper

A B K

formula.

By (1) (a), (2), and (5) the sentence 3xiy((P(x)&Q(x,y))
WR(x,y)) is a proper formula in prenex form. The formula » ‘
—3y (3xP (x,y) Q(y)) is proper by (5), (1)(a), (5), and (3).

The formula Ix3y((P(x)&Q(x,y))oQ(x,y))>oR(y) is proper by (4) (b),
and (5). The formula —P(x)=P (x) is not proper, though it

is truth-functionally equivalent to the proper formula

P(x) WQ(x). In the following, we are mainly interested in

proper formulas on the more familiar sets of connectives.

2.9, Definition

We define the depth 4 of a formula F.
(1) If F is atomic, 4(F) = 0.
(2) If u is a unary primitive connective of the language
£ and F is u(A), then d(F) = d(A)+l,




(3) If b is a binary primitive connective of &£, and

F is b(A,B), then A(F) = d(A)+d(B)+1.

TER NP 2 A N
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3. RESULTS

We have previously noted that the classes of proper
formulas depend on which logical connectives are taken as
primitives. Thus, classes ™y and m, of proper formulas
employing different but, in the usual sense, eguivalent
sets of connectives may have different properties. A '
result proven in [5] shows that this dependence is not
absolute, and we cite it here for the sake of complete-

ness.

THEOREM 3.1, The class np of proper formulas in

prenex form defined on any complete set of connectives

is recursive.

Before proceeding to the proof that various classes
of proper formulas are recursive, we make some general -
observations which bear on the matter. Suppose that A !
is some nonrecursive class of formulas and that I' is the
subclass of A consisting of those formulas A all of whose
subformulas are also membexs of A. We may ask whether

I' is recursive? Suppose further that A, the complement

of A in the class of all formulas, is re. Thus, under an
arithmetization of our formalism the predicate of natural
numbers denoting membership in A is the negation of an
re predicate. Hence, the natural predicate denoting member- -
ship in I’ is alsc the negation of an re predicate. Thus,
one might expect the decision problem for I' to also be
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recursively unsolvable, that is, that I’ not be recursive

and, hence, not re, since if A is re, so is E. Moreover,
there are instances of classes of 4 and the derived class

I', which are not re with & and [’ both re. There are also
instances in which both A and I are re but not recursive
with & and [ both not re. We came upon these examples as

a result of our attempts to prove that the decision problem
for various classes of proper formulas is unsolvable. Indeed,
these examples arise naturally as a result of considera-

tion of the decision problem for any class of proper formulas.
We therefore include them here for the sake of completeness,
and because they are of some interest in their own right.
Thus, let us take A to be the class of all formulas which

are not valid., By the Godel completeness theorem, A consists
of the formulas of the predicate calculus which are not
theorems. By the fundamental result of Church and, in-
dependently, Turing, A is not re [2,17]. I is the class

of all formulas none of whose subformulas is valid. With

these definitions of A and I', we have
THEOREM 3.2. I is not re.

Proof. Let us recall the basic fact that a formula
F is valid in a nonempty domain D if and only if the Skolem
normal form of F is valid in D (3, pp. 224, 230]. We define
A, to be the class of those members G of A such that G is

in prenex form and each existential quantifier of F precedes

et g —————— s =

W g, A W
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every universal quantifier. (We do not say that Ag consists
of those members of A in Skolem normal form because the
Skolem normal form of a formula has no free variables {3]).
Under our definition, A8 may include foimulas with fgee
variables and quantifier-free formulas. Of course, formulas
in Skolem normal form are also in As') Consider an arbitrary
formula F. Let SK(F) be the Skolem normal form of F. By
Godel's completeness theorem and the result cited abqve,

P is a nontheorem if and only if SK(F) is a nontheorem;

that is, F ¢ A ++ SK(F) ¢ As‘ Thereforg since A is not
recursive, it follows that A, is not recursive. The class

A of formulas which are either not in prenex form, or, if

in prenex form, have a prefix in which some universal quan-
tifier precedes some existential quantifier, is recursive.
The class A of valid formulas (theorems) is re. Now,
A,=8UA. Thus &  is re. Hence, A, is ' not re. We

define Ps to be the class consisting of those membexs of

As all of whose subformulas are also members of a,. of
course, Ps S.As° But, each subformula of a member of A.

is itself a member of A_. Hence, I'j =4, and therefore

g is not re. A recursive enumeration f of I'y ig con-
structible from any recursive enumeration g of I' by simply
discarding those values of g which are in A. But P. is

not re. Hence, I' is not re. Q.E.D.

a s A

S
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COROLLARY 3.3. To decide of an arbitrary formula

whether it has at least one valid subformula is recur-

sively unsolvable.

By using the fkolem normal form for satisfiability
[3, pp. 230-231], one can similarly prove

THEOREM 3.4, The Class I’ of fo:mulas all subformulas

of which are satisfiable is not re.

COROLLARY 3.5. To decide of an arbitrary formula

whether it has at least one unsatisfiable subformula is-

recursivelv unsolvable.

There are examples of classes 4 and I' with unsolvable
decision problems in which A is re. Let us take A to
the class of formulas which are nfv (We remind the reader
of the notational conventions stated in 2.7). I is the
class of those members of A all of whose subformulas are
also members of A; thus I’ is the ciass of all formulas
all subformulas of which are nfv,

With these definitions of A and I' we have

THEOREM 3.6. I is not recursive.

Proof. We note in passing that 4 is re, and it
follows easily that I’ is also re. We again define A, as
the class of all those members of A which are in prenex
form such that each existential quantifier procedbl every

A~

vy P
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universal quantifier. As in the proof of Theorem 3.2,
if F is an arbitrary formula, F ¢ A «+ SK(F) ¢ Ag, where
"SK(F)" again designates the Skolem normal form of F.
Fs is defined as in Theorem 3.2 as the class of all those

members of As each of whose subformulas is in As' Again,

as in Theorem 3.2, A; = I’ _. By the well-known result

8
of Trachtenbrot, A is not recursive [16]. Therefore,

since again F ¢ A « SK(F) ¢ Ps, Fs is not recursive.
Consequently, I’ is not recursive. For, suppose that I’ were
recursive. Let A be defined as in the proof of Theorem 3.2,

So A is recursive. To test if a formula F ¢ Ps' we ask

'
T g N e

first if F is in A. If P e A,F ¢ Ps. If P ¢ A, then
FelI, if and only if F e I'. Thus, if T is recursive,
then Ps is recursive. But Ps is not recursive. Hence

I’ is not recursive. Q.E.D.

COROLLARY 3.7. The class I’ of all formulas which

have at least one subformula which is fv is not re.

Similarly, using the Skolem normal form for satis-

fiability one can prove

THEOREM 3.8. The class I’ of formulas all subformulas

C mat S i -

of which are fs is not recursive.

COROLLARY 3.9. The class I' of formulas which have at

least one subformula which is nfs is not re.
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We note that all of the above results are independent
of which logical operators are taken as the primitives of
the language £. Now, if C is any functionally complete
set of connectives, let Ac be the class of definite
formulas on C and Pc the class of members of Ac all sub-
formulas of which are also members of AC. Thus, PC is
the class of proper formulas on C. Then AC is not re {4},
and by the above considerations, one might not expect Pc to
be re either. Nevertheless, taking C = C_ = {~., v, & 3},

we shall prove that I, is recursive.
o

DEFINITION 3.10. A formula F is said to be universal

if F is in prenex form and if each quantifier occurring in

the prefix of F is universal. A universal sentence is a

universal formula with no free variables.

DEFINITION 3.11. A formula F is said to be existential

if F is in prenex form and if each quantifier occurring

in the prefix of F is existential. An existential sentence

is an existential formula with no free variables. Universal
(existential) formulas are said to be nonvacuous if they

contain at least one universal (existential) quantifier.

DEFINITION 3.12. The class .5 of formulas (on

-1, Vs &, 3, V) consists of all formulas F such that
(1) all occurrences of quantifiers are in either

universal oi existential subformulas of F.
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(2) Each occurrence of a negation sign occurs
in subformulas of F which are nonvacuous universal or
existential sentences.

(3) No free variable of F occurs within the scope
of a universal quantifier.

(4) Each bound variable of F is bound by only a
single occurrence of a quantifier and no variable in F

occurs both free and bound.

We note that it follows from (1) that each subformula
of F in prenex form is either universal or existential.
Thus a typical F in 5 consists of universal sentences,
existential sentences, and existential formulas with free

variables joined together by occurrences of & or V.

EXAMPLES

The formula

(Ix3y ((P(x)&Q(y) )VR(y,2) ) &VuVYvVw (=( (P (u)v8(u,v))&R(w,v)))]
viris((R(r,s)&P(s))vQ(xr))

is a member of 45, whereas the formula

[ (3Ix3y (P (x)&Q(y))vIyR(y,z))&Vuvvvw (~( (P (u)vS (u,v))&R(w,v)))]
viris((R{r,s)&P(s))vQ(r))

is not, since condition (4) is violated. Nor is the formula
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[Ix3y ((P(x)&Q(y) )VR(y,z) ) &Vuvvww (q( (P (u)v8 (u,v))&R{w,r)))]

viviw((R(v,w) &P (w) )vQ(v)),

since again (4) is violated.
The formula Vx &P (x)&{(IyR(x,y)vQ(z))) fails to be in
b on three counts; conditions (1), (2), and (3) are violated.

The formula
Vx 1P (x,x) & 3zP (t,2z) svuvvyw ((~ P (u,v)vP(v,w) )vP(u,w))

is a member of J4.
We recall that "', * designates the class of proper
o
formulas on C_ = {=~, v, &, 3}. We now establish a re-

presentation theorem for I‘c » which we state as
(]

LEMMA 3.13. Each member of Pco is provably equiva-
lent to some member of 5 (in some standard axiomatization
of the predicate calculus on £); equivalently, for each
formula F ¢ I‘co, there is a formula G ¢ 4 such that the
formula F = G is valid (See 2.7). Also F and G have

the same free variables.

Proof. Consider a formula F ¢ Pco. The proof proceeds
by induction on the depth 4 of F. Suppose d = 0, Then P
is atomic. Conditions (1) to (4) defining membership in 2
are clearly satisfied by atomic.formulas, so P e if @ = 0.
Since F » F is of course valid, the lemma holds for 4 = 0.
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Suppose that the lemma holds for all members of Pco of
depth d' < 4, 4 > 0. Consider a formula F in Pc of
depth 4. °

Case 1. F is A v B, Then d(A) < d and d4(B) < d.
By the induction hypothesis, there are formulas A' and
B' in J# such that the formulas A = A' and B = B' are
valid. Also, Fv(A) = Fv(A') and Fv(B) = Fv(B'), where
"Fv(F)" denotes the set of variables occurring free in a
formula F. It is immediate that (AvB) = (A'vB') is valid.
Consider a formula B" obtained from B' by a change of
bound variables such that (1) every bound variable of B"
differs from every bound variable of A' and also from every
free variable of A' and (2) so that condition (4) of 3.12
remains satisfied. B' and B" differ in at most their bound
variables, so that B' = B" is valid. (In terms of [7] p. 153,
B" is congruent to B'.) Also, B" ¢ 4. The formulas A v B
and A' v B" have the same free variables and (AvB) = (A'VvB")
is valid, since (A‘'vB") a (A'vB') is valid. It is not
difficult to see that A'vB" is a member of f. Also

Fv(F) = Fv(a'vB").

Case 2. F is A & B. To treat this case we proceed
just as in Case 1 and by induction hypothesis obtain formulas
A' ¢ 5 and B’ ¢ 5 such that A = A' and B = B' are valid
formulas and Pv(A) = Fv(A') and Fv(B) = Fv(B'). Again, a
formula is defined as in Case 1 so that A & B and A' & B"
have the same free variables and (A&B) = (A'&B™) is valiad.

It is easy to see that (A'«B") ¢ 4.
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Case 3. F is 3xA., By the induction hypothegis, there

is a formula A' in £ such that the formula A s A' is valid

and Fv(A) = Fv(A'). We may assume that x occurs free in A.
Since A' ¢ £ all bound variables of A' differ from x. Suppose
that S17 850 eeey Sn are all the nonvacuous universal or
existential sentences that occur as subformulas of A'.

Suppose that Fy, F,, ..., F are all the nonvacuous exis-
tential formulas with free variables that occur as subformulas
in A' such that no Fj, j=1, 2, ..., m, occurs as a sub-
formula of any existential subformula of A' other than

itself. Thus, the Fj are the "biggest" existential sub-~
formulas of A' that are not sentences and not subformulas

of existential sentences. No si is a subformula of any Fj'
and, from the definition of the Fj' no Fj is a subformula

of any si’ i=1, 2, eee,nj=1,2, ..., m«s We note that
all occurrences of negation signs in A' are internal to

some si' i=1, 2, ..., n. By the definition of 4, the

remaining subformulas of A' are quantifier-free, that is,

those which are subformulas of no si or Fj, i=1l, 2, ..., n;
j=1,2, cea, m. J;

Consider m + n proposition letters Pl’ Pz, cacy Pn' %
Qr Qs .., Qs none of which occurs in F. Let A" be f{
the formula which results from A' by replacing each occur- ﬁ
rence of si in A' by Pi and each occurrence of ?j in A?

bYiji’ln 2' ..o'n'j-lp 2' ceey M, Let B be a

disjunctive normal form of A" and A™ the formula which

results by replacing each occurrence of Pi in B by 81 and
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each occurrence of Qj in B by Fj' i=1,2, ..., n
j=1, 2, ..., m, Thus, A'" amounts to putting A' into

disjunctive normal form, treating the Si and Fj as atoms.

A'" has the form D; v 02 V eeo V Dk; each Da is of the i
form C1 & C2 & +.0 & Cp, where each Cb is either an atom
which occurs in A' outside of any §; or Fj (Such an atom
may occur in some Si or Fj as well, but this is irrelevant),
or Cb is some Fj' or Cb is some Si' b=1, 2, ..., P.

Without loss of generality we may assume that for some q A

1 < g< p, each of C_, Cq+1, cees Cp is an atom not con-

q
taining x, an Fj not containing x free, or an Si; and that

all atoms not containing x, all Fj not containing x free,
and all the si that occur in Da occur among Cq. cq+l &...& Cp,
The formulas 3IxA = 3IxA' and IxA' = IxA'" are valid. Also,

IxA'" = (3xD; V 3IXD, V...V IxD,) is valid. Now, ixD, is

3X(Cy & Cp 6...8 Co & Cyy G...& C ). By the above, the {

q qt

formula 3xD, = 3x(C; & C, &...& Cq—l) & Cq & Cq+1 &...& Cp

is valid. Using the fact that A' ¢ » and hence that each

bound variable of C; & C, &...& C__, is bound by a single

1l 2 q
quantifier, we bring all existential quantifiers

Xy 3%y, ooy ix,. which occur in C; &C, &...& Cq_1 to

the front and arrive at the formula

E,: axaxl...Jxr(Blﬁnze...&Bq_l)e cq & cq+1 &.00b Cp,
and note that ixo, = E, is valid. Also, it is eagy to
check that E, is in &4, This analysis applies to each

formula axDa, a=1,2, ..., ke Thus, we arrive at
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Eyy Byy cver Ey, all in #, such that (BxDlvixDZV...v!ka) ~
(Elvnzv...ka) is valid. PMow, we perform in the obvious

way a change of bound variables on each E, in consecutive
order, a =1, 2, ..., k, arriving at formulas Ei, Eé, ey Ei
so that (1) each E; is congruent to Ea and hence Ea = E;

is valid and Eé e f,a=1, 2, ..., k; (2) no bound

variable occurs in both members of any pair E;, Eé,
l1<a,b<k, a#b; and (3) no variable occurs free and

bound in Ei v Ei VeeuV Ei. It follows that E{ VEj V...V Ei
is a member of 8. We designate Ei v Eé VeeoV Ei as Fk. From
the above, it follows that IxA' = Fy is valid, and hence

IxA = F, is valid. Also, since throughout the argument

no free variables have been deleted or introduced,

Fv(F) = Fv (rk) .

Case 4. F is 4 A, Since F e Pco, by (3) of 2.8 we
see that A is a sentence. By the induction hypothesis,
there is a sentence A' in A such that the formula A = A'
is valid. By repeated use of the standard facts that for
any formulas B, C, the formulas —~ ExB = VXx— B, 4 VXB = 3x— B,
—(B&C) = (Bv—C), — (BVC) = (— B&—C) are valid, we move
the left-most negation sign in — A' inward until we arrive
at a sentence G in which all negation signs occur in quantifier-
free subformulas of G, that is, no occurrence of — in G
has a quantifier within its scope. By these transformations
each existential sentence of A' is transformed 1ntova
universal sentence and each universal sentence into an

existential sentence. It is not hard to see that 4 A' = G is

i
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valid. Hence, F = G is valid and, Fv(F) = Fv(G), and G ¢ 4.

Q.E.D.

LEMMA 3.14. If F ¢ Pc , then F has a prenex form in
o
which every universal quantifier precedes every existential

quantifier, and a prenex form in which every existential

quantifier precedes every universal guantifier.

Proof. By the preceding lemma, there is a formula
G in 5 such that the formula F = G is valid, where F and
G have the same free variables. In G no existential

quantifier occurs within the scope of any universal guan-

tifier, and no universal quantifier occurs within the scope
of an existential quantifier. Also, no quantifier falls
within the scope of a negation sign. These conditions
follow from the fact that G is a member of #. Consequently,
in performing prenex operations on G we are able to first
pull out all the exigtential quantifiers and then pull out
all the universal quantifiers. (There is no difficulty in

pulling an existential quantifier over an occurrence of &,

or a universal quantifier over an occurrence of v, since

in G no bound variable occurs in more than one quantifier.)

Consequently, G has a prenex form axlaxz...axdvyivyz...vymu ﬁ
where M is quantifier free. Likewise, all universal guan- 4
tifiers can be pulled out before all existential quantifiers

are pulled out, resulting in a prenex form

vylvyz...Vymaxlaxz...ixnn, M quantifier free.

But, since F = G is valid, any prenex form of G is a prenex

form of F. Q.E.D.
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LEMMA 3.15. If F ¢ PC , it is decidable whether F
o

is fv or F is fs (See 2.7).

Proof. By the preceding lemma, F has a prenex form
of the type VyiVyz...Vyhgxlaxz...ang, M quantifier free.
By (1], pp. 70-71, if a formula F has a prenex form with a
prefix of this type, then F is universally valid if it is
valid in domains with 1,2, 3, ..., m elements. Thus, F is
finitely valid iff F is universally valid. This is decided
by testing successively whether F is valid in domains with
1, 2, ..., m elements. Hence it is decidable whether F is fv.

A formula G is fs iff — G is not fv. F has a prenex
form 3x13x2...axHVyivyz...VymM, M quantifier free. Hence,
-+ F has a prenex form Vlexz. «o¥X 3y,3Y,5.. .aym - M. But
as noted in the preceding paragraph it is decidable whether

formulas having a prenex form of this type are fv; in fact,

by testing for validity in domains with 1, 2, ..., n elements.

Hence, it is decidable whether — F is fv. Therefore, it is
decidable whether F is fs, Q.E.D,

We define the proposition P(d): for each formula F
on Co of depth d, if all subformulas F of depth d' < 4 are

proper on CO, then it is decidable whether F is proper on Co.
LEMMA 3.16. P(d) holds for each 4.

Proof. If d = 0, then F is atomic and proper on any
set of connectives. Hence, P(0) holds. Consider an arbitrary

formula F of depth d, d > 0, Assume the hypothesis of the

S S S P
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assertion; that is, that any subformula of F of depth 4' < 4
is proper on Co' We recall that for any formula G, we
designate the set of free variables in G by "Fv(G)."

Cage 1. F is A v B. Since d(A) < d, A e PCO and
Be PCO. 1f Fv(A) = Fv(B), then by (1) (a) of 2.8, F e PCO.
If Fv(A) € Fv(B), then F ¢ Pco iff A is nfs by (1) (b) of
2.8. By Lamma 3.15, it is decidable whether A is f£s. Thus,
it is decidable whether A is nfs. Hence, it is decidable
whether F ¢ Pco. Similarly, if Pv(B) < Pv(A). Suppose
Fv(A) # Fv(b), Pv(A) & Fv(B), Fv(B) ¢ Fv(A). Then F ¢ Pco
iff A is nfs and B is nfs by (1) (c) of 2.8. By Lemma 3.15
it is decidable whether A is fs and B is fs. Hence, it is
decidable whether A is nfs and B is nfs. We conclude it

is decidable whether F e PC .
()

Case 2, F is A & B, Again by our assumption, since

a(a) < 4, d(B) < d, we have A e T and Be I' . But then
o ()
it follows by (2) of 2.8 that F ¢ Pc .
o

Case 3. F is — A. Then d{(A) < 4 and by our assumption

Aecl, . Hence, by {(3) of 2.8 P ¢ T
o o

iff Pv(d) = ¢.

Case 4. F is IxA. Then d(A) <d and A ¢ T . By
o
(5) of 2.8 we conclude P ¢ Pc . Q.E.D,
o

We finally obtain

THEOREM 3.17. rc is recursive.
o

BT Y TR A

A

-




=29 -

Proof. Consider an arbitrary formula F. Suppose
that the depth of F is d: d(A) = d. By Lemma 3.16 we can
successively determine whether all subformulas of F of
depth d' < d are proper on Co' Hence, we can decide whether
F is proper on Cor that is, whether F ¢ PCO.

We now consider the decision problem for the class
'Pcl of proper formulas on C, = {=—, Vv, & o,3}. First we
define a translation ¢ of the class of formulas on C1 into

the class of formulas on Co. y

o (A) = A if A is atomic.
@ (AVB) = @ (A) v o (B).
¢ (A&B)

o(A) & 9(B).

O

@(=A) = qop(n).
@ (AoB) = p(—~A) v 9(B),
¢ (3xA) = Ixp (a).
By induction on the depth d of a formula F on Cy+ we see

that ¢ is defined for every formula on C-

LEMMA 3.18, For each formula F, the formula F = ¢ (F)

v

is valid.

Proof. This is obvious. A detailed proof proceeds

L i,

by induction on the depth 4 of F, employing a case analysis
of just the sort given in the proofs of preceding lemmas.

Q.E.D.
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LEMMA 3.19. A is proper on C; iff ¢ (A) is proper

on Co. In other words, A ¢ PC iff p(A) ¢ rb
1 o

Proof. The proof proceeds by induction on the:depth
dof A. Ifd =0, then A is atomic and ¢ (A) = A; hence,
the assertion holds. Suppose the statement is true for
all formulas B of depth d' < 4, d > 0. Consider a formula
A of depth d.

Case 1. A is — B. Then 9(A) is - @ (B). Assume A is
proper on Cl; then B is proper on Cl. Then, by the in-
duction hypothesis, @ (B) is proper on C . Since B is
proper, A is a sentence by (3) of 2.8. Hence, 9(B) is
a sentence and @(A) is proper on C,. Likewise, if @(A) =
-9 (B) is proper on C,, p(B) is proper on Co»and a sentence.
By definition of 9, B is a sentence; by the induction
hypothesis, B is proper on C,. Hence, A is proper on Cl‘

Case 2. A is 3xB. Then @(A) = Ixp(B). A and @(A)
are proper on C,, C,, respectively, iff B and @ (B) are
proper on C,, C,, respectively. By the induction hypothesis,
B is proper on C; iff ¢(B) is proper on C,. . Hence, A is

proper on C, iff (A) is proper on C,.

Case 3. A is B> C. Then 9(A) is 49 (B)w(C).

Subcase 1. B and C are both sentences. Then 9 (B)
and ¢ (C) are sentences. A is proper on C, iff both B and
C are proper on C; by (4) (a) of 2.8. By the induction
hypothesis, B and C are proper on C, iff @ (B) and ¢(C) are

PR |
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proper on C_. Since B is a sentence, B is proper on Cl

iff 4 9(B) is proper on Co‘ But — @ (B)wvp (C) is proper on Co

iff 5w p(B) and 9 (C) are proper on C, by (1) (a) of 2.8,
Therefore A is proper on <, iff 4 p(B)vp(C) is proper on C
Subcase 2. At least one of B, C is not a sentence.
In this subcase, A is proper on C1 iff B is a proper fv
sentence on C; and C is proper on Cy by (4) (b) of 2.8.
Thus, if A is proper on ¢y C is not a sentence. Hence,
9 (C) is not a sentence and, by the induction hypothesis,
® (C) is proper on Co. Also, if B is a proper, fv sentence
on C,;, then - 9 (B) is a nfs proper sentence on Co by Lemma
3.18 and (3) of 2.8. Hence, o (B)vp(C) is proper on Co
by (1) (b) of 2.8, Similarly, since one of B, C is not a
sentence, if — o (B)w (C) is proper on C,» then —o(B) is
a proper sentence on C, by (3) of 2.8. Thus, C and 9 (C)
have free variables, and hence at least — @ (B) is nfs by
(1) (b) of 2.8. Hence, B is, by the induction hypothesis,
a proper sentence on c1 and C is a proper formula on C1
with free variables. Since F = 9 (F) is valid in the
predicate calculus for each formula F by Lemma 3.18, B
is fv. Hence, A is proper on cy by (4) (b) of 2.8. We
conclude that A is proper on C iff 4@ (B)wp(C) is proper

on Co' Q.E.D,

Case 4. A is B & C. By (2) of 2.8 A is proper on
C1 iff B is proper on C1 and C is proper on Cl. By the
induction hypothesis, B is proper on C1 and C is proper

on
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on Cl iff o (B) is proper on C° and 9 (C) is proper on Co,
respectively. Consequently, A is proper on C, iff @ (A)
is proper on Co. Q.E.D.

We thus obtain

THEOREM 3,20. Pb is recursive.
1

Proof. Indeed, an arithmetization of our formalism,
together with Lemma 3.19, shows that the decision problem
for the class of proper formulas on ¢, is 1-1 reducible

to the decision problem for the class of proper formulas

e T

on Co' By Lemma 3.17, the latter class, that is, Fb s is
o ?
recursive. Hence, I'; is recursive. Q.E.D. )
1
We note that by Lemma 3.13 and Lemma 3.18, the asser-

tion of Lemma 3.13 holds also for Pc ; that is, if F is
1
any member of PC there can be effectively found a member
1
9 (F) of the class 5 such that the formula F = 9 (F) is valid.
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4. REMARKS

In [8) p. vi it is stated that

Among the definite formulas in a class of
particular interest--the proper formulas. These
formulas, because of their structure, are especially
suitable for machine processing.... Finally, the
important class of definite but improper formulas
is studied. The approach is to transform these
into proper equivalents. Those formulas for which
this transformation can be done are called admissible.
It is conjectured that every definite formula is
admissible....

Here, by "proper formulas," the author refers to the
class of proper formulas on C = {v, &, $ ("but not"), 13}.
Part of Chapter 6 of {8] is devoted to defining admigsibility
transformations for various subclasses of definite formulas.
By Theorem 3.20, it follows that if A is any class of
definite formulas on any functionally complete set of
connectives, then the analogue of this conjecture, as
applied to A and the class PC , is false in the following

1
sense. There is no effective transformation ¢ such that
Fecdep(F) ¢ Pc . The existence of such a 9 would
1
imply that A is recursive, which is not the case. 1In
fact, for the same reason, A is not even Turing reducible
to Pc . Since PC is recursive, if C is any set of con-

1 1l
nectives such that C c Cl, then Pc is recursive. A is
therefore not Turing reducible to any such class rh.

All of the results of {5] on solvable classes of

proper formulas are subsumed under Theorem 3.20. The

principal advance of the present paper over [5] is embodied

O

—adion
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in Lemmas 3.13, 3.14, and 3.15. These results correspond
to Lemma 3.2 of [5] which establishes that if F is a proper
formula on C = {—, v, 3}, then it is decidable whether F
is fv or fs. However, if & is included among the connec-
tives the proof of 3.2 of [5] does not suffice to establish
that it is decidable whether F is fv or fs. This is ac-

complished by Lemmas 3.13, 3.14, 3.15.
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