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ABSTRACT

Various methods are presented for computing heavy or
light fiuid loading (i.e., added mass) of thin finite
rectangular plates. Based on the results, preferred methods
of computation are recommended. These methods and a
corresponding computer program--Option 3--are of particular
value in extending previously formulated digital computer
programs for obtaining the vibrcacoustic response to turbu-
lence excitation of a plate. Computer results are given for
a particular case which ircludes the effect of fluid load-

ing on the vibratory response of a plate subject to turbu-
lence excitation.

ADMINISTRATIVE INFORMATION

This study was conducted at the Naval Ship Research and Development
Center (NSRDC) and supported by the Naval Ship Systems Command (NAVSHIPS)

Code 037. Funding was provided by NAVSHIPS 037 under Subproject S-4628008
Task 14919.

INTRODUCTION
Reference 1 documents four available computer programs for determin-

ing the vibratory response and the associated acoustic radiation of a

*
finite rectangular plate to fully developed turbulence. Several compu-
tational frameworks are provided which can be modified and extended through

additional research to furnish more accurate and realistic programs to meet

naval needs. The chief objective of the original study was to furnish a

base for future development.

Extension of these computations are treated in Reference 2 (Option 1)
and 3 (Option 2). Reference 2 includes a correction in the computer pro-
grams for the effects on vibroacoustic response of the boundary layer

thickness and pressure pickup dimensions. Reference 3 includes in the pro-

grams the vibraticn modes and natural frequencies of thin rectangular
plates with clamped and rotational supports and cylindrical curvature.
The overall program now includes the response of simple and clamped

plates in air and in water. However, the fluid loading on the plate has

*
References are listed on page 172.
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*
hitherto been determined for the case of 2n infinite plate. Hence there

W

¥

is a need to incorporate into the progran the resuits of recent investi-

gations of the loading effects of 2 heavy or light fluid on a thin finite

A EPRITIR e RS

rectangular plate. This modification is required to improve the accuracy

¥

of the cozputations ard to extend the applicability of the program.
Accordingly, the present report presents a modification (Option 3)
of @ updated version of one 0f the original programs--that of Maesirello--

t £ 3
to include the effects of fluid loading for finite plates. The modified

AN T 0 8 Tk Py 2 0

progran is based on results obtained by the use of various analytical .

nethods. The following titles identify the methods treated and their

$ 6 Toby) ek

k: location in the report; notations relevant to each method are also included :

e in the Appendixes.

¥

Appendix A Feit-Junger Method

Davies Method

]
o |
=
o

Appendix B
Leibowitz Method I
Leibowitz Method I1I

7

3 Appendix C

3

L Appendix D
Bolt Beranek and Mewman Method

7

Appendix E

t
o |
=
o

Greenspon Method
3 Appendix G Leibowitz Method I1I

b2 For the convenience of the reader, the Appendixes include an adequate

E. Appendix F

7

amount of the mathematical development underlying these mathods. An under-

5 standing of the development will assist the reader to appreciate the merits,

PRI

shortcomings, subtleties, and complexities of a particular method and to

oy

#
Y
jave 134 s

apply the various methods. Certain figures are adapted from the basic

oo

!
PP STy iy

references.
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*
See the Dyer representation, includable in all programs, for added mass
in Appendix A of Reference 1.

TNUT B Gt MANOVER R A S an. 2 g

D YL

*

N

*

In Appendix H, the original Maestrello program is updated. This up-
: dated version is then modified to include fluid loading (Option 3). Other
3 programs presented in Reference 1 may be modified in a similar manner.
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TABLE 1
Summary of Key Features of Analytical Study

PROCIAR SESICRATION LOCATIOS 1IN 2ECAT TELEEIIOL A7 MWAOTR ASSIMTTICNS ASS LINITATIONS FLATE CORTAIT COBSIIIORS
FEIT-FN2 & AITTTIX A CENERALITED FOSLE - 1. Acalysis performed fac eve= mudes. STy STIVATES TLATE
enrn MDAL TRUSTRN T80 2. Malal couplisg igmused ie Fizal solstisa.
. 3 3
3. Selatlec edgaized faz L 'J.l.,_ . ¥ 1=> .
2 <z . Fizal exptessiaa assaaed to 2ald for finite
plate.

CATIES METIRO APPESOIX 3 FHML ML MO 1. Ajplied fortce chuses 2o Si2iticcal mafal couplisg SIMITY SICHTIS TLATE
foc., 2F7ical cosrelation lexgihs of the foscizg IRSIATIT IX ISTISITE
fiel€ aze o less thas the juzel dlaeasions (noles | RUCIO MFFLE
Copled b3 exzerzal fiell ate treated i aypenlix e
Refezente Tr,

2. Xeither zazel widzatiocn o7 the ousiic {ield adfect
the 27712¢2 exter=al fosce K2izg o the qazel.
4,7 LEIBOWITZ APPEXDIX € COMBINATION OF KETEOCS GF Sinilar 1o those of Appendices & a2 8, SIMLY SUPPOATED FEATE

MITHOO I APTENSICES A AND 2 INSEXTED [N INFISITE

RICID BAFFLE
8,9 Leibovitz APPENJIX D Fourier Tramsform - Normal 1. ¥ {nterncds] coupling, f.r.. I%¢ 1osponse of oce SINTLY STPPORTED FLAIE
Method 11 Mode Method node 13 nearly independent of the sespoase of others, ] INSZRTZD IN INFINITE
2. The codal force £ can be splat fnto two pasts RICID 24F7LE
1 . dlockes « tad
=z o -
vhere z:“ can be used 1o find the fluid leading.
10, 11, 12| BOLT BERANZK AND APPENDIX E NO METHOD OF ANALYSIS PRESINTED | 1. Mass loadim, reduces codal resonince {requencies SIMPLY SUPPORTED FLATE

NEWMAN METHOD fre= their values in vacus. in proporiion to the {Cx SHELL)

sqiave root of total zass.
2, Results are considered precasely correct only for
waves on 2 large flat plate.
APPEN F AVERAGING OF FINITE ELEMENT 1. Assumed that the 2verage =odal pressure on 3 finite SIMPLY SUPPORIED AND
13,14 CRED:;:';D PPENDIX MODAL RESPONSE €ledent area can be computed by considering the CLL‘:;ED ;UJES
entire plate to act 3s 2 rectangular piston with a
deflection equal to the average codal displacesent
over the plate.
2, Virtual sass is approximated by average values for
each =ode independent of the forcing frequency.
3. Hode shapes ¢f the vibrating plate (in afr or water)
4 for simply supported and clamped plates are assumed
to be represented by a product of beams functions. 7
v
2 13, 14 LEIBOVITZ APPENDIX G INCORPORATION OF LOW FREQUENCY |1. A low frequency approximatior for ihe mass reactence | SIMPLY SUPPORTED AND
% METHOD III APPROXIMATION INTO ANALYSIS OF of piston 1s made. CLAMPED PLATES
£ APPENDIX F
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2ode runbers are ofd for ever modes, L, 2. 4 - uy- the cormer of the plate. Moces mm=bered =21,3... and with respect to Davies origin repress:t the %
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[TED PLAIE = - i 1. Due to the lack of 2odal couplisg fesults for the 7irtual Dass ate linizedio the mn sole. R
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= kan extesd the applicadility of the results for Appendix A to even-odd and odd-odd noles. P

- >
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= - M i sy, . 3. Results are inapplicadle for surface sodes having k =kh < k{ since the vistual =zass tends to g

3 DL =skhh PR, >k vanish for these wodes. P ¥
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ED AND 3 1. Au and BU depend on the beaz functions used to represent the =ode shapes and therefore depend i

7 ER A A 3
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2 2
Input Data for Computing Normalized Modai Xean Square Displacement Y (u)/p~ for

TABLE 2a

Simply Supported Alu=ium Plate in Water

Computed Natural Frequencies and Total Damping Ratio for
Simply Supported Plate in Air

pode 1 fm) T R ]_:n
- (w.5) erturion | Kerburton
1,1 23.82 552.10 0.168238
1.2 345.82 2179.5% 0.03323
. 1,3 776.52 £231.9% 9.01330
1,4 1379.13 8665.30 0.01027
1,5 2153.31 | 13529.82 0.036%6
1.6 3059.53 | 15475.83 0.00485
2,1 97.2% 610.9% 0.15325
2,2 355.30 2232.50 0.01221
2,3 785.40 43335.80 0.01993
2,5 1337.5% 8718.16 0.01081
2.5 2161.72 | 13382.48 0.00655
3.1 111.26 699.06 0.13481
3,2 369.32 2320.50 0.01061
33 759.452 5022.99 0.01876
3,5 1401.56 8806.26 0.01070
3.5 2175.74 | 13570.38 €.06550
4,1 130.89 822.40 0.11459
4,2 288.93 2443.84 0.0233%5
4.3 819.05 5146.24 0.01831
4.4 1421.19 8929.60 0.01055
4,5 2195.35 | 13793.92 0.00584
5,1 156.13 530.58 0.05507
5,2 414.79 2602.42 0.03621
5,3 844.29 5304.22 0.01776
5,4 1446.43 9088.17 0.01037
. 5,5 2220.61 | 13952.49 0.00681
6,1} 185.98 1174.80 0.03022
6,2 445.03 2795.23 0.03370
v 6,3 875.13 5498.63 0.01714
6,4 1477.28 9281.99 0.01015
6,5 2251.46 | 14146.31 0.00666

c =

0.33

wote | ) ol | & ‘l{:;

(n.0) Warturton | Warburton
7.1 Z23.%3 | 120565 | 0.08713
7.2 sg1.49 | es.2s | o.03m1s
7.3 on.se | sizr.es | o.01635
7.8 1513.73 | 951105 | 0.00550
7.5 | 2eer.o | 13537 | e.oosss
2.1 265.29 | 1662.15 | 0.656%3
8.2 s523.55 | 3289.59 | o.02e85
3.3 g953.65 | 5%81.9 | o.o572
8.5 1555.79 | 9775.35 | o.008%%
g5 | 2325.93 | ras3z.67 | o.00822
9.1 3.7 | 1557.62 | 0.0%7€3
9,2 s71.23 | 35¢9.13 | o0.02525
9.3 1001.33 | 6251.52 | o.012%e
9.4 1603.47 | 10072.28 | 0.00935
5.5 | 2377.65 | 14539.20 | o0.00631
10.1 %6.45 | 2302.46 | ©.0:093
16,2 622.51 | 3323.99 | 0.02:00
10,3 1055.61 | 6626.30 ! o.mez2
10,4 1656.75 | 10%09.66 | 0.00905
10,5 | 2430.93 | 15273.98 | 0.00€16

2 =30ft

b = 0.581666 ft

h = 0.0% in.

£ =10 x 10° 1b/in.2

weight density (o ) =
of plate v

9

[ 4

n

C.
i

0.1075 ib/in.3 = 185.8 1b/fe3

aluminum

32.2 ft/sec = 384.6 in./sec?
9.64 x 1077 ft

= 17,000 ft/sec
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-5 TABLE 2b
Y ©) gor Simply Supported Aluminum Plate in Water--

Input Data for Computing

P
Frequency Computation by Method I; q = 0

2 srpe? .
e | ¥ cdsvre’) Qu (Bw2e°) Jarefu o) 71, . . -
wter | © - adl NOOREES KR O MRV BT |
{«.c) Rwmieon (sazer) [ 1)
1.3 0.t 7.%5 7.9657 s 7se | 1men 355 | 0.%5%
1.3 55283 6120 .5 mik | e w6 | o.oe
15 o203 56213 .22 @ | wun 563 | 0.0
1.6 3.6 = 1.xn s | sres.n 659 | oo
2.3 735 1.5257 a.e nser | e 29 | oo
2.4 5.5m5 e .3 sw.sy | zon 62 | o0.c0m
25 < ass 5.0156 2.8 s | ane sec | o
33 1281 10612 a» 9.3 | wree2 360 | oo
. 31 5.3 ) 3.0 s | e ces | o.coms
5 e .01 3.0 507 | aem ses | ooy
.3 run 1. .53 7t | nssazs .60 | o.o0816
) s.use 5.9 %55 wo | 2009 ter | o.come
. 15 .87 s.017 n.e s | e s | o.ces
5.2 10.0820 10,6395 nen %.17 o22.8¢ 265 | o.oms0
5.3 7063 7.6858 52,76 o | usi: 169 | oo
5. 3.0%2 5992 3.: a5 | zesrax en | o.com
5.5 5387 2.9%7 2057 m.y | e so | oo
6.2 9.721 103321 105.75 1. » 620 &2 25t | o.ooes ]
6.3 6.5 1500 % 2360 | 1.0 ais | oems | 7o
6. 5.315 5.5415 n.83 w0 | 31588 e76 | o.0:s _‘.5‘.‘_
\ 6.5 ©.1%3 .52 2z .62 | €3ics s.c | o.oem ¢
: 7.2 5.5 9.0565 stes | meaer | 1m0 253 | o.oom | IR
: 173 6.19%5 1.39%5 52.76 w7 | ssas 282 | ooz | performe
i 7.8 s.2m2 54763 36.5¢ asen | w3t et | 000 | oo meters
] 7.5 X ¥ 23.93 mem | soo.s2 s | c.o@y
' 2.2 .51 9.572 91.6¢ 12.85 e 2.5 1 o.c0r09
2.3 66022 .22 555 mee | e 390 | o2
8.4 5.7053 5.8 33.70 srer | wern & | o.coms
8.5 %3] ces 28.55 s12.00 | 51009 sz | o.cows
9.2 8.5%03 9.1903 58.25 167.¢ %286.25 3.8 | o.00ss
5.3 6.4231 1.0 50.2¢ 2032 | weo.es 3.9 | o0.00%53
9.4 s.a2n s.72n 2.2 5%.65 | N%.W e.5t | n.00309
9.5 s.210t 4810 2.8 sno | szess sz | 0.00725
10.2 e.215 s.215 m2 160,63 | 1032.90 121 | 0.00:20
10,5 s.3221 s.9221 4.9 297.8¢ [ 187043 05 | o.00t%
10,4 5.6420 5.€200 3.es sz.08 | 3363 s.o1 | o.002
3 0.6 416 .76 .70 £52.02 | 53813 s.93 | o.00
2 2% 2
. as30n )2 (br16%) (see Colemn £) 3+ 0.323 Io/ft
b 0.531585 11 7 6.3 {c) » 62.2 W1t> = 6,05 13102
h v 0.08 in. £ - 10x10° rin? M cer
3 3 ¥
S SR (s,), 7 0.1075 /in. « 185.8 10710 N v 2.0
. Vi =
¢ * 17.000 fe/sec 9 v BRE in/sec
3 2,2 F—
Aot s L5 o2+ 1.0 (1/1e%) RN A u (fessecd]  “(sec)
yry s 0.20%BBft £+ 0.033 12 e o s 12255107
2 | 7.2] 3.0 16
L)
- £.6 28.21 3 [12.0fie0 2
Note: 2__ v 3 (_o), (15+) (ﬁ—-— )’ = -
= ey LR s 6 2.5 107
- 23
&, —=
“rn

Note: In computing frm or w.. (see Program C' in Section 3 of Appendix H) the program

input in in 1b/in.> units for (o D) ) In computing ¥ or «__ (see Program B' in Section
¥ aluminum - mn mn

3 of Appendix H) the program input is in 1 > uni .

3 PP ) prog input 1 b/ft” units for both (pw)alummum and (pw)water'

3
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TABLE 2c
Computation of Normalized Modal Mean Square Displacenent

2 2
Y (w)/p~ for Simply Supperted Aluminum Plate in Water
ALIMINIM PLATE

q « 0 {only)
—— — o0e
% ool Pus 76) 0]
{ftssec) {mn) 9—2 ;2. =
2 13 310" §31.10°% {33,010
16 | e2s10? fes2100)] eayr0?"
15 | 5021050220 55107
16 | 6sx10 M eesw0?] 2300
33 | 19x10% 19,197 J 2.0, 0P
24 | 89210 |90:10"| 9.8, 0%
25 J1oswPfiosw0? a0
33 | 15210 [16510? [ 171070
32 22100230 ] 729,07
35 [ 75x10" 7851025013
€3 135102 [ e3s10? 13,0010
3 | 6as10"0f6a:10"] 2051001
s | 6216 ] 63x10"] 1.0« 0"
52 | 25x107 |2.5510% | 2.6 « 107
53 § 99x10% J10:100% { 1.12107°
5.6 | 57210 5710 6.2
55 | s.2x10"] 53107 6.0+ 1013
16 13 | 34108 L ies10? | 362100
18 | 52502 [5s7210") 600"
15 | 7010 70107 765 10772
16 | sz} a8:10")] 06,1078
23 | 215108 | 202107 | 2221070
28 [ 12x10? 12210132001
25 | i3x10) 1350 1a 0
3.3 [ 162108 | 1.6210% | 172200
34 J87x100 87210 ] 9420077
35 | 90210 o207 1.0x 107"
03 | 1ax10® |1ax10? | 1520010
4a | 8410 855107 89x10?
ss5 | 70x10" | 702 10"?) 7820713
52 | 25x107 | 252108 | 2.6 x 107
s3 | 1.0x10® [ 102109 | 1.1 21070
s | 59x10 {59210 64210712
55 | 651072 652101 7.2 200713
2 13 | 382108 | 38x107 | 4.0x107
14 | 7ax10% | 70210"°] 73510
Hote: The extensive results for the response
:btained by Mr. Lucio Maestrello and Hrs.
Christine Brown at Langley Research Center,
NASA, using the author's progran, are tabu-
lated in Table 2c.
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Table 2c¢ (Continued)

AUMINIM TLATE (Contizwed)

q = 0 (oaly)
— — —:
(reriec) '(‘"?%" '2—;" '2—;-' . '2—2"
* ? p 2
15 [1.0210% [rex10" |11 x107"
1.6 |18x100 182107 {18510
. 23 | 2521008 |25210° |2.6x 100
24 | 192100 19210 |19x10"
25 |1exw0Wlrex10M 172100
33 | 122108 J12x107 [1.321010
3.2 | 83x10"eex10M Jo1x10¥
35 | 1cw? a0t 2.0
53 {esx10? {85210 94510
e 152100 [15x10 150V
65 [10x10f10x10M [11x101
sz | 27r107 |2.7x108 |27 5100
5.3 | 7.8x10% |78x100 85510
54 |80x10)eox10M |84x107?
5.5 | aox10" Jsix10" [s.0x103
6 1.2 | 53x10% [53210° |[s.2x100
1.6 |sax10? {52210 )s6x10Y
1.5 110 [11x100 (12510
16 {26210 | 2.6x10" 272107
23 |55x10° |s56x1070x10"
2.6 |39x107 |3.9x107 |38x10"
25 l22x10®f22 w0 j2.3x101
35 | 12x10® {12207 |1.3x1070
36 | 25 x 1010 | 3.6 2071 | 20 %707
3,5 |26x10"0 |2.6x10" |2.7x101
43 | 1.2x108 |-2x107 |1.3x101°
3,4 . - .
a5 [ 26x10%|2.6x10" | 2.6x1671
s.2 | 3zx107? [32x108 [3.2x107
53 1 1ix10® J1ix10? {11x1070
5.4 [s.ox10 {57102 f1.2x10"
55 | a.7x10" [4.7x101 [ 5.2 %0073

'For one-tenth cozputed damping value given in Table 2b.

“For computed da=ping value given in Table 2b.

'“For ten times computed darping vaiuve given in Table 2b.

'Conputer error (recompstation not made).
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COMPUTED DAMPING VALUES GIVEN IN TABLE 2b

—————e QHE-TEHTH COMPUTED DAMPING VALUES GIYEM IN TASLE 2b
—eemmeeme TEN TIMES COMPUTED DAMPING VALUES GIVEN IN TABLE 2b

10-7
0.3
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10—3 a— —————-q-—--_---:-_l‘ —_—t
--~~\‘~~ /23
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N — =03
LEEPN -‘5::::§SEEE(L4
s i i 0.3
10-° e - @
amm—— - ~\o /‘23
- —
) o —] 4
B I Y
10-" E‘—- somm——-
= k/k =
q / s
1w R
u IN FT/SEC

Figure 1 - Normalized Modal Mean Square Displacement of
Simply Supported Aluminum Plate with Fluid Loading
Effects Included

The response results computed at NSRDC and plotted in
Figure 1 were duplicated by Mr. Lucio Maestrello and Mrs.
Christene Brown who assisted the author by performing
similar computations on their computer at Langley Resecarch
Center NASA, using the author's program. Their inore ex-

tensive results are tabulated in Table 2c.
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TABLE 3

2
Input Data for Computing Normalized Modal Mean Square Displacement Y™ (w)/p
for Simply Supported Steel Plate in Water

TABLE 3a
Computed Ratural Frequencies and Total Damping for
Simply Supported Steel Plate in Air

NMll?lg:r f(HZ) mmn(rad/seC) 6mn = O.S/fmn amn = 6mn wmn
(m,n) | Warburton | Warburton 7 (1/sec)
1,1 3.37 21.16 0.1483 0.5%
2,1 13.37 83.98 0.0373
3,1 30.03 188.68 0.0166
4,1 53.36 335.25 0.0093
5,1 83.35 523.71 0.0059
6.1 120.01 754.05 0.0041
7,1 163.33 1026.26 0.0030
8,1 213.32 1346.35 0.0023
9,1 269.98 1596.33 0.0018
10,1 333.30 | 2094.18 0.0015
1,1 403.28 2533.91 0.0012
12,1 479.93 3015.52 0.0010
13,1 563,25 2539.01 0.0008
14,1 653.23 4104.38 0.0007
15,1 749.88 4711.63 0.0006
16,1 853.19 5360.75 0.00058
17,1 963.17 6051.76 0.00051
18,1 | 1079.81 6734.65 0.00046
19,1 | 1203.12 7559.41 0.00041
20,1 | 1333.09 | 8376.05 0.00037 0.57
a =10 ft
b = 97.39 £t
h =0.5 in.
E =30 x 10° 1b/in.2
¢ =0.30
(s,) = 0.283 1b/in.>
steel
g = 32.2 ft/sec = 388.6 in./sec’
k  =1.204 x 1072 £t
c, = 17,000 ft/sec
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TABLE 3b

2
Input Data for Computing_Y—_L(ﬂ for Simply Supported Steel Plate in Water--
2

p
Frequency Computation by Method I; q = 0

mever |v (bred) fu_qored) |° P e 2abseed) | Fotha) |5 wratrsed |5 8
et o n (lb/ftz) En w, (rad/sec 2 /sec) an
K] 20.4 406.57 | 426.97 182303.38 0.73 4.6 0.0748 | 0.03238
2,1 204.09 | 224.49 50395.76 4.03 25.33 0.1425 | 0.01125
ER 136.16 156.56 2511.03 10.85 68.13 0.2045 | 0.00600
a, 102.13 122.54 15016.05 2179} 136.83 0.2612 | 92.00381
5,1 81722 | 102.12 10428.49 37.28 | 2314 0.3135 | 0.00267
6.1 68.11 28.51 7834.02 57.66 |  352.12 0.3617 | 0.00199
7.1 58.38 78.78 6206.28 83.18 | 522.39 0.4064 | 0.00155
8.1 51.08 .48 5109.39 405 | 716.23 0.4479 | 0.00125
9,1 45.41 65.81 433095 150.43 | 944.72 0.4865 | 0.00102
10,1 30.87 61.27 3754.01 192.47 | 1208.72 0.5226 | 0.00086 | TeSults
. 37.15 57.55 3312.00 240.28 | 1508.97 0.5564 | 0.00073 | modes
12,1 34.06 53.45 2975.70 293.97 | 1826.10 0.5879 | 0.00063 ing:rest
131 31.84 51.84 2687.38 353.60 | 2220.64 0.6177 | 0.00055
18,1 29.19 49.59 2459.16 09.27 | 2633.03 0.6457 | 0.00049
151 21.25 47.65 2270.52 491.03 | 3083.68 0.6721 | 0.00043
16,1 25.56 45.94 2110.48 568.94 | 3572.93 0.6966 | 0.00038
17,1 28.04 4.5 1983.81 653.08 | 4101.07 0.719 | 0.00035
18,1 2.1 4.2 1867.10 743.37 | 4668.38 0.7411 | 0.00031
19,1 21.51 41.91 1756.44 833.98 | 5275.09 0.7641 | 0.00028
2,1 20.4 20.43 40.93 1675.26 942.90 | 5921.40 0.7824 | 0.00026
2 =2 2,2
a =10 ft %' (1b/£t") (see Column E) p- = 1.0 (1b/ft")
b =97.39 ft o=0.30 1, = 0.323 b/t
5 = 0.5 in. £ = 30 x 10° 1yin.2 (0.) = 8.2 1b/ft3 = 0.037 1b/in.>
« =P 128 x10% 1 (0.) = 0.283 1b/in.3 Yaater ’
2y3 Ysteel a=2.0
¢, = 17,000 ft/sec g = 384.6 in./sec2
x = x'=50ft
y =y' =48.695 ft
i A K Uc(ft/sec) 8(sec) §*(ft)
1| 1.6 | 0.7 8 2.25 x 1073 | 0.044
z| 7.2 | 3.0 16 0.041
12.0 [14.0 32 0.038

.3 wity = 20.4
Note: amn amn (leh‘ ) = (0.57) (m)

(<1}
N

mn " -

64 2.25 x 1073 | 0.035

Note: In computing fmn or w_. (see Program C' in Section 3 of Appendix H) the program

input is in Ib/in.” units for (p_)

In computlng_fmn or w

(see Program B' in

w'steel’ mn
Section 3 of Appendix H) the program input is in 1b/£t” units for both (pw)Steel and
(Dw)water'
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1
eceTan = e — ;
?
TABLE 3¢ (Continued) :
qg=20.3
fober | (bree2) | (seedy | o Mo (H')z(lb/ftz)z fan(H2) | Gpolrad/sec) 13, (1/sec| :
(mn) | P on (1b/£t?) R
K] 20.4 426.20 446.60 19935156 0.72 4.52 0.0715 | 0.03163 ;
2.1 213.94 234.34 54915.24 3.95 24.79 0.1365 | 0.01101
3,1 142.73 163.13 26611.40 10.63 66.74 0.1962 | 0.00587
4,1 107.08 127.48 16251.15 21.36 138.16 0.2512 | 0.00574 ;
5,1 85.67 106.07 11250.84 36.58 229.75 0.3019 | 0.00262 -
6,1 71.40 91.80 8427.24 56.62 355.58 0.3488 | 0.0019 5
7,1 61.20 81.60 6658.56 81.73 513.29 0.3925 | 0.0m52 5
8,1 53.55 73.95 5468.60 1213 703.19 0.4330 | o0.00122
9,1 47.60 68.00 4624.00 147.99 929.36 0.4710 | o.omo1 :
10,1 42.3 63.24 3999.30 189.45 | 1189.72 0.5063 | 0.00085| results
1, 38.95 59.35 3522.42 236.62 | 1486.00 0.53% | o.00072|  for q
12,1 35.70 56.10 3147.21 289.63 | 1818.85 0.5708 | 0.00062 | of interest 3
13,1 32.9 53.36 2847.29 348.54 | 2188.83 0.6002 | 0.00054
14,1 30.60 51.00 2601.00 413.44 |  259.40 0.6280 | ©.00048 3
15,1 28.56 48.96 2397.08 484.39 | 3041.98 0.6540 | o0.00042
16,1 26.78 47.18 2225.95 561.45 | 3525.93 0.6787 | 0.00038 &
17,1 25.20 45.60 2079.36 644.68 | 4048.56 0.7022 | 0.00034 %
18,1 23.80 44.20 1953.64 738.10 | 4610.15 0.7245 | 0.00031 b
19,1 22.54 42.94 1843.84 829.77 | 5210.94 0.7457 | o0.00028 N
20,1 21.42 41.82 1748.91 93i.71 | s851.16 0.7658 | 0.00026
TABLE 3d (Continued) i
qg = 0.6
Mode 2 2 H'=Hp+wmn W )2(]b/ft2)2 fmn(Hz) wmn(rad/sec) amn(i/sec) Gmn
Number | W (1b/Ft%) |w_(1b/¢t%)
(mpn) | P mn (1b/7£¢%)
1,1 20.4 508.21 528.61 279428.53 0.66 4.16 0.0604 | 0.02903
2,1 255.11 275.51 75905.76 3.64 22.86 0.1161 0.01015
3. 170.20 190.60 36328.36 9.83 61.75 0.1679 | 0.00543
4,1 127.68 148.08 21927.69 19.82 124.48 0.2161 | 0.00347
5,1 102.16 122.56 15020.95 34.08 213.74 0.2612 | 0.00244
6,1 85.14 105.54 11138.69 52.80 331.63 0.3033 | 0.00182
7,1 72.98 93.38 8719.82 76.41 479.83 0.3428 | 0.00142
8,1 63.86 84.26 7099.75 105.05 659.73 0.3800 | 0.00115
9,1 56.76 77.16 5953.67 138.93 872.47 0.4149 | 0.00095
10,1 51.09 71.49 5110.82 178.19 | 1119.03 0.4479 | 0.00080 retults
1,1 46.44 66.84 4467.59 222.97 | 1400.24 0.4791 | 0.00068 for
12,1 42.57 62.97 3965.22 273.38 | 1716.80 0.5085 | 0.00059 of f‘!'gggiest
13,1 39.30 59.70 3564.09 329.51 | 2069.34 0.5364 | 0.00051
13,1 36.49 56.89 3236.47 391.46 | 2458.40 0.5628 | 0.00045
15,1 34.06 54.46 2965.89 459.31 |  2884.45 0.6104 | 0.00042
16,1 31.93 52.33 2738.43 533.11 | 3347.90 0.6119 | 0.00036
17,1 30.05 50.45 2545.20 612.92 | 3849.13 0.6347 | 0.00032
18,1 28.38 49.28 2428.52 698.80 | 4388.49 0.6438 | 0.00029
19,1 26.89 47.29 2236.34 790.80 |  4966.20 0.6771 | 0.00027
20,1 25.54 45.94 2110.48 868.95 |  5582.60 0.6970 | 0.00024
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TABLE 3e (Continued)

q=20.9

Hode 2 N ™ w? | - rady | <

ot LRUT U0 BN EGISS) (lb/:tz) sy’ fanli2) | Sopleee) | 3 (/sec) | &, ¢
1,1 20.4 932.74 953.14 908475.86 0.3 3.10 0.0335 0.02161
2,1 468.20 488.60 238729.96 2.734 17.17 0.0554 0.00761
3,1 312.36 332.76 111394.74 7.44 46.93 0.0962 0.00415
4,1 234.33 254.73 64887.37 | 15.11 94.9) 0.1256 0.00264 X
5,1 187.49 207.89 43218.25 | 26.13 164.11 0.1540 0.00187 é
6,1 156.25 176.65 31205.22 | 40.82 256.33 0.181 0.00141 %
7,1 123.93 154.33 23817.75 | 59.43 373.24 0.2073 0.00111 K
8,1 117.20 137.60 18933.76 | 82.21 516.27 0.2326 0.00090 | - ;%
9.1 104.18 124.58 15520.18 | 109.34 686.68 0.2570 0.00074 fe;:lts

10,1 93.76 115.16 13261.83 | 141.00 885.56 0.2780 0.00062 | modes ég
1,1 85.24 105.64 ms9.81| 177.37 | 1Mm3.88 0.3031 0.00054 inggrest 4 25
12,1 78.13 8.53 9708.16 | 218.56 | 1372.53 0.3249 0.00047 Z
3,1 72.12 92.52 8559.95 | 264.70 | 1662.28 0.3460 0.00041 5
14,1 66.97 87.37 7633.52 | 315.90 ] 1983.85 0.3664 0.00026 2
15,1 62.51 82.91 6874.07 | 372.27 | 2337.86 0.3862 0.006033

16,1 58.60 79.00 6241.00 | 433.90 | 2724.91 0.4053 0.00029

17,1 55.15 75.55 5707.80 | 500.88 | 3145.53 0.4239 0.00026

18,1 52.09 72.49 5254.80 | 573.28 | 3600.20 0.4417 0.00024

19,1 49.35 69.85 4879.02 | 651.18 | 4089.38 0.4584 0.00022

20,1 46.88 67.28 4526.90 | 734.63 | 4613.47 0.4760 0.00020

TABLE 3f (Continued)

q = 0.995

Nﬂ;ggr fmn(Hz)
1,1 0.237
2,1 1.325
3,1 3.638
4,1 7.445
5,1 12.972
6,1 20.410
7,1 24.331 )
8,1 41.691
9,1 55.831

10,1 72.482 )
11,1 91,765

12,0 | 113.795 | |
13,1 138.678 re?glts

14,1 166.517 modes

15,1 | 197.405 |  of

16,1 231.433 interest

17,1 268.69

18,1 309.256

19,1 353.209

20,1 400.626

fons of Y2()
Note: No computations of ——= were made for

= 0.995.
q 995 pZ

12




TABLE 3g
Computation of Normalized Modal Mean Square

Displacement Yz(w)/p2 for Simply Supported
Steel Plate in Water

Note: The extensive results for the response obtained by Mr. Lucio Maestrello

and Mrs. Christine Brown at Langley Resedrch Center, KASA, using the authors
program, are tabulated in Tables 3g-3i.

q=0 STEEL PLATE
* * ik
Ye | Jode | V) ¥(u) Y (w)
(usec) | oy | 2 7 =
m, p p p
8 8,1 | 4.4x10° }4.4x10%} 4.4 x 107"

90 | 17x100 [1.7x100f 1.7 x 107"
10,0 | 70x100 [ 2010 | 7.1 %1012
. m1 4 3.0x100 [30x 10 | 3.0x 10712
12,0 | 1.4x1010 [ 1.4 x 1071 | 1.2 x 10712
13,1 | 6.ax10 | 6.4 %1012 6.4 x 1071
u,1 | 30x10 1 30x10% | 31 x 1070
150 | 1.6x101 f1ex102 | 1.7x 10713
16,0 | 9.3x102 [9.3x10773 ] 9.4 x 1071
170 | 5ax102 [ sax10 B s2x10M
181 | 30x102 [z x0 B30 07H
190 [ 1.8x1072 [1.8x10713 ) 1.9x 101
20,1 ] 1.0x1072 [1.6x103 ] 1 x 07
16 g1 | 4.2x10 [42x100{ 4.2x10"
9,0 | 1.7x10°0 [1.7x1070 ) 1.7 x 101
0,0 | 7.5x10710 | 7.5 x 1071 | 7.6 x 10712
na f 3ax100 x0T 3 xi0
12,0 | 1.4x1070 {1.a x0T [ 14510712
3 13,0 | 6.8x10" |6.8x1071% | 6.8x1073
14,0 | 3.9x10" [ 3.9x1071% ] 3.9x 10713
] 150 | 23x107 [ 2.3x1071% | 2.3 x 10713

16,0 | 1.2x10 |2y 102 2 x 10
17,0 | 5.7x10% |57 x 103 ] 5.7 x 1071
18,0 | 31x102 [31x1073 ] 3.2x 107
: 19,1 | 1.9x1072 [1.9x10713 | 2.0 x 107
200 | 1.2x1072 J12x103 1251071
32 8, | 3.2x10? |3.2x1079] 3.2 x 10"

Ay Teeng e AT

90 | nix10® |1 x1070 11 x 07!

10,0 | 4.6x1070 a6 x10" ] 4.7 x 10712

G IR
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Table 35g (Continued)

STEEL PLATE (Continued)

q=0
U ¥od 2 2 2
(ft/gec) lz:?lg%r Y_;w) _Y% %
- [ p P
na | 22x1w00) 2.2x10 {2.2x 10712
120 1 1.3x1010 ) 135101 {13 %007
13,0 |89x1e1 ] 89x10%|9.0x10"3
18,0 [67x10 | 6.7x1072 | 6.7x 10713
150 |asx10" | 45x102 |45 %071
160 |23x101 | 23x10% {2.3x10713
170 | 9.5x102 ] 95x1077° [ 9.5 x 107"
181 |4ax102 a1 x0T a2 x0"
19,0 | 17x10 217 x0B <0
20,0 |5.8x10713]5.8x101 [6.0x107°
64 8,0 |35x10% |35x1070|35x10"
9,0 |1.3x100% [13x100}1.3x 00"
10,0 |5.0x10671% | 5.0x107 |50
1m0 f21x10 2ax10 2 x 0
120 [7ax10 M [ 7.0x167% [ 7.2x 10
130 [ 1.8x10 [ 1.8x10712 1910713
14,1 $ 5 $
15,1 $ + t
16,1 t + t
17,1 T + +
18,0 | 1.0x107% 10x 103 [1.0x 1071
190 | 12x102 [ 1.2x108 {12501
20,0 |1.0x10% [ 10x108 |11 x 107"

*
For one-tenth computed damping value given in Table 3b.

*k
For computed damping value given in Table 3b.

ek
For ten times computed damping value given in Table 3b.

+Computer error (recomputation not made).
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TABLE 3Sh

STEEL PLATE
q = 9.5
: - ——
. Y N’::g:r ¥(u) '2_(_"’) _!f_("_)
(ft/sec) {m,n) pZ pZ p2
8 8,0 | 4.5x10° |4.5x100] 5.6x 10"
9,0 | 1.7x107 [ 1.7x1010 ] 185307
100 | 7.3x1070 7310 | 7.3x 1072
11 | x93 x0 30 %101
120 | 1ax10 x0T | 15 <101
130 | 65x10" [ 6.5x102] 6.6 x 2013
11 | 32xi0M | 3.2x10% ] 3251013
150 [ 17x1w0 2 x10?| 7x 0
16,0 | 9.5x1077 [ 9.5 x 10713 | 9.6 x 1071°
170 [ 5.4x101% | 5.4x1013 ] 5.5 3071
18,0 | 3.2x10%% | 3.2x1013) 325101
19,0 | 1.9x10% | 1.9x103 | 1.9 %107
200 | 1ax102 <103 x0T
16 80 {4a3x10? [43x101%)] a.3x 107"
9,0 | 1.8x107° |1.8x1079| 1.8 10"
100 [ 7721010} 7.7x10M | 7.7 x 1072
1m0 | 3.2x109 | 32x10M | 3.2x102
120 | 1.ax107"9 | 1.4 x 107 | 1.4 x 10712
13,0 | 6.8x10" | 6.8x10712 | 6.9x10713
18,0 | 3.9x10M | 3.9x1077% | 4.0x 10713
150 | 24ax10M | 2.ax101% | 2.4 x 1013
16,0, 12x10" [ 2x 10| 2.0
170 |61 x10% 6.1 x1073 | 6.1 x 1071
18,0 | 3.2x107% [ 3.2x10713 | 2.3 % 1071
19,0 | 2.0x107% | 2.0x1073 ] 2.0 x 1071
200 | 12x1w0% | 1zx103 | 13x10 M
32 8,1 | 3.3x1077 |3.3x1079( 3.3x 10"
9,0 | 1.2x10 |1.2x1070] 1.2 x 107"
10,0 | 4.7x1010 4.7 x0" | 4.7 x 10712
M1 | 2.2x100 22510 | 2.3x 1012

CZ
fc = 2nke
L
aluminym 243,000
steel 19,400
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Table 3h (Continued)

STEEL PLATE (Continued)

q=0.3
- .
v fese | g | Ve o
(ft/sec) {c.0) -pi ;E ;5
120 | 13x100 s | 3x
13,0 | 88x10" {8.8x10%| 8.8x107"3
180 | 6.6x10! 6.6x1071%] 6.6 x 10713
150 | s7x1w0 farx 1w} arx 0
16,5 | 2.5x10 {25 x 1072 2.5 x 10713
170 | ex1w0M frexw0?} 1ox 0B
18 | 2.4x10% {aax103| asx10
19,0 | 1.8x102 J18x103 ] 1.9x 10"
200 | 6.0x1013 |60 %10 6.3x107°
6 8.1 | 3.6x10? |36x1010) 3.6 x 107"
90 | 1.ax10? 1.sx1010) 1.4 x 307!
100 | 52x1010 {s.2x10" | 5310712
150 | 21x100 {2 x10 ] 22510712
120 | 7.7xw0 {rax1w0 ) rex0!3
133 | 22xw0M 22x102 ) 23x10713
14,1 $ s s
15,1 + $ t
16,1 5 5 +
17,1 + + .
18,1 % + +
19,1 3 + +
20,1 + $ +

TComputer errcr (recomputation not made).

*

For one-tenth computed damping value given in Table 3b.
*x

For computed damping value given in Table 3b.

kR
For ten times computed damping value given in Table 3b.
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TABLE 3i

i
i
i
1
i
i
3é

STEEL PLATE
q=0.6

. - e

U, mﬁr Yz_(u) Yz_(_v) Yz_(ﬂ-v)

(ft/sec) | (o a) o2 o2 o2
8 g1 | 49x107° | 2.9x1070 | 29210
90 | 1.9x10° { 192107 1.9 x 107"
10,0 | 79x107°] 7.9 x 107! {8.0x 10712
1 | 35x100) 352101 |35 %1012
120 | 1621070} 1.6 x 107 1.6 x 107
130 | 73230 | 73x10% [7.4x 1013
15,0 | 3.7x10 V| 3.8x107F |38 %1073
150 1 1.9x10 | 19x102 192107
1€ | rox1wV | 10x10 [1.0x103
17,0 | 5.6x107%2| 5.6x 10713 | 5.7 x 107"
18,0 | 3.2x101%] 3.2x10 [3.2x 167
19,0 | 1.9x10%| 1.9x10"3 |[1.9x 1075
20,1 | 1.3x107%20 131078 [13x 10
16 8,1 | 45x10° | 4.5x1070 { 5.5 x 107"
9,0 | 1.9x107 | 1.9x107% } 1.9 x 107!}
10,0 | 8.4x107'%] 8.4x107 |8.5x107?
1,0 | 3.7x1070 3.7 x10" |3.8x1012
12,0 | 1.6x1071% 1.6 x 1071 [ 1.6 x 10712
13,0 | 73x10 V| 7.3x1072 7.4 x 10713
13,0 | a1x10] 41 x1072 [a2x1013
1510 | 2ax10| 2ax107? | 2.ax 1012
16,0 | 1ax10 | ax10? [1ax03
17,0 | 70 x107%) 70 x1083 [ 7.1 000718
; 18,0 | 3.5x10712) 3.5x10713 | 35x 10718
190 | 2.0x167"| 2.0x 10713 | 2.0 x 1071
§ 20,1 | 1.3x1012) 1.3x1073 1.4 %0010
ik 32 8,0 | 3.6x107° | 3.6 x10710 | 3.6 x 1071}
’ 9,0 | 13x107° | 1.3x1070 1.3 %107
3 10,1 | 5.0x1071%] 5.0x10" } 5.1 %1012
3
17
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Table 31 (Continucd)

STEEL PLATE (Continuved)

g = 0.%
9 | Joce ) 2w | 2w
truse) | ooy | T2 = 2
p 4] p
na | 23x100 (23510 23,10
120 | 1321070 [ 13230 [13x 07
133 | 8ixw? fsax10?|az2x10
180 | 6.0x10" {60x10%2 }6.0x 1013
150 | sax1wV lesx10?|esxi0
161 | 3.0x107" [3.0x10 | 30x1013
171 | sxwo [1sx102 s xe3
18,0 | 6ax102 [61x103 52210
190 | 27x102 |22x103 | 2.8x 10"
200 | 1ax102 | axw0B [1z2x0
6 g1 | 3.9x107 [3.9x107°]4s0x10"
90 | 1.5x10°% [15x100 1510
100 | 6.0x1070 |60x10" |6.0x101
mi | 25x100 [25x10M |25 x 10772
120 | 9.9x101 [9.9x102 | 1.0x 107"
13,0 | 3.6r10" {36x102)37x103
180 | 68x102 Ja9x103 535101
15,1 + £ 5
16,1 3 3 5
17,1 + s 3
18,1 : + 5
19,1 : 3 3
20,1 s 3 4

*
For one-tenth computed damping value given in Table 3b.

“For cowputed darping value given in Table 3b.

*%
* For ten times computed damping value given in Table 3b.

TCo:::puter error (recomputation not made).
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TABLE 3j
STEEL PLATE
qQ=0.9
: - s
NN e
* p P p

8 8.1 - --- ---
st {27x102 |27x10% |2.7 107"
160 | 112100 | rix10? |1 x 0!
ma |sax1we?)sax10" |50 x10?
121 | 2.2x10¢) 2.6 x 107! | 2.8 x 107
130 1 x100) 1 x0? faxae?
i€ |s7x10 | 57210 {57103
150 | 30x10]|30x1072 |30x103
16,0 |15y isx102 [1sx10 3
17,0 | 8.6x102 ] e6x103 |8.7x 107
180 | 502102 5.0x10 |50 51071
15,0 312102} 30 %1013 |30 x50
20,1 | 1.9x10% ] 19x101 |19 %107

16 8,1 --- - -
9,0 |25x107° | 25x100 |2.5x 10"
10,0 | 1010 [ 11x1019 |10 x 107!
1,0 | 55x10719) 5.5 x 101 | 5.5 %1012
120 | 27x100 ) 2.7 x106 " {2.8x 1012
13,0 {1.3x100 ) 13x10" i3x1012
16,1 |59x10" ] 6.0x107 [6.0x10713
150 |2.9x10 ] 23x107 [2.9x103
16,0 | 1.6x 107 16 x 10712 1.6 x 10713
17,0 [ axwoM i x102 [ xi03
18,0 |7.0x10%% | 7.0x103 {70 x 07
19,1 [4.0x107% ] a0x10"3 [s.0x10"
201 [2.0x10%% ] 2.2x 10 2.2 x 1071

2 8,1 - - -
9,0 | 2.0x107° [2.0x107 {2.0x10"
10,0 | 7.9x10770 ] 7.9 x 107" [8.0x 10712
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Table 3j (Continued)

STEEL PLATE (Coatinued)

q=0.9
—_— —— haiad hainied
U | gode | Y v(v) ()
(ft/sec (2,n) ;‘i p—z' ?
M1 | 3.2x100) 32510 |32x102
12,0 | 1.ax00 ) 18X |14 x 10712
133 [raxio V| 7.4x1012 |7.551013
11 |s6x1wc! | s6x10? |a6x1013
15,0 | 30x10"|30x10? [30x101
161 | 2.8x107 | 2.8 x1072 2.4 x 10713
171 [ 2axw0w | 21x10 |20 %078
18,0 |16x10 | 16x1012 |1.6x 1013
19,1 |9.4x102 | 94x10713 Jo.axi0!
0,0 |2.4x102|aax10 |aaxi0?
64 tiot Cocputed
90 |23x1070 | 23x1070 {2.3x10"
10,0 | 9.5x1010] 9.5x10" [9.6x 10712
1m0 | a1x1070) a1 x10! [4.2x10712
120 ] 1.8x100 ] 1.3x 10" |18 x 10712
13,0 |85x10 | 85x10? Jasx10?
18,0 [39x101 | 39xi07% [3.9x10713
150 | 1axio | 1ex10? J1ax1013
161 |28x1072|29x101 [3.0x10"
17,1 3 + £
18,1 + + 3
19,1 s N 3
20,1 3 3 +

*
For one-tenth computed damping value given in Table 3b.

*k
For computed damping value given in Table 3b.

xkk
For ten times computed damping value given in Table 3b.

“"“Computation not made for 8,1 mode because for q = 0.9,

f, ; < 100 Hz (see Table 3e).
8,1

"Computer error (recomputation not made).
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COMPUTED DAMPING VALUES GIVEN IN TABLE 3b
OKE-TENTH COMPUTED DAMPING VALUES GIVEN IN TABLE 3b
e TEN TIMES COMPUTED DAMPING VALUES GIVEN Il TABLE 3b
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=k/k =0
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e COMPUTED DAMPING VALUES GIVEN IN TABLE 3d
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; Figure 2b
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Figure 2 - Normalized Modal Mean Square Displacement of Simply
Supported Steel Plate with Fluid Loading Effects Included

The response results cozputed at NSRDC and plotted in

Ffigure 2 were duplicated by Mr. lucio Maestrello and Mrs.
Christene Brown sho 2ssisted the author by performing
sinilar cozputations on their computer at Langley Research
Center NASA, using the author's program. Their nore ex-
tensive Tesults are tabulated ir Tables 5g-3j.
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CALCULATIONS AND RESULTS H

The analytical results for a fluid-loaded plate are presented in a ’
series of Appendixes (A-G). The salient features of this study are

summarized in Table 1 for the convenience of the reader.

rey st k¥

In addition, computer recsults were obtained for the vibratory

i fn

response of a water-loaded, simply supported, rectangular-aluminum isotropic

R
ks
5% Y e
e

TR AR NI L
PR

plate and for a water-loaded, simply supported, rectangular-steel isotropic
o F plate subject to turbulence excitation. The computer results were obtained
by modifying the updated version of the original formulation devised by

- M’aestrello1 with the fluid loading program devised here. The corresponding

l(‘)’ﬂi\a N

H: mathematical analysis, methods for determining the imput data, and computer
¢ *
&

. program documentation are given in Appendix H. Results are now presented

A0S &

for the aluminum and steel plates.

SRR

ALUMINUM PLATE

Table 2a presents the natural frequencies and total damping ratio of

e

a simply supported aluminum plate in air for several modes of vibration.
The natural frequencies were computed by use of the Warburton

method (see Reference 3 for the associated computer program) and were

2

2
4 checked by use of the simple frequency expression W = Kcg [-EE) + %ﬂ) ]

}; for simply supported plates. The corresponding natural frequencies in water,

7 as well as other relevant input data required for the computation of the

): 2
'k . Y .
g: normalized modal mean square displacement“=?§£l, are tabulated in

p
2
* %
Table 2b. The normalized modal mean square displacements Y (@) for the

3 ——
b

2

p
: simply supported aluminum plate in water are tabulated in Table 2c. All of

: these data are computed in accordance with the detailed procedure given in

Appendix H.

ERERDIAR O Mo EN

*
Both the updated program (designated MTURAD) which supercedes the ori-
ginal Maestrello program (designated TURAD} and the fluid loading program
(Option 3) are presented in Appendix H.

*

.o NN
st ddey

*
The Maestrello methodl for cbtaining p2 is given in Appendix H. Dyer
(page 32 of Reference_l) uses p2 = [6 x 39-3 . %'p Umz]2 and Jacobs (page 301

of Reference 1) used p2 = 3.1 T . Here p2 is the mean square turbulence

oy m
TV ol A e

T

o

D S s

pressure, p is the fluid density, U is the free-stre<w velocity, and T, is

the local wall shear stress (see Appendix H for further discussion),

23

oot




Figure 1 is a plot of some of the computed results for the normalized

2
modal mean square displacements Y"(u)/p2 of a simply supported, water-loaded
aluminum plate subject to turbulence excitation over a range of convection
velccities Uc for various values of damping and q = k/ks = 0 only (see

*
notation for Appendix H). More extensive results are tabulated in Table

2c. The computer procedure used for the calculations is given in Appendix H.

STEEL PLATE

% Table 3a tabulates the natural frequencies of a simply supported

steel plate in air for several modes of vibration as computed by use of the

NPT

Warburton method (see Reference 3 for the associated computer program).

R T L] T TP

= N
# The corresponding natural frequencies in water as well as other relevant 2
e input data required for the computation of the normalized modal mean square 4
x — = 1
e displacement Yz(w)/p' are tabulated in Tables 3b-3f. The normalized modal 3
S mean square displacements Yz(w)/p2 for the simply supported stzel plate in 3
E water are tabulated in Tables 3g-3j. 3
3 Figures 2a-2d are plots of some of the computed results for the nor- E
A malized modal mean square displacement Yz(w)/p2 of a simply supported, water- i
= loaded steel plate subject to turbulence excitation over a range of con- i
= * s
vection velocities UC for various values of damping and q = k/ks <1 (see 3
S notation for Appendix H)}. More extensive results are tabulated in Tabies 3g- £
= 3j. The computer procedure used for the calculations is given in Appendix H. 8
DISCUSSION AND EVALUATION 3
é This section discusses (1) the analytical results, (2) the compu- . }L
j tational results, and (3} the turbulence-vibroacoustic relationships. ;
:
{
e * <5y

5 For the present problem, the contribution of radiation damping but not

; added mass ic excluded in the (acoustically slow) region for which the com- 2
. putations are anplicable; see Appendix H for a more detailed discussion of 3
e this point. Simple equations for determining the radiation damping con- 3
3 tributions for inclusion in the computer program will appear in a companion b
f Teport. |2
: i
2 b
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ANALYTICAL RESULTS

Table 1 identifies and compares the various methods of computation.
Notation pertinent to each method is found in Appendixes A-G inclusive.
The results have been included in the overall computer program (see I
Appendix H). 5
From the summary for Appendix C given in Table 1, we observe that -
the solution to the Feit-Junger basic equations has been cxtended to in-
clude the added mass results for coupled modes in addition tc their results %
- for uncoupled modes presented in Appendix A; th. extended results are then a
identical to correspending results obtained by Davies in Appendix B. The
physicomathematical basis clarifying the plate-fluid coupling mechanism is
discussed in Appendix A. In general, results can be classified both in
terms of modes in wave number space according to their radiation
characteristics and in terms of frequency band.

It is interesting to note that despite the variety of analytical

methods used, the results obtained in Appendixes A-E are identical for the
uncoupled modes. As discussed in Appendixes A-C, the results for these
modes are considered to be dominant with respect to the results for coupled
modes. Moreover, we perceive from the discussion in Appendix D that for the
uncoupled (dominant) modes, the methods of Appendixes A-D are applicable,
with minor modification, to low wave numbers (m,n=(1,1) (1,2) (2,1)...) as

well as to high wave numbers.

The results presented in Table 1 for Appendixes A-E are based on
analyses which assume a plate witb simple supports for the boundary con-
. dition. However, with proper modification and interpretation, these
results can be used to yield corresponding results for fluid-loaded clamped
. plates, at least for the dominant modes. Following the method and using
the computer program (Option 2) described in Reference 3, we first obtain

the in vacuo natural circular frequency w_ > (w ) for a elamped-
mn mn’ clamped

clamped plate.* The frequency for the fluid-loaded clamped-clamped plate is

*w > (W) means w__ = (w_ )

mn mn’ clamped mn mn’ clamped and similavly for

(w )

mn’ clamped’

N
o
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then computed from the equation for w_ =+ (w_ )
mn mn’ clampe

where now, in this equation, w_  + (w ) is the previously computed
mn mn” clamped
in-vacuo jrequency for a clamped-clamped plate. Finally to obtain the
response of a fluid-loaded clamped-clamped plate subject to turbulence ex-
citation, we use (mhn)clamped but mode shapes corresponding to sumply
supported end conditions. In extending the method of Reference 3 to the
case of fluid-loaded clamped-clamped plates, we assume that the sensitivity

of the fluid loading to the change in boundary conditions is sufficiently

d given in Table 1

small so that the preceding procedure will yield approximately correct
results for the response of clamped-clamped plates.

Using an entirely different theoretical approach, Appendixes F and
G (see Table 1) give directly obtainable results for both simply supported
and clamped plates. Again the results depend on the mode numbers.
Appendix G presents a relatively simple formulation relevant for low fre-
quencies.

If we treat the radiation of boundary layer noise into a closed
rectangular cavity as well as into free space (see Dyer Model,* Appendix A

of Reference 1), then the approximate value of the added mass due to the
enclosed fluid is given as

o tanhlkmn Lzl
m__. = fw >0
cavity [k | mn c
mn
and
=£——. i <
mcavity k tan kmn Lz if “m Y

mn

The total added mass is then the sum of the added mass of the enclosed

fluid and the free (half) space added mass given in Table 1.

*
In the Dyer Model all interior surfaces except the plate are assumed to
be pressure release surfaces.
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COMPUTATIONAL RESULTS

For the results shown in Figures 1 and 2, which include the effects
of fluid loading, we make the following observations; of course evaluation
of the theoretical results requires a comparison between theory and experi-

*
ment in water.

2

To compute the normalized modal mean sequare displacement Yz(w)/p
of a water-loaded plate subject to turbulence excitation, we require the
corresponding modal frequencies. Appendix H presents two methods,
designated Methods 1 and 2 for computing the natural frequencies of a
plate in water. Method 1 (Equation (H3)) is based on the analyses in
Appendixes A-E whereas Method 2 (Equation (H6)) is based on the analyses in
Appendixes F and G. Computations show that the frequencies computed by
Method 2 are significantly greater than those computed by Method 1 and this
difference increases at higher modes.** The discrepancy is attributed to
the less sophisticated assumptions involved in deriving Equation (H6); see
Appendix F. Consequently, we consider the results obtained by Method 2 to
be less valid (i.e., more inaccurate) than those obtained by Method 1, and

use only Method 1 for the computations of Yz(w)/p2 now presented.

For the fluid-loaded aluminum plate, Figure 1 shows the contributions
of the lowest modes to the normalized modal mean square displacement Yz(w)/p2
for both the range of convection velocities considered (0 < UC < 64 ft/sec)
and the range of modal frequencies of interest (100 < fmn < 1000 Hz); see

Table 2. It is evident from the figure that for any damping value con-

sidered, the contribution of the modes to the total normalized mean square
2 2 2 2 2 .
3 + Y PR < N i
displacement (Y .~ + Y,.° + Y, ° + Y, ")+ )/p” decreases with successive
mode orders (1,2), (2,3), (i,4), and (2,4). The major contributors are the

(1,3) and (2,3} modes; the relative contribution of the latter mode

*

The fluid loading does not include the influence of hydrostatic
pressure. The effect of hydrostatic pressure on the natural frequencies is
discussed in Appendix I.

* %

As shown in Appendixes F, G, and H, the data given in Table 4 are used

in computing the frequencies by Method 2.
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Modal Values of Aij and Bij for Clamped and

TABLE 4

Simply Supported Plates

Mode

Clamped Plate Simply Supported Plate

A..
1]

Bij

Aij

Bij

w N = 0w N -

13
13
13
13
3]
33
33

0.6904
0
0.3023
0.1924
0.3023
0
0.1324

— et e emnd wwed owd d

0.4053
0
0.1351
0.0810
0.1351
0
0.0450

0.25
0.25
0.25
0.25
0.25
0.25
0.25
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decreases for values of Uc approaching 64 ft/sec. However, we also cb-

serve that for given values of Uc and damping, the root mean square dis-

placement of each mode treated is of the same order of magnitude. We con-
clude thercfore that each of the several modes considered makes a signi-
ficant contribution to the total vibratory displacenment.

A comparison of the curves of Figure 1 also indicates that the
character of the curves is essentially independert of the damping values
and that the values for the modal amplitudes decrease with increasing

. values of the damping. If the damping is sufficiently small and/or p2 is
sufficiently large, we may expect the turbulence excitations to produce
. undesirably large magnitudes of plate vibration.

For the sieel plate (Figure 2), similar results were obtained for
the lowest modes for various values of q = k/ks; see Table 3. Again, we
observe that for any value of q, each of the several modes considered makes
a significant contribution to the total vibratory displacement, the modal
amplitudes decrease with increasing values of damping, and the character
of the curves is essentially independent of the damping values. In
addition, we observe that the response increases with increasing values of
q. For q = 0.995, Table 3b shows a significant increase in the mode
numbers corresponding to the frequency range of interest (100 < ?ﬁn <
1000 Hz). Once more we conclude that if the damping is sufficiently small
and/or p2 is sufficiently large, we may expect the turbulence excitations
to produce undesirably large magnitudes of plate vibration; the magnitudes
are enhanced, but not radically, at sufficiently large values of q. Hence
in computations it appears practical to use a single representative value
for q for the range of turbulence frequencifs distributed about w = UC kT
= k ¢, corresponding to 0 < q = k/ks < 1.0. A practical alternative would
be to select the average of the mean square displacement responses computed
for small and large values of q.

*
These relationships are discussed in the following section.
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TURBULEXCE-VIBROACOUSTIC RELATIONSHIPS

Background material is cited in the bibliography.

For the convenience of the reader, we list the notation corsonly

used in this section.

a,b
B

Length and width of the plate, respectively

Plate bending stiffness equal to E hSIIZ(l—oz)

Trace speed of the plate bending wave in the direction of flow or
free flexural phase velocity for a thin plate equal to wllz (B/M)Il4
Velocity of sound

2.,1/2
Compressional wave velocity of the plate equal to [E/ps(l-o )] /

Young's modulus

Natural, acoustic coincidence or critical, and hydrodypamic coinci-
dence or critical frequencies, respectively

Plate thickness
Acoustic wave number equal to w/c

Wave aumber components lying zlong the x- and y-axes, resnectively

Modal wave numbers equal to mi/a and nw/b, respectively

2 7
Wave numbers equal to ,/km° + kn'

Free plate bending wave number equal to (w/x cz)l/2

Turbulence wave mumber
Plate structural mass per unit area

Effective mass per unit area (i.e., mass per unit area of fluid-

loaded plate) equal to mp mo

Added mass per unit area (or apparent mass or virtual mass per unit
area)

* Mode numbers

Equal to k/kS

Free-stream velocity

Convection velocity equal to 0.8 U

Mean convection speed along the flow direction

Hydrodynamic coincidence speed

Equal to 1 for fluid loading on one side of plate only; equal to 2
for fluid loading on both sides of plate

Radius of gyration equal to h/2¥/3

30
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Mass density of fluid medium

Mass density of plate ]

s
Poisson's ratio
Circular frequency equal to 2w ;
A Acoustic coincidence or critical frequency equal to Zﬁfc ]
w Hydrodynamic coincidence or critical frequency equal to 2ﬁfh 9
w Plate resonance frequency equal to 2uf :
an mn ;
: — Bar over quantity denotes quantity for water-loaded plate ;
EE - The convection properties of the turbulence pressure field relate

the circular frequency w and the turbulence wave number kT by the equaution

kT UC =W (1)

The approximation obtains because, in actuality, a range of wave numbers

contributes to the frequency spectral density of the turbulent pressures

(e.g., see Equation (B60) of Reference 1). Alternatively stated, for a

R T A O it L ST AL VAL A A T

turbulent field, a particular wave number component is generally associated

with a distribution of frequencies and/or convection speeds.

Following Dyer (see page 18 of Reference 1), the hydrodynamic coin-
cidence speed v, is defined as the speed at which the magnitude of the mean
flow convection velocity Uc along the flow direction is equal to the traci
speed of the bending wave CB in the direction of flow, 1i.e., v =v_= CB.
The frequency at which this occurs is a significant parameter because it
represents a value at which we can expect a large vibratory response due to
increased amplitudes of the modal forcing function for the panel. This

parameter is called the hydrodynamic coincidence frequency W and is given
by the equation

w, =k, Cp =k U 2)

Thus from Equations (1) and (2), kT = kp = wh/UC at the hydrodynamic coin-
cidence frequency.

RN AL N AT vy SR LA U

*
The bending wave is alsc referred to as the free flexural phase velocity
and free plate bending velocity.

%

31

=
Eﬁﬁmﬂ%&ﬁmﬁm&&&ﬁ%ﬁ&ﬂﬁuﬁﬂ:M

2
L ey




ARELrgb O JCLIRN, 5 &

{
E: tere
1 1
e = - 1
3 2 4 =
d Y _(M\" 2
: % = (K Cg) = (B) © G)
;? because (see pages 18 and 28 of Reference 1) .
4 « 1 1 .
3 i c—ﬂ-—w_z-l’-4-w— t hydrodynamic coincid 4) b3
5 B = kp = w) 7 @ =t at hydrodynamic coincidence b
E ! 2 hec
" : ‘% =——£= Kcl (5) °
2 i y12
- z The region within which hydrodynamic coincidence can exist is defined
! by a semicircle in k space represented by (km - UC/ZK cz)2 + kn2 = (UC/ZK cl).2

For the plate coordinate system shown in Figure 3, the corresponding classi-
fication of plate mcdes in wave number space is shown in Figure 4. For low
convection velocities Uc << CB’ the locus of the hydrodynamic coincidence

(HC) curve collapses to the origin and the response is composed entirely of

PR
b;. W

1 hydrodynamically fast (IIF) modes.
E From these equations we obtain the significant relationship from
4 which we can determine W for a given plate material and value of Uc,
4 namely,
CB2 Uc2

= = (6)
: “h B 1/2  « <y )
3 M
e The hydrodynamic critical frequency is now defined as the resonance .
E,
A frequency of the plate mode with bending wave velocity equal to the con-
% vection velocity. Table 5a presents values of the hydrodynamic critical
E *
% frequency fh = wh/ZH computed for the fluid-loaded, simply supported
= aluminum and steel plates for values of U, used in the previous computations
;
o .
s The condition of hydrodynamic coincidence has been used by Maestrello1
A in obtaining computer solutions Yz(w)/p2 (see Appendix H).
e 32
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Notes: 1. For any value of knn in the modal lattice,
the projection of k. on k, is k_ = ma/2. and
- v ke =4 {ky ol SPACE . projeet? P kl . it
the projection of k on kj is k = n--/x,s. :
2. For an infinite plate the curves in .
‘:’,,» {kl,w} space show that above Wy hydrodynamic
coincidence does not occur for any wavenumber.
At very high frequencies the sonic curve intersects

[
the free wave curve because < increases faster

1/2
than (%— , and acoustic coincidence occurs.
L

For additional details on corresponding

2 " relationships in {Kl,Ks}spacc see Bibliography
“ - :g w, = ‘-':‘—Cs-z (White, P.H.)
'3

Figure 4 - Classification of Modes in Wave Number Space
and Turbulence Vibroacoustic Relationships
in Wave Number-Frequency Space
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3 ;
2
! TABLE 5 z
Computation of Hydrodynamic Critical Frequencies and Acoustic {
Critical Frequencies for Fluid-Loaded, Simply Supported Alum- E:
inum and Steel Plates g
‘ TABLE 5a ’ %
¥
§ Computation of Hydrodynamic Critical Frequencies .2
; for Aluminum and Steel Plates . g
, 2 2 3
j Uc UC . 3
Ye | Tn " e, (2) | T ", (H2) '
% (ft/sec) | alum. plate steel p]ate )
' 8 0.62 0.05
16 2.48 0.20
32 9.95 0.79
. 64 39.87 _ 3.17
ALUMINUM: < = 9.64 x 107} £t
c, = 17,000 ft/sec
Steel : x = 1.204 x 1072 ft
c, = 17,000 ft/sec
£
water - - 2,000 ft/sec
TABLE 5b
Comﬁutation of Acoustic
Critical Frequencies i
for Aluminum and Steel
Plates
Material | f_ 211 <<, (Hz)
Aluninun 243,000
teel 19,400 :
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of the plate response. The results were obtained by use of Equation (6).

For a finite plate at resonance, kpz z ks2 z kmnz = [(mn/a)2 + (nn/b)z].
For air (or in vacuo) loading

mu 2 nn 2
Wy T K S (?1-) * <-b—) 2

K cy (1mn/a)2 = (mn/a) Uc represents the hydrodynamic
coincidence condition for the finite plate at resonance because‘Uc is the

S Paag i IR O AAynl R T AL e TR s
R0 QORI TN, 5 s

the equation w__ =
mn

1 convection velocity in the flow direction only (seec page 132) and

3 ® w

4% _ mn __mn _

35 I K o Knn

E - P mn

Cx §5 m = 8
2 ._.ch(a)atw—\uh (8)

1

For water loading (sec Equation (113))

E
7
%
3
32
3
3
2
ki
%
[

) ap 2
Wrw =W 1+ 73 (9)

g

kh [1-c’
pg kh 11-¢]

The radiative properties of the plate immersed in a fluid relate the

given frequency w (Equation (1)) and the acoustic wave number k by the
equation:

g eaan M el

L b

mm

ke = w (10)
From Equations (1) and (10), we obtain:

et o 5 b Wik s gt i AL A 5 oY
e

i u_ u,

E = z «— - Y
i: k < k,r 0.8 kT . 0.8 Koy Mach No. (11
3' . These last two relations are given to add to the theoretical picture. llow-
i-
! ever, no computations for the radiation’ of plates were made for the prescent

Teport.

On page 24 of Reference 1, we defined the sound coincidence or cutoff

or critical frequency w = w, as corresponding to ¢ = CB’ i.e., the fre-

quency at which the flexural wavelength of a thin plate equals the acoustic

*
wavelength in water. At this frequency we expect a greatly increased
acoustic response.

*
The critical frequency is used for a resonant plate.
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Moreover since at this frequency (see page 27 of Reference 1)

L
c=Cp= ch 2 (%)4 (12)
Then 1 ,
w, = c2 -%’-)2 = -K—cc—-g a3)

Table 5b presents values of fc wc/2n computed for the fluid-loaded, simply

supported aluminum and steel plates. The results were obtained by use of

Equation (13). Obviously there is one and only one sound coincidence (or

critical frequency) for each plate material.

According to Leehey (see Bibliography), the frequency range of
interest for sonar self-noise application is

u? 2
WoE—S— << =

n ' c2 c K Cq

Hydrodynamic coincident effects are not important for this range (see
Tables 2 and 3), and the radiated power per unit area is associated with
both the decay of turbulence and the presence of plate boundaries.

We observe that the near field in the vicinity of the panel
represents the predominant portion of the transduced pressure spectrum.
This spectrum is composed of nonpropagating components caused by hydro-
dynamic coincidence effects. Thus, the wave numbers chiefly in evidence are
those in the immediate vicinity of the hydrodynamic coincidence curve which
corresponds to an excitation field progressing in the flow direction with
velocity Uc and frequency w; see Figure 4. The spectrum of boundary layer
pressure is distributed about k1 = kT = w/Uc with most of the energy at
rather iow values of kS' As we proceed into the far field, the near-field
components decay and only the wave numbers at or below the sonic line,
represented in Figure 4 by a circle k = kg = w/c is present.

We now show that at sufficiently low wave numbers, the added mass (or
near field) of a fluid-loaded plate subject to turbulence excitation may
contribute significantly to the vibroacoustic response of a structure in its

vicinity and, in turn, may also be significantly affected by that response.
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The added mass or fluid inertial loading of a flexurally vibrating

plate represents the imaginary or reactive part of the impedance associated

with the reaction of the fluid to the vibrating plate. The corresponding

. . . . . A
fluid pressure is considered to be effective over a distance d=

ry from the
plate; the distance d =-%-is called the near field. Thus, at sufficiently

small wave numbers (d < A/6 or kd < 1), the near field will exert a pressure
on an adjacent structure lying within the effective bounds of the field.

If the structure is flexible, we will then have a complex coupled vibro-
acoustic system involving the plate, the adjacent structure, and the inter-
vening fluid medium. The interaction would in general couple the near- and
far-field (or radiation) pressures on both plate and adjacent structure and
would include the phenomena of reflections, scattering, etc. We explain
this by recognizing that each flexible body or source works against its own
sounid pressure which represents the reaction of the medium to its motion as
well as against the sound pressure that is generated by the adjacent source
(e.g., the opposing body). Thus, two sound sources (i.e., flexibie bodies)

in close proximity (d 5-%9 react with each other and the sources may

generate considerably more sound energy than if they were further apart.
Sound sources of this type

in close proximity are said to be dependent, and
the power that each source

generates individually cannot simply be added to

yield the actual or total power of the system which is due to the interaction
effects associated with the near field.
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CONCLUSIONS

The chief conclusions drawn from this investigation are:

1. The added mass and corresponding natural frequency of a fluid-
loaded rectangular plate are more significant for the uncoupled modes and
are easily computed using the results given in Table 1. For a first
approximation, only the results for uncoupled modes need to be considered
in vibroacoustic computations.

2. The added mass results for the coupled modes can be computed
(using the results in Table 1) and added to the results for the uncoupled
modes to refine the accuracy of the computation for the natural frequency or
to determine the effect of these modes on the natural frequency and vibro-
acoustic response.

3. Separate results for the added mass and natural frequencies of
cnly the uncoupled modes can be computed (using the results in Table 1) to
determine the absolute numerical contribution of these modes to the vibro-
acoustic response or to identify a corresponding response.

4. The methods of analysis used in Appendixes A-E yicld the same
added mass and natural frequency results for uncoupled modes and are
applicable, in their essence, to both high and low wave numbers and for low
and high frequencies (see the remarks column of Table 1 relative to
Appendix B; see also Appendix E).

5. The Feit-Junger method of analysis used in Appendix A can be ex-
tended by the methods of Leibowitz presented in Appendix C to yield the same
added mass and natural frequency results for the coupled modes as obtained
by Davies (Appendix B).

6. The results obtained in Appendixes A-E for the added mass and
natural frequency of a fluid-loaded, simply supported plate can be extended
to yield corresponding results for a fluid-loaded clamped-clamped plate by
using the Leibowitz-Wallace methods given in Reference 3. The results ob-
tained by Greenspcn and Leibowitz in Appendixes F and G can be used
directly to compute the added mass and natural frequency of either a simply
supported or clamped-clamped plate; the results for Appendix G are
particularly applicable to the low frequency response. The Greenspon-
Leibowitz results are considered to be less accurate than the former
results.
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7. The total mass and corresponding natural frequency for a plate
radiating into free (half) space as well as into a closed rectangular
space can be computed using the results presented in Table 1 and the results
obtained from Appendix A of Reference 1 given in the Discussion.

8. The computed results for both the aluminum and steel plates show
that the contribution of the higher modes to the total vibratory response
is not negligible e.g., for the aluminum plate, the magnitudes of the root
mean square displacement for the (1,4) and (2,4) modes are of the same
order as that for the (1,3) and (2,3) modes for a given value of con-
vection velocity and damping. Thus, determination of the total vibratory
displacement requires that the computations include the contributions of the
several modes of vibration deemed to be significant.

9. Turbulence-induced plate vibration may be of significant magni-
tude for small damping and/or sufficiently large mean square pressure
fluctuations; the magnitude is enhanced, but not radically, at sufficiently
large values of q = k/ks. Hence in computation it appears practical to use
a single representative value for q for the range of turbulence frequencies
distributed about w = Uc kT = kc corresponding to 0 < q = k/kS <1.0. A
practical alternative would be to select the average of the mean square

displacement responses computed for small and large values of q.
RECOMMENDATIONS

To simplify the computational procedure (and the computer program)
and to achieve reasonably accurate vibroacoustic results for a vibrating
plate fluid loaded on one side, the following recommendations are made.
Note, however, that the user who wishes to refine the accuracy of compu-
tations, determine the coupled mode contribution, identify a coupled mode
response, or treat a closed rectangular cavity can incorporate the
additional relevant results presented here into the computer program.

1. It is recommended, as a first approximation, that the equations
for the added mass and corresponding natural frequency of only the
uncoupled or self (dominant) modes of a fluid-loaded, simply supported
rectangular plate be used in making vibroacoustic computations. This in-
cludes the uncoupled mode equation common to all of the results obtained in

Appendixes A-E; see Appendix H for the corresponding computer program.
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2. It is recommended that vibroacoustic computations for fluid-
loaded, clamped-clamped rectangular plates be made (for uncoupled modes
oniy) by extending the equation for a fluid-loaded, simply supported
rectangular plate to include this case, in accordance with the Leibowitz-
Wallace methods of Reference 3; see Appendix H for the corresponding com-
puter program.
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NOTATION

m, n, p, q

m
mn

m

mnpq

p(x, vy, z > 0)
p(x, y, z =0)
Py Yy 2)

Tr

mn

T
mnpq

APPENDIX A
THE FEIT-JUNGER METHOD

Amplitude of 5
Velocity of sound in fluid medium
Compressicnal wave velocity of the plate equal to

E 1/2
)
[ps(- V') c 2 pshs 3

Flexural rigidity of plate equal to P - _Fbh >
12 12(1-v7)

Young's modulus

Equal to 2.718; base for natural or Naperian system of
logarithms

Driving force applied at coordinates x, y, z = 0

Generalized force for the mn mode

Plate thickness

Defined by Equation (A17b)

Equal to ¥-1
Acoustic wave number equal to w/c

Modal wave numbers defined by Equation (A3)
Surface wave number equal to (km2 + knz)l/2
Half length and half width of plate, respectively

Total plate structural mass

Mode numbers

Added modal mass per unit area

Added mass of coupled modes mnpq per unit area

Pressure in fluid
Pressure on surface of plate

Double inverse Fourier transform in Yx and Y

Radiation modal damping

Mutual specific acoustic resistance for coupled modes mnpq
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T aamna PR B ey A K~ ohichon s

rs Structural modal resistance
W, W Displacement amplitude of vibration of a plate for the mn
mn’ pq p . .
and pq modes of vibration, respectively
wmn(x,y) Modal displacement at surface of plate
w(x,y, z=0) Fluid particle displacement at surface of plate equal to §
plate displacement '
G(Yx, Y) Transform of displacement w(x, y, z = 0); equal to a
y series of modal transforms .
wpq(Yx, Yy) Modal transform of displacement at the surface of plate i
X, ¥, Z Rectangular coordinates; x and y are in the plane of the
plate and z is normal to the plate .
2 2 2
V2 Equal to 3 5t 9 5+ 2 >
9x ay 9z
) 1, Yj = ki
6(k.-v. Delta function; |6(k. - v.)d, =
(1Yﬁ elta mc1m.f(1 H)Yj
Yx’ Yy Wave numbers which are the coordinates in Fourier

transform space
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€ A small quantity
n Structural loss factor equal to r e/gz p_h

s s/ mn's
v Poisson's ratio
o Mass density of fluid medium

Py Added ‘aass density of fluid per unit volume equal to mmn/h
Py Sum of mass densities of plate and fluid equal to ps+pa -
pq Mass density of the plate
w Natural circular frequency of vibration
w Coincidence frequency equal to c ———-c

c P

\ 12

Wons &mn In vacuo and submerged natural circular frequency,

respectively, for the mn mode of vibration i.e., resonance
frequency for the <n vacuo and submerged plate,

respectively
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3 DERIVATION

From Reference 4, the even modes of a simply supported rectangular
*
“ plate vibrating in vacuo have a configuration described by

3 wmn(x,y) =W cos k X cos kny, Ix]< L, lyl< Ly
i (Al)
: =0 Ix|2 L, ly|2 Ly

with boundary conditions

"] e,
Fad UL ST GTY

3; cos kmLx = CcOos knLy =0 ?
B sink L_ = (-)" A2
g mx (A2)
: _ eqn
?, sin knLy = (-1)
; The boundary conditions restrict the wave numbers km’ kn’ or ks to the
: values
m
k, Lx=(2m+1)—2— ;mn =0, 1, 2+
ny n (A3)
1/2 2 241/2
k= (x 2, X 2 - T [2m+1\" | [2n+] ] 20, 1. 2eee
s m “TIT L) 3 M=y 55

2 2 _ 2
Also ks > k" for W < w, = ¢ /(h/‘/lz)cp (see Reference 4) so that each wave

is characterized by one pair of wave numbers kw and kn’ i.e., the normal modes

. of a plate vibrating in vacuo are described in terms of a discrete wave

number spectrum. The modal configurations are defined to be orthogonal to

; each other so that each mode can be excited independently by a suitable

i distribution of the load.

2 For the submerged plate (exposed to water on one side), however, each
] of the originally normal (km, kn) modes generates an acoustic pressure in

1 the plane of the plate (which can be represented as an inverse Fourier

et s R < -

*
This configuration is of practical importance because it matches the

modes of vibration of a simply supported, rectangular plate driven at the
center.
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transform) whose wave number spectrum is continuous and thereby encompasses
the discrete wave numbers of the other originally (i.e., inm vacuo) normal
modes. The resulting pressure distribution due to a single mode is not
orthogonal to the other modes. This causes the modal configurations to
couple, and thereby to lose their normal mode character. Thus if we
attempt to formulate the problem in terms of im vacuo normal nodes, we shall
find that these modes become coupled; the subsequent discussion will clarify
these features. The modes also lose their standing wave character in the
range ksz > k2 because the plate boundaries are energy sinks.

For a distributed load, the forced equation of motion for the (m,n)th
mode of an undamped thin rectangular plate extending from -Lx to Lx and —Ly

to L is4_6
Yy

2 2
LLoch [“’mn ~w' W = F (A4)

LD ) O LA L VR AT i vk,xlm-m»_va':vwmxm-:.;:mm::;;:m&;&m;mlvw.msumzu:a;zggiv.nﬁ\mm,uv

Here, LxLypsh = Mp/4 where Mp is the mass of the plate,

he 1/2 5
w = —£ 43 2, k 2) =:<BQE) [km2 + kn“] is the in vacuo natural fre-
S *

quency of this particular mode, an is the generalized force associated
with a concentrated driving force applied at x=0, y=0, and the surface

pressure p(x,y,0) is represented by

L L
X y
an = F(0,0) - f f p(x,y,0) cos km X €OS knydxdy (A5)
-L -L
X y

To obtain an explicit expression for p(x,y,0) as a double integral, the
surface pressure, which is spatially aperiodic in x and y, is written as a

double inverse transform in Yx and Yy'

4
O T S P T Do

*
With inclusion of a structural loss factor

hjc_| n
w =.._7P [k 2 + k 2] <} - —§) (see Reference 4).
mn m n 2

Y12

44




T

ST

- - [-i(yx X + Yyy)]
Py, Yys z) =I p(x,y,z) e dx dy (A6)
B [iGy, x + v, Y)]
1
p(x. y; 2) = Ez_n)—z-.[ J Plygayys 2) e * v dyy dy, (A7)

Now the three-dimensional Helmholtz wave equation is

2 2 2
I NI B p(x,y;2) = [V2 + kK1 p(x,y;2) = 0 (A8)

2 2 2

9x oy 9z

*
The double transform of the foregoing equation is

2
2 2 2 3" \>
(k Y-, +5?)p(vx, Y, 2) =0 (A9)

Assuming a solution of the form p = Aelaz, the solution of Equation (A9) is

~ s 2 2 4 241/2
Bly,ov,2) = et FR R (A10)
y

where the boundary condition 9p/dz = pwzw at z=0 yields the value (see

Chapter IV of Reference 4)

2

* P
The Fourier transform of the term — p(x,y;z) is obtained by inte-
9X

grating by parts and setting p and its derivative equal to zero at the
© -iY_ x
limits x=+ %, This yields J. 82p/8x2 e X dx = - sz p(Yx,Y;Z)- Also

-00

because 82/8y2, 82/322, and k? are independent of x, they can be taken out-
side the integral sign so that (82/8)'2 + 32/8x2 + kz)Jgo p(x,y;z)e-lfx X dx

~

(82/3y2 + 82/822 + k2) p(Yx,y;z). The procedure is now repeated for

2 ~
Jif p(Yx,y;z) to obtain Equation (A9).
oy
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-ipw w(Yx, Yy)
1/2

A = (A11)

2.2, 2
k -Yx -Yy )
Substituting Equation (A1l) in Equation (A10) and the result in

Equation (A7), then letting z=0, and considering even modes only, we get

p(x,y,0)

<0 o0 ~
. 2.2 w(Y ,Y) cos Yxcos Y
-ipck J’ J' x’y X yy dYx de (A12)

L N S I X
Ve Yy )

where W(Y P ) is the series of modal transforms
w(Y_,Y = “ , w Y ,Y Al3
( X }’) o P]( X }’) ( )

Substituting Equation (A13) in Equation (A12) and the result in
Equation (AS5), we get

L L ©
X y
. ipczkz 2 ' wpq(Yx,Yy)cos Yxx cos Y ydeXdYy
mn (0,0) + -2
4m LSS S A 2y 2.y 2,172
X y ( Y. -Yy )
(A14)
* cos km X cos kny dxdy
The double Fourier transform of Equation (Al) yields
L L 3
T . X y
W =W j‘ J cos Yxx cos k_x cos Yyy cos k y dx dy
-L -L
X y
>' (A1S5)
4 ; _1yIn
_ Wmn kmkn (-1) cos YxLx cos YyLy
2 2 2 2
(km —Yx) (kn -Yy)
/
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Substituting the time integral of the first of Equations (A1l5) in
Equation (A14), we get

PRy ey 3 AT

. tw (Y Y)wmn(Y Y )
F = F(0,0) + 222X P Pq_ X,y X Y gy dy (A16)
mn ? - W 2 1/2 Xy

mn pq - - Yy )

AL EROR At B 2 N By e

Using the time integral of the second of Equations (A15) for both ;mn and
. W we get
bq’ g

14pckkk -1nH™n T
) F_ = F(0,0) +: PIPIES k k_(-P*9
mn 7% P 4 papgq

(A17)
2 2
cos YxLx cos YyLy ddeYy

1/2
2,22 2. 200 2.2 2 2 22
O A A I R A TR S IO A TR My

The exact solution of Equation (Al17) requires a numerical integration of §
the branch cut integral. Reference 4 avoids the determination of the exact

solution by evaluating the integral for the high wave numbers (short wave-

length) limit only. This simplifies the analysis, and the final expression

is considered to hold for a finite rectangular plate over a particular wave

number and frequency range.

Write

F_ = F(0,0) + iw I W Al7
m = P00 10 i g Mg (A172)
where we define
4puk k (- 1™ .
I (-nP* Koy (A17b)
mnpq 72

(equation continued on page 48)
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(Equation continued frem page 47)

cos2 Y L cos2 YyL dY dY

I e TR B
= (rmnpq - )LxL

Thus the complex quantity Imnpq is the product of LxLy and the sum of the
mutual specific acoustic resistance T and the reactance - iwm , also

mnpq
referred to as modal coupling coefficients, where

Then

F_ = F(0,0) + iw Z;LL (r - iw )w
mn X'y \'mnpq mepq) pq

Pq

F(0,0) + jwL_L (r -iwm ) W+ _S_ il L (r - iwm )w
X'y \'mn " mn/ "mn x'y \ mnpq mnpq) pq
Pa#mn

F(0,0) + L_L (wzm + iwr )w + 2 (w"'m + iwr )W
Xy mn mn / “mn mnpq mnpq ) "pq

pg#mn

For the simplified analysis, we write the Lagrange equation for the
forced motion of a mode, replacing Equations (A4) and (AS) by (note that

R .- -i
harmonic time dependence is in the form e wt)

LLphw n
LLph[w2 —wz]w _iw(xys m S)W
xXy's mn mn w mn

(A18)
= F(0,0)+L_L (wzm + iur )w +2 LL (wzm +iwr YW _ =F
’ Xy mn mn/ mn Xy mnpq mnpq / pq mn
pa#mn
48
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where the left member now includes a term for the structural resistance
T = minpshnslw expressed in terms of a structural loss factor n and the
radiation loading portion of the generalized forces are written as iwo
terms. The first of these terms represents the uncoupled (added mass and
radiation) damping, i.e., the self-impedance due to radiation loading
whereas the second of these terms represents the coupled added mass and
radiation damping i.e., the mutual impedance due to radiation loading. If
included in the computation, the coupled terms must be evaluated numerically.

Transferring the radiation-ioading portion of the generalized forces
to the left member of Equation (Al8), the Lagrange equation becomes

2
. p hw n
[—w“ (ph+m )-iw(——————s mn S+r )+ wzph] ¥
3 mn mn mn's mn

W

2 . ) F
- wm + iwr W _ =
Z ( rnpq mpq / 'pq L L

Xy
pq#mn

(A19)

which is a doubly infinite set of equations for the unknowns W;q coupled by
the terms m and T . Thus I
mn mn

Pq mnpq

pq is a coupling coefficient linking an
(m,n) mode to a (p,q) mode.

For ka, kLy > 3 which for w << w.s is equivalent to kmLx’ knL >> 1
(i.e., the criteria for large plates), see Equation (A3), the coupling terms
are much smaller than the self-impedance components so that they can be

ignored in making an approximate evaluation of the far field.

Feit et al. now proceed to solve the integral Equation (Al4) for

the case kmLx and knLy approaching infinity in order to gain some insight
*

into the above approximation. In this case the orthogonality of the

cosines in Equation (Al4) yields

*
However, even without going to the limit of infinite kmLx’ K L , the pq

summation is small when kmi.x,knLy is large; see Reference 7.
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L L
Y ¢ X
- . . _ a2 .
lim j- J. cos Yix cos kmx cos Y&y cos Lny dxdy = 4w 6(km-Yx)6(kn-Y&)
kmLx + oo - -Lx
’ : (A20)
kL >
ny
Using these 6 functions in Equation (Al4), we find
W .,y )6(k -Y )G(k -Y )dY dY (A21)
F = F(0,0) + ipc’k? 2, II Pa_x'y
2 1/2
) /
or
. 2.2 E
ipc’k wpq(km kn)
F . = F(0,0) + Pq (A22)
(kzﬂkmz_knz)l/z

sing the second of Equations (Al5), Equation (A22) becomes: (In
Equation (A15), let msp, n*q, x*m, y’n.)

idpc? 2 Wk k (-1)P*9 cos k L_ cos k L
= 'papa m-x n'y
F = F(0,0) + (A23)

2, 1/2,, 2. 2, 2
&~ ) (ke =kpy ) (kg =k )

The second term in the right member vanishes when k #km=Y
kq#xn=Yy (see Appendix B). For kp=km=Yx, kq=kn=Yy, the denominator vanishes
but the second term is finive because the boundary conditions, Equation (A3),

require that the numerator also vanish. Hence we evaluate the indeterminate
quantity

1im cos k L cos k L
K -k =+ 0 m X n
p m
2 2 2 2
kg > 0Lk ULKq *a )
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For lim cos kmLt ” .
k-k >0 — """ 1Jetk =k +¢, k "=k~ + 2¢k
p m 2. 2 p n p m m
| S
p m
Then
cos kmL ces (k —e)Lx
lim — 1Y ~lim :
i k -k »0 22 e+0 !
pm kp Rm Zekm
cos kmLx cos ELx + sin kax sin sLx (A24)

2ck
m

(-1)peL_ i (-l)pLx

S
~

2¢ek 2k
m m

Similarly,

cos k L (-1
1im ny Y (AZS)
k -k +0 xZx?2 2k

q N g n

o

Substituting Equations (A24) and (A25) in Equation (A23), setting
2
(-1)~p+2q = 1, letting qu > wmn’ and dropping }B since the coupling terms
Pq
vanish in the large kmLx’ knLy limit, we obtain

ipcZk2 W LL
mn Xy

= F(0,0) + (A26)

w2k 2. 23172
m n

Hence in the large k L_, k L 1limit
mx’> ny
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2
wpl l.y wmn
o = F(0,0) +
2
(km-+k Shb } 2 2 2
k“+x%) >k (A27)
m n
- F(0,0) + w’LL m_ K W<
X'y mn mn c
wvhere (see Equation (Al8))
o o
m o= = -]‘z— (A27a)
2, 1/2 1/2
&2k FaHYE o 2B s

is the added mass per unit area which is shown in Reference 4 to correspond
to an infinite train of straight-crested parallel waves or of straight-
crested orthogonal waves. Feit and Junger assume that this added mass will
hold for a finite rectangular plate, i.e., the added mass of a finite plate
whose dynamic configuration embodies many nodal lines is effectively that
of an infinite train of standing waves.

For the low frequency range where few modes contribute to the far
field, a deterministic approach can be used. The resonance frequency for
the submerged plate &mn is then determined as follows:

Py = = < s kg >k (A28)
2 h 12, ®
(kg -k)
Therefore
P
De=ps+pa=ps+~———————1/2 ,ks>k (A29)
(kg -k)
p p m
o= 1w - 1. (A30)
Ps ( 1/2 Py
pS
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Since LIS ‘,_1_ (see notation) and E’mn occurs at the frequency computed
ph
)

by the addition of the added mass to the mass of the plate, i.e.,
o o [_1  then
mn

psh"bmmn

=1+ (A31)

or

T T S I AT A

nn (A32)

©
=
b s e

]
[
~
N
e 33

w. - (A33)

; kg 25k%  (A34)

2. 2.1/2 mn o k h
Ds(km +kn }7""h

b
:
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NOTATION

Imq(kl)’lnr(kS)

Imm(kl)

m,n, q, T

APPENDIX B
THE DAVIES METHOD

Area of plate equal to 2123

Coefficient of Vin defined by Equations (B46) and (B47)
Velocity of soundé in fluid medium

Flexural rigidity

Equal to 2.718; base for natural or Naperian system of
logarithms

Functions defined by Equations (B23) and (B26),
respectively

Function defined by Equation (B24)

Equal to y-1

Wave number equal to |g|=k12+k 2

3
Wave number vector with components {kl’k3}

Acoustic wave number equal to u)/c0
Component of k lying along Xy axis
Component of k lying along Xq axis
Wave number equal to mn/&?,1

Wave number equal to mr/R,3

2

Surface wave number cgual to km2+kn

Length and width of plate, respectively

Total mass per unit area represented by Equation (B49)
Mass per unit area of panel

Added mass or fluid loading per unit area

Mode numbers
Acoustic pressure generated by motion of panel

Acoustic modal pressure defined by Equation (BS)

Pressure field driving panel

Driving modal pressure defined by Equation (B7)
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X1s XpsX3=XXy

y{x,t)

Z(k,w)

sgn w

*

B

6(ki-kj)

S, .
ij

mn

¥ (x)

mn -

Coupling coefficient connecting the m,n mode with the
q,r mode

Shape function
Modal radiction coupling term

Modal mass loading coupling term
Time
Panel normal velocity displacement

Modal velocity amplitude

Rectangular coordinates; x2 is normal to the panel and

the origin is at one corner of the panel; x = {xl’XS}
Panel normal displacement

Radiation impedance

Equal to -1 for w < 0, + ] for w > 0

Denotes complex conjugate

Coefficient accounting for mechanical damping of panel
(s4y 2ty oYy

Equal to D{ — + + — | for isotropic plate
2, 2 4
X ax oy oy

Delta function: ff §(k.-k.)dk. 1 for k.=k.
A RO | i’
-0

0 for ki#kj
Kronecker delta equal to 1 for i=j, equal to 0 otherwise

Modal structural loss factor
Mass density of fluid medium
Normalized characteristic functions

Natural circular frequency of vibration
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DESCRIPTION

Reference 7 treats a simply supported, thin, rectangular plate in-
serted in an infinite rigid baffle and loaded with a dense fluid on one
side. The normal vibration velocity field of the plate is expanded in a
series of in vacuo normal modes.* The effect of structure-iluid interaction
leads to the coupling of im vacuo modes represented by an infinite set of
simultaneous linear equations to be solved for the infinite number of
unknown modal response amplitudes. Fluid loading terms or coefficients in
these equations are defined by integrals which are evaluated approximately
for various regimes of frequency. Coupled and uncoupled plate modes are
included. The imaginary part of the coefficiernts associated with these
modes leads to a virtual mass which is added to the plate mass. This

causes a decrease in the modal resonance frequencies.

DERIVATION

Assume that neither the panel vibration nor the acoustic field
affects the applied external force acting on the thin panel (Figure 3).
The equation of motion representing the normal displacement of the panel

driven by a pressure field is then

4 dy 82y
DVy +m B = +m_ —= = p(x,t) - P(x,x, = 0,t) (B1)
Py P 342 ) i

*As discussed in Appendix A, the wave number spectrum of the structure
is discrete and that of the acoustic field is continuous. Hence for the sub-
merged plate, in vacuo normal modes do not exist. However, the expansion
of the velocity response of the structure in terms of its in vacuo modes is
still valid. For convenience, we refer to these functions as modes and also
refer to the resonance frequencies of these modes. Thus, we do not refer
to a frequency associated with some natural mode of vibration but rather to
a frequency corresponding to a maximum value of the amplitude response of a
mode. The coupling together of the <n vacuo modes by the structure-field
interaction is a significant aspect of this problem. The effective
coupling depends on both wave number matching and resonance frequency
proximity and, therefore, on the relative magnitudes of the widths of the
resonance peaks and the frequency spacing of the resonances.
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The modal equation fer the frequency Fourier transform of panel velocity

is then
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| 4 .2 i . ]
: i [I)k'm - ‘p - iw .pn-n sgn m]v-n(u) = -iwp  + i (B2)
3 i
4 %
: obtained by use of the following relationships
3 o
3 v(x,w) = J v(::,t)e-wt dt (B3)
. = D @ @ (80)
3 m,n=1
4 where
2
. g -?.n(:_:) = VKP sin k x, sin k x. (BS)
3 is a normal mode of a simply supported panel. Here k‘ =_;_w’ kn = -g—ﬁ,
k. 1 3
2 _ 2_ .2 2
; Ap = 21 23, and k-n = k- + kn . Also
4 8 = ns|m| =N ©sgnw (B6)
and (see Chapter V of Reference 8)
pm(‘l’) = I P({:m) ?m(f) d§ (B7) -
4 A
3 P .
-3 = 3) o
Ppn (@) J' P(x,0,w) ¥ (x) éx (B8)
A
P
4
3 where dx = dx,dx_
i - 173
a The boundary condition in the plane of the plate relating the
: acoustic pressure and panel velocity v(x,t) = dy/dt is
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X, = 0
so that
P (x,x.,,w)
_T___ = i(ﬂp V(x,w) (810)
X, ° -
x,=0

Using Equation (Bl0) together with the wave equaticn for P(J_t,xz ,W)
in an acoustic medium, the wave number-frequency transform relating the

acoustic pressure to the panel velocity (see Equation (D10}, Appendix D) is

P(k,x,,0) = Z(k,w)v(k,m)enzl/koz-kz (B11)
- - - ¥
where the radiation impedance Z(k,w) is given by
k2 -1/2
Z(k,u) = 8% \I- — {B12)
2
k
o_
©
Here k = [k| and k_ = —.
- ° ¢,

After some rearrangement, we obtain from the above definitions

1 e r .
PLW= — E Ver @ J- J' 2(k.0) S, () S (K)dk (B13)
(2m) q,r=1 -

= E Rmnqr () Vor (w) (B14)

q,r=1

where dk = dkldk2 and Smn(]_:) is a shape function defined by
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S k) = f ¥ () e - Sdx (815)
A
P
and Rmmqr the coupling coefficient connecting the (m,n) mode and the (q,T)
mode is defined by
- -
R (w) ' Z(k,0) S S (k) dk (B16
w) = ,0
mnqr (2“)2 U nn(E) qr(E) - )

If q > m and T + n, then the modal coupling coefficient becomes the modal
radiation coefficient. The modal coupling coefficients connect the vi-
bration of one plate mode with that of other plate modes because of plate-
fluid interaction. The modal radiation coefficients, which can be obtained
as special cases of the modal coupling coefficients, are a measure of how
efficiently a particular mode shape resonates when no other modes are
excited. The real parts of the coefficients are associated with a
radiation damping effect on the plate response. The imaginary pa *;: lead to
a virtual mass to be added to the structural mass of the plate, thzreby
diminishing the modal resonance frequencies. The coupling coeffici-nts can
therefere be written

R =S + iT (B17)
mqr = mnqr mngqr

and the equations of motion can be written

4 2 .2 . .
[kan -w mp - iw mp n. sgn w] vmn(w) -1 = -1wpmn(m) (B18)

wésd R v
q,r mnqr qr

Approximate values of Tﬁnqr =- “mhnqr are now obtained for (1) the
entire frequency range, (2) the low frequency range, and (3) thke high fre-
quency range. Moreover, for these frequencies, values of Tmmqr are ob-
tained for various wave number domains, i.e., for edge and corner modes.
Finally, we observe that the acoustically slow edge modes are the major

contributors to the virtual mass (see Figure 4).
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ENTIRE FREQUENCY RANGE

The shape functions used in Equation (B16) are:

' - =dx = (B19)

ke 2 k [(-1)" I ren®e ¥4
s =1 ¥ e -
f m = 2,222
A, VA Gy kD ek %)

Hence the integrand of Equation (B16) includes terms of the form

2[1-(-1)m cos k,2.] for m,q
-q+m q 1k L m 1k 2 11
1+ (-1 --D% 1"1-7-1) e both odd or even: (B20)

| 0 otherwise
(An analogous equation holds for n and r.) Each mode is thus coupled to at

most only one-quarter of all the other modes.

Thc coupling coefficients
are then written

64p c k k k k k

R =S + iT oomnqro
mnqr mnqr mmqr
(2ﬂ) A
p
{B21)
[ m n
}}' Fl-(-l) cos klll][l-(—l) cos ksls] dk1 dk
2., 2 2.2 2.2 2.2 2_ 1/2
RS TR L TR TR MO TORS

We consider only the imaginary part of the integral which is the mass

loading coupling term Tﬁnqr This part of the integration is performed

over all values |k| >k, i.e.,

modes. Inspection of the integrand indicates that the largest coefficients

are those having either m=q or n=r, or both.

2, 1/2 , o 2, 2. 2y 1/2
k_*-k ) 1k, +k Sk ).

[}

the region containing acoustically slow

In Eguation (B21} we let
The region of integration for

Equat1on (BZI) is now divided into three regions covering acoustically slow

medes, i.e., exterior to the acoustically fast region (see Figure 4).

oo k © k k

[+] (o] [+
” dk = I ak I dk, + j dk j ak +j dk j ak
|k|>k o o k, o

2. 2
ko K, (B22)
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% Edge Yodes
k- It is clear from Figure 4 that the first of the integrals given in c
3 the right member of Equation (B22) are the dominant ones for the two X-type
, edge modes. We first perfor= the kl integration. Let &
s‘ i [1-(-1)" cos klll]
4 ) I (k,) = (B23)
3 Y X :
4 =71 Tq
2 A graph of this function is plotted in Figure 5. The function is such that
1 j Inq(kl)dkl = (G for mfq ,
: o j
and ‘
E ﬁ!.l ‘
e - —~ k )
Z L.G&)= > G(kl k) for m=q (B24) :
: 4k ¢
m %
Hence §,
E ] :;.
2 - 4p ckkk® I (k-)dk :
T - onrol I . art 3 (B25)
e BNAT 1/2 2
'"Ap k, [k L k )] g
4 where I _(k.) as defined by Equation (B23) is 3
3 [1--1)" =os k2,1 £
E I (k) = (B26) 2
nx™3 2.2 2. 2 - 4
E (ks Ky I kg k) p
2 3
] Explicitly, £
K o0 (-1 n n
4 -4 pocoknkr xS [1-(-1)" cos k32.3] dk3 2
3 Toomr = I Y (B27) El
3 L 2 2.2, 20 2 2.2 )
3 ko (ks ky )(k.'-; kr )[}’3 -(ko ke )] Z
I
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We observe that there is no contribution from the signularities at

k3 = kn#kr or k3 = kr#kn for n#r since in that case the term in brackets in

the numerator of Equation (B27) becomes zero and Inr(ks) + 0. Hence the

only singularity of the integrand is the root singularity.

We now treat the terms 1 and (—1)n cos k3£3 separately as Cauchy

2
3 é principal values. We make the approximation ks“—knzzs-knz and ksz-kr2 ::-krz
3 , {since there is little contribution from ksavkn, ks ~—kr we consider

A

kn’kr > ks from which the approximation follows). We write for the first
principal value

T T A
PELRE 3

, ()
K

- N dk,  (B28)

N

J 2. 2 z]z 2 zzuzdkszkzk . 2 2. 2.1/2
ko (ks —kn )(ks -kr )[k3 "(ko -km )] nr ko [ks —(ko "km )]

= £n (B29)

~ 25 ¢ n (830)

3 for k 25 k 2-k 2,2k >> k_+ k_. For coupling between resonant edge modes
n o m n o m

only, that is for modes close together in wave number space,

TLACE,

2 2k 2k
: gn M oen I (B31)

k k
o o

.. ,,
ALY 2
AR

L The integral associated with the (-1)n cos k3£3 term is shown in

Reference 7 to lead to an asymptotic result due to the square root singu-
larity. The magnitude of this result can be ignored in comparison with the
ii dominant term given by Equation (B30). Hence for the edge modes, since

kn2 = kmnz - km2 zkmnz
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4p°co k 21 ka
Tmmnr = > . (B32)
A k k k
P nr o

Finally when n=r so that kn=kr

, Equation (B27) becomes for acoustically slow
modes

o
T _ -4p coknkrkoll m 3 j' G(ks-kn) dk_,
mnmn
A 2 2 1/2
) 4k n kg [k3 —(k -k )]

-pck
~ ___2_0_0. for kmnz > k 2 (B34)

k o
mn

by virtue of the analog of Equation (B24) for Inn(kS)‘
Corner Modes

2 2 .
For corner modes, k0 << km and since

the integral in Equation (B27) becomes

o) k n

I_(k;) dkg n  [1-(-1)" cos k. 2] dk
I nr''3 j 3733 NP3 (B35)
(o)

2, 2 2,2 1/2
(k3 +km o (k3 -kn )(k3 -kr )(k3 )

57— ; (n#r) (B36)
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following a procedure similar to that used in evaluating the integral for
the edge modes. Hence Equation (B27) yields

-4poc k k k2

0o nrol
T = - . § (B37)
mamr Tk Zk 2 ‘mq
P mn nmr

Finally when n=r so that kn=kr’ Equation (B27) becomes for accustically
slow modes

T %k kk e | ™s. J- 8 lkg-k,)dks
p— Kot | = ) ——— (B38)
ey PR A INENY;
P n I m
X
= pc-2fork 2> k? (B39)
o Ok mn 0
mn

Moreover, inspection shows that the mass coupling T is negligibly small
for two acoustically fast modes.

Retaining only the dominant terms, Reference 7 summarizes the values
of T as follows:
mnqr

For (m,n) an X-type edge mode and (q,r) an edge mode.

k k
4dp ¢ k L 2k 4p ¢ mq
= oo o1 %n mn Gm __ 0o kols — s . (B40)
qa A k. k k T k 4
p nr o P mn  qn

For large inertial coupling between modes, it is necessary that two
mode numbers be the same so that the medes vibrate in the same shape in one

direction. This is symbolized by the Kronecker delta functions.
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For (m,n) an X-type edge mode and (q,r) a corner mode.

4poco kmkq
Tmnqr = A Kots x 4 2 - (B41)
P mn - qr

For (m,n) an X-type edge mode and (q,r) an acoustically fast mode.

4poc0 k
T 2a Kk 2. —X-_§ (B42)
. mqr A o1 k k 2 'mq
P no

For (m,n) and (q,r) corner modes.

k k k k
4p°co nr 4poco mq
T =- k £ 5 - k 2 ) (B43)
mnqr 7A o1l X 2k 2 "mq A o3 9 g WT
P mn - mr P k
mn qn
For all modes in K space for which lx|> ko the self-inertia term is
ko
Poo & * Kmn > Ko
T - mn
mnmn

(B44)
0 ? kmn < ko
Equations (B43) and (B44) may be combined to give the following result valid
for all corner modes

k

o 4poco knkr 4poc°
T == pc —06 6§ - k8 ———06 -—— kA&, -
mnqr 00 kmn mq nr ﬂAp o1 2 o M TA 03
mn - mr (B44a)
k_k
mq
nr
2, 2
mn qn
That is, Tmnmn is the same for all acoustically slow modes and Tmnqr is of
the same form for all cases treated, irrespective of the division by
radiation characteristics into edge and corner modes. Equation (B18) is
now written as
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B v -iwz;s \J +w2;T v = -i B4S
mn mn e mnqr qr & mnqr qr “Prnn (B45)
Here
4 .2
an = kan - wZMP - iw mp o Sgnw (B46)
where

M = B47
b (B47)

We observe that the term PeSo ko of Equation (B39) is included in
mn

an and Thnqr is defined solely as in Equations (B40) to (B43). The so-
lution of the set of Equations (B45) is discussed in detail in Reference 7.
It is shown that in Equation (B45), the total effect of the reactive
coupling terms is considerably less than the modal self-inertia term,
Equation (B44). The main reactive effect of the fluid is therefore the
modal self-inertia term which acts to decrease the modal resonance fre-
quencies.

The inertia terms for the low and high frequency limits obtained in
Reference 7 by solving Equation (B45) are now presented.

LOW FREQUENCY LIMIT

At frequencies such that kozl, k023 < 7w, all modes are of corner

mode radiation character. For these frequencies

pc k
M =~n (1 *’uT?x"q ig_) (B48)
P P p “mn
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HIGH FREQUENCY LIMIT

At high frequencies, kozl’ k023 >> 7, the radiation and coupling

characteristics of the modes are not the same for all modes as in the low
frequency case.

The important inertia term is the self-inertia defined by
Equation (B44) so that

(B49)
=m sk <k
mn [+

The high frequency analysis was restricted to frequencies below the
acoustic critical frequency, that is, the resonant modes considered all

have wave speeds on the plate less than the acoustic wave speed.

Hence the
case of resonantly excited acoustically fast modes are not treated.

Since,
however, the acoustic critical frequency for a 1/4 in. steel plate in water

is about 40,000 Hz, the restriction is oi no great practical significance.

For still greater refinements tian the results presented here, the

reader is referred to Reference 7; the refinements, however, do not sig-
nificantly alter the results presented here.
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NOTATION

A
P

c
F(0,0)

APPENDIX C
THE LEIBONITZ METHOD 1

Area of plate

Velocity of sound in fluid medium

Driving force applied at coordinates x=o, y=o (2lso 2=0) i.e.,
origin of coordinate system, used in Appendix A, on plate sur-
face

Generalized force for coupled mnpq modes

Integrzl defined by Equation {C2)
Defined by Equation (R23) of Appendix B

Acoustic wave number equal to &/c
Modal wave numbers defined by Equation (AS)

Surface wave number equal to k-z + knz

¥ave nunber in the direction of the ordinate (defined as in
notation for Appendix B)

Half length and half width of plate, respectively

P

Equal to sz and Zly, respectively

Mode numbers
Added mass per unit area

P N R

Mass of coupled modes mnpq per unit area

Modal mass coupling term

- -

Displacement amplitude of vibration of a plate for the pq
mode

oo

Delta function; J- 8 (Yi-kj)in =

«~00

1, Yizkj
o0, Yi#kj
Kronecker delta equal to 1 for i=j; equal to 0 otherwise

Wave numbers which are the coordinates in Fourier transform
space

Mass density of fluid medium

Natural circular frequency of vibration
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DESCRIPTION

It was indicated in Appendix A that Feit and Junger avoided the
determination of the exact solution of Equation (A17). They obtained an
approximate soiution by evaluating the integral of the equivalent
Equation (Al4) for the high wave nusber limit and @ < ©.- In the preseat
Appendix we attempt to obtain approximate solutioms directly from
Equation (A17) using with some modifications the methods and results of
Davies given in Appendix B. Thus with proper interpretation of the results
as applicable to various modal regions, the work of Appendices A and B can
be interrelated.

BERIVATION

For a singie mwde, the double integral of Equation (Al7) may be
*
rewritten in the following form; note that for a single mode the summation

¥ is dropped and wave numbers kp,kq are considered as known quantities
M
corresponding to any particular set of prescribed mode numbers pq. Thus

Equation (Ci) represents the contribution of a single prescribed pq mode
to F-n. (see footnote to sentence above Equation (C29)).

4pc2k2k-knkpkq P it 4 B a4y,
F_ = F(0,0) + ¥ I (%))
= 2 Pq I 2.2 2 172
w 0 [Yx -k -Yy )]

(1 + cos 2Yx2.x) (1 + cos ZYyly) .

(kmz_sz) (kpz_sz) (knz_yyz) (qu_sz)

*

The problem is first discussed in terms of the results for various modal
regions. Subsequently, it is shown that for the even modes, the general in-
tegral expressions for the virtual mass (or mass reactance) obtained from
Equations (Al17) and (B21) are identical.
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since all terms in the integrand are evea functions in Yx and Yy- For con-
venience let

. J‘I dYx‘"y (1 + cos Z'!xﬂx) 1 + cos ZYy @
0 [sz' (kz_yyz)]llz a.z_yxz) (kpz_yxz) (knz_yyz) (qu_sz)

¥e evzluate I for the following cases:

Case I: nfp, niq

¥e observe that for mfp there is no contribution to the integral from

the singularities at Yx=k -fkp or Y;kpfl:- because in that case the tera in

the numerator of the first bracket of Equation (C2) becomes zcro (see

Eouation (AS)). Evaluation of the resultant indeterminate quantity, using
L'Hospitals rule, yields ¢ null result, i.e.,

1 1 +cos 2Y R 2 sin 2k _2 .
lim 2 2 ° pew el el e e i
Y -k »0\k -k k °-Y k -k )
X m p = m X P ®
kA ' f
2 N
__x sin (2m+1)w 2=0.] 2% )
= k > =Usdsy ;
k 2—1: 2 » :
P =
= 0 for all k
n

A similar result is obzained for all kn for nfq. Thus we conclude that the
singularities at szkn#kp or Yx=kp"km and Yy=kn#kq or Y y=kq#kn make no con-
tribution to the integral. :

Moreover when yx=km#kp, then in the first bracket of Equaticn (C2),
cos 2Yx2'x = ¢OS kazx = cos (2m+1)w =- 1 for all m. Since cos (2m+l)w =-
(-l)m cos mmw, then
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(1 + cos 2 xﬂ’.x) [1-(-1)  cos 21:-2.:]

S

242 2y 2 2,2,v2_2
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= 0 for Yx =k -#kp only (C3)

Similar relatioaships obtain for Yfkpfk-, Yy=knfkq, and Yy=kqfkn- For

Y xfk-, the form of the ieft member of Equation (C3) differs from the form
of I-q(kl) (=I’p(yx) here) given by Equation (B23) of Appendix B and plotted
in Figure 5, only for even values of m by the sige in the nuserator pre-
cecing cos Zyxlx. Thus, by analcgy with the work in Appendix B and from an
inspection of Figure 5, it is apparent that the integrated contribution is
very small over the range oq'xsw.

The foregoing is compatible with the statement made in Appendix B to
the effect that the largest contributors to the integra: occur when either/
or ==p and n=q. Appendixes A and B also indiczte that the dominant contri-
bution occurs for m=p and n=q, i.e., the important inertia term is the self-
inertia term. These cases are discussed next.

Case II: m=p, nfq or n=q, =fp

For ==p, nfq we use the methods of Appendix B. For this case we
*
have, using Equation (B24)

=
{1 + cos ZYx!.x) _ [1-{-1)" cos 2k-2x] w22

= = ’2‘60-k)for
22,0 2,2 2,2,,2,2 4% x =
(kl-YI)(kp-.X’ (Yx-.)(Yx-P) n (04)
Y =k =k
X m p
Equation (C2) then becomes
n2% f1+cos2rs2 dY
1=—3 Yy 4 (cs)
ik 22, 22 2 2. 2.1/2
Y Y Y “-(k*-
I RS SoT R o) FLRSTCS 30)

*
In Equation (B24), let £.=22 and k, -+ Y_; for later usc, we note that
1 7x 1 b
23=22y.
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For the Y-ivpe edge modes
7 J. [1+cos2Y 2] dy
i=—3 I Yy Y (c6) 11
4k 2.2 2.2 2 .2, 2..1/2
k -Y -Y Y -(kT-k
= o [ y)(kq y)][y G-k 1)1

-

:
)

Iy

neglecting as in Appendix B the contribution of acoustically fast modes

occurring in the regiom O < Yy < ko. The integral in Equation (C6) is

similar in form to that of Equation (B27). Using the Cauchy principal

value for the terms 1 and cos ZYyly in Equation (C6), we find as before
that the integrated contribution of the cos 2Y £ terz can be ignored.

Similar results are obtained for n=q, m#p. Hence the results obtained for
edge rodes in Appendix B can be used directly.

Similarly for the cormer modes vhen k> << k_, Equation (C4) is
written as

t-‘ZSl’;x “T1 + cos 2Y 2 de
I= ! Yy ©n
2 2.2 2.2 2. 2,1/2
& ofk -Yy )(l:q -Yy ) [Yy K |

The integral is similar in form to the left member of Equation (B35).
Hence using the Cauchy principal value for the term 1 and cos ZYVP. in

Equation (C7), we find that, as before, the integrated contribution of tie

cos ZY)}.y term can be ignored. Similar results are obtained for n=q, mfp.

Hence the results obtained for cormer modes in Appendix B can be used
. directly.

Using Equations (B40)-(B43) we now find values of I, an’ and m
. for various cases of modal coupling.

Equation (Cl), we have

Substituting Equation (C2) imn

40’k k k k_(-1)™TPH
mmpq
F_ = F(0,0) + W
m

Pq
112

« 1 (C8)

Inspection of the first two members of Equation (C4) indicates that
for Yx=km=kp, kn#kq, the integrand of Equation (Cl1) and of Equation (BZ1)

times -1 are identical if, when using the Cauchy principal values, we

2 A e M Mae Mok s bbb
R et s 07 B9 T R SRR R A FRER2 N
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=
g
>

neglect the cos ZYV.QY and cos k3£3 terms. A similar identity exists for

Yv=kn=kq, k‘fkp. Hence substituting Equation (C2) in Equation (B21), we
get

T
mnpq
z = = Cc9

2
(Zx) Ap

(imag) I =

where we have considered only the imaginary part of the integral in
Equation (B21).

Substitution of Equation (C9) in Equation (C8) yields

k(-1 PH A,
F_ = F(0,0) - N T
an (0,0) . ' Tanpq (C10)

where Tlnpq is given by Equations (B40)-(B43). (Note: Davies symbol q + p
and r *+ q kere; m, p stay the same, and all odd mode numbers used with

respect to Davies origin for the plate represent even modes with respect
to the Feit-Junger origin for the plate; see Appendix D.)

For (m,n) an X-type edge mode and (p,q) an edge mcde.

ckA k22, 2k
F = F(0,0) - ..__P.[-(-l)""q :ﬁc T k" fn —=2§  §_ -(-1)™9,
4 P ngq k Pq mp
(113
mp
fC i — 4 &
‘.rAp Y 5, o, bpa pn
mn pn
lll*q
2 2k -1)™% x x
= F(0,0) + 2Pc K {(-1)"*‘12 "W 5 . YEP . s ] (C12)
1r x k Pa ™ « 23 2pq pn
mn  pn

Hence
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‘ -D™%
m = 22[ ™ fn ka S + mp s ] s
mnpg =« s
£ X mp pn
y¥nkq k ok & 2

X mn pn
For {m.n) an X-type edge mode and (p.q) a corner mode.

ck —1» -+P A
(-1) p

k k
F_ = F(0,0) - [-a0c 1, s K6 C14
- 4 T A y L 4 2 1)
P =n pn
2
20c%K? (-1)‘*szkmkp
= F(0,0) + K 4 (C15)
n
nk 2k 2 P
mn pn
Hence
n =3‘L[(’1)mp *a"p 8 ] (C16)
mnpn wlL £ 2 ™M
x kmnzkpn
For (m.n) an X-type edge mode and (p,q) an acoustically fast mode.
~ck(-1)™9 A -4pck2e kg
F, = F(0,0) P ) €17
4 A X k2 pq mp
P n
2057 (-1)™ L
= F(0,0) + ¥ 6
’ ; pq Omp (C18)
k k
n
Hence
, yDtq k
- {-1) q
mmnmq = 2p [._!_L_ﬁ _? Gmp] (C19)
k_k
y n
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For (m,n) and (p,q) corner modes.

ckA —(-l)n+q4pck2£ k k . 4pCk”’yknkp
F,. = F©,0 - —F X295 5§ -(-Dp™P 5°
4 Aax y 2 M wAkmzkn
"pq Gnq
(C20)
_\*a _1yR*P
22 D™ koK Pk
= F(0,0) + =2 K 5 - W (c21)
T Fq mp Pq nq
2, 2 2, 2
k Kk k
mn mq mn  pn
Hence
(-1)“‘““knkq (-1)"‘*Pkmkp
Mnpq = %‘3 ——— 8, (C22)
2k % 2 Lk & 2
ym mq X mn pn

Equations (C13), (C16), (C19), (C22) are identical to corresponding results

obtained from Appendix B and presented as results in Table 1 as Items 2-5

for the Davies method. Having obtained the results for the added mass of

the coupled modes, i.e., the coupled inertia terms, we now consider the
added mass of the uncoupled modes, i.e., the self-inertia terms.

Case III: m=p, n=q

At m=p, n=q there occurs a dominant contribution to the integral in
Equation (C1) from the singularities at Yx=km=kp and Y&=kn=k . For this
case

(1 + cos 2Yx2x) [1-(-1) cos kalx] e 28

> =1 (Y)=—2X8( k) (C23)
& 2y 2 & 2y 22 g2 xm
m m X m

X
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2Y & 1-¢-1)™ zos 2k £
(1 + cos yy)_,[ (-1)" zos ny]

e e e A —— ek i B v Pt T T2

e 2 ly
=1 = — 2 6(y -k C24
.(k 2y 2)2 o 2+ 2)2 nn(Yy) - " (Yy n) (C24)
n Y n Yy n
Hence Equation (C2) becomes
2 le o G(Yx—km) GCYy-kn) ddeY&
1=__X*XY (C25)
2 2 2 2 2.41/2
k0 [y -Gy O]
ey
xy
= (C26)
2 2 2 ..2.1/2
ak k "k K]
Substituting Equation (C26) in Equation (C1), we get
ocik® 20 W
X'y mn
Fﬁn = F(0,0) + (c27)

2.2,1/2
S
Equation (C27) is identical with Equation (A27).
given by Equations (A28)-(A34) apply here.

Hence the results
We note that since the mass

loading is associated with the imaginary part of the integral for which
2

v+ sz > k? (i.e., acoustically slow modes) then from Equation (A28)
n =P ~P . kmn2 > k2 (C28)
2.,2,1/2 k
(kg k) mn

The approximation value of mo given by Equation (C28) agrees with

the results obtained in Equation (B44) since Tmn 0

=-wm_ =- kem_ . The
mn

mn

result is therefore identical to the corresponding results presented in

Table 1 as Item 1 for the Davies method.
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PROOF OF IDENTITY OF FEIT-JUNGER AND
DAVIES GENERAL INTEGRAL EXPRESSIONS FOR
THE VIRTUAL MASS (FOR EVEN MODES)

POy

*
The double integral of Equation (A17) may be rewritten in the form I

.

30808 T AN A L LA RIS P08 TiAstanT A gt

ey
%

|

73 ! %
iapc’’k k (-1)™" o ([ 1+cos 2,8 1 g
F = F(0,0) + W kk (-l)p qJ-J' ro3
3 . m 2 p,q PqaPq -
T ol 0 | 2y3x2y? b3
E m X P X %
(C29)
k- 1+ cos 2Y & dy_dy
73 Yy xy -

E 2,2 2.2 2.2, 2,1/2

3 k =Y k 7-Y k=Y ~-Y

3 ( ny )( q y 141 x Ty ]

In Appendix A (Feit-Junger), the origin is taken at the center of
the plate whereas in Appendix B (Davies) the origin is taken at a corner
- ) of the plate. As shown in Appendix D and Figure 11 (see Appendix D), the

N s ege? b S - Lot 2
Seutnded il A e BN v

3 modes numbered m = 1, 3-°° odd with respect to Davies origin represent the
even modes with respect to Feit-Junger origin. By the Feit-Junger stipu-

lation, Equation (Al), these are the only modes to be considered; similar

= relations hold for n,p,q. Hence [-1]m+n = [-1]p+q + 1 and
= n
3 1 + cos Zszx . 1-(-1)" cos k121
3 2,2, .22 2.2, .2, 2
3 ki ~Yx )(kp ) Feit-Junger (ky =Ky )(kq %19 1 Davies
7'/ n
3 1+ cos 2Y 2 1-(-1)" cos k, 2
4 Yy > -1 33
z., 2 2., 2 2,2 2, 2
(k, _Yy )(kq -Yy ) Feit-Junger (ky k3 ) (k7k3) Ipavies

*
Here, in contrast to Equation (C1), the contributions of all (p,q) modes
to an are included.
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where the Feit-Junger notation m,n,p,q + m,n,q,r, respectively, and 2%x

3 = ->
2%y » 21, 13, respectively. Also Y&,Yy > kl, k components of k, k ko,

3
pc =+ py ot Thus the imaginary part of Equation (C29) rewritten in Davies

notatlon is: ©

2
(?br the imaginary part, J]. .[ and we let (koz-klz-k3h)1/2 +
0 [k|2k

2.2 2 1/2)
-1 (e ok ok )

4p ¢ k k k m
(Inag) F_ = F(0,0) - 22 © "™ ek H 1-(-1)™ cos klkl-l
Wk ks
7 QT RERIREN )ck K, )J

1 (C30)
1-{-1)" cos k323 dk

2, 2 2,2 2 1/2
(kn -k3 )(kr _k3 ) [kl +k ]

In Davies notation the expression for the virtual mass in
Equation (A18) may be written

) %1 23 2 A.p
(an) = (Imag) “m =72 "2 2 qu w mmnqr =7 Z wqr w Tmnqr
Virtual q,T
mass

part (c3n)
only

where A =L _2%,, =- wm =- kem and where now T includes
P 173 mnqr mnqgr mnqr mnqr

Imnmn = z -um - in Equation (A18)) and q,r includes m,n in the

summation.

Comparing Equation (C31) and (excluding the driving force F(0,0))
Equation (C30), we get

373

«© m - o n
64pocokmknqurko J‘I 1-(-1)" cos k121 1-(-1)" cos k. %
p 2, 2 2, 2 2 2 2. 2
(2m)? A, Ikl2k | (k "k, ) (kg "=k Y[y k) (kKD

mngY

dk
I« 2+ ]1/2 (C32)
1
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In Equation (B21) let (ko2 -k 2 k32)1/ 2 -i(kl2 + k32 -k Hf?

1
We then see that Equation (C32) is identical to the imaginary part of

Equation (B21) which has the same integral limits. Hence for m,n,p,q equal
to odd numbers, representing Feit-Junger; even modes, all solutions of
Equation (B21) for Tﬁnqr obtained by Davies methods, applicable to various

modal regions, are relevant as solutions to the Feit-Junger Equation (Al7).
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APPENDIX D
LEIBOWITZ METHOD II

NOTATION
A Area of plate
c Velocity of sound in fluid medium 1/2
cy Compressional wave velocity of the plate equal to ————E—E—
p (1-v7)
cp Phase velocity s
E Young's modulus
e Equal to 2.718; base for natural or Naperian system of
logarithms
f;ad Radiation force for the mth mode
rad . . s th .
Fm Magnitude of the radiation force of the m mode; equal to
frad/e-imt
m
II’IZ Defined by equations below Equation (D36)
i Equal to J-1
K(k,) Equal to 1/y/k *-k ? in Equation (D38)
km,kn Modal wave numbers equal to mn/,?,1 and nﬂ/ﬂz, respectively
k Wave number equal to ¢k 2+k 2
mn m n
En Projection of Eo on a normal to a plane lying along X,
ko Acoustic wave number equal to w/c
k Wave vector equal to k r
0 oo
. 2 2 2
ks Arbitrary wave number equal to ZH/AP = w/cp, ks = kl + k2
Es Projection of k on a plane
kx ,kx Wave numbers in Xg- and xz-directions, respectively
1

2
kl’kZ’kS Wave numbers along the X)=s X5, x3~directions, respectively

EI’RZ’ES Vector wave numbers in the x,-, X,-, x3-directions, respectively

21,22 Length and width of plate, respectively
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Half length and half width of plate, respectively
Total added (or virtual) mass
Added modal mass per unit area

Mode numbers
Amplitude of accustic pressure p
Acoustic pressure in fluid medium, i.e., in half-space x

Radiation pressure for the mth

30

mode

Sound flux or source strength or volume velocity of jth source

equal to the product of the velocity of the source and the sur-
face area of the source

Distance from origin to a field or observation point

Distance from ith source to the field or observation point;
equal to R—r°°rj which is the projection of R. on R (here

ro.ij is a dot producted equal to the projected distance
difference R-Rj)

Rest position of the plate

Magnitude of wave direction vector, and wave direction vector
respectively; T, is unit vector from origin to field or ob-

servation point

Magnitude and vector for distance from origin to jth source
lying in the plane

Time
Instantaneous modal velocity of a point on the plane

Velocity of plate at its rest position T; equal to plate
velocity at Xg = 0

Distribution of traveling plane waves in an infinite plane, i.e.,
Fourier distribution of the velocity V(r,t) in the region of the
plate

Complex amplitude of V(r,t); modal velocity
Root mean square of |V(r)|; see Equation (D22); equal to ]le

Abscissa with origin at the corner and midpoint of the plate,
respectively

Rectangular coordinates, X) 5%, lie along the length and width of
the plate of the plate, respectively; Xg is normal to the plate
and the origin lies at one corner of the plate
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n Radiation impedance
rn(ks) Modal coupling parameter or directivity
v2 Equal to (32/3x%) + (3%/3y°) + (3%/3z9)
Ap Wavelength of plate equal to 21r/ks = 2ncp/w
AV Poisson's ratio
po Mass density of fluid
pS Mass density of plate
) ?m(f) Normal mode function
. w Natural circular frequency of vibration
* Denotes complex conjugate
H; Denotes magnitude
<>z Denotes average value over T
DERIVATION

Consider a siuply supported plate in an infinite plane baffle

immersed in a fluid. Plane flexural waves form a wave field on this plate.

We treat therefore a two-dimensional problem, in which radiation in the

half-space x

3 > o is of interest. The instantaneous modal velocity of a

point on the plate, whose rest position is r is given by8 (see Figure 6)

VED) = V¥ (@t

(p1)

We expand V(r,t) into a distribution V(k_) of traveling plane waves

. in an infinite plane each of the forn® (e'wt is tacitly implied)

V(@) = V(]-cs)eiis.;

(D2)
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For a plate vibrating with arbitrary wave number ks = 2m/x_ = w/c

and at frequency w, it seems logical to make the following formulation for
the sound pressure in the half-space Xz > 0 (see Figure 6)

p@E.x5) = pel (kg * T * kgxX3) (D3)

We require that the sound pressure represent a solution of the
Helmholtz wave equation9
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A Figure 6 - Plan View and Edge View Normal to K_ of Plate in
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3
4 Notes:
: ) _
H 1. 4 (r) and V(r,t) arc normal to plane; + V is out of plane, - V is into planc
9 2. %), X5, k;, ky, ko lie in the plane, x, in are normal to the planc g
4 5.k, = k] =k 2 -k? §
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AT iy B

p + kozp =0 (®4)

Substituting Equation (D3) in Equation (D4), we get

s * k3 = ko (D5)

We also require that the normal component of the sound velocity cal-

culated from Equation (D3) coincide at the boundary surface x3=0 with the
plate velocity, i.e.,

Px. -; =
- 1 3 ik - r
. V. _ =v(r)=.___(?_) = el % (D6)
x3 =0 1wpo x3 | =0 wpo

From Equations (D6) and (D2) we obtain

wp V() ks ° T
P=—— (D7)
3
p ck V(k_)
- 0o O S (DS)
2_k 2
[+] S
(09)

Substituting for P from Equation (D9) and for k3 from Equation (D5)
into Equation (D3) and restorime the sinusoidal temporal variation yields

the following expression for the sound pressure radiated into the half-
space in front of the plate:

rad
one wave

~ - - 2.2
_ pcVk.) 1(k r+§/k -k " x -wt)
(r,xs,t) .. 00 “s e\s o s 3 (D10)
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From Equation (D2) (with time factor inciuded), the sum or integral
of traveling plane waves in an infinite plane with amplitude distribution
V(Es) provides the velocity V(r,t) in the region of the plate and zero

outcide the plate. The distribution V(ES) must therefore satisfy the
condition (rote dk_ = dk.dk.)
s 173
oo
V@) = | V) etlkg ° T - “’t)dis {11)
- . ]
Obviousiy V(Es) is the Fourier distribution of the function V(r,t) and we
know, therefore, that such a distribution exists and that it can be calcu-

* -
lated from the equation (note dr = dxldxs)

V(K = —l—z j V@, ot ¢ T )y (012)
(27) A

The corresponding total sound pressure obtained from the super-

position of all traveling waves of the form represented by Equation (D10)
is

2
3 "s*"")dis (p13)

We are interested in the pressure on the surface of the plane.
Hence setting x3=0

prad(f,x3=o,t) =pc

oo (D14)

* -
No contribution to V(ks) is rendered by the integral for the region ex-
ternal to the plate area.
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Now substituting Equations (D!) in Equation (D12), we get

= 1 - -ik_ T .-
Vik ) = J' VY (r}e s dr (D15)
s (21‘,)2 ) mm
¢ 2 - -
= -2 ‘[ v @e ¥ " T gr (D16)
2 m
(2m)

Ke now prove that the integral is related to a quantity [I‘m* (175)]/2
where I‘.(i-s) is called the modal coupling parameter or directivity. The
functional forms and average values of Il'm(Fs)Iz described in some detail

in Reference 8 are useful in making approximate computations.
PROOF

The pressure radiated into the half-space x

3 > 0 from an array of
sources on an infinite rigid plane isg (see Figure 7)

1

iwp Q. .
PR) = —=° Z? ko (017)
3

Gl

Projecting Rj on R, we obtain RjzR—i'o'f. where ;o.i:" the projected dis-
tance difference, is @ dot product (see Figure 8).

Since I/Rj =
1 1 ( 1T, )
—_————— ==11 + ——= + <<} = 1/R then
rolr- R R
rl1 - j
R
iwp - - =
=y _ o ~ik R ik er.
p(R,ro) =5 ¢ © ; Qj e 0 j (B18)

where fco = koi'o is a wave vector = (wave number ko) » (wave direction fo).
If Es = projection of Eo on the plane and En = projeztion of k_ on the
normal to the plane, i.e., k_ lies along x_, then X °T. = k_*T.+k_*T,=K_-°T.
- n 3 oj n'j s j s
since kn.rj = 0 (see Figure 6). Hence Equation (D18) becomes

iwp

-, __ "o -ik R ik _-r.
p(R,ro) =5 ¢ © J-ZQj e’'s j (D19)
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Figure 8 - Coordinate System Showing Vector Relationships

Notes:

1. STRIT ;j lic in planc of plate; x_. is normal to plane,

3

;o and io are unit and acoustic spacevectors, respectively,

R Co .\
bt Eoe BN P R 100 0 LR L IR b0 ok s il }

;o’ io and the distances (not vectors) R and Rj from the

&

origin and source to the fluid point, respectively, are at
arbitrary angles to the planc depending upon the position
of the field point in space.

2.R, =R (-7, " i-j/lu eeee)
=TR-T, ;j for R, R, >> Ifj[ or for l?jl sin ¢ small,

J
., 2pplicable to plate area A; which encloses all sources, for
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We now proceed to the calculation of the radiation from a plane surface

with a continuous velocity distribution. Consider each surface element dr

with a velocity V() as a point source of sound with sound flux or
differential source strength or differential volume velocity dQ(r) equal

to the differential area (dr) times the velocity V(r). Hence replacing

the summation by the integraticn, we have
o = - -, ik D) .-
PRy =5 e © V() e Y's “dr (D20)

¢ s dr{ (D21)

where the quantity in brackets is called the directivity or coupling
parameter I’(]—c's). Thus

Ik,) = -2 j V\E ) otk )z (D22)
A o
In Equatlons (D21) and (1)22), 2 < IV(r)l = < lvml2 \},mz > = IVm]2 <
‘i’ >- IV I because8 <‘P 2, =% j l‘i’ (r)]dr = 1. Hence substituting
A

Equation (D1) in Equation (D22) with V= Ile

w8 Tn f y ) 16y Tz (023)
2 IV I m
m' A

fn &) = Y J'\y (1) ik Tz (D24)
2 |Vm| J m

Equation (D24) represents the completion of our proof.
Substituting Equation (D24) in Equation (D16), we get
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Vik,) = 3 (p25)

T em zvm*

Now substituting Equation (D25) in Equation (D14), we get

(D26)
The radiation force for the mth mode 5.58 (noting that p:;ad = P:;ad e—wt) °
ad _ crad -iwt _ |_ rad =va=] -iwt _ rad =5 3=
frm = Fm e = me Wm(r)dr e = - j-pm l,bm(r)dr (D27)
Substituting Equation (D26) in Equation (D27),
pev |V ] ¢ T *dk e
I_.r:;ld - 02 m m I m s I ‘l‘m(r)elks Tiz (D28)
n 8TV _* 2
m ~00 k A
1 -—=_ °
X 2
o
Using Equation (D23)
00
rad 1 pochIVm] Ile
b 73 1 (D29)
8w vV * m .
m o0

. 2 2 . . .

* - * = —
and since V_*V_ = IVm |, I‘m . ]I‘m |, then we find as a basie working ex
pression

rad © 2
F p.c IT |
grad ._m___o L (030)
m v 2 S
m o 16 _J 2
s
1-==3
k
o
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We write this equation as the sum of real and imaginary terms: §

{ ko — =

. 2 .- . 3

Jrad _ Po¢ J' II‘ml dkg . +PoC i

n 161° 167°

(D31) 3

. The first term in the right member represents the radiation damping whereas é

the second and third terms represent the fluid loading or added mass terms - E

. = inloading’ We will consider the fluid Loading problem only. (Note that - é

each integral in Equation (D31) represents a double integral since dES = %

; dklde') Since the integrands are even functions, the terms within the L E
{ brackets may be combined so that the fluid loading term may be written:

M) oading =

5 B Lot
RO SR CCE R L A T

% = 112
0,C It GO1™

2 J dk (D32)
41w

o
S
el
Rt

poe
ety

T AT L AT AT R 2P PR T o k. Wt

NSHhg =

w
P
5 Bk

°° 2
1 P T )
N dk_ (D33)

- 41" o
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The product of the left and right members, respectively, of
’, Equations (D23) and (D24) yields

RN

8y DA N

Ir 1% = 4 iwm(i)elks'r dr i ¥ (e KT g (D34)
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The modal shape functions for the normal modes of a simply supported
*
panel are:
_ WX, nwx
‘i’m(r) = 2 sin 21 sin 22 = 2 sin kmx1 sin knx2 (D35)
Hence

1

o

L
j’-ik X, .
e X 1 sin
1
o

L

Defining I 1

then

T |? = 16A% 1
m

Substituting Equation (D3

2’2
X

_ ik x, . ik . .
= 16[ e Xg 1 sin kmxldx1 j e X, 2 sin knxzdx2

o

2 .

L
-ik. x, .
kmxldx1 “.e X, 2 sin knxzdxz (D36)
o

Ly .

1 ik x 1 ik, x
=—£; J X, 1 sin kmxldxl’ 12 = 2—2 J' e x, 2 sin knxzdx2
o o

II*I* = 16A2|11|2|12|2

1°271 2 (D37)

7} in Equation (D33), we obtain

Mloading -

= 2.2
where dk_ = dk,dk,, k. “=k,“ + k

(D38)

*
Later in this Appendix it is shown that this normal mode representation
includes the representation used in Appendix A as a special case; see

Equation (Al).
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We consider ks >> ko ani for this region the quantity E/ﬁ/ksz-ko
= K(ks) is a smooth well-behaved function. We can then use the analytica.

approximation (presented in Appendix II of Reference 8) for the weighted
*
integral given in Equation (D38). For the range of kS including km and
*
kn (see Equation AII.10 of Reference 8), the added mass per unit area for

radiation into the half space Xq > 0 is (see Figures 9 and 10):

Mloading 4pdA

m _ T, T 1
mn AT T2, > 5 (D39)
kK _“ -k
mn o
or
p o
m e 2 ifk >k (D40)
mn 2 2 kmn mn °
kK “ -k
mn [}

The results given by Equation (D40) are in agreement with results
presented by Equations (A27a), (B47), and (C28).

Finally, it is shown that the normal mode representation for a
simply supported plate, Equation (D35), is more general than the correspond-
ing representation used by Feit-Junger, Equation (Al). To see that
Equation (D35) includes Equation (Al) as a special case, consider the sin
kmx factor in Equation (D35); similar results are obtainable for the sin
kny factor (let km > kn’ X > y). We translate the origin of the abscissas

from 0 to 0' (the midpoint along the plate length) as shown in Figure 1i,
by use of the equation:

P . X' = x -JE (D41)
R 2

3

3

¢

"*é *

; k1>km

¢

j' K(k_“)lllzdk1 ] -2-%- K(km) and similarly for the integral for
e ! 1

= -

e kp<ky <k
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The new bcundaries are:

L
t— t e e T
x=0, x 3 I.x

x=£, x' X L
2 x

where the notation ¥ Lx for the new plate boundaries has been introduced

for compatibility with the Feit-Junger notation. Thus:

mrx® mn mnx' mn

. . L. .
= 1 4—)= ? =3 — —_— sin —
sin kmx sin km (x 2) sin km(x +Lx) sin ZLX Cos 5— + cos ZLX sin5 (D42) N :
— —— —3 LA X X ] h :
where k_ = T > 2Lx m=0,1,2,3

It is clear from Figure 11 that m = 1,2,3-- represents odd modes
with respect to the origin at x=0. However m = 1,3°<* odd and m = Z,4°°~ ‘
even represent even and odd modes, respectively, with respect to the origia
at 0'. In accordance with the Feit-Junger postulation, Equation (Al), we
wish to retain the even modes only, i.e., m = 1,3°-+ odd.

Equation (D42) shows that for the even modes, m = 1,3--- odd, the

first term in the right member is zerc so that as a special case

¥
PETVITRIN L L L PR

Bwbred s

A
sin kmx + cos ';zx sinéﬂ m odd (D43)
X

R

v

JUTIRY

t 4 m'
> cos —-————(zm'z;‘ 1)mx (—l)m=("l) cos kl;‘X' m' = 0,1,2¢°° (D44)

X

(2m' + D7
2L .
x

Thus Equation (D44), which contains even modes only in the axial -

where m = 2m' + 1, an odd number and kl;l =

SO TR PARPI RO ILTHET YIRS IE S IIE

system with origin 0', represents only half of the modes of sin kmx in

the axial system with origin 0. Moreover in the axial system with origin

TR P AT IRCN T

0', if we take the mirror image of (i.e., reflect) the even modes m=3, 7,

11, etc. about the x' axis, then all even modes will have a positive value
!

at x' = 0. Mathematically this is accomplished by letting (-1)m + 1. Thus

B e C A

for even modes with respect to the crigin 0' and positive values of sin kmx
(2m'+ 1)mx'

2L

X

corresponding factor in Equation (Al).

at 0', sin kmx + coes = cos kr;xx' which is identical to the
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APPENDIX E
BOLT, BERANEK AND NEWMAN METHOD

NOTATION
A Area of plate
L Longitudinal wave speed
h Plate thickness
kf Kave number in fluid, i.e., acoustic wave number
L 2 2 - 2 _ .2
kp’kh Plate wave number; kp = (m/ll) + (n../zz) = kh
21,22 Length and width of plate, respectively
“a dded Added mass
M-n Total mass equal to Ho + Ma dded
Mo Structural mass
m,n Mode numbers for 2,1- and 22-directions, respectively
K Radius of gyration
Pe Mass density of fluid
pp,ps Mass density of plate
wn Resonance frequency for mn mode of vibration of plate in vac::.
E)m Resonance frequency for mn mode of vibration of submerged plate
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DERIVATION

Several researchers for Bolt Beranek and Newman have presented
mathematical relationships for the added mass and submerged natural fre-
quency of a vibrating finite rectangular plate radiating into half-space.

The formulations are briefly considered.
Reference 10 gives the following relationship between the fre-

*
quency aad wavelength of a vibrating submerged structural panel

- 2 PE\_ .42 2
b)m (1 + p_kﬁ)— kp K cf. ; kp>kf (E1)
PP
. - 42 2 2
From Equation (iv.5.16) of Reference 8, kP K'Cp =W~ SO that
~1/2

(L3
- _ _I .
(L)m = (l)-l [1 + p-E—E] H kp > kf (EZ)
PP
Equation (E2) is identical in form to Equation (A34).
References 11 and 12 give the following relationships as precise

for waves on a large flat submerged plate.

-1/2 -
) bp AN / o, 1/2
wmn=(x) 1+T =W 1*’-"—0———) (ES)
7 P

Ape Pg
Y N = = m— = r—
where do Apsh and Madded kh so that Mmm Apsh (? + pskhh

Hence
-1/2

p
- _ f .
W o= [1 + 5;f;5] ; kh > kf (E4)

Equation (E4) is identical in form to Equation (A34).

*
In Equation (11) of Reference 10, let w > ©rn and in Equation (iv.5.16)

of Reference 8, let w +w .
m mn
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[GG]m

X,y

[ZYG]m

)
Y§m

APPENDIX F :

GREENSPON METHOD ;
Quantities which depend on the beam functions used to 3
represent the mode shapes (see Table 4)

Yth and Gth elemental area of plate

Width of plate (shorter side) 2
Length of plate (longer side) ¢

Sound velocity in water

Natural frequency in vacuo

Function of the aspect ratio

Thickness of plate

M Qg hEMA BN VT Wy e by PP L]

Mode numbers equal to m,n

Equal to 1 if plate has water on one side and equal to 2 if
plate has water on both sidec

Wave number equal to w>m/co

Apparent mass per unit area
Mass per unit area of plate

Mocde numbers

Water pressure due to vibrating plate in the mth mode of
vibration

Average pressure on the Yth elemental area A_ due to modal

vibration of the Gth elemental area AG
Time

Lateral deflection of plate in mth mode

Velocity in the mth mode of the 6th elemental area

Rectangular coordinate axes

th and Gth

elemental areas on the plate for the mth mode of vibration

Mutual radiation impedance between the y

Resistive (radiation damping) component of impedance for the
th . .
m~ mode of vibration
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- [X‘Y6 ]m

[x]p

w
mn

KWavelength

Mass density of water
Density (mass per unit volume) of plate

Coefficient (reactance) depending on aspect ratio a/b

Reactive (added mass) component of impedance for the mth

mode of vibration

Reactive (added mass) component of impedance of a
rectangular piston

Circular frequency for the mnth mcde of vibration -

Note: In Equations (F5), (F6), (F7), and (F8) the subscript m + mn for con-
sistency with notation in the previous appendixes.
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DERIVATION

References 13 and 14 present the following methods to accouat for

the added mass of a rectangular plate vibrating in water.
Method 1 (see Reference 13)

Reference 13 quotes Reference 15 as the source of the following

equation for the natural frequency of the first mode of a simply supporied
*
rectangular plate vibrating in water.

(Fll)vacuum

water — (F1)
‘ﬁ‘“i'x ) 7-8%h

The function X(a/b) shown in Figure 12 has been derived in Reference 16

for a plate which is clamped on the edges y = o, b and simply supported on
the edges x = 0, a.

This equation can be used to obtain the order of
magnitude of the correction due to the added mass for both simply supported
and clamped plates.

(Fiy)

However the reader is referred to Reference 15 for a
more accurate analysis of added mass.

Method 2 (see References 13 and 14)

References 13 and 14 present the following analysis for the
determination of the added mass per unit area.

Divide the plate into equal elemental areas and let [f’m(x,y)]Y be
the average pressure on the Yth elemental area A_ due to modal vibration
of the Gth area A6 (see Figure 13). Then

(Fll)vacuum

*
Since (F..) =——————(see Appendix A or Reference 15), then
11'water >
V1+(Ma/Mp)

the present author deduces that the added mass per unit area

= [0y 03y D : .
Ma = [1 x(b) 7.85h] mp where mp is the structural mass per unit area.
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[P, )] = - (F2)
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The total pressurc on the Yth area due to the vibration of all
other elements will be

- @ ). .
Y

In these esquations, the mutual radiation impedance ZYG which is a function

of the frequency and the distance between the elements may be written

@dn = PoCotysl Oy + 10x5y] (F4)

The reactive or added mass component (Xya]m is a function of the

aspect ratio a/b and the noadimensional parameter mb/A = wmb/2co (note w

SRS et S g o N R T R L

[NYTaE

et thardn 1

PR TR TOC R PPTPNAL ot 2o

¢ > ; ¢ Vashrtd it i B B 027
"’{%ﬂ_{g{&%ﬁg&ﬁ;‘s\i\&ﬁ;%b‘éﬁ‘»p%f:(m;wq FLAD s 444 Qe AL AR s 1 bl B 0 0

'
%t

A A,éo\'

mn h
is denoted by Pm in References 13 and 14). The impedance of a rectangular i 4
* ¢ P

piston is computed in Reference 17. For relatively low frequencies i T
mh/X < 1, the reactance (added mass component) of the piston can be written % _,é
(for consistency with previous results in Appendixes A-F exciusively, we : =%
> : { .

let w wmn)’ : ~§
33

-3

b % %

w ., g

a, Tb a, m 5 2

X, = £@) = = £§) = (FS) ' 3

P 2c

(o] A

4

4
i

* %

In the analysis presented in References 13 and 14, leading to the com- i
putation of the plate natural frequencies, the sums involving eYG and XY6 §
(Equation (F3)) are quite complex and require considerable computation. %
. %

Therefore, it was assumed that the average pressure on the Yth area can be ¥
computed by considering the entire plate to act as a rectangular piston Z
with a deflection equal to the average of W over the plate (see é
g

Reference 13 for additional details). This simplified the mathematical 8
analysis. 3
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where f(a/b) is a function of the aspect ratio and can be obtained

directly from Figure 14. The circular natural frequency of the plate in

X
water is then13
(wmn)vacuum
Iwhn)water on < ; 1,)=m,n (F6)

: 2

one side 0 b AS.

1+ =2 £

2m_ b’ B..

p 1)

The Aij and Bij depend on the beam functions used to represent the mode
shapes and therefore depend on the boundary conditions of the plate. The
values of Aij and Bij for several modes of plates which are clamped or
simply supported on all edges are shown in Table 2.

Plates with comtinations of boundary conditions can also be solved
so long as the mode shape can be approximated by a product of beam
functions. For example, consider a uniform plate which is clamped at the
longer edges (0,b) and simply supported at the shorter edges (0,a). (This

is the casc¢ given in Reference 16.) Then for the first mode13

Afj = (0.8309 x 0.6366)% = 0.2798
B..=1x0.5=0.5
ij
(wmn)vac
(wmn)watET on = (F7)
one side pob“ a
1+ [@J 0.2798 £()

*
In accordance with the previous footnote, we deduce that the added mass

2
Al
per unit area M_ = =2 f@h —3 I m_ for water on one side. For water on
a 2m b Bij P

both sides, we double this value in Equations (F6) and (F7) and (F8). The
symbol 1 used in Reference 13 to denote the plate mass per unit area has
been replaced here by the symbol mp.
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For a steel plate vibrating in water

(uhn)vac
(uhn)water on —a. (F8)
one side 1+ [b——]0'28 f(g)
7.85h

Equation (F8) is of the same form as Equation (F1) originally found

in Reference 16. For most of the practical cases, the correction of the

frequency due to added mass given by Equations (D8) and (D1) will be of
the same order of magnitude.
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APPENDIX G
LEIBOWITZ METHOD III

Joatiley & 1% st

NOTATION

The notation included for Appendix F also applies to this appendix.
4

DESCRIPTION

YL AN L et i

+ L

The approximate expression presented is convenient for the compu-
tation of the added mass and (low) natural frequencies of a vibrating

rectangular plate. The dévelopment of this expression is based or the .
work of Reference 14 discussed in Appendix F.

DERIVATION

Ignoring plate damping and considering clamped or simply supported

¥*
plates, the natural frequency of a vibrating plate in water is given by
Equation (F6).

Following Reference 14, we take as a low frequency
approximation

/ab

W W hannd

X, = 0.48k[ab] /% = 0.48 .GTE (ab]*? for _’"lc‘_“_.< 1 (G1)
o] [o]

Substituting Equation (G1) in Equation (F5), we get

(N S ; 7 e TITN PR NS
m.\lf@m}:%@l‘Aﬂ.ﬂu‘.{ﬁ"}%‘{ﬁmﬁ.’mﬂ‘E&\«#ifk;.»‘&‘Z‘&b’t"ﬂml‘%\‘w/'mMM..W};‘).:&NA“ fron b e dalth

£ = 0.96 (%)1/2 (62)

which is an approximate fit to Figure 14.

: 5 b st e ATy
s e e P xt st e WRNIABEASES AN S

*
Reference 14 also permits a solution of the frequencies for the more

general case of a rotationally constrained beam including plate radiation
and structural damping in the frequency equation.
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*
Substituting Equation (G2) in Equation (F6), we get

(w )

mn” vacuum

(whn)water on 172 .2 3 3,J=m,n
one side 0.48 p (ab) A .
o ij
1 +
m B..
P 1]

where Aij and Bij are values given in Table 4 for clamped and simply

supported plates.

0.48 po(ab)l/z %

m B. .

P 13

one side. For water on both sides, this quantity is doubled in
Equation (G3).

*
The added mass per unit area Ma =

110
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APPENDIX H

PROCEDURE FOR MODIFYING THE MAESTRELLO PROGRAM TO
INCLUDE EFFECTS OF FLUID LOADING (OPTION 3)

Constants

Quantities which depend on the beam functions used
to represent the mode shapes (see Table 4)
Dimensions of plate (see footnote to W of

aluminum plate in this Appendix for more precise
description)

Plate modal damping in air and water, respectively
Speed of sound in fluid

Compressional wave velocity of the plate equal to

E ]1/2
[ps(l-vz)

Specific damping energy at any stress 0 and at peak
stress 0,4 respectively in a part under nonuniform

stress (0 < D < Dd)

Young's modulus

Equal to 2.718; base for natural or Naperian system
of logarithms

§* _ &*
Equals U U
Frequency

Plate natural frequency

Function of aspect ratio

Panel thickness
Mode numbers

Constants

Acoustic wave number equal to w/c

2
Surface wave number equal to [(mm/a)~ + (nﬂ/b)z]
for Method I; for Method II, a and b may or may not
be interchanged (see footnote to w

of aluminum
plate in this Appendix) h
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& M, m Plate mass per unit area in air

P

£ ;
1 ; M’ Total mass per unit area of plate in water; equal
g ) to sum of plate and added masses per unit area
b= : Ma, Mo Added mass (or apparent mass or virtual mass) per
3 f unit area
E m, n Mode numbers
E W, wmn Plate weight per unit area in air and added weight
e : P per unit area, respectively
E W Total weight per unit area of plate in water; equal
< to sum of plate and added weight per unit area
3 P(w) Power spectrum
:g p2 Mean square turbulence pressure

q Equal to k/kS (see footnote to q of aluminum plate

in this Appendix)

2 u, u, Free-stream velocity
Vy,:
b= Uc Convection veliocity
if (x,y), (x',y") Points on the panel at which displacements are
- measured
'§ o Equal to 1 for fluid loading cn one side of plate
- only; equal to 2 for fluid loading on both sides of
- plate; dimensionless damping cnergy integral (see
- section on steel plate parameters in this Appendix)
5 B Total damping coefficient of plate in a fluid; di-
ks mensionless strain energy integral (see section on
“ steel plate parameters in this Appendix)
9 Bc Critical damping
2
= &* Boundary layer displacement thickness
4 0 Smn Total damping ratio of plate in air and water,
e respectively
f n Material loss factor; equals y - y', lateral
3 partial separation
f ng Loss factor of a specimen or part
f 6 Eddy lifetime for steady convection, i.e., time in
e which value of correlation coefficient obtained
4 . from envelope of correlation maxima (maxima-
3 maximorum) drops to 1/e

Kinematic viscosity of fluid near wall

Equals x - x', longitudinal partial separation

WRTRURVE R

.
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mn?
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w

G O5Y) > 0, (X",y")

mn

Radius of gyration

M-ss density cf fluid medium

Mass density of plate

Amplitude of reversed stress and maximum value of
stress in a part (0 <0< @

D)
Equals t - t*, time delay

Local wall shear stress
Plate eigenfunctions

Circular frequency equal to 27f

Plate modal frequency in air and water,
respectively
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The Maestrello program1 for determining the turbulence-induced vi-
bration =ud radiation of plates is modified and then extended to include
the effects of fluid loading. The modified program is used to obtain the
73 ‘ vibratory response for a flvid-loaded simply supported rectangular
aluminum isotropic plate and for a fluid-loaded simply supported rectangular
steel isotropic plate. The effects of hydrophone size* and boundary layer

thickness are excluded for simplicity and other plate boundary conditions

on the response are not considered. However, the user can correct for

7 these effects and treat various plate boundaries as well as plate curvature -
by including Option 1 (Reference 2) and Option 2 (Reference 3) in the com-
putations (see DISCUSSION AND EVALUATION). The methods for determining the -

input data used in the computations are also described. 3

o

MATHEMATICAL ANALYSIS

The results of the analytical study for the fluid loading of

v ‘v"l)\, oL '4:.

3 rectangular plates presented in Appendixes A-G are summarized in Table 1.
Of these results, only the uncoupled (dominant) modes (see DISCUSSION AND

R
\
SERcky

4 EVALUATION) are considered here for the modification of the original i
fﬁ Maestrello program which exciudes fluid loading. With this practical ,§
i restriction, Table 1 shows that there are then two basic methods for compu- ‘%
_i: ting the virtual or added mass and the associated natural frequencies of a %
4 fluid loaded plate. The equations corresponding to the methods designated 54
:? as Methods 1 and 2 below are now summarized and modified for purposes of %
: practical computation. .
.

i Method I: Based on Analyses in Appendixes A-E 4
= ap ap ap i
m (added mass per unit area) = " 2_k2)1/2 = 217 o [1-q2]1/2 (H1) | f

s k_[1-G-)7] s e

S k 4

s 3

k E:

where 0 S =ac<l %

S 4

E

* ;L 4

That is, the excitation function which represents measured turbulence -

data is not corrected for hydrophone size in the present computations. ©
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Hence in the original Maestrello program when fluid loading is in-
cluded,

M>M'=m +mn = m, [1 + — apq )1/2] (H2)
also
i ap -1/2 ap -1/2
mn = [1 TR ] " [1 "o h[1 - (& )2]”2] "
s

ap -1/2
=W 1+
" [ o kbl - o ]1/2}

In summary, when fluid loading is included, the original Maestrello

program1 is modified in accordance with Method I by letting M + M' and
- , - ] .

U T where M' and w o are given by Equations (H2) and (H3),

respectively.

Method 2: Based on Analyses in Appendixes F and G

ap b

A,
ay 151, g 4e
£ Q5 ]mp ;i (H4)

Ma(added mass per unit area) =[
2mp ij

Values for f(a/b) are obtained from Figure 14. For practical computation a
finite number of values of f(a/b) versus a/b can be tabulated and stored in
the computer.* The numbers of such values should be sufficient to allow
the computer to calculate required intermediate values with an acceptable

accuracy by means of linear interpolation of the stored values. For the

*
In this method of computation, b always represents the longest side of
the plate. Thus b may lie along either x or y and in the dlrectlon of or
orthogonal to the flow.
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AneAts.

]
]
,’ %
= lower modes, Aij’ Bij are obtained from Table 4. For the higher modes, Ai" %
2N Bij are obtained from tables found in References 18 and 19. g
Hence in the original Maestrello program when fluid loading is in- q_g
¥ i 5
s cluded, 1 2
3 2 5
; apob a Ai‘ 335
2 M>M =m +M =m |1+ £6) 5 (HS)
p a2 P 2m ij 03
£ z
v‘ p M i
»‘i and f'tj'
-3
f - (wmn)vacuum %
4 w = (H6) E
2 mn 2 1
- (!p b A, . >
3 1+ 5 5o :
2 2m 1 3
3 Y E
3 %
3 For the low frequencies, these equations are approximated by -
0.48 op_ (ab) 172 A2
- M = 13 m_; i,j=m,n (H7)
2 a B.. 'p
5 m ij
P
: 0.48 ap (ab)l/2 2
9 M>M =m +M =m (1+ i (H8)
g P a p B .
= m 1]
- P
-
- - (wmn)vacuum
’ in = (Hg) -
‘ 0.48 ap (ab)l/2 f
‘f 1 + —l
3 m ij
P :
In summary, when fluid loading is included, the original Maestrello
” program1 is modified in accordance with Method 2 by letting M -~ M' and
: w > (I)mn where M' and (I)mn are given respectively by Equations (HS) and
5 (H6) in general and by Equations (H8) and (H9) for low frequencies.
74
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METHOD FOR DETERMINING INPUT DATA

The methods for determining the input data required for computer
calculations are now described. Generally the methods are similar to those
given in Appendix B2 of Reference 1. Eitner the data are arbitrarily pre-
scribed by the user, i.e., the values are chosen to represent the range of
interest, or the selections may correspond to experimental or amalytically
determined values for a parameter. However, the form and types of basic
(raw) data available for use in computing some of the input data as weli as
some of the features of the response computations for the aluminum and
steel plates differ somewhat. In concequence, different methods are used
to evaluate certain of the input data for these plates. The logical
presentation is then to furnish for each plate a description of the
particuiar methods used for determining the data. Tabulations of the actual
computed input data used in response calculations are also given for each

plate.

The following input data are furnished to the computer.

Flow data: Uc’ Ty 8* = FU = FU_, o, p% 0, Ai’ Ki where i = 1,2,3 and a, q

Panel data: a, b, h, Gmn’ Smn’ E, M, M', ¢, o, w

E; n, T,m n, x
mn’® >’ 7 "2 7 U w
Y, X’, y'

Aluminum Plate

The values for the input data are tabulated in Tables 2a and 2b.
The methods used in determining these values are:

Parameter Description
Ai’ Ki Prescribed constants used in Equation (B7) of
Reference 1
a, b, h Prescribed quantities
E A prescribed quantity
M= mp A prescribed quantity
Ml

Using Method 1 only for the aluminum plate, M!' is com-
puted by means of Equation (H2)

m, n Prescribed data

haset (oo]

p2 Equals.[ P(w) dw where P(w) is obtained from
)

Equation (B7) of Reference 1. This quantity can also be

117

]

vy
Ry

R

F T R T AT ARy T oY AecLAM

Ty s

TR ey

s il

ro e SRRk By A et M SR




X,y,x',y"'

4 5*=(FU)= (FU)

measured directly. For the present calculation it is

corvenient to set pz = 1 sc that the autocorrelation
function for the turbulence pressures and the cross
correlation function for the panel displacements given
by Equations (B8) and (B52) respectively of Reference 1
can be regarded as nommalized to this value

(We can also compute pz. Thus for subsonic speeds
Ja(:obs1 shows that pzz 3.17, and from Reference 29,
for a smooth plate T_/q = 0.060 (Rx)-ll5 = 0.060
(wa/v'j-ll 5 vhere q=1/2p Um2 is the free stream dy-
namic pressure.)

A parameter whose values are prescribed by the user,
Uc = 0.8 U_; for the present problem, Uc = 8, 16, 32,

64 ft/sec

Prescribed points; the cross correlation of the displace-
ments are computed for these pcints

* -
Equals 0.37x/8 (U x/v) 1/5 (see Equations 21.6 and 21.8

of Reference 20), Tables 1.1 and 2.1 of that reference
give values of v in air and water. Using this equation,
values of §* for a given fluid can be prescribed over a
Range of U . For an isolated plate, the equation shows
that for a given value of x, &% occurs for U, equal
to the minimum prescribed value, i.e., U = (Uw)min’ and
for v = v, ipc For all y > (Uco)min the corresponding
values of &* < &* for bothv=v . and v=yv .
max air water
However, we can also treat the displacement thickness cf
a plate in a structure, acting as a baffle. The plate
can then be moved sufficiently rearward of the edge of
the structure at zero incidence so that for a given
position along the plate and all U_ > (Uw)min’ 6* =

and v In effect we

air water’
are considering series of plates of identical geometry
so located in a structure that for all U_ > (Uw)min the

constant > &* for bonth v
max

displacement thickness at a fixed position on one of the
plates in the series is always equal to 6* = constant

*
Due to a typographic error, this equation was incorrectly written as
0.37/8 (Uoox/\))-ll5 in Appendix B2 of Reference 1.
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forv=v. andv=v . To reduce the amount of
air water

computation for the aliewimen plaie only (i.e., tc elimi-
nate 6* as a parameter) we select for any of the pre-

scribed values of U = U /0.8 and for v=v . and
c air

V= Vorer the plate whose position is such as to yield

a displacement thickness 6* = 0.033 > 6*ma‘. It is
assumed that on a given plate 6* is sensibly constant in
the direction of flow along the plate length

- Total damping ratio in air including the damping in the
plate as well as radiation damping. In the present
problem the radiation damping in air is considered to be

*

much smaller than the material damping. According to
Jacobs the damping used for the aluminum plate in air
was experimentally determined from an analysis of band-
widths between half-power points on response resonances
fromw segmented, unpublished, high-resolution deflection
power spectral density measurements (see page 5 of
Reference 21, pages 24-25 and 34 of Reference 22, and

page 273 of Reference 1)

A plot of the measured results given in References 21
and 22 indicates that 6mn = 15/f’mn approximately. Hence
]

Am = Gmn wmnlz = 157

n Total damping ratio of panel in water including the
damping in the plate, the damping associated with fluid

loading and the radiation damping. However, in the

present problem the contribution of the radiation damping

£y
to §mn is excluded. From page 41 of Reference ! we
deduce that

§ w
_ B _ mmn "mn . .
a = erm— __.___.ln a]_r
mn 2M
2
- B 8mn 6mn
an = s > in water

*
In any event the experimentally measured damping will include the con-
tributions of all damping mechanisms influencing the measurement results.

The mathematical representation of damping in the equations of plate motion
include these results as a viscous damping term.

*%
We are interested here in the radiation damping of a mode in the range
kp > k. For heavy fluid loading the corner mode contribution to radiation

damping is applicable at all frequencies whereas the edge mode contribution
is significantly applicable at high frequencies.’ Simple equations for

determining these contributions are given in Reference 7 and will appear in
a companion report.
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The first equation represents the visccus damping of the
plate in air and a2grees with Equations (A7) and (B18) of

*
Reference 1 if ve ignorc¢ the hysterestic and acoustic
radiation terms respectively in these equations. The
second equation which includes the contribution of both
viscous damping and fluid loading (also called added or
virtual mass or liquid coupling) agrees with Equation (AS1)

*
of Reference 1 if the hysteretic and radiation damping
term in this equation is excluded. It is of interest to
note that when radiation damping is not considered the
increased mass associated with fluid loading reduces the
modal damping term in water (see Equation (A51) of
Reference 1) so that amn < a- As shown in Tables 3a

and 3b, Wp = 0.6 1b/ft? for the aluminum plate. From

the ratio of the above equation we get

m = %M T %mn W -

and

5 zamn=301r( 0.6 >=15( 0.6 )
mn - 0.6 + W z 0.6 + W

w mn f
mn mn mn
Corresponds to the time in which the value of the
measured correlation coefficient of the fluctuating
pressures at the wall, obtained from the envelope of the
correlation maxima, drops to 1/e. Plots of 8 versus Mach
number for broad- and narrow-band frequencies are given
by Maestrello in Reference 23, Figure 5. The Maestrello
narrow band measurements of eddy lifetime for fre-
quencies centered at 1200 Hz were extrapolated to zero

*
The user interested in including a hysteretic damping term as a separate
contribution to a

n and a ., can easily determine this term by use of

Equations (A7) and (A8) and the relevant term in Equation (AS51) of
Reference 1, substituting M' for M and w - for W when fluid loading is

considered; see also Equations (13) through (15) of Reference 13 for similar
results in terms of both an and 6mn‘ However to simplify the present com-

putations and in accordance with the Maestrello procedure discussed in
Appendix B of Reference i, expiicit division of the damping into its hy-
steretic and viscous components is not made here.
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Mach number at which 6 = 2.25 x 10~ sec. For all U

under consideration, (Mach number)water < (Mach num-

ber)air = Uw/cair < 64/(0.8) (1129) < 0.08. Since the

extrapolated curve shows that 6(Mach numbers < 0.08)= e
8 (Mach number equal zero) then approximately H

6 = 2.25 x 10> sec for all U_ considered.
Prescribed data

Determination of this quantity is based on the law of
the wall which is further discussed on page 62 of
Reference 1. The Macstrello measurements presented

in Figure 1 of Reference 23 indicate that V pZ/Tw
= 2.9 to 3.5 for M = 0.35 to M = 0.75. In reasonable
agreement Jacobs finds that the results of various
investigators yield VpZ/Tw = 3.1 as an average value

for all subsonic Mach numbers (see pages 301 and
302 of Reference 1). Using the latter for the

CEILT A Es s ke

Mgl ACE TP e
L,

present calculations we have T, = szlf’;.l =1/3.1%

0.323 1b/ft”; see also description of computation

2Urm e in At

for p2. %
Rt
¢mn(x,y), ¢mn(x',y') Data required for the computer program are calcu- =
lated by the digital computer for a range of pre- .
scribed values of m, n, x, y, x', y'. 2
w Prescribed in Equation (B7) of Reference 1 to obtain E
P (w)
® o For a plate of given geometry, boundary conditionms,

and structural properties, this quantity can be com-
puted by the methods of Option 2 (Reference 3).
In the present problem values for w o were computed

el e i

by use of the Warburton program3 for a simply
supported plate and substantiated by means of the
*

simple frequency expression

o = e [ () () ]

*

In Method I, a and b lie along x and y respectively and are therefore
identified with m and n respectively. In Method II, b is always the longer
side so that in general a and b may lie along either x and y or v and x
respectively and are correspondingly identified with either m and n or n
and m respectively. If, in particular, a and b are identified with n and m,

then for Method II (only) the equation C. Keo [(mTr/b)2 + (nn/a)z] should
be used. ’
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Using Method I only for the aluminum plate amn is
computed by means of Equation (H3)

Equal to 1 for fluid loading on one side of the plate
only; equal to 2 for fluid loading on both sides of
the plate

w
. : =
Equal to %— = < where 0 s-%— =q < 1.
s

*
See footnote on previous page.
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Steel Plate

The values for the input data are tabulated in Tables 3a-3f. The

methods used in determining these values are:

Parameter Description

Ai’ Ki Prescribed constants used in Equation (B7) of
Reference 1

a, b, h Prescribed quantities

E A prescribed quantity

M= mp A prescribed quantity

M? Using Method I, M' is computed by means of

Equation (H2); Using Method II, M' is computed by
means of Equations (HS5) and/or (H8)

m, n Prescribed data

“E’ [e o]

P Equal to J’ P(w)dw where P(w) is obtained from
0

Equation (B7) of Reference 1. This quantity can also
be measured directly. For the present calculation it
is convenient to set p2 = 1 so that the autocor-
relation function for the turbulence pressures and
the cross correlation function for the panel dis-
placements given by Equations (B8) and (BS52)
respectively of Reference 1 can be regarded as
normalized to this value

T —

(We can also compute p2 . Thus for subsonic speeds

Jacobs1 shows that p2 =3.1 Ty and from Reference 23
for a smooth plate, T _/q =0.06 (Rx)-l/5 =
0.060 (Umx/\))'l/5 where q = 1/2 p UaF is the free-

stream dynamic pressure.)

Uc A parameter whose values are prescribed by the user;
UC = 0.8 U. For the present problem Uc = 8, 16, 32,
64 ft/sec

X, ¥y, x', y' Prescribed points; the cross correlation of the dis-

placements are computed for these points
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The displacement thickness is determined by use of a

computer program available at the Center entitled

XG 75, Fortran IV by R.W. Brown. The program uses a

relation developed by Mangler, i.e., the Mangler inte-

gral transformation, which permits reduction of the

calculation of axially symmetrical boundary layers on
*

arbitrary bodies of revolution to that in two-
dimensional flow. The Mangler method relates the
distance along the axis of a body of revolution to the
distance along a flat plate at which the boundary
layer thickness is identical. The boundary layver dis-
placement thickness is then calculated using an ex-
pression which is a function of the flat plate distance
and flat plate Reynolds number (using kinematic vis-
cosity of air at 90 deg F and of water at 39 deg F),

developed by Granville.24 The derivation of the ex-
pression is based on similarity arguments. The
undetermined coefficients in the expression are
evaluated by use of experimental data. The required
input data for the program are the axial distance (in
feet) and the radius of the body (in feet) at that
position as well as the free stream velocity (in knots).
The limitations of the program are those due to the
assumptions required for the Mangler transformation
and to the fit of the available data which Granville
used in his theory. The assumptions involved are
considered to have a greater bearing than the data
fit on the accuracy of computation. In particular,
we observe that Mangler assumes a two-dimensional
flow which does not explicitly account for the local
pressure gradient. The saving feature, with regard
to this omission, is the fact that the boundary layer
growth is sufficiently slow so that the imprecision
in the calculation is considered to be approximately
10 percent. Figure 15 gives the results of the compu-

*
tation for 6* of the actual structure in water and
in air obtained by use of the Brown computer program.
Total damping ratio in air including the damping of
the plate as well as radiation damping. In the
present problem the radiation damping in air is con-

* %
sidered to be much smaller than the material damping.

*
The actual structure under consideration is a cylinder which is part of

a cigar-shaped body of revolution.

frequency which allows the cylinder to be treated approximately as a plate.
The supports at the cylinder or equivalent plate are essentially simple.

*

Our computations are made above the ring

*
See second footnote for 6mn of aluminum plate,
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Figure 15 - Calculated Turbulent Boundary Layer Displacement
Thickness 6*
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In Reference 25, Figure 36.9 used in conjuactioun with
Figure 36.15 shows that the loss factor n of various
steels at low and intermediate reversed stress values
and with cyclic stress values well below the fatigue
1imit range approximately from a maximum of about
0.005 to a minimum of 0.001. Analytically, we can
also obtain a value of this order of magnitude by use
of LEquation (36.13) of this reference, namely,

ng = —E— ——dz— Gi In this equation, E for
%4

steel is known and D, the specific damping energy
associated with the peak stress ievel reached anywhere
during the vibration (i.e., the value of D correspond-
ing to 0 = ob) can be obtained from published curves

such as Figure 36.15 and Figure 36.17 of Reference 25
or tabulated data. For materials with uniform stress
distribution /B = 1 whereas for various specimens
with variable stress distribution a/f is given by
Figure 36.9 of Reference 25. For a rectangular beam
with either a constant, linear, or quadratic moment
distribution, at low and intermediate stress,

a/B =0.66. Additional details on this procedure as
well as a sample calculation are given in Reference 26.

Experimental data27_34 for the loss factors of iso-

tropic flat plates of steel and other materials, with-
*

out substantial stress concentration, over the range
of frequencies 100 to 1000 Hz, also vary approximately
from about 0.005 to 0.001. Considering the scatter

of these data, a reasonably approximate empirical ex-
pression for the loss factor (over this range of fre-
quencies} is n = O.S/fhn. Hence, B/Bc =n/2 = 0.25/f'mn

= 6mn/2 = amn/wmn. Therefore, Gmn = O.S/f'mn and

amn = 0.5m.

The damping of the panel modes is a combination of
viscous and structural damping where the viscous damp-
ing force is proportional to velocity and the

*

Thus the data refer to the loss factor for the bare (free) plate or to
a simple supported plate if the corresponding stress concentration
associated with the support is not large. The value of n for the particular
boundary condition under consideration should be used in computations. For
example, from data on clamped plates, Bies35 determined that n = 77/f. This
result is close to that used by Jacobs!*?1°22 £or 2 clamped aluminum plate.

Davles,7 in his investigation of plate response and radiation, also assumed
that n = B/f where B is a constant.
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hysteretic damping force is proportional to dis-
placement. Measurements have shown that the damping
of panels is small so that the damping can be
represented adequately in most cases by considering
it to be entirely viscous.

DRSS RIS A

n Total damping ratio of panel in water including the
damping associated with fluid loading and the
radiation damping. However, in the present nroblem
the contribution of the radiation damping to Smn is

*
excluded. Following the analysis and argument made :
for the aluminum plate and noting that Wp = 20.4 1b/ :

ft2 for the steel plate as shown in Table 3, then

W
a_=a -M-—=a _.E.=O.S1r< 20.4 )

mn mn M* 1)) 2000 + W
W mn
and
5 - 2%, 20.4 1 20.4
mn o - b 20.4 + Wm - 2 F 20.4 + W
mn mn n mn m
0 Corresponds to the time in which the value of the

measured correlation coeificient of the fluctuating
pressures at the wall, obtained from the envelope of
correlation maxima, drops to 1/e. Plots of & versus
Mach number for broad- and narrow-band frequencies
are given by Maestrello in Reference 23, Figure 5.
The Maestrello narrow-band measurements of eddy life-
time for frequencies centered at 1200 Hz were ex-
trapolated to zero Mach number at which © = 2.25 x
10_3 sec. For all UC under consideration, (Mach
number)water < {(Mach number)air = Uoo/cair = Uc/0.8cair
< 64/(0.8)(1129) < 0.08. Since the extrapolated curve
shows that 6(Mach numbers < 0.08) = 6 (Mach number
equals zero), then approximately 6 = 2.25 x 10°° sec
for all Uc considered.

g, n, T Prescribed data

Ty Determination of this quantity is based on the law of
the wall which is further discussed on page 62 of
Reference 1. The Maestrello measurements presented in

* -
See first footnote for Gmn of aluminum plate.
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Figure 1 of Reference 23 indicate that ¥p /T, = 2.9

to 3.5 for Mach number = 0.35 to Mach number = 0.75.
In reasonable agreement, Jacobs finds that the results

of various investigators yield V pZ/T" = 3.1 as an
average value for all subsonic Mach numbers (see
pages 301 and 302 of Reference 1). Using the latter

for the present calculations we have T = V p2/3.1 =

1/3.1 =~ 0.323 1b/f't;2 see also description of p

Data required for the computer program are calculated
by the digital computer for a range of prescribed
values of m, n, x, y, x', y'

Prescribed in Equation (B7) of Reference 1 to obtain
P(w)

For a plate of given geometry, boundary conditions

and structural properties, this quantity can be com-
puted by the methods of Option 2 (Reference 3). In
the present problem values for W, Were computed by

use of the Warburton program3 for a simply supported
plate and substantiated by means of the simple fre-
*x*

quency expression

w = ¥ey [(glf)z (o 2]

Using Method I, amn is computed by means of
Equation (H3); Using Method II, &hn is computed by
means of Equations (H6) and/or (H9)

Equal to 1 for fluid loading on one side of the plate
only; equal to 2 for fluid loading on both sides of
the plate

ole

Equal to* k/ks =

*
See footnote for Win defined for the aluminum plate.
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COMPUTER PROGPAMS

Four computer programs associated with the mean square displacement
computations performed in this report for a simply supported fluid-loaded
*
plate subject to turbulence excitation are descril)ed below.

Program A': Modification of the Maestrello subprogram A (designated

TURAD), described in Reference 1, for computation of the mean

square displacement. The modification which incorporates

certain corrections, additions, deletions, and improvements
in efficiency in conjunction with its running on the CDC 6700

supersedes subprogram A and should be used henceforth.

Details
of the modification are discussed below.

Program B': Computes the fluid-loaded natural (or modal) frequencies &hn

2 . _ .
as well as ks, ks, added weight Won = Pong> and total weight

T - 1 4 - - -
w' = M'g = (mp + mmn)g. In the program w_ = m_g > WP, wmn

m_ g+ WMN), W' = M'g > FW, and amn + BOMEGA. This program
is designated as Option 3.

Program C': Warburton program3 for computing the plate natural frequencies

fﬁn and W in air for both simply supported and clamped-

clamped boundary conditions.

Program D': Computes the displacement thickness for an arbitrary body of

revolution. The displacement thickness is used to calculate

the variable FUCSQ in Program A'. Program D' was developed by

Mr. R.W. Brown (see previous section of this Appendix).

Computes turbulent
soundary layer thickness.
Symbol is &*

Al
{1TTURAD)

Computes w_ .
Fluid loading rcutine

Computes Yin by the

Harburton Hethod.
Air loading routine

*
As previously discussed, computations for clamped-clamped boundaries
can also be performed with the same program. The program can also compute

the modal acoustic-power radiation of a plate in a reverberant field.
These computations are not made here.
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As shown in the preceding chart, when fluid loading is omitted
Programs C' and D' generate data for use in Program A'. The methods for
- determining additional imput data have been described in the previous
section.

When fluid loading is included, Program C' generates data for

Program B' and then Programs B' and D' generate data for use in Program A'.

Determination of additional data inputs have previously been described.
i The computer and running times of a calculation associated with each j

progran are given in the following chart.

Computer . Cost for Total i
1 Program (at NSRDC) Time Computation
: A CDC 6700 Using the Simpson rule of integration $75.00
the computer running time is approxi-
mately 5 min for obtaining a curve
of Y?(w) versus U for each set of mode
numbers (m,n) and four convection
Cen velocities Uc
B 1BM 790 1.0 min for (m,n) ranging from_1,1 4.00
to 10,10, i.e., 100 values of ®in
c I8 7090 | 1.3 min for (m,n) ranging from 1,1 5.50
to 10,10, i.e., 100 vaiues of Win
D' IBM 7090 1.1 min for 198 values of axial 4.60
distance, flat plate distance, local
flat plate Reynolds number, and § = 8 &*
Program A'

To make the original Maestrello subprogram A, designated TURAD, a
more efficient program and to enable it to run on the CDC 6700, the
following changes have been made in the coding of the original program (the
; modified program A' is designated MTURAD):

1. Reduction of the four-dimensional array IXYZ to a three-
dimensional array

*IXYZ (M,N,IT,L2)——IXYZ (N,1,L2)
2. Increase in the dimension of the following variables:
*IXYZ (10,1,50,3)~——— IXYZ (10,1,3)
IYZ (20,1) 1YZ (20,10)
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IY (1) IY (10)
G3 (11,1) G3 (101,10)
YY (11) YY (101)
TEMP1 (11) TEMP1 (101)
3. Rearrangement of certain data cards
*FUCSQ
FM2

4. Deletion of some original data
*NP - no longer needed
PARAM - no longer needed (see below)
THETA - no longer a dimensional variable

5. Correction in coding of Simpson's rule. Original coding is:

*525 G2 (J,M)} = G2 (M,M)*2
should read
*525 G2 (J,M) = G2 (J,M)*2

6. Elimination of double precision functions due to no
declaration of such at the beginning of the program. Such occurrences were
on cards numbered 2310 and 2330.

7. Introduction of a tolerance as an optioa for Yz(w) for any plate
material. An exceeded tolerance produces an error message to be printed in
the output. If use of the option is not desired, the user reads in the
value 0 for the variable IOPT. If the option is used then any number other
than 0 is read in for the variable IOPT.

8. Rearrangement of lines of coding due to rearrangement of data.

The lines are on cards numbered 0620-0670, 0750 and 0760 in the original
listing.
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For completeness we include an explanation of the procedure by which

0 and a ., were obtained by the computer program in Reference 1. For the

A ’\; a—

present program, the method given in Section 2 of this Appendix for the

A

determination of 6 and an has superseded this procedure. However, if the

user finds the earlier procedure useful in computation, it can be rein-

A i) ki UEdbe,

troduced into the present program.
From page 7 of Reference 44 and from Section 3 of DISCUSSION AND
EVALUATION (Equation 7b), the following condition obtains ac hydrodynamic

coincidence

- =2
w 8=k U 8=F—U_ 6
mn

We define PARAM = ZUG/Amn. Hence Won 6 = 7 « PARAM and

o = T_° PARAM _ T + PARAM _ PARAM
w
mn Kcﬂz _"‘.2+P_Z e E2%(11_)2]
) 2 b L a b

Now Uc is the convection velocity along x (i.e., flow) direction only.

Therefore at hydrodynamic coincidence, the trace wave speed of the free
plate bending wave is matched to the convection speed in the flow direction,

yielding a greatly increased response. Thus,

“mn m 2 2 12 m
Uc=.._._k =|<c21r[—a-)+® Ky W :
mn

so that (neglecting the quantity (n/b)2 in the expression for 0)

_ PARAM _ PARAM * a
- m  mU
- c
ca

)

Maestrello (Figure 21 of Reference 45 or Figure 18 of Reference 46)
has shown experimentally that the maximum vibratory response (i.e. maximum
mean square displacement) occurs at hydrodynamic coincidence where the tur-

bulence and plate modal wave numbers are matched for a constant frequency.
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Maestrello has also performed computations which show that the
condition 7 * PARAM = @on 0 = 1 represents the aerodynamic coincidence con-
dition for which maximum excitation of the panel occurs; see Figure 7 of
Reference 1. This figure also gives results for w - 0 <1 and W 6>1 .

corresponding to the conditions below and above coincidence, respectively.

Thus, selection of the value PARAM for a given plate, value of Uc

and mode number m will yield the corresponding value of 6. For PARAM = 1/7,

the value of O corresponds to the coincidence condition. Fer PARAM g 1/w,
the value of 6 corresponds to the condition below and above coincidence,
respectively.

In subprogram A, Maestrello chooses the magnitude of an according

to the wd region of the curve that interects him. For example, Figure 7 of

Reference 1 plots Yz(w) against wd. In the region wd = 107! to 1.0, he
uses amn/IO; however for w6 = 1.0 to 40, he uses C The Maestrello

methods for determining a - are given in Reference 1.

*
For W § << 1 the modal mean square displacement is inversely pro-

portional to the total damping and at the peak is inversely proportional to
the square of the damping. In this region the effect of damping on

Yz(w) is greatest. For Yin ® > 1 coincidence is not possible. In this

region the effect of damping on Yz(w) is much smaller, see References 45 and
46.
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Input Data, Computer Listing, Flow Chart, and Column Headings

TABLE 6

for Input Forms on Data Cards for Updated Mae<trello Pro-
gran A' Used to Compute Mean Square Displacement of Plate
with and without Fluid Loading

TABLE 6a
Input Required for Program A' (MTURAD)

(Units are given in foot-pound-seconds)

Data

Description

Format

Symbol Used
in Program

Unit

Flow Characteristics (Program A‘-an updated version of Subprogram A given
in Reference 1)

Ue

Broadband convection
velocity

F10.0

uc(1)

ft/sec

p2

HMean-square wall-
pressure fluctuations,
which vary with Uc*

F10.0

PB2*DPB2(I)

(1b/§t2)2

2
(Fu,)

6*UC
Quantity ( 0

squared where:

§* = boundary layer
displacement
thickness

U = free stream velocity

F10.0

FUCSQ

ft

KysKpaKg

Universal constants:
K] = 0.470

K2 = 3.0
K3 = 14.0

F10.0

AK

A],AZ,A2

Universal constants:
A] = 1.6
A2 = 7.2

A3 = 12.0

F10.0

AN

2

(*PB2 would

represent a unique value of p

enters the program (i.e¢., data cards) once only. Since p2 actually varies with
Uc’ a correction factor DPB2(I) is entered with every value of Uc‘ Thus

2

if p2 were_independent of Uc.

p- as a function of UC is accounted for by the quantity PB2* DPB2(I).

It
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3
Table 6a (Continued)
. Symbol Used i E
Data Description Format in Program Unit :
Plate Characteristics ’
h Panel thickness F10.0 11 ft f
"2 Square of total )
* :
L weight per unit area F10.0 Fu2 1b/ft %
Lengths of panel 3
a,b sides F10.0 Zup,YUP ft
o - . . :
Son® Smn Total damping ratio F10.0 DAMP !
oy Modal frequencies £
mn® “inn of the plate F10.0 OMEGA rad/sec F
Additional Quantities A
Range of plate First m mode number, 110 HLOW %J
mode numbers for last m mode number, 110 MupP E
which calculations | interval between m 110 DM E
are desired mode number, total F:
number of m's 1o MSTEPS 3
m < 20, MSTEPS < 20. E
Same information as 110 NLOW 3
previously described, 110 Nup Y
with respect to n 110 DN K;
mode numbers n < 30, 110 NSTEPS ;
NSTEPS < 10. ’
To run program A*
for m > 20, n > 10 the
size of the dimen-
sioned variables
1xvyZ,1vZ,1Y,62,G3,YY, -
TEMP ,OMEGA ,DAMP,FA,
FC,EIGEN and FUDGE
must be examined and
jncreased accord-
ingly
1 Time delay £10.0 TAU sec
Number of values
of Uc to be 110 KUC
calculated ]
LI Coordinates of a F10.0 X0,Y0 ft
point on plate at
which mean square
displacement and
; acoustic power are
. calculated
9 *T ]
o:ilawe1ght =§' =M. g where M' = total mass per unit area, Ue stress
. that the user submits inertial data in terms of weight per
: unit area and the computer program converts these data to
s mass per unit area.
% **Smn = Total damping ratio of plate in water; S = total damping
! ratio of plate in air, &mn = modal frequencies of plate in
: water; w_ o = modal frequencies of plate in air.
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Table 6a (Cortinued)

sz a2 475t
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L PNt Symbol Used .
ata Description Format in Program Unit
x',y' Any point on plate :
0o different from Xy Yy F10.0 XopP,YoP ft |
Calculated Output f
& o Value of eigen- E16.8 EIGEN -~ 4
’ functions of mean j
square displacement. P
A value of EIGEN is )
computed for each
mode (m,n) with
threg values of total
damping; 1/10 am'n;
am,n; IOam’n
*a n’am n| Values of total £16.8 FA(m,n,1) for| 1/sec
’ ’ damping associated computation;
with each mode A(m,n ,DAMP)
(m,n) in output
Vo]m n
> Volume under each \ . 2
VE.V eigenfunction £16.8 VoL n.
Triple integral of E16.8 IXYZ
Equation (B52) of I(m,n)
I(m,n) Reference 1;
integral of cross
correlation
2 Mean square displace- 2
Y (w) ment for values of E16.8 ANS in.”
1/10 am,n; am,n;
]Oam,n
*
ém n = Total danping for each mode of fluid loaded plate.
o = Total damping for each mode of plate in air.
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TABLE 6b
Computer Listing for Updated Maestrello Program A'
FTIN(T)
LGO.
|
PROGRAM MTURAD( INPUT »OUTPUT s TAPES=INPUT s TAPEG6=OUTFUT!?
c REORGANISED PROGRAM FOR COMPUTING TRIPLE 0 10
C INTEGRAL 20
c USING SIMPSONS RULE 30
COMMENT  TRANS = 0e0 MEANS NO TRANSDUCFR FFFFCTS IMCLUDFD
COMMENT THIS RUN OF MTURAD HAS SIMPLY=SUPPORTED EEREREE
CHEXNRURRRXEREQUEMCIES W//UT TRANSNDUCER RYPRRBERFREREERAFRARCRSEEERNEE RSN
DIMENSION VOL(20910) 40
DIMENSION F3(3)sANS(3) 50
DIMENSION IXYZ(105193)9IYZ(2010)5IY(10)5G2(4N1920)9G3{101910)
1YY(1019 sTEMP1(101)9G5(4000)
DIMENSION AK(3)9AN(3)sTITLE(7)
DIMENSTON OMEGA(20910)sDAMP(20410) 0100
DIMENSION FA(2041093)sFC(2091053)9EIGEN(2051093)sFUNGE(2051093) 0110
DIMENSION yC(20)snPB2(20) 0120
REAL IXYZsIYZs1Y 0130
INTEGER DMsDN 0140
READ{5913) TAUsTRANS
13 FORMAT(2F1049)
URITE(69301) TAU 0170
801 FORMAT(1H1,/5H TAU=E1546) 0180
READ(551212) I10PT
1212 FORMAT(IS)
YRITE(692213) 10PT
1213 FORMAT(1HOsSHIOPT=15)
READ(55103)HeXO0sY0sXOPsYOP9PR29AK sANs (TITLE(T ) 0I=1¢7)
103 FORMAT(12(F10.0/)s(7A17))
RITE(69201) (TITLE(I)91=157)
201 FORMAT(7A10)
WRITE(69203)PB2 sAK9ANIXO YO
1X0P»YOP 250
203 FORMAT(1Xs8H RHO=RAR 9H SQUARFD=E16eRs
24HOK1=E16894H K2=E164854H K3=E1648/ 0290
34H A1=E164894H A2=E164894H A3=E1648/ 0300
44H XO=E164894H YO=E164835H XOP=F1648+5H YOP=E1648) 0310
READ(55102) KUCs(UC(T)sDPR2II) eI = 1sKUC) 0320
102 FORMAT(110/(2F1040)) 0330
WRITE(69204) (UCLI)eDPB2(T)sI = 1,4KUC) 0340
204 FORMAT(1HOTX2HUC13X4HNPR2/{1H 2516481 ) 0350
99 REAN(551) ZUPsYUP sHsMLOU sMUP sDMsMSTEPS sNLOW s NUP sDN s NSTEPS 0360
1  FORMAT(3(F1040/)5(4110)) 0370
WRITE(692)MLOWMUP9DMeMSTFPSINLOM 4NUP o DNy NSTEPS 0380
2 FORMAT(OHOM FROM I594H TOIS9TH  Pu=IS5, 0390
112H A TOTAL OF I597H STFPS/9H N FROM 15 0400

24H TOIS597H DN=15912H A TOTAL OFI5¢7H STEPS) 0410
WRITE(69202) ZUPsYUPsH

0420
202 FORMAT(3H A=E164395H B=E164895H H=F1648) 0430
READ(59101) ( (OMEGA{MsN) sM=MLOW s MUP s DM) o N=NLOW sNUP 9 DN)
101 FORMAT(F10.0) 450
IF(NUP +GTe 10) WRITE(69888)
888 FORMAT(1HO,78HDIMENSIONS FOR G3s1YYsTFMP1 ARE EXCRFDFDe CHFCK FQUA
1TION FOR KUP ON CAPD 13604)

WRITE(6+205) ( (OMEGA(MaM) osMSMLOVMUP 9OM) o 0460
IN=MLOY s NUP sDN) 470
205 FORMAT(THOOMEGA=/(8E16481}) 0480

IFITRANS«EQs"e Q) GO TO 17
READ(541477) RDEL
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Table 6b (Continued)

1477 FORMAT(2F1040)

DO 1453 J = 193

1453 AK(J) = AK{J) * SQRT(R/NEL}

17
7

DO 7 N=19NUPsDN

DO 7 M=1sHUPINM

DAMP (MsN)=,01

READ (551041 ((DAMP(MeN) sM=MLOWsMUP 9DM) sN=NLOWINUP sDN}

104 FORMAT({F1040}

206

WRITE(6+206) ((DAMP{MgN)pM=MLOMsMUP9NMY)
IN=NLOWsNUPsDNY)

FORMAT {6HODAMP=/ (8F1648)}

N1=8

READ(59207)THETA

2737 FORMAT(F1045)

8

43

44

45
10

A=2UP

B=YUP

BT = AN(1) 7 AK{1}
B8=AN(2)/AK (2}
BI9=AN(3)/AK(3)
Cl=440/(A%R)
C2=3414159265

C3=1e/C2

C4=C2%C2

C6=C4/(A*B)

DO 10 M=MLOWeMUP 9DM

DO 10 N=NLOWsMNUP DN
XM=M

XN=N

X0=A/24

YO=B/2s
IF{M=-M/2%2,NEeC}GO TO 43
XO=A/20=A/{%XM%24)
IF(N=N/2%24,ME«0)GO TO 44
YO=B/2¢=R/(XN*24e)

XOP=X0

YOP=YO

DAMP {MsN}=DAMP (MgN)} /10
D0 45 L=193
FAIMINSL)=L Y AP (MaN) /24 *OMEGA {MaN)
FA(MaNILI®FA(M9NIL)*045
FC(MsNsL)sOMEGA (MgN) /FAIMsN L)

FUDGE{MoNoL ) SXMEXNROMEGA (MoN) % (FA(MaNoL) %22 +OMFGA{MaN)#%2
EIGEN(MsNsL)=C1/FUDGE(MsMoL) #SIN(XME¥C2XXN/AY XS IN(XNRC2#YO/B) #

1SIN(XM#C2%XOP/A) #SIN(XN*C2¥YOP/B)
DAMP (MsN)=DAMP (MaN) %10

CONTINUE

WRITE(691003})

1003 FORMAT(33HOXO=XOPsYO=YOPsAND THEY VARY WITH

48
47

1174 THE MODE NUMBERS)

DO 46 L=193

WRITE(G693) ({EIGEN{MeNsL ) sMsMLOWIMUP oDM) s N=NLOWsNUP 9DN)
FORMAT ( THOEIGEN=/(8E1648))

CONT INUE

DO 47 L=193

WRITE(6948)( {FA(MNIL) sM=MLOWIMUP sDM) o NSNLOW 9 NUP DN}
FORMAT.{ 13HOA(MoNsDAMP) =/ (8E1648))

CONT INUE

CALL VOLUM(AsB ¢MLCWIMUP s DMNLOWSNUP sDNsVOL)

ICOUNT=1

REAND(59225) FUCSQ
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500
510

530
0540
560
0560
570

600
610

690
700

720
730
740
770
780
790
8no
810
820
830
0840
as0
0860
870
880
89
0900
910
0920
0930
0940
0950
0960
0970
0980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
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Table 6b (Continued) l
3
225 FORMAT{F1040) B
3 DO 777 KU=1.KUC ]
WRITE(69303}UC(KU) 3
303 FORMAT(4H UC=9E1648) 3
B1=AK{1)##2%FUCSQ 620 3
B2=AK( 2)##2#F1CSA 630 2
B3=AK( 3) #%2%FUCSO 64N B
B4=AN{1)*AK (1) *FUCSQ 650 A
B5=AN{2)*#AK(2)*#FUCSQ 660 g
, B6=AN(3)#AK(3)%FUCSQ 670 §
DO 778 M=MLOWsMUP DM 1170 ﬁ
5 KCOUNT=1 g
READ(59222)FW2 3
666 FORMAT(F1042) &
- C5=(ARB#PB2)/ (2 ¢ ¥C4*FU2% (BT+B8+B9) ) -4
C5=C5%3242%3242%124%124 0760 2
CONST=C5*DPB2(KU) 1140 3
WRITE(69304)CONST %
304  FORMAT (12¢s7H CONST=9E1648) £~
XM= 1180 ;
WRITE(6+780) THETA
780 FORMAT({1HO36HTHETA=9E1245) -
IF(THETA «GTe 100} GO TO 999 -
) XLOW=04 1240 -
: DX=1e/(20e*OMEGA(MINUP )/26/3414159265)
: 1UP=54 /DX*¥THETA+1 6
. IF(IUP +GTe 3599) TUP=3599
o IF(TUP~TUP/2%2) 5N14509,501 1270
4 500 IyP=IUP+1 1280
501 IUP = TUP +400 1290
: 502 DX=THETA/40e S -
i ZLoW=-A 1310 BT )
T JUP=Z0*M+1 1320
g 2Jup=Jyp=1 1330 “« .
3 DZ=24%A/ZJUP 1340 .
i YLOW=0, 1350 %
< KUP=10%NUP+1 1360 2
: YKUP=KUP=-1 1370 3
DY=B/YKUP 1380 :
PO 11 I=1,s1UP 1390 q
GS(1)=1, 1400 %
IF(1eEQs4011G0 TO 11 1410 ¥
IF{1eNEslsANNeI+NESTUP) GO TO 510 1420 3
GO TO 511 1430 3
510 G511)=G511)%2, 1440 £
511 IF(I~1/2%2.EQeC) GO TO 513 1450 e
GO TO 11 1460 :
513 G5(1)=G5(1)#*2, 1470 H
11 COMTINUE 1480 /455,
Z=Z2L0u 1490 R
PO 21 J=1,JuUP 1500 |
XAM=M 1510 %
D1=XM*C2%#Z/A 1520 © A
D2=COS (N1} 1530 R
G2(JsM)=N2+14 /IXMEC2 ) # (SIN(ARS (D1} )=ARS (D]} 1540 S
1#02) 1550 : -
IF{JeNEaleANDeJoNEQJUP) GO TO 520 1560 g
GO TO 521 1570 R
520 G21JsMI=G2{JeM) %2, 1580 oo )
521 IF(J=J/2%2.,EQe01G0 TO 525 1590 S
1
| i
k!
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525
21

530
531

533

30
31

39

40

630
632

50

60
70

90

100
110
120

130
1001

Table 6b (Continued)

GO TO 21
G2{JsM)=G2(JesM) *2,
2=2+DZ
Y=YLOY
DO 31 K=1sKUP
NO 30 N=NLOWSNUP ¢DN
XN=N
D3=XN¥C2%Y/5
D&=COS(D3)
G3(KoN)=DA+) e Z7(XNRC2)R(SINID3)=D3¥DA)
IF{XeNEeleANDeKeKFsXUP)} GO TO 530
GO TO 531
G3(KsN)=G3{KeN)¥2,
IF(K=K/2%2.,EQsD} GO TO 533
GO TC 30
G3(KsN)=G3(KXoeN)*24
CONTINUE
Y=Y+DY
Y=YLOW

DO 39 K=1.KUP
YY(K)=YRY

=Y+DY

DO 40 L1=1,3

DO 40 N=MLOWsNUP sDN
IXYZ(Ns1lsoL1)=0,
KAPPA=0

=XLOW

DO 160 I=1,tUP

IF({TAU +EQe060) GO TO 630
El = UCIKUY*(TAU=X)

GO T0 632

El = UCIKU)=X

CONT INUE

DO 50 N=NLOYeNUP DN
IYZ(MeN)=0e

Z=ZLOW

DO 120 J=1,JUP
E2=(Z~-E1)*(Z~E1)

E4=81+E£2

ES5=R2+E2

E&=R3+E2

DO 60 K=1sKUP

TEMPLIK)=B&/ (E4+YY{IL))+B5/(ES+YY(K) }+R6/(E6+YY(K))
DO 70 N=NLOWsNUPsDN
IY(N)=0e

DO 90 K=1sKUP

DO 90 N=MLOWeNUPsDN
IYIN)=IY(N}+G3 (KoN)*#TEMP1(K)
DO 100 N=NLOWesNUPsDM
IYIN)=IY(N)*DY/3e

DO 110 N=NLOWsNUPsDN
TEMP=1Y(N)
IYZ(MoNI=TYZ(MaNI+G2 (I sM) #TEMP
2=2+4D2

DO 130 N=NLOWsNUPsDN
IYZ(MaN)=IYZ(MIN)®DZ/30e
CONTINUE

DO 140 N=NLOWsNUPsDN
TEMP=1IYZ(MsN)

XM=M

140

1600

1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
176y
1776
1780
1790
1800
1810
1820
1830

1869
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000

- 2010

2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
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Table 6b (Continued)

Sl 1AL IS ST B e R b g

XN=N 2210
F1=XM#XN#C6 2220
F2=0MEGA (MsN) *ABS (X) 2230
DO 140 L1=1y3 2240

: F3(L1)=FA(MsNsL1)#ABS(X) 2250

¢ IF(F3(L1)eGTe5¢)GO TO 140 2260

; F6=F1%EXP(~F3(L1))*(SIN(F2)4FC(MsNsL1)*COS(F2) ) 2270

< IF(X ¢GTe Se*THETA) GO 7O 137

H IF(TAUSEQeOs0) GO TO 634 2300

B G6=EXP (=ABS( (TAU=X)/THFTA))

 ° GO TO 636 2320

634 G6=EXP(~ABS(X/THETA))
636 CONTINUE 2340
G1=2e¥F6#G6*G5( 1) 2350

IXYZ(Ns1l sL1) = IXYZ(Nsl oL1) + GI*TEMPEDX/3e
137 CONTINUE

3, %% b AT FeRT T

2370
140 CONTINUE 2380
i IF(KAPPASNE«0)GO TO 169 2390 :
N IF(1«NEe401)GO TO 160 2400 B .
- KAPPA=1 2410 .
: DX=1e/ (204 *OMEGA (MsNUP )/24/3¢14159265) -
GO TO 1001 2430 :
160  X=X+4DX 2440 .
DO 601 N=NLOWsNUPsDN 2450 T
IF(THETA «GTe .100) GO TO 999 .
WURITE(69141) MaN 2470 -7
141 FORMAT(3HIM=1533H N=15//45X6HI (MsN) 38X s18HI (MeH)%F IGEN¥CONST// 2480
12XSHTHETA4X11HOMEGA*THETA6X1 1HDAMP=1 ¢ /104 5X THDAMP=1 o OXBHNDAMP=1(0s 2490 -
28X11HDAMP=14/1045XTHNAMP=1 ¢ 9XBHNAMP=104 ) o
00 602 L2=1,3 2520 o
602 ANS(L2)=IXYZ{ Nsl SL2I*ETGENI{MsN9L2) %CONST 7 .
T=THETA*OMEGA (M sN) : Tl
WRITE(69142)THETA sTolIXYZ( Nel st2)9L2=193)9(ANS{L2) el 2u143) 2550 -]
142 FORMAT(1X9F9e69E146696E1648) 2570 oo
IF(IOPT +EQe 0) GO TO 600 PR
IF(N oEQe NLOW) THOLD=ANS(2) T
IF(N «EQs NLOW) GO TO 600 Do on
IF(ANS(2} «EQe THOLD/10e oORe ANS(2) «GTe THOLD/10e) GO TO 600 . -
YRITE(69998) : e -3
998 FORMAT(1HO,72HMODE IS MORE THAM 1710 RELOM VALUE OF Y*#2 NF OMFGA : S
1AT CORRESPONGING UCe) . S -3
GO TO 778 : ; - A
600 KCOUNT=KCOUNT+1 d T -
IF(KCOUNT «GTe NSTEPS) GO TO 778 ¢ ’ 2
READ(545222)F142 , s
C5=(AXBRDPIT2) /(2 o #CH¥FY2% (RT+BB+B9) ) . 1
C5=C5%32¢2#%2412 4 #%2 ’ :
CONST=C5%*DPB2(KL}) :
601 CONTINUE NS
778 CONTINUE 4
779 ICOUNT=ICOUNT+1 3
IF{ICOUNT «GTes KUC) GO TO 777 ~%
READ(5+225) FUCSQ - 2
777 CONTINUE 2600 B
999 STOP 2610 :
END 2620 ¥
SUBROUTINE VOLUM(A¢BsMLOWsMUP sDMsNLOW sNUP ¢ DN VOL ) 2640 n
INTEGER DMeDN 2650 .
DIMENSION VOL(20+10) 2660 ;¥
P1=3414159265 2670 ;
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= Table 6b (Continued)
N - DO 10 N=NLOWsNUP DN 2680
E XN=N 2690
DO 10 MsMLOWsMUP sDM 2700
e XM=M 2710
A VOL (MsN) =0, 2720
IF{N=-N/2#2.EC.0)GO TO 19 2730
E: i IF(M-M/2%#2,EQe01GO TO 10 2740
B i GAMMAN=(2e#XN+1e)#P1/26 2750 .
- GAMMAM= {2 %XM+]1 4 1%P1 /20 2769
. , XKNsSIN(GAMMAN/2¢) /SINH(GAMMAN/24 ) 2770
T : : XKM=SIN(GAMMAM/2 ¢ ) /STNH{GAMMAM/ 24 ) 2780
= VOL (MsN) 2164 #A%B/GAMMAM/GAMMAN/ (1 4 #XKM) %144 o 2790 -
= - 1701 +XKNIHSINIGAMMAM/ 20 )2 SIN(GAMMAN/20 ) 2800
3 o 10  CONTINUE 2810
3 WRITE(6920) { {VOL (MsN) sM=MLOW sMUP s DM) sM=NLOWSNUPsDN) 2820
e : 20  FORMAT(28HOVOLUME UNDER EIGENFUNCTIONs// 2830 3
E: - . 1(8E1648)) 2840 3
3 - RETURN 2850 z
S A END 2860 >
- : FUNCTION SINH (X) 4
g oL SINH=04S*{EXP (X )=EXP (~X)) 5
. v RETURN %
e : END e
e - 323 3
3 d

Ry,
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TABLE 6¢
Flow Chart for Updated Maestrello Program A'
® ;
©) CALCULATE
READ AND WRITE CALCULATE Ml :
START . abp g
——— INPUT | —end VARIABLES USED | o) o :
DATA INSIDE LOOPS aniN?y d
yay ’(v ;.
3
® # §
DOUBLE DO 1,0OP ON 10
m and n Vary §
X0 = /2, Y0 - B/2 I*
-as2- A/(e.)) k
i
YO < B/2 - B/2 n)
DO on 45
Sot up

for 3 :

damps !

1—0' 1,10 :

CALCULATE for each damp H

PmalFY) Banlz’y’) 5

2 mn m.u [a.uz + "’nnz] @ - ; y
45_CONTINUE WRITE :
@] Valuos just
10 CONTINUE Calculated :
SUBROUTINE VOLUM .
Calcylates 1 perm,n -
16 ab 144 i (2"14 l)u . (2m l)n
a aimn 2 2 s 2 2
Vol . =

« L . n
sin(2m+ l)§—| sin (2n+ l)-2-
+ 1+

" a|_
(2»4»1)3-(2!” l)vé- 1

sinh (2m+ 1)%_] sinh (2n+4 1)%

WRITE answers
RETURN

—

For convenience, fluid-loaded parameters (represented by barred quantities) are not
distinguished from corresponding parameters for the plate in air. Thus, for the fluid-loaded
plate we must think of certain parameter symbols being converted as follows: ©,

+ s
- s n mn
-+ ES
% %m® °mn

i w__ in the water case, etc.
Smn, ie. w is really w int ater case,
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Table 6c (Continued)

1COUNT=1 Set counter for reading

FUSCQ
S READ /
¥ Fucse _/

00 777
(VARY U.)

WRITE

(=

!

D0 778
(vary m})

KCOUNT=1 Set counter fir reading FW2

READ FW2

CALCULATE
C5, CONST

Set upper and lower Timits for x,y,z
integrals; Determine number of steps
for each integral and the step size

for each

144
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Table 6¢ (Continued)

CALCULATE

Coerficients
for Simpson's

rule

- st e

4

Calculate function of z values

a

Set variable of integration = lower limit on z

1 .
f(z) = I cos 22 4 ~ [sm II-"%EI - I?I cos (m_"nz

-a

a

mnw

a

)

ibn et | YA B, g0 Y [ﬁ,w{(l“\n\x«.. T Py

t

Y Set variable of integration = lower limit on y
Calculate function of y values

f(y) B Ib f(z) [cos 2:_)' + 7111—7' [sin (I%y)- 1_1:_)' cos (‘ﬂ)]] dy
0

b

l

Set up and initialize to zero the
array for summing on outside
integral
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Table 6¢c (Continued)

x Set variable of integration = lower limit un x
Calculate function of x varying y and z and sum
up parts previously calculated.
0
4 -a xT. “an i
f(x) = f(y) mn - € mn [sm (wmlxl) + a—m- cos (mm
o

i)l 3 ! ;
v=1, 2 (1} 2. 2 ’
ko (F‘ﬁ;) ((z—uc (-r-x)) +y)

]

DO 601

(n varies)

!

WRITE

Answers of
triple integral
IXyz

COMPUTE AND
WRITE

ANS=IXYZ*
EIGEN * CONST

146




Table 6c¢ (Continued)

YES

NO

Set tolerance
for ANS(2)

WRITE error
message for
exceeding
tolerance

tolerance
exceeded

KCOUNT= j
KCOUNT + 1

YES

NO

READ FWZ
AND
CALCULATE
C5, CONST

t 601  CONTINUE
778  CONTINUE ==

S KT AR T o

v
R

X S T TR R PN R R (Y AN
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Table 6¢ (Continued)

YES

ICO!
ICOUNT + 1

ReaAD
FUCSQ

l

777 CONTINUE —=

l
}

D,

C

END

148
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TABLE 6d

Column Headings for Input Forms on Data Cards

TAU 10 TRANS 20

o

PLATE 10
H

(-]

i

X0

[=-]
(=]

YO

!
L

XOP

o

YOP

L,

|
|

PB2

o=}
(=]

. AK(1)

AK(2)

AK(3)

!
i
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Table 6d (Continued)

AR(1) 10

‘ __AN(2) 10

AN(3) 10

. TITLE 60

KUC 10

~ ——
uCc(1) 100PB2(1) 20

- P 10 NUMBER OF CARDS NEEDED FOR U_, DPB2 ARRAYS IS EQUAL TO KUC

e e —————

=
s~ T

2 . —
o

YuP 10

A r
39
=
2 e ——
2 ,
1 .

H 10

P TR
RN

TN
aserk ;
NSRS

e}

N TG

MLOW 10 MUP 20 DM 30 MSTEPS 40

eSS AR

£

150




NLOW 10 NUP 20 DN 30NSTEPS40

Table 6d (Continued)

80

OMEGA(1

»1)10

80

—

——— -

OMEGA(2

,1)10

80

m———

————
WITH THE ORDER OF CARDS (1,1),(2,1),...(M,1),(1,2),...(M,2)...,(1,N),..(M,N) TO COMPLETE

THE OMEGA(M,N) ARRAY

R 10 DEL 80
DAMP(1,1) 10 80
———
e
WITH THE ORDER OF CARDS (1,1),(2,1),...(M,1),(1,2),..(M,2)...,(1,N),..(M,N) TG COMPLETE
DAMP(M,N) ARRAY
(L ———
m————— "
FUCSQ(1)10 80 ;
Fi2(1) 10 80
.
FW2(2)10 80
——
e \
THE NUMBERING OF FW2 IS DETERMINED BY THE NUMBER OF (M,N) MODES
FUCSQ(2)10 80
p—————
e ———
—————
THE NUMBER OF FUCSQ IS DETERMINED BY USER.
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Program B' f

A description of Program B' (Option 3) is given in Tables 7a-7d.

TABLE 7

Input Data, Computer Listing, Flow Chart; and Column Headings
for Input Forms on Data Cards for Program B' (Option 3)
Used to Compute Added and Total Weight per Unit Area and
Modal Frequencies of Fluid-Loaded Plate -

LA DA AL

TABLE 7a

Input Required for Program B'

Variable s .
Hame Format Description Unit
WP F10.8 Weight per unit area of plate 'lb/ft2 .
RHOF | F10.4 | ueight density of fluid 1b/ft>
RHOW | F10.4 | Height density of plate b/t
H F10.4 Panel thickness ft
RL1 F10.4 Length of panel side, x-direction ft
RL2 F10.4 Length of panel side, y-direction ft
For a = 1, fluid loading is on one side
of plate
ALPHA F10.4 o = 2, fluid Toading is on both sides |
of plate
MLOW I10 Lower limit of M mode m < 20
Mup 110 Upper Timit of M mode _
NLOW I10 Lower 1imit of N mode n <10
NUP 110 Upper limit of N mode )
OMEGA(m,n) | F10.2 gggay for modal frequencies of plate in rad/sec
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TABLE 7b

Computer Listing for Program B'

BN o
Ao AL e n A oL AT S A pg AR T Rt s 2 0 RN

$18JOR MAPs FI0OCS
SEXECUTE 18J08

S$IBFTC OMEGA
DIMENSION OMEGA(20910)sPOMEGA{20510) sBOMEGA{20910) (20510}
READ(5915)wP

- 15 FORMAT(F10.2)

READ(5520) RHOF sRHOWsHIRL19RL29ALPHA

20 FORMAT (6F1044)
READ (59 1)MLOW s MUP sNLOW 9 NUP

1 FORMAT(4110)

READ(5910) { (OMEGA(MsN) oM=MLOWsMUP § ¢ N=MLOW 9 NUIP)
10 FORMAT(F1044)

C

C METHOD 1

c - 13
WRITE(6940)

40 FORMAT(1H110Xs8HMETHOD 1}
0=0e¢

DO 244 L=1+4

DO 25 M=MLOWsMUP

DO 25 N=NLOWsNUP
FKS2=((FLOAT(M}*341416) /RL1}%%2+( (FLOAT(N)*#341416!/RL2)#%#2
FKS=SORT(FKS2)

W(MeN}=(ALPHAXRHOF )/ {FKS=SQRT (1 e=0*%*2}

FW=VP%(1e+( (ALPHA*RHOF ) 7 {FKS*/P¥SQRT(14~Q%%2)}))
POMEGA (MsN) =OMEGA (MsN)

BOMEGA(MsN) =POMEGA(MoN) %*SQRT{1e/(1e+{ (ALPHAXRHOF } / {RHOVXFKS*H*SORT

1(1,=Q%%2})1))

WRITE(6930)MsN»Q )

. 30 FORMAT(1HO 92HM=91292X92HN=912942X92HQ=9sF542)} 5
WRITE(6435)FKS2 sFKSeFsBOMEGA(MeN Y st {MyN) ?

35 FORMAT (1HO 95HFKS2=9F12 492X 94HFKS=9F12e4 92X 93HFW=9F12e4 32X 9 THROMEG

1A=9F126492X92HY=9F120e4 )
. 25 CONTINUE

e, T A A et A s

Vo adwb w

0=Q+e3
244 CONTINUE
sTOP
END
;
E 153 %
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TABLE 7¢

Flow Chart for Program B*®

<>

DO 244
L=1,4

DO 25
M = MLOW, MUP

DO 25
N = NLOW

CALCULATE
WEIGHT PER
UNIT AREA

i

CALCULATE
TOTAL
WEIGHT

i

CALCULATE
PLATE MODAL
FREQUENCY IN
WATER

25 CONTINUE
244 CONTINUE

STOP
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TABLE 7d

Column Headings for Input Forms on Data Cards

WP 10 80
|

— e
RHOF 10 RHOW 20 H 30 RL1 40 RL2 50 ALPHA 60 80

X

MOW 10 MUP 20 NLOW 30 NUP 40

OMEGA(1,1) 10

With the order of cards (1,1}, (2,1) ..... m,1), (1,2) ..... m,2) .....
(1,n) .... (m,n) to complete OMEGA (m.n) array.
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Program C'

This program yields a solution for clamped and simply supported
plates corresponding to the Warburton Method as described in Appendix 1 of
Reference 3. Warburton treats the frequency parameter subscripts m,n as
the number of nodal points along the plate length and width respectively.
However, most other authors treat m,n as the mode numbers along these di-
mensions (or define it for the opposite dimensions). Thus (m = 2,
means the 1, 2 mode containing 2 nodes along x and 3 along

n = S)Warburton

y whereas (m = 2, n = 3) means the 2, 3 mode containing either 3 nodes

along x and 4 along y orpihizzes along x and 3 along y depending on the
definition of m,n with respect to the x,y coordinates. To avoid confusion
and for compatibility with most investigators, the program assigns the modal
(not nodal) meaning to m,n for all computations.

In computing the simply-supported plate frequencies by the Warburton
Metl:od the value of SPEC must be 1.0. In computing the clamped-clamped
piate frequencies by this method any value of SPEC other than 1.0 is used.

In all computations, the frequency f (Hertz) is obtained as the pro-
duct of the frequency parameter Am,n (or am’n) and a factor. For the

Warburton computations the factors are expressed as

where the mass density Om = RHOW/G
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TABLE 8

Input Data, Computer Listing, Flow Chart, and Column
lieadings for Input Forms on Data Cards for Program C'
(Warburton Program) Used to Compute Natural Frequencies

of Simply Supported and Clamped-Clamped Plate in Vacuo

TABLE 8a

Input Required for Program C'

Variable Name { Format Description Unit
NCASE I5 Number of cases --
Modes in x-direction
M I5 m< 20 o
Modes in y-direction .
N 5 1lncto
Plate dimensions, .
A F12.6 length in x direction n.
Plate dimensions, .
B F12.6 length in y direction m.
H F12.6 Plate thickness in.
E E16.8 Young®s modulus 1b/in.2
SIGMA F12.6 Poisson's ratio --
RHOW F12.6 | MWeight density of plate | 1b/in.>
Acceleration due to . 2
G F12.6 gravity in./sec
Option for obtaining fre-
SPEC F10.0 quencies of either simply

supported or clamped-
clamped plate
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TABLE 8b

Computer Listing for Program C'

SEXECUTE 18J08
$18J08 MAPSF10CS

SIBFTC WARS

c

(2 Xa¥aY¥aYaXaXaXaXaXs)

RESR AR RS SRR SHH R RS H NS R R AR R RS S H R R R R S SRR R R R NN R AR A R R

COMMON MoNsA9BIHIE9SIGMA sRHOMPT oG
M = MODES IN X DIRECTION
N = MODES IN Y DIRECTION
LENGTH IN X DIRECTION
= LENGYH IN Y DIRECTION
= PLATE THICKNTSS
- YOUNGS MODULUS
SIGMA =~ PJISSONS RATIO
RHOW = PLATE CENSITY
G = ACCELERATION DUE TO GRAVITY
PTITY PP DT PR XY PRI LT FTVI I PERTYTTITY VPR T Y I P T LY T 9T 13
PI=3,1415927
READ(S+ZINCASE
DO 800 Ls1ysNCASE
READ(S+2) M 9N
READ(5+3) AsBsH
READ(5 34 *E9SIGMA sRHOW G
2 FORMAT(215})
3 FORMAT(3F12.6)
6 FORMAT(E1384893F1266)
RHOM=RHOW/G
10 CALL WARS
S00 CONTINUE
sSTOP
END

mIom>»

$SIBFTL WARBER

SUBROUTIN: WARB

REAL LAMBDASJX9JY oK oKP

DIMENSION OMEGA(20+10)

DIMENS!OM FREQ(25910)9 GX(100)sHX(100)eIX(10039GY (100} sHY(100) s
1 JYt100) )
. COMMON MasNsA9BsHIE9SIGMAIRHOMPTI 46

READ(59111)SPEC

111 FORMAT{F10.0)

A2uARA

B2=f*8

AGuA28A2
Bt=B2wB2
MP1sM+]

NP1s=N+]1
IF(SPECeEQs 140} GO TO 510
GX{1)=1.
HX{1)=1,
JX{1)=1,
GY(1)=1,
HY{1)=1,
JY(1)=1,
GX{2)=14506
HX(2)=14248
JX(2)=14248
GY(2)=14506
HY(2)=14248
JY{2)=14248

DO 100 Ml=3¢MP1

GX{M1)=FLOAT(M1)=0e5
HX(M1)={ (FLOAT(M1)=eB8) #u2)0{14=20/{ (FLOAT{M1)=e5)#P1})
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Table 8b (Continued) ]

IX(MY $=HX (M1 )
100 CONTINUE ;
DO 150 Nl=3¢NP1 :
GY(N1)=FLOAT(N1)=s5 ¥
HY(N1)=( (FLOAT(N1)=e8) #22) #{10=20/! (FLOAT(N1)=e5)#P1)) :
JY(N1)=HY(N1)
. 150 CONTINUE
GO TO 590
510 DO 500 M1 = 1sMPi
GX{M1) = FLOAT(M1) = 140
. HX{M1) = GX(#H1) #%2
$00 JX(M1) = HX(41)
DO 550 N1 = 1sMP1
GY(N1) = FLCAT(N1}=10
HY(N1) = GY:N1)w#w2
550 JY(N1} = HY(N1)
590 WRITE(6920)A9BsHE sSIGMA »RHOM
20 FORMAT(1H113H A=9FTe293H B=oFTe293H HRoFTe493H E=9Elleks7TH SIGMAE,
1 F7e296H RHOM=9E11e4)
WRITE(6919)
19 FORMAT(//23Xs 22H WARBURTON FREQUENCIES)
IW =}
DO 400 N2:2sNP1
N21sN2=1
WRITE(6921)N21
21 FORMAT(3F N=¢12}
WRITE(6952)
22 FORMAT (9:0s1HM» 15X s6HLAMBDA 916X 95H FREQ)
DO 300 M2=2sMP1
M21=M2-
XLAMSQ=(:X (M2 ) #GX (M2) #GX (M2 ) #GX (M2 )+ {GY (N2 ) #GY (N2 ) #GY (N2 ) #GY (N2)
1 #A&L}/BL4+(26#A2/B2)%(STGMARHX (M2) #HY (N2)+(1e=STGMA ) #UX (M2) %Y (N2)}
LAMBDA= 50RT ( XLAMSO)
FREQ(M2sN2)=( (LAMBDA®H®PI) /A2) #SQRT(E /048 #RHOM® (1 s=STGMAR%2) Y )
WRITE(€923)M21 sLAMBDA s FREQ{ M2 sN2)
OMEGA(}2oN2) = 24 # PI # FREQIM29N2)
. WRITEC(930) OMEGA(M2sN2) 9 Iw
23 FORMAT (5X91595XsE15e895X9E1548)
WRITE(3430) OMEGA(M2sN2)+ W
30 FORMAT(1XsF1544965X915)
IERES!
300 CONTINUE
400 CONTIMNUE
RETURN
END

P th Ay
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Table 8c (Continued)

SUBROUTINE WARB

READ IN
Value for
SPEC

]

e
ki
§
p
F
B
4
3
3
;
A
E
g
3
P
5
3
3
3
2
3
H
A
%
bt
2
2
s
k4
§
ps
&
%
3
:
L&
=
c
-2
3
4
&
3
2
%

Setup coefficients for 4
boundary condition expression
of clamped plate

YES

Setup coefficients

for boundary condition
expression of simply
supported plate :
functions

WRITE E
A,B,H,E, SIGMA, }=— b
RHO ’

1
R %
; N
[ 4

COMPUTE .
Frequencies :
without fluid
loading

l

WRITE
Frequencies
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80
80

80
52

36

40

H
RHOW

28

24

TABLE 8d
Column Headings for Input Forms on Data Cards for Program C'

SIGMA

)
o
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The input data and results are labeled and printed out for each

value of NCASE. The mode numbers (m,n), nondimensional frequency A, and
final frequency f (Hertz) are given.

) gty ag PN s i et 20 ot

Program D!

This program calculztes turbulent boundary layer thickness for an
arbitrary body of revolution.

~ <7 Lk . »
SX.) , btV s ¢

TABLE 9 .

Input Data, Computer Listing, Flow Chart, and Column
Headings for Input Forms on Data Cards for Program D' -
(Brown Program) Used to Compute Turbulent Boundary Layer Lo
Thickness for an Arbitrary Body of Revolution ] I<~i

§s ~
T
N S T L ot

TABLE 9a ) ;‘ T B

Input Required for Program D' ;;} ,:?",fﬁ'

Variable Name Unit Format Description

N - 15 Number of pairs of data points
describing the body of revolution

ft F12.8 Length of the body of revolution

- F12.8 Constant to which all of the
data points are normalized -

T B il
o .
R . . - S

X(1) ft 6F10.5 | Axial distance along the body ]
Y(1) ft 6F10.5 | Radial distance of the body i
from the axis i -
) L - I5 Number of speeds .
U(K) ft/sec | 6F12.8 | Speed i .
163 <
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TABLE 3b
Computer Listing for Program D'

MANGLER INTEGRALS .

Re WILLIAM BROWNs INITIALS CWCs MSRDC CODE 942¢ PHONE 227-1252
THIS IS A PROGRAM FOR THE CALCULATION OF -THE TURBULENT SOUNDARY
LAYER THICKNESSs DELTAe IT USES A RELATION AFTER MANGLER WHICH
RELATES THE DISTANCE ALONG THE AXIS OF A BODY OF REVOLUTION TO
THE DISTANCE ALONG A FLAT PLATE AT WHICH THE BOUNDARY LAYER THICK=-
NESS IS IDENTICALe THE BOUNDARY LAYER THICKNESS 1S THEN CALCULAT-
ED,USING A RELATION DUE TO GRANVILLE (DTMB REPORT NOs 1340)e¢ THIS
EX‘RESSIO" 1S BASED ON FLAT PLATE DISTANCE AND FLAT PLATE REYNOLDS
NUMBRER.

688 COORDINATES' (REFERENCE=GENERATING FUNCTION==BRIAN BOWERS)

ODIMENSIOK X{500)s Y(500)s X2Z(500)s YZ{5C0)s XZR(500)s YZR(500)s YZ
1R2(500)s XBAR(500)s RXBAR(500915)¢ DELTA(500s15)s U115) ’

18

19

10
8
11

13

12

READ IN THE CONSTANTS Ns Ry AND 2

N = THE NUMBER OF PAIRS OF DATA POINTS DESCRIBING THE BODY OF
REVOLUTIONs

R = THE LENGTH OF THE BODY OF REVOLUTION.

Z = THE CONSTANT TO WHICH ALL OF THE DATA POINTS ARE NORMALIZEDe
READ IN THE DATA POINTS DESCRIBING THE BODY OF REVOLUTIONs X(1)
= THE AXIAL DISTANCE ALONG THE BODYe Y{(I) = THE RADIAL DISTANCE
OF THE BODY FROM THE AXISe

READ(591} No Re 2

FORMAT (185, 2F12,8)

READ(592) (X(1)s I = 19 N)

READ{592) (Y{I}s I = 19 N}

FORMAT (6F10.5)

READING IN THE NUMBER OF SPEEDSs Lo

READ (55 18) L

FORMAT (15}

READING IN THE SPEEDs U(K)s IN FEET PER SECONDe

READ (59 19) (U(K)s K = 14 L}

FORMAT (5F1248)

SETTING X(1) AND Y{1} EQUAL TO ZEROs AND SHIFTING ALL OF THE DATA
POINTSs IF NECESSARYe

IF (X(1)) 159 89 O

M=N+1

TEMP1 = X(1)

DD 10 U = 29 M

TEMP2 = X(J)

xtJ) = TEMP]

TEMP1 = TEMP2

CONTINUE

IF (Y(1)) 15912 11

M=N<+1

TEMP1 = Y(1)

DO 13 U = 29 M

TEMP2 = Y(J)

Y{J)y = TEMP1

TEMP1 = TEMP2

CONTINUE

X{1} = 060

Y(1) = 040

N=N+1

CONVERTING THE DATA POINTS WHICH WERE READ IN INTO ACTUAL BODY CO-
DRDINATES.
NO 31 =1y N
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Table 9b (Continued)

o vy er

st

XZ(1) X(11/72
YZ(1) Yi1)/z
XZR{1) = ReXZ(1)
YZR(I) = R¥YZ(I)
. YZR2(I) = (YZR(1))*%2
IF(1I=2) 69 Ty 7
6 XBARI(I} = Os

ftn

GO TO 3
. C CALCULATING THE DISTANCE ALONG A FLAT PLATEs XRAN, J
7 XBAR(I) = (14/YZR2(I))I*SIMPUN(XZRs YZR2s 1)
3 CONTINUE
WRITE(6s 25)
250FORMAT (99H1 INPUT X VALUES INPUT Y VALUES AXIAL DISTAN
1CE BODY RADIUS  FLAT PLATE DISTANCE//}

WRITE(695) (XUI)s Y(I)s XZRCEI)s YZR(I)}s XRAR(I)e I = 14 N)
5 FORMAT{5F20.8)
DO 26 X = 1s L
RXBAR{1sK) = 0.0
DELTA(1sK) = Qo0
26 CONTINUE
DO 17T K = 1s L
C CALCULATING THE LOCAL FLAT PLATE REYNOLDS NUMBERs USING A KINEMA=
C TIC VISCOUSITY OF WATER AT 36 DFGREES Fo
DO 16 I =29 N
RXBAR(TIsK) = U(K)*XBAR(1)/0400001684 :
C CALCULATING THE TURBULENT BOUNDARY LAYER THICKNESSs DELTAs - .
IF(RXBAR(I+K))16+30931 B
30 DELTA(IsK) = 00 ) A
GO TO 16 y 3
31 DELTA(I4K) = 0.0598%XBAR(I)/(ALOGIO{RXBAR(I¢K)) =~ 34170)
16 CONTINUE
17 CONTINUE
DO 20 K = 1y L
WRITE(6s 24) UI(K)
s 24 FORMAT(12HIVELOCITY = 9sF1248s 14H FEET / SECOND///)
WRITE(6y 21}
210FORMAT{116H AXIAL DISTANCE FLAT PLATE DISTANCE LOCAL FLAT :
1 PLATE REYNOLDS NUMBER BOUNDARY LAYER THICKNESSs DELTA//) @
. WRITE(6922)(XZR(1)9 XBAR(1)9 KXBAR{I9K)s DELTA(IsK)s T = 14 N)
22 FORMAT(F17.8s F20e8s 18XE15489 28XF1248)
20 CONTINUE
15 sTOP
END
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TABLE 9c

Flow Chart for Program D'

GD

i

Read in data points describing
the body of revolution

Set data points equal to
zero and shift all data
points if necessary

Convert data points into
actual body coordinates

Calculate distance alcng
a flat plate

WRITE

Data points values,
Axial distance; Body radius;

flat plate distance

CALCULATE

Local flat plate Reynolds
numbers using a kinematic viscosity
of water at 39 F

CALCULATE

Turbulent boundary layer
thickness

WRITE
Velocity, Axial distance,
flat plate distance, local flat
plate Reynolds number,
Boundary layer thickness

GO
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TABLE 9d *
Column Heads for Input Forms on Data Cards for Program D'

. N 5 R 17 729 J

X(1) 10 Xx(2) 20 x(3) 30 x(4) 40 x(5) 50 x(6) 60

NUMBER OF VALUES ON CARD IS EQUAL TO N

Y(1) 10 Y(2) 20 Y(3) 30 vY(4) 40 vY(5) 50 Y(6) 60

NUMBER OF VALUES ON CARD IS EQUAL TQ N

L 5
j

> u(l) 12 u(2) 24 U(3) 36 U(4) 48 u(5) 60 u(6) 72

NUMBER OF VALUES ON CARD IS EQUAL TO L
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COMPUTER RUNS

Results obtained from the computer programs for the input data of

Tables 2 and 3 are presented in Figures 1 and 2 respectively.

show computer runs for the normalized modzl mean square displacement of the

The figures

turbudence excited simply supported aluminum and steel plates with fluid

loading etfects included.
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APPENDIX I i
HYDROSTATIC PRESSURE EFFECTS ON NMATURAL FREQUENCIES

Plate length
Plate width

Eh3

Equal to >

12(1 - v7)
Young's modulus .
Constant dependent on km/kn (see Reference 37) ;
Plate thickness

Constant depending on aspect ratio of plate; for the panel |
dimensions cited in Appc-lix I, K = 0.0018 (see Reference 42) 3

Effective wavelength equivalencing factor, dependent on 0ha2/D (see
References 36 and 37)

TN

Mode numbers in the x- and y-directions respectively

Mass per unit area of plate

g LB T W,

Mode numbers

Hydrostatic pressure

Radii of curvature

Deflection shape of panel to loading by uniform pressure

Deflection at the center of the plate due to hydrostatic pressure PH

Plate coordinates

Equal to 1.5

Wavelength

Poisson's ratio, generally taken to be equal to 0.3

Stresses in directions associated with m and n respectively

Circular natural frequency of vibration
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DESCRIPTION

A clamped panel below the water surface is subject to essentially
uniformly distributed pressure which deflects the panel and creates bend-

ing stresses. The natural frequencies of singly curved stressed plates

are given approximately by>0~39
) 2 1/2
D 1/2 2 2 2 Uxhkm Gyhkn 12G
wn = (Kf (km * kn ) o+ D * D * 2.2 (11)
h™R
A ¢ = P
where k= ka ° K Kb

Equation (I1) is based upon wavelength equivalencing which effectively
reduces the dimensions of the clamped plate to those of the equivalent
simply supported plate in each mode. For an unstressed flat plate this
equation yields values of natural frequencies which agree within +10 per-
cent of those calculated by the Warburton method.z’40 In this equation, G
and K1 are considered to be determinable quantities (see Notation). Hence
it remains to determine the stress and curvature produced by the hydrostatic
pressure.

The deflected shape of the panel due to loading by a uniform
pressure is the same as the fundamental mode shape. It is given by40’41

W

__o Y7x Yx

W) = 1133 (cos - ¢ 0.133 cosh " ) (12)
s 42 _ 4
where Wo = KPH b'/D
Since

22
YW
R= ; = - 02 jL0S Ymx -0.133 cosh Ymx (13)

d°w 1.133 a i a a

dx2
From Equation (I3) then we can find Rc = Rx=a/2’ the radius of curvature at

the center of the plate in the direction of a. Similarly we can find the
radius of curvature of the centir of ihe plate in the direction of b. For

either case the effect of curvature, or the mean radii Ra and Rb’ may be
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estimated39 by using R = Rc}/_. The effect of the curvature upon W, is then
found by substituting the estimated mean curvature in Equation (I1). g
Similarly, the mean stresses oy and oy are estimated by letting :

© . .J) (@ )
—_—— g =

max- x _ max'y

PAREI L NS,

e kaN
e,

T

ox = > 9y where (Gmax)i is a maximum bending stress along
23 V2
i derived from Reference 42. The effect of the stresses on w is then

found by substituting the estimated values of o and 0_ in Equation (I1).

Lo aved pdted vofuiids

Lt Sty e A

PR

For a 30 in. x 24 in. x 3/16 in. clamped plate in a horizontal
plane subject to a uniformly distributed hydrostatic pressure of 1.5 psi

the effects of stress and curvature were found in Reference 39.

oo

¥
I3
A
g
3
P
<
%]
%
3
)
2

The results
¥ show that the natural frequency is more affected by stress than curvature.

a; Moreover, while stress and curvature due to hydrostatic loading caused the
' *
natural frequencies of the panel to increase, the virtual mass effect

(i.e., fluid loading) caused a more significant reduction.

*

If hydrostatic loading is considered in computations then the plate (in
an infinite baffle) cannot be considered to be submerged in an infinite
water medium. The effect of the proximity of the water surface on the
virtual mass must be treated. However, for a plate located more than A/6
below the waterline the presence of the free surface will have no signifi-
cant effect on the fluid loading. This is clearly a frequency-dependent

criterion.43 If the plate is not in a horizontal plane then the variation
of pressure with depth necessitates an integral formulation for the hydro-
static pressure. The problem is then to determine the center of pressure.
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