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ABSTRACT

Various methods are presented for computing heavy or
light fluid loading (i.e., added mass) of thin finite
rectangular plates. Based on the results, preferred methods
of computation are recommended. These methods and a
corresponding computer program--Option 3--are of particular
value in extending previously formulated digital computer
programs for obtaining the vibroacoustic response to turbu-
lence excitation of a plate. Computer results are given for
a particular case which includes the effect of fluid load-
ing on the vibratory response of a plate subject to turbu-
lence excitation.

ADMINISTRATIVE INFORMATION

This study was conducted at the Naval Ship Research and Development

Center (NSRDC) and supported by the Naval Ship Systems Command (NAVSHIPS)

Code 037. Funding was provided by NAVSHIPS 037 under Subproject S-4628008

Task 14919.

INTRODUCTION

Reference 1 documents four available computer programs for determin-

ing the vibratory response and the associated acoustic radiation of a

finite rectangular plate to fully developed turbulence. Several compu-

tational frameworks are provided which can be modified and extended through

additional research to furnish more accurate and realistic programs to meet

naval needs. The chief objective of the original study was to furnish a

base for future development.

Extension of these computations are treated in Reference 2 (Option 1)

and 3 (Option 2). Reference 2 includes a correction in the computer pro-

grams for the effects on vibroacoustic response of the boundary layer

thickness and pressure pickup dimensions. Reference 3 includes in the pro-

grams the vibration modes and natural frequencies of thin rectangular

plates with clamped and rotational supports and cylindrical curvature.

The overall program now includes the response of simple and clamped

plates in air and in water. However, the fluid loading on the plate has

References are listed on page 172.

i1



|*
hitherto been determined for the case of an infinite plate. Hence there

is a need to incorporate into the program the results of recent investi-

gations of the loading effects of a heavy or light fluid on a thin finite

rectangular plate. This modification is required to improve the accuracy

of the computations and to extend the applicability of the program.

Accordingly, the present report presents a modification (Option 3)

of wi updted version of owe of the original progrw s--that of ?taestrello--

to include the effects of fluid loading for finite plates. The modified

program is based on results obtained by the use of various analytical

methods. The following titles identify, the methods treated and their

location in the report; notations relevant to each method are also included

in the Appendixes.

Appendix A - The Feit-Junger Method

Appendix B - The Davies Method

Appendix C - The Leibowitz Method I

Appendix D - The Leibowitz Method II

Appendix E - The Bolt Beranek and Newman Method

Appendix F - The Greenspon Method

Appendix G - The Leibowitz Method III

For the convenience of the reader, the Appendixes include an adequate

amount of the mathematical development underlying these mthods. An under-

standing of the development will assist the reader to appreciate the merits,

shortcomings, subtleties, and complexities of a particular method and to

apply the various methods. Certain figures are adapted from the basic

references.

tT

See the Dyer representation, includable in all programs, for added mass
in Appendix A of Reference 1.

In Appendix H, the original Maestrello program is updated. This up-
dated version is then modified to include fluid loading (Option 3). Other
programs presented in Reference 1 may be modified in a similar manner.

2
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TABLE 2

Input Data for Computing Normalized Modal Mean Square Displacement Y-(L)/p- for
Simply Supported Alu=w3tu Plate in W;ater

TABLE 2a

Computed Natural Frequencies and Total Damping Ratio for
Simply Supported Plate in Air

e fr:Z !an sm .!ber f(HZ) s15
ar bun 1"rntm' Wrbruto (vt.n) $4rburton 11rburton

1,1 83.82 553.10 0.16888 7.1 223.43 1403.8S 0.05713

1.2 346.83 2179.54 0.0324 7.2 "S1.49 3025.29 0.03115

1.3 776.93 4M31.9; 0.01930 7.3 911.59 5727.69 0.01545

1,4 1379.13 8665.30 0.01027 1.4 1513.73 9!1.05 0.0090

1,5 2153.31 13529.6 0.00696 7.5 2287.91 14375.37 0.055

1,6 3099.53 19474.89 O.0435 8.1 26"5.49 1663.15 0.0%649

2,1 97.2, 610.96 0.15Z25 8.2 523.55 32S9.59 0.02365

2.2 355.30 2232.40 0.0"221 8.3 933.65 5991.c-9 0.01572

2,3 785.40 4934.80 0.01909 8.4 1555.79 9775.35 0.0094

2,4 1337.54 8718.16 0.01031 8,5 2329.93 !4639.67 0.00644

2.5 2161.72 i3582.48 0.0069 9.1 313.17 1567.63 0.09789

3.1 111.26 699.06 0.13481 9.2 571.23 3539.13 0.02625

3.2 369.32 2320.50 0.04061 9.3 1001.33 6291.52 0.01493

3.3 799.42 5022.90 0.01876 9,4 1603.47 10074.88 0.00935

3.4 1401.56 8306.26 0.01070 9,5 2377.65 14939.20 0.00631

3,5 2175.74 13670.58 O.OC690 10.1 366.45 2302.46 0.04093

4.1 130.89 822.40 0.11460 10.2 624.51 3923.90 0.02401

4.2 33.9 2443.84 0.03356 10,3 1064.61 6626.30 !.91422

4.3 819.05 5146.24 0.01831 lO.4 1656.75 1009.66 O.0905

4,4 1421.19 8929.60 0.01055 10.5 2430.93 15273.93 0.00616

4,5 2195.36 13793.92 0.00684

5,1 156.13 930.98 0.0607 a 3.0 ft

5.2 414.19 2602.42 0.03621 b = 0.541666 ft
5,3 844.29 5304.22 0.01776 h = 0.0 in.

5,4 1446.43 9088.17 0.01037 E = 10 x 106 lb/in. 2

5,5 2220.61 13952.49 0.00681 a =0.33

6,1 186.98 1174.80 0.08022 weight density (o) = 0.1075 lb/in.
3 = 185.8 lb/ft

3

6,2 445.03 2796.23 0.03370 of plate aluminum

6,3 875.13 5498.63 0.01714 9 = 32.2 ft/sec
2 
= 384.6 ir./sec

2

6,4 1477.28 9281.99 0.01015 K = 9.64 x 10- 4 
ft

6.5 2251.46 14146.31 0.00666 c. = 17,00 ft/sec

4



Inu aa o opuigY2 (wTABLE 2bI

-~ IputDataforComptin for Simply Supported Alum~inum Plate in Water- -

p
Frequency Computation by Method I; q = 0

Vif; Vt1.t) r-5%7

1.5 4.4243 SAM4 25.24 525.21 3631.22 5.63 0.033

1. .634-6 4.ms2 18.32 918.70 5166.33 S."9 0.=31

2. .X .Sm5 62.42 218.87 1379.4? 3.5 0.0054

S.5115 6.1115 37.35 437.53 My4. 73 4.1 0.03

2. 4415S SAM15 25.1S 152.1 97V160 5.64 0.GC23

3.3 7.2611 7.1*12 61 30 219.73 1I36.27 3.40 0.005n2

4.01 .CO14 .1 756.171 4143.78 5.6S 0.00237

43.13 .77 W3 221.40 1409.76 3.64 0.00516

4. .45 .OI436S U.03 220.96 Cap3 0.03334

7. .87 49l 49 62.58 41X9.01 5.67 0=0336

S.? 10." 10.4zar 11t.73 99.11 W22.7 7.6S 0.03M0

S370 7.55 s. 231.52 1453.9 3.69 0.0350

S43.3Y2 5*912 3.98 1954.05 7251.4" 4.11 0.00330

5.5 4.3567 4.9%67 241.57 111.3; 474.=.3c 5.70 0.0=n3

6.2 9.732 10.3321 106.75 109.39 6w0 64 2.7t 0.Ows~

6.3 6. %W 7 .540o 56.65 243.63 1511.20 3.75 0.0:4%6
6.4 5.341S 5.941S 31.83 464.32 2925.65 4.76 0.00326

6.5 4.3263 4.2W7 4.27 7W.67 94.16 5.149 0.03233

7.? 9.3565 9.6565 9U.2 119.44 750.44 2.93 0.0277 Oc

7.3 6.7M9 7.3m9 54.76 251.77 161.15 3.72 0.0623 Wtdo.vd
for twset

7.4 5.2768 5.8767 3St5 976.60 294. 34 4.81 0.027 soft Owtrs
7.5 4.2922 4.892 23.93 M1.22 M.63A 5.77 0.00231

3.2 8.972 9.572 91.61 132.45 831.84 2.95 0.00709

8.3 6.44v 1.2w7 54.54 244.c4 164.1? 3.90 0.Mz"7

8.4 5.2=5 5.em5 33.70 4;1.37 YAY.!l 4.9; 0.0031S
8.5 4.2533 4.S533 25.55 812.40 5101.93 5.72 0.02n2

9.? 8.5903 9.15M3 84.4 147.4? 926.25 3.02 0.0:665

9.3 6.447 LO0W8 50.74 2M. 32 5260.44 3.99 0.02t53

9.4 SAM1 5.7271 32.80 5M5.65 3199.37 4.9i 0.0209

9.5 4.210: 4.81C4 23. 14 831.01 5218.75 5.8a O.W25

10.2 8.2158 8.7157 77.12 164.63 1033.90 3.21 0.00520

1O.J 6.3221 6.9221 47.92 297.84 1870.43 4.66 0.6436

10.4 5.044 5.6440 31.L6 5M8.03 3316.34 5.01 0.0032

1t,,5 1 0.6 4.1W40 4.7640 22.70 1 52.12 1 53S1.3? 5.93 0.03

'3.0 ft (W)
2 

O 44tz2 2 z~l/t

b 0.541666 ft '0.33 (A6.2 lb/ft 
3  

0.3 * l.
,*0.04 in. E 10. 10~ -bi.

2  
wate

9.6 -4 (0, t 0.1075 lb/In.
3  

IS18.8 lb/ft
3  

2.

2 03 *1. ftA 0 (l/f W3~f= .

Lt 17.000 ft/sec 8. i.tc

yy' '0.2733 ft 4* 0.033 ft 1 . .478 225.1-

2 -23.0 16

Note: a. v( ) (,5,) (o.6) 28.27 3 2014.0 I 317 5 I
In.'

input in in Wbin.) units fc'r (P.) In computing f n or Ln (see Program B' in Section
alumninum inn

3 of Appendix H) the program input is in lb/ft units for both um) 1~n and (pw)wate

5P~~ti



TABLE 2c

Conutation of Normalized Modal Mean Square Displacenent

¥-(w)/p~ for Simply Supported Aluminum Plate in Water
AIIN1." PIAU

q - 0 (oly)__

(ftlsec (m) -

a 1.3 3.1 10 3-1 0
S  

3.3 10
"10

1.4 4.4 a10
9  

4.5 1 10 4.8 1 1

1.5 5.0w 1010 5.0. ior101 5.5. 10
2

1.6 6.5 a 1011 6.6 A 1017 .3 10
"
1
3

2.3 1.9. 108 1.9. u19 2.0 • 0.10

2.4 8.9 X 10*10  9. 10. I 9.8. 16
"
12

2.5 i.0 1010 1.0. 16,
"

1 1.1 . 10
"12

3.3 1-. 16
.
3 1.6 r 10 1.7 . i0,

10

3.4 7.2 . 1010 1.3 - 1o.
il  1.9 . 16

"
12

3.5 7.5 a 10"11 7.6 2 10.12 8.5 . 10.13

4.3 1.3 . 10-
8  1.3 . 10- 9  1.3 . 10 " 0

4.4 6.4 x 10.10 6.4 x 1011l7.0- 10 "12

4.5 6.2 16-11 6.3 % 10.12 1.0 * 10.13

5.2 2.5 X 10
.7  2.5 . 10

.a 2.6 . 10
9

5.3 9.9 • 16*
9  

1.0 V 10
.9  

1.3 • 16.110

5.4 5.7 • 10.10 5.7 10.11 6.2 . 10
"
12

5.5 5.2 x 101 5.3 z 10
1
7 6.0 . 1-

13

16 1.3 3.4 x 10
. 

3 
9 16' 3.6 z 10.10

1.4 5.7 x 10 5.7 x 10.10 6.0 10.11

1.5 7.1 X 10 10 7.1 2 101 1.6 a 16
"1
Z

1.6 8.? . 10.11 8.8 - 10.12 9.6 I0
"
13

2.3 2.1 . 10 2.1 . 10 2.2 x 10.10

2.4 1.2 X 10
9  1.2 . to.t0 1.3 a 10.11

2.5 1.3 z 1010 1.3- 10.11 1.4 a 10.12

3.3 1.6 x 10a 1.6 x 10
.9  

1.7 - 16
"
1
0

3.4 8.1 a 1 0 8.7 X 10611 9.4 X 10
i

a

3.5 9.1 .
"

,11 9.2 x 1012 1.0 . 10-12

4.3 1.
4 

. 10.
6  1.

4 
X 10

9  
1.5 . 10.10

4.4 8.
4 X 1o10 8.5 X 1o-it 8.9 . 1012

4.5 7.0 • 16-
1
1 1.0 x 1012 7.8 . 10- 3

5.2 2.5 x 10
7  2.5 X 10

.8  2.6 z 10
9

5.3 1.0 a 10
8  1.0 X 10

9  .1 x 10
-10

5.4 5.9 x 10.10 5.9 z 1011 6.4 x 10-1
2

5.5 6.5 10
12  6.5 x 1012 7.2 x 10-13

32 1.3 3.8 x 108 3.8 x 10-
9  

4.0 x 10
"10

1.4 7.1 x 10
9  7.1 x 10 10 17.3 a 10.11

Note: The extensive results for the response
:btained by Mr. Lucio aestrello and Mrs.
Christine Brown at Langley Research Center,
"WS, usin.g the author's progran, are tabu-
lated in Table 2c.
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Table 2c (Continued)

AU~LLM.H rLAIL (Cent jned)

q - 0 (only')

Pma
(ftlsec) 7 -' e

1.5 1.0 10- 9  1.0 x 10 1.1 x 10l

1.6 1.8 x 10-10 1. a 10"  1.8 i 012

2.3 2.5 x 1- 8  
2.5 x 10-

9  2.6 x 1-10

2.4 1.9 x 10-
9  .9 • l -0 1.9 • 1- i l

2.5 1.6 x 10-l ' 1.6 x 10- l  1.7 . 10-! 2

3.3 1.2 x 10.8 1.2 x 1079  1.3 x 1-10

3.4 8.3 x 10 8.4 x 10- 1  9.1 • 1012

3.5 1.1 A 10-10 1.1 x 10"11  1.2 . 10-12

4.3 8.4 x 10 9  
8.5 x 1-10 9.4 x 1-

1

4,4 1.5 x 10-9 1.5 A lo01  1.5 x 10
- 11

4.5 1.0 x 10-10 1.0 x 10- 1 1  1., . 10-12

5. 2.7 10 2.7 x 10 8  
2.7 x 10-9

5.3 7.8 x 10- 9  7.8 x 10
"10  8.5. 16

-1

5.4 8.0 x 10-10 8.0 x 1011 8.4 x I012

5.5 4.0 x 10-1 4.1 x 10-12 S.0 x 1613

64 1.3 5.3 x 1-8 5.3 x 10.9  5.2 x 1-10

1.4 5.1 x 10- 9  
5.2 x 10- 0 5.6 x 10-11

1.5 1.1 x 10.9  1.1 x 10o1 1.2 x 1-11

1.6 2.6 • 1-10 2.6 x 10-! 1 2.7 x 10.12

2.3 5.5 x 10- 9  5.6 x 10-10 7.0 x 10°1 1

2.4 3.9 x 10-9  3.9 x 10-10 3.8 x 10-11

2.5 2.2 x 10-10 2.2 x 1-11 2.3 x 10-1 2

3.3 1.2 x 10-
8  

1.2 x 10-
9  1.3 x 10-10

3.4 3.5 x 10-10 3.6 x 10-11 4.0 x 10-12

3,5 2.6 x 10 10  2.6 x 10"11  2.7 x 10 1 2

4.3 1.2 x 10. 8  '.2 x 10
-9  1.3 x 10-10

4.4 ,

4.5 2.6 x i0 - 10 2.6 x 10 1 1  2.6 x 10- 12

5.2 3.2 x 10-?  3.2 x 10-8 3.2 x 109

5.3 1.1 x 10.8 1.1 x 10-
9  1.1 x 10

10

5.4 5.0 x 10-11 s. ~1.2 ai1254 5.x1
-i  

5.7 x 10
"1  1.2 x 10-1

5.5 4.7 x 10-4.7 x 0 1 2  5.2 x 1013

For one-tenth coputed da.ping value given in Table 2b.

For computed da-ping value given in Table 2b.

for ten times computed darping vaoue given in Table 2b.

Co.puter error (recompitation not made).

7



7.

COMPUTED DA1WIHG VALUES GIVEN IN TABLE 2b
OUE-TEUTH COMPUTED DAI4PIIIG VALUES GIVEN IN TABLE 2b
TEN TIMES COMPUTED DAMPING VALUES GIVEN IN TABLE 2b

10-s -_ _ _ _ __ _ _ _ _ _

10-1 _ __I I

34 I FTISEC

Figure 1 Normalized Modal Mean Square Displacement of
Simply Supported Aluminum Plate with Fluid Loading

Effects Included

The response results computed at NSRDC and plotted in
Figure 1 were duplicated by Mr. Lucio Macstrello and Mrs.
Christene Brown who assisted the author by performiing
similar computations on their computer at Langley Research
Center NASA, using the author's program. Their more ex-

tensive results are tabulated in Table 2c.

8
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TABLE 3

Input Data for Computing Normalized Modal Mean Square Displacement Y-(w)/p
for Simply Supported Steel Plate in Water

TABLE 3a
Computed Natural Frequencies and Total Damping for

Sinply Supported Steel Plate in Air

Mode f(HZ) wm(rad/sec) "=0./f a =Nuber ran /I Nwber flfl mn flfl(1/sec)
(mn) Warburton Warburton 2

1,1 3.37 21.16 0.1483

2,1 13.37 83.98 0.0373

3,1 30.03 188.68 0.0166

4,1 53.36 335.25 0.0093

5,1 83.35 523.71 0.0059

6,1 120.01 754.05 0.0041

7,1 163.33 1026.26 0.0030

8,1 213.32 1340.35 0.0023

9,1 269.98 1596.33 0.0018

10,1 333.30 2094.18 0.0015

11,1 403.28 2533.91 0.0012

12,1 479.93 3015.52 0.0010

13,1 563,25 2539.01 0.0008

14,1 653.23 4104.38 0.0007

15,1 749.88 4711.63 0.0006

16,1 853.19 5360.75 0.00058

17,1 963.17 6051.76 0.00051

18,1 1079.81 6784.65 0.00046

19,1 1203.12 7559.41 0.00041

20,1 1333.09 8376.05 0.00037 0.5r

a = 10 ft

b = 97.39 ft

h = 0.5 in.

E = 30 x 106 lb/in.
2

S= 0.30

(P)s = 0.283 lb/in.
3

W tee]

g = 32.2 ft/sec
2 = 384.6 in./sec

2

K 1.204 x 10- 2 ft

c = 17,000 ft/sec

9



_TABLE 3b
2

Input Data for Computing " for Simply Supported Steel Plate in Water--
2
p

Frequency Computation by Method I; q = 0

Mode t(lb/ft
2

) IJn(1b/ft 2) V =v+U (W ) (lb/ftM) (2 (radlsec) ;=(1/sec) 6.n(= n) P n(lb/ft
)

l

1.1 20.4 406.57 426.97 182303.38 0.74 4.62 0.0748 0.03238

2,1 204.09 224.49 50395.76 4.03 25.33 0.1425 0.01125

3,1 136.16 156.56 24511.03 10.85 68.13 0.2045 0.00600

4,1 102.14 122.54 15016.05 21.79 136.83 0.2612 0.00381

5,1 81.72 102.12 10428.49 37.28 234.14 0.3135 0.00267

6.1 68.11 88.51 7834.02 57.66 362.12 0.3617 0.00199

7.1 58.38 78.78 6206.28 83.18 522.39 0.4064 0.00155

8.1 51.08 71.48 5109.39 114.05 716.23 0.4479 0.00125

9,1 45.41 65.81 4330.95 150.43 944.72 0.4865 0.00102

10.1 40.87 61.27 3754.01 192.47 1208.72 0.5226 0.00086 r(. ults: for
11,1 37.15 57.55 3312.00 240.28 1508.97 0.5564 0.00073 modes

12.1 34.06 54.46 2975.70 293.97 1846.10 0.5879 0.00063 of
interest

13.1 31.44 51.84 2687.38 353.60 2220.64 0.6177 0.00055

14,1 29-19 49.59 2459.16 419.27 2633.03 0.6457 0.00049

15.1 27.25 47.65 2270.52 491.03 3083.68 0.6721 0.00043

16,1 25.54 45.94 2110.48 568.94 3572.93 0.6966 0.00038

17,1 24.03 44.54 1983.81 653.04 4101.07 0.7190 0.00035

18,1 22.71 43.21 1867.10 743.37 4668.38 0.7411 0.00031

19,1 21.51 41.91 1756.44 839.98 5275.09 0.7641 0.00028

20.1 20.4 20.43 40.93 1675.26 942.90 5921.40 0.7824 0.00026

22

a = 10 ft W'(Ib/ft
2
) (see Column E) p2 = 1.0 (lb/ft2)

b = 97.39 ft a = 0.30 Tw = 0.323 lb/ft
2

= -0.5 in. E = 30 x!6 lb/in.
2  

(p) 64.2 lb/ft
3 

= 0.037 lb/in.
3

1.204 10 ft (o)= 0.283 b/in.
3  

water

215 wsteel 2.0

c, 17,000 ft/sec g = 384.6 in./sec
2  2

x =x' = 5.0 ft

y y' = 48.695 ft

i A K Uc(ft/sec) e(sec) 6*(ft)
+ . -

1 1.6 0.47 8 2.25 x 10-
3  0.044

2 72 3016 0.4
3 12.0 14.0 32 0.038

64 225 x 10 3  
0.035

"ote rn - .

on=

Note: In computing f or wen (see Program C' in Section 3 of Appendix 11) the program

input is in lb/in. units for (P-)steel" In computing fmn or w (see Program B' in
Section 3 of Appendix 11) the program input is in lb/ft3  units for both (p )steel and

w water*

10
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TABLE 3c (Continued)

q =0.3
Numqber W b(lb/ft

2  
2 Wb/ft
2
) U=p2 

"H ,
(m,n) (lb/ft2  (W')2(lb/ft2) fmn(HZ) n

(
rad/sec) amn( ]/sec) 6mn

1,1 20.4 426.20 446.60 199451.56 0.72 4.52 0.0715 0.031632,1 213.94 234.34 54915.24 3.95 24.79 0.1365 0.011013,1 142.73 163.13 26611.40 10.63 66.74 0.1962 0.005874.1 107.08 127.48 16251.15 21.36 134.16 0.2512 0.00375,1 85.67 106.07 11250.84 36.58 229.75 0.30;9 0.02626,1 71.40 91.80 8427.24 56.62 355.58 0.3488 0.001967,1 61.20 81.60 6658.56 81.73 513.29 0.3925 0.001528,1 53.55 73.95 5468.60 112.13 704.19 0.4330 0.001229,1 47.60 68.00 4624.00 147.99 929.36 0.4710 0.0010110,1 42.84 63.24 3999.30 189.45 1189.72 0.5063 0.00085 results11,1 38.95 59.35 3522.42 236.62 1486.00 0.5396 0.00072 for
modes

12,1 35.70 56.10 3147.21 289.63 1818.85 0.5708 0. 0 6 of nt es13,1 32.9o 53.36 2847.29 348.54 2188.83 0.6002 0.0005414,1 30.60 51.00 2601.00 413.44 2596.40 0.6280 0.0004815,1 28.56 48.96 2397.08 484.39 3041.98 0.6540 0.0004216,1 26.78 47.18 2225.95 561.45 3525.93 0.6787 0.0003817,1 25.20 45.60 2079.36 644.68 4048.56 0.7022 0.00034

18,1 23.80 44.20 1953.64 734.10 4610.15 0.7245 0.0003119,1 22.54 42.94 1843.84 829.77 5210.94 0.7457 0.0002820,1 21.42 41.82 1748.91 931i.71 5851.16 0.7658 0.00026

TABLE 3d (Continued)
q= 0.6

*Mode W, W +W (W')(lb/ft) wmn (Hz)sec ( 1 6inNumber Wp(lbft
2  

W(b/ft
2  

=pmn 2 f2 e  
mn (isec) mn(m,n) t b/ft 2

1,1 20.4 508.21 528.61 279428.53 0.66 4.16 0.0604 0.02903
2,1 255.11 275.51 75905.76 3.64 22.86 0.1161 0.010153,1 170.20 190.60 36328.36 9.83 61.75 0.1679 0.005434,1 127.68 148.08 21927.69 19.82 124.48 0.2161 0.00347
5,1 102.16 122.56 15020.95 34.04 213.74 0.2612 0.002446,1 85.14 105.54 11138.69 52.80 331.63 0.3033 0.001827,1 72.98 93.38 8719.82 76.41 479.83 0.3428 0.001428,1 63.86 84.26 7099.75 105.05 659.73 0.3800 0.00115
9,1 56.76 77.16 5953.67 138.93 872.47 0.4149 0.0009510,1 51.09 71.49 5110.82 178.19 1119.03 0.4479 0.00080

46.44 66.84 4467.59 222.97 1400.24 0.4791 0.00068 for12,1 42.57 62.97 3965.22 273.38 1716.80 0.5085 0.00059 modes13,1 39.30 59.70 3564.09 329.51 2069.34 0.5364 0.00051 of inte.est14,1 36.49 56.89 3236.47 391.46 2458.40 0.5628 0.0004515,1 34.06 54.46 2965.89 459.31 2884.45 0.6104 0.0004216,1 31.93 52.33 2738.43 533.11 3347.90 0.6119 0.0003617,1 30.05 50.45 2545.20 612.92 3849.13 0.6347 0.0003218,1 28.38 49.28 2428.52 698.80 4388.49 0.6498 0.0002919,1 26.89 47.29 2236.34 790.80 4966.20 0.6771 0.0002720,1 25.54 45.94 2110.48 888.95 5582.60 0.6970 0.00024

11



TABLE 3e (Continued)

q=0.9

Mode (~elb/ft21 22 ,Uumb er Wplb/m2 sec(ad(lb/ft2 (lb/ft2 fn ( z  
n -s-anl/e) m n

1,1 20.4 932.74 953.14 908475.86 0.49 3.10 0.0335 0.02161

2,1 468.20 488.60 238729.96 2.734 17.17 0.0654 0.00761
3,1 312.36 332.76 111394.74 7.44 46.93 0.0962 0.00415

4,1 234.33 254.73 64887.37 15.11 94.91 0.1256 0.00264
5,1 187.49 207.89 43218.25 26.13 164.11 0.1540 0.00187

6,1 156.2E 176.65 31205.22 40.82 256.33 0.1811 0.00141

7,1 133.93 154.33 23817.75 59.43 373.24 0.2073 0.00111

8,1 117.20 137.60 18933.76 82.21 516.27 0.2326 0.00090

91 104.18 124.58 15520.18 109.34 686.68 0.2570 0.00074 results
for

10,1 93.76 115.16 13261.83 141.01 885.56 0.2780 0.00062 modes

11,1 85.24 105.64 11159.81 177.37 1113.88 0.3031 0.00054 of
interest

12,1 78.13 98.53 9708.16 218.56 1372.53 0.3249 0.00047

13,1 72.12 92.52 8559.95 264.70 1662.28 0.3460 0.00041
14,1 66.97 87.37 7633.52 315.90 1983.85 0.3664 0.00036
15,1 62.51 82.91 6874.07 372.27 2337.86 0.3862 0.00033

16,1 58.60 79.00 6241.00 433.90 2724.91 0.4053 0.00029

17,1 55.15 75.55 5707.80 500.88 3145.53 0.4239 0.00026

18,1 52.09 72.49 5254.80 573.28 3600.20 0.4417 0.00024

19,1 49.35 69.85 4879.02 651.18 4089.38 0.4584 0.00022

20,1 46.88 67.28 4526.90 734.63 4613.47 0.4760 0.00020

TABLE 3f (Continued)

q =0.995

Mode fmn(HZ)
Number

1,1 0.237
2,1 1.325

3,1 3.638
4,1 7.445

5,1 12.972

6,1 20.410

7,1 29.931

8,1 41.691
9,1 55.831

10,1 72.482

11,1 91.765

12,1 113.795

13,1 138.678 results
for

14,1 166.517 modes

15,1 197.405 of
interest

16,1 231.433

17,1 268.69

18,1 309.256

19,1 353.209

20,1 400.626

Note:. No computations of were made for
q 0.995. 2
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TABLE 3g

Computation of Normalized Mloda! Mean Square

Displacement Y2(W)/p2 for Simply Supported

Steel Plate in Water
Note: The extensive results for the response obtained by Mr. Lucio Faestrello
and Mrs. Christine Brown at Langley ResedI-ch Center, HASA, using the authors
program, are tabulated in Tables 3g-3i.

q = 0 STEEL PLATE

U Mode 2 y2( ) y2(-
Hutinber - ___

(ft/sec) (rnen) 2 2 2

8 8,1 4.4 x 10- 9  4.4 x 10 10  4.4 x 1071 1

9,1 1.7 x 10- 9  1.7 x 10- 1 0  1.7 x 10- 1 1

10,1 7.1 x 10- 10 7.1 x lo - 1 1  7.1 x 10- 12

11,1 3.0 x 1010 3.0 x 10- 1 1  3.0 x 10- 12

12,1 1.4 x 10 1 0  1.4 x 10-11 1.4 x i -12

13,1 6.4 x 10- 11 6.4 x 10- 1 2 6.4 x 10-13

14,1 3.0 x 1011 3.0 x 10-12  3.1 x 10- 1 3

15,1 1.6 x 10-11 1.6 x 10- 1 2 1.7 x 10- 13

16,1 9.3 x 10 12  9.3 x 10-13 9.4 x 1014

17,1 5.1 x lo 12  .1 x 10- 13 5.2 x 10- 14

18,1 3.1 x 1012 3.1 x 10-13 3.1 x 10 1 4

19,1 1.8 x 1012 1.8 x 10- 1 3  1.9 x 10 1

20,1 1.0 x i0 12  1.0 x 10- 13 1.1 x 10-14

16 8,1 4.2 x 1079  4.2 x 10- 1 0  4.2 x 10" 1 1

9,1 1.7 x 10- 9  1.7 x 10- 1 0  1.7 x 10 1 1

10,1 7.5 x 10-10 7.5 x 10- 1  7.6 x 10-

11,1 3.1 x 10-1  3.1 x 10- 1 1  3.1 x 10- 12

12,1 1.4 x 10- 10 1.4 x 10- 11 1.4 x 10- 1 2  Z

13,1 6.8 x 10- 1 1  6.8 x 10-12  6.8 x 10- 1 3

14,1 3.9 x I - 1I  3.9 x 10- 12  3.9 x IT 13  !

15,1 2.3 x 10-11  2.3 x 10 1 2  2.3 x 1013

16,1 1.2 x 10- I  1.2 Y 1012 1.2 x 1013

17,1 5.7 x l0- 1 2  5.7 x 10- 13  5.7 x 10- 14

18,1 3.1 x 10-12 3.1 x 1013 3.2 x 10- 14

19,1 1.9 x 10-12  1.9 x 1013 2.0 x 10 1 4

20,1 1.2 x I0-12  1.2 x I0 1 3 1.2 x 10- 1 4

32 8,1 3.2 x 10-  3.2 x 10" 0 3.2 x 101 1

9,1 1.1 x 1o-  1.1 x 10 1 0  1.1 x 1011

10,1 4.6 x 1010 4.6 x 10 "  4.7 x 1012

13
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"Table 3g (Continued)

STEEL PLATE (Continued)

q=O

q Fode 2-2*

c  N e y2(w) y2() y2()N~umber
(ft/sec)I (o,n)

__ _p p p

11,1 2.2 x 10-1  2.2 x 10- 1  2.2 x 10-

12,1 1.3 x 10
-10  1.3 x 10-11  1.3 x 10-1

2

13,1 8.9 x 10
-11  8.9 x 10

-12 9.0 x 10
- 13

14,1 6.7 x 10
-!U 6.7 x 10

-12 6.7 x 10
-1 3

151 4.5 x lo
-11  4.5 x 10

-12  4.5 x 10
-13

16,1 2.3 x 10-11 2.3 x 10
-12 2.3 x 10

-13

17,1 9.5 x 10 12  9.5 x 10- 9.5 x 10-

18,1 4.1 x 1012 4.1 x 10- 3  4.2 x 10-

19,1 1.7 x 1012 1.7 x 1013 1.7 x 1014

20,1 5.8 x 10-13 5.8 x 10-14 6.0 x 10
15

64 8,1 3.5 x 10 3.5 x 10-10 3.5 x 10

9,1 1.3 x 10-  1.3 x 10-10 1.3 x 10-11

10,1 5.0 x 10
10  5.0 x 10

-1 1  5.1 x 10-12

11,1 2.1 x 10
-10  2.1 x 10

-11 2.1 x 10
-12

12,1 7.1 x 10-11 7.1 x 1012 7.2 x 10
-13

13,1 1.8 x 10
- 11  1.8 x 10

-12 1.9 x 10
-13

14,1

15,1 t

16,1

17,1 t T

18,1 1.0 x 10
- 12 1.0 x 10

-13  1.0 x 10
-14

19,1 1.2 x 10
-12 1.2 x 10

-13 1.2 x 10
-14

20,1 1.0 x 10
- 12 1.0 x 10

-13 1.1 x 10
-14

For one-tenth computed damping value given in Table 3b.

For computed damping value given in Table 3bb.

For ten times computed damping value given in Table 3b.
tComputer error (recomputation not made).
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TABLiE 311

STEEL PLATE

q =0.3

Uc  Mode 2 2 2timber y2(M y2(,J)' y2 G,.)'

(ft/sec) (nn "- - - ---
(D~n) 2 2 2

p p p

8 8,1 4.5 x 10
-9  4.5 x 10

-10  4.6 x 10
11

9,1 1.7 x 10-  1.7 x 107 1.8 x 10-1

10,1 7.3 x 10
-10  7.3 x 10

- 11  7.3 x 10
-12

11,1 3.1 x 10-  3.1 x 10- 1  3.1 x 1012

12,1 1.4 x 10- 0  1.4 x 10-  1.5 x 10-

13,1 6.5 x 10-  6.5 x 1012 6.6 x 10-13

14,1 3.2 x i0
-11  3.2 x 10

- 12  3.2 x 10
-13

15,1 1.7 x 10-  1.7 x 1012 1.7 x 10-13

16,1 9.5 x 1012 9.5 x 101 3  9.6 x 10-

17,1 5.4 x 10
-12  5.4 x 10

-13 5.5 x 10-14

18,1 3.2 x 10712 3.P x 10
-13 3.2 x 10

-14

19,1 1.9 x 10 1 2  1.9 x 1013 1.9 x 1014

20,1 1.1 x 10
-12  1.1 x 10

-13  1.1 x 10
-14

16 8,1 4.3 x 10
-9  4.3 x 10

-10  4.3 x 10
-1 1

9,1 1.8 x 10
-9  1.8 x 10

-10  1.8 x 10
-11

10,1 7.7 x 10
-10 7.7 x 10

-11  7.7 x 10
-12

11,1 3.2 x 10
-10  3.2 x 10-1

1  3.2 x 10
-12

12,1 1.4 x 10
-10  1.4 x 10

- 12 1.4 x 10
-12

13,1 6.8 x 10
-11 6.8 x 10

-12 6.9 x 10
-13

14,1 3.9 x 10
- 11  3.9 x 10

-12  4.0 x 10
-13

15,1 2.4 x 10
-11  2.4 x 10

-12 9.4 x 10
-13

16,1 1.2 x 10-1  1.2 x 101 2  1.2 x 1013

17,1 6.1 x 1012 6.1 x 10- 3  6.1 x 1014

18,1 3.2 x 1012 3.2 x 1013 2.3 x 10-14

19,1 2.0 x 1012 2.0 x 1013 2.0 x 1014

20,1 1.2 x 10 12  1. x 10-1 3  13 x i014

32 8,1 3.3 x 10.9  3.3 x 10"1  3.3 x 10"  C2

9,1 1.2 x 10-  1.2 x 10"10  1.2 x 10"  c

10,1 4.7 x 10-10 4.7 x 10-1  4.7 x 101 2  aluminum 243,000
0112 steel 19,400

11,1 2.2 x 10-1  2.2 x 101 1  2.3 x 0-12 e

15



Table 31 (Continued)

STEEL PLATE (Continued)
q 0.3

(ftlsec) d),P2

12.1 1.3 x 10-10 1.3 x 10-11 1.3 x 10"12

3,1 810 11  10 1 2  10 - 1 3
-13,1 8.8 x 6- 8.8 x W 8.8 x 1--

14,1 6.6 x W1 6.6 x 101 6.6 x
10-11 1012 1013

15,1 4.7 x 1 4.7 x 10l 4-7 x W

16,1 2.5 x W01
1  2.5 x 10

- 12  2.5 x 10
- 13

17.1 1.0 x 10 -11 1.0 x 10-12 1.0 x 10-

18,1 4.4 x 10-12  4.4 x 101 3  4.5 x i0- 4

19,1 1.8 x 10
-12 1.8 x 10

-13 1.9 x 10-14

20,1 6.0 x 10-13 6.1 x 10- 14 6.3 x 10-15

64 8,1 3.6 x 10.  3.6 x 10-  3.6 x 10-1 1

9.1 1.4 x 10-9  1.4 x 10-10 1.4 x 10-11

10,1 5.2 x 10-10  5.2 x 10 1  5.3 x 10-12

1i,1 2.1 x 10
-10 2.1 x 10

-11  2.2 x 10
-]2

12,1 7.7 x 10-11 7.7 x 10-12 7.8 x 10713

13,1 2.2 x 10-11 2.2 x 10-12 2.3 x 10
-13

14,1 I
15,1

16,1

17,1

18,1 t t

19,1

20,1

For one-tenth computed damping value given in Table 3b.
**For computed damping value gven in Table 3b.

For ten times computed damping value given in Table 3b.

Computer error (recomputation not made).
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TABLE 3i

STr-EL PIATE

q =0.6

U mode _____ y2 (.) ____
C Number --

(ftlsec) (uen) 2 ? 2

8 8.1 4.9 x 1079  4.9 x 10-10 4.9 = 10-11

9,1 i.9 x 10 9  1.9 x 1-10 1.9 x 1-11

10,1 7.9 x 10 - 1  7.9 x 10- 8.0 x 10- 2

11,1 3.5 x 1-10 3.5 x 10-11 3.5 x 102

12.1 1.6 x10 1 0  1.6 x 1071 1  1.6 x 10-1 2

13,1 7.3 x 101 7.3 x 0 1 2  7-4 x

14.1 3.7 x 10 3.8 x 10 -  3.8 x 10 1 3

15,1 1.9 x 10-11 1.9 x 1012 1.9 x 10

16.1 1.0 x 1- ! 1 1.0 x 10-12 1.0 x 10- 13

17,1 5.6 x 1-12 5.6 x 16- 1 3  5.7 x 10- 1 4

18,1 3.2 x 10- 1 2  3.2 x 16-13 3.2 x 10-14

19,1 1.9 x 10- 12 1.9 x 10- 13 1.9 x 10- 14

20,1 1.3 x 10-12 1.3 x 10-13 1.3 x 10 - 1 4

16 8,1 4.5 x 1-
9  4.5 x 1-10 4.5 x 10-11

9,1 19 x 10-9  1.9 x 10-10 19 x 10-11

10,1 8.4 x 10 -1l 8.4 x 10-10 8.5 x 10-12

11,1 3.7 x 10-10 3.7 x 10-11  3.8 x 10-1 2

12,1 1.6 x 10-10 1.6 x 10-11 1.6 x 10-12

13,1 7.3 x 10-11  7.3 x 10- 1 2  7.4 x 10-1 3

14,1 4.1 x 10- 4.1 x 10-12  4.2 x 10-1 3

15,1 2.4 x 101 2.4 x l0 - 1 2  2.4 x 10- 13

16,1 1.4 x 10-11 1.4 x 10-12  1.4 x 10- 1 3

17,j 7.1 x 10-1 7.1 x 10- 3  7.1 x 10- 1

18,1 3.5 x 10-1 2  3.5 x 10- 1 3  3.5 x 10- 1 4

19,1 2.0 x IC-12  2.0 x "10- 1 3  2.0 x 10- 1 4

20,1 1.3 x 10-12  1.3 x 10-1 3  1.4 x 10- 1 4

32 8,1 3.6 x 10- 3.6 x 10-  3.6 x 10-

9,1 1.3 x 10-9  1.3 x 10-10 1.3 x 10-11

10,1 5.0 x10 1 0  5.O x 10- 1  5.1 x 0 1 2

17



Table 3i (Continued)

STEEL PLATE (Cwtinved)

q0.6

Mmber(f t'sec) X,..aj p2b2ep

11.1 2.3 x 10-10 2.3 x 10
11  2.3 x 10

- 12

121 1.3 x 1
-10  1.3 x 1

-11  1.3 x 1
-12

13.1 8.1 x 10
-1 1  8.1 x 16

-12 8.2 x 1-13

14.1 6.0 x 10
- 11 6.0 x 10

-12  6.0 x IC13

15.1 4.4 x IC" 4.4 x ic12  4.4 . 10-13

16.1 3.0 x 10-11 3.0 x 10-12  3.0 x 10-13

17.1 1.5 x 1
-11  1.5 x 1

-12  1.5 x 10-13

18,1 6.1 x 16-12 6.1 x 16
-13  6.2 x 16

-14

19,1 2.7 x 16-12  2.7 x ic1 3  2.8 x i0-1 4

20.1 1.1 x C12  1., x i1- 3  1.2 x 10
-14

64 8.1 3.9 x 16-9 3.9 x i0 4.0 x

9,1 1.5 x 10 1.5 x i0-10  !.5 x 1W-11

10,1 6.0 x 10
-10  6.0 x 10

-l' 6.0 x 16
-12

11.1 2.5 x 16
-10  2.5 x 10-11 2.5 x W -12

121 9.9 x 10-11 9_9 x 10
-12  1.0 x 10

- 12

13,1 3.6 r 0-11  3.6 x ic12  3.7 x 16
-13

14,1 4.8 x 10-12  4.9 x 1c-13  5.3 x Wc14

15,1

16,1

17,1 -

18,1

19,1 +

20,1

*For one-tenth comuted damping value given in Table 3b.

For coxputed darping value given in Table 3b.

For ten times computed damping value given in Table 3b.

'Computer error (recomputation not made).
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PF~r I

T-ABI.I" 3j

STEEL PlAI-E
q=0.9

U Mode Y(

(ft/sec) K're-
(CAn) 2 P2 1

8 81 ... p...

9.1 2.7 x 10- 9  2.7 x 10- 10  2.7 x 10-11
10.1 1.1 x 10 9  1.1 x 10-10 1.1 x 1 - 1 1

11,1 5.1 x 10
-10  5.1 x OF11  51 , 10-12

12.1 2.4 x 10-10 2.4 x 1-11 2.4 x 10- 12

13.1 1.1 x 10- 10  1.1 x I0 1  i1 x 16- 1 2

i 1 5.7 x 1-11 5-7 x 10 -1 2  7 x 10- 1

15.1 3.0 x 1011 3.0 x 10-12 3.0 x 1013

16,1 1.5 x 10- 11 1.5 x 10- 12 1.5 x 10-1 3

17.1 8.6 x 10-12 8.6 x 10-13 8.7 x 1O-14

18,1 5.1 x 1 -1 2  5.1 x 10- 13 5.1 x 10- 14

19,1 3.1 x 10-12 3.1 x 10-1 3  3.1 x j-14

20,1 1.9 x 10-1 2  1.9 x 10 1 3  1_9 x 10-14

16 8,1 ---

9,1 2.5 x 10- 9  2.5 x 10- 10  2.5 x 10- 11

10,1 1.1 x 10 1.1 x 10- 1 0  1.1 x 10-

11,1 5.5 x 10-10 5.5 x 10- 1 1  5.5 x 10- 1 2

I 10 01 1-1 2
12,1 2.7 x 10 2.7 x 10.11 2.8 x

13,1 1.3 x 10-10 1.3 x 10-11 i.3 x 10- 12

14,1 5.9 x 10- 1 1  6.0 x 10- 1 2  6.0 x 10- 1 3

15,1 2.9 x 10-11 2.9 x 10-1 2  2.9 x 10- 1 3

16,1 1.6 x 10-11 1.6 x 012 1 -13

17,1 1.1 x 10-I 1  1.1 x 10 "1 2 1.1 x 10- 13

18,1 7.0 x 10- 1 2  7.0 x 1013 7.1 x 1014

19,1 4.0 x 10- 12 4.0 x 10- 13 4.0 x 10- 14

20,1 2.1 x 1012 2.2 x 10 1 3  2.2 10- 1 4

32 8,1 .........

9,1 2.0 x 10 -  2.0 x 10-  2.0 x 10-

10,1 7.9 x 10-10 7.9 x 10-  8.0 x 1012
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Table 3j (Continued)

STEEL PLATE (Continued)
q =0.9

UC Mode y2a.) T2(u) y2(.)
(ft/sec Number

11.1 3.2 x 10-1°  3.2 x 10- 3.2 x 10-12

12.1 1.4 x 10- 1 0  1.4 x 10- 11  1.4 x 10- 12

13.1 7.4 x 10- 1 1  7.4 x 10- 1 2  7.5 x 10- 13

14,1 4.6 x 10-11 4.6 x 10- 1 2  4.6 x 1071 3

15,1 3.0 x 10- 11 3.0 x i012 3.1 x 1013

16.1 2.4 x 10 2.4 x io12 2.4 x 1o13

17.1 2.1 x 10-  2.1 x 101 2  2.1 x 1013

18.1 1.6 x 10-11 1.6 x 10-12 1.6 x 10- 13

19,1 9.4 x 1-
2  9.4 x io13 9.4 x 1o14

20,1 4.4 x 10- 12  4.4 x 1o 1 3  4.4 x 1o14

64 Not Computed

9,1 2.3 x 10- 9  2.3 x 10- 10  2.3 x 10- 11

10,1 9.5 x 10- 10  9.5 x 10- 11  9.6 x 10- 12

11,1 4.1 x 10- 1 0  4.1 x 10- 1 1  4.2 x 10- 1 2

12,! 1.8 x 10 1.8 x -11 1.8 x 10- 12

13,1 8.5 x 10- 1 1  8.5 x 10712 8.6 x 16- 13

14,1 3.9 x 16- 1 1  3.9 x i0- 12  3.9 x 10- 1 3

15,1 1.4 x 10- 1 1  1.4 x 10- 12  1.4 x 10- 1 3

16,1 2.8 x 10 12 2.9 x 10-13 3.0 x

17,1 " 7 "

18,1 t

19,1

20,1

For one-tenth computed damping value given in Table 3b.

For computed damping value given in Table 3b.

For ten times computed damping value given in Table 3b.

Computation not made for 8,1 mode because for q = 0.9,

f < 100 Hz (see Table 3e).

'Computer error (recomputation not made).
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Figure 2 - SNoralized N'odal Mean Square Displacement of Simply
Supported Steel Plate with Fluid Loading Effects Included

The response results con.uted at .s WC and plotted in
Figure 2 were duplicated by Mr. Lucio vaestrello and Mrs.
Chri-szene Brown who assisted the author b- performing
sinilar co putations on their coauter at Langley Research
Center VS;S. using the author's progr=. Their nre ex-
tensive results are tabulated ir Tables 3g-3j.

10-6
COMPUTED DAMPING VALUES GIVEN III TABLE 3bONE-TEUTqH COMPUTED DAMPIN;G VALUES GIVEN! IN TABLE 3b

TEN TIMES COMPUTED DAMPING VALUES GIVEN IN TABLE 3b

q =k/k =0

| S
10" =.f.)

- - - - - - - - - - - - - -a )

10-10 . ., -_--- --- -- --

3 16 24 '2 40 4 56 72

Uc IN FT/SEC

Figure 2a

10"OMuTE DV

COHPUTED DAIPING VALUES GIVEN IN TABLE 3dO. . NE-TENiTH COMPUTED DAMPINIG VALUES GIVENt IN TABLE 3d

TEN TIMES COMPUTED DAMPING VALUES GIVEN IN TABLE 3d
10-'

q =k/ks =0. 6

10-9 i_.

10-11

10-12,
8I 16 24 32 40 4a 5,6 2

Uc IN FT/SEC

Figure 2b
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10-6
COMPUTED DAMPING VALUES GIVEN INJ TABLE 3e

-- OE-TE;ITH COMPUTED DAIPING VALUES GIVEN IN TABLE 3e
TEN TIMES COMPUTED DAMPING VALUES GIVEN IN TABLE 3e

-1072

q = k/k s =0.9

- 10-8

(9,1)

. . . . . . . 10.1)

(9.1)

-- --- - - - - - - - - - - - - - - -

- - - - - - - - --..-- - - - - - - - 9,1)

10-12
16 24 32 40 48 56 64 72

U€ IN FT/SEC

Figure 2c

10-7 q k/ks = 0, 0.6, 0.9 and Computed Damping

Values Given in Tables 3b, 3d, and 3e Only

-' 10-9

q .9o.6, (8,1)....... _ q 1 9.1)
0-18- (910,1)

q,.0.9 ( '

10-11

10-12
8 16 24 32 40 48 56 64 72

U, IN FT/SEC

Figure 2d

Note: Results for one-tenth and ten times the computed
damping values are obtainable by multiplying and dividing
the vertical scale by a factor of 10, respectively.
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CALCULATIONS AND RESULTS

The analytical results for a fluid-loaded plate are presented in a

series of Appendixes (A-G). The salient features of this study are

summarized in Table 1 for the convenience of the reader.

In addition, computer results were obtained for the vibratory

response of a water-loaded, simply supported, rectangular-aluminum isotropic

plate and for a water-loaded, simply supported, rectangular-steel isotropic

plate subject to turbulence excitation. The computer results were obtained

by modifying the updated version of the original fornuZation devised by

Mfaestrello 1 with the fluid loading program devised here. The corresponding

mathematical analysis, methods for determining the imput data, and computer

program documentation are given in Appendix H. Results are now presented

for the aluminum and steel plates.

ALUMINUM PLATE

Table 2a presents the natural frequencies and total damping ratio of

a simply supported aluminum plate in air for several modes of vibration.

The natural frequencies were computed by use of the Warburton

method (see Reference 3 for the associated computer program) and were

checked by use of the simple frequency expression w Kn = Kc, + )

for simply supported plates. The corresponding natural frequencies in water,

as well as other relevant input data required for the computation of the

Y2 (W)
normalized modal mean square displacement- - , are tabulated in

p2

Table 2b. The normalized modal mean square displacements () for the
2
p

simply supported aluminum plate in water are tabulated in Table 2c. All of

these data are computed in accordance with the detailed procedure given in

Appendix H.

Both the updated program (designated MURAD) which supercedes the ori-
ginal Maestrello program (designated TURAD) and the fluid loading program
(Option 3) are presented in Appendix H.

The Maestrello method 1 for obtaining p2 is given in Appendix It. Dyer
(page 32 of Reference 1) uses p2 [6 x 10-3 •1 2 2 and Jacobs (page 301

of Reference 1) used p = 3.1 . Here p is the mean square turbulencew
pressure, p is the fluid density, U, is the free-stre-,, velocity, and Tw is

the local wall shear stress (see Appendix H for further discussion).
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Figure 1 is a plot of some of the computed results for the normalized

modal mean square displacements Y(c)/p2 of a simply supported, water-loaded

aluminum plate subject to turbulence excitation over a range of convection

velocities Uc for various values of damping and q = k/ks = 0 only (see

notation for Appendix H). More extensive results are tabulated in Table

2c. The computer procedure used for the calculations is given in Appendix H.

STEEL PLATE

Table 3a tabulates the natural frequencies of a simply supported

steel plate in air for several modes of vibration as computed by use of the

Warburton method (see Reference 3 for the associated computer program).

The corresponding natural frequencies in water as well as other relevant

input data required for the computation of the normalized modal mean square

displacement Y2(2)/p2 are tabulated in Tables 3b-3f. The normalized modal

mean square displacements Y 2(w)/p2 for the simply supported steel plate in

water are tabulated in Tables 3g-3j.

Figures 2a-2d are plots of some of the computed results for the nor-
2 2

malized modal mean square displacement Y (w)/p of a simply supported, water-

loaded steel plate subject to turbulence excitation over a range of con-

vection velocities Uc for various values of damping and q = k/ks < 1 (see

notation for Appendix H). More extensive results are tabulated in Tables 3g-

3j. The computer procedure used for the calculations is given in Appendix H.

DISCUSSION AND EVALUATION

This section discusses (1) the analytical results, (2) the compu-

tational results, and (3) the turbulence-vibroacoustic relationships.

For the present problem, the contribution of radiation damping but not
added mass if excluded in the (acoustically slow) region for which the com-
putations are applicable; see Appendix H for a more detailed discussion of
this point. Simple equations for determining the radiation damping con-
tributions for inclusion in the computer program will appear in a companion
report.

24

w n nllmmnmam m ' ' 24



ANALYTICAL RESULTS

Table 1 identifies and compares the various methods of computation.

Notation pertinent to each method is found in Appendixes A-G inclusive.

The results have been included in the overall computer program (see

Appendix H).

From the summary for Appendix C given in Table 1, we observe that

the solution to the Feit-Junger basic equations has been extended to in-

clude the added mass results for coupled modes in addition to their results

for uncoupled modes presented in Appendix A; th, extended results are then

identical to corresponding results obtained by Davies in Appendix B. The

physicomathematical basis clarifying the plate-fluid coupling mechanism is

discussed in Appendix A. In general, results can be classified both in

terms of modes in wave number space according to their radiation

characteristics and in terms of frequency band.

It is interesting to note that despite the variety of analytical

methods used, the results obtained in Appendixes A-E are identical for the

uncoupled modes. As discussed in Appendixes A-C, the results for these

modes are considered to be dominant with respect to the results for coupled

modes. Moreover, we perceive from the discussion in Appendix D that for the

uncoupled (dominant) modes, the methods of Appendixes A-D are applicable,

with minor modification, to low wave numbers (m,n=(1,1) (1,2) (2,1)...) as

well as to high wave numbers.

The results presented in Table 1 for Appendixes A-E are based on

analyses which assume a plate with simple supports for the boundary con-

dition. However, with proper modification and interpretation, these

results can be used to yield corresponding results for fluid-loaded clamped

plates, at least for the dominant modes. Following the method and using .

the computer program (Option 2) described in Reference 3, we first obtain

the in vacuo natural circular frequency wm (W n)clamped for a clamped-

clamped plate. The frequency for the fZuid-loaded cZanped-cZamped plate is

Wmn * (Wmn)clamped means w mn (W mnnclamped and similarly for

(W mn) clamne
d •
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I

then computed from the equation for W (W) given in Table 1
mn mn clamped gvni al

where now, in this equation, w (w is the previously computed
mn mn clamped

in-vacuo frequency for a clamped-clamped plate. Finally to obtain the

response of a fluid-loaded clamped-clamped plate subject to turbulence ex-

citation, we use mnclamped but mode shapes corresponding to simply

supported end conditions. In extending the method of Reference 3 to the

case of fluid-loaded clamped-clamped plates, we assume that the sensitivity

of the fluid loading to the change in boundary conditions is sufficiently

small so that the preceding procedure will yield approximately correct

results for the response of clamped-clamped plates.

Using an entirely different theoretical approach, Appendixes F and

G (see Table 1) give directly obtainable results for both simply supported

and clamped plates. Again the results depend on the mode numbers.

Appendix G presents a relatively simple formulation relevant for low fre-

quencies.

If we treat the radiation of boundary layer noise into a closed

rectangular cavity as well as into free space (see Dyer Model, Appendix A

of Reference 1), then the approximate value of the added mass due to the

enclosed fluid is given as

p tanhlk Lzi=mimnto >to
:mcavity I kn mn c -

and

m P tan k L if w < w
cavity k mn mn z mn cmn

The total added mass is then the sum of the added mass of the enclosed

fluid and the free (half) space added mass given in Table 1.

*

In the Dyer Model all interior surfaces except the plate are assumed to
be pressure release surfaces.

2
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COMPUTATIONAL RESULTS

For the results shown in Figures 1 and 2, which include the effects

of fluid loading, we make the following observations; of course evaluation

of the theoretical results requires a comparison between theory and experi-

ment in water.

To compute the normalized modal mean sequare displacement Y-(w)/p-

of a water-loaded plate subject to turbulence excitation, we require the

corresponding modal frequencies. Appendix H1 presents two methods,

designated Methods 1 and 2 for computing the natural frequencies of a

plate in water. Method 1 (Equation (H3)) is based on the analyses in

Appendixes A-E whereas Method 2 (Equation (H6)) is based on the analyses in

Appendixes F and G. Computations show that the frequencies computed by

Method 2 are significantly greater than those computed by Method 1 and this

difference increases at higher modes. The discrepancy is attributed to

the less sophisticated assumptions involved in deriving Equation (16); see

Appendix F. Consequently, we consider the results obtained by Method 2 to

be less valid (i.e., more inaccurate) than those obtained by Method 1, and

use only Method 1 for the computations of y2(w)/p2 now presented.

For the fluid-loaded aZwninwn plate, Figure 1 shows the contributions
2 2~

of the lowest modes to the normalized modal mean square displacement Y 2()/p

for both the range of convection velocities considered (0 5 Uc 5 64 ft/sec)

and the range of modal frequencies of interest (100 f < 1000 Hz); see
mn-

Table 2. It is evident from the figure that for any damping value con-

sidered, the contribution of the modes to the total normalized mean square
2 2 72 2 2

displacement (Y1 3 + Y23 + 14 + Y24 )+..)/p decreases with successive

mode orders (1,2), (2,3), (1,4), and (2,4). The major contributors are the

(1,3) and (2,3) modes; the relative contribution of the latter mode

The fluid loading does not include the influence of hydrostatic
pressure. The effect of hydrostatic pressure on the natural frequencies is
discussed in Appendix I.

As shown in Appendixes F, G, and H, the data given in Table 4 are used
in computing the frequencies by Method 2.
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TABLE 4

Modal Values of A.. and 8.. for Clamped and

Simply Supported Plates

Clamped Plate Simply Supported Plate
Mode A.. Bi. Aij a

i = 1 j =1 0.6904 1 0.4053 0.25

i = j=2 0 1 0 0.25

i = 1 j = 3 0.3023 1 0.1351 0.25

i = 1 j = 5 0.1924 1 0.0810 0.25

i = 3 j = 1 0.3023 1 0.1351 0.25

i = 3j =2 0 1 0 0.25

i = 3 j = 3 0.1324 1 0.0450 0.25
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decreases for values of U approaching 64 ft/sec. However, we also ob-
c

serve that for given values of U and damping, the root mean square dis-

placement of each mode treated is of the same order of magnitude. We con-

clude therefore that each of the several modes considered makes a signi-

ficant contribution to the total vibratory displacement.

A comparison of the curves of Figure 1 also indicates that the

character of the curves is essentially independent of the damping values

and that the values for the modal amplitudes decrease with increasing

values of the damping. If the damping is sufficiently small and/or p- is

sufficiently large, we may expect the turbulence excitations to produce

undesirably large magnitudes of plate vibration.

For the steel plate (Figure 2), similar results were obtained for

the lowest modes for various values of q = k/ks; see Table 3. Again, we

observe that for any value of q, each of the several modes considered makes

a significant contribution to the total vibratory displacement, the modal

amplitudes decrease with increasing values of damping, and the character

of the curves is essentially independent of the damping values. In

addition, we observe that the response increases with increasing values of

q. For q = 0.995, Table 3b shows a significant increase in the mode

numbers corresponding to the frequency range of interest (100 f 5

1000 Hz). Once more we conclude that if the damping is sufficiently small

and/or p2 is sufficiently large, we may expect the turbulence excitations
to produce undesirably large magnitudes of plate vibration; the magnitudes
are enhanced, but not radically, at sufficiently large values of q. Hence

in computations it appears practical to use a single representative value

for q for the range of turbulence frequencies distributed about w = U k
. c T

k c, corresponding to 0 <_ q = k/ks 1.0. A practical alternative would

be to select the average of the mean square displacement responses computed

for small and large values of q.

These relationships are discussed in the following section.
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TURBIJLENCE-VI BROACOUSTIC RELATIONSIII PS

Background material is cited in the bibliography.

For the convenience of the reader, we list the notation commonly

used in this section.

a,b Length and width of the plate, respectively

B Plate bending stiffness equal to E h'/12(l-o2)

CB  Trace speed of the plate bending wave in the direction of flow or
B1/" 1/4

free flexural phase velocity for a thin plate equal to w 2 (B/?4)

c Velocitv of sound
' 1/2

c. Compressional wave velocity of the plate equal to [E/Ps (-a

E Young's modulus

f,f ,ih Natural, acoustic coincidence or critical, and hydrodynamic coinci-
dence or critical frequencies, respectively

h Plate thickness

k Acoustic wave number equal to w/c

klk 3 Wave number conp!flents lying along the x- and y-axes, resnectively

k M,kn  Modal wave numbers equal to mri/a and nw/b, respectively

kmn ,ks  Wave numbers equal to m+ kn

k Free plate bending wave number equal to (w/< c )
1/2

p

kT Turbulence wave number

Min Plate structural mass per unit area

Effective mass per unit area (i.e., mass per unit area of fluid-
loaded plate) equal to mp + mmnp m

in Added mass per unit area (or apparent mass or virtual mass per unit
inn area)

m,n Mode numbers

q Equal to k/ks

U Free-stream velocity
U Convection velocity equal to 0.8 U

C

v Mean convection speed along the flow direction

v Hydrodynamic coincidence speedo

a Equal to I for fluid loading on one side of plate only; equal to 2
for fluid loading on both sides of plate

K Radius of gyration equal to h/21 /-

30



p Mass density of fluid medium

PS  Mass density of plate

o Poisson's ratio

W Circular frequency equal to 2wf

W Acoustic coincidence or critical frequency equal to 27fC C

c% h iydrodynamic coincidence or critical frequency equal to 2f h

W Plate resonance frequency equal to 2wf
ta mn

- Bar over quantity denotes quantity for water-loaded plate

The convection properties of the turbulence pressure field relate

the circular frequency w and the turbulence wave number kT by the equation

kT U w1)c

The approximation obtains because, in actuality, a range of wave numbers

contributes to the frequency spectral density of the turbulent pressures

(e.g., see Equation (B60) of Reference 1). Alternatively stated, for a

turbulent field, a particular wave number component is generally associated

with a distribution of frequencies and/or convection speeds.

Following Dyer (see page 18 of Reference 1), the hydrodynamic coin-

cidence speed v0 is defined as the speed at which the magnitude of the mean

flow convection velocity U along the flow direction is equal to the trace
c*

speed of the bending wave CB in the direction of flow, i.e., v = v° = CB"

The frequency at which this occurs is a significant parameter because it

represents a value at which we can expect a large vibratory response due to

increased amplitudes of the modal forcing function for the panel. This

parameter is called the hydrodynamic coincidence frequency wh and is given

by the equation

wh =k C = k U (2)pB p c

Thus from Equations (1) and (2), kT = k= bh/Uc at the hydrodynamic coin-

cidence frequency.

The bending wave is also referred to as the free flexural phase velocity
and free plate bending velocity.

31

m mm~'p



Fere

2 4

k = /M\ 2 (3)

because (see pages 18 and 28 of Reference 1)

11

C- 2 ; W = at hydrodynamic coincidence (4)CB

and

i The region within which hydrodynamic coincidence can exist is defined
2 2 2

' by a semicircle in k space represented by (km - Uc]2ic cj kn2 = (U0/2ic cj).For the plate coordinate system shown in Figure 3, the corresponding classi-

fication of plate modes in wave number space is shown in Figure 4. For low

convection velocities U << C the locus of the hydrodynamic coincidence

(H) curve collapses to the origin and the response is composed entirely of

hydrodynamically fast (11F) modes.

From these equations we obtain the significant relationship from

which we can determine ah for a given plate material and value of Uc,

namely,

2 2(6)-- CB  c.
Vc

The hydrodynamic critical frequency is now defined as the resonance

frequency of the plate mode with bending wave velocity equal to the con-

vection velocity. Table 5a presents values of the hydrodynamic critical

frequency fh = uh/2r computed for the fluid-loaded, simply supported

aluminum and steel plates for values of Uc used in the previous computations

The condition of hydrodynamic coincidence has been used by Maestrello 1

in obtaining computer solutions Y (w)/p2 (see Appendix H).
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TABLE 5

Computation of Hydrodynamic Critical Frequencies and Acoustic
Critical Frequencies for Fluid-Loaded, Simply Supported Alum-

inum and Steel Plates
TABLE Sa

Computation of Hydrodynamic Critical Frequencies
for Aluminum and Steel Plates

2  2

UC Uc
U fh =- (Hz) h = - (Hz)

(ft/sec) alum. plate steel plate

8 0.62 0.05

16 2.48 0.20

32 9.95 0.79

64 39.87 3.17

ALUMINUM4: < = 9.64 x 10 - 4 ft
c, = 17,000 ft/sec

1.

Steel K = 1.204 x 10-2 ft
c. = 17,000 ft/sec

A.

cwater := -,000 ft/sec

TABLE Sb

Computation of Acoustic
Critical Frequencies
for Aluminum and Steel

Plates

c2
Material fc = c (Hz)

Aluminum 243,000

Steel 19,400
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of the plate response. The results were obtained by use of Equation (6).
2.- 2 2 2 2

For a finite plate at resonance, k k mn (m/a) + (n1n/1)) -
p s Mil

For air (or in vacuo) loading

mn -K c (7)

mna 2 fz

2
the equation wmn K c., (mr/a) =(m/a) Uc represents the hydrodynamic

coincidence condition for the finite plate at resonance because' 1c is the
convection velocity in the flow direction only (see page 132) and

W W
CB mn or mnB ok c k = Kc£ kn

p mn

.K c£ at w = 0 h (8)

For water loading (see Equation (113))

1

W 4. 11+ (9)
imn mn L ksh [l i2]

The radiative properties of the plate inmersed in a fluid relate the

given frequency w (Equation (1)) and the acoustic wave number k by the

equation:

kc w (10)

From Equations (1) and (10), we obtain:

Ul U
k -k 0.8 k 0. 8 kT *ach No. (11)

C T T cT

These last two relations are given to add to the theoretical picture. How-

ever, no computations for the radiation* of plates were made for the present

report.

On page 24 of Reference 1, we defined the sound coincidence or cutoff

or critical frequency w = w c as corresponding to c = CB, i.e., the fre-

quency at which the flexural wavelength of a thin plate equals the acoustic

wavelength in water. At this frequency we expect a greatly increased

acoustic response.

The critical frequency is used for a resonant plate.
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Moreover since at this frequency (see page 27 of Reference 1)

1 1

c =C B 1/ 1 (12)

Then 1

=2 (m)=c (13)

Table 5b presents values of f = w /2fT computed for the fluid-loaded, simply
c c

supported aluminum and steel plates. The results were obtained by use of F
Equatiou (13). Obviously there is one and only one sound coincidence (or

critical frequency) for each plate material.

According to Leehey (see Bibliography), the frequency range of

interest for sonar self-noise application is

U 2  2
c <W< C

Hydrodynamic coincident effects are not important for this range (see

Tables 2 and 3), and the radiated power per unit area is associated with

both the decay of turbulence and the presence of plate boundaries. i
We observe that the near field in the vicinity of the panel

represents the predominant portion of the transduced pressure spectrum.

This spectrum is composed of nonpropagating components caused by hydro-

dynamic coincidence effects. Thus, the wave numbers chiefly in evidence are

those in the immediate vicinity of the hydrodynamic coincidence curve which

corresponds to an excitation field progressing in the flow direction with

velocity U and frequency w; see Figure 4. The spectrum of boundary layer
c

pressure is distributed about kI = kT = /U with most of the energy at

rather iow values of k As we proceed into the far field, the near-field

components decay and only the wave numbers at or below the sonic line,

represented in Figure 4 by a circle k = ko = 3/c is present.

We now show that at sufficiently low wave numbers, the added mass (or

near field) of a fluid-loaded plate subject to turbulence excitation may
contribute significantly to the vibroacoustic response of a structure in its

vicinity and, in turn, may also be significantly affected by that response.
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The added mass or fluid inertial loading of a flexurally vibrating

plate represents the imaginary or reactive part of the impedance associated

with the reaction of the fluid to the vibrating plate. The corresponding

fluid pressure is considered to be effective over a distance dz-1 from the
6

plate; the distance d =-Lis called the near field. Thus, at sufficiently

small wave numbers (d A/6 or kd 5 1), the near field will exert a pressure

on an adjacent structure lying within the effective bounds of the field.

If the structure is flexible, we will then have a complex coupled vibro-

acoustic system involving the plate, the adjacent structure, and the inter-

vening fluid medium. The interaction would in general couple the near- and

far-field (or radiation) pressures on both plate and adjacent structure and

would include the phenomena of reflections, scattering, etc. We explain

this by recognizing that each flexible body or source works against its own

sound pressure which represents the reaction of the medium to its motion as

well as against the sound pressure that is generated by the adjacent source

(e.g., the opposing body). Thus, two sound sources (i.e., flexible bodies)

in close proximity (d 5) react with each other and the sources may

generate considerably more sound energy than if they were further apart.

Sound sources of this type in close proximity are said to be dependent, and

the power that each source generates individually cannot simply be added to

yield the actual or total power of the system which is due to the interaction

effects associated with the near field.
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CONCLUSIONS

The chief conclusions drawn from this investigation are:

1. The added mass and corresponding natural frequency of a fluid-

loaded rectangular plate are more significant for the uncoupled modes and

are easily computed using the results given in Table 1. For a first

approximation, only the results for uncoupled modes need to be considered

in vibroacoustic computations.

2. The added mass results for the coupled modes can be computed

(using the results in Table 1) and added to the results for the uncoupled

modes to refine the accuracy of the computation for the natural frequency or

to determine the effect of these modes on the natural frequency and vibro-

acoustic response.

3. Separate results for the added mass and natural frequencies of

only the uncoupled modes can be computed (using the results in Table 1) to

determine the absolute numerical contribution of these modes to the vibro-

acoustic response or to identify a corresponding response.

4. The methods of analysis used in Appendixes A-E yield the same

added mass and natural frequency results for uncoupled modes and are

applicable, in their essence, to both high and low wave numbers and for low

and high frequencies (see the remarks column of Table 1 relative to

Appendix B; see also Appendix E).

5. The Feit-Junger method of analysis used in Appendix A can be ex-

tended by the methods of Leibowitz presented in Appendix C to yield the same

added mass and natural frequency results for the coupled modes as obtained

by Davies (Appendix B).

6. The results obtained in Appendixes A-E for the added mass and

natural frequency of a fluid-loaded, simply supported plate can be extended

to yield corresponding results for a fluid-loaded clamped-clamped plate by

using the Leibowitz-Wallace methods given in Reference 3. The results ob-

tained by Greenspon and Leibowitz in Appendixes F and G can be used

directly to compute the added mass and natural frequency of either a simply

supported or clamped-clamped plate; the results for Appendix G are

particularly applicable to the low frequency response. The Greenspon-
Leibowitz results are considered to be less accurate than the former

results.
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7. The total mass and corresponding natural frequency for a plate

radiating into free (half) space as well as into a closed rectangular

space can be computed using the results presented in Table 1 and the results

obtained from Appendix A of Reference 1 given in the Discussion.

8. The computed results for both the aluminum and steel plates show

that the contribution of the higher modes to the total vibratory response

is not negligible e.g., for the aluminum plate, the magnitudes of the root

mean square displacement for the (1,4) and (2,4) modes are of the same

order as that for the (1,3) and (2,3) modes for a given value of con-

vection velocity and damping. Thus, determination of the total vibratory

displacement requires that the computations include the contributions of the

several modes of vibration deemed to be significant.

9. Turbulence-induced plate vibration may be of significant magni-

tude for small damping and/or sufficiently large mean square pressure

fluctuations; the magnitude is enhanced, but not radically, at sufficiently

large values of q = k/k . Hence in computation it appears practical to use

a single representative value for q for the range of turbulence frequencies

distributed about w = Uc kT = kc corresponding to 0 < q = k/ks < 1.0. A

practical alternative would be to select the average of the mean square

displacement responses computed for small and large values of q.

RECOMMENDATIONS

To simplify the computational procedure (and the computer program)

and to achieve reasonably accurate vibroacoustic results for a vibrating

plate fluid loaded on one side, the following recommendations are made.

Note, however, that the user who wishes to refine the accuracy of compu-

tations, determine the coupled mode contribution, identify a coupled mode

response, or treat a closed rectangular cavity can incorporate the

additional relevant results presented here into the computer program.

1. It is recommended, as a first approximation, that the equations

for the added mass and corresponding natural frequency of only the

uncoupled or self (dominant) modes of a fluid-loaded, simply supported

rectangular plate be used in making vibroacoustic computations. This in-

cludes the uncoupled mode equation common to all of the results obtained in

Appendixes A-E; see Appendix H for the corresponding computer program.
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2. It is recommended that vibroacoustic computations for fluid-

loaded, cZanped-cZa=ed rectangular plates be made (for uncoupled modes

only) by extending the equation for a fluid-loaded, simply supported

rectangular plate to include this case, in accordance with the Leibowitz-
Wallace methods of Reference 3; see Appendix H for the corresponding com-

puter program.
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APPENDIX A

THE FEIT-JUNGER METHOD

NOTATION

A Amplitude of p

c Velocity of sound in fluid medium

Cp Compressienal wave velocity of the plate equal to

Flexural rigidity of plate equal to P h Eh3

12 12(1-v 2)

E Young's modulus

e Equal to 2.718; base for natural or Naperian system of
logarithms

F(x,y) Driving force applied at coordinates x, y, z 0

F Generalized force for the mn mode
mn

h Plate thickness

Im Defined by Equation (Al7b)
mnpq

i Equal to If-T
k Acoustic wave number equal to w/c

k m,k n,k p,kq  Modal wave numbers defined by Equation (A3)

ks  Surface wave number equal to (km2 + kn2 )/2

L x, Ly Half length and half width of plate, respectively

M Total plate structural mass

p

m, n, p, q Mode numbers

m mn Added modal mass per unit area

m Added mass of coupled modes mnpq per unit area

mnpq

p(x, y, z > 0) Pressure in fluid

p(x, y, z = 0) Pressure on surface of plate

P(Yx, Yy z) Double inverse Fourier transform in Y and Yy

rmn Radiation modal damping

mp Mutual specific acoustic resistance for coupled modes mnpqrmnpq
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r Structural modal resistance
-S

Wmn w Displacement amplitude of vibration of a plate for the mn
Pq and pq modes of vibration, respectively

wmn(x,y) Modal displacement at surface of plate

w(x,y, z=O) Fluid particle displacement at surface of plate equal to
* plate displacement

w(Yx' Y ) Transform of displacement w(x, y, z = 0); equal to a
series of modal transforms

w (Y IY ) Modal transform of displacement at the surface of plate
pq x y

x, y, z Rectangular coordinates; x and y are in the plane of the
plate and z is normal to the plate

V2  Equal toa2 a2 a2
x2 + 2 + 2

ax y ~z

-1, Yj k i
6(k.-Yj) Delta function; P (ki - yj)d

1 YO , yj i

Yx Yy Wave numbers which are the coordinates in Fourier
y transform space

eA small quantity

TI s  Structural loss factor equal to rs  npsh

v Poisson's ratio

p Mass density of fluid medium

Pa Added .-ass density of fluid per unit volume equal to mmn/h

Pe Sum of mass densities of plate and fluid equal to ps+P

PS Mass density of the plate

W Natural circular frequency of vibration

Coincidence frequency equal to c Lc

W ), W mn In vacuo and submerged natural circular frequency,
respectively, for the mn mode of vibration i.e., resonance
frequency for the in vacuo and submerged plate,
respectively
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DERIVATION

From Reference 4, the even modes of a simply supported rectangular

plate vibrating in vacuo have a configuration described by

wn (xy)= W cos kmx cos knY, jxj< Lx jy< L A

(Al)
=0 IxjIt LXA jyj~ L yJ

with boundary conditions

cos k L cos kL = 0

m x n y

sin kmLx (-I)m (A2)

sin kL (-1)n
ny

The boundary conditions restrict the wave numbers kII kn, or ks to the

values

k L (2m + l)-! m,n = 0, 1, 2"-x2= n y n (3

ny2 1/2 (A3)(k 21/2 7r r/2m+l '2 / 2]2

k (k2 + k + ) ; m,n=O, 1, 2

i 2 > 2 fr <c=c2/h/)C
Also ks  fornw <w c /(h/y'2c (see Reference 4) so that each wave

s mn c
is characterized by one pair of wave numbers k and k i.e., the normal modes

of a plate vibrating in vacuo are described in terms of a discrete wave

number spectrum. The modal configurations are defined to be orthogonal to

each other so that each mode can be excited independently by a suitable

distribution of the load.

For the submerged plate (exposed to water on one side), however, each

of the originally normal (km, k n) modes generates an acoustic pressure in

the plane of the plate (which can be represented as an inverse Fourier

This configuration is of practical importance because it matches the
modes of vibration of a simply supported, rectangular plate driven at the
center.
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Jtransform) whose wave number spectrum is continuous and thereby encompasses
the discrete wave numbers of the other originally (i.e., in vacuo) normal

modes. The resulting pressure distribution due to a single mode is not

orthogonal to the other modes. This causes the modal configurations to

couple, and thereby to lose their normal mode character. Thus if we

attempt to formulate the problem in terms of in vacuo normal raodes, we shall

find that these modes become coupled; the subsequent discussion will clarify

these features. The modes also lose their standing wave character in the
2 2

range k > k because the plate boundaries are energy sinks. (m'nth

For a distributed load, the forced equation of motion for the (mn)

mode of an undamped thin rectangular plate extending from -L to L and -L

to L is4-6 x x y

y

x y h [bmn mn mn

Here, Lx L ypsh = p /4 where Mp is the mass of the plate,
Shc 2 2 ( _k_\1/2 2 2]h c (ki2 +kn2 ) = ( ) [km 2 + kn is the in vacuo natural fre-

mn f10 m n* n

quency of this particular mode, F is the generalized force associated
mn

with a concentrated driving force applied at x=O, y=O, and the surface

pressure p(x,y,O) is represented by

_LX f L y

Fin= F(0,0) f p(x,y,O) cos km x cos knYdxdy (AS)
xL -Ly

x y

To obtain an explicit expression for p(x,y,O) as a double integral, the

surface pressure, which is spatially aperiodic in x and y, is written as a

double inverse transform in 7x and yy.

With inclusion of a structural loss factor

_ hiCpI [km2 + k 2 (l -) (see Reference 4).

mn [/ k n 2
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Go Go

P(Y Y z J p(x,y,z) e dx dy (A6)

-CO -CO

'00 00

p(x, y; z) = 2 P(yxy; z) e x dy y (A7)
(2ir) I-- O -00

Now the three-dimensional Helmholtz wave equation is

a a2  + k2] p(x,y;z) = [V2 + k21 p(x,y;z) = 0 (A8)ax y 3z2

The double transform of the foregoing equation is

2 2 2 a2  '0

(k2 _ Yx2 yy 2 + P(Y Y z) 0 (A9)

icizAssuming a solution of the form p = Aei , the solution of Equation (A9) is
2_ 2_y 2 1/2

i (k z
P(yx,Yy;z) = Ael(k2Y Y 1 (AlO)

2
where the boundary condition Dp/3z = pw w at z=0 yields the value (see

Chapter IV of Reference 4)

2

The Fourier transform of the term 7- p(x,y;z) is obtained by inte-
ax

grating by parts and setting p and its derivative equal to zero at the

limits x=+ -. This yieldsf 2p/ax2 e X dx = - x P(Yxy;z). Also
22 22

because a 2/y , 3 /az , and k2 are independent of x, they can be taken out-

side the integral sign so that (a2/@y 2 + a2/ax 2 + k2)fc p(x,y;z)e-iYx x dx

= (2/ay 2 + 2 /@z2 + k2 ) p(Y ,y;z). The procedure is now repeated for
2 - x

-2 P(Y y;z) to obtain Equation (A9).
)2 X
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-ipw w(Y, Y)
A 1/2 (All)

2 2 21/(k x2_yy

Substituting Equation (All) in Equation (AlO) and the result in

Equation (A7), then letting z=O, and considering even modes only, we get

p(xy,0) -ipc2k2  (YY)cosYxcosY dY dY (A12)
2 2 2 21/2 x y

f. CO (ky Y )
where w(Y xY y) is the series of modal transforms

y pq pq (A13

Substituting Equation (A13) in Equation (A12) and the result in

Equation (AS), we get

F (00)+ c2 k2 x yw pq(Y , Y y)cos Y x cosY d xYy

mn2 -L -2 2 21/2 -ddx y (k2-x - .
-x y

(A14)

cos km x cos knY dxdy

The double Fourier transform of Equation (Al) yields

=7dy

wmn Wmn cos Yxx cos kx cos Yyy cos kn dxdy

-L -L
x y

(AlS)

4 W kmkn (-1)m+n cos YxLx cos YyLy

2 2 2 2
(km  - yx) (kn -Y )I

m x (n y
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Substituting the time integral of the first of Equations (A1S) in

Equation (A14), we get

O

F iF(0,0)+ 2-,, Ypq - mn(YxY dYdY (A16)
47T W 2 Y 2 /2minn =mn pq -- (k2  Y2 *y2)

x y

Using the time integral of the second of Equations (AlS) for both w and
~ mn

w ,we get
pq

i4pc k2 kk__( 1 )mn k k
SF(0,) ()pq
=F(OO7+ 2 p q pq pq Jj

(Al7)
2 2cos Y L cos Y L dY dY
xx yy x y

2  Y 2 2 (k 2_ 2 ) (kY 2 )(k 2  )Ykq)(k 2 2
x y m x n y p x q y

The exact solution of Equation (A17) requires a numerical integration of

the branch cut integral. Reference 4 avoids the determination of the exact

solution by evaluating the integral for the high wave nwnbers (short wave-

length) limit only. This simplifies the analysis, and the final expression

is considered to hold for a finite rectangular plate over a particular wave

number and frequency range.

Write

Fin F(O,O) + iw mnpq pq (Al7a)
pq

where we define

4pwk k (-1 m+n+
p k mn n (-1)pq k k q (Al7b)Imnpq = 2 pqpq

7f Pq

(equation continued on page 48)
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(Equation continued frcm page 47)

22
CsY L cos2 Y dY dyx x yy x yJ (AiTb)

2 2 ( 2  2 ~2 q 2 Cont'd

= (rmnpq- impq )LxLy

Thus the complex quantity I is the product of L L and the sum of the
mnpq x y

mutual specific acoustic resistance r and the reactance - ibm also
mnpq mnpq

referred to as modal coupling coefficients, where

r Re (I
mnpq mnpq

1m =- -- Imag (Im )
mnpq mnpq

Then

Finn =F(0,0) iW I L (rmnpq- i- nq) |

Fin + -mnpq imnpq A~pPq

F(0,0) + WLL (r.-iwm) W + Z iwLxLy (rmnpq immnpq) Wpq

pq~mn

m +im )nn + (mnpq rnp)
F(0,0) + LxLy 2mn mn mn mmnpq pq

pq#mn

For the simplified analysis, we write the Lagrange equation for the

forced motion of a mode, replacing Equations (A4) and (AS) by (note that

harmonic time dependence is in the form e- 
i t)

r2 2L( ;I P h 2 sW

L mn mn W mn
(A18)

F(=,0)+LxLy (wm ) I + L L (2i + iwrnp W =F
0 +m ipmnq Wmn + x y 2mnpq mnpq/ pq mnpq~mnxy
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Iz

where the left member now includes a term for the structural resistance

rs = wn P hns/w expressed in terms of a structural loss factor ns and thei nns s
radiation loading portion of the generalized forces are written as two

terms. The first of these terms represents the uncoupled (added mass and

radiation) damping, i.e., the self-impedance due to radiation loading

whereas the second of these terms represents the coupled added mass and

radiation damping i.e., the mutual impedance due to radiation loading. If

included in the computation, the coupled terms must be evaluated numerically.

Transferring the radiation-loading portion of the generalized forces

to the left member of Equation (A18), the Lagrange equation becomes

[W~ (h + m) ~(s~ + r) + W Ph] W~n(A9
(A19)

~-i2 W F
2 mnpq + mnpq pq Lx y

pqjmn

which is a doubly infinite set of equations for the unknowns W n coupled by

the terms m and rm . Thus I is a coupling coefficient linking an
mnpq mnpq mnpq

(m,n) mode to a (p,q) mode.

ForkL > 3 which for w << , is equivalent to kmLx, k L >> I
xF y Cmx n y

(i.e., the criteria for large plates), see Equation (A3), the coupling terms

are much smaller than the self-impedance components so that they can be

ignored in making an approximate evaluation of the far field.

Feit et al. now proceed to solve the integral Equation (A14) for

the case k L and k L approaching infinity in order to gain some insight
m x ny ,

into the above approximation. In this case the orthogonality of the

cosines in Equation (A14) yields

However, even without going to the limit of infinite km L, KnLy , the pq

summation is small when k L,,k L is large; see Reference 7.
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L L 2

lira cos Y x cos k x cos Yy cos kny dxdy = Y1 )62 k Y

k-L -J - -O f L f l. x m y) n- )

CX(A20)
knLy

Using these 6 functions in Equation (A14), we find

2 2 w0 Y , Y )6(km-Y )'(k -Y )dY dY (A21)
F = F(0,O) + ipc k 2 n pq x y mx n y x y

pq (k 2_y 2 _y 2) 1/2
x y

or ipc2k2 
.' ~p (kkn)

F n = F(0,0) +. pq (A2))2A2
(ic k k /

mnn
2_ 2 2I/2 "(k2"'k r n

Using the second of Equations (AIS), Equation (A22) becomes: (In

Equation (A1S), let m-3p, n-*q, x-m, y- n.)

i4pc 2  W k k (_-)p + q cos k L cos k L

pq pq pq m x n y

Finn F(0,0) + 2 (A23)

- (k2k m kn 2 1(kp m q n

The second term in the right member vanishes when kp km=Yx,

k qk =Y (see Appendix B). For kp=km=YxI kq=kn=Yy, the denominator vanishes

but the second term is finite because the boundary conditions, Equation (A3),

require that the numerator also vanish. Hence we evaluate the indeterminate

quantity

lim rcos k L -cos knL
k -k 0

0L(kp2-k L(kfl ]

q n

so

hJ

r5



For lm cos kL
kk A~ 0 let k =k + K K + LEK
pm p p M m

k -k
p m

Then

cos k L cos (k -E)L

lrn my lim p
kk A 0 k 2 _k 2 C-*O 2ek
p m p m

cos kmL cos eL + sin kpL sineLx (A24)

2Ek
m

x x

- 2ek -2km m

Similarly,4

cos k L ()Ly
nr nylim (A25)

k -k -0 k _k 2kq n q nl

Substituting Equations (A24) and (A25) in Equation (A23), setting

(-I)2p+2q = 1, letting W pq-)- W mn, and dropping I since the coupling terms
pq mnpq

vanish in the large kmLx k L limit, we obtain

X~ 2
iPC k WV LL1mn x y

F F(O,O) + -(A26)
mn2 2

(k 2k A -2 2)1/2
m n

Hence in the large krnLx k L limit
m fXlny
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2

F =F(o,o) + n
kn 2 _k2 ) 2 /2

In (k 2k2 > k2  (A27)
Skn

2
-F(0,0) + wL xL I n W mn ac

where (see Equation (A18))

= m P (A27a)
mn (km2+kn2 _k2 )"12  (ks 2 _k2 ) 1 / 2 - 2a

is the added mass per unit area which is shown in Reference 4 to correspond

to an infinite train of straight-crested parallel waves or of straight-

crested orthogonal waves. Feit and Junger assume that this added mass will

hold for a finite rectangular plate, i.e., the added mass of a finite plate

whose dynamic configuration embodies many nodal lines is effectively that

of an infinite train of standing waves.

For the low frequency range where few modes contribute to the far

field, a deterministic approach can be used. The resonance frequency for

the submerged plate J is then determined as follows:

mn

m _

Pa =  
_ 

=  - ;k > k (A28)
a h 2  2 1/2

(k k A h

Therefore

pPe =Ps +  = P + 2 k > k (A29)

(k k) h

P = P m

:Ps 2 2 1/ +s h
P (ks2k h

s s
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Snewc senoai)ad w occurs at the frequency computed

by the addition of the added mass to the mass of the plate, i.e.,

w cc then
phm

bJ m (A31)

or

(0 = 0( +) (A32)

S

2 1-1/2

L Ps mn

r / --1/2 2 2
SL+ P ]w + ;k >>k (A34)
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APPENDIX B

THE DAVIES METHOD

NOTATION

A Area of plate equal to k P.
p 1 3

B Coefficient of v defined by Equations (B46) and (B47)
inn. mn

co  Velocity of sound in fluid medium

D Flexural rigidity

e Equal to 2.718; base for natural or Naperian system of
logarithms

I (k ),I (k ) Functions defined by Equations (B23) and (B26),
respectively

Im (k Function defined by Equation (B24)

i Equal to )rT
k Wave number equal to Ikl=k 22+k3

k Wave number vector with components {klk 3}

k Acoustic wave number equal to w/c00 0

k Component of k lying along x1 axis

k 3Component of k-yn along x 3 axis

km Wave number equal to mfr/k I

kn Wave number equal to nf/k3
n2 2

k Surface wave number equal to Vkm2+k
2

mn m n

i', 3 Length and width of plate, respectively

M Total mass per unit area represented by Equation (B49)
p

m Mass per unit area of panelp
m Added mass or fluid loading per unit area

mn

m, n, q, r Mode numbers

P Acoustic pressure generated by motion of panel

P Acoustic modal pressure defined by Equation (B8)
mn

p Pressure field driving panel

Pmn Driving modal pressure defined by Equation (B7)

55

a'

I



R ( ) Coupling coefficient connecting the m,n mode with the, mnqr
mq,r mode

Smn(k) Shape function

Smnqr Modal radiction coupling term

T Modal mass loading coupling termmnqr

t Time

v Panel normal velocity displacement

V pn Modal velocity amplitude

x1 , x2,x3E,x 2  Rectangular coordinates; x is normal to the panel and

the origin is at one corner of the panel; x H fxl,x3 I
y(x,t) Panel normal displacement

Z(k,w) Radiation impedance
sgnw Equal to -1 for w < O, + I for w > 0

* Denotes complex conjugate

Coefficient accounting for mechanical damping of panel

V4  Equal to D 4 + 24 for isotropic plate

6(k -k.) Delta function: ff 6(ki-kj)dki = 1 for k.=k.

= 0 for k.#k

6.. Kronecker delta equal to 1 for i=j, equal to 0 otherwise13

Ilmn Modal structural loss factor

PO Mass density of fluid medium

T mn(x) Normalized characteristic functions

W Natural circular frequency of vibration
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DESCRIPTION

Reference 7 treats a simply supported, thin, rectangular plate in-

serted in an infinite rigid baffle and loaded with a dense fluid on one

side. The normal vibration velocity field of the plate is expanded in a

series of in vacuo normal modes. The effect of structure-fluid interaction

leads to the coupling of in vacuo modes represented by an infinite set of

simultaneous linear equations to be solved for the infinite number of

unknown modal response amplitudes. Fluid loading terms or coefficients in

these equations are defined by integrals which are evaluated approximately

for various regimes of frequency. Coupled and uncoupled plate modes are

included. The imaginary part of the coefficients associated with these
modes leads to a virtual mass which is added to the plate mass. This

causes a decrease in the modal resonance frequencies.

DERIVATION

Assume that neither the panel vibration nor the acoustic field

affects the applied external force acting on the thin panel (Figure 3).

The equation of motion representing the normal displacement of the panel

driven by a pressure field is then

DV4y + m Y + m a2y -p(x,t) - P(x,x 2  Ot) (Bl)
mp t at 2

As discussed in Appendix A, the wave number spectrum of the structure
is discrete and that of the acoustic field is continuous. Hence for the sub-
merged plate, in vacuo normal modes do not exist. However, the expansion
of the velocity response of the structure in terms of its in vacuo modes is
still valid. For convenience, we refer to these functions as modes and also
refer to the resonance frequencies of these modes. Thus, we do not refer
to a frequency associated with some natural mode of vibration but rather to
a frequency corresponding to a maximum value of the amplitude response of a
mode. The coupling together of the in vacuo modes by the structure-field
interaction is a significant aspect of this problem. The effective
coupling depends on both wave number matching and resonance frequency
proximity and, therefore, on the relative magnitudes of the widths of the
resonance peaks and the frequency spacing of the resonances.
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The modal equation for the frequency Fourier transform of panel velocity

is then

4 "
Ek w a- a %.sgn w]v (w) -iwp *iwP (B2)

I an un un
I

obtained by use of the following relationships

v(x.w) = f v(x,t)e-i jt dt (B3)

CO

=2 v(W) 7 (x)4
o n an-

m,n=l

where

2
.n (x) = psin kmx sin x3  (B5)

is a normal mode of a simply supported panel. lfere ka= " k

2 2 2A I Z- and=k k + k Alsop 1a m n

= jwI =s w sgnw (B6)

and (see Chapter V of Reference 8)

pn (t) = j p,w) IV(x) dx (B7)

A
p

Pmn (W) = xPxO, ) nCX) dx (B8)

Ap

where dx = dxdc

The boundary condition in the plane of the plate relating the

acoustic pressure and panel velocity v(x,t) = 3y/3t is
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-aP(x'x2"t) 0 vx~)(9)

ax2  j1 -Po at
x2

so that

ax2  = iPo v(x,0) (BIO)

xa 0
2

Using Equation (BIO) together with the wave equation for P(xx 2 ,W)

in an acoustic medium, the wave number-frequency transform relating the

acoustic pressure to the panel velocity (see Equation (DIO), Appendix D) is

P(k,x 2 ,w) = Z ,w)v ,w)i2 ko-k 2  (Bl)

where the radiation impedance Z(k,w) is given by

Z _,=) = %oCo -) (B12)

I0 -

Herek =iki andk =L.

After some rearrangement, we obtain from the above definitions

PnC) = Vq) Z(k..w) S (k) SJ i)dk- (B13)

q,r--l 0 w

R (w)v (w) B4
qOD mnqr qr (B14)

q,r-I

where dk dI dk2 and S mn(k) is a shape function defined by

- -1 2. . . . .



S nk) = T 1M(X) e i k  x dx (BIS)inn- J_
A
p

and R the coupling coefficient connecting the (r,n) mode and the (q,r)mnqr

mode is defined by

R Z(k,w) S (k) S (k) dk (B16)mnqr ) (2)2 .- .- qr-

If q + m and r - n, then the modal coupling coefficient becomes the modal

radiation coefficient. The modal coupling coefficients connect the vi-

bration of one plate mode with that of other plate modes because of plate-

fluid interaction. The modal radiation coefficients, which can be obtained

as special cases of the modal coupling coefficients, are a measure of how

efficiently a particular mode shape resonates when no other modes are

excited. The real parts of the coefficients are associated with a

radiation damping effect on the plate response. The imaginary p -P; lead to

a virtual miss to be added to the structural mass of the plate, t.=reby

diminishing the modal resonance frequencies. The coupling coeffici0-nts can

therefore be written

R =S + iT (B7)mnqr mnqr mnqr

and the equations of motion can be written

[Dk 4  W 2 m - i2 M nn sn ] v (w) - iwFR v = -iaPmn () (B18)

U1wm in~gn q,r mnqr qrur

Approximate values of T =-M are now obtained for (1) the
mnqr mnqr

entire frequency range, (2) the low frequency range, and (3) the high fre-

quency range. Moreover, for these frequencies, values of T are ob-
mnqr

tained for various wave number domains, i.e., for edge and corner modes.

Finally, we observe that the acoustically slow edge modes are the major

contributors to the virtual mass (see Figure 4).
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ENTIRE FREQUENCY RANGE

The shape functions used in Equation (B16) are:

m -ik _In,-ik X
Aik 2k k [ (-) e 1 1-e 3 3-1]

SM =f 'Y.(x)e --xdx= - (B19)
23 2J 2 2 2 2A P/CAP (2-k 1 ) (k32-k )

Hence the integrand of Equation (B16) includes terms of the form

2[1-(-1)m cos k1911] for m,q

I + (-1 )qm -(-1 )eik 1 .f-1)eikl I both odd or even; (B20)

0 otherwise

(An analogous equation holds for n and r.) Each mode is thus coupled to at

most only one-quarter of all the other modes. The coupling coefficients

are then written

64poc k k k k k
R S + iT = . mnqro
mnqr mnqr mnqr 2

(2nr) A
p

(B21)

.[1-(-l)m cos klI k][1-(-1) cos k3k3] dk1 dk3
0 P 2 _k 2 )(k2-kq)(k kn)(k k 2 ) (ko2k2k

0 I l I q 3 n 3 r 0(k 1 3

We consider only the imaginary part of the integral which is the mass
loading coupling term Tn . This part of the integration is performed

mnqr
over all values Jkl > ko, i.e., the region containing acoustically slow

modes. Inspection of the integrand indicates that the largest coefficients

are those having either m=q or n=r, or both. In Equation (B21) we let

(ko2 k1
2 k52)1/2  -i(k 1

2+k 3
2-k2).1/ The region of integration for

Equation (B21) is now divided into three regions coverinq acoustically slow

modes, i.e., exterior to the acoustically fast region (see Figure 4).
Ir 00,C k Co k

dk= dk 3  dk1 + dk dk + dk dk
_ ] oo o-1> k 0 o0/o k 

!k'- (B22)
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Edge fzodes

It is clear from Figure 4 that the first of the integrals given in
the right aember of Equation (B22) are the dominant ones for the two X-type

edge modes. Ke first perform the k integration. Let

[1-(-11" cos k Il11

Il(l co(k! 1  (B23)
2 2 22'

I~q(k1 = A )Ck'_k

A graph of this function is plotted in Figure 5. The function is such that

iq(kl)dk1  f mtq

0

and

Ian k11  -- 6(kl-k.) for q (B24)
4k

Hence

T - 4p ck nkrkogl I Inr(ks)dk$ (B25)

A p k° 0[k -(ko2-k 2)Cl/2

where Inr (k3) as defined by Equation (B23) is

[I_-(_I)n cos k I3

In(k)= [( kk (B26)
2_ 2 2 2 2

(.-kn2) (k-kr)
3 n 3

Explicitly,

c 4oknk ko£1 CD [1-C-1)n cos k3t31 dk3
T = o2 2 (B27)mnmr nrA f 2 2C2_kr2 ) 222o 1/2

k (k -k kk 1 ,k0 3 n r 3
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Figure 5 -Graph of I (kc d--?csk i
2_ 2 2_ 2
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he observe that there is no contribution from the signularities at

k. = k k or k-, = k k for nr since in that case the term in brackets in
. n r a r n

the numerator of Equation (B27) becomes zero and Inr (k) - o. Hence the

only singularity of the integrand is the root singularity.
We now treat the terms 1 and (-1) cos k X separately as Cauchy

2'2 2 2 2 2principal values. We make the approximation k32-k =-k and k -k -k
n n 3 r r

(since there is little contribution from k3  k 3  k we consider

kn,k > k- from which the approximation follows). We write for the first
n r A~

principal value

d k dk3  (B28)
I n 3

2_ 2 2_ 2 [k2 C 2 _  2]1/2 k  2_ [ 2 _ 2 1/

(k3 -kn )(k 3 -k )2k k 2 1 j 2
0 0

k 1 In + -- 1 (B29)

k 22 + k J

2k

k. 
n

n- r 0 .

for kn  >> ko2_k2 22kn >> ko + kin. For coupling between resonant edge modes

only, that is for modes close together in wave number space,-

2k 2k
n L n-9 r (B31)

k k

n ~~ 0 n n o i

The integral associated with the (-I)n cos k 3 t3 term is shown in

Reference 7 to lead to an asymptotic result due to the square root singu-

larity. The magnitude of this result can be ignored in comparison with the

dominant term given by Equation (B30). Hence for the edge modes, since2 2 2 2

k k

n n.nnm
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I

-4poc koR 2kT o i n (B32)

WA k k k
p nr o

Finally when n=r so that kn=kr Equation (B27) becomes for acoustically sZow

modes

-4p ck kk~ 9 r --fk 6(Lknk dk-
T - oonkr o 1 3 n _ a (--_ (B33)

T Ap 4k 2 k 2_ (ko2_A 2  1/2 
I0  k3 - 0 -k)]

1

-Pc k 2 2
--- for k >> k (B34)k ffl 0

by virtue of the analog of Equation (B24) for I (k3).
nnl 3

Corner modes

2 2
For corner modes, k °  k and since

0 m

dk3 = Jdk 3 - dk3  dk 3
So o oof

the integral in Equation (B27) becomes

CO kn 1 -) k

2 2 1/2 2_ 2 2 2 2 1/2j. Inr(k3) dk3 - [1-. cos 2 23 (B35)

o (k3  1A 2 o (k3 2k (k3  k )(k 3 2km2

2 2 ; (nfr) (B36)
k2k 2
m n
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following a procedure similar to that used in evaluating the integral for

the edge modes. Hence Equation (B27) yields

-4p c k k k Z.
T 00 nrl. 6  (B37)

=mr A k 2k 2:mq
p mn mr

Finally when n=r so that ku=kr , Equation (B27) becomes for acousticaZly

sZow modes

S-4PC -6 3-kndk3
mT kkko kd (B38)

mnmn 2 n 2 2 1/2
[ 4k n 2 c3 k) I

k
-- C- for k >> k (B39)i= poo mn 0

mn

Moreover, inspection shows that the mass coupling T is negligibly small

for two acoustically fast modes.

Retaining only the dominant terms, Reference 7 summarizes the values

of T as follows:
mnqr

For (m,n) an X-type edge mode and (q,r) an edge mode.

kk4p0c ko 2k 4p 0mq
TPA k2 k pc ko3 2 6 (B40)

mnqr q 0 3 k k qn
p n r o p mn qn .A

For large inertial coupling between modes, it is necessary that two

mode numbers be the same so that the modes vibrate in the same shape in one

direction. This is symbolized by the Kronecker delta functions.
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For (m,n) an X-type edge mode and (q,r) a corner mode.

k kq

4p0c 0m q
T k X 2 6 (B41)
mnqr 7rA 0 3 k 2k 2 nr

p mn qr

For (m,n) an X-type edge mode and (qr) an acoustically fast mode.

k

T Yk 1 r 6  (B42)
mnqr A k k 2  mq

p no

For (m,n) and (q,r) corner modes.
kkc

4p c n r 4p c mkq
nq 2 26 0 0 ko 6k (B43)
4 ° k 2k 2 mq A 2 nr

mnqnTmq - p kmn mr P k mn kqn

For all modes in K space for which Jki> k° the self-inertia term is

k
-Po~ 0 0 k mn 0

Tn (B44)

0 kmn <k

Equations (B43) and (B44) may be combined to give the following result valid

for all corner modes

k 4pc k k ro4p 0C c o
T k°- - 6 o -ko1 nr 6mq  A kmnqr ook mq nr rAp 2 2 3

mn k kp
mn mr (B44a)

kk
mq 6

nrk 2  2
mn qn

That is, Tmnm is the same for all acoustically slow modes and Tmnqr is of

the same form for all cases treated, irrespective of the division by

radiation characteristics into edge and corner modes. Equation (B18) is

now written as
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-iW w+ Tv = - (45)mn mn l mnqr qr WE mnqr qr -Pmnq,r q,r

Here

Bmn =Dkmn - P mp mn sgn .2 (B46)

where

m m k kmn >0k
p mn o

M= (B47)

m, k < ko

p mn

We observe that the term 0 c -- of Equation (B39) is included in
mn

B n and Tnqr is defined solely as in Equations (B40) to (B43). The so-

lution of the set of Equations (B45) is discussed in detail in Reference 7.

It is shown that in Equation (B45), the total effect of the reactive

coupling terms is considerably less than the modal self-inertia term,

Equation (B44). The main reactive effect of the fluid is therefore the

modal self-inertia term which acts to decrease the modal resonance fre-

quencies.

The inertia terms for the low and high frequency limits obtained in

Reference 7 by solving Equation (B45) are now presented.

LOW FREQUENCY LIMIT

At frequencies such that k o , k o£ 3 < ri, all modes are of corner
mode radiation character. For these frequencies

M , ' 1+pc ° k \

+ mo (B48)
p p m 0 p kmn
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HIGH FREQUENCY LIMIT

At high frequencies, kokl, ko 3 >> r, the radiation and coupling

characteristics of the modes are not the same for all modes as in the low

frequency case. The important inertia term is the self-inertia defined by

Equation (B44) so that

M =ml+ - ;k >k
p p mpkmn mn 0

(B49)
=m ;k <k

P mn 0

The high frequency analysis was restricted to frequencies below the

acoustic critical frequency, that is, the resonant modes considered all

have wave speeds on the plate less than the acoustic wave speed. Hence the

case of resonantly excited acoustically fast modes are not treated. Since,

however, the acoustic critical frequency ifor a 1/4 in. steel plate in water

is about 40,000 Hz, the restriction is o2 no great practical significance.

For still greater refinements than the results presented here, the

reader is referred to Reference 7; the iefinements, however, do not sig-

nificantly alter the results presented here.
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APPOMDLX C

THE LEIDONI74 METiDD I

NWTATiO:

A Area of plate

p

c Velocity of sound in fluid medium

F(OO) Driving force applied at coordinates x=o, y=o (also z=o) i-e.,
origin of coordinate system, used in Appendix A, on plate sur-
face

F IN Generalized force for coupled mopq modes

I Integrzl defined by Equation (C)

I N(k 1 ) Defined by Equation (23) of Appendix B

Acoustic wave nmber equal to /c

ka,k ,k ,k Modal wave numbers defined by Equation (A3)

k n Surface wave number equal to fm 2 + kn2

k Wave nunber in the direction of the ordinate (defined as in
notation for Appendix B)

I ,L Y  Half length and half width of plate, respectively

Equal to 21 and 21 respectively
1' t3 x

m,n,p,q Mode numbers

* Added mass per unit area

* Mass of coupled modes mnpq per unit area
mnpq

T npq Modal mass coupling term

W Displacement amplitude of vibration of a plate for the pq
pq mode

6CY.-k.) Delta function; 45(i-k
1 0, Yjkj

Kronecker delta equal to 1 for i=j; equal to 0 otherwise
13

Y,Y Wave numbers which are the coordinates in Fourier transform
space

p Mass density of fluid medium

w Natural circular frequency of vibration

71

i4



!

DESCRIPTION

It was indicated in Appendix A tht Feit and Juager avoided the

determination of the exact solution of Equation (A17). They obtained an

approximate solution by evaluating the integral of the equivalentI Equation (A14) for the high wave number limit and w < w . In the present

Appendix we attempt to obtain approximate solutions directly from

Equation (A17) using with some modifications the methods and results of

Davies given in Appendix B. Thus with proper interpretation of the results

as applicable to various modal regions, the work of Appendices A and B can

be interrelated.

DERIVATION

For a si=,,Ze vde, the double integral of Equation (A17) my be

rewritten in the following form; note that for a single mode the summation

" is dropped and wave numbers k_,k are considered as known quantities
p q

corresponding to any particular set of prescribed mode nmbers pq. Thus

Equation (Ci) represents the contribution of a single prescribed pq mode

to F (see footnote to sentence above Equation (C29)).
MJL

4pc mknkpkq €_(1 )m+n+p+q I0 dCd)

n = F(,)-pq [2-2 2]l'2

2 2 2 2 2 2  , 2

The problem is first discussed in terms of the results for various modal
regions. Subsequently, it is shown that for the even modes, the general in-
tegral expressions for the virtual mass (or mass reactance) obtained from
Equations (A17) and (B21) are identical.
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since all terms in the integrand are even functions in Y and Y. For con-
veniece let

to dYdY csl ~ o

0 [x7-V- [(n Y - ( -Y-) [( _Y -*) k 21Y
0 ~ ~ PT d 2 V2J12Lk x p xj In y q y

I-.. .. k.. . (U

We etaluate I for the following cases:

Case I: m#p, nhq

We observe that for np there is no contribution to the integral from

the singularities at Y=k1 k or Y =kA-k. because in that case the term in

the numerator of the first bracket of Equation (C2) becomes zero (see

Equation (A)). Evaluation of the resultant indeterminate quantity, using

L'Hospitals rule, yields - null result, i.e.,

I l+cos 2Y . sin2kt

2Y \ x si ( ax1)
l i 222 2 22 k

V-k kk 2 A a k 2- ka m x p m

up

2 2 k
k-_kpa

=0 for all k

A similar result is ob'tained for all k for n~q. Thus we conclude that the

singularities at Y=kk or Yx=kk and TY=knk or Y=kqOk make no con-x mp x p y nq yq n
tribution to the integral.

Moreover when Yx=kmlkp, then in the first bracket of Equation (C2),

cos 2Y L = cos 2k £ = cos (2m+1) =- 1 for all m. Since cos (2m+l)n -xx mix

(-1)m cos mr, then

73



'24

(I + Cos 2y 1 [1-(-1)" Cos 2
[ - o fory = kmk only (c)

a x p x x a 'x p

Similar relationships obtain for y =k/. y=k /kq. and y =k tk -For

Yx#k* , the form of the left member of Equation (C3) differs from the form

of I (k) (=I (y.) here) given by Equation (B23) of Appendix B and plotted

in Figure 5, only for even values of m by the sign in the numerator pre-

ceCing cos 2Y t . Thus, by analogy with the work in Appendix B and from anx x
inspection of Figure 5, it is apparent that the integrated contribution is

very small over the range 0<y .

The foregoing is compatible with the statement made in Appendix B to

the effect that the largest contributors to the integral occur when either/

or n=p and n=q. Appendixes A and B also indicate that the doninant contri-

bution occurs for m=p and n=q, i.e., the important inertia tern is the self-

inertia tern. These cases are discussed next.

Case I: m=p, niq or n=q, mp

For m=p, niq we use the methods of Appendix B. For this case we

have, using Equation (B24)

(I + cos 2YL) [-(-l) M cos 2kaI l xt
- " Y -k ) for

2 xia
(k Y2)k 2 21 Y 2 2 2k2 4ka(k-x 2 )(kp2 - ' 2  Oxkm)yx k2) 4 (C4)

Y =k =k
x m p

Equation (C2) then becomes

n2l 1r + CosZYt I~ dY
x Y Cy )

2 I f (C5)
4k M 02 _Y 2 )_2 2(k2 _2 n 2 2 1/2

in~ OLk q y [Y, (-,)

In Equation (B24), let £I=22 and k Y for later use, we note that
1 =21

3 y
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For the X-=.,ve edge mdes

w~t [I +cos 2Y I d
(C6)

4 k yY 2)(k-2y 2)j [y 2-(k-7)]1/
0q y y

neglecting as in Appendix B the contribution of acoustically fast nodes

occurring in the region 0 < Y < k . The integral in Equation (C6) is
y 0

similar in form to that of Equation (B27)- Using the Cauchy principal

value for the terms 1 and cos 2Y I in Equation (C6), we find as before
YY

that the integrated contribution of the cos 2Y I term can be ignored-
y y

Similar results are obtained for n=q, m#p. Hence the results obtained for

edge =des in -Appendix B can be used directly.
2 «k2Similarly for the corner modes when k << k n. Equation IC4) is

written as

-- f .. Y. (C7)
%2 Lo 22 ) 2 [Y 24,2 1/2

an y q y] y

The integral is similar in form to the left member of Equation (B35).

Hence using the Cauchy principal value for the term 1 and cos 2Y I in
yy

Equation (C7), we find that, as before, the integrated contribution of t,,e

cos 2Y I term can be ignored. Similar results are obtained for n=q, m#p.
Yy

Hence the results obtained for corner rodes in Appendix B can be used
.directly.

Using Equations (B40)-(B43) we now find values of I, Fn, and m

for various cases of modal coupling. Substituting Equation (C2) in

Equation (CI), we have

4pc 2 k2 kk k k (- ) m+n+pq

F =F(O,O) + W -1 (C8)mn 2Pq

Inspection of the first two members of Equation (C4) indicates that

for Yx=km=k kn#kq, the integrand of Equation (C1) and of Equation (B21)

times -i are identical if, when using the Cauchy principal values, we
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neglect the cos 2Y £ and cos k-1- terms. A similar identity exists for
yy 3

Y =k =k k #kp Hence substituting Equation (C2) in Equation (B21), we
y n p
get

T
mnpq

,()2 A
p

where we have considered only the imaginary part of the integral in

Equation (B21).

Substitution of Equation (C9) in Equation (C8) yields

: ck(-I " Pq-je n + -+P A

F F(0,) - k P W T (CIO)an 4 pq mnpq

where T is given by Equations (B40)-(B43). (Note: Davies symbol q - pmnpq
and r q here; m, p stay the same, and all odd mode nwibers used with

respect to Davies origin for the plate represent even modes with respect

to the Feit-Junger origin for the plate; see Appendix D.)

For (m,n) an X-type edge mode and (p,q) an edge mode.

Fin FO,0) pk P (_l)nq 41 E k2k 2k

m 4 Rp k n k k pq p

(Cl)
kk

irAp k 2 -" 1 'J
Im pnTA 2 [ln y~ 2k 2p .mp C1n qkk

F(OO)+ ck F ~q 2k 6 (-I) q t k k 6F F(0, 0) 2 p' .n -- M W 6 Y ym p CC12)
k 2]k ML k 2 pq nip

amn pn

Hence
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rn),2q 2k k

t ykn kq Ink n t+Ic 2 aPn (13

x An pn
F~r (mji) an X-type edge node and (p,q) a corner node.

k - 'PA r c Ic.F_ F(0,0)-P - k-c2 9f6 (C14)
~14 7t A 2 2~nq

p kn Ic

2pc~k2(_l),pR.IcI

=F(O9O). +f (C15)
7 2 pq nq

A k lmn pn

Hence

a _2p_ (m)P (C16)
napn 7 IF 2k 2 nq]I

mnp

For (*;fl) an X-type edge mode and (p,q) an acoustically fast mode.AI ~~ ~ f3.~)+q A -p~7.k
F F (0,0) P [ x L w ip6 1  (C17)En 4A k 2  J

P n

F 0kk 2+ (C18)

n

Hence

k ~nqk q~Mmuq 2p (C19)

y kk
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For (m,n) and (p,q) corner modes.j
4pck21 k k

-k k ya p

kA[ ( -1n)nk~iq q ....i3

F(0,0) x n_____ q_

_ 4 2 2 -upA k 2 k 2

y -(C20)

Hencepqq k 2  2 k n

2 n q up n

F(,0 + 6 6e (C1
mnpqp imp 2 2 nq(C

tk 2 k, 2 k 2 2P

Equations (Cl3) , (Cl6) , (Cl19), (C22) are identical to corresponding results

obtained from Appendix B and presented as results in Table 1 as Items 2-5 i

for the Davies method. Having obtained the results for the added mass of

the coupled modes, i.e., the coupled inertia terms, we now consider the

added mass of the uncoupled modes, i.e.., the self-inertia terms.

Case III: m=p, n=q

At m=p, n=q there occurs a dominant contribution to the integral in
Equation (Cl) from the singularities at Y =km=k and Y=kn=kq . For this

case

(1 +cos 2Yt£) [1-(-l) cos 2kti] ir 2• 2 (-)£C3xx m + (C22)

m2q22 2 2 OP2 2 xk

It x n x q xmnp

Equaion (C3),(C1), C19) (C2) re denica to orrspodin reult

obaiedfrm ppndx ad reene a rsutsinTaleI s tes8-



C1 + Cos 2Yy~y.) [1-(-I)n -os Ak n Y, y -2
__n2 __2_2 - n 22 I (Y) 6(y -k) (C24)

)2 2 4kn
nly n y n

Hence Equation (U) becomes

1 2  O 6(Yx-km) 6(Ykn) dydyI~ ~ n x y (25

2k 0 2-(k2 -y 2 1/2Ukm kn 0 1 x -( Y

IT2 ££

(C26)
2 2 2 -2 1/2

4k A~ [k, On c

Substituting Equation (C26) in Equation (CI), we get

2k2 £ k W
xy mn

F = F(0,O) + (C27)

[k mn2 - 2] 1

Equation (C27) is identical with Equation (A27). Hence the results

given by Equations (A28)-(A34) apply here. We note that since the mass

loading is associated with the imaginary part of the integral for which
2 2 2Y + Yy > k (i.e., acoustically slow modes) then from Equation (A28)

-, k 2  2  (C28)
mn (kn2 _k2 ) 11 2  kmn mn

The approximation value of mmn given by Equation (C28) agrees with
the results obtained in Equation (B44) since T =- mn =- kcmn. The

mnmn mnmn
result is therefore identical to the corresponding results presented in

Table I as Item I for the Davies method.
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PROOF OF IDENTITY OF FEIT-JUNGER AND
DAVIES GENERAL INTEGRAL EXPRESSIONS FOR
THE VIRTUAL MASS (FOR EVEN MODES)

The double integral of Equation (A17) may be rewritten in the form

F = F(,)+ 2 k k (-1)l .l + cos 2Y I

IT2 p,q PqPq 22 22
, J0 Jk (km -Y )(k _Y)

(C29)

I + cos 2Y k dY dY2 y x y

L (kn2-Yy2) (kq2 [y2)1 [k 2 Y 2y21/

In Appendix A (Feit-Junger), the origin is taken at the center of

the plate whereas in Appendix B (Davies) the origin is taken at a corner

of the plate. As shown in Appendix D and Figure 11 (see Appendix D), the

modes numbered m = 1, 3... odd with respect to Davies origin represent the

even modes with respect to Feit-Junger origin. By the Feit-Junger stipu-

lation, Equation (Al), these are the only modes to be considered; similar

relations hold for n,p,q. Hence [-1]m  - [-1]p~q _ 1 and

1- l+cos 2YZ [ 1 -(-l) M cos k i

2_ 2 2 k2k2) 2_ 2_ 2 )2

(kn -Yx (kp -x )lFeit-Junger L(km k 1 )(kq2-ki1)l Davies

[1 + cos 2Y k I 1-(-1) n cos k3k3yy -(leit" Lk2_k2----(kr2_k32-- l]Davies

(k2 - 2) 2  2 2k -kjkn -yy kq _y L Feit-Junger

Here, in contrast to Equation (Cl), the contributions of all (p,q) modes

to F are included.
mn
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where the Feit-Junger notation m,n,p,q -1 m,n,q,r, respectively, and 2x,

2y .1, 23' respectively. Also Y ,Y Ic1, ki 3 = components of k, k - ko
pc Poc. Thus the imaginary part of Equation (C29) rewritten in Davies 4

notation is: 0 c C

(for the imaginary part, ff - f and we let 1/2.k-2- )/
o 3

2 2 2 1/21
-i(k1 +k3 -k)

12 32  02 A

2 2c

-iocok k k )11 M

(Imag) F F(0,0) - kI k I Iomn2 qrqr L( 2 2 2
IT q,r Ikl>k k - k

I--I)n_ _  _cs _k3 (3 0 dk )L 'n 3 r 3)lk2k~ 0
(k 2 k 2) (k2-k 2 [k2 +k 2_k 21/2

In Davies notation the expression for the virtual mass in

Equation (A18) may be written

= 2 A

(F )=(Imag) F. = .- " m = -R Y
n mn 2 2 qr mnqr 4 Af qr mnqr
Virtual q,r q,r

mass (C31) -
part ,
only

where Ap = X Ik3 T =- Wm =- kcmnqr and where now Tmnqr includes I
a=- m (a -wmn in Equation (A18)) and q,r includes m,n in the

m nmn mnmn mn
summation.

Comparing Equation (C31) and (excluding the driving force F(O,O))

Equation (C30), we get

64pck kkqkr,° f l-(- 1)i cos k k. - l-(-l) cos k33Tonqqkrko [l( 1.. . ..

L(Ic 22 I2) 2 2 (I 2 2  2_ 2 *-

(27r) A kL°  (k2-k (kq-k kL (-k k-k

dk (C32)
2 2 211/2

[k 1 +k 3-k
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In Equation (B21) let (ko2  k12 I k 32)1/2 j i(k 2 2 21/

We then see that Equation (C32) is identical to the imaginary part of

Equation (B21) which has the same integral limits. Hence for m,n,p,q equal

to odd numbers, representing Feit.-Junger.3 even modes, all solutions of

Equation (B21) for Tmnqr obtained by Davies methods, applicable to various

modal regions, are relevant as solutions to the Feit-Junger Equation (A17).

44
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APPENDIX D

LEIBOWITZ METHOD II

NOTATION

A Area of plate

c Velocity of sound in fluid medium

c Compressional wave velocity of the plate equal to LPs(I 2il

p
E Young's modulus

e Equal to 2.718; base for natural or Naperian system of

logarithms

fad Radiation force for the mth mode

rad thF Magnitude of the radiation force of the m mode; equal to
Srad /e-it

m
IiI Defined by equations below Equation (D36)

12

i Equal to

K(k k2Equal to 1/ in Equation (D38)
5

k,k n  Modal wave numbers equal to m7r/ I and nT/k2, respectivelym n 12
nkm2  n2

k Wave number equal to V +k

kn Projection of ko on a normal to a plane lying along x3n 03

k Acoustic wave number equal to w/c
0

Wave vector equal to k r
0 0 0

2 2 2
ks  Arbitrary wave number equal to 2r/Xp w/c ; k = k1 +
s p s 1 2

ks Projection of k on a plane

kl,k Wave numbers in x1- and x -directions, respectivelyx, x 1 2

kl,k2 ,k3  Wave numbers along the x -, x2 _, x3 -directions, respectively

kl2k Vector wave numbers in the Xl- , x x3-directions, respectively
1'2' 32 3

kit 2 Length and width of plate, respectively
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L xLy Half length and half width of plate, respectively

M loading Total added (or virtual) mass

m m Added modal mass per unit area

m,n Mode numbers

P Amplitude of acoustic pressure p

p Acoustic pressure in fluid medium, i.e., in half-space x3 > 0
tad thPm Radiation pressure for the m mode
" .th

Q. Sound flux or source strength or volume velocity of j source
equal to the product of the velocity of the source and the sur-
face area of the source

R Distance from origin to a field or observation point

R. Distance from j th source to the field or observation point;
equal to R-r *r. which is the projection of R. on R (here

r or. is a dot producted equal to the projected distance
0)3

difference R-R.)

r Rest position of the plate

r, r Magnitude of wave direction vector, and wave direction vector
respectively; r0 is unit vector from origin to field or ob-

servation point .th
r.,r. Magnitude and vector for distance from origin to J source
J lying in the plane

t Time

V(r,t) Instantaneous modal velocity of a point on the plane

V(r) Velocity of plate at its rest position r; equal to plate
velocity at x3 = 0

V(ks) Distribution of traveling plane waves in an infinite plane, i.e.,
S Fourier distribution of the velocity V(r,t) in the region of the

plate

Vm Complex amplitude of V(r,t); modal velocity

V Root mean square of JV(r)j; see Equation (D22); equal to IVmI

2
x,x =x- . Abscissa with origin at the corner and midpoint of the plate,

respectively

xlx 2,X3  Rectangular coordinates, xlX 2 lie along the length and width of

the plate of the plate, respectively; x3 is normal to the plate

and the origin lies at one corner of the plate
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zr a d Radiation impedance

r (k s ) Modal coupling parameter or directivity

V 2  Equal to (32/ax ) + ( 2ay2) + (32/a;z )

Xp Wavelength of plate equal to 2f/ks = 2wc 1w

v Poisson's ratio

Po Mass density of fluid

PS Mass density of plate

() Normal mode functionm

W Natural circular frequency of vibration
* Denotes complex conjugate

I I Denotes inagnitude|

<>- Denotes average value over r
r

DERIVATION

Consider a siuply supported plate in an infinite plane baffle

immersed in a fluid. Plane flexural waves form a wave field on this plate.

We treat therefore a two-dimensional problem, in which radiation in the

half-space x3 > o is of interest. The instantaneous modal velocity of a
8point on the plate, whose rest position is r is given by (see Figure 6)

''--iwt (l
V(r,t) Vmm(r)e (DI)

We expand V(r,t) into a distribution V(k ) of traveling plane waves

in an infinite plane each of the form9 (e-iL t is tacitly implied)

V(r) = V(k )e r D2)
5

For a plate vibrating with arbitrary wave number k = 2/ = W/c
s p p

and at frequency w, it seems logical to make the following formulation for

the sound pressure in the half-space x3 > 0 (see Figure 6)

p(r,xs) = Pei(ks r + ksx3 ) (D3)

We require that the sound pressure represent a solution of the

Helmholtz wave equation9
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V2 P +k 02 P 0(D4)

Substituting Equation (D3) in Equation (D4), we get

2 2 2
k .k+ k 3=k 0(DS)

We also require that the normal component of the sound velocity cal-

culated from Equation (D3) coincide at the boundary surface x3=0 with the

plate velocity, i.e.,

I Pk.. 3V1 0 V(r) = 1 P eks (06)

3 lfiPo ~ toi- r

From Equations (D6) and (D2) we obtain

P k3  (D7)

pock V(ks)
0 0 5 (D8)

2I

0 cV(k S)D9o s

k- k

0

Substituting for P from Equation (D9) and for k3 from Equation (DS)

into Equation (D3) and restoring the sinusoidal temporal variation yields

the following expression for the sound pressure radiated into the half-

space in front of the plate:

prad - PocVks ) e i(is' + Vko2-ks2 x3-w) CDIO)
one wave Vx3,t) o 0 s e

k o
k0
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From Equation (D2) (with time factor included), the sum or integral

of traveling plane waves in ;n infinite plane with amplitude distribution

V(k ) provides the velocity V(r,t) in the region of the plate and zero

outside the plate. The distribution V(k) must therefore satisfy the
S

ccndition (note dk = dk dk )

i 13 r-W

V(,t) V6~) ei~ks " - (D I)

Obviously V(k) is the Fourier distribution of the function V(r,t) and we

know, therefore, that such a distribution exists and that it can be calcu-

lated from the equation (note dir = dx dx )

1 3

~V(k V(r.,t) a- r-wt ~ d r (D12)
s) ()2

The corresponding total sound pressure obtained from the super-

position of all traveling waves of the form represented by Equation (DIO)

is

rad.t =. VO1s) 2-- i3 r s (D13)
p tryxL C s"- + k 3  -w)3

S

0

We are interested in the pressure on the surface of the plane.

Hence setting x.=O

prad (i,x3=o,t) = c Ves) i0ks " r-wt)dk "

000

p 6 x = t Poco e sS ( M1 )

ko

No contribution to V(k ) is rendered by the integral for the region ex-
Sternal to the plate area.
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.Nw substituting Equations (DI) in Equation (D12), we get

V(k ) = 2(r)-ies dr

Em

-- () mrels dr (D16)

We now prove that the integral is related to a quantity [r )(ks)]/2
m S

where r (k) is called the modal coupling parameter or directivity. The
a S

functional forms and average values of I( )I' described in some detail

in Reference 8 are useful in making approximate computations.

PROOF

The pressure radiated into the half-space x3 > 0 from an array of
.9sources on an infinite rigid plane is (see Figure 7)

-ik(D7
p (R) e o' j-eD03

Projecting R. on R, we obtain R;-.R-r -r- where ro-r., the projected dis-
tance difference, is a dot product (see Figure 8). Since 1/R

j

1 1 + 0 1 +J I/ R then
R -R

iWPo -ik R ik r.
pRr) -- e o Q. e o (D18)

where ko k or is a wave vector = (wave number ko) (wave direction r
o oo 0 0

If k projection of K on the plane and k = projection of k on theI s 0 n 0

normal to the plane, i.e., k lies along x., then ko-r. = k -7.+k -r.=k -r.
n 3 3 n 3 s Js

since n -r. 0 (see Figure 6). Hence Equation (D18) becomes

0-ik R ik -r.Q(R,e s j (D19)
0 2rR
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We now proceed to the calculation of the radiation from a plane surface

with a continuous velocity distribution. Consider each surface element dr

with a velocity V(r) as a point source of sound with sound flux or

differential source strength or differential volume velocity dQ(r) equal

to the differential area (dr) times the velocity V(r). Hence replacing

the summation by the integration, we have

- o -ikR -2-)
0 TiTo =r-e o JV e *'s 'r (D20)

A

"i v° -ikRe e ok i -r)
- - R 00 oik (-2 )V-1 e s dr (D21)

f 0

where the quantity in brackets is called the directivity or coupling

pirameter r(ks). Thus

r (s -2 f V('e) edr (D22)

A 0

In Equations (D21) and (D22), V 2 =< IV(V)2 >- < 2 2 = v 2 <

~2>_ IV1 2 because8 =101 2>=02(-) r '11m r
_ m r2 because 8 < 2 ° r2 (i)dr = 1. Hence substituting

A
Equation (Dl) in Equation (D22) with V = IVM

m f M ei(ksr)dr (D23)

2 mI A

r *(k) -V~
= (r) e-i (ksr)d; (D24)

Tm (ks -V dr(D4

lVml A

Equation (D24) represents the completion of our proof.

Substituting Equation (D24) in Equation (D16), we get
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-(2ir)2Vm 2 (D25)

Now substituting Equation (D25) in Equation (D14), we get

prad -P0
c  Ivl CO r* e (ks'r -wt)

rt) = 2 dk (D26)8 S 2 V ia _ s

1 2k
~th tn rad prad e-At

The radiation force for the m mode is8 (noting that Pm m e

frad = Frad e-iwt prad T (i)d e-iwt= f rad -p(r)dr (D27)m m [f m mPM m r r (D7

Substituting Equation (D26) in Equation (D27),

rad _ PocVmIVmI i r *dk s Aes
F 82 2 r)e s dr (D28)8Ir2V * 2~

" _0 s  A

k 2
0

Using Equation (D23)

// oC~ r*r ,-
F a 7cv~m v 1 00rm m -dk (D29)Frad _-- dk

m 8.2 V*2 s

(PV I) ( m

0

and since Vm*V = IV I2, r = Ir 2, then we find as a basic working ex-

pression

F rad P iC Irm 12
zrad = m = 0oc  m d (D30)
m V 167r2 f 2

92

0



We write this equation as the sum of real and imaginary terms:

ra C k -kc
0 lnr2 2 0 k 20 12r2 kzra PO,- s 'OC m _f s k

ks -- I 1 (D31)
2 0 1k kk2

0 0 0

The first term in the right member represents the radiation damping whereas

the second and third terms represent the fluid loading or added mass terms

= i. We will consider the fluid loading problem only. (Note thatloading
each integral in Equation (D31) represents a double integral since dks

dkd ) Since the integrands are even functions, the terms within the1 I 2 .)
brackets may be combined so that the fluid loading term may be written:

c 0 Ir(ks)12

-s d (D32)
"loading 4 2 s

472 Wo" 2?
k

--

k2

0

Vkoi -- ,
PIr12 d

fR A (D33)
47 2 k 0  --2 -l

0

The product of the left and right members, respectively, of

Equations (D23) and (D24) yields

2 i5
r e 4 f T Sr)e- ks  dr (D34)

A mA
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The modal shape functions for the normal modes of a simply supported

panel are:

mr2x1  rx2
(r) 2 sin - sin--c-- = 2 sin kx sin knx (D35)

1 T 2 mlI n 2

Hence

1. 2

r 12  16 "eikx xIsin k xldX e ikxx2 sin knx dx -m j 1 ml 1 J 2 n 2 2'

0 0

lik x ik x i d
- :sin k x -k x1 e X 2 sin knX2dx (D36)1 m- 1 11 2i 2 2d~

0 0

;; 1 2

1 2. ik x 2.2 xDefining I e X I sin kxdXl, I 2 eikx 2 x2sinknxdx
1 F f. 1 1 l 2l 22 f n 2 2

0 0

then
12 2 12112* = 16A2 1112,12 (D7)

Irm 16A I I I * 1 6 I(D7

Substituting Equation (D37) in Equation (D33), we obtain

4p A I,

4p0A2  11121112
Mloading 2 1 dk D

k0  S 0

2 k 2 l2  k 22 .

where dk =dkldk k +k

s 1 2- s A

Later in this Appendix it is shown that this normal mode representation
includes the representation used in Appendix A as a special case; see
Equation (Al).
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We consider k and for this region the quantity 1/Vks2-ko

= K(ks) is a smooth well-behaved function. We can then use the analytica.

approximation (presented in Appendix II of Reference 8) for the weighted

integral given in Equation (D38). For the range of k including k and
S m

kn (see Equation AII.IO of Reference 8), the added mass per unit area for

radiation into the half space x3 > 0 is (see Figures 9 and 10):

m Mloading 4pA L V 1 (D39)

m A -2 2 2Z
kn 2  k 2

or

PO PO
M if k >> k (D40)m n2 _i ko02 mn

mn

The results given by Equation (D40) are in agreement with results

presented by Equations (A27a), (B47), and (C28).

Finally, it is shown that the normal mode representation for a

simply supported plate, Equation (D35), is more general than the correspond-

ing representation used by Feit-Junger, Equation (Al). To see that

Equation (D35) includes Equation (Al) as a special case, consider the sin

k x factor in Equation (D35); similar results are obtainable for the sinm
kny factor (let km -kn , x -i y). We translate the origin of the abscissas

from 0 to O' (the midpoint along the plate length) as shown in Figure 11,

by use of the equation:

x' =x-- (D41)

*k>k
lkm

K(kr)1I12dki 1 K(km) and similarly for the integral for

-km<k<k m

k2 •
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1112 1
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II

a
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d ---- EVEN
zz

ENVELOPE 2

~ I

4I + -

TRACE WAVE NUMIBER k1

Figure 9 -Sketch of 1112 for Large Mode Numbers m (Applicable to small
~mode numbers if lower limit of integration of Equation AI-10 of

' Reference 8 is set to zero. See Figure 10 and page 216 of Reference 8).
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m.2 4/.g
2 m=

4

0.1 0.1

a wt 1  c, 4/ It 2* 2/t, 4 w/f,

(2w/ 1 ) (i 1

Figure 10 -Sketches of 1j12 for m =1, 2

ORIGINAL ORIGIN,
ABSCISSAE AND
PLATE BOUNDARIES0

m2

FINAL ORIGIN,
PLATE BOUNDARIES 0

AFTER TRANSLATION 2 X -... L

Figure 11 -Axial Systems for Normal Mode Representation
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The new boundaries are:

x=O, x - L
2 x

x=1, x' =+-=+ L
2 x

where the notation • L for the new plate boundaries has been introduced

for compatibility with the Feit-Junger notation. Thus:

sin k x-sin k (xI am=sn "m 'wx -" rx,

s k n ( -)=sin k (x'+L )=sin - cos - + cos - sin -- (D42)
M m 2 M x 2L22L in- (D)x

where k m - = 0,1,2,3....
a 2, 2Lx

It is clear from Figure 11 that m = 1,2,3... represents odd modes

with respect to the origin at x=O. However m = 1,3 odd and m = 2,4...

even represent even and odd modes, respectively, with respect to the origi;,

at 0'. In accordance with the Feit-Junger postulation, Equation (Al), we

wish to retain the even modes only, i.e., M = 1,3--- odd.

Equation (D42) shows that for the even modes, m = 1,3.- odd, the

first term in the right member is zero so that as a speciaZl case

mx1 - m'li

Sx sin m odd (D43)
x

Cos (2m' +) Crx' l)m=(-l)m cos k'x' m' = 0,I,2"*" (D44)2L m
x

where m =2m' + 1, an odd number and k' = (m )
m 2L

x

Thus Equation (D44), which contains even modes only in the axial
system with origin 0', represents only half of the modes of sin k x in

m
the axial system with origin 0. Moreover in the axial system with origin

0', if we take the mirror image of (i.e., reflect) the even modes m=3, 7,

11, etc. about the x' axis, then all even modes will have a positive value
mlat x' = 0. Mathematically this is accomplished by letting (-1) m y  1. Thus

for even modes with respect to the origin 0' and positive values of sin k x

at 0', sin k x - o (2m'+ ) cx' os k'x' which is identical to the
m 2L = m

x
corresponding factor in Equation (Al).

98

14I



APPENDIX E

BULT, BERANEK XAM) NWHflN METHOD

NOTATION

A Area of plate

CL Longitudinal wave speed

h Plate thickness

k f Wave number in fluid, i.e., acoustic wave number

k kh Plate wave number; k p2= (=/t1) + (n'r / 12)2 =

11 2 Length and width of plate, respectively

Made Added mass

M Total mass equal to M + Mu n o added

M Structural mass
0

m~n Mode numbers for Il and I -directions, respectively

C Radius of gyration

Pf Mass density of fluid

p ,p Mass density of plate

W Resonance frequency for urn mode of vibration of plate in Vaam'.
urn
W Resonance frequency for mn mode of vibration of submerged plate
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DERIVATION

Several researchers for Bolt Beranek and Newman have presented

mathe=atical relationships for the added mass and submerged natural fre-

quency of a vibrating finite rectangular plate radiating into half-space.

The formulations are briefly considered.

Reference 10 gives the following relationship between the fre-

quency and wavelength of a vibrating submerged structural panel

j-2(~ K4 2 2I + = ,- ;k>kf (El)
an p p p h x P

From Equation (iv.S.16) of Reference 8, k vC c. so that
p m

-r P1 -1/2
+ k >k (E2)

-M 1 M

Equation (E2) is identical in form to Equation (A34).

References 11 and 12 give the following relationships as precise

for waves on a large flat submerged plate.

-1/2 -1/2
f f

mWAI1 W + ( h.>+kh (E3)
M- (

Euto E4 s ddedca =nfr oEuto (Af

whereqM Aph hand M - f so thatM Ap h + Pn

lO0l

Hence
-1/2

W 1~ kh ;kh >kf (E4)

Equation (E4) is identical in form to Equation (A34).

In Equation (11) of Reference 10, let w w j and in Equation (iv.5.16)
of Reference 8, let w M w n .
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APPENDIX F

GREENSPON METHOD

NOTATION

Ai.j ,Bj Quantities which depend on the beam functions used to
represent the mode shapes (see Table 4)

th th
AyA 6  y and 6 elemental area of plate

a Width of plate (shorter side)

b Length of plate (longer side)

co  Sound velocity in water

F11  Natural frequency in vacuo

f(B) Function of the aspect ratio

h Thickness of plate

i,j Mode numbers equal to m,n

is Equal to l if plate has water on one side and equal to 2 if
plate has water on both sides

k Wave number equal to w M /c 0

Ma Apparent mass per unit area

m Mass per unit area of plate
p

m,n Mode numbers

Water pressure due to vibrating plate in the mt h mode of
m vibration

[Pm(XY)]Y 6  Average pressure on the yth elemental area A Ydue to modal

vibration of the 6th elemental area A6

t Time
th(w(x,y,t)] Lateral deflection of plate in m mode

[61]m Velocity in the m
th mode of the 6t

h elemental area

x,y Rectangular coordinate axes

[Z ] Mutual radiation impedance between the yth and 6th

Y6 elemental areas on the plate for the mth mode of vibration

[0y6 M Resistive (radiation damping) component of impedance for the
th
m mode of vibration
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X Wavelength

Po Mass density of water

Pt  Density (mass per unit volume) of plate

X Coefficient (reactance) depending on aspect ratio a/b

[Xy 6]M Reactive (added mass) component of impedance for the mth
mode of vibration

[Xp Reactive (added mass) component of impedance of a
rectangular piston

th
n Circular frequency for the mn mode of vibration

Note: In Equations (FS), (F6), (F7), and (F8) the subscript m n for con-

sistency with notation in the previous appendixes.
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DERIVATION

References 13 and 14 present the following methods to account for

the added mass of a rectangular plate vibrating in water.

Method 1 (see Reference 13)

Reference 13 quotes Reference 15 as the source of the following

equation for the natural frequency of the first mode of a s-Lwply supported

rectangular plate vibrating in water.

(F (F l1vacuum (Fl)
11 water =b .h

The function x(a/b) shown in Figure 12 has been derived in Reference 16

for a plate which is clamped on the edges y = o, b and simply supported on

the edges x = 0, a. This equation can be used to obtain the order of

magnitude of the correction due to the added mass for both simnply supported

and clamped plates. However the reader is referred to Reference 15 for a

more accurate analysis of added mass.

Method 2 (see References 13 and 14)

References 13 and 14 present the following analysis for the

determination of the added mass per unit area.

Divide the plate into equal elemental areas and let [P(xy)] be
th

the average pressure on the y elemental area A due to modal vibration

of the 6th area A6 (see Figure 13). Then

, c (F1 1 vacuLun
Since (F l d wa t e r  i+ _(Rlm/ (see Appendix A or Reference 15), then

a p
the present author deduces that the added mass per unit area

M = ri'X( 7b m where m is the structural mass per unit area.
ap p

103

x



k
AA

0.4

0.3- TZVI /
0.1

0 0.2 0.4 0.6 0.8 1.0
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Figure 12 - Plot of Function

X versus a/b Figure 13 - Rectangular Plate Divided intoFinite Elements

a.
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Figure 14 - Virtual Mass Function
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(Z ) [(x,y,t)]
(x,y) ] Y6 M (F2)

m A6
AA

The total pressure on the Yth area due to the vibration of all

other elements will be

P 6~~1 M (H3)
6 A Y

In these equations, the mutual radiation impedance Z which is a function
Y6

of the frequency and the distance between the elements may be written

(Z ,) M =P c 0A¥Y [(0Y) m + i(XYS) M] (F4)

The reactive or added mass component (yx m is a function of the

aspect ratio a/b and the noadimensional parameter ffb/X = w b/2c (note wii

is denoted by P in References 13 and 14). The impedance of a rectangular

piston is computed in Reference 17. For relatively low frequencies

7rb/A < 1, the reactance (added mass component) of the piston can be written

(for consistency with previous results in Appendixes A-F exclusively, we

let~ w w:m mn

a T b a b..

Xp fb) " f(-)  (FS)2c

In the analysis presented in References 13 and 14, leading to the com-
putation of the plate natural frequencies, the sums involving y and X

(Equation (F3)) are quite complex and require considerable computation.

Therefore, it was assumed that the average pressure on the yth area can becomnuted by considering the entire plate to act as a rectangular piston

with a deflection equal to the average of w over the plate (seemReference 13 for additional details). This simplified the mathematical

analysis.
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where f(a/b) is a function of the aspect ratio and can be obtained

directly from Figure 14. The circular natural frequency of the plate in

water is then
13*

(Wmn vacuum

mn water on 2 i,j=m,n (F6)
one side 1 pb A.

p B

The A.. and B. depend on the beam functions used to represent the mode

shapes and therefore depend on the boundary conditions of the plate. The

values of Aij and B.. for several modes of plates which are czamped or

sinpZy supported on all edges are shown in Table 2.

Plates with combinations of boundary conditions can also be solved

so long as the mode shape can be approximated by a product of beam 3

functions. For example, consider a uniform plate which is clamped at the

longer edges (0,b) and simply supported at the shorter edges (0,a). (This

is the case given in Reference 16.) Then for the first mode13

A?. = (0.8309 x 0.6366)2 = 0.2798

B.. = x 0.5 0.5

mn vac
inn water on - -

one side 1+[~ .78f~

In accordance with the previous footnote, we deduce that the added mass

per unit area M1a _ [___ f(a) i mp for water on one side. For water on

both sides, we double this value in Equations (F6) and (F7) and (F8). The

symbol p used in Reference 13 to denote the plate mass per unit 'area has
been replaced here by the symbol mp
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For a steel plate vibrating in water

mn vac
(W (F8)
mn water on -ra

one side V, b 0.2 f( )

Equation (F8) is of the same form as Equation (Fl) originally found

in Reference 16. For most of the practical cases, the correction of the

frequency due to added mass given by Equations (D8) and (DI) will be of

the same order of magnitude.
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APPENDIX G

LEIBOWITZ METHOD III

NOTATION

The notation included for Appendix F also applies to this appendix.

DESCRIPTION

The approximate expression presented is convenient for the compu-

tation of the added mass and (low) natural frequencies of a vibrating

rectangular plate. The development of this expression is based on the

work of Reference 14 discussed in Appendix F.

DERIVATION

Ignoring plate damping and considering clamped or simply supported

plates, the natural frequency of a vibrating plate in water is given by

Equation (F6). Following Reference 14, we take as a low frequency

approximation

1= mn 1/2 for mn <1 (GI)
0.48k[ab] ab]
'pC c0 0

Substituting Equation (GI) in Equation (F5), we get

f( 0.96 (-) (G2)

which is an approximate fit to Figure 14.

Reference 14 also permits a solution of the frequencies for the more
general case of a rotationally constrained beam including plate radiation
and structural damping in the frequency equation.
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A*

Substituting Equation (G2) in Equation (F6), we get*

(ciinvacuum

(wmn)water on - a 1 2  2_; i,j=m,n (G3)

I.one side po(ab) 1

m B..
p 1j

where A.. and B.. are values given in Table 4 for clamped and simply
1j 1J

supported plates.

/2 2
Th0.48 p (ab) / A..

0 1 o wtro
The added mass per unit area M m for water ona m B.. p

p iJ

one side. For water on both sides, this quantity is doubled in
Equation (G).
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APPENDIX If

PROCEDURE FOR WODIFYING THE MAESTRELLO PROGRAM TO
INCLUDE EFFECTS OF FLUID LOADING (OPTION 3)

NOTATION

A. Constants1

Aij, B.j Quantities which depend on the beam functions used
to represent the mode shapes (see Table 4)

a, b Dimensions of plate (see footnote to wmn of

aluminum plate in this Appendix for more precise
description)

a mn amn Plate modal damping in air and water, respectively

c Speed of sound in fluid

c£ Compressional wave velocity of the plate equal to
E .,]1/2.

Ps (_-2)]

D, D d  Specific damping energy at any stress a and at peak
stress Ud respectively in a part under nonuniform

stress (0 < D < D)

E Young's modulus

e Equal to 2.718; base for natural or Naperian system
of logarithms

F Equals U - U

f Frequency

f Plate natural frequency
mn

f(b) Function of aspect ratio

h Panel thickness

ij Mode numbers

K. Constants1

k Acoustic wave number equal to w/c

k Surface wave number equal to [(mr/a)
2 + (nry/b) 2

s for Method I; for Method II, a and b may or may not

be interchanged (see footnote to w of aluminum
plate in this Appendix) mn
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M, m Plate mass per unit area in airp e

M hiTotal mass per unit area of plate in water; equal
to sum of plate and added masses per unit area

M a, mm Added mass (or apparent mass or virtual mass) per
unit area

m, n Mode numbers

W, W Plate weight per unit area in air and added weightp" mn
per unit area, respectively

Total weight per unit area of plate in water; equal
to sum of plate and added weight per unit area

P(W) Power spectrum

p Mean square turbulence pressure

q Equal to k/k (see footnote to q of aluminum plate
s

in this Aprendix)

U, O Free-stream velocity

U Convection vviocity
c

(x,y), (x',y') Points on the panel at which displacements are
measured

a Equal to 1 for fluid loading cn one side of plate
only; equal to 2 for fluid loading on both sides of
plate; dimensionless damping energy integral (see
section or steel plate parameters in this Appendix)

Total damping coefficient of plate in a fluid; di-
mensionless strain energy integral (see section on
steel plate parameters in this Appendix)

Critical damping
c

(5* Boundary layer displacement thickness

6 mn' 6mn Total damping ratio of plate in air and water,
respectively

r) Material loss factor; equals y - y', lateral
partial separation

T1 Loss factor of a specimen or part

e Eddy lifetime for steady convection, i.e., time in
which value of correlation coefficient obtained
from envelope of correlation maxima (maxima-
maximorum) drops to l/e

V Kinematic viscosity of fluid near wall

Equals x - x', longitudinal partial separation
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K Radius of gyration

P, P0  M.ss density of fluid medium

Ps Mass density of plate

O, CD  Amplitude of reversed stress and maximum value of
stress in a part (0 < a <D)

Equals t - t', time delay

Local wall shear stress
w

-mn(xy), Omn(x',y') Plate eigenfunctions

W Circular frequency equal to 21rf

Wmn Wmn Plate modal frequency in air and water,
respectively

14.
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The Maestrello program for determining the turbulence-induced vi-

bration s--id radiation of plates is modified and then extended to include

the effects of fluid loading. The modified program is used to obtain the

vibratory response for a fluid-loaded simply supported rectangular

aluminum isotropic plate and for a fluid-loaded simply supported rectangular

steel isotropic plate. The effects of hydrophone size and boundary layer

thickness are excluded for simplicity and other plate boundary conditions

on the response are not considered. However, the user can correct for

these effects and treat various plate boundaries as well as plate curvature

by including Option 1 (Reference 2) and Option 2 (Reference 3) in the com-

putations (see DISCUSSION AND EVALUATION). The methods for determining the

input data used in the computations are also described.

MATHEMATICAL ANALYSIS

The results of the analytical study for the fluid loading of

rectangular plates presented in Appendixes A-G are summarized in Table 1.

Of these results, only the uncoupled (dominant) modes (see DISCUSSION AND

EVALUATION) are considered here for the modification of the original

Maestrello program which excludes fluid loading. With this practical

restriction, Table 1 shows that there are then two basic methods for compu-

ting the virtual or added mass and the associated natural frequencies of a

fluid loaded plate. The equations corresponding to the methods designated

as Methods 1 and 2 below are now summarized and modified for purposes of

practical computation.

Method I: Based on Analyses in Appendixes A-E

ap ctp cip
m (added mass per unit area) = 2  1/2 (Hl)mn (ks -k 2 ) 1 / 2  k 231/2 ks[1-q 2]l /2

s: k s [ 1 ( -k s

k
where 0 <-k q < 1.

That is, the excitation function which represents measured turbulence
4. data is not corrected for hydrophone size in the present computations.
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Hence in the original Maestrello program when fluid loading is in-

cluded,

M PM m mm M m + -" (H2)p mn p ks m (1 q2)1/

s p

also

-1/2 -1/2

Wn mn +s (ks2l-k21/2 h W mn + [2 2 1/2 (H3)

ss Lp H l

p -- 1/2

Wmn l[ q2]I/2[ Pskshl - q] 1

In summary, when fluid loading is included, the original Maestrello

program is modified in accordance with Method I by letting M + M' and

Wmn -* w where M' and Wmn are given by Equations (H2) and (H3),

respectively.

Method 2: Based on Analyses in Appendixes F and G

pb A2= p ij
Ma (added mass per unit area) L f  a B m i,j=m,n (H4)

p A

Values for f(a/b) are obtained from Figure 14. For practical computation a

finite number of values of f(a/b) versus a/b can be tabulated and stored in

the computer. The numbers of such values should be sufficient to allow

the computer to calculate required intermediate values with an acceptable

accuracy by means of linear interpolation of the stored values. For the

In this method of computation, b always represents the longest side of
the plate. Thus b may lie along either x or y and in the direction of or

orthogonal to the flow.
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lower modes, Ai j , B i j are obtained from Table 4. For the higher modes, A ij,

B.. are obtained from tables found in References 18 and 19.

Hence in the original Maestrello program when fluid loading is in-

cluded,

apob f A?.
M M m p + = m + f . (HS)i M M'=m +M a  P 2 m i '

P

and

(+n)vacuum

2 mn 2 (H60a pb A..
- f a 

1+2m B. .

For the Zow frequencies, these equations are approximated by

0.48 ap (ab))/2/ A.

inM + i = m n (H7)

0 ij

p

M M m MF 0.48 ap0(ab)11  A. 1 H8
p a p m B ij

p

(mn) vacuum (19)

0.48 ap (ab)I/2 A.2

+0

m ij
p

In summary, when fluid loading is included, the original MaestrelloI
programn is modified in accordance with Method 2 by letting M M' and

W -* W where M' and w are given respectively by Equations (H5) andimn mn mn

(H6) in general and by Equations (H8) and (H9) for low frequencies.
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METHOD FOR DETERMINING INPUT DATA

The methods for determining the input data required for computer

calculations are now described. Generally the methods are similar to those

given in Appendix B2 of Reference 1. Eitner the data are arbitrarily pre-

scribed by the user, i.e., the values are chosen to represent the range of

interest, or the selections may correspond to experimental or analytically

determined values for a parameter. However, the form and types of basic

(raw) data available for use in computing some of the input data as well as

some of the features of the response computations for the aluminum and

steel plates differ somewhat. In consequence, different methods are used

to evaluate certain of the input data for these plates. The logical

presentation is then to furnish for each plate a d6scription of the

particular methods used for determining the data. Tabulations of the actual

computed input data used in response calculations are also given for each

plate.

The following input data are furnished to the computer.
2

Flow data: U , Tw' * : FU = FU W, p, 0, Ai, K.i where i : 1,2,3 and a, q

Panel data: a, b, h, 6r, m E, M, M', m , , w , , T, m, n, x-,
mn' mnmn mn' mn

, ,

Aluminum Plate

The values for the input data are tabulated in Tables 2a and 2b.

The methods used in determining these values are:

Parameter Description

Ai, Ki  Prescribed constants used in Equation (B7) of
Reference 1

a, b, h Prescribed quantities

E A prescribed quantity

M = m A prescribed quantity
p

M1 Using Method 1 only for the aluminum plate, Mt is com-
puted by means of Equation (H2)

m, n Prescribed data

2 2 Equals P(w) dw where P(w) is obtained from

Equation (B7) of Reference 1. This quantity can also be
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measured directly. For the present calculation it is

convcnient to set p = I so that the autocorrelation
function for the turbulence pressures and the cross
correlation function for the panel displacements given
by Equations (B8) and (B52) respectively of Reference 1
can be regarded as normalized to this value

(We can also computep . Thus for subsonic speeds

Jacobs 1 shows that p2 _-3.1 T and from Reference 20,

for a smooth plate 'w/q = 0.060 (RX )-1/5 = 0.060
.-l/S u 2 .x

(U..x/v where q = 1/2 p lJ is the free stream dy-

namic pressure.)

Uc  A parameter whose values are prescribed by the user,
Uc = 0.8 U.; for the present problem, Uc = 8, 16, 32,
64 ft/sec

x,y,x',y' Prescribed points; the cross correlation of the displace-
ments are computed for these points

S*=CFU)---CFQ.) Equals* 0.37x/8 (U0, x/v) - I / 5 (see Equations 21.6 and 21.8

of Reference 20), Tables 1.1 and 2.1 of that reference
give values of v in air and water. Using this equation,
values of 6* for a given fluid can be prescribed over a
Range of U.. For an isolated plate, the equation shows

that for a given value of x, 6* occurs for U, equal
max

to the minimum prescribed value, i.e., U0 = (U0)mi n , and

for v = vair. For all U. > (U.) Min the corresponding

values of 6* < 6* for both v = v . and v = vmax air water
However, we can also treat the displacement thickness of
a plate in a structure, acting as a baffle. The plate
can then be moved sufficiently rearward of the edge of
the structure at zero incidence so that for a given
position along the plate and all U > (U.) min ' 6* =

constant ? 6*ax for both var. and v t. In effect we

are considering series of plates of identical geometry
so located in a structure that for all U0, > (Uj)mi n the

displacement thickness at a fixed position on one of the
plates in the series is always equal to 6* = constant

Due to a typographic error, this equation was incorrectly written as

0.37/8 (U0,x/v) 
1/5 in Appendix B2 of Reference 1.
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for v =v and v = To reduce the anount of
air water

computation for the aze-rii n pate onZy (i.e., to elimi-
nate * as a parameter) we select for any of the pre-
scribed values of U = U /0.8 and for %P = va. and

V = Vater the plate whose position is such as to yield

a displacement thickness 6* = 0.033 > 6* . It ismax

assumed that on a given plate 6* is sensibly constant in
the direction of flow along the plate length

6 ATotal damping ratio in air including the damping in the
-In plate as well as radiation damping. In the present

problem the radiation damping in air is considered to be

much smaller than the material damping. According to
Jacobs the damping used for the aluminum plate in air
was experimentally determined from an analysis of band-

widths between half-power points on response resonances
from segmented, unpublished, high-resolution deflection
power spectral density measurements (see page 5 of
Reference 21, pages 24-25 and 34 of Reference 22, and
page 273 of Reference 1)

A plot of the measured results given in References 21
and 22 indicates that 6 = 15/f approximately. Hence

inn mna W m/2 = 15ST
amn =6n mnf2lz

Total damping ratio of panel in water including the
mn damping in the plate, the damping associated with fluid

loading and the radiation damping. However, in the
present problem the contribution of the radiation damping

to n is excluded. From page 41 of Reference I we
mn

deduce that

6mn mn
am =-= in air
mn 2

mn mnian -B_ m nin water

2M' 2

In any event the experimentally measured damping will include the con-
tributions of all damping mechanisms influencing the mesurement results.
The mathematical representation of damping in the equations of plate motion
include these results as a viscous damping term.

We are interested here in the radiation damping of a mode in the range
k > k. For heavy fluid loading the corner mode contribution to radiationp
damping is applicable at all frequencies whereas the edge mode contribution
is significantly applicable at high frequencies.7 Simple equations for
determining these contributions are given in Reference 7 and will appear in
a companion report.
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The first equation represents the viscous damping of the
plate in air and agrees with Equations (A7) and (B18) of

Reference 1 if we ignore the hysterestic and acoustic
radiation terms respectively in these equations. The
second equation which includes the contribution of both
viscous damping and fluid loading (also called added or
virtual mass or liquid coupling) agrees with Equation (A51)

of Reference 1 if the hysteretic and radiation damping
term in this equation is excluded. It is of interest to
note that when radiation damping is not considered the
increased mass associated with fluid loading reduces the
modal damping term in water (see Equation (AS1) of
Reference 1) so that.amn < an . As shown in Tables 3a

and 3b, W = 0.6 lb/ft2 for the aluminum plate. From
p

the ratio of the above equation we get

M ( 0.6 /
amn aM mn "1 0.6 + W

and

6 2am - 0.6 15 ( 0.6 + )
30ar/ 0.6 mn 0.6 mn

mn mn mn

0 Corresponds to the time in which the value of the
measured correlation coefficient of the fluctuating
pressures at the wall, obtained from the envelope of the
correlation maxima, drops to 1/e. Plots of 0 versus Mach
number for broad- and narrow-band frequencies are given
by Maestrello in Reference 23, Figure S. The Maestrello
narrow band measurements of eddy lifetime for fre-
quencies centered at 1200 Hz were extrapolated to zero

The user interested in including a hysteretic damping term as a separate
contribution to a and a can easily determine this term by use ofmn mn

Equations (A7) and (A8) and the relevant term in Equation (A51) of
Reference 1, substituting N' for M and W for w when fluid loading is

mn mn
considered; see also Equations (13) through (15) of Reference 13 for similar
results in terms of both a and 6 . However to simplify the present com-

inn mn
putations and in accordance with the Maestrello procedure discussed in
Appendix B of Reference i, expiicit division of the damping into its hy-
steretic and viscous components is not made here.
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Mach number at which 0 = 2.25 x 10 sec. For all U
under consideration, (Mach number) < (Mach num-

water
ber) air = U/Cair < 64/(0.8) (1129) < 0.08. Since the

extrapolated curve shows that O(Mach numbers < 0.08) z
0(Mach number equal zero) then approximately

-3
0 = 2.25 x 10 sec for all U considered.

, fl, T Prescribed data

T Determination of this quantity is based on the law of
Tw the wall which is further discussed on page 62 of

Reference 1. The Macstrello measurements presented

in Figure 1 of Reference 23 indicate that p2/T

= 2.9 to 3.5 for M = 0.35 to M = 0.75. In reasonable
agreement Jacobs finds that the results of various

investigators yield p/Tw = 3.1 as an average value

for all subsonic Mach numbers (see pages 301 and
302 of Reference 1). Using the latter for the

present calculations we have T = ipZ/3.1 = 1/3.1 '
0.323 lb/ ft2; see also description of computation

2
for p

#mn(X,y), pmn(x',y') Data required for the computer program are calcu-
lated by the digital computer for a range of pre-

scribed values of m, n, x, y, x', y'.

W Prescribed in Equation (B7) of Reference 1 to obtain
P (W)

Wmn For a plate of given geometry, boundary conditions,
and structural properties, this quantity can be com-
puted by the methods of Option 2 (Reference 3).

In the present problem values for w were computedmn .

by use of the Warburton program 3 for a simply
supported plate and substantiated by means of the

simple frequency expression

WMn KC [ll) b )

In Method I, a and b lie along x and y respectively and are therefore

identified with m and n respectively. In Method II, b is always the longer
side so that in general a and b may lie along either x and y or y and x
respectively and are correspondingly identified with either m and n or n
and m respectively. If, in particular, a and b are identified with n and m,

then for Method II (only) the equation w =c., [(m/b)2 + (n/a) should

be used. mn
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Wmn Using Method I only for the aluminum plate W iscomputed by means of Equation (H3)

aL Equal to 1 for fluid loading on one side of the plate
only; equal to 2 for fluid loading on both sides of
the plate

* k c k
q Equal to-= where 0 <- = q < 1.

k s ,7 ~ 2 s

See footnote on previous page.
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Steel Plate

The values for the input data are tabulated in Tables 3a-3f. The

methods used in determining these values are:

Parameter Description

Ai, K. Prescribed constants used in Equation (B7) of
1 1 Reference 1

a, b, h Prescribed quantities

E A prescribed quantity

M E m A prescribed quantity

1' Using Method I, M' is computed by means of
Equation (H2); Using Method II, M' is computed by
means of Equations (H5) and/or (H8)

m, n Prescribed data

2io-

p Equal to f P(w)dw where P(w) is obtained from

0
Equation (B7) of Reference 1. This quantity can also
be measured directly. For the present calculation it

2
is convenient to set p = 1 so that the autocor-
relation function for the turbulence pressures and
the cross correlation function for the panel dis-
placements given by Equations (B8) and (B52)
respectively of Reference 1 can be regarded as
normalized to this value

2
(We can also compute p . Thus for subsonic speeds

1 2
Jacobs shows that p :3.1 Tw and from Reference 23

for a smooth plate, T./q - 0.06 (R) 1 /5 =
w x-

0.060 (U~x/v) where q = 1/2 p U. is the free-

stream dynamic pressure.)

Uc A parameter whose values are prescribed by the user;
U = 0.8 U. For the present problem Uc = 8, 16, 32,
cc

64 ft/sec

x. y, X', y' Prescribed points; the cross correlation of the dis-
placements are computed for these points
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6*= (Ft)-=FU ) The displacement thickness is determined by use of a
computer program available at the Center entitled
XG 75, Fortran IV by R.W. Brown. The program uses a
relation developed by Mangler, i.e., the Mangler inte-
gral transformation, which permits reduction of the
calculation of axially symmetrical boundary layers on

* -

arbitrary bodies of revolution to that in two-
dimensional flow. The Mangler method relates the
distance along the axis of a body of revolution to the
distance along a flat plate at which the boundary
layer thickness is identical. The boundary layer dis-
placement thickness is then calculated using an ex-
pression which is a function of the flat plate distance
and flat plate Reynolds number (using kinematic vis-
cosity of air at 90 deg F and of water at 39 deg F),

24
developed by Granville. The derivation of the ex-
pression is based on similarity arguments. The
undetermined coefficients in the expression are
evaluated by use of experimental data. The required
input data for the program are the axial distance (in
feet) and the radius of the body (in feet) at that
position as well as the free stream velocity (in knots).
The limitations of the program are those due to the
assumptions required for the Mangler transformation
and to the fit of the available data which Granville
used in his theory. The assumptions involved are
considered to have a greater bearing than the data
fit on the accuracy of computation. In particular,
we observe that Mangler assumes a two-dimensional
flow which does not explicitly account for the local
pressure gradient. The saving feature, with regard
to this omission, is the fact that the boundary layer
growth is sufficiently slow so that the imprecision
in the calculation is considered to be approximately
10 percent. Figure 15 gives the results of the compu-

tation for * of the actual structure in water and
in air obtained by use of the Brown computer program.

6 Total damping ratio in air including the damping ofmn the plate as well as radiation damping. In the

present problem the radiation damping in air is con-

sidered to be much smaller than the material damping.

The actual structure under consideration is a cylinder which is part of
a cigar-shaped body of revolution. Our computations are made above the ring
frequency which allows the cylinder to be treated approximately as a plate.
The supports at the cylinder or equivalent plate are essentially simple.

See second footnote for 6 of aluminum plate.
mn
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In Reference 25, Figure 36.9 used in conjunction with
Figure 36.15 shows that the loss factor n of various
steels at low and intermediate reversed stress values
and with cyclic stress values well below the fatigue
limit range approximately from a maximum of about
0.005 to a minimum of 0.001. Analytically, we can
also obtain a value of this order of magnitude by use
of Equation (36.13) of this reference, namely,

_L D d a

s d - In this equation, E for

ad
steel is known and Dd the specific dtping energy 

h

associated with the peak stress level reached anywhere
during the vibration (i.e., the value of D correspond-
ing to a = 0,) can be obtained from published curves

such as Figure 36.15 and Figure 36.17 of Reference 25
or tabulated data. For materials with uniform stress
distribution a/0 = 1 whereas for various specimens
with variable stress distribution a/0 is given by
Figure 36.9 of Reference 25. For a rectangular beam
with either a constant, linear, or quadratic moment
distribution, at low and intermediate stress,
a/Vz0.66. Additional details on this procedure as
well as a sample calculation are given in Reference 26.

27-34
Experimental data for the loss factors of iso-
tropic flat plates of steel and other materials, with-

out substantial stress concentration, over the range
of frequencies 100 to 1000 Hz, also vary approximately
from about 0.005 to 0.001. Considering the scatter
of these data, a reasonably approximate empirical ex-
pression for the loss factor (over this range of fre-
quencies) is n = 0.5/f n. Hence, a/Oc = n/2 = 0.25/f n

= 6mn/ 2 = an/wmn. Therefore, 6rn 0.5/f and
a = 0.5f.
mn

The damping of the panel modes is a combination of
viscous and structural damping where the viscous damp-
ing force is proportional to velocity and the

Thus the data refer to the loss factor for the bare (free) plate or to
a simple supported plate if the corresponding stress concentration
associated with the support is not large. The value of n for the particular
boundary condition under consideration should be used in computations. For

35
example, from data on clamped plates, Bies determined that n = 77/f. This

result is close to that used by Jacobs 1 '2 1 -2 2 for a clamped aluminum plate.

Davies,7 in his investigation of plate response and radiation, also assumed
that n = /f where 1 is a constant.
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hysteretic damping force is proportional to dis-
placement. Measurements have shown that the damping
of panels is small so that the damping can be
represented adequately in most cases by considering
it to be entirely viscous.

6 Total damping ratio of panel in water including the

mn damping associated with fluid loading and the

radiation damping. However, in the present problem
the contribution of the radiation damping to is

An
excluded. Following the analysis and argument made
for the aluminum plate and noting that W = 20.4 lb/
2 p

ft for the steel plate as shown in Table 3, then

amn =Wan M  a P ( 20.4 )a --- amn-- 0.5Sr
W1 20.4 + Wmn

and

2 mn 20.4 1 (20.4 0.
mn 20.4 +Wr 2 20.4 + W

mnn mn mn

0 Corresponds to the time in which the value of the
measured correlation coefficient of the fluctuating
pressures at the wall, obtained from the envelope of
correlation maxima, drops to l/e. Plots of 0 versus
Mach number for broad- and narrow-band frequencies
are given by Maestrello in Reference 23, Figure 5.
The Maestrello narrow-band measurements of eddy life-
time for frequencies centered at 1200 Hz were ex-
trapolated to zero Mach number at which = 2.25 x

10-3 sec. For all U under consideration, (Mach

number)wate r < (Mach number) air = U/C air = Uc /0.8cai r

< 64/(0.8)(1129) < 0.08. Since the extrapolated curve
shows that O(Mach numbers < 0.08) -e(Mach number
equals zero), then approximately 8 = 2.25 x 10-3 sec
for all U considered.

c
, n, T Prescribed data

Tw Determination of this quantity is based on the law of
the wall which is further discussed on page 62 of
Reference 1. The Maestrello measurements presented in

See first footnote for 6 of aluminum plate.
mn
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Figure 1 of Reference 23 indicate that Vp/Tw = 2.9

to 3.5 for Mach number = 0.35 to Mach number = 0.75.
In reasonable agreement, Jacobs finds that the results

- of various investigators yield Vp2/Tw = 3.1 as an
average value for all subsonic Mach numbers (see
pages 301 and 302 of Reference 1). Using the latter

for the present calculations we have Tw =- 13.1 =

1/3.1 = 0.323 lb/ft;2 see also description of p
O(xy), nn(x 1,y') Data required for the computer program are calculated

by the digital computer for a range of prescribed

values of m, n, x, y, x', y,

W Prescribed in Equation (B7) of Reference 1 to obtain
P (W)

n For a plate of given geometry, boundary conditions
mn and structural properties, this quantity can be com-

puted by the methods of Option 2 (Reference 3). In
the present problem values for w were computed by

3 m
use of the Warburton program for a simply supported
plate and substantiated by means of the simple fre-

quency expression

2 2

n Using Method I, w is computed by means ofSmn
Equation (H3); Using Method II, wmn is computed by

means of Equations (H6) and/or (H9)

a Equal to 1 for fluid loading on one side of the plate
only; equal to 2 for fluid loading on both sides of
the plate

q Equal to k/ks  2

See footnote for wmn defined for the aluminum plate.
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COMPUTER PROGF.AIS

Four computer programs associated with the mean square displacement

computations performed in this report for a simply supported fluid-loaded

plate subject to turbulence excitation are described below.

Program A': Modification of the Maestrello subprogram A (designated

TURAD), described in Reference 1, for computation of the mean

square displacement. The modification which incorporates

certain corrections, additions, deletions, and improvements

in efficiency in conjunction with its running on the CDC 6700

supersedes subprogram A and should be used henceforth. Details

of the modification are discussed below.

Program B': Computes the fluid-loaded natural (or modal) frequencies wn

as well as ks, k s added weight wmn = m ng, and total weight

w' = M'g = (m + m )g. In the program w = m g - WP, W =p mn - p p mn
mmng W(M,N), W' = M'g - FW, and mn BOMEGA. This program

is designated as Option 3.3

Program C': Warburton program for computing the plate natural frequencies
f and w in air for both simply supported and clamped-

mn mn
clamped boundary conditions.

Program D': Computes the displacement thickness for an arbitrary body of

revolution. The displacement thickness is used to calculate

the variable FUCSQ in Program A'. Program D' was developed by

Mr. R.W. Brown (see previous section of this Appendix).

Computes turbulent
joundary layer thickness.

(ITrRRAD) Symbol is 6*

Computes wm
Fluid loading routine

Computes wmn b h
Itarburton lethod.
Air loading routine

As previously discussed, computations for clamped-clamped boundaries
can also be performed with the same program. The program can also compute
the modal acoustic-power radiation of a plate in a reverberant field.
These computations are not made here.
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As shown in the preceding chart, when fluid loading is omitted

Programs C' and D' generate data for use in Program A'. The methods for

determining additional imput data have been described in the previous

section.

When fluid loading is included, Program C' generates data for

Program B' and then Programs B' and D' generate data for use in Program A'.

Determination of additional data inputs have previously been described.

The computer and running times of a calculation associated with each

program are given in the following chart.

Program Computer Cost for Total

(at NSRDC) TimeComputation

A' CDC 6700 Using the Simpson rule of integration $75.00
the computer running time is approxi-
mately 5 min for obtaining a curve

of y2 (W) versus U for each set of mode

numbers (m,n) and four convection
velocities Uc

B' IBM 7090 1.0 min for (m,n) ranging from 1,1 4.00
to 10,10, i.e., 100 values of Wmn

C' IBM 7090 1.3 min for (m,n) ranging from 1,1 5.50
to 10,10, i.e., 100 values of wmn

IB1 7090 1.1 min for 198 values of axial 4.60
distance, flat plate distance, local
flat plate Reynolds number, and 6 = 8 6*

Program A'

To make the original Maestrello subprogram A, designated TURAD, a

more efficient program and to enable it to run on the CDC 6700, the

following changes have been made in the coding of the original program (the

modified program A' is designated MTURAD):

1. Reduction of the four-dimensional array IXYZ to a three-

dimensional array
*IXYZ (M,N,IT,L2) - IXYZ (N,I,L2)

2. Increase in the dimension of the following variables:

*IXYZ (10,1,50,3)- ,IXYZ (10,1,3)

IYZ (20,1) IYZ (20,10)
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IY (1) IY (10)

G3 (11,1) G3 (101,10)
YY (11) YY (101)

TBIPI (11) TEMIPI (101)

3. Rearrangement of certain data cards
*FUCSQ

FM2

4. Deletion of some original data

*NP - no longer needed

PARAM - no longer needed (see below)

THETA - no longer a dimensional variable

5. Correction in coding of Simpson's rule. Original coding is:

*525 G2 (J,M) = G2 (M,M)*2

should read
*525 G2 (J,M) = G2 (J,M)*2

6. Elimination of double precision functions due to no

declaration of such at the beginning of the program. Such occurrences were

on cards numbered 2310 and 2330.
27. Introduction of a tolerance as an option for Y (w) for any plate

material. An exceeded tolerance produces an error message to be printed in

the output. If use of the option is not desired, the user reads in the

value 0 for the variable IOPT. If the option is used then any number other

than 0 is read in for the variable IOPT.

8. Rearrangement of lines of coding due to rearrangement of data.

The lines are on cards numbered 0620-0670, 0750 and 0760 in the original

listing.

13
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For completeness we include an explanation of the procedure by which

6 and a were obtained by the computer program in Reference 1. For the
mn

present program, the method given in Section 2 of this Appendix for the

determination of 0 and amn has superseded this procedure. However, if the

user finds the earlier procedure useful in computation, it can be rein-

troduced into the present program.

From page 7 of Reference 44 and from Section 3 of DISCUSSION AND

EVALUATION (Equation 7b), the following condition obtains ac hydrodynamic

coincidence

21r O
mn =k c  c

mn

We define PARAM = 2UO/,X mn. Hence wmn O w PARAM and

____ Tr-PRMirPARAM PARAM

inKCc 7r [(.a) + 2] c. [( 11 + E 2

Now U is the convection velocity along x (i.e., flow) direction only.
C

Therefore at hydrodynamic coincidence, the trace wave speed of the free

plate bending wave is matched to the convection speed in the flow direction,

yielding a greatly increased response. Thus,

U W Mn 2 e 1/2 K C Tf

mn

so that (neglecting the quantity (n/b)2 in the expression for 0)

PARAM PARAM • a
m mUU - McU -- c

c a

Maestrello (Figure 21 of Reference 45 or Figure 18 of Reference 46)

has shown experimentally that the maximum vibratory response (i.e. maximum

mean square displacement) occurs at hydrodynamic coincidence where the tur-

bulence and plate modal wave numbers are matched for a constant frequency.
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aestrello has also performed computations which show that the

condition w - rPARA = w 0 = 1 represents the aerodynamic coincidence con-

dition for which maximum excitation of the panel occurs; see Figure 7 of

Reference 1. This figure also gives results for w 0 < 1 and w 0 > 1
mn mn .

corresponding to the conditions below and above coincidence, respectively.

Thus, selection of the value PARAM for a given plate, value of U
c

and mode number m will yield the corresponding value of 0. For PARAM = 1/,

the value of 6 corresponds to the coincidence condition. For PARAM < 1/7,

the value of 0 corresponds to the condition below and above coincidence,

respectively.

In subprogram A, Maestrello chooses the magnitude of a n according

to the wO region of the curve that interests him. For example, Figure 7 of

Reference 1 plots Y 2(w) against WO. In the region wO = 10 to 1.0, he

uses a /10; however for wO = 1.0 to 40, he uses a . The Maestrello
mn mn

methods for determining a are given in Reference 1.
mn

For wm 0 << 1 the modal mean square displacement is inversely pro-
mn

portional to the total damping and at the peak is inversely proportional to

the square of the damping. In this region the effect of damping on

Y 2(w) is greatest. For w mn 0 > 1 coincidence is not possible. In this

region the effect of damping on Y2(w) is much smaller, see References 45 and

46.
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TABLE 6

Input Data, Computer Listing, Flow Chart, and Column Headings
for Input Forms on Data Cards for Updated Mae'trello Pro-
gran A' Used to Compute Mean Square Displacement of Plate

with and without Fluid Loading

TABLE 6a

Input Required for Program A' (ITURAD)

(Units are given in foot-pound-seconds)

[ D Symbol Used UData Description Format in Program Unit

Flow Characteristics (Program A'-an updated version of Subproqram A given
in Reference 1)

Uc Broadband convectionc F1O.0 UC(I ft/sec
velocity

- Mean-square wall-
p pressure fluctuations, F1O.0 PB2*DPB2(I) (lb/ft2)2

which vary with Uc*
c

(FUc)2  Quantity (6 Uc) FUCSQ ft2

squared where:
6* boundary layer

displacement
thickness

U free stream velocity

KIK2K Universal constants: AK
K1 = 0.470 FlO.0

K2 = 3.0

K3 = 14.0

AA21A2 Universal constants: AN
A1 = 1.6

A2 = 7.2 F1O.0

A3 = 12.0

(*PB2 would represent a unique value of p if p 2were independent of Uc. It

enters the program (ibe., data cards) once only. Since p2 actually varies with
Uc, a correction factor DPB2(I) is entered with every value of Uc. Thus

p2 as a function of Uc is accounted for by the quantity PB2* DPB2(I).
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Table 6a (Continued)

Data Description Format Symbol Used tin Program U
Plate Characteristics

h Panel thickness FIO.O 11 ft

2 Square of total
weight per unit area

a,b Lengths of panel FlO.0 ftsides

** imn' mn Total damping ratio FIO.O DAMP

* mn' '6 Modal frequencies FIO.O OMEGA rad/sec
of the plate

Additional Quantities

Range of plate First m mode number, 110 IILOW
mode numbers for last m mode number, 110 MUP
which calculations interval between m 110 DM
are desired mode number, total

number of m's 110 MSTEPS
m i 20, MSTEPS c 20.
Same information as 110 NLOW
previously described, 110 NUP
with respect to n 110 ON
mode numbers n £ 10, 110 NSTEPS
NSTEPS 10.
To run program A'
for m > 20, n > 10 the
size of the dimen-
sioned variables
IXYZ,IYZ,IY,G2,G3,YY,
TEMP,OMEGA,DAMP,FA,
FC,EIGEN and FUDGE
must be examined and
increased accord-
ingly

Time delay F1O.0 TAU sec

Number of values
of Uc to be 110 KUC

calculated

XoY o  Coordinates of a FlO.0 XOYO ft
point on plate at
which mean square
displacement and
acoustic power are
calculated

Total weight =W = I. g where M' = total mass per unit area. We stress
area that the user submits inertial data in terms of weight per

unit area and the computer program converts these data to
mass per unit area.

6mn = Total damping ratio of plate in water; 6mn = total damping

ratio of plate in air, mn = modal frequencies of plate in

water; wmn = modal frequencies of plate in air.

135

t1



r

Table 6a (Continued)

Lata Description Format Sybol Used Unit

in Program

x' Any point on plate FlO.O XOP,YOP ft
different from x

Calculated Output

%,n Value of eigen- E16.8 EIGEN
functions of mean
square displacement.
A value of EIGEN is
computed for each
mode (m,n) with
three values of total
damping; 1/10 am,n;

a mn; l1am,n

*a ,n Values of total E16.8 FA(m,n,l) for 1/sec
m'nam'n damping associated computation;

with each mode A(m,n,DAMP)
(m,n) in output

Vol mn Volume under each E16,8 VOL .2

)F2 e ig e n f u n c t io n E1 6 .8_VO L _i n-

Triple integral of E16.8 IXYZ
Equation (B52) of I(m,n)

I(m,n) Reference 1;
integral of cross
correlation

2 Mean square displace- 9
Y2(W) ment for values of E16.8 ANS in.

1/10 am,n amn;

lOam, n

am,n = Total dan,ping for each mode of fluid loaded plate.

am,n = Total dansping for each mode of plate in air.
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TABLE 6b

Computer Listing for Updated Maestrello Program A'

FTN(T)

PROGRAM MTURAD (INPUT .OUTP(UT TAPE5zINPJT ,TAPE6sO(JTPUIT)
C REORGANISED PROGRAM FOR COMPUTING TRIPLE (I 10
C INTEGRAL ?0
C USING SIPPSONS ROLF 30f
COMMENT TRANS = 0.0 MEANS NO TRANSDLJCFR FFFFCTS INCLUDFr)
COMMENT THIS RUN OF MTURAn HAS SIPPLY-SJPPORTEfl
C**********REOUENCIES WI/UT TRANSDUCER * ******#*~#**~**

DIMENSION VOL(20910) 40
DIMENSION F3(3)*ANS(3) s0
DIMENSION IXYZ(1091,3),IYZ(201)IY(fl),r,?401,2n),G3(1A1,10),
1YY(10I) ,TEMP1(1O1),G5(4000)
DIMENSION AK(3)9AN(3)9TITLE(7)
DIMENSION OMEGA(2n#10)9nAMP(209l0J 0100
DIMENSION FA(209lnt3)*FC(209109,3)#FIGEN(2091093)#F(IDGF(20#10#3) 0110)
DIMENSION UC(20) .0P82(203 0120)
REAL IXYZ91YZ91Y milt
INTEGER DM9DN 014A
READ(5913) TAU*TRANS

13 FOR'4AT(2F10.0)
IIRITE(69301) TAUJ 0170

801 FORMAT(IH1,/5H TAU=El5o6) 0180
READ(591212) IOPT

1212 FORMAT(15)
WRITE(691213) IOPT

1213 FORMAT(1HO,5HIOPT=I5)
READ(5,1032HXOYOXOPtYOPP82,AKAN,(TITLE( I) .1=1.7)

103 FORMAT(12(FIO0/)o(7A1I)))
WRITE(6,201) (TITLECI)9.11.7)

201 FORMAT(7A10)
WRITE(69263)PB2#AK#AN9X0,Y0,

1XOPYOP 250)
203 FOR-MAT(1Xv8H RHO-SAR 9H SOUARFD=E16oS9

24HOK1=E16.8#4H K2=El6.8,4H K3eE16.8/ 0290
34H A1=El6s8t4H A2=E16*8,4H A3=E16.8/ 600nt
44H X0=EI6s8*4H YO=E16*8,5H XOP=E16*895H YOP=F16*8) till(

READ(5,102) KU)C,(IC(I)9rDPR2(l)vI = I9KUC) OW2
102 FORA4AT(I10/(2F10l')) 03(l

WRrTE(69204) (tC()DPR2(1IhI = 19KUC) 0340
204 FORMAT(1H07X214UC13X4HD)P82/(IH 2~&8)0150
99 REAn(5,1) ZIPgYUPHMLOWt)PDMMSTEPSNLOWNtIP~fnNtSTFPS 0360
1 FORM.AT(3(FO*O/),(4r10)) 0970

WRrTE(6,2)MLWMJPDMMSTFPSNLO-',NIiPtrflM,NSTEPS 0180)
2 FORMAT(9HOM FROM r5t4H T01501H PIA15, 6'19n

112H A TOTAL OF 15t7H STFPS/9H N FROM 15# 0400
24H T015#7H DN=r5912H A TOTAL OF1597H STEPS) 0410
WRITE(69202) ZUPYtUP9H 0420

202 FORMAT(3H A=E16..395H B=E16.8,5H HCE1648) 0430
READ(5,1)1) CCOMF-GACMN)tMMLO,tlPDt)N~nL.INtPoflN)

101 FORMAT(F10.O) 450
IF(NUJP *GT, 10) wRrTE(69888)

888 FORMAT(lHO,78kfD1MENSIOMS FOR .isYYtTFMP1 ARE EXCFFO.r CHFCK FOUA
ITION FOR KtJP ON CAPO 1360.)
WRITE(625)((OEGA(M)M=LOI-1,Ml,Pr'4) 0460
lN=LO',NLJP*DN) 470

205 FORMAT(7H0OMEGA=/(8E16#8)) 0480

IF(TRANSeE00*~0) 6O TO 17I
READC591477) R*DEL
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Table 6b (Continued)

f1477 FORPIAT(2Fl0.O)
DO 1453 J =193

1453 AK(J) = AK(J) * SORTCR/DEL)
17 DO 7 N=19NIJP*DN49

7 DAMP(MoN)=.Ol 510
READ (5,104) ((DAMP(M.N).MzMLOWMU)PDM),NzNLOWNpN(I#)

104 FORMAT(Fln*O) 3
WRiTE(6,206) ((DAMP(M9N)#1=?LOW9MlJFDm)o 054n
lNNLOWNJPqflN) 550

206 FORMAT(6H0DAMP=/(8F16*8)) 0560
N1=8 570
READ(59207)THETA

2'7l FORMAT(F1O.51
A=ZUP 600
RYVUP 61A

8 B7? AN~l) / AKM1
R8=AN(2)/AC(2) 690
B9=AN(3)/AK(3) 7n0

C2=3*14159265 770
C3=1./C2 730

C6=C4/(A*81 770
DO 10 MxiKIOW#,MUP9DfA 780
DO 10 N=NLOW#NUP#DN 790
X'4=M 800a
XN=N 810
XO=A/2* 820
YO=S/2 * 830A
IF(M-M/2*2.NE*0)GO TO 43 0840
XO=A/2o-A/ XM*2 e) 850

43 IF(N-N/2*2*NEsO)GO TO 44 0860
YO=8/2*-B/(XN*2.) 870

44 XOP=XO CIA0
YOP=YO 890
DAMPCM#N)=DAMP(M#N)/10* 0900
DO 45 193 910
FA(MNL)=,4AP(MN)/2.*OMEGAtN) 0920
FA(MNL)UFA(M9N9L)*0o5 0930
FC(M9N9L)mOMEGA(M9N)/FACM#N#L) 0940
Ft)DGE(MNL).XM*XN*OMEGACMN)*(FA(MNL)**2 *OMFrA(MtN)**2 0950
EIGEN(MNL)uCl/FtJDGE(i~1,NiL)*SIN(XM*C2*XO/A)*SIN(XN*C2*Y0,B)* 0960
1SIN(CXM*C2*XOP/A )*SIN(XNi*C2*YOP/B) 0970

45 DAMP(M#N)=DAMP(M.4N)*10* 0980
10 CONTINUE 990

WRITE(691003) 1000
1003 FORMAT(33HOXOXOP#YO=YOPPAND THEY VARY WITH 1010

117H THE MODE NUMBERS) 1020
DO 46 1.1,3 1030
WRITE(693)((EIGEN(Mtf4,L),MuMLOWMUPDM),N.NLOWNOPDN) 1040

3 FORMAT(7HOEIGEN=/(8E16a8)) 1050
46 CONTINUE 1060

DO 47 L1.#3 1070
WRITE(6,48)((FA(MNL),M=MLOWMUPDM),NNLOWNUPtDNI 1080

48 FORMAT.(13HOACM.N.DAMP)a/(8El6.8)) 1090
47 CONTINUE 1100

CALL VOLUM(ABMLCWMLJPDMNLOWNUPDNVOL) 1110
ICOUNTft1

READ(5,225) FUCSO
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Table 6b (Continued)

225 FORMATfF1O*O)
3 D0 777 KtJ1,KUC

WRITE(6#3031UCCKU)
303 FORMATC4H uc=9E16*8J

81=AK( 1 **2*FIJCSO 620
B2=AK( 2)**2*FIJCSO 630
B3=AK( 3)**2*FUCSO 640l
B4=ANf 1)*AK(1)*FIJCS0 650*
B5=AN(21*AK(21*FUCSQ 660
B6=AN(3 )*AK(3 )*FIJCSO 670
DO 778 McMLOWgMtUP*DM 1176

5 KCOUINT=l
READ(5#222)FW2

666 FORMAT(F1O92)
C5= (A*R*PB2) /(2 .*C4*FW2*(C87+B8+89))
C5=C5*32*2*32*2*12**12s M 760
CONST=C5*DPB2 (KU) 1140
WRITE(69304)CONST

304 FORMAT (12X97H CONST=*E1698)
XM=M 11A0
WRITE(697801THETA

780 FORMAT(IHn,6HTHETA=9E1265J
IF(THETA #GT* 100) GO TO 999
XLOW=O* 1240
DX1.o/(20**OMEGA(M#NUP )/2./3.14159265)
IUP=5*/DX*THETA+lo
IF(IUP *GT* 3599) IUP=3599
IF(IUP-IUP/2*2) 5nI9500i50l 1276

500 IUP=IUP+1 1280
501 IUP = HIP +400 179n
502 DX=THFTA/40*

ZLOW=-A 1910
JIUP=20*M+1 112 0
ZJIUP=JUP-1 1930
DZ=2 .*A/ZJtJP 1140
YLOW=0o 1356
KOP=10*NIIP+1 1360
YKUP=KIJP-1 1376
DY=B/YK(JP 13480
00 11 11UW1'9
G5(1)=1. 1400
IF(1.EO*401)GO TO 11 1410
IFfI.NEs1*ANne1.NE.UP) GO TO 510 1420
GO TO 511 1410

510 r65(1)=;5CT)*2s 1A40
511 IF(1I/2*2*Eeo0) 60 TO 513 1450

GO TO 11 1466
513 G5(I)=G5(I)*2. 1470
11 CONTINUE 1480

Z=ZLOW 1490
no ?1 J=10JUP 1I66M
XA4=M 1510
D1:XM*C2*Z/A 1520
D2=COSCD1) 1 5,40
G2(JMl)=02+le/(XM*C2)*(S!N(APS(01) )-'RS~nl) 154n jg

1*0)2) 1550
IF(JvNEs1.ANrh*J*NFoJUP) GO TO 520 1566
GO TO 521 1570

520 G2fJM)=G2IJM)*2# 1580
521 IF(J-J/2*2.EO.O)GO TO 525 1590
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Table 6b (Continued)L

GOTO21 1600
525 GZ(J*M)=G2(Jo1)'2.
21 Z=Z+DZ 1620

Y=YLO4 1630
DO 31 K-19KIlP 1640
DO 30 NN0%f9NtPDnm 1650
XN=N 1660
D3=XN*C2*Y/5 1670
D'.COS(03) 16R6
G3(KN)zD4+1/(XNC)(SIN(l3)-D3*D4) 19
IF(KeNEol.ANP*K.F9EKUP) GO TO 530 16900
GO TO 531 1710

530 G3(KtN)=63(KtN)*2* 1720
531 IF(K-K/2*2sEO*O) GO TO 533 1730I

GO TO 30 1740
533 G3(KtN)-G3(KXt4)*2o 1750
30 CONTINUE 1 7611
31 Y=Y*DY 177to

Y=YLOW 1780
DO 39 KI1iSKUP 1790
YY(K)=Y*Y 1800

39 Y=Y*DY 1810
DO 40 11=1.3 1820
DO 40 N-NLOWvNUPDN 1830

40 IXYZ(N,1.LI1sO6e
KAPPA=O 1860
X=XLOW 187
DO 160 !1,I1UP 1880
IF(TAU oEGOoO) GO TO 630 i890

- -El -UC(KtJ!*(TAU-X) 1900
GO TO 632 191n

630 El = UC(KU)*X 1920
632 CONTINUE 1930

DO 50 N=NLOWoNUP*DN 1940
50 IYZ(M*N)=0. 1950

Z=ZLOW 1960
DO 120 Js1,JUP 1970
E2=(Z-E1)*(Z-E1) 1980
E4=B1+E2 1990
E5=82+E2 2000
E&=83+E2 .2010
DO 60 Kl.#KUP 2020

60 TEMP1(K)z64/(E4YY(K),)+B5/(E5+YY(K))+t6/(E6+YY(K) 2030
DO 70 NmNLOWvNUP9DN 2040

70 IY(N1=0. 2050I
D0 90 K=19KUP 2060
DO 90 NwNLOW9NUP9DN 2070

90 IY(N)=IY(N)+G3(IC.N)*TEMP1(K3 2080
DO 100 N=NLOWoNUP*DN 2090 i

100 IY(N)=!Y(N)*DYI3* 2100
DO 110 NNLOWgNUPD4 2110
TEMP=!Y(N) 2120

110 IYZ(!4.N)=IYZ(M#N),G2(JtM)*TCMP 2130
120 Z=Z.DZ 2140

DO 130 NONLOWgNUP*DN 2150
130 IYZ(M*N)OIYZCMtNI*DZ/3o 2160
1001 CONTINUE 2170

DO 140 NmNLOWNUPtDN 2180
TEMP=IYZ(MvN) 2190
XM=M 2200
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Table 6b (Continued)

XN=N 2210
Fl=XM*XN*C6 7220
F2=OMEGA(M*NI*ABS(X) 2230
DO 140 11-1,93 7240
F3(Ll)=PA(MsN911)*ABS(X) 2750
IF(F3(L1).GT*5*)GO TO 140 2760
F6=F1*EXP(-F3(Ll))*(SlN(F2)4FC(M.NLl)*COS(F2)) 2270
IF(X #GT* 5o*THETA) GO TO 137
IF(TAUeEOoO) GO TO 634 23n0
G6=EXP(-ARS( (TAU-X)/THFTA)1
GO TO 636 2326)

634 G6=EXP(-ASS(X/THETA))
636 CONTINUE 2340

G1=2**6*G6*G5 CI) 23501
IXYZ(N91 ,L13 IXYZ(Nt1 ,L1) +G1*TEMP*nX/3*

137 CONTINUE 2370
140 CONTINUE 2:580

IF(KAPPAsNE*O)GO TO 160 2390
IF(I*NEs401)GO TO 160 2400
KAPPA=1 2410
DX1.*/(20**OMEGA(M9NUP 1/29/3*14159?65)
GO TO 1001 2430

160 X=X+DX 2440
DO 601 N=NLOW9NUP9DN 2450
IF(THETA *GT. .100) G0 TO 999
WRITE(69141) MiN 7470

141 FORIAAT(3H1M=1593H N=I5//45X6HI(MN38X1BH(4,N)*FIGEN*CnMST// 24R0O
12X5HTHETA4XI1HOMEGA*THETA6XI1HDAMP=1 ./l0.5X7HDAMP=1.9X8HDAM01fla 2A90
28X11HDAMPl10 XHAP19x~APIo
n0 602 L2=193 7520

602 ANS(L2)=IXYZf N91 912)*EIGEN(M9N9L2)*CONST -

T-2THETA*OMEGA (M#N)
WRITEC69142)THETA tTt(IXYZ( N91 ,L219L2=1931v(ANS(L2),L2u1931 2550

142 FORMAT(IX9F9*6*E14e6#6E16&8) 2570
IF( [OPT *EQ* 0) GO TO 600
IF(N *EOe NIOW) THOLD=ANS(2)
IF(N eEQ& NIOW) GO TO 600
IF(ANS(2) *EO. THOLD/lO. *OR* ANS(21 sGT* THOLD/0o.) GO TO 600
WRITE(699981

998 FORMAT(1Hn972HMODE IS MORE THANI 1/10 AELO4 VALUE OF Y**2 O1F f0mIF6A
1AT CORRESPONDING UC*)
GO TO 778

600 KCOUJNT=KCOJNT+1
( IF(KCOUNT *GTP NSTEPS) GO TO 778

READ(C5, 222 )FW2
C5=CA*B*DPP2) /(2.#C4*Fwe.2*(B7,B8+89))
C5=C5*32*2**2*12.**2
CONST=C5*0PB2(Ktj)

601 CONTINUE
778 CONTINUE
779 !COUNT= ICOUNT+1

IF(ICOUNT sGTs KUC) GO TO 777
READ(59225) FUCSO

777 CONTINUE 2600
999 STOP 2610jEND 2670

SUBROUTINE VOLUM CABMLOWMUPDMNLOWNIPDNVOL) 2640
INTEGER DM#DN 2650
DIMENSION V01C20910) 2660
P1=3*14159265 2670

IM
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Table 6b (Continued)

DO 10 N=NLOW#NUPDN 2680
XN=N 2690

XM=M 2710IVOLU 1 NN 272
IF(N-N/2*2.EC.0)GO TO 10 2720
IF(M-14/2*2.EOI)O TO 10 24
GAP4MAN-( 2e*XNeI. )'PJ/2* 2750
GAMMAM=(2s*Xm+1. )*PI/2s 2760

XKNuSIN(GAMMAN/2)/SNH(AM4!AN/2.1 2770
XKM4SIN(6AMMAM/2e )/SINII(GAMMtAM/2.) 2780
VOL1MNIs16.*A'B/GAMMAM/GAM4AN/(1.+XKM)*144. 2790

1/I 1+XKN)*SN(GA4NA/2. )*SIN(GAMNAN/2.) 2800
10 CONTINUE vO(.)NMOU.),.LwNPN 2810

WRtTE(6,20)(CVLM~*aLWMPDINNOgUoN 2820
20 FORMAT(28HOVOLU4E UNDER EIGENFIINCTION// 2830

IM816sg)l 2840
--~RETURN 2850

END 2860
FUNCTION SJNH MU
S1NHwOeS*(EXP(X1-EXP(-X)1
RETURN
END

123
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TABLE 6c

Flow Chart for Updated Maestrello Program A'

DOUBLE Do LOOP ON 10
x ited a Vary

SO 114 2. YO -?/

In.

5 EVETNU YO-R12-TE(m

a yesl
)s (2NYO82 R2

L -~ . 2]1

CALCULATE for ech d2amp)

WRIT CONTNUERIT

ainn ~ Canlculatie. s rl inth atrcae ec
inn 44sn2M41) (n IfVO

2 2 143
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Table 6c (Continued)

7

ICOUKT=I I Set counter for reading
FUSCQ

READ /
FUCSJ/

DO 777

(VARY Uc)

WRITE
Uc

DO 778

(vary M)

KCOUNTh1 Set counter f~r readina FW2

I I 

iI

READ FW2

CALCULATE

C5, CONST

Set upper and lower limits for x,y,z
integrals; Determine number of Ateps
for each integral and the step size
for each

8

144
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Table 6c (Continued)

CALCULATE

Coefficients
for Simpson's
rule

zt
Set variable of integration = lower limit on z

Calculate function of z values

m~z+ l in .-- - [Cos dz

(z) f ca a a
-a

%

Y Set variable of integration = lower limit on y

Calculate function of y values

b

f) f (z) cos b+n I iosb b dY
0 -

Set up and initialize to zero the
array for summing on outside
integral

9
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Table 6c (Continued)

x Set variable of integration = lower limit on x

Calculate function of x varying y and z and sum
up parts previously calculated.

f) = (y) Lin U IxI) + cos

- IX/61 3Av KV

I xle - x/eI + ' + () dx
kV- 2 ((F-x))2+y2

I DO 601
(n varies)

WRITE 1
Answers of

triple integral

IXgZ

COMPUTE ANDI WRITE 1
ANS=IXYZ *

EIGEN * CONST

10
i 1 i
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Table 6c (Continued)

10

toleroerace

WRI778 CeNTIoU YEimesg f6tleac
exceeing ece147

toeac

IN

)+

KCOUNT=



I Table 6c (Continued)

ICOUNT=
MCOUNT +.1

777 CONTINUE

STOP

EN
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TABLE~ 6d

Column Headings for Input Forms on Data Cards

HO 80

y0 8

YO8
XOP 80

YOP 80

PB2 80

AK1 80
*AK(2) 80

AK(3) 80
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Table 6d (Continued)

ITITLE 60 80

ZUP 10 NMEOFCRSNEEFO ,DP2ARRAYS IS EQUAL TO KUC 80

YUP 10 80

-- -- -- -
H 10 80

MLOW 10 !4UP 20 DM 30 I4STEPS 40 80

ISI



Table 6d (Continued)

NLOW 10 MOP 20 ON 3ONSTEPS40 80

OMEGA(,1)1080

ONEGA(,I)IO80

WITH THE ORDER OF CARDS (,)(,)..M),,)..(2..,(N,.MN)TO COMPLETE
THE OMEGA(N,N) ARRAY

R 10 DEL 20 80

LII(,1 1 80

WITH THE ORDER OF CARDS (,)(,).(M1(1).(M).,1N,.MN)TO COMPLETE
DAMP(MN) ARRAY

THETA 1080

FOCSQ1)1080

FUCSQ2)1080

THE NUMBER OF FUCSQ IS DETERMINED BY USER.
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Program B'

A description of Program B' (Option 3) is given in Tables 7a-7d.

TABLE 7

Input Data, Computer Listing, Flow Charts and Column Headings
for Input Forms on Data Cards for Program B' (Option 3)
Used to Compute Added and Total Weight per Unit Area and

Modal Frequencies of Fluid-Loaded Plate

TABLE 7a

Input Required for Program B'

Variable Format Description Unit
Name

WP F10.8 Weight per unit area of plate lb/ft

RHOF F10.4 Weight density of fluid lb/ft3

RHOW F1O.4 Weight density of plate lb/ft3

H F10.4 Panel thickness ft

RLI F1O.4 Length of panel side, x-direction ft

RL2 Fl0.4 Length of panel side, y-direction ft

For z = 1, fluid loading is on one side
of plate

ALPHA F10.4 = 2, fluid loading is on both sides
of plate

MLOW I10 Lower limit of M mode m : 20

MUP I10 Upper limit of M mode

NLOW I0 Lower limit of N mode

NUP I0 Upper limit of N mode

OMEGA(m,n) F10.2 Array for modal frequencies of plate in rad/sec
air
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TABLE 7b

Computer Listing for Program Bt

SIBJOR MAP9FIOCS
SEXECUTcE IBJOR
SIBFTC OMEGA

* DIMENSION OMEGA(2O,1O),POMEGA(2Q,10).ROMEGA(2010)1-!(20910)
READ (5.15)WP

15 FORMATCF1O.2)
READ(5*20) RHOFvRHOW9H9RL1#R12,ALPHA

20 FORMATC6F1O#4)
READ( 5, )MLOW9MUjP#NLOW9INUP

1 FORMAT(4110)
READ(591O) ((O'4EGA(MN),M=MLOWMU)P) ,NNLWoNtJP)

10 FORMAT(FIO.4)
C
C METHOD I
C

WRITE(6940)
40 FORMATt1H1,1OX98HMETHOD 1)

DO 244 L=194
DO 25 M=MLOWMUP
0O 25 N=NLOW9NUP
FKS2=((FLOAT(M)*3.1416)/RLI)**2+((FLOAT(N)*3.14l6?/RL2)**2
FKS=SQRT(FKS2) 10*

FW=WP*( 1.+( (ALPHA*RHOF)/ (FKS*W-P*SQRT(1 .-0**2f)))
POMEGA CM9N)=OMEGAW9MN)
BOMEGA(MN)=POMEGA(MN)*SQRT(l./(1.+( (ALPHA*RHOF)/(RHOH*FKS*H*SORT

WRITE (6,30) M.N .0
30 FORMAT(lHO,2HM=,12,2X,2HN. 12,2X,2H0,tF5.3)

WRITE(6,35)FKS2,FKSFWROMEGA(MN)ldf(MNI
35 FORMAT( 1HO,5HFKS2=9Fl242X4HFKSgF12e4,2X,3HFW=,Fl2.4 2X,7HROM4FG

lA=#F12*4#2X#2HW=9Fl2*4)
* 25 CONTINUE

0=0+o*3
244 CONTINUE

STOP
END

IS3
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TABLE 7c

Flow Chart for Program B'

STRT~

DATA

DO 244

L =1,4

DO 25

H = MLOW, 14JP

DO 25

N NLOW
NUP

CALCULATE •
WEIGHT PER

UNIT AREA

CALCULATE
TOTAL
WEIGHT

CALCULATE

PLATE MODAL

FREQUENCY IN
WATER

25 CONTINUE

244 CONTINUE
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TABLE 7d

Colimn Headings for Input Forms on Data Cards

WP 10 80

RHOF 10 R-OW 20 H 30 RL1 40 RL2 50 ALPHA 60 80

MLOW 10 MUP 20 NLOW 30 NUP 40 80I I I _,I [ I_ _ _ _ I
OEGA(1,1) 10

With the order of cards (1,1), (2,1) ..... (m,l), (1,2) ..... (m,2).

(1,n) .... (m,n) to complete OMEGA (mmn) array.
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4-

, Program C'

This program yields a solution for clamped and simply supported

A j plates corresponding to the Warburton Method as described in Appendix 1 of

Reference 3. Warburton treats the frequency parameter subscripts m,n as

the number of nodal points along the plate length and width respectively.

However, most other authors treat m,n as the mode numbers along these di-

mensions (or define it for the opposite dimensions). Thus (m = 2,

n = 3 )Warburton means the 1, 2 mode containing 2 nodes along x and 3 along

y whereas (m = 2, n = 3)others means the 2, 3 mode containing either 3 nodes

along x and 4 along y or 4 nodes along x and 3 along y depending on the

definition of m,n with respect to the x,y coordinates. To avoid confusion

and for compatibility with most investigators, the program assigns the modal

(not nodal) meaning to m,n for all computations.

In computing the simply-supported plate frequencies by the Warburton

Method the value of SPEC must be 1.0. In computing the clamped-clamped

piate frequencies by this method any value of SPEC other than 1.0 is used.

In all computations, the frequency f (Hertz) is obtained as the pro-

duct of the frequency parameter X (or an) and a factor. For the
m,n m ,n

Warburton computations the factors are expressed as

hiT E
22
a 48 Pm(1-) mN

where the mass density a = RHOW/G
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TABLE 8

Input Data, Computer Listing, Flow Chart, and Column
Headings for Input Forms on Data Cards for Program C'
(Warburton Program) Used to Compute Natural Frequencies
of Simply Supported and Clamped-Clamped Plate in Vacuo

TABLE 8a

Input Required for Program C'

Variable Name Format Description Unit

NCASE 15 Number of cases 1 -

M 15 Modes in x-direction
m i 20

N 15 Modes in y-direction

A Fl2.6 Plate dimensions,
length in x directionin

B F12.6 Plate dimensions,
____________length in y directionin

H Fl2.6 Plate thickness in.

E E16.8 Young's modulus lb/in.2

SIGM4A F12.6 Poisson's ratio -

RHOW F12.6 Weigjht density of plate lb/in.3

Acceleration due to 2
G F12.6 gaiyin./sec

Option for obtaining fre-

SPEC F10.0 quencies of either simplyIsupported or clamped-
Sclamped plate_____
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TABLE 8b

Computer Listing for Program C'

$EXECUJTE ISJOe

SISFTC WARS

CONNON M9NgA9S9H*E#SIGMA#RH0M)sPl.G
c C -I MODESIN X DIRECTION
C N -MODES IN Y DM1ECTION
C A - LENGTH IN X DIRECTION
C 8B LENGTHI IN Y DIRECTION
C H - PLATE T14ICKNTSS
C E - YOUNGS MODULUS
c S1I1MA - POISSONS RATIO
C RHOW - PLATE D~ENSITY
C G - ACCELERATION DUE TO GRAVITY
C

PI*3*1415,927
READI9q2)CASE
DO 500 L=1.NCASE
READ15921 M 9N
READ(5931 A989H
READ(594 !E.SIGMA*RHOW*G

2 FORMAT(2151
3 PORfAM(926)

4 FVRMAT(Elhe893FI296)
RHOMURHOW/G

10 CALL WARS
500 CONTINUE

STOP
END

S18FTC WARBER
SUBROUTINE WARB
REAL LAMBDA*..X elY ,K KP
DIMENSION ONEGA(20#1O)
DIMENSION FREO(25910). GX(100hoHX(100).JX(100).GY(100).HYI100).
1 JY(1001
COMMON M*N#A9BeH9E9SIGMA9RHOM9PI9G
READ(592111SPEC

III FORMAT(F1O01
A2uA*A
82.8*8
A4uA2*A2
B8u2*82

IF(SPEC*EG* 1.0) GO TO 510
GX(1)ulo
HX( 1)w1.
JXt1)w1.
GYt 1l.1
HY 11 ) = 1
JYMl,.'
GX( 2)1.1506
HX(2)11248
JX(2)ul*248
GYI 2)11506
HYI 2)ul.248
JY(2)ulo248
DO 100 Ml=3#MP1
GX( M1)=FLOAT(M1 )-*5
HX(Ml)=((FLOAT(Ml)-.5)**2)*(1e-2e/U(FLOAT1M1)-.5)*P)
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Table 8b (Continued)

JX(M1$uHX(Ml)
100 CONTINUE

DO 150 NI=3,NP1
GY(N11)FLOAT(N1)-*5

JY(Nl)mHY(Nl)
150 CONTINUE

GO TO 590
510 Do 500 Mi a oMP1

GX(M1 a FLOMT(Ni - 1.0
HX(M1 a GX(f4I) **2

500 JX(M1 a 14X P41 I
DO 550 Ni 1.MPI
GY(N11 a FLCAT(Ni)-ieO
HY(NII GYMN1)*2

550 JY(NI1 a HYtN11
590 WRIE(6920$A#B#H#E#SIGMA#RHOM

20 FORMAT"IHfi3 AztF7*2,3H BmtF7*293K HkF7.,3H EqE1I.4.7H SIGMAst
I F7*2.6H RHIOM=#E114)
WRITE(6919$

19 FORMATC//23X# 22H WARBURTON FREQUENCIES)
1W a 1
DO 400 N2fs2#NPl
N21aN2-1
WRITE(6#21IN21

21 FORMATOFI N=9121
WRI TE( 6. ,2

22 FORMAT(9:L.IHt,15X.6HtAMBDA.16X.5H FREW)
00 300 M2ZZ.MP1
M21=M2-1
XLAMSQCX(M2)*GX(M2)*GX(M2)*GX(M2)+tGY(N2)*GY(N2)#6Y(N2)*GY(N2)
1 *A4)/Bt.+(2.*A2/B2)*(SZGMA*HX(M2)*HY(N2)+(1.m.SIGMA)*JX(M2)*JY(N2)
LAM BDA'= RT (XLAMSO)
FRE0(M2,N2)z((LAMBDA*H*PI)/A2)*SQRT(E /(48s*RHOM*(1#-S1GMA*#2))
WRITE(E .23)M21,LAMBDA.FREO(M2.N2)
OMEGA(?1*N2J a 2. * PI * FREOCM2gN2)

* WRITEC6001O OMEGA(M2#N2)o 1W
23 FORMAT15XtI5,5X#E15*8#5X9E15*81

WRITE(3#30) OMEGA(M2#N21# 1
90 FORMAT(iX9F15*4#65X9!5)

1W a 1W + 1
300 CONTJMUE
400 CONTIN.UE

RETURN'
END
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TABLE 8c

Plow Chart of Program C'

EXECUTIVE ROUTINE

READ

Data

j DO 500

I L 1. NCDASE

READ
Input
Data

I CALL
WARB

500 CONTINUE

CSTOP

4D

1 60



Table 8c (Continued)

SUJBROUTINE WARB

START

READ IN
Value for

SPEC

is Setup coefficients for
SPEC--Iboundary condition expression

of clamped plate

Setup coefficients
for boundary condition
expression of simply
supported plate
functions

WRITE

A,,HE, SIGMA1,

CORITE jIFrequencies
without fluid
loadingj

[ WRITE j
Frequencies
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TABLE 8d

Column Headings for Input Forms on Data Cards for Program C'

M 5 N W80

A 12 B 24 H 36 80

E 16 SIGMOA 28 RHOW 40 G 5

SPEC 10
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The input data and results are labeled and printed out for each
value of NCASE. The mode numbers (m,n), nondimensional frequency A, and

final frequency f (Hertz) are given.

Program D'

This program calculates turbulent boundary layer thickness for an

arbitrary body of revolution.

TABLE 9

Input Data, Computer Listing, Flow Chart, and Column
Headings for Input Forms on Data Cards for Program D'
(Brown Program) Used to Compute Turbulent Boundary Layer

Thickness for an Arbitrary Body of Revolution

TABLE 9a

Input Required for Program D'

Variable Name Unit Format Description

N - 15 Number of pairs of data points
describinq the body of revolution

R ft F12.8 Length of the body of revolution

Z - F12.8 Constant to which all of the
data points are normalized

X(1) ft 6FI0.5 Axial distance along the body
Y(I) ft 6FI0.5 Radial distance of the body

from the axis

L - 15 Number of speeds

U(K) ft/sec 6F12.8 Speed
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TABLE 9b

Computer Listing for Program D'

c M4ANGLER INTEGRALS

C R- WILLIAM BROWN, INITIALS CWC, NSROC CODE 942. PHONE 227-1252
; C THIS IS A PROGRAM FOR THE CALCULATION OF-THE TURBULENT BOUNDARY
C LAYER THICKNESS* DELTA* IT USES A RELATION AFTER MANGLER WHICH
C RELATES THE DISTANCE ALONG THE AXIS OF A BODY OF REVOLUTION TO
C THE DISTANCE ALONG A FLAT PLATE AT WHICH THE BOUNARY LAYFR THICK-
C NESS IS IDENTICALe THE-BOUNDARY LAYER THICKNESS IS THEN CALCULAT-
C ED USING A RELATION DUE TO GRANVILLE (DTMR REPORT NO& 13401a THIS
C EXPRESSION IS BASED ON FLAT PLATE DISTANCE AND FLAT PLATE REYNOLDS
C NUMBER.
C
C
C 688 COORDINATES- (RE'ERENCE-GENERATING FUNCTION-BRIAN BOWERS)
C
C

ODIMENSION X9500)9 Y(500)9 XZ(9O0), YZ(ISO) XZR(500)9 YZR(SOO)o YZ
1R2(500)9 XBAR(SOO) RXBAR(5009151# OELTA(500.1519 UtI5)

C READ IN THE CONSTANTS No R AND Z.
C N = THE NUMBER OF PAIRS OF DATA POINTS DESCRIBING THE BODY OF
C R ELN EVOLUTION
C R - THE LENGTH OF THE BODY" OF REVOLUTIONe

C Z w THE CONSTANT TO WHICH ALL OF THE DATA POINTS ARE NORMALIZEDe
C READ IN THE DATA POINTS DESCRIBING THE BODY OF REVOLUTION6 X(I)
C - THE AXIAL DISTANCE ALONG THE BODY. Y(I) a THE RADIAL DISTANCE
C OF THE BODY FROM THE AXIS.

READ(591 No R, Z
1 FORMAT (15. 2F12*8B
READ(592) (X(I)o I s 1. N1
READ(52) (Y(I), I a 1 N)

2 FORMAT(6F10*5)
C READING IN THE NUMBER OF SPEEDS9 Le

READ (5, 18) L
18 FORMAT (I5)

C READING IN THE SPEED, U(K)o IN FEET PER SECOND.
READ (59 19) (U(K), K a It L)

19 FORMAT (6F12o9)
C SETTING X(1) AND Y(1) EQUAL TO ZERO# AND SHIFTING ALL OF THE DATA
C POINTS. IF NECESSARY*

IF (X(l)) 15. 8. 9
9M= N+I

TEMPl - X(l)
DO 10 J a 29 M
TEMP2 = X(J)
X(J) = TEMPI
TEMP1 = TEMP2

10 CONTINUE

8 IF (Y(I)) 159129 11
11 M = N + 1

TEMP1 = Y(1)
DO 13 J a 2t M
TEMP2 = Y(J)
YJJ = TEMP1
TEMP1 = TEMP2

13 CONTINUE
X(ll = 00
Y(1) = 00
N= N+1

C CONVERTING THE DATA POINTS WHICH WERE RE D IN INTO ACTUAL BODY CO-
C ORDINATES*

12 nO 3 1 = 1, N
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Table 9b (Continued)

XZ(I) = X(I)/Z
YZ(I) = Y(IIIZ
XZR(I) a R*XZ(I)
YZR(I) R*YZ(I)
YZR2(I) = (YZR(I))**2
IF(I-2) 69 79 7

6 XRAR(I) 
O.

GO TO 3
C CALCULATING THE DISTANCE ALONG A FLAT PLATE, XRAws

7 XBAR(I) (l*/YZR2(I))*SIMPUN(XZR* YZR2, I)
3 CONTINUE
WRITE(69 25)

250FORMAT(99H1 INPUT X VALUES INPUT Y VALUES AXIAL DISTAN
ICE BODY RADIUS FLAT PLATE DISTANCE//)
WRITE(695) (X(I)t Y(I). XZRtI)# YZR(I). XRAR(I), I I 1t N)

5 FORMAT(5F20oS)
DO 26 K = I L
RXBAR(19K) = 0.0
DELTA(19K) = OO

26 CONTINUE
DO 17 K a Is L

C CALCULATING THE LOCAL FLAT PLATE REYNOLDS NUMBER9 USING A KINEMA-
C TIC VISCOUSITY OF WATER AT 39 DFGREES F.

DO 16 1 a 29 N
RXBAR(IK) = U(K)*XBAR(I)/O0001684

C CALCULATING THE TURBULENT BOUNDARY LAYER THICKNESS# DELTA*
IFtRXBAR(ITK))1693031

30 DELTA(I.K) a 0.0
GO TO 16

31 DELTA(IK) = O.0598*XBAR(I)/(ALOGIO(RXBAR(I.K)) - 3e170)
16 CONTINUE
17 CONTINUE

DO 20 K a Is L
WRITE(69 24) U(K)

24 FORMAT(12HIVELOCITY a *F12*89 14H FEET / SECOND//)
WRITE(69 21)

210FORMAT(126H AXIAL DISTANCE FLAT PLATE DISTANCE LOdAL FLAT
1 PLATE REYNOLDS NUMBER BOUNDARY LAYER THICKNESS, DELTA/I)
WRITE(6922)(XZR(I)t XBAR(M, kXBAR(I#K)o DELTA(I9K)9 I 1. N)

22 FORMAT(F17.8, F20.8, 18XE15*8# 28XF12*8)
20 CONTINUE
15 STOP

END
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TABLE 9c

Flow Chart for Program D'

Read in data points describing
the body of revolution

Set data points equal to

zero and shift all data
points if necessary

Convert data points into
actual body coordinates

Calculate distance along
a flat plate

WRITE

Data points values,
Axial distance; Body radius;
flat plate distance

CALCULATE

Local flat plate Reynolds
numbers using a kinematic viscosity
of water at 39 F

CALCULATE
Turbulent boundary layer

thickness

WRITE
Velocity, Axial distance,

flat plate distance, local flat
plate Reynolds number,
Boundary layef thickness
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TABLE 9d

Column Heads for Input Forms on Data Cards for Program D'

N 5 R 17 Z 29

X(1) 10 X(2) 20 X(3) 30 X(4) 40 X(5) 50 X(6) 60

NUMBER OF VALUES ON CARD IS EQUAL TO N

Y(1) 10 Y(2) 20 Y(3) 30 Y(4) 40 Y(5) 50 Y(6) 60

NUMBER OF VALVES ON CARD IS EQUAL TO N

L 5

U(1) 12 U(2) 24 U(3) 36 U(4) 48 U(5) 60 U(6) 72

NUMBER OF VALUES ON CARD IS EQUAL TO L
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COMPUTER RUNS

Results obtained from the computer programs for the input data of

Tables 2 and 3 are presented in Figures 1 and 2 respectively. The figures

show computer runs for the normalized mod&l mean square displacement of the

t:rbu-!ence excited simply supported aluminum and steel plates with fluid

loading effects included.
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APPENDIX I

HYDROSTATIC PRESSURE EFFECTS ON NATURAL FREQUENCIES

a Plate length

Plate width

EliD Equal to

12(1 - V2)

E Young's modulus

G Constant dependent on k /k (see Reference 37)
m n

h Plate thickness

K Constant depending on aspect ratio of plate; for the panel
dimensions cited in Appc--Ix I, K = 0.0018 (see Reference 42)

K1  Effective wavelength equivalencing factor, dependent on oha 2/D (see
References 36 and 37)

k m,kn  Mode numbers in the x- and y-directions respectively

M Mass per unit area of plate

m,n Mode numbers

PH Hydrostatic pressure

Rb,RcJ Radii of curvature

IV(x) Deflection shape of panel to loading by uniform pressure

Io Deflection at the center of the plate due to hydrostatic pressure PH
0

x,y Plate coordinates

y Equal to 1.5

A Wavelength

Poisson's ratio, generally taken to be equal to 0.3

axjay Stresses in directions associated with m and n respectively

Wn Circular natural frequency of vibration
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DESCRIPTION

A clamped panel below the water surface is subject to essentially

uniformly distributed pressure which deflects the panel and creates bend-

ing stresses. The natural frequencies of singly curved stressed plates

are given approximately by36 -'9

1/2
2/22 a hk 2 a hk 2 12G

( k +k)i + m +y~(in M n D D h 2R 2J

m n

where k , K n•
m K a n If1Kb11I

Equation (Il) is based upon wavelength equivalencing which effectively

reduces the dimensions of the clamped plate to those of the equivalent

simply supported plate in each mode. For an unstressed flat plate this

equation yields values of natural frequencies which agree within ±10 per-

cent of those calculated by the Warburton method.3'40 In this equation, G

and K are considered to be determinable quantities (see Notation). HenceI
it remains to determine the stress and curvature produced by the hydrostatic

pressure.

The deflected shape of the panel due to loading by a uniform

pressure is the same as the fundamental mode shape. It is given by40'4 1

W os
WV(x) = + 0.133 cosh (12)

1.133 (c a a)

where4 2 W = KPH b4/D

Since

SY 72 r2W Y-rx Yrx(
R = :d0 o "os - -0.133 cosh - (B)

d i 1.133 a2  a a

dx2

From Equation (13) then we can find R = R the radius of curvature atc -x=a/2'

the center of the plate in the direction of a. Similarly we can find the

radius of curvature of the center of Lhe plate in the direction of b. For

either case the effect of curvature, or the mean radii Ra and Rb, may be
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estimated 59 by using R = RF. The effect of the curvature upon w is then

found by substituting the estimated mean curvature in Equation (I1).

Similarly, the mean stresses a and a are estimated by letting
(a max)

( maxYx m "where (aaxc i is a maximum bending stress alongOx - ma y

i derived from Reference 42. The effect of the stresses on w is thenn

found by substituting the estimated values of a and a in Equation (Il).
x y

For a 30 in. x 24 in. x 3/16 in. clamped plate in a horizontal

plane subject to a uniformly distributed hydrostatic pressure of 1.5 psi

the effects of stress and curvature were found in Reference 39. The results

show that the natural frequency is more affected by stress than curvature.

Moreover, while stress and curvature due to hydrostatic loading caused the

natural frequencies of the panel to increase, the virtual mass effect

(i.e., fluid loading) caused a more significant reduction.

4

If hydrostatic loading is considered in computations then the plate (in
an infinite baffle) cannot be considered to be submerged in an infinite
water medium. The effect of the proximity of the water surface on the
virtual mass must be treated. However, for a plate located more than A/6
below the waterline the presence of the free surface will have no signifi-
cant effect on the fluid loading. This is clearly a frequency-dependent

43
criterion. If the plate is not in a horizontal plane then the variation
of pressure with depth necessitates an integral formulation for the hydro-
static pressure. The problem is then to determine the center of pressure.
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