

NDW-NSRDC 3960/43 (3-70)

H

5

) ł

Ŧ

÷

UNCLASSIFIED				
Security Classification				
DOCUMENT CONT Security classification of title, lody of abstract and indexing .	ROL DATA - R &	LD ntered when the i	overall report is classified)	
1 OHIGINATING ACTIVITY (Corporate author)		28. REPORT SE	CURITY CLASSIFICATION	
Naval Ship Research & Development Center		UNCLASS		
Bethesda, Maryland 20034		25, GROUP		
METHODS FOR COMPUTING FLUID LOADING AND TH RECTANGULAR PLATES SUBJECT TO TURBULH	HE VIBRATORY ENCE EXCITAT	RESPONSE 10N0PT10	OF FLUID-LOADED FINITE N 3	
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)				
5 AUTHORISI (First name, middle initial, last name)				
Ralph C. Leibowitz				
6 REPORT DATE	78. TOTAL NO O	PAGES	76. NO. OF REFS	
September 1971	145	187	46	
Se. CONTRACT OR GRANT NO	98. ORIGINATOR	REPORT NUM	ER(5)	
5. PROJECT NO	2976C			
C. 9b. OTMER REPORT NOIS) (Any other numbers that may be this report)				
d.				
Approved for public release; distribution	unlimited.	MILITARY ACTI	VITY	
	Naval Shi	p Systems.	Command	
\				
Various methods are presented for loading (i.e., added mass) of thin fini the results, preferred methods of compu- methods and a corresponding computer pr value in extending previously formulate obtaining the vibroacoustic response to Computer results are given for a partic effect of fluid loading on the vibrator turbulence excitation.	computing he te rectanguin station are p rogram - Optic d digital co turbulence sular case wh y response c	eavy or lig ar plates recommended on-3 are of poputer pro- excitation rich inclus of a plate	ght fluid Based on I. These of particular ograms for of a plate. New the subject to	

DD FORM 1473 (PAGE 1) S/N 0101-807-6801

UNCLASSIFIED Security Classification and the second secon

υ	N	C	Li	1S	S	1	F	1	E	D	

14				LINKC		
KEY WORDS	ROLE	w T	ROLE	WT	ROLE	W 1
Eluid Loading of Elat Postongular Distor						
Hathematical Analysis						
Mainfunderical Analysis					ļ	
Plates						
 Simply Supported and Clamped Boundaries Water and Air Fluid Media 						
Digital Computer Programs		[
Digital Computer Computations						
Continuum Approach		Ì				
Recommendations						
	1					
	1					
					ł	
	ł					
		}				
]					
					1	
		ł	į			1
						ļ
		[
		1	1			
						1
		ł				
DD FORM 1473 (BACK)			LACCIE	trn		
		UNC Security	LASSIF	IEU		

DEPARTMENT OF THE NAVY NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER WASHINGTON, D. C. 20007

METHODS FOR COMPUTING FLUID LOADING AND THE VIBRATORY RESPONSE OF FLUID-LOADED FINITE RECTANGULAR PLATES SUBJECT TO TURBULENCE EXCITATION--OPTION 3

by

Ralph C. Leibowitz

Approved for public release; distribution unlimited.

September 1971

oracineticas, and all desires in a second

an address the state of the state

Report 2976C

TABLE OF CONTENTS

1111

SAC AN

544

20

ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
CALCULATIONS AND RESULTS ALUMINUM PLATE STEEL PLATE	23 23 24
DISCUSSION AND EVALUATION ANALYTICAL RESULTS COMPUTATIONAL RESULTS TURBULENCE-VIBROACOUSTIC RELATIONSHIPS	24 25 27 30
CONCLUSIONS	38
RECOMMENDATIONS	39
ACKNOWLEDGMENTS	40
APPENDIX A - FEIT-JUNGER METHOD	41
APPENDIX B - DAVIES METHOD	55
APPENDIX C - LEIBOWITZ METHOD I	71
APPENDIX D - LEIBOWITZ METHOD II	83
APPENDIX E - BOLT, BERANEK AND NEWMAN METHOD	99
APPENDIX F - GREENSPON METHOD	101
APPENDIX G - LEIBOWITZ METHOD III	109
APPENDIX H - PROCEDURE FOR MODIFYING THE MAESTRELLO PROGRAM TO INCLUDE EFFECTS OF FLUID LOADING (OPTION 3)	111
APPENDIX I - HYDROSTATIC PRESSURE EFFECTS ON NATURAL FREQUENCIES	169
REFERENCES	172
BIBLIOGRAPHY	177

LIST OF FIGURES

Page

Control of

1. 1. 1. C. O. M.

LAUSTRANS A

日本の主義の自己の

instantschertighterningen seenthe

Page

Figure 1 -	Normalized Modal Mean Square Displacement of Simply Supported Aluminum Plate with Fluid Loading Effects Included	8
Figure 2 -	Normalized Mean Square Displacement of Simply Supported Steel Plate with Fluid Loading Effects Included	21

			Page
Figure	3 -	Plate with Coordinate System	33
Figure	4 -	Classification of Modes in Wave Number Space and Turbulence Vibroacoustic Relationships in Wave Number-	
		Frequency Space	55
Figure	5 -	Graph of $I_{mq}(k_1) = \frac{\left[(1 - (-1)^m \cos k_1 k_1 \right]}{(k_1^2 - k_m^2) (k_1^2 - k_q^2)} \dots \dots$	63
Figure	6 -	Plan View and Edge View Normal to \tilde{k}_{s} of Plate in Infinite Plane Baffle	86
Figure	7 -	Array of Point Sources in an Infinite Rigid Plane	90
Figure	8 -	Coordinate System Showing Vector Relationships	90
Figure	9 -	Sketch of $ I ^2$ for Large Mode Numbers m	96
Figure	10 -	Sketches of $ I ^2$ for m = 1,2	97
Figure	11 -	Axial System for Normal Mode Representation	97
Figure	12 -	Plot of Function χ versus $\frac{a}{b}$	104
Figure	13 -	Rectangular Plate Divided into Finite	
		Elements	104
Figure	14 -	Virtual Mass Function	104
Figure	15 -	Calculated Turbulent Boundary Layer Displacement Thickness δ^{\star}	125

-

and submitted at the

the second to the rest of the second s

1999 - 19 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

LIST OF TABLES

Page

and the spectrum of the second second

Table 1 - Summary of Key Features of Analytical Study	3
Table 2 - Input Data for Computing Normalized Modal Mean Square	
Displacement $\frac{Y^2(\omega)}{p^2}$ for Simply Supported Aluminum Plate in	
Water	4
Table 3 - Input Data for Computing Normalized Modal Mean Square	
Displacement $\frac{Y^2(\omega)}{n^2}$ for Simply Supported Steel Plate in	
Water	9
Table 4 - Modal Values of A_{ij} and B_{ij} for Clamped and Simply	
Supported Plates	28

Page

Table 5 - Computation of HydrodynamiAcoustic Critical FrequenceSupported Aluminum and Stee	ic Critical Frequencies and cies for Fluid-Loaded, Simply eel Plates
Table 6 - Input Data, Computer Listi Headings for Input Forms of Maestrello Program A' Used Displacement of Plate with Loading	ing, Flow Chart, and Column on Data Cards for Updated d to Compute Mean Square n and without Fluid
Table 7 - Input Data, Computer Listi Headings for Input Forms of (Option 3) Used to Compute Unit Area and Modal Freque Plate	ing, Flow Chart, and Column on Data Cards for Program B' e Added and Total Weight per encies of Fluid-Loaded
Table 8 - Input Data, Computer List Headings for Input Forms of (Warburton Program) Used to of Simply Supported and Cl in Vacuo	ing, Flow Chart, and Column on Data Cards for Program C' to Compute Natural Frequencies lamped-Clamped Plate
Table 9 - Input Data, Computer List Headings for Input Forms of (Brown Program) Used to Co Layer Thickness for an Art Revolution	ing, Flow Chart, and Column on Data Cards for Program D' ompute Turbulent Boundary oitrary Body of

,

ABSTRACT

Various methods are presented for computing heavy or light fluid loading (i.e., added mass) of thin finite rectangular plates. Based on the results, preferred methods of computation are recommended. These methods and a corresponding computer program--Option 3--are of particular value in extending previously formulated digital computer programs for obtaining the vibroacoustic response to turbulence excitation of a plate. Computer results are given for a particular case which includes the effect of fluid loading on the vibratory response of a plate subject to turbulence excitation.

ADMINISTRATIVE INFORMATION

This study was conducted at the Naval Ship Research and Development Center (NSRDC) and supported by the Naval Ship Systems Command (NAVSHIPS) Code 037. Funding was provided by NAVSHIPS 037 under Subproject S-4628008 Task 14919.

INTRODUCTION

Reference 1 documents four available computer programs for determining the vibratory response and the associated acoustic radiation of a finite rectangular plate to fully developed turbulence.^{*} Several computational frameworks are provided which can be modified and extended through additional research to furnish more accurate and realistic programs to meet naval needs. The chief objective of the original study was to furnish a base for future development.

Extension of these computations are treated in Reference 2 (Option 1) and 3 (Option 2). Reference 2 includes a correction in the computer programs for the effects on vibroacoustic response of the boundary layer thickness and pressure pickup dimensions. Reference 3 includes in the programs the vibration modes and natural frequencies of thin rectangular plates with clamped and rotational supports and cylindrical curvature.

The overall program now includes the response of simple and clamped plates in air and in water. However, the fluid loading on the plate has

References are listed on page 172.

hitherto been determined for the case of an infinite plate. Hence there is a need to incorporate into the program the results of recent investigations of the loading effects of a heavy or light fluid on a thin finite rectangular plate. This modification is required to improve the accuracy of the computations and to extend the applicability of the program.

Accordingly, the present report presents a modification (Option 3) of an updated version of one of the original programs--that of Maestrello-to include the effects of fluid loading for finite plates.^{**} The modified program is based on results obtained by the use of various analytical methods. The following titles identify the methods treated and their location in the report; notations relevant to each method are also included in the Appendixes.

Appendix A - The Feit-Junger Method Appendix B - The Davies Method Appendix C - The Leibowitz Method I Appendix D - The Leibowitz Method II Appendix E - The Bolt Beranek and Newman Method Appendix F - The Greenspon Method Appendix G - The Leibowitz Method III

For the convenience of the reader, the Appendixes include an adequate amount of the mathematical development underlying these methods. An understanding of the development will assist the reader to appreciate the merits, shortcomings, subtleties, and complexities of a particular method and to apply the various methods. Certain figures are adapted from the basic references.

See the Dyer representation, includable in all programs, for added mass in Appendix A of Reference 1.

^{**} In Appendix H, the original Maestrello program is updated. This updated version is then modified to include fluid loading (Option 3). Other programs presented in Reference 1 may be modified in a similar manner.

			TABLE	1		
Summary	of	Кеу	Features	of	Analytical	Study

and the second

						1249847		
		• • • •	TABLE 1			ta di Aldrei di A		
	Summary of Key Features of Analytical Study							
MISIC REFERENCES	PROGRAM DESIGNATION	LOCATION IN REPORT	TEIGETTICAL APPRIMER	NUSS ASSENTIONS AND LINITATIONS	PLATE BUCKLAST CONCERNS	1117A		
*	FEIT-J2022# NETEDD	APPENDIX A	CENERALIED FORGE	 Analysis performed for even modes. Mutal coupling ignored in <u>final</u> solution. Solution obtained for b L - *k L - *: b² k² > k². x < x. Final expression assumed to hold for finite plate. 	SINTY STREATED PLATE	an a		
7	DATIES RETIRO	APPENDIE B	SORAL MOS NETRO	 Applied force causes no additional modal coupling life, typical correlation lengths of the forcing field are much less than the panel dimensions (modes coupled by external field are treated in appendix to heference 3. Neither panel wibration nor the acoustic field affect the applied external force acting on the panel. 	SLEAT STREET FAIL	1. FOR ALL MO 5. FOR 12.3) 1. FOR ALL MO 5. FOR 12.3) 5. FOR 13.3) 5. FOR 13.3)		
4,7	LEIBOWITZ METHOO I	APPENDIX C	CONDISATION OF METHODS OF APPENDICES A ASD B	Similar to those of Appendices A and B.	SINCLY SUPPORTED PLATE INSERTED IN INFINITE RIGID BAFFLE	SAME RESULTS		
8,9	Leibovitz Nethod II	APPENDIX D	Fourier Transform - Norma] Node Method	 So intermodal coupling, i.e., the sesponse of one mode is nearly independent of the response of others, The modal force f_m can be split into two parts f_m f_m^{blocked}, f rad f_m where f_m rad can be used to find the fluid loading. 	SIMPLY SCROWNED PLATE INSERTED IN INFINITE RIGID DAFFLE	1997 1997 1997 1997 1997 1997 1997 1997		
10, 11, 12	BOLT BERANEK AND MELMAN KETHOD	APPENDIX E	NO METHOD OF ANALYSIS PRESENTED	 Mass loading, reduces modal resonance frequencies from their values in vacuo, in proportion to the square root of total mass. Results are considered precisely correct only for waves on a large flat plate. 	SIMPLY SUPPORIED PLATE (OR SHELL)	Total		
13,14	Greens pon Method	APPENDIX F	AVERAGING OF FINITE ELEMENT MODAL RESPONSE	 Assumed that the average modal pressure on a finite element area can be computed by considering the entire plate to act as a rectangular piston with a deflection equal to the average modal displacement over the plate. Virtual mass is approximated by average values for each mode independent of the forcing frequency. Mode shapes of the vibrating plate (in air or water) for simply supported and clamped plates are assumed to be represented by a product of beam functions. 	SIMPLY SUPPORTED AND CLAMPED PLATES			
13, 14	LEIBOWITZ METHOD III	APPENDIX G	INCORPORATION OF LOW FREQUENCY APPROXIMATION INTO ANALYSIS OF APPENDIX F	 A low frequency approximation for the mass reactance of piston is made. 	SIMPLY SUPPORTED AND CLAMPED PLATES	H _a . 0.44		
,ı	<u>,</u> l		3	· · · · · · · · · · · · · · · · · · ·				

CORDITIONS	1222113	REMARKS OR MISCELLAREACS
1 DE RESERVE	$ \frac{a_{gac}}{a_{gac}} \cdot \frac{1}{\frac{1}{a_{gac}} + \frac{1}{a_{gac}} + \frac{1}{a_{gac}}} + \frac{1}{a_{gac}} +$	 In Large & L., & L. Immit the results are directly applicable to even-old and old-old model configurations. See Appendix D. Results obtained for determinate system (esing generalized force) but applicable to indeterminate system subject to random forces. Basic equations developed permit solution including model compling. Zesults applicable for h L. & L. max approaching infinity since p.ç summation is small when a <u>k</u> x k y
CLED PLATE PLAT	1. FOR ALL MODES IS & STATE FOR ASIGN $(\frac{1}{2}) > \frac{1}{2}$ (ACCOSTICALLY SIGN MODES), $\frac{1}{2\pi 2} = \frac{1}{2} = \frac{1}{2} + 1$	 The first result is the dominant one for a., modes. It is very approximately opplicable at low frequencies, b £ and b \$ < \(\tau, corresponding to modes of corner mode radiation character. It is also applicable at high frequencies (but below a) where b £ and b \$ >> =, for which the radiation and coupling characteristics of the modes are not the same for all modes as in the low frequency case. For large inertial coupling between modes it is necessary that two mode numbers be the same so that the modes without in the same shape in one direction. This is symbolized by the Fromecker delta function.
TED PLATE	SAME RESULTS AS DATIES (see Equations (i), (i), (i), (22, (23). Note: Davies symbol $q = p$ and $r = q$ here; mn stay the same; mode numbers are odd for even modes, $l_1 = 2l_x$, $l_2 = 2l_y$.	i. The work of Appendixes A and 5 are harmonized to extend the solution of the Feit-Junger basic vibraarcostic equation to yield results identical to those obtained by Duries for uncoupled and coupled modes. Feits origin is taken at the center of the plate and Daries origin is taken at the corner of the plate. Modes numbered =1,3 and with respect to Daries origin represent the even modes with respect to Feits origin.
TED PLATE	$= \frac{z}{m} - \frac{z}{k_{mn}^2 - k_0^2}$ $= \frac{z}{k_{mn}^2} \text{for } k_0^2 \gg k_0^2$	 Due to the lack of modal coupling results for the virtual mass are limited to the nn mode. The results do however agree with equivalent results in Appendices A. B. and C. Sormal mode representation includes as a special case the even-even mode representation of Appendix A. Since both representations yield the same results for m it is reasonable to extend the applicability of the results for Appendix A to even-odd and odd-odd modes.
TED PLATE	Total $M_{added} = \frac{A_{2f}}{k_{h}}$; $M_{o} = A_{2s}h$ $M_{mn} = M_{2} - M_{added} - A_{2s}h = (1 - \frac{2f}{2sk_{h}h})$ $\bar{a}_{mn} = a_{mn}h = \frac{2f}{2sk_{h}h} = h > k_{f}$	 Results are also approximately correct for cylindrical shells of interest in References 11 and 12. Results are used in Reference 12 as an approximation for modes having fairly large mode numbers (k_a-k_p large where a is the shell radius.) As k_b becomes large the modal vibration more nearly approximates bending vibrations on a flat plate for which tangential concributions to kinetic every are unimportant compared with the radial. Results are inapplicable for surface modes having k_p-k_k < k_f since the virtual mass tends to vanish for these modes.
MIED AND	$M_{a} = \begin{bmatrix} \frac{2}{2a} & f & (\frac{a}{b}) & \frac{A^{2}}{1} \\ \frac{2}{2a} & f & \frac{a}{b} & \frac{A^{2}}{1} \\ \frac{1}{2a} & \frac{a}{b} & \frac{A^{2}}{1} \\ \frac{1}{2a} & \frac{a}{b} & \frac{A^{2}}{1} \\ \frac{1}{2a} & \frac{1}{2a} & \frac{A^{2}}{2a} \\ \frac{1}{2a} & \frac{1}{2a} & \frac{A^{2}}{1} \\ \frac{A^{2}}$	 A_{ij} and B_{ij} depend on the beam functions used to represent the mode shapes and therefore depend on the boundary conditions of the plate. The values of A_{ij} and B_{ij} for several of the lower modes of plates which are clamped or simply supported on all edges are given in Table 4.
KTED AND	$H_{a} = \frac{0.48_{p} (ab)^{\frac{1}{2}}}{m_{p}} \frac{A_{ij}^{2}}{B_{ij}} \frac{P}{B_{ij}}$ $I_{mn} (I_{mn})_{uater one side} \int_{1}^{(I_{mn})_{vacuum}} \frac{(I_{mn})_{vacuum}}{(I_{mn})_{vacuum}} \frac{I_{mn}}{P_{p}} \frac{A_{ij}^{2}}{B_{ij}}$	1. For low frequencies the present procedure does not require that $f(\frac{4}{D})$ be explicitely determined from a curve.

3-A

۲

がいたことのた

1.111111

TABLE 2

Input Data for Computing Normalized Modal Mean Square Displacement $\overline{Y^2(\omega)/p^2}$ for Simply Supported Aluminum Plate in Water

TABLE 2a

Computed Natural Frequencies and Total Damping Ratio for Simply Supported Plate in Air

Hode Number (n,o)	f(Hz) W≥rburtoa	u _{mn} (<u>rad</u>) Narburton	ໍ _{ແກ} ະ <u>15</u> _{ແກ}
1,1	83.82	558.10	0.16888
1,2	345.88	2179.54	0.64324
1,3	776. 9 8	4931.94	0.01930
1,4	1379.13	8665.30	0.01027
1,5	2153.31	13529.62	0.00696
1,6	3099.53	19474.89	0.00435
2,1	97.24	610.96	0.15425
2,2	355.30	2232.40	0.04221
2,3	785.40	4934.80	0.01909
2,4	1387.54	8718.16	0.01081
2,5	2161.72	13582.48	0.00695
3,1	111.25	699.06	0.13481
3,2	369.32	2320.50	0.04061
3,3	799.42	5022.90	0.01876
3,4	1401.55	8806.26	0.01070
3,5	2175.74	13570.58	0.00690
4,1	130.89	822.40	0.11459
4,2	388.95	2443.84	0.03855
4,3	819.05	5146.24	0.01831
4,4	1421.19	8929.60	0.01055
4,5	2195.35	13793.92	0.00684
5,1	156.13	980.98	0.09607
5,2	414.19	2602.42	0.03621
5,3	844.29	5304.22	0.01776
5,4	1446.43	9088.17	0.01037
5,5	2220.61	13952.49	0.00681
6,1	185.98	1174.80	0.08022
6,2	445.03	2795.23	0.03370
6,3	875.13	5498.63	0.01714
6,4	1477.28	9281.99	0.01015
6,5	2251.46	14146.31	0.00666

ŝ

Mode Number (m,n)	f(Hz) Warburton	unn (<mark>rad</mark>) Narburton	6 _m = <u>15</u> fm
7,1	223.43	1403.85	0.05713
7.2	481.49	3025.29	0.03115
7,3	911.59	5727.69	9.01645
7,4	1513.73	9511.05	0.00550
7,5	2287.91	14375.37	0.00655
1,8	265.49	1668.15	0.05649
8,2	523.55	3289.59	0.02855
8,3	953.65	5991.99	0.01572
8,4	1555.79	9775.35	0.00954
2,5	2329.93	14639.67	0.00644
9,1	313.17	1957.68	0.04789
9,2	571.23	3589.13	0.02625
9,3	1001.33	6291.52	0.01493
9,4	1603.47	10074.28	0.00935
9,5	2377.65	14939.20	0.00631
10,1	366.45	2302.46	0.04093
10,2	624.51	3923.90	0.02401
10,3	1054.61	6626.30	0.01422
10,4	1656.75	10409.66	0.00905
10,5	2430.93	15273.93	0.00616

a = 3.0 ft
b = 0.541666 ft
h = 0.04 in.
E = 10 x
$$10^6$$
 1b/in.²
c = 0.33
weight density (o_w) = 0.1075 1b/in.³ = 185.8 1b/ft³
of plate
g = 32.2 ft/sec² = 384.6 in./sec²
 $\kappa = 9.64 \times 10^{-4}$ ft

c₁ = 17,000 ft/sec

				2		TAB	le 2b				
Input	Data	for	Computing	$\frac{Y^{-}(\omega)}{2}$	for	Simply	Supported	Aluminum	Plate	in	Water

A STATE OF CONTRACTOR OF CASE

1										·	r
İ	Hode Surter	N ^b tiMit	² 3	¥(;\$/ft ⁷)	ы-•(u •й вс)	(m) ² (15/m ²) ²		S. (radisec)	i_(1/sec)	i	
ł	(*,0)	Alast'su	<u> </u>	(lizter)	(INft ²)		1 11		X 2		
I	1,3	0.6	- 1	7.3652	7.9652	53,44	215.57	1356.33	3.55	0.00573	
I	1,4			5.5283	6.1283	37.56	332.34	2093.49	4.61	0.0042	
	1,5			4,4243	5.0243	25.24	578.21	3631.21	5.63	0.0031	:
1	1.6		1	3.6776	4.2875	18,33	518.20	5766.33	6.59	0.021	
ļ	2.3	1		7.3257	7,5257	Q.Q	718.87	1374.47	3.57	0.0053	
	2.4			5.5115	6,1115	37.35	437.53	7747.73	4.62	0.0003	
i	2.5			4 4155	5.0156	25.15	752.16	\$177.60	5.64	0.023	
				2 2010	2 46 12	61.20		3376.02	3.0	0.00072	
	3.3	1		7.2017	1.6817	17.03	217.23	13:0.62	3.60	0.0034	
	3,4			2.4639	6.0014	37.01	211,15	1112.33	•.65 6.46	0.0000	
1	•.5	11			5.0014	15.00	/30.1/	\$7-5.78	3.03	0.00835	
	4,3			7.1737	7.7737	50.43	221.40	14:39.26	3.64	0.00516	
	2,2			5.4459	6.959	35.55	225.01	2800.96	يو. 2	0.00334	
	4,5			4.3617	4.9817	24.82	762.58	4729.01	5.67	0.0235	
	5.2			10.0550	10.6235	114.73	99.17	\$22.82	2.65	0.0050	
	5,3	1		7.0656	7.6655	52.76	231.52	1453.99	3.69	0.00507	
	5.4			3.39E2	5.9982	35.98	454.05	7251.44	<i>s</i> .n	0.00330	
	5.5			4.3567	4.9557	24.57	m.35	4311.31	5.70	0.0235	
1	6.7	<u>├</u> ─		9 7771	10 3721	106 75	1/2 32	620.64	2 72	0.00895	
1	6.7			6 9670	2 5470	44.85	242 61	1511 29	1.75	0.00436	
	6.4	1 1		5.3615	5,9415	31.83	441.30	2915.85	4.76	0.0025	Υ ⁴ (υ)
	6.5			4,3263	4.5252	24,27	722.67	4314.86	5.74	0.0233	22
										0.00707	Computations
	1.2			9.565	9.055	93.63	119.44	750.44	2.93	0.00/81	est eerformed
1				6.7555	7.3999	34.45	174 62	2054 34	4.91	0.0000	for these
i		1		3.2/98	1 1 100	21 01	136.78	500.5	5.72	6 0021	node nunders
	1.3			-,6366		23.55	179.10			0.000	
	8.2			8.9728	9.5728	91.64	12.45	831.84	2.95	0.00709	
	8.3			6.6422	7.2432	54.54	744.98	1664.12	3.90	0.07462	
	8,4			5.2050	5.8750	33.70	451.57	3287.11	4.87	0.00315	
	8.5			4.2533	4,8533	78.55	612.45	5101.90	5.66	0.00278	}
	9.2			8.5903	9,1903	84.45	147.49	926.25	3.03	0.00665]
	9.3	1 1		6.4231	7.0231	50.24	280.32	1760.44	3.59	0.00453	Į
	9.4			5.1271	5.7271	2.27	508.65	3194.37	4.94	0.00309	ļ
	9.5			4,2104	4,8104	23.14	831.01	5218.75	5.82	0.00225	Į.
	10.2	1 1		8.2158	8,815,8	17.12	164.63	1033.90	3.21	0.00620	1
	10.5			6.3221	5.9271	47.92	297.84	1870.43	4.06	0.00436	1
	10,4	1 1		5.6440	5.6440	31.85	528.08	3316.34	5.01	0.00302]
	10,5	0.6	5	4.1640	4,7640	22.70	852.12	5351.32	5.93	0.00221	[
				·]
	1	.U ft 		(w')" (Hb/Ht") 6 - 77	(see toiumn E)		* * 0.323 I *	1	,	1
		.541505 11	ſ		~ • 0.33	5		(c ₁) + 64.2 (16/ft ³ = 0.03	5 12/17.2	1
		.04 18.			- 1 - 0 1075	10/10. 16/10 ³ - 185 8 1		water			[
	1	9.64	t x 1	0 [•] ft 1	aluminum		~ ~ ~ ~	r • 2.0			l
	1	7.000 ft/s	sec		g + 384.6 i	n./sec ^Z					
	1"				2	······································	1717		11 100 1000 1	filese 1	
		* 1.5 ft	L 277 4		p = 1,0 (15, 1+ = 0.032 4	/it] •	ji jî	1-11	en ser	1940	1
	1	× 0.2798	533 f	ι	s- ▼0.033 f	L	11-1-1	5 0.57	8 2	.25 x 10-3	1
	1		,μ.	· ·		_	2 7.2	2 3.0	16		}
	Note:	ني د و	(<u> </u>)• (15•) (<u>- 6</u>	<u>b</u> • <u>w</u>) • <u>28.2</u>	1	3 12.0	0_114.0			1
	1		· W. \		∵en/ "			l	04 2	.25 X 10	1
		2 2 5,	Can .								1
		°									1
	-										

 p^2 Frequency Computation by Method I; q = 0

Note: In computing f_{mn} or ω_{mn} (see Program C' in Section 3 of Appendix H) the program input in in 1b/in.³ units for (ρ_w) In computing \overline{f}_{mn} or $\overline{\omega}_{mn}$ (see Program B' in Section 3 of Appendix H) the program input is in 1b/ft³ units for both $(\rho_w)_{aluminum}$ and $(\rho_w)_{water}$.

TABLE 2c Computation of Normalized Modal Mean Square Displacement

	<u>,,</u>			
U_U	Nose	$\frac{1}{r^2}$	$\frac{1}{r^2(\omega)}$	$\frac{1}{r^2(n)}$
(ft/sec)	(a.a)			7
		2		-10
8	1,3	3.1 + 10""	3.1 x 10 ⁻⁵	3.3 4 10 10
	1,4	4.4 x 10 ⁻⁹	4.5 x 10 ⁻¹⁰	4.8 x 10.
	1,5	5.0 x 10 ⁻¹⁰	5.0 x 10""	5.5 x 10 ⁻¹²
	1,6	6.5 x 10 ⁻¹¹	6.6 ± 10 ⁻¹²	7.3 x 10 ⁻¹³
	ź.3	1.9 x 10 ⁻⁸	1.9 = 10 ⁻⁹	2.0 y 10 ⁻¹⁰
	2,4	8.9 x 10 ⁻¹⁰	9.0 x 10 ⁻¹¹	9.8 × 10 ⁻¹²
	Z.5	1.0 x 10 ⁻¹⁰	1.0 x 10 ⁻¹¹	1,1 2 10-17
	3,3	1.6 x 10 ⁻⁸	1.6 x 10 ⁻⁹	1.7 x 10 ⁻¹⁰
	3,4	7.2 × 10 ⁻¹⁰	7.3 x 10 ⁻¹¹	7_9 x 10 ⁻¹²
	3,5	7.5 x 10 ⁻¹¹	7.6 x 10 ⁻¹²	8.5 x 10 ⁻¹³
	4,3	1.3 x 10 ⁻⁸	1.3 x 10 ⁻⁹	1.3 × 10 ⁻¹⁰
	4,4	6.4×10^{-10}	6.4×10^{-11}	7.9 x 10 ⁻¹²
	4,5	6.2 x 10 ⁻¹¹	6.3 x 10 ⁻¹²	7.0 x 10 ⁻¹³
	5,2	2.5 x 10 ⁻⁷	2.5 × 10 ⁻⁸	2.6 x 10 ⁻⁹
	5,3	9.9 x 10 ⁻⁹	1.0 × 10 ⁻⁹	1.7 x 10 ⁻¹⁰
	5.4	5.7 x 10 ⁻¹⁰	5.7 x 10 ⁻¹¹	6.2 x 10 ⁻¹²
	5,5	5.2 x 10 ⁻¹¹	5.3 x 10 ⁻¹⁷	6.0 x 10 ⁻¹³
16	1,3	3.4 x 10 ⁻⁸	3.4 x 10 ⁻⁹	3.6 x 10 ⁻¹⁰
	1,4	5.7 x 10 ⁻⁹	5.7 x 10 ⁻¹⁰	6.0 x 10 ⁻¹¹
[1,5	7.1 x 10 ⁻¹⁰	7.1 x 10 ⁻¹¹	7.6 × 10 ⁻¹²
]	1,6	8.7 x 10 ⁻¹¹	8.8 x 10 ⁻¹²	9.6 x 10 ⁻¹³
ŧ	2,3	2.1 x 10 ⁻⁸	2.1 x 10 ⁻⁹	2.2 x 10 ⁻¹⁰
	2,4	1.2 x 10 ⁻⁹	1.2 x 10 ⁻¹⁰	1.3 x 10 ⁻¹¹
	2.5	1.3 x 10 ⁻¹⁰	1.3 × 10 ⁻¹¹	1.4 x 10 ⁻¹²
	3,3	1.6 x 10 ⁻⁸	1.6 x 10 ⁻⁹	1.7 x 10 ⁻¹⁰
	3,4	8.7 x 10 ⁻¹⁰	8.7 x 10 ⁻¹¹	9.4 x 10 ⁻¹²
l .	3,5	9.1 x 10 ⁻¹¹	9.2 x 10 ⁻¹²	1.0 x 10 ⁻¹²
1	4,3	1.4 x 10 ⁻⁸	1.4 x 10 ⁻⁹	1.5×10^{-10}
Ì	4.4	8.4×10^{-10}	8.5 × 10 ⁻¹¹	8.9 x 10 ⁻¹²
	4,5	7.0 x 10 ⁻¹¹	7.0 x 10 ⁻¹²	7.8 x 10 ⁻¹³
	5,2	2.5 x 10 ⁻⁷	2.5 x 10 ⁻⁸	2.6 x 10 ⁻⁹
	5,3	1.0 x 10 ⁻⁸	1.0 × 10 ⁻⁹	1.1 x 10 ⁻¹⁰
	5.4	5.9 x 10 ⁻¹⁰	5.9 x 10 ⁻¹¹	6.4 x 10 ⁻¹²
	5,5	6.5 x 10 ⁻¹²	6.5 x 10 ⁻¹²	7.2 x 10 ⁻¹³
32	1,3	3.8 x 10 ⁻⁸	3.8 x 10 ⁻⁹	4.0×10^{-10}
	1,4	7.1 x 10 ⁻⁹	7.1 x 10 ⁻¹⁰	7.3 x 10 ⁻¹¹
Note: The obtained Christi	e extens 1 by Kr. 1e Brown	ive results f Lucio Maestr at Langley R	or the respo ello and Mrs esearch Cent	nse er,
NASA, us lated in	sing the n Table	author [®] s pro 2c.	gram, are ta	bu-

 $\frac{1}{Y^2(\omega)/p^2}$ for Simply Supported Aluminum Plate in Water

TOUR PARONESARINE &

W. HERRICH MININ

Table 2c (Continued)

q = 0 (oaly)

and the parties of the parties of the second

فستخل فيماني الدرار

U _c (ft/sec)	Mode Number (a,n)	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	$\frac{\overline{y^2(_)}}{\overline{p^2}}$	$\frac{\overline{v^2}_{\{_\}}}{\overline{p^2}}$
	1.5	1.0×10^{-9}	1.0 x 10 ⁻¹⁰	1.1 x 10 ⁻¹¹
	1,6	1.8 × 10 ⁻¹⁰	1.8 x 10 ⁻¹¹	1.8 x 10 ⁻¹²
· .	2.3	2.5 x 10 ⁻⁸	2.5 z 10 ⁻⁹	2.6 x 10 ⁻¹⁰
	2,4	1.9 x 10 ⁻⁹	1.9 x 10 ⁻¹⁰	1.9 x 10 ⁻¹¹
	2,5	1.6 x 10 ⁻¹⁰	1.6 x 10 ⁻¹¹	1.7 x 10 ⁻¹²
·	3,3	1.2 x 10 ⁻⁸	1.2 x 10 ⁻⁹	1.3 x 10 ⁻¹⁰
	3,4	8.3×10^{-10}	8.4 x 10 ⁻¹¹	9.1 x 10 ⁻¹²
	3,5	1.1×10^{-10}	1.1 x 10 ⁻¹¹	1.2 x 10 ⁻¹²
	4,3	8.4 x 10 ⁻⁹	8.5 x 10 ⁻¹⁰	9.4 x 10 ⁻¹¹
l	4,4	1.5 x 10 ⁻⁹	1.5 x 10 ⁻¹⁰	1.5 x 10 ⁻¹¹
	4,5	1.0×10^{-10}	1.0 x 10 ⁻¹¹	1.1 x 10 ⁻¹²
	5. 7	2.7 7 10 7	2.7 x 10 ⁻⁶	2.7 x 10 ⁻⁹
	5.3	7.8 x 10 ⁻⁹	7.8 × 10 ⁻¹⁰	8.5 x 10 ⁻¹¹
	5,4	8.0 x 10 ⁻¹⁰	8.0 x 10 ⁻¹¹	8.4 x 10 ⁻¹²
	5,5	4.0 x 10 ⁻¹	4.1 x 10 ⁻¹⁰	5.0 x 10 ⁻¹³
64	1,3	5.3 x 10 °	5.3 x 10 ⁻⁵	5.2 x 10
	1,4	5.1 × 10 ⁻⁹	5.2 x 10 ···	5.6 x 10 "
	1,5	1.1 x 10 ⁻	1.1 × 10 ···	1.2 x 10 ···
	1,0	2.6 x 10	2.6×10^{-10}	2./ x 10 ~~
	2.3	2.5 × 10 ⁻⁹	5.6 X IU 2.0 - 10-10	7.0 x 10
	2,4	3.9 × 10	3.9 x 10	3.8 × 10
	2,5	1.2 × 10 ⁻⁸	2.2 × 10 ⁻⁹	2.3 × 10
	3.5	1.2 × 10 3 5 × 10 ⁻¹⁰	3.6 × 10 ⁻¹¹	4.0 x 10 ⁻¹²
1	3.5	2.5×10^{-10}	2.6×10^{-11}	2.7 x 10 ⁻¹²
}	4.3	1.2×10^{-8}	¹ .2 x 10 ⁻⁹	1.3 x 10 ⁻¹⁰
	4.4		-	t
	4,5	2.6 × 10 ⁻¹⁰	2.6 x 10 ⁻¹¹	2.6 × 10 ⁻¹²
	5.2	3.2 x 10 ⁻⁷	3.2 x 10 ⁻⁸	3.2 x 10 ⁻⁹
	5,3	1.1 × 10 ⁻⁸	1.1 x 10 ⁻⁹	1.1 x 10 ⁻¹⁰
	5.4	5.0 × 10 ⁻¹¹	5.7 × 10 ⁻¹²	1.2 × 10 ⁻¹²
	5.5	4.7 x 10 ⁻¹¹	4.7 x 10 ⁻¹²	5.2 × 10 ⁻¹³
•				1
++ For	computed	damping value	niven in Tahla	> 2h
+++ For	ten timo	s computed dam		en in Tahle 2h
Com	puter err	or (recomputat	ion not made).	

1

and the state of the second second second

Riversee a half diversion marking and the arguments of the argument of the state of the source of th

ur hirdenda andar darakan karakan karaka sa da sa karaka darahan dara dara si karakan dara kara dara dara dara

The response results computed at NSRDC and plotted in Figure 1 were duplicated by Mr. Lucio Maestrello and Mrs. Christene Brown who assisted the author by performing similar computations on their computer at Langley Research Center NASA, using the author's program. Their more extensive results are tabulated in Table 2c.

TABLE 3

Input Data for Computing Normalized Modal Mean Square Displacement $\overline{Y^2(\omega)/p^2}$ for Simply Supported Steel Plate in Water

on the subsection of the section of

TABLE 3a Computed Natural Frequencies and Total Damping for Simply Supported Steel Plate in Air

Mode Number	f(Hz)	ω _{mn} (rad/sec)	δ _{mn} = 0.5/f _{mn}	$a_{mn} = \hat{a}_{mn} \omega_{mn}$ (1/sec)					
(m,n)	Warburton	Warburton		2 (1/300)					
1,1	3.37	21.16	0.1483	0.5π I					
2,1	13.37	83.98	0.0373						
3,1	30.03	188.68	0.0166						
4,1	53.36	335.25	0.0093						
5,1	83.35	523.71	0.0059						
6,1	120.01	754.05	0.0041						
7,1	163.33	1026.26	0.0030						
8,1	213.32	1340.35	0.0023						
9,1	269.98	1596.33	0.0018						
10,1	333.30	2094.18	0.0015						
11,1	403.28	2533.91	0.0012						
12,1	479.93	3015.52	9.0010						
13,1	563,25	2539.01	0.0008						
14,1	653.23	4104.38	0.0007						
15,1	749.88	4711.63	0.0006						
16,1	853.19	5360.75	0.00058						
17,1	963.17	6051.76	0.00051						
18,1	1079.81	6784.65	0.00046						
19,1	1203.12	7539.41	0.00041						
20,1	1333.09	8376.05	0.00037	0.5π					
a	= 10 ft	<u> </u>							
Ь	= 97.39 ft								
h	= 0.5 in.	0							
E	= 30 x 10 ^b 1t	/in. ²							
σ	$\sigma = 0.30$								
$(\rho_{W}) = 0.283 \text{ lb/in.}^{3}$ steel									
$g = 32.2 \text{ ft/sec}^2 = 384.6 \text{ in./sec}^2$									
ĸ	- 1.204 x 10	^{.2} ft							
c _l	= 17,000 ft/s	sec							

9

×

Input	Data	for	Computing	$\frac{Y^2(\omega)}{2}$	for	Simply	Supported	Steel	Plate	in	Water	-
				ກ້								

TABLE 3b

C	C	1. 16-41 - 1	τ.	- A	
requency	Computation	by Method	1;	$\mathbf{q} = 0$	

Mode Number (m,n)	¥ _p (16/ft ²)	W _{En} (1b/ft ²)	W'=Wp+W (1b/ft ²)	(W') ² (1b/ft ²) ²	f̃ _{≊n} (hz)	ມ En(rad/sec)	a _{_n} (1/sec)	້ຈໍ້ເລກ	
1,1	20.4	406.57	426.97	182303.38	0.74	4.62	0.0748	0.03238	I
2,1		204.09	224.49	50395.76	4.03	25.33	0.1425	0.01125	
3,1		136.16	156.56	24511.03	10.85	68.13	0.2045	0.00600	
4,1		102.14	122.54	15016.05	21.79	136.83	0.2612	J.00381	
5,1		81.72	102.12	10428.49	37.28	234.14	0.3135	0.00267	{
6,1		68.11	88.51	7834.02	57.66	362.12	0.3617	0.00199	
7,1		58.38	78.78	6206.28	83.18	522.39	0.4064	0.00155	
8,1		51.08	71.48	5109.39	114.05	716.23	0.4479	0.00125	
9,1		45.41	65.81	4330.95	150.43	944.72	0.4865	0.00102	
10,1		40.87	61.27	3754.01	192.47	1208.72	0.5226	0.00086	for
11,1		37.15	57.55	3312.00	240.28	1508.97	0.5564	0.00073	modes
12,1		34.06	54.46	2975.70	293.97	1846.10	0.5879	0.00063	of
13,1		31.44	51.84	2687.38	353.60	2220.64	0.6177	0.00055	incerest
14,1		29-19	49.59	2459.16	419.27	2633.03	0.6457	0.00049	
15,1		27.25	47.65	2270.52	491.03	3083.68	0.6721	0.00043	1
16,1		25.54	45.94	2110.48	568.94	3572.93	0.6966	0.00038	1
17,1		24.04	44.54	1983.81	653.04	4101.07	0.7190	0.00035	
18,1		22.71	43.21	1867.10	743.37	4668.38	0.7411	0.00031	ļ
19,1		21.51	41.91	1756.44	839.98	5275.09	0.7641	0.00028	1
20,1	20.4	20.43	40.93	1675.26	942.90	5921.40	0.7824	0.00026	1
a = 10 b = 97. h = 0.3 $\kappa = \frac{h}{2y}$ c _f = 17.	ft .39 ft 5 in. /3 ,000 ft/sec	10 ⁻² ft ($x'(1b/ft^2)$ (s $\sigma = 0.30$ $E = 30 \times 10^6$ $(\rho_{m}) = 0.283$ 1 (r_{steel}) g = 384.6 in.	see Column E) lb/in. ² lb/in. ³ ./sec ²	$p^2 = 1.$ $\tau_w = 0.$ $(\rho_w) = 6$ water $\alpha = 2.0$	0 (16/ft ²) ² 323 16/ft ² 4.2 16/ft ³ = 0.0)37 lb/in. ³		
x = x* y = y*	= 5.0 ft ≃ 48.695 ft								
			i A _i	K _i	U _c (ft/s	ec) θ(sec)	δ*(ft)		
ļ				0.4/	8	2.25 x 10	0.044		{
ļ			2 7.2	3.0	10		0.041		{
ļ			3 12.0	14.0		2 25 × 10	-3 0.025		
Į					L04	2.25 X 10	0.035		
Note: ā	_{an} = a _{mn} (W _p	/K') = (0.5m) ($\frac{20.4}{20.4 + W_{mn}}$)						
ōŗ	$an = \frac{2 \bar{a}_{mn}}{\bar{c}_{mn}}$								

Note: In computing f_{mn} or ω_{mn} (see Program C' in Section 3 of Appendix H) the program input is in 1b/in.³ units for $(\rho_w)_{steel}$. In computing \tilde{f}_{mn} or $\tilde{\omega}_{mn}$ (see Program B' in Section 3 of Appendix H) the program input is in 1b/ft³ units for both $(\rho_w)_{steel}$ and $(\circ_w)_{water}$.

10

er edninen bedreuts in Russian die Andrikan Versiehen er einen Staatmaat van die britten versie in die se staat

ALL CARDA CONTRACTOR AND ALL AND A

TABLE 3c (Continued)

q = 0.3

1	1					_			
Mode Number (m,n)	W _p (1b/ft ²)	W _{im} (1b/ft ²)	W'=W _p +W _{mn} (lb/ft ²)	(W') ² (16/ft ²) ²	f _{mn} (Hz)	ω _{mn} (rad/sec)	ā _{mn} (1/sec)	õmn]
1,1	20.4	426.20	446.60	199451.56	0.72	4.52			4
2,1		213.94	234.34	54915.24	3 05	4.52	0.0/15	0.03163	
3,1		142.73	163.13	26611.40	10.62	24.79	0.1365	0.01101	
4,1		107.08	127.48	16251 15	21 26	06.74	0.1962	0.00587	1
5,1		85.67	106.07	11250 84	21.30	134.16	0.2512	0.00374	1
6,1		71,40	91.80	9427 24	30.58	229.75	0.3019	0.00262	1
7,1		61.20	81.60	6650 55	56.62	355.58	0.3488	0.00196	
8,1		53.55	73.05	5460.60	81.73	513.29	0.3925	0.00152	
9,1		47 60	69.00	5468.60	112.13	704.19	0.4330	0.00122	1 1
10.1		A2 84	63.00	4624.00	147.99	929.36	0.4710	0.00101	
11.1		72.04	63.24	3999.30	189.45	1189.72	0.5063	0.00085	results
12.1		36.35	59.35	3522.42	236.62	1486.00	0.5396	0.00072	for
13.1		35.70	56.10	3147.21	289.63	1818.85	0.5708	0.00062	modes of interest
10,1		32.96	53.36	2847.29	348.54	2188.83	0.6002	0 00054	of inceresc
14,1	1	30.60	51.00	2601.00	413.44	2596.40	0.6280	0.00048	
15,1		28.56	48.96	2397.08	484.39	3041.98	0.6540	0.00040	
10,1	1	26.78	47.18	2225.95	561.45	3525,93	0 6787	0.00042	
1/,1	1	25.20	45.60	2079.36	644.68	4048.56	0 7022	0.00036	
18,1		23.80	44.20	1953.64	734.10	4610 15	0.7022	0.00034	
19,1		22.54	42.94	1843.84	829.77	5210 94	0.7245	0.00031	
20,1		21.42	41.82	1748.91	931.71	5851 16	0.745/	0.00028	
							0.7058	0.00026	

q = 0.6

M view march provider of the state

こうかい たい はん とういい いか うちた

•

i S S

シングない

The second second states of the

TABLE 3d (Continued)

		[
	Mode Number (m,n)	W _p (1b/ft ²)	W _{mn} (1b/ft ²)	W'=Wp+W pmn (1b/f+ ²)	(W') ² (1b/ft ²) ²	f _{mn} (Hz)	ω _{mn} (rad/sec)	ā _{mn} (1/sec)	ōmn]
ł	11	20.4		(10/10)						
	,,,	20.4	508.21	528.61	279428.53	0.66	4.16	0.0604	0 02002	-
	2,1		255.11	275.51	75905.76	3.64	22.86	0,1161	0.02303	
1	3,1		170.20	190.60	36328.36	9.83	61.75	0.1670	0.01015	
	4,1		127.68	148.08	21927.69	10.82	124 40	0.10/9	0.00543	
	5,1		102.16	122.56	15020.05	13.02	124.48	0.2161	0.00347	1
	6,1	i	85 14	105 64	13020.35	34.04	213.74	0.2612	0.00244	1
	7.1		72.00	103.54	11138.69	52.80	331.63	0.3033	0.00182	
ł	8.1		72.98	93.38	8719.82	76.41	479.83	0.3428	0.00142	
	0 ,1		03.85	84.26	7099.75	105.05	659.73	0.3800	0.00115	1 1
	3,1		56.76	77.16	5953.67	138.93	872.47	0.4149	0 00005	
	10,1		51.09	71.49	5110.82	178.19	1119.03	0 4479	0.00033	
	11,1		46.44	66.84	4467.59	222.97	1400 24	0 4703	0.00080	results
P	12,1		42.57	62.97	3965.22	273 39	1736 00	0.4/91	0.00068	for
1	3,1		39.30	59,70	3564 00	220 51	1710.00	0.5085	0.00059	nodes
	4,1		36.49	56.80	3304.03	329.51	2069.34	0.5364	0.00051	of fince est
h	5.1		34.06	50.03	3230.47	391.46	2458.40	0.5628	0.00045	
	61		34.00	54.46	2965.89	459.31	2884.45	0.6104	0.00042	
Ľ	7 1		31.93	52.33	2738.43	533.11	3347.90	0.6119	0.00036	
Ľ			30.05	50.45	2545.20	612.92	3849.13	0.6347	0.00032	
Ι,	0,1		28.38	49.28	2428.52	698.80	4388.49	0.6498	0.00029	
1.	3,1	1	26.89	47.29	2236.34	790.80	4966.20	0.6771	0 00027	
Ľ	0,1		25.54	45.94	2110.48	888.95	5582.60	0.6970	0.00027	

11

ž

q = 0.9

таналына таках жай, какина катакананан ан алдагай колдонулар инан инин оргот. Какил катакан ини какил ка

state the first and the state of the state o

din terdina hara di mangan san di kadaka dan kadaka san

Hode Number	W _p (16/ft ²)	₩ _{mn} (16/ft ²)	W'=₩ _p +₩ _{mn} (1b/ft ²)	(w') ² (1b/ft ²) ²	f _{cm} (Hz)	ت _{mn} (rad)	ā _{mn} (1/sec)	ē _{m,n}	
1,1	20.4	932.74	953.14	908475.86	0.49	3.10	0.0335	0.02161	
2,1		468.20	488.60	238729.96	2.734	17.17	0.0654	0.00761	
3,1		312.36	332.76	111394.74	7.44	46.93	0.0962	0.00415	
4,1		234.33	254.73	64887.37	15.11	94.91	0.1256	0.00264	
5,1		187.49	207.89	43218.25	26.13	164.11	0.1540	0.00187	
6,1		156.25	176.65	31205.22	40.82	256.33	0.1811	0.00141	
7,1		133.93	154.33	23817.75	59.43	373.24	0.2073	0.00111	
8,1		117.20	137.60	18933.76	82.21	516.27	0.2326	0.00090	
9,1		104.18	124.58	15520.18	109.34	686.68	0.2570	0.00074	results
10,1		93.76	115.16	13261.83	141.01	885.56	0.2780	0.00062	modes
11,1		85.24	105.64	11159.81	177.37	1113.88	0.3031	0.00054	of
12,1		78.13	98.53	9708.16	218.56	1372.53	0.3249	0.00047	merest
13,1		72.12	92.52	8559.95	264.70	1662.28	0.3460	0.00041	
14,1		66.97	87.37	7633.52	315.90	1983.85	0.3664	0.00036	
15,1		62.51	82.91	6874.07	372.27	2337.86	0.3862	0.00033	
16,1	1	58.60	79.00	6241.00	433.90	2724.91	0.4053	0.00029	
17,1		55.15	75.55	5707.80	500.88	3145.53	0.4239	0.00026	
18,1		52.09	72.49	5254.80	573.28	3600.20	0.4417	0.00024	
19,1		49.35	69.85	4879.02	651.18	4089.38	0.4584	0.00022	
20,1		46.88	67.28	4526.90	734.63	4613.47	0.4760	0.00020	

TABLE 3e (Continued)

TABLE 3f (Continued)

q = 0.995

Mode Number	์ _{ี่mn} (Hz)	
1,1	0.237	
2,1	1.325	
3,1	3.638	
4,1	7.445	
5,1	12.972	
6,1	20.410	
7,1	29.931	
8,1	41.691	
9,1	55.831	1
10,1	72.482	
11,1	91,765	
12,1	113.795	1
13,1	138.678	results
14,1	166.517	modes
15,1	197.405	of
16,1	231.433	Interest
17,1	268.69	
18,1	309.256	
19,1	353.209	
20,1	400.626	
Note: 0 = 0.99	No comput	ations of $\frac{\overline{\gamma^2(\omega)}}{\overline{2}}$ were made for

TABLE 3g

and the second
and the of the second
Computation of Normalized Modal Mean Square

Displacement $Y^2(\omega)/p^2$ for Simply Supported Steel Plate in Water Note: The extensive results for the response obtained by Mr. Lucio Maestrello and Mrs. Christine Brown at Langley Research Center, NASA, using the authors program, are tabulated in Tables 3g-3i. q = 0 STEEL PLATE

q = 0				
U _c (ft/sec)	Mode Humber (m,n)	$\frac{\overline{\gamma^2(\omega)}}{\overline{p^2}}^*$	$\frac{\overline{\gamma^2(\omega)}}{\overline{p^2}}^{**}$	$\frac{\overline{Y^2(\omega)}}{\overline{p^2}}$
8	8,1	4.4×10^{-9}	4.4×10^{-10}	4.4×10^{-11}
	9,1	1.7 x 10 ⁻⁹	1.7 x 10 ⁻¹⁰	1.7 x 10 ⁻¹¹
	10,1	7.1 x 10 ⁻¹⁰	7.1 x 10 ⁻¹¹	7.1 x 10 ⁻¹²
	11,1	3.0 x 10 ⁻¹⁰	3.0×10^{-11}	3.0×10^{-12}
	12,1	1.4 x 10 ⁻¹⁰	1.4×10^{-11}	1.4 x 10 ⁻¹²
	13,1	6.4 x 10 ⁻¹¹	6.4×10^{-12}	6.4×10^{-13}
	14,1	3.0 x 10 ⁻¹¹	3.0×10^{-12}	3.1×10^{-13}
	15,1	1.6 x 10 ⁻¹¹	1.6 x 10 ⁻¹²	1.7 x 10 ⁻¹³
	16,1	9.3 x 10 ⁻¹²	9.3 x 10 ⁻¹³	9.4 x 10 ⁻¹⁴
	17,1	5.1 x 10 ⁻¹²	5.1 x 19 ⁻¹³	5.2 x 10 ⁻¹⁴
	18,1	3.1 x 10 ⁻¹²	3.1×10^{-13}	3.1 x 10 ⁻¹⁴
	19,1	1.8 x 10 ⁻¹²	1.8 x 10 ⁻¹³	1.9 x 10 ⁻¹⁴
	20,1	1.0 x 10 ⁻¹²	1.0 x 10 ⁻¹³	1.1 x 10 ⁻¹⁴
16	8,1	4.2 x 10 ⁻⁹	4.2×10^{-10}	4.2 x 10 ⁻¹¹
	9,1	1.7 x 10 ⁻⁹	1.7 x 10 ⁻¹⁰	1.7 x 10 ⁻¹¹
	10,1	7.5×10^{-10}	7.5 x 10 ⁻¹¹	7.6 x 10 ⁻¹²
	11,1	3.1×10^{-10}	3.1×10^{-11}	3.1×10^{-12}
	12,1	1.4×10^{-10}	1.4×10^{-11}	1.4×10^{-12}
	13,1	6.8×10^{-11}	6.8 x 10 ⁻¹²	6.8×10^{-13}
	14,1	3.9×10^{-11}	3.9×10^{-12}	3.9×10^{-13}
	15,1	2.3×10^{-11}	2.3×10^{-12}	2.3×10^{-13}
	16,1	1.2×10^{-11}	1.2 × 10 ⁻¹²	1.2×10^{-13}
	17,1	5.7×10^{-12}	5.7 x 10 ⁻¹³	5.7×10^{-14}
	18,1	3.1×10^{-12}	3.1 x 10 ⁻¹³	3.2×10^{-14}
	19,1	1.9×10^{-12}	1.9 x 10 ⁻¹³	2.0×10^{-14}
1	20,1	1.2×10^{-12}	1.2×10^{-13}	1.2×10^{-14}
32	8,1	3.2×10^{-9}	3.2 x 10 ⁻¹⁰	3.2 × 10 ⁻¹¹
	9,1	1.1×10^{-9}	1.1×10^{-10}	1.1 x 10 ⁻¹¹
	10,1	4.6×10^{-10}	4.6×10^{-11}	4.7×10^{-12}

13

Table 3g (Continued)

STEEL PLATE (Continued)

q = 0					
U _c (ft/sec)	Mode Number (m,n)	$\frac{\overline{Y^{2}(\omega)}}{\overline{p^{2}}}^{*}$	$\frac{\overline{\gamma^2(\omega)}}{\overline{p^2}}^{**}$	$\frac{\overline{Y^2(\omega)}}{\overline{p^2}}^{***}$	
	11,1	2.2 x 10 ⁻¹⁰	2.2 x 10 ⁻¹¹	2.2 x 10 ⁻¹²	
	12,1	1.3 x 10 ⁻¹⁰	1.3 x 10 ⁻¹¹	1.3 x 10 ⁻¹²	
	13,1	8.9 x 10 ⁻¹¹	8.9 x 10 ⁻¹²	9.0 x 10 ⁻¹³	
	14,1	6.7 x 10 ⁻¹¹	6.7 x 10 ⁻¹²	6.7 x 10 ⁻¹³	
	15,1	4.5 x 10 ⁻¹¹	4.5 x 10 ⁻¹²	4.5×10^{-13}	
	16,1	2.3 x 10 ⁻¹¹	2.3 x 10 ⁻¹²	2.3 x 10 ⁻¹³	
	17,1	9.5 x 10 ⁻¹²	9.5 x 10 ⁻¹³	9.5 x 10 ⁻¹⁴	
	18,1	4.1 x 10 ⁻¹²	4.1 x 10 ⁻¹³	4.2 x 10 ⁻¹⁴	
	19,1	1.7 x 10 ⁻¹²	1.7 x 10 ⁻¹³	1.7 x 10 ⁻¹⁴	
	20,1	5.8 x 10 ⁻¹³	5.8 x 10 ⁻¹⁴	6.0 x 10 ⁻¹⁵	
64	8,1	3.5 x 10 ⁻⁹	3.5 x 10 ⁻¹⁰	3.5 x 10 ⁻¹¹	
	9,1	1.3 x 10 ⁻⁹	1.3 x 10 ⁻¹⁰	1.3 x 10 ⁻¹¹	
	10,1	5.0 x 10 ⁻¹⁰	5.0 x 10 ⁻¹¹	5.1 x 10 ⁻¹²	
	11,1	2.1 x 10 ⁻¹⁰	2.1 x 10 ⁻¹¹	2.1 x 10 ⁻¹²	
	12,1	7.1 x 10 ⁻¹¹	7.1 x 10 ⁻¹²	7.2 x 10 ⁻¹³	
	13,1	1.8 x 10 ⁻¹¹	1.8 x 10 ⁻¹²	1.9 x 10 ⁻¹³	
	14,1	+	÷	t	
	15,1	÷	+	t	
	16,1	+	t	+	
	17,1	+	÷	†	
	18,1	1.0×10^{-12}	1.0 x 10 ⁻¹³	1.0×10^{-14}	
	19,1	1.2×10^{-12}	1.2 x 10 ⁻¹³	1.2 x 10 ⁻¹⁴	
	20,1	1.0×10^{-12}	1.0×10^{-13}	1.1 x 10 ⁻¹⁴	
* For	one-tent	h computed dam	ping value give	en in Table 3b.	
** For	computed	damping value	given in Table	e 3'b.	
*** For	ten time	s computed dam	ping value giv	en in Table 3b.	
[†] Com	[†] Computer error (recomputation not made).				

TA	BL.	į.	5h
1			

STEEL PLATE

q = 9.3

and the second
يترير والإنكريمين والمستوير ومناولات والمارك المتحاطية والمناقية والمناقية والمحافية المنافرة والمناف

and the second se

ALC: N

			·		•	
U C	Mode Number	<u>Y²(w)</u>	<u>Y²(ω)</u>	<u>Y²()</u>		
(11/320)	(m,n)	p^2	p^2	p ²		
8	8,1	4.5 x 10 ⁻⁹	4.5×10^{-10}	4.6 x 10 ⁻¹¹]	
	9,1	1.7 x 10 ⁻⁹	1.7×10^{-10}	1.8 x 10 ⁻¹¹		
	10,1	7.3×10^{-10}	7.3 x 10 ⁻¹¹	7.3 x 10 ⁻¹²		
	11,1	3.1×10^{-10}	3.1×10^{-11}	3.1 x 10 ⁻¹²		
	12,1	1.4×10^{-10}	1.4×10^{-11}	1.5×10^{-12}		
	13,1	6.5×10^{-11}	6.5×10^{-12}	6.6 x 10 ⁻¹³		
	14,1	3.2 x 10 ⁻¹¹	3.2×10^{-12}	3.2×10^{-13}		
	15,1	1.7 × 10 ⁻¹¹	1.7×10^{-12}	1.7 x 10 ⁻¹³		
	16,1	9.5 x 10 ⁻¹²	9.5×10^{-13}	9.6 x 10 ⁻¹⁴		
	17,1	5.4×10^{-12}	5.4×10^{-13}	5.5 x 10 ⁻¹⁴		
	18,1	3.2×10^{-12}	3.7×10^{-13}	3.2×10^{-14}		
	19,1	1.9 x 10 ⁻¹²	1.9 x 10 ⁻¹³	1.9×10^{-14}		
	20,1	1.1×10^{-12}	1.1×10^{-13}	1.1×10^{-14}		
16	8,1	4.3×10^{-9}	4.3×10^{-10}	4.3×10^{-11}		
	9,1	1.8 x 10 ⁻⁹	1.8 x 10 ⁻¹⁰	1.8 x 10 ⁻¹¹		
	10,1	7.7 x 10 ⁻¹⁰	7.7 x 10 ⁻¹¹	7.7 x 10 ⁻¹²		
	11,1	3.2×10^{-10}	3.2×10^{-11}	3.2×10^{-12}		
	12,1	1.4 x 10 ⁻¹⁰	1.4×10^{-12}	1.4 x 10 ⁻¹²		
	13,1	6.8 x 10 ⁻¹¹	6.8×10^{-12}	6.9 x 10 ⁻¹³		
	14,1	3.9 x 10 ⁻¹¹	3.9 x 10 ⁻¹²	4.0 x 10 ⁻¹³		
	15,1	2.4×10^{-11}	2.4×10^{-12}	2.4×10^{-13}		
	16,1	1.2 x 10 ⁻¹¹	1.2 x 10 ⁻¹²	1.2×10^{-13}		
	17,1	6.1 x 10 ⁻¹²	6.1 x 10 ⁻¹³	6.1 x 10 ⁻¹⁴		
	18,1	3.2×10^{-12}	3.2 x 10 ⁻¹³	2.3 x 10 ⁻¹⁴		
	19,1	2.0 x 10 ⁻¹²	2.0 x 10 ⁻¹³	2.0×10^{-14}		
	20,1	1.2×10^{-12}	1.2 x 10 ⁻¹³	1.3×10^{-14}		
32	8,1	3.3×10^{-9}	3.3 x 10 ⁻¹⁰	3.3 x 10 ⁻¹¹		f
	9,1	1.2 x 10 ⁻⁹	1.2 x 10 ⁻¹⁰	1.2×10^{-11}		'c ⁻ 2
	10,1	4.7 x 10 ⁻¹⁰	4.7×10^{-11}	4.7×10^{-12}	aluminum steel	243,
	11,1	2.2×10^{-10}	2.2 x 10 ⁻¹¹	2.3 x 10 ⁻¹²		19,

use a citer substitution of the substances are addressed and the substances

and and the second of the second states and sold of the second of the second states are a second sold of the se

15

.

Table 3h (Continued)

STEEL PLATE (Continued)

q = 0.3

^ປ c (ft/sec)	Yode Nu⊒ber (≂,n)	$\frac{\overline{\gamma^2(\omega)}}{p^2}$	$\frac{\overline{\Upsilon^2(\omega)}}{p^2}^{**}$	$\frac{\overline{Y^2(\omega)}}{\overline{p^2}}$
	12,1	1.3 x 10 ⁻¹⁰	1.3 x 10 ⁻¹¹	1.3 x 10 ⁻¹²
	13,1	8.8 x 10 ⁻¹¹	8.8 x 10 ⁻¹²	8.8 x 10 ⁻¹³
	14,1	6.6 x 10 ⁻¹¹	6.6 x 10 ⁻¹²	6.6 x 10 ⁻¹³
	15,1	4.7×10^{-11}	4.7 x 10 ⁻¹²	4.7 x 10 ⁻¹³
	16,1	2.5 x 10 ⁻¹¹	2.5 x 10 ⁻¹²	2.5 x 10 ⁻¹³
	17,1	1.0×10^{-11}	1.0 x 10 ⁻¹²	1.0 x 10 ⁻¹³
	18,1	4.4×10^{-12}	4.4 x 10 ⁻¹³	4.5 x 10 ⁻¹⁴
	19,1	1.8 x 10 ⁻¹²	1.8 x 10 ⁻¹³	1.9 x 10 ⁻¹⁴
	20,1	6.0×10^{-13}	6.1 x 10 ⁻¹⁴	6.3 x 10 ⁻¹⁵
64	8,1	3.6 x 10 ⁻⁹	3.6 x 10 ⁻¹⁰	3.6 x 10 ⁻¹¹
	9,1	1.4×10^{-9}	1.4 x 10 ⁻¹⁰	1.4×10^{-11}
	10,1	5.2 x 10 ⁻¹⁰	5.2 x 10 ⁻¹¹	5.3 x 10 ⁻¹²
	11,1	2.1×10^{-10}	2.1 x 10 ⁻¹¹	2.2×10^{-12}
	12,1	7.7 x 10 ⁻¹¹	7.7 x 10 ⁻¹²	7.8 x 10 ⁻¹³
	13,1	2.2 x 10 ⁻¹¹	2.2 x 10 ⁻¹²	2.3 x 10 ⁻¹³
	14,1	÷	÷	÷
	15,1	÷	÷	t
	16,1	÷	÷	÷
	17,1	÷	÷	+
	18,1	÷	÷	+
	19,1	÷	÷	+
	20,1	t	÷	t
* For one-tenth computed damping value given in Table 3b.				
** For computed damping value given in Table 3b.				
*** For	ten time	s computed dam	- ping value give	en in Table 3b.
[†] Con	puter err	er (recomputati	ion not made).	
compared error (recompared eren noe made).				

m.	D1 D	~ *
IA	BLE	- 21

STEEL PLATE

q = (0.6
-------	-----

U _c (ft/sec)	Mode Number (a,n)	<u>Y²(:;)</u> <u>p²</u>	$\frac{\overline{r^2(\omega)}}{\overline{p^2}}$	$\frac{\overline{\gamma^2(\omega)}}{\overline{p^2}}$
8	8,1	4.9 x 10 ⁻⁹	4.9 x 10 ⁻¹⁰	4.9 × 10 ⁻¹¹
	9,1	1.9 x 10 ⁻⁹	1.9 x 10 ⁻¹⁰	1.9 x 10 ⁻¹¹
	10,1	7.9 x 10 ⁻¹⁰	7.9 x 10 ⁻¹¹	8.0 x 10 ⁻¹²
	11,1	3.5 x 10 ⁻¹⁰	3.5 x 10 ⁻¹¹	3.5 x 10 ⁻¹²
	12,1	1.6 x 10 ⁻¹⁰	1.6 x 10 ⁻¹¹	1.6 x 10 ⁻¹²
	13,1	7.3 x 10 ⁻¹¹	7.3 x 10 ⁻¹²	7.4 x 10 ⁻¹³
	14,1	3.7 x 10 ⁻¹¹	3.8 x 10 ⁻¹⁷	3.8 x 10 ⁻¹³
	15,1	1.9 x 10 ⁻¹¹	1.9 x 10 ⁻¹²	1.9 x 10 ⁻¹³
	16,1	1.0 x 10 ⁻¹¹	1.0 x 10 ⁻¹²	1.0 x 10 ⁻¹³
	17,1	5.6 x 10 ⁻¹²	5.6 x 10 ⁻¹³	5.7 x 10 ⁻¹⁴
	18,1	3.2 x 10 ⁻¹²	3.2×10^{-13}	3.2 x 10 ⁻¹⁴
	19,1	1.9 x 10 ⁻¹²	1.9 x 10 ⁻¹³	1.9 x 10 ⁻¹⁴
	20,1	1.3 x 10 ⁻¹²	1.3 x 10 ⁻¹³	1.3 x 10 ⁻¹⁴
16	8,1	4.5 x 10 ⁻⁹	4.5×10^{-10}	4.5 x 10 ⁻¹¹
	9,1	1.9 x 10 ⁻⁹	1.9 x 10 ⁻¹⁰	1.9 x 10 ⁻¹¹
	10,1	8.4 x 10 ⁻¹⁰	8.4 x 10 ⁻¹⁰	8.5 x 10 ⁻¹²
	11,1	3.7 x 10 ⁻¹⁰	3.7 x 10 ⁻¹¹	3.8 x 10 ⁻¹²
	12,1	1.6 x 10 ⁻¹⁰	1.6 x 10 ⁻¹¹	1.6 x 10 ⁻¹²
	13,1	7.3 x 10 ⁻¹¹	7.3 x 10 ⁻¹²	7.4 x 10 ⁻¹³
	14,1	4.1 x 10 ⁻¹¹	4.1 x 10^{-12}	4.2×10^{-13}
	15,1	2.4 x 10 ⁻¹¹	2.4×10^{-12}	2.4 x 10 ⁻¹³
	16,1	1.4 x 10 ⁻¹¹	1.4×10^{-12}	1.4×10^{-13}
	17,1	7.1 x 10 ⁻¹²	7.1 x 10 ⁻¹³	7.1 x 10 ⁻¹⁴
	18,1	3.5 x 10 ⁻¹²	3.5 x 10 ⁻¹³	3.5×10^{-14}
	19,1	2.0 x 10 ⁻¹²	2.0 x 10 ⁻¹³	2.0 x 10 ⁻¹⁴
	20,1	1.3 x 10 ⁻¹²	1.3 x 10 ⁻¹³	1.4 x 10 ⁻¹⁴
32	8,1	3.6 x 10 ⁻⁹	3.6×10^{-10}	3.6 x 10 ⁻¹¹
	9,1	1.3 x 10 ⁻⁹	1.3 x 10 ⁻¹⁰	1.3 x 10 ⁻¹¹
	10,1	5.0×10^{-10}	5.0 x 10 ⁻¹¹	5.1 x 10 ⁻¹²

17

?

THE STREET STORES

ŝ,

Region and a referior development a conference of the provided structure of the conference of a
Table 3i (Continued)

STEEL PLATE (Continued)

LUNCE SU

averanter contraction and and

NY SULLED

UNITION ANTISATISTICS

urusekorekusida saateta ketel kurasta tetai tetukera surekary atasina alkutan tetat maarti marteta 🖗

いたからいためのではないないないできょうというないできたのですがない

q = 0	i.6
-------	-----

eri, Unetabutilik sichenteivadikkiikaatensis aaspatasikstaatendittiyyetiikkinattiydikkiikittioateiseetsian etsis

· · · · · · · · · · · · · · · · · · ·					
^႘ င (ft/sec)	Node Xumber (m,n)	$\frac{\overline{Y^2(\omega)}}{\overline{p^2}}$	$\frac{\overline{Y^2(\omega)}}{\overline{p^2}}$	$\frac{Y^2(\omega)}{\overline{p^2}}$	
	11,1	2.3 x 10 ⁻¹⁰	2.3 x 10 ⁻¹¹	2.3 x 10 ⁻¹²	
	12,1	1.3 x 10 ⁻¹⁰	1.3 x 10 ⁻¹¹	1.3 x 10 ⁻¹²	
	13,1	8.1 x 10 ⁻¹¹	8.1 x 10 ⁻¹²	8.2 x 10 ⁻¹³	
	14,1	6.0 x 10 ⁻¹¹	6.0 x 10 ⁻¹²	6.0 x 10 ⁻¹³	
	15,1	4.4 x 10 ⁻¹¹	4.4 x 10 ⁻¹²	4.4 x 10 ⁻¹³	
	16,1	3.0×10^{-11}	3.0 x 10 ⁻¹²	3.0 x 10 ⁻¹³	
	17,1	1.5 x 10 ⁻¹¹	1.5 x 10 ⁻¹²	1.5 x 10 ⁻¹³	
	18,1	6.1 x 10 ⁻¹²	6.1 x 10 ⁻¹³	5.2 x 10 ⁻¹⁴	
	19,1	2.7 x 10 ⁻¹²	2.7 x 10 ⁻¹³	2.8 x 10 ⁻¹⁴	
	20,1	1.1 x 10 ⁻¹²	1.1 x 10 ⁻¹³	1.2 x 10 ⁻¹⁴	
64	8,1	3.9 x 10 ⁻⁹	3.9 x 10 ⁻¹⁰	4.0 x 10 ⁻¹¹	
	9,1	1.5 x 10 ⁻⁹	1.5 x 10 ⁻¹⁰	1.5 x 10 ⁻¹¹	
	10,1	6.0 x 10 ⁻¹⁰	6.0 x 10 ⁻¹¹	6.0 x 10 ⁻¹²	
	11,1	2.5 x 10 ⁻¹⁰	2.5 x 10 ⁻¹¹	2.5 x 10 ⁻¹²	
	12,1	9.9 x 10 ⁻¹¹	9.9 x 10 ⁻¹²	1.0 x 10 ⁻¹²	
	13,1	3.6 r 10 ⁻¹¹	3.6 x 10 ⁻¹²	3.7 x 10 ⁻¹³	
	14,1	4.8 x 10 ⁻¹²	4.9 x 10 ⁻¹³	5.3 x 10 ⁻¹⁴	
	15,1	÷	÷	÷	
	16,1	÷	÷	÷	
	17,1	÷	÷	÷	
	18,1	÷	÷	÷	
	19,1	÷	÷	÷	
_	20,1	÷	÷	÷	
*For one-tenth computed damping value given in Table 3b.					
** For computed damping value given in Table 3b.					
*** Fo	r ten time	es computed damp	ping value giv	en in Table 3b.	
[†] Computer error (recomputation not made).					

TT E	D1	 -
IA	ыr	 - 31

STEEL PLATE

0 = 0 9

alit)/faiChaitski

ž

U _c (ft/sec)	Mode Number (ra,n)	$\frac{\overline{Y^2(\omega)}}{\overline{p^2}}$	$\frac{\overline{Y^2(\omega)}}{\overline{p^2}}$	$\frac{\overline{r^2()}}{p^2}$
8	8,1			
	9,1	2.7 x 10 ⁻⁹	2.7 x 10 ⁻¹⁰	2.7 x 10 ⁻¹¹
	10,1	1.1 x 10 ⁻⁹	1.1 x 10 ⁻¹⁰	1.1 x 10 ⁻¹¹
	11,1	5.1 x 10 ⁻¹⁰	5.1 x 10 ⁻¹¹	5.1 x 10 ⁻¹²
	12,1	2.4 x 10 ⁻¹⁰	2.4 x 10 ⁻¹¹	2.4 x 10 ⁻¹²
	13,1	1.1 x 10 ⁻¹⁰	1.1 x 10 ⁻¹¹	1.1 x 10 ⁻¹²
	34,1	5.7 x 10 ⁻¹¹	5.7 x 10 ⁻¹²	5.7 x 10 ⁻¹³
	15,1	3.0 x 10 ⁻¹¹	3.0 x 10 ⁻¹²	3.0 x 10 ⁻¹³
	16,1	1.5 x 10 ⁻¹¹	1.5 x 10 ⁻¹²	1.5 x 10 ⁻¹³
	17,1	8.6 x 10 ⁻¹²	8.6×10^{-13}	8.7 x 10 ⁻¹⁴
	13,1	5.1 x 10 ⁻¹²	5.1 x 10 ⁻¹³	5.1 x 10 ⁻¹⁴
	19,1	3.1 x 10 ⁻¹²	3.1×10^{-13}	3.1 x 10 ⁻¹⁴
	20,1	1.9 x 10 ⁻¹²	1.9 x 10 ⁻¹³	1.9 x 10 ⁻¹⁴
16	8,1			
			10	
	9,1	2.5×10^{-9}	2.5×10^{-10}	2.5 x 10 ⁻¹¹
	9,1 10,1	2.5 x 10 ⁻⁹ 1.1 x 10 ⁻⁹	2.5×10^{-10} 1.1 x 10 ⁻¹⁰	2.5 x 10 ⁻¹¹ 1.1 x 10 ⁻¹¹
	9,1 10,1 11,1	2.5 x 10 ⁻⁹ 1.1 x 10 ⁻⁹ 5.5 x 10 ⁻¹⁰	2.5 x 10 ⁻¹⁰ 1.1 x 10 ⁻¹⁰ 5.5 x 10 ⁻¹¹	2.5 x 10 ⁻¹¹ 1.1 x 10 ⁻¹¹ 5.5 x 10 ⁻¹²
	9,1 10,1 11,1 12,1	2.5 x 10 ⁻⁹ 1.1 x 19 ⁻⁹ 5.5 x 10 ⁻¹⁰ 2.7 x 10 ⁻¹⁰	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11}	2.5 x 10 ⁻¹¹ 1.1 x 10 ⁻¹¹ 5.5 x 10 ⁻¹² 2.8 x 10 ⁻¹²
	9,1 10,1 11,1 12,1 13,1	2.5×10^{-9} 1.1×10^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12}
	9,1 10,1 11,1 12,1 13,1 14,1	2.5×10^{-9} 1.1×10^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10} 5.9×10^{-11}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11} 6.0×10^{-12}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12} 6.0×10^{-13}
	9,1 10,1 11,1 12,1 13,1 14,1 15,1	2.5×10^{-9} 1.1×10^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10} 5.9×10^{-11} 2.9×10^{-11}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11} 6.0×10^{-12} 2.3×10^{-12}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12} 6.0×10^{-13} 2.9×10^{-13}
	9,1 10,1 11,1 12,1 13,1 14,1 15,1 16,1	2.5×10^{-9} 1.1×19^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10} 5.9×10^{-11} 2.9×10^{-11} 1.6×10^{-11}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11} 6.0×10^{-12} 2.9×10^{-12} 1.6×10^{-12}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12} 6.0×10^{-13} 2.9×10^{-13} 1.6×10^{-13}
	9,1 10,1 11,1 12,1 13,1 14,1 15,1 16,1 17,1	2.5×10^{-9} 1.1×19^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10} 5.9×10^{-11} 2.9×10^{-11} 1.6×10^{-11} 1.1×10^{-11}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11} 6.0×10^{-12} 2.3×10^{-12} 1.6×10^{-12} 1.1×10^{-12}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12} 6.0×10^{-13} 2.9×10^{-13} 1.6×10^{-13} 1.1×10^{-13}
	9,1 10,1 11,1 12,1 13,1 14,1 15,1 16,1 17,1 18,1	2.5×10^{-9} 1.1×10^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10} 5.9×10^{-11} 2.9×10^{-11} 1.6×10^{-11} 1.1×10^{-11} 7.0×10^{-12}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11} 6.0×10^{-12} 2.3×10^{-12} 1.6×10^{-12} 1.1×10^{-12} 7.0×10^{-13}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12} 6.0×10^{-13} 2.9×10^{-13} 1.6×10^{-13} 1.1×10^{-13} 7.1×10^{-14}
	9,1 10,1 11,1 12,1 13,1 14,1 15,1 16,1 17,1 18,1 19,1	2.5×10^{-9} 1.1×19^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10} 5.9×10^{-11} 2.9×10^{-11} 1.6×10^{-11} 1.1×10^{-11} 7.0×10^{-12} 4.0×10^{-12}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11} 6.0×10^{-12} 2.9×10^{-12} 1.6×10^{-12} 1.1×10^{-12} 7.0×10^{-13} 4.0×10^{-13}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12} 6.0×10^{-13} 2.9×10^{-13} 1.6×10^{-13} 1.1×10^{-13} 7.1×10^{-14} 4.0×10^{-14}
	9,1 10,1 11,1 12,1 13,1 14,1 15,1 16,1 17,1 18,1 19,1 20,1	2.5×10^{-9} 1.1×19^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10} 5.9×10^{-11} 2.9×10^{-11} 1.6×10^{-11} 1.1×10^{-11} 7.0×10^{-12} 4.0×10^{-12} 2.1×10^{-12}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11} 6.0×10^{-12} 2.9×10^{-12} 1.6×10^{-12} 1.1×10^{-12} 7.0×10^{-13} 4.0×10^{-13} 2.2×10^{-13}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12} 6.0×10^{-13} 2.9×10^{-13} 1.6×10^{-13} 1.1×10^{-13} 7.1×10^{-14} 4.0×10^{-14} 2.2×10^{-14}
32	9,1 10,1 11,1 12,1 13,1 14,1 15,1 16,1 17,1 18,1 19,1 20,1 8,1	2.5×10^{-9} 1.1×19^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10} 5.9×10^{-11} 2.9×10^{-11} 1.6×10^{-11} 1.1×10^{-11} 7.0×10^{-12} 4.0×10^{-12} 2.1×10^{-12}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11} 6.0×10^{-12} 2.3×10^{-12} 1.6×10^{-12} 1.1×10^{-12} 7.0×10^{-13} 4.0×10^{-13} 2.2×10^{-13}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12} 6.0×10^{-13} 1.6×10^{-13} 1.6×10^{-13} 1.1×10^{-13} 7.1×10^{-14} 4.0×10^{-14} 2.2×10^{-14}
32	9,1 10,1 11,1 12,1 13,1 14,1 15,1 16,1 17,1 18,1 19,1 20,1 8,1 9,1	2.5×10^{-9} 1.1×19^{-9} 5.5×10^{-10} 2.7×10^{-10} 1.3×10^{-10} 5.9×10^{-11} 2.9×10^{-11} 1.6×10^{-11} 1.1×10^{-11} 7.0×10^{-12} 4.0×10^{-12} 2.1×10^{-12} 2.0×10^{-9}	2.5×10^{-10} 1.1×10^{-10} 5.5×10^{-11} 2.7×10^{-11} 1.3×10^{-11} 6.0×10^{-12} 2.9×10^{-12} 1.6×10^{-12} 1.1×10^{-12} 7.0×10^{-13} 4.0×10^{-13} 2.2×10^{-13} $$ 2.0×10^{-10}	2.5×10^{-11} 1.1×10^{-11} 5.5×10^{-12} 2.8×10^{-12} 1.3×10^{-12} 6.0×10^{-13} 1.6×10^{-13} 1.6×10^{-13} 1.1×10^{-13} 7.1×10^{-14} 4.0×10^{-14} 2.2×10^{-14} $$ 2.0×10^{-11}

örradentikkinnandennyantikkiningen kunana manalanan kantaktoren kannin ha maran kan elana kan elan elan kan

19

Table 3j (Continued)

STEEL PLAT	: (Continued)
------------	---------------

ar Bennik unterster som sur sverste földtigtet en stadstaden är stadstadet i stadsta upper och ander te andre som uter stadstadet i stadstadet som etter som

a), Casternander Manael benteren

q = 0.9							
U _C (ft/sec	Mode Number (m,n)	$\frac{\overline{Y^{2}(\omega)}}{\overline{p^{2}}}$	$\frac{1}{\frac{\gamma^2(\omega)}{p^2}}$	$\frac{\frac{1}{\gamma^{2}(\omega)}}{\frac{1}{p^{2}}}$			
	11,1	3.2 x 10 ⁻¹⁰	3.2 x 10 ⁻¹¹	3.2 x 10 ⁻¹²			
	12,1	1.4 x 10 ⁻¹⁰	1.4 x 10 ⁻¹¹	1.4 x 10 ⁻¹²			
	13,1	7.4 x 10 ^{-1]}	7.4 x 10 ⁻¹²	7.5 x 10 ⁻¹³			
	14,1	4.6 x 10 ⁻¹¹	4.6 x 10 ⁻¹²	4.6 x 10 ⁻¹³			
	15,1	3.0 x 10 ⁻¹¹	3.0 x 10 ⁻¹²	3.1 x 10 ⁻¹³			
	16,1	2.4 x 10 ⁻¹¹	2.4 x 10 ⁻¹²	2.4 x 10 ⁻¹³			
	17,1	2.1 x 10 ⁻¹¹	2.1 x 10 ⁻¹²	2.1 x 10 ⁻¹³			
	18,1	1.6 x 10 ⁻¹¹	1.6 x 10 ⁻¹²	1.6 x 10 ⁻¹³			
	19,1	9.4 x 10 ⁻¹²	9.4 x 10 ⁻¹³	9.4 x 10 ⁻¹⁴			
	20,1	4.4 x 10 ⁻¹²	4.4 x 10 ⁻¹³	4.4 x 10 ⁻¹⁴			
64			Not Computed				
	9,1	2.3×10^{-9}	2.3 x 10 ⁻¹⁰	2.3 x 10 ⁻¹¹			
	10,1	9.5 x 10 ⁻¹⁰	9.5 x 10 ⁻¹¹	9.6 x 10 ⁻¹²			
	11,1	4.1×10^{-10}	4.1 x 10 ⁻¹¹	4.2×10^{-12}			
	12,1	1.8 x 10 ⁻¹⁰	1.8 x 10 ⁻¹¹	1.8 x 10 ⁻¹²			
	13,1	8.5 x 10 ⁻¹¹	8.5 x 10 ⁻¹²	8.6 x 10 ⁻¹³			
	14,1	3.9 x 10 ⁻¹¹	3.9 x 10 ⁻¹²	3.9 x 10 ⁻¹³			
	15,1	1.4 x 10 ⁻¹¹	1.4 x 10 ⁻¹²	1.4×10^{-13}			
	16,1	2.8×10^{-12}	2.9 x 10 ⁻¹³	3.0 x 10 ⁻¹⁴			
	17,1	÷	÷	÷			
	18,1	÷	÷	†			
	19,1	÷	÷	÷			
	20,1	÷	÷	÷			
* For one-teach computed dynamic value siven is Table 2b							
For computed damping value given in Table 3b.							
*** For ten times computed demains value siven in Table 2b.							
For the times computed damping venue grade in Idule 30.							
$\tilde{f}_{8,1}$ < 100 Hz (see Table 3e).							
Computer error (recomputation not made).							

20

Ч

-Tehallite

artistari kutaka kasa kara asha sararasha sarasan kanasana kanasara akato ya ashata Manasanara na isuka abara s

el rezstalli

arrestante el defin della distriction el della dell

and the structure of the state of the

and the second secon

NAME AND ADDRESS OF A DATE

21

Figure 2d

22

Note: Results for one-tenth and ten times the computed damping values are obtainable by multiplying and dividing the vertical scale by a factor of 10, respectively.

ster toteste skarte i stada de stada de stada de servents stade en stada de stada de stada se se se

0211151ab206.sed]asvause1.se3.202020605

CALCULATIONS AND RESULTS

The analytical results for a fluid-loaded plate are presented in a series of Appendixes (A-G). The salient features of this study are summarized in Table 1 for the convenience of the reader.

In addition, computer results were obtained for the vibratory response of a water-loaded, simply supported, rectangular-aluminum isotropic plate and for a water-loaded, simply supported, rectangular-steel isotropic plate subject to turbulence excitation. The computer results were obtained by modifying *the updated version of the original formulation devised by Maestrello*¹ with the fluid loading program devised here. The corresponding mathematical analysis, methods for determining the imput data, and computer program documentation are given in Appendix H.^{*} Results are now presented for the aluminum and steel plates.

ALUMINUM PLATE

Table 2a presents the natural frequencies and total damping ratio of a simply supported aluminum plate in *air* for several modes of vibration.

The natural frequencies were computed by use of the Warburton method (see Reference 3 for the associated computer program) and were checked by use of the simple frequency expression $\omega_{mn} = \kappa c_g \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right]$ for simply supported plates. The corresponding natural frequencies in *water*, as well as other relevant input data required for the computation of the normalized modal mean square displacement: $\frac{Y^2(\omega)}{p^2}$, are tabulated in Table 2b.^{**} The normalized modal mean square displacements $\frac{\overline{Y^2(\omega)}}{p^2}$ for the simply supported aluminum plate in water are tabulated in Table 2c. All of these data are computed in accordance with the detailed procedure given in Appendix H.

** The Maestrello method¹ for obtaining p^2 is given in Appendix H. Dyer (page 32 of Reference 1) uses $p^2 = [6 \times 10^{-3} \cdot \frac{1}{2} \rho U_{\infty}^2]^2$ and Jacobs (page 301 of Reference 1) used $p^2 = 3.1 \tau_w$. Here p^2 is the mean square turbulence pressure, ρ is the fluid density, U_{∞} is the free-strether velocity, and τ_w is the local wall shear stress (see Appendix H for further discussion).

ş

an the states of the state of the states at

Both the updated program (designated MTURAD) which supercedes the original Maestrello program (designated TURAD) and the fluid loading program (Option 3) are presented in Appendix H.

Figure 1 is a plot of some of the computed results for the normalized modal mean square displacements $\overline{Y^2(\omega)/p^2}$ of a simply supported, water-loaded aluminum plate subject to turbulence excitation over a range of convection velocities U_c for various values of damping and q = k/k_s = 0 only (see notation for Appendix H).^{*} More extensive results are tabulated in Table 2c. The computer procedure used for the calculations is given in Appendix H.

STEEL PLATE

Table 3a tabulates the natural frequencies of a simply supported steel plate in *air* for several modes of vibration as computed by use of the Warburton method (see Reference 3 for the associated computer program). The corresponding natural frequencies in *water* as well as other relevant input data required for the computation of the normalized modal mean square displacement $\overline{Y^2(\omega)/p^2}$ are tabulated in Tables 3b-3f. The normalized modal mean square displacements $\overline{Y^2(\omega)/p^2}$ for the simply supported steel plate in water are tabulated in Tables 3g-3j.

Figures 2a-2d are plots of some of the computed results for the normalized modal mean square displacement $Y^2(\omega)/p^2$ of a simply supported, waterloaded steel plate subject to turbulence excitation over a range of convection velocities U_c for various values of damping^{*} and q = k/k_s < 1 (see notation for Appendix H). More extensive results are tabulated in Tables 3g-3j. The computer procedure used for the calculations is given in Appendix H.

DISCUSSION AND EVALUATION

This section discusses (1) the analytical results, (2) the computational results, and (3) the turbulence-vibroacoustic relationships.

For the present problem, the contribution of radiation damping but not added mass is excluded in the (acoustically slow) region for which the computations are applicable; see Appendix H for a more detailed discussion of this point. Simple equations for determining the radiation damping contributions for inclusion in the computer program will appear in a companion report.

ANALYTICAL RESULTS

Table 1 identifies and compares the various methods of computation. Notation pertinent to each method is found in Appendixes A-G inclusive. The results have been included in the overall computer program (see Appendix H).

From the summary for Appendix C given in Table 1, we observe that the solution to the Feit-Junger basic equations has been extended to include the added mass results for *coupled modes* in addition to their results for *uncoupled modes* presented in Appendix A; the extended results are then identical to corresponding results obtained by Davies in Appendix B. The physicomathematical basis clarifying the plate-fluid coupling mechanism is discussed in Appendix A. In general, results can be classified both in terms of modes in wave number space according to their radiation characteristics and in terms of frequency band.

It is interesting to note that despite the variety of analytical methods used, the results obtained in Appendixes A-E are identical for the *uncoupled modes*. As discussed in Appendixes A-C, the results for these modes are considered to be dominant with respect to the results for coupled modes. Moreover, we perceive from the discussion in Appendix D that for the *uncoupled (dominant) modes*, the methods of Appendixes A-D are applicable, with minor modification, to low wave numbers (m,n=(1,1) (1,2) (2,1)...) as well as to high wave numbers.

The results presented in Table 1 for Appendixes A-E are based on analyses which assume a plate with simple supports for the boundary condition. However, with proper modification and interpretation, these results can be used to yield corresponding results for fluid-loaded clamped plates, at least for the dominant modes. Following the method and using the computer program (Option 2) described in Reference 3, we first obtain the *in vacuo* natural circular frequency $\omega_{mn} \rightarrow (\omega_{mn})_{clamped}$ for a *clampedclamped* plate.^{*} The frequency for the *fluid-loaded clamped-clamped plate* is

 $\omega_{mn} \rightarrow (\omega_{mn})_{clamped} \text{ means } \omega_{mn} \equiv (\omega_{mn})_{clamped} \text{ and similarly for } (\bar{\omega}_{mn})_{clamped}$.

25

23

an surveyed when the substantish survey when the surveyed of the surveyed of the surveyed of the survey of the

then computed from the equation for $\bar{\omega}_{mn} \neq (\bar{\omega}_{mn})_{clamped}$ given in Table 1 where now, in this equation, $\omega_{mn} \neq (\omega_{mn})_{clamped}$ is the previously computed *in-vacuo frequency for a clamped-clamped plate*. Finally to obtain the response of a *fluid-loaded clamped-clamped plate* subject to turbulence excitation, we use $(\bar{\omega}_{mn})_{clamped}$ but *mode shapes* corresponding to *simply supported end conditions*. In extending the method of Reference 3 to the case of fluid-loaded clamped-clamped plates, we assume that the sensitivity of the fluid loading to the change in boundary conditions is sufficiently small so that the preceding procedure will yield approximately correct results for the response of clamped-clamped plates. nder entsternen er en er mar er nam henden in de er an de er an de handen sternen er de henden er de sternen de

Using an entirely different theoretical approach, Appendixes F and G (see Table 1) give directly obtainable results for both simply supported and clamped plates. Again the results depend on the mode numbers. Appendix G presents a relatively simple formulation relevant for low frequencies.

If we treat the radiation of boundary layer noise into a closed rectangular cavity as well as into free space (see Dyer Model, * Appendix A of Reference 1), then the approximate value of the added mass due to the enclosed fluid is given as

$$m_{cavity} = \frac{\rho \tanh |k_{mn} L_z|}{|k_{mn}|} \text{ if } \omega_{mn} > \omega_c$$

and

$$m_{cavity} = \frac{\rho}{k_{mn}} \tan k_{mn} L_z \text{ if } \omega_{mn} < \omega_c$$

The total added mass is then the sum of the added mass of the enclosed fluid and the free (half) space added mass given in Table 1.

In the Dyer Model all interior surfaces except the plate are assumed to be pressure release surfaces.

COMPUTATIONAL RESULTS

For the results shown in Figures 1 and 2, which include the effects of fluid loading, we make the following observations; of course evaluation of the theoretical results requires a comparison between theory and experiment in water.

To compute the normalized modal mean sequare displacement $\overline{Y^2(\omega)/p^2}$ of a water-loaded plate subject to turbulence excitation, we require the corresponding modal frequencies. Appendix H presents two methods, designated Methods 1 and 2 for computing the natural frequencies of a plate in water. Method 1 (Equation (H3)) is based on the analyses in Appendixes A-E whereas Method 2 (Equation (H6)) is based on the analyses in Appendixes F and G. Computations show that the frequencies computed by Method 1 and this difference increases at higher modes.^{**} The discrepancy is attributed to the less sophisticated assumptions involved in deriving Equation (H6); see Appendix F. Consequently, we consider the results obtained by Method 1, and use only Method 1 for the computations of $\overline{Y^2(\omega)/p^2}$ now presented.

For the fluid-loaded aluminum plate, Figure 1 shows the contributions of the lowest modes to the normalized modal mean square displacement $\overline{Y^2(\omega)/p^2}$ for both the range of convection velocities considered ($0 \le U_c \le 64$ ft/sec) and the range of modal frequencies of interest ($100 \le \overline{f}_{mn} \le 1000$ Hz); see Table 2. It is evident from the figure that for any damping value considered, the contribution of the modes to the total normalized mean square displacement $(\overline{Y_{13}^2 + \overline{Y_{23}^2} + \overline{Y_{14}^2} + \overline{Y_{24}^2}) + \dots)/p^2$ decreases with successive mode orders (1,2), (2,3), (1,4), and (2,4). The major contributors are the (1,3) and (2,3) modes; the relative contribution of the latter mode

The fluid loading does not include the influence of hydrostatic pressure. The effect of hydrostatic pressure on the natural frequencies is discussed in Appendix I.

[^]As shown in Appendixes F, G, and H, the data given in Table 4 are used in computing the frequencies by Method 2.
	Clamped Plate Simply Supported Plate			orted Plate
Mode	A _{ij}	β _{ij}	A _{ij}	β _{ij}
i =] j =]	0.6904	1	0.4053	0.25
i = 1 j = 2	0	1	0	0.25
i = 1 j = 3	0.3023	1	0.1351	0.25
i = 1 j = 5	0.1924	1	0.0810	0.25
i = 3 j = 1	0.3023	1	0.1351	0.25
i = 3 j = 2	0	1	0	0.25
i = 3 j = 3	0.1324	1	0.0450	0.25

		TABLE 4			
Modal Values	of A _{ij} Simply	and β _{ij} Support	for ed P	Clamped lates	and
	01mF1	oupport	.	- 4000	

decreases for values of U_{C} approaching 64 ft/sec. However, we also observe that for given values of U_{C} and damping, the root mean square displacement of each mode treated is of the same order of magnitude. We conclude therefore that each of the several modes considered makes a significant contribution to the total vibratory displacement.

A comparison of the curves of Figure 1 also indicates that the character of the curves is essentially independent of the damping values and that the values for the modal amplitudes decrease with increasing values of the damping. If the damping is sufficiently small and/or p^2 is sufficiently large, we may expect the turbulence excitations to produce undesirably large magnitudes of plate vibration.

For the steel plate (Figure 2), similar results were obtained for the lowest modes for various values of $q = k/k_s$; see Table 3. Again, we observe that for any value of q, each of the several modes considered makes a significant contribution to the total vibratory displacement, the modal amplitudes decrease with increasing values of damping, and the character of the curves is essentially independent of the damping values. In addition, we observe that the response increases with increasing values of q. For q = 0.995, Table 3b shows a significant increase in the mode numbers corresponding to the frequency range of interest (100 $\leq \bar{f}_{mn} \leq$ 1000 Hz). Once more we conclude that if the damping is sufficiently small and/or p^2 is sufficiently large, we may expect the turbulence excitations to produce undesirably large magnitudes of plate vibration; the magnitudes are enhanced, but not radically, at sufficiently large values of q. Hence in computations it appears practical to use a single representative value for q for the range of turbulence frequencies distributed about $\omega = U_{c} k_{T}$ = k c, corresponding to $0 \le q = k/k_s \le 1.0$. A practical alternative would be to select the average of the mean square displacement responses computed for small and large values of q.

These relationships are discussed in the following section.

٩

のないないであると、ないないないないないないないである

Background material is cited in the bibliography.

For the convenience of the reader, we list the notation commonly used in this section.

a,b Length and width of the plate, respectively

b Plate bending stiffness equal to $E h^{3}/12(1-\sigma^{2})$

- C_B Trace speed of the plate bending wave in the direction of flow or free flexural phase velocity for a thin plate equal to $\omega^{1/2}$ (B/M)^{1/4}
- c Velocity of sound

er om præsses er er en hy pon vern skallet i skaler som skalt bledde af beter singe holde.

c_{*i*} Compressional wave velocity of the plate equal to $[E/\rho_s(1-\sigma^2)]^{1/2}$

E Young's modulus

f,f,^ŕ, Natural, acoustic coincidence or critical, and hydrodynamic coincidence or critical frequencies, respectively

- h Plate thickness
- k Acoustic wave number equal to ω/c

k₁,k₅ Wave number components lying along the x- and y-axes, respectively

 k_{m}, k_{n} Modal wave numbers equal to $m\pi/a$ and $n\pi/b$, respectively

 k_{mn}, k_s Wave numbers equal to $\sqrt{k_m^2 + k_n^2}$

 k_p Free plate bending wave number equal to (ω/κ c_g)^{1/2}

- k_T Turbulence wave number
- M,m_ Plate structural mass per unit area
- M' Effective mass per unit area (i.e., mass per unit area of fluidloaded plate) equal to $m_p + m_p$
- M Added mass per unit area (or apparent mass or virtual mass per unit area)
- m,n 'Mode numbers
- q Equal to k/k
- U Free-stream velocity
- U Convection velocity equal to 0.8 U

v Mean convection speed along the flow direction

- v Hydrodynamic coincidence speed
- α Equal to 1 for fluid loading on one side of plate only; equal to 2 for fluid loading on both sides of plate
- κ Radius of gyration equal to $h/2\sqrt{3}$

- ρ Mass density of fluid medium
- o Mass density of plate
- σ Poisson's ratio
- ω Circular frequency equal to $2\pi f$
- ω_{c} Acoustic coincidence or critical frequency equal to $2\pi f_{c}$

 ω_{h} Hydrodynamic coincidence or critical frequency equal to $2\pi f_{h}$

 ω_{nn} Plate resonance frequency equal to $2\pi f_{nn}$

- Bar over quantity denotes quantity for water-loaded plate

The convection properties of the turbulence pressure field relate the circular frequency ω and the turbulence wave number k_T by the equation

$$k_{\rm T} U_{\rm c} \stackrel{\sim}{=} \omega$$
 (1)

The approximation obtains because, in actuality, a range of wave numbers contributes to the frequency spectral density of the turbulent pressures (e.g., see Equation (B60) of Reference 1). Alternatively stated, for a turbulent field, a particular wave number component is generally associated with a distribution of frequencies and/or convection speeds.

Following Dyer (see page 18 of Reference 1), the hydrodynamic coincidence speed v_0 is defined as the speed at which the magnitude of the mean flow convection velocity U_c along the flow direction is equal to the trace speed of the bending wave C_B in the direction of flow, i.e., $v = v_0 = C_B$.^{*} The frequency at which this occurs is a significant parameter because it represents a value at which we can expect a large vibratory response due to increased amplitudes of the modal forcing function for the panel. This parameter is called the hydrodynamic coincidence frequency ω_h and is given by the equation

$$\omega_{h} = k_{p} C_{B} = k_{p} U_{c}$$
(2)

sh,

Thus from Equations (1) and (2), $k_T = k_p = \omega_h/U_c$ at the hydrodynamic coincidence frequency.

The bending wave is also referred to as the free flexural phase velocity and free plate bending velocity.

liere

$$\kappa_{\rm p} = \left(\frac{\omega}{\kappa \ c_{\rm g}}\right)^2 = \left(\frac{M}{B}\right)^4 \omega^2$$
(3)

because (see pages 18 and 28 of Reference 1)

$$C_{\rm B} = \frac{\omega}{k_{\rm p}} = \omega^{\frac{1}{2}} \left(\frac{{\rm B}}{{\rm M}}\right)^{\frac{1}{4}}$$
; $\omega = \omega_{\rm h}$ at hydrodynamic coincidence (4)

and

$$\left(\frac{B}{M}\right)^{\frac{1}{2}} = \frac{h c_{\ell}}{\sqrt{12}} = \kappa c_{\ell}$$
(5)

The region within which hydrodynamic coincidence can exist is defined by a semicircle in k space represented by $(k_m - U_c/2\kappa c_g)^2 + k_n^2 = (U_c/2\kappa c_g)^2$ For the plate coordinate system shown in Figure 3, the corresponding classification of plate modes in wave number space is shown in Figure 4. For low convection velocities $U_c \ll C_B$, the locus of the hydrodynamic coincidence (HC) curve collapses to the origin and the response is composed entirely of hydrodynamically fast (HF) modes.

From these equations we obtain the significant relationship from which we can determine ω_h for a given plate material and value of U_c, namely,

$$\omega_{\rm h} = \frac{{\rm C_{\rm B}}^2}{\left(\frac{\rm B}{\rm M}\right)^{1/2}} = \frac{{\rm U_{\rm c}}^2}{\kappa {\rm c_{\rm g}}}$$
(6)

The hydrodynamic critical frequency is now defined as the resonance frequency of the plate mode with bending wave velocity equal to the convection velocity. Table 5a presents values of the hydrodynamic critical frequency ${}^{*}f_{h} = \omega_{h}/2\pi$ computed for the fluid-loaded, simply supported aluminum and steel plates for values of U_c used in the previous computations

^{*}The condition of hydrodynamic coincidence has been used by Maestrello¹ in obtaining computer solutions $Y^{2}(\omega)/p^{2}$ (see Appendix H).

Notes: 1. For any value of $k_{\underline{m}\underline{n}}$ in the modal lattice, the projection of k_{mn} on k_1 is $k_m = m\pi/\ell_1$ and the projection of k_{mn} on k_5 is $k_n = n\pi/\ell_3$. 2. For an infinite plate the curves in $\{\mathbf{k_1},\omega\}$ space show that above $\omega_{\mathbf{h}}$ hydrodynamic coincidence does not occur for any wavenumber. At very high frequencies the sonic curve intersects the free wave curve because $\frac{\omega}{c}$ increases faster than $\left(\frac{\omega}{\kappa c_{\ell}}\right)$, and acoustic coincidence occurs.

For additional details on corresponding relationships in $\{\kappa_1, \kappa_3\}$ space see Bibliography (White, P.H.)

3

verse strate and the state of the set of the state of the s

Figure 4 - Classification of Modes in Wave Number Space and Turbulence Vibroacoustic Relationships in Wave Number-Frequency Space

TABLE 5

Computation of Hydrodynamic Critical Frequencies and Acoustic Critical Frequencies for Fluid-Loaded, Simply Supported Aluminum and Steel Plates TABLE 5a

Computation of Hydrodynamic Critical Frequencies for Aluminum and Steel Plates

	ບ _c 2	U _c ²
U _c	$f_h = \frac{1}{2\pi\kappa c_g} (Hz)$	$\hat{r}_{h} = \frac{1}{2\pi \kappa c_{g}} (Hz)$
(ft/sec)	alum. plate	steel plate
8	0.62	0.05
16	2.48	0.20
32	9.95	0.79
64	39.87	3.17

ALUMINUM: $\leq 9.64 \times 10^{-4}$ ft $c_{2} = 17,000$ ft/sec

Steel : $\kappa = 1.204 \times 10^{-2}$ ft $c_{\lambda} = 17,000$ ft/sec

c_{water} : = 5,000 ft/sec

TABLE 5b

Computation of Acoustic Critical Frequencies for Aluminum and Steel Plates

Material	$f_c = \frac{c^2}{2\pi\kappa c_{\ell}}$ (Hz)
Aluminum	243,000
Steel	19,400

of the plate response. The results were obtained by use of Equation (6). For a finite plate at resonance, $k_p^2 \equiv k_s^2 \equiv k_{mn}^2 = [(m\pi/a)^2 + (n\pi/b)^2]$. For air (or in vacuo) loading

$$\omega \rightarrow \omega_{mn} = \kappa c_{g} \left[\left(\frac{m\pi}{a} \right)^{2} + \left(\frac{n\pi}{b} \right)^{2} \right]$$
 (7)

the equation $\omega_{mn} = \kappa c_{\ell} (m\pi/a)^2 = (m\pi/a) U_c$ represents the hydrodynamic coincidence condition for the finite plate at resonance because U_c is the convection velocity in the flow direction only (see page 132) and

$$C_{B} = \frac{\omega_{mn}}{k_{p}} \text{ or } U_{C} = \frac{\omega_{mn}}{k_{mn}} = \kappa c_{\ell} k_{mn}$$

$$\longrightarrow \kappa c_{\ell} \left(\frac{m\pi}{a}\right) \text{ at } \omega = \omega_{h}$$
(8)

For water loading (see Equation (113))

$$\omega \neq \bar{\omega}_{mn} = \omega_{mn} \left[1 + \frac{\alpha \rho}{\rho_{s} k_{s} h \left[1 - c_{s}^{2} \right]^{1/2}} \right]^{-\frac{1}{2}}$$
(9)

The radiative properties of the plate immersed in a fluid relate the given frequency ω (Equation (1)) and the acoustic wave number k by the equation:

$$kc = \omega$$
 (10)

3

From Equations (1) and (10), we obtain:

$$k \approx \frac{U_c}{c} k_T \approx 0.8 k_T \cdot \frac{U_c}{c} = 0.8 k_T \cdot Mach No.$$
 (11)

These last two relations are given to add to the theoretical picture. However, no computations for the radiation of plates were made for the present report.

On page 24 of Reference 1, we defined the sound coincidence or cutoff or critical frequency $\omega = \omega_c$ as corresponding to $c = C_B$, i.e., the frequency at which the flexural wavelength of a thin plate equals the acoustic wavelength in water. * At this frequency we expect a greatly increased acoustic response.

The critical frequency is used for a resonant plate.

Moreover since at this frequency (see page 27 of Reference 1)

$$c = C_{B} = \omega_{c}^{1/2} \left(\frac{B}{M}\right)^{\frac{1}{4}}$$
(12)

Then

$$\omega_{\rm c} = c^2 \left(\frac{M}{B}\right)^2 = \frac{c^2}{\kappa c_{\rm g}}$$
(13)

Table 5b presents values of $f_c = \omega_c/2\pi$ computed for the fluid-loaded, simply supported aluminum and steel plates. The results were obtained by use of Equation (13). Obviously there is one and only one sound coincidence (or critical frequency) for each plate material.

According to Leehey (see Bibliography), the frequency range of interest for sonar self-noise application is

$$\omega_{n} = \frac{U_{c}^{2}}{\kappa c_{p}} < \omega < \omega_{c} = \frac{c^{2}}{\kappa c_{p}}$$

Hydrodynamic coincident effects are not important for this range (see Tables 2 and 3), and the radiated power per unit area is associated with both the decay of turbulence and the presence of plate boundaries.

We observe that the near field in the vicinity of the panel represents the predominant portion of the transduced pressure spectrum. This spectrum is composed of nonpropagating components caused by hydrodynamic coincidence effects. Thus, the wave numbers chiefly in evidence are those in the immediate vicinity of the hydrodynamic coincidence curve which corresponds to an excitation field progressing in the flow direction with velocity U_c and frequency ω ; see Figure 4. The spectrum of boundary layer pressure is distributed about $k_1 = k_T = \omega/U_c$ with most of the energy at rather iow values of k_3 . As we proceed into the far field, the near-field components decay and only the wave numbers at or below the sonic line, represented in Figure 4 by a circle $k = k_0 = \omega/c$ is present.

We now show that at sufficiently low wave numbers, the added mass (or near field) of a fluid-loaded plate subject to turbulence excitation may contribute significantly to the vibroacoustic response of a structure in its vicinity and, in turn, may also be significantly affected by that response.

The added mass or fluid inertial loading of a flexurally vibrating plate represents the imaginary or reactive part of the impedance associated with the reaction of the fluid to the vibrating plate. The corresponding fluid pressure is considered to be effective over a distance $d \approx \frac{\Lambda}{4}$ from the plate; the distance d = $\frac{\lambda}{6}$ is called the near field. Thus, at sufficiently small wave numbers (d $\leq \lambda/6$ or kd ≤ 1), the near field will exert a pressure on an adjacent structure lying within the effective bounds of the field. If the structure is flexible, we will then have a complex coupled vibroacoustic system involving the plate, the adjacent structure, and the intervening fluid medium. The interaction would in general couple the near- and far-field (or radiation) pressures on both plate and adjacent structure and would include the phenomena of reflections, scattering, etc. We explain this by recognizing that each flexible body or source works against its own sound pressure which represents the reaction of the medium to its motion as well as against the sound pressure that is generated by the adjacent source (e.g., the opposing body). Thus, two sound sources (i.e., flexible bodies) in close proximity $(d \le \frac{\Lambda}{6})$ react with each other and the sources may generate considerably more sound energy than if they were further apart. Sound sources of this type in close proximity are said to be dependent, and the power that each source generates individually cannot simply be added to yield the actual or total power of the system which is due to the interaction effects associated with the near field.

kon in vorte han na vorstaat het van de staat de

CONCLUSIONS

The chief conclusions drawn from this investigation are:

1. The added mass and corresponding natural frequency of a fluidloaded rectangular plate are more significant for the *uncoupled* modes and are easily computed using the results given in Table 1. For a first approximation, only the results for *uncoupled* modes need to be considered in vibroacoustic computations.

2. The added mass results for the *coupled modes* can be computed (using the results in Table 1) and added to the results for the *uncoupled modes* to refine the accuracy of the computation for the natural frequency or to determine the effect of these modes on the natural frequency and vibroacoustic response. $\hat{\mathbf{y}}$ the first structure of the state
3. Separate results for the added mass and natural frequencies of only the *uncoupled modes* can be computed (using the results in Table 1) to determine the absolute numerical contribution of these modes to the vibroacoustic response or to identify a corresponding response.

4. The methods of analysis used in Appendixes A-E yield the *same* added mass and natural frequency results for *uncoupled modes* and are applicable, in their essence, to both high and low wave numbers and for low and high frequencies (see the remarks column of Table 1 relative to Appendix B; see also Appendix E).

5. The Feit-Junger method of analysis used in Appendix A can be extended by the methods of Leibowitz presented in Appendix C to yield the same added mass and natural frequency results for the *coupled modes* as obtained by Davies (Appendix B).

6. The results obtained in Appendixes A-E for the added mass and natural frequency of a fluid-loaded, *simply supported* plate can be extended to yield corresponding results for a fluid-loaded *clamped-clamped* plate by using the Leibowitz-Wallace methods given in Reference 3. The results obtained by Greenspon and Leibowitz in Appendixes F and G can be used directly to compute the added mass and natural frequency of either a *simply supported* or *clamped-clamped* plate; the results for Appendix G are particularly applicable to the low frequency response. The Greenspon-Leibowitz results are considered to be less accurate than the former results.

7. The total mass and corresponding natural frequency for a plate radiating into free (half) space as well as into a closed rectangular space can be computed using the results presented in Table 1 and the results obtained from Appendix A of Reference 1 given in the Discussion.

8. The computed results for both the aluminum and steel plates show that the contribution of the higher modes to the total vibratory response is not negligible e.g., for the aluminum plate, the magnitudes of the root mean square displacement for the (1,4) and (2,4) modes are of the same order as that for the (1,3) and (2,3) modes for a given value of convection velocity and damping. Thus, determination of the total vibratory displacement requires that the computations include the contributions of the several modes of vibration deemed to be significant.

9. Turbulence-induced plate vibration may be of significant magnitude for small damping and/or sufficiently large mean square pressure fluctuations; the magnitude is enhanced, but not radically, at sufficiently large values of $q = k/k_s$. Hence in computation it appears practical to use a single representative value for q for the range of turbulence frequencies distributed about $\omega = U_c k_T = kc$ corresponding to $0 \le q = k/k_s \le 1.0$. A practical alternative would be to select the average of the mean square displacement responses computed for small and large values of q.

RECOMMENDATIONS

To simplify the computational procedure (and the computer program) and to achieve reasonably accurate vibroacoustic results for a vibrating plate fluid loaded on one side, the following recommendations are made. Note, however, that the user who wishes to refine the accuracy of computations, determine the coupled mode contribution, identify a coupled mode response, or treat a closed rectangular cavity can incorporate the additional relevant results presented here into the computer program.

1. It is recommended, as a first approximation, that the equations for the added mass and corresponding natural frequency of only the *uncoupled* or self (dominant) modes of a fluid-loaded, *simply supported* rectangular plate be used in making vibroacoustic computations. This includes the *uncoupled* mode equation common to all of the results obtained in Appendixes A-E; see Appendix H for the corresponding computer program. 2. It is recommended that vibroacoustic computations for fluidloaded, *clamped-clamped* rectangular plates be made (for *uncoupled* modes only) by extending the equation for a fluid-loaded, simply supported rectangular plate to include this case, in accordance with the Leibowitz-Wallace methods of Reference 3; see Appendix H for the corresponding computer program.

ACKNOWLEDGMENTS

anta autoria di dereste datase erate destreta dataste active stative datas verte datas dereste date a construction datase datase en este datase datas

The author appreciates the encouragement and technical suggestions of Mr. Gerald J. Franz, the assistance of Mrs. G. Davis on all phases of the computer work presented here, and the overall guidance provided by Mrs. D. Wallace with respect to the computer work. He thanks Mr. W. Brown for permission to publish his program and for furnishing the results of computations for the boundary layer displacement thickness. Dr. Blake merits recognition for his valuable technical comments. Special acknowledgment is made to Dr. D. Feit and Dr. M. Junger of Cambridge Acoustical Associates for sending to the author the technical material which provided the basis for Appendix A. Special thanks are also accorded Mr. L. Maestrello and Mrs. C. Brown of Langley Research Center who performed some response computations for the author on their computer using the author's program.

APPENDIX A

THE FEIT-JUNGER METHOD

NOTATION

Amplitude of p Α Velocity of sound in fluid medium С с_р Compressional wave velocity of the plate equal to 1/2 $\begin{bmatrix} \rho_{s}(1-\nu^{2}) \end{bmatrix}$ Flexural rigidity of plate equal to $\frac{c_{p}^{2} \rho_{s}h^{3}}{12} = \frac{Eh^{3}}{12(1-\nu^{2})}$ $\rho_{s}(1-v^{2})$ D E Young's modulus Equal to 2.718; base for natural or Naperian system of е logarithms F(x,y)Driving force applied at coordinates x, y, z = 0F_{mn} Generalized force for the mn mode h Plate thickness Defined by Equation (A17b) Imnpq i Equal to $\sqrt{-1}$ k Acoustic wave number equal to ω/c $k_{m}, k_{n}, k_{p}, k_{q}$ Moda! wave numbers defined by Equation (A3) Surface wave number equal to $(k_m^2 + k_n^2)^{1/2}$ k s L_x, L_y Half length and half width of plate, respectively M p Total plate structural mass m, n, p, q Mode numbers Added modal mass per unit area m mn m mnpq Added mass of coupled modes mnpq per unit area p(x, y, z > 0)Pressure in fluid p(x, y, z = 0)Pressure on surface of plate $\tilde{p}(Y_x, Y_y z)$ Double inverse Fourier transform in γ_x and γ_y Radiation modal damping r_{mn} Mutual specific acoustic resistance for coupled modes mnpq rmnpq

41

ð

a se constructivos de la sector d

Structural modal resistance

w mn, w Displacement amplitude of vibration of a plate for the mn and pq modes of vibration, respectively

ANALASIS SAMA SAMANANANA

w_{mn}(x,y) Modal displacement at surface of plate

w(x,y, z=0) Fluid particle displacement at surface of plate equal to plate displacement

 $\widetilde{w}(\Upsilon_x, \Upsilon_y)$ Transform of displacement w(x, y, z = 0); equal to a series of modal transforms

 $w_{pq}(Y_x, Y_y)$ Modal transform of displacement at the surface of plate

x, y, z Rectangular coordinates; x and y are in the plane of the plate and z is normal to the plate

rs

Equal to $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

Delta function; $\int \delta(k_i - \gamma_j) d_{\gamma_j} = \begin{cases} 1, \gamma_j = k_i \\ 0, \gamma_j \neq k_i \end{cases}$

 γ_x, γ_v

3

η_s

ν

ρ

ρ_e

ρ_s

ω

 ω_{c}

 $\delta(k_i - \gamma_j)$

Wave numbers which are the coordinates in Fourier transform space

A small quantity

Structural loss factor equal to $r_s \omega / \omega_{mn}^2 \rho_s h$

Poisson's ratio

Mass density of fluid medium

 ρ_a Added mass density of fluid per unit volume equal to m_{mn}/h

Sum of mass densities of plate and fluid equal to $\rho_s + \rho_a$

Mass density of the plate

Natural circular frequency of vibration

Coincidence frequency equal to $c^2 / \left(\frac{h}{\sqrt{12}} c_p \right)$

 ω_{mr}, ω_{mn}

In vacuo and submerged natural circular frequency, respectively, for the mn mode of vibration i.e., resonance frequency for the *in vacuo* and submerged plate, respectively DERIVATION

From Reference 4, the *even* modes of a simply supported rectangular plate vibrating *in vacuo* have a configuration described by \star

$$w_{mn}(x,y) = W_{mn} \cos k_{m} x \cos k_{n} y, |x| < L_{x}, |y| < L_{y}$$

= 0 |x| > L_{x}, |y| > L_{y} (A1)

with boundary conditions

$$cos k_{m}L_{x} = cos k_{n}L_{y} = 0$$

$$sin k_{m}L_{x} = (-1)^{m}$$

$$sin k_{n}L_{y} = (-1)^{n}$$
(A2)

The boundary conditions restrict the wave numbers ${\bf k}_{\rm m},~{\bf k}_{\rm n},~{\rm or}~{\bf k}_{\rm s}$ to the values

$$k_{m} L_{x} = (2m + 1) \frac{\pi}{2} ; m, n = 0, 1, 2 \cdots$$

$$n y n$$

$$k_{s} = \left(k_{m}^{2} + k_{n}^{2}\right)^{1/2} = \frac{\pi}{2} \left[\left(\frac{2m+1}{L_{x}}\right)^{2} + \left(\frac{2n+1}{L_{y}}\right)^{2} \right]^{1/2} ; m, n=0, 1, 2 \cdots$$
(A3)

Also $k_s^2 > k^2$ for $\omega_{mn} < \omega_c = c^2/(h/\sqrt{12})c_p$ (see Reference 4) so that each wave is characterized by one pair of wave numbers k_m and k_n , i.e., the normal modes of a plate vibrating *in vacuo* are described in terms of a discrete wave number spectrum. The modal configurations are defined to be orthogonal to each other so that each mode can be excited independently by a suitable distribution of the load.

For the *submerged* plate (exposed to water on one side), however, each of the originally normal (k_m, k_n) modes generates an acoustic pressure in the plane of the plate (which can be represented as an inverse Fourier

This configuration is of practical importance because it matches the modes of vibration of a simply supported, rectangular plate driven at the center.

transform) whose wave number spectrum is *continuous* and thereby encompasses the *discrete* wave numbers of the other originally (i.e., *in vacuo*) normal modes. The resulting pressure distribution due to a single mode is not orthogonal to the other modes. This causes the modal configurations to couple, and thereby to lose their normal mode character. Thus if we attempt to formulate the problem in terms of *in vacuo* normal modes, we shall find that these modes become coupled; the subsequent discussion will clarify these features. The modes also lose their standing wave character in the range $k_c^2 > k^2$ because the plate boundaries are energy sinks.

For a distributed load, the forced equation of motion for the $(m,n)^{th}$ mode of an *undomped* thin rectangular plate extending from $-L_x$ to L_x and $-L_y$ to L_y is⁴⁻⁶

$$L_{x}L_{y}\rho_{s}h\left[\omega_{mn}^{2}-\omega^{2}\right]W_{mn} = F_{mn}$$
(A4)

Here, $L_x L_y \rho_s h = M_p/4$ where M_p is the mass of the plate,

 $\omega_{mn} = \frac{hc_p}{\sqrt{12}} (k_m^2 + k_n^2) = \left(\frac{D}{\rho_s h}\right)^{1/2} [k_m^2 + k_n^2] \text{ is the in vacuo natural frequency of this particular mode, } F_{mn} \text{ is the generalized force associated with a concentrated driving force applied at x=0, y=0, and the surface pressure p(x,y,0) is represented by}$

$$F_{mn} = F(0,0) - \int_{-L_{x}}^{L_{x}} \int_{-L_{y}}^{L_{y}} p(x,y,0) \cos k_{m} x \cos k_{n} y dx dy$$
(A5)

To obtain an explicit expression for p(x,y,0) as a double integral, the surface pressure, which is *spatially aperiodic* in x and y, is written as a double inverse transform in γ_x and γ_y .

With inclusion of a structural loss factor

$$\omega_{mn} = \frac{h|c_p|}{\sqrt{12}} [k_m^2 + k_n^2] \left(1 - \frac{\eta_s}{2}\right) \text{ (see Reference 4).}$$

$$\widetilde{p}(\gamma_{x}, \gamma_{y}; z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y, z) e^{\left[-i(\gamma_{x} x + \gamma_{y} y)\right]} dx dy$$
(A6)

$$p(x, y; z) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{p}(\gamma_x, \gamma_y; z) e^{\begin{bmatrix} i(\gamma_x x + \gamma_y y) \end{bmatrix}} d\gamma_x d\gamma_y \quad (A7)$$

Now the three-dimensional Helmholtz wave equation is

$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k^2\right] p(x,y;z) = \left[\nabla^2 + k^2\right] p(x,y;z) = 0$$
(A8)

The double transform of the foregoing equation is

$$\left(k^{2} - \Upsilon_{x}^{2} - \Upsilon_{y}^{2} + \frac{\partial^{2}}{\partial z^{2}}\right) \tilde{p}(\Upsilon_{x}, \Upsilon_{y} z) = 0$$
(A9)

Assuming a solution of the form $\tilde{p} = Ae^{i\alpha z}$, the solution of Equation (A9) is

$$\tilde{p}(\gamma_x, \gamma_y; z) = Ae^{i(k^2 - \gamma_x^2 - \gamma_y^2)^{1/2} z}$$
 (A10)

where the boundary condition $\partial p/\partial z = \rho \omega^2 w$ at z=0 yields the value (see Chapter IV of Reference 4)

* The Fourier transform of the term $\frac{\partial^2}{\partial x^2} p(x,y;z)$ is obtained by integrating by parts and setting p and its derivative equal to zero at the limits $x=\pm \infty$. This yields $\int_{-\infty}^{\infty} \partial^2 p/\partial x^2 e^{-iY_x x} dx = -Y_x^2 p(Y_x,y;z)$. Also because $\partial^2/\partial y^2$, $\partial^2/\partial z^2$, and k^2 are independent of x, they can be taken outside the integral sign so that $(\partial^2/\partial y^2 + \partial^2/\partial x^2 + k^2) \int_{-\infty}^{\infty} p(x,y;z)e^{-iY_x x} dx = (\partial^2/\partial y^2 + \partial^2/\partial z^2 + k^2) \int_{-\infty}^{\infty} p(x,y;z)e^{-iY_x x} dx$

$$A = \frac{-i\rho\omega^{2} \tilde{w}(Y_{x}, Y_{y})}{(k^{2}-Y_{x}^{2}-Y_{y}^{2})^{1/2}}$$
(A11)

Substituting Equation (A11) in Equation (A10) and the result in Equation (A7), then letting z=0, and considering even modes only, we get

$$p(x,y,0) = \frac{-i\rho c^2 k^2}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\widetilde{w}(\Upsilon_x,\Upsilon_y) \cos \Upsilon_x \cos \Upsilon_y}{(k^2 - \gamma_x^2 - \gamma_y^2)^{1/2}} d\Upsilon_x d\Upsilon_y$$
(A12)

where $\tilde{w}(Y_x, Y_y)$ is the series of modal transforms

$$\widetilde{w}(\Upsilon_{x},\Upsilon_{y}) = \sum_{pq} \widetilde{w}_{pq}(\Upsilon_{x},\Upsilon_{y})$$
(A13)

ためのないないというないのないないである。

Substituting Equation (A13) in Equation (A12) and the result in Equation (A5), we get

$$F_{mn} = F(0,0) + \frac{i\rho c^{2}k^{2}}{4\pi^{2}} \sum_{pq} \int_{-L_{x}}^{L_{x}} \int_{-L_{y}}^{L_{y}} \left[\int_{-\infty}^{\infty} \frac{\tilde{w}_{pq}(\gamma_{x},\gamma_{y})\cos\gamma_{x}x\cos\gamma_{y}yd\gamma_{x}d\gamma_{y}}{(k^{2}-\gamma_{x}^{2}-\gamma_{y}^{2})^{1/2}} \right]$$
(A14)

• cos k_m x cos k_ny dxdy

The double Fourier transform of Equation (A1) yields

$$\tilde{W}_{mn} = \tilde{W}_{mn} \int_{-L_{x}}^{L_{x}} \int_{-L_{y}}^{L_{y}} \cos \gamma_{x} \cos k_{m} x \cos \gamma_{y} y \cos k_{n} y \, dx \, dy$$

$$= \frac{4 \tilde{W}_{mn} k_{m} k_{n} (-1)^{m+n} \cos \gamma_{x} L_{x} \cos \gamma_{y} L_{y}}{(k_{m}^{2} - \gamma_{x}^{2}) (k_{n}^{2} - \gamma_{y}^{2})}$$
(A15)

Substituting the time integral of the first of Equations (A15) in Equation (A14), we get

$$F_{mn} = F(0,0) + \frac{i\rho c^2 k^2}{4\pi^2 w_{mn}} \sum_{pq} \int_{-\infty}^{\infty} \frac{\tilde{w}_{pq}(Y_x, Y_y) \tilde{w}_{mn}(Y_x, Y_y)}{(k^2 - Y_x^2 - Y_y^2)} dY_x dY_y$$
(A16)

Using the time integral of the second of Equations (A15) for both \tilde{w}_{mn} and \tilde{w}_{pq} , we get

$$F_{mn} = F(0,0) + \frac{i4\rho c^{2}k^{2}k_{mn}^{k}(-1)^{m+n}}{\pi^{2}} \sum_{p} \sum_{q} W_{pq}k_{p}k_{q}(-1)^{p+q} \iint_{-\infty}^{\infty} (A17)$$

$$\frac{\cos^{2} \gamma_{x}L_{x} \cos^{2} \gamma_{y}L_{y} d\gamma_{x}d\gamma_{y}}{(k^{2}-\gamma_{x}^{2}-\gamma_{y}^{2})^{1/2}(k_{m}^{2}-\gamma_{x}^{2})(k_{n}^{2}-\gamma_{y}^{2})(k_{p}^{2}-\gamma_{x}^{2})(k_{q}^{2}-\gamma_{y}^{2})}$$

The exact solution of Equation (A17) requires a numerical integration of the branch cut integral. Reference 4 avoids the determination of the exact solution by evaluating the integral for the *high wave numbers* (short wavelength) limit only. This simplifies the analysis, and the final expression is considered to hold for a finite rectangular plate over a particular wave number and frequency range.

Write

$$F_{mn} = F(0,0) + i\omega \sum_{pq} I_{mnpq} W_{pq}$$
(A17a)

where we define

$$I_{mnpq} = \frac{4\rho\omega k_{m}k_{n}(-1)^{m+n}}{\pi^{2}} \sum_{pq} (-1)^{p+q} k_{p}k_{q}$$
 (A17b)

ñ

(equation continued on page 48)

(Equation continued from page 47)

$$\left\{ \iint_{-\infty}^{\infty} \frac{\cos^{2} \gamma_{x} L_{x} \cos^{2} \gamma_{y} L_{y} d\gamma_{x} d\gamma_{y}}{\left(k^{2} - \gamma_{x}^{2} - \gamma_{y}^{2}\right)^{1/2} \left(k^{2} - \gamma_{x}^{2}\right) \left(k^{2} - \gamma_{y}^{2}\right) \left$$

And a support of the support

こうかいまた やみかい やまたい かんかい かんかい アイ・シークト あまい マイド いたかやく やった かったい せんかい

Thus the complex quantity I is the product of $L_{xy}L_{y}$ and the sum of the mutual specific acoustic resistance r_{mnpq} and the reactance - i ωm_{mnpq} , also referred to as modal coupling coefficients, where

$$r_{mnpq} = Re (I_{mnpq})$$

 $m_{mnpq} = -\frac{1}{\omega} Imag (I_{mnpq})$

Then

$$F_{mn} = F(0,0) + i\omega \sum_{pq} L_x L_y (r_{mnpq} - i\omega_{mnpq}) W_{pq}$$

= $F(0,0) + i\omega L_x L_y (r_{mn} - i\omega m_{mn}) W_{mn} + \sum_{pq \neq mn} i\omega L_x L_y (r_{mnpq} - i\omega m_{mnpq}) W_{pq}$
= $F(0,0) + L_x L_y (\omega^2 m_{mn} + i\omega r_{mn}) W_{mn} + \sum_{pq \neq mn} (\omega^2 m_{mnpq} + i\omega r_{mnpq}) W_{pq}$

For the simplified analysis, we write the Lagrange equation for the forced motion of a mode, replacing Equations (A4) and (A5) by (note that harmonic time dependence is in the form $e^{-i\omega t}$)

$$L_{x}L_{y}\rho_{s}h\left[\omega_{mn}^{2}-\omega^{2}\right]W_{mn} - i\omega\left(\frac{L_{x}L_{y}\rho_{s}h\omega_{mn}^{2}\eta_{s}}{\omega}\right)W_{mn}$$

$$= F(0,0)+L_{x}L_{y}\left(\omega^{2}m_{mn} + i\omega r_{mn}\right)W_{mn} + \sum_{pq\neq mn}L_{x}L_{y}\left(\omega^{2}m_{mnpq} + i\omega r_{mnpq}\right)W_{pq} = F_{mn}$$
(A18)

where the left member now includes a term for the structural resistance $r_s = \omega_{mn}^2 \rho_s hn_s / \omega$ expressed in terms of a structural loss factor n_s and the radiation loading portion of the generalized forces are written as two terms. The first of these terms represents the uncoupled (added mass and radiation) damping, i.e., the self-impedance due to radiation loading whereas the second of these terms represents the coupled added mass and radiation damping i.e., the mutual impedance due to radiation loading. If included in the computation, the coupled terms must be evaluated numerically.

Transferring the radiation-loading portion of the generalized forces to the left member of Equation (Al8), the Lagrange equation becomes

$$\begin{bmatrix} -\omega^{2} \left(\rho_{s}h + m_{mn}\right) - i\omega \left(\frac{\rho_{s}h\omega_{mn}^{2} \eta_{s}}{\omega} + r_{mn}\right) + \omega_{mn}^{2}\rho_{s}h \end{bmatrix} W_{mn}$$

$$- \sum_{pq \neq mn} \left(\omega^{2}m_{mnpq} + i\omega r_{mnpq}\right) W_{pq} = \frac{F}{L_{x}L_{y}}$$
(A19)

which is a doubly infinite set of equations for the unknowns W_{mn} coupled by the terms m_{mnpq} and r_{mnpq} . Thus I_{mnpq} is a coupling coefficient linking an (m,n) mode to a (p,q) mode.

For kL_x , $kL_y > 3$ which for $\omega < \omega_c$, is equivalent to k_mL_x , $k_nL_y >> 1$ (i.e., the criteria for large plates), see Equation (A3), the coupling terms are much smaller than the self-impedance components so that they can be ignored in making an approximate evaluation of the far field.

Feit et al. now proceed to solve the integral Equation (A14) for the case $k_{m_X} L_x$ and $k_{n_y} L_y$ approaching infinity in order to gain some insight into the above approximation. In this case the orthogonality of the cosines in Equation (A14) yields

^{*}However, even without going to the limit of infinite $k_{m}L_{x}$, $k_{n}L_{y}$, the pq summation is small when $k_{m}L_{x}$, $k_{n}L_{y}$ is large; see Reference 7.

$$\lim_{\substack{k_m L_x \neq \infty \\ n L_y \neq \infty}} \int_{-L_y}^{L_y} \int_{-L_x}^{L_x} \cos \gamma_x \cos k_m \cos \gamma_y \cos k_n y \, dxdy = 4\pi^2 \, \delta(k_m - \gamma_x) \delta(k_n - \gamma_y)$$
(A20)

Using these δ functions in Equation (Al4), we find

or

$$F_{mn} = F(0,0) + i\rho c^{2}k^{2} \sum_{pq} \iint_{-\infty}^{\infty} \frac{\tilde{w}_{pq}(Y_{x},Y_{y})\delta(k_{m}-Y_{x})\delta(k_{n}-Y_{y})dY_{x}dY_{y}}{(k^{2}-Y_{x}^{2}-Y_{y}^{2})^{1/2}}$$
(A21)
$$F_{mn} = F(0,0) + \frac{i\rho c^{2}k^{2} \sum_{pq} \tilde{w}_{pq}(k_{m},k_{n})}{(k^{2}-k_{m}^{2}-k_{n}^{2})^{1/2}}$$
(A22)

Using the second of Equations (A15), Equation (A22) becomes: (In Equation (A15), let m p, n q, x m, y n.)

$$F_{mn} = F(0,0) + \frac{i4\rho c^2 \sum_{pq} W_{pq} k_p k_q (-1)^{p+q} \cos k_m L_x \cos k_n L_y}{(k^2 - k_m^2 - k_n^2)^{1/2} (k_p^2 - k_m^2) (k_q^2 - k_n^2)}$$
(A23)

The second term in the right member vanishes when $k_p \neq k_m = \Upsilon_x$, $k_q \neq \kappa_n = \Upsilon_y$ (see Appendix B). For $k_p = k_m = \Upsilon_x$, $k_q = k_n = \Upsilon_y$, the denominator vanishes but the second term is finite because the boundary conditions, Equation (A3), require that the numerator also vanish. Hence we evaluate the indeterminate quantity

$$\lim_{\substack{k_{p}-k_{m} \neq 0 \\ k_{q}-k_{n} \neq 0}} \int \frac{\cos k_{m}L_{x}}{(k_{p}^{2}-k_{m}^{2})} \left[\frac{\cos k_{n}L_{y}}{(k_{q}^{2}-k_{n}^{2})} \right]$$

For lim

$$k_p - k_m \neq 0$$
 $\frac{\cos k_n L_x}{m_n x}$ let $k_p = k_m + \varepsilon$, $k_p^2 \approx k_m^2 + 2\varepsilon k_m$
 $k_p^2 - k_m^2$

Then

$$\lim_{\substack{k_p - k_m \neq 0}} \frac{\cos k_m L_y}{k_p^2 - k_m^2} \approx \lim_{\epsilon \to 0} \frac{\cos (k_p - \epsilon) L_x}{2\epsilon k_m}$$

$$\approx \frac{\cos k_m L_x \cos \epsilon L_x + \sin k_p L_x \sin \epsilon L_x}{2\epsilon k_m}$$
(A24)
$$\approx \frac{(-1)p\epsilon L_x}{2\epsilon k_m} = \frac{(-1)pL_x}{2k_m}$$

Similarly,

$$\lim_{k_{q}-k_{n} \to 0} \frac{\cos k_{n}L_{y}}{k_{q}^{2}-k_{n}^{2}} \approx \frac{(-1)^{q}L_{y}}{2k_{n}}$$
(A25)

านาา ระการสำนัญชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีชีวิจกับรับรับชีชีชีชีชีชีวีมี 2 กระโหมีที่มีสัม 2015 กระการสำนั

الم من موانع المرد المانية المعانية الموانع المانية عن معانية الموانع الموانع المانية المعانية المعانية الموانية ا

Substituting Equations (A24) and (A25) in Equation (A23), setting $(-1)^{2p+2q} = 1$, letting $W_{pq} \rightarrow W_{mn}$, and dropping \sum_{pq} since the coupling terms vanish in the large $k_m L_x$, $k_n L_y$ limit, we obtain

$$F_{mn} = F(0,0) + \frac{i\rho c^2 k^2 W_{mn} L_x L_y}{(k^2 - k_m^2 - k_n^2)^{1/2}}$$
(A26)

Hence in the large $k_m L_x$, $k_n L_y$ limit

$$F_{mn} = F(0,0) + \frac{\omega^{2} \rho L_{x} L_{y} W_{mn}}{(k_{m}^{2} + k_{n}^{2} - k^{2})^{1/2}} \left\{ k_{m}^{2} + k_{n}^{2} \right\} = F(0,0) + \omega^{2} L_{x} L_{y} m_{mn} W_{mn} \left\{ k_{m}^{2} + k_{n}^{2} \right\}$$
(A27)
$$= F(0,0) + \omega^{2} L_{x} L_{y} m_{mn} W_{mn} = \left\{ k_{m}^{2} - k_{n}^{2} \right\}$$

where (see Equation (A18))

$$m_{mn} = \frac{\rho}{(k_m^2 + k_n^2 - k^2)^{1/2}} = \frac{\rho}{(k_s^2 - k^2)^{1/2}} \approx \frac{\rho}{k_s}$$
(A27a)

is the added mass per unit area which is shown in Reference 4 to correspond to an infinite train of straight-crested parallel waves or of straightcrested orthogonal waves. Feit and Junger assume that this added mass will hold for a finite rectangular plate, i.e., the added mass of a finite plate whose dynamic configuration embodies many nodal lines is effectively that of an infinite train of standing waves.

For the low frequency range where few modes contribute to the far field, a deterministic approach can be used. The resonance frequency for the submerged plate $\bar{\omega}_{mn}$ is then determined as follows:

$$\rho_{a} = \frac{m_{mn}}{h} = \frac{\rho}{(k_{s}^{2} - k^{2})^{1/2} h} ; k_{s} > k$$
 (A28)

Therefore

$$\rho_{e} = \rho_{s} + \rho_{a} = \rho_{s} + \frac{\rho}{(k_{s}^{2} - k^{2})^{1/2} h} ; k_{s} > k$$
(A29)

$$\frac{\rho_e}{\rho_s} = 1 + \frac{\rho}{\rho_s (k_s^2 - k^2)^{1/2} h} = 1 + \frac{m_m}{\rho_s h}$$
(A30)

the second s

Since $\omega_{mn} \propto \sqrt{\frac{1}{\rho_s h}}$ (see notation) and $\bar{\omega}_{mn}$ occurs at the frequency computed by the addition of the added mass to the mass of the plate, i.e.,

$$\bar{\omega}_{mn} \propto \sqrt{\frac{1}{\rho_{s}^{h+m}mn}}$$
 then

$$\frac{\omega_{mn}}{\bar{\omega}_{mn}} = \sqrt{1 + \frac{m_{mn}}{\rho_{s}h}}$$
(A31)

or

$$\bar{\omega} = \omega_{\rm mn} \left(1 + \frac{m_{\rm mn}}{\rho_{\rm s} h} \right)^{-1/2}$$
(A32)

and the state of the state of the state of the state of the

ويترفي المعالية والمحالية وال

$$= \omega_{mn} \left[1 + \frac{\rho}{\rho_{s} (k_{m}^{2} + k_{n}^{2} - k^{2})^{1/2} h} \right]^{-1/2}$$
(A33)

$$\approx \omega_{mn} \left[1 + \frac{\rho}{\rho_{s} (k_{m}^{2} + k_{n}^{2})^{1/2} h} \right]^{-1/2} = \omega_{mn} \left[1 + \frac{\rho}{\rho_{s} k_{s} h} \right]^{-1/2}; k_{s}^{2} >> k^{2} \quad (A34)$$

53

APPENDIX B

THE DAVIES METHOD

NOTATION

and the second of the second se

A p	Area of plate equal to $\ell_1 \ell_3$
B mn.	Coefficient of v_{mn} defined by Equations (B46) and (B47)
° _o	Velocity of sound in fluid medium
D	Flexural rigidity
e	Equal to 2.718; base for natural or Naperian system of logarithms
$I_{mq}(k_1), I_{nr}(k_3)$	Functions defined by Equations (B23) and (B26), respectively
I _{mm} (k ₁)	Function defined by Equation (B24)
i	Equal to $\sqrt{-1}$
k	Wave number equal to $ \underline{k} = k_1^2 + k_3^2$
ķ	Wave number vector with components $\{k_1, k_3\}$
^k o	Acoustic wave number equal to ω/c_0
^k 1	Component of \underline{k} lying along x_1 axis
^k 3	Component of <u>k</u> lying along x_3^{3} axis
k _m	Wave number equal to $m\pi/l_1$
k _n	Wave number equal to $n\pi/l_3$
k _{mn}	Surface wave number equal to $\sqrt{k_m^2 + k_n^2}$
² 1, ² 3	Length and width of plate, respectively
M p	Total mass per unit area represented by Equation (B49)
m P	Mass per unit area of panel
m mn	Added mass or fluid loading per unit area
m, n, q, r	Mode numbers
Р	Acoustic pressure generated by motion of panel
P mn	Acoustic modal pressure defined by Equation (B8)
р	Pressure field driving panel
P _{mn}	Driving modal pressure defined by Equation (B7)

55

_R (ω) mnqr	Coupling coefficient connecting the m,n mode with the q,r mode
$S_{mn}(\underline{k})$	Shape function
S mnqr	Modal radiction coupling term
T _{mnqr}	Modal mass loading coupling term
t	Time
ν	Panel normal velocity displacement
v mn	Modal velocity amplitude
$x_1, x_2, x_3 \equiv x_2, x_2$	Rectangular coordinates; x_2 is normal to the panel and
	the origin is at one corner of the panel; $x \equiv \{x_1, x_7\}$
y(x,t)	Panel normal displacement
$Z(\underline{k}, w)$	Radiation impedance
sgn ω	Equal to -1 for $\omega < 0$, + 1 for $\omega > 0$
*	Denotes complex conjugate
β	Coefficient accounting for mechanical damping of panel
∇^4	Equal to $D\left(\frac{\partial^4 y}{\partial x^4} + \frac{2\partial^4 y}{\partial x^2 \partial y^2} + \frac{\partial^4 y}{\partial y^4}\right)$ for isotropic plate
δ(k _i -k _j)	Delta function: $\iint_{-\infty}^{\infty} \delta(k_i - k_j) dk_i = 1 \text{ for } k_i = k_j$ $= 0 \text{ for } k_i \neq k_i.$
δ _{ij}	Kronecker delta equal to 1 for i=j, equal to 0 otherwise
ո _{mռ}	Modal structural loss factor
ρο	Mass density of fluid medium
$\Psi_{mn}(\tilde{x})$	Normalized characteristic functions
ω	Natural circular frequency of vibration

-tracto

13-13-14-14-14-14-14

745日本と現代会主義が多い

DESCRIPTION

Reference 7 treats a simply supported, thin, rectangular plate inserted in an infinite rigid baffle and loaded with a dense fluid on one side. The normal vibration velocity field of the plate is expanded in a series of *in vacuo* normal modes.^{*} The effect of structure-fluid interaction leads to the coupling of *in vacuo* modes represented by an infinite set of simultaneous linear equations to be solved for the infinite number of unknown modal response amplitudes. Fluid loading terms or coefficients in these equations are defined by integrals which are evaluated approximately for various regimes of frequency. Coupled and uncoupled plate modes are included. The imaginary part of the coefficients associated with these modes leads to a virtual mass which is added to the plate mass. This causes a decrease in the modal resonance frequencies.

DERIVATION

Assume that neither the panel vibration nor the acoustic field affects the applied external force acting on the thin panel (Figure 3). The equation of motion representing the normal displacement of the panel driven by a pressure field is then

$$D\nabla^{4}y + m_{p}\beta \frac{\partial y}{\partial t} + m_{p} \frac{\partial^{2}y}{\partial t^{2}} = p(\underline{x},t) - P(\underline{x},x_{2} = 0,t)$$
(B1)

.

As discussed in Appendix A, the wave number spectrum of the structure is discrete and that of the acoustic field is continuous. Hence for the submerged plate, *in vacuo* normal modes do not exist. However, the expansion of the velocity response of the structure in terms of its *in vacuo* modes is still valid. For convenience, we refer to these functions as modes and also refer to the resonance frequencies of these modes. Thus, we do not refer to a frequency associated with some natural mode of vibration but rather to a frequency corresponding to a maximum value of the amplitude response of a mode. The coupling together of the *in vacuo* modes by the structure-field interaction is a significant aspect of this problem. The effective coupling depends on both wave number matching and resonance frequency proximity and, therefore, on the relative magnitudes of the widths of the resonance peaks and the frequency spacing of the resonances.

The modal equation for the frequency Fourier transform of panel velocity is then

$$[Dk_{mn} - \omega^2 m_{p} - i\omega^2 m_{n} sgn \omega]v_{mn}(\omega) = -i\omega p_{mn} + i\omega P_{mn}$$
(B2)

obtained by use of the following relationships

$$\mathbf{v}(\mathbf{x},\omega) = \int_{-\infty}^{\infty} \mathbf{v}(\mathbf{x},t) e^{-i\omega t} dt$$
 (B3)

$$= \sum_{\mathbf{m},n=1}^{\infty} \mathbf{v}_{\mathbf{m}n}(\omega) \, \Psi_{\mathbf{m}n}(\underline{x})$$
(B4)

where

Hand and the state of the second

15 MULTING MANAGENESIS IN THE PARTY OF THE

14 C 12

$$\Psi_{mn}(x) = \frac{2}{\sqrt{A_p}} \sin k_m x_1 \sin k_n x_3$$
 (B5)

is a normal mode of a simply supported panel. Here $k_{n} = \frac{m\pi}{\ell_{1}}$, $k_{n} = \frac{n\pi}{\ell_{3}}$, $A_{p} = \ell_{1} \ell_{3}$, and $k_{mn}^{2} = k_{m}^{2} + k_{n}^{2}$. Also

$$\beta = \eta_{\rm s} |\omega| = \eta_{\rm s} \,\omega \, {\rm sgn} \,\omega \tag{B6}$$

and (see Chapter V of Reference 8)

$$p_{mn}(\omega) = \int_{A_{p}} p(\underline{x}, \omega) \, \Psi_{mn}(\underline{x}) \, d\underline{x}$$
(B7)

$$P_{mn}(\omega) = \int_{A_{p}} P(\underline{x}, 0, \omega) \psi_{mn}(\underline{x}) d\underline{x}$$
(B8)

where $dx = dx_1 dx_3$

The boundary condition in the plane of the plate relating the *acoustic pressure* and panel velocity $v(x,t) = \frac{\partial y}{\partial t}$ is

$$\frac{\partial P(\underline{x}, x_2, t)}{\partial x_2} \bigg|_{x_2 = 0} = -\rho_0 \frac{\partial v(\underline{x}, t)}{\partial t}$$
(B9)

so that

$$\frac{\partial P(\underline{x}, x_2, \omega)}{\partial x_2} \bigg|_{x_2 = 0} = i\omega \rho_0 v(\underline{x}, \omega)$$
(B10)

Using Equation (B10) together with the wave equation for $P(x,x_2,\omega)$ in an acoustic medium, the wave number-frequency transform relating the acoustic pressure to the panel velocity (see Equation (D10), Appendix D) is

$$P(\underline{k}, x_2, \omega) = Z(\underline{k}, \omega) v(\underline{k}, \omega) \varepsilon^{ix} 2 \sqrt{k_0^2 - k^2}$$
(B11)

where the radiation impedance $Z(k,\omega)$ is given by

$$Z(\underline{k},\omega) = \rho_0 c_0 \left(1 - \frac{k^2}{k_0^2}\right)^{-1/2}$$
(B12)

Here k = |k| and $k_0 = \frac{\omega}{c_0}$.

After some rearrangement, we obtain from the above definitions

$$P_{mn}(\omega) = \frac{1}{(2\pi)^2} \sum_{q,r=1}^{\infty} v_{qr}(\omega) \int_{-\infty}^{\infty} Z(\underline{k},\omega) S_{mn}(\underline{k}) S_{qr}^{*}(\underline{k}) d\underline{k} \qquad (B13)$$

$$= \sum_{q,r=1}^{\infty} R_{mnqr}(\omega) v_{qr}(\omega)$$
(B14)

where $d\underline{k} = dk_1 dk_2$ and $S_{mn}(\underline{k})$ is a shape function defined by

$$S_{mn}(\underline{k}) = \int_{A_{p}} \Psi_{mn}(\underline{x}) e^{\underline{i}\underline{k} \cdot \underline{x}} d\underline{x}$$
(B15)

and R_{mnqr} the coupling coefficient connecting the (m,n) mode and the (q,r) mode is defined by

$$R_{mnqr}(\omega) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} Z(\underline{k}, \omega) S_{mn}(\underline{k}) S_{qr}^{*}(\underline{k}) d\underline{k} \qquad (B16)$$

If $q \rightarrow m$ and $r \rightarrow n$, then the modal coupling coefficient becomes the modal radiation coefficient. The modal coupling coefficients connect the vibration of one plate mode with that of other plate modes because of platefluid interaction. The modal radiation coefficients, which can be obtained as special cases of the modal coupling coefficients, are a measure of how efficiently a particular mode shape resonates when no other modes are excited. The real parts of the coefficients are associated with a radiation damping effect on the plate response. The imaginary pa^{+} ; lead to a virtual mass to be added to the structural mass of the plate, thereby diminishing the modal resonance frequencies. The coupling coefficients can therefore be written

$$R_{mnqr} = S_{mnqr} + iT_{mnqr}$$
(B17)

and the equations of motion can be written

$$[Dk_{mn}^{4} - \omega_{p}^{2} - i\omega_{p}^{2} \eta_{mn} \operatorname{sgn} \omega] v_{mn}(\omega) - i\omega_{q,r}^{2} R_{mnqr} v_{qr} = -i\omega_{pmn}(\omega) \quad (B18)$$

Approximate values of $T_{mnqr} = -\omega m_{mnqr}$ are now obtained for (1) the entire frequency range, (2) the low frequency range, and (3) the high frequency range. Moreover, for these frequencies, values of T_{mnqr} are obtained for various wave number domains, i.e., for edge and corner modes. Finally, we observe that the acoustically slow edge modes are the major contributors to the virtual mass (see Figure 4). ENTIRE FREQUENCY RANGE

n ng 25 ka ng 27 ka ng 20 ka n

The shape functions used in Equation (B16) are:

$$S_{mn} = \int_{A_{p}} \Psi_{mn}(\underline{x}) e^{\frac{ik \cdot \underline{x}}{2}} d\underline{x} = \frac{2k_{m}k_{n}[(-1)^{m}e^{-ik_{1}\ell_{1}}-1][(-1)^{n}e^{-ik_{3}\ell_{3}}-1]}{\sqrt{A_{p}}(k_{1}^{2}-k_{m}^{2})(k_{3}^{2}-k_{n}^{2})}$$
(B19)

್ರವರ್ಷ- ಇಳ್ಳುಗಳು ಮನ್ನು

Hence the integrand of Equation (B16) includes terms of the form

$$1 + (-1)^{q+m} - (-1)^{q} e^{ik} 1^{\ell} 1 - (-1)^{m} e^{-ik} 1^{\ell} 1 = \begin{cases} 2[1 - (-1)^{m} \cos k_{1} \ell_{1}] & \text{for m, q} \\ \text{both odd or even;} & (B20) \\ 0 & \text{otherwise} \end{cases}$$

(An analogous equation holds for n and r.) Each mode is thus coupled to at most only one-quarter of all the other modes. The coupling coefficients are then written

$$R_{mnqr} = S_{mnqr} + iT_{mnqr} = \frac{64\rho_{o}c_{o}k_{m}k_{q}k_{r}k_{o}}{(2\pi)^{2}A_{p}}$$
(B21)
$$\iint_{0}^{\infty} \frac{[1-(-1)^{m}\cos k_{1}k_{1}][1-(-1)^{n}\cos k_{3}k_{3}]dk_{1}dk_{3}}{(k_{1}^{2}-k_{m}^{2})(k_{1}^{2}-k_{q}^{2})(k_{3}^{2}-k_{n}^{2})(k_{3}^{2}-k_{r}^{2})(k_{o}^{2}-k_{1}^{2}-k_{3}^{2})^{1/2}}$$

ويردون أنفاء لغا فيقدمهما المكامرة وللمرا

ANY TO ANOT

STATES

and a war all the second second second the second

We consider only the imaginary part of the integral which is the mass loading coupling term T_{mnqr} . This part of the integration is performed over all values $|\mathbf{k}| > k_0$, i.e., the region containing acoustically slow modes. Inspection of the integrand indicates that the largest coefficients are those having either m=q or n=r, or both. In Equation (B21) we let $(k_0^2 - k_1^2 - k_3^2)^{1/2} \rightarrow -i(k_1^2 + k_3^2 - k_0^2)$.^{1/2} The region of integration for Equation (B21) is now divided into three regions covering acoustically slow modes, i.e., exterior to the acoustically fast region (see Figure 4).

$$\iint_{\substack{|\underline{k}| \ge k_{o}}} d\underline{k} = \int_{0}^{\infty} dk_{3} \int_{0}^{\infty} dk_{1} + \int_{0}^{\kappa_{o}} dk_{3} \int_{k_{o}}^{\infty} dk_{1} + \int_{0}^{\kappa_{o}} dk_{3} \int_{0}^{\kappa_{o}} dk_{1} + \int_{0}^{\kappa_{o}} dk_{1} + \int_{0}^{\kappa_{o}} dk_{2} + \int_{0}^{\kappa_{o}} dk_{1} + \int_{0}^{\kappa_{o}} dk_{2} + \int_{0}^{\kappa_{o}} dk_{1} + \int_{0}^{\kappa_{o}} dk_{2} + \int_{0}^{$$

Edge Kodes

It is clear from Figure 4 that the first of the integrals given in the right member of Equation (B22) are the dominant ones for the two X-type edge modes. We first perform the k_1 integration. Let

$$l_{mq}(k_1) = \frac{[1-(-1)^m \cos k_1 k_1]}{(k_1^2 - k_m^2)(k_1^2 - k_q^2)}$$
(B23)

A graph of this function is plotted in Figure 5. The function is such that

$$\int_{0}^{\infty} I_{mq}(k_1) dk_1 = 0 \text{ for } m \neq q$$

and

 $I_{mn}(k_1) \approx \frac{\pi l_1}{4k_m^2} \, \delta(k_1 - k_m) \text{ for } m = q$ (B24)

Hence

$$T_{mnmr} = \frac{-\frac{4\rho_{o}c_{o}k_{n}k_{n}k_{1}}{\pi A_{p}} \int_{k_{o}}^{\infty} \frac{I_{ar}(k_{3})dk_{3}}{[k_{3}^{2} - (k_{o}^{2} - k_{m}^{2})]^{1/2}}$$
(B25)

where $I_{nr}(k_3)$ as defined by Equation (B23) is

$$I_{nr}(k_3) = \frac{[1-(-1)^n \cos k_3 \ell_3]}{(k_3^2 - k_n^2)(k_3^2 - k_r^2)}$$
(B26)

Explicitly,

and a structure of a barrer we satisfied that the provide structure of the state barrers of the barrers of the

$$T_{mnmr} = \frac{-\frac{4\rho_{o}c_{o}k_{n}k_{r}k_{o}\ell_{1}}{\pi A_{p}} \int_{k_{o}}^{\infty} \frac{[1-(-1)^{n}\cos k_{3}\ell_{3}] dk_{3}}{(k_{3}^{2}-k_{n}^{2})(k_{3}^{2}-k_{r}^{2})[k_{3}^{2}-(k_{o}^{2}-k_{n}^{2})]^{1/2}}(B27)$$

We observe that there is no contribution from the signularities at $k_3 = k_n \neq k_r$ or $k_3 = k_r \neq k_n$ for n \neq r since in that case the term in brackets in the numerator of Equation (B27) becomes zero and $I_{nr}(k_3) \neq o$. Hence the only singularity of the integrand is the root singularity.

We now treat the terms 1 and $(-1)^n \cos k_3 \ell_3$ separately as Cauchy principal values. We make the approximation $k_3^{2} - k_n^{2} \approx -k_n^{2}$ and $k_3^{2} - k_r^{2} \approx -k_r^{2}$ (since there is little contribution from $k_3 \sim k_n$, $k_3 \sim k_r$ we consider $k_n, k_r > k_3$ from which the approximation follows). We write for the first principal value

$$\int_{k_{0}}^{\infty} \frac{1}{(k_{3}^{2}-k_{n}^{2})(k_{3}^{2}-k_{r}^{2})[k_{3}^{2}-(k_{0}^{2}-k_{m}^{2})]^{1/2}} dk_{3} \approx \frac{1}{k_{n}^{2}k_{r}^{2}} \int_{k_{0}}^{k_{n}} \frac{dk_{3}}{[k_{3}^{2}-(k_{0}^{2}-k_{m}^{2})]^{1/2}} dk_{3} \approx \frac{1}{k_{n}^{2}} \int_{k_{0}}^{k_{n}} \frac{dk_{3}}{[k_{n}^{2}-(k_{0}^{2}-k_{m}^{2})]^{1/2}} dk_{3} \approx \frac{1}{k_{n}^{2}} \int_{k_{0}}^{k_{n}} \frac{dk_{3}}{[k_{n}^{2}-(k_{0}^{2}-k_{m}^{2})]^{1/2}} dk_{3} \approx \frac{1}{k_{n}^{2}} \int_{k_{0}}^{k_{$$

$$= \frac{1}{k_{n}^{2}k_{r}^{2}} \ln \left[\frac{k_{n} + \sqrt{k_{n}^{2} - (k_{o}^{2} - k_{m}^{2})}}{k_{o} + \sqrt{k_{o}^{2} - (k_{o}^{2} - k_{m}^{2})}} \right]$$
(B29)

$$\approx \frac{1}{k_n^2 k_r^2} k_n \frac{2k_n}{k_o}$$
(B30)

Street Constraints

เราะเหนือสารรับเป็นสู่สารระบบสายครามสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารร

for $k_n^2 \gg k_o^2 - k_m^2$, $2k_n \gg k_o + k_m$. For coupling between resonant edge modes only, that is for modes close together in wave number space,

$$\ln \frac{\frac{2k}{n}}{k_0} \approx \ln \frac{\frac{2k}{r}}{k_0}$$
(B31)

The integral associated with the $(-1)^n \cos k_3 l_3$ term is shown in Reference 7 to lead to an asymptotic result due to the square root singularity. The magnitude of this result can be ignored in comparison with the dominant term given by Equation (B30). Hence for the edge modes, since $k_n^2 = k_{mn}^2 - k_m^2 \approx k_{mn}^2$
$$T_{mnmr} = \frac{-4\rho_o c_o}{\pi A_p} \frac{k_o \ell_1}{k_n k_r} \ell n \frac{2k_{mn}}{k_o}$$
(B32)

Finally when n=r so that $k_n=k_r$, Equation (B27) becomes for acoustically slow modes

$$T_{mnmn} = \frac{-4\rho_o c_o k_n k_r k_o \ell_1}{\pi A_p} \left[\frac{\pi \ell_3}{4k_n^2} \int_{k_o}^{\infty} \frac{\delta(k_3 - k_n) dk_3}{[k_3^2 - (k_o^2 - k_m^2)]^{1/2}} \right]$$
(B33)

$$\approx \frac{-\rho_{o} c k_{o}}{k_{mn}} \text{ for } k_{mn}^{2} \gg k_{o}^{2}$$
(B34)

-Summer

さいた

by virtue of the analog of Equation (B24) for $I_{nn}(k_3)$.

Corner Modes

For corner modes, $k_0^2 \ll k_m^2$ and since

$$\int_{k_0}^{\infty} dk_3 = \int_{0}^{\infty} dk_3 - \int_{0}^{k_0} dk_3 \approx \int_{0}^{\infty} dk_3$$

the integral in Equation (B27) becomes

$$\int_{0}^{\infty} \frac{I_{nr}(k_{3}) dk_{3}}{(k_{3}^{2}+k_{m}^{2})^{1/2}} = \int_{0}^{k_{n}} \frac{[1-(-1)^{n} \cos k_{3} \ell_{3}] dk_{3}}{(k_{3}^{2}-k_{n}^{2}) (k_{3}^{2}-k_{r}^{2}) (k_{3}^{2}+k_{m}^{2})^{1/2}}$$
(B35)

$$\approx \frac{1}{k_m^2 k_n^2} \qquad ; (n \neq r) \qquad (B36)$$

following a procedure similar to that used in evaluating the integral for the edge modes. Hence Equation (B27) yields

$$T_{mnmr} = \frac{-4\rho_{o}c_{o}}{\pi A_{p}} \frac{k_{n}k_{r}k_{o}\ell_{1}}{k_{mn}k_{mr}} \delta_{mq}$$
(B37)

Finally when n=r so that $k_n = k_r$, Equation (B27) becomes for accustically slow modes

$$T_{mnmn} \approx \frac{-4\rho_{o}c_{o}}{\pi A_{p}} k_{n}k_{r}k_{o}k_{1} \left[\frac{\pi k_{3}}{4k_{n}^{2}} \int \frac{\delta(k_{3}-k_{n})dk_{3}}{(k_{3}^{2}+k_{m}^{2})^{1/2}} \right]$$
(B38)

 $= -\rho_{0}c_{0}\frac{k_{0}}{k_{mn}} \text{ for } k_{mn}^{2} >> k_{0}^{2}$ (B39)

HALLANDANA ----

A SUPPLY A MANAGER

the set of the the second set we set the set of the second states the set of the second set of the set of the set

Moreover, inspection shows that the mass coupling T_{mnmn} is negligibly small for two acoustically fast modes.

Retaining only the dominant terms, Reference 7 summarizes the values of T_{mnqr} as follows:

For
$$(m,n)$$
 an X-type edge mode and (q,r) an edge mode.

$$T_{mnqr} = -\frac{4\rho_{o}c_{o}}{\pi A_{p}} \frac{k_{o}\ell_{1}}{k_{n}k_{r}} \ell_{n} \frac{2k_{mn}}{k_{o}} \delta_{mq} - \frac{4\rho_{o}c_{o}}{\pi A_{p}} k_{o}\ell_{3} \frac{k_{m}K_{q}}{k_{mn}k_{qn}} \delta_{qn}$$
(B40)

For large inertial coupling between modes, it is necessary that two mode numbers be the same so that the modes vibrate in the same shape in one direction. This is symbolized by the Kronecker delta functions. For (m,n) an X-type edge mode and (q,r) a corner mode.

$$T_{mnqr} = -\frac{4\rho_{o}c_{o}}{\pi A_{p}} k_{o}\ell_{3} \frac{k_{m}k_{q}}{k_{mn}^{2}k_{qr}^{2}} \delta_{nr}$$
(B41)

For (m,n) an X-type edge mode and (q,r) an acoustically fast mode.

$$T_{mnqr} = -\frac{4\rho_{o}c_{o}}{A_{p}} k_{o}\ell_{1} \frac{k_{r}}{k_{n}k_{o}} \delta_{mq}$$
(B42)

For (m,n) and (q,r) corner modes.

the further assisted in the particular states

$$T_{mnqr} = -\frac{4\rho_{o}c_{o}}{\pi A_{p}} k_{o}\ell_{1} \frac{k_{n}k_{r}}{k_{mn}^{2}k_{mr}^{2}} \delta_{mq} - \frac{4\rho_{o}c_{o}}{\pi A_{p}} k_{o}\ell_{3} \frac{k_{m}k_{q}}{k_{mn}^{2}k_{qn}^{2}} \delta_{nr} \qquad (B43)$$

For all modes in K space for which $|k| > k_0$ the self-inertia term is

$$T_{mnmn} = \begin{cases} -\rho_{o}c_{o}\frac{k_{o}}{k_{mn}}, k_{mn} > k_{o} \\ 0, k_{mn} < k_{o} \end{cases}$$
(B44)

error of the states of the states of the second states of the
Equations (B43) and (B44) may be combined to give the following result valid for all corner modes

$$T_{mnqr} = -\rho_{o}c_{o}\frac{k_{o}}{k_{mn}}\delta_{mq}\delta_{nr} - \frac{4\rho_{o}c_{o}}{\pi A_{p}}k_{o}\ell_{1}\frac{k_{n}k_{r}}{k_{mn}^{2}k_{mr}^{2}}\delta_{mq} - \frac{4\rho_{o}c_{o}}{\pi A_{p}}k_{o}\ell_{3} \cdot$$
(B44a)
$$\frac{k_{m}k_{q}}{k_{mn}^{2}k_{qn}^{2}}\delta_{nr}$$

That is, T_{mnmn} is the same for all acoustically slow modes and T_{mnqr} is of the same form for all cases treated, irrespective of the division by radiation characteristics into edge and corner modes. Equation (B18) is now written as

$$B_{mn}v_{mn} - i\omega \sum_{q,r} S_{mnqr}v_{qr} + \omega \sum_{q,r} T_{mnqr}v_{qr} = -i\omega p_{mn}$$
(B45)

Here

$$B_{mn} = Dk_{mn}^{4} - \omega_{p}^{2}M_{p} - i\omega_{p}^{2}m_{mn} \operatorname{sgn} \omega$$
(B46)

and a standard and the standard with the same standard and a standard standard and the standard standard standa

where

$$M_{p} = \begin{cases} m_{p} \left(1 + \frac{\rho_{o}}{m_{p}k_{mn}} \right), k_{mn} > k_{o} \\ m_{p} , k_{mn} < k_{o} \end{cases}$$
(B47)

We observe that the term $\rho_{o}c_{o}\frac{k_{o}}{k_{mn}}$ of Equation (B39) is included in B_{mn} and T_{mnqr} is defined solely as in Equations (B40) to (B43). The solution of the set of Equations (B45) is discussed in detail in Reference 7. It is shown that in Equation (B45), the total effect of the reactive coupling terms is considerably less than the modal self-inertia term, Equation (B44). The main reactive effect of the fluid is therefore the modal self-inertia term which acts to decrease the modal resonance frequencies.

The inertia terms for the low and high frequency limits obtained in Reference 7 by solving Equation (B45) are now presented.

LOW FREQUENCY LIMIT

At frequencies such that $k_0 l_1$, $k_0 l_3 < \pi$, all modes are of corner mode radiation character. For these frequencies

$$M_{p} \approx m_{p} \left(1 + \frac{\rho_{o} c_{o}}{\omega m_{p}} \frac{k_{o}}{k_{mn}} \right)$$
(B48)

HIGH FREQUENCY LIMIT

At high frequencies, $k_0 l_1$, $k_0 l_3 >> \pi$, the radiation and coupling characteristics of the modes are not the same for all modes as in the low frequency case. The important inertia term is the self-inertia defined by Equation (B44) so that

$$M_{p} = m_{p} \left(1 + \frac{\rho_{o}}{m_{p}k_{mn}}\right); k_{mn} > k_{o}$$

$$= m_{p} \qquad ; k_{mn} < k_{o}$$
(B49)

いておうないのであるとないのないのないないないないです。 ちょう

مدعدا مددار والمعاطية والمعارفة المحالية بمراجع المراجع المحالية

The high frequency analysis was restricted to frequencies below the acoustic critical frequency, that is, the resonant modes considered all have wave speeds on the plate less than the acoustic wave speed. Hence the case of resonantly excited acoustically fast modes are not treated. Since, however, the acoustic critical frequency for a 1/4 in. steel plate in water is about 40,000 Hz, the restriction is of no great practical significance.

For still greater refinements t'an the results presented here, the reader is referred to Reference 7; the refinements, however, do not significantly alter the results presented here.

APPENDIX C

and the second state of the se

THE LEIDOWITZ METHOD I

NOTATION

-

1.1.2.56

A P	Area of plate
c	Velocity of sound in fluid medium
F(0,0)	Driving force applied at coordinates x=0, y=0 (also z=0) i.e., origin of coordinate system, used in Appendix A, on plate sur- face
F	Generalized force for coupled mnpq modes
I	Integral defined by Equation (C2)
I _{mq} (k ₁)	Defined by Equation (R23) of Appendix B
k	Acoustic wave number equal to en/c
k _m ,k _n ,k _p ,k _q	Modal wave numbers defined by Equation (A3)
k Man	Surface wave number equal to $\sqrt{k_m^2 + k_n^2}$
^k 3	Wave number in the direction of the ordinate (defined as in notation for Appendix B)
¹ x, ¹ y	Half length and half width of plate, respectively
[£] 1, [£] 3	Equal to $2t_x$ and $2t_y$, respectively
m ,n,p,q	Mode numbers
m MD	Added mass per unit area
m mnpq	Mass of coupled modes mnpq per unit area
T mnpq	Modal mass coupling term
M bd	Displacement amplitude of vibration of a plate for the pq mode
δ(Υ _i -k _j)	Delta function; $\int_{-\infty}^{\infty} \delta(Y_i - k_j) dY_i = \begin{cases} 1, \ Y_i = k_j \\ 0, \ Y_i \neq k_j \end{cases}$
δ _{ij}	Kronecker delta equal to 1 for i=j; equal to 0 otherwise
Υ _x ,Υ _y	Wave numbers which are the coordinates in Fourier transform space
ρ	Mass density of fluid medium
ω	Natural circular frequency of vibration
	71

۲.

DESCRIPTION

It was indicated in Appendix A that Feit and Junger avoided the determination of the exact solution of Equation (A17). They obtained an approximate solution by evaluating the integral of the equivalent Equation (A14) for the high wave number limit and $\omega < \omega_c$. In the present Appendix we attempt to obtain approximate solutions directly from Equation (A17) using with some modifications the methods and results of Davies given in Appendix B. Thus with proper interpretation of the results as applicable to various modal regions, the work of Appendices A and B can be interrelated.

DERIVATION

For a single mode, the double integral of Equation (A17) may be rewritten in the following form; note that for a single mode the summation \sum_{pq} is dropped and wave numbers k_p, k_q are considered as known quantities corresponding to any particular set of prescribed mode numbers pq. Thus Equation (Ci) represents the contribution of a single prescribed pq mode to F_{un} (see footnote to sentence above Equation (C29)).

$$\begin{bmatrix} \frac{(1 + \cos 2Y_{x}\ell_{x})}{(k_{m}^{2} - Y_{x}^{2})(k_{p}^{2} - Y_{x}^{2})} \begin{bmatrix} (1 + \cos 2Y_{y}\ell_{y}) \\ (k_{m}^{2} - Y_{y}^{2})(k_{q}^{2} - Y_{y}^{2}) \end{bmatrix}$$

The problem is first discussed in terms of the results for various modal regions. Subsequently, it is shown that for the even modes, the general integral expressions for the virtual mass (or mass reactance) obtained from Equations (A17) and (B21) are identical.

since all terms in the integrand are even functions in $\begin{array}{c} Y \\ x \end{array}$ and $\begin{array}{c} Y \\ y \end{array}$. For convenience let

$$I = \iint_{0}^{\infty} \frac{dY_{x}dY_{y}}{[Y_{x}^{2} - (k^{2} - Y_{y}^{2})]^{1/2}} \left[\frac{(1 + \cos 2Y_{x})}{(k_{y}^{2} - Y_{x}^{2})(k_{p}^{2} - Y_{x}^{2})} \right] \left[\frac{1 + \cos 2Y_{y}}{(k_{n}^{2} - Y_{y}^{2})(k_{q}^{2} - Y_{y}^{2})} \right] (C2)$$

We evaluate I for the following cases:

Case I: m/p, n/q

We observe that for m≠p there is no contribution to the integral from the singularities at $\gamma_{x} = k_{p} \neq k_{p}$ or $\gamma_{x} = k_{p} \neq k_{m}$ because in that case the term in the numerator of the first bracket of Equation (C2) becomes zero (see Equation (A3)). Evaluation of the resultant indeterminate quantity, using L'Hospitals rule, yields c null result, i.e.,

$$\lim_{\substack{Y_x \to 0 \\ x \to 0}} \left(\frac{1}{k_p^2 - k_m^2} \cdot \frac{1 + \cos 2Y \ell_x x_x}{k_m^2 - Y_x^2} \right) = \frac{\ell_x}{k_p^2 - k_m^2} \cdot \frac{\sin 2k_k \ell_x}{k_m}$$

$$= \frac{\ell_x}{k_p^2 - k_m^2} \frac{\sin (2m+1)\pi}{k_m}, m=0,1,2\cdots$$

$$= 0 \text{ for all } k_m$$

A similar result is obtained for all k_n for $n \neq q$. Thus we conclude that the singularities at $\gamma_x = k_m \neq k_p$ or $\gamma_x = k_p \neq k_m$ and $\gamma_y = k_n \neq k_q$ or $\gamma_y = k_q \neq k_n$ make no contribution to the integral.

Moreover when $\gamma_x = k_m \neq k_p$, then in the first bracket of Equation (C2), $\cos 2\gamma \ell_x = \cos 2k \ell_m = \cos (2m+1)\pi = -1$ for all m. Since $\cos (2m+1)\pi = (-1)^m \cos m\pi$, then

$$\frac{(1 + \cos \frac{2\gamma_{x}}{x_{x}})}{(k_{p}^{2} - \gamma_{x}^{2})(k_{p}^{2} - \gamma_{x}^{2})} \rightarrow \frac{[1 - (-1)^{m} \cos \frac{2k_{p}}{x_{x}}]}{(\gamma_{x}^{2} - k_{p}^{2})(\gamma_{x}^{2} - k_{p}^{2})} \equiv 0 \text{ for } \gamma_{x} = k_{p} \neq k_{p} \text{ only (C3)}$$

Similar relationships obtain for $\gamma_x = k \neq k_x$, $\gamma_y = k \neq k_q$, and $\gamma_y = k \neq k_n$. For $\gamma_x \neq k_m$, the form of the left member of Equation (C3) differs from the form of $I_{mq}(k_1)$ (= $I_{mp}(\gamma_x)$ here) given by Equation (B23) of Appendix B and plotted in Figure 5, only for even values of m by the sign in the numerator preceding cos $2\gamma_x \ell_x$. Thus, by analogy with the work in Appendix B and from an inspection of Figure 5, it is apparent that the integrated contribution is very small over the range $0 < \gamma_y \leq \infty$.

The foregoing is compatible with the statement made in Appendix B to the effect that the largest contributors to the integral occur when either/ or m=p and n=q. Appendixes A and B also indicate that the dominant contribution occurs for m=p and n=q, i.e., the important inertia term is the selfinertia term. These cases are discussed next.

Case II: m=p, n≠q or n=q, m≠p

For m=p, $n\neq q$ we use the methods of Appendix B. For this case we have, using Equation (B24)^{*}

$$\frac{(1 + \cos 2Y_{x} \frac{\ell}{x})}{(k_{m}^{2} - Y_{x}^{2})(k_{p}^{2} - Y_{x}^{2})} \equiv \frac{[1 - (-1)^{m} \cos 2k_{m} \frac{\ell}{x}]}{(Y_{x}^{2} - k_{m}^{2})(Y_{x}^{2} - k_{p}^{2})} \approx \frac{\pi 2\ell_{x}}{4k_{m}^{2}} \delta(Y_{x} - k_{m}) \text{ for}$$

$$(C4)$$

$$Y_{x} = k_{x} = k_{p}$$

Equation (C2) then becomes

$$I = \frac{\pi 2 \ell_x}{4k_m^2} \int_0^\infty \left[\frac{1 + \cos 2Y_y \ell_y}{(k_n^2 - Y_y^2)(k_q^2 - Y_y^2)} \right] \frac{dY_y}{[Y_y^2 - (k_m^2 - k_m^2)]^{1/2}}$$
(C5)

นยางชนายายายใช้เรื่องคนให้เป็นคนให้ไปที่เมื่อให้เป็นกับเรี้ยงในเรี้ยงในเรี้ยงให้เรื่อง และกาย เป็นการที่เรื่อง และ

*In Equation (B24), let $l_1 = 2l_x$ and $k_1 \neq Y_x$; for later use, we note that $l_3 = 2l_y$.

For the X-type edge modes

$$I \approx \frac{\pi 2k_{x}}{4k_{m}^{2}} \int_{k_{0}}^{\infty} \frac{[1 + \cos 2Y \frac{k}{y}]}{[(k_{n}^{2} - Y_{y}^{2})(k_{q}^{2} - Y_{y}^{2})]} \frac{dY_{y}}{[(Y_{y}^{2} - (k_{m}^{2} - k_{m}^{2})]^{1/2}}$$
(C6)

neglecting as in Appendix B the contribution of acoustically fast modes occurring in the region $0 < Y_y < k_0$. The integral in Equation (C6) is similar in form to that of Equation (B27). Using the Cauchy principal value for the terms 1 and cos $2Y_y$ in Equation (C6), we find as before that the integrated contribution of the cos $2Y_y$ term can be ignored. Similar results are obtained for n=q, m/p. Hence the results obtained for edge modes in Appendix B can be used directly.

Similarly for the corner zodes when $k^2 \ll k_{a}^2$, Equation (C4) is written as

$$I = \frac{\tilde{u}^{2l} x}{4k_{m}^{2}} \int_{0}^{\infty} \left[\frac{1 + \cos 2\gamma l}{(k_{n}^{2} - \gamma_{y}^{2})(k_{q}^{2} - \gamma_{y}^{2})} \right] \frac{d\gamma_{y}}{(\gamma_{y}^{2} + k_{m}^{2})^{1/2}}$$
(C7)

1 TAMAN MARANA TAMAN TA

একা কি প্রিয়িক প্রিয়িটা, কি প্রিকারিকার্থ বিশ্ব প্রিয়িকা দেশ্বিকার প্রায় প্রিয়েশ বিশ্ব প্রিয়িটায় কে বিশ্ব প্রায় করে বিশেষ করে বিশেষ বিশ্ব ব

The integral is similar in form to the left member of Equation (B35). Hence using the Cauchy principal value for the term 1 and $\cos 2Y_y k_y$ in Equation (C7), we find that, as before, the integrated contribution of the $\cos 2Y_y k$ term can be ignored. Similar results are obtained for n=q, m≠p. Hence the results obtained for *corner modes* in Appendix B can be used directly.

Using Equations (B40)-(B43) we now find values of I, F_{mn} , and m_{mn} for various cases of modal coupling. Substituting Equation (C2) in Equation (C1), we have

$$F_{mn} = F(0,0) + \frac{4\rho c^2 k^2 k_m k_m k_q (-1)^{m+n+p+q}}{\pi^2} W_{pq} \cdot I$$
 (C8)

Inspection of the first two members of Equation (C4) indicates that for $\Upsilon_x = k_m = k_p$, $k_n \neq k_q$, the integrand of Equation (C1) and of Equation (B21) times -i are identical if, when using the Cauchy principal values, we

neglect the cos $2Y_{yy}^{\ell}$ and cos $k_{3}^{\ell} \frac{1}{3}$ terms. A similar identity exists for $Y_{yn} = k_{q}, k_{m} \neq k_{p}$. Hence substituting Equation (C2) in Equation (B21), we get

(imag) I = $\frac{\frac{T_{mnpq}}{64\rho ck_{m}k_{n}k_{p}k_{q}}; A_{p} = (2k_{x})(2k_{y}) = 4k_{x}k_{y}}{(2\pi)^{2}A_{p}}$ (C9)

where we have considered only the imaginary part of the integral in Equation (B21).

Substitution of Equation (C9) in Equation (C8) yields

where T_{mnpq} is given by Equations (B40)-(B43). (Note: Davies symbol $q \neq p$ and $r \neq q$ here; m, p stay the same, and all odd mode numbers used with respect to Davies origin for the plate represent even modes with respect to the Feit-Junger origin for the plate; see Appendix D.)

For
$$(\mathbf{n},\mathbf{n})$$
 an X-type edge mode and (\mathbf{p},\mathbf{q}) an edge mode.

$$F_{mn} = F(0,0) - \frac{ckA_{p}}{4} \left[-(-1)^{n+q} \frac{4\rho c}{\pi A_{p}} \frac{k2\ell_{x}}{k_{n}k_{q}} \ln \frac{2k_{mn}}{k} W_{pq} \delta_{mp} - (-1)^{m+q} \right]$$
(C11)
$$\frac{4\rho c}{\pi A_{p}} k2\ell_{y} \frac{k_{m}k_{p}}{k_{mn}^{2}k_{pn}^{2}} \sqrt[J]{pq} \delta_{pn}$$
(C11)
$$F(0,0) + \frac{2\rho c^{2}k^{2}}{\pi} \left[(-1)^{n+q}\ell_{x} \ln \frac{2k_{mn}}{k} W_{pq} \delta_{mp} + \frac{(-1)^{m+q}\ell_{y}k_{m}k_{p}}{k_{mn}^{2}k_{pn}^{2}} W_{pq} \delta_{pn} \right]$$
(C12)

Hence

and a variant of the static based of the three of a static based of the state of th

$$\mathbf{m}_{mnpq} = \frac{2\rho}{\pi} \left[\frac{(-1)^{n+q}}{k_{y} k_{n} k_{q}} k_{n} \frac{2k_{mn}}{k} \delta_{mp} + \frac{(-1)^{m+q} k_{m} k_{p}}{k_{x} k_{mn} k_{pn}} \delta_{pn} \right]$$
(C13)

$$F_{mn} = F(0,0) - \frac{ck(-1)^{m+p} A}{4} \left[\frac{-4\rho c}{\pi A} \frac{k^2 k}{p} \frac{k^2 k}{m^2 k p^2} \frac{k^2 k}{p q} \frac{k^2 k}{p q} \frac{k^2 k}{p q} \right]$$
(C14)

Hence

ne sy dis distriction to a nethalista of feas the base of the standard standard straight to standard the standa

$$\mathbf{m}_{mnpn} = \frac{2\rho}{\pi} \left[\frac{(-1)^{m+p}}{k_x} \frac{k_m k_p}{k_{mn}^2 k_{pn}^2} \delta_{nq} \right]$$
(C16)

ለስተ እና ምሳ የኮኖቲቲ ሲኖርቲቲ ስቴሮቲቲና የፍርቲቲቲና ቤብ የሚሰዱ በሚሰዱ ካላይ (ድርጎቲቲቲ ሲ<mark>ኖር የርስ አስት በመስከዱ በ</mark>ግግ እና በመስከት የሰላ እንደ ግብ ባለ

بالأيقاء والمكارش لالله الشياطيات بالبلكية للكارفان مستوس

For (m,n) an X-type edge mode and (p,q) an acoustically fast mode.

$$F_{mn} \approx F(0,0) \frac{-ck(-1)^{n+q} A_p}{4} \left[\frac{-4\rho ck 2\ell_x}{\Lambda_p} \frac{k_q}{k_n k^2} \bigvee_{pq} \delta_{mp} \right]$$
(C17)

$$= F(0,0) + \frac{2\rho c^{2} k^{2} (-1)^{n+q} \ell_{x} k_{q}}{k_{n} k^{2}} W_{pq} \delta_{mp}$$
(C18)

Hence

a ar har a
$$m_{mnmq} = 2\rho \left[\frac{(-1)^{n+q}}{2} \frac{k_q}{k_n k^2} \delta_{mp} \right]$$
(C19)

*

For (m,n) and (p,q) corner modes.

$$F_{mn} = F(0,0) - \frac{ckA}{4} \left[\frac{-(-1)^{n+q} 4\rho ck 2\ell_{xn} k_{q}}{\pi A_{p} k_{mn}^{2} k_{mq}^{2}} W_{pq} \delta_{mp} - (-1)^{m+p} \frac{4\rho ck 2\ell_{x} k_{q}}{\pi A_{p} k_{mn}^{2} k_{p}^{2}} \right]^{-(-1)^{m+p}} \frac{4\rho ck 2\ell_{x} k_{q}}{\pi A_{p} k_{mn}^{2} k_{p}^{2}}$$

$$= F(0,0) + \frac{2\rho c^{2} k^{2}}{\pi} \left[\frac{\binom{(-1)^{n+q} \ell_{x} k_{n} k_{q}}{k_{mn} k_{mq}}}{k_{mn} k_{mq}} \frac{k_{pq} \delta_{mp}}{k_{pq} \delta_{mp}} - \frac{\binom{(-1)^{m+p} \ell_{y} k_{n} k_{p}}{y_{m} p}}{k_{mn} k_{pn}^{2} k_{pn}^{2}} W_{pq} \delta_{nq} \right]$$
(C21)

Hence

$$\mathbf{m}_{mnpq} = \frac{2\rho}{\pi} \left[\frac{(-1)^{n+q} k_n k_q}{\sum_{\substack{k=2\\ y \ mn}}^{2} k_{mq}} \delta_{mp} + \frac{(-1)^{m+p} k_m k_p}{\sum_{\substack{k=2\\ x \ mn}}^{2} k_{pn}} \delta_{nq} \right]$$
(C22)

ANTIAL SY YE'S THE

Equations (C13), (C16), (C19), (C22) are identical to corresponding results obtained from Appendix B and presented as results in Table 1 as Items 2-5 for the Davies method. Having obtained the results for the added mass of the coupled modes, i.e., the coupled inertia terms, we now consider the added mass of the uncoupled modes, i.e., the self-inertia terms.

Case III: m=p, n=q

At m=p, n=q there occurs a dominant contribution to the integral in Equation (C1) from the singularities at $\Upsilon_x = k_m = k_p$ and $\Upsilon_y = k_n = k_q$. For this case

$$\frac{(1 + \cos 2Y_{x} l_{x})}{(k_{m}^{2} - Y_{x}^{2})^{2}} \rightarrow \frac{[1 - (-1) \cos 2k_{m} l_{x}]}{(k_{m}^{2} - Y_{x}^{2})^{2}} = I_{mm}(Y_{x}) = \frac{\pi \cdot 2l_{x}}{4k_{m}^{2}} \delta(Y_{x} - k_{m}) \quad (C23)$$

$$\frac{(1 + \cos 2Y_y \ell_y)}{(k_n^2 - \frac{\gamma}{y})^2} \neq \frac{[1 - (-1)^n \cos 2k_n \ell_y]}{(k_n^2 - \frac{\gamma}{y})^2} = I_{nn}(Y_y) = \frac{\pi \cdot 2\ell_y}{4k_n^2} \delta(Y_y - k_n) \quad (C24)$$

Hence Equation (C2) becomes

$$I = \frac{\pi^2 k_x k_y}{4k_m^2 k_n^2} \int_0^\infty \frac{\delta(\gamma_x - k_m) \delta(\gamma_y - k_n) d\gamma_x d\gamma_y}{[\gamma_x^2 - (k^2 - \gamma_y^2)]^{1/2}}$$
(C25)

$$=\frac{\pi^{2} k_{x}^{2} y}{4k_{m}^{2} k_{n}^{2} [k_{mn}^{2} - k^{2}]^{1/2}}$$
(C26)

Substituting Equation (C26) in Equation (C1), we get

$$F_{mn} = F(0,0) + \frac{\rho c^2 k^2 \, k_x \, k_y \, W_{mn}}{[k_{mn}^2 - k^2]^{1/2}}$$
(C27)

Equation (C27) is identical with Equation (A27). Hence the results given by Equations (A28)-(A34) apply here. We note that since the mass loading is associated with the imaginary part of the integral for which $\gamma_x^2 + \gamma_y^2 > k^2$ (i.e., acoustically slow modes) then from Equation (A28)

$$m_{mn} = \frac{\rho}{(k_{mn}^2 - k^2)^{1/2}} \approx \frac{\rho}{k_{mn}}, \ k_{mn}^2 > k^2$$
(C28)

Ş

entra tantan dewisi kense mineka ini di mini kana 200

institute of a new second for the second
The approximation value of m_{mn} given by Equation (C28) agrees with the results obtained in Equation (B44) since $T_{mnmn} = -\omega m_{mn} = -kcm_{mn}$. The result is therefore identical to the corresponding results presented in Table 1 as Item 1 for the Davies method.

PROOF OF IDENTITY OF FEIT-JUNGER AND DAVIES GENERAL INTEGRAL EXPRESSIONS FOR THE VIRTUAL MASS (FOR EVEN MODES)

The double integral of Equation (A17) may be rewritten in the form

$$F_{mn} = F(0,0) + \frac{i4\rho c^{2}k^{2}k_{m}k_{n}(-1)^{m+n}}{\pi^{2}} \sum_{p,q} W_{pq}k_{p}k_{q}(-1)^{p+q} \iint_{0}^{\infty} \left[\frac{1 + \cos 2Y_{x}k_{x}}{(k_{m}^{2} - Y_{x}^{2})(k_{p}^{2} - Y_{x}^{2})} \right]$$
(C29)

などのなどの時間はないです。

$$\left[\frac{1 + \cos 2Y_{y}\ell_{y}}{(k_{n}^{2} - Y_{y}^{2})(k_{q}^{2} - Y_{y}^{2})}\right]\frac{dY_{x}dY_{y}}{[k_{x}^{2} - Y_{x}^{2} - Y_{y}^{2}]^{1/2}}$$

In Appendix A (Feit-Junger), the origin is taken at the center of the plate whereas in Appendix B (Davies) the origin is taken at a corner of the plate. As shown in Appendix D and Figure 11 (see Appendix D), the modes numbered m = 1, 3... odd with respect to Davies origin represent the even modes with respect to Feit-Junger origin. By the Feit-Junger stipulation, Equation (A1), these are the only modes to be considered; similar relations hold for n,p,q. Hence $[-1]^{m+n} \equiv [-1]^{p+q} \Rightarrow 1$ and

$$\left[\frac{1 + \cos 2^{\gamma} \frac{2}{x^{2} x}}{(k_{m}^{2} - \gamma_{x}^{2})(k_{p}^{2} - \gamma_{x}^{2})}\right]_{\text{Feit-Junger}} \neq \left[\frac{1 - (-1)^{m} \cos k_{1} \ell_{1}}{(k_{m}^{2} - k_{1}^{2})(k_{q}^{2} - k_{1}^{2})}\right]_{\text{Davies}}$$

$$\left[\frac{1+\cos 2\gamma \ell_{y}}{(k_{n}^{2}-\gamma_{y}^{2})(k_{q}^{2}-\gamma_{y}^{2})}\right]_{\text{Feit-Junger}} \Rightarrow \left[\frac{1-(-1)^{n}\cos k_{3}\ell_{3}}{(k_{n}^{2}-k_{3}^{2})(k_{r}^{2}-k_{3}^{2})}\right]_{\text{Davies}}$$

Here, in contrast to Equation (C1), the contributions of all (p,q) modes to ${\rm F}_{\rm mn}$ are included.

where the Feit-Junger notation m,n,p,q + m,n,q,r, respectively, and 2&x, $2ky + k_1, k_3$, respectively. Also $Y_x, Y_y + k_1, k_3 = \text{components of } \underline{k}, k + k_0$, $\rho c + \rho_0 c_0$. Thus the imaginary part of Equation (C29) rewritten in Davies notation is: (for the imaginary part, $\int_{0}^{\infty} + \int_{|\underline{k}| \ge k_0}^{\infty}$ and we let $(k_0^2 - k_1^2 - k_3^2)^{1/2} + -i(k_1^2 + k_3^2 - k_0^2)^{1/2})$ (Imag) $F_{mn} = F(0,0) - \frac{4\rho_0 c_0^2 k_0^2 k_m k_n}{\pi^2} \sum_{q,r} W_{qr} k_q k_r, \int_{|\underline{k}| \ge k_0}^{\infty} \left[\frac{1 - (-1)^m \cos k_1 k_1}{(k_m^2 - k_1^2) (k_q^2 - k_1^2)} \right].$ (C30) (C30)

In Davies notation the expression for the virtual mass in Equation (A18) may be written

$$(F_{mn}) = (Imag) F_{mn} = \frac{\ell_1}{2} \cdot \frac{\ell_3}{2} \sum_{q,r} W_{qr} \omega^2 m_{mnqr} = -\frac{A_p}{4} \sum_{q,r} W_{qr} \omega T_{mnqr}$$
Virtual
mass
part
only
(C31)

where $A_p = \ell_1 \ell_3$, $T_{mnqr} = -\omega m_{mnqr} = -kcm_{mnqr}$ and where now T_{mnqr} includes $T_{mnmn} = -\omega m_{mnmn}$ ($\equiv -\omega m_{mn}$ in Equation (A18)) and q,r includes m,n in the summation.

Comparing Equation (C31) and (excluding the driving force F(0,0)) Equation (C30), we get

$$T_{mnqr} = \frac{64\rho_{o}c_{o}k_{m}k_{n}k_{q}k_{r}k_{o}}{(2\pi)^{2} A_{p}} \int_{|\underline{k}| \ge k_{o}}^{\infty} \left[\frac{1 - (-1)^{m} \cos k_{1}\ell_{1}}{(k_{m}^{2} - k_{1}^{2})(k_{q}^{2} - k_{1}^{2})} \right] \left[\frac{1 - (-1)^{n} \cos k_{3}\ell_{3}}{(k_{n}^{2} - k_{3}^{2})(k_{r}^{2} - k_{3}^{2})} \right] \cdot \frac{dk}{[k_{1}^{2} + k_{3}^{2} - k_{0}^{2}]^{1/2}}$$
(C32)

In Equation (E21) let $(k_0^2 - k_1^2 - k_3^2)^{1/2} \rightarrow -i(k_1^2 + k_3^2 - k_0^2)^{1/2}$ We then see that Equation (C32) is identical to the imaginary part of Equation (B21) which has the same integral limits. Hence for m,n,p,q equal to odd numbers, representing Feit-Jungers even modes, all solutions of Equation (B21) for T_{mnqr} obtained by Davies methods, applicable to various modal regions, are relevant as solutions to the Feit-Junger Equation (A17).

ì

APPENDIX D

LEIBOWITZ METHOD II

NOTATION

R. ALLEY STRANDED

A	Area of plate
c	Velocity of sound in fluid medium
c _l	Compressional wave velocity of the plate equal to $\frac{E}{\rho (1-v^2)}$
с р	Phase velocity
E	Young's modulus
e	Equal to 2.718; base for natural or Naperian system of logarithms
f_m^{rad}	Radiation force for the m th mode
F ^{rad} m	Magnitude of the radiation force of the m th mode; equal to $f_m^{rad}/e^{-i\omega t}$
¹ ₁ , ¹ ₂	Defined by equations below Equation (D36)
i	Equal to $\sqrt{-1}$
K(k _s)	Equal to $1/\sqrt{k_s^2 - k_o^2}$ in Equation (D38)
k _n , k _n	Modal wave numbers equal to $m\pi/\ell_1$ and $n\pi/\ell_2$, respectively
k _{mn}	Wave number equal to $\sqrt{k_m^2 + k_n^2}$
κ _n	Projection of \tilde{k}_0 on a normal to a plane lying along x_3
k _o	Acoustic wave number equal to ω/c
ќ _о	Wave vector equal to k_{oro}
k _s	Arbitrary wave number equal to $2\pi/\lambda_p = \omega/c_p$; $k_s^2 = k_1^2 + k_2^2$
κ̃ _s	Projection of \bar{k}_0 on a plane
k_{x_1}, k_{x_2}	Wave numbers in x_1^{-} and x_2^{-} directions, respectively
k ₁ ,k ₂ ,k ₃	Wave numbers along the x_1^- , x_2^- , x_3^- directions, respectively
<i></i> $\bar{k}_1, \bar{k}_2, \bar{k}_3$	Vector wave numbers in the x_1^- , x_2^- , x_3^- directions, respectively
^ℓ 1, ^ℓ 2	Length and width of plate, respectively

83

*

^L x, ^L y	Half length and half width of plate, respectively
^M loading	Total added (or virtual) mass
m mn	Added modal mass per unit area
m,n	Node numbers
Р	Amplitude of accustic pressure p
р	Acoustic pressure in fluid medium, i.e., in half-space $x_z > 0$
rad Pm	Radiation pressure for the m th mode
Q _j	Sound flux or source strength or volume velocity of j th source equal to the product of the velocity of the source and the surface area of the source
R	Distance from origin to a field or observation point
R _j	Distance from j^{th} source to the field or observation point; equal to R- $\tilde{r}_{0} \cdot \tilde{r}_{1}$ which is the projection of R _j on R (here
	$\bar{r}_{o} \cdot \bar{r}_{j}$ is a dot producted equal to the projected distance difference R-R.)
ŕ	Rest position of the plate
r _o , r _o	Magnitude of wave direction vector, and wave direction vector respectively; \bar{r}_0 is unit vector from origin to field or ob-
	servation point
r _j , r _j	Magnitude and vector for distance from origin to j th source lying in the plane
t	Time
V(r,t)	Instantaneous modal velocity of a point on the plane
V(r)	Velocity of plate at its rest position $\bar{\mathbf{r}}$; equal to plate velocity at $\mathbf{x}_3 = 0$
V(K _s)	Distribution of traveling plane waves in an infinite plane, i.e., Fourier distribution of the velocity $V(\bar{r},t)$ in the region of the plate
v _m	Complex amplitude of $V(\tilde{r},t)$; modal velocity
vo	Root mean square of $ V(\bar{r}) $; see Equation (D22); equal to $ V_m $
$x, x' = x - \frac{\ell}{2}$	Abscissa with origin at the corner and midpoint of the plate, respectively
x ₁ ,x ₂ ,x ₃	Rectangular coordinates, x_1, x_2 lie along the length and width of
	the plate of the plate, respectively; x_3 is normal to the plate
	and the origin lies at one corner of the plate

÷.

ŝ

" a bear also rate of the second through the second s

AN F & R. Markes are not a serve month

بالالمالية المراجعة والمراجعة والأملام الملا مطالحا الم

Z ^{rad} m	Radiation impedance
Γ _m (k _s)	Modal coupling parameter or directivity
⊽ ²	Equal to $(\partial^2/\partial x^2) + (\partial^2/\partial y^2) + (\partial^2/\partial z^2)$
λ p	Wavelength of plate equal to $2\pi/k_s = 2\pi c_p/\omega$
ν	Poisson's ratio
ρ _o	Mass density of fluid
ρ _s	Mass density of plate
$\Psi_{m}(\bar{r})$	Normal mode function
ω	Natural circular frequency of vibration
*	Denotes complex conjugate
	Denotes magnitude
<>_r	Denotes average value over r

DERIVATION

Consider a simply supported plate in an infinite plane baffle immersed in a fluid. Plane flexural waves form a wave field on this plate. We treat therefore a two-dimensional problem, in which radiation in the half-space $x_3 > o$ is of interest. The instantaneous modal velocity of a point on the plate, whose rest position is \bar{r} is given by⁸ (see Figure 6)

$$V(\bar{\mathbf{r}},t) = V_{m} \Psi_{m}(\bar{\mathbf{r}}) e^{-i\omega t}$$
(D1)

We expand $V(\bar{r},t)$ into a distribution $V(\bar{k}_s)$ of traveling plane waves in an infinite plane each of the form⁹ (e^{-iωt} is tacitly implied)

$$V(\tilde{\mathbf{r}}) = V(\tilde{\mathbf{k}}_{s})e^{i\tilde{\mathbf{k}}_{s}\cdot\tilde{\mathbf{r}}}$$
(D2)

For a plate vibrating with arbitrary wave number $k_s = 2\pi/\lambda_p = \omega/c_p$ and at frequency ω , it seems logical to make the following formulation for the sound pressure in the half-space $x_3 > 0$ (see Figure 6)

$$p(\bar{r}, x_3) = Pe^{i(\bar{k}_s \cdot \bar{r} + k_3 x_3)}$$
 (D3)

3

We require that the sound pressure represent a solution of the Helmholtz wave equation $^{9}\,$

Figure 6a - Plan View

Figure 6b - Edge View Normal to \bar{K}_s ; Vector Relations at \bar{r}

Figure 6 - Plan View and Edge View Normal to $\bar{K}_{\mbox{S}}$ of Plate in Infinite Plane Baffle

Notes:

1. $\psi_{\rm m}(\bar{\mathbf{r}})$ and $V(\bar{\mathbf{r}}, \mathbf{t})$ are normal to plane; + V is out of plane, - V is into plane 2. $x_1, x_2, \bar{k}_1, \bar{k}_2, \bar{k}_5$ lie in the plane, x_3, \bar{k}_n are normal to the plane 3. $k_3 = |\bar{k}_n| = \sqrt{k_0^2 - k_5^2}$ 4. $k_s = \frac{2\pi}{\lambda_p} = \frac{\omega}{c_p}$

પ્

સાહાત મહેત્વ વ્યવસ્થ કેલ છે. તે કે કે કે સાથક વિદ્યાવના કાળ્યે સ્ટર્ન્સ કે કે ઉપયોગ કે કે કે કે કે કે કે કે કે

and a uncert is shown on the second

$$\bar{v}^2 p + k_0^2 p = 0$$
 (D4)

Substituting Equation (D3) in Equation (D4), we get

$$k_{s}^{2} + k_{3}^{2} = k_{0}^{2}$$
 (D5)

We also require that the normal component of the sound velocity calculated from Equation (D3) coincide at the boundary surface $x_3=0$ with the plate velocity, i.e.,

$$V_{x_3} = 0 = V(\bar{r}) = \frac{1}{i\omega\rho_0} \left(\frac{\partial p}{\partial x_3}\right)_{x_3=0} = \frac{P_{x_3}}{\omega\rho_0} e^{i\bar{k}_3 \cdot \bar{r}}$$
(D6)

From Equations (D6) and (D2) we obtain

and Matter March 1986 Barth Barth Barth

$$P = \frac{\omega \rho_0 V(\bar{r})}{k_3} e^{i\bar{k}_s} \cdot \bar{r}$$
(D7)

$$=\frac{\rho_{o}ck_{o}V(\bar{k}_{s})}{\sqrt{k_{o}^{2}-k_{s}^{2}}}$$
(D8)

$$=\frac{\rho_{o}c^{V}(\overline{k}_{s})}{\sqrt{1-\frac{k_{s}^{2}}{k_{o}^{2}}}}$$
(D9)

ð,

Substituting for P from Equation (D9) and for k_3 from Equation (D5) into Equation (D3) and restoring the sinusoidal temporal variation yields the following expression for the sound pressure radiated into the half-space in front of the plate:

$$P_{\text{one wave}}^{\text{rad}}(\bar{r}, x_3, t) = \frac{\rho_0 c_0 V(\bar{k}_s)}{\sqrt{1 - \frac{k_s^2}{k_0^2}}} e^{i\left(\bar{k}_s \cdot \bar{r} + \sqrt{k_0^2 - k_s^2} x_3 - \omega t\right)}$$
(D10)

From Equation (D2) (with time factor included), the sum or integral of traveling plane waves in an infinite plane with amplitude distribution $V(\bar{k}_s)$ provides the velocity $V(\bar{r},t)$ in the region of the plate and zero outside the plate. The distribution $V(\bar{k}_s)$ must therefore satisfy the condition (note $d\bar{k}_s = dk_1 dk_3$)

$$V(\bar{\mathbf{r}},t) = \int_{-\infty}^{\infty} V(\bar{\mathbf{k}}_{s}) e^{i(\bar{\mathbf{k}}_{s} \cdot \bar{\mathbf{r}} - \omega t)} d\bar{\mathbf{k}}_{s} \qquad (D11)$$

Obviously $V(\bar{k}_{S})$ is the Fourier distribution of the function $V(\bar{r},t)$ and we know, therefore, that such a distribution exists and that it can be calculated from the equation (note $d\bar{r} = dx_1 dx_3$)

$$V(\bar{k}_{s}) = \frac{1}{(2\pi)^{2}} \int_{A} V(\bar{r},t) e^{-i(\bar{k}_{s} \cdot \bar{r} - \omega t)} d\bar{r}$$
 (D12)

The corresponding total sound pressure obtained from the superposition of all traveling waves of the form represented by Equation (D10) is

$$p^{rad}(\bar{r}, x_{3}t) = \rho_{0}c_{0}\int_{-\infty}^{\infty} \frac{V(\bar{k}_{3})}{\sqrt{1 - \frac{k_{3}^{2}}{k_{0}^{2}}}} e^{i\left(\bar{k}_{3} \cdot \bar{r} + \sqrt{k_{0}^{2} - k_{3}^{2}} x_{3} - \omega t\right)} d\bar{k}_{3} \quad (D13)$$

We are interested in the pressure on the surface of the plane. Hence setting $x_z=0$

$$p^{rad}(\bar{r}, x_{3}=0, t) = \rho_{0} c_{0} \int_{-\infty}^{\infty} \frac{V(\bar{k}_{s})}{\sqrt{1 - \frac{k_{s}^{2}}{k_{0}^{2}}}} e^{i(\bar{k}_{s} \cdot \bar{r} - \omega t) d\bar{k}_{s}}$$
(D14)

No contribution to $V(\bar{k}_s)$ is rendered by the integral for the region external to the plate area.

88

ong and a structure was not and and a shall be to find the second statement of the second second second second

Now substituting Equations (D1) in Equation (D12), we get

$$V(\bar{k}_{s}) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{\infty} V_{mm} (\bar{r}) e^{-i\bar{k}_{s}} \cdot \bar{r} d\bar{r} \qquad (D15)$$

$$= \frac{\sqrt[r]{n}}{(2\pi)^2} \int_{-\infty}^{\infty} \tilde{Y}_{n}(\tilde{r}) e^{-i\tilde{k}} s \tilde{r} d\tilde{r}$$
(D16)

We now prove that the integral is related to a quantity $[\Gamma_{\rm m}^{*}(\bar{k}_{\rm s})]/2$ where $\Gamma_{\rm m}(\bar{k}_{\rm s})$ is called the modal coupling parameter or directivity. The functional forms and average values of $|\Gamma_{\rm m}(\bar{k}_{\rm s})|^2$ described in some detail in Reference 8 are useful in making approximate computations.

PROOF

The pressure radiated into the half-space $x_3 > 0$ from an array of sources on an infinite rigid plane is⁹ (see Figure 7)

$$p(R) = \frac{i\omega\rho_0}{2\pi} \sum_j \frac{Q_j}{R_j} e^{-ik} o^R_j \qquad (D17)$$

Projecting R_j on R, we obtain $R_j \approx R \cdot \bar{r}_0 \cdot \bar{r}_j$ where $\bar{r}_0 \cdot \bar{r}_j$, the projected distance difference, is a dot product (see Figure 8). Since $1/R_j =$

$$\frac{1}{R\left(1-\frac{\bar{r}_{o}\cdot\bar{r}_{j}}{R}\right)} = \frac{1}{R}\left(1+\frac{\bar{r}_{o}\cdot\bar{r}_{i}}{R}+\cdots\right) \approx 1/R \text{ then}$$

$$p(R,\bar{r}_{o}) = \frac{i\omega\rho_{o}}{2\pi R} e^{-ik_{o}R} \sum_{j} Q_{j} e^{i\bar{k}} e^{\cdot\bar{r}_{j}} \qquad (B18)$$

where $\bar{k}_{0} = k_{0}\bar{r}_{0}$ is a wave vector = (wave number k_{0}) • (wave direction \bar{r}_{0}). If $\bar{k}_{s} \equiv$ projection of \bar{k}_{0} on the plane and $\bar{k}_{n} \equiv$ projection of \bar{k}_{0} on the normal to the plane, i.e., k_{n} lies along x_{3} , then $\bar{k}_{0} \cdot \bar{r}_{j} = \bar{k}_{n} \cdot \bar{r}_{j} \cdot \bar{k}_{s} \cdot \bar{r}_{j} = \bar{k}_{s} \cdot \bar{r}_{j}$ since $\bar{k}_{n} \cdot \bar{r}_{j} = 0$ (see Figure 6). Hence Equation (D18) becomes

$$p(R,\bar{r}_{o}) = \frac{i\omega\rho_{o}}{2\pi R} e^{-ik} o^{R} \sum_{j} Q_{j} e^{i\bar{k}} s^{\bar{r}} \bar{j}$$
(D19)

ļ,

Figure 7 - Array of Point Sources in an Infinite Rigid Plane

Notes:

Want of Son Physics Statistics

ressing siddillender der Draditionenskannengen av and ender der der sternenskandenskannen om der staden.

1. x_1 , x_2 , \bar{r}_j lie in plane of plate; x_3 is normal to plane,

 $\bar{\mathbf{r}}_{_{O}}$ and $\bar{\mathbf{k}}_{_{O}}$ are unit and acoustic spacevactors, respectively,

 \tilde{r}_{0} , \bar{k}_{0} and the distances (not vectors) R and R_j from the origin and source to the fluid point, respectively, are at arbitrary angles to the plane depending upon the position of the field point in space.

2.
$$R_j = R (1 - \tilde{r}_0 \cdot \tilde{r}_j/R + \cdots)$$

 $\approx R - \tilde{r}_0 \cdot \tilde{r}_j$ for $R, R_j \gg |\tilde{r}_j|$ or for $|\tilde{r}_j|$ sin ϕ small,
i.e., applicable to plate area A; which encloses all sources, for
which $\sqrt{\ell_1^2 + \ell_2^2} \ll R, R_j$.

90

monore and a second mean of the second of the second of the second
We now proceed to the calculation of the radiation from a plane surface with a continuous velocity distribution. Consider each *surface* element $d\bar{r}$ with a velocity $V(\bar{r})$ as a point source of sound with sound flux or differential source strength or differential volume velocity $dQ(\bar{r})$ equal to the differential area $(d\bar{r})$ times the velocity $V(\bar{r})$. Hence replacing the summation by the integration, we have

$$p(R,\bar{r}_{0}) = \frac{i\omega\rho_{0}}{2\pi R} e^{-ik_{0}R} \int_{A} V(\bar{r}) e^{i(\bar{k}_{s}\cdot\bar{r})}d\bar{r}$$
(D20)

$$= -\frac{i\omega\rho_{o}v_{o}}{4\pi R} e^{-ik_{o}R} \left\{ \int_{A} (-2) \frac{V(\bar{r})}{V_{o}} e^{i(\bar{k}}s^{*\bar{r}}) d\bar{r} \right\} (D21)$$

where the quantity in brackets is called the directivity or coupling parameter $\Gamma(\overline{k}_s)$. Thus

$$\Gamma(\bar{k}_{s}) = -2 \int_{A} \frac{V(\bar{r})}{V_{o}} e^{i(\bar{k}_{s} \cdot \bar{r})} d\bar{r}$$
(D22)

In Equations (D21) and (D22), $V_o^2 \ll |V(\bar{r})|^2 \ge_{\bar{r}} \ll |V_m|^2 \Psi_m^2 \ge_{\bar{r}} = |V_m|^2 \ll |V_m|^2 \le_{\bar{r}} = |V_m|^2 \le_$

$$\frac{\Gamma_{\rm m}(\bar{k}_{\rm s})}{2} = \frac{-V_{\rm m}}{|V_{\rm m}|} \int_{\rm A} \Psi_{\rm m}^{(\bar{r})} e^{i(\bar{k}_{\rm s}\cdot\bar{r})} d\bar{r}$$
(D23)

$$\frac{\Gamma_{\rm m}^{\star}(\bar{k}_{\rm s})}{2} = \frac{-V_{\rm m}^{\star}}{|V_{\rm m}|} \int_{A} \Psi_{\rm m}^{\rm (\bar{r})} e^{-i(\bar{k}_{\rm s}\cdot\bar{r})} d\bar{r} \qquad (D24)$$

ş.

Equation (D24) represents the completion of our proof. Substituting Equation (D24) in Equation (D16), we get

$$V(\bar{k}_{s}) = -\frac{V_{m}|V_{m}|}{(2\pi)^{2}V_{m}^{*}} \frac{\Gamma_{m}^{*}(\bar{k}_{s})}{2}$$
 (D25)

Now substituting Equation (D25) in Equation (D14), we get

$$P_{m}^{rad}(\bar{r},t) = \frac{-\rho_{o}c}{8\pi^{2}} \frac{V_{m}|V_{m}|}{V_{m}^{*}} \int_{-\infty}^{\infty} \frac{\Gamma_{m}^{*}e^{i(\bar{k}_{s}\cdot\bar{r}-\omega t)}}{\sqrt{1-\frac{k^{2}}{k_{o}^{2}}}} d\bar{k}_{s} \qquad (D26)$$

The radiation force for the mth mode is⁸ (noting that $p_m^{rad} = p_m^{rad} e^{-i\omega t}$)

$$\mathbf{f}_{m}^{rad} = \mathbf{F}_{m}^{rad} \mathbf{e}^{-i\omega t} = \begin{bmatrix} -\int_{A} \mathbf{P}_{m}^{rad} \Psi_{m}(\bar{\mathbf{r}}) d\bar{\mathbf{r}} \end{bmatrix} \mathbf{e}^{-i\omega t} = -\int_{m} \mathbf{p}_{m}^{rad} \Psi_{m}(\bar{\mathbf{r}}) d\bar{\mathbf{r}} \qquad (D27)$$

Substituting Equation (D26) in Equation (D27),

$$F_{m}^{rad} = \frac{\rho_{o} cV_{m} |V_{m}|}{8\pi^{2} V_{m}^{\star}} \int_{-\infty}^{\infty} \frac{\Gamma_{m}^{\star} d\bar{k}_{s}}{\sqrt{1 - \frac{k_{s}^{2}}{k_{o}^{2}}}} \int_{A} \Psi_{m}(\bar{r}) e^{i\bar{k}_{s} \cdot \bar{r}} d\bar{r} \qquad (D28)$$

Using Equation (D23)

$$F_{m}^{rad} = \frac{1}{8\pi^{2}} \left(\frac{\rho_{o} c V_{m} |V_{m}|}{V_{m}^{\star}} \right) \left(-\frac{|V_{m}|}{2V_{m}} \right) \int_{\infty}^{\infty} \frac{\Gamma_{m} \Gamma_{m}}{\sqrt{1 - \frac{k_{s}^{2}}{k_{o}^{2}}}} d\bar{k}_{s}$$
(D29)

and since $V_m^*V_m = |V_m^2|$, $\Gamma_m^*\Gamma_m = |\Gamma_m^2|$, then we find as a basic working expression

$$Z_{m}^{rad} = \frac{F_{m}^{rad}}{V_{m}} = \frac{\rho_{o}c}{16\pi^{2}} \int_{-\infty}^{\infty} \frac{|\Gamma_{m}|^{2}}{\sqrt{1 - \frac{k_{s}^{2}}{k_{o}^{2}}}} d\bar{k}_{s}$$
(D30)

We write this equation as the sum of real and imaginary terms:

$$Z_{m}^{rad} = \frac{\rho_{o}c}{16\pi^{2}} \int_{-k_{o}}^{k_{o}} \frac{|\Gamma_{m}|^{2}d\bar{k}_{s}}{\sqrt{1 - \frac{k_{s}^{2}}{k_{o}^{2}}}} + \frac{i\rho_{o}c}{16\pi^{2}} \left[\int_{-\infty}^{-k_{o}} \frac{|\Gamma_{m}|^{2}d\bar{k}_{s}}{\sqrt{\frac{k_{s}^{2}}{k_{o}^{2}} - 1}} + \int_{0}^{\infty} \frac{|\Gamma_{m}|^{2}d\bar{k}_{s}}{\sqrt{\frac{k_{s}^{2}}{k_{o}^{2}} - 1}} \right]$$
(D31)

The first term in the right member represents the radiation damping whereas the second and third terms represent the fluid loading or added mass terms = $i\omega M_{loading}$. We will consider the fluid loading problem only. (Note that each integral in Equation (D31) represents a double integral since $d\bar{k}_s = dk_1 dk_2$.) Since the integrands are even functions, the terms within the brackets may be combined so that the fluid loading term may be written:

$$M_{1\text{oading}} = \frac{\rho_{o}c}{4\pi^{2}\omega} \int_{k_{o}}^{\infty} \frac{|\Gamma_{m}(\bar{k}_{s})|^{2}}{\sqrt{\frac{k_{s}^{2}}{k_{o}^{2}} - 1}} d\bar{k}_{s}$$
(D32)

$$= \frac{1}{4\pi^2} \frac{\rho_0}{k_0} \int_{k_0}^{\infty} \frac{|\Gamma_m|^2}{\sqrt{\frac{k_s^2}{k_0^2} - 1}} d\bar{k}_s$$
(D33)

Ş.

1.15

The product of the left and right members, respectively, of Equations (D23) and (D24) yields

$$|\Gamma_{m}|^{2} = 4 \int_{A} \Psi_{m}(\bar{\mathbf{r}}) e^{i\bar{k}} s^{\cdot\bar{\mathbf{r}}} d\bar{\mathbf{r}} \int_{A} \Psi_{m}(\bar{\mathbf{r}}) e^{-i\bar{k}} s^{\cdot\mathbf{r}} d\bar{\mathbf{r}}$$
(D34)

20

The modal shape functions for the normal modes of a simply supported panel are:

$$\Psi_{\rm m}(\bar{\bf r}) = 2 \sin \frac{m\pi x_1}{\ell_1} \sin \frac{n\pi x_2}{\ell_2} = 2 \sin k_{\rm m} x_1 \sin k_{\rm n} x_2 \qquad (D35)$$

Hence

$$|\Gamma_{m}|^{2} = 16 \int_{0}^{l_{1}} e^{ik} x_{1}^{x_{1}} \sin k_{m} x_{1} dx_{1} \int_{0}^{l_{2}} e^{ik} x_{2}^{x_{2}} \sin k_{n} x_{2} dx_{2}^{x_{2}}$$

$$\int_{0}^{l_{1}} e^{-ik} x_{1} x_{1} \sin k_{m} x_{1} dx_{1} \int_{0}^{l_{2}} e^{-ik} x_{2} x_{2} \sin k_{n} x_{2} dx_{2}$$
(D36)

Defining
$$I_1 = \frac{1}{\ell_1} \int_{0}^{\ell_1} e^{ik} x_1 x_1 \sin k_m x_1 dx_1$$
, $I_2 = \frac{1}{\ell_2} \int_{0}^{\ell_2} e^{ik} x_2 x_2 \sin k_n x_2 dx_2$

then

$$|\Gamma_{\rm m}|^2 = 16A^2 I_1 I_2 I_1^* I_2^* = 16A^2 |I_1|^2 |I_2|^2$$
 (D37)

and a set a contraction of the set of the se

Substituting Equation (D37) in Equation (D33), we obtain

$$M_{1oading} = \frac{4\rho_0 A^2}{\pi^2} \int_{k_0}^{\infty} \frac{|I_1|^2 |I_2|^2}{\sqrt{k_s^2 - k_0^2}} d\bar{k}_s$$
(D38)

where $d\bar{k}_{s} = dk_{1}dk_{2}$, $k_{s}^{2}=k_{1}^{2}+k_{2}^{2}$.

^{*}Later in this Appendix it is shown that this normal mode representation includes the representation used in Appendix A as a special case; see Equation (A1).

We consider $k_s \gg k_o$ and for this region the quantity $1/\sqrt{k_s^2 - k_o^2} = K(k_s)$ is a smooth well-behaved function. We can then use the analytica. approximation (presented in Appendix II of Reference 8) for the weighted integral given in Equation (D38).^{*} For the range of k_s including k_m and k_n (see Equation AII.10 of Reference 8), ^{*} the added mass per unit area for radiation into the half space $x_3 > 0$ is (see Figures 9 and 10):

$${}^{m}_{mn} = \frac{{}^{M}_{loading}}{A} = \frac{4\rho_{o}A}{\pi^{2}} \left[\frac{\pi}{2k_{1}} \cdot \frac{\pi}{2k_{2}} \cdot \frac{1}{\sqrt{k_{mn}^{2} - k_{o}^{2}}} \right]$$
(D39)

or

$$m_{mn} = \frac{\rho_o}{\sqrt{k_{mn}^2 - k_o^2}} \approx \frac{\rho_o}{k_{mn}} \text{ if } k_{mn} >> k_o \qquad (D40)$$

The results given by Equation (D40) are in agreement with results presented by Equations (A27a), (B47), and (C28).

Finally, it is shown that the normal mode representation for a simply supported plate, Equation (D35), is more general than the corresponding representation used by Feit-Junger, Equation (A1). To see that Equation (D35) includes Equation (A1) as a special case, consider the sin $k_m x$ factor in Equation (D35); similar results are obtainable for the sin $k_n y$ factor (let $k_m \neq k_n$, $x \neq y$). We translate the origin of the abscissas from 0 to 0' (the midpoint along the plate length) as shown in Figure 11, by use of the equation:

$$\mathbf{x}^* = \mathbf{x} - \frac{\ell}{2} \tag{D41}$$

30

 $\int_{\substack{-k_m < k_1 < k_m}} K(k_m) |I|^2 dk_1 \approx \frac{\pi}{2k_1} K(k_m) \text{ and similarly for the integral for}$ $k_2.$

nave. Essayou a districtive a book and a second

Figure 9 - Sketch of $|I|^2$ for Large Mode Numbers m (Applicable to small mode numbers if lower limit of integration of Equation AII-10 of Reference 8 is set to zero. See Figure 10 and page 216 of Reference 8).

٦

Solo Barrison in the

معطوا البخب الملاوة الإعمادة ودأنابكه وم

1 1000

Ş

×,

97

The new boundaries are:

x=0, x' =
$$-\frac{\ell}{2} = -L_x$$

x= ℓ , x' = $+\frac{\ell}{2} = +L_x$

where the notation $\neq L_x$ for the new plate boundaries has been introduced for compatibility with the Feit-Junger notation. Thus:

$$\sin k_{m} x = \sin k_{m} (x' + \frac{\lambda}{2}) = \sin k_{m} (x' + L_{\chi}) = \sin \frac{m\pi x'}{2L_{\chi}} \cos \frac{m\pi}{2} + \cos \frac{m\pi x'}{2L_{\chi}} \sin \frac{m\pi}{2}$$
(D42)

where
$$k_m = \frac{m\pi}{\hat{k}} \rightarrow \frac{m\pi}{2L}_x$$
 $m = 0,1,2,3\cdots$

It is clear from Figure 11 that $m = 1,2,3\cdots$ represents odd modes with respect to the origin at x=0. However $m = 1,3\cdots$ odd and $m = 2,4\cdots$ even represent even and odd modes, respectively, with respect to the origin at 0'. In accordance with the Feit-Junger postulation, Equation (A1), we wish to retain the even modes only, i.e., $m = 1,3\cdots$ odd.

Equation (D42) shows that for the even modes, $m = 1, 3 \cdots$ odd, the first term in the right member is zero so that as a special case

$$\sin k_{m}^{} x \rightarrow \cos \frac{m\pi x'}{2L_{x}} \sin \frac{m\pi}{2} \quad m \text{ odd}$$
(D43)
$$\rightarrow \cos \frac{(2m' + 1)\pi x'}{2L_{x}} (-1)^{m'} = (-1)^{m'} \cos k_{m}^{'} x' \qquad m' = 0, 1, 2^{\cdots} (D44)$$

where m = 2m' + 1, an odd number and $k'_m = \frac{(2m' + 1)\pi}{2L_x}$.

Thus Equation (D44), which contains even modes only in the axial system with origin 0', represents only half of the modes of $\sin k_m x$ in the axial system with origin 0. Moreover in the axial system with origin 0', if we take the mirror image of (i.e., reflect) the even modes m=3, 7, 11, etc. about the x' axis, then all even modes will have a positive value at x' = 0. Mathematically this is accomplished by letting $(-1)^{m'} \div 1$. Thus for even modes with respect to the origin 0' and positive values of $\sin k_m x$ at 0', $\sin k_m x \div \cos \frac{(2m'+1)\pi x'}{2L_x} = \cos k'_m x'$ which is identical to the corresponding factor in Equation (A1).

APPENDIX E

BOLT, BERANEK AND NEWMAN METHOD

NOTATION

meneration because the construction of a second s

A	Area of plate
c۲	Longitudinal wave speed
h	Plate thickness
^k f	Wave number in fluid, i.e., acoustic wave number
k _p ,k _h	Plate wave number; $k_p^2 = (m\pi/\ell_1)^2 + (n\pi/\ell_2)^2 = k_h^2$
^l 1, ^l 2	Length and width of plate, respectively
M added	Added mass
M MIII	Total mass equal to M + M o added
Mo	Structural mass
m,n	Mode numbers for l_1^- and l_2^- directions, respectively
к	Radius of gyration
ρ _f	Mass density of fluid
ρ,ρ p's	Mass density of plate
ω mn	Resonance frequency for mn mode of vibration of plate in vace.
ω mn	Resonance frequency for mn mode of vibration of submerged plate

99

×.

14. 14.

;

-2

DERIVATION

Several researchers for Bolt Beranek and Newman have presented mathematical relationships for the added mass and submerged natural frequency of a vibrating finite rectangular plate radiating into half-space. The formulations are briefly considered.

Reference 10 gives the following relationship between the frequency and wavelength of a vibrating submerged structural panel*

$$\tilde{\omega}_{mn}^{2}\left(1 + \frac{\rho_{f}}{\rho_{p}k_{p}h}\right) = K_{p}^{4}\kappa^{2}c_{g}^{2}; k_{p}^{>k}f$$
(E1)

าน และเป็นการและเป็นเป็นเป็นเป็นเป็นเป็นการและเป็นการและเป็นการและเป็นการและเป็นการและเป็นการและเป็นเป็นเป็นการ

From Equation (iv.5.16) of Reference 8, $k_p^{4/2} c_{\ell}^{2} = \omega_{mn}^{2}$, so that

$$\bar{\omega}_{mn} = \omega_{mn} \left[1 + \frac{\rho_{f}}{\rho_{p} k_{p} h} \right]^{-1/2}; k_{p} > k_{f}$$
(E2)

Equation (E2) is identical in form to Equation (A34).

References 11 and 12 give the following relationships as precise for waves on a large flat submerged plate.

$$\bar{\omega}_{mn} = \omega \left(1 + \frac{\rho_f A/M_o}{k_h} \right)^{-1/2} = \omega \left(1 + \frac{\rho_f}{M_h} \right)^{-1/2}$$
(E3)

where $M_0 = A\rho_s h$ and $M_{added} = \frac{A\rho_f}{k_h}$ so that $M_{mn} = A\rho_s h \left(1 + \frac{\rho_f}{\rho_s k_h h}\right)$

Hence

$$\bar{\omega}_{mn} = \omega \left[1 + \frac{\rho_f}{\rho_s k_h h} \right]^{-1/2}; k_h > k_f$$
(E4)

Equation (E4) is identical in form to Equation (A34).

^{*}In Equation (11) of Reference 10, let $\omega \rightarrow \omega_{mn}$ and in Equation (iv.5.16) of Reference 8, let $\omega_{m} \rightarrow \omega_{mn}$.

APPENDIX F

GREENSPON METHOD

NOTATION

nauthorstonated and the states and the states

on dealers in the second second second

A D	Quantities which depend on the hear functions used to
^A ij' ^D ij	represent the mode shapes (see Table 4)
^A γ, ^A δ	γ^{th} and δ^{th} elemental area of plate
a	Width of plate (shorter side)
b	Length of plate (longer side)
с _о	Sound velocity in water
F ₁₁	Natural frequency in vacuo
$f(\frac{a}{b})$	Function of the aspect ratio
h	Thickness of plate
i,j	Mode numbers equal to m,n
i'	Equal to 1 if plate has water on one side and equal to 2 if plate has water on both sides
k	Wave number equal to ω_m/c_0
Ma	Apparent mass per unit area
m P	Mass per unit area of plate
m,n	Mode numbers
P m	Water pressure due to vibrating plate in the m th mode of vibration
$\left[\tilde{P}_{m}(x,y)\right]_{\gamma_{\delta}}$	Average pressure on the γ^{th} elemental area A _{γ} due to modal
	vibration of the δ elemental area A_{δ}
t	Time
[w(x,y,t)] _m	Lateral deflection of plate in m ²² mode
[w _δ] _m	Velocity in the m th mode of the δ^{th} elemental area
x,y	Rectangular coordinate axes
$[Z_{\gamma\delta}]_{m}$	Mutual radiation impedance between the γ^{th} and δ^{th}
j U nit	elemental areas on the plate for the m th mode of vibration
$[\theta_{\gamma\delta}]_m$	Resistive (radiation damping) component of impedance for the m^{th} mode of vibration

101

4
λ Wavelength Mass density of water ρ Density (mass per unit volume) of plate ρ_t Coefficient (reactance) depending on aspect ratio a/b χ Reactive (added mass) component of impedance for the mth $[x_{\gamma\delta}]_m$ mode of vibration [x]_p Reactive (added mass) component of impedance of a rectangular piston Circular frequency for the mnth mcde of vibration ω mn Note: In Equations (F5), (F6), (F7), and (F8) the subscript m -> mn for consistency with notation in the previous appendixes.

The second s

ā

akterer om som en som som som som som som at att de der som som som som som som som som att att att att att att

to an the Address of
DERIVATION

References 13 and 14 present the following methods to account for the added mass of a rectangular plate vibrating in water.

Method 1 (see Reference 13)

Reference 13 quotes Reference 15 as the source of the following equation for the natural frequency of the first mode of a simply supported rectangular plate vibrating in water.

$$(F_{11})_{water} = \frac{(F_{11})_{vacuum}}{\sqrt{1+i'\chi (\frac{a}{b})\frac{b}{7.85h}}}$$
(F1)

The function $\chi(a/b)$ shown in Figure 12 has been derived in Reference 16 for a plate which is *clamped* on the edges y = o, b and *simply supported* on the edges x = 0, a. This equation can be used to obtain the order of magnitude of the correction due to the added mass for both *simply supported* and *clamped plates*. However the reader is referred to Reference 15 for a more accurate analysis of added mass.

Method 2 (see References 13 and 14)

References 13 and 14 present the following analysis for the determination of the added mass per unit area.

Divide the plate into equal elemental areas and let $[\tilde{P}_{m}(x,y)]_{\gamma_{\delta}}$ be the average pressure on the γ^{th} elemental area A_{γ} due to modal vibration of the δ^{th} area A_{δ} (see Figure 13). Then

*Since $(F_{11})_{water} = \frac{(F_{11})_{vacuum}}{\sqrt{1 + (M_a/M_p)}}$ (see Appendix A or Reference 15), then the present author deduces that the added mass per unit area $M_a = \left[i'\chi(\frac{a}{b}) \frac{b}{7.85h}\right] m_p$ where m_p is the structural mass per unit area.

103

2

KALLAR KAULA MEDIA

State of the second
Figure 13 - Rectangular Plate Divided into Finite Elements

Figure 14 - Virtual Mass Function

$$\left[\bar{P}_{m}(x,y)\right]_{\gamma\delta} = \frac{\left(Z_{\gamma\delta}\right)_{m}\left[w(x,y,t)\right]_{m}}{A_{\gamma}}$$
(F2)

The total pressure on the $\gamma^{\mbox{th}}$ area due to the vibration of all other elements will be

$$\bar{P}_{m} = \sum_{\delta} \frac{(Z_{\gamma\delta})_{m}}{A_{\gamma}} [\tilde{w}_{\delta}]_{m}$$
(F3)

In these equations, the mutual radiation impedance $Z_{\gamma\delta}$ which is a function of the frequency and the distance between the elements may be written

$$(Z_{\gamma\delta})_{m} = \rho_{o} c_{o} A_{\gamma\delta} [(\theta_{\gamma\delta})_{m} + i(\chi_{\gamma\delta})_{m}]$$
(F4)

The reactive or added mass component $(\chi_{\gamma\delta})_m$ is a function of the aspect ratio a/b and the nondimensional parameter $\pi b/\lambda = \omega_m b/2c_0$ (note ω_{mn} is denoted by P_m in References 13 and 14). The impedance of a rectangular piston is computed in Reference 17.^{*} For relatively low frequencies $\pi b/\lambda < 1$, the reactance (added mass component) of the piston can be written (for consistency with previous results in Appendixes A-F exclusively, we let $\omega_m \neq \omega_{mn}$):

$$\chi_{p} = f(\frac{a}{b}) \frac{\pi b}{\lambda} = f(\frac{a}{b}) \frac{\omega_{mn}b}{2c_{o}}$$
(F5)

3

「ない」のないで、「ない」のないで、ないできょう」を見ていている。

いたいできたいないでものできたいできたいできょうないないというないできたい

In the analysis presented in References 13 and 14, leading to the computation of the plate natural frequencies, the sums involving $\theta_{\gamma\delta}$ and $\chi_{\gamma\delta}$ (Equation (F3)) are quite complex and require considerable computation. Therefore, it was assumed that the average pressure on the γ^{th} area can be computed by considering the entire plate to act as a rectangular piston with a deflection equal to the average of $w_{\rm m}$ over the plate (see Reference 13 for additional details). This simplified the mathematical analysis.

where f(a/b) is a function of the aspect ratio and can be obtained directly from Figure 14. The circular natural frequency of the plate in water is then^{13*}

$$(\omega_{mn})_{water on} = \frac{(\omega_{mn})_{vacuum}}{\sqrt{1 + \frac{\rho_o b}{2m_p} f(\frac{a}{b}) \frac{A_{ij}^2}{B_{ij}}}; i, j=m, n \quad (F6)$$

a andre son her her en een state see also ned te suit been die chefter als de see de state de se her de se de s

The A_{ij} and B_{ij} depend on the beam functions used to represent the mode shapes and therefore *depend on the boundary conditions* of the plate. The values of A_{ij} and B_{ij} for several modes of plates which are *clamped* or *simply supported* on all edges are shown in Table 2.

Plates with combinations of boundary conditions can also be solved so long as the mode shape can be approximated by a product of beam functions. For example, consider a uniform plate which is clamped at the longer edges (0,b) and simply supported at the shorter edges (0,a). (This is the case given in Reference 16.) Then for the first mode¹³

$$A_{ij}^2 = (0.8309 \times 0.6366)^2 = 0.2798$$

 $B_{ij} = 1 \times 0.5 = 0.5$

$$(\omega_{mn})_{water on one side} = \frac{(\omega_{mn})_{vac}}{\sqrt{1 + \left[\frac{\rho_{o}b}{\rho_{t}h}\right] 0.2798 f(\frac{a}{b})}}$$
(F7)

In accordance with the previous footnote, we deduce that the added mass per unit area $M_a = \left[\frac{\rho_o b}{2m_p} f(\frac{a}{b}) \frac{A_{ij}^2}{B_{ij}}\right] m_p$ for water on one side. For water on both sides, we double this value in Equations (F6) and (F7) and (F8). The symbol μ used in Reference 13 to denote the plate mass per unit area has been replaced here by the symbol m_p .

For a steel plate vibrating in water

וע צעוינים ליווי דארינוע משייריוויז איידע אין שאפורכרייניועייו דער אינייייי

あるとうからいろうとのできょう

Equation (F8) is of the same form as Equation (F1) originally found in Reference 16. For most of the practical cases, the correction of the frequency due to added mass given by Equations (D8) and (D1) will be of the same order of magnitude.

107

APPENDIX G

LEIBOWITZ METHOD III

NOTATION

The notation included for Appendix F also applies to this appendix.

DESCRIPTION

The approximate expression presented is convenient for the computation of the added mass and (low) natural frequencies of a vibrating rectangular plate. The development of this expression is based on the work of Reference 14 discussed in Appendix F.

DERIVATION

Ignoring plate damping and considering clamped or simply supported plates, the natural frequency of a vibrating plate in water is given by Equation (F6). Following Reference 14, we take as a low frequency approximation

$$\chi_{\rm p} = 0.48 {\rm k} {\rm [ab]}^{1/2} = 0.48 \frac{\omega_{\rm mn}}{c_{\rm o}} {\rm [ab]}^{1/2} {\rm for} \frac{\omega_{\rm mn}}{c_{\rm o}} \sqrt{\frac{{\rm ab}}{\pi}} < 1$$
 (G1)

Substituting Equation (G1) in Equation (F5), we get

$$f(\frac{a}{b}) = 0.96 \left(\frac{a}{b}\right)^{1/2}$$
 (G2)

which is an approximate fit to Figure 14.

Reference 14 also permits a solution of the frequencies for the more general case of a rotationally constrained beam including plate radiation and structural damping in the frequency equation. Substituting Equation (G2) in Equation (F6), we get

THE ADDRESS AND THE

$$(\omega_{mn})_{water on}_{one side} = \frac{(\omega_{mn})_{vacuum}}{\sqrt{1 + \frac{0.48 \rho_0 (ab)^{1/2} A_{ij}^2}{m_p} B_{ij}}}; i,j=m,n$$
(G3)

444 A. C. P. A. M. C. P.

where A_{ij} and B_{ij} are values given in Table 4 for clamped and simply supported plates.

^{*}The added mass per unit area $M_a = \frac{0.48 \rho_o(ab)^{1/2}}{m_p} \frac{A_{ij}^2}{B_{ij}} m_p$ for water on one side. For water on both sides, this quantity is doubled in Equation (G3).

APPENDIX H

• 27.00

and the second
PROCEDURE FOR MODIFYING THE MAESTRELLO PROGRAM TO INCLUDE EFFECTS OF FLUID LOADING (OPTION 3)

NOTATION

A _i	Constants
A _{ij} , B _{ij}	Quantities which depend on the beam functions used to represent the mode shapes (see Table 4)
a, b	Dimensions of plate (see footnote to ω_{mn} of
	aluminum plate in this Appendix for more precise description)
a _{mn} , ā _{mn}	Plate modal damping in air and water, respectively
c	Speed of sound in fluid
cl	Compressional wave velocity of the plate equal to
	$\left[\frac{E}{\rho_{s}(1-\nu^{2})}\right]^{1/2}$
D, D _d	Specific damping energy at any stress σ and at peak stress σ_d respectively in a part under nonuniform
	stress $(0 < D < D_d)$
E	Young's modulus
e	Equal to 2.718; base for natural or Naperian system of logarithms
F	Equals $\frac{\delta^*}{U} \equiv \frac{\delta^*}{U_{\infty}}$
f	Frequency
f _{mn}	Plate natural frequency
$f(\frac{a}{b})$	Function of aspect ratio
h	Panel thickness
i,j	Mode numbers
K _i .	Constants
k	Acoustic wave number equal to ω/c
k _s	Surface wave number equal to $[(m\pi/a)^2 + (n\pi/b)^2]$ for Method I; for Method II, a and b may or may not be interchanged (see footnote to ω_{mn} of aluminum plate in this Appendix)

2

M, m p	Plate mass per unit area in air
M'	Total mass per unit area of plate in water; equal to sum of plate and added masses per unit area
Ma, m _{mn}	Added mass (or apparent mass or virtual mass) per unit area
m, n	Mode numbers
W, W _{mn}	Plate weight per unit area in air and added weight per unit area, respectively
K*	Total weight per unit area of plate in water; equal to sum of plate and added weight per unit area
Ρ(ω)	Power spectrum
$\frac{1}{p^2}$	Mean square turbulence pressure
q	Equal to k/k _s (see footnote to q of aluminum plate
	in this Appendix)
U, U _∞	Free-stream velocity
U _c	Convection velocity
(x,y), (x',y')	Points on the panel at which displacements are measured
α	Equal to 1 for fluid loading on one side of plate only; equal to 2 for fluid loading on both sides of plate; dimensionless damping energy integral (see section on steel plate parameters in this Appendix)
β	Total damping coefficient of plate in a fluid; di- mensionless strain energy integral (see section on steel plate parameters in this Appendix)
β _c	Critical damping
δ*	Boundary layer displacement thickness
$\delta_{mn}, \bar{\delta}_{mn}$	Total damping ratio of plate in air and water, respectively
η	Material loss factor; equals y - y', lateral partial separation
η _s	Loss factor of a specimen or part
θ	Eddy lifetime for steady convection, i.e., time in which value of correlation coefficient obtained from envelope of correlation maxima (maxima- maximorum) drops to 1/e
ν	Kinematic viscosity of fluid near wall
ξ	Equals x - x', longitudinal partial separation

112

Ч

κ	Radius of gyration
ρ, ρ ₀	Mass density of fluid medium
ρ _s	Mass density of plate
σ, σ _D	Amplitude of reversed stress and maximum value of stress in a part (0 < σ < σ_D)
τ	Equals t - t', time delay
τ w	Local wall shear stress
φ _{mn} (x,y), φ _{mn} (x',y')	Plate eigenfunctions
ω	Circular frequency equal to $2\pi f$
$\omega_{mn}, \bar{\omega}_{mn}$	Plate modal frequency in air and water, respectively

1.1

1

1.

คลสมอาทิษาสสมสร้าง อ.ร.สรรณสมัยชี 24 ธ.โละราทสมัยวรณสร้างไม่ชีวิต

the of the second s

The Maestrello program¹ for determining the turbulence-induced vibration and radiation of plates is modified and then extended to include the effects of fluid loading. The modified program is used to obtain the vibratory response for a fluid-loaded simply supported rectangular aluminum isotropic plate and for a fluid-loaded simply supported rectangular steel isotropic plate. The effects of hydrophone size^{*} and boundary layer thickness are excluded for simplicity and other plate boundary conditions on the response are not considered. However, the user can correct for these effects and treat various plate boundaries as well as plate curvature by including Option 1 (Reference 2) and Option 2 (Reference 3) in the computations (see DISCUSSION AND EVALUATION). The methods for determining the input data used in the computations are also described.

MATHEMATICAL ANALYSIS

The results of the analytical study for the fluid loading of rectangular plates presented in Appendixes A-G are summarized in Table 1. Of these results, only the *uncoupled* (dominant) modes (see DISCUSSION AND EVALUATION) are considered here for the modification of the original Maestrello program which excludes fluid loading. With this practical restriction, Table 1 shows that there are then two basic methods for computing the virtual or added mass and the associated natural frequencies of a fluid loaded plate. The equations corresponding to the methods designated as Methods 1 and 2 below are now summarized and modified for purposes of practical computation.

Method I: Based on Analyses in Appendixes A-E

 $m_{mn} \text{(added mass per unit area)} = \frac{\alpha \rho}{(k_s^2 - k^2)^{1/2}} = \frac{\alpha \rho}{k_s [1 - (\frac{k}{k_s})^2]^{1/2}} - \frac{\alpha \rho}{k_s [1 - q^2]^{1/2}} \text{ (H1)}$

where $0 \leq \frac{k}{k_s} = q < 1$.

That is, the excitation function which represents *measured* turbulence data is not corrected for hydrophone size in the present computations.

Hence in the original Maestrello program when fluid loading is included,

$$M \rightarrow M' = m_p + m_{mn} = m_p \left[1 + \frac{\alpha \rho}{k_s m_p (1 - q^2)^{1/2}} \right]$$
 (H2)

10.1 ... 10.00

V altere

also

$$\bar{\omega}_{mn} = \omega_{mn} \left[1 + \frac{\alpha \rho}{\rho_{s} (k_{s}^{2} - k^{2})^{1/2} h} \right]^{-1/2} = \omega_{mn} \left[1 + \frac{\alpha \rho}{\rho_{s} k_{s} h \left[1 - \left(\frac{k}{k_{s}} \right)^{2} \right]^{1/2}} \right]^{-1/2}$$
(H3)
$$= \omega_{mn} \left[1 + \frac{\alpha \rho}{\rho_{s} k_{s} h \left[1 - q^{2} \right]^{1/2}} \right]^{-1/2}$$

In summary, when fluid loading is included, the original Maestrello program¹ is modified in accordance with Method I by letting $M \rightarrow M'$ and $\omega_{mn} \rightarrow \bar{\omega}_{mn}$ where M' and $\bar{\omega}_{mn}$ are given by Equations (H2) and (H3), respectively.

Method 2: Based on Analyses in Appendixes F and G

$$M_{a} (added mass per unit area) = \left[\frac{\alpha \rho_{o}^{b}}{2m_{p}} f\left(\frac{a}{b}\right) \frac{A_{ij}^{2}}{B_{ij}}\right] m_{p} ; i,j=m,n \quad (H4)$$

Values for f(a/b) are obtained from Figure 14. For practical computation a finite number of values of f(a/b) versus a/b can be tabulated and stored in the computer. The numbers of such values should be sufficient to allow the computer to calculate required intermediate values with an acceptable accuracy by means of linear interpolation of the stored values. For the

In this method of computation, b always represents the longest side of the plate. Thus b may lie along either x or y and in the direction of or orthogonal to the flow.

lower modes, A_{ij} , B_{ij} are obtained from Table 4. For the higher modes, A_{ij} , B_{ij} are obtained from tables found in References 18 and 19.

Hence in the original Maestrello program when fluid loading is included,

$$M \neq M' = m_p + M_a = m_p \left[1 + \frac{\alpha \rho_o b}{2 m_p} f(\frac{a}{b}) \frac{A_{ij}^2}{B_{ij}} \right]$$
(H5)

and

$$\bar{\omega}_{mn} = \frac{(\omega_{mn})_{vacuum}}{\sqrt{1 + \frac{\alpha \rho_o b}{2 m_p} f(\frac{a}{b}) \frac{A_{ij}^2}{B_{ij}}}}$$
(H6)

and the second states of the second second second second second second second second second to the second se

and the second subscription and the second second

For the low frequencies, these equations are approximated by

$$M_{a} = \frac{0.48 \ \alpha \rho_{o}(ab)^{1/2}}{\frac{m_{p}}{m_{p}}} \frac{A_{ij}^{2}}{B_{ij}} m_{p} \ ; \ i,j=m,n$$
(H7)

$$M \rightarrow M' = m_{p} + M_{a} = m_{p} \left[1 + \frac{0.48 \alpha \rho_{o} (ab)^{1/2} A_{ij}^{2}}{m_{p}} \frac{A_{ij}^{2}}{B_{ij}} \right]$$
 (H8)

$$\bar{\omega}_{mn} = \frac{(\omega_{mn})_{vacuum}}{\sqrt{1 + \frac{0.48 \ \alpha \rho_o (ab)^{1/2} \ A_{ij}^2}{m_p} B_{ij}}}$$
(H9)

In summary, when fluid loading is included, the original Maestrello program¹ is modified in accordance with Method 2 by letting $M \rightarrow M'$ and $\omega_{mn} \rightarrow \bar{\omega}_{mn}$ where M' and $\bar{\omega}_{mn}$ are given respectively by Equations (H5) and (H6) in general and by Equations (H8) and (H9) for low frequencies.

METHOD FOR DETERMINING INPUT DATA

The methods for determining the input data required for computer calculations are now described. Generally the methods are similar to those given in Appendix B2 of Reference 1. Eitner the data are arbitrarily prescribed by the user, i.e., the values are chosen to represent the range of interest, or the selections may correspond to experimental or analytically determined values for a parameter. However, the form and types of basic (raw) data available for use in computing some of the input data as well as some of the features of the response computations for the aluminum and steel plates differ somewhat. In consequence, different methods are used to evaluate certain of the input data for these plates. The logical presentation is then to furnish for each plate a description of the particular methods used for determining the data. Tabulations of the actual computed input data used in response calculations are also given for each plate.

The following input data are furnished to the computer. Flow data: U_c , τ_w , $\delta^* = FU \equiv FU_{\infty}$, ω , p_i^2 , θ , A_i , K_i where i = 1,2,3 and α , q Panel data: a, b, h, δ_{mn} , δ_{mn} , E, M, M', ϕ_{mn} , ω_{mn} , $\bar{\omega}_{mn}$, ξ , n, τ , m, n, x, y, x', y'

Aluminum Plate

The values for the input data are tabulated in Tables 2a and 2b. The methods used in determining these values are:

Parameter	Description
A _i , K _i	Prescribed constants used in Equation (B7) of Reference 1
a, b, h	Prescribed quantities
E	A prescribed quantity
$M \equiv m_p$	A prescribed quantity
M'	Using Method 1 only for the aluminum plate, M' is com- puted by means of Equation (H2)
m, n	Prescribed data
$\frac{1}{p^2}$	Equals $\int_{0}^{\infty} P(\omega) d\omega$ where $P(\omega)$ is obtained from
	Equation (B7) of Reference 1. This quantity can also be

measured directly. For the present calculation it is convenient to set $p^2 = 1$ so that the autocorrelation function for the turbulence pressures and the cross correlation function for the panel displacements given by Equations (B8) and (B52) respectively of Reference 1 can be regarded as normalized to this value (We can also compute p^2 . Thus for subsonic speeds Jacobs¹ shows that $p^2 \approx 3.1 \text{ T}_W$ and from Reference 20, for a smooth plate $\tau_M/q \approx 0.060 \text{ (R}_X)^{-1/5} = 0.060 \text{ (U}_{\infty}x/\nu)^{-1/5}$ where $q = 1/2 \rho U_{\infty}^2$ is the free stream dynamic pressure.)

A parameter whose values are prescribed by the user, $U_c = 0.8 U_{\infty}$; for the present problem, $U_c = 8$, 16, 32, 64 ft/sec

x,y,x',y'

 $\delta^{*}=(FU)\equiv(FU_{m})$

U_c

Prescribed points; the cross correlation of the displacements are computed for these points

Equals * 0.37x/8 $(U_{\infty}x/v)^{-1/5}$ (see Equations 21.6 and 21.8 of Reference 20), Tables 1.1 and 2.1 of that reference give values of v in air and water. Using this equation, values of δ^* for a given fluid can be prescribed over a Range of U $_{\infty}$. For an isolated plate, the equation shows that for a given value of x, $\delta^{\star}_{\mbox{max}}$ occurs for U_{∞} equal to the minimum prescribed value, i.e., $U_{\infty} = (U_{\infty})_{\min}$, and for $v = v_{air}$. For all $U_{\infty} > (U_{\infty})_{min}$ the corresponding values of $\delta^* < \delta^*_{max}$ for both $v = v_{air}$ and $v = v_{water}$. However, we can also treat the displacement thickness of a plate in a structure, acting as a baffle. The plate can then be moved sufficiently rearward of the edge of the structure at zero incidence so that for a given position along the plate and all $U_{\infty} > (U_{\infty})_{\min}$, $\delta^* =$ constant $\geq \delta^*_{max}$ for both v_{air} and v_{water} . In effect we are considering series of plates of identical geometry so located in a structure that for all $U_{\infty} > (U_{\infty})_{\min}$ the displacement thickness at a fixed position on one of the plates in the series is always equal to δ^* = constant

^{*}Due to a typographic error, this equation was incorrectly written as $0.37/8 (U_{m}x/v)^{-1/5}$ in Appendix B2 of Reference 1.

for $v = v_{air}$ and $v = v_{water}$. To reduce the amount of computation for the *aluminan plate only* (i.e., to eliminate δ^* as a parameter) we select for any of the prescribed values of $U = U_c/0.8$ and for $v = v_{air}$ and

 $v = v_{water}$ the plate whose position is such as to yield

a displacement thickness $\delta^* = 0.033 > \delta^*_{max}$. It is

assumed that on a given plate δ^* is sensibly constant in the direction of flow along the plate length

Total damping ratio in air including the damping in the plate as well as radiation damping. In the present problem the radiation damping in air is considered to be

much smaller than the material damping. According to Jacobs the damping used for the aluminum plate in air was *experimentally* determined from an analysis of bandwidths between half-power points on response resonances from segmented, unpublished, high-resolution deflection power spectral density measurements (see page 5 of Reference 21, pages 24-25 and 34 of Reference 22, and page 273 of Reference 1)

A plot of the measured results given in References 21 and 22 indicates that $\delta_{mn} = 15/f_{mn}$ approximately. Hence

$$a_{mn} = 0 \omega_m/2 = 15$$

Total damping ratio of panel in water including the damping in the plate, the damping associated with fluid loading and the radiation damping. However, in the present problem the contribution of the radiation damping to δ_{mn} is excluded. * From page 41 of Reference 1 we

deduce that

δ ກາກ

δ_{mn}

$$a_{mn} = \frac{\beta}{2M} = \frac{\sigma_{mn} \omega_{mn}}{2} \text{ in air}$$
$$\bar{a}_{mn} = \frac{\beta}{2M} = \frac{\bar{\delta}_{mn} \bar{\omega}_{mn}}{2} \text{ in water}$$

In any event the experimentally measured damping will include the contributions of all damping mechanisms influencing the measurement results. The mathematical representation of damping in the equations of plate motion include these results as a viscous damping term.

We are interested here in the radiation damping of a mode in the range k > k. For heavy fluid loading the corner mode contribution to radiation damping is applicable at all frequencies whereas the edge mode contribution is significantly applicable at high frequencies.⁷ Simple equations for determining these contributions are given in Reference 7 and will appear in a companion report.

The first equation represents the viscous damping of the plate in air and agrees with Equations (A7) and (B18) of

Reference 1 if we ignore the hysterestic and acoustic radiation terms respectively in these equations. The second equation which includes the contribution of both viscous damping and fluid loading (also called added or virtual mass or liquid coupling) agrees with Equation (A51) ad we distributed a structure of the other descent of a structure with a structure descent of the second of the

of Reference 1 if the hysteretic and radiation damping term in this equation is excluded. It is of interest to note that when radiation damping is not considered the increased mass associated with fluid loading reduces the modal damping term in water (see Equation (A51) of Reference 1) so that $\bar{a}_{mn} < a_{mn}$. As shown in Tables 3a and 3b, $W_p = 0.6 \text{ lb/ft}^2$ for the aluminum plate. From the ratio of the above equation we get

$$\bar{a}_{mn} = a_{mn} \frac{M}{M!} = a_{mn} \frac{p}{W!} = 15\pi \left(\frac{0.6}{0.6 + W_{mn}}\right)$$

and

$$\bar{\delta}_{mn} = \frac{2a_{mn}}{\bar{\omega}_{mn}} = \frac{30\pi}{\bar{\omega}_{mn}} \left(\frac{0.6}{0.6 + W_{mn}} \right) = \frac{15}{\bar{f}_{mn}} \left(\frac{0.6}{0.6 + W_{mn}} \right)$$

Corresponds to the time in which the value of the measured correlation coefficient of the fluctuating pressures at the wall, obtained from the envelope of the correlation maxima, drops to 1/e. Plots of θ versus Mach number for broad- and narrow-band frequencies are given by Maestrello in Reference 23, Figure 5. The Maestrello narrow band measurements of eddy lifetime for frequencies centered at 1200 Hz were extrapolated to zero

The user interested in including a hysteretic damping term as a separate contribution to a_{mn} and \bar{a}_{mn} can easily determine this term by use of Equations (A7) and (A8) and the relevant term in Equation (A51) of Reference 1, substituting M' for M and $\bar{\omega}_{mn}$ for ω_{mn} when fluid loading is considered; see also Equations (13) through (15) of Reference 13 for similar results in terms of both a_{mn} and δ_{mn} . However to simplify the present computations and in accordance with the Maestrello procedure discussed in Appendix B of Reference 1, explicit division of the damping into its hysteretic and viscous components is not made here.

service and the dependence of the service of the se

Mach number at which $\theta = 2.25 \times 10^{-3}$ sec. For all U_c under consideration, (Mach number)_{water} < (Mach num-^c ber)_{air} = U_∞/c_{air} $\leq 64/(0.8)$ (1129) < 0.08. Since the extrapolated curve shows that θ (Mach numbers < 0.08) \approx θ (Mach number equal zero) then approximately $\theta = 2.25 \times 10^{-3}$ sec for all U_c considered.

Prescribed data

Determination of this quantity is based on the law of the wall which is further discussed on page 62 of Reference 1. The Maestrello measurements presented

in Figure 1 of Reference 23 indicate that $\bigvee p^2/\tau$,

= 2.9 to 3.5 for M = 0.35 to M = 0.75. In reasonable agreement Jacobs finds that the results of various

investigators yield $\sqrt{p^2}/\tau_w = 3.1$ as an average value

for all subsonic Mach numbers (see pages 301 and 302 of Reference 1). Using the latter for the

present calculations we have $\tau_{W} = \sqrt{p^2}/3.1 = 1/3.1 \approx$

0.323 lb/ft²; see also description of computation for p^2 .

 $\phi_{mn}(x,y), \phi_{mn}(x',y')$

Data required for the computer program are calculated by the digital computer for a range of prescribed values of m, n, x, y, x', y'.

Prescribed in Equation (B7) of Reference 1 to obtain $P(\omega)$

For a plate of given geometry, boundary conditions, and structural properties, this quantity can be computed by the methods of Option 2 (Reference 3). In the present problem values for ω were computed

by use of the Warburton program³ for a simply supported plate and substantiated by means of the

simple frequency expression

$$\omega_{\rm mn} = \kappa c_{\ell} \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right]$$

In Method I, a and b lie along x and y respectively and are therefore identified with m and n respectively. In Method II, b is always the longer side so that in general a and b may lie along either x and y or y and x respectively and are correspondingly identified with either m and n or n and m respectively. If, in particular, a and b are identified with n and m, then for Method II (only) the equation $\omega_{mn} = \kappa c_{\ell} [(m\pi/b)^2 + (n\pi/a)^2]$ should be used.

ξ, η, τ τ

ω mn Using Method I only for the aluminum plate $\bar{\omega}_{mn}$ is computed by means of Equation (H3)

Equal to 1 for fluid loading on one side of the plate only; equal to 2 for fluid loading on both sides of the plate Equal^{*} to
$$\frac{k}{k_s} = \frac{\frac{\omega}{c}}{\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}}$$
 where $0 \le \frac{k}{k_s} = q < 1$.

*See footnote on previous page.

122

ω_{mn}

α

q

ran naya daga san na ang ditu tu ang malan data data na ang hata na hata na hata na na data na

Steel Plate

The values for the input data are tabulated in Tables 3a-3f. The methods used in determining these values are:

Parameter Description Prescribed constants used in Equation (B7) of A_i, K_i Reference 1 a, b, h Prescribed quantities Ε A prescribed quantity M ≡ m A prescribed quantity M۲ Using Method I, M' is computed by means of Equation (H2); Using Method II, M' is computed by means of Equations (H5) and/or (H8) Prescribed data m, n $\overline{p^2}$ Equal to $P(\omega)d\omega$ where $P(\omega)$ is obtained from Equation (B7) of Reference 1. This quantity can also be measured directly. For the present calculation it is convenient to set $p^2 = 1$ so that the autocorrelation function for the turbulence pressures and the cross correlation function for the panel displacements given by Equations (B8) and (B52) respectively of Reference 1 can be regarded as normalized to this value (We can also compute p^2 . Thus for subsonic speeds Jacobs¹ shows that $p^2 \approx 3.1 \tau_w$ and from Reference 23 for a smooth plate, $\tau_w/q \approx 0.06 (R_x)^{-1/5} = 0.060 (U_{\infty}x/\nu)^{-1/5}$ where $q = 1/2 \rho U_{\infty}^2$ is the freestream dynamic pressure.) A parameter whose values are prescribed by the user; υ_c $U_c = 0.8$ U. For the present problem $U_c = 8$, 16, 32, 64 ft/sec x, y, x', y' Prescribed points; the cross correlation of the displacements are computed for these points

 $\delta^{*}=(FU)\Xi(FU_{r})$

The displacement thickness is determined by use of a computer program available at the Center entitled XG 75, Fortran IV by R.W. Brown. The program uses a relation developed by Mangler, i.e., the Mangler integral transformation, which permits reduction of the calculation of axially symmetrical boundary layers on arbitrary bodies of revolution to that in twodimensional flow. The Mangler method relates the distance along the axis of a body of revolution to the distance along a flat plate at which the boundary layer thickness is identical. The boundary layer displacement thickness is then calculated using an expression which is a function of the flat plate distance and flat plate Reynolds number (using kinematic viscosity of air at 90 deg F and of water at 39 deg F), developed by Granville.²⁴ The derivation of the expression is based on similarity arguments. The undetermined coefficients in the expression are evaluated by use of experimental data. The required input data for the program are the axial distance (in feet) and the radius of the body (in feet) at that position as well as the free stream velocity (in knots). The limitations of the program are those due to the assumptions required for the Mangler transformation and to the fit of the available data which Granville used in his theory. The assumptions involved are considered to have a greater bearing than the data fit on the accuracy of computation. In particular, we observe that Mangler assumes a two-dimensional flow which does not explicitly account for the local pressure gradient. The saving feature, with regard to this omission, is the fact that the boundary layer growth is sufficiently slow so that the imprecision in the calculation is considered to be approximately 10 percent. Figure 15 gives the results of the computation for δ^{\star} of the actual structure in water and in air obtained by use of the Brown computer program.

Total damping ratio in air including the damping of the plate as well as radiation damping. In the present problem the radiation damping in air is con-

sidered to be much smaller than the material damping.

δ_{mn}

The actual structure under consideration is a cylinder which is part of a cigar-shaped body of revolution. Our computations are made above the ring frequency which allows the cylinder to be treated approximately as a plate. The supports at the cylinder or equivalent plate are essentially simple.

^{**}See second footnote for $\boldsymbol{\delta}_{mn}$ of aluminum plate.

han S. Koning and the state of the state of the

125

n,

In Reference 25, Figure 36.9 used in conjunction with Figure 36.15 shows that the loss factor η of various steels at low and intermediate reversed stress values and with cyclic stress values well below the fatigue limit range approximately from a maximum of about 0.005 to a minimum of 0.001. Analytically, we can also obtain a value of this order of magnitude by use of Equation (36.13) of this reference, namely,

 $\eta_{\rm S} = \frac{E}{\pi} - \frac{D_{\rm d}}{\sigma^2} - \frac{\alpha}{\beta}$ In this equation, E for

steel is known and D_d the specific damping energy associated with the peak stress level reached anywhere during the vibration (i.e., the value of D corresponding to $\sigma = \sigma_{r}$) can be obtained from published curves

such as Figure 36.15 and Figure 36.17 of Reference 25 or tabulated data. For materials with uniform stress distribution $\alpha/\beta = 1$ whereas for various specimens with variable stress distribution α/β is given by Figure 36.9 of Reference 25. For a rectangular beam with either a constant, linear, or quadratic moment distribution, at low and intermediate stress, $\alpha/\beta \approx 0.66$. Additional details on this procedure as well as a sample calculation are given in Reference 26.

Experimental data 2^{7-34} for the loss factors of isotropic flat plates of steel and other materials, with-

out substantial stress concentration, over the range of frequencies 100 to 1000 Hz, also vary approximately from about 0.005 to 0.001. Considering the scatter of these data, a reasonably approximate empirical expression for the loss factor (over this range of frequencies) is $\eta = 0.5/f_{mn}$. Hence, $\beta/\beta_c = \eta/2 = 0.25/f_{mn}$ $= \delta_{mn}/2 = a_{mn}/\omega_{mn}$. Therefore, $\delta_{mn} = 0.5/f_{mn}$ and

 $a_{mn} = 0.5\pi$.

The damping of the panel modes is a combination of viscous and structural damping where the viscous damping force is proportional to velocity and the

Thus the data refer to the loss factor for the bare (free) plate or to a simple supported plate if the corresponding stress concentration associated with the support is not large. The value of η for the particular boundary condition under consideration should be used in computations. For example, from data on clamped plates, Bies³⁵ determined that $\eta = 77/f$. This result is close to that used by Jacobs^{1,21-22} for a clamped aluminum plate. Davies,⁷ in his investigation of plate response and radiation, also assumed that $\eta = \beta/f$ where β is a constant.

hysteretic damping force is proportional to displacement. Measurements have shown that the damping of panels is small so that the damping can be represented adequately in most cases by considering it to be entirely viscous.

Total damping ratio of panel in water including the damping associated with fluid loading and the radiation damping. However, in the present problem the contribution of the radiation damping to δ_{mn} is excluded. Following the analysis and argument made for the aluminum plate and noting that $W_p = 20.4 \text{ lb/}p^2$ for the steel plate as shown in Table 3, then

$$\tilde{a}_{mn} = a_{mn} \frac{M}{M!} = a_{mn} \frac{\frac{W}{p}}{W!} = 0.5\pi \left(\frac{20.4}{20.4 + W_{mn}}\right)$$

and

$$\bar{\delta}_{mn} = \frac{2 \bar{a}_{mn}}{\bar{\omega}_{mn}} = \frac{\pi}{\bar{\omega}_{mn}} \left(\frac{20.4}{20.4 + W_{mn}} \right) = \frac{1}{2 \bar{f}_{mn}} \left(\frac{20.4}{20.4 + W_{mn}} \right)$$

Corresponds to the time in which the value of the measured correlation coefficient of the fluctuating pressures at the wall, obtained from the envelope of correlation maxima, drops to 1/e. Plots of θ versus Mach number for broad- and narrow-band frequencies are given by Maestrello in Reference 23, Figure 5. The Maestrello narrow-band measurements of eddy life-time for frequencies centered at 1200 Hz were extrapolated to zero Mach number at which $\theta = 2.25 \text{ x}$ 10^{-3} sec. For all U_c under consideration, (Mach number) $\ll (Mach number)_{air} = U_{\infty}/c_{air} = U_c/0.8c_{air} \leq 64/(0.8)(1129) < 0.08$. Since the extrapolated curve shows that θ (Mach numbers < 0.08) $\approx \theta$ (Mach number equals zero), then approximately $\theta = 2.25 \times 10^{-3} \text{ sec}$ for all U_c considered.

ξ, η, τ

τ_w

δ_{mn}

θ

Prescribed data

Determination of this quantity is based on the law of the wall which is further discussed on page 62 of Reference 1. The Maestrello measurements presented in

ġ

*See first footnote for $\overline{\delta}_{mn}$ of aluminum plate.

Figure 1 of Reference 23 indicate that $\sqrt{p^2}/\tau_w = 2.9$ to 3.5 for Mach number = 0.35 to Mach number = 0.75. In reasonable agreement, Jacobs finds that the results of various investigators yield $\sqrt{p^2}/\tau_w = 3.1$ as an average value for all subsonic Mach numbers (see pages 301 and 302 of Reference 1). Using the latter for the present calculations we have $\tau_w = \sqrt{p^2}/(3.1) = 1/(3.1) \approx 0.323$ lb/ft;² see also description of p^2 $\phi_{mn}(x,y)$, $\phi_{mn}(x',y')$ Data required for the computer program are calculated by the digital computer for a range of prescribed values of m, n, x, y, x', y'

ω

ω mn

ω̃ mn

α

q

Prescribed in Equation (B7) of Reference 1 to obtain $P(\omega)$

For a plate of given geometry, boundary conditions and structural properties, this quantity can be computed by the methods of Option 2 (Reference 3). In the present problem values for ω_{mn} were computed by use of the Warburton program³ for a simply supported plate and substantiated by means of the simple frequency expression^{*}

$$\omega_{mn} = \kappa c_{\ell} \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right]$$

Using Method I, $\tilde{\omega}_{mn}$ is computed by means of Equation (H3); Using Method II, $\tilde{\omega}_{mn}$ is computed by means of Equations (H6) and/or (H9)

Equal to 1 for fluid loading on one side of the plate only; equal to 2 for fluid loading on both sides of the plate

Equal to
$$k/k_{s} = \frac{\frac{\omega}{c}}{\sqrt{\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}}}$$

See footnote for ω_{mn} defined for the aluminum plate.

COMPUTER PROGRAMS

Four computer programs associated with the mean square displacement computations performed in this report for a simply supported fluid-loaded plate subject to turbulence excitation are described below.

Program A': Modification of the Maestrello subprogram A (designated TURAD), described in Reference 1, for computation of the mean square displacement. The modification which incorporates certain corrections, additions, deletions, and improvements in efficiency in conjunction with its running on the CDC 6700 supersedes subprogram A and should be used henceforth. Details of the modification are discussed below.

- Program B': Computes the fluid-loaded natural (or modal) frequencies $\bar{\omega}_{mn}$ as well as k_s , k_s^2 , added weight $w_{mn} = m_{mn}g$, and total weight w' = M'g = $(m_p + m_m)g$. In the program $w_p = m_pg \rightarrow WP$, $W_{mn} = m_mg \rightarrow W(M,N)$, W' = M'g \rightarrow FW, and $\tilde{\omega}_{mn} \rightarrow$ BOMEGA. This program is designated as Option 3.
- Warburton $program^5$ for computing the plate natural frequencies Program C': f_{mn} and ω_{mn} in air for both simply supported and clampedclamped boundary conditions.
- Program D': Computes the displacement thickness for an arbitrary body of revolution. The displacement thickness is used to calculate the variable FUCSQ in Program A'. Program D' was developed by Mr. R.W. Brown (see previous section of this Appendix).

Computes turbulent Joundary layer thickness.

Fluid loading routine

As previously discussed, computations for clamped-clamped boundaries can also be performed with the same program. The program can also compute the modal acoustic-power radiation of a plate in a reverberant field. These computations are not made here.

As shown in the preceding chart, when fluid loading is omitted Programs C' and D' generate data for use in Program A'. The methods for determining additional imput data have been described in the previous section.

When fluid loading is included, Program C' generates data for Program B' and then Programs B' and D' generate data for use in Program A'. Determination of additional data inputs have previously been described.

The computer and running times of a calculation associated with each program are given in the following chart.

Program	Computer (at NSRDC)	Time	Cost for Total Computation
Α'	CDC 6700	Using the Simpson rule of integration the computer running time is approxi- mately 5 min for obtaining a curve	\$75.00
		of $Y^2(\omega)$ versus U _c for each set of mode	
		numbers (m,n) and four convection velocities U _c	
B'	IBM 7090	1.0 min for (m,n) ranging from 1,1 to 10,10, i.e., 100 values of $\bar{\omega}_{mn}$	4.00
C'	IBM 7090	1.3 min for (m,n) ranging from 1,1 to 10,10, i.e., 100 values of ω _{mn}	5.50
D'	IBM 7090	1.1 min for 198 values of axial distance, flat plate distance, local flat plate Reynolds number, and δ = 8 δ *	4.60

Program A'

To make the original Maestrello subprogram A, designated TURAD, a more efficient program and to enable it to run on the CDC 6700, the following changes have been made in the coding of the original program (the modified program A' is designated MTURAD):

1. Reduction of the four-dimensional array IXYZ to a threedimensional array

*IXYZ (M,N,IT,L2) IXYZ (N,1,L2)

2. Increase in the dimension of the following variables:

*IXYZ (10,1,50,3)------ IXYZ (10,1,3)

- YY (11) ------ YY (101)
- TEMP1 (11) ------ TEMP1 (101)
- 3. Rearrangement of certain data cards *FUCSQ FM2
- 4. Deletion of some original data

*NP - no longer needed

PARAM - no longer needed (see below)

THETA - no longer a dimensional variable

- 5. Correction in coding of Simpson's rule. Original coding is: *525 G2 (J,M) = G2 (M,M)*2 should read
 - *525 G2 (J,M) = G2 (J,M) *2
- 6. Elimination of double precision functions due to no

declaration of such at the beginning of the program. Such occurrences were on cards numbered 2310 and 2330.

7. Introduction of a tolerance as an option for $Y^2(\omega)$ for any plate material. An exceeded tolerance produces an error message to be printed in the output. If use of the option is not desired, the user reads in the value 0 for the variable IOPT. If the option is used then any number other than 0 is read in for the variable IOPT.

8. Rearrangement of lines of coding due to rearrangement of data. The lines are on cards numbered 0620-0670, 0750 and 0760 in the original listing.

For completeness we include an explanation of the procedure by which θ and a_{mn} were obtained by the computer program in Reference 1. For the present program, the method given in Section 2 of this Appendix for the determination of θ and a_{mn} has superseded this procedure. However, if the user finds the earlier procedure useful in computation, it can be reintroduced into the present program.

From page 7 of Reference 44 and from Section 3 of DISCUSSION AND EVALUATION (Equation 7b), the following condition obtains at hydrodynamic coincidence

$$\omega_{mn} \theta = k_{mn} U_c \theta = \frac{2\pi}{\lambda_{mn}} U_c \theta$$

We define PARAM = $2U\theta/\lambda_{mn}$. Hence $\omega_{mn} \theta = \pi$ • PARAM and

$$\theta = \frac{\pi \cdot PARAM}{\omega_{mn}} = \frac{\pi \cdot PARAM}{\kappa c_{\varrho} \pi^2 \left[\left(\frac{m}{a} \right)^2 + \left(\frac{n}{b} \right)^2 \right]} = \frac{PARAM}{\kappa c_{\varrho} \pi \left[\left(\frac{m}{a} \right)^2 + \left(\frac{n}{b} \right)^2 \right]}$$

Now U_c is the convection velocity along x (i.e., flow) direction only. Therefore at hydrodynamic coincidence, the trace wave speed of the free plate bending wave is matched to the convection speed in the flow direction, yielding a greatly increased response. Thus,

$$U_{c} = \frac{\omega_{mn}}{k_{mn}} = \kappa c_{\ell} \pi \left[\left(\frac{m}{a} \right)^{2} + \left(\frac{m}{b} \right)^{2} \right]^{1/2} \neq \kappa c_{\ell} \pi \frac{m}{a}$$

so that (neglecting the quantity $(n/b)^2$ in the expression for θ)

$$\theta = \frac{PARAM}{U_{c} \frac{m}{a}} = \frac{PARAM \cdot a}{m U_{c}}$$

Maestrello (Figure 21 of Reference 45 or Figure 18 of Reference 46) has shown experimentally that the maximum vibratory response (i.e. maximum mean square displacement) occurs at hydrodynamic coincidence where the turbulence and plate modal wave numbers are matched for a constant frequency. Maestrello has also performed computations which show that the condition $\pi \cdot \text{PARAM} = \omega_{\text{mn}} \theta = 1$ represents the aerodynamic coincidence condition for which maximum excitation of the panel occurs; see Figure 7 of Reference 1. This figure also gives results for $\omega_{\text{mn}} \theta < 1$ and $\omega_{\text{mn}} \theta > 1$ corresponding to the conditions below and above coincidence, respectively.

Thus, selection of the value PARAM for a given plate, value of U_c and mode number m will yield the corresponding value of θ . For PARAM = $1/\pi$, the value of θ corresponds to the coincidence condition. For PARAM $\leq 1/\pi$, the value of θ corresponds to the condition below and above coincidence, respectively.

In subprogram A, Maestrello chooses the magnitude of a_{mn} according to the $\omega\theta$ region of the curve that interests him. For example, Figure 7 of Reference 1 plots $\overline{Y^2}(\omega)$ against $\omega\theta$. In the region $\omega\theta = 10^{-1}$ to 1.0, he uses $a_{mn}/10$; however for $\omega\theta = 1.0$ to 40, he uses a_{mn} . The Maestrello methods for determining a_{mn} are given in Reference 1.

* For $\omega_{mn} \theta \ll 1$ the modal mean square displacement is inversely proportional to the total damping and at the peak is inversely proportional to the square of the damping. In this region the effect of damping on $\overline{Y^2(\omega)}$ is greatest. For $\omega_{mn} \theta > 1$ coincidence is not possible. In this region the effect of damping on $\overline{Y^2(\omega)}$ is much smaller, see References 45 and 46.

TABLE 6

Input Data, Computer Listing, Flow Chart, and Column Headings for Input Forms on Data Cards for Updated Maestrello Progran A' Used to Compute Mean Square Displacement of Plate with and without Fluid Loading

To a substration of the state of the substrate of the sub

TABLE 6a

Input Required for Program A' (MTURAD)

(Units are given in foot-pound-seconds)

ven, so rever streber isterolisister alleren streber en entrebende etter in her bester her solf and the solf and the solf and the sole of
Data	Description	Format	Symbol Used in Program	Unit	
Flow Characteristics (Program A'-an updated version of Subprogram A given in Reference 1)					
U _c	Broadband convection velocity	F10.0	UC(1)	ft/sec	
p ²	Mean-square wall- pressure fluctuations, which vary with U _c *	F10.0	PB2*DPB2(I)	(1b/ft ²) ²	
(FU _c) ²	Quantity $\left(\frac{\delta^{\star U}c}{U}\right)$		FUCSQ	ft ²	
	squared where: δ* Ξ boundary layer displacement thickness	F10.0			
	U ≡ free stream velocity				
^K 1, ^K 2, ^K 3	Universal constants: K ₁ = 0.470 K ₂ = 3.0 K ₃ = 14.0	F10.0	AK		
A ₁ ,A ₂ ,A ₂	Universal constants: $A_1 = 1.6$ $A_2 = 7.2$ $A_3 = 12.0$	F10.0	AN		
(*PB2 would represent a unique value of p^2 if p^2 were independent of U_c . It enters the program (i.e., data cards) once only. Since p^2 actually varies with U_c , a correction factor DPB2(I) is entered with every value of U_c . Thus					
c c c c c c c c c c					

Data	Description	Format	Symbol Used in Program	Unit
Plate Characteristics				
h	Panel thickness	F10.0	11	ft
* (₩') ²	Square of total weight per unit area	F10.0	FN2	lb/ft
a,b	Lengths of panel sides	F10.0	ZUP,YUP	ft
** ^δ mn, ^δ mn	Total damping ratio	F10.0	DAMP	
** ພຸກາ ພິກດ	Modal frequencies of the plate	F10.0	OMEGA	rad/sec
Additional Quantiti	es			
Range of plate mode numbers for which calculations are desired	First m mode number, last m mode number, interval between m mode number, total number of m's m ≤ 20, MSTEPS ≤ 20. Same information as	110 110 110 110 110	MLOW MUP DM MSTEPS NLOW	
	previously described, with respect to n mode numbers n ≤ 10, NSTEPS ≤ 10. To run program A' for m > 20, n > 10 the size of the dimen- sioned variables IXYZ,IYZ,IY,G2,G3,YY, TEMP,OMEGA,DAMP,FA, FC,EIGEN and FUDGE must be examined and increased accord- ingly	110 110 110	NUP DN NSTEPS	
τ	Time delay	F10.0	TAU	sec
Number of values of U _C to be calculated		110	KUC	
× _o ,y _o	Coordinates of a point on plate at which mean square displacement and acoustic power are calculated	F10.0	X0,YO	ft
<pre>*Total weight area</pre>				
$\bar{\delta}_{mn}$ = Total damping ratio of plate in water; δ_{mn} = total damping ratio of plate in air, $\bar{\omega}_{mn}$ = modal frequencies of plate in water; ω_{mn} = modal frequencies of plate in air.				tal damping of plate in

とうず みじょ

Services

Table 6a (Continued)

135

and the second ball high fragment have been a second second

Table 6a (Continued)

Data	Description	Format	Symbol Used in Program	Unit
x',y'	Any point on plate different from x _o ,y _o	F10.0	XOP,YOP	ft
Calculated	Output			
[¢] m,n	Value of eigen- functions of mean square displacement. A value of EIGEN is computed for each mode (m,n) with three values of total damping; 1/10 a _{m,n} ; a _{m,n} ; ^{10a} m,n	E16.8	EIGEN	
*a _{m,n} ,a _{m,n}	Values of total damping associated with each mode (m,n)	E16.8	FA(m,n,1) for computation; A(m,n,DAMP) in output	1/sec
<u>νοι^{m,n}</u> <u>ν</u> 2 γ	Volume under each eigenfunction	E16.8	VOL	in. ²
I(m,n)	Triple integral of Equation (B52) of Reference 1; integral of cross correlation	E16.8	IXYZ I(m,n)	
γ ² (ω)	Mean square displace- ment for values of 1/10 a _{m,n} ; a _{m,n} ; 10a _{m,n}	E16.8	ANS	in. ²
* ā _{m,n} = Total damping for each mode of fluid loaded plate. a _{m,n} = Total damping for each mode of plate in air.				

136

પ

arean discillation and

のないのです。「ないたいないない」というないで、

au far at reaction and the set of the standard and the start of the set of the set of the set of the

TABLE 6b

10 C

いたで

and the second secon

computer disting for opuated maestrerio riogram R	
= TN / T)	
REORGANISED PROGRAM FOR COMPLETING TRIPLE	0 10
	20
C LISTNG SIMPSONS RULF	30
COMMENT TRANS = 0+0 HEANS NO TRANSDUCER FEFECTS INCLUDED	2.0
COMMENT THIS RUN OF MTURAD HAS SIMPLY-SUPPORTED *******	
C*********FREQUENCIES W//UT TRANSDUCER *)***********************************	***
DIMENSION VOL(20+10)	40
DIMENSION F3(3) ANS(3)	50
DIMENSION IXYZ(10,1+3)+IYZ(20,10),IY(10)+G2(401+20)+G3(101+10),	
1YY(101),TEMP1(101),G5(4000)	
DIMENSION AK(3),AN(3),TITLE(7)	
DIMENSION OMEGA(20+10)+DAMP(20+10)	0100
DIMENSION FA(20+10+3)+FC(20+10+3)+FIGEN(20+10+3)+FUDGE(20+10+3)	0110
DIMENSION UC(20)+0PB2(20)	0120
REAL IXYZ, IYZ, IY	0130
INTEGER DM.DN	0140
READ(5,13) TAU,TRANS	
13 FORMAT(2F10+0)	
	0170
801 FURMAI((11)/20 (AU=E12.6)	0180
1213 FORMAT(1H0.5HIOPT=15)	
$\frac{1}{1} \sum_{i=1}^{n} \frac{1}{1} \sum_{i=1}^{n} \frac{1}$	
103 = FORMAT(12(F10, 0/1))(7A10))	
$V_{R1TF(6,201)}(T1TF(1), I=1, 7)$	
201 FORMAT(7A10)	
WRITE(6+203)PB2+AK+AN+X0+Y0+	
1XOP YOP	250
203 FORMAT(1X)8H RHO-BAR 9H SQUARFD=E16+3+	
24H0K1=E16.8,4H K2=E16.8,4H K3=E16.8/	0290
34H A1=E16•8•4H A2=E16•8•4H A3=E16•8/	0300
44H XO=E16.8.4H YO=E16.8.5H XOP=E16.8.5H YOP=E16.8)	0310
READ(5,102) KUC + (UC(1) + DPB2(1) + I = 1 + KUC)	0320
102 FORMAT(110/(2F10.0))	0330
WRITE(6,204) (UC(I),DPB2(I),I = 1,KUC)	0340
204 FORMAT(1H07X2HUC13X4H0PB2/(1H 2516.8))	0350
99 READ(5+1) ZUP+YUP+H+MLOW+MUP+DM+MSTEPS+NLOW+NUP+DN+NSTEPS	0360
1 FORMAT(3(F10.07),(4110))	0370
WRITE(6,2)MLOW.MUP.DM.MSTFPS.NLOW.NUP.DN.STEPS	0380
2 FORMAT(9HOM FROM 15+4H TO15+7H PM=15+	0390
112H A TOTAL OF 15.7H STEPS/9H N FROM 15.	0400
24H 101597H DN=15912H A 10TAL OF1597H STEPS)	0410
WKIIC(6)2V2) 2UP (TUP)H 202 E00MAT/2H A-E14.3.5U P=E14.9.5U U=E14.0)	0420
202 FURNALLED A FEIGENERALMAN ANGEN CHARMED AND A DAY	0450
TETAID ST. 10) WEITETARRAN	450
ARA FORMAT (140-784) INFISIONS FOR GALIVATEMPI APE EXCEEDED. CHECK FOUN	
TION FOR KIP ON CAPD 1360.)	
WRITE(6.205)(($OHEGA(M \bullet N) \bullet M = MLOW \bullet MUP \bullet DM) \bullet$	0440
	470
205 FORMAT(7H00MEGA=/(8E16+8))	0480
IF(TRANS.EQ. A.O) GO TO 17	
READ(5:1477) R:DEL	

Computer Listing for Updated Maestrello Program A'

137

Table 6b (Continued)

1477	FORMAT(2F10.0)	
1457	101453 J = 193	
1455	AK(J) = AK(J) = SWR(R/)EL	400
11	DO 7 M = 1 MUP MM	490
7		500
•	READ (50104) ((DAMP(MoN)) M=MIOWOMIPODM) (NENIOWONIPODN)	510
104	FORMAT(F10.0)	530
	WRITE(6,206) ((DAMP(M,N),M=MLOW,MUP,DM))	0540
	IN=NLOW,NUP,DN)	550
206	FORMAT(6H0DAMP=/(8F16.8))	0560
	N1=8	570
	READ (5,207) THETA	
2.51	FORMAT(F10.5)	
		600
9	D-70P D7 - AN/11 / AV/11	610
0	$B_{A}(2)/AV(2)$	
	R9=AN(3)/AK(2)	700
	C1=4_0/(A*R)	7(4)
	C2=3•14159265	720
	C3=1•/C2	730
	C4=C2*C2	740
	C6=C4/(A*B)	770
	DO 10 M=MLOW+MUP+DM	780
	DO 10 N=NLOW+NUP+DN	790
	XM=M	800
		810
		820
	TE(M-M/2#2-NE+01G0 TO 43	830
	X(=4/2+=4/{XM*2+})	(/04(
43	IF(N-N/2*2*NE*0)GO TO 44	0860
	Y0=B/2B/(XN*2.)	870
44	XOP=XO	880
	YOP=YO	896
	DAMP(M+N)=DAMP(M+N)/10+	0900
	DO 45 L=1+3	910
	FA(MoNoL)=U*.4P(MoN)/2o*OMEGA(MoN)	0920
	FA(M9N9L)#FA(M9N9L)#()#5	0930
	FLINGE/MANALIANNEGA/MANIE/FA/MANALIAERA AOMEGA/MANIERA	0940
	FUDGELMANALISCI/FUDGELMANALISTN/YMFC3#YO/ALFCIN/YMFC3#YO/ALFCIN/YMFC3#YO/ALF	0950
	1SIN(XM*C2*X0P/A)*SIN(XN*C2*Y0P/B)	098(
45	DAMP(MAN)=DAMP(MAN)*10.	0980
10	CONTINUE	99(
	WRITE(6,1003)	1000
1003	B FORMAT(33H0XO=XOP,YO=YOP,AND THEY VARY WITH	1010
	117H THE MODE NUMBERS)	1020
		1030
2	WRITE(693)(TEIGEN(M9N9L)9M=MLOW9MUP9DM)9N=NLOW9N()P9DN) ECOMAT/JUCTICEN=//0516-011	104(
5 46		1050
-0	DD 47 1=1+3	1000
	WRITE(6+48)((FA(M+N+L)+M=MLOW+MUP+DM)+N=NLOW+NUP+DN)	1080
48	FORMAT(13HOA(M+N+DAMP)=/(8E16+8))	1090
47	CONTINUE	110
	CALL VOLUM(A,B,MLCW,MUP,DM,NLOW,NUP,DN,VOL)	1110
	ICOUNT=1	
	READ(5,225) FUCSQ	
d 2. vier in all the address of the change and a diversion of the set of the for the set of the set of the set

225 3	FORMAT(F10.0) D0 777 KU=1.KUC	
	WRITE(6+303)UC(KU)	
303	FORMAT(4H UC=,E16.8)	
	B1=AK(1)##2#FUCSQ	620
	52=AK(2)**2**UCSQ	630
	D3-AK13/**2*FULSU B4=AN(1)*AV(1)*FUCCO	640
	B5=AN(2)*AK(2)*FUCSO	620 640
	B6=AN(3)*AK(3)*FUCSQ	670
	DO 778 M=MLOW, MUP, DM	1170
5	KCOUNT=1	
	READ (5+222) FW2	
666	FORMAT(F10.2)	
	C5=(A*B*PB2)/(2•*C4*FW2*(B7+B8+B9))	
	CD=CD*32e2*32e2*12e*12e CONFT~CF*DDD3/V//)	0760
		11,40
304	FORMAT $(124*7H CONST=*F16*8)$	
	XM=M	1180
	WRITE(6,780)THETA	11.00
780	FORMAT(1H0,6HTHETA=,E12.5)	
	IF(THETA •GT• 100) GO TO 999	
	XLOW=0.	1240
	DX=1•/(2U•*OMEGA(M•NUP)/2•/3•14159265)	
	102220/0X*10L1A+10 15/100 ct 25000 tub-2500	
	1F(10P +01+ 3399) 10P=3399 TF(THD_THD/3#31 501.600.501	
500	THD=100-2*27 0*199009901	1270
501	f(P = f(P + 400)	1280
502	DX=THETA/40.	1790
	ZLOW=~A	1310
	JUP=20*M+1	1320
	ZJUP=JUP=1	1330
	DZ=2•*A/ZJUP	1340
	YLON=0.	1350
	KUP=10*NUP+1	1360
		1370
		1380
	65(T)=1.	1390
	IF(1+F0+491)60 TO 11	1400
	IF(I.NE.I.AND.I.NE.IUP) GO TO 510	1420
	GO TO 511	1430
510	G5(1)=G5(1)*2.	1440
511	IF(I-I/2*2.EQ.0) GO TO 513	1450
	GO TO 11	1460
513	G5(I)=G5(I)+2.	1470
11		1480
		1490
	XM=M	1500
	D1=XM*C2*Z/A	1630
	D2=COS(D1)	1520
	G2(J,M)=D2+1./(XM*C2)*(SIN(ABS(D1))-ABS(D1)	1540
	1*D2)	1550
	IF(J.NE.1.AND.J.NE.JUP) GO TO 520	1560
* = ^	GO TO 521	1570
520	GZ(J∮M)≠GZ(J∮M)★Z⊕ TE/ I= ±/2#2,EO,O\6O, #0, 625	1580
271		1590

and the second states of the second

WRY - Windy

NEWS CONTRACTOR

history which is the own that a stability of the state of

	GO TO 21	1600
525	G2(J+M)=G2(J+M)*2+	
21	Z=Z+DZ	1620
	A=AFOA	1630
	DO 31 K=1+KUP	1640
	DO 30 N=NLOY+NIP+DN	1650
	XN=N	1660
	D3=XN#C2#Y/5	1670
	D4=COS(D3)	1680
	G3(K+N)=D4+1+/(XN*C2)*(SIN(D3)=D3*D4)	1690
	IF(K.NE.1.AND.K.KE.KUP) GO TO 530	1700
	GO TO 531	1710
530	G3(K+N)=G3(K+N)+2+	1720
531	IF(K-K/2#2.EQ.0) GO TO 533	1730
	GO TO 30	1740
533	G3(K+N)=G3(K+N)+2+	1750
30	CONTINUE	176/1
31	Y=Y+DY	1776
	Y=YLOW	1780
	DO 39 K=1+KUP	1790
	YY(K)=Y*Y	1800
39	Y=Y+DY	1810
	DO 40 L1=1,3	1820
	DO 40 N=NLOH+NUP+DN	1830
40	IXYZ(N919L1)=0.	
	KAPPA=0	1860
	X=XLOW	1870
	DO 160 I=1,IUP	1880
	IF(TAU .EQ.0.0) GO TO 630	1890
	F1 = IIC(KU) + (TAU - X)	1900
	GO TO 632	1910
630	E1 = UC(KU) + X	1920
632	CONTINUE	1930
	DO 50 N=NLOWANUPADN	1940
50	IYZ(M+N)=O+	7950
	2=71 OW	1960
	DO 120 J=1+JUP	1970
	E2=(Z-F1)#(Z-E1)	1980
	E4=B1+E2	1990
	E5=B2+E2	2000
	E6=B3+E2	- 2010
	DO 60 K=1+KIP	2020
60	TEMP1(K) = B4/(E4+YY(K)) + B5/(E5+YY(K)) + B6/(F6+YY(K))	2030
	DO 70 N=NLOW NUP DN	2040
70	IY(N)=0.	2050
	DO 90 K=1+KUP	2060
	DO 90 N=NLOWANUPADN	2070
90	IY(N) = IY(N) + G3(K + N) + TFMP1(K)	2080
	DO 100 N≂NLOWANUPADN	2000
100	IY(N) = IY(N) + DY/3	2100
	DO 110 N=NLOW+NUP+DN	2110
	TEMP=1Y(N)	2120
110	IYZ(MoN)=IYZ(MON)+G2(JOM)*TEMP	2130
120	Z=Z+DZ	2140
	DO 130 N=NLOW+NUP+DN	2150
130	$IYZ(M_{0}N) = IYZ(M_{0}N) + DZ/3$	2160
1001	CONTINUE	2170
	DO 140 N=NLOW+NUP+DN	2180
	TEMP=IYZ(M+N)	2190
	XM≠M	2200

historicense in the first of the state of the

Service of the servic

and the second second second second second second second

ASSAULT DEPENDENCES

	XN=N	2210
	F1=XM*XN*C6	2220
	F2=OMEGA(M+N)*ABS(X)	2230
	DO 140 1 1=1 •3	2240
	E2/11/=E4/MANA11/*ADC/V)	2250
		27.50
		2200
	F6=F1*EXP(-F3(L1))*(SIN(F2)+FC(M9N9L1)*COS(F2))	2270
	IF(X •GT• 5•*THETA) GO TO 137	
	IF(TAU.EQ.0.0) GO TO 634	2300
	G6=EXP(-ABS((TAU-X)/THFTA))	
	G0 T0 636	2320
63%		2320
696		3360
030	CONTINUE	2340
	51=2•*F6*G6*G5(I)	2350
	IXYZ(N91 9L1) = IXYZ(N91 9L1) + G1*TEMP*DX/30	
137	CONTINUE	2370
140	CONTINUE	2380
••••	IE (KARDA-NE-0)GO TO 160	2390
		2400
		2400
		2410
	DX=1•/(20•*OMEGA(M•NUP)/2•/3•14159265)	
	GO TO 1001	2430
160	X=X+DX	2440
		2450
		2400
		2470
1/7		2410
141	FORMAT(3H1M=10,3H N=15/745X6H1(M,N)38X918H1(M,N)*F16EN*CONST/7	2480
	12X5HTHETA4X11HOMEGA*THETA6X11HDAMP=1•/10•5X7HDAMP=1•9X8HDAMP=10•	2490
	28X11HDAMP=1•/10•5X7HDAMP=1•9X8HDAMP=10•)	
	D0 602 L2=1+3	2520
602	ANS(L2)=IXYZ(N+1 +I2)*FIGFN(M+N+L2)*CONST	
		2550
147	TATIL OF 142/1021A JISTIAIZI NOI JEZISEZ-195/9(ANG(CZISEZ-195)	2000
142	FURMAI(1X)F7600E14609DE10683	2570
	IF(IOPT •EQ• 0) GO TO 600	
	IF(N •EQ• NLOW) THOLD=ANS(2)	
	IF(N .EQ. NLOW) GO TO 600	
	IF(ANS(2) +EQ+ THOLD/10+ +OR+ ANS(2) +GT+ THOLD/10+) GO TO 600	
	WRITE(6.998)	
800	FORMAT/140, 720000E TE MODE TUAN 3/10 DELON VALUE DE VERZ DE ONECA	
,,0	TOR ATTING TO BE THAN ITTO BEEN VALUE OF TATZ OF OFFICA	
	IAT CORRESPONDING UC •)	
	GO TO 778	
600	KCOUNT=KCOUNT+1	
	IF(KCOUNT +GT+ NSTEPS) GO TO 778	
	RFAD (5+222) FW2	
	C)= (n=0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	
	CONST=C5*()PB2(K())	
601	CONTINUE	
778	CONTINUE	
779	ICOUNT=ICOUNT+1	
	IF(ICOUNT .GT. KUC) GO TO 777	
777		2400
600		2000
779		2010
	END	2670
	SUBROUTINE VOLUM(A,B,MLOW,MUP,DM,NLOW,NUP,DN,VOL)	2640
	INTEGER DM+DN	2650
	DIMENSION VOL(20+10)	2660
	PI=3•14159265	2670

141

- 2

	DO 10 N=NLOW+NUP+DN	2680
	XN=N	2690
		2700
		2710
	VOI (Man)=0.	2720
	1E/N-N/2#2-EC-0160 TO 10	2730
	1F(N=N/2#2.E0.0160 TO 10	2740
	GAMMAN=(2,2400700 10 10 10 10 10 10 10 10 10 10 10 10 1	2750
		2760
	XKN=STN(GAMMAN/2+)/STNH(GAMMAN/2+)	2770
	XKM=SIN(GAMMAM/2+1/SINH(GAMMAM/2+)	2780
	VOI (MAN)#16.#A#R/GAMMAM/GAMMAN/(1+XKM)#1444	2790
	1/(]_+YKN1#SIN(GAMMAM/2_)#SIN(GAMMAN/2_)	2800
10	CONTINUE	2810
1.	WRITE (6.20) ((VOL (MAN) AMEMLOWANUPADM) ANENLOWANUPADN)	2820
20	FORMATIZAHOVOLUME UNDER FIGENFUNCTIONS//	2830
20	1/8516-811	2840
	PETURN	2850
	END	2860
	EINCTION STNH (X)	
	<1NH=0.6+(FYP(Y)=FYP(-Y))	
	PFTIRN	
	FND	

323

がいたかいために

なりたちからいというないない。

For convenience, fluid-loaded parameters (represented by barred quantities) are not distinguished from corresponding parameters for the plate in air. Thus, for the fluid-loaded plate we must *think* of certain parameter symbols being converted as follows: $\omega_{mn} + \tilde{\omega}_{mn}$, $a_{mn} + \tilde{a}_{mn}$, $\delta_{mn} + \delta_{mn}$, i.e. ω_{mn} is really $\tilde{\omega}_{mn}$ in the water case, etc.

143

3

出たなないのとないとなかかれたななないと

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

WRITE ^Uc

DO 778 (Vary m)

KCOUNT=1

READ FW2

CALCULATE C5, CONST

Set upper and lower limits for x,y,z integrals; Determine number of steps for each integral and the step size for each

na san 25 kara sangara di na san na sanangara kita na masa di pasahan kalikatni ta kara katanga

New York Construction of the second
Set counter for reading FW2

Service of Service and Service

No. of the Later o

145

ž

here and the second s

and the second
and the second se

NAME AND AND ADDREED AND ADDREED
146

والمحاولة والمحاج والمراجع والأربي والمراقع المؤمسة والمتحوين المراري والمحاف المراجع والمحار المراجع

.

THE REAL PROPERTY AND A DECISION OF THE PROPERTY AND A DECISIO

-

.

10 M W

ないというというためであるが、「ないないというというという」

244.22.2

NUMB

「「「「「「「」」」」

149

*

۰.

•

-

معة يتمون

station of the state of the second structure of the station of the state of the state of the second second of the second se

versities of the second second to be the second
2

THE NUMBER OF FUCSQ IS DETERMINED BY USER.

151

Program B'

artang and dipantana nandrika kata kata

A description of Program 5' (Option 3) is given in Tables 7a-7d.

TABLE 7

Input Data, Computer Listing, Flow Chart, and Column Headings for Input Forms on Data Cards for Program B' (Option 3) Used to Compute Added and Total Weight per Unit Area and Modal Frequencies of Fluid-Loaded Plate

TABLE 7a

NUMBER OF STREET, STRE

EXERCUSE:

Input Required for Program B'

Variable Name	Format	Description	Unit
WP	F10.8	Weight per unit area of plate	lb/ft ²
RHOF	F10.4	Weight density of fluid	lb/ft ³
RHOW	F10.4	Weight density of plate	lb/ft ³
Н	F10.4	Panel thickness	ft
RL1	F10.4	Length of panel side, x-direction	ft
RL2	F10.4	Length of panel side, y-direction	ft
Alpha	F10.4	<pre>For α = 1, fluid loading is on one side of plate a = 2, fluid loading is on both sides of plate</pre>	-
MLOW	I10	Lower limit of M mode m < 20	
MUP I10		Upper limit of M mode	_
NLOW	110	Lower limit of N mode $n < 10$	
NUP I10		Upper limit of N mode	
OMEGA(m,n)	F10.2	Array for modal frequencies of plate in air	rad/sec

TABLE 7b

Computer Listing for Program B'

SIBJOR	MAP+FIOCS	
PEACU CIDETO	IL INJUN OMECA	
ATDI IC	DIMENSION OMEGA(20.10) .POMEGA(20.10) .ROMEGA(20.10) .W(20.10)	
	READ(5.15)WP	
15		
	READ (5+20) RHOF+RHOW+H+RL1+RL2+ALPHA	
20	FORMAT (6F10+4)	
	READ (5,1) MLOW, MUP NLOW, NUP	
1	FORMAT(4110)	
	READ(5,10)((OMEGA(M.N),M=MLOW,MUP),N=MLOW,NUP)	
10	FORMAT(F10.4)	
С		
C METH	HOD 1	
С		
	WRITE(6,40)	
40	FORMAT(1H1,10X,8HMETHOD 1)	
	UU = 244 L = 194	
	DU 25 N=NLUWINUP EKC2=//EI/AT/N1+2.1416//DI 11++2+//EI/AT/N1+3.14161/DI 21++2	
	FKC=SORT(FKS)	
	$W(M \bullet N) = (AI PHA * RHOF) / (FK S * SQRT (1 \bullet Q * * 2))$	
	FW=WP*(1++((ALPHA*RHOF)/(FKS*WP*SQRT(1+-Q**2))))	
	$POMEGA(M \bullet N) = OMEGA(M \bullet N)$	
	BOMEGA(M,N)=POMEGA(M,N)*SQRT(1./(1.+((ALPHA*RHOF)/(RHOW*FKS*H*S	ORT
	1(1G**2)))))	
	WRITE(6,30)MoNoQ	
30	FORMAT(1H0,2HM=,12,2X,2HN=,12,2X,2HQ=,F5.3)	
	WRITE(6,35)FKS2,FKS,FW,BOMEGA(M,N),W(M,N)	
35	FORMAT(1H0,5HFKS2=,F12+4,2X,4HFKS=,F12+4,2X,3HFW=,F12+4,2X,7HRO	MEG
	1A=9F12+492X92HW=9F12+4)	
25	CONTINUE	
	0=0+•3	
244	CONTINUE	
	STOP	
	END	

153

÷.

このないので、「ないないない」というないで、

ሳትሪዥው ውስት ይነሳት ቆዲሞ የሚያት የአማሪ የድም የሆነት የሚያት የሆነት የሚያት የሆነት የሆኑ

o Enderstanti Peridi ja kanan se an kultura da ana

and the second second

deral crists

all a least

Plan Strack Like State

a to be the two hards in the second of the two the two hards

TABLE 7d

OMEGA(1,1) 10

With the order of cards (1,1), (2,1)(m,1), (1,2) (m,2) (1,n) (m,n) to complete OMEGA (m,n) array. なないのに、そのためのなかって、たいでないの

*

Program C^{*}

This program yields a solution for clamped and simply supported plates corresponding to the Warburton Method as described in Appendix 1 of Reference 3. Warburton treats the frequency parameter subscripts m,n as the number of *nodal points* along the plate length and width respectively. However, most other authors treat m,n as the *mode numbers* along these dimensions (or define it for the opposite dimensions). Thus $(m = 2, n = 3)_{Warburton}$ means the 1, 2 mode containing 2 nodes along x and 3 along y whereas $(m = 2, n = 3)_{others}$ means the 2, 3 mode containing either 3 nodes along x and 4 along y or 4 nodes along x and 3 along y depending on the definition of m,n with respect to the x,y coordinates. To avoid confusion and for compatibility with most investigators, the program assigns the *modal* (*not nodal*) meaning to m,n for all computations.

In computing the simply-supported plate frequencies by the Warburton Method the value of SPEC must be 1.0. In computing the clamped-clamped plate frequencies by this method any value of SPEC other than 1.0 is used.

In all computations, the frequency f (Hertz) is obtained as the product of the frequency parameter $\lambda_{m,n}$ (or $\alpha_{m,n}$) and a factor. For the Warburton computations the factors are expressed as

$$\frac{h\pi}{a^2}\sqrt{\frac{E}{48 \rho_m(1-\sigma^2)}}$$

where the mass density $\sigma_{\rm m}$ = RHOW/G

TABLE 8

the second many second

nieu Contractor and and

Input Data, Computer Listing, Flow Chart, and Column leadings for Input Forms on Data Cards for Program C' (Warburton Program) Used to Compute Natural Frequencies of Simply Supported and Clamped-Clamped Plate in Vacuo

TABLE 8a

Input Required for Program C'

[
Variable Name	Format	Description	Unit
NCASE	15	Number of cases	
М	15	Modes in x-direction m ≤ 20	
N	15	Modes in y-direction n ≤ 10	
A	F12.6	Plate dimensions, length in x direction	in.
В	F12.6	Plate dimensions, length in y direction	in.
НН	F12.6	Plate thickness	in.
E	E16.8	Young's modulus	1b/in. ²
SIGMA	F12.6	Poisson's ratio	
RHOW	F12.6	Weight density of plate	lb/in. ³
G	F12.6	Acceleration due to gravity	in./sec ²
SPEC	F10.0	Option for obtaining fre- quencies of either simply supported or clamped- clamped plate	

157

a,

TABLE	8b
-------	----

Computer Listing for Program C'

Proza a State

n hand die Die destates

HERRICHT

Sector Providentes

SEXECU	JTE IBJOB
\$18,300	
CTOST/	
PIDE II	
C	***************************************
	COMMON MaNaAaBaHaEaSIGMAaRHOMaPIaG
C	N - MODES IN X DIRECTION
2	
C C	
C	A - LENGTH IN X DIRECTION
С	B - LENGTH IN Y DIRECTION
C	H - PLATE THICKNESS
ř	E - YOUNGS MODULIUS
2	
C .	STORA - FUISSONS RATIO
C	RHOW - PLATE DENSITY
С	G - ACCELERATION DUE TO GRAVITY
C	₭₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶₶
-	01=2-1416007
	READ(3)2/ACASE
	DO 500 L=1+NCASE
	READ(5+2) M +N
	RFAD(5+3) A+R+H
	PEAD (5.4.4) EAST GMA A PHOMAG
-	
2	
3	FORMAT(3F12•6)
4	FCRMAT(E16+8+3F12+6)
	RHOM=RHOW/G
10	CALL WADE
800	
300	
	STOP
	END
SIBFT	
	SUBROUTINE WARB
	DIMENSION OMEGA(20010)
	DIMENSION FREQ(25,10), GX(100), HX(100), JX(100), GY(100), HY(100),
	(001)YL 1
	COMMON MANAAABAHAFASTGMAABHOMADTAG
•	
111	FORMAT(FIU+U)
	A2=A*A
	82=8#8
	NP1=N+1
	IF(SPEC+EQ+ 1+0) GO TO 510
	GX(1)=1.
	JX(1/=18
	GY(1)=1.
	HY(1)=1.
	37(1)=7.
	GX(2)=1-506
	JX (Z) = 1 + Z + K
	GY(2)=1•506
	HY(2)=1+248
	IY(2)=1.248
	GX(M1)=FLOAT(M1)=•5
	HX(M1)=((FLOAT(M1)-+5)**2)*(1+-2+/((FLOAT(M1)-+5)*PI))

. ...

いいないないのないのできょうないないないです。

ACTIN NO

Light and the structure and the standard standard and the standard structure a second standard and the structure of the

ALC: NO

ALE STREET, LIKE ALE STREET, ST

```
JX(M1)=HX(M1)
100 CONTINUE
      DO 150 N1=3+NP1
      GY(N1)=FLOAT(N1)-.5
      HY(N1)=((FLOAT(N1)=+5)##2)#(1+-2+/(FLOAT(N1)-+5)#P1))
      JY(N1)=HY(N1)
  150 CONTINUE
      GO TO 590
  510 DO 500 M1 = 1+MP1
      GX(M1) = FLOAT(M1) - 1+0
      HX(M1) = GX(H1) ##2
  500 JX(M1) = HX(H1)
      DO 550 N1 = 1+MP1
      GY(N1) = FLCAT(N1)-1.0
      HY(N1) = GY(N1)##2
  550 JY(N1) = HY(N1)
      WRITE(6,20)A,B,H,E,SIGMA,RHOM
590
   20 FORMAT(1H1:3H A=+F7+2+3H B=+F7+2+3H H=+F7+4+3H E=+E11+4+7H SIGMA=+
     1 F7.2,6H RHOM=,E11.4)
      WRITE(6,19)
   19 FORMAT(//23X+ 22H WARBURTON FREQUENCIES)
      IW = 1
      DO 400 N212 + NP1
      N21=N2=1
      WRITE(6+21)N21
   21 FORMAT(3P N=+12)
      WRITE(6+22)
   22 FORMAT(9:(+1HM+15X+6HLAMBDA+16X+5H FREQ)
      DO 300 M2=2+MP1
      M21=M2-1
      XLAMSQ=(X(M2)*GX(M2)*GX(M2)+(GY(N2)*GY(N2)*GY(N2)*GY(N2)
     1 #A4}/B%+(2+#A2/B2)#(SIGMA#HX(M2)#HY(N2)+(1+=SIGMA)#JX(M2)#JY(N2))
      LAMBDA= SORT (XLAMSO)
      FREQ(M2;N2)=((LAMBDA*H*PI)/A2)*SQRT(E
                                                /(48.*RHOM*(1.-SIGMA**2)))
      WRITE(6,23)M21,LAMBDA,FREQ(M2,N2)
      OMEGA(#2+N2) = 2+ + PI + FREQ(M2+N2)
      WRITE(0,030) OMEGA(M20N2)0
                                      IW
   23 FORMAT (5X+15+5X+E15+8+5X+E15+8)
      WRITE(3,30) OMEGA(M2,N2);
                                      IW
  30
      FORMAT(1X+F15+4+65X+15)
      IW = IW + 1
  300 CONTINUE
  400 CONTINUE
      RETURN
      END
```

159

*

ようにないたいできたいというないできたいというないがたいたい たいまた

and the second of the second o

2812

become a function of the state of the second second and the second of the second s

Table 8c (Continued)

161

ð,

a water and a second state of the second
in the south a start of the hand start

TABLE 8d Column Headings for Input Forms on Data Cards for Program C'

and a start of the
te with a dubit in the second stands with the second state

The input data and results are labeled and printed out for each value of NCASE. The mode numbers (m,n), nondimensional frequency λ , and final frequency f (Hertz) are given.

Program D'

the second second second

This program calculates turbulent boundary layer thickness for an arbitrary body of revolution.

TABLE 9

Input Data, Computer Listing, Flow Chart, and Column Headings for Input Forms on Data Cards for Program D' (Brown Program) Used to Compute Turbulent Boundary Layer Thickness for an Arbitrary Body of Revolution

TABLE 9a

Input Required for Program D'

Variable Name	Ünit	Format	Description
N	-	15	Number of pairs of data points describing the body of revolution
R	ft	F12.8	Length of the body of revolution
Z	-	F12.8	Constant to which all of the data points are normalized
X(I)	ft	6F10.5	Axial distance along the body
Y(I)	ft	6F10.5	Radial distance of the body from the axis
L	-	15	Number of speeds
U(K)	ft/sec	6F12.8	Speed

163

TABLE 9b

Computer Listing for Program D'

NALES OF OFFICE STATES STATES OF AN ALT LINEAD SUITES AND THE STATES OF A

and the second
MANGLER INTEGRALS C R. WILLIAM BROWN, INITIALS CWC, HSRDC CODE 942, PHONE 227-1252 THIS IS A PROGRAM FOR THE CALCULATION OF THE TURBULENT BOUNDARY C C LAYER THICKNESS, DELTA. IT USES A RELATION AFTER MANGLER WHICH C RELATES THE DISTANCE ALONG THE AXIS OF A BODY OF REVOLUTION TO С THE DISTANCE ALONG A FLAT PLATE AT WHICH THE BOUNDARY LAYER THICK-NESS IS IDENTICAL. THE BOUNDARY LAYER THICKNESS IS THEN CALCULAT-ED, USING A RELATION DUE TO GRANVILLE (DTMB REPORT NO. 1340). THIS C C C C C C EXPRESSION IS BASED ON FLAT PLATE DISTANCE AND FLAT PLATE REYNOLDS NUMBER. C C C 688 COORDINATES (REFERENCE-GENERATING FUNCTION--BRIAN BOWERS) Ċ ODIMENSION X(500), Y(500), XZ(500), YZ(500), XZR(500), YZR(500), YZ 1R2(500) + XBAR(500) + RXBAR(500+15) + DELTA(500+15) + U(15) READ IN THE CONSTANTS NO RO AND ZO N = THE NUMBER OF PAIRS OF DATA POINTS DESCRIBING THE BODY OF C С С **REVOLUTION**. R = THE LENGTH OF THE BODY OF REVOLUTION. C Z = THE CONSTANT TO WHICH ALL OF THE DATA POINTS ARE NORMALIZED. C READ IN THE DATA POINTS DESCRIBING THE BODY OF REVOLUTION. X(I) C = THE AXIAL DISTANCE ALONG THE BODY. Y(I) = THE RADIAL DISTANCE C C OF THE BODY FROM THE AXIS. READ(5+1) N+ R+ Z 1 FORMAT (15, 2F12.8) READ(5,2) (X(I), I = 1, N) READ(5+2) (Y(I)+ I = 1+ N) 2 FORMAT(6F10.5) READING IN THE NUMBER OF SPEEDS. L. C READ (5; 18) L 18 FORMAT (15) READING IN THE SPEED, U(K). IN FEET PER SECOND. С READ (5, 19) (U(K), K = 1, L) 19 FORMAT (6F12.8) SETTING X(1) AND Y(1) EQUAL TO ZERO, AND SHIFTING ALL OF THE DATA С POINTS, IF NECESSARY. С IF (X(1)) 15, 8, 9 9 M = N + 1TEMP1 = X(1)DO 10 J = 2 M TEMP2 = X(J)X(J) = TEMP1TEMP1 = TEMP2**10 CONTINUE** 8 1F (Y(1)) 15,12, 11 11 M = N + 1 TEMP1 = Y(1)DO 13 J = 2. M TEMP2 = Y(J)Y(J) = TEMP1TEMP1 = TEMP2 **13 CONTINUE** X(1) = 0.0Y(1) = 0.0N = N + 1CONVERTING THE DATA POINTS WHICH WERE READ IN INTO ACTUAL BODY CO-С C ORDINATES. 12 DO 3 I = 1, N

```
Table 9b (Continued)
      XZ(I) = X(I)/Z
      YZ(I) = Y(I)/Z
      XZR(I) = R*XZ(I)
      YZR(I) = R*YZ(I)
      YZR2(I) = (YZR(I)) * * 2
      IF(1-2) 6, 7, 7.
    6 XBAR(1) = 0.
      GO TO 3
С
      CALCULATING THE DISTANCE ALONG A FLAT PLATE, XRAK.
    7 XBAR(I) = (1./YZR2(I))*5IMPUN(XZR, YZR2, I)
    3 CONTINUE
      WRITE(6, 25)
   250F0RMAT(99H1
                     INPUT X VALUES
                                          INPUT Y VALUES
                                                               AXIAL DISTAN
                BODY RADIUS FLAT PLATE DISTANCE//)
     1CE
      WRITE(6,5) (X(I), Y(I), XZR(I), YZR(I), XRAR(I), I = 1, N)
    5 FORMAT(5F20.8)
      DO 26 K = 1+ L
      RXBAR(1 \bullet K) = 0 \bullet 0
      DELTA(1,K) = 0.0
   26 CONTINUE
      DO 17 K = 1+ L
CALCULATING THE LOCAL FLAT PLATE REYNOLDS NUMBER+ USING A KINEMA-
С
C
      TIC VISCOUSITY OF WATER AT 39 DEGREES F.
      DO 16 I = 29 N
RXBAR(I)/000001684
С
      CALCULATING THE TURBULENT BOUNDARY LAYER THICKNESS, DELTA.
      IF(RXBAR(I,K))16,30,31
   30 DELTA(I.K) = 0.0
      GO TO 16
   31 DELTA(I+K) = 0+0598*XBAR(I)/(ALOG10(RXBAR(I+K)) - 3+170)
   16 CONTINUE
   17 CONTINUE
      DO 20 K = 1. L
WRITE(6, 24) U(K)
   24 FORMAT(12H1VELOCITY = +F12+8, 14H FEET / SECOND///)
      WRITE(6, 21)
   210FORMAT(116H
                      AXIAL DISTANCE FLAT PLATE DISTANCE
                                                                  LOCAL FLAT
     1 PLATE REYNOLDS NUMBER
                                      BOUNDARY LAYER THICKNESS + DELTA//)
      WRITE(6,22)(XZR(I), XBAR(I), RXBAR(I,K), DELTA(I,K), I = 1, N)
   22 FORMAT(F17.8, F20.8, 18xE15.8, 28xF12.8)
   20 CONTINUE
   15 STOP
      END
```

165

¥,

2444年の日本の日本の日本の日本の一本市であったのでは、日本の日本

のないないないないないで、人名

にたいないの

and show of service his burned

ur Ekonu) Andrean grönen hab og hat betan och en nit betan in Allandrich had den gen borgen borgen verste Verskielen solde

			Colu	mn Head	ls for	Input	Forms	on Da	ta Ca	ards for	Prog	ram D'	
	N	5	R	•	17	Z	29						
										>	\leq		
	X	(1)	10	X(2)	20	X(3)	30	X(4)	40	X(5)	50	X(6)	60
Γ													
_	NUME	BERC	OF VAL	UES ON	CARD I	s equai	L TO N						
_	Y	(1)	10	Y(2)	20	Y(3)	30	Y(4)	40	Y(5)	50	Y(6)	60
	NUM	BER (OF VAL	UES ON	CARD 1	ls equa	L TO N						
	L	5											
	U	(1)	12	U(2)	24	U(3) 36	U(4)	48	U(5)	60	U(6)	72
	MU	MDCD		LUES ON	CAPD	TS FOU							

ないになっているないないないというないです。

TABLE 9d

167

*

here the second second state of the second
COMPUTER RUNS

Results obtained from the computer programs for the input data of Tables 2 and 3 are presented in Figures 1 and 2 respectively. The figures show computer runs for the normalized model mean square displacement of the turbulence excited simply supported aluminum and steel plates with fluid loading effects included.

APPENDIX I

HYDROSTATIC PRESSURE EFFECTS ON NATURAL FREQUENCIES

a	Plate length
b	Plate width
D	Equal to $\frac{Eh^3}{12(1 - v^2)}$
E	Young's modulus
G	Constant dependent on k_m/k_n (see Reference 37)
h	Plate thickness
K	Constant depending on aspect ratio of plate; for the panel dimensions cited in Appr Lix I, $K = 0.0018$ (see Reference 42)
к1	Effective wavelength equivalencing factor, dependent on $\sigma ha^2/D$ (see References 36 and 37)
k _m ,k _n	Mode numbers in the x- and y-directions respectively
М	Mass per unit area of plate
m,n	Mode numbers
P _H	Hydrostatic pressure
R,R _a , R _b ,R _c	Radii of curvature
₩(x)	Deflection shape of panel to loading by uniform pressure
Wo	Deflection at the center of the plate due to hydrostatic pressure ${\rm P}_{\rm H}$
x,y	Plate coordinates
γ	Equal to 1.5
λ	Wavelength
ν	Poisson's ratio, generally taken to be equal to 0.3
σ _x ,σ _y	Stresses in directions associated with m and n respectively
ω	Circular natural frequency of vibration

169

*

ためにないたいである

いたななないないであったが、たいではないとうな

DESCRIPTION

A clamped panel below the water surface is subject to essentially uniformly distributed pressure which deflects the panel and creates bending stresses. The natural frequencies of singly curved stressed plates are given approximately by $^{36-39}$

$$\omega_{n} = \left(\frac{D}{M}\right)^{1/2} \left[\left(k_{m}^{2} + k_{n}^{2}\right)^{2} + \frac{\sigma_{n} h k_{n}^{2}}{D} + \frac{\sigma_{n} h k_{n}^{2}}{D} + \frac{\sigma_{n} h k_{n}^{2}}{D} + \frac{12G}{h^{2} R^{2}} \right]^{1/2}$$
(11)

where $k_m = \frac{m}{K_1 a}$, $K_n = \frac{n}{K_1 b}$.

Equation (II) is based upon wavelength equivalencing which effectively reduces the dimensions of the clamped plate to those of the equivalent simply supported plate in each mode. For an unstressed flat plate this equation yields values of natural frequencies which agree within ± 10 percent of those calculated by the Warburton method.^{3,40} In this equation, G and K₁ are considered to be determinable quantities (see Notation). Hence it remains to determine the stress and curvature produced by the hydrostatic pressure.

The deflected shape of the panel due to loading by a uniform pressure is the same as the fundamental mode shape. It is given by 40,41

$$W(x) = \frac{W_0}{1.133} \left(\cos \frac{\gamma \pi x}{a} + 0.133 \cosh \frac{\gamma \pi x}{a} \right)$$
(12)

where ${}^{42}W_{o} = KP_{H}b^{4}/D$

Since

$$R \approx \frac{1}{\frac{d^2 W}{dx^2}} = -\frac{\gamma^2 \pi^2 W_0}{1.133 a^2} \left| \cos \frac{\gamma \pi x}{a} - 0.133 \cosh \frac{\gamma \pi x}{a} \right|$$
(13)

From Equation (I3) then we can find $R_c = R_{x=a/2}$, the radius of curvature at the center of the plate in the direction of a. Similarly we can find the radius of curvature of the center of the plate in the direction of b. For either case the effect of curvature, or the mean radii R_a and R_b , may be

estimated³⁹ by using $R = R_c \sqrt{2}$. The effect of the curvature upon ω_n is then found by substituting the estimated mean curvature in Equation (II).

Similarly, the mean stresses σ_x and σ_y are estimated by letting $\sigma_x = \frac{(\sigma_{\max})_x}{\sqrt{2}}, \sigma_y = \frac{(\sigma_{\max})_y}{\sqrt{2}}$ where $(\sigma_{\max})_i$ is a maximum bending stress along i derived from Reference 42. The effect of the stresses on ω_n is then

found by substituting the estimated values of σ_x and σ_y in Equation (II).

For a 30 in. x 24 in. x 3/16 in. clamped plate in a horizontal plane subject to a uniformly distributed hydrostatic pressure of 1.5 psi the effects of stress and curvature were found in Reference 39. The results show that the natural frequency is more affected by stress than curvature. Moreover, while stress and curvature due to hydrostatic loading caused the natural frequencies of the panel to increase, the virtual mass effect^{*} (i.e., fluid loading) caused a more significant reduction.

171

ş

If hydrostatic loading is considered in computations then the plate (in an infinite baffle) cannot be considered to be submerged in an infinite water medium. The effect of the proximity of the water surface on the virtual mass must be treated. However, for a plate located more than $\lambda/6$ below the waterline the presence of the free surface will have no significant effect on the fluid loading. This is clearly a frequency-dependent criterion.⁴³ If the plate is not in a horizontal plane then the variation of pressure with depth necessitates an integral formulation for the hydro-

of pressure with depth necessitates an integral formulation for the hydrostatic pressure. The problem is then to determine the center of pressure.

REFERENCES

1. Leibowitz, R.C. and Wallace, D.R., "Engineering Guide and Computer Programs for Determining Turbulence-Induced Vibration and AD - 878 619Radiation of Plates," NSRDC Report 2976 (Jan 1970).

 Leibowitz, R.C. and Wallace, D.R., "Computer Program for Correction of Boundary Layer Pressure Fluctuations for Hydrophone Size and AD-718 815 Boundary Layer Thickness Effects - Option 1," NSRDC Report 2976A (Sep 1970).

3. Leibowitz, R.C. and Wallace, D.R., "Computer Program for Plate Vibration Including the Effects of Clamped and Rotational Boundaries and AD - 724-642Cylindrical Curvature - Option 2," NSRDC Report 2976B (Jan 1971).

4. Junger, M.C. and Feit, D., "Sound, Structures, and Their Interaction," Massachusetts Institute of Technology Press (in preparation).

5. Robson, J.D., "An Introduction to Random Vibration," Elsevier Publishing Company (1964).

6. Hurty, W.C. and Rubinstein, M.F., "Dynamics of Structures," Prentice-Hall (1964).

7. Davies, H.G., "Acoustic Radiation from Fluid Loaded Rectangular Plates," Massachusetts Institute of Technology Report 71476-1 (Dec 1969); also "Low-Frequency Random Excitation of Water-Loaded Rectangular Plates," J. Sound Vibration, Vol. 15, No. 1, pp. 107-126 (1971).

8. Smith, P.W., Jr. and Lyon, R.H., "Sound and Structural Vibration," NASA CR-160 (Mar 1965).

9. Cremer, L. and Heckl, M., "Korperschall," Springer-Verlag, New York (1967).

10. Lyon, R.H., "Fluid-Loading Effects on Vibrating Structures," from "Fluid-Solid Interaction," presented at Winter Annual Meeting of A.S.M.E. Pittsburgh, Pa.; sponsored by Shock and Vibration Committee of the Applied Mechanics Division of the A.S.M.E., edited by Joshua E. Greenspon (Nov 1967).

11. Smith, P.W. Jr. and Kerwin, E.M. Jr., "Underwater Sound Radiation from a Finite Cylinder: General Analysis," Bolt Beranek and Newman Report 1229 (15 Mar 1965).

the 20 hours to be a more than a state the states of the states of the states between the same

12. Smith, P.W., "Underwater Sound Radiation from a Finite Cylinder, Part II: Statistical Analysis," Bolt Beranek and Newman Report 1292 (30 Jan 1967).

13. Greenspon, J.E., "An Approximate Method for Obtaining the Frequencies, Deflections, and Stresses in Sandwich and Cross-Stiffened Rectangular Plates," J.G. Engineering Research Associates, David Taylor Model Basin Contract Nonr-3123 (00)X, Technical Report 1 (Jul 1960).

14. Leibowitz, R.C. and Greenspon, J.E., "A Method for Predicting the Plate-Hull Girder Response of a Ship Incident to Slam," David Taylor Model Basin Report 1706 (Oct 1964).

15. Babayev, N.N., "Investigation of the Free Vibrations of Rectangular Plates Surrounded by Water," Krylov Central Scientific Research Institute of the Ministry of the Shipbuilding Industry, Leningrad, Report 16 (1947).

16. Fedenko, G.I., "The Dynamic Analysis of Ships' Plates Supported by Ships' Framing," translated from the Russian Technical Periodical "Sudostroyeniye" (Shipbuilding) Official Organ of the Ministry of the Shipbuilding Industry and the Scientific-Technical Society of Shipbuilding, Leningrad, No. 10 (1965).

17. Stenzel, H., "Die Akustische Strahlung der Rechteckigen Kolbenmembran," Acustica, Vol. 2, No. 6, p. 263 (1952).

18. Young, D. and Felgar, R.P., "Table of Characteristic Functions Representing the Normal Modes of Vibration of a Beam," Engineering Research Series, No. 44, University of Texas, Austin, Texas (1 Jul 1949).

19. Felgar, R.P., "Formulas for Integrals Containing Characteristic Functions of a Vibrating Beam," Univ. of Texas, Circular 14 (1950).

20. Schlicting, H., "Boundary Layer Theory," McGraw-Hill (1960).

173

21. Jacobs, L.D. et al, "Response of Complex Structures to Turbulent Boundary Layers," American Inst. of Aeronautics and Astronautics Seventh Aerospace Sciences Mtg., New York (20 Jan 1969).

22. Jacobs, L.D. and Lagerquist, D.R., "A Finite Element Analysis of Simple Panel Response to Turbulent Boundary Layers," Technical Report AFFDL-TR-67-81, Boeing Company, Commercial Airplane Div., Renton, Washington (Jul and Dec 1967). skandaristikatikandistran vartusun akrivutetan ustaidikkalartikanoo odunoo un bilatikatakiiteeteen kadah erra

23. Maestrello, L., "Measurement and Analysis of the response Field of Turbulent Boundary Layer Excited Panels," J. of Sound and Vibration, Vol. 2, No. 3, pp. 270-292 (1965).

24. Granville, P., "The Determination of the Local Skin Friction and the Thickness of Turbulent Boundary Layers from the Velocity Similarity Laws," David Taylor Model Basin Report 1340 (Jul 1959).

25. Harris, C.M. and Crede, C.E., "Shock and Vibration Handbook," Vol. 2, Chapters 36 and 37, McGraw-Hill (1961).

26. Adams, R.D. and Mead, D.J., "Comparison of Different Materials in Vibrating Structures," Institute of Sound and Vibration Report 158 (Nov 1966).

27. "Damping of Flexural Vibrations in Plates by Free and Constrained Visco-Elastic Layers," Bolt Beranek and Newman Report 632 (28 May 1959).

28. Kerwin, E.M. Jr., "Acoustic Damping Mechanisms," Wright Air Force Development Center Technical Report 59-676 (15 Aug 1959).

29. Kerwin, E.M. Jr. and McQuillan, R.J., "Vibration Damping Studies," Bolt Beranek and Newman Report 852 (29 Sep 1961).

30. Lyon, R.H. and Maidanik, G., "Power Flow between Linearly Coupled Oscillators," Journal Acoustical Society of America, Vol. 34, No. 5 (May 1962).

31. Unger, E.E., "Energy Dissipation at Structural Joints, Mechanisms and Magnitudes," Bolt Beranek and Newman, FDL-TDR 64-98 (Jul 1964).

32. Ungar, E.E. and Kyung, S.L., "Considerations in the Design of Supports for Panels in Fatigue Tests," Technical Report Air Force Flight Dynamics Lab 67-86 (Sep 1967).
34. Moore, James A., "Response of Flexible Panels to Turbulent Boundary Layer Excitation," Acoustics & Vibration Lab., Massachusetts Institute of Technology Report 70208-3 (Jul 1969).

35. Bies, D.A., "A Wind Tunnel Investigation of Panel Response to Boundary Layer Pressure Fluctuations at Mach 1.4 and Mach 3.5," NASA CR-501 (May 1966).

36. Szechenyi, E.A., "An Approximate Method for the Determination of the Natural Frequencies of Single and Stiffened Panel Structures," Institute of Sound and Vibration Research Technical Report 23 (1970).

37. Szechenyi, E.A., "An Approximate Solution for the Natural Frequencies of Cylindrically Curved Rectangular Shells with In-Plane Loads," Institute of Sound and Vibration Research Technical Report 29 (1970).

33. Mills, D., "Acoustically Propagated Cracks in Biaxially Tensioned Plates," Ph.D. Thesis, University of Southampton (1970).

39. White, R.G., "The Application of a Transient Test Technique to the Study of the Local Vibration Characteristics of Ship Structures," Institute of Sound and Vibration Research Technical Report 31 (May 1970).

40. Warburton, G.B., "The Vibration of Rectangular Plates," Proc. Inst. Mech. Engrs., London, Vol. 168, pp. 371-381 (1954).

41. Hendry, A.W. and Jaeger, L.G., "The Analysis of Grid Frameworks and Related Structures," Chatto and Windus (1958).

42. Timoshenko, S., "Theory of Plates and Shells," McGraw-Hill (1959).

43. Copley, T.G., et al. "Background Theory of Destroyer Machinery Radiated Noise," Cambridge Acoustical Association Report U-349-214 (May 1970).

175

44. Maestrello, L., "Design Criterion for Minimum Structural Response and Sound Radiation of a Panel Excited by a Turbulent Boundary Layer," AIAA Fifth Aerospace Sciences Meeting, New York, AIAA Paper 67-12, (23-26 Jan 1967).

45. Maestrello, L., "Use of Turbulent Model to Calculate the Vibration and Radiation Responses of a Panel, with Practical Suggestions for Reducing Sound Level," J. Sound Vib. Vol. 5, No. 3, pp. 407-448 (1967).

46. Maestrello, L., "Lectures on Boundary Layer Noise," NASA (Mar 1971).

176

BIBLIOGRAPHY

1. Leehey, P., "Trends in Boundary Layer Noise Research," AFOSR-UTIAS Symposium on Aerodynamic Noise, Toronto (20-21 May 1968).

2. White, P.H., "Flow Noise-Induced Sound Radiation," Presented at Symposium on Acoustics of Submerged Structures, Annapolis, Maryland (15-17 Feb 1967).

3. Leehey, P., "A Review of Flow Noise Research Related to the Sonar Self-Noise Problem," Bolt Beranek and Newman under subcontract to Arthur D. Little Inc. for Department of the Navy, Bureau of Ships, Report 4110366 (Mar 1966).

4. Strawderman, Wayne A., "Turbulence-Induced Plate Vibrations: an Evaluation of Finite- and Infinite-Plate Models," Journal Acoustical Society of America, Vol. 46, No. 5 (Part 2) (May 1962).

5. Franken, P.A. et al., "Energy-Method Estimates of Response to Inflight Dynamic Loads," Proceedings of Annual Technical Meeting of Institute of Environmental Sciences (1966).

6. Lyon, R.H. et al., "Aerodynamic Noise Simulation in Sonic Fatigue Facility," Bolt Beranek and Newman, AFFDL-TR-66-112 (Nov 1966); also, Bolt Beranek and Newman Report 1171 (24 Dec 1964).

7. Lyon, R.H., "Boundary Layer Noise Response Simulation with a Sound Field," Article in "Accustical Fatigue in Aerospace Structures," Syracuse University Press (Copyright 1965).

8. Williams, J.E.F. and Lyon, R.H., "The Sound Radiated from Turbulent Flows near Flexible Boundaries," Bolt Beranek and Newman Report 1054 prepared for ONR Code 438 (15 Aug 1963).

9. Obermeier, F., "On the Response of Elastic Plates Backed by Enclosed Cavities to Turbulent Flow Excitations," Mass. Inst. Technol. Technical Report 70208-6 (Apr 1971).

10. Blank, F.G., "Radiation Impedence of a Strip Executing Flexural Vibrations in an Infinite Baffle," Soviet Physics-Acoustics, Vol. 14, No. 2 (Oct-Dec 1968).

177

のないというないないないないないという

たったがいたるいのとかったいためにはならばない

11. Tarnoczy, T., "Vibration of Metal Plates Covered with Vibration Damping Layers," J. Sound Vib. Vol. 11, No. 3, pp. 299-307 (1970).

12. Szechenyi, E., "Approximate Methods for the Determination of the Natural Frequencies of Stiffened and Curved Plates," J. Sound Vib., Vol. 14, No. 3, pp. 401-418 (8 Feb 1971).

178