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SUMMARY

This report is & mathematical analysis of selected phases of the Army Physical h
Supply Distribution System (APSDS), The first part is a stochastic analvsis of convoy oy
delays; it provides a Statistical relation between distance travelled and time of travel
and inrorporates such parameters as frequency of stoppage. length of delay, and speed. -
The second part analyzes the problem of convoy attrition and losses under various hos-
tile ciivitonments, Such relations as the cxpected number of units fost and the expect-
ed proportion of units surviving are obtained and expressed in {erms of initial number — -
~ ol units in the convoy, travel time, and various interplaying combat-intensily [actors. )
Finally, a brief analysis of a particular terminal operation is given; expressions {or car- )
go vessel turnaround limes and handling cost per container arc obtained.
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MATHEMATICAL ANALYSIS OF CERTAIN PHASES OF THE

ARMY PHY SICAL SUPPLY DISTRIBUTION SYSTEM

L INTRODUCTION

I.  Scope. The present study is a mathematical analysis of selected phases of the
Army Physical Supply Distribution System (APSDS) in order to attain a usefu:l fevel of

formance. In addition to providing basic approaches to formulate and solve various
problems associated with the dynamics of the physical supply distribution system, the
study demonstrates the feasibility of approaching the problem on a quantitative basis.
As a result, it becomes possible to identify and correlate the relevant interplaying input
parameters,

As reported in a previous study,’! the APSDS can be conceptualized as a network
system consisting of nodes and links — the nodes correspond to tertfiinal points, and the
links correspond to the movement of supply between two consecutive nodes. A logical
procedure would be to study first each link and node and to combine eventually the re-
sults into a meaningful framework Lo arrive at optional solutions.

The link study is essentially an analysis of cargo retardation and attrition. Sec-
tion 1 is devoted to a statistical analysis of convoy delays, and Section Ui analyzes the
problem of convoy attrition and losses.

The operation at the nodes is more complex because it involves a larger array of
variables and covers a wider spectrum of alternative systems, However, the cost and
time associated with any terminal operation are two accepted important characteristics
which need to be evaluated. To this end, Section IV illustrates a method of approach-
ing the problemn by analyzing the Sea-Land Container Terminal System; expressions for
cargo vessel lurnaround times and handling cost per container are obtained.

When the role of containers in the APSDS is evaluated, a fundamental problem
area which cannot be overlooked relates to the extent of penctration of containers into
forward areas. On the one hand, the utilization of larger cositainers presents economie
advantager in the handling cost at nodes and in the transport cost between nodes; on

R, D. Sivaghian, “A Preliminary Study Lcading to 2 Mathematical Definition of an Optimum Future Army Physical
Supply Distribution System,” USAMERDC, Fort Belvoir, Virginia {August 1968).




the other hand, large conlainers could impede the mobility of the distribution system

- in forward areas and increase the vulnerabilitv-of conivoys transporting the cargo. There-
fore, one can legitimately wonder whether an optimum container dimension exists
which would minimize the total cost of operation between two suecessive nodes, This
problem has not becn studied in the present report; however, the analytie results ob-
tained to dute provide the necessary higredients to approach this inportant problem.

L RETARDED CONVOY MOVEMENT
2. Introduetion. During the normal course of Ha procession, a convoy may be im:

mobilized at vatious time epochs, and each stoppage contributes to the delay of the
convoy in reaching its final destination. Such retardation might be croated byoneor

~ wiore nalural or maninduced phenomena. As an‘example, an enemy attack might force
a convay 1o slop or to take evasive actions; the delay of the convoy is in general a fune-
tion of the time length of the attack. Blockades resulting from basrier encounters are
another cause for stoppage; here, the delay will be the time required to elear and re-
movce the barriers before normal procession can resume.

Consider a convoy leaving at time. ¢ = 0, origin A (x = o}, with the objective of
reaching destination B located at distanee x = X. Let v be the normal convoy speed.
We shall assumc that: (1) events inducing colivoy stoppage oecur randomly in time ac.
cording to a Poisson law with parameter A (A is the average number of convoy stop-
pages per unit time); (2) the delay associated with each stoppage is u random variable
having an exponential distribution with parameter g (1/u ix the average delay time per

stoppage); and (3) the occurrence of each stoppage and the indueed delays are indepen-
dent events.

We shall derive an expression for the probability that at time, t, the convoy

PR FVRRIPRYF ORET R )

- has covered at 1cast a given distance and also an expression for the probability that a
. 4 given distance will be covered on or before a specified ime. The analysis proceeds in
- , two steps: (1) a time-dependent model is developed; and (2) the results obtained are
6 then used to develop a space-time dependent model involving both time and distance
- as variables. '
i
At the outset, without any sophisticated analysis, it is possible to obtain an ex-
3 pression for the average convoy speed, v, for long travel time (note that v < v). If
we denote by X any distance interval, then,
- Vo= X
9 X + expected delay
© v
2
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The decrement ratio in speed is A/ (A + 4). These results are no longer valid if the_

_journey length of the convey is short. 1t-will be-shown that the covroet amswers are

functions of time.

3. Depondent Analysis, We define the following symbofs:

Pty = probubility that thc convoy isslopped at time, ¢

P.{t) = probability that the convoy is moving at time, t

Adt = probability that the convoy will be stopped in the inferval
(t.1 + di)

wdt = probability that the convoy will start moving in the time interval
(1, t + dt) given that it was at a stop af time, t

0,(dt) = function of dt such that lim Q(dt)/dt=0 (i=1,2)
dt-+0

We then have the following relations:

P (t+dt) = P (K1 - pdt) + P, (t) adt+ 0, (dt)

P (t+dt) = P ()udt + P (t)(1-2dt) + 0,(dt) .
Carrying the usual operation and passing to the limit we obtain

P (1) X
T SURS VYO (1)

db (t
and __(;.ti_) = wP (1) - AP (1) . ¢4}

1t is evident that
Pt + P ) =1 t> 0. (3)

Initially, assume that the convoy has just started moving; then, P (0) =0 and P () = L.
Using equations (1) and (3), we obtain the following differential equation for P (1):




ey
—q = P&y + 2 [1-P ()] .

Using the iritial condition, we find a3 the solution of the above equation

PO P IREY

tween x and x +dx (0 <x <vt)

with the symbols, X, u, and v, having the same interpretation as before. We shall as-
sume Lhat the normal convoy speed, v, is independent of time and distance travelled;
thus v = dx/dt.

e e ‘_
IR ACEE [ue‘ "‘“‘] _ L@
Hence, P (1) = 1 -+ A [1 S “"]’ ' o (s‘) :
b | "t ’ .
i
4. Expected Convoy Speed, We define the expected instantaneous convoy speed as 3
g[v(t) ], the expectation of v(1). Now, i
= = - yA ~(A + M)e Z‘j
Ol = VB = v -5 [1-e ]
and in the steady state
3 z = y =¥ ;
e HOL ST |
| s
5. Space-Time Dependent Analysis. In a space-time dependent analysis (Fig. 1), !
two state variables are introduced, namely, distance, x, and time, t. The determination !
of two basic probability distributions is of particular interest: the firstis P(t.x)dx, i
the probability that at time, {, the convoy will have travelled a distance between x and i
x + dx; the second is 7 (t, x) dt, the probability that when the convoy is at a distance, 3
x, the total elapsed time lies between t and t+ dt. ;
a. Determination of P(t, x). ;
3
Define: ‘
!
P (t,x} dx = probability that the convoy is stopped at time, t, and lies be- ;
tween x and x +dx (0<x<vt) :
P (t,x) dx = probability that the convoy is moving at time, t, and lies be- '
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Fig. 1. Space-time diagram for convoy movement subject to random delay.
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lationsin P (t, x) and P (t,x) are gbtained: '
P(t+dtxydx = P (t,x) dx (1 -2dt) (1= pdt)

e - R dx A dKE - pdt) + Ptrx) dx adt +0,(dt, dx)s(6) - - _ ;:‘._”_‘:‘

and :

P (t+dt x)dx = P (4, x) dx (3 - Adt) pdt+ Po(t, x) dx Adt pdt E

“\ffﬁ’,’(tﬂﬁ*&x) do(d=xdty+ G {dt,dx)y— A —_

where  lim 0(dt, dxy _ . ) B

dt* 0 —Jh-—-ar—-— - 0 | 1,2,3,4.

Relations (6) and (7) can be written, respectively, as:

P (t+dt,x) - P (1 x) . 0, (dt, dx)
di = - uF ) AP )+ gy
and :
P (t + dt9 X) -P (ts X) aP (t, X) dx 0 @t, dx) ‘ -
1 1 - 1 4
dt - ”Pu(t, x}"' Apl(t’ x)— ax ET + dt .

Let dt+ 0; then, dropping for convenience the functional symbolism, we obtain for the
two previous relations

e et ions bl o SRR 8t DR 00 1 is dth et i

.
b ap :
_. 5t = -nP +2P, (8) g
e - .o
' ErEREa R R vl (9
9 Let P(t,x) = P.(t,x) + P (t,x). (10)
;, Although any of the three quantities, P, P, Pi , can be determined first and the result
: together with equations (8), (9), or (10) can be used to derive the two remaining func-
tions, it is easier to first evaluate the function P (t.x).

6
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Clearly, each of P and P, also satisfies equation (11). From the results of the time- I
dependent analysis, P_(x,t) satisfies the following boundary coudition e
= = o ~ v i i
f Po(xt) dx = Po(t) v [l-—e + )z} ) 2 . |
O .

A b 1 it

Equation (11) is a linear partial differential equation of the hyperbolic type. The special
boundary condition given by equation (12) dees not allow one to obtain a solution :
uging the meihod of separation of variables or by forming an appropriste Green’s fune- : S
tion. Using the transformation A o

et e

e

w= X and z = vt-xX, S ss

equation (11) can be written in the canonical form

a2p a3
o . w3R X 3P
Wiz Viw Vo (13)

This equation is similar to one obtained by the author in a study of a periodic review
multi-commodity inventory system.? Assume a solution of the form

)\w # -
P(wz)=ev"'V*® z ; Awa . (14)
rIr=o

Substituting equation (14) in (13), we obtain the following difference equation in A, :

g p. Sivuzlian, “Inventory Control of a Multi-Prodyct System with Interacting Procurement,” Working Paper
{1966}, Operations Research Group, Case Institute of Technalogy, Cleveland, Ohia.
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whese solution is
N2VALED | \
"(‘;f) w7 as)

wﬂh A, being an :u'hatrxry constant whose value can be obtained by using the boundary
csmhtmn, equatwn {12} Sabatitu%mg equatmn (is) in {(14) we obtam

| L z‘” 24 ) g
SRS — P ey = A EF ‘“‘)‘W * g2y “?i Y A

{fg)’t “ .
130 [
2
= A e~ ;—(Rw + ) ' (2 % WZ)
D
2 ; 2% (1)’

Thus, {1
1PN 2
P (w,z) = A, eV OV *‘“‘)IB(V /iuwz) F]
where 1,(9 is the modified Bessel function of order zero. The expression for P, (x,t) = “ﬂ
is . L
: Pt = Aoy |2y - ae) &

To determine the quantity, A, we have to evaluate the quantity

_ Po(t) = Aof e";‘{ Ax + vt - x}] IO l%‘ R“x(vt N x)] dx‘ .;
L , v _

Q

Using the power series form for 1,(-), we obtain

4 vt ue
- i
. -=fAx . vieX dx .
P(t) = Aof eI MOt (r') { (s )l
-' o r=0
LB
. . o . s .
4 Since the infinite series is uniformly convergent, the interch of the order of summa-
o3 ¥ T ange
tion and integration becomes valid; hence
£
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o § .
X . # ¢
T0) = A, Qo imf e"'(-’%}) T {—‘5{6 ~x}l dx . 17
' N EX SR '

. Deofine the baplace transform of r{#)us

L {r(&}} = F(e) = [ e*? 1 (0)dé  Res > 0.

Since the integral term under the summation sign in expression (17) is a convolution,
we obtain, by taking the Laplace transform of both sides of (17),

W3 fe ) et}

t=0

i

7(5)

|
>
]
{ o,
3

A, 1 A B '
- . . ; G+\.’.) G+V) <1
T R
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By a direct inversion, we obtain

Ay ¥ { . 5:_.&3}
r() = 3‘-*- 1-¢ 7%

SRR Be¥ oy vl e _*__1
- Comparing this _333,?,&5?&333303% with equation (12), we see that A, = Afv, hence -
Ax o oplvtex) ] Lo
. {i,:.}z L e ‘0;{3 7 % uivt - 4}}f(fﬁm} =
We next determine the quantity P,(t, x). From equation (8) we have ' ' ’:
2 (gp). | L
B (e“ P,,) = A B, -
Hence : ‘
S Gy R : ) 3
Pi(tx) = o 40 (e’“ B, (tx) } j;

. % ik S )
S : v 3 i

A closed-form expression can be obtained in terms of 1,(-), the modified Bessel func.
tion of order 1:

Ax vt~ x} V 1
] LA X M - ;
Pl (t, L) = 7 e v v ‘)‘k—ﬂx 11 {2 lvx . 3‘(": x) ]- :

Finatly, using equation {10), we obtain for P(t,x)

SRRUORT FORSSRII R E IR UM Y

Ax gt - %) o #
5 P(t,x) = %.e"“ v 2uo [2 ax, B(vt-x) YoX ] S
., / Axu o [ AX _ uvt-x)
4 + -‘Tm-!‘ [2 -~ —-—'v—-——] } 0<x<vt. (]9)

3 In order to determine P (1,x), we note that the probability that there is no convoy
stoppage over (0,t) is simply e M_ This is also the probability that at time, t, the

4 exact distance x = vt will be travelled Thus, P (1,x) has a mixed distribution with
finite probability concentration at x = vt and a density function over 0 < x < vt de-
fined by P(t,x). We can thus write

10
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Pt x) -At x = v (20)

L %3 vt

The probability that at time, {, a distanee of at least x be covered is

whose configuration is depicted in Fig. 2.

b. Determination of 7 {t,x} — The Dual Problem. In the study of the dual
problem, the quantity of interest is #(1,x) dt — the probability that when the convoy
is at a digtance, x, the total elapsed time fies between t and t+ dt. The usage of
the word “dual” will become apparent. It is clear that the structure of the function
#F(t,x) is such that

o 1=0
X
F(xy={ ey t=3 @
z(t.x) t> ‘5

since the elapsed time will be t zef-,- if the convoy travels a distance, x, at the normal
X

speed without any stoppage, and the probability of such an event is €MV, The func
tion 7(tx) is to be determined from probabilistic considerations.

Define #_(t,x) dt = the probability that when the convoy is at a distance, x, it
' is stopped and the total elapsed time lies between t and
t+dt (¢ >_:f.),

and = (tx)dt = the probability that when the convoy is at a distance, x, it is mov-
ing and the total elapsed time lics between t and t+dt  (1>3).

It is clear that
n(tx) = w (tx)+ 2, (tx).

Basic probablistic argumentsyield the two following relations in 7 _(t,x) and =, (t,x):

11
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Fig. 2. Probability that at time, t, a distance of at least x is covered.
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A (tx)dt = a (t-dt, x) (1 - pdt)dt + 2, (t- dt.x - dx)Adi - dt+ 5, (de, dx)

and

v

1 A (tx Fdxydt = o (t-dt x) (0 - xde)dt+ g (8- dt, x)pdt+ 3, (dt, dx)
T Y

- - ¢ —_
L where
lim G, {dt, dx) - G= 12,
3 dx+ 0 dx !
R  Passing to the fimit and dropping the funetional notation, weobtam

=

% om,

. os o, 4,

- and

afr ay
---- 4 —-«— = - +
ox m M’; uz,

i

. These equations are similar to equatiors (8) and (9); hence n{1,x) "satisfies the follow-
ing equation:

.

3*r . 13%r At Bm an .
: ot TVl Tv oar YEx T 22

The boundary condition for this partial differential equation is given by the normaliz-

3 ing condition
% j a(tx)dt = 1-¢"v . (23)
4 i
| Note that P(t,x) and #(t,x) satisfy the same equation, hence the introduction of the
3 notion of duality. On the basis of the results obtained in solving for P(t,x), one may
assume that equation (22) has a solution of the form:

f - _)5_ MOt -x) /—)\-‘—‘*—-—‘
A ESR AT
;‘ ?T(tQX) A v IO[- N v Y
(24)
| ook o, |

v ']
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where A and B are arbitrary constants to be determined from the boundary condi-
tion of equation (23). Since the R.H.S. term in equation (24) needs to be integrated
with respect to t over the range L' < t<o, weevaluate first the following quantity:

o hx ¥{ « X
by (%) =f P e 10[2 /l‘.’i.-‘i‘-"-‘;.’il]dt
v v
X

: : Let 2= vt~ x, then expressing 1,(-) asa power serics and interchanging the order of

= integration and summaltion we obtain

‘». o oo r o\

' . Rl z _k_x.. .‘f-{. 1

=9 v (() = e.-v-- v v ¥ [Rp— dz

‘ BT E— 2 - o
7?; - o T =0 ——- -

i —

. =1 5 M nz .—-IT.".‘..c‘%‘dzz-— (25)

# u rh Jy v v #
: " r=0

4 .

- We next evalvate the quantity

<» * REWIUREINE B AX  u(vt - x)

# b (x) = e v v F I /T'_—\_'— dt .

xfv

' Integrating by parts, we obtain
. ) - o

5 v (x) = e_%_"__ #(v:v x} I Iz Ax o a(vt-x) ]

3 2 ° v v

3 X

g e

| -

E , LM v -x) [ax  u(vt- x}

f +tu [e ¥ ¥ IO [ 2 -~ t .

3 Using cquation (25), we obtain
: §

1-7 B = 1- €5 (26)

Using equations (24), (25), and (26) in (23) we obtain

: - A 1.8 3 By

E: f n{tx)at = A= . —+—{l-e V= J.e 7

: TR

3 X

[ v
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“tience, A=0 and B=v and relation (724)7‘:7:71;: Vth/en; he t;r;iiicn as:

Ax -x) Ax p(vt-x)
n(lx) = e‘*v"&'—'fi “gT xolz/v 2

' Ry e pmesie o Ll
R . X (vt - x)
- TR YIS dz/ ]

A avi-%) v Y
A 4 ¥

L. X g
I - SRl 52y
This last relation specifies completely the distribution function ¥ (t,x) as defined in
i’; ~ equation (21). : ‘
. 6. Probability of Convoy Reaching Drailuation on or before a Given Time, T.
N We are now in a position to evaluate the probability, M(T), that the convoy will reach
& its destination on or before a given time, T. Let x measure the distance from origin
e A to destination B.
3 Then
M) = | d7(tx) .
'§ -8
y % More explicitly, using the results of the previous analysis, S
=
0 T<v
s
o -A x
3 MT) = { e T =3 (28)
T
e v +j_’i a(tx)dt T> —’:-
¥ The configuration of the function M{T') is as shown in Fig. 3. The expected time to
.8 travel a distance, X, is given by

ia ok

o

, Ax
% eV +f T (t,x) dt

|
b
t
4
by
&
3
A

7.  Generalized Model for Convoy Retardation. 1t is possible to formulate a gen-
. eral model for retarded convoy movement in which the parameters X, 4, and v are
N 15
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Fig. 3. Probability that a distance, x, will be covered on or before time, T.
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functions of time, t, and the distance travelled, x. One can easily demonsirate; for .
_example, that P_(t,x) and B, {t;x)-stitt satisfy cquations (8) and (9) with A, u.and v
each a functmn of x and t It can also be shown that P (tx), for example, satisfies

the following hyperbolic partial differential equation:

PB, 1B, P, P - R
v 0 3 ) - —‘— - — —-_—— ’J‘ . - ——,—- " -
Gxat Ty AR THEE T fy (m) = £, (L) Py - »

where fl-(i,x} and f,(tx) are {cr;mvn funciions of A, u, and v. : R

8 An Apphcatmn toa Prob}em of Eqmpment Fadure and Repmr. ’f‘he mathe— -

tailure and reg rep.ur of a piece of equipment In this case, the mt«.rpiaymg variables have
the following interpretation:

t = time

% =  number of hours of operations logged by the equipment

A = average number of failures per unit time (failures are assumed to oe-
cur in a Poisson fashion) 7

1/u =  average time of repair (the repair tinie is assumed to follow an expo-
nential distribution)

v = unily

A specific application to this problem relates to the impact on cargo ship tum-
around time of breakdowns of dock cranes during loading (unloading) operations. Fur-
ther aspects of this problem will be discussed in Section {V.

Using the definition of M(T), an attempt is made in Appendix A to characterize

quantitatively the concept of mobility of an automatic equipment subject to break-
downs and repairs.

HI. CONVOY ATTRITION AND LOSSES

9. Introduction. Cargo shipments across a link between two given nodes take the
form of convoys consisting of one or more vehicles carrying supplies from a given point
of origin to a given destination. When the convoy system in a warfare enviromment is
analyzed, it should normally be expected that, often, not all units of the convoy (and
for that matter the convoy as a whole) will reach their destindtion: in general, enemy

actions will tend to inhibit the normal supply operation and thus ereate delays, casual-
ties, and losses.
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In a generalized analysis of convoy movement, it is necessary to study the situ.
ation as a mmed-engagement problem involving four variables: time, t; the number R
T Tof units in the convoy, n; the number of protective units escorting the convoy, ki and
the number of attacking units, b.* By making suitable assumptions about the exchange
rate between engaging forces, a Lanchester-type equation can be formulated for the
probability that at a given time, t, the three state variables, n, k, and b, will take
on parhcuiar values,

[

FAURSNRT L W

The cﬁmplﬂm* of this probio:m is increased by the number of interplaying
state variables which makes doubtful the derivation of anulytic remits, The ditficulty *
can be partly overcome by considering the nimber of cargo units to be the only signifi-
cant varigble and by assuming that the convoy proceeds in a dynamic environment (ex-

pressible as some function of ¢ time) causing attrition. To that end, the envirgnment
may be thought of as causing three types of losses:

a  Type 1 attrition mducf'd by elemental attacks whose intensity is taken to
be proportional to the number of units in the convoy. Thus, if there are n units in
the convoy at time, t, the probability that a single unit will be lost in the time interval
(t, £+ dt) is nA {t) di, A (t) being the intensity of atirition of Type 1 at time, t. In
practice, a Type 1 attrition is usually caused by the lack of or the ineffectiveness of con-
voy protection.

b. Type 2 attrition induced by elemental attacks whose intensity is indepen- ;
dent of the number of units in the convoy. Here, the probability that a single unit will ;-
be lost in the time interval (t, t +dt) is A, (t)dt, A, (t) being the intensity of attrition of
Type 2 at time, t. Type 2 atirition results if convoys are effectively protected or if un- :
detected mines are triggered.* j

¢.  Total annihilation resulting from an environment affecting the totality of
the convoy. We shall let u(t)dt be the probability that in the time interval (1, t +dt)
the convoy is annihilated.

f b AR A Ll

Three typical situations will be :nodeled. Model 1 assumes that convoy losses
are due to Type 1 attrition and an.ihilation. Model 2 assumes that losses result from
Type 2 attrition and annihilation. Finally, in Model 3, losses result from Type | and
Type 2 attritions and total annihilation. For each of these models, an expression for

P(n,t), the probability that at a given time, t, the number of units in the convoy is n,
is derived. Using this expression, it becomes possible to assess the impact of the original
4 convoy size, N, upon such guantities as the expected number of units reaching destina-
tion and the percentage amount of cargo lost.

3p. M. Morsc and G. E. Kimball, Methods of Operations Research, J. Wiley, New York, 1951,

.
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a. Model 1 - Type 1 Attrition and Annihilation. The equations for P(n,t) are

PN, t+dt) = PN, ) [1-NA (dt] [1-p()dt]  n=N

P(nt + di)

]

Pln,t) {1 - n ) (ydt] |1 - u(t)dt]

.

PO, t+d1) = PO + PLY A, (dt[1-a()dt] +[1 - PO} u()dt  n=0

with the initial conditions PN, 0) = 1 and P(n,0) = 0 n=0,..,.,N-1
E /Thc/aﬁée—éqragdm to the fuﬁuwd:i;ystem of differential-differcnce
equations:
ﬂ’%‘:&}l = ~ fu(t) + N ()] (NG n=N
PO = @ +n () Pab + (0r ) A OPE+LY K=1,. .N-1
i’j,(a_‘%:*) = u(t) [1-P@OB] + A (1) POLY n=0

These equations can be solved recursively to yield

t ¢ n i N-n
P(n, 1) =(:)e°"; u(8yab [c-j; A (ral ] {l _ e"“.’ A, (0yaf } =

t t . t N
- 8348 - 8yab -§ A, (BHdb
POy = p_hn@ae o f ud {Le-’; 1 l

[

The expected number of units reaching destination is
n=N

f(N) = E nP(n,t)= Ne™
n=9

i
f LA, 8y + uifyad
a

which is proportional to the number of units originally in the convoy. The expected
number of convoy units lost is

Al

N f(N)"N[I e'f.,t”‘""’*"“’”""]

19

P+ L@+ DAMA 1= gdt] =1, N-1 - =
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and the expected prnportion loss in cargo is

gN) = 1-e

f A @) + 16140

which is independent of the number of units in the convoy.

_ _b. . Modsl 2 Type 2-Attrition and Annthilation.- The equations for P(l) arer - - -

PENL+dt) = PN (-2, (t)dt] [T -p(t)dt) B | n=N

Bo,t+dty= P(nty  [1-n(Bdt] [1-u(e) dt]

+ Pln+ 1, t) 2, (Odt {1 - plt)dt] a=1l,...,N-1
POt +dt) = PO,0+ P (LY, (1) de {1 -p(t)dt]
+ [1-P(O,t}] p(t) dt n=0

with the initial conditions P(N,0)=1 and P(n,0)=0 m=0,1...,N - 1. This reduces
to the following system of differential difference equations:

i‘ﬂm =-[2, (8 +u()] P(NY) n=N
PO -y, )+ )] PD 2, P+ 1,1 n=12,...,N-
f‘.P.(d(ﬂl =-p(l) BO.1) + p(t) + 2, (1) P(L,Y) n=0

These equations may be solved recursively to yield:

6)do A, ) + ud a8
P(nt) = _‘Z_i’{__J_. f)‘ﬁ * a=1,2,...,N

(N-n)
M =N
POy = 1- E P(n,t) n=19
M=1
r= N t r
E £r0ds |
ket  G(N) = :
r!

20
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3 The expected number of units reaching destination js

a= R
} £(N) sz nP(a,b)
i a=N
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in Appendix B, we show that the R.H.S, term is an increasing and convex function of N,

M’w.s'ﬂ.,;
e

Bfgeba e e 8 e

The expected proportion loss in cargo is

t f
g(N) = 1.k Pa@ udnae [G(N)*w G(N-n]

We show in Appendix B that this is a decreasing function of N.

¢.  Model 3 — Types 1 and 2 Attrition and Annihilation. The equations for

: ; it et AN
ool g e O R S S S R S
[
st h PR IET TR TR - TV SRRyt

P(n,t) are
P(Ni+dt) = P(N,t){l ~ N (dt] [T -2, (D)dt] [1-p(t)dt] n=N i e
P(nt + dyy= P(n,t) [1-nx (dt] [1-0{ndt] [1-p(t)dt] '
+ P(a+ L) [n+ DA (©dt] [1-2,0dt] [1-u(tyde] 3
# P+ L [1-(n+ DA, (O] Ode[1 -pdt] n=12..N-] B

PO +dt) = PO,) + P(L) A, (dt [1 - u(t)de] [1 -2, (t)dt)
+ PLY L =% (1) dt] ay(0)de]1 - p(t)de] + [1-POH]u()dt n=0

pmc Sy b Ay

The initial conditions are P(N,0) = 1 and P(n,0)=0

n=12.,N-1
The corresponding differential-difference equations are:

LSRR

3 1’%‘_& = - [u(t) + 2,(0) + NA, ()] POVt n=N

21
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s

fa {2

H kot
[

‘Then, we chtain recussively
t
PNty = O 8 e nx 0140

[ 4
- (5] (J - 1)\, (@146
PN - 1) = e,{t#( PR, @)+ o - DA (D)) [, (0 + Ne, (8]

{
PN 21y = 1O+ Xy ®re 08 -) G140

ZER

o

R S e

f )+ (N -1, ()] e ’ 048 1 (u) + N, (u)]

Unfortunately, closed-form expressions cannot be obtained for P(n,t). For the case
when A, (t), 4,{t), and u(t) areindependent of t, a simpler expression can be derived.

s Let a=:\2lll, then

, _ ..(Lz-yp)t T{n+a+l) -ll T ~7\ tN n =12
P = Fntar DOt © ¥ n=12,.,N
1 t N t [ 0 A 0)

i - + - - -

POY = 1.2 + I‘(ar*»(l) ‘:‘Zﬁ 0 “fe A d{(l-e 1 ) ]

. A

* The expected number of units in the convey is

* n=N N
I/ — A, ¢ E PN+a+l) Ay Ayt
2 Ny _Z ne FmrarN-mr & ') {-¢!

7 n =1
22
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_A praaf to demonstrate that' (N} is an increasing function of N and that g(N), the -~ - e e
expected loss proportion in cargo, is a decreasing funetion of N eludes us for the
present,

10. Cost Consideration in the Movement of a Convoy. The three basic cost elements
that must be accounted for in the transport of cargo are:

a.  The cost of transportation which is an increasing function of the number
of units in the convoy, M.

‘b, The cost of providing a proteetive éscort to the convoy; in genersl it isex- — .. —
pected that this cost be made up of two components, a fixed component and a variable : :
component which are inereasing functions of N,

e. The cost associated with the loss of cargo units; this, again, is expected to
be, in general, an increasing function of N.

The configuration of the first two cost functions has to be determined em-
pirically; although, as a first good approximation they can be assumed to be linear in N.
The third cost funetion is easily determined from previous analyses since it will be equal
to a constant time~the quantity [N - f(N)]. It then becomes possible to express the
total cost of moving a convoy as a funetion of the number of units in the convoy. Finally,
it might be a matter of intcrest to determine the cost of moving a single ton of commod.
ity between given nodes.

IV. ANALYSIS OF A TERMINAL OPERATION - THE SEA-LAND
CONTAINER TERMINAL SYSTEM

11. Introduction. A terminal, or node, can be defined as a transfer point where
cargo materiel experiences one or more of the following operations: handling, storage,
unjtization, de-unitization. In general, the mathematical analysis at nodes will depend
upon the particular terminal configuration and operation. In this chapter, the Sea-Land
Container terminal operation is analyzed.

B e e

N SIS
i A

Containers (trailers) mounted on truck chassis wait in a marshalling area. When

" a container vessel docks, a stack of trailers in one of the vessel cells is unloaded one at a
time onto waiting truck chessis by one or two gantry cranes. The chassis are pulled over
to the marshalling area by tractor. Following this initial operation, the crane unloads
an export container in the empty cell; and, on its return, the crane lifts an import con-
tainer from an adjacent cell and deposits it on the truck chassis thus initiating a one-on,
one-off cycle. Tractors, in the meantime, move back and forth between the duck and
the marshalling areas pulling alternately import and export containers.

. 23
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i Because of the difference between the operating cycle times of crane and trac.
g - - tor, it becomes necessasy 10 defermine the oplimum number of traetors in operation,

- Simulation studies of this problem were performed by the National Parts Council.® In

5 this chapter, we develop two mathematical models to deseribe the problem. In the first

model, the erane eycle time and the tractor cycle time ar¢ assumed to be deterministic
variables; in the second model, the samie variables are sssumed to be stochastic,

L WY T

£
k3

Four basic operations to consider are:

s the tractor travel time
¢  theiraclor wailingtime e —
' T T e thelifton, lift-off crane operation time
i’ e the crane waiting time
i
% By minimizing the total coat of handling a unit container, the optimum number
;‘ of tractors to be scquenced with the crane can be determined.

2. The Deterministic Model, Let:

‘iﬂ Jemors

¥

& n = number of tractors assigned to each crane
- ge = operation cycle time of crane
3 6T = tractor travel time (assumed the same {or all tractors)
' = » -
5 w* = waiting time of cranes
T

H

waiting time of a tractor
T

1]

total cyele time

w

C, = cost of operating the crane per unit time
C; = cost of operating a tractor per unit time
T

Er
33

N Then = ngt + W
)
3@ - 81‘ + WT + §*
§ Hence (n-1)8+we =0T +wh .
24

oo

1t is evident that if the time parameters involved do not change over time, then either
the crane waits or the tractors wait. These two cases are illustrated in Fig. 4.

Shational Parts Council Rescarch and Technical Bulletin Na. 21967, 17 North Audley St., Londor, W. L
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(1) Proportion of Waiting Time. If w* =0, then w' # 0,and T=né
= cyele time. Each tractor will then wait an +mount

wh = (n- 1) 97 (n-1)F > 47

and thu proportion of tractor idle time per cycle is
Ll L R LA A
T - ng®

Ifnow w # 0, then w' =0 and
T=6T+0° . -
The erane will then wait an amount equal to
w=gT - (n- )& 6T > (n- 1)6

per cycle, and the proportion of erane waiting time is

W _8T .-
T T +¢°

In Fig. 5, the waiting time per cycle is plotted as a function of the number of tractors
in operation.

(2) Loading ~ Unloading rate. The loading —~ unloading rate is measured
by the number of containers handled per unit time; the expression for this rate will de-
pend on whether the crane waits or the tractors wait. It is given by the following:

o gt .
5’?‘“}' if ng i 1 (crane waits)
+
T
—3; if n=2 %C—Jr i (tractor waits)

Thus, if the crane is allowed to wait, the loading rate is proportional to the num-
ber of tractors involved; otherwise, if the tractors have lo wait, the loading rate is con-
stant. This is illustrated in Fig. 6.

(3) Total Turnaround Time of Cargo Vessel. Denote Ly N the total num-
ber of containers to be loaded (unloaded); then, neglecting the initial first cell clearing
operation, the total turnaround time is given by
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Fig. 5. Waiting time per cycle as a function of the number of tractors.
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and this is digplayed as a function of the number of tractors in Fig- 7.

(4) Optimum Number of Tractors in Operation. Considering as our cb-
jective function the cost of handling a container, say C{n), then

g7 + ¢

G, —— + C (07 +0) if(n-1)<§::
Cn) =
C 6 +Coné if(n-1)>%;~

The function C(n) is shown in Fig. 8, and its analytic properties are investigated in Ap-
pendix C. There, it is shown that the optimum value of n, say n*, which minimizes the
function C(n), is such that one of the following conditions are satisfied:
o¥ C, .
(@ =~§5- , C= —C; , h¥ integer),

| e e D e LA

(a) Crane will wait:

- _B / .62 ‘.."
8 < €-0+ (C+)+4C<n*<l+9

2

(b) Tractors wait:

(1+8)< n* < 1+ —(C-0)+V(C+e)2 v ac

2

(¢} No waiting for tractors or crane:

n*=1+4
(d) Double solution (either crane waits or tractor waits):

~(C-0) + fCTOF + 4C

»
§ n P
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Fig. 7. Total ship turnaround time as a
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Fig. 8. Handling cost per container as a function of the number of tractors used
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It is evident that full utilization of the ixandlmg system in a rigidly sequcnwd

3§ e - e e —

- gy tfen :
- operatio is achiéved by selecting the quantity 0 = e as an mteger then, under opti-

mum operating conditions, the cost o nandling per container,

C o+ (C +C)F

.. isatinear fanction-of the crane cycle time urd the tragtor Gravel time — the oplimum

value of n being (6 + 1), a quantity independent of the cost parameters. However,

in general, such scheduling cannot be achieved even within a single loadingunloading
_ operstion of a vessel because the quatitity §% is a function of the distance traveiled by

the trax.tcr and, hence, a funchrm of the locatmn cowdmate of the chassis in the mar.

b. The Stochastic Model. In pvactme, a rigidly sequenced operation is impos-
sible to achieve. The tractor travel time will vary between tractors and between travels

. while the cycle time operation of the crane will have inherent delays due to hatch re-

maoval, hateh replacement, latching operations, and movement of the cranes. We shall
assume that arrival of the tractors to discharge berth is Poisson distributed with inten-
sity of arrival A; while the time for the crane to complete the one-on, one-off opera-
tion has an exponential distribution with parameter u (note that 0 = Vu and 8=
1/x). We have considered, here, an extreme case of randomness; and, although the as-
sumptions about the statistical distribution need verification, the results obtained can
be used as bounds for the vaiues of the variables involved.

The problem under study is similar to the clasgical repairman problem.®
Let P(m, t) be the probability that at time, t, there are m tractors waiting in line by
the crane (tractors being serviced on a first come first served basis) m < n, then

POt +dt) = P(O,)(1 - nxdt) + P(L,t)udt {1~ (n-1)2dt] m=0

P(m,t + dt) = P(m,t)(1 - xdt) {1~ (n- m) Adt}]
+ P(m -1,4)(1 - zdt)[n - (m - 1)rdt) +P
+ P(m+l,t)udt[l-(n-(m-*l»kdt] m=12...,n

These relations reduce to the following system of differential-difference equations:

POy - ~nAP(Ot) + pP(1,t)

di m=0

SW. Feller, Introduction to Probability Theory and its Applications, Vol. 1, J. Wiley, New York, 1949,
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m=12 . .. n ,
1 { - In the steady state, let Po=Pmt) (m-o,},...,0),then . . : Ce -2
‘ 0 = -ndE +ap m= 0
1 OFComi My -Gt mNE b, melzew
B it casy to verify that
34 )
= (2 LiH :
} P ‘(};‘) W}:‘ s m=12,...,n
& ;
i
and B = = = B(n) :
(F) m=g "’
F, is the proportion of time the crane is idle. Since the expected number of containers
dled per unit time by the crane while in operation (not idie) is y, it follows that :
ﬂleexpectadrmmberofco;mnershxmd}edperumtumms (1-P)an . :
(1) Expected Tumaround Time (Fig. 9). This is given by
N __
{1-Fmiu
where N is the number of containers, -

(2) Uptimum number of tractors in operation (Fig, 10). Considering as
the objective function the expected total cost of operation per container, C(n), we have

G +ng,
C{n) = m

The optimum number of tractors can then

be determined by minimizing the function
C(n).
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12. Efiect of Crane Breakdown on Tumaround Time. To this point, we have as-
samed that the equipmeints involved iii the loading-unloading operation are not subject
to breakdowns, The incorporation of this factor and its impact upon furnaround time
is a significant problem that we shall now discuss. Since, in a Sea-Land terminal system,
the erane is the bottleneck equipment, we shall study the effect of crane breakdown on
turnaround time. Aasusue, first, that a single crane is operating. Let the capacity of the
oIk ... targo vessel be N containers, and det T be the maximum permissible turnaround time.
, , Under normal operation (no breakdowns), the ship turnaround time will be dictated by
the number of containers loaded on the ship: however, in case of breakdown, the ship
turnaround time might well be dictated by T (Fig. 11). Let the loading rate be v con-
tainers pet unit time, and assume thet breakdowns oceur randomly in time according
e — — & Poitson Jaw withrintensity X Letrepair timie be exponentially distributed with

. parameter p . The situation is similar to the convoy retardation problem discussed in
Section H. it is, thus, possible to obtain an expression for the expected turnaround time
asafuncionof N, T, v, X, and 4.

V. CONCLUSIONS

13. Conclusions. The mathematical analysis so far performed has been restricted to
selected phases of the APSDS such as the movement of convoys across links and the
‘operation at a node having a special configuration. The analysis is not claimed to be ex-
haustive; in fact, the solution to some of the mathematical problems encountered eludes
us at present. Nevertheless, the results obtained so far constitute part of the basic inputs
necessary to characterize the optimal configuration of the APSDS.
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APPENDIX A

CONCEPT OF MCBILITY OF AN AUTOMOTIVE EQUIPMENT
SUBJECT TO BREAKDOWN AND REPAIRS

The mobility of an automotive piece of equipment operating under preseribed con-
ditivirs can be defined as the probability that the equipment starting from a given origin,

¢, and moving along a givon path will reach a predetermined destination, A, on this
path on or before a specified time, T:

%
e
=

PATH

i

giad

The quantity M(T) defined in Section Il by expression (28) can thus be used to meas-
4 ure mobility. Note that M(T) incorporates the following four basic factors;
15 1. normal speed of motion, v

. 2. distance travelled, x

3. frequency of breakdown, A

’ 4,  average repair period, 1/

Consider two motor equipments E, and E; moving from O to A along OA at
L the same speed, v. Assume that E and E, are subject o the same law of failures but
o that E, is supported by a better repair system than E, ; then, E, is more mobile than

E, .

oRow

RO R ARG
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APPENDIX B
PROPERTIES OF THE FUNCTIONS {(N) and g(N)
For convoy attrition Model 2, we attempt to characterize the properties of the func-

tions f(N) and g(N) where {{N) denotes the expected number of units in the convoy

at a given time, 1, and g(N) represents the proportion of units lost, For notational
simplicity, we shall carry on the derivations for the case when

Aty = X and a{t) = p.

The derivations for the general case are identical and the same type of resulis are ob-
tained,

since  1(N) = o **HY ING(N) - MG - )]

Then  f(N+1)-f{N) = e {(N + 1YG (N + 1) = AG(N)
- INGN) - AtG (N - :)}}

N+
L SO {(N 1 [G(N)+ 8&-1-;1] - NG
- M G(N) - G(N - D] } N
N+ N
- o oguny + DO a0 0]

N+i
-5

= e® B gy > 0.

Thus, f(N) is an increasing function of N. The convexity of f(N} can be determined
by noting that

4o , R R T o A
N +2) - N+ D] - [N+ 1) - f(N)] = e NI

Also, since Nj [EN+1) - f(N)] = e
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we have, for large N,
f(Ny = A+ Ne™
where A < 0 is a constant.
Next, we study the function g(N);

gN) = [ e Aeen {G(N)~ RGN - 1)1

, o ey L. At ;
o ) gN+1}-aNy = 1.e = EC{P& +13 N1 G(E\}}

1

{1 LR [G(N)-%‘ G(N - 1)] }

o e [ Ot (NT 1 GN - l)-NG(N)}
- TNy NN+T)

+ NG(N-1)

Meteme [ gy
TRETIIR XY

AN
+ G(N-1) -NG(N- 1) -7}(\1—-1]?—-}
Finally,
M(‘-(R'ru)t
ofN ~g(Ny= -GN -
g(N+ 1) - g(N) N(NAT) GIN-1) < 0.

Therefore, g(N) is a decreasing function of N. The convexity and/or concavity of
g(N) can be cstablished as follows:

[g(N+2) - g(N+1}] - [g(N+1) - g(N)]

At -\t G(N) __(_}(N -1)
© (NFIXN+Z) NN+ 1)

A+ (M)N
- e}« JE 1 YL M AN
= -MTRT [.EG(N 1) N- ”!]

' Since this last expression can be either positive or negative depending on the specific

values taken by At and N, it is expected that, in general, g(N) will not exhibit any
particular convexity or concavity property.
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.
R ANALYTIC PROPERTIES OF THE FUNCTION C(n)
.
} Herein, we develop the conditions which will dictate the oplimum number of tractors
s
- i -'r
- < to be used when the quantity ¢ = —'?-;- is not an integer (Case 2.
A /]
| 1t is evident that the optimum number of tractors to use is either n* = [8+1] or
g - n* = [§+2] orboth, where [x] is a symbol denoting the smallest integer in the real e
3 quantity, x. The appropriate value of n* can be determined through considerations of
the objective function which is taken to be the total cost {or handling per unit con-
] tainer.
g The convexity of the objective funetion guarantees the existences of an optimum n*;
k. however, in this case, a double optimal solution is possible. Further analysis to deter-
3 mine preferability of crane waiting rather than tractors (or vice versa) proceeds as fol.
3 lows:
.o } i
£ '
~ 1
3 ;
3 s
& s 7 {
4
& * ,*‘
N N4y

Assume that at the optimal point, when n = n*, the crane has to wait; then, n®* < @

+ 1. Clearly, if (n* + 1) tractors are used, the tractors will be waiting and the follow-
ing inequalities should then hold:

C
ﬂc(Cc +i]*CT) < (ET +9°)(»;;E; + CT) < ¢ {Cc +(n*+ !)CT . )
The L.ALS, inequality yields
n* < §+1,

The R.ILS. inequality yields

+e

(1+8) < n* (]+H*—'l—) .
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or n*? + {c-@yn*-c{l+8) > 0.

Since the corresponding quadratic equation has two real roots of opposite signs, this
last inequality will hold for

-8y + J{e+t8y + 4o

n* > 0

It is casy to verify that the R.ILS, term of this inequality is greater than 6. Hence, the
set of inequalities (1) can equivalently he written as:
O
~{e-8) + \/(c+0)2 + 4
8 < 4 < n* < 1+0. 2

Assume, now, that at the optimal point, when n=n*, the tractors have to wail; then,

n* > 146,

! {

! 1
)

]

{ i

| i

n*1 a*

Sinece, if (n* - 1) tractors are used, the crane will have a waiting time, it follows that:

67 +¢°

1

C, +n*C < & (C, +n*C <'-~———c C.+(n*-1)C 3
( < ‘T) ('c -1-) n*-1 (‘.,- ( - T)' ()
The LLS. inequality vields

n* > i+0.

The R.ILS, inequality vields

(n* - Ie+n*) < (1 +8)e+n*- 1),

02 f (e-2-0) )t e+ l-0¢+8 < 0 .

The vorresponding quadratic equation can be shown to have two real roots given by
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c(e-0)y £ fc+af + de

9

™

+ 1

Congequently,

~{c-8) - \/(9”’)2 + de (e-0)y+ fle+8Y +4e
L+ 5 <nt < L+ -

-

It can be verified that the left-most quantity of the abuve expression is less than 1 + 8
hence, the set of inequalities (3} can equivalently be written as

-{c-8) + /(c+0_)2—+ 4c

2

(t+ay < n* < 1 +

+3




