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SUMMARY

ThLs report is a mathematical analysis of selected phases of the Army Physical
Supply l)istribution System (APSDS). The rwst part is a stochastic analysis otf coliioy

- ............... dclas; it provides a statistical relation bietwen -distance travelled and time of travel
and inrorporates such parameters as frequency of stoppage, lergth of delay, and speed.
lwme swcond part analyzW.. the problem of convoy attrition and lo.sse under variow hos-

- tile environments. Such relations as the expected number of units lost and the expect-
ed proportion of units surviving are obtained and expressed in te•nsnfingiurmrmbe.

.- T u Iinitile convoy, travel time, and various interplaying cornbat-intensity factors.
5' •Finally, a brief analysis of a particular terminal operation is given; expressions for car-

- go vessel turnaround times and handling cost per container are obtained.
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NMATHEMATICAL ANALYSIS OF CERTAIN PHASES OF THE

ARMY PHY SICAL SUPPLY DISTRIBUTION SYSTEM

1. INTRODUCTION

"I. Scope. The present study is a mathematical analysis of -elected phases of the
AArmy Physical Supply Distribution System (APSDS) in order to attain a useful level of
undersýdting i efore-the nccessary- predictions can he made ahout overall gzstcm per-
formance. In addition to providing basic approaches to formulate and solve various
problems associated with the dynamics of the physical supply distribution system, the
study demonstrates the feasibility of approaching the problem on a quantitative basis.
As a result, it becomes possible to identify and correlate the relevant interplaying input
parameters.

As reported in a previous study,' the APSDS can be conceptualized as a network
system consisting of nodes and links - the nodes correspond to terdtiinal points, and the
links correspond to the movement of supply between two consecutive nodes. A logical
procedure would be. to study first each link and node and to combine eventually the re-
suits into a meaningful framework to arrive at optional solutions.

The link study is essentially an analysis of cargo retardation and attrition. Sec-
tion I1 is devoted to a statistical analysis of convoy delays, and Section Ii analyzes the
problem of convoy attrition and losses.

The operation at the nodes is more complex because it involves a larger array of
variables and covers a wider spectrum of alternative systems. However, the cost and
time associated with any terminal operation are two accepted important characteristics
which need to be evaluated. To this end, Section IV illustrates a method of approach-
ing the problem by analyzing the Sea.Land Container Terminal System; expressions for
cargo vessel turnaround times and handling cost per container are obtained.

When the role of containers in the APSDS is evaluated, a fundamental problem
area which cannot be overlooked relates to the extent of penetration of containers into
forward areas. On the one hand, the utilization of larger containers presents economic
advantiq,ýw in the handling cost at nodes and in the transport cost between nodes; on

'B. D. Sivazianm "A Preliminary Study Leading to a Mathematical Definition of an Optimum Future Army Physical
Supply Distribution System." USAMERDC, Fort Belvoir. Virginia (August 1968).



the other hand, large containers could impede the mobility of the distribution system
in f4rwafd areas and increase theivulnenbilim-of nwitv0 -iipdr~hnglh, i-rgi. 1 -rVh
fore, one can legitimately wonder whether an optimum container dimension exists
which would minimize the total cost of operation between two successive nodes. This
problem has not been studied in the present report; however, the analytic results ob.
tained to date provide the necessary ingredients to approach this inportant problem.

IL RETARDED CONVOY MOVEMENT

•, 2. Itadtiunthi. During the. normal course of ite procession, a convoy may be hu.-
mobilized at various time epoch., and each stoppage contributes to the delay of the
convoy in reaching its final desination, Such retardation mihrt _be created by oneor_

-__ - more naturgor Iman-induced phenomena. As an example, aii enemy attack might force
a convoy to stop or to take evasive actions; the delay cif the convoy is in general a func-
tion of the timne length of the attack. Blockades resulting from baorier encounters are
another xatise for stoppage; here, the delay will be the time required to clear and re-
nmove the barriers before normal procession can resume.

Consider a convoy leaving at time. z o, origin A (x o), with the objective of
reaching destination B located at distane x X. Let v be the normal convoy speed.
We shall assume that: (1) events inducing critvoy stoppage occur randmly in time ac-
cording to a Poisson law with parameter X (X is the average number of convoy stop-
pages per unit time); (2) the delay associated with each stoppage is a random variable
having an exponential distribution with parameter p (I/u is the average delay time per
stoppage); and (3) the occurrence of each stoppage and the induced delays are indepen-
dent events.

We shall derive an expression for the probability that at time, t, the convoy
has covered at ieast a given distance and also an expression for the probability that a
given distance will be covered on or before a specified time. The analysis procee&d in
two steps: (1) a time-dependent model is developed; and (2) the resuits obtained are
then used to develop a space-time dependent model involving both time and distance
as variables.

At the outset, without any sophisticated analysis, it is possible to obtain an ex-
pression for the average convoy speed, T, for long travel time (note that i < v). If
we denote by -X any distance interval, then,

v x + expected delay
v

2
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The decrement ratio in speed is X /(X +,u). Thlese results are no longer valid if the
,sIjni egth-Q V-CMnqYAshari-.-it b-hw tut-h e~s~ r

functions of time.

3. Depondent Anaiyeis. We &efine the "olowing symbols:

P1 (L) =probability that the convoy is moving at time, t

X dt =probability that the c~onvoy will be stopped in the interval
(t. + dt)

p dt =probab~iiy that the convoy will start moving itt the time interval
(t, t + dt) given that it was at a stop at time., t

O, (dt) =function of dt such that lim q(dt)/dt = 0 (i 1,2)
dt-.0

Vie then have the following relationis:

P 0(t +dt) = P0 (t)(l -pdt) + P, (t) Xdt +0 1 (dt)

PItdt) =P 0(t)Izdt + lX(t)(l-)Ldt) + 02 (dt)

A Carrying the usual operation and passing to the limit we obtain

4 dP0~Fý(t)+ iX)

-pPPt (1)

and up(() - XP1 (t) .(2)

it is evident that

P0 (t) + P, (t) =I t > (3)

Initiallv, assume that the convoy has just started moving.. then, PJ () 0 and P[ (0))-1
Using equations (1) and (3), we obtain the following differential equation for POt):

3



dP0 (t)
dt =- Pl(t) + ?[1-P o(t) .

Using the ititial condition, we find as the solution of the above equation

- _ _ _ _ _ .. ... . .. . . ... .. .- .. . . . . . . . . . . . .. . . . . . . . . -

Hence, P, t I . [- (5)

4. Expected Convoy Speed. We define the expected instantaneous convoy speed as
- v(t)], the expectation of v(t). Now,

* "..... v(t1* = vP,(t) = v -

-"and in the steady state

V

5. Space-Time Dependent Analyais. In a space-time dependent analysis (Fig. 1),
two state variables are introduced, namely, distance, x, and time, t. The determination
of two basic probability distributions is of particular interest: the first is 7s(tx) dx,
the probability that at time, t,; the convoy will have travelled a distance between x and
x + dx; the secondU-s(t, x) dt, the probability that when the convoy is at a distance,
x, the total elapsed time lies between t and t + dt.

a. Determination of P (t. x).

Define:

ýP (t, x) dx probability that the convoy is stopped at time, t, and lies be-
tween x and x +dx (0 < x < vt)

P1 (t, x) dx probability that the convoy is moving at time, t, and lies be-
tween x and x + dx (O<x < vt)

with the symbols, X, p, and v, having the same interpretation as before. We shall as-
sume that the normal convoy speed, v, is independent of time and distance travelled;
thus v = dx/dt.

4
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Fig. 1. Space-time diagram for convoy movement subject to random delay.



-.-. - Uon ueraing-thevarioM M~b si-~eiteflown~or~-----
lations in Po(t, x) and P,(t, x) are obtained:

SPO(t +dt, x) dx = P,(t, x) dx (I- Xdt) (I-dt)

- _ _+-P (txj dx)dtff- ~) +_ x) X ddt+0Ci 4tdxli

and

P1 (t + dt, x)dx P 0t, ~dPc• (I - X-dt> Adt Pdt4-+ tx~dxit Pdt

where lira O(t, dx)-

Relations (6) aid (7) can be written, respectively, as:

P-. P(t + dt, x) - o t x)03 (dt, dx)
dt + -P )+kP1(t, X)+ a

and

P, (t + dt, x) - P, (ti x) oP, (t, X) dx 04(dt, dx)
----d-t - tP(t, x)- XP 1(tx) x dt + )t d

Let dt. 0; then, dropping for convenience the functional symbolism, we obtain for the
two previous relationsJ

at~ +~ (8)

Sat x a(9)

Let P(t, x) = P(tx) + P1 (t,x). (10)

Although any of the three quantities, P, PO, P, can be determined first and the result
together with equations (8), (9), or (10) can be used to derive the two remaining func-
tions, it is easier to frst evaluate the function P (t,x).

6



ElimzitrP 1 -- fromB n~dO),ve-obtain .

aa
+ =0._

+- -•+V+-

-ý Xa v - - atx
+ V+-- -. £..

Clearly, each of P and P, also satisfies equation (11). From the results of the time-
dependent analysis, P.(x, t) satisfies the following boundary condition

fP,(xt) dx P (t) 7A It +o, C(-)tj (12)

0

Equation (1I) is a linear partial differential equation of the hyperbolic type. The special
boundary condition given by equation (12) does not allow one to obtain a solutionusing the method of separation of variables or by forming an appropriate Green's func-

tion. Using the transformation

W x and z = vt-X,

equation (11) can be written in the canonical form

awaZ v aw V az

This equation is similar to one obtained by the author in a study of a periodic review
multi-commodity inventory system. 2 Assume a solution of the form

Po(w,z) = e . ""W " Arwrzr . (14)
ir=0

Substituting equation (14) in (13). we obtain the following difference equation in A,:

2B. D. Sivazlia4 "Inventory Control of a Mutl-Product System with Interacting Procurerment," Working Paper

(1966. Operatons Resewd Group, Caut Institute of Technology, Clevdand, Ohio.

7



whose solution is

___ £(r!)
2 A,,

with A0 bcing an arbitrary constant whose value can be obtained by using the boundary
eanditih, equation (12). Substituting equatiok.(15) in (14) we obtain

A ..... xWt.-3 ( +tow z T

0

Thus,

P•-(w, z) =A •.......(

where I1.) is the modified Bessel function of order zeo. The expression for P., (x,t) -

is

P....t--= -ŽxX t) A C (16)

To determine the quantity, A,,, we have to evaluate the quantity

P0t ofelx ~ )'4 .ii? xI dx.
0

Using the power series form for I1 .) we obtain

r r

= C X ~~X+A(va-x) ((.t) 19. dx

l"u , M "V1:(

Since the infinite series is uniformly convergent, the interchange of the order of summa-
tion and integration becomes valid; hence

8
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P() A,~ (t2f (vC, V IA(vt -X) I dx.
ir0

_A. . . .

= "_ f' O ''wn

L {f4 a (a) e" -r (0) d# Re s > 0.

4 ~Since the integral term under the summation sign in expresaion (17) Is a convolution,
we obtain, by taking the Laplace trawifoxtn of both sides of (17),

r

.r+ t+1

t a + .. ... . .

( B+
V)

j A0  o" j •t~V:

A O ( +
r = 0 S+S+ T -.- • -7...-

V

Ao

:• 9



_________ - By a direct iverion we obtain .. . . ..it. V

Cmpring this la2t expresson with e,|uat"wi (12). we see that A X Xh/, hlita-

t Xx

We next determine the quaitity P, (t, x). Frmm equation (8) we have

lien"e
F" : Plt~x) = •'•" r(t,X) i.

i =•e • v-- Io )"
e- 1. [2 vx A(vx)11

v 8t -

A closed-form expression can he obtained in terms of 1 (,), the modified Bessel funle.
tion of order I:

L- Xx U(vt -P, (t,x) -X e , 2 (v x). , .

Finally, using equation (10), we obtain for P(t,x)

P(t -j) Ie X1, 2 .x u "t-
Svv v

+ K /- _

=p It 2 -v ~ <x<v (19)

In order to determine P (t,x), we note that the probability that there is no convoy
stoppage over (0,t) is simply e-t. This is also the probability that at time, t, the
exact distance x = vt will be travelled. Thus, P (t,x) has a mixed distribution with a
finite probability concentration at x = vt and a density function over 0 < x < vt de-

fined by P(t,x). We can thus write

10



-i I~s> Qcx'cvt

x P(ttx) " r~v (20)
S0 . . .. .-iiii> vi -- - -.- _ -

The probability that at time, t, a distance of at least x be covered is
d_ (t_/

whos configuration is depicted in Fig. 2.

b. Determination of Y (tx) - The Dual Problem. In the study of the dual
problem, the quantity of interest is ?'(tx) dt - the probability that when the convoy
is at a distance, x, the total elapsed time es between t and t + dt. The usage of
the word "dual" will become apparent. It is clear that the structure of the function
7(t,x) is such that tt "

0 t--O

'f(t,x) = "• t-

w(tx) t >x

since the elapsed time will be t =1 if the convoy travels a distance, x, at the normal

speed without any stoppage, and the probability of such an event is e-'. The fune-
tion ir(tx) is to be determined from probabilistic cotsiderations.

Define ir (t,x) dt = the probability that when the convoy is at a distance, x, it
is stopped and the total elapsed time lies between t and
t-+ dt (t >A),

and w, (tx) dt = the probability that when the convoy is at a distance, x, it is mov-
ing and the total elapsed time lies between t and t + dt (t > x).

It is clear that

zr(t,x) = %(tAx) + a,(tx).

Basic probablistic arguments yield the two following relations in i.(t,x) and r, (t,x):

S11

II



X 
1

ex I• o - a - -V- -

Fig. 2. Probability that at time, t, a distance of at least x is covered.
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%(t,x)dt = (t- d, x) (I -pdt)dt +nt -ttx -dx)Xdl • 1 + 4(dtdx)

axnd

ST,(tx + dx) dt ir,(t - dl, ,) (I -) d( dt + %(t - dt, x)pdt -o2(dL, dx)

where

lim Uj. (dt, dx)

Passijw tohelimit andropping-hc-ft itotation, we-6WIin..

.. ± Alf. + X2 ,

and

These equations arc similar to equatiorps (8) and (4); hence fr (tx)'satisfies the follow-
"ing equation:

Sxa2"t 17 + "a*, + v x+ + g •=0. (22)
V at WXQ (2

The boundary condition for this partial differential equation is given by the normaliz-
ing condition

f 1(t,x) dt i Ie - . (23)

Note that P(tx) and ir(tx) satisfy the same equation, hence the introduction of the
notion of duality. On the basis of the results obtained in solving for P(t,x), one may
assume that equation (22) has a solution of the form:

ir(t,x) = A Ce- Tx 1vt- x

(24)

+ B "-v "'- -V - 1 2 a L x A(vt x)

13



where A and H are arbitrary constants to be determined from the boundary condi-
tion of equation (23). Since the R.H.S. term in equation (24) needs to be integrated
with respect to t over the range A" < t < we evaluate first the following quantity:

f V

Let 2 = Vt - x, then expressing [o(.) as a power series and interchanging the order of
integration and summation we obtain

~A Nx" = •" ,
P, (x) : fe 4 ELf VJ * _

t dZ

We next evaluate the quantity

C- v ;' -- - - 2Av ) d

S,02 (X) = Ta•t °i ,/V"

Integrating by parts, we obtain

XX P(vt - X) x U(vt - X
P, (x) =e V 12 --• .

v V ~ X

-• ( X_ .,.t-.,) r/ . ,v_~
)AV - )- v vv 1d

Using equation (2i), we obtain

XXjv2 (x) 1 eV (26)

Using equations (24), (25), and (26) in (23) we obtain

IT (t,x) dt =A + .1I - Ie - eVv

14



.tence, A =-0 and =Y v and relation (24) can then he written as:

__/X ___ x Uivt-x X)
CV V at~ 1012 v JJ

Po -X. xx

if 2 ýV 1(vt-)

•f ~~~t > (2 . .

This last relation specifies completely the distribution function 7(tx) as defined in
equation (21).

6. Probahility of Convoy Readhing Duls"ation on or before a Given Tine, T.
We are now in a position to evaluate the probability, M(T), that the convoy will reach
its destination on or before a given time, T. Let x measure the distance from origin
A to destination B.

Then

M(T) = (t,x)

More explicitly, using the results of the previous analysis,

0 T<A
v

,xx
M(T) e"v T (28)

V

e - + r (tx) dt T>xv

The configuration of the function M(T) is as shown in Fig. 3. The expected time to
travel a distance, X, is given by

X e- + Tr(t,x) dt

7. Generalized Model for Convoy Retardation. It is possible to formulate a gen-
eral model for retarded convoy movement in which the parameters X, 1j, and v are

15
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0 _

Fig. 3. Probability that a distance, x, will bc covered on or before timec, TI.
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functions of time, t, and the distance travelled, x. One can easily demonsiratedJr _
exar ea tP6 (t,x-}and Pft~x)-stitsatisfy cquatin-W(8j aud (9) with X,pu. and v

each a function of x and t. It can also be shown that lt(tx), for example, satisfies
the following hyperbolic partial differential equation:

axa P.~? + , P-t+ f,(x)F A4O& ___ .-----

where. f (t,x) and f.(t,x) are known functions of x, t, and v.

& An Application to a Problem of Fuipmeat Failure and Rear. The mathe-
matical models dismsed-thus far-find art interesting-area of aplication in problems of
"failure and repair of a piece of equipment. In this case, the interplaying variables have
the following interpretation:

t time

ix number of hours of operations logged by the equipment

A = average number of failures per unit time (failures are assumed to oc-
cur in a Poisson fashion)

MI/ average time of repair (the repair time is assumed to follow an expo-
nential distribution)

v unity

A specific application to this problem relates to the impact on cargo ship turn-
around time of breakdowns of dock cranes during loading (unloading) operations. Fur-
ther aspects of this problem will be discussed in Section IV.

Using the definition of M(T), an attempt is made in Appendix A to characterize
quantitatively the concept of mobility of an automatic equipment subject to break-
downs and repairs.

MI. CONVOY ATTRITION AND LOSSES

9. Introduction. Cargo shipments across a link between two given nodes take the
form of convoys consisting of one or more vehicles carrying supplies from a given point
of origin to a given destination. When the convoy system in a warfare environment is
analyzed, it should normally be expected that, often, not all units of the convoy (and
for that matter the convoy as a whole) will reach their destindtion: in general, enemy
actions will tend to inhibit the normal supply operation and thus create delays, casual-
ties, and losses.
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In a generalized analysis of convoy movement, it is necessary to study the situ-
ation as a mLxed-engagement problem involving four variables: timejt; the number
o... -u--nis i th-e convoy, n; the number of protective units escorting the convoy, k; and
the number of attacking units, b.W By making suitable assumptions about the exchange
rate between engaging forces, a Lanchester-type equation can he formulated for the
probability that at a given time, t, the three state variables, n, k, and b, will take
on particular values.

The complexity of this problem is increased by the number of interplaying
state variables which makes doubtful the derivation of analytic results, T'he difficulty
can be partly overcome by considering the number of cargo units rto-'e the only siguini-
cant variable and by assuming that the convoy proceeds in a dynamic. environment (ex-
p.essible assome une-iionof time) causing attritio _To that end, the environment

may be thought of as causing three types of losses;

a. Type I attrition induced by elemental attacks whose intensity is taken to
be proportional to the number of units in the convoy. Thus, if there are n units in
the convoy at time, t, the probability that a single unit will be lost in the time interval
(t, t + dt) is n),1(t) dt, X• (t) being the intensity of attrition of Type I at time, t. In
prictice, a Type I attrition is usually caused by the lack of or the ineffectiveness of con-
voy protection.

b. Type 2 attrition induced by elemental attacks whose intensity is indepen-
dent of the number of units in the convoy. Here, the probability that a single unit will
be lost in the time interval (t, t + dt) is X2 (t)dt, A2 (t) being the intensity of attrition of
Type 2 at time, t. Type 2 attrition results if convoys are effectively protected or if un-
detected mines are triggered."

C. Total annihilation resulting from an environment affecting the totality of
the convoy. We shall let p(t)dt be the probability that in the time interval (t, t + dt)
the convoy is annihilated. -

Three typical situations will be :aodeled. Model I assumes that convoy losses
are due to Type I attrition and an.ihilation. Model 2 assumes that losses reult from
Type 2 attrition and annihilation. Finally, in Model 3, losses result from Type I and
Type 2 attritions and total annihilation. For each of these models, an expression for
P(n,t), the probability that at a given time, t, the number of units in the convoy is n,
is derived. Using this expression, it becomes possible to assess the impact of the original
convoy size, N, upon such quantities as the expected number of units reaching destina-
tion and the percentage amount of cargo lost.
3

P. M. Morse and G. E. Kimball, Methods of Opemtioou Research, J. Wiley, New York. 1951.
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a. Model I - Type I Attrition and Annihilation. The equations for P(n,t) are

"P(N, t +dt) P(N, t) I - N X, (t)dt] 1I -pu(t)dt] nu N

P(t + dt) = P(n,t) I n X1 (t)dtj I I - u(t)dtl

+ 1(n + , t) (n+ 1) X,_(t)dt I I -/u(tIdt] n= N - I

P(O t + dt) P(O,1) + P(1,t) X (t)dt 1 - p(t)dtl + I1 - P(OOt)] u(t) dt v

with the initial conditions P(N, 0) =1 and 11(n, 0) =0 n0..,N - I

.The above equations reduce to the following system of differential.difference
equations.

d"-Nt) - J(t) + N A (t)) P(N,t) n=N
dt

=- l(t) + nX, (t)I P(n,t) + (n + 1) X,(t) P(n + 1,t) N 1,.. N- I

dP(0,t)dt 40 D•t) - P (O,0) + )LI (t) '>(',t) 11 0

These equations can be solved recursively to yield

P(II, 1) (,)e-ftP(O~do [0 .X, (O)do 1-.X, (O)do L,t N
,P(O~~~~dO +, e~t1S&W $d

P(O, 1 - t+ . n 0

The expected number of units reaching destination is

fiN) nP~n~t) = nNe J. x, O)÷+ OW

I=0

which is proportional to the number of units originally in the convoy. The expected
number of convoy units lost is

N- f(N) = P -e P IX,( ) P(9)Ido]
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mad the expected proportion loss in cargo is

which is independent of the number of units in the convoy.

.... Modol-- Type-2Atritiwn and Anntio --Th-equations-for-P(n,) are.,

P(Nt + dt) = P(Njt) [I - X2(t)dtf [1 -p(t)dt n- N

__" P(n, t + dt) P(n,t) I1 - \ý (t)dtl I I - p(t) dt]

+ P(n+ 1,t) X (t) dttI-(t)dt

SP(O,t + dt) = P(O,t) + P (1,t) X2 (t)dt [1 -p(t)dtj

+ [1 - P(Ot)j p (t) dt nl= 0

with the initial conditions P(N,0) = 1 and P(n,0) = 0 m = 0, 1 .... N - 1. This reduces
to the following system of differential difference equations:

OPNS) =[X:,(t) +IA(t)J P(N,t) n=N
S~dt

dpnt) 1) [(t) + p(t)] p(n,t) +X2 (t) P(n + 1, t) n=I,2...,N-1I

dP(- t) -A(t) P(Ot) + gA(t) + X2 (t) P(1t) n=

These equations may he solved recursively to yield:r f t  odeN- ft eo

Ptt) . 0  n¼1, 2, ,N
(N - n)!

M Nq

P(O,t) = E - P(n,t) n0

S~r

Let G(N) = r
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q inc~7h exipectedl number of units reaching destinatioi .- - .- -iN
f(N) aP(n,t)

-* -- - --- *----*-~~~~ -Ž'-- JAB2 ( )+M dO . .

(N- n)!

0

In Appendix B, we show that the R.H.S. term is an increasing and convex function of N.

The expected proportion loss in cargo is

t~ (0•{) do ]g(N) I 1- e£ tx()t(~~ G(N) - "G (N - 1) •

We show in Appendix 8 that this is a decreasing function of N.

e. Model 3 - Types I and 2 Attrition and Annihilation. The equations for
P(nt) are

P(N,t + dt) P(N,t) jI - N;•1 (t)dt 1I - X2 (t)dt] I - p(t)dt] n=N - .--.

P(nt + dt) z P(n,t) [1 - n) (t)dt] [1 - X (t)dt] [1 - tu (t)dt]

+ P(n+ 1,t) In+ I)X,(t)dtI [I -X2(t)dt] [1 -(t)dt-

+ P(n+ 1,t) [I -(n+ 1)X, (t)dt) X2(t)dtfl -p(t)dt] it 1,2,..., N - I

P(O,t + dt) = P(O,t) + P(l,t) X, (t)dt [I1 - p(t)dt] 11 - )ý (t)dt]

+ P(1,t) 1I - ), (t)dt] )2(t)dt[I - (t)dt] + [1 -P(O,t)]j(t),lt n = 0

The initial conditions are P(N,O) =1 and P(n,0) = 0 n 1,2.N - 1.
The corresponding differential-difference equations are:

= -t f(t) + X(t)+ NA,(t)] P(N,t) n=N
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t XP-+ nX -4p0t trINoPOi~t)~

+ IX2(t) + (n + 1) X, (t)] P(n + I,t) nI 1,2,... N -

S( t = - p(t) P(O t) -,M(t) + [X, (t) + X20t) P(10t) n 0O

i° t, (N t) A(

Then, we obtain recurgively

-. Pf ,t) =+-fIJso) + A2 <(0) ,+-NX , (0) ,O

i-N -I") elpýM+Np 0
f't (

Iff2 (u) + (N - 1) X, (u)l [ep((() + N p, (u) du0

Unfortunately, closed-form expressions cannot be obtained for P(n,t). For the cas
when Y1 (t), ½(t), and p(t) are independent of t, a simpler expression can be derived.

Let a : A/, then

P(n,t) = e"(X+P)t r(n+a + 1) - n e-e)n

P(Ot)r( + + 1N- 'Uf e#' t+2( d[( = te.,
" r(,a + 1) . r'(N +-l 1)X'P

The expected number of units in the convoy is

n =N

E(n +a + IXN - n)' "-
n~2
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. ..Aprafanmontrakthat" 1(N) isaaicrcasing funutmnof N and dtat g(N), the
expected loss proportion in cargo, is a decreasing function of N eludes us for the
present.

10. Coat Consideration in the Movement of a Convoy. The three basic cost elements
that must be accounted for in the transport of cago are:

a. The cost of transportation which is an increasing function of the number
of units in the convoy, N.

b. The cost ofproviding a prWe~me-tienrt-fto theuonvny; ingenral,-it isexý -
peeted that this cost be made up of two components, a fixed component and a variable
component which are increasing functions of N.

C. The cost associated with the loss of cargo units; this, gain, is expected to
be, in general, an increasing function of N.

The configuration of the first two cost functions has to be determined em-
pirically; although, as a first good approximation they can be assumed to be linear in N.
The third cost function is easily determined from previous analyses since it will be equal
to a constant time-the quantity IN - f(N)]. It then becomes possible to express the
total cost of moving a convoy as a function of the number of units in the convoy. Finally,
it might be a matter of interest to determine the cost of moving a single ton of commod.
ity between given nodes.

IV. ANALYSIS OF A TERMINAL OPERATION - THE SEA-LAND
CONTAINER TERMINAL SYSTEM

11. Introduction. A terminal, or node, can be defined as a transfer point where
cargo materiel experiences one or more of the following operations: handling, storage,
unitization, de-unitization. In general, the mathematical analysis at nodes will depend
upon the particular terminal configuration and operation. In this chapter, the Sea-Land
Container terminal operation is analyzed.

Containers (trailers) mounted on truck chassis wait in a marshalling area. When
a container vessel docks, a stack of trailers in one of the vessel cells is unloaded one at a
time onto waiting truck chassis by one or two gantry cranes. The chassis are pulled over
to the marshalling area by tractor. Following this initial operation, the crane unloads
an export container in the empty cell; and, on its return, the crane lifts an import con-
tainer from an adjacent cell and deposits it o; the truck chassis thus initiatipg a one-on,
one-off cycle. Tractors, in the meantime, move back and forth between the dock and
the marshalling areas pulling alternately import and export containers.
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Because of the difference between the operating cycle times of cr&ana tracd
- tot, it becomes nce toto ete-rinii the optimum number of tractors in operation.

Simulation studies of this problem were performed by the National Parts Council. In
this chapter, we develop two mathematical models to describe the problem. In the first
model, the crane cycle time aid the tractor cycle time am- assumed to be deterministic
variables; in tie secoud muodel die same variables are assumed to be stochastic.

Four basic operations to consider are:

* the tractor travel time

* the tractor waiting time

-* the lift-on, lift-off crane operation time

* the crane waiting time

By minimizing the total cost of handling a unit container, the optimum number
of tractors to be sequenced with the crane can be determined.

a. The Deterministic Model. Let:

n = number of tractors assigned to ean crane
ec = operation cycle time of crane
OTr = tractor travel time (assumed the same for all tractors)

W, = waiting time of cranes

wT = waiting time of a tractor

T = total cycle time

SCý = cost of operating the crane per unit time

C4 = cost of operating a tractor per unit time

Then T - no' + wt
= 8T + wT + ec

Hence (n-I)ec+w4=eT +wT.

It is evident that if the time parameters involved do not change over time, then either
the crane waits or the tractors wait. These two cases are illustrated in Fig. 4.

SNationul Parts Council Ketarch and Technical Bulletin No. 21967, 17 North Audley St., Londau, W. L
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(1) Proportion of Waiting Time. If w` 0, then wT'O, and TnrO
cycle time. Each tractor wilt then wait an •-iount

SwT = (it- I)#, - 0 (n -l)oc > OT

and the proportion of tractor idle time per cycle is

TOT = no"

If now w* 0, then wr = O and

T = OT + O

The crane will then wait an amount equal toV• = 0r - (n - l)e O"T > (n -10

per cycle, and the proportion of crane waiting time is

T oT" + O

In Fig. 5, the waiting time per cycle is plotted as a function of the number of tractors
in operation.

(2) Loading - Unloading rate. The loading - unloading rate is ineasured
by the number of containers handled per unit time; the expression for this rate will de-
pend on whether the crane waits or the tractors wait. It is given by the following:

n if n< (crane waits)

if n11 o- + 1 (tractor waits)

Thus, if the crane is allowed to wait, the loading rate is proportional to the num-
ber of tractors involved; otherwise, if the tractors have to wait, the loading rate is con-
.4ttnt. This is illustrated in Fig. 6.

(3) Total Turnaround Time of Cargo Vessel Denote Ly N the total num-
ber of containers to be loaded (unloaded); then, neglecting the initial first cell clearing
operation, the total turnaround time is given by
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Fig. 5. Waiting time per cycle as a fanction of the number of tractors.
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Fig- 0. Number of containers handled per unit time as a function of the number2of tractors.
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and this is displayed as a function of the number of tractors in Fig. 7.

(4) Optimum Number of TrActon in Operation. Considering as our ob.
jective function the cost of handling a container, say C(n), then

•€( Cc•eT n +0 Cr(0 +0e) if (n - 1) < -OT¢

C(n)f=

if +• +Cr ni if(n-1) >-

The function C(n) is shown in Fig. 8, and its analytic properties are investigated in Ap-
pendix C. There, it is shown that the optimum value of n, say n*, which minimizes the
function C(n), is such that one of the following conditions are satisfied:

(0OT C =
( • C , n*integer).

(a) Crane will wait:

< - (C< ) -+ < n* < 1+0
__ 2

(b) Tractors wait:

-(C-0)+ (C+0) + 4C(I +$)< n* < 1 +
2

(c) No waiting for tractors or crane:

n*1 l+6

(d) Double solution (either crane waits or tractor waits):

_(C-B) + I/(C)+09 + 4C
* = 2

29
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Fig. 7. Total ship turnaround time as a function of the number of tractors
(deterministic case).
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Fig. 8. Handling cost per container as a function of the number of tractors used
(deterministic case).

31



It is evident that full utilization of the handling system in a rigidly sequenced

operatiotn is Acileevet-GfSefcting the quantity - as an integer; then, under opti-

mum operating conditions, the cost o• hianding per container,

C OT + (ce + )i
7_ - -.-........... cnr f ction-of the crane cycle-tme-ari-t•t~rt~r-tv time - the optimume

value of a being (0 + 1), a quantity independent of the cost parameters. Hloi~ever,
in general, such scheduling cinnot be addceved even within a sitge loading-unloading
operaton of a vessel because the quantity 0 T is a function of the distance travelled by
the tractor and, hence, a function of the location coordinate of the chassis in the mar-

6. The Stochastic Model In practice, a rigidly sequenced operation is impos-
sible to achieve. The tractor travel time will vary between tractors and between travels
while the cycle time operation of the crane will have inherent delays due to hatch re-
moval, hatch replacement, latching operations, and movement of the cranes. We shall
Sassume that arrival of the tractors to discharge berth is Poisson distributed with inten-
sity of arrival X; while the time for the crane to complete the one-on, one-off opera-
tion has an exponential distribution with parameter y (note that 0 I/p and
I/A). We have considered, here, an extreme case of randomness; an'd, although the as-
sumptions about the statistical distribution need verification, the results obtained can
be used as bounds for the values of the variables involved.

The problem under study is similar to the classical repairman problem.'
Let P(m, t) be the probability that at time, t, there are m tractors waiting in line by
the crane (tractors being serviced on a first come first served basis) m -4 n, then

P(O,t + dt) = P(O,t)(l - nX dt) + P(l,t)1dt [1- (n - 1) X)dt] in 0

P(m,t + dt) = P(m,t)(1 - rit) [1 - (n - m) Xdt]

+ P(m -l,t)(l - •udt)[n - (m - 1)),dtI + P
+ P(m +l't) Pdt[1 -(n- (in+ I)dt] m-=l,2, . . n

These relations reduce to the following system of differential-difference equations:

d -nX P(Ot) + 0 P(It) in 0

td

6W. Feller, lnvdsielian to Probability Theory wnd ift Applkation& Vol. 1, J. Wiley, New York, 1949.
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(-+ 1In 1,2
In the s~tedy statei let Pý- wij)- (in.-. o, 1,..U)4 then

o .-"XIP + API 
ni 0

- It is easy to verify that

P. (JI n-r-n~ti- i,.

and PP(
IA

Po is the proportion of time the crane is idle. Since the expected number of containershandled per unit time by the crane while in operation (not idle) is M, it follows thatthe expected number of co.,tainers handled per unit time is (1 - P

(1) Expected Turnaround Time (Fig 9). This is given by

N
(1 - Po(n)]I

where N is the number of containers.

(2) Optimum number of tractors in operation (Fig, 10). Considering asthe objective function the expected total cost of operation per container, C(n), we have

C•+~

C d l(n) C nC

The optimum number of tractors can then be determined by minimizing the function
C(n).
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Fig. 9. Total ship turnaround time as a function of the number of tractors
(stochastic case).
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Fig. 10. Expected handling cost per container as a function of the number
of tractors used (stochastic case).
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12. Effect of Cran Brakdown on Turnarond Time. To this point, we have as-
ummed tt-the equipments i•volved in tlie loaiwg-unl-adlg operation are not subject
to breakdowns. The incorporation of this factor and its impact upon turnaround time
is a significant problem that we shall now discuss. Since, in a Sea-Land terminal system,
the crane is the bottleneck equipment, we shall study the effect of crame breakdown on
thuaround time. Assume, fust, that a 4inle crane is operating, Let the capacity of the

... cargo itesselbe. N. arnu.ztctrsadt -T-be-the-uiaxhium pennttbsle-trnaround time.
Under normal operation (no breakdowns), the sip turnaround time will be dictated by
the number of containers loaded on the dhip however, in cas of breakdowrn, the ship
tu.n.aound tim. might well be dictated by T (Fig. 11). Let the loading rate be v con-
tainers per unit time, and assume that breakdowns occur rndomly in time according

-• - -to-a Poisson-law wi nsityi•.tct repairtir ~e-b n allly~isItlbu~ed 'with--
parameter u . The situation is similar to the convoy retardation problem discussed in
Section II. It is, thus, possible to obtain an expression for the expected turnaround time
as a function of N, T, v, X, and I.

V. CONCLUSIONS

13. Conclusions. The mathematical analysis so far performed has been restricted to
selected phases of the APSDS such as the movement of convoys across links and the
"operation at a node having a special configuration. The analysis is not claimed to be ex-
haustive; in fact, the solution to some of the mathematical problems encountered eludes
us at present. Nevertheless, the results obtained so far constitute part of the basic inputs
necessary to characterize the optimal configuration of the APSDS.
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Fig. 11. Impact of crane breakdown upon the ship turnaround time.
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APPENDIX A

CONCEPT OF MOiBILITY OF AN AUTOMOTIVE EQUIPMENT
SUBJECT TO BREAKDOWN AND REPAIRS

The mobility of an automotive piece of equipment operating under prescribed con-
ditioos can be defined as the probability that the equipment starting from a given origin,
C, and moving along a gi,.-n path will reach a predetermined destination, A, on this
path on or bef.re a specified time, T-

PATH

The quantity M(T) defined in Section I1 by expression (28) can thus be used to meas-
ure mobility. Note that M(rT) incorporates the following four basic factors;

1. normal speed of motion, v

2. distance travefled, x

3. frequency of breakdown, X
4. average repair period, I A

Consider two motor equipments E, and E2 moving from 0 to A along OA at
the same speed, v. Assume that E, and E2 are subject to the same law of failures but
that E, is supported by a better repair system than E,2; then, E, is more mobile than
F 2 .
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APPENDIX B

PROPERTIES OF THE FUNCTIONS f(N) an•d g(N)

For convoy attrition Model 2, we attempt to characterize the properties of the func-
lions f(N) and g(N) where ((N) denotes the expected number of units in the convoy
at a given time, 1, and g(N) represents the proportion (f uniLs lust. For notational
simplicity, we shall carry on the derivations for the case when

i,(t)w ): and u(L) ( .

The derivations for the general cast are identical and the same type of results are ob-
tained.

Since f(N) = e- t ING(N) - XIG(N -1)

Then f(N + 1)- ftN) + A)t (N + I)G (N + 1)- xtG(N)

- ING(N)- XtG (N - 1)]

ea+P)t {(N + I) G(N) + (-NG(N)

Xt IG(N)- G(N - 1)1}

e(N + 1) + N Xtyj - (xt

S 0 xt) ,+1= "h÷)G(N + 1) - ýN7-17

= e(•÷)tG(N) > 0.

Thus, f(N) is an increasing function of N. The convexity of f(N) can be determined
by noting that

If(N +2) -f(N+ I)] -I f(N +1) -f(N)j +" A÷)t > 0N*

(N + 1)!

Also, since 'N , If(N+l)-f(N)r e-
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we have, for large N,

f(N) - A+ Ne-u

where A < 0 is a constant.

Next, we study the function g(N);

g(N_ it- e G(N)- G(N - 1)

1 - = N- e - eNfG(N+ 1-(N)-
--g•_~~ ~~~~~~ ~~~~ +( I )-()=!•"'vt[C(••t- -TGN

- t G(t)-• +N<C(N- 1)

NtN +1
)+ G(NN ) -NG(N-t - - -t)(N N((N+I1)

-- • Fin ally,

N(N+1)

Therefore, g(N) is a decreasing function of N. The convexity and/or concavity of
g(N) can be established as follows:

S[ G(N) G(N -_1)1)-g(N+ )-g(N)l At (N+1)(N+2) N(N + I)]

tN+I 2G(N- l)-I(N )!

Since this last expression can be either positive or negative depending on the specific
values taken by Xt and N, it is expected that, in general, g(N) will not exhibit any
particular convexity or concavity property.
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APPEN DIX C

ANALYTIC PROPERTIES OF TIlE FUNCTION C(n)

Herein, we develop the conditions which will dictate, th• optimum number of tractors

to be used when the quantity 0 is not an integer (Case 2).

It is evident that the optimum number of tractors to use is either n* 1[ + 1i or
n* = !0+21 or both, where Ix1 is a symbol denoting the- s•nalet integer in the real
quantity, x. The appropriate value of n* can be determined through considerations of
the objective function which is taken to be the total cost for handling per unit con-
tainer.

The convexity of the objective function guarantees the existences of an optimum jj*;

however, in this case, a double optimal solution is possible. Further analysis to deter-
line preferability of crane waiting rather than tractors (or vice versa) proceeds as fol.

lows:

Assume that at the optimal point, when n =n*, the crane has to wait; then, n* < 0
+ 1. Clearly, if (n*. + 1) tractors are used, the tractors will he waiting and the follow-
ing inequalities should then hold:

I

O•(C'ý +;a*CT < (O0r + ec) C- + C ) < OCý (n-' + ! T] 1

T ) ( n*0/ 4)C

Tie L.IH.S. inequality yields

n* < a +1.

Th inequalities holdy yields
n1+0 < a * + +
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or it2 + (1: C)no- c(I +0) > 0

Since the corresponding quadratic equation has two real roots of opposite signs, this
last inequality will hold for

-(-)+ yc +d + 4*.=2
in* >- - 2~ -

It is easy to verify that the R.1I.S. term of this inequality is greater than 0. tlence, the

set of inequalities (1) can equivalently he written as:

-(c-B) + + 4c
0 < -1. < n* < 1+0. (2)24

Assume, now, that at the optimal point, when n = 0x, the tractors have to wait; then,
n*> 1+> .

I $

nt~ n

Since, if (n* - 1) tractors are used, the crane will have a waiting time, it follows that:

: 0T +0a(Ca +n*CT) < ge(c ir ,T <__0_+08 n+ -----)- (C, + (n* ) CT) (3)

The L.l.S. inequality yields

j > Ij+0

The lt.II.S. inequality yields

(n* - )(c+n*) < (I +0)(c+n*- 1),

1.*2 (c-20)n*-2c+ l-Oc+0 < 0.

The corresponding quadratic equation can be shown to have two real roots given by
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-(c-O) ± (c+O) + 4U
C) 1

Consequently,

-(C"-0) - +0) + 4c (c -0) + (-0)2 +4-1 + - -2< ll* < i+ "

It can be verified that the left.most quantity of the above expression is he thau I£ + 0;
hence, the set of iniequalities (3) can equivalently be written as

-( )+ V(C± of 4c
(1+0) < U* < 1 + 2
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