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ABSTRACT 

Three different acoustic phenomena relevant to nuclear 

test detection and diagnostics are discussed In this report: 

(1) The generation of long period (3-10 minute) acoustic-gravity 

waves is analyzed in terms of a Lamb mode propagation theory. 

One result of the analysis is that yield-amplitude proportionality 

is predicted to break down for very large yield detonations. 

(2) Tue generation and propagation of short period (1-60 seconds) 

acoustic pulses is treated by means of weak shock theory. Yield 

and height of burst scaling laws are derived for the far-field 

period. The dependence of period on atmospheric conditions and 

propagation path is also discussed.  (3) The variation of long 

range Raylelgh wave amplitude with yield and height of burst is 

discussed for detonations at lower altitudes than previously 

treated. 
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1.  INTRODUCTION 

This report  is concerned with acoustic disturbances produced 

by nuclear detonations which are Important   in    the problem of long 

range  test detection and diagnostics.    The phenomena we treat, although 

they are different at large distances,  all originate in the detonation 

jlast wave.    The basic method of our treatment has been to determine 

how the blast wave characteristics,  and hence the detonation parameters 

such as yield and height  of  burst,  determine  the  far-field acoustic 

disturbance.    We have,   in addition,  attempted to indicate how atmospheric 

conditions and propagation path ultimately determine the far-field 

disturbance. 

Three  types of phenomena are considered: 

a. In Section 2 we  treat long period (3-10 minute)  acous'"ic distur- 

bances  in  terms of a  theory based on Lamb's atmospheric edge mode. 

A detailed consideration of how the near-field shock wave evolves 

into the Lamb mode  suggests that the far-field amplitude will 

Increase  somewhat  faster  than directly proportional to yield  for 

very large yield explosions.    The exact yield dependence is, 

however,  determined by direction of propagation and atmospheric 

conditions near  the burst point. 

b. In Section 3 we discuss the dependence of short period (1-60 second) 

acoustic signals on source and propagation parameters.    We find 

that  the signal period varies approximately as the cube root of 

yield,   is relatively Independent of burst height, and is very much 

affected by  the  direction of propagation relative to the high 

altitude winds. 

c. In Section 4 we consider the variation of far-field Rayleigh wave 

amplitude with yield and height of burst  for atmospheric explosions. 

This section  is primarily an extension of  previous work to lower 
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heights of burst than were formerly considered. Our principal new 

finding is that the amplitude for low altitude detonations is a much 

more rapidly increasing function of yield than for higher altitude 

detonations. 

Overall conclusions reached are presented in Section 5. 

r 
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SOURCE MODELS FOR THE EXCITATION OF LAMB'S 
ATMOSPHLRIC EDGE MODE BY NUCLEAR EXPLOSIONS 

2.1 Introduction 

The acoustic waveform observed several thousand kilometers 

away from a megaton range nuclear detonation begins with several 

cycles having a dominant period of from about 3 to 10 minutes. The 

amplitude of this portion of the acoustic signal has previously been 

predicted to be proportional to explosion yield.  Recently these first 
(2) 

few cycles of the waveform have been analyzed by Pierce and Posey 

under the hypothesis that the acoustic pulse propagates as the real 

atmosphere's counterpart of Lamb's edge mode.  In the material which 

follows we rely heavily on the Pierce-Posey theory. This theory 
(3) 

appears to be in at least qualitative agreement with test data. 

When it has been tested against multimode numerical calculations the 

theory has also produced good agreement for the first few cycles of 
(2) 

the waveform.    For our purposes the significant feature of this 

theory is that it is analytic. This allows us, for the first time, 

to analyze in some detail the relationship between the near-field 

shock wave and the resulting far-field waveform. 

Specifically we ask the following question: At what distance 

from the detonation and in what direction should one utilize the shock 

wave parameters to begin a linear propagation theory? Obviously a 

linear theory is inadequate vhen the shock is strong. For a 1 MT 

detonation at sea level, for example, the shock becomes weak (the 
(4) 

relative overpressure is .1) at a distance of about 9 km.    Since 

this is larger than the sea-level atmospheric scale height, the effects 

of atmospheric inhomogeneity might reasonably be expected to play a 

roie.  In other words, the weak shock parameters such as relative 

overpressure and positive phase duration will be different in different 

directions.  Therefore we want to know whether a particular portion of 

the shock front dominates excitation of the Lamb mode and, if so, we 

want to know what the shock parameters are for this portion of the front. 
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The question of what parts of  the  shock front are most   Impor- 

tant  In determining  the far field waveform  is "ot  the only question we 

have  to answer.    The distance at which we match  the weak shock to a 

linear propagation  theory will also make a difference  in the far-field 

result which the theory predicts.     For example,   conside;   the differ- 

ence  that occurs  if we take the horizontally propagating shock wave 

from a 1 ML  sea-level  explosion at  two  places:     (1)  9 km,   where  the 
(It) 

relative overpressure  is  .1,  and  (2)  58 km where it   is  .01. For a 

weak shock in a homogeneous atmosphere  fRt     is a constant. I   is 

the peak relative overpressure,  R  is the distance,  and  t     is the posi- 

tive phase duration.     In  the present example t    must  increase by a 

factor of about  1.55 between 9 km and  58 km.     The energy  in  the low 

frequency portion of  the pulse    — >^   t     ,  which  is responsible for 

the long period portion of the fur-field waveform,   is proportional   to 

nRt 2.    This result follows from Fourier analysis of a weak shock 

profile  such as  the  so-called Glasstone pulse. Since ^Rt     is a 

constant,   the low frequency energy  is proportie lal  to t    and must also 

increase by a  factor of  1.55 between 9 km and  58 km.     We conclude  tiiat 

if we chose  to matcii a linear propagation theory  to  the shock wave at 

TT ■  .01  rather  than at   ,1,  we would predict  far  field amplitudes which 

are greater by a factor of 1.55    The difficulty is not  that wc have not 

gone  to small enougii TI.    For a weak shock TT  never becomes so small 

that the propagation is linear;   that  is,   the Fourier amplitudes at 

different  frequencies are never frozen relative  to each other.    The 

energy in the low frequency portion of  the pulse  continues  to  increase 

proportional  to t      which  quantity increases asymptotically as »«.nK 
(5V 

for a horizontally propagating  shock. 

Is  the sequel we use  the Piercc-Posey  theory to  investigate 

how the far-field waveform evolves from  the near-field  shock.     Specific- 

conclusions reached a..^:     (a) The  shock front extending over a  number 

of scale heights in altitude  is of almost equal   importance  in exciting 

Lamb's atmospheric   edge mode.     A consequence of   this  fact   is  th.il 
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features peculiar  Co «  limited portion of  the  stock  front cannot donin- 

ate  the excitation.    An example of what we mean by a  feature peculiar 

to a  limited portion of  the shock front   is the existence of a  shock 

prccurscr region near the ground within which shock parameters are 

drastically altered.    This occurs when A  low altitude detonation occurs 

over a lutat absorbing surface,     (b)  For small  yields,   the appropriate 
1/3 distance for matching  increases as Y       ,  where Y   Is the explosion 

yield.     For  large yields Che appropriate distance  for matching 

incrcancs mon*  rapidlv than Y       .    This produces a yield dependence 

in  the  far-field amplitudes which varies approximately as 
r      -    —— * 

Y I i +  -f  "V    " f*   ; for Y > Y*. and as Y for Y < Y*.    Typically, Y*. 

which depends on atmospheric conditions near Che burse find on Che 

dirocciun of propogacion.   Is Che order of 10 Nt. 

In Che next  secdon we outline ehe method used and Che major 

assunpCions made  in calculacing  Che far-field Lamb mode amplicude from 

the near  field  stock parameters.    The calculation  itself  is contained 

in an appendix. 

Then in Sectt<ni 2.3 we compare the above theoretical  prediction (b) 

wich Che  Cesl daca.    While  Che  results of  this comparison are not con- 

clusive we find that there  is indeed a scrong indication chaC on 

occasion verv large yields do produce ananalously large far-field 

.tmpl Itudes. 

Finally, we sunnarix« the resales of chis study, and indicate 

where we believe extensions of the analysis would be must  trullful,   in 

Che cuncluHlons presented  in Section 2.4. 

2.2    Mectod of CalculaClon of  Che Far-Field Lanb Mode AapUtude 

In  cltis  secclon we outline chc mechod used and Che major 

assunptlons made  In calculacing  Che  far   field Lamb mode amplicude.    The 

acCual  . i linl.it ion  Is done  in Appendix A. 

The  fundamencal assisnpcion of  Che cheory,   Che Jusdficacion 

for vhich has been discussed by Pierce and Posey,   is that the long 
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period acoustic pulse observed at great  distances propagates  in the 

real  atmosphere's counterpart of Lamb's edge mode. 

To extract  this mode  from  the near  field  shock wave we  pick 

a cylindrical matching radius r  ,   in a manner described  below,  and o 
decompose  the shock pressure pulse   into a modal   sum,   one of whose 

terms  is  the desired Lamb mode.     This Lamb mode term   is  then taken  to 

propagate  linearly  to the observation point,   a great  circle distance r 

from  the burst,   in accordance with the Lamb mode dispersion equation, 

because we are primarily  interested  in modeling  the source,  we do not 

attempt to  incorporate a  realistic atmospheric model   in the theory, 

i.e.,  one which would   include effects such as acoustic   ray refraction. 

Horizontal  refraction of   the Lamb mode may be an  important  effect,  but 

this can be  treated   independently  from   the  source modeling. 

To simplify  the analysis  several  assumptions are made con- 

cerning  the properties of  the  near  field  shock wave: 

a. The weak shock  is characterized as a Classtone  pul^e whose  peak 

overpressure   ' and  positive phase duration  t    are   taken  to be 

functions of altitude and  range as described  below.     It aunt be 

admitted  that   the choice of a Classtone pulse  is made for  lack of 

any butter analytic  representation of   the detonation shock wave. 

To our knowledge no detailed analysis lias ever been made of  how 

adequately  the Glasstone pulse represents the very low frequency 

component» of  the detonation shock wave. 

b. Based on test  observations  it   is assuned that  t     is mm h smaller 

than the far-field period T.    Use  is made of  thin assumption  in 

expanding  tin   far-field amplitude as a series  in -— and keeping 

only the first non-zero term. 

c. The shock front, except wUere it intersects the ground, is assianed 

to be spherical. This atsurapUon is only Intended to apply to tlie 

portion of the shock which is effective in exciting tin \..mb rodi . 

it  need not apply,   for example,   to the upwarJ ttoitut   slunk  tr.-nt. 
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This assunption will  be correct   If  the  shock becomes essentially 

sonic within an effective scale height  In the direction in question. 

d.     For low altitude detonations the secondary shock which results when 

the direct  shock  is reflected  froa the grDund  is assuned  to make 

a contribution  to  the far-field amplitude equal  to that of the 

direct  shock.    Tlie   justification for this assunption  Is that for a 

low altitude detonation the secondary shock at sufflclentl)   large 

distances frotn the burst point has essentially the same amplitude 

and radius of curvature as the direct «-hock.    Furthermore,  the 

secundary sliock follows the direct  shock within a time which Is 

small i-ompared to the periods observed  in the far field.     For a 

contact or surface burst the secondary and direct  shock are of 

course the some, although the amplitude may be reduced due to 

energy expended in digging a crater, etc.    This assunption restricts 

the present  theory to low altitude detonations (less than r.a,  15  on). 

For sufficiently high altitudes the raalus of curvature of  the two 

shocks may be very different and the  tiae lag between  the shocks 

may be comparable to the far field period.     In this case we would 

expect  interference effects to occur.    The high altitude case has 

not  Leen investigated. 

The result of  the preceding steps and assumptions  is Eq.  (A-30) 

of  the Appendix: 

P,   - - P L s 
r'  Islnf- I I        re 

^    Y   ^ H r 

Af?-* z
2*r2    -r o o 

C    T . 
^(r  ,«)t.   (r ,«) dt 

o TO 
(A-30) 
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where: 

P. 

r 

r 

I 

'd 

A; 
c 

c 

As 

z 

I 

r 

pressure amplitude of the  far field Lamb mode 

sea level  pressure 

cylindrical matching radius (to be discussed below) 

earth radius 

great circle distance 

ratio of specific heats 

scale height 

characteristic dispersion time which is .ipproximately a quarter 
of  the  lar  field period T. 

derivative of Airy  function with respect  to   its argument. 

time after arrival  of  the  far-field acoustic  tiignal 

sound  speed 

vertical distance relative to height of  burst 

altitude relative  to sea level 

peak overpressure of weak shock 

positive phase duration of weak shock 

To proceed  from Lq.   (A-30)   it  is necessary tu assune a specific 

spatial dependence for I and t  .    k'e  take t    to be given at a small 

radius R t where "(R )  a  .1,  by the probier. M results for a homogeneous 

atmosphere with ambient  pressure equal  to the ambient  pressure at  the 

burst point.    R    is also  taken  from the problon M results and both 

t  (R ) and K    are scaled according  to Sachs scaling.    At   the spherical 

-12        2 radii    /A«    +  r        R    where  - and t.   arc  required  in tq.   (A-JO)   these / o •    o * 

quantities are obtained fron the values at R    by using Keed's theory 
0 (5) for weak shock p-'opagation  in an exponential  atmosphere.   '        After 

some  labor  it   is found  that Eq.   (A-JO)  can be  reduced to be written 

solely  in  terms of   the horizontal  values of  tlie  sh<<ck parameters  - arJ 
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h IP."' 

"  (ro. i)t+
2  U#.i) ro J    ^   AJ [^♦y1 1*44) 

wlvre z U theJiyjght of burst and the new integration variable 
-J.  2 [     2 \   .z    *  r    - r V u        o 

' -< • 

hqu.itiun (A-44)   is essentially Identical  to the result of 

i'ivrii- and t'oKey.    This is in spite of the fact that we have used a 

distinctly different  shock nodel,  one which  includes the effects of an 

exponential atnoftphere.    This result occurs because  in the  integral of 

Lq.   (A-JO)  the «.-ffect of  Che exponential  atmosphere on the sheck 

p ir.iniii.r-   tcndi to be cancelled by ttu.1 Lanb node weighting  factor 

e       '     as well  as other purely geometrical  effects. 

Now,   the ill st raaxiaun of the far-field anplilude P. My 
occurs at about  t ■ : ..     For  t  ■  ". the quantity r-   occurring in 

K<i.     (A-39)   is shown to be significant only between about 0 < y <  2. 

rruncating the y integration at ya2 corresponds to an effective upper 

lüntt on  the If v.ilucs of  interest of :.z >  2c-   ,   that   is about a half 
* d 

wavelength of  the far-field disturbance.    Typically this means that 

the shock at .'.2 values of at  least up to 60 km contribute almost equally 

to the l.onb mode excitation.    This is the basis for mr  statanent  that 

features peculiar to a  limited portion of  the shock front,  such as the 

existence of a  precursor  region near  the ground, cannot dominate the 

.  c ■     . ,1.   excitation. 

It now remains to choose the matching radius r    which occurs 

in Lq.   (A-44).    Physical argisoents are given  in the Appendix  that this 
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should be don«  in the lollovlng way:    Ue wakv a Fourier mils- i-   ot   i   < 

Gldsstone pui .-.t- and ussuav  that each frequency component within tin- 

pulse  propagalLs at   a group velocity given bv the L.unb node dispersion 

equation.    The isatching radius r    is deternined by requiring  tiiat at 

r    the low frequencies |w ^      i | I which will  be laportant  in the far 
l Td       / 

field Bust have iropagated ahead of  the largest  anplitude 1 requency 

coaponents of  the weak shock |^      t fr } I '    Th*' b*,8iB ior thtl 

criterion  is th.it  -in 1.   the  low frequency components are located 

behind the shock  front  they will gain energy fron the higher fre^     tcy 

coaponents,   but  MM tttey uove ahead of the higher frequencle« their 

propagation should  be amenable to a linear treatment.    A more detailed 

statement  of  this argument   is given  in  the Appendix. 

This criterion asstanes the form: 

t*<r.>       'a<rJ (A-54) 
♦    o    -    d    o 

which serves to determine t . Lquation (A-54) has an additional inter- o 
l-ret.it Km.    Suppose we start with the near field  Jisturbance and  follow 

its development  to Increasing radii by means of weak shock theory.     In 

addition suppose we take the  far-field disturbance and carry it  back 

toward  the detonation by means of  the Lamb mode theory.    According to 

Eq.   (A-S4)   the matching  radius  is the distance at which the dominant 

frequency content oi   the two disturbances be«nnes equal. 

It turns out that  for «all yields     .(r)   >  t.(r)  for all  r 

at which the shock  Is weak.     In  this case we use conventional  Stchs 

/Y   I1/3 
scaling r     ' {TT* .      •  where Y  is the detonation yield.    The constant 

lb/ .Y   i 
of proportionality is chosen to make r   I-p   la conlinuouK function  in 

making the transition to the large yield case where bq.   (A-S4),  rather 

than Sachs scaling,   is used to detcraine r  . ^ o 
The deti>nalioi shock parameters enter   Into Lq.   (A-A4)   in  th«- 

-        -     2 
form -(r  ,x)t'(r  ,z)r  .    Since for a weak shock the quantity o +     o o ' 
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-      - - /Y   \2/3 

it .zn^(r,£>t  is proportional  to    —1        and  Independent of  r this 

■ean» clut  the far-field aap.ltude P,    is Just proportional  to 

Y      ' V 
r-        t.(r  )  wliicli  increases «ore rapidly than =- when r    is detensinrd 1. ♦    o r      ' P. o 

D D 
bv Lq. (A-34). The rc-hult of this analysis Is the following*: 

.1/v-l 

V 
-4.7 x 10"5     1 

' p 
L  r 5 sin r * (cr,)3^ »r.' 

i    •/ 

I »I « rf    t  d   J 
o  ^ 

whero P,    is  in atnoHb'ieres,  Y  in kT,  and c: . and r    in ka.    The L r ' de 
"correction  factor" Q  is: 

P* 
Y   I      .   L  .2    .n Y        b 

«J 

Y        Y* 

.  b/ . bJ b 
^ 

•  P.   - P* 

Y Y* 
1.     5- 1 SX (A-75) P,  - P *b 

The critical  yield to pressure ratio  is given  in terns of Pierce and 

Poscy's dispersion parameter h..   by: 

3/2 
JJ      400(11,1)

3/2     ^r Mfa» (A-71) 
P* x   kk' atmospher«    1—9/2 

*    The corresponding constant  in th: work of Pierce and Posey'^)  would 
appear to  be i.2 x   10'^ rafiier  than   >ur value of 4.7 x  10"^.     This 
difference probably arise« primarily from  their choice of 't? r0 as 
(J.4 x  10-2>(.)3)2(1.61)  - 6.1 x lO-3 kn/sec2 for a  1  kT sea level 
detonation.    Basüd   »n problsm MC4)  we lave  taken *t2r    • (.l)(l/3)2(.9)-10' 
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fin quint it"  h,.    is   1  depc-iidc-nt  of   fr<':iuni'   hut   is ■   fum tlm 

«>f   itnospiuTl    • oailtloM tu-nr  the  burst   (-•• i>nlv  re<]iiiri   li,.    in 

t.q.   {t\~hhi  nut   Ji» Liit- tllstance r  J  as wll   .is  tli<- direction of  props« 
" v* 

■■atioii.     Km   tliis roooofl  it  .ippears tliJt --.     .in >>iil     lit- ciicui.itit. 
I 

mjiM. r j. .il Iv   in •onjuH' t ion with a detaiicü atraosplieric  rncidei   for <.un>li- 

i ions utar  tlif hur-.i   point. 

hi'Vert IKI<- K,  M ilistussed   In  tin- ii«xt     t« f ion.   it   is 

I 'ssihlv  to   0O0  Min.t   t'Viii>ii(<    in  the   low alt   tu« <    I • st  data  of   tht 

breakdown of  yield-irnpi itudt^  proportionality  f«ir "<'rv larxe  yleM 

del   ii.it ions. 

2. J    CowjMr isnn of   n.ct r.   with Test it.ili   1   r l.-ir.;'    Vii Id» 

Inere   I.-, at   I«.ist a  suggestion  in the  iest dat.i   thai   very 

lar^e  yields dt» on oec.isiun produ» e anomaiou.-.i v  i.ir.;i'   lar-l icid .iin|>l i- 

TjU-  .) "/»I« r/r        ,,, 
tudes.     Arc. rdlnj;   to  i.<|.   (A'M)   tho  'juantltv —«—rj-.r:    t. 

is  nupiNi.sed   to   I»-   I  (osisl ml   lor   near  surf act   dofeOnotiOOO«     l.il>iiv; 

)'   (tB.    )   to  !>«   aluul   hail   the pressure amplitude  tir.st   pt ak   to  tliroii.:li 

I'       ,  and   t ,   to  I«- about    i  quarter of  the far-field  period T,  we have 

'ipt "•     '"  r/r 3/2 
used   the data   presented   in  Kef.  4   to  plot  V   ^.:.   ~~ e    T 

in rig. 2.1.   iwte  tikit   the  plot   is semi   lo^ar i thn-ic.     Ihe detonations 

used are  the .Soviet  explosions of   (a)   10 Septemher,   (h)   11  .September, 

(r)   14  Septeinher.   (.!(  «  October,   (e)   6 October,   (f)   20 October, 

(g)  23 October,   (!.;   50 t>ctober,   «i)   31  OetobOT«   19M,   and  tlu   I.  S. 

explosions of   (J)  4 May,   (k)   10 June,   (1)   12 June,   (m)   27 .lime,   and 

(n)   II   .luh,   I9ft2t     S.'mc detonations occur   in Fl...   2.1   more  tlun omct 

because data   fri»'r'.  Bevorol   .stations arc used. 

Ihe vi ri i.al   lines In Fl«. 2.1  liave  been  arbitrarilv drauii at 

—:— I        E 25  'lO —;—- (100 sec)       .     rhe average ^alu. 
» . .t 
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of 25 ^—— (10Ü sec) corresponds to a choice of sound speed 

c = .31 km/sec in iiq. (A-64). The detonations which lie outside the 

large amplitude boundary do tend to be large yield detonations. For 

example, 58 and 24 Mt at two stations lie outside, 25 Mt and two 9Mt 

detonations also  lie outside. 

Figure 2.1 provides some indication of  the possible breakdown 

of yield-amplitude proportionality.    However,  we should caution that 

some of  the deviations may be caused by propagation rather  than source 

effects and  furthermore that some of the yield estimates,  which are 

based on seismic data,  may be  in error. 

2.4    ConcluFi ions 

We have found  that  the shock front extending  from the ground 

to many scale heights above the ground is of almost equal importance 

in determining the far-field Lamb mode amplitude.    Because of this, 

the  far-field amplitude should  be relatively independent of phenomena 

peculiar to any small portion of the shock front.    In particular, 

ground effects such as the presence of a precursor should not play 

a very important role. 

For large yield,  low altitude detonations we have found a 

far-field amplitude dependence which varies as Y 1+Z2 -W£n — 1    3 y   Y* 

where typically Y* is the order of 10 Mt for a sea level detonation. 

This dependence arises from a detailed consideration of the mechanism 

by vdiich the low frequency components cf the near-field (shock) 

disturbance become spatially separated from the high frequency com- 

ponents.  The precise value of the critical yield Y* where yield- 

amplitude proportionality breaks down is determined by atmospheric 

conditions near the burst as well as the direction of propagation and 

must be determined by detailed numerical calculations. Nevertheless, 

in analyzing the test data we have seen some evidence that very large 

yields do on occasion produce anomalously large far-field amplitudes. 

- 14 



Finally, we note that a number of potentially important 

source effects can be explored within the framework of the present 

theory. The most important of these effects, which we have not investi- 

gated, are probably related to the presence of a secondary shock front 

due to ground reflection. We expect that at low altitudes the effect 

of the secondary shock in determining the far-field amplitudes is 

approximately equal to that of the direct shock, but for higher alti- 

tude detonations interference or destructive effects between the two 

shocks may occur.  It would be desirable to subject these ideas to a 

quantitative analysis. 
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3.     VARIATION OF FAR-FIELD HIGH FgggüEMCI   ACu'JSTIC 
PfciRIUDS WITH YILLD AND HFIGHT OF BURST 

3.1    Introduction 

This portion of  the report  is concerned with detonation- 

produced infrasonic  signals which have  periods between about  1   secomi 

and 1 minute.     These  signals have been  far less extensively studied 

than the long  period   (3-10 minute)  acoustic-gravif   waves distussed 

in Section 2. 

The  short  period disturbances are difficult  to treat 

theoretically because their propagation  is sensitive to small-scale 

meteorological   phenüi.iena.     For example,  Meecham   /,,'     has calculated 

that  signals in  the  second to minute  period  range have n  substantial 

probability of encounter 1113 a diffracting  wind duct   in propagating 

between the ground   ind an upper boundary at  about  10 km altitude.    On 

each encounter  the acoustic signal   is  split and a  rmall  fraction of 

the energy is lost  from  the main  pulse.    Accord.m   i<- Meecham,   since 

the propagation path to large distances  in\ lives  i  large number of 

transits between  the ground and  the upper  brundar^. r IT main pulse 

eventually becomes  so  degraded at  large  ranges  that   it  becomes  lost 

in the multiplicity of pulses.     In fact,  as Meecham notes,   the far- 

field signal  is observed  to consist of a large number of apparent 

pulses extending over a time interval  of an hour o*- more.     He attri- 

butes the extended signal duration to horizontal  refraction by large- 

scale weather fronts. 

Meecham's findings are  related  to  the degradation of  pulse 

amplitude with range.     We are concerned with  the  far-field  pulst   period 

and here the  situation is quite different.     We believe  that  the  period 

of  the main pulse  is relatively unaffected by pulse splitting  phenomena. 

In particular we  find,  as outlined  in  the  subsequent  sections,   that 

the disturbance  period  is essentially determined after only a  few 

transits between the ground and the upper  boundary;   that  is,   before 

1() 



pulse splitting lias had an appreciable effect.    A corollary to this 

finding  is  that  the  far-field period« have a very weak dependence on 

range. 

The model on which the aiuaysis la baaed followa Meechaa  in 

describing the upper boundary as a  reflecting plane at about  SO km 

altitude.    This  Is the aode of  long-range propagation observed  for 
(9) 

infrasound iron rockets. The precise altitude of  reflection,  which 

is an  ünportant  parameter  in the  theory,   la determined primarily by 

the direction of  signal  propagation relative to the winds at  about 

50 km altitude. 

In our model   the period observed  In the far-field  Is pro- 

portional  to the positive phase duration of   the near-field shock wave. 

The positive phase duration  increases as the shock propagates and tl.i - 

effect   is calculated by means of weak shock theory.    This  is the novel 

feature of our analysis,  namely that  it   Includes nonlinear weak shock 

effects over large distances. 

To obtain starting values for  the application of weak shock 

theory we use modified Sachs scaling.    This procedure has been demon- 

strated to be superior to ordinary Sachs scaling for  prediction of  peak 

overpressures  In an  inhomogeneous atmosphere.    Ue extend  the concept 

of modified Sachs scaling to apply to prediction of  positive phase 

duration as well as peak overpressure. 

In Section 3.2    we develop the weak shock propagation model 

and  in Section  3.3 we obtain atartlng values for  this model using 

modified Sachs scaling.    The theory  Is then used  in Section 3.4 to 

derive scaling  laws for  the far-field period.    Specifically we find: 

a. The height  of  burst dependence  is very weak; for detonations  in 

the lower atmosphere  it  is the order of     1 +  .■,■■. I where z  Is the 

height of burst  In kilometers. 

b. For yields small enough that both weak shock theory and modified 

Sachs scaling are valid the yield dependence  Is approximately 
1/3 Y      .    For very large yields the situation is uncertain. 
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c.     Far field  periotiü   irr  found  to depend on thf jllit*it' ul   the up|.i-r 
z /All 

vflectlng ;    ,m!.ir-.,   z ,  approxlnatei v an e , where It    is tli« 

at» -nherlr  •>• ii<* height.    The altitude r    in  Uj.t.11   primarilv 

! termined b\  ■      direction of   propjip.ii ion relative to the winds 

at about  SO ka. 

>•*    fropa^Jtion Node! 

In this ection we derive the bash equation relating the 

pet iod i'i the lar-field high Irequency acoubti«. bignai to the near- 

( leid  Khock  ( ir i. > •   •    . 

We assime that   the signalN of   IntereKt   In the far  i leid .ir< 

the onea of  lare< st amplitude.     Fur thermor«-,  we a^Hume that   the par Iod 

of   these  signals rorresponds to the  period of  the  L-trKest  afaplitu'l< 

Fourier components of the weak ahock wave.    Character lac in»; the shock 

wave as a GlaKKtone pulse        with positive phase duration I     we  i in.l 

that rhe largest .mni.tude Fourier corponen;   .HI» a  period: 

T - 2rt+ . (3-l> 

The problem  is thus to calculate t,wM.h quantity will 

increase with  liu reasiag distance fron the detonation.    To calculate 

the evolution of t    we use Reed's weak shock equations for an 
(5) 

inhomogeneous atmosphere: 

»m      r    t°        fvir ) 
o     _£ _+    - /        o 

P(r ) r    IT     V   P(r)    * 
< ■ I / ■ 
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♦     L ♦      r J 

(3-3) 

1P whcro .,■.   .   ,   t+,   .irnJ P(r)  are the values of relative overpressure, 

positive phase duration,  and aablent pressure at a distance r from the 

.IP 
dvtonatlon.    z-j-- ■■.,   t., and r(r ) are the same quantities at  a smaller I it )      + o o 
distance  r   .       i .  the ratio of  specific  heats,  and c  Is the sound speed. 

These equations are written for a spherical shockwavu.     In 

the  leal  atmosphere the shock wave  Is refracted and becomes non-spherical. 

However,  hydrodynamic calculations at  the Air Force Weapons Laboratory 

luve shown that  to a very high degree of approximation, for an exponential 

jtQosphere each portion of  the shock  front  can be regarded as propigatlng 

independently with  its own radius of curvature. The equations are 

also written  for an S wave pulse form.    Groves ha« examined the difference 

between N wave and Glasstone pulse propagation laws.    He finds the 

difference to be very «wll. 

The dependence of  t    on values at  r    may be eliminated by 

taking the logarithmic  derivatives of Eqs.  (3-2) «nd (3-3) and combining 

to obtain: 

*    [l^ffct.fltMtfeuffey] 

For an exponential atmosphere this becomes: 

^ . ><•/<< (3-5) 

.i;2H*nJ 
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where 

•r        P(r) (3-*.) 

and H   is Che effective scale height   in the direction of   interest   trom 

the burst.    The negative and positive signs  in Lq,   (3-S) correspond to 

upward and downward shock propagation,   respectively. 

Applying tq.   (3-3) at  tin-  starting  r.idius r    above the burst 

and substituting back  in Eq.   (3-2)  yields: 

-   f*l o    __© 
A,   PTFTC* 

tjr) 

f1 " H + n(ro) 
f1-^^ (r ) o 

•r /2H o f-if   b    dr 
J   VR7) r    f 

J 

(J-7) 

where I'     is the ambient  pressure at Che burst  altitude z. 

The range dependence of  t    Is conCained  in  the  integral: 

J     VPTTT   r    ' (3-8) 

wiilch is Co be done over a propagation paCb sucti as  illustrated  in 

Fig.   3-1. 

It  is con'enienr  Co  rewriCe lq.   (3-8)  as: 

£«.. (3-9) 

«-1 

where Che  index i corresponds Co each scraight   line segment  as shown  in 

Fig.   3-1,  and L  is a large number  for  the  far-field disturbance.    We now 
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turn to the task of  signing the series  In Eq.   (3-9).    Assunlng  that  the 

radius of lurvar   •     is unaltered upon reflection we obtain  for earh 

tens: 

« - « r 
i. • E,   -lr-  - t.   ^S , . (3-Iü> 1        i      211 "1    2H 

I       «   J 

iodd 

-(l-l)z /2H    i       l| -x (.-1)  « - * 

-«/M       ^«  /2II (4-1)  z - i t - t 

It -e        «e    0      >i 2H . ^1    TK '       (J-12) 

.even L   W * - -a      - 

where H    is the atnuspheric scale height   in tin   vertical direction and 

the exponent ill   integralH L    and 1.  are defined AK: 

-t 
1 J      c 

7 

El(y) "   —    t   dt • (W4) 

For large y Eqs.   (3-13) ßnd  (3-14)  can be .ipproxinuied as: 

E^y)      ~— (3-15) 

E^Y)      J" (3-16) 
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« - « 
On the asBuaptlon that —jr:—   ■     1   we may  then neglect  the  second  terms 

s 
in L(|s.   (3-11) and  (3-12)  since these are ss^ller than the  first terms 

U - h 
by a  factor of exp rrj .    Physically this  is related to tht  fact 

s 
that most of  the contribution  to the  integral   I,  and hence most of  the 

poritive phase  lengthening, oc-urs at the upper  reflecting boundary 

wliere the quantity     f m* i    occur   ing  in Eq.   (3-8)   is largest. 

I'slng  the .i8\inptotic  forms,  Eqs.   (3-13) and  (3-16),   for  the 

exponential   integrals 

the  following expression for  I: 

remaining exponential   integrals which arc functions of  z    wv obtain 

o    L ^1, I  <» 1 I 
i|2H i s      • 1211 4- .J-t       L.       («-Dz -z 

f 1 0       e     ■» 0 

'    l-l t.*2 
^iodd .even 

il^:
+2Hs^2r-| . 

1 1       - .      L 

-Ei^ ^!,sHl^    L    Trn • (3-17) 

odd 

- (J2) The  buon.it io » can be  further approximated for  z        z 
o  - 

L 
1 1 

* '     iz -z z      .  •    2m-l 
.0 o        , |a| m-1 

• odd 

11 Bl 7      B2 f   i (r * en m) +  .n 2 + -^ - ij   -| + - - 
o 8m m 

tl1*"*]' —    1 + .n .m      , (3-18) 
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where I   Is £uler*s constant  (.57721) and B  ,  B_ — arc Bernoulli 

nuabers  (1/6,   1/30,   —). 

The  first  term 

a somewhat  ht>tr.er approximation  than (3-17>   is: 

The  first   term In this last expression cotnes from  I   ;   hen< i 

I ■ E 
i 

z  -   X 
o 
2H 1 + £n ^ - I 1 j 211 

(3-19) 

J 

where m   Is the nixnber of  reflections occurrint» at   Lhe upper boundary. 

GoBblnfn« Kqs.   (3-1),   (3-7),   (3-8),   and  (3-19)   we  finallv 

obtain: 

--     AP       r it  y»!        ^o o 
" 2    1    P(r  ) c o 

1   -  2f? +  n(ro) 

1 - 2 
r '   -r  /2H 

1 + in M 

z - z 

•iftlij (3-20) 

3. 3    Starting Values for Weak Shock Parameters 

LP 
It  now remains  to determine  the  shock wave paraneters n r ■'(r^) o 

and n(r  )  at  r  .    To do  this we use modified Sachs scaling.     According 

to modified Sachs scaling  the relative overpressure,   in an  inhomogeneous 

atmosphere,   at a distance r  from an explosion where  the ambient   pressure 

is P(r),   Is Just   the  same as if  the explosion had occurred  in a 

Itomogeneous atmosphere with ambient  pressure P(r).     That   is: 

AP 
P(r 

J   rP(r) 1 1/3 I 
>    f^rLv   J    J (3-21) 
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where Y is the explosion yield and f Is the function which gives the 

relative overpressure In a homogeneous atmosphere. 

Modified Sachs scaling appears to be much better for shocks 

which propagate downward in an exponential atmosphere than for those 

which propagate upward. Nevertheless, modified Sachs scaling is 

superior to ordinary Sachs scaling (where P(r) on the right side of 

Eq. (3-21) is replaced by P.) ard it Is our hope ^hat by using it we 

can obtain some additional accuracy In our calculations. 

The accuracy of modified Sachs scaling is best illustrated 

by a particular example. In Fig. 3-2 we have compared the predic- 

tions of modified Sachs scaling for the relative overpressure of the 

upward going shock with the results of SAP and SHELL calculations for 

the shock propagation at 45 from the horizontal due to a 4 Mt iso- 
(13) thermal sphere at sea level.     The SHELL calculation gives somewhat 

higher relative overpressures than does SAP because it includes the 

effects of fireball rise which SAP does not. The rising fireball, 

particularly for large yields, prevents the shock from relieving 

backwards. At very small angles from the horizontal the differences 

between SHELL and SAP are negligible. 

The modified Sachs scaling curve In Fig. 3-2 has been 

constructed under the following assumptions: 

a. The 4 Mt isothermal sphere is assumed to correspond to a 4/.7 = 5.72 

Mt detonation. This is based on the value of .7 for the effective 

yield for weak shock production from nuclear explosions in real 

air relative Co Ideal air given in Ref. 14. 

b. The 1962 Standard atmosphere Is used for the ambient pressure. 

c. The homogeneous atmosphere calculations of Lehto and Larson are 
(14) 

used to provide the function f occurring in Eq. (3-21). 

For reasons which appear below we will choose r to be the 

AP 
distance at which n—r « .2.  It can be seen from Fig. 3-2 that for 

P(r ) B 

o 
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Chls particular case modified Sachs scaling overestimates r by perhaps 

5-10% compared to the SAP calculation. The function n(r ) which is the 

reciprocal of the slope of the curve in Fig. 3-2 appears to be a smaller 

negative number than given by the SAP result.  Quantitative comparison 

of the modified Sachs scaling result with the SHELL calculation cannot 

be done using Fig. 3-2 for directions of propagation other than 45 . 

However, for angles less than 45 the agreement between SHELL and 

modified Sachs scaling will be better than shown in Fig. 3-2. 

In any case we would expect modified Sachs scaling to become 

AP 
.2 when the more accurate in predicting the radius r at which rn—r r      0 o        P(r ) 

o 
yield becomes small. The reasons for this are: 

1/3 
a. r a Y   and hence the atmosphere encountered by the shock in 

propagating to r is more nearly homogeneous for small Y. 

b. The interaction of the rising fireball with the upward going shock 
(13) 

is less important for small yields. 

Returning to Eq. (3-21) and putting P(r) = P e 
-r/H 

we 

calculate n(r) 

,  \ *    o       AP n(r) » r — £n n/ v 
3r   P(r) "I1 r 

3H 

1/3 
f 

1 --*- 
3H 

n, (3-22) 

where f' is the derivative of f with respect to its argument and n is 

the value of n for a homogeneous atmosphere (H > oo). The quantity n, 

is plotted vs. relative overpressure in Fig. 3-3 which is based on 

Ref. 14. 
AP 

Wc take 
P(ro) 

,2 for which, according to Fig. 3-3, 

n. » - 3/2.  Eq. (3-22) then gives: 
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n(r ) 
o 2  2H 

(3-23) 

The radius r is given by nod If led Sachs scaling as: 

1/3 

ro " '^ |P(r ) 
k» . (3-24) 

where Y is in kT and P(r ) Is In atmospheres. The constant appearing 

in Kq. (J-2A) is obtained from Ref. 14. 

gives: 

AP 
Substitution Of Eq. (3-23) in Eq. (3-20) with p ■ ° - .2 

o 

..     r  /    -r /2H 
T - ■Äi(.D -S/i + e 0 

y c 
\     • / 

( r 
t-   ' -2. 

i 

where according to (3-24): 

(3-25) 

-ro/3H        „If   11/3        n    z/3Hsvl/3 re ■ .531 r- I       ■ .53 e v (3-26) 

since P,   is measured in atmospheres. 

Combining Eqs.   (3-25) and  (3-26) we obtain  the basic equation 

relating far-field |sriods to detonation and propagation path parameters: 
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,.., r/M      «/3»l 
T „  •5/1 Ä o s T ■  e c c 

♦   1 + e 
■r /2H /* " z 

•««ftil (J-27) 

z - z 
For detonations In  the Jower atmosphere    -~-—      j     tlu* tc-ni. 

involving     «(""fn— j1« dominant and Kq.   (J-27)  !-...-.-: 

571    1/3      ro/1-,"     'Z/W 

• Vi*;"'" v1*!^ .       (1-28) 

or using the  large argument approximation given by Lq.   (1-16)   for 
■ • ■ 

o 
i     2H 

T a Y 1/ 
,      r /12H      z/3H f 
J    e 0 e        8        /(I +    n ►« 

eXp 
b      « 

y/'o 

.,-      r /12H      z 
i e e 

Z   /4II 
/l2Hg i "   ^ o      ■ 

\l I +  -n »m   ""T—== (J-29) 

Equations  (3-28)  and   (3-29)   provide  the basis  for  the 

discussion of  scaling laus which  follows. 
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3.4    Scaling Laws for  the Far Field Period 

J.4.1    Rai^e Scaling 

The range dependence in Eqs. (3-28) and (3-29) is contained 

in the factor 'J 1 ■*■ in Jm , Since m is the number of reflections fron 

the upper boundary this factor  is approxioately 1 + -r £n -7 ,  where 

K  is the  range and d  is the distance between ground  reflections.     Based 

on r.iv tracing calculations for  infrasonic  propagation in a  realistic 

a  typical value of d would seen to be about 200 km.    The atmosphere 

factor 

(10) 

i*4 «  . 7 i-n -:    vwuld then be equal  to 1.47 at 2,000 km,  2.62 at 

3.000 ka.  and 1.72 at  10,000 ka;   that   is,  an  increase of 17Z  between 

2,000 and 10,000 km. 

Actually,   this  is the  largest  range dependence we would 

expect  since processes we have not considered would  tend to inhibit 

the  increase of  period with range.    These processes operate in two 

ways:     (a) They decrease the weak shock amplitude,   for example by pulse 

splitting due to wind ducts,  and this decreases the importance of non- 

linear effects of which period lengthening is a manifestation, 

(b) Nonlinear effects are also decreased in importance by erosion of 

the weak shock front,   that Is,  by an Increase in the rise time at the 

front.    This could be caused,  for example,  bv ambient turbulence parti- 

cularly at higher altitudes where there is large wind shear.    If the 

shock front is sufficiently eroded the shock will no longer satisfy 

the Rankine-Hugoniot relations on which Eqs.  (3-2) and (3-3) are 

based and we would expect pulse lengthening to be less rapid than 

these equations predict. 

In suranary the rp.uge dependence should be very weak. 

Furthemore,   the exact dependence is probably affected by meteoro- 

logical  conditions along the propagation path. 
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3.A.J    Height üf Burst Scaling 

The   Impendence of   far-field  period  on  height of   hurst  z 

fc detonations  ii   thr    t>wer atmosphere  Is given by tq.   (3-29;: 

z/12 II 
T        e     ,   1 T a            — 

/ - z 
- / z -  Z i /    o 

8 O I 

where z is measured in kilometers and where we have set the scale 

height II *  7  km  and the altitude ot the upper boundary z »50 km. 

The origin of this weak height of burst dependence can be 

seen by inspection of £q. (3-29).  The dependence on height of burst 

i/3Hs -1/3 
occurs In two factors:  (a)  e     P.   , which is due to the fuct 

h 

that the initi.il positive phase duration t  increases with increasing 

height of burst according to hydrodynamic (Sachs) scaling. 

(V*! expfiir"i 
'W —g .' ■  which represents the Increase In positive phase dura- 

"V    z -z 
o o 

at ion  from  the   initial  value  t     to  the value at  the upper  reflecting 

boundary.    This factor  Is a decreasing function of height of burst 

since the higher the burst altitude the shorter the path length over 

which  the  positive phase duration can  increase. As  shown by Kq.   (3-30) 

these two effects nearly cancel  for detonations in the lower atmosphere 

3.A.3    Yield Dependence 

According  to Eq.   (3-2b)   r    < II  •     H  for 

| 2= 

h     .53» 1 ' Ki-ttl      =2.3 Mt, (3-31) 

for H     -  7  km and P^  • 1. s b 
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For sea level detonations of yield much less than 2.3 Mt 

r M | and Eq. (3-28) gives: 

T a Y1/3 (3-32) 

r /12H 
For larger yields the factor e     occurring in Eq. (3-28) 

1/3 
would make T increase more rapidly than Y  . Before this factor can 

become effective, however, several other effects occur.  First, the 

upward going shock becomes strong. The maximum value of r allowed 

by Eq. (3-26) is r ■ 3H.  The reason for this is that according to 

modified Sachs scaling the upward going shock never reaches a value 

AP 
of 777—p as small as .2 for r  • 3H. We conclude that if weak shock 

i (r ; o 
o I 

theory  is to be valid r    must be considerably less  than 3H and hence J o ' 
r  /12H 

the  factor e viuuld not be very important. 

Second,  as noted by Greene and Whitaker in Ref.  13,  and 

as demonstrated by  the comparison between SAP and SHELL calculations 

in Fig.   3-2,   the rising fireball from large yield detonations Interacts 

with the upward going shock and prevents it  from relieving backwards. 

The effect of  this phenomenon should be to decrease  the near-field 

positive phase duration and hence to decrease the far-field period. 
ro/12H 

This wuld offset and conceivably could dominate the  factor of e 

3.4.4    Dependence on High Altitude Winds 

When the signal propagation is in the direction of the 

winds near 30 km  (downwind)  we expect the reflection altitude (z )  to 
o 

be lower than when the winds are perpendicular (crosswinJ) or opposite 

(upwind) the direction of signal propagation. The reflection altitude 

z /4H 
occurs in Eq. (3-29) in the factor e    s. Therefore, if H is taken 

as 7 km, a 10 km change in z will produce aLtut a 40% change in T. 
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This effect would appear to be a nong the most significant sourci-s of 

variation in the far-field period for a given yield and liL-lght of 

burst.  Note that the far-field periods will be different in different 

dirrctions for the same detonation. 

In the case of upwind propagation, ray tracing calculations 

indicate that reflection mar  not occu: at the 50 km level.  There is, 

however, a reflecting boundary at about 100 km altitude.     Applving 

Eq. (3-29) for a sea level detonation the period of signals propapatinn 

100/41 
g        r— 

in this channel is found to be a factor ■    * ..,— «4.2 times 
rrzrr DO/AH 

» 100 s 
e 

as large ns for signals propagating in tin SO km rlinnnel. 

Tinally we return to Eq. (1-28) to obtain a numerical 

estimate for the far-field periods.  According to what has been said 

r /12H 
regarding yield scaling ve neglect the factors e     .  We take the 

sound speed c ■ .31 km/sec and the scale height II ■ 7 km.  We treat 

the case of a burst near sea level (z - 0).  Kesults for other burst 

heights can be accomplished by means of Eq. (3-30). liquation (3-28) 

becomes: 

-j^r - 1.84   L. rf    1 + In »m   SfT,- (3-33) 
Yl/3        ,  i H (kT)l/3 

where z is in kilometers. 
o T 

In Fig. 3-A we plot  ,■., vs  z , lor z between 40 and 
„1/3     o'     o 

f:0  km and for m " 1,2,10, and 25.  The value m«l neglects pulse 

lengthening effects beyond the first reflection at the upper boundary. 

The values m»2,10, and 25 would correspond to weak shock pronapntfon, 

without pulse splitting, to larger distances.  For I skip distance 

d ■ 200 km the corresponding ranges would be 400, 2000, and ^000 km. 

Figure 3-A predicts the far-field period to be the 

order of 10 sec for a IkT lov allilude detonation.  A more precisi- 
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estimate would require detailed infurmatioi. concerning the altitude nt 

the upper reflecting boundary as well as the approximate niunber of 

transits between this boundary and the ground for which pulse lentlion- 

ing effects are Important. Determination of the reflect ion altitude 

can be accomplished by ray tracing. Determination of the appropriate 

m value is more complex since detailed meteorological effects such as 

pulse splitting bv wind ducts must be considered.  However, the far- 

field period is Insensitive to the exact value of m and so inly a 

rough estimate r. ■  be glvrn. 

3.5 Conclusions 

Based on the  theoretical  model outlined   in  the  text  we 

have reached the fellowing conclusions concerning  the  short  period 

detonation-produced  Infrasound observed at  large distances: 

a. The  period  for a 1  kT detonation  Is  the order of 10 seconds. 

b. For small   yields the period scales as V       .     For  large yields the 

scaling  Is uncertain.    The  Interaction of  the  rising  fireball 

from high yield detonations with th*'  upward goiu^ shock needs  to 

be Investigated before  the large yield scaling can be determined. 

c. The  range dependence of  lar-fleld periods  Is extremely weak,   as 

an absolute maximum about a 171  Increase In going from 2,000 to 

10,000 km.    Pulse  splitting  by wind ducts and  the effects of 

other small   scale meteorological  phenomena are expected  to make the 

actual dependence even weaker  than  the above value. 

d. The  period  dependence or   height of  burst   is also extremely weak. 

The dependence  Is given approximately as:     i » 

z  Is  the bur;it  height   In  km. 

1 + 1577^ 

e.    Probably the most  significant  variation  In  tar-fleld  period,  rtlier 

than that   caused hy variations   In viiiii.   is caused  bv  the direction 
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of signal propagation relative to the winds at about 50 km  alti- 

tude, lor downwind propagation the signal reflection occurs at a 

lower altitude than for cross win or upwind propagation. The 

dependence nf period on reflection altitude is approximately given 
/. /28 

by: Tie    . where z is the reflection altitude in kilometers. 
o 

A 10 km variation in z produces about a 40% variation in T. The 

altitude z needs to be determined by ray tracing for the appro- 

priate .itmospheric conditions and direction of propagation. 
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A.  GENERATION OF R/.YLEIG11 WAVES BY 
ATMOSPHERIC NUCLEAR DETONATIONS 

4.1  Introduction 

This section is an extension of work contained in a previous 

report    and which will also be presented elspwherc.     For convenience 

Pef. 16 has been included as Appendix B of this report.  In this earlier 

work contained in Ap^ndix B we calculated the source strength for Knyleiph 

wave excitation, which is defined helow, for intenrediate altitude detoujt" 

tions.  These previous calculations were limited to burst heiphts between 

about 30 and 100 km altitude. 

In the present work we extend these calculations to lower 

burst altitudes.  Specifically in the case of a 10 kT detonation we n v 

have results as low as .5 km altitude and for a 1 .Vt detonation as Low 

as 2 km altitude. 

The extension to lower altitudes is not trivial.  As discussed 

below, we have had to develop different methods of calculation than 

were used for detonations above 30 km altilude. 

Our definition of the source strenpth for Rayleigh wave exci- 

tation is based on the work of Toksöz and ßen-Menahem.     They have 

considered the far-field Rayleigh wave amplitudes txcited by a point 

source in a homopeneous atmosphere.  For three-dimensional propagation 

in the absence of nonlinear effects, the source parameters contribute 

to the amplitudes almost entirely through a factor 

|L<«)| = P ..^»  -la. t , 
^p(t) e    dt (A-l) 

which is the Fourier trauslorm of the point source pressure fluctuation 

öp(t).  In the case of linear pressure pulse propagationt 'p(t) a 5p (O r, 

where &p   (t)   is the tir'e depem'ent pressure pulse on the ground a distance 

r beneath the source. 
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Even in the case where the pressure pulse propagation Is non- 

linear, because of pulse lengthening and dlssipatlve effects we expect 

that the source strength for Rayleigh wave excitation will be propor- 

tional to the Fourier transform of 5p (t) r. The reason is simply that 

the source strength can only depend on parameters at the ground and not 

on the previous history of the pulse propagation. 

For reasons which will become evident, we therefore define 

the dimensionless source strength to be 

S(T) = 
2Trr 

T p II 
8 

Spit)  e"ia)t dt (4-2) 

where t • ZTT/UJ is the Rayleigh wave period of interest, p is the sea 

level pressure, and h is the atmospheric scale height. We assume a 

Glasstone pulse   at   the ground 

6pg(t) = .'p 
-t/t. 

(4-3) 

where Ap is the peak overpressure and t is the positive phase duration. 

We then obtain the following result from Eqs. (4-2) and (4-3): 

S(T) 
Ap r 

1 + fe 
+ 

(4-4) 

P h 
g 

Equation  (4-4), which  is  identical  to  the definition used in 

our previous work   (Ivq.   (B-19)   of Appendix B),   is  the basis for  the subse- 

quent analysis.     In deriving liq.   (4-4)  we have not  considered details 

of Rayleigh wave propagation,   so  that we are unable  to  provide absolute 

values of  far-field Rayleigh wave amplitudes  (or  phases).     The present 
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analysis   is directly applicable only  to  estimating relative  yields or 

hei^lits of  burst   for  situations  in which  source and  receiver  locations 

are  the  same for   two or more detonations.     However,   the  shock  parameters 

at   the  earth's  surfac ■.   which are calculated   in  the  theorv,   art-  suitable 

as inputs  to existing  Rayleigh wave propagation models  sucii as  those 

Of Harkrlder and Flinn and Wickel   and Whitaker. 

In Section 4.2 we calculate Lp and  t    Sfl  i'unctions of   yield 

and height of   burst.     The  fact  tliat   the  earth's atmosphere  is   inhoir.o- 

geneous  plavs a major  role  in determining   these  shock p..-ameters,   at 

least  when  the  height of   burst   is comparable   to a  .scale  height.     In 

older to  treat   this  effect we use  the  numerical   shock propagation calcu- 

lations of  Lutzky and Lehto ,   for an  exponential  atmosphere,   in 

conjunction with  weak  shock theory.     For  burst   haightl of much  less 

than a  scale height  the atmosphere may be  treated as homogeneous  but 

the  shock becomes  strong.     in  this  case we  use  the  problem M   results 
(A) 

to determine   the   sliock parameters. 

In Section 4.3  these values of Ap and   t    are used   in 

iiq.   (4-4)      to  determine   the  source  strength   for   K.iyleigh wave  excita- 

tion as a  function of  yield and  height   of  burst.     ihe dependence on 

detonation parameters  is quite complex,   bul   in general  we  find: 

a. The dependence on  yield  is  stronger  for   lower altitude detona- 

tions.     For example,   for a  Rayleigh wave  period of 20 sec and 

for  yields  between 500 k'f  and  1  Mt  the  source  strength varies 
. 95 

as Y'       when  the  burst  height   is 2  km.     l-.'lien  the  burst  height 

is 10 km SuY'       for  the same Rayleigh wave period and over 

the  same  yield   range. 

b. The variation of  source  strength with  height  of   burst   can  be 

quite  significant.     For example,   for a  Rayleigh wave  period of 

20 sec and a  yield of   100 kT  the  source  strennth  increases  bv 

a  factor of  about   2.i as the  height  of   burst   is  raised   from 

4  kin   to  20 kjn.     For  this yield and  Rayleigh wave  period.   S   then 
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continues  to   iiuri-ase  slowly reaching a maximum  (about  3  Limes  the 

value at  4  km)  at  65  km.     S  then decreases with  increasing height 

of  burst. 

4.2    Calculation of  Shock Parameters 

We use three different methods of calculating the quantities 

..p and t required by Eq. (4-4). The method used depends on the burst 

heiglit   is outlined   in  the  following discussion. 

(a)    As  in our previous work,   contained  in Appendix B,   we base 

our .uuilvsis on the numerical calculations of  Lutzky and Lehto for 

the (.ase of   intermediate altitude detonations.    These one-dimensional 

i.ili uiations are for downward shork propagation  in an ideal gas, 

exponential  atmosphere due to a point  explosion. 

i'he Lutzky and Lehto calculations are extrapolated  to 

smaller overpressures on  the ground  than were  treated  numerically by 

means oi   weak  shock  theory.     The basic  equations  for  this procedure, 

which are derived   in Appendix B,are as follows: 

t+ = * g(x) (4-5) 

an      'i r/  \     -r/2h ..   ,. -^ = - f(x)   e                 , (4-6) 
P        r 

where  t    and .\p are the positive phase duration and overpressure at  the 

earth's surface  from a detonation at  altitude r,   h  is the atmospheric 

scale height,  c  is  the speed of sound,  and p    is  the sea level  pressure. 

The functions g(x)  and f(x)  are given by: 

,11   Jpo 
•<»> ■ - Ifc-iT +x+n K[»i«-Mfcl|)"  <4-7) 
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„„,, ,,-H xe 

f-»H«l«"K« -«ifell . ,iT' 
(4-8> 

■•P0 
where , is the ratio of specific heats,   is the relative overpressure 

Po 
at a distance r   r hcneath the burst, and i , is the exponential Int« ril. 

o - 1 

f -t 
t-i (x)  ■    i     T      dt   .     I lie  quantities x and  n are  st.irting values obtained 

from  the  numerical  c.ilculatlons: 

2h 
(4-^ 

n  =  |r 7— <-ii —»^ 
jr        p 

(4-10) 
r=r 

tquations  (4-3)  and  (4-7)  are equivaltnt  to i,cj.   (li-lü) of 

Appendix B^and Lqs.   (4-b)  and  (4-Ö)  are equivalent  to Lq.   (b-11)  oi 

Appendix B. 

The calculations of Lutzky and l.ihto  .ire  p.iranKterized 

bv the quantity: 

'. - ^ 
(4-11) 

where p, is the ambient pressure at the burst point and E is the efMrgy 

released by the point explosion.  According to Ref. (14) a miclo.ir 

explosion in real air is expected to be .7 times as sffectiva in producing 

a given weak shock overpressure at large distances as the idealized 

point source with , = 1.4.  Accrrdinglv, we take Y. . = .7 I.... and 
k i       K 1 

Eq. (4-11) becoTjies: 
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1/3 1/3 

0h-h 

P.dab) 
D 

2'>.A   » 
■he 

•r/3h Pg(mb) 

M' 
29.A Y 

(4-12) 
kT^ 

values of 
I. 

The  starting values x and n obtained  for the particular 

u.sr<I  bv Lutzky and Lehto are  shown  in Table 4-1. 

TABLL  4-1 

STARTING VALUES AT ha  /p - .1 FOR APPLICATION ro   ro 
OP TlltDKV   AS OBTAINLD FROM NUMERICAL  CALCULATIONS 

.05 3.11 -4.26 

.1 2.55 -3.84 

.2 1.96 -3.29 

.5 1.26 -2. «2 

2.0 .502 ■1.9 

ArroriinK  to Lq.   (4-12)  a given yield Y and height of 

burst  r determine   ■. .    When the yield and  height of burst are chosen 

to produce 0.   values occurring  in Table 4-1 we obtain values of x and n 

and  hence determine  t.   and Ap by means of Eqs.   (4-4)  -  (4-8).     This  is 

what we have done  for   intermediate altitude detonations,   r >   30 km. 

The  calculatlonal procedure  is  identical to that of 

Appendix B with  two exceptions:     (i) Ke retain the  term £1(r/2h)   in 

L.qs.   '4-7)  and  (4-8)   for   increased accuracy.     This  term was previously 

omitted.     (11)   Tha  ambient pressure at the burst point,  p.   in tq.   (4-11), 

was previously deierrained by using   the  1962 Standard Atmosphere.     For 

the sake of  consistency we now determine p    by assuming  that  the 
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atmosphere is truly exponential as indicated in Lq. (A-12).  Ihete 

differences produce no significant changes In our previous values of S 

which are given in Appendix B for intermi'diate altitude detonations. 

The above procedure does not work at low altitudes, 

however.  For example, for a yield of 1 Mt there are no 0.   values in 

Table 4-1 corresponding to altitudes between sea level and 30 kni.  To 

use the method we have outlined for low altifude detonations, we m id 

x and n for additional 0, values (particularly 0,   2).  iiow tlii^< 
h h 

additional values are obtained is described below. 

(b)  For detonations at low altitudes corresponding to 

a. > 2 we extend lahie A-l by adding an additional value of .., namely. 

(1A) 
o. ■ ■ corresponding to a homogeneous atmosphere (h = ■)• fot  this 

value of o, we have, of course, x=0 and from numerical calculations 
h 

(see Fig. 2-3) we obtain n = -1. i8. 

According to tq. (4-12) there i:; no altitude or yield 

(other than Y=0) corresponding to :, ■ ■,  However, we add r. = ■ 

to Table 4-1 in order to interpolafo to o. values between 2 ami •". 
h 

We now describe how this interpolation is done. 

In Fig. 4-1 we plot I/o + 1 vs. x using the data of 

Table 4-1 as well as o, ■ •, S ■ 0. .^ote that the plot, which is setni- 

loga. ithmic, is very nearly a straight line, i.e., -ud/a. + ') < x. 

Figuie 4-2 shows a plot of n vs. x using the same x values, again the 

plot is very nearly a straight line, i.e., n  n + ax, where n and a 

are constants. 

Based on the empirical evidence contained in Figs. A-l 

and 4-2 we use a linear interpolation of ■nd/n, + 1) vs. x to obtain 
h 

x given o..    We  then use a  linear  interpolation of  n vs.  x  to obtain 

the  rorresponding value of  n.     This procedure works not  onlv for   \ 
ii 

between ■ and 2 but also for example b'-'twoon .5 and 2. Thus, Eqs, (•i-r)) 

through (4-8) can now be used for arbitrary yield and height of burst 

provided that the shock at tue ground is weak.  Wlicn the shock at the 

ground is strong we must use still a different procedure as described 

below. 
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Ct     Wlion tho  shock at   the ground  is  strong   (Ap/p     k   I) 
O 

i;qs. (4-5) - (A-8) are no longer valid. This situation arises, of 

course, for low altitude detonations.  In general, the height of burst 

is the order of, or less than, an atmospheric scale height. This 

suggests that values of the shock parameters obtained from numerical 

calculations with a homogeneous atmosphere will be reasonably accurate. 
(4) 

We have used 'p and t values as computed in problem M 

with the ambient pressure jt the homogeneous atmosphere taken as p , 

the sea level pressure.  Scaling to sea level rather than burst point 

conditions corresponds to modified Sachs scaling. This scaling has 

been shown to be verv accurate in predicting the overpressure .p. 

The validity of modified Sachs scaling for strong shocks in predicting 

the value of positive phase duration t has not been investigated. 

However, as will  be seen, this procedure does give values of t which 

match smoothly to the values given by weak shock theory using the 

calculational procedures (a) and (b). 

Figures 4-3 and 4-4 shown Ap/p and t as functions of 

r for five different yields based on this combination of weak shock 

theory and problem M results.  We have taken y ■ i'4, h » 7 km, and 

c * .34 km/sec, the value used in problem M, in constructing these 

curves.  In Fig. 4-4 when neither weak shock theory nor the problem M 

results can strictly apply ("f/p = 1, r - h) we have used a best fit 

by eye.  The deviations from this best fit which arise from applying 

weak shock theory at too large a value of Ap/p and applying the 

problem M results at too large a value of r are indicated by dashed 

curves for the 10 kT case.  In all cases the region fit by eye (or 

"extrapolated") is Indicated.  For reasons described below we do not 

treat values of ..p/p   1. 
g 

The solid curves in Figs. 4-3 and A-4 give the values of 

J-p/p and t which are used in Section 4.3 to predict the source 

streiiBth for Kayleigh wave excitation. 

- 47 - 



J 
U 

grrfTT ■f— --i -i 

' i. .1 

it PI 
i- 

0 •• ^: ■ ■ 

■    •     . ■ T-  

I j       I •    . 
■  .   ■    :      •  

O     0.1     Ul 

t 

IN 

- 48 - 



t+(sec) 

o2      ^     • 

: : ' 

.... 

... 
. 

'•■■»•■•   

101 10° IO
1 

r(km) 

FIGURE 4-/»:  DURATION OF POSITIVE PHASE AT THE EARTH'S SURFACE VS. HEIGHT OF BURST 

- 49 - 



4.3    Results 

To obtain  the  source  strength for Rayleigh wave   excitation 

we  liave  substituttd  the  values of  Ap/p    and  t,   shown   in   Fi^s.   A-3 and 

4-4  Into Lq.   (4-4). 

Figures 4»5  through 4-9 show the source strength as a 

function of altitude  for  yields of  10,   100,   500,   100Ü,   and  5000 kT. 

In  eacli  figure  the  source  strength   is  shown  for Rayleigh wave  periods 

of  10,   20,   and  40 stvonds.     At  altitudes above  perhaps 40 km   the yield 

referred  to  should  be considered  to be an effective yield.     This may 

be  less  than  the  nominal  vield due  to radiative or other energv loss 

mechanisms. 

The  highest altitude  shown on      ese plots corresponds either 

to  the  smallest value of  J.   at our disp     al   (J,   =  .05   in Table 4-?)  or 
n h 

to an altitude of  100 Ion.    Our  reason   tot  stopping  at   100  km  is  tiut 

above  this altitude the  real atmosphere cannot be characterized  by a 

constant  scale height h as assumed  in the  theory. 

The  lowest altitude  shown  has been arbitrarily  taken  to 

correspond  to Ap/p    = 1.     Using  the  problem M  results we could  continue 
g 

the curves to still low^r altitudes.     However,   in evei>  ease we  find 

that S  rapidly goes to infinity.     This  is  the  result  of   the  fact  that 
3 2 for a strong shock ip a 1/r    so  that .Lpr a  1/r   ■»•MI * 0.    The 

difficulty seems  to be  that,  while  the  shock description  is  correct, 

S no longer represents the source strength for Rayleigh wave excitation. 

This  is not unexpected since the  theory of Toksoz and Ben-Menahem 

which we  have used   in defining S   is  based on a linear model  of wave 

propagation.    A different model of  the  excitation  itself  is  required 

to go  to  still  lower altitudes.     ideally  this model,   which would 

incl'idc  effects  such as cratering,  would extend  through  the "trans- 

surface"  regime.      I'h.it   is,   it   would match  .smoothly not   only   to  our 

results but also  to  results obtained  for contained underground 

explosions. 
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In any case, the curves in Figs. 4-5 through 4-9 generally 

exhibit a maximum at intermediate altitudes (the exceptions arc 

Y > 500 kT for T = 10 sec). This behavior may be understood in terms 

of Eq. (4-4) in the following way:  At altitudes above the altitude of 

the maximum 2-nt,   >>   T and S a Apr, which is a decreasing function of r. 
"T" 

For altitudes somewhat below the altitude of the maximum 2vt+ <<   x and 

S a Apr t 2. The positive phase duration t decreases more rapidly 

with decreasing r than Apr increases and hence S decreases with decreas- 

ing r.  The situation is reversed at sufficiently low altitudes, 
2 

however, and Apr increases more rapidly with S than t+ decreases. 

Hence S may start to increase with decreasing r. This behavior is 

exhibited, lor example, by the 5 Mt curve with T = 20 sec and r < 10 km. 

For large yields and short periods (i.e., Y > 500 kT, 

T = 10 sec) the condition 2vt+  > r holds at all altitudes and hence 

S ^ Apr which is a monotonic decreasing function of r. 

Table 4-2 gives the burst altitude at which the ma^imum occurs 

for various yields and Rayleigh wave periods. As shown in Table 4-2 

the altitude of the maximum increases with increasing period and 

decreases with increasing yield. 

TABLE 4-2 

HEIGHT OF BURST AT WHICH 
MAXIMUM SOURCE STRENGTH OCCURS 

Yield,  Y(kT) -> 

►a 
n 
►1 

E 
H 
/-v 
•J> 

n 

10 100 500 1000 5000 

10 36 17 — — 

20 81 65 55 45 39 

40 89 71 62 57 43    , 
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The increase in source strength between the value at low 

altitudes (say at Ap/p = 1) and the value at the maximum can be sub- 

stantial, particularly for smaller yields. For a Rayleigh wave period 

r = "n sec the increase is a factor of 7.6, for 10 kT, 2.0 for 100 kT, 

1.9 for 500 kT, 1.2 for 1 Mt, and 1.0 for 5 Mt. 

We turn now to a discussion of the yield dependence exhibited 

by S. Figure 4-10 shows the source strength as a function of yield for 

burst heights of 2, 5, 10, 40, and 60 km. 

It is apparent that in general S increases more rapidly with 

Y for small heights of burst than for large. This behavior is brought 

our more clearly in Table 4-3 where we show the value of n that results 

from assuming a dependence S a Y over particular yield intervals and 

heights of burst. 

TABLE 4-3 

VALUES OF n ASSUMING S a  Y FOR T = 20 SEC 

Height of Burst (km) 

> u 

T3 .* 

a* u 
•.-i M 

2 5 10 40 60 

10-100 .87 .78 .83 .48 .57 

100-500 .93 .89 .68 .61 .61 

500-1000 .95 .85 .63 .63 .58 

1000-5000 .65 .56 .50 .50 

This functional dependence of S on Y can be qualitatively 

understood in terms of Eq.   (4-4).    For high altitudes we hive the 

limiting case 27Tt    >>  T and S a Apr.    If modified Sachs scaling Is 

approximately valid,   which Fig.   4-3  indicates  is  the case,  and if  the 

shock  is weak when it scrikes the earth's surface then Apr a Y 1/3 
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1/3 
i.e., S a Y  .  At low altitudes the limiting case is 2vt    «  x  and 

2 1/3 
S a  (Apr) t .  Since t should scale approximately as Y   we would 

expect S a Y, again provided the shock is weak when it strikes the 

earth's surface. 

4.4 Conclusions 

Our detailed conclusions are contained in the previous 

section in the form of plots of source strength for Raylelgh wave 

excitation vs. yield and height of burst.  Some general conclusions 

based on these plots are as follows: 

a. The source strength S increases less rapidly with yield Y the 

higher the burst altitude.  For example, for a Rayleigh wave 

period of 20 sec and for yields between 100 and 500 kT we find 
93 89 

S a Y"  for detonations at 2 km altitude, S a Y*  at 5 km, 

S a Y'68 at 10 km, and S a Y'61 at 40 km. 

b. For larj-e yields and short Rayleigh wave periods T (for example, 

Y > 500 kT for T - 10 sec) the source strength is a monotonic 

decreasing function of height of burst. For larger yields or 

longer Rayleigh wave periods S is maximized for a particular 

height of burst. The altitude at which the maximum occurs 

Increases with increasing T and decreasing Y. For Y » 1 Mt and 

i = 20 sec the maximum occurs at about 45 km altitude. 

c. The variation of S with height of burst can be appreciable. For 

example, for t = 20 sec and Y • 100 kT, S Increases by a factor 

of 2.3 as the height of burst is raised from 4 km to 20 km. 
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5.     REPORT CONCLUSIONS 

Three different kinds of acoustic  phenomena related  to 

nuclear  test detection and diagnostics have been discussed  in this 

report.    They are:     (1)  Long  period  (3-10 minutes)  acoustic-gravity 

waves which propagate in the real atmosphere's counterpart  to Lamb's 

edge mode.     (2)  Hi^h frequency  (1-60 second period)  acoustic  pulses 

which result from  the degeneration of the detonation blast wave  into 

a weak shock.     (3)  Rayleigh or surface seismic  waves which result 

when the detonation shock wave strikes the earth.     Conclusions reached 

for  each of these phenomena are given below. 

5.1    Lamb Mode Analysis 

(a)    The  shock front extending from  the ground  to many 

scale heights above  the ground  is of almost equal   importance in 

determining  the  far-fie .d  Lamb mode amplitude.     Because of  this,   the 

far-field amplitude  should  be relatively independent of  phenomena 

peculiar to any small  portion of  the shock front.     In particular, 

ground  effects such as  the presence of a precursor should  not play a 

very Important role. 

(b)    For large yield,   low altitude detonations we have found 

a far-fieid amplitude dependence which varies as ^V^ > '■ :-: \i h 

where typically Y* is the order of 10 Mt for a sea level detonation. 

This dependence arises from a detailed consideration of the mechanism 

by which the low frequency components of  the near-field  (shock)  distur- 

bance become spatially separated from  the high frequency components. 

The precise value of  the critical  yield Y* where yield-amplitude pro- 

portionality breaks down is determined by atmospheric conditions near 

the burst as well as  the  direction of propagation and must be determined 

by detailed numerical calculations.    Nevertheless,   in analyzing  the  test 

data  we have seen some evidence  that very large  vields  do on occasion 

produce anomalously large  far-field amplitudes. 
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(c) A numbnr of potentially Important source effects can be 

explored within the framework of the Lamb mode theory. The most impor- 

tant of Lhese effects, v^iich we have not investigated, are probably 

related to the presence of a secondary shock front due to ground 

reflection. We expect that at low altitudes the effect of the secondary 

shock in determining the far-field amplitudes is approximately equal 

to that of the direct shock, but for higher altitude detonations inter- 

ference or destructive effects between the two shock may occur. 

5.2 High Frequency Acoustic Periods 

(a) At large distances the dominant acoustic pulse period 

for a 1 kT detonation is ehe order of 10 seconds. 

1/3 (b) For small yields the period  scales as  (yield)       .    For 

large yields the scaling  is uncertain.    The interaction of the rising 

fireball  from high-yield detonations with the upward going  shock needs 

to be investigated before the large yield scaling can be determined. 

(c) The range dependence of far-field periods is extremely 

weak,  as an absolute maximum about a 17%  increase in going from 2,000 

to 10,000 km.    Pulse splitting by wind ducts and the effects of other 

small  scale meteorological phenomena are expected to make the actual 

dependence even weaker than the above value. 

(d) The period dependence on height of  burst is also > 

extremely weak.    The dependence is given approximately as:    Ta 1+   . - _ I, 

where T  is the period and z is the burst height in km. 

(e) Probably the most significant variation In far-field 

period,  other than that  caused by variations In yield.   Is caused by 

the direction of signal propagation relative to the winds at about 50 km 

altitude.    For downwind propagation the signal reflection occurs at a 

lower altitude than for crosswlnd or upwind propagation.    The dependence 

of period on reflection altitude is approximately given by: 
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z /28 
T a e    , where z  is the reflection altitude in kilomettrs.  A 10 km 

o 
variation in z produces about a 40% variation in T.  The altitude z 

o o 
needs to be determined by ray tracing for the appropriate atmospheric 

conditions and direction of propagation. 

5.3 Raylelgh Wave Amplitudes 

Our detailed conclusions are contained in the text in the 

form of plots of source strength for Kayieigli wave excitation vs. yield 

and height of burst.  Some general conclusions are as follows: 

(a) The source strength S increases less rapidlv will» field Y 

the higher the burst altitude.  For example, for a Raylelgh wave period 
Q-l 

of 20 sec and for yields between 100 and 500 ki we find S :i  Y   for 

detonations at 2 km altitude, S a Y   at 5 km, S . Y*   at 10 km, 

and S a Y'61 at 40 km. 

(b) For large yields and short Rayleigh wave periods  (lor 

example, Y > 500 kT for ; ■ 10 sec) the source strength is a monotonir 

decreasing function of lieight of burst.  For larger yields or longer 

Rayleigh wave periods S is maximized for a particular height oi   burst. 

The altitude at which the maximum occurs increases vith increasing I 

and decreasing Y.  For Y = 1 Mt and I • 20 sec the maximum occurs at 

about 45 km altitude. 

(c) The variation of S with height of burst can be appre- 

ciable.  For example, for | =« 20 sec and Y = 100 kT, S increases by a 

factor of 2.3 as the height of burst is raised from 4 km to 20 km. 

(d) The present analysis of the Raylelgh wave excitation 

mechanism appears to break down when the shock striking the ground is 

strong. This occurs fer I kT at burst heights below about ,5 km and 

for 1 Mt at burst heights below about 2 kir., A new mod'l needs to be 

formulated between the altitude where our model M LoflgM 1> ids .md 

the burial depth oi ■ contained undergroumi detenation. 
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AJTi..»ulX A:     ÜLRIVATIU.* UK  IHL  BA.SU:  UjUATlONS  FUK I'Killihn.'■> 
OF  FA'l-FIELl) LAMB MüüE AMI'LITUUIIS 

A. 1     Introduct ion 

In this appendix M dfv«-lop the  theort't ii al   b.isls  for  ihf 

oqait ion.s discussed   In  the  text.     The  .m.ilvsls   Is  lie.ivilv  b.i .t-d  on   the 

work of I'leree .ind i'osey tlestrlbid   in kt I .   1,   .m.i,   where |M>';.ihli,   M 

use   the  notation  of   this  reference.     However,   hn.i.ise  we  .ire  priwiril) 

concerned with  the  source mod« 1   rather  than with  the propagation  tlMor) 

we make several   simplifying assumptions.     Specificallyi 

(a) We  neglect   the  effects ol   acoustic   ray  relrulion and  MMM 

Mi.it   all   ravs   foll.w f;riMt-c Irr le  path:   between   «ourcv  m.l 

observation point,     Ihls   is not  neeessarilv a >;ot>d assumption, 

dowever,   the corrections necessary  to   Incorporall        r. ili.stii 

atmospheric   propagation model   do  not   alteil   the  w.iv   in which   the 

source model   is   Incorporated   into   the   thforv. 

(b) On the assumption  that   the various "sound  speeds" ociurruv   In 

the I'ierce-I'osey  theory are of approximately equal  ahi»:»Itude 

we do not  distinguish  them.     In the notation of  kel .   1   this RMM 

that   the  altitude  uependenl   sound   spied  c(z;,   t lie  sound   spied 

averaged   in altitude over  the lamb mode weighting   Junction  c   , 

and   the effective   sound   speed c    which   Incorp^rnt» ^   . t l« i t«»  such 

as  thos«. due  to winds,  are all  denoted by c.    At   the some  tin.e, 

and  this  is consistent with the above assumption,   the major  eilttt 

of  differences  between   these  quintities,   namely   i   frequency 

dependent  group ve'odtv,   i^   t.iken   into  .iccount. 

A.2     Isolation ol   the i..imb Mode   in   the .\ear-Field  illsturh.tiu < 

AciordinK   to   furce   .'lul   \'%-   ■ • ,    it    tin    ii;.pt r   .ilr,. .[.del t    is 

considered  to be  bounded at   some   lir.-.    iltitud«,   z  ,   hv a  ri. »«i     • il li. 
m 

then  an  acoust i<   disturh.mce nia\   b<   tx-Mnded  as a  sun <>'   guided WD* 
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ont- ot   wtiiili is the analogue ot Lamb's mode.    That  is: 

IMr.t)- I'  U.t) ■»■ V   (r.t), (A-l) 

whire 1* is ttu- overpressure of Che disturbance, P  is the contribu- 

tion of the Lamh mode, and i represents the contribution of other 

niodu*4. The l.inih mode is characterized by an ..Uitude dependence such 

Hut I' can be l.<> tnred as: 

!■ U.t) - I' e"*/YH F(r.t). (A-2) 

whcri- i'    is tin- sea-U-vel   pressure,  z  is the altitude,   Y  is the ratio 

of   Kiu-rifir  iieats,  and II is the scale height.    F(r,t}   J<si a function 

only ol   time and of   Hie great-circle distance r. 

The hfi^nl profiles of  the various modes contained in ^ 

satisfy an orthnc.oiMllit>   relation such that: 

i Hi« 
t 1    " dz - U (A-3) 

Turning now to the case in which AP(r,t) represents Che 

dettn.itlon shock wave, we define r to be the appropriate horizontal 

distance for matrhing the shock to Che linear propagation theory. How 

this distance is to be determined is left for subsequent discussion. 

hupputiv ih.it at distance r and time t the shock extends between rr^ ■        o 
.iiiiu.l.-s z and 2,.  it will be shown below that for detonations in 

the lower atmosphorf z        0 (i.e., sea level) and z >> H Is, In fact, 

the sicuation of interest. Under these circumstances we assume that 

l.n. (A-l) is i, ; t •• i-.ii. 1 v correcc wich Che limits. 0,z replaced by 
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Y-l   2 
Y      H Multiplying  V.q.   (A-l)   by e ,   integrating  from  z=z     l»i 

z>Z-,  and using liq.   (A-2)  we  Chen obtain: 

/ 
AP(r  ,z,t  )  e Y    H dz 

o o O       O 8     / 

z7     r~2 z 

e dz 

F(r  ,t  )!'    «r e 
o    o    s   i-2 

F(r   .t  >!•    g- . 
O      O       K   *-| 

(A-4) 

where we hiivc assumed rr- •"   1 and —^ -r- 
Y  H Y  H 

1. 

&P(r »••* ) z/H 
l'iittii..;  K e   " ^(r ,z,t ) where n is  the rel.itivr 

P DO s 
overpressure,   we may rewrice Lq.   (A-A) 

"«'o-'a' 
2^ r 
• H     | 

'Zl 

(r^,z,t ) e o        o dz. (A-5) 

We retain >.he limits z., ■« rather than setting them to 0,' at; a 

reminder >f the assumptions made. 

In the I'iercc-i'osey theory the neomctrical acoustics approxi- 

mation is made that F may be factored into amplitude and waveform 

functions: 

F(r ,t ) - A(r ) . (r .t ) 
o o     o     o o 

(A-t.> 
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and similarly at   MM r,t corresponding to a larger distance and a 

later tine: 

F(r.i)  ■ A(r)   .   (r.t). (A-7) 

For £q. (A-7) to be valid the spatial variation of A(r) must be on a 

scale large co-nparod to the disturbance wavelength. This will be the 

case for the effect of earth curvature which produces a dependence: 

r        r i"'1 
A(r) i (r sin — e    r 

L      e. 
(A-8) 

where r    is the . irtli's radius and where r  is again the great circle 

distance. 

A.J    Propagation of  the Lamb Mode  to  the  Far Field 

The waveform function .   is reptcncntable as a Fourier 

Integral: 

,(r.t)  - 2Re   1     C(k) e'l(u't"kr)  dk. (A-9) 

iliv quantities  .  and k are related through the Lamb node dispersion 

equation: 

c  k-k3 h    , (A-10) 

where c is taken as an average sound speed and the quantity h  is 

not a tunction of k and is due to deviations of  sound speed and wind 

velocity from vertli ally averaged values. The second term on the 

right side of Fq. (A-10) is much smaller than the first. 
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Combining Eqs. (A-9) and  \-10) we obtain: 

dr 

The last and smallest term in Eq. (A-ll), h,  ■—| , which represents 
rtr 

dispersive effects, may be rewritten by replacing :— to lowest order 

by i ^ . Thus: 

c   3t 

Following Pierce and Posey we now introduce the parameters: 

r 
f    a 

t - t -    " , (A-U) 
J 

'' hkk r -   -^ dr , (A-1A) 

so  that ft»"   and    ^-^1^+-^-^.    Thus hq.   {A-12j  becomes: 
3t      H 3r        C   If      c4     If 

tt.^L.« (A-13) 
3»       It 

Equation (A-15) may be solved to obtain , at r,t (r,t) from 

i|>(t ) at r I ♦ (t ) at r 1 . 
o     o I   o     o J 
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(r.t) 

00 

fi oh1'31Al L. . t   - t 

(3Ö1/3J      0    0        0 
(A-16) 

where A. is the Airy function. 

We now define the waveform arrival time: 

» t - t 
a 

(A-17) 

and the characteristic dispersion time: 

■d • (3f)1/3 (A-18) 

In terms of which Eq.   (A-16) nrv be written 

i (r 

00 

d —ao 

T       -    t   +   t a o 
iHt ,r )dt 0     0       o 

(A-19) 

In writing Eq. (A-19} we have put t ■ t since t is being measured " o   o       o 
a*, r , the distance at which the Lamb mode theory Is ^resumed to Just 

'-agin to be applicable. 

The far-field overpressure at sea level Is given by combining 

Eqs. (A-2), (A-7), and (A-19) 

P.(r.t) - Pa F(r,t) L S 

P A(r) ^(r,t) 

= P A(r) U     f A, U-l 
T   - t + t 

Ht ,r )dt   (A-20) 
0  0   o 
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Henceforth we will measure the time t relative to the arrival 

A(i 

F(ro,to) 
time XMt    Now ^(r^.t^) = —77—r— , where F(r ,t ) is given by Eq, (A-5) 

o' 
a        00 

Thus we obtain 

L   s A(ro) YH/7 Td -/  1 I  Td 
' —00    L.       J 

f TT(r ,z,t ) e~z/YHdz 
1    00 

dt (A-21) 

A.4 The Shock Model 

To proceed it is necessary to make some additional assump- 

tions about the form of TT. We assume that the detonation occurs at 

altitude z and that the shock front is spherical about the burst.  For 

this assumption to be correct it is necessary that while the shock is 

strong fnd supersonic it encounters a nearly homogeneous atmosphere. 

When the shock is weak and sonic the shock parameters may vary 

drastically along the front, although the front will still be 

spherical. 

The assumption of a single spherical shock front is admittedly 

an oversimplification.  For detonations in the lower atmosphere there 

will be a second shock, due to reflection from the ground, which will 

follow the main shock. Near the ground the primary shock and the 

ground reflected shock may fuse and form a Mach stem.  Very crudely 

the reflected shock may be considered as arising from a mirror detona- 

tion at -z. The time lag between primary and reflected shocks will be 
2z 

less than - — and the difference in radius of curvature between the 
c 

two shocks will be less than 2z, For small z, then, the reflected 
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shock follows immediately behind the primary shock and has approxi- 

mately the same curvature. The time lag between the two shocks will 

be less than a typical far-field quarter period (100 sec) for z < 15 km. 

On this basis we expect that for low altitude detonations the effect 

of the ground reflected shock Is to approximately double the far-field 

overpressure.  Thus the effective yield of a low altitude detonation 

would be essentially the same as for a contact (z«0) surface burst, 

although this is not exact since the contact detonation expends some 

energy in digging a crater, etc. This model must break down, however, 

for large heights of burst where the time lag between the two shocks 

becomes comparable with a far-field quarter period or where the radius 

of curvature of the two shocks at the matching radius r becomes very 

different. 

The techniques we develop below should be adequate to treat 

this more complex shock structure in detail and we hope to do this in 

the future. However, In the present analysis we consider only a 

single spherical shock front and take the ground reflected shock into 

account by simply doubling the amplitude In Eq. (A-21). The geometry 

envisioned is shown in Flg. A-l. 

Let the time t be measured from the arrival of the hori- o 
zontal  portion of the shock front at r . At time t > 0 the 

o o 
spherical shock radius Is r + ct , where c is the sound speed, since 

the shock is assumed weak and near sonic at r . 
o 

For the situation illustrated in Fig. A-l we must have 

z < z = z 
/2 2 
c t + 2r ct  and z > z, * larger of zero or 

o    o  o 1     0 

-    '22 
z - ' c t + 2r ct  . The Integration in Eq. (A-21) occurs over the /        o o      o 

region of space and time within which the shock is located,  that  is 

0 <  t    < "j  z,   < z <  z_.    This is equivalent to an Integration over 

"\(z-i)2 + r* - r 
0 <  z < "%    '     <  t    < oo.    Thus,   switching the order of c o 
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intvitr.ii ion we •>l>taln: 

*• 
P   .P   A(r2_ 2.(2^ L.   fdl.-E/YH    I L       »WJ    „.-     ra J {/      2 2 

'         o        o 
c 

* t -M 
A.    -T-    Mr  .z.t   ). {A-22) t ' . •• u 

■       U 

wiu-re .1  f.i>t. .-12 has been added Co represent  Che contribution of 

tile ^rmind  rcllv« ted shock. 

*■■    ;   i in.-   the  local   t lae  Tl 

m,    I 2 2 
r    ♦ ct    -    / At    ♦ r o o       _/ o 

t  • — - I  (A-23) 

where At ■  (/-/•».     ihe iiuntity  •   Is the tlsie elapsed at  r ,s since 

the passage of   the  shock  front. 

Now we  further sssuse Chst  the relative overpressure at 

r,t'has the  form of a r.ljsstnne pulse when written  In terns of  the 

local tiae: 

-t/t (r  ,t)i . 
-(r .x.t  )  - »(r ,«> « 1  »77*    grl (A-24) 

o        o o \        t+(r .«) / 

for  I   •  0.    tquiiUon  (A-22)  becones: 
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A(r)    2(2-, >       1       T    ' -t 4    l
L*    * 

y/n A  J  J 

2 .     2 
r 
o 

- r 
8 A<rJ o 1      T 

O      O 

-t/t . 
«(r  ,x) e (1 - t/t ) e"x/Y    dT dz o + 

(A-25) 

AH shuwn by I'lerce and i'osey die cluiracteristic dispert>ion 

t ixDc  T .  is the order of  the  far-field waveform period which it> much 
d 

larger than the near field positive phase duration t   .    For  l   compar.iblc 
-T/t+ 

to   the factor e     occurrinx in the integrand of i <,. (A-25) is 

very small. Since the dominant contribution to the ■ integration comes 

fro« T << T . we may expand A. in a power series in 7-- : 
d 

A - A. — - 0* ♦ A! I— - o| — + — (A-2b) 

Putting x • -— we do the x integration, noting that: 

j 
-X 

e  (1-x) dx • 0, (A-:7) 

/ 
x c  (1-x) dx ■ -1 (A-28) 

The result is: 
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o    Y'w Ht . 
o 

A; | 2i + -_I S_ 
J   lL^ ctd o 

«> -a/YH 

(r  .z)  t.   (r ,z) dz o ▼      o (A-29) 

Finally,  using iq.   (A-H)  under Che asaunption that r    << r 

we obtain: 

P,   - -P 
L N 

 l2 -    2i2lli_L_ 
«!    »In r_p        Y^   Hi  2 

•I r.' 
■ r     m ITA.  2 

I    A! . ^ ♦ —^ 2 £ . .-i/yH 
1      , L!d ci d       J* 

"(r ,«)  r     (r ,«) dz o *        o (A-30) 

A.3    For« of  the Shock PaniaeCer* «,   C. 

Wc wftth to do  the t  Integration  in Eq.   (A-10)  using a  simple 

shock aodel   |M  -(r  .z)  and  t  (r  ,z).    The shock aodel assuaes that at 
o       ♦ o 

some small radius R • r about the burst the shock parameters -(R ), 
00 r o 

t^(R  )  are constant along the  spherical  shock front and  that  the shock 

is weak at  R    (MR ) •• 1).    The geometry  is shown in Flg.  A-2.     It  is 

onlv necessary that  this assumption apply to the portion of  the shock 
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HMH   IT   IS NOT 
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I runt   tli.it   i« sffaettM   In exciting  the I.job mode;   that   Is,   It  need 

nut .ipply,   for exanplv,   to the vertical./ upward going  portion of  the 

!>iuH-k front. 

tu-vund  this .small  radius R    the shock  Is assiaed to evolve 
0 (2) accordlm   to  the w^ak  shock equations.     In particular at  (r  .Ml o 

V    ro +  •■•Z 

.r ,z        ^v H 

t+(ro.z, - t+(Ro, y ♦ {a ^^ j Y-m r]    * 
o 

32) 

where l'(K ) is the ambient pressure at R , P(r ,z) Is the ambient 
o o   o 

pressure at the point r ,z where matching to the Lamb mode propagation 

model oei-urs, and I'd!) Is the ambient pressure at a spherical radius R, 

i   2 2 
R ;. K _ "X/r ♦ At « Consistent wlt.n the assumption that R is a 

small radius (that is, that It Is «mall compared with the effective 

scale height In the direction In question) we take P(R ) ■ P., the 
O     D 

u 
ambient pressure at the burst point. Then \'(T,Z)  ■ Pk e   and 

Kq. (A-Jl) becomrs: 

-At 

•o- b' 

• o      /— tlt^tW yi    2+   .   2    V 
V   ro * A* 

where  (except   in the case of r  )  we use zero subscripts to denote o 
values at   K   . o 
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Hi«-   iiacKr.il  occurrinit   in i.q.   (A-32) nay bi- appruxlaatrd as 

follows: 

fS ■J r   + Lt 

R 
V   P(R)       R 

I 

J 
(R-R  ) o dR ^   exp - .'.x 

2 .   .   2 
r   ♦   .2 o 

o             ..z 

.'.2 

2H           , 

n-o 

■ n 
1 

211"    r2 + 
t    o ••*' 

n 

fx    • 

R""1  dK (A-iM 

-R  o 
2H 

As 
2 ^ A  2 j      '2^.2 

r   + ..z    J «.n   v r   +   ■* 

r»l 
nn; 

"    I 
 o , 

■v77772/ I V-   o J J 

Consistent  with thr assumption that R     is sm.i 11 .   i.e. 

R    <   Vr* ♦ .',2    ,    R    <<  211 o        V   o o 
-J'i * s 

~2 
,  tq.  (A-)A)  ndu.f«* to: 
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J V H(R) 
dR 
R in 

VT* ro
2 ♦ :.' 

L~   \2HJ    nnl 
n«l 

(A-35) 

Thus tq.   (A-32)  becoaes: 

/ 
t.(r ,*»  • I    »1 ♦ ö . in 

L 

1 ■> s 

R                  /      nnl     JH. 
n-l            '      'J 

.   « R 
Hi _2_°    .       Th«   nuanfirv   A   1 C     Hi"! 

(A-36) 

11 as possible consistent 

wiur.   uv h.iVf  tlfl Incd  . 
2v    ct o 

lor .i wc.ik  »hork.    Since wu want R    as 
o 

with til*.* shock being weak we take 7    ■  .1.    IkM B ■  .67 -   2/3 accord- 
(31 

ing to ihe probldD N results with  .  -  1.4 and c ■  .34  km/sec.    '    The 

other  (>.ir.i  . i .rs used  in cemputing d correspond to a distance of  .9 km 

from a  1 Id explosion where the positive phase duration is about 1/3 sec. 

Now in our basic equation,  Eq.  (A-30),   the shock parameters 
2 occur  in the form -(r  ,z)   t (r  ,z).    Using bqs.   (A-33) and (A-36) we 

write this quantity in termt« of the valte at r ,  £«i,   that  if  the value 
o 

for the horizontally propagating portinr of the shock: 

2 -        -      2        - (r  ,r.)   I At ,z)  • «»(r  .z)   t.(r  ,2) 
0 +    u o +0 

Ax 
2H 

/■'•■ 
1 

r ^ y r   + &t 
2   • 

L■   nnT   2H I   ( 
n-l ,      ' J 

V^o2*-2 Tl ♦ 6 4n r 

(A-37) 
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Thus i.'..   (A-30)   becomes: 

PL- - P 2ifexl_l./!kl 
ih 

8 r Htsin r_\H      Y^T   Hij    ' 

«(r ,2)   t.(r ,2)        dz A' 
o "♦"     o 1 

o 
I , CT 

2   .     2 
r o 

" I^L £* 
/; 

f 2  .   .   2 
1 +  o    . n    \; r    + a2 i     , .    I / v o  . i   i y . 

IT5    1                                    R - ;   miT ; 2H 
2Y    I       V o_ 

,   nn.     xn ( i 
n"l I -. -«/ 

V'o + ": 

1 
1 + t;    -.n r       ' 

(A-38) 

o > 

,   2 _.     2 Az    + r      - r 
We now introduce the variable y ■ —I -r^ "    and .£ 

CT 

write dz ■ dy V ,2^2 A2    + r o 

1 +     /I + A2 

Y^ iftr • lhe y inte8ration 

consists of two parts: 

0 < y ^ -> (Az > 0)  and 

0 < y V i-2 \     2 'z + r - r 
o   o 

CT 
(.12 < 0), 
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Kquation  (A-38)  becomes: 

•     r 

i(ra,i) t;(ro.i) rc 41 
J ^7  M Td 

- — + y G(y) 

o 

Az > 0 

A -2 _.  2 z + r o - r 

c r 

+; 
A A!  --^+y 
.9   ' I Td 

o 
Lz <  0 

G(y) (A-39) 

where in terms of the variable Az(y): 

r 
-Az Az 

Ä e YH e2" 

1 + 

V 
1 + Az 

1 + 

I An 

-^ 

'1 + Az
2 A"  1 / Az 
1    L,  ^TT (2H 

o  n«l 

1 + 3 An 

(A-40) 

A. 6 Reduction of Eg. (A-39) 

We will demonstrate below that G(y) is a weak function of Az and 

ht-nce of y over the integration region of Interest. Accordingly, as a 

first approximation, we take G(y) to be given by its value at y-0 (Az»0) 

which is unity. The remaining integral for Az > 0 is twice the function 
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f       r 
— I ■ / A' I +01  da discussed by Pierce and Posey. 
Id/      ' i-    Td Tdl 

o 

They have  shown by numerical computation that  the  first maximum of 

PP    —1 occurs at — ■  1.     The  remaining integral  for Az  <  0 will be 
lTd) Td g S - 

shown to be unimportant.     Therefore,   for consideration of  the first 

maximum of the far field amplitude we may restrict our attention to 

times t ■ T,. 
a 

Ai .-1 + yJ 
The integrand  , which results from setting 

t = T,, is plotted in Fig. A-3.  Maximum contribution to the integral 

is seen to come from the region 0 < y < 2 corresponding to 

0 < |Az| < 2CT -Jl +  r /CT .  Since T is a quarter period observed 

in the far field a typical value is about 100 seconds.  For c ~ .3 km/sec 

we thus find that |Az| values up to at least 60 km contribute to the 

integral in Eq. (A-39). This justifies the initial assumption made in 

extracting the Lamb mode from the near-field pressure disturbance; 

namely,  that the z integration extends to v?lues much 

larger than a scale height, z. >> ■~^- H. 

It remains for us to justify the assumption made above that 

G(y) ■ 1 over the range of Az of interest.  First, however, we note 

the physical origin of the various factors composing G. These factors 

are: 
-Az 

YH a. e        is the Lamb mod(   weighting factor. 

Az 
2H 

b. e       is due to the  increase  in relative overpressure  TT with 

altitude. 
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c. \ ,    L.   / o   n«l  \. 

\H 

1 + ß i-.n 

I 
is dut- to thi- i ti.UU* 

In positive phase duration t  with altitude. 

d. 
^ 

/ 

is a geotretriral   factor arising  from  ihi- 

-/--;'
+^ 

assumption of .1 spherical shock front. 

The relatively small variation of C,(z)   is best shown for a 

particular case by specifying values of II, r , c,., and ..z.  Ilcrt- we 
o   d 

wish to give a more general demonstration based on the Taylor series 

expansion of G about äz ■ 0.  From tq. (A-AO) we obtain: 

G(Az)       1 + ^j 

;2  1+Cxn~ 
L. ' o I ■J" 

4H Y I8   * i r        8        Y 
I ♦ i to j^ 

o 

1 +  .   • n 

Sz +  - - (A-Al) 

In the sequc-l we show that r   R .  For .   -- and , - l.A: 
o   o 3 

Eq. (A-41) then becomes: 
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2 2 
C(."z)       1   -   .048 — -   .0047 jjp      -   .04  l^\    ♦ ,. 

TUv   ~   ten becoaes  inportant «t Ax - 20H      140 ka,   th« 

i • , »2 /A • i ^ 
lens .it    z       li»l       105 km,  and the ~1    tem at :.t      5r        5R    • 

II   I [HI o o 

4i Yu      kn for a  aca level  detonation,  where Yu  la the yield  in nogatona. 

Kt-call  tluu   the aaxiraua value of  \Lt\  of  intereat   la about 

ro        .,-..*      U/S 2 ci    •     1 ♦ -^   ■ M  yl ♦*|   Y*  ^ k«,  for c - .3 ka/aec and 

100 sec.     IIIIIH we  find that  for  reaaonable yields of aorc than 
il 

about   1.6 Mt  at sea  level  th« second and third teraa  in the Taylor 

Horlos expansion of C are not  inportant over the range of As or Interest. 

flic cancellation of  the various factors which aake up C(/2) 

can also be aeen by cxaaining Eq.  (A-40)   for || large.    For exaapl«, 

• || 
Zl       li      •" 511 

—T | fu i     '  «" •,n,i  l,t'  sqiMr»>  root of 

n-1 ' 
-A« Al 

this factor coabines with the factors •   and e   to produce a very 

.       .. , j   A 1 4Y IH    .036 .•s/ll 
weak exponential dependence of •        ■ e 

The point is not that C(y) In Eq. (A-39) is exactly constant. 

Doubtless there arc effects which could be explored which depend on 

deviation!« of C from unity. The point Is that since C(y) Is a slowly 

varying function.all values of y from zero to 2, and hence all values 

of x extending to many   scale heights above sea level, are of 

nearly cqu.il importance in Eq. (A-39).  Physically this aeant that the 

shock front extending from sea  level to aany scale heights above sea 

level is of nearly equal iaportance in deteraining the far-field Laab 
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■uüe twplitudes.     Tliv significance of  till«   is that   for   the  (irst 

naxinuB of   ttie  l.u-i :. . :   UBvefuns at   tines like t       T     the peculiar 

features of   the shock near  the ground such an the presence of a 

precursor should not  be of  particular   isportance. 

Finally,  we return  to Kq.   (A-39)  with G(y)   ■   1: 

'j /sin rP T      H ;d \   ■ / 

«    I re) 

V ^r2 - r V _ o < 
C5d 

Mro.i)  t2(ro.£)  ro ^Aj   -f + y    ♦ ^ A.   - 1_ ♦ y        (A^J) 
'•yd-.« »y     .   d o 

o 

The  second  integral   in Eq.   (A-43)   is always unimportant com- 

pared with  the  first   for  the  following  reasons.     We have previously 

Al   '- t 1 observed tltat   for  t   '   *     the  function —        —♦ y      has a broad 
d ^ I    'd . 

plateau for  0 _  v      :.     The second  integral   is therefore approximately 

- ^r~ 3 « ♦ r - r 
«      o   o 

"1 - times the first (assuming this is less than unity); 
•c t . . 

/ -/-2, 2 

that   is,   it   Introduces a correction  factor of about   C     I 1 ♦  s ■        - 
I 2c t 
\ d / 

to the far-field Lamb mode amplitude.    According to  the 

/Y   1I/3 

results of   the next  section r        9/7^1      - 9  e*/3M Yu
1/3 km.  where Yu 0 " Mb j n M 

I' / ? 
is again the yield iu megatons.  For H«7 km we finJ that ■■ , which Is 

r 
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■axlaixed «t  x •  311, is aluay« less than      2 ;     .    Lxpandlng C 

for |f j    .   lglv.. C    l^jii- which,  for CT    *  30 km,    hat a 

Ob —       lit euxlatfli value of   1 ♦  '-.;■.    at x • -r-      10 ka. 
YM 

Thux neglecting  cha aacond  Integral  tq.   (A-43)  bacoaaa; 

-P ^      /P   '1/> 

P    - »      .     -    1   111        iL fib 
L S  (.in r  i*     ^  7     >      i^371!^ 

•(ro.2)  t;(r    i)  r    /^A;    -f *, (A-44) 

Nota that   If wa dararaina r    In Eq.   (A-44)   in Cha "conventional" 

-      /Y   \l/i Y   »1/3 

way,  that   la for a given l caka t.(r .t) as- and r    a ,=-|        wa 
*    0 lPb/ 0      iPb/ 

obuln ''■    • Y '^ Thl« raault haa been previously obtained, aa 

has the dependence P,   a r T '        by Pierce and Poaey        and 
'air. £_' 

g 
a. 

by Pierce, Poaey, and Illff.(4) 

In Che sequel wa ahow that Cha above aachod of choosing r , 

while probably correcc for aaall yields, la probably not corracC for 

large onea.  The main effect of Chia finding la Co Introduce a allghcly 

different dependence of P on Y for large yields. 
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A. 7    Üctcrmii-il ii>ii ot   the Hatching Kadlui»,   r 

We need a physical criterion to obtain the matching radius 

r which occurs in bq. (A-44>. The basic concept In the analysis to 

detemine this Batching radius  is as follows: 

The low frequency components of   the  near-field t'isturbancv, 

which eventually determine the tar-fUid amplitudes,  must become 

spatially separated  from  the  higher  frequency components before  the 

linear Lamb made propagation theory  is appropriate.    While the high 

and  low frequency components are  located   in the same  region of   .space 

they  Interact  nonllnearly.     In particular,  the  low frequencies gain 

energy from the higher frequencies as is demonstrated,  for example,  by 

the lengthening of  positive phase with distance. 

One way this spatial  separation of   frequencies could occur 

is the following.    As the shock or Mach stem propagates along  the 

ground  it will  lift  up because of  refraction associated with the 

normal  atmospheric  sound  speed  profile.     This effect   is  responslbK 

for the  so-called  zone of  silence phenomenon at   intermediate distances 

from an explosion.     If  the  low frequencies are  thought   to exist   in a 

Lamb mode at  this  time  then  they will  continue  to propagate along  the 

ground and hence will   become spatially separate   from  the  higher 

frequencies. 

Refraction of  the weak shock may be an   important  part  of 

source modeling but  we do not  believe the above description  is the key 

to understanding how the Lamb mode  is set up.     1 he ditficulties with 

the above explanation are  first  that   it begs  the  question,  and,   second, 

that   it  relates  to an effect  peculiar  to  the  shock  front  near  the 

ground.     In view of   the  fact   that   the  sltock extending up to at   least 

about  60 km altitude   is effective  in exciting   the Lamb mode we doubt 

that   this type of  refraction could  by  itself achieve  the spatial 

separation of frequencies required. 

The model   we  propose,   which   is discussed  below,   involves-  .i 
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.|Mi i.il   svp-iration of  frequencies within the weak shock Icself.    To 

give the arKment   in  the staplest  for» we sssi«e thst all ataospherlc 

properties are  independent  of  range.     Then according to Eqs.  (A-14) 

and  (A-IH): 

.•(^r rl/3 (A-*5) 

According Co what has been previously said this will  be 

approx Uuti'lv the quarter period of  tli • disturbance at  range r. 

It  M gtMt with a hypothetical  far-field wsvefora. and 

extr.ipoiate b<tk  toward the burst,  the period will decrease according 

Co l.q.   (A-A5K     At   Che saae  t iae wc may calculate  the  sheck positive 

phmv duradon,  which  IH approxisMtely Che quarcer period of  Che near- 

field disCurbance,  at  increasing discances from Che bursC.    This  Is 

done by using Kq.   (A-3h)  applied  in Che horizontal  dlrecdon  for an 

arbitrary radius r: 

•   I, 
l^r,h   - C+(Ro> ( *       fr > (A-A6) 

.t Curnn out chac Cherc are cwo cases: 

(a) i . > t- for all radii .iC which ehe shock Is weak. 
«i ■ ♦ 

(b) T , ■ C up Co r , In split of Che face Chac Che shock Is weak, 

and :  ■ CA for r ^ r . 
d - ♦     - o 

Conttider the laCCer case firsC. We will show that Che radius 

r has ih«- following physical meaning: Up to r the Fourier component 

of period  «  • hserved in the far field is spatially located well 

behind the shock front.  For radii greater than r this Fourier com- 

ponent lias moved Hp to the front of the shock. While Che long period 
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Fourier cuapunenl» are lucated behind the shuck  trunt  they gain energy 

froa the shorter period conponents    at»  is nanifested,   for example,   by 

the positive phase  iengtheninK Kiven by hq.   (A-A6).    Once these  long 

period Fourier components move ahead  to  the shock fron',  they propagate 

independently of   the  short  period components. 

Un the basis of  this physical  picture vc . i»    -,«• 

r    :   TJ(r  )  ■ t   (r  ),   for case  (b).    For case  (a)  we choose the match- o        do TO 
ing radius such that a continuous transition  is made with case  (b). 

When this Is done it  turns out  iti.it  case (a>  corresponds to the method 

of choosing r    used by Pierce and Ponev,   that   is,   r     i Y       .    The 
o ' o 

criterion for case (b),   however,   is not  the conventional one a.nd tl.is 

introduces a  far-field amplitude dependence which is not  simply pro- 

portional   to yield. 

We now give a quantitative statement of   these  remarks. 

Again we take a Classtone pulse term 

"(t)   - » e (1   -  t/t+).   t > 0 (A-47) 

To see where the low frequency cumponenlb are l«-. iltd within the puls» 

we take the Fourier transform of only that part of the pulse between 

the front and a distance - - t behind the front: 
c 

S(w)   [    e'1"1  w(t) dt 

(A-AH) 
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for large — the last Cera dominates due Co Che faccor 
♦ 

-C/C 
e , and  |s|   ■  ^—s .    This will be essendally ehe value of r 

s     when 

-t/t. 
w  >  • iw 4   lw "T- ♦ —» (A-A9) 

Under  tlie asauaptlon ■ 1 'l/t+    t *< — chls reducea Co w > • —s   or: 

1   •  t^n ^ (A-50) 

ill is means chaC Che doalnanc contribution Co Che Fourier 

ampllCude of period —- coaea within a distance of abouC ct  tn —-— w r wC. 

of  Che pulse fronC.     For exaaple,  we alghc have 2i* 600 aec and t. 

Che order of  6 seconds,   Chen Che doalnanc conCrlbudon comes within 

about 4cC    of the pulse frone.    Under no circuaacancaa la it neceaaary 

Co go back more Chan a  few cC.. 

The energy aaaoclaced with a low-frequency component of 

period 4   .Ar)   (Che period observed  In Che far field)  propagaCea aC a 
a group veloclcy given by i.q.   (A-10): 
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' II   I 

r *7*| v
8 r'lrirrr» 

c":>k S» 

■•-»4 »to 
c 

.2 

C      L      d        •< 

Sifflllariy   the energy associated with  the  largest aroplitud«.- 
' 1    \ Fourier component   jw ■ T^    propagates at: 

Justification  for using  the Lamb mod«.- dispersion equation   in derivitiK 

tqs.   (A-31) and (A-32)   is given below. 

At   r    therefore the  low frequencies have movi-d ahead  relative 

to the main pulse by an amount: 

j/     \ oil. d(ro)   r ^ 72 hkk • c h 
since T. >>   C .    Using bq.   (A-45),   under the assumption that  the shock 

is weak over most of   ttie distance to  r  ,   this becomes: o 

CT (r )3 

d(ro)    
c  ^ (A-53) 

According tu what has been said before, we must require 

d(r ) to be a few times ct+ since this is how far within the pulse 
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i lie  frenuerv ies of interest [M - •=—; are located.    Thus we obtain the 
i 2Td I criterion: 

L.(r  )       ..(r ; (A-54) 
+    o do 

The  sound speed occurring  in Eqs.   {.. -51)  -  (A-53)   is  the 

sound speed within  the pulse which presumably is larger than ambient 

due  to effects occurring at  the  front of  the weak shock. 

In deriving  the frequency dependent group velocity in Eqs. 

(A-51) and  (A-32)  we used the Lamb mode dispersion equation,  Eq.   (A-10). 

We now just if«-  this procedure.     Equation  (A-10)  cannot be exactly 

correct vithl     th<" shock because of nonlinear effects.    That is,   in 

the Fourier de> oiiiposition of  the weak shock,   rS(u)  e ,   rS(u) 

is |   function ot   space.    The factor r is  included to account for 

purely geometrical effects.    According  to Eq.   (A-48) with t  " <,0 

r|s(.,r) Tuor 
1      4-      2 

_    2 
a irrt,     for    u <  t^ 

a K 

I ♦ f ft« {- (A-55) 
o 

a -y I ♦ • •• f. 
c 

where we have uoed the fact that  -rt    is a constant for a weak shock 

and have used Rq.   (A-46)  to write the explicit r dependent of t  . 

because of Eq.   (A-55)   it is appropriate to define an imagi- 

nary component of  k which represents the spatial growth of frequencies 

M •; t  : 
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kl ' är x'n ls(<i)»r)rl 

-/ 
l  1/ I *- & in  |- 

o 

— , for r = r . (A-56J 
r o 
o 

The real part of k is of course k   —.  If k  •  k. then the croup r r  c      r    i        <-  t 

velocity will be given by -rr—  usinR the Lamb mode dispersion equation. 
QK 

r 
This criterion amounts to: 

--r    , (A-57) 
tt o 

or for the dominant Fourier components u  — : 

ct. << r , (A-58) +    o 

which simply means that the positive phase length must be much less 

than the matching radius. This will be the case since r is chosen to o 
be a radius where  the  shock  is weak and hence  is much larger than a 

fireball dimension   (ct.   being  the order of a  fireball  dimension). 

For  the very low frequencies observed  in  the  far-field 

(w "V 1/T ,(r))  the criterion  is: 
d 

cT.(r)  <<  r     , (A-59) 
d o 

which Is not automatically satisfied. 

However, in deriving the matching criterion, Eq. (A-54), we 

only used the fact that the very low frequencies have a group velocity 

which is much nearer the local sound speed than that of the high 
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frequencies. This will still be the case since both k and k will be 

small for the low frequencies (as compared to k = -— for the high 

3 +C 

frequencies) and hence the term h , k in the Lamb mode dispersion 

equation (A-iO) nay still be omitted in detenninlng du/dk for the very 

low frequencies. Thus our use of Eq. (A-10) in deriving the matching 

criterion (A-54) is Justified. 

From Eqs. (A-45) and (A-46) this basic criterion (A-14) 

becomes: 

r ^3/2 
*U 3 j r     l 

-f- ro' t
+
(Ro) \1 + ß in r / (A-60) r    - MR )3< 1 + ß in ^ O +     O      A R 

I O J 

According to Sachs scaling: 

.      II   l/3 

1/3 

(A-61) 

where again using the problem M results,  c  -   .9 km,  a ■ 1/3 sec, and 

M before t ■ 2/3,  when Y  is measured in kT and P.   in atmospheres. 

3hkk 
Putting —P ■ o we obtain from Eq.   (A-60): 

c 

i/3-3/2 
' r    /P   j 

oro - a3i|-ly 1+ ß £n^[^] ) (A-62) 

Y Wo wish to solve Eq.   (A-62)  for r      p- .    It  Is convenient to define 

1/3 '  b 

ro /Pb  I 
the parameter x   - — 1 vT"  I        80 t*iat ^'   ^J^Xi  becomes: 
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ih]       * -   .3 |- (  1 +  p.nx)3/2 (A-63) 

or: 

y      /.ci3/2        x3/2 

b      1 .   /       (I + i^nx) 
(A-64) 

so chat: 

H3'2   1/2 .1/2 

(1 +  £*.nx) 

Now j— j has a minimum value at x • exp -r - T I      1  whcrt 

3/2 3/2 
Y 2 1,2 

I Y* ^^3 I this value of x,r    ■ 1A 
a ( Ifli        .To continue the solution r    =- o        o (P* oPb 

Y* 
to values of r,-.    which are smaller than can be obtained frcm La.   (A-'-i 

Pb 

(Y I1''3     / Y I1'3       Y   / Y* 
F I   " *9 F"    ^   icr f - I P*   '    Thi8 corresPondR 

to the aforementioned case (a) for which T . > t.  at all radii for which 
d        r 

the shock is weak. 

To  see what  the net effect oi   the altered criterion contained 

in Eqs.   (A-6A)  and A-65)   is wc  return to Eq.   (A-43).     The  far-field 
2 

L;unb mode amplitude  is proportional  to -(r  )  t.(r  )   r  .     For 
o      +    o      o 

Y        /Y* 1 
p— *  Ip^- I this quantity is equal 

b ' \   b / 

-2 Y 2 
to -   10      p~ km sec  ,  when Y  IF   in kl 

b 
Y Y* 

and P.   in atmospheres.    For S" ^ sr we may use the  fact  tint  according 
b Pb " Pb 
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to weak shock thu« rv Tt     is  ii.dependen: of r. (2) Thus 

2 -3 v    t*(r
rt
) 

(r  )  tUr )  r    • 10 Z h irT^T o      *    o      o P.   t.»R > 
D      ♦      O 

io'2 Itri ♦ i £ nx]1» (A-M.) 

Y Y* 
The correction factor to the far-field aaplitude when :,- öÄ     lkav 

Pb Pb 

therefore be defined for u  ■ 2/3 as: 

A 
q     I ♦ # Mi s I   , x * i (A-6 7) 

where x   is given by Eq.   (A-64) 

Y    ^     . Y* 
.V2 

9/4 
i ♦ ^ m x) I 

(A-68) 

Using L'ns.   (A-66)  -  (A-68)  we mav rewrite Eq.   (A-44)  as: 
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 I   jo"2 A iJa   4    Ik 
1/, - 1 

*I/S<-H (A-69) 

3/2 . P    .^ "  I 

'.\-^)'rd 

^       YQfs- 
^•c^' '      '"RJ   ^y 

A! - — ♦ y   . 
d 

where we have used H ■ c /vg«    The corresponding matching radius is 

given by Eq.   (A-60): 

1/3 
3/2 

'•'•"tl   a^lf)^4 (A-70) 

and  the critical yield  to pressure ratio Is: 

3/2 3tw 
4  3 

c   1 

3/2 

400 (h,,) 3/2 Mt sec 3/2 

kk' atmosphere .9/2 
kin 

(A-71) 

for  •   -  .9 km, c ■  .3A  km/sec,   and   •  ■  1/3 sec.     Hascd on a  particular 

model atmosphere and direction of propagation chosen to  represent  tfu- 

signal   received at  Berkely,  California,   following  the Housatonlr 
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3 
(1) km \> tonal Ion .it   ittim^ton l»ldnd Pierce and Poaey        find U Ai ~ sec 

riiu«. In this particular ca»c / ^x I     19  ^r  •    for a different v^ l Pk I atmosphere 

mvt of .itaosptwrlc conditions near  the  burst point or a different 

direction of  propiRatlon h..   and  thus! ^ jwould be different. 

We dt i i.u   the scaled yielc  to pressure ratio: 

2 9/2 

'•(y/Ri"i=fe! . 
L 

when' w,   luve uNfd l.qs.  (A-67)  and  (^-68)   to eliminate x.    Slaillarly 

the scaled matching radius Is: 

~   -      U2 (A-73) 
o 

For    1.»' via. h corresponds to P « 4 we may derive a 

simple analytic form for «a ) from Eq. (A-72): 

in r • |  S_I-l - tn Q 

9 ^ 2    ]J* l} 2      j J 

i  (Q-l)2 (A-74) 

and therefore: 

Q ^ I ♦ ^^ (A.75) 
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which gives the correction  factor directly  in  terms of  the  Healed 

yield  to pressurt- ratio. 
• 

r 
In Fig. A-4  we plot q and — vs.  I   based on tqs.   (A>72>  and 

o 
(A-73).     In ord      to utilise Eq.   (A-75) or Fig. A-4  for a particulat 

detonation it  is necessary to calculate the critical  yield to pressure 

Y* | 
ratio    r— , .     This quantity  involves the dispersif    coefficient   h. 

b 
near the detonation which can only be obtained from numerical calcu- 

lations based on a detailed atmospheric model.    It   Is important to 

' Y* 1 
note that (        twill differ  in different directions  from  the burst. 

lb I 

- 101  - 



-  102  - 



A. 8 Reicrence» 

1. A. U Pierce and J. W. Pc«ey, Ceophys. J. Roy. Aatron. Soc. (to 
be published). 

2. S. C. Keed. J. Acous. Soc. Am.. 31. 1263. 1939. 

3. "Problem M" results as contained In Nuclear Weapons Blast Phenomeiu 
Vol. 1. UASA 120Ü-1. compiled bv P. A. Lllls. U. C. Sachs. 
P. ti. Shelton. and J. F. Houlton. 1 March 1971 (S-RD). 

4. A. D. Pierce, J. W. Poscy. and I« F. 11 iff. J. Ceophvs. Kcs., 2!'. 
5025, 1971. 

- 103 - 



APPtNDlX B:     VAKiATlUX OF  RAYLLIGH WAVE AMPl.lflÜfc WITH  YIELD 
ANU I1LIGHT OF BUKST   FUR   L.Tt-RMLUlATt: ALTITLÜE 
NLCLKAK DETONATIONS 

B.1     Introduction 

The  shock wave*  from an atmospheric explosion can excite 

Kayleigh waves when It  strikes the earth.     In  this appendix M derive 

a  theory Uiiclt predicts shock properties  (overpressure and positive 

phase length)  on  the ground   L>eneath a  nuclear detonation.     Using   this 

theory we  then compute the source strength  for Rayleigh wave excitation 

as a  function of  yield and height of  burst   for  intermediate altitude 

detonations.    A more precise description of  the altitude regime which 

we  treat   «s given  in Table B-2 and "sourie strenptli"   is defined by 

Lq.   (H-17)  of   the sequel.     We do  not  consider any rietalls of   Kayleigh 

wave propagation,   so that we are unable  to  provide absolute values of 

far-field Kayleigh wave amplitudes or phases.    The present  analysis  is 

directly applicable only to  estimating  relative yields or  heights of 

burst  for  situations in which source and receiver locations are  the  same 

for two or more detonations.    However,   the shock parameters at   the 

earth's surface,   which are calculated  in the theory, are suitable as 

inputs to existing Kayleigh wave propagation models such a» those of 

Harkrider and Flinn    ' and .Mickel and Whitaker. 

It Is in  the  inclusion of  the  influence of atmospheric 

structure on the shock parameters resulting at  the earth's surface that 

the present  treatment differs from previous work.    Several  authors have 

utilized a  homogeneous model  atmosphere  in computing  the   time dependent 

overpressure at  the earth's surface.     *   * The assumption of atmo- 

spheric  homogeneity can only be valid     for detonation altitudes 

sufficiently less  than an atmospheric  scale height. 

More recently,  Harkrider and  Flinn        have used a  layered 

model atmosphere and  have assumed  that a given weak shock overpressure 

<ip relative to  the ambient  pressure  at  the   source altitude p    occurs 
-1/3 c 

at  a distance  r which scales as p .     The  length of  the  positive 
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-1/3 
ph.iüt* ol   the hliock I. at  the distance r  is also assumed  to scale as p . 

(1) C 
The sc J.ir.r.  relations used by Harkrider and Fllnn        are usually 

refiTred  to as ordinary Sachs scaling. This scaling law for  the 

shuck overpressuif   is known to be  invalid  for weak shocks which propa- 

gate downward   through several atmospheric  scale heights.    Lutzky and 

Lehto have shown  that  so-called modified Sachs scaling  in which r 

scales as p (where p  is the ambient pressure at a distance r from 

the explosion)   for a given value of .p/p  is a mucli more accurate scaling 

law for  the overpressure of downward propagating shock than is ordinary 

Sachs scallne.     It  should  be pointed out  that Harkrider and Fllnn        do 

not  treat explosions above 4.88 km altitude.     For low enough explosion 

altitudes quantitatively different results due  to using different 

ambient  pressure  scaling laws should be small. 

However,   for  intermediate altitude detonations the ordinary 

Sachs seal iiu'   laws are definitely Inadequate for  predicting shock 

parameters at  tae earth's surface.    Nor does It appear that modified 

Sachs scaling  is adequate for  this purpose.    This Is for tuo reasons: 

(1)  fite validity of modified Sachs scaling at relative overpressures 

much lower than those which occur In the calculations of Lutzky and 

Lehto        is uncertain.     (2) Modified Sachs scaling applies only to Che 

relative overpressure and  not to the positive phase length.    In general 

the  positive phase  length  Is required In order to calculate the far- 

field Rayleigh wave amplitude,  although for detonations well above 
(2) 

100 km altitude  this may not be the case. 

In th" absence of reliable height of burst scaling laws we 

have used  the numerical calculations of Lutzky and Lehto        to predict 

the shock properties at  the earth's surface.    These authors have made 

calculations of  the downward-going  shock from a  point explosion In an 

ideal gas,   spherically symnetric,  exponential atmosphere.    Several 

facrors must be assessed  in applying these  Idealized calculations to 

the case of a nuclear explosion In the real atmosphere: 
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a. The assumption of an exponential atmosphere  limits  the  theory. 

In its present  form,   to  the Ü-10Ö km altitude  interval where the 

scale height may be assumed constant. 

b. Application of results obtained  for a spherically symmetric 

atmosphere (i.e.  one-dimensional)   to  the real,   horizontally 

stratified atmosphere  involves the assumption of  independent 

propagation of different  portions of  the  shock  front,     it has 

been found  that differences between one and  two dimensional 

blast wave calculations  in  an  isothermal  atmosphere are  in 
(8) 

fact small. 

c. The calculations of Lutzky and Lehto are for an  ideal gas with 

Y»1.4.    Near the burst  point  this description of  the  equation 

of state of air is obviously lacking because of  the high tempera- 

tures and pressures  involved.     Numerical calculations  indicate 

that  the net effect of  this complication is the  following:     a 

nuclear explosion at sea level   in real air is 0.7  times as 

effective in producing a given weak shock overpressure at large 

distances as the  idealized point source with Y
B
1.4.    That  is, 

a 0.7 Mt   idealized point source in the Y*1>4 medium produces 

the same given weak shock overpressure as a 1 Mt actual nuclear 
(9) burst in real air. 

Even allowing these assumptions, the numerical calculations of Lutzky 

and Lehto are not entirely sufficient for our purposes because: 

(1) The do not extend to low enough relative overpressures.  (2) They 

do not explicitly calculate the length of the positive phase. 

In the next section we match these numerical calculations to 

an analytic weak shock theory in order to extend the relative over- 

pressure range which may be treated.  Also in the next section we use 

this analytic weak shock theory to relate the positive phase length to 

the spatial derivative of peak overpressure, a quantity which is calcu- 

lated numerically.  Thus by using weak shock theory in conjunction with 

the numerical calculations wc are able to calculate shock parameters St 
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the earth's surfaco without usin« Sachs scaling laws. Having the shock 

parameters at the earth's surface we then compute the variation of far- 

field  Rayleigh wave amplitude with yield and height  of burst. 

B.2    Deterroinatiün of Shuck Properties at  the Earth's Surface 

The  calculations of  Lutzky and Lehto        are parameterized by 

the quantities o    = r(p /E)   '     and o    » h[p /t]       ,  where E  is  the 

energy released  by  the  point explosion,   p    is the ambient pressure at 

burst altitude,   h is  the scale height and r  is the distance from  the 

explosion.     Note  that  J    and 0    are scale height and radius  in units 

of   the length  fE/p ) characterizing  the detonation. 

We will match the numerical solution to an analytic one at a 

relative overpressure Ap/p =0.1   (Ap  is  the overpressure and p is  the 

ambient  pressure at  0  ).    Assume  thnt  in the neighborhood of  the match- 

ing point we may write Ap/p » a an  , where a and n are constants.    It 

turns out  that matching of solutions can be conveniently done in terms 

of   two  quantities:     '    = a    at Ap/p = 0.1,  and n ■ ^r rg^T ln p J       _  ' 

r    r 

This amounts to prescribing Ap and Its first derivative at I . 

Values of ä ,n and the useful quantity x ■ ä /la^  obtained 

from the calculations of Lutzky and Lehto   are shown In Table B-l. 

TABLE B-l 

MATCHING PARAMETERS OBTAINED 
FROM NUMERICAL CALCULATIONS 

ah Sr n X 

0.03 0.311 -4.26 3.11 

0.10 0.511 -3.8A 2.55 

0.20 0.786 -3.29 1.96 

0.50 1.26 -2.82 1.26 

2.0 2.10 -1.90 0.502 
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In Fig.   B-l,   n and >;.   are  plutted vs x.     We havt   also   incluu< d  the 

point  n(x=0)   corresponding  to n  homoKeneous atmosphere  (o 
(9) 

on Figure 3 of  Lehto . nd Larson. 

Now according  to the weak shock theory of Reed 

h 

(10) 

)   based 

p      p 

I'.V      r      L /p~ 
o      c    _o -i /   o 

P„      r      L      V P 
(B-l) 

L_ 
1. 2y p 

— i< 

r      rip      J o    _o      f   -. ,_o_    dr 

0    Lo    J      Vp(r)     r 
(1-2) 

where Ap  /p    is the relative overpressure and L     is  the length of  the ro    o r o 
positive phase at  r    <  r and where   ,   is the  ratio of  specific  heats. 

From Eq.   (ß-1)  assuming an exponential  atmosphere 

iL ln£* = - i - i- - 1- in JL 
dr      p r      2h      3r        L 

o 
(1-3) 

where h is the atmospheric scale height. 

Using Eq. (B-2) we find 

£1 Ü£ ro . /51 
a   .   L   In — 

4Y      po r     V P    L
0 _    xti^E 1 

9r Xn L 
o 'I    2 

L 

4Y    p    L 
(1-4) 

where we have used (B-l) to eliminated Ap /p . 
o o 
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Substituting   (B-J)   in  (B-4)   yields: 

•r        p r      2h      4>     p    1. (8-3) 

or 

L - -* 

v+1  .^p 
i r 

r        x > .    ^1 
2li      dr        p  j 

(B-h; 

Taking   »"1.4  we  find  that  at     p/p "0.1   (o V: 

. .-  ,       r       -O.OÖ57  h x L(o  )   « L  ■ —! ■  
r 1 + x + n (B-7) 

While  from (B-6) 

XtLÄEI 
2Y    P    L - -2    1 + x + n 

j0  "o r    r 

(^-ri) 

so  that  from  (B-2) 

L 

L 
1-2   (1 + x + n)      i       V^^ — 

'. 

j i      P     r 

/1-2    [l + x + nj eX    tjCx)   - l^i-^ (B-f) 
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wlierc K.   Is tb«« exponential   integral.    Using  (B-7),  the length of  the 

positive plvise at distance r  is found to be 

-O.OSW !i *.     . 
L   - —r   . T       1 I  + x + n 

'_ ^ f • » 
2 1 + x ■♦• n    e      t.(x)  ' V-i  Jh (B-IO) 

r>r 

M  lind 

Kinallv.   substituting  (B-9)   into  (B-l) and  taking Ap /p    • 0.1 

P 
0.2h - eX"     — 

r .   P 

(1-2|1 ♦ ■ ♦ ■ t^x) 

(B-U) 

'l\2h 

■ »c  the class of detonations which we treat,   the quantity 

E.(r/2h} can be nenlected  in (B-10) and  (B-ll).    This is a valid 

.ipprox im.it ion when  the  relative overpressure at the ground  is somewhat 

smaller  tlian 0.1   (corresponding  to a reflected overpressure at  the 

ground of about  200 mb).     In terms of tiq.   (B-IO)  this approximation is 

related  to  the fact  that  the length of  the positive phase becomes 

"fro?.en" for downwcird propagation at a value independent of distance 

troro  the burst  point.     It  is convenient for  later use to define  the 

diiiienslonit s.s  functions 

f(x)   - 0.2 x e 

l-2[l  + x + nj eX IjÖrty* 

Apr 

PCP ■ 
(B-12) 

,   4       -0.085 7 I   f,    Ai ,      i    x L.   .   , I L i(«)  rrrrs I ^H1 + x + n je h™}   ' I (B-13) 
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The functions f(x) and R(X) arc shown  in Figs,  h-2 and b-i. 

Lquations (K-12) and  (B-13)  form  the basis for  the subsequent analysis 

in which we consider the variation of KayK-igh wave amplitude with 

yield and height  of   burst. 

First,   however,   in concluding  this section  it  is useful  to 

sunmarize the various factors which determine the altitude regime to 

which the present   theory  is applicable.     According  to what  has been 

said previously,   the  point  source equivalent  energy :   of  a  sea  levt1 

nuclear explosion of  yield Y   is U.7 Y.    We therefore redefine the 

parameter o 

1/3 r        #  uv   "U/J 

•„ - hi 
■pc v        r pc(n.b) r/j 

ml   ■u(kn) [29.1 rod (B-14> 

Our  treatment   is essentially limited   to  the ranRe of  values 

of 0.   used  in the  numerical  calculations of  Lutzky and Lehto 

(0.05-2.0).     For a given >ield,   Lq.   (B-14)   therefore places ronstraints 

on  the  relevant  pressure or altitude  interval: 

0.685 Y(kT)       p(mb)   >   1.07 x   19      Y(kT) (B-15) 

There are two additional restrictions on the relevant alti- 

tude interval which have been previously mentioned:  (1) The theory is 

limited to detonations below 100 km, because above this altitude the 

isothermal atmosphere approximation is invalid.  (2) We are also limited 

to sufficiently high altitude detonations that the relative overpressure 

on the ground is analler than 0.1 

Putting all of these factors together for the 0,   values at 

our disposal, we construct Table B-2, which shows the altitude intcrv.il 
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wtiich can tu-  triMti'ü  for several  yields.     In deriving Table B-2,  we have 

used  the  1%2 Standard  Atmosphere and assumed a  scale height  h-7 kn. 

TABLt B-2 

ALTITÜDL INTERVALS Tu 
WHICH THE THEORY APPLIES 

YU'ld Altitude interval 

10 kT 33.8 - 93.S kn 

100 kT 18.6 - 92.5 kn 

1  Mt 30.7 - 80.0 kn 

B.3    Source Strength for Rayleigh Wave Excitation as a Function of 
Yield and Height of  Burst 

(4) Toksoz and Ben-Menahem        have considered the far-field 

Kavioiv.h wave amplitudes excited by a point source in a homogeneous 

atmosphere.    For three-dime slonal  propagation in the absence of r n- 

1 uu-.ir  effects,   the  source parameters contribute to  the amplitude 

almost  entirely  through a  factor 

|LU)| 

an 

/ 
öP(t) e"lwt dt (B-16) 

which is the Fourier transform of the point source pressure fluctuation 

'p(t).    As described by the above authors the far-field Rayleigh wave 

amplitude  is proportional  to  |L(u))|   and also to a factor which lies 

between unity and exp -k    r,  where k    is the  imaginary component of the 

seismic disturbance wave number,  and r  is the height of  the source above 
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ground.     Diese are the only factors which depend on source paramc-tert». 

For the atnosphere-llthosphere contrast  k    ■   CSv/A^) ■  10    , where A 

is the seismic wavelength.     Thus,   exp -k     r  is essentially unity,   even 

when r  is conparablc to   •. ,   and we may simply take the Kayleigh wave 

amplitude to be proportional to  |L(u,)|  with no other factors which 

depend on  the source amplitude,   time dependence, or height  above ground, 

in the case of linear pressure pulse propagation, 

pit)   i    p  (t)r,  where 5p (t>  is the time dependent  pressure pulse on 
I* O 

the ground a 'tistance r beneath the source.     Even   in  the case where 

the pressure propagation  is nonlinear,  because of  pul^e lengthening and 

dissipative effects we expect  that   the source strength for Kaylelgh 

wave excitation will  be proportional   to the Fourier transform of    p (t)r. 

The  reason  is simply that  the source strength can only depend on 

parameters at  the ground and not on the previous history of the pulse 

propagation,     lli.it   is,  we may substitute an equivalent  linear point 

source pressure fluctuation proportional to  (p (t)r for  the actual 

nonlinear disturbance. 

For reasons which will   soon be evident,  we therefore define 

the dimenslonless source strength to be 

S(T) 

00 

/ 
6p(t)  e"^1 dt (B-17) 

where I ■ 2v/u is  the Kaylelgh wave period of  interest,   p    is the sea 

level  pressure,  and h  is the atmospheric  scale height.    N'otici-  that 

S(T)  does not contain any dependence on source parameters except   through 

|L(a))|.     The far-field Kaylelgh wave amplitude  is tiiereforc  proportional 

to S(T)  with no other factors which depend on source amplitude,   time 

dependence,   or height  above ground. 
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To continue we assume a pressure pulse at  the ground 

ip  (t)   -  Ap'l  - 7-    « (ß-18) 

where Ap  is the peak overpressure and t     is 'he positive phase duration. 

The we.ik shock theory employed in the previous section »hould be  inde- 

pomlcnt of pulse shape since nonlinear effects are governed by what 

happens at  the shock front and no    the shock interior.    1hus.  Eq.   (B-17) 

becomes 

S(f)   -^ ^-£5  (B-19) 

I.1+A y 
Now t^ L/c, where c is the sea level sound speed and lt as 

If) the previous section, is the positive phase length. Thus, in terms 

of the functions f(x) and g(x) of the previous section, Eq. (B-19) can 

be written 

/S—■ w    - J5 
pg . .r   T   12 v pg —m—1 v?'   r m—1 (B-20) 

for h-7 km, and . =0.Ji km/sec.  In writing (B-20) we have explicitly 

noted that the right sides of (d-12) and (B-13), defining f(x) and 

g(x), are to be evaluated at the ground where p ■ p . 
O 

- 117 - 



According  to Eq.   (B-14) 

1/2 3/2 
&]        - /IM/72 fi) Yl/2  . 9.1975 „  10-3     3/2 yl/2 (B.21) 

for  p    - 1013.23 mb.     Thus,   (B-2Ü)   becomes: 

-3     3/2     1/2 9.1975 x   10       tr* \ '     f(x) 
* ^  (B-22) 

1 + I  I  I 
^129.36 g(x)J 

We geneiate curves of  source strength S  versus height of  burst 

r   in  the  following way:     Picking Y and B.   determines p    and  hence  r 

through Lq.   (B-21)   (again using  the 1962 Standard Atmosphere).     1 he 

quantity x   is determined  from  Fig.   B-l or Table B-l,   and  f(x) and g(x) 

for  use  in tiq.   (B-22; are found  from Figs.   B-2 and  B-3. 

Results  for  yields Y-10 kT,   100 kT,  and  1 MT and Rayleigh 

wave periods T • 10,  20,   and 40 seconds are  shown  in Figs.  B-A,   B-5, 

and B-6.     The  yields we  refer   to are effective yields which at  high 

altitudes may be less than  the nominal  yields due  to  radiative or other 

energy loss mechanisms.     There  is a maximum  in source strength which 

occurs at about 80-85 km  for   10 kT,  65-70 km  for   100 kT,  and 50-60 for 

1  MT.     The  strength of   the maximum  is greatest   for   the  larger Ravleigh 

wave periods and  for  the shorter periods the maximum may disappear 

entirely.    The altitude at which  the maximum occurs  increases slightly 

with Rayleigh wave period. 

The variation of   source strength with altitude can be appre- 

ciable.     For example,   the  source  strength  for a  Rayleigh wave period of 

40 seconds and a yield of   1ÜÜ kl   increases by almost  a  factor of  J as 

the  height  of   burst   is raised  from  20 km  to   70 km. 
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Figures B-7 and B-8 show source strength plotted against yield 

for Rayleigh wave periods of 10, 20, and 40 seconds and burst heights 

of 40 and 80 km. Within the range of parameters treated, the source 
1/2     2/3 

strength increases with yield at a rate between Y   and Y 

B.4 Conclusions 

a. Rayleigh wave amplitudes from intermediate altitude detonations 

vary with height of burst as well as yield. 

b. The variation with yield appears to lie between the 1/2 and the 

2/3 power, depending on burst height and the Rayleigh wave period 

being considered. 

c. For a given yield the Rayleigh wave amplitude, at least for 

periods of 20 seconds or more, has a maximum at a particular 

burst height. The maximum occurs at 80-85 km for 10 kT, 65-70 km 

for 100 kT, and 50-60 km for 1 Mt.  The strength of the maximum 

is greatest for the longer Rayleigh wave periods and the altitude 

at which the maximum occurs increases slightly with increasing 

Rayleigh wave period. 
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GLOSSARY OF SYMBOLS USED 

Section 2 and Appendix A 

A amplitude function of Lamb mode 

A. Airy function 

A! derivative of the Airy function 

c sound speed 

C correction factor due to Az < 0 Integration In Eq. (A-43) 

d distance moved by low frequencies relative to high frequencies 

F     function containing time and horizontal distance dependence 
of Lamb mode 

G     function defined by Eq. (A-40) 

h,.    dispersion coefficient due to deviations of wind and sound 
speeds from vertically averaged values 

H     scale height 

k     wave number 

k     Imaginary part of k 

k     real part of k r 

i distance behind shock front 

P.     ambient pressure at burst altitude 

P*    critical ambient pressure for breakdown of yield-amplitude 
proportionality 

PL    Lamb mode pressure amplitude 

P     sea level pressure 

P,    pressure amplitude, first peak to trough 
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AP overpressure 

Q large yield amplitude correction factor 

r great circle distance 

r earth radius 
e 

r cylindrical radius for matching weak shock and Lamb mode 

r parameter defined by Eq. (A-14) 

R distance from burst 

Re "real part of" 

R small radius where TT(R ) ■ .1 and atmospheric Inhomogenelty 
is unimportant 

S(u)) Fourier transform of Glasstone pulse 

t time after signal arrival 

t positive phase duration 

t parameter defined by Eq. (A-13) 

T period of far-field disturbance 

V group velocity 

,1/3 
r 
o P"     . 

\J 

V 2   ' 
Az + r  - r 

o    o 
CTd 

yield 

Y yield in megatons 
m 

Y* critical yield for breakdown of yield-amplitude proportionality 

z altitude 
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z altitude of rigid celling In modal analysis 

z height of burst 

Az vertical distance relative to height of burst 

z. lowest altitude to which shock extends 

z. highest altitude to which shock extends 

a      t at TT = .1 for 1 kT at sea level 

.. TT(R ) R 
8     Xti   0  0 H ß 

2Y Ct+(Ro) 

Y      ratio of specific heats 

T      scaled yield to pressure ratio defined by Eq. (A-72) 

3h,. a       kk _ _ 

c 

e radius at which ir • .1 fcr 1 kT at sea level 

Tr(r ,z,t )    relative overpressure at r ,z,t 

ir peak relative overpressure 

T time after passage of shock front 

T waveform arrival time a 

T . characteristic dispersion time 

ty waveform function of Lamb mode 

ij Fourier transform of i|>(r) 

y sum of modes other than the Lamb mode 

a) frequency of disturbance 
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Section 3 

B..,B7,— Bernoulli numbers 

c sound speed 

d distance between ground reflections 

E. exponential Integral given by Eq. (3-14) 

E- exponential Integral given by Eq. (3-13) 

f     function giving relative overpressure vs. distance for 
1 kT at sea level 

H     effective scale height 

H     atmospheric scale height 

I     integral defined by Eq. (3-8) 

I     contribution to 1 from £th transit between ground and upper 
boundary 

I Index for each transit between ground and upper boundary 

m     number of reflections at upper boundary 

9  „   AP 
r 97 ^ PTFT 

n. value of n for a homogeneous atmosphere 

P ambient pressure 

P, ambient pressure at burst point 

AP overpressure 

r radial distance from burst 

r value of r at —^-   =   .2 o ~ p 

R range 

t positive phasa duration 

T far-field disturbance period 
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Y yield 

z altitude of upper refl.cting boundary 

z height of burst 

Y ratio of specific heats 

T Euler's constant 

Section 4 and Appendix B 

AD 
a constant relating relative overpressure to radius at ■* ■ .1 

p 

c sound speed 

E point source energy 

E1 exponential integral 

f(x) dimensionless function defined by Eq. (4-8) 

g(x) dimensionless function defined by Eq. (4-7) 

h scale height 

L(a)) Fourier transform of point source pressure fluctuation 

L positive phase length at r 

L positive phase length at -*- ■ .1 

n starting value defined by Eq. (4-10) 

p ambient pressure at r 

p, ,p ambient pressure at burst 

p sea level ambient pressure 

p ambient pressure at r 
•o K o 

Ap peak overpressure at the ground 

Ap overpressure at r ro r o 
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6p p.•im   source pressure   fluctuation 

•p pressure  fluctuation at  the ground front a print source 

r radius  from burst point,  also height of burst 

r arbitrary  radius   K-ss  than r,  r in particular o 

r rad 1 us at —•- ■   .1 
P 

S dlmenslonless source strength defined by Eq. (4-4) 

t time 

C. positive phase duration at the ground 

x 
r 
a 

Y yield 

Y ratio of  specific heats 

3 scaled scale height   defined by Eq.   (4-11) 

scaled radius 
r 

scaled radius at which -*- ■   .1 
r P 

T Raylelgh wave period 

u frequency of disturbance 
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