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ABSTRACT

Three different acoustic phenomena relevant to nuclear
test detection and diagnostics are discussed in this report:
(1) The generation of long period (3-10 minute) acoustic-gravity
waves is analyzed in terms of a Lamb mode propagation theory.
One result of the analysis is that yield-amplitude proportionality
is predicted to break down for very large yield detonations.
(2) Tue generation and propagation of short period (1-60 seconds)
acoustic pulses is treated by means of weak shock theory. Yield
and height of burst scaiing laws are derived for the far-field
period. The dependence of period on atmospheric conditions and
propagation path is also discussed. (3) The variation of long
range Rayleigh wave amplitude with yield and height of burst is
discussed for detonations at lower altitudes than previously

treated.
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1. INTRODUCTION

This report is councerned with acoustic disturbances produced
by nuclear detonations which are important 4in the problem of long
range test detection and diagnostics. The phenomena we treat, although
they are different at large distances, all originate in the detonation
blast wave. The basic method of our treatment has been to determine
how the blast wave characteristics, and hence the detonation parameters
such as yield and height of burst, determine the far-field acoustic
disturbance. We have, in addition, attempted to indicate how atmospheric
conditions and propagation path ultimately determine the far-field
disturbance.

Three types of phenomena are considered:

a. In Section 2 we treat long period (3-10 minute) acous*ic distur-
bances in terms of a theory based on Lamb's atmospheric edge mode.
A detailed consideration of how the near-field shock wave evolves
into the Lamb mode suggests that the far~-field amplitude will
increase somewhat faster than directly proportional to yield for
very large yield explosione. The exact yield dependence 1is,
however, determined by direction of propagation and atmospheric

conditions near the burst point.

b. In Section 3 we discuss the dependence of short period (1-60 second)
acoustic signals on source and propagation parameters. We find
that the signal period varies approximately as the cube root of
yield, is relatively independent of burst heighi, and is very much
affected by the direction of propagation relative to the high
altitude winds.

c. In Section 4 we consider the variation of far-field Rayleigh wave
amplitude with yield and height of burst for atmospheric explosions.

This section is primarily an extension of previous work to lower



heights of burst than were formerly considered. Our principal new
finding is that the amplitude for low altitude detonations is a much
more rapidly increasing function of yield than for higher altitude

detonations.

Overall conclusions reached are presented in Section 5.



2. SOURCE MODELS FOR THE EXCITATION OF LAMB'S
ATMOSPHERIC EDGE MODE BY NUCLEAR EXPLOSIONS

2.1 Introduction

The acoustic waveform observed several thousand kilometers
away from a megaton range nuclear detonation begins with several
cycles having a dominant period of from about 3 to 10 minutes. The
amplitude of this portion of the acoustic signal has previously been
predicted to be proportional to explosixnxyieldsl) Recently these first
few cycles of the waveform have been analyzed by Pierce and Poséy(z)
under the hypothesis that the acoustic pulse propagates as the real
atmosphere's counterpart of Lamb's edge mode. In the material which
follows we rely heavily on the Pierce-Posey theory. This theory
appears to be in at least qualitative agreement with test data.(3)
When it has been tested against multimode numerical calculations the
theory has also produced good agreement for the first few cycles of

(2)

the waveform. For our purposes the significant feature of this
theory is that it is analytic. This allows us, for the first time,
to analyze in some detail the relationship between the near-field
shock wave and the resulting far-field waveform.

Specifically we ask the following question: At what distance
from the detonation and in what direction should one utilize the shock
wave parameters to begin a linear propagation theory? Obviously a
linear theory is inadequate when the shock is strong. For a 1 MT
detonation at sea level, for example, the shock becomes weak (the

(4)

relative overpressure is .l) at a distance of about 9 km., Since
this is larger than the sea-level atmospheric scale height, the effects
of atmospheric inhomogeneity might reasonably be expected to play a
role. 1In other words, the weak shock parameters such as relative
overpressure and positive phase duration will be different in different
directions. Therefore we want to know whether a particular portion of
the shock front dominates excitation of the Lamb mode and, if so, we

want to know what the shock parameters are for this portion of the front.



The question of what parts of the shock front are most impor-
tant in determining the far field waveform is rot the only question we
have to answer. The distance at which we match the weak shock to a
linear propagation theory will also make a difference in the far-field
result which the theory predicts. For example, consider the differ-
ence that occurs if we take the horizentally propagating shock wave
from a 1 Ml sea-level explosion at two places: (1) 9 km, where the

4)

relative overpressure is .1, and (2) 58 km where it is .Ol. For a

weak shock in a homogeneous atmosphere ;Rt+ is a constant.(s) 7 is
the peak relative overpressure, R is the distance, and t, is the posi-
tive phase duration. In the present example t, must increase by a
factor of about 1.55 between 9 km and 58 km. The energy in the low
frequency portion of the pulse %1->> Lol which is responsible for
the long period portion of the fur-field waveform, is proportional to
ﬁRt+2. This result follows from Fourier analysis of a weak shock

(6) Since FRt+ is a

profile such as the so-called Glasstone pulse.
constant, the low frequency energy is proporticaal to t, and must also
increase by a factor of 1.55 bdetween 9 km and 58 km. We conclude that
if we chose to match a linear propagation theory to the shock wave at

7 = .01 rather than at .1, we would predict far field amplitudes whiclh
are greater by a factor of 1.55 The difficulty is not that wc have not
gone to small enough m. For a weak shock 7 never becomes so small

that the propagation is linear; that is, the Fourier amplitudes at
different frequencies are never frozen relative to each other. The
energy in the low frequency portion of the pulse continues to increase

which quantity increases asymptotically as vinR

proportional to t,
&)

’
for a horizontally propagating shock.
In the sequel we use the Pierce-Posey theory to investigate
how the far-field waveform evolves from the near-field shock. Specific
conclusions reached a.-: (a) The shock front extending over a number
of scale heights in altitude is of almost equal importance in exciting

Lamb's atmospheric edge mode. A consequence of this fact is that



features peculiar to a limited portion of the shock front cannot domin-
ate the excitation. An example of what we mean by a feature peculiar
to a limited portion of the shock front is the existence of a shock
precursor reglon near the ground within which shock parameters are
drastically altered. This occurs when a low altitude detonation occurs

over a heat absorbing surfaces6)(b) For small yields, the appropriate

distance for miatching increases as Y1/3. where Y is the explosion
yield. For large yields the appropriate distance for matching

Y1/3

fncreases more rapidly than . This produces a yield dependence

in the far-field amplitudes which varies approximately as
2 ]

! 3 Y*

which depends on atmospheric conditions near the burst and on the

[ o o e
Y1 +'-Z '\/ L } for Y > Y*, and as Y for Y < Y*, Typically, Y*,

direction of propagation, is the order of 10 Mt.

In the next section we outline the method used and the major
assunptions made in calculating the far-field Lamb mode amplitude from
the near field shock parameters. The calculation itself is contained
in an appendix.

Then in Section 2,3 we compare the above theoretical prediction (b)
with the test data. While the results of this comparison are not con-
clusive we find that there is indeed a strong indicatfon that on
occasion very large yfelas do produce anomalously large far-field
amplitudes.

Finally, we summarize the results of this study, and indicate
where we believe extensions of the analysis would be most fruitful, in

the conclusions presented in Section 2.4,

2.2 Method of Calculation of the Far-Field Lamb Mode Amplitude

In this section we outline the method used and the major
assumptions made in calculating the far field Lamb mode ®mplitude. The
actual calculation {s done in Appendix A.

The fundamental assumption of the theory, the justification
for which has been discussed by Pierce and Posey, is that the long



period acoustic pulse observed at great distances propagates in the
real atmosphere's counterpart of Lamb's edge mode.

To extract this mode from the near field shock wave we pick
a cylindrical matching radius Ty in a manner described below, and
decompose the shock pressure pulse into a modal sum, one of whosc
terms is the desired Lamb mode. This Lamb mode term is then taken to
propagate lincarly to the observation point, a great circle distance r
from the burst, in accordance with the Lamb mode dispersion cquation.
Because we are primarily interested in modeling the source, we do not
attempt to incorporate a realistic atmospheric model in the theory,
f.e., one which wuld include effects such as acoustic ray refraction.
Horizontal refraction of the Lamb mode may be an important effect, but
this can be treated independently from the source modeling.

To simplify the analysis several assumptions are made con-

cerning the properties of the near field shock wave:

a. The weak shock is characterized as a Glasstone pulse whose peak
overpressure 7 and positive phase duration t, are taken to be
funct fons of altitude and range as described below. It must be
admitted that the choice of a Glasstone pulsc is made for lack of
any better analytic reprcsentation of the detonation shock wave.
To our knowledge no detailed analysis has ever been made of how
adequately the Glasstone pulse represents the very low frequency

components of the detonation shock wave.

b. Based on test observations it is assumed that t+ fs much smaller

than the far-field perfod T. Usec is made of this assumption in
t
expanding the far-field amplitude as a series in-ft and keeping

only the first non-zero tem.

¢. The shock front, except where it intersects the ground, is assuncd
to be spherical. This assunption is only intended to apply to the
portion of the shock which is effective In exciting the Lamb mode.

It need not apply, for example, to the upwird going shock front.




This assumption will be correct if the shock becomes essentially

sonic within an effective scale height in the direction in question.

For low altitude detonations the secondary shock which results when
the direct shock is reflected from the ground is assumed to make

a contribution to the far-field amplitude equal to that of the
direct shock. The fjustification for this assumption is that for a
low altitude detonation the secondary shock at sufficiently large
distances from the burst point has essentially the same amplitude
and radius of curvature as the direct shock. Furthermore, the
secondary shock follows the direct shock within a time which is
small compared to the periods observed in the far field. For a
contact or surface burst the secondary and direct shock are of
course the same, although the amplitude may be reduced due to
energy expended in digging a crater, etc. This assumption restricts
the present theory to low altitude detonations (less than say 15 ‘am).
For sufficiently high altitudes the radius of curvature of the two
shocks may be very different and the time lag between the shocks
may be comparable to the far field period. In this case we would
expect interference effects to occur. The high altitude case has
not teen investigated.

The result of the preceding steps and assumptions is Eq. (A-30)

of the Appendix:

¥
- 0 2(2-y) 1
Ps - s Iy 2
r? (sln L ¥ i ; td
e r.

= » e ;(ro.z)tf (r ,z) de (A-30)

* 2 2 F 3
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where:

P, = pressure amplitude of the far field Lamb mode

L

Ps = gsea level pressure

5, - cylindrical matching radius (to be discussed below)
By = earth radius

r = great circle distance
y = ratio of specific heats
H = gcale height

1, = characteristic dispersion time which is approximately a quarter
of the far field period T.

Ai = derivative of Airy function with respect to its argument.
t = time after arrival of the far-ficld acoustic signal

¢ = gsound speed

Az = vertical distance relative to height of burst

= altitude relative to sea level

= peak overpressure of weak shock

t, = positive phase duration of weak shock

To proceed from Eq. (A-30) {t is necessary to assume a specific
spatfal dependence for T and . We take t, to be given at a small
radius Ro. where n(Ro) = .1, by the problem M results for a homogeneous
atmosphere with ambient pressure equal to the ambient pressure at the
burst poinut. Ro is also taken from the problem M results and both
t+(Ro) and Ro are scaled according to Sachs scaling. At the spherical

2 .

radii "J&zz ¥ 5 R, where * and t, are required in Eq. (A-30) thesc

quantities are ottained from the values at Ro by using Reed's theory

(5)

for weak shock propagation in an exponential atmosphere. After
some labor it is found that Eq. (A-30) can be reduced to be written
solely in termus of the horizontal values of the shock parameters T and

t+:



- e 1/y
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(ro. r.)l:+ (ro.z) rof - Ai [‘ + yJ (A=44)
y d
0
where z is the height of burst and the new integration variable
B "zz + r2 -r

. | 0 0

"4

Lquation (A-44) is essentially fidentical to the result of

Pierce and Posey. This is in spite of the fact that we have used a
distinctly different shock model, one which includes the effects of an
exponential atmosphere. This result occurs because in the integral of
Eq. (A=30) the effect of the exponential atmosphere on the shcck
parameters tends to be cancelled by th: Lamb mode weighting factor
VIV S il e el purely geometrical effects.

Now, the f{irst maximum of the far-field amplitude P, (-::,

’ -
occurs at about t = 1y For t = 4 the quantity Ai E-fngoccurring in
"y

Eq. (A-39) is shown to be significant only between about 0 < y < 2.
Truncating the y integration at y=2 corresponds to an effective upper
limit on the 4z values of interest of 4z » thd. that is about a half
wavelength of the far-field disturbance. Typically this means that
the shock at 42 values of at least up to 60 km contribute almost equally
to the Lamb mode excitation. This is the basis for our statement that
features peculiar to a limited portion of the shock front, such as the
existence of a precursor region near the ground, cannot dominate the
Lamb mode excitation.

It now remains to choove the matching radius r, which occurs

in Lq. (A=44). Physical arguments are given in the Appendix that this



should be done in the following way: We make a Fourier analysis of the
Glasstone pulse and assume that each frequency component within the
pulse propagates at a group velocity given by the Lamb mode dispersion
equation. The matching radius r is detemined by requiring that at

r the low frequencies fu N'——l—- wvhich will be important in the far
o \ td(r)
field must have propagated ahead of the largest amplitude frequency

1
components of the weak shock fuw '?:7?:7')' The basis for this

criterfon is that while the low frequency components are located
behind the shock front they will gain energy from the higher freyg icy
components, but once they move ahead of the higher frequencies their
propagation should he amenable to a linear treatment. A more detailed
statement of this argument is given in the Appendix.

This criterion assumes the form:
t+(rn) ~ td(ro) (A-54)

vhich serves to determine T, Equation (A-54) has an additional inter-
pretation: Suppose we start with the near field disturbance and follow
its development to increasing radii by means of weak shock theory. In
addition suppose we take the far-field disturbance and carry it back
toward the detonation by means of the Lamb mode theory. According to
Eq. (A=54) the matching radius is the distance at which the dominant
frequency content of the two disturbances becomes equal.

It turns out that for small yields :d(r) > t, (r) for all r

at which the shock is weak. In this case we use conventional Sachg

scal ing ro al|=— ,» where Y {8 the detonation yield. The constant

of proportionality is chosen to make r, (% )n cont fnuous function in
b

making the transition to the large yield case where tq. (A=-54), rather
than Sachs scaling, is used to determine ro.

The detonation shock parameters enter into Eq. (A=44) in the

2 =N D -
form n(ro.z)t+(rn,z)ro. Since for a weak shock the quantity

- 10 -



— = 2/3
*(r.z)t+(r.z)r is proportional to (!-) and independent of r this

P
b
means that the far-field amplitude PL is just proportional to
Y 2/3 Y
e t,(r ) which increases more rapidly than o— when r_ is determined
b o Pb o

by Eq. (A-54). The result of this analysis is the following*:

-5 1/y-1
p . k.1 x 10 1 [P
1 1 g
¥ r.é sin r | ? (t‘.xd):"2 . s/
el
) 3 r I
Yy 4 t
Y Q|+ oA -y (A-69)
"b'oj Aot T T

where PL is in atmospheres, Y in kT, and ct, and L in km. The

d
“correction factor" Q is:

]
- ®
Q +£ “‘x_ P—b.] Y_>!:
’ & ] -
.Ih 3 . Y Pb Pb Ps
®
.1, %‘5%‘; (A-75)
b~ b

The critical yiel? to pressure ratio is given in terms of Pierce and

Posey's dispersion parameter hkk by:
3/2
e 3/2 Mt sec .
e ‘oo(hkk) atmospher » k-9l2 ol

* The corresponding constant in the work of Plerce and Posey(z) would
appear to be 3.2 x 10=3 rather than our value of 4.7 x 103, This
difference prob1bly arises prinarlly from their choice of nt2 To as
(3.4 x 102)(.33)2(1.61) = 6.1 x 103 km/sec2 for a 1 kT sea level

detonation. Based un problem M(4) we 1ave taken ntfro = (.1)(1/3)2(.9)-10

« il =

-2



The quantiie h“\ is t:dependent of frecuency but fs a function
of atmospheric conditlons near the burst (we only rejquire “kk in
g, (A-66) out to the distance r“) as well as the direction of propa-

k
pation. For this reason [t appears that -:,;- an only be calceulated
1
numer ically in conjunction with a detalled atmospheric model for condi-

tious near the burst pojnt,

hevertbeless, as discussed in the next section, it is
possihle to see some evidence In the low altitude test data of the
breakdown of yield-impl ftude proportional ity for very large yield

detonat fous.

2.4 Comparison of Tueory with Test Data for Large Yiclds

There Is at least a suggestion in the (est data that very

large yields do on occasion produce anomalously ifarge far=ficeld ampli-

Po(L= I) \/:;in r/;__ 2/1
tudes. According to Lg. (A=64) the quantity ——-° * o

Y oY) d
is supposed to be o coastant for near surface detonations.  Taking
Pi("-‘d) to be about lalt the pressure amplitude tirst poeak to throush

pfpt' and L be about a quarter of the far-ficld period T, we have

It‘pt S/ sin r/ro 3/2

used the data presented in Ref. 4 to plot Y vs. v i
in Fig., 2.1, dote that the plot is semi logarithmic. 1he detonations
used are the Soviet explosions of (a) L0 September, (b) 11 September,
(¢) 14 September, (1) 4 nctober, (e) 6 October, (f) 20 October,

() 23 October, (L) 30 dctober, (i) 31 October, 1961, and the U. 5.
explosions of (J) 4 May, (k) 10 June, (1) 12 June, (m) 27 .June, and
(n) 11 July, 1962, Some detonations occur In Fli, 2.1 more than once
because data from several stations are used,

The vertical lines in Fig, 2.1 have been arbitrarvily drawn at

p—

I_f;p'.t' Vo sin :'/rc . B u=bar (

x Se 25 910 < 100 e:«-c)'j/‘. The average valuce
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of 25 Eﬁ%EE (100 sec)3/2 corresponds to a choice of sound speed
¢ = .31 km/sec in £q. (A-64). The detonations which lie outside the
large amplitude boundary do tend to be large yield detonations. For
example, 58 and 24 Mt at two stations lie outside, 25 Mt and two 9Mt
detonations also lie outside.

Figure 2,1 provides some indication of the possible breakdown
of yield-amplitude proportionality. However, we should caution thnt
some of the deviations may be caused by propagation rather than source

effects and furthermore that some of the yield estimates, which are

based on seismic data, may be in error.

2.4 Conclusions

We have found that the shock front extending from the ground
to many scale heights above the ground is of almost equal importance
in determining the far-field Lamb mode amplitude. Because of this,
the far-field amplitude should be relatively independent of phenomena
peculiar to any small portion of the shock front. In particular,
ground effects such as the presence of a precursor should not play
a very important role.

For large yield, low altitude detonations we have found a

far-field amplitude dependence which varies as Y [1 + K%. in %; ],

where typically Y* is the order of 10 Mt for a sea level detonation.
This dependence arises from a detailed consideration of the mechanism
by which the low frequency components cf the near-field (shock)
disturbance become spatially separated from the high frequency com-
ponents. The precise value of the critical yield Y* where yield-
amplitude proportionality breaks down is determined by atmospheric
conditions near the burst as well as the direction of propagation and
must be determined by detailed numerical calculations. WNevertheless,
in analyzing the test data we have seen some evidence that very large

yields do on occasion produce anomalously large far-field amplitudes.

- 14 -



Finally, we note that a number of potentially important
source effects can be explored within the framework of the present
theory. The most important of these effects, which we have not investi-
gated, are probably related to the presence of a secondary shock front
due to ground reflection. We expect that at low altitudes the effect
of the secondary shock in determining the far-field amplitudes is
approximately equal to that of the direct shock, but for higher alti-
tude detonations interference or destructive effects between the two
shocks may occur. It would be desirable to subject these ideas to a

quantitative analysis.

- 15 =



3. VARIATION OF FAR-FIELD HIGH FREQUENCY ACOUSTIC
PERIODS WITH YIELD AND HEIGHT OF BURST

3.1 Introduction

This portion of the report is concerned with detonation-
produced infrasonic signals which have periods between about 1 second
and 1 minute. These signals have been far less extensively studied
than the long period (3-10 minute) acoustic-gravity waves discussed
in Section 2.

The short period disturbances are difficult to treat
theoretically because their propagation is sensitive to small-scale

- g
(7,8 has calculated

meteorological phennuena. For example, Meecham
that signals in the second to minute period range have a substantial
probability of encountering a diffracting wind duct in propagating
between the ground and an upper boundary at about 50 km altitude. On
each encounter tlie acoustic signal is split and a small fraction of
the energy is lost from the main pulse. Accord.nc te Meecham, since
the propagation path to large distances involves a large number of
transits between the ground and the upper boundary. the main pulse
eventually becomes so degraded at large ranges that it becomes lost
in the multiplicity of pulses. In fact, as Meecham notes, the far-
field signal is observed to consist of a large number of apparent
pulses extending over a time interval of an hour ov wore. He attri-
butes the extended signal duration to horizontal refraction by large-
scale weather fronts.

Meecham's findings are related to the degradation of pulse
amplitude with range. We are concerned with the far-field pulse period
and here the situation is quite different. We believe that the period
of the main pulse is relatively unaffected by pulse splitting phenomena.
In particular we find, as outlined in the subsequent sections, that
the disturbance period is essentially determined after only a few

transits between the ground and the upper boundary; that is, before
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pulse splitting has had an appreciable effect. A corollary to this
finding is that the far-field periods have a very weak dependence on
range.

The model ¢n which the anciysis is based follows Meecham in
describing the upper boundary as a reflecting plane at about 50 im
altitude. This is the mode of long-range propagation observed for
infrasound from rockets.(g) The precise altitude of reflection, which
is an important parameter in the theory, is determined primarily by
the direction of signal propagation relative tu the winds at about
50 km altitude.

In our model the period observed in the far-field is pru-
portional to the positive phase duration of the near-field shock wave.
The positive phase duration Iincreases as the shock propagates and this
effect is calculated by means of weak shock theory. This is the novel
feature of our analysis, namely that it includes nonlinear weak shock
effects over large distances.

To obtain starting values for the application of weak shock
theory we use modified Sachs scaling. This procedure has been demon-
strated to be superior to ordinary Sachs scaling for prediction of peak
overpressures in an inhomogeneous atmosphere. We extend the concept
of modified Sachs scaling to apply to prediction of positive phase
duration as well as peak overpressure.

In Section 3.2 we develop the weak shock propagation model
and fn Sectfon 3.3 we obtain starting values for this model using
modified Sachs scaling. The theory is then used in Section 3.4 to
derive scaling laws for the far-field period. Specifically we find:

a. The height of burst dependence is very wealg for detonations in

the lower atmosphere it is the order of (1 + 4; 3 )where z is the
height of burst in kilometers.

b. For yields small enough that both weak shock theory and modified
Sachs scaling are valid the yield dependence is approximately

Y1/3. For very large yields the situation is uncertain.

-17 -



c. Far field periods are found to depend on the altitvde of the upper
z /4l
reflecting boundary, Z approximatelv as ¢ o 8% uhere uq is the

atmospheric acale height. The altitude A is itself primarily
determined by t'i: direction of propagatlon relative to the winds
at about 50 km.

3.2 Propagation Model

In this =ectfon we derive the baslc equatlon relating the
perioud of the far-field high frequency acoustlc signal to the nvar-
field shock parametcrs,

We assume that the signals of {nterest In the far fleld are
the ones of largest amplftude. Furthermore, we assume that the perlod
of these signals corresponds to the perlod of the larpest amplitude
Fourier components of the weak shock wave. Characterlzing the shock
(6)

wave as a Glasstone pulse with positive phase durattan t, we find

that the largest amplitude Fourier component lws a period:

T - 2“(+ . (3"’)

The problem is thus to calculate t+,which quantity will
increase with {ncreasing distance from the detonatfon. To calculate

we use Reed's weak shock equations for an

(5)

the evolution of t,

{nhomogeneous atmosphere:

Y }
a0 Yo fols Pro) (3-2)
PO "Pr )T, \ o
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- r
‘4 ! "o fo P(ro) dr

ol Ll mar () F"J ’ (D
5 ct, ;o

wvhere F%%T vt aud P(r) are the values of relative overpressure,

positive phase duration, and ambient pressure at a distance r from the

sp
detonation, FT;P)' t:. and P(ro) are the same quantities at a smaller
o

distance T, ¥ is the ratio of specific heats, and c is the sound speed.
These equations are written for a spherical shockwave. In

the rcal atmosphere the shock wave is refracted and becomes non-spherical.

However, hydrodynamic calculations at the Air Force Weapons Laboratory

have shown that to a very high degree of approximation, for an exponential

atmosphere each portion of the shock front can be regarded as propagating

independently with its own radius of curvature.(lo)

The equations are
also written for an N wave pulse form. Groves has examined the difference
between N wave and Glasstone pulse propagation laws. He finds the
difference to be very snall.(ll)
The dependence of t, on values at r, may be eliminated by
taking the logarithmic derivatives of Eqs. (3-2) and (3-3) and combining

to obtain:

ol P
% eV :::) +P(r)3— Ty A (-9
l 23 " For P(r)
For an exponential atmosphere this becomes:
oyl e
- T .
Jdemto
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vhere

P

TOR (3-6)

ner 2— N o

and H is the effective scale height in the direction of interest from
the burst. The negative and positive signs in Eq. (3-5) correspond to
upward and downward shock propagation, respectively.

Applying Eq. (3-5) at the starting radius D above the burst
and substituting back in Eq. (3-2) yieclds:

5 7—7“' ] -r_/an C o
t (r) = T + n(r ) f Pl )
[1 + n(r )]

where P, 1is the ambient pressure at the burst altitude z.

(3-7)

The range dependence of t, is contained in the integral:
i Pb dr
Py ¢ ° -
r

winich 1s to be done over a propagation path such as illustrated in
Fis . 3-10

It is convenient to rewrite Eq. (3-8) as:

I = 2: I2 - (3-9)

k=1

where the index L corresponds to each straight line segment as shown in

Fig. 3-1, and L i{s a large number for the far-field disturbance. We now

& 200 =



(3) \ (¥

FIGURE 3-1:

ASSUMED PROP'GATION PAT.
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turn to the task of summing the series in Eq. (3-9). Assuming that the

radius of curvature is unaltered upon reflection we obtain for each

term:
z-2; r
L8 W '"% @ L (3<10)
L 8 ” . -
-(t=)z /2, 1tz -z (i-1) z - 7
0 N 9 (S . O
Py . \Ey 7 I R (oLl
Lodd . L =
i 41
-z/it_ iz /2u (i-1) z - z z -7
_ s 0" "8 | . o 1 & 0 R
1, e e \E, i = By o= . (3-12)
teven N & 8 o - 8 -

where "s is the atmospheric scale height in the vertical direction and

the exponential integrals E, and L, are defined as:

i 1
hl(y) - Jo de , (3-13)
y
A
' [ ’
E‘(y) - 7 T 9t . (3-14)

For large y Eqs. (3-13) and (3-14) can be approximated as:

- _e_ -
y
. e -
E‘(y) = (3-16)



z -z
o
21
8
in Eqs. (3-11) and (3-12) since these are smaller than the first tems
(z - 2)
les *
that most of the contribution to the integral I, and hence most of the

On the assumption that >> 1 we may then neglect the second terms

by a factor of exp - Physically this is related to the fact

poritive phase lengthening, oL urs at the upper reflecting boundary
i~
¢ P(p)

Using the asymptotic forms, Eqs. (3-15) and (3-16), for the

where the quantlty-' occur ing in Eq. (3-8) is largest.

remaining exponential integrals which are functions of 2z we obtain

the following expression for 1I:

-1 a htl'le (b 2y exply ) Lo T2 YL Tz 3
- I | (o] o !
: (=] L=2
Ltodd teven J
2, -z 1
ye Ei,zu diig exply, 2u s BN
2-1
todd
s (12)
The summation can be further approximated for zo >z
JL m
. 1 £ " et
Glo R.zo-z zo ae 2m=1
i=] m=1
itodd
" B B
B "L 1 7 2
: 2(l‘-o»tnn)‘l»fl.nZ*——z--b6 - =
o 8m
=-:—[1+ i‘.nv’;] . (3-18)
o
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where I' is Euler's constant (.57721) and Bl. 82 -=- are Bernoullt
numbers (1/6, 1/30, --).
The first term in this last expression comes from 11; hencc

a somewhat hetter approximation than (3-17) is:

‘ -‘— -
‘z«-z {:‘
o 0

(3-19)

-
+
b d
=]
8)
1
™
e
Pty
-

where m is the number of reflections occurring at the upper boundary.
Combining Egs. (3-1), (3-7), (3-8), and (3-19) we finally

obtain:
iy Yo %o
7 & IE@E ) e o r, -rn/2n
T == 0 V1 -2 -+ ar) e
l'o 24 o
l--ﬁ-l--fn(ro)
- .'!
= z -z r, :
[1 + fn Vm hi 2“3 - Ei iﬁ’ J— o (3-20)

3.3 Starting Values for Weak Shock Parameters

AP
It now remains to determine the shock wave paraneters FT;ET
o
and n(ro) at r . To do this we use modified Sachs scaling. According
to modified Sachs scaling the relative overpressure, in an inhomogencous
atmosphere, at a distance r from an explosion where the ambient pressure
is P(r), is just the same as if the explosion had occurred in a

homogeneous atmosphere with ambient pressure P(r). That is:

\

- 1/3

AP ‘P(r)

Py~ f {'[ Y ] j (3-21)
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where Y is the explosion yield and f is the function which gives fhe
relative overpressure in a homogeneous atmosphere.

Modified Sachs scaling appears to be much better for shocks
which propagate downward in an exponential atmosphere than for those
which propagate upward. Nevertheless, modified Sachs scaling is
superior to ordinary Sachs scaling (where P(r) on the right side of
Eq. (3-21) is replaced by Pb) ard it is our hope that by using it we
can obtain some additional accuracy in our calculations.

The accuracy of modified Sachs scaling is best illustrated
by a particular example. In Fig. 3-2 we have compared the predic-
tions of modified Sachs scaling for the relative overpressure of the
upward going shock with the results of SAP and SHELL calculations for
the shock propagation at 45° from the horizontal due to a 4 Mt iso-
thermal sphere at sea level.(l3) The SHELL calculation gives somewhat
higher relative overpressures than does SAP because it includes the
effects of fireball rise which SAP does not. The rising fireball,
particularly for large yields, prevents the shock from re!ieving
backwards. At very small angles from the horizontal the differences
between SHELL and SAP are negligible.

The modified Sachs scaling curve in Fig. 3-2 has been

constructed under the following assumptions:

a. The 4 Mt isothermal sphere is assumed to correspond to a 4/.7 = 5,72
Mt detonation. This is based on the value of .7 for the effective
yield for weak shock production from nuclear explosions in real

air relative to ideal air given in Ref. 1l4.
b. The 1962 Standard atmosphere is used for the ambient pressure.

c. The homogeneous atmosphere calculations of Lehto and Larson are

used to provide the function f occurring in Egq. (3-21).(14)

For reasons which appear below we will choose r, to be the
AP

distance at which 37;93-- .2. It can be seen from Fig. 3-2 that for
o

£ Fa
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RADIAL DISTANCE FROM BURST Ctl
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-
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| X MODIFIED SACIS
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=
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FIGURK 3-2: COMPARISON OF SHELL AND SAP CODES AT 650 WITH MODIFIED

SACHS SCALING FOR 4 Mt SEA LEVEL ISOTHLERMAL SPHERE
(After Reference 13)
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this particular case modified Sachs scaling overestimates r by perhaps
5-10% compared to the SAP calculation. The function n(ro) which is the
reciprocal of the slope of the curve in Fig. 3-2 appears to be a smaller
negative number than given by the SAP result. Quantitative comparison
of the modified Sachs scaling result with the SHELL calculation cannot
be done using Fig. 3-2 for directions of propagation other than 45°.
However, for angles less than 45° the agreement between SHELL and
modified Sachs scaling will be better than shown in Fig. 3-2.

In any case we would expect modified Sachs scaling to become

AP
more accurate in predicting the radius r at which P(ro) = ,2 when the

yleld becomes small. The reasons for this are:

1/3

a. r_oa Y and hence the atmosphere encountered by the shock in

propagating to r is more nearly homogeneous for small Y.

b. The interaction of the rising fireball with the upward going shock

is less important for small yields.(ls)
Returning to Eq. (3-21) and putting P(r) =P L
calculate n(r)
1/3
.

n(r) = r — %n s 1 - B P_b rf_'

Jor P(r) JH||Y £

1-35] o o (3-22)

H

where f' is the derivative of f with respect to its argument and n, is
the value of n for a homogeneous atmosphere (H + «), The quantity 0,
is plotted vs. relative overpressure in Fig. 3-3 which is based on
Ref. 14.

AP
We take P(ro) = ,2 for which, according to Fig. 3-3,
o
n, = - 3/2. Eq. (3-22) then gives:

s 7 =
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ale ) w =342 (3-23)
o 2 2H

The radius T, is given by modified Sachs scaling as:

1/3
Y
= .53 (F(-ro—)) km , (3-24)
where Y i{s in kT and P(ro) is in atmospheres. The constant appearing
in Eq. (3-24) is obtained from Ref. 14.

AP
Substituticn of Eq. (3-23) in Eq. (3-20) with Wr"—)- - .2
glves: <
”~ . -\
r -r /24 0 zZ -~z
s 3 2L ) 0 o
T n T ('2)c l+e [.l‘O'D.nv’ll-ljlii 2“3 I‘
Q.‘!’
Iy |
-, \2_“'_]) (3-25)

where according to (3-24):

~r /34
r e ° = .53( N = .53 e 8y

b

(3-26)

Y )1/3 z/3H 1/3
(o]

since Pb is measured in atmospheres.

Combining Eqs. (3-25) and (3-26) we obtain the basic equation
relating far-field periods to detonation and propagation path parameters:
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r /M /3

- A ;J
-r°/21I - z -z It

¢ 2 l-E |2 -

1+ e l(l + in vm) !'2i 20 hl 2"1 ! (3=27)

{ 8 J
z -z

For detonations in the lower atmosphere ST I the term
s
2- 7
involving Ei T )is dominant and Eq. (3-27) becomes:
5

r /121 z/3M B
T = .SZI Y1/3 e ? a s

| -
f e - B
V 14 invm \/l‘. (- . (3-28)
i ‘"S

or using the large argument approximation given by Eq. (3-16) for
z - !\
[

t,|

2

r /120 z/3H R P
Ta Y1/3 e ¢ e .

(1 + tn Vm

) y1/3 ro/12H .":/12!*18

z /J4n
e e 1+ invm "(‘—'.:_‘ (3-29)
-\/‘20- 2

Equations (3-28) and (3-29) provide the basis for the
discussion of scaling laws which follows.
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3.4 Scaling Laws for the Far Field Period

3.4.1 Range Scaling
The range dependence in Eqs. (3-28) and (3-29) is contained

in the factor V1 + in /a . Since m is the number of reflections from

e —— e ——

the upper boundary this factor is approximately I I % Ln % » where

R is the range and d is the distance between ground reflections. Based

on ray tracing calculations for infrasonic propagation in a realistic

(10)

atmosphere a typical value of d would seem to be about 200 km. The
factor ‘V 1+ % in % would then be equal to 1.47 at 2,000 km, 2.62 at

5,000 km, and 1.72 at 10,000 km; that is, an increase of 17Z between
2,000 and 10,000 km.

Actually, this is the largest range dependence we would
expect since processes we have not considered would tend to inhibit
the increase of period with range. These processes operate in two
ways: (a) They decrease the weak shock amplitude, for example by pulse
splitting due to wind ducts, and this decreases the importance of non-
linear effects of which period lengthening is a manifestation.

(b) Nonlinear effects are also decreased in importance by erosion of
the weak shock front, that is, by an increase in the rise time at the
front. This could be caused, for example, by ambient turbulence parti-
cularly at higher altitudes where there is large wind shear. If the
shock front ie sufficiently eroded the shock will no longer satisfy

the Rankinz-Hugoniot relations on which Eqs. (3-2) and (3-3) are

based and we would expect pulse lengthening to be less rapid than

these equations predict.,

In summary the reauge dependence should be very weak.
Furthermore, the exact dependence is probably affected by meteoro-
logical conditions along the propagation path.
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3.4.2 ueight of Burst Scaling

The dependence of far-field period on height of burst z

fcr detonatfons ir the 'ower atmosphere is given by Eq. (3-29):

z/12 W
S

c

T a 1+ -—’3—‘ , (3-30)

-z -z o
/ 2

where z is measured in kilometers and where we have set the scale

height ¥, = 7 km and the altitude of the upper boundary z = 50 km.

The origin of this weak height of burst dependence can be
seen by inspection of Eq. (3-29). The dependence on height of burst

z/3H

occurs in two factors: (a) e o P-l/3

b
that the initial positive phase duration t: increases with increasing

,» Which is due to the fact

height of burst according to hydrodynamic (Sachs) scaling.
z -z
0
€XP \an
(b) -—-———éé— which represents the increase in positive phase dura-

z -2
atio;\frog the initial value t: to the value at the upper reflecting
boundary. This factor is a decreasing function of height of burst
since the higl.r the burst altitude the shorter the path length over
which the positive phase duration can increase. As shown by Eq. (3-30)

these two effects nearly cancel for detonations in the lower atmospherec.

3.4.3 Yield Dependence

According to Eq. (3-26) r < "s< H for

v 3 )
= 2.3 Mt, (3-31)

for H =7 km and P, = 1.
s b



For sea level detonations of yield much less than 2.3 Mt
B, < H and Eq. (3-28) gives:

T o y/3 (3-32)

For larger yields the factor erollzuoccurring in Eq. (3-28)
would make T increase more rapidly than Yl/3. Before this factor can
become effective, however, several other effects occur. First, the
upward going shock becomes strong. The maximum value of r, allowed
by Eq. (3-26) is r, = JH. The reason for this is that according to
modified Sachs scaling the upward going shock never reaches a value

AP
of 5?;97 as small as .2 for r, > 3JH. We conclude that if weak shock
o '
theory 1is to be valid r, must be considerably less than 3H and hence

r°/12n
the factor e would not be very important.

Second, as noted by Greene and Whitaker in Ref. 13, and
as demonstrated by the comparison between SAP and SHELL calculations
in Fig. 3-2, the rising fireball from large yield detonations interacts
with the upward going shock and prevents it from relieving backwards.
The effect of this phenomenon should be to decrease the near-field

positive phase duration and hence to decrease the far-field period.
r /12H
This would offset and conceivably could dominate the factor of e .

3.4.4 Dependence on High Altitude Winds

When the signal propagation is in the direction of the
winds near 50 km (downwind) we expect the reflection altitude (zo) to
be lower than when the winds are perpendicular (crosswind) or opposite
(upwind) the direction of signal propagation. The reflection altitude

z [4H
occurs in Eq. (3-29) in the factor e = 0 A Therefore, if HS is taken

as 7 km, a 10 km change in z will produce avout a 40% change in T.
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This effect would appear to be anong the most significant sources of
variation in the far-field period for a given yield and height of
burst. Note that the far-field periods will be different in different
directions for the same detonation.

In the case of upwind propagation, ray tracing calculations
indicate that reflection mavy not occu: at the 50 km level. There is,

(10)

however, a reflecting boundary at about 100 km altitude. Applying
Eq. (3-29) for a sea level detonation the period of signals propagating

100 /41 )
5 /o

/100 e50/lolls

in this channel is found to be a factor = = 4,2 times
as large as for signals propagating in the 50 km channel.

finally we return to FEq. (3-28) to obtain a numerical
estimate for the far-field periods. According to what has been said

r /121
regarding yield scaling ve neglect the factors e ¥ . We take the

sound speed ¢ = .31 km/sec and the scale height llq = 7 km., We treat
the case of a burst near sea level (z = 0). Results for other burst
heights can be accomplished by means of Eq. (3-30). Equation (3-28)

becomes:

T 5% ) ‘;: sec
— = 1,84 = 1+ nvm (3-33)
Y1/3 , 114 (kT)1/3
where 2z is in kilometers. 4
In Fig. 3-4 we plot —%73 vs 2z , for z_ between 40 and
Y o o

#0 km and for m = 1,2,10, and 25. The value m=1 neglects pulse

lengthening effects beyond the first reflection at the upper boundary.

The values m=2,10, and 25 would correspond to weak shock propagation,

without pulse splitting, to larger distances. For a skip distance

d = 200 km the corresponding ranges would be 400, 2900, and 5000 km.
Fipure 3-4 predicts the far-field period to be the

order of 10 sec for a 1kY low altitude detonation. A more precisc

s =
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estimate would require detailed information concerning the altitude of
the upper reflecting boundary as well as the approximate number of
transits between this boundary and the ground for which pulse lenthen-
ing effects are important. Determination of the reflection altitude
can be accomplished by ray tracing. Determination of the appropriate
m value is more complex since detailed meteorological effects such as
pulse splitting by wind ducts must be considered. Mowever, the far-
field period is inscnsitive to the exact value of m and so only a

rough estimate no ! be given,

3.5 Conclusions

Based on the theoretical model outlined in the text we
have reached the fullowing conclusions concerning the short period

detonation-produced infrasound observed at large distances:

a. The period for a 1 kT detonation is the order of 10 seconds.

Y1/3. For large. yields the

b. For small yields the period scales as
scaling is uncertain. The interaction of the rising fireball
from high yield detonuations with the upward going shock needs to

be investigated before the large yield scaling can be determined.

c. The range dependence of tar-field periods is extremely weak, as
an absolute maximum about a 177 increase in going from 2,000 to
10,000 km, Pulse splitting by wind ducts and the effects of
other small scale meteorological phenomena are expected to make the

actual dependence cven weaker than the above value.

d. The period dependence orn height of burst is also extremely weak.

The dependence is given approximately as: Tul|l + Z%_7 » where

z is the burst height in km.

e. Probably the most significant variation in far-field period, other

than that caused ty variations in yicld. is caused by the dircction
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of signal propagation relative to the winds at about 50 km alti-
tude. For downwind propagation the signal reflection occurs at a
lower altitude than for cross wincd or upwind propagation. The

dependence of period on reflection altitude is approximately given
2z [28
by: Tae ° ,» where z is the reflection altitude in kilometers.

A 10 km variation in z, produces about a 40% variation in T. The
altitude z needs to be determined by ray tracing for the appro-

priate atmospheric conditions and direction of propagation.
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4. GENERATION OF RAYLEIGH WAVES BY
ATMOSPHERIC NUCLEAR DETONATIONS

4.1 Introduction

This section is an extension of work contained in a previous

(15) (16)

report and which will also be presented elsewhere. For convenience
Ref, 16 has been included as Appendix B of this report. 1In this earlier
work contained in Apnendix B we calculated the source strength for Rayleigh
wave excitation, which is defined below, for intermediate altitude detona-
tions. These previous calculations were limited to burst heiglits betwecn
about 30 and 100 km altitude.

In the present work we extend these calculations to lower
burst altitudes. Specifically in the case of a 10 kT detonation we n-v
have results as low as .5 km altitude and for a 1 Mt cdetonation as low
as 2 km altitude.

The extension to lower altitudes is not trivial. As discusscd
below, we have had to develop different methods of calculation than
were used for detonations above 30 km altitude.

Our definition of the source strength for Rayleigh wave exci-

17)

tation is based on the work of ToksBz and Ben-Menahem. They have
considered the far-field Rayleigh wave amplitudes c¢xcited bv a point
source in a homogencous atmosphere. For three-dimensional propagation
in the absence of nonlinear effects, the source parameters contribute

to the amplitudes almost entirely through a factor

oo

|lL(w)| = f sp(t) e 1t ge (4-1)

-

which is the Fourier transform of the point source pressure fluctnation
6p(t). In the case of linear rressure pulsc prepagation, Sp(t) o pg(t) r,
where dpg(t) is the time dependent pressure pulse on the ground a distance

r beneath the source.
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Even in the case where the pressure pulse propagation is non-
linecar, because of pulse lengthening and dissipative effects we expect
that the source strength for Rayleigh wave excitation will be propor-
tional to the Fourier transform of épg(t) r. The reason is simply that
the source strength can only depend on parameters at the ground and not
on the previous history of the pulse propagation.

For reasons which will become evident, we therefore define

the dimensionless source strength to be
Sp(t) e " dt (4-2)

where 1t = 2n/w is the Rayleigh wave period of interest, pg is the sea

level pressure, and h is the atmospheric scale height. We assume a

(6)

Glasstone pulse at the ground

-t/t+

Gpg(t) = Ap (1 -—le (4-3)

where Ap 1is the peak overpressure and t, is the positive phase duration.

We then-obtain the following result from Eqs. (4-2) and (4-3):

S(1) = = A(P Y (4-4)
T
L+ {5 Jp h
\2"t+ g

-

Equation (4-4), which is identical to the definition used in
our previous work (liq. (B-19) of Appendix B), is the basis for the subse-
quent analysis. In deriving lLq. (4-4) we have not considered details
of Rayleigh wave propagation, so that we are unable to provide absolute

vialues of far-field Rayleigh wave amplitudes (or phases). The present
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analysis is directly applicable only to estimating relative yiclds or
heights of burst for situations in which source and receiver locations
are the same for two or more detonations. Ilfowever, the shock parameters
at the earth's surfacoe, which are calculated in the theory, are suitable
as inputs to existing Rayleigh wave propagation models such as those

(18) (19)

of larkrider and Flinn and Nickel and Whitaker.

In Section 4.2 we calculate Ap and t, as {unctions of yield

+
and height of burst. The fact that the earth's atmosphere is inhomo-
geneous plavs a major role in determining these shock paramcters, at
least when the height of burst is comparable to a scale height. In
order to treat this effect we use the numerical shock propagation calcu-

lations of Lutzky and Lchto(zo)

, for an exponential atmospherc, in
conjunction with weak shock theory. For burst heights of much less
than a scale height the atmosphere may be treated as homogencous but
the shock becomes strong. In this case we usc the problem ! results
to determine the shock parameters.(A)
In Section 4.3 these valucs of Ap and t, are used in
i£q. (4-4) to determine the source strength for hayleigh wave excita-
tion as a function of yield and height of burst. The dependence on

detonation parameters is quite complex, but in general we find:

a. The dependence on yield is stronger for lower altitude detona-
tions. For example, for a Rayleigh wave period of 20 sec and
for yields between 500 kT and 1 Mt the source strength varies
as Y'95 when the burst height is 2 km., When the burst height
is 10 km Sch'63 for the same Rayleigh wave period and cver

the same yield range.

b. The variation of source strength with height of burst can be
quite significant. For example, for a Rayleigh wave period of
20 sec and a yield of 100 KT the source strength increases by
a factor of about 2.3 as the height of burst is raised from

4 km to 20 km. Tor this yield and Ravleizh wave period, S then
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continues to increase slowly reaching a maximum (about 3 times the

value at 4 km) at 65 km. S then decreases with increasing height
of burst.

4.2 Calculation of Shock Parameters

We use three different methods of calculating the quantities
Ap and t, required by Eq. (4-4). The method used depends on the burst
height as outlined in the following discussion.

(a) As in our previous work, contained in Appendix B, we base

(20) for

our analysis on the numerical calculations of Lutzky and Lehto
the case of intermediate altitude detonations. These one-dimensional
calculations are for downward shock propagation in an ideal gas,
exponential atmosphere due to a point explosion.

The Lutzky and Lehto calculations are extrapolated to
smaller overpressures on the ground than were treated numerically by
means of weak shock theory. The basic equations for this procedure,

which are derived in Appendix B,are as follows:

£, = 2 g(x) (4-5)

Ap _h £(x) e-r/Zh

.2 , (4-6)

where t, and Ap are the positive phase duration and overpressure at the
earth's surface from a detonation at altitude r, h is the atmospheric

scale height, ¢ is the speed of sound, and p8 is the sea level pressure.

The functions g(x) and f(x) are given by:

Apo

Po

b
1+:+n {1-2 [l+x+n] e [El(") - Ll'gﬁ,]} (4-7)
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&po xex
f(x) = (4-8)
1-2l1+x+n] e ;Ll(x) - hl(iﬂl]
Lp
where v is the ratio of specific heats, £ is the relative overpressurc
o
at a distance r, < r bheneath the burst, and El is the exponential interral,
-t
hl(x) = %- dt . The quantities x and n are starting values obtained
-
X
from the numerical calculations:
o
o AP §
X h (4-9)
n= (r ' Ln AB} (4-10)
ar P
r=r

(o)

Lquations (4-5) and (4-7) are equivalent to Lq. (B-10) of
Appendix B and Lqs. (4-6) and (4-8) are equivalent to Lq. (i-11) of
Appendix B.

The calculations of Lutzky and Lehto are parameterized

by the quantity:

(4-11)

p.\1/3
b
%= h‘s_)

where Py is the ambient pressure at the burst point and &£ is the energy
released by the point explosion. According to Ref. (14) a nuclear
explosion in real air is expected to be .7 times as effective in producing
a given weak shock overpressure at large distances as the idealized

point source with y = 1.4, Accerdinglv, we take YkT = .7 LH and

Eq. (4-11) becomes:

= G -




e b —lﬂb.)_ = h e-r/3h ﬂ (4-12)
h 29.4 ‘hl 29.4 YkT

The starting values x and n obtained for the particular

values of L used by Lutzky and Lehto are shown in Table 4-1.

TABLE 4-1

STARTING VALUES AT ApO/po = ,1 FOR APPLICATION
OF THEORY AS OBTAINMED FROM NUMERICAL CAL.CULATIONS

'h X n
.05 3.11 ~4.26
1 2.55 -3.84
2 1.96 -3.29
5 1.26 -2,82
2.0 .502 - 1.9

According to Eq. (4-12) a given yield Y and height of

burst r determine o When the yield and height of burst are chosen

h*

to produce L values occurring in Table 4-1 we obtain values of x and n

and hence deLcrmine t, and Ap by means of Egs. (4=4) - (4-8). This is
what we have done for intermediate altitude detonations, r > 30 km,

The calculational procedure is identical to that of
Appendix B with two exceptions: (i) We retain the term El(r/Zh) in
tqs. (4-7) and (4-8) for increased accuracy. This term was previously
omitted. (ii) The ambient pressure at the bLurst point, Py in Eq. (4-11),
was previously determined by using the 1962 Standard Atmosphere. For

the sake of consistcncy we now determine P by assuming that the
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atmosphere is truly exponential as indicated in Eq. (4-12). Thesc

differences produce no significant changes in our previous values of S

which are given in Appendix B for intermediate altitude detonations.
The above procedure does not work at low altitudes,

however. For example, for a yield of 1 Mt there are no ”h values in

Table 4-1 corresponding to altitudes between sea level and 30 km. To
use the method we have outlined for low altitude detonations, we need

2). How these

x and n for additional o values (particularly o

] b

additional values are obtained is described below.
(b) For detonations at low altitudes corresponding to

ey > 2 we extend lTable 4-1 by adding an additional value of O namely,

gt © corresponding to a lomugeneous atmosphere (h = =). For this

4
value of o, e have, of course, x=0 and from numerical calculations(l )

(see Fig. 2-3) we obtain n = -1,38.

According to Eq. (4~12) there is no altitude or yield
(other than Y=0) corresponding to Uh = o, However, we add O = o
to Table 4-1 in order to interpolate to o, values between 2 and «.

We now describe how this interpnlation ishdone.

In Fig. 4-1 we plot 1/ch + 1 vs. x using the data of
Table 4-1 as well as O, = @ X = 0. Note that the plot, which is semi-
loga:rithmic, is very nearly a straight line, i.e., Lu(l/ch + 1) a x.
Figure 4-2 shows a plot of n vs. x using the same x values, again the
plot is very nearly a straight line, i.e., n n_ + ax, where n and a
are constants.

Based on the empirical evidence contained in Figs. 4-1
and 4-2 we use a linear interpolation of nn(l/oh + 1) vs. x to obtain

x given o We then use a linear interpolation of n vs. x to obtain

the corre:ponding value of n. This procedure works not only for 4
between » and 2 but also for example between .5 and 2. Thus, kqs. (4-5)
through (4-8) can now be used for arbitrary yield and height of burst
provided that the shock at the ground is weak. When the shock at the
ground is strong we must use still a different procedure as described

below.
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¢. When the shock at the ground is strong (Ap/pg v 1)
kqs. (4-5) - (4-8) are no longer valid. This situation arises, of
course, for low altitude detonations. In general, the height of burst
is the order of, or less than, an atmospheric scale height. This
suggests that values of the shock parameters obtained from numerical
calculations with a homogeneous atmosphere will be reasonably accurate.

We have used Ap and t, values as computed in problem M(a)
with the ambient pressure ot the homogeneous atmosphere taken as ps,
the sea level pressure. Scaling to sea level rather than burst point
conditions corresponds to modified Sachs scaling. This scaling has
been shown to be very accurate in predicting the overpressure Ap.(20)
The validity of modified Sachs scaling for strong shocks in predicting
the value of positive phase duration t, has not been investigated.
However, as will be seen, this procedure does give values of t+ which
match smoothly to the values given by weak shock theory using the
calculational procedures (a) and (b).
Figures 4-3 and 4-4 shown Ap/p8 and t_as functions of

r for five different yields based on this combination of weak shock
theory and problem M results. We have taken y = 1,4, h = 7 km, and
¢ = ,34 km/sec, the value used in problem M, in constructing these
curves. In Fig. 4-4 when neither weak shock theory nor the problem M
results can strictly apply (Ap/pg =1, r = h) we have used a best fit
by eye. The deviations from this best fit which arise from applying
weak shock theory at too large a value of Ap/p8 and applying the
problem M results at too large a value of r are indicated by dashed
curves for the 10 kT case. In all cases the region fit by eye (or
"extrapoiated") is indicated. For reasons described below we do not
treat values of Ap/p8 > 1,

The solid curves in Figs. 4-3 and 4-4 give the values of
:.p/pg and t, which are used in Section 4.3 to predict the source

strength for Rayleigh wave excitation.
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4.3 Results

To obtain the source strength for Rayleigh wave excitation
we have substituted the values of Ap/pg and t, shown in Figs. 4-3 and
4=4 into LEq. (4-4).

Figures -5 through 4-9 show the source sirength as a
function of altitude for yields of 10, 100, 500, 1000, and 5000 kT.

In each figure the source strength is shown for Rayleigh wave periods
of 10, 20, and 40 seconds. At altitudes above perhaps 40 km the yield
referred to should be considered to be an effective yield. This may
be less than the nominal yield due to radiative or other energv loss
mechanisms.

The highest altitude shown on “ese plots corresponds either
to the smallest value of o, at our disp al (oh = ,05 in Table 4-1) or
to an altitude of 100 km. Our reason fur stopping at 100 km is that
above this altitude the real atmosphere cannot be characterized by a
constant scale height h as assuned in the theory.

The lowest altitude shown has been arbitrarily taken to
correspond to Ap/pg = 1. Using the problem M results we could continue
the curves to still lowar altitudes. llowever, in every case we find
that S rapidly goes to infinity. This is the result of the fact that
for a strong shock 4p 1/r3 so that 4pr a 1/r2 + a5 r -+ 0. The
difficulty scems to be that, while the shock description is correct,

S no longer represents the source strength for Rayleigh wave excitation.
This is not unexpected since the theory of Toksoz and Ben-Menahem

which we have used in defining S is based on a linear model of wave
propagation. A different model of the excitation itself is required

to go to still lower altitudes. 1ldeally this model, which would

include effects such as cratering, would extend through the "trans-
surface" regime. That {is, it would match smoothly not only to our
results but also to results obtained for contained underground

explosions.
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In any case, the curves in Figs. 4-5 through 4-9 generally
exhibit a maximum at intermediate altitudes (the exceptions are
Y > 500 kT for t = 10 sec). This behavior may be understood in terms
of Eq. (4-4) in the following way: At altitudes above the altitude of
the maximum 27rt+ >> 1 and S o Apr, which is a decreasing function of r.
For altitudes somewhat below the altitude of the maximum 2ﬂt+ << 1 and
S o Apr t+2. The positive phase duration t, decreases more rapidly
with decreasing r than Apr increases and hence S decreases with decreas-
ing r. The situation is reversed at sufficiently low altitudes,
however, and Apr increases more rapidly with S than tf decreases.

Hence S may start to increase with decreasing r. This behavior is
exhibited, for example, by the 5 Mt curve with 1 = 20 sec and r < 10 km.
For large yields and short periods (i.e., Y > 500 kT,

1 = 10 sec) the condition 27t > T holds at all altitudes und hence
S ~ Apr which is a monotonic decreasing function of r.
Table 4-2 gives the burst altitude at which the muaimum occurs
for various yields and Rayleigh wave periods. As shown in Table 4-2
the altitude of the maximum increases with increasing period and

decreases with increasing yield.

TABLE 4-2

HEIGHT OF BURST AT WHICH
MAXTMUM SOURCE STRENGTH OCCURS

Yield, Y(KT) ~

= | ] 10 100 500 1000 5000
2] i

(=

g 110l 36 17 -- -- -~

2 |

§~ 20 81 65 55 45 39

n .

v 140 89 71 62 57 S50
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The increase in source strength between the valuc at low
altitudes (say at Ap/pg = 1) and the value at the maximum can be sub-
stantial, particularly for smaller yields. For a Rayleigh wave period
T = 20 sec the increase is a factor of 7.6 for 10 kT, 2.0 for 100 kT,
1.9 for 500 kT, 1.2 for 1 Mt, and 1.0 for 5 Mt.

We turn now to a discussion of the yield dependence exhibited
by S. Figure 4-10 shows the source strength as a function of yield for
burst heights of 2, 5, 10, 40, and 60 km.

It is apparent that in general S increases more rapidly with
Y for small heights of burst than for large. This behavior is brought
our more clearly in Table 4-3 where we show the value of n that results
from assuming a dependence S a Y" over particular yield intervals and

heights of burst.

TABLE 4-3
VALUES OF n ASSUMING S o Y" FOR t = 20 SEC

Height of Burst (km)

2 5 10 40 60

o
S 10-100 .87 .78 .83 .48 .57
Q
& {100-500 .93 .89 .68 .61 .61

&
l§ j 500-1000 .95 .85 .63 .63 .58
o
>~ 1 1000-5000 .65 .56 .50 .50

This functional dependence of S on Y can be qualitatively
understood in terms of Eq. (4-4). For high altitudes we have the
limiting case 2nt+ >> 1 and S a Apr. If modified Sachs scaling is
approximately valid, which Fig. 4-3 indicates is the case, and if the

shock is weak when it sirikes the earth's surface then Apr o Y1/3,
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1/3

i.e., S ¥ . At low altitudes the limiting case is 2np+ << 1 and
S a (Apr) ti. Since t should scale approximately as Y1/3 we would

expect S o Y, again provided the shock is weak when it strikes the

earth's surface.

4.4 Conclusions

Our detailed conclusions are contained in the previous
section in the form of plots of source strength for Rayleigh wave
excitation vs. yield and height of burst. Some general conclusions

based on these plots are as follows:

a. The source strength 5 increases less rapidly with yield Y the
higher the burst altitude. For example, for a Rayleigh wave
period of 20 sec and for yields between 100 and 500 kT we find

S a Y'93 for detonations at 2 km altitude, S « Y'B9 at 5 km,
.68
Say

at 10 km, and S a Y'61 at 40 km.

b. For large yields and short Rayleigh wave periods t (for example,
Y > 500 kT for t = 10 sec) the source strength is a monotonic
decreasing function of height of burst. For larger yields or
longer Rayleigh wave periods S is maximized for a particular
height of burst. The altitude at which the maximum occurs
increases with increasing 1 and decreasing Y. For Y = 1 Mt and

1 = 20 sec the maximum occurs at about 45 km altitude.

c. The variation of S with height of burst can be appreciable. For
example, for v = 20 sec and Y = 100 kT, S increases by a factor
of 2.3 as the height of burst is raised from 4 km to 20 km.
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5. REPORT CONCLUSIONS

Three different kinds of acoustic phenomena related to
nuclear test detection and diagnostics have been discussed in this
report. They are: (1) Long period (3-10 minutes) acoustic-gravity
waves which propagate in the real atmosphere's counterpart to Lamb's
edge mode. (2) High frequency (1-60 second period) acoustic pulses
which result from the degeneration of the detonation blast wave into
a weak shock. (3) Rayleigh or surface seismic waves which result
when the detonation shock wave strikes the earth. Conclusions reached

for each of these phenomena are given below.

5.1 Lamb Mode Analvsis

(a) The shock front extending from the ground to many
scale heights above the ground is of almost equal importance in
determining the far-fie'd Lamb mode amplitude. Because of this, the
far-field amplitude should be relatively independent of phenomena
peculiar to any small portion of the shock front. 1In particular,
ground effects such as the presence of a precursor should not play a

very important role.

(b) For large yield, low altitude detonations we have found

V2 inY ]

a far-fieid amplitude dependence which varies as Y’@.+ ) |

where typically Y* is the order of 10 Mt for a sea level detonation.
This dependence arises from a detailed consideration of the mechanism

by which the low frequency components of the near-field (shock) distur-
bance become spatially separated from the high frequency components.

The precise value of the critical yield Y* where yield-amplitude pro-~
portionality breaks down is determined by atmospheric conditions near
the burst as well as the direction of propagation and must be determined
by detailed numerical calculations. Nevertheless, in analyzing the test
data we have seen some evidence that very large vields do on occasion

produce anomalously large far-field amplitudes.
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(¢) A number of potentially important source effects can be
explored within the framework of the Lamb mode theory. The most impor-
tant of these effects, which we have not investigated, are probably
related to the presence of a secondary shock front due to ground
reflection. We expect that at low altitudes the effect of the secondary
shock in determining the far-field amplitudes is approximately equal
to that of the direct shock, but for higher altitude detonations inter-

ference or destructive effects between the two shock may occur,

5.2 ligh Frequency Acoustic Periods

(a) At large distances the dominant acoustic pulse period

for a 1 kT detonation is che order of 10 seconds.

(b) For small yields the period scales as (yield)l/3. For

large yields the scaling is uncertain. The interaction of the rising
fireball from Ligh-yield detonations with the upward going shock needs
to be investigated before the large yield scaling can be determined.

(c) The range dependence of far-field periods is extremely
weak, as an absolute maximum about a 177 increase in going from 2,000
to 10,000 km, Pulse splitting by wind ducts and the effects of other
small scale meteorological phenomena are expected to make the actual

dependence even weaker than the above value.

(d) The period dependence on height of burst is also

z
i 45.7)'

extremely weak., The dependence is given approximately as: Ta

where T is the period and z is the burst height in km.

(e) Probably the most significant variation in far-field
period, other than that caused by variations in yield, is caused by
the direction nf signal propagation relative to the winds at about 50 km
altitude. For downwind propagation the signal reflection occurs at a
lower altitude than for crosswind or upwind propagation. The dependence

of period on reflection altitude is approximately given by:
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z /28
Tae® , where z is the reflection altitude in kilometers. A 10 km

variation in z produces about a 40% variation in T. The altitude 2.
needs to be determined by ray tracing for the appropriate atmospheric

conditions and direction of nropagation.

5.3 Rayleigh Wave Amplitudes

Our detailed conciusions are contained in the text in the
form of plots of source strength for Rayleigh wave excitation vs. yield

and height of burst. Some general conclusions are as follows:

(a) The source strength S increases less rapidly with vield Y
the higher the burst altitude. For example, for a Rayleigh wave period
of 20 sec and for yields between 100 and 500 kT we find S « v'?3 for
detonations at 2 km altitude, § « Y'89 at 5 km, S « Y'68 at 10 km,

and S o Y‘61 at 40 km.

(b) For large yields and short Rayleigh wave periods 1 (for
example, Y > 500 kT for t = 10 sec) the source strength is a monotonic
decreasing function of height of burst. For larger yields or longer
Rayleigh wave periods § is maximized for a particular height of burst.
The altitude at which the maximum occurs increases with increasing 1
and decreasing Y. For Y =1 Mt and 1 = 20 sec the maximum occurs at
about 45 km altitude.

(c) The variation of S with height of burst can be appre-
ciable. For example, for 1 = 20 sec and Y = 100 kT, S increases by a

factor of 2.3 as the height of burst is raised from 4 km to 20 lm.

(d) The present analysis of the Ravleigh wave excitation
mechanism appears to break down when the shock striking the ground is
strong. This occurs for 1 kT at burst heights below about .5 km and
for 1 Mt at burst heights below about 2 km. A new model needs to be
formulated between the altitude where our model no longer liolds and

the burial depth of a contained underground detonation.
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APPLSDEX A: DERIVATION OF THE BASIC EQUATIONS FUR PREDICTIUN
OF FAR-FIELD LAMB MODE AMPLITUMES

A.l introduction

In this appendix we develop the theoretical basls for the
equat lons discussed In the text. The analvsis is heavily based on the
work of Pierce and Poscy described In Ref. 1, and, where possibic, we
use the notation of this reference. However, because we are primarily
concernced with the source modei rather than with the propagation theory

we make several simpllfying assumptions. Specificafiy:

(i1) We neglect the effects of acoustic ray refraction and assume
that all ravs follow great-circle paths between source and
observation point. This {8 not necessarily a good assampt lon,
lowever, the corrections necessary to fancorporate a realistie
atmospheric propagation model do not affect the way in which the

source model is Incorporated into the theorv,

(b) On the assumption that the varifous "sound speeds’ occurring In
the Plerce-Posey theory are of approximately cqual magnitude
we do not distinguish them. in the notation of kef., 1 this wmeans
that the altitude dependent sound speed c(z), the sound speed
averaged in altitude over the Lamb mode weipht Iing functlon < .
and the effectlve sound speed <, which incorpeorates effects such
as those due to winds, are ail denoted by c. At the same tlme,
and this s conslstent with the above assumption, the major effect

of differences between these quantities, namely a frequency

dependent group veloclty, is taken Into account.

A2 Isolatlon of the Lamb Mode In the Near-Field pisturbance

According to Plerce and Posey, it the upper atmosphere s
considered to be bounded at some larpe altitude, 2 by a rigid celftn,;

then an acoustle disturbance mav be expanded as a sum of pulded mode s,
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one of which is the analogue of Lamb's mode. That is:
APEE) = P (F,0) + ¥ (T,¢), (A-1)

where AP is the overpressure of the disturbance, PL is the contribu-
tlon of the Lamb mnde, and % represents the contribution of other
modes.  The Lamb mode {s characterized by an ultitude dependence such

that PL can be factored as:

p (e0) = e e M p(e, e, (A-2)

where l's is the sea-level pressure, z is the altitude, Yy is the ratio
of speclific heats, and I is the scale height. F(r,t) js a function
only of time and of the great-circle distance r,

The hedgit profiles of the various modes contained in Y

satisfy an orthogonalfity relation such that:

z  xlz
. g 1
f e dz = v (A-3)

o

Turning now to the case in which AP(;.t) repreaents the
detonat ion shock wave, we define r, to be the appropriate horizontal
distance for matching the shock to the linear propagation theory. How
this distance is to be determined is left for subsequent discussion.
Suppuse that at distance r, and time t, the shock extends between
altitudes z) and 2y It will be shown below that for detonations in
the lower atmosphere 2 - 0 (f.e., sea level) and 2, >> H is, in fact,
the situation of interest. Under these circumstances we assume that
L.q. (A=3) is approximately correct with the limits, 0.:m replaced by

2‘. ?...
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-1z
Y

Multiplying Eq. (A-1) by e “, intcgrating from 2=z, to

2=2z,, and using Eq. (A-2) we then obtain:
zy 1:2.% zy x:z.ﬁ
Y . Y
f AP(ro,z,to) e dz F(ro.to) Ps[ e dz
%) !
y=2 3 z,
Yy 0
= F(r ,t )P e
o' 0o s y=2 -
1
- » Y "
JCIN BTN ot (A-4)

2-y %1 2=y %3
wvhere we have assumed -Y-I T << } and _'_Y. - >> 0.

HP(r ,2,t )
e 0 o’ z/H -
Patting —p ¢ ] n(ro.z.to) where t §{s the relative
8
overpressure, we may rewrice tq. (A-4)

2, ™

. - -
F(ro,to) n(ro.z.te) € dz. (A=5)

v |
z

1
We retain che limits zl. z, rather than sctting them to 0, as¢ a
reminder of the assumptions made.
In the Plierce-Posey theory the geometrical acoustics approxi-

mation is made that F may be factored into amplitude and waveform

functions:

F(ro,to) = A(ro) v (ro.to) (A=0)
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and similarly at some r,t corresponding to a larger distance and a
later time:

F(r,t) = A(r) ¢y (r,t). (A=7)

For Eq. (A-7) to be valid the spatial variation of A(r) must be on a

scale large compared to the disturbance wavelength. This will be the

case for the effect of earth curvature which produces a dependence:

-l

A(r) 1[re sin :—] 5 (A-8)
e)

where T, is the earth's radius and where r is again the great circle
distance.

A.3 Propagation of the Lamb Mode to the Far Field

The wavefcem function ¢ i8 representable as a Fourier
integral:

ure) = R [ b KD gy (A=9)

o

The quantities w and k are related through the Lamb mode dispersion
equation:

> =g il By (A-10)

where c is taken as an average sound speed and the quantity hkk is

not a function of k and is due to deviations nf sound speed and wind

velocity from vertically averaged values. The second term on the

right side of KEq. (A-10) {s much smaller than the first.
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Combining Eqs. (A-9) and (A-10) we obtain:

3
oy 3y Y . -
TR TR 3 0 (A-11)

3
The last and smallest term in Eq. (A-11), hkk Q_% , which represents
ar

dispersive effects, may be rewritten by replacing %; to lowest order

by i-%z-. Thus:
1oy, 2w, Mok ady
g + o = (l\-12)
c Jt  Ir cé at3

Following Pierce and Posey we now introduce the paramcters:

r
.
tep-; S (A-13)
J c
r
’
£ % dr , (A-14)
c

~h .
so that %% = i% and %% = :% 2¥-+ ik 2% . Thus Eq. (A-12; becomes:
at ot ¢ 9r

ﬂ a -a—‘k = (A‘IS)

Equation (A-15) may be solved to obtain §y at r,t (r,t) from

V(E) at T ].

—y

w(to) at r
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oo - -

t -t
- - 1
s S ————— f A u(r ,t ) dt (A-16)
/o (3F )1/3 [53 )1/3J

where A1 is the Airy function.

We now define the waveform arrival time:

T umt -t (A-17)
and the characteristic dispersion time:
1y = D3 (A-18)

in terms of which Eq. (A~16) m~v be written

1 Ta -t+ to
v(r,t) = 7-; . f Ai -——Td— Mto’to)dto (A-19)
d =x

In writing Eq. (A-19) we have put Eo g siunce t, is being measured
anL r, the distance at which the lLamb mode theory is rresumed to just
Fzgin to be applicable.

The far-fjeld overpressure at sea level is given by combining
Eqs. (A-2), (A-7), and (A~19)

PL(t,t) = Ps F(r,t)

- Ps A(r) v(r,t)

= PS A(r) w(to’to)dto (A-20)
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Henceforth we will measure the time t relative to the arrival

F(r ,t)
o’ o
= — Eq. =5).
time T,e Now w(ro,to) A(ro) ,» where F(ro,to) is given by Eq. (A-5)
Thus we obtain:
oo -t n ._-1
A(r) (2-y) 1 o~
P =P X)) | AT
S Wl w/r a4 Y| 4
%
[ m(r ,z,t ) e-z/YHdz dt (A-21)
4 0 o o
%1

A.4 The Shock Model

To proceed it is necessary to make some additional assump-
tions about the form of m. We assume that the detonation occurs at
altitude z and that the shock front is spherical about the burst. For
this assumption to be correct it is necessary that while the shock is
strong and supersonic it encounters a nearly homogeneous atmosphere.
When the shock is weak and sonic the shock parameters may vary
drastically along the front, although the front will still be
spherical.

The assumption of a single spherical shock front is admittedly
an oversimplification. For detonations in the lower atmosphere there
will be a second shock, due to reflection from the ground, which will
follow the main shock. Near the ground the primary shock and the
ground reflected shock may fuse and form a Mach stem. Very crudely
the reflected shock may be considered as arising from a mirror detona-
tion at -z. zhe time lag between primary and reflected shocks will be
less than = %E and the difference in radius of curvature between the

two shocks will be less than 2z. For small z, then, the reflected

= =



shock follows immediately behind the primary shock and has approxi-
mately the same curvature. The time lag between the two shocks will
be less than a typical far-field quarter period (=100 sec) for z <15 km.
On this basis we expect that for low altitude detonations the effect
of the ground reflected shock is to approximately double the far-field
overpressure. Thus the effective yield of a low altitude detonation
would be essentially the same as for a contect (z=0) surface burst,
although this is not exact since the contact detonation expends some
energy in digging a crater, etc. This model must break down, however,
for large heights of burst where the time lag between the two shocks
becomes comparable with a far-field quarter period or where the radius
of curvature of the two shocks at the matching radius r, becomes very
different.

The techniques we develop below should be adequate to treat
this more complex shock structure in detsil and we hope to do this in
the future. However, in the present analysis we consider only a
single spherical shock front and take the ground reflected shock into
account by simply doubling the amplitude in Eq. (A-21). The geometry
envisioned is shown in Fig. A-l.

Let the time t, be measured from the arrival of the hori-
zontal portion of the shock front at r . At time to > 0 the
spherical shock radius is r, + cto, where ¢ 1is the sound speed, since
the shock is assumed weak and near sonic at r,.

For the situation illustrated in Fig. A-1 we must have

z<z, =2 +'\/c2t: + 2r° ct_ and z > z, = larger of zero or

2 1

cztz + 2ro ct . The integration in Eq. (A-21) occurs over the

= B )
z =\

v
region of space and time within which the shock is located, that is

0 < by <™ 20 < Z < 25 This is equivalent to an integration over

'\ (z-E)2 + r: -r

Cc

[o}

0 <z < » < to < o, Thus, switching the order of

=T 's
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integration we obtain:

{
Ly A&I)f 2(2-) 1~ dz e-z/vn dt
L s .\(r - J 0
o e J 2 2
o (2=2°) + " = ¢
o o
c
'lo—t‘
Ay T Tl e ), (A-22)
L9l = 5

where a factor i 2 has been added to represent the contribution of
the ground reflected shock.

wiz define the local time 1

r+c.t /Az +r

(A-23)

where 42 = (z=z). The quantity t is the time elapsed at T2 since
the passage of the shock front.

Nov we further assume that the relative overpressure at
r,7 has the form of a Glasstone pulse when written in terms of the
local time:

-T/t+(f°.t)

*(ro,z.to) - n(ro.z) e

1 - —’—-—-—) (A-24)
( t,(r ,2)

for 1 > 0., Equaticn (A-22) becomes:
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L sA(ro) i,‘d €Ty ]

—

e . Azz + r2 -r
P P A(r) 2(2-y) 1 s A | E=E / 0 (3]
¥ - Hr J )
Yrn d
o o

-1/t

Ar_,2) e ta- 1/t,) /M

dt dz (A-25)

As shown by Plerce and Posey the characteristic dispersion
time T4 is the order of the far-field waveform period which is much
larger than the near field positive phase duration t,. For = comparabte

-t/t

to 1, the factor e occurring in the integrand of Eq. (A-25) is

very small. Since the dominant contribution to the 1 integration comes

from 1 << Tq We may expand A1 in a power series in .
d

1 \ v 3 1
T Y —-o)—+-- (A-26)
i i "d ,, l(?d 1d

Putting x = {-we do the x integration, noting that:

f e ® (1-x) dx = 0, (A-27)
[ o]
j SR U b (A-28)
(o]

The result {s:

- B =




Pom A(r) 2-y 1
L 8 A(ro) Y/;-thz

w - / 2 2
’ p 4+ -
A [_-_t & (82 Yo To e-z/yH
t

’
g 1 - d Ctd

] (ro.z) ti (ro.:) dz (A-29)

Finally, using Eq. (A-8) under the assumption that o,

we obtain:

: ‘o 2(2-y) 1
PL s -] p = 3
. i 'sin _r_l /7 th
- ‘ Tel
| -/ 2 2 1
\* t . { h#) & = B | =z/yH
! R e
i L - ey J
- 2
ﬂ(ro.z) t, (ro.z) dz (A-30)

A.5 Form of the Shock Parameters ;. t+

We wish to do the z integration in Eq. (A-30) using a simple
shock model for :(ro.z) and t (r ,z). The shock model assumes that at
some small radius R_ < r_ about the burst the shock parameters ;(Ro).
t+(Ro) are constant along the spherical shock front and hat the shock
is weak at Ro (-(Ro) <<l). The geometry is shown in Fig. A-2. It is
only necessary that this assumption apply to the portion of the shock



O

FIGURE A-2: SHOCK GEOMETRY AT SMALL RADIUS R, WHERE ATMOSPHERIC
INHOMOGENEITY 1S NEGLECTED AND AT A LARGER RADIUS
WHERE 1T IS NOT
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front that is effective in exciting the Lamb mode; that is, it need
not apply, for example, to the vertical.y upward going portion of the
shock front.

Beyond this small radius R the shock is assumed to evolve

according to the weak shock equatlons. In particular at (r »2) ¢ L2

_ A - Ro t*(Ro) P(Ro)

ot =10 T e D -
T &2
o

v

c i ’r e i
2(R_)R ] P(R )
- y+1 o' o | dR ’
tp(r,e2) = £ (R) \‘ Yy owmy / FRT R (A~32)
o J
R
[o]

where P(Ro) is the ambient pressure at Ro. P(ro.z) is the ambient
pressure at the point o2 where matching to the Lamb mode propagation

model occurs, and P(R) is the ambient pressure at a spherical radius R,

Ro <R < ‘\/rz + Azz. Consistent with the assumption that Ro is a

small radius (that is, that it is small compared with the effective

scale height in the direction in question) we take P(Ro) - Pb' the
-bz
ambient pressure at the burst point. Then P(ro.z) = Pb e H and
Eq. (A=31) becomes:
o Az
R t L7
(e u2) = 7 0 s - (A-33)

[+ t (l’ .z)
) / rz + Azz + 0

where (except in the case of ro) we use zero subscripts to denote

values at R .
o

& M.



The fntegral occurring in Eq. (A-32) may be approximated as

follows:
'\ /r(z, + Azz
r ,z
fo r g
A j LI (KB) o2
J P(R) R R 2 2 2
o o ) ey
=R a2 '/‘3 + 122
2i e —— ~
© n
o+ a2t =
! p) l -1 >
e YO Z : ik S R dR (a-34)
nmo M~ re + 822 R
- o (4]
o Az -
2H / = i
~ 2 2 -~/ 2 2 n
\ L + Az in V¥ + L2 . Z az) 1 . Ro n {
=i Ro . f2u] on! ———
ral X3 z} (
\ro + L2 -'J

Consistent with the assumption that Ro is small, {.e.

2
T Vel o
Ro < Vro &+ Aer Ro << 2 _—-'—[‘?_ « Eq. (A=34) reduces to:
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PR ) r - ig
o ¢R 2- 1 -
| F(R) R e ( ) (A-35)
R n=]
o
Thus Eq. (A-32) becomes:
I _ N Y4
[ 2 2 *
t. (r z) =t l+ﬁllnm+— L szl s (A-36)
+1fg0 %) % 5 ) R L. ot zu) '
L. L n=1
1 "ok
where we have defined 8 et i The quantity 8 i{s nearly constant
Y ct_'_o

for a weak shock. Since we want Ro as small as possible consistent
with the shock being weak we take io @ .1, Thzn 8 » .67 = 2/3 accord-

—

other paramcters used in computing 8 correspond to a distance of .9 km

ing to the problem M results with y = 1.4 and ¢ = .34 km/sec.

from a 1 kT explosion where the positive phase duration is about 1/3 sec.
Now in our basic equation, Eq. (A-30), the shock parameters

occur in the form E(ro.z) ti(ro.z). Using Eqs. (A-33) and (A-136) we

write this quantity in terms of the value at ro. z-i. that ie the value

for the horizontally propagating portion of the shock:

:(r".z) tf(ru.z) - E(ro.i) ‘i('o';)

1 4+ 2]in \/rz + Az - \
+2- (n z
Az nn!

r O

20 -1
et . (A-37)
'\lrz + Azz {il +8inr
) o
R
0
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Thus Eq. (A-30) becomes:

CTd

- 81 -

] 1/y
o 2(2-y) 1 Pb
S == f s 2 \P_
sr!,‘sinr_) 4 Hiy ''s
e r
e
S 2 2
- (82 + ¢ -1 i
(r ,z) tf.(ro,;) ' dz Ai -:—E + .\ = L.
e 4 d d
o
- -~ !i
[l+8 in \('rz-fAzz — 1 ‘n P
. -2 bz | o+ — r 5K
0 e v W o n=1 " ° |\ o2 2
7 ~ 15
) 2 l1+68 nr
'\_ i+ Az t 8 |
R ’
o
\/Azz + r2 -r,
We now introduce the variable y = . 2 and
S — d
\/Azz + rg crd Az
write dz = dy = . The y integration
3 roy Az
Ji¥ 4
1+ 1+ -
r
o
consists of two parts:
Oﬁygm(Az:O) and
'\/Ez +e -
0<v< 2 2 (az < 0).



Equation (A-38) becomes:

fL=- . Lﬂ 3/2( ’

L {sin 3;_) "
r
\ e

D ey, | 9oy [-‘—+ ]c(y)
J h K
(o]
4z > 0
ﬁ\' Ho + r2 - ¥
’ CcT
d & .

+ A' - — ¢ G) ') -
J I y] (y (A-39)
(o]

Ltz < 0

; 2
Az 1 [Az
Az Az Bl n 1] + — + , ;-n-!- ‘ﬁ)

ez Lz 2
yH 2i
I PP 2

2 1+82en2
i //1 + //1 + AEE Ro 3
[V VAR

A.6 Reduction of Eq. (A-39)

S

(A-40)

r

We will demonstrate below that G(y) is a weak function of Az and
hence of y over the integration region of interest. Accordingly, as a
first approximation, we take G(y) to be given by its value at y=0 (Az=0)
which is unity. The remaining integral for Az > 0 is twice the function
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a

S
PP -t—-\ = j T E az da discussed by Pierce and Posey.
Td’ i L i

(2)

They have shown by numerical computation that the first maximum of

PP (%—) occurs at %— = 1. The remaining integral for Az < 0 will be
\d d
shown to be unimportant. Therefore, for consideration of the first

maximum of the far field amplitude we may restrict our attention to
times t = Ty . ‘
Al -1+yJI
The integrand ———— , which results from setting
t = 9 is plotted in Fig. A-3. Maximum contribution to the integral

is seen to come from the region 0 < y < 2 corresponding to

0 < |Az| g ZCTd w/l + ro/crd. Since T4 is a quarter period observed

in the far field a typical value is about 100 seconds. For c = .3 km/sec
we thus find that |Az| values up to at least 60 km contribute to the
integral in Eq. (A-39). This justifies the initial assumption made in
extracting the Lamb mode from the near-field pressure disturbance;

namely, that the 2z integration extends to velues much

larger than a scale height, z, >> E%;-H.

It remains for us to justify the assumption made above that
G(y) = 1 over the range of Az of interest. First, however, we note

the physical origin of the various factors composing G. These factors

are:
-z

a. e = is the Lamb modc weighting factor.
Az
2H

b. e is due to the increase in relative overpressure 7 with

altitude.
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! bz \
B'ﬂ.n_‘\ + +y nn J
B 1+ S n:l is due to the change
0
L 1+BlnR—
o

in positive phase duration t, with altitude.

d. P 2 is a geometrical factor arising from the
/ e at
‘ Az
.\/ 1+ _ / 1 +j
v o

assumption of a spherical shock front.

The relatively small variation of G(z) is best shown for a
particular case by specifying values of H, ro, crd, and Lz. Here we
wish to give a more general demonstration based on the Taylor series

expansion of G about Az = 0, From Eq. (A-40) we obtain:

=14+ L g - 2-y) Lz
s M TR r Y |
|21+an—°)
| R
(o o
o
1 | [2-y 12 1 ‘
+ = ) IS B 1_20
6H2 Y ; ro 8 Y|
l+ 8 8&n—
R
[0}

Tl PO S £2+_- (A=41)
2|2 r tH :
o 1+ 84&n =2

R
[0}

In the sequel we show that r, Ro. For & % and y = 1.4;
Eq. (A-41) then becomes:
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2

G(az) = 1 - .048 % - L0047 (“—‘-
] “ ’

A2 2
- 04 (;—) ¢ == (A=42)
o

The ﬁi term becomes important &t Az = 20H = 140 km, the

2z 2 2

| term at Az - 15H = 105 km, and the éﬁ‘ term at Az * 5r  * SR =
l H ! o o
45 \1/3 km for a sea level detonation, where YH is the yield in megatons.
Recall that the maximum value of |tz]| of interest fs about
f r
ter, o 1+ 2 =40 1+ - 5 Yl . km, for ¢ = .3 km/sec and
a’y ciy v 30

d 100 sec. Thus we find that for reasonable yields of more than

about 1.6 Mt at sea level the second and third terms in the Taylor

series expansfon of G are not important over the range of Az or interest.
The cancellation of the varfious factors which make up G(.2)

can also be seen by examining Eq. (A-40) for Az large. For example,

for Lz large and pnsltlvc (%— 2" and the square root of
n-l
&
this factor combines with the factors e m and .2 to produce a very

Jy=41b2z

weak exponential dependence of e e ) 2'036 Az/H.

The point {8 not that G(y) in Eq. (A-39) is exactly constant.
Doubt less there are effects which could be explored which depend on
deviations of G from unity. The point is that since G(y) is a slowly
varying function,all values of y from zero to 2, and hence all values
of z extending to many scale heights above sea level, are of
nearly equal importance in Eq. (A-39). Physically this means that the
shock front extending from sea level to many scale heights above sea

level is of nearly equal importance in determining the far-field Lamb



mode amplitudes. The significance of this {s that for the first
max imum of the far-field waveform at times like t ~ L the pecul far
features of the shock near the ground such as the presence of a
precursor should not be of particular importance.

Finally, we return to Eq. (A-39) with G(y) = 1:

i 1/
. P (Z-Y)\ 2_c"7_ Py
. s (sin_r_)" L " H td23 Psl
e r
e
\ zzﬂﬁ - ro
A . ety -
- & 2 & dy . b . B o =5
n(ro.z) t+(r°.z) T, r-Ai x 8 SILE" 'mAi +
6 vy .od — vy . d
0

The second integral in Eq. (A-43) is always unimportant com-
pared with the first for the following reasons. We have previously

Al .
observed that for t = 1, the function 4 L S y has a broad
d '/; L

plateau for 0 < y < 2. The second integral is therefore approximately

~ =2 2
y 4 o
z r, - f

L1

times the first (assuming this is less than unity):

2<:td | ==
/'z YE -8
that is, it introduces a correction factor of about C 1+ -~ - 0
d
to the far-field Lamb mode amplitude. According to the
'
results of the next section T, >9 -'# -9 cz”“ \’\‘”3 km, where Yl‘
b 4 »
P

8

is again the yield in mepatons. For H=7 km we find that + which is

- ’Nl
2 3l
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maximized at z = 3, is alwvays less than —5—275-5 . Expanding C

2 n
1z 22
for l-r—-, <1 givea C"(1+ e )vhlch. for ety " 0 km, has s
o o d
maximum value of 1 + 0(; at z = X . 10 km,
Y /3 2

M
Thus neglecting the second integral Eq. (A-43) becomes:

. p &Y
| 2 el [0
. H(Smr)" W 32P)
r —-——
e
e

-y
»
)
e |

!ltd 8

i B da i dy o0 _ L
:r(ro.z) t+(ro.z) T, f /_A1 0 +y (A=44)
H =

Note that if we determine r, in Eq. (A-44) in the "conventional"

) -y (13 1/3
way, that is for a given r take t+(r°.z) a(;—) and ro a ‘P— ve
b b

1/y = 1

obtain P, a Y P This result has been previously obtained, as

L b. 2
has the cependence P, a -——ql 1,°32 oy Plerce and Poley“) and
P ¥ (sin r ¢ ¢
A
e
6)

by Pierce, Posey, and 1liff.

In the sequel we show that the above method of choosing L
while probably correct for small yields, is probably not correct for
large ones. The main effect of this finding is to introduce a slightly

different dependence of P, on Y for large yields.

L



A.7 Detemminat fon of the Matching Radius, T,

We need a physical criterion to obtain the matching radius
T which occurs in Eq. (A-44). The basic concept in the analysis to
determine this matching radius is as follows:

The low frequency components of the near-field disturbance,
which eventually determine the far-ficld amplitudes, must become
spatially separated from the higher frequency components before the
linear Lamb mode propagation theory is appropriate. While the high
and low frequency components are located in the same repgion of space
they interact nonlinecarly. In particular, the low frequencies gain
enerzy from the higher fregquencies as is demonstrated, for example, by
the lengthening of positive phase with distance.

One way this spatial separation of frequencies could occur
is the following. As the shock or Mach stem propagates along the
ground it will lift up because of refraction associated with the
nomal atmospheric sound speed profile. This effect is responsible
for the so-called zone of silence phenomenon at intermediate distances
from an explosion. If the low frequencies are thought to exist in a
Lamb mode at this time then they will contfnue to propagate along the
ground and hence will become spatially separate from the higher
frequencies.

Refraction of the weak shock may be an {mportaat part of
source modeling but we do not believe the above description is the key
to understanding how the Lamb mode is set up. The difficulties with
the above explanation arc first that it begs the question, and, sccond,
that it relates to an effect peculiar to the shock front near the
ground. In view of the fact that the shock extending up to at least
about 60 km altitude is effective In exciting the Lamb mode we doubt
that this type of refraction could by itself achieve the spatial
separation of frequencies required.

The model we propose, which s discussed below, involves a
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spatial separation of frequencies within the weak shock itself. To
give the argument in the simplest form we assume that all atmospheric
properties are independent of range. Then according to Eqs. (A-14)
and (A-18):

/3

3h
. " {-—-".‘—“ /0 (A-45)

c

According to what has been previously said this will be
approximately the quarter period of the disturbance at range r.

If we start with a hypothetical far-field waveform, and
extrapolate back toward the burst, the period will decrease according
to Lq. (A=45). At the same time we may calculate the shcck positive
phase duration, which is approximately the quarter period of the near-
field disturbance, at increasing distances from the burst. This is
done by using Eq. (A=36) applied in the horizontal direction for an

arbitrary radfus r:

-~ o ;’
= l1+48in¢
t+(r.-..) = t*(Ro)' =) (A-46)
\ o

=

It turns out that there are two cases:

(a) T B B for all radii at which the shock is weak.

(b) g t,uptor, in spite of the fact that the shock is weak,

and t, >t forr>r.
d- "+ -0

Consider the latter case first. We will show that the radius
r, has the following physical meaning: Up to r, the Fourier component
of period Aud observed in the far field is spatially located well
behind the shock front. For radii greater than r, this Fourier com-

ponent has moved up to the front of the shock. While the long period



Fourier components are located behind the shock front they gain energy
from the shorter period components as is manifested, for example, by
the positive phase lengthening given by Eq. (A-46). Once these long
period Fourier components move ahead to the shock front they propagate
independently of the short period components.

On the basis of this physical picture we chrzge
LI 1d(rn) o t+(ro). for case (b). For case (a) we choose the match-
ing radius such that a continuous transition is made with case (b).
When this is done it turns out that case (a) corresponds to the method
of choosing T, used by Pierce and Posey, that is, r° a YIIJ. The
¢riterion for case (b), however, is not the conventional one and this
iniroduces a far-field amplitude dependence which is not simply pro-
portional to yield.

We now give a quantitative statement of these remarks.

Again we take a Classtone pulse form
- +
n(t) = 7 ¢ (1 - t/t_._). t>0 (A=47)

To see where the low frequency components are located within the pulse
we take the Fourier transform of only that part of the pulse between
the front and a distance = = T behind the front:

Y
s(w) f e 19t L(e) dt
(o]
;{_'1“’)2 T i - =
: B T edutindeode » fa (A-48)
2 2 t 2 /
+ ot
1 W +
— + -~ -
t2
+
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Yor large %— the last term dominates due to the factor

- +
-t/ "
e , ond |S| = 7 * This will be essentially the value of
1 w
— +
t2
+
S| when
-t &
w?>e * -iu+iu-:—-+-t—2- & (A-49)
+ ot
1 -t/e, ¢
Under the assumption w << ¥4 this reduces to w > e =5 or:
+ t
+
- 1
Pt Gt (A-50)
wt+

This means that the dominant contribution to the Fourier

ampl itude of period vl comes within a distance of about ct ln'—l-
w + ut+

of the pulse front., For example, we might have %1 = 600 sec and .

the order of 6 seconds, then the dominant contribution comes within
about loct+ of the pulse front. Under no circumstances is it necessary
to go back more than a few ct,.

The cnergy associated with a low-frequency component of
period & td(r) (the period observed in the far field) propagates at
a group velocity given by Eq. (A-10):
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Zld(r) dk kk
wz
c -3 | hkk
C
- 12
-2 L h (A-51)

Similarly the energy associated with the largest amplitude
!
Fourier component iw - %—) propagates at:
\ +

2 1
1 ) (o ol 1] |

v W . — c ] = ~— =~ h (,\-52)
g ty | (_3 t+‘ kk‘

Justification for using the Lamb mode dispersion equation in deriving
Eqs. (A-51) and (A-52) is given below.
At T, therefore the low frequencies have moved ahead relative

to the main pulse by an amount:
r
o3 1
$rg) =3 7207 M
c t+

since Tg 77 e Using Eq. (A=45), under the assumption that the shock

is weak over most of the distance to ro. this becomes:

3
cT (ro)
2

o

d (A=53)

d(ro)

According to what has been said before, we must require

since this is how far within the pulse

d(ro) to be a few times ct,
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the frequencies of interest {m = i%—! are located. Thus we obtain the
]
criterion: \ o
t+(r°) td(ro, (A-54)

The sound speed occurring in Egs. (a-51) - (A-53) is the
sound speed within the pulse which presumably is larger than ambient
due to effects occurring at the front of the weak shock.

In deriving the frequency dependent group velocity in Egs.
(A-51) and (A-52) we used the Lamb mode dispersion equation, Eq. (A-10).
We now justify this procedure. Lquation (A-10) cannot be exactly
correct within the shock because of nonlinear effects. That 1is, in

1(kx-wt)’ £5 (w)

is a function of space. The factor r is included to account for

the Fourier decomposition of the weak shock, rS(w) e

purely geometrical effects. According to Eq. (A-48) with t =

Twr
l—-+ wz
t2
+

r|S$(u,r)| =

= .2
a mre, for w < t,

a t+
'y r
a \'1+8en=— (A=55)
yiveng

(6)

where we have used the fact that Frt+ is a constant for a weak shock

and have used Fq. (A-46) to write the explicit r dependent of t,.
Because of Eq. (A-55) it is appropriate to define an imagi-

nary component of k which represents the spatial growth of frequencies

w s t+:

LW e



k 2—-ln lS(m,r)rI = 8

i Jor T
r\/1+69.nR—
(o]

= o , for r=r . (A-56)
r o
o
The real part of k 1s of course kr = %. If kr > ki then the group
velocity will be given by %ﬁ— using the Lamb mode dispersion equation.
r
This criterion amounts to:
o
5 << roo (A-57)

or for the dominant Fourier components w - %f-:
+

ct, << r_, (A-58)

which simply means that the positive phase length must be much less
than the matching radius. This will be the case since r is chosen to
be a radius where the shock is weak and hence is much larger than a
fireball dimension (ct+ being the order of a fireball dimension).

For the very low frequencies observed in the far-field

(w llrd(r)) the criterion is:
crd(r) << Tt (A-59)

which is not automatically satisfied.
However, in deriving the matching criterion, Eq. (A~54), we
only used the fact that the very low frequencies have a group velocity

which is much nearer the local sound speed than that of the high
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frequencies. This will still be the case since both kr and ki will be

1
t_’__c for the high

small for the low frequencies (as compared to kr
frequencies) and hence the term hkk k3 in the Lamb mode dispersion
equation (A-10) may still be omitted in determining dw/dk for the very
low frequencies. Thus our use of Eq. (A-10) in deriving the matching
criterion (A-54) is justified.

From Eqs. (A-45) and (A-46) this basic criterion (A-54)

becomes:
~ 3/2
3h r
kk 3 o
g Ty ¥ t+(Ro) 1+ 82en T (A-60)
c o
According to Sachs scaling:
(Y . 1/3
ko = |7, |
° b/
1/3
Y
t,(R)=a lq’ ; (A-61)

where again using the problem M results, ¢ ~ .9 km, a = 1/3 sec, and

as before 8 = 2/3, when Y is measured in kT and Pb in atmospheres.

3
Putting ak = ¢ we obtain from Eq. (A-60):
c
= e
3 [Y 1 Yo [Tb
or = « —)il + 8 n —|— (A-62)
0 P € Y
b
We wish to solve Eq. (A-62) for r, '%— . It is convenient to define

. b
£ 1/3

P
the parameter x : EE.(?E ) so that Eq. (A-62) becomes:

L gy



1/3
U(X") X = 13 ::— ( 1 + ﬂf.nx):;/z (A'(3,

b b
or:
3/2 3/2
b 4 (1 + Binx)
so that:
3/2 3/2
B = (54 01/2 X 37% . (A-65)
(1 + Einx)

Now ( )has a minimum value at x = exp'—'- —1 1 where

3/2 3/2
2 'co €0 | Y*
I-Té-)] 3) 3(;—3) (ﬁ). for £ = 2/3. At

b | a
this value of x,r =R = ¢ . To continue the solution r =—
o o P;, o Pb

Y&
to values of = 3 which are smaller than can be obtained from Eq. (A-64)

b
" 1/3 1/3 " Y*L
we take r = ¢ (-—-) = .9 (——) ke for - i« This corresponds
() P p P P*
b b
to the aforementioned case (a) for which Td > t+ at all radii for which

the shock is weak.

To see what the net effect of the altered criterion contained
in Eqs. (A-64) and A-65) is we return to Eq. (A-43). The far-field
Lamb mode amplitude is proportional to ;(ro) t:(ro) r, For

Y Y# =2y 2 .
5~ < |o=x | this quantity is equal to = 10 = —— km sec”, when Y is in kT
P, - |P* ¥
b b b
- T
and Pb in atmospheres. For'%- § %; we may use the fact that according
b b
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2
to weak shock theory ﬂrt* is independent of r.( ) Thus

t, (r)
- 2 -2Y +' o0
Hqr) e (e )r =10" =—
) + 0 o Pb t+(Ro)
Y i (:,—)1 + 8 tn x]” (A-66)
b [
Y Y*®
The correction factor to the far-field amplitude when P> pw may
b b
therefore be defined for 6 = 2/) as:
o 4
Q . 1+-5-lnx] .X:l (A-67)
where x is given by Eq. (A-64)
3/2
P X (A-68)
LU P
1+=in x)l
\

3

Using Eqs. (A-66) - (A-68) we may rewrite Eq. (A-44) as:

L4 =



= P
1 -2 22y e ‘b)
P, = 10 ' _b
4 s lgin ¢ )” -\ Y oy 20P
r — d
e l'e
3 v ‘
Y d E '
Y Q(F—) f—l Al - =+ y (A-69)
b Ay TN J
(]
1
i 10° 3/2 P ! =
5 ‘i(c‘l) (Fé) vaf IR W oLy .
‘ 8 \bld vy . d -
l' o
el

where we have used U = czlyg. The corresponding matching radius is
given by Eq. (A-60):

1/3 3/2

Ye X
r =¢ j— (A-70)
. (Pg) 1+ % znx):m

and the critical yield to pressure ratio is:

3/2
Px 3 4
b a ca
3/2
. 3/2 Mt sec .
400 (hy,) atmosphere | 9/2 =Ty

for ¢ = .9 km, ¢ = .34 km/sec, and o = 1/3 sec. Based on a particular
model atmosphere and direction of propagation chosen to represent the
signal received at Berkely, California, following the Housatonic
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3

detonatfon at Johnston Island Plerce and Posey(l) find hkk = .13 EE; .
Thus in this particular case LY I 19 —r == . For a different
P; atmosphere

set of atmospheric conditions near the burst point or a different

*
direct ion of propagation hkk and thus (:—. )Vould be different.
b

We define the scaled yielc to pressure ratio:

: = 2 |
‘ (ﬁ)lz—) (e 5 S
b ,—_Q—— ’
- -

where we have used ligs. (A-67) and (A-68) to eliminate x. Similarly

the scaled matching radfus is:

R_ = Q (A-73)

For Q < 1.6 which corresponds to I' < 4 we may derive a
simple analytic form for Q(I') from Eq. (A=72):

-2
fnl == g—-—l-an'

~

$ 2

-

"2 r 2"
e l)*
- len - 438 5

<le

wiNg

(@-1)2 (A=74)
and thevefore:

Q-1+ — (A=75)
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which gives the correction factur directly in terms of the scaled
yield to pressure ratio.

r
In Fig. A-4 we plot Q and R—° vs. I based on Eqs. (A-72) and
o
(A-73). In ord - to utilize Eq. (A-75) or Fig. A-4 for a particula:

detonation it is necessary to calculate the critical yield to pressure

ibt

near the detonatfon which can only be obtained from numerical calcu-

.
ratio (!— . This quantity involves the dispersiv: coefficient hkk

lations based on a detailed atmospheric model. It is important to

%
note that (%; )9111 differ in different directions from the burst.
b
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APPENDIX B: VARIATION OF RAYLEIGH WAVE AMPLITUDE WITH YIELD
AND HELGHT OF BURST FOR INTERMEDIATE ALTITUDE
NUCLEAR DETONATIONS

B.l Introduction

The shock wave from an atmospheric explosion can excite
Fayleigh waves when it strikes the earth. 1In this appendix we derive
a theory which predicts shock properties (overpressure and positive
phase length) on the ground beneath a nuclear detonation. Using this
theory we then compute the source strength for Rayleigh wave excitation
as a function of yield and height of burst for intermediate altitude
detonations. A more przcise description of the altitude regime which
we treat fs given in Table B-2 and "source strength" is defined by
tEq. (B-17) of the sequel. We do not consider any details of Rayleigh
wave propagation, so that we are unable to provide absolute values of
far-field Rayleigh wave amplitudes or phases. The present analysis is
directly applicable only to estimating relative yields or heights of
burst for situations in which source and receiver locaticns are the same
for two or more detonations. However, the shock parameters at the
earth's surface, which are calculated in the theory, are suitable as
inputs to existing Rayleigh wave propagation models such as those of
Harkrider and Flinn(l) and Nickel and whitaker.(z)

1t 18 in the inclusion of the influence of atmospheric
structure on the shock parameters resulting at the earth's surface that
the present treatment differs from previous work. Secveral authors have
utilized a homogeneous model atmosphere in computing the time dependent

(3,4,5)

overpressure at the earth's surface. The assumption of atmo-

spheric homogeneity can only be valid for detonation altitudes

sufficiently less than an atmospheric scale height.

(1)

More recently, Harkrider and Flinn have used a layered

model atmosphere and have assumed that a given weak shock overpressure
Ap relative to the ambient pressure at the source altitude P, Oceurs
-1/3

at a distance r which scales as P. . The length of the positive
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phase of the shock I. at the distance r is also assumed to scale as p;1/3.

The scaling relations used by Harkrider and Flinn(l)
(6)

are usually
referred to as ordinary Sachs scaling. This scaling law for the
shock overpressure is known to be invalid for weak shocks which propa-
gate downward through several atmospheric scale heights. Lutzky and

(N

Lehto have shown that so-called modified Sachs scaling in which r

1/

scales as p 3 (where p is the ambient pressure at a distance r from
the explosion) for a given value of 4Lp/p is a much more accurate scaling
law for the overpressure of downward propagating shock than is ordinary
Sachs scallng., 1t should be pointed out that Harkrider and Flinn(l) do
not treat explosions above 4.88 km altitude. For low enough explosion
altitudes quantitatively different results due to using different
ambient pressure scaling laws should be small.

However, for intermediate altitude detonations the ordinary
Sachs scaling laws are definitely inadequate for predicting shock
parameters at tae earth's surface. Nor does it appear that modified
Sachs scaling is adequate for this purpose. This is for two reasons:
(1) The validity of modified Sachs scaling at relative overpressures
much lower than those which occur in the calculations of Lutzky and
Lchto(7) is uncertain. (2) Modified Sachs scaling applies only to the
relative overpressure and not to the positive phase length. In general
the positive phase length is required in order to calculate the far-
field Rayleigh wave amplitude, although for detonations well above
100 lm altitude this may not be the case.(z)

In the absence of reliable height of burst sca%;;g laws we

have used the numerical calculations of Lutzky and Lehto to predict
the shock properties at the earth's surface. These authors have made
calculations of the downward-going shock from a point explosion in an
ideal gas, spherically symmetric, exponential atmosphere. Several
faccors must be assvssed in applying these idealized calculations to

the case of a nuclear explosion in the real atmosphere:
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a. The assumption of an exponential atmosphere limits the theory,
in its present form, to the 0-100 km altitude interval where the

scale height may be assumed constant.

b. Application of results obtained for a spherically symmetric
atmosphere (i.e. one-dimensional) to the real, horizontally
stratified atmosphere involves the assumption of independent
propagation of different portions of the shock front. It has
been found that differences between one and two dimensional
blast wave calculations in an isothermal atmosphere are in

(8)

fact small,

c. The calculations of Lutzky and Lehto are for an ideal gas with
y=l.4. Near the burst point this description of the equation
of state of air is obviously lacking because of the high tempera-
tures and pressures involved. Numerical calculations indicate
that the net effect of this complication is the following: a
nuclear explesion at sea level in real air is 0.7 times as
effective in producing a given weak shock overpressure at large
distances as the idealized point source with y=1.4. That is,
a 0.7 Mt idealized point source in the y=1.4 medium produces
the same given weak shock overpressure as a 1 Mt actual nuclear

(9)

burst in real air.

Even allowing these assumptions, the numerical calculations of Lutzky
and Lehto are not entirely sufficient for our purposes because:

(1) The do not extend to low enough relative overpressures. (2) They
do not explicitly calculate the length of the positive phase.

In the next section we match these numerical calculations to
an analytic weak shock theory in order to extend the relative over-
pressure range which may be treated. Also in the next section we use
this analytic weak shock theory to relate the positive phase length to
the spatial derivative of peak overpressure, a quantity which is calcu-
lated numerically. Thus by using weak shock theory in conjunction with

the numerical calculations we are able to calculate shock parameters at
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the earth's surface without using Sachs scaling laws. laving the shock
parameters at the carth's surface we then compute the variation of far-

field Rayleigh wave amplitude with yield and height of burst.

B.2 Determination of Shock Properties at the tarth's Surface
7
1/3

The calculations of Lutzky and Lehto are parameterized by
1/3 3
and o, = h(pc/h)

energy released by the point explosion, P, is the ambient pressure at

the quantities oL r(pc/E) , where L is the
burst altitude, h is the scale height and r is the distance from the

explosion. Note that o and o, are scale height and radius in units

of the length [E/pc]l/3 characterizing the detonation.

We will match the numerical solution to an analytic one at a
relative overpressure Ap/p = 0.1 (Ap is the overpressure and p is the
ambient pressure at or). Assume that in the neighborhood of the match-
ing point we may write Ap/p = a o: , where a and n are constants. It

turns out that matching of solutions can be conveniently done in terms

of two quantities: o_ = o_ at Ap/p = 0.1, and n =3 (—é— 1n 919 c
r r r \dor P /s a3

r r

This amounts to prescribing Ap and its first derivative at Er.

Values of Br,n and the useful quantity x = Br/20h obtained
@))]

from the calculations of Lutzky and Lehto are shown in Table B-1.

TABLE B-1

MATCHING PARAMETERS OBTAINED
FROM NUMERICAL CALCULATIONS

% Br n X
0.05 0.311 =4.26 3.11
0.10 0.511 -3.84 2.55
0.20 0.786 -3.29 1.96
0.50 1.26 -2.82 1.206
2.0 2.10 -1.90 0.502
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In Fig. B-1, n aud Jh are plotted vs x. We have also included the

point n(x=0) corresponding to a homogeneous atmosphere (c:h = «) based

(9)

on Figure 3 of Lehto and Larson.

Now according to the weak shock theory of Reed(lo)

Ap L
4 o =9 o _© Po (B-1)
P p, Tt L P

1
' A
Ap r /'p

t_..—.i1+2ﬂ__2_°. '\/ o_ dr (B-2)
o | Y p. L p(r) rJ

i o o

- "

where Apo/po is the relative overpressure and Lo is the length of the

positive phase at r,<r and where v is the ratio of specific heats.

From Eq. (B-1) assuming an exponential atmosphere

el S o b = &g L (B-3)

where h is the atmospheric scale height.

Using Eq. (B-2) we find

mi‘iei.\/"__o.;_
&y p r p L
-g?ln -[l:— i ) 2 0 = yl -tiil: (B-A)
o ,L__ Y p
L
v 0O/

where we have used (B-1) to eliminated Apo/po.
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FIGURE B-1' SCALED SCALE HEIGHT o), AND NATCHING PARAMETER n
AS FUNCTIONS OF THE SCALED MATCHING RADIUS X

On
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or

Substituting (B-3) in (B-4) yields:

- Itl Ap

L = = by p
r , o, Ap?
;1+2h+r1npj

Taking y=1.4 we find that at Ap/p = 0.1 (ar - Er):

-0.0857 h x

L(ar) =i l+x+n

While from (B-6)

Yt dp x = -2 1l+x+n
2y p L. - - -
- -~ 0_=0

r r

so that from (B-2)

AT .=
% = 1-2 (1+ x +n) -\/riiﬁ) 14
i : P T _

—

r. 4
= ({1=2 [l+x+nJ0x:E (x) - E, 15
! “1'2h

S » =
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where E, Is the exponential integral. Using (B-7), the length of the

positive phase at distance r is found to be

Y
-0.0857 I » 1 ¥ s It
l. = TERE 1 - 2.1 + x + n‘ e hl(x) - L1‘2h o (B-10)

Finallyv, substituting (B-9) into (B-1) and taking Apolpo = 0.1

we find
- 1P
0.2h = 7 £
=P « - P (B-11)
P v ox e B i
v1-2 1+ x+n e El(x) - L =
Q ® . 1\2h 5

For the class of detonations which we treat, the quantity
Ll(r/Zh) can be neglected in (B-10) and (B-11). This is a valid
approximation when the relative overpressure at the ground is somewhat
smaller than 0.1 (corresponding to a reflected overpressure at the
ground of about 200 mb). In terms of Eq. (B-10) this approximation is
related to the fact that the length of the positive phase becomes
"frozen" for downward propagation at a value independent of distance
from the burst point. It is convenient for later use to define the

dimensionless functions

0.2 x,ex Apr
f(x) = ] " 3T, = (B-12)
3 1-2[1 + x + nJ e Ll(x)‘- \/ PP h
I
ey =0.0857 x _[ X _ !
g(x).1+x+n{121+x+n}e hl(x)} 2 (B-13)
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The functions f(x) and g(x) are shown in Figs. B-2 and b-3.
Equations (B-12) and (B-13) form the basis for the subsequent analysis
in vhich we consider the variation of Rayleigh wave amplitude with
yield and height of burst.

First, however, in concluding this section it is useful to
summarize the varfous factors which determine the altitude regime to
which the present theory is applicable. According to what has been
said previously, the point source equivalent energy E of a sca level
nuclear explosion of yield Y is 0.7 Y. We therefore redefine the

parameter o,

b )1/3 p_(nb) 11/3
%= Moy - e | vy i)

Our treatment is essentially limited to the range of values
of % used in the numerical calculations of Lutzky and Lehto(7)
(0.05-2.0). For a given yield, Eq. (B-14) therefore places constraints

on the relevant pressure or altitude interval:

r

0.685 Y(KT) > p(mb) > 1.07 x 10~ Y(KT) (B-15)

There are two additional restrictions on the relevant alti-
tude interval which have been previously mentioned: (1) The theory is
limited to detonations below 100 km, because above this altitude the
isothermal atmosphere approximation is invalid. (2) We are also limited
to sufficiently high altitude detonations that the relative overpressure
on the ground is smaller than 0.1

Putting all of these factors together for the o, values at

h
our disposal, we construct Table B-2, which shows the altitude intecrval
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wiifch can be treated for several yields. In deriving Table B-2, we have
used the 1962 Standard Atmosphere and assumed a scale height he? lmm.

TABLE B=-2

ALTITUDE INTERVALS TO
WHICH THE THEORY APPLIES

Yield Altitude interval
10 kT 33.8 - 93.5 m
100 kT 18,6 = 92.5 km
l Ht 30-7 - 80-0 h

B.3 Source Strength for Rayleigh Wave Excitation as a Function of
Yield and lleight of Burst

Toksoz and Ben-Menahea(é) have considered the far-field
Ravleish wave amplitudes excited by a point source in a homogeneous
atmosphere. For three-dime sional propagation in the absence of ni n-
linear effects, the source parameters contribute to the amplitude

almost entirely through a factor
[L(w)| = l f Sp(t) gt de (B-16)

which is the Fourier transform of the point source pressure fluctuation
Sp(t). As described by the above authors the far-field Rayleigh wave
amplitude is proportional to |L(w)| and also to a factor which lies

between unity and exp -k1 r, where k, is the imaginary component of the

i
seismic disturbance wave number, and r is the height of the source above
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ground. These are the only factors which depend on source parameters.
For the atmosphere-lithosphere contrast ki = (ZR/AR) b3 10-5. where A

is the seismic wavelength., Thus, exp -k, r is cssentially unity, even

when r is comparable to AR’ and we may s;mply take the Rayleigh wave
amplitude to be proportional to |L(w)| with no other factors which
depend on the source amplitude, time dependence, or height above ground.
In the case of linear pressure pulse propagation,
Sp(t) a éps(t)r, where 6p8(t) is the time depencent pressure pulse on
the ground a distance r beneath the source. Even in the case where
the pressure propagation is nonlinear, because of pulse lengthening and
dissipative effects we expect that the source strength for Rayleigh
wave excitation will be proportional to the Fourier transform of ‘pg(t)r.
The reason is simply that the source strength can only depend on
parameters at the ground and not on the previous history of the pulse
propagation. That is, we may substitute an equivalent linear point
source pressure fluctuation proportional to épg(t)r for the actual
nonlinear disturbance.
For reasons which will soon be evident, we therefore define

the dimensionless source strength to be

S(T) = % [ sp(t) o-lut g (B-17)
8
(o]

where T = 2r/w is the Rayleigh wave period of interest, pg is the sea
level pressure, and h is the atmospheric scale height. Notice that

S(T) does not contain any dependence on source parameters except through
IL(w)I. The far-field Rayleigh wave amplitude is therefore proportional
to S(T) with no other factors which depend on source amplitude, time

dependence, or height above ground.
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To continue we assume a pressure pulse at the ground

v =t/t
sp(t) = ap fi - {— e T (B-18)
\ +/

where 4p is the peak overpressure and ¢, is %he positive phase duration.(ll)
The weak shock theory employed in the previous secticn should be inde-
pendent of pulse shape since nonlinear effects are governed by what

happens at the shock front and not the shock interior. Thus, Eq. (B-17)

becomes

S([) = p——db : (B-19)
) '
5 27t -Pg

Now t, - L/c, where ¢ is the sea level sound speed and L, as
ir the previous secticn, is the positive phase length. Thus, in terms
of the functions f(x) and g(x) of the previous section, Eq. (B-19) can
be written

. £(x) /E . t'L:Q "c

P8 . i :]
+
[;——-g(x;] 129, 36 g (x)

for h=7 km, and c=0.34 km/sec. In writing (B-20) we have explicitly
noted that the richt sides of (3-12) and (B-13), defining f(x) and

g(x), are to be evaluated at the ground where p = pg.

(8-20)
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According to Eq. (B-14)

3/2

—c) o f22:8 t—) v1/2 2 9.1975 x 10 1/2

¥

e qg/z (B-21)

for p8 = 1013.25 mb. Thus, (B-~20) becomes:

9.1975 x 10™3 og” v1/2 ¢(x)
S = _ _ (B-22)

A -

We gene:ate curves of source strength S versus height of burst
r in the following way: Picking Y and % determines Pe and herce r
through Eq. (B~21) (again using the 1962 Standard Atmosphere). The
quantity x is determined from Fig. B-1 or Table B-1, and f(x) and g(x)
for use in Eq. (B-22) are found from Figs. B-2 and B-3.

Results for yields Y=10 kT, 100 kT, and 1 MI' and Rayleigh
wave periods T = 10, 20, and 40 seconds are shown in Figs. B-4, B-5,
and B-6, The yields we refer to are effective yields which at high
altitudes may be less than the nominal yields due to radiative or other
energy loss mechanisms. There is a maximum in source strength which
occurs at about 80-85 km for 10 KT, 65-70 km for 100 kT, and 50-60 for
1 MT. The strength of the maximum is greatest for the larger Rayleigh
wave periods and for the shorter periods the maximum may disappear
entirely. The altitude at which the maximum occurs increases slightly
with Rayleigh wave period.

The variation of source strength with altitude can be appre-
ciable. For example, the source strength for a Rayleigh wave period of
40 seconds and a yield of 100 kT increases by almost a factor of 3 as
the height of burst is raised from 20 km to 70 km.
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FIGURE B-4: SOURCE STRENGTH FOR RAYLEIGH WAVE
EXCITATION VS HEIGHT OF BURST, Y=I10 KT
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FIGURE B-6: SOURCE STRENGTH FOR RAYLEIGH WAVE EXCITATION
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Figures B-7 and B-8 show source strength plotted against yield
for Rayleigh wave periods of 10, 20, and 40 seconds and burst heights
of 40 and 80 km. Within the range of parameters treated, the source

strength increases with yield at a rate bctween YI/2 and Y2/3.

B.4 Conclusions

a. Rayleigh wave amplitudes from intermediate altitude detonations

vary with height of burst as well as yield.

b. The variation with yield appears to lie between the 1/2 and the
2/3 power, depending on burst height and the Rayleigh wave period

being considered.

¢. For a given yield the Rayleigh wave amplitude, at least for
periods of 20 seconds or more, has a maximum at a particular
burst height. The maximum occurs at 80-85 km for 10 kT, 65-70 km
for 100 kT, and 50-60 km for 1 Mt. The strength of the maximum
is greatest for the longer Rayleigh wave periods and the altitude
at which the maximum occurs increases slightly with increasing

Rayleigh wave period.
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GLOSSARY OF SYMBOLS USED

Section 2 and Appendix A

amplitude function of Lamb mode

Airy function

derivative of the Airy function

sound speed

correction factor due to Az < 0 integration in Eq. (A-43)
distance moved by low frequencies relative to high frequencies

function containing time and horizontal distance dependence
of Lamb mode

function defined by Eq. (A-40)

dispersion coefficient due to deviations of wind and sound
speeds from vertically averaged values

scale height

wave number

imaginary part of k

real part.of k

distance behind shock front
ambient pressure at burst altitude

critical ambient pressure for breakdown of yield-amplitude
proportionality

Lamb mode pressure amplitude
sea level pressure

pressure amplitude, first peak to trough
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AP

overpressure
large yield amplitude correction factor

great circle distance

earth radius

cylindrical radius for matching weak shock and Lanb mode
parameter defined by Eq. (A-14)

distance from burst

"real part of"

small radius where F(Ro) = ,1 and atmospheric inhomogeneity
is unimportant

Fourier transform of Glasstone pulse
time after signal arrival

positive phase duration

parameter defined by Eq. (A-13)
period of far-field disturbance
group velocity

r {Pb 1/3

210
e \Y

2 2
Az” + r -T
o 0

n
<

ety
yield

yield in megatons

critical yield for breakdown of yield-amplitude proportionality

altitude
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-

z altitude of rigid ceiling in modal analysis

z height of burst
Az vertical distance relative to height of burst
z) lowest altitude to which shock extends
z, highest altitude to which shock extends
a t, at 7T = .1 for 1 kT at sea level
+ 0o

Y ratio of specific heats
r scaled yield to pressure ratio defined by Eq. (A-72)
o} 3hkk -

— S 0

c
€ radius at which 7 = .1 fcr 1 kT at sea level
n(ro,z,to) relative overpressure at T a2t
T peak relative overpressure
T time after passage of shock front
T waveform arrival time
4 characteristic dispersion time
] waveform function of Lamb mode
@ Fourier transform of y(r)
¥ sum of modes other than the Lamb mode
w frequency of disturbance
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Section 3

Bl,Bz,-- Bernoullil numbers

c sound speed

d distance between ground reflections

Ei exponential integral given by Eq. (3-14)

E, exponential integral given by Eq. (3-13)

f function giving relative overpressure vs. distance for

1 kT at sea level

H effective scale height
Hs atmospheric scale height

I integral defined by Eq. (3-8)

I2 countribution to I from fLth transit between ground and upper

boundary
L index for each transit between ground and upper boundary
m number of reflections at upper boundary
or P(r)

ny value of n for a homogeneous atmosphere
P ambient pressure
Pb ambient pressure at burst point
AP overpressure

r radial distance from burst

r value of r at & . .2

o P

R range

t, positive phase duration
T far-field disturbance period
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altitude of upper refl.cting boundary

constant relating relative overpressure to radius at A% = ,]

dimensionless function defined by Eq. (4-8)

dimensionless function defined by Eq. (4-7)
Fourier transform of point source pressure fluctuation

positive phése length at A% = .1

starting value defined by Eq. (4-10)

peak overpressure at the ground

Y yield

%o

z height of burst

Y ratio of specific heats

r Euler's constant

Section 4 and Appendix B

a

c sound speed

E point source energy

E1 exponential integral

f (x)

g(x)

h scale height

L(w)

L positive phase length at r
L

n

P ambient pressure at r
PP, ambient pressure at burst
pg sea level ambient pressure
P, ambient pressure at L
Ap

Ap overpressure at LA
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point source pressure fluctuation

pressure fluctuation at the ground from a peint source
radfus from burst pcint, also height of burst
arbitrary radius less than r, T in particular

radius at A% = .1

dimensionless source strength defined by Eq. (4-4)
time

positive phase duration at the grouud

r
o]

2h
yield

ratio of specific heats

scaled scale height defined by Eq. (4-11)
scaled radius

scaled radius at which A% = .1

Rayleigh wave period

frequency of disturbance
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