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1. Introduction

Let A and B be matrices of sizes m by t and t by n, respectively,

with elements in a field F. Let x,, ... , xt denote t independent inde-

terminates over F and define

X = diagtx1 , ... , Xt]. (1.1)

"Then

AXB = Y (1.2)

is a matrix of size m by n such that every element of Y is a linear

form in x1, ... , xt over F. In the present paper w investigate the

converse proposition. Thus let

Y = Y(x ... , xt) (1.3)

be a matrix of size m by n such that every element of Y is a linear

form in x1 , ... , xt over F. Then under what conditions are we assured
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of the existence of a factorization of Y of the form (1.2)? Our con-

ditions turn out to be very natural ones and they are easily described

in terms of compound matrices. We now state in entirely elementary

terms a special case of one of our conclusions.

Theorem 1.1. Let Y be a matrix of order n _> 3 such that every

element of" Y is a linear form in xj, ... , xn over F and let

X = diag[xI, ... , xn]. (1.4)

Suppose that

det(Y) = cx1 "'" xn, (1.5)

where c # 0 and c E F, and suppose further that every element of Y-1 is

-1 -1a linear form in x1 , ... , xn over F. Then there exist matrices A and

B of order n with elements in F such that

AXB = Y. (1.6)

Our work has been strongly motivated by the much earlier invest-

igations of Kantor [2], Frobenius [1], and Schur [5]. These authors

study a related problem but with X a matrix of size m by n and such that

the elements of X are mn independent variables over the complex field.

A more recent account of this theory is available in [3].

Finally, we remark that the matrix equation (1.2) is of considerable

combinatorial importance in its own right. For example, if A and B are

(0,1)-matrices, then (1.2) admits of a simple set theoretic interpretation.



The special case

AXAT = Y,

where AT is the transpose of A, has been investigated briefly in [4].

But we do not pursue the combinatorial aspects of this subject here.

2. The Main Theorems

Throughout tt3 discussion we let F denote an arbitrary field and

we let x,, ..., xt denote t independent indeterminates over F. We

define

X = diag(x1 , ... , xt]. (2.1)

We then form all of the products of xJ, ... , xt taken r at a time and

we always denote these products written for convenience in the

"lexicographic" ordering by

Y'""u (U = (r)) (2.2)

Now let

Y = Y(xI, ... , xt) (2.3)

denote a matrix of size m by n such that every element of Y is a linear

form in x., ... , xt over F. We further assume that

< _ r _5 min(m,n) (2.4)

and we let C r(Y) denote the rth compound of the matrix Y. Thus Cr(Y)

is of size (m) by (n) and the elements of C (Y) are the determinants
rý r r



of the various submatrices of order r of Y displayed within C r(Y) in

the "lexicographic" ordering. We note that the preceding terminology

implies

Cr(X) = diag[yl, ... , yu]. (2.5)

We are now prepared to state one of our main conclusions.

Theorem 2.1. Let Y denote a matrix of size m ý_ n such that

every element of Y is a linear form in x 1, ... , xt over F and let

Yl' ."'' Yu denote the products of x1, ... , xt taken r at a time. We

assume that

2 K r < rank (Y) - 2 (2.6)

and that every element of C r(Y) is a linear form in YI, ... , Yu over F.

Then there exist matrices A and B of sizes m ýy t and t by n, respect-

ively, with elements in F such that

AXBa y. (2.7)

We begin with a simple lemma concerning the matrix Y of (2.3).

LTema 2.2. Let

Yi = y(o, ... , 0, xi, 0, ... , C) (2.8)

and suppose that

rank (Y.)5 1 (i = 1, ... , t). (2.9)

Then there exist matrices A and B 2f sizes m bX t Wd t ýy n, respectively,



with elements in F such that

AXB Y. (2.10)

Proof. The assertion rank (Yv) _5 1 implies that we may write

Yi - Xixisip (2.11)

where

a i =, (bi1' "." bin) (2.12)

are vectors with components in F. Here if rank (Yi) = 1 we have

a i 1 0 and 8i#6 0. But if rank (Yi) = 0 we have a = 0 and Bi arbitrary

or S. = 0 and a. arbitrary. Thus
1 1

Y -Y 1 + ... + Y +t a • lX is1 + " " + a~tXt~t

01 (2.13)
S(alp ... p at] x." ,

It

and our conclusion follows.

Notice further that if

rank (Yi) = 1 (i - 1, ... , t) (2.14)

and if

A IXB' Y, (2.15)
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then there exists a nonsingular diagonal matrix D with elements in F

such that

A' =AD-, B =DB. (2.16)

It is now clear that the following lemma is actually a reformu-

lation of Theorem 2.1.

Lemma 2.3. The matrix Y of Theorem 2.1 satisfies

rank (Yi) • 1 (i - 1, ... , t). (2.17)

Mroof. We remark at the outset that the lemma is elementary for

r = 2. In this case rank (Yi)= < 1 because otherwise we contradict the

assumption that every element of C 2(Y) is a linear form in y, .'

over F.

Hence we take r Z 3. Let us suppose that

rank (Yi= p > 1 (2.18)

for some i = I, ... , t. Then there exist nonsingular matrices P and Q

of orders m and n, respectively, with elements in F such that

PYiQ = x 1IS 0. (2.19)

In (2.19) the matrix I is the identity matrix of order p, 0 is a zero

matrix, and the sum is direct. The elements -f the matrix

PYQ = Z (2.20)

are linear forms in x,, ... , xt over F. It follows from (2.13) and
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(2.19) that the structure of Z is such that the indeterminate xi appears

in positions (1,1), ... , (pp), and in no other positions in Z. The

familiar multiplicative property of the compound matrix implies

Cr(P)Cr(Y)Cr(q) = Cr(z), (2.21)

and by our assumption on Cr(Y) we may conclude that each of the elements

of C r(Z) is also a linear form in y,, ... $ Yu over F.

We designate by Fi the quotient field of the polynomial ring

F2x1, ... , x.!., Xj+l, ... xt]. (2.22)

th this notation the elements of Z and C r(Z) are scalars or polynomials

in xi of degree I over Fi. In what follows we apply certain elementary

row and column operations to Z with respect to the field Fi. This means

that we determine certain nonsingular matrices P' and Q1 of orders m and

n, respectively, with elements in Fi such that

P'IZQ 'Z'. (2.23)

Then once again we have

Cr(P')Crz)c(Q') = Cr (Z'). (2.24)

Thus we see that the elements of Z' and Cr(Z') are scalars or poly-

nomials in xi of degree 1 over Fi.

We now write Z in the form

Z = * * (2.25)



where W is of order p. We note that det(W) is a polynomial in xi of

degree p > I over F.. Let the suDmatrix of Z in the lower right corner
1

of Z of size m - p by n - p be of rank p. Then we may apply elementary

row and column operations with respect to Fi to the last m - p rows and

the last n - p columns of Z and replace Z by

z' = [ 0 (2.26)
W/ 0 0

In (2.26) the matrix I is the identity matrix of order 0 and the O's

denote zero matrices. We assert that

p + o r- (2.27)

because p + p > r contradicts the fact that all of the elements of

C r(Z') are scalars or polynomials in xi of degree I over Fi. Let the

submatrix W' of Z' be of rank o'. We have rank (Z') = rank (Y) and

hence we may conclude that

p + + 0' > rank (Y). (2.28')

It now follows from (2.6), (2.27), and (2.28) that

a' > 3. (2.29)

We permute the last m - (p + p) rows and the first p columns of

ZI so that the submatrix of order 2 in the lower left corner of W' has

a nonzero determinant. We then further permute the first p rows of Z'



so that the p polynomials in xi of degree 1 over Fi again occupy the

main diagonal positions of W. By elementary row operations with respect

to Fi we may replace the matrix of order 2 in the lower left corner of

WI by the identity matrix. We then apply further ,lementary row oper-

ations with respect to Fi and make all elements in columns 1 and 2 of

Z' equal to 0, apart from the elements in the (1,1), (2,2), (m-1,1), (m,2)

positions, and these elements are equal to xl, xv, 1, 1, respectively.

We delete rows 1, 2, a-i, a and columns 1, 2 from Z' and call the

resulting submatrix T. Then we have

xi 0

0 x i

0 0

z (2.30)

0 0

1 0

0 1

The matrix is of size m - 4 by n - 2. Let Zbe of rankp. We have

rank (Z') = rank (Y) and hence

o" + 4 'k rank (Y). (2.31)

We assert that

Cr. 2 (•} ý 0. (2.32)
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suppose on the contrary that Cr(•) = C. Then

Sr -3. (2.33)

But then by (2.6), (2.31), and (2.33) we have

rank (Y):<5 + 4<r+ 1 •rerank (Y) - 1, (2.34)

and this is a contradiction. Hence Cr2 (z) A 0. This means that Z

has a submatrix of order r- 2 with a nonzero determinant. But this sub-

matrix of i in conjunction with the first two rows and columns of Z'

yields a submatrix of Z' of order r whose determinant is a polynomial

in xi of degree 2 or higher over Fi. This contradicts the fact that

the elements of C r(Z') are scalars or polynomials in xi of degree I over

F.. Hence we h2ave

rank ( 1i) (i 1, ... , t). (2.35)

This proves Lenm 2.3 and Theorem 2.1.

The range of r in the preceding theorem cannot in general be extended

to r = rank (Y) -1. We define

0o

Y : diag[x1 , ... , xn] + (2.36)
Xn+ I 0

L 0 X+ 1

where the O's denote zero matrices. Then we have t - n + 1 and if



n > 4 we have

0 0

y =diag rL1 ., + (2.37)LX xI'" _ -xn+
1 n -n+l 0

X1 Xn- 1

0 -xn+" " n+ 1

X2 xn

Hence for r = n - I we see that every element of Cr(Y) is a linear form

in yi, ... , Yu over F. But clearly rank (Yn+ 1 ) = 2.

The preceding theorem, however, is valid for r - rank (Y) - I under

the added assumption t = rank (Y). This theorem is actually a general-

ization of Theorem 1.1 described in Section 1.

Theorem 2.4. Let Y denote a matrix of size m ýy n such that every

element of Y is a linear form in x1 , ... , xt over F and let y, ... , Yu

denote the products of x,, ... , xt taken r at a time. We assume that

2 r = rank (Y) -1, (2.38)

t = rank (Y), (2.39)

and that every element of C r(Y) is a linear form in yl, ... , yu over F.

Then there exist matrices A and B of sizes m ýX t and t by n, respectively,

with elements in F such that

AXB- Y. (2.40)
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Lema 2.5. Let Y be a nonsingular matrix of order t Ž 3 such that

ever element of Y is a linear form in x1 , ... , x t over F. Let r = t - 1

and suppose that every element of Cr(Y) is a linear form in y', .-.' Yu

over F. Then

det(Y) = cx1 *-- xt, (2.41)

where c A 0 and c E F.

Proof. Let

rank (Yi) = p. (2.42)

We apply the same elementary row and column operations as in Lemma 2.3.

Thus we Imow that there exist nonsingular matrices P and Q of order t

with elements in F such that

PYQ = Z. (2.43)

The elements of Z are linear forms in x1, ... , xt over F. But the

structure of Z is such that xi appears in positions (1,I), ... , (p,p),

and in no other positions in Z. We know that every element of C r(Z) is

a linear form in y, ... , y u over F. Hence t _!3 implies that we cannot

have xi in the (t,t) position of Z. Thus xi does not occur in the last

column of Z. An evaluation of det(Z) by this column implies that no

term of det(Z) contains xi to a power higher than the first. Thus no

term of det(Y) contains x. to a power higher than the first, and this1

is valid for each i = 1, ... , t. Hence by the structure of Y we conclude

that det(Y) is a nonzero scalar multiple of x, ... xt.
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The following lemma completes the proof of Theorem 2.4.

Lemma 2.6. The matrix Y of Theorem 2.4 satisfies

rank (Yi) < 1 (i - 1, ... , t). (2.44)

Proof. We assume that

rank (Yi) p > 1  (2.45)

for some i a 1, ... , t. Once again there exist nonsingular matrices

P and Q of orders m and n, respectively, with elements in F such that

PYQ z. (2.46)

The elements of Z are linear forms in x1 , ... , xt over F. But the

structure of Z is such that the indeterminate xi appears in positions

(1,1), ... , (p,p), and in no other positions in Z. Furthermore, every

element of C r(Z) is a linear form in y,' "'" Yu over F.

The submatrix W of order p in the upper left corner of Z is non-

singular because its determinant is a polynomial in xi of degree p over

F.. We have

t - rank (Y) - rank (Z) k>3 (2.47)

and hence Z contains a nonsingular submatrix Z' of order t with W in

its upper left corner. We now write

z'Z '-I 1. (2.48)

The elements of Z' are of the form ax: + b, where a,b E Fi. Moreover,
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the polynomials in xi of degree 1 over Fi appear in positions

(1,1), ... , (p,p), and in no other positions in Z1. Every element of

C r(Z') is a linear form in y, ... , yu over F. Hence by Temma 2.5

every element of Z'- is of the form cxi1 + d, where c,d E Fi. We now

multiply row 1 of Z' by column j of Z-1 This product is 0 or

Hence the element in the (1,J) position of Z'I is of the form cxi

where c E Fi. Similarly, each of the elements in the first p rows of

Z -I is of this form. Hence

det(Z'1) = x Pf(x1), (2.49)

where f(xi) is a nonzero polynomial in x- over F.. But by Iemma 2.5
i 1 3.

we have

det(Zo-1) = exi , (2.50)

where e A 0 and e E FI. This contradicts p > 1. Hence p = and the

"lemma is established.
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