Analogues of a Theorem of Schur on Matrix Transformations^{*}

H. J. Ryser

California Institute of Technology, Pasadena, California 91109

Received

1. Introduction

Let A and B be matrices of sizes m by t and t by n, respectively, with elements in a field F. Let x_1, \ldots, x_t denote t independent indeterminates over F and define

Then

AXB = Y

 $X = diag[x_1, ..., x_+].$

(1.2)

(1,1)

15

is a matrix of size m by n such that every element of Y is a linear form in x_1, \ldots, x_t over F. In the present paper we investigate the converse proposition. Thus let

 $Y = Y(x_1, ..., x_t)$ (1.3)

be a matrix of size m by n such that every element of Y is a linear form in x_1, \ldots, x_t over F. Then under what conditions are we assured

NATIONAL TEC	HNICAL
INFORMATION Springfield Va	SERVICE 22151
	DISTRIBU

Approved for public rolector Distribution Unlimited

This research was supported in part by the Office of Naval Research under Contract N00014-67-A-0094-0010.

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Running head: Analogues of a Theorem of Schur Proofs to: H. J. Ryser Department of Mathematics California Institute of Technology Pasadena, California OllO

2

of the existence of a factorization of Y of the form (1.2)? Our conditions turn out to be very natural ones and they are easily described in terms of compound matrices. We now state in entirely elementary terms a special case of one of our conclusions.

Theorem 1.1. Let Y be a matrix of order $n \ge 3$ such that every element of Y is a linear form in x_1, \ldots, x_n over F and let

$$X = diag[x_1, ..., x_n].$$
 (1.4)

Suppose that

$$det(Y) = cx_1 \cdots x_n, \qquad (1.5)$$

where $c \neq 0$ and $c \in F$, and suppose further that every element of Y^{-1} is a linear form in x_1^{-1} , ..., x_n^{-1} over F. Then there exist matrices A and B of order n with elements in F such that

$$\mathbf{AXB} = \mathbf{Y}.$$
 (1.6)

Our work has been strongly motivated by the much earlier investigations of Kantor [2], Frobenius [1], and Schur [5]. These authors study a related problem but with X a matrix of size m by n and such that the elements of X are mn independent variables over the complex field. A more recent account of this theory is available in [3].

Finally, we remark that the matrix equation (1.2) is of considerable combinatorial importance in its own right. For example, if A and B are (0,1)-matrices, then (1.2) admits of a simple set theoretic interpretation.

The special case

$$AXA^{T} = Y, \qquad (1.7)$$

where A^{T} is the transpose of A, has been investigated briefly in [4]. But we do not pursue the combinatorial aspects of this subject here.

2. The Main Theorems

Throughout the discussion we let F denote an arbitrary field and we let x_1, \ldots, x_t denote t independent indeterminates over F. We define

$$X = diag[x_1, ..., x_+].$$
 (2.1)

We then form all of the products of x_1, \ldots, x_t taken r at a time and we always denote these products written for convenience in the "lexicographic" ordering by

$$y_1, ..., y_u \quad (u = {t \choose r}).$$
 (2.2)

Now let

$$Y = Y(x_1, ..., x_+)$$
 (2.3)

denote a matrix of size m by n such that every element of Y is a linear form in x_1, \ldots, x_t over F. We further assume that

$$1 \le r \le \min(m, n) \tag{2.4}$$

and we let $C_r(Y)$ denote the rth compound of the matrix Y. Thus $C_r(Y)$ is of size $\binom{m}{r}$ by $\binom{n}{r}$ and the elements of $C_r(Y)$ are the determinants of the various submatrices of order r of Y displayed within $C_r(Y)$ in the "lexicographic" ordering. We note that the preceding terminology implies

$$C_{y}(X) = diag[y_1, ..., y_{y_1}].$$
 (2.5)

We are now prepared to state one of our main conclusions.

Theorem 2.1. Let Y denote a matrix of size m by n such that every element of Y is a linear form in x_1, \ldots, x_t over F and let y_1, \ldots, y_u denote the products of x_1, \ldots, x_t taken r at a time. We assume that

$$2 \leq r \leq \operatorname{rank}(Y) - 2 \tag{2.6}$$

and that every element of $C_r(Y)$ is a linear form in y_1, \ldots, y_u over F. Then there exist matrices A and B of sizes m by t and t by n, respectively, with elements in F such that

We begin with a simple lemma concerning the matrix Y of (2.3).

Lemma 2.2. Let

$$Y_{i} = Y(0, ..., 0, x_{i}, 0, ..., C)$$
 (2.8)

and suppose that

rank
$$(Y_i) \leq 1$$
 (i = 1, ..., t). (2.9)

Then there exist matrices A and B of sizes m by t and t by n, respectively,

with elements in F such that

$$AXB = Y \cdot (2.10)$$

<u>Proof</u>. The assertion rank $(Y_i) \leq 1$ implies that we may write

$$\mathbf{Y}_{\mathbf{i}} = \boldsymbol{\alpha}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \boldsymbol{\beta}_{\mathbf{i}}, \qquad (2.11)$$

where

$$\alpha_{i} = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}, \quad \beta_{i} = (b_{i1}, \dots, b_{in}) \quad (2.12)$$

are vectors with components in F. Here if rank $(Y_i) = 1$ we have $\alpha_i \neq 0$ and $\theta_i \neq 0$. But if rank $(Y_i) = 0$ we have $\alpha_i = 0$ and θ_i arbitrary or $\theta_i = 0$ and α_i arbitrary. Thus

$$\mathbf{Y} = \mathbf{Y}_{1} + \dots + \mathbf{Y}_{t} = \alpha_{1}\mathbf{x}_{1}\boldsymbol{\beta}_{1} + \dots + \alpha_{t}\mathbf{x}_{t}\boldsymbol{\beta}_{t}$$

$$= [\alpha_{1}, \dots, \alpha_{t}] \mathbf{X} \begin{bmatrix} \boldsymbol{\beta}_{1} \\ \vdots \\ \boldsymbol{\beta}_{t} \end{bmatrix}, \qquad (2.13)$$

and our conclusion follows.

Notice further that if

rank
$$(Y_i) = 1$$
 (i = 1, ..., t) (2.14)

and if

$$A'XB' = Y,$$
 (2.15)

then there exists a nonsingular diagonal matrix D with elements in F such that

$$A' = AD^{-1}, B' = DB.$$
 (2.16)

It is now clear that the following lemma is actually a reformulation of Theorem 2.1.

Lemma 2.3. The matrix Y of Theorem 2.1 satisfies

rank
$$(Y_i) \leq 1$$
 (i = 1, ..., t). (2.17)

<u>Proof.</u> We remark at the outset that the lemma is elementary for r = 2. In this case rank $(Y_1) \leq 1$ because otherwise we contradict the assumption that every element of $C_2(Y)$ is a linear form in y_1, \ldots, y_u over F.

Hence we take $r \geq 3$. Let us suppose that

rank
$$(Y_{i}) = p > 1$$
 (2.18)

for some i = 1, ..., t. Then there exist nonsingular matrices P and Q of orders m and n, respectively, with elements in F such that

$$PY_{i}Q = x_{i}I \oplus 0.$$
 (2.19)

In (2.19) the matrix I is the identity matrix of order p, 0 is a zero matrix, and the sum is direct. The elements of the matrix

$$\mathbf{PYQ} = \mathbf{Z} \tag{2.20}$$

are linear forms in x_1, \ldots, x_t over F. It follows from (2.13) and

(2.19) that the structure of Z is such that the indeterminate x_i appears in positions (1,1), ..., (p,p), and in no other positions in Z. The familiar multiplicative property of the compound matrix implies

$$C_{r}(P)C_{r}(Y)C_{r}(Q) = C_{r}(Z),$$
 (2.21)

and by our assumption on $C_r(Y)$ we may conclude that each of the elements of $C_r(Z)$ is also a linear form in y_1, \ldots, y_u over F.

We designate by \mathbf{F}_i the quotient field of the polynomial ring

$$F[x_1, ..., x_{i-1}, x_{i+1}, ..., x_t].$$
 (2.22)

In this notation the elements of Z and $C_r(Z)$ are scalars or polynomials in x_i of degree 1 over F_i . In what follows we apply certain elementary row and column operations to Z with respect to the field F_i . This means that we determine certain nonsingular matrices P' and Q' of orders m and n, respectively, with elements in F_i such that

$$P'ZQ' = Z'.$$
 (2.23)

Then once again we have

$$C_{r}(P')C_{r}(Z)C_{r}(Q') = C_{r}(Z').$$
 (2.24)

Thus we see that the elements of Z' and $C_r(Z')$ are scalars or polynomials in x_i of degree 1 over F_i .

We now write Z in the form

$$\mathbf{Z} = \begin{bmatrix} \mathbf{W} & \mathbf{*} \\ \mathbf{*} & \mathbf{*} \end{bmatrix}, \qquad (2.25)$$

where W is of order p. We note that det(W) is a polynomial in x_i of degree p > 1 over F_i . Let the submatrix of Z in the lower right corner of Z of size m - p by n - p be of rank p. Then we may apply elementary row and column operations with respect to F_i to the last m - p rows and the last n - p columns of Z and replace Z by

$$\mathbf{Z'} = \begin{bmatrix} \mathbf{W} & \mathbf{*} & \mathbf{*} \\ \mathbf{*} & \mathbf{I} & \mathbf{0} \\ \mathbf{W'} & \mathbf{0} & \mathbf{0} \end{bmatrix} .$$
(2.26)

In (2.26) the matrix I is the identity matrix of order ρ and the O's denote zero matrices. We assert that

$$\mathbf{p} + \mathbf{o} \leq \mathbf{r} - 1 \tag{2.27}$$

because $p + \rho \ge r$ contradicts the fact that all of the elements of $C_r(Z')$ are scalars or polynomials in x_i of degree 1 over F_i . Let the submatrix W' of Z' be of rank ρ' . We have rank (Z') = rank (Y) and hence we may conclude that

$$p + \rho + \rho' \ge rank (Y).$$
 (2.28)

It now follows from (2.6), (2.27), and (2.28) that

$$o' \ge 3. \tag{2.29}$$

We permute the last m - (p + p) rows and the first p columns of Z' so that the submatrix of order 2 in the lower left corner of W' has a nonzero determinant. We then further permute the first p rows of Z'

so that the p polynomials in x_i of degree 1 over F_i again occupy the main diagonal positions of W. By elementary row operations with respect to F_i we may replace the matrix of order 2 in the lower left corner of W' by the identity matrix. We then apply further elementary row operations with respect to F_i and make all elements in columns 1 and 2 of Z' equal to 0, apart from the elements in the (1,1), (2,2), (m-1,1), (m,2) positions, and these elements are equal to x_i , x_i , 1, 1, respectively.

We delete rows 1, 2, m-1, m and columns 1, 2 from Z' and call the resulting submatrix \tilde{Z} . Then we have

$$z' = \begin{bmatrix} x_i & 0 & * & \\ 0 & x_i & & \\ 0 & 0 & & \\ \vdots & \vdots & z & \\ 0 & 0 & & \\ 0 & 0 & & \\ 1 & 0 & & \\ 0 & 1 & & \\ \end{bmatrix}$$
 (2.30)

The matrix \tilde{Z} is of size m - 4 by n - 2. Let \tilde{Z} be of rank $\tilde{\rho}$. We have rank (Z') = rank (Y) and hence

$$\widetilde{p} + 4 \ge \operatorname{rank}(Y). \tag{2.31}$$

We assert that

$$c_{r-2}(\tilde{z}) \neq 0. \tag{2.32}$$

Suppose on the contrary that $C_{r-2}(\tilde{Z}) = C$. Then

$$\tilde{\rho} \leq r - 3. \tag{2.33}$$

But then by (2.6), (2.31), and (2.33) we have

rank
$$(Y) \leq \tilde{\rho} + 4 \leq r + 1 \leq rank (Y) - 1,$$
 (2.34)

and this is a contradiction. Hence $C_{r-2}(\tilde{Z}) \neq 0$. This means that \tilde{Z} has a submatrix of order r-2 with a nonzero determinant. But this submatrix of \tilde{Z} in conjunction with the first two rows and columns of Z' yields a submatrix of Z' of order r whose determinant is a polynomial in x_i of degree 2 or higher over F_i . This contradicts the fact that the elements of $C_r(Z')$ are scalars or polynomials in x_i of degree 1 over F_i . Hence we have

rank
$$(Y_i) \leq 1$$
 (i = 1, ..., t). (2.35)

This proves Lemma 2.3 and Theorem 2.1.

The range of r in the preceding theorem cannot in general be extended to r = rank(Y) - 1. We define

$$Y = diag[x_1, ..., x_n] + \begin{bmatrix} 0 & 0 \\ \frac{x_{n+1} & 0}{0} & 0 \\ 0 & x_{n+1} \end{bmatrix}, \quad (2.36)$$

where the O's denote zero matrices. Then we have t = n + 1 and if

 $n \ge 4$ we have

$$\mathbf{y}^{-1} = \operatorname{diag} \begin{bmatrix} \frac{1}{\mathbf{x}_{1}}, \dots, \frac{1}{\mathbf{x}_{n}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \frac{-\mathbf{x}_{n+1}}{\mathbf{x}_{1}\mathbf{x}_{n-1}} & \mathbf{0} \\ \mathbf{0} & \frac{-\mathbf{x}_{n+1}}{\mathbf{x}_{2}\mathbf{x}_{n}} & \mathbf{0} \end{bmatrix} . \quad (2.37)$$

Hence for r = n - 1 we see that every element of $C_{r}(Y)$ is a linear form in y_1, \ldots, y_n over F. But clearly rank $(Y_{n+1}) = 2$.

The preceding theorem, however, is valid for r = rank(Y) - 1 under the added assumption t = rank(Y). This theorem is actually a generalization of Theorem 1.1 described in Section 1.

Theorem 2.4. Let Y denote a matrix of size m by n such that every element of Y is a linear form in x1, ..., xt over F and let y1, ..., yu denote the products of x1, ..., xt taken r at a time. We assume that $2 \leq r = rank(Y) - 1$,

(2.38)

$$t = rank (Y),$$
 (2.39)

and that every element of $C_r(Y)$ is a linear form in y_1, \ldots, y_u over F. Then there exist matrices A and B of sizes m by t and t by n, respectively, with elements in F such that

$$\mathbf{AXB} = \mathbf{Y}.$$
 (2.40)

11

ļ

Lemma 2.5. Let Y be a nonsingular matrix of order $t \ge 3$ such that every element of Y is a linear form in x_1, \ldots, x_t over F. Let r = t - 1and suppose that every element of $C_r(Y)$ is a linear form in y_1, \ldots, y_u over F. Then

$$det(Y) = cx_1 \cdots x_{+}, \qquad (2.41)$$

where $c \neq 0$ and $c \in F$.

Proof. Let

$$rank(Y_{4}) = p.$$
 (2.42)

We apply the same elementary row and column operations as in Lemma 2.3. Thus we know that there exist nonsingular matrices P and Q of order t with elements in F such that

$$PYQ = Z.$$
 (2.43)

The elements of Z are linear forms in x_1, \ldots, x_t over F. But the structure of Z is such that x_i appears in positions $(1,1), \ldots, (p,p)$, and in no other positions in Z. We know that every element of $C_r(Z)$ is a linear form in y_1, \ldots, y_u over F. Hence $t \ge 3$ implies that we cannot have x_i in the (t,t) position of Z. Thus x_i does not occur in the last column of Z. An evaluation of det(Z) by this column implies that no term of det(Z) contains x_i to a power higher than the first. Thus no term of det(Y) contains x_i to a power higher than the first, and this is valid for each $i = 1, \ldots, t$. Hence by the structure of Y we conclude that det(Y) is a nonzero scalar multiple of $x_1 \cdots x_t$. The following lemma completes the proof of Theorem 2.4.

Lemma 2.6. The matrix Y of Theorem 2.4 satisfies

rank
$$(Y_i) \leq 1$$
 (i = 1, ..., t). (2.44)

Proof. We assume that

$$rank(Y_{1}) = p > 1$$
 (2.45)

for some i = 1, ..., t. Once again there exist nonsingular matrices P and Q of orders m and n, respectively, with elements in F such that

$$PYQ = Z.$$
 (2.46)

The elements of Z are linear forms in x_1, \ldots, x_t over F. But the structure of Z is such that the indeterminate x_1 appears in positions $(1,1), \ldots, (p,p)$, and in no other positions in Z. Furthermore, every element of $C_r(Z)$ is a linear form in y_1, \ldots, y_n over F.

The submatrix W of order p in the upper left corner of Z is nonsingular because its determinant is a polynomial in x_i of degree p over F_i . We have

$$t = rank (Y) = rank (Z) \ge 3$$
(2.47)

and hence Z contains a nonsingular submatrix Z' of order t with W in its upper left corner. We now write

$$z'z'^{-1} = I.$$
 (2.48)

The elements of Z' are of the form $ax_i + b$, where $a, b \in F_i$. Moreover,

the polynomials in x_i of degree 1 over F_i appear in positions (1,1), ..., (p,p), and in no other positions in Z'. Every element of $C_r(Z')$ is a linear form in y_1 , ..., y_u over F. Hence by Lemma 2.5 every element of Z'^{-1} is of the form $cx_i^{-1} + d$, where c, $d \in F_i$. We now multiply row 1 of Z' by column j of Z'^{-1} . This product is 0 or 1. Hence the element in the (1,j) position of Z'^{-1} is of the form cx_i^{-1} , where $c \in F_i$. Similarly, each of the elements in the first p rows of Z'^{-1} is of this form. Hence

$$det(Z'^{-1}) = x_{i}^{-p}f(x_{i}^{-1}), \qquad (2.49)$$

where $f(x_i^{-1})$ is a nonzero polynomial in x_i^{-1} over F_i . But by Lemma 2.5 we have

$$det(Z'^{-1}) = ex_{i}^{-1}, \qquad (2.50)$$

where $e \neq 0$ and $e \in F_i$. This contradicts p > 1. Hence p = 1 and the lemma is established.

References

- G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, <u>Sitzungsberichte Berliner Akademie</u> (1897), 994-1015.
- S. Kantor, Theorie der Äquivalenz von linearen ^λ-Scharen bilinearer Formen, <u>Sitzungsberichte Münchener Akademie</u> (1897), 367-381.
- 3. M. Marcus and F. May, On a theorem of I. Schur concerning matrix transformations, <u>Archiv. Math. 11</u> (1960), 401-404.
- 4. H. J. Ryser, A fundamental matrix equation for finite sets, (submitted).
- 5. I. Schur, Einige Bemerkungen zur Determinantentheorie, <u>Sitzungsberichte</u> Berliner Akademie (1925), 454-463.