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1. Introduction

Let A and B be matrices of sizes m by t and t by n, respectively,

with elements in a field F. Let x,, ..., Xy denote t independent inde-
terminates over F and define
X = diaglx,, ..., x, ). (1.1)

Then t.
ABB =Y : (1.2)

is a matrix of size m by n such that every element of Y is a linear o

form in Xys ey X, OVer F. In the present paper we investifate the

converse propogition. Thus let

Y = Y(x1, . xt) (1.3)

be a matrix of size m by n such that every element of Y is a linear

form in x,, ..., x, over F. Then under what conditions are we assured
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of the existence of a factorization of Y of the form (1.2)? Our con-
ditions turn out to be very natural ones and they are easily described
in terms of compound matrices. We now state in entirely elementary

terms a special case of one of our conclusions.

Theorem 1.1. Llet Y be a matrix of order n 2 3 such that every

element of Y is a linear form in Xys ey xn over F and let

X = diag[x1, veey xn]. (1.4)

Suppose that

det(Y) = cx, *-- x (1.5)

n’

-1
vhere ¢ £ O and ¢ € F, and suppose further that every element of Y is

a linear form in x{‘, ceey x;l over F. Then there exist matrices A and

B of order n with elements in F such that

AXB = Y, (1.6)

Our work has been strongly motivated by the much earlier invest-
igations of Kantor [2], Frobenius [1], and Schur [5). These authors
study & related problem dbut with X 2 matrix of size m by n and such that
the elements of X are mn independent variables over the complex field.

A more recent account of this theory is available in [3].
Finally, we remark that the matrix equation (1.2) is of considerable

combinatorial importance in its own right. For example, if A and B are

(0,1 )-matrices, then (1.2) admits of a simple set theoretic interpretation.



The special case

axal =y, (1.7)

where AL is the tranzpose of A, has been investigated briefly in [4].

But we do not pursue the combinatorial aspects of this subject here.

2. The Main Theorems

Throughout tr: discussion we let F dencte an arbitrary field and

we let x;, ..., x  denote t independent indeterminates over F. We

t
define

x=diag[x1, csey xt]- (2-1)

We then form all of the products of x,, ..., X, taken r at a time and
we always denote these products written for convenience in the

"lexicographic" ordering by
t
Yys sees yu (u = (r))- (2.2)

Now let

Y = Y(xy, ..o xt) (2.3)

denote a matrix of size m by n such that every element of Y is a linear

form in x,, ..., x, over F. We further assume that

V2 t

' € r € min(m,n) (2.%)

and we le% Cr(Y) denote the rth compound of the matrix Y. Thus Cr(Y)

is of size (:) by (:) and the elements of Cr(Y) are the determinants



of the various submatrices of order r of Y displayed within cr(Y) in
the "lexicographic" ordering. We note that the preceding terminology
implies

C.(X) = diegly,, ..., ¥ ]. (2.5)

We are now prepared to state one of our main conclusions.

Theorem 2.1. Let Y denote & matrix of size m by n such that

every element of Y is a linear form in Xys eeey Xy over F and let

Yo cees ¥y denote the products of Xys eees Xy taken r at a time. We

assume that

2 gr g rank (Y)-2 (2.6)

and that every element of Cr(Y) is a linear form iny,, ..., y, over F.

Then there exist matrices A and B of gizes m by t and t by n, respect-

ively, with elements in F such that

AB = Y, (2.7)

We begin with a simple lemma concerning the matrix Y of (2.3).

lemma 2.2. Let
Yi = Y(o, ceey O, xi, o, cony c) (2.8)

and suppose that

rank ({)s1V (i=1, ..., t) (2.9)

Then there exist matrices A and B of sizes m by t and t by n, respectively,
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with elements in F such that

AXB = Y. (2.10)

Proof. The assertion rank (Y,) <1 implies that we may write
Y, =ax8,, (2.11)
where

844

o, = : s Bi a (b“, cesy bin) (2.12)
Smi

are vectors with components in F. Here if rank (Yi) = 1 we have

a, 4 0 and ei # 0. But if rank (Yi) = O we have @, = O and B, arbitrary

i
or Bi = 0 and ai arbitrary. Thus

Y = y1 + oeae + Yt =a1x181 + eee +atxtBt

(2.13)
B‘l
=[a1, seey at]x E »
Bt
and our conclusion follows.
Notice further that if
rank (Y,) =1 (1=, ..., t) (2.1%)
and if
b !

A'xB’ =y, (2.15)



then there exists a nonsingular diagonal matrix D with elements in F
such that

A’ =ap”', B’ =B (2.16)

It is now clear that the following lemma is actually a reformu-

lation of Theorem 2.1.

Lemma 2.3. The matrix Y of Theorem 2.1 satisfies

rank (Y,) 1 (=1, ..., t). (2.17)

Proof. We remark at the outset that the lemma is elementary for
r = 2. In this case rank (Yi) < 1 because otherwise we contradict the

assumption that every element of CZ(Y) is a linear form in ¥, ..., ¥,

over F.

Hence we take r 2 3. Let us suppose that
rank (Yi) =p>1 (2.18)
for some i =1, ..., t. Then there exist nonsingular matrices P and Q
of orders m and n, respectively, with elements in F such that
= A
PYiQ in® 0. (2.19)
In (2,19) the matrix I is the identity matrix of order p, O is a zero
matrix, and the sum is direct. The elements ~f the matrix
FYQ = 2 (2.20)

are linear forms in x,, ..., x, over F. It follows from (2.13) and

V! t



(2.19) that the structure of Z is such that the indeterminate X, appears
in positions (1,1), ..., (p,p), and in no other positions in Z. The

familiar multiplicative property of the compound matrix implies
¢ (P)c_(¥)c_(Q) = ¢_(2), (2.21)

and by our assumption on Cr(Y ) we may conclude that each of the elements

of Cr(Z) is also a linear form in y,, ..., ¥, over F.
We designate by Fi the quotient field of the polynomial ring
F[xl, sees Xy _ys Xyigs cens xt]. (2.22)

Ti this notation the elements of Z and cr(z) are scalars or polynomials

in Xy of degree 1 over F In what follows we apply certain elementary

i.
row and column operations to Z with respect to the field Fi. This means
*het we determine certain nonsingular matrices P’ and Q' of orders m and

n, respeciively, with elements in Fi such that

Pz’ = 2’. (2.23)
Then once again we have
/ Y ’ ¢
c.(P')e (z)c (RF) = c (27). (2.24)
Thus we see that the elements of 2’ and Cr(Z') are scalars or poly-

nomials in xi of degree 1 over Fi'

We now write 2 in the form

W o*
2= ‘ } R (2.25)
*  *



where W is of order p. We note that det(W) is a polynomial in x, of

degree p > ! over Fi. Let the submatrix of Z in the lower right corner
of Z of sizem - pby n - p be of rank p. Then we may apply elementary
row and column operations with respect to Fi to the last m - p rows and

the last n -~ p columns of Z and replace Z by

2°=1% 1 0]. (2.26)

In (2.26) the matrix I is the identity matrix of order p and the O's

denote zero matrices. We assert that
p+togr -1 (2.27)

because p + p 2 r contradicts the fact that all of the elements of

Cr(Z') are scalars or polynomials in x, of degree 1 over Fi' Let the

i
submatrix W' of Z’ be of rank p’. We have rank (2’) = rank (Y) and
hence we may conclude that

p+p+op’ >rank (Y). (2.28)
It now follows from (2.6), (2.27), and (2.28) that
o 2 3. (2.29)

We permute the last m -~ (p + p) rows and the first p columns of
Z’ so that the submatrix of order 2 in the lower left corner of W’ has

a nonzero determinant. We then further permute the first p rows of z'



so that the p polynomials in xy of degree 1 over Fi again occupy the
main diagonal positions of W. By elementary row operations with respect
to Fi we may replace the matrix of order 2 in the lower left corner of
W' by the identity matrix. We then apply further rlementary row oper-
ations with respect to I"i and make all elements in columns ! and 2 of
z’ equal to O, apart from the elements in the (1,1), (2,2), (m-1,1), (m,2)
positions, and these elements are equal to ) Xg» 1, 1, respectively.

We delete rows 1, 2, m-1, m and columns 1, 2 from Z’ and call the

resulting submatrix Z. Then we have

- -
x, O
1 *
o] xi
o 0
2/ = 4 . (2.30)
0 0
10
*
o
L— —

The matrix Z is of sizem - 4 by n - 2. Let 7 be of rank p. We have
rank (Z’) = rank (Y) and hence
5 + 4 > rank (Y). (2.31)
We assert that
Z 2.
C.o(2) £ 0. (2.32)
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Suppose on the contrary that cr_z(i) = C. Then
F<r-3. (2.33)
But then by (2.6), (2.31), and (2.33) we have
renk (Y) S0 + 4 <r+ 1 grank (Y) - 1, (2.34)

and this is a contradiction. Hence Cr_a(f) # 0. This means that 2

has a submatrix of order r- 2 with & nonzero determinant. But this sub-
matrix of E in conjunction with the first two rows and columns of z'
yields a submatrix of 2’ of order r whose determinant is a polynomial

in x; of degree 2 or higher over Fi' This contradicts the fact that

the elements of Cr(Z') are scalars or polynomials in x, of degree ! over

Fi' Hence we lJave

rank (Y;) g1 (4=, ..., t). {2.35)

This proves Lemma 2.3 and Theorem 2.1.
The range of r in the preceding theorem cannot in general be extended

to r = rank {Y) - 1. We define

Y= di&g[x.‘, sesy xn] + 3 (2'36)

L ° ne1 J

where the O's denote zero matrices. Then we have t = n + 1 and if




n;hwehave

0 0
Y = disg [ e = . (2.37)
1 n n+'| 0
x.lxn_1
- 0
0 xn-0-1
X
L 2™ d

Hence for r = n - 1 we gee that every element of Cr(Y) is a linear form

iny;, ..., ¥, over F. But clearly rank (Y ,) = 2.

n+1
The preceding theorem, however, is valid for r = rank (Y) - 1 under

the added assumption t = rank (Y). This theorem is actually a general-

ization of Theorem 1.1 described in Section 1.

Theorem 2.4. Let Y denote a matrix of size m by n such that every

element of Y is a linear form in Xy eeer Xy over F and let Yo cer ¥y

denote the products of Xyy eeey Xy taken r at a time. We assume that

2 gr = rank (Y) -1, (2.38)
t = rank (Y), (2.39)

and that every element of Cr(Y) is a lipear form iny,, ..., ¥, over F.

Then there exist matrices A and B of gizes m by ¢ end t by n, respectively,

with elements in F guch that

AXB = Y, (2.40)



Lemma 2.5. Let Y be a nonsingular matrix of order t 2 3 such that

every element of Y is a linear form im x,, ..., X, over F. Letr=¢ -1

and suppose that every element of Cr(Y) is a linear form iny,, ..., ¥,

over F. Then

det(Y) = cx; --- X, s (2.41)
where ¢ £ O and ¢ € F.
Proof. Let
rank (Yi) = p. (2.42)

We apply the same elementary row and column operations as in Lemma 2.3,
Thus we inow that there exist nonsingular matrices P and Q of order t
with elements in F such that

PYQ = Z. (2.43)

The elements of 2 are linear forms in x,, ..., x, over F. But the

structure of Z is such that x, appears in positions (1,1), ...y (Byp)s

and in no other positions in Z. We know that every element of cr(z) is
a linear form in Yys +ee» ¥, OVer F. Hence t 2 3 implies that we cannot
have Xy in the (t,t) position of Z. Thus xi does not occur in the last
column of Z. An evaluation of det(Z) by this column implies that no

term of det(Z) contains X,
term of det{Y) contains x, to a power higher than the first, and this

to a power higher than the first. Thus no

is valid Cor each i =1, ..., t. Hence by the structure of Y we conclude

that det(Y) is a nonzero scalar multiple of x, --- X, -
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The following lemms completes the proof of Theorem 2.4,
Lemma 2.6. The matrix Y of Theorem 2.4 satisfies
rank (Y,) g1 (1 =1, ..., t) (2.44)
Proof. We assume that
renk (Y,) =p >1 (2.145)

for some i = 1, ..., t. Once again there exist nonsingular matrices

P and Q of orders m and n, respectively, with elements in F such that
PRQ = 2. (2.46)

The elements of Z are linear forms in Xys ooy X, OVer F, But the
structure of Z is such that the indeterminate x, appears in positions
(1,v), ..., (p,p), and in no other positions in 2. Furthermore, every
element of cr(z) is a linear form iny,, ..., y, over F.

The submatrix W of order p in the upper left cormer of Z is non-

singular because its determinant is a polynomial in x, of degree p over

i
Fi .  We have

t = rank (Y) = rank (Z) 23 (2.47)

and hence Z contains a nonsingular submatrix 2’ of order t with W in

its upper left corner. We now write
2'2'" = 1. (2.48)

The elements of Z’ are of the form ax, + b, where a,b € F,. Moreover,
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N of degree 1 over Fi

(1,1), ..., (p,p), and in no other positions in Z’. Every element of

the polynomials in x appear in positions

cr(z‘) is & linear form iny,, ..., ¥y, over F. Hence by Lemma 2.5

every element of 2" is of the form c:x_,:1

multiply row 1 of Z‘ by column j of 2’7, This product is O or 1.

+ d, where c,d € Fi. We now

- -1
Hence the element in the (1,j) position of 2’ ! is of the form cx i

vhere ¢ € F,., Similarly, each of the elements in the first p rows of

i
z’ is of this form. Hence

aet(z'™Y) = x;pf(x;‘ ), (2.49)

-1
where f(xi ) is a nonzero polynomial in xg

over Fi. But by Lemma 2.5

we have

det(Z"‘) =ex, ,

(2.50)

where e £ O and e € F;. This contradicts p > 1. Hence p = ! and the

lemma is established.
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