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ABSTRACT

A semi-Markov model representation of a submari.,e searching for a

high value target in a field of decoys has been developed, The model

was used to assess the potentials of tactical deception techniques in
antisubmarine warfare, This research memorandum describes the details

of the model structure, The assessment results are published in a

separate, classified, final project report. In its present form, the

)

model represents the first-generation of a promising approach that can
address a large class of tactical deception assessment problems.
Possible extensions and uses of the present model together with someé

areas potentially requiring new formulation of the semi-Markov appxroach

are suggested in the research memorandum,
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PREFACE

The work reported in this research memorandum was conducted as a
subtask within a larger project directed toward the assessment of
tactical deception techniques in gntisubmarine wvarfare, The project
was sponsored by the Naval Analysis Programs Group, Mr, R. J. Miller,
Director, in the Office of Naval Research. Mr. J. G. Smith was the
CNR Project Scientific Officer.

The research effuort was performed by the Naval Warfare Research

Center, Mr. L. J. Low, Director, of Stanford Research Institute.

Mr., A, Bien of NWRC was the project leader,

The author wisheg to gcknovledge other members of NWRC, in
particular Mr. G. W. Black and Mr. M. W. Zumwalt, for their help in
diséussions which ;ed 40 formilation of the problem, resolution of some
perplexing.difficulties,‘and‘corfébtion of some technical errors.

Mrs; Terry Silvia:did‘aﬁ'excellent Job in typing a difficult manuscript.
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SUMMARY

Model Framework

The semi~Markov process is an effective framework within whicih to
study gquestions regarding the capability of decoys to delay a searcher
lodking for a particular type of target.

Tﬁe problem of gearch in the presence of deceys naturally iends
itself to representation by a-seﬁi-Markdv process because the state of
the searcher and the transitions between states are well defined.
Although the neces;ary agsumptions for a continuous time Markov chain
can be intuitively Jusfified in some cdses, placing the problem in the
format of a more general semi-Markov probéssuprqviées & framework which

can decépt experimental datz that might not be well adapted. to tﬁeymdie

, . . o !

Loeed *zed Markdv chain,
A primary feature of the work reported on:herein is that the
solutions to the various modéls considéred are in ah.easily calculable

closed form. , o R

The specific situation represented is as foilows. A number of

_nigh valde tergets {ﬂVTsl,axgigaerat$ng;within;a¢qéét;in sperified

area., Operating wituin the same area are a number of low value taxgeis

]
called decoys. A searcher enters the srea at time zero dnd begins

looking for the high value ‘targets. (Ve assume‘theaéearcher wishes to o

destroy the ﬁVTs, but this assumption ié not crucial to model deve;dﬁﬁ
ment.) In the search process the searcher encounters the decoys, Wh;¢h~

have characteristics similar to tho HVTs. Because destruction of a o

- S-1
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target involves expenditure of a limited resource, as well as possible
compromise of searcher corcealment, the searchq; does not wish to de-
stroy decoys; he must therefore spend time te classify a target as high
value or decoy. The searcher wants to miﬁimize search time; the targets
wish to maximize it. The targets are rot able to observe the searcher,
and the searcher must devote his attention to a single target if he

encounters several at one time or over a short interval of time.

" Model Application

[ 5

A three-state semi-Markov que% was implemented that incorporates
i
the events: (1) start search; (2) start ciassifying a decoy, and
(3) start classifying an HVT. Eveat (3) 1s defined as the absorbing

l -

state, The following désumpticdng governed the Btructure of the model:

® At any fixed instant in time, positions of HVTs and
decoys -ars distributed over ‘thé operating area
agcording to g uniform proBability distribution

) & Ovexr short intervals “of time, everything moveﬂ in
S ‘straight lines with uniformly:random headinge

. Detectionkis represented bg a definiie range law ;.

b L 2 All_detection nirc1e$ lie inside the; operating ‘grea
T ’ ] : (i.e., the. searcher A8 well as the*HVT Knows what
L o ' s ~ the: operating area ia)

, ' 'y When - decoy is classified, 1n£ormation obtained by
ﬁhe searcbor is dissipated rapidly enough so that

b density of=decoys

> & Vhen presented with an -array. of tafgets (both

¥ » décoys -and: HVTS)- £rom: which.one 48 to. be_selected

g for classification, ‘thé targetstare equally likely
to be chogen (ise.; the- ‘decoys aré ddentiéal and

e are indistingu*shab‘e from the identical AVTs witil
e classification is mede) ) :

.




@ Stochastic independence of motion is assumed among

decoys as & group, smong HVTs as a group, and between

the two groups except in the case of reduced overlap

when HVTs avoid der oys.
In addition, it was assumed that search and classification times are
exponentially distributed (reducing the semi~Markov model to a Markov
model). Simulation studies, conducted az an adjunct to the semi-Markov
nodel formulation, demonstrated that the assumed exponential search
time distribution end the adopted mcdel for determining mean time to
target detection are in fact valid with respect to the assumptions made
concerning the search process (primarily the definite range detection
law). The wvalidity of assuming expo..ential distribution for classifi~
cation time zemains to ke demonstrated. Mean time to clasgification is
handled as an input variable in the current stuay. The three-state

model was used to address the follewing gquestions:

1. How long does it take the searcher to find a high
value target (i.e., what is the mean time)?

2. How many decoys are encountered before an HVT is
found (i.e., mean number)?

3. VWhat are the relative effects of decoy characteristics
such as number, speed, detectability, and realism
(classification time) on the guantities above?

4. How many decoys with the given characteristics arz
required to provide a certain level of safety for
the high value targetz (e.g., provide a cortain
minimum level of probability of an HVT being detected
over a specified time intezvel)?

Answers to the above questions for a realistic operational situation

are presented in g separate, classified, final project_repcrt.*

%A, Bien; "Evaluaticn of Tactical Deception Techniques in Carrier Task
Force Defenge" (U) Final Report; SRI Projsct 1016-245,-Contract
N00014~71-C~-0119; Stanford Research Institute,'Menlo Park, Cali ornis,
Decembex 1971 (SECRET)




Model Extension
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The following are specific recommendations directed toward the

extension of the semi-hus¥ov model approach:

Derive output expressions for a searcher stariing in
the classify decoy state.

Given the assumption of & comsteat range detection law,
the three-state medel is a suitable representatxon of
the search problem, within the limits of the xsndom
motion/position assumption, the restrictions dus te
overlap, and a large {relative to detection wxadii)
operating area. In order to extend these limits it is
zecommended that the effects of geocditry -and. timé on
the state transition mechanism in the three-state
model ke studied in detail end the thres-state mdidel
ha epandad to four states by including a secondery
search state®

A ubiquitous asswdption in this study iz tbe aéfinite
range detection law. The realizsd detecilon rungs in

any real encounter is a random variarle tuwt is vep-
resented in the models discussed here by a fixed rénge

R (which depends on the type of target and its speed

as well as searcher and esvironmenial characterjstics).
If the target comes within R of the sedrchér; the target
is assumed detected; no detectiohs ocoui at Fanges gréater
than R, The value assigned to R is usually the pidian
value of a distribution gemerated by made? joutgide the
scope of this study. The search models'i esemted ih this
document permit sensitivity studies on R wut they d6 not
take into account the inherent variability in réa%@é@d‘
detection renges. Hence, it is recdiimended that a study
be sunducted to determine the effect of this inherent
veriability on the results produced by the current search
models. Such a study could be conducted with Markev.
process models snd could exanine fdde zene effects as
well as variable detection range.

An area for analytic extengion is the situation of
stationary decoys where the scurcher can plot the
position of classified decoy~ and tixis render them
relatively ineffective. The three-state model is
not applicable in this situatior because the trun-
sition probahilities charge with each decoy that is

S-4




classified. What is needed is a general n-state
formulation,

Several interesting questions involving constrained
optimization arise., Xoosely aspeaking, it is clear

that the more decoys that are avallable the better

for tha HVT. However, it is also clear that thne

choice of decoy configuration and number of decoys

is a constrained problem. This constrained choice
probliem 'will assume characteristlcs dependent on the
clircumstance within which it arises. Some possibiliities
are:

¢ Given specified limited funds, how many decoys
of what confZiguration should be built to
optimize some cperational variable, such as
probability of HVT detection?

® In initial planning stages, how do the optimum
numbex and configurstion in tho precsding
gquestion vary as the amount of available funds
varies?.

® Funds are "limited" but not specified. Therefore,
it 1s desired tn meet some operational performance
threstiold (such ss a minimum acceptabie HVT de-
tection probability) with minimum cost. How many
decoys of shat configuration should be built and
what 18 the cost? -

‘8~5
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1. INTRODUCTION

This report discusses semi-Markov models of a random search process
with d2coys. The primary situation envisaged is as follows. A number
of high value targets (HVTs) are operating within a certain specified
area., Operating within the same area are a number of low value targets
called decoys. A searcher enters the area at time zero and begins
looking for the high value targets. We assume the searcher wishes to
destroy the HVTs, but this assumption is not crucial to model develop-
ment, In the search process the searcher encounters the decoys. The
decoys have characteristics similar to the HVIs., Because destruc’ion of
a target involves cxpenditure of a limited resource, as well as possible
compromise of searcher concealment, the searcher does not wish 10 destroy
decoys; therefore he must spend time to classify a target as high value
or decoy. The searcher wants to minimize search time while the targets
wish ‘{0 maximize it. The targets are not able to observe the searcher,
and the searcher must devote his attention to a single target if he
encounters several at one time or over a short interval of time. Targets
and searcher are assumed to be moving randomly in the following sense

i) At any fixed instant of time positions are uniformly
random over the operatving aree
1i) Over saort iatervals of time everything moves in
straight lines with uniformly random headings.

These two assumptions, plus later assumptions regarding detection radius,
raise some difficult questions of validity near the boundaries of a
finite operating region. These questions do not lend themselves to eesy
analytical treatment. There are two methods of treating them. The

first is to assume the errors introduced are negligible or that there




are compensating errors. The errors will certainly be negligible if the
operating areca is large enough, An example of compensating errors is
1) Target density within detection range of the searcher
will be less on the boundary of operating area than

within the area ,Jue to the fact that part of the area
swept by the searcher has zero target density),

ii) But the searcher will know this and concentrate his
efforts accordingly.
The second method of treatment is to drop explicit consideration of area
and numbers of targets und searchers and consider only densities instead.
This approach requires only minor adjustment of details and will be

discussed later.
Certain questions regarding the above situation are of interest
1) How long does it take the searcher to find a high

value target (i.e., what is the mean time)?

ii) How many decoys are encountered before an HVT is
found (i.e., mean number)?

iii) What are the relative effects of decoy characteristics
such as number, speed, detectability, and realism
(classification time) on the quantities in (i) and
(ii) above?

iv) How many decoys with the given characteristics are
required to provide a certain level of safety for
the high value targets (e.g., provide a certain
minimum level of vrobability of an HVT being detected
over a specified time interval)?
The above notions are random in nature and will be discussed in terms of

semi-Markov rendom processes,

The problem of search in the presence of decoys naturally lends
itself to representation by a semi-Markov process because the state of
the searcher and the transitions between states are well defined.

Although the necessary assumptic s for a continuous time Markov chain




can be intuitively justified in some cases, placing the problem in the
format of a more general semi-Markov process provides a framework which
can accept experimental data that might not be well adapted to the

more specialized Markov chain. Moreover, the semi-Markov process allows
us to look into some of those cases that definitely do not meet the
assumptions of the Markov process. Analysis of "sprint-drift" is a case
in point. 1In sprint-drift holding times in certain states are bounded
and the ensuing resul+s are of a form that is quite different from the
results obtained if one assumes all holding times are (unbounded)

exponentially distributed.

A primary feature of the work reported on herein is that the
solutions to the various models considered are in an easily calculable
closed form. For example, all matrix inversions required for model so-
lutions have been carried out in symbolic manipulations. Parametric
studies are therefore inexpensive to conduct. Extension of the work
reported here to more complicated state spaces or distributions may or

may not require more complicated numerical methods.

Analysis begins in Section 2 with a review of Koopman's formula for
detection rate. A general discussion of semi-Markov processes follows
in Sectioan 3. A three-state search model with constant speeds is devel-
oped in Section 4, and some s.mple results are given in Section 5. A
four-state model for a variable speed searcher is developed in Section 6.

-~

[

H

Finally, conclusions and recommendations are given in Section where
several model extensions and optimization studies using the models are

suggested.
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2. DETECTION RATE AND TIME

rom Ref. 3 we adopt a model for determining rate of dectection.
The following assumptions are made
i) The searcher is progressing on its course at constant
veloclcy u

ii) The sesrcher is moving among a uniform random distri-
bution of targets with uniformly randomly distributed
headings

1ii) The targets are progressing st constent velocity v

1v) The density of targets is 6 (tergets per square
nauticai mile, say)

v) The searcher inmediately detects sll targets
which come within a range ¥ (i.e., definite rang-?
rule) .
Then the rate p (i.e,, number per unit time) et which targets are

detected is given by

T
R P T
(2.1) po= T (utv) 1 - ¥sin®op de
4 O
where k = 2 /uy
usv

and the integral is known ss the complets elliptic intzgral of the scceend
kird, Foclynomiai approximatfons for ihis integral may be found in Ref, 6

{p 592).
Mean time to detvection is given cv ths inverss rate, i.e,, 170,

Some exumple mean times wre given in Table 2-1 for various ranges
and speeds. The tarpet density is equivalent to one target per 7(200)%
square nautical miles. Ranges are nautical miles and speeds in k%nots

For exempie, a seurciter speed of 20 kt, a target speed of 15 kt, and a

Preceding page hlank




Table 2-1

MEAN DETECTION TIME (HOURS)

Target Speed (v) - Knots
5 10 15 20 25 30
5 328.99 196.52 135.82 103 10 82,95 69.33
10 196.92  164.49 125,27 98.46 80.52 67.91
15 135.82 125.27 109.66 91.34 76 .70 65.64
20 103.10 98.46 91.34 8% .25 71.74 62.64
25 82.95 80.52 76 .70 71.74 65.80 59,02
30 69,33 67,91 65.64 62,64 59,02 54,83
g R = 30.0 nmi
é:
\ 5 164.49 98,46 67.91 51.55 41.47 34.67
~ 10 98.46 82.25 62.64 49.23 40,26 33.96
2 15 67.91 62.64 54.83 45.67 38.35 32.82
B 20 51.55 49.23 45.67 41.12 35.87 31.32
3 25 41.47 0, 26 33.35 35.87 32.90 29.51
! “ 30 34.67  32.96  32.82  31.32  29.51  27.4%
£ R = 50.0 nmi
3
@ 5 109.66 65.64 45,27 34.37 27.65 23,11
10 65.64 54,83 41.76 32,82 26.84 22.64 .
15 45.27 41.75 36.55 30.45 25.57 21.88
20 34,37 32,82 30.45 27.42 23,91 20,88
25 27.65 26 .84 25,57 23.91 21.93 19.67
30 23,11 22,64 21.88 20.8° 19.67 18.28
R = 90,0 nmi
(6 = ;Tal)-o)—g targets per square nmi)




detection range of 30 nmi yield a mean detection time of 91.34 hours.
For interpolation and extrapolaticr, inverse mean time (rate) is linear

in range and target density.

Simulation stucies™ have shcwn tha' formula (2.1) works quite well
for a 200-nmi radius circular area under the following cowndition. A
given vehicle (target or searcher) pursues a randomly selected heading
until the area boundary is reached, wnere a new random heading within
the area is selected ana followed until the boundary is again reached,

and so on,

Finally it is noted that no distinction is made here between the
state of nature and the searcher's state of knowledge of the state of

nature, so that detection i¢ synonymous with encounter.

%k ' N
E. L. Wong; "Simulation Modei of Search in the Presence of Decoys,
NWRC TN-33; SRI Projec 10G16-245, Contra-.* NOQ014-71-C-0119; ;tanford
Research Institute, Menio Park, Californsi.. July 1971




3. THE SEMI-MARKOV PROCESS
3.1 Definition

The semi-Markov process (SMP) is a stochastic process in which time
is the independent variable, and the dependent variable can assumc only
a denumerable number of discrete values. A given value of the dependent
variable is called a state, and the collection of all possible values is
the state space. Transition from a present state to a future state de-
pends only on the present state, while the time required for such a
transition may, in general, depend on both the present state and the
future state. Consider a space of functions X = [ﬁu(t); t 2 0, weQ}.
This space is the sample space and consists of functions of time, with
the generic functional form parameterized by wel. Thus, a sample 'point”
consists of the set of points {xw(t); t 2 0}; such a sample point is
called a "realization” of the process and will be denoted simply xw\').
We will consider only a finite numher of states, with a state denoted by
one of the numbers 1, 2, ..., N. Thus, for a fixed value of t,
ﬁ»(t)e {1,2,...,N}. Hence, it is characteristic of the process that each
realization xw(-) is a staircase function; we will assume each realization
continuous from the right. This assumption is not universal. For example,
Cox and Miller (Ref. 1) analyze SMPs which are continuous from the left,
although they also consider separately in some detail the special case of
Markov processes (MP) which are continuous from the right. A typlcal
realization is plotted in Fig. 3-1 for a four-state SMP. The dots in the
figure represent "events," that is, points where a transition into a state
occurs, Transitions from a state into the same state may occur. If a
transition from state i to state j (i # j) occurs at time T, then xw(-)

will be continuous from the right but discontinuous from the left
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at t = 7., TFormally, we say thec process is in state j at time t if the

last cvent to occur was of type j, where j¢ {1,...,N}.

41 [ - CR—

3+ L

2} . W O e

1 P e [ S

0 Fo

-~

FIGURE 3-1 A TYPICAL REALIZATION OF A SMP

A SMP is often described in terms of what is called a semi-Markov
matrix F = [Fij(t)], wvhere Fij(t) is a distribution function (or sub-

distribution function) and

F t-t ) = Pr{x{t = t < tlx(t = i
ij( n of x( n+1) J ’ n+1 l ( n) }
where tn is the random variable denoting the iime the process makes the

th L
n transition (Refs. 8 and 9).

However, an alternative method (Refs. 1 and 10) more appropriate
for our purposes is to describe the process in terms of a transition
probability (stochastic) matrix A = (¢, ) and & probability density

1)

function (p.d.f.) matrix f = [fij(t)]'

10




We have

ai_ = Pr{next event is of type j|last event of type i}
J
and where

£ .(t) = probability density function of transition time

i
J given that last event was type i and next eveat

is type j.

The special case where fij(t) is an exponential distribution,
depending only on i, is a continuous time Markov precess. This formu-
lation of the continuous time Markov processes differs somewhat from the
so-called "minimal process" formulation given in Refs. 1 and 2. A

limited discussion of the minimal process approach is given in Appendix D.

3.2 Characteristics of the SMP

We now proceed to discuss and develop some interesting character-
istics of semi-Markov processes. Cox and Miller (Ref. 1) show the

following., If we let

h o (t) =  1im Pr{event of type J ia (¢, t+At)|event of type i at 0}

1 At -+ 0 At

then the conditional (on event type i at 0) expected number Hij(t) of

type j events in (0, t) is given by

t

. = h dt .
(3.1) Hij(t) [ iJ(T)

11




I1f we denote the Laplace transform of a general function m(x) by
» —5X : . .
m (s) = " e m{x)dx and introduce matrix notation, then
o

(3.2) n¥(s) = [n* (s)]
ij

g¥(s) (1 - g*(s)17

where
g* (s) = a, f¥ (s) .
ij J

Furthermore, from the well-known properties of the Laplace transform we

have
* 1 4
(3.3) HY (s) = = h7 (s)
1j s 1ij

and H(t) may be obtained by inverting the transforms. Cox and Miller
derived expression (3.2) in the context of a SMP continuous from the
left, whereas ours are continuous from the right. However, inspection

of their derivation shows that the direction of continuity is irrelevant.

We say the system is in state j at time t if the last event to

occur before (or at) t was of type j. Let

Pr{in state j at time tlevent of type 1 at time 0}

=}
~
t
~
H]

and

P(t) o, (0)].

Cox and Miller also develop an expression for P(t). However, this

derivation, .n contrast to that for h*(s), is heavily dependent on the

12
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direction of continuity. We proceed now to develop an expression for

sP*(s) via integral equations in a manncr similar to Cox and Miller.

We start with a two state process. The integral equations arc of

the form
t
3.4 t = o F t) + F t) + -
(3.4) pn( ) 11 11( ) alz 12( ) oz” ./o‘ h“(t u)F“(u)du
1
+ h -
%2 f pp (E7WF,, (Wdu
o]
t t
(3.5) (t) = « h t-u)F -
p12 99 12( u) 22(u)du + @, hlz(t u)F21(u)du
(e) o
where
[+]
3.6 F t =
( ) ij( ) [ fij(u)du

One obtains pzz(t) and p21(t) in an obviously similar manner.

To understand the derivation of (3.4) and (3.5), one should study

Tigs. 3-2 through 3-4, Figure 3-2 represents the Cox and Miller
derivation of pll(t), while Figs. 3-3 and 3-4 correspond to our deri-
vation of pll(t) and plz(t), respectively., The multiple components of
each of the figures represent an exhaustive classification of the ways
in which the desired state can be reached at time t. The expressions
on the right of the figures represent correspcnding compon-nts in

integral equations.
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FIGURE 3-2 p"(t) CONTINUOUS FROM LEF™ (Cox & Miller)
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FIGURE 3-4 pn(t) CONTINLOUS FROM RIGHT
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Note that

FiJ(t) = Pr{the transition from i to j takes ¢ or longer}

Thus in (3.4) pll(t) consists of the components

allpl‘(t) = Pr{1st transition is to state 1 and takes t or longer}

1

alelo(t) = Pr{lst transition is to state 2 and takes t or longer}
t

/. h _(t-u)o. _F__(uddu
J, ou 11 11

t
= J/. Pr{lst transition leads to a sequence of events yielding
o] an event 1 at t-u followed by a transition to state 1
taking u or 1onger}du

t
h -u)
.47 11(t u) 12Flz(u)du

L
_ Pr{lst transition leads to a sequence of events yielding
- an event 1 at t-u followed by a transition to state 2
taking u or longer}du.

Note the general classification according to whether the first transition
occurs before or after time t. In determining pi.(t), i # j, the first
J

transition must occur before t.
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Thus we can write, dropping the "s" arguments for claritv,

(* * * ¥ Xk X pex
= o F + o F + h™ ¥ + . h™ F
1 1711 1212 T %t T %M b e
* L .4 o K X
= + r
P12 %1712 12 Y2070
3.7 {
3 * * L . * Lk
= o F + o F + h™ F +a h” F
Pas 21 21 “22°22 T %2122 21 * %5000
* ¥ %k X ok
n = o h F + & h” F
Y21 il 21 i1 12 21 12
or in matrix form
* % * *
o F* + o F o
P11 P2 1111 T %2712
* * * *
0 F + a_ F
Pa1 Pap %1721 * %oFas
h* WV Mo, F* + o F* )
11 1z (%11 T %2t e
(3.8) +
* * * E 3
h 0 o F* 4+ g F
Lh21 22 2123 © %22 22J
% *
- 0
S B P PUBP
= [1+n%] .
0 o F* 4+ o F*

21 21 22 22
Noting th * =1 -f* | we na
oting that sFiJ Y W ve
E 3 *
Q = + - 0
11(1 fll) alz(l flz)

(3.9) sP*(s) = [1 + h*]}

) -£* ) a -f*
¢ U (I-fy ) + 2, (1-17,)

17




In a three state process we have

A * * * x* * 4 * * *
s o F + o, F + o F + . _hT F + o h™ F + o h” F
pll( ) 11 11 12 12 13 13 11 11 11 12 11 12 13 11 13

h* #* + o h* F* + o n* ¢*

.10° *
(3.10)  qp,,(s) 1Mz 21 T %e2t12 22 T %23tz gs

So it 1s clear that (3.9) generalizes to the un-dimensional cese

(3.11) sP*(s) = [I + n*(s)Iw(s)
where
W(s) = [wij(s)]
n
- - ¥ -
W (s) = :E: aiktl fik(s)] ., i=3
k=1
wij(s) =0 , 1i#3j .

Yiote in the special case where fij = fi for all (i, j), we have

Wii =1 - f:. Recall h*(s) is given by (3.2).

Now, suppose an event of type i occurs at time t = 0, Let Tij be
the (random) time the system first reaches state j; Tij is thus referred
to as the conditional (on i) first passage time. We would like to
develop an expression for the expected value E(Tij)' Adapting a method
used by Cox and Miller (Ref, 1, p 196) for Markov processes, we proceed
as follows. Replace the matrix 4 = (@, ) by A= (d}k) with d}k =,
except dgk =0, F#3j, k=1, ..., n and a%j = 1. Thus j becomes an
"absorbing" state--once the process reaches state j, it stays there,
although the event j may reoccur. Ilet the new sample space be
Y = {yw(t); t 20, welif. Let rij(t) be the prchability in the new

18




process that state j is occupied at time t if started with event 1 at
time 0. Thus riJ(t) in the new process corresponds to p. (t) in the old
1]

process and r, (0) = 1. Then

JJ
(3.12) PTy, S8 = 1, (6) .
Neote that
(3.12) P(T, St) = P(weQ|x (0) =1, x (T) = J, x (7) = j, all T < T, some T < t)
ij w w w

and

.

(3.14)  r, (0) P(welly (03 =1, y (t)

By construction we have x”(O) =1 <§>xm(0) = i and

yw(t) = j<= (xw('r) = Jj, xw('r) #3, all T <T, some T <t). So the set
of wef in (3.13) and the set of weQl in (3.14) are the same, and hence
the probabilities are the same. (We have assumed the probability

measure on {l is the same in the new prosess as in the old.)

Now we have

-sT
(3.15) E(e ij) = e—Stp' ('riJ < t)dt

sr¥ (s) + r. (+ 0)
ij ij

= sr* (s)

i
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where the last equality holds because we assume no instantaneous
transitions at t = 0 can occur, that is, f _(t) has no probability mass
13

concentrated at t = 0,

To obtain E(Tij) we note that

(3.16) - -g'-E(e STiJ) = E('ri ) .

s=0

One is now tempted to write

. _ 49 * _ *
@D Bm ) = -1 [srij(s)]s=0 - [sx‘ﬂ(s)+rij(s)]s=o

but sr'*(s) may be indeterminate, i.e., r'*(0) = ®, so the entire
1]
s=0

function srz_(s) must be developed.
J

Thus we have developed formulas for

pij(t) = time dependent transition probability
Hij(t) = conditional expected number of events
E(Tij) = conditional expected first passage time.

3.3 Initial State Probabilities

So far the discussion of the SMP has centered on the transition
mechanism and the associated conditional probabilities, conditional
times, and conditional events, where the conditioning has been on the
initial state ~f the process. If the probability distribution of the
initial state is specified, then these conditional quantities can be

combined in weighted averages to obtain the corresponding unconditional

20




quantities, Suppose we have thc state space S = {1, 2, via, N}. Let
pi(t) denote the prokubility of being in state ieS at time t =2 0. The
probability distribution of the initial state assigns a probability
pi(O) = pi such that Z§=1 pi = 1, The time dependent state probability
pi(t) is distinct from the time dependent transition probability pij(t);
the row vector of pi(t) is denoted by p(t), and the matrix of pij(t) by

P(t). Note that for the 'well-behaved' processes under consideration

P(0) = I. We now have

N
(3.18) py(t) = 12—; b, ()b, () for t 2 0
or
(3.19) p(t) = p(O)P(t) fort 20

Similarly, if we define

Hj(t) = unconditional expected numter of type
j events in (0, t)
Tj = the time the system first reaches state j
then
N
H (t) = Z p. (O)H (t)
J 1 i)
(3.20)

'

E(T ) = ;"1‘0’”13’ )
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4, A THREE-STATE SEMI-MARKOV SEARCH MODEL
4,1 Definition

Rererring to the operational situation described in Section 1 and
the semi-Markov process described in Section 3, the following identifi-

cations yield a model of the search process with decoys presgent,
Let the events be

1. Start search
2. Start classifying a decoy

3. Start classifying an HVT.

The times of interest are

T13 = time to start of HVT classificatiomn given
searcher starts in search state

T23 = time to start of HVT classification given
searcher starts in decoy classification state

T, = time to start of HVT classification
(uncenditional).

The statz generated by event (3) is considered absorbing because

a. Event (3) results in the destruction (or probable
destruction) of an HVT

b, Hence (3) is a highly significant event in itself

¢. In the cases of interest in the present study, loss
of one of the small number of HVTs would cause sig-
nificant changes in HVT density, which in turn would
require considerable extension of the model.

Note, however, that (3) being an absorbing state las no direct

consequences on the interesting output except

. 1
a. On the form of Ilz(t) and H22(t)

b. O©On the interpretation of T13 and T23 as absorbtion
times,
23
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It would be a very straightforward modification to consider (3) to be
other than absorbing. A situation of interest in this case would be
where the searche:r is interested only in surveying the field of targets

to determine, for example, the number or density of HVTs.*

In the absorbing case, we postulate the transition matrix

0 o

%2 %13

(4.1) A = oz21 Yo %a
0 0 1

£ t
f1 1 1
(4.2) f = f2 f2 f2 .
f3 f3 f3

Here the densities are

fl(t) = p.d.f. of the time Tl to detect a target
fz(t) = p.d.f., of the tine 72 to classify a decoy
fa(t) = p.d.f. of the time 7_ to classify a HVT

>

and the conditional probabili<ies are

o
12

probability the Cecected target 13 a decoy

o probability the detected target is a HVT

13

* An interesting problem is: given such a model and a search history,
what are good estimates of density or number. Assume speeds and detection
ranges are measured with error.




a21 = probability return to search after classify
a decoy (i.e., no HVT or other decoy present)
a22 = probability that, after classify a decoy,
another decoy is present and selected, from
the field of visible targets, to be classified
a23 = probability that, after classify a decoy, an

HVT is present and selected, from the field
of visible targets, to be classified.

Note that since the columns of the matrix £ are identical we have a
Markov process if the fi's are exponexntial. The characteristics of
fB(t) other than tinite expected value turn cut to bs irrelevant to

any of the subsequent analysis due to the fact that nothing of interest
(in the present model) happens after state 3 is reached; let u™ be the
expected value. If the model were modified to a nonabsorbing situation
(for example, to include HVT mission counsideration), then fs(t) would

acquire more importance,

We assume that all decoys are identical and all HVTs are identical
in their operating characteristics. A decoy may have characteristics
different from an HVI', If more than one type of decoy or HVT is re-
quired, modification of the subsequent analysis is required. Specifi-
cally, additional states and/or modified transition probabilities would
be required, depending on the type of information required. Many types
of information can probably be obtained through modification of the

transition probabilities.,

4.2 Conditional Expected First Passage Time

Referring to equations (3.2) and (3.11) we have

(4.3) sP*(s) = [I + n*) w(s)

25




where

(4.4)

(4.5)

and

(4.6)

Thus

(4.7)

W(s)

h*(s)

g*(s)

>

g ()1 - g*e)]?

o £% o g*
121 13 1
o f* o £* o f*
21 2 22 2 23 3

]

0 0 £*
3
1 £* o f*
2ty st
SN B Sa A
Pa1t2 22 2 23 2
0 0 1-f*
3
1 a
[ 9 3
b b b
1 2 3
4] 0 c3
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So we can write

11 %12 B3
.8 - g* 1A
(4.8) {1 - g*(s)] €y E5p o3
0o o0
€13
- b -a b
by % 85°3783%
b b- —a b
byT8Py Bymay by cglby-ah,)
- 1 b ~b
_ ®y °3°1 3
- -ab b - b -a b )
by 8,0y byma,by cg(bymayby)
0 0 L
C
3
5 i

Noting that in the terminology of Section 3 we now have p13(t) = rls(t)

and p23(t) = r23(t), we proceed to get E(T13) and E(T23) Wy using equation

(3.16). We have*

(4.9) P = + h W
S 13(5) [I } W
= ”I + h W i w =W =
L ]13 33 since 1 W 0
= hT W = W s - 1

= v_ [0, o £* o f£*
33 12T %5f1) e85

a3

833

1-£%)£* (« +
(I-E 08, (@) )8yq * @ 48,0)

* th th
Notation: A and A, refer to j column and the i row, respectively,

otVthe matrix A.
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where

+ £
( . - %3fs * %3010y
23 1-t*) Q- ¥« £Xe* )
) R T Uy
(4.10) \
. _ 1
= %
33 1-£3
So
o ¥+ (o 2 ~a a )ff
* 1371 12723 13 22
(41D Pa(® = 1 -0 - o« *f*
222 1221712
Differentiating with respect to s, negating, setting s = 0, and using
f’;(O) =1 and f'i* (0) = - E(T.), we find
+
(a21+a23)E('rl) dle(Tz)
(4.12) E(T13) = Q/ o
23 21 13
In working with the aij's, the following identities are useful:
1 - -a « = (-
( %2 7 %12%; N3 T %%z T Y3%0
} = o
(4.13) ¢ 23 T ¥31%13
]
and
+ o + - = .
\ Yz T %12%1 T %12%3 T Fizte %2
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Similarly, we find that

a ¥+ o fEf*

N 232 T %13% 5"
(4.142) S N s
2272~ %12%% %2

and

(4.14b) B(T,) = azi?(T:)a+ Z(Tz) .
23 21 13

Of course,

{4.14c) E(TSS) = 0 .

4.3 The Transition Matrix

The matrix

0

12 %12

A = % % %3
o 0 1

is comprised of the transition probabilities.

Note that
o + o = 1
i2 13
(4.15) !
+ o+ = 1
%21 F %t %y
The absorbing nature of state 3 is reflected in « = 1. The vaslue of

33

al_ = 0 is implied by the fact tl..c the end of a search leg is marked
1

by the detection of a2 target which must be classified.
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From (4.15) we see that once alo is determined, a13 is also

&

determined. Also, a01 is determined by 092 and aog' We proceed to

<

discuss these independent quantities.

4,3.1 Detarmination of «

12
If we let
nc = number of HVTs
n,6 = number of decoys

it seems natural at first to define

nd
(4.16) o = .
12 n + n
c d

This procedure, Lowever, neglects the eftects of relative detectability
of the twn types of targets. We i.iave seen in Section 2 that "detect-
abi]ity" is a function of speed and detection range as well as numbes

or density.

An altcrnative procudure, which yields a resul: equally

intuitive for simple assumptions, ‘s the following. Define the random

variables
Y = time to detect a decoy
X = time to detect a high value target.
Then
(4.17 ®, = P(Y < X)
®

P(Y < X|X = Xyt (x)dx
C

where fX(X) is the p.d.f. of X, and in the follow.ng, fY(y) is the p.d.f.

30




of Y. The value of a]2 thus depends on the forms that are assumed for
the p.d.f.'s. We consider two cases: exporentiul and Erlangian with

parameter k = 2,

@ Exponential Casu

In this case

~A
fy(y) = ‘Re y y >0
IO otherwise
(4.17a)
£, (0 = fgePx x>0
lO otherwise
S0
X
(4.18) P(Y<X|X=x) = P(Y<x) = he dy
o
-Ax
= 1 - e .
Hence
® A
(4.19) o = (1-e Myge By
12 A
_ A
T o

Since A is rate at which decoys are detected and B is rate at which

HVTs are detecved, (4.19) is a highly intuitive result.
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It is of interest to no »

1 1
‘ E(Y) = £ , E(X) = 5
(4.20) .
(Var(Y) - -%' var(X) = s
A ! B® !

® Erlangian Case

The Erlang distribution is discussed in Ref. & (Hillier
and Liebsman, pp 303-304)., It should be noted that the Erlang distri-
bution is similar to the gamma distribution but they are not different
names for the same thing. Although they have the same 'shape,’ custom
has the parameters arranged with slight differences. If Z is a random
variable of Erlang distribution with parameters m > 0 and k > 0, then
the p.d.f. of Z is

k
mk k-1 -kmz
;(k; A e dz for z =2 0.

(4.21) fz(z)

1 1
The mean and variance are — and E—g. Note that k = 1 yields the
. m

exponential distribution. Figure 4-~1 exhibits how k changes the shape

of the distribution for a given m.

ilz)

FIGURE 4-1 ERLANG DISTRIBUTION FOR
VARIOUS VALUES OF k
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We considc. the case k = 2, Thus

~2X\
£ (y) = 4ye y > 0
Y
(4.21a)
-~ =2Bx
fX(X) = 4B“xe P >0 :
So
-2A X%
(4.22) P(Y< x) = 1 - (2Ax+l)e
and
G-
-2AX -2Bx
@, = =/‘ [1-(2 x+1)e 148% xe dx
(o}
(4.23)
Y (A48
T (A+B)°
1
We note that if A = B we have 012 = 5, which is i1ntuitively reassuring.

It is useful to note that if experimental data are
available and appear to fit the family of Erlang distrikutions, the
paramneters may be estimated., It seems :ikely that the only other type
of experimentally derived distribution (in the context of what we are
trying to model) would be a bimodal (or multimodal) distribution. In
that case it may be feasible to fit the data with a mixture of Erlang

distributions, that is, a distribution with p.d.f. given by

pt, (z)) +p,f, (z)

1 2
where Z] and Z2 represent two different Erlang distributions and
p1 + p2 =1, 0 5 pl < 1’ 95 p2 < 1. Some interesting technical
questions are what conditions (if any) on the means and variances of
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7. and Zo and on p1 and p, yield a bimodal distribution? and what are

good estimators of the six parameters? (It appears that maximum

likelihood estimators may be very noulinear.)

4.3.2 Determination of Detection Rates

The computation of alo requires determination of the detection

&

r-tes A and 8. In the absence of experimental data or for ease of para-

metiic analysis, reliance must be placed on equation (2.1). Specifically

' 1
4R b A /
A= dd(v+v) \/1_1(213 des k _?__E_S_
mod s A A A B
o d S
(4.24)
a
4R 5 2 2./
B = — (v +v) 1 - kzsinz' d k = ———XEXE
T c s 2 ¢ de 2 TV +vV
° c s
where VS = speed of searcher
Vd = speced of decoys
VC = speed of HVTs
Rd = detection range of decoy
RC = detnction range of HVTs
5d = density of decoys
5 = density f IVTs
c
3 = rate at which searcher detects HVTs
A = rate at which searcher detects decoy.

The values of A and 3 are expressed in inverse time units, and may

intuitively be considered detections per unit time.

2

34

e

o) ai\‘}m

).

N TR NPk - =72
b A e
QR

b

Sayee
i’

@l

§,
§




Two approaches may be taken regarding the densitices 50 and 5,-

«
First of all, the situation to be¢ modelled may be considered purcly 1n
terms of density and all questions of specific area size and number of

targets ignored. On the other hand, we may compute

n
c
6c - AO
(4.25)
n]
¢
¢, = —
d A
o
where
n = number of hign value targets
c
4 = number of decoys
A = area of operating region containing
o

tae targets.

The former approach may be more theoreticully aesthetic, ahile the
latter has more practical application. The choice of alternatives nere
should be consistent with the choice made in the next subsection for

and .
Ugg INC Hyq

4.3.3 Determination of and
Yoo ¥NC Uyq

The probobilitics azo and ¢ __ are defined by

23

Pr{next cvent is "classify decoy’ |last event was “classify decoy’}

S—
3
1)
S
u

R
1

Pr{ncxt event is "classity HVT'|last event was "classify decoy" }.

In other worcas, represents the probability of going from a decey to

Y

another decoy wnd 0)3

value target. By the law of total probability a°1' representing the

the probebility of going from a decoy to a high
probability of going from a dccoy to scarch, is given by 1 - & -

& .
22 23

15




It turns out that certain results are highly sensitive to

@, ,, and Also, certain unexpected and unusual, but explicable,

e

J23'
effcects are due to 093. Hence a high degree of care must be cexercised

3 J ry a R
1in specifying a22 nd u23

As with a1°’ there are two approaches to considering ¥ and
303: density or area. In addition, there is the question of adapting

the assumption of random movement to movement which is random with a

condition of reduced interaction or "overlap" on the targets.

® Area Approach

Consider an area of AO squarec nautical miles containing
nl decoys, nC high value targets, and oue searcher. Assume that at any
¢
given 1nstant the decoys and HVTs are uniformly distributed at random

over the area,

The complete classification of » decoy anticipates an
cvent, The next cvent to occur can be either start of search, start of

classification of (another) decoy, or start classification of an HVT.

In order for the next event to be start of classification
of another decoy, at least one other decoy must be present and, if one

or more HVTs arec also present, a decoy must be chosen {rom the array of

torgecs,
So
99 = P{at least one new decoy present and pick decoy|just finished
- a decoy}
n -1
d
(4.27) < = :E: Pfk new decoys present and pick decoy| just finished decoy}
K=1
P -1 n
d C
= " Pik new decoys present, 4 HVTs present, pick decoy
\ k=1 $=0 | just finishec decoy’

6




d C ( )
d k d ct 4 . C k
(4.28) a22 = E EO N Pd(l-Pd) l/PC(l-PC} Iy .

This last statement follows from

(4.29) P{k new decoys present, { HVTs present, pick decoy}
= P{k new decoys present} * P{4 HVTs present}

« P{pick decoy|k new decoys and £ HVTs present}

plus the assumption that the motions of decoys and HVTs are stochastically

independent and the fact tiat
PANINC) = PANBIPC|ANB) = PMAPBIP(C|A N B)

if A and B are independent events. Also

n -1 n -1-k
d k
P{k new decoys present} = P (1-P )
k d d
né s nc—2
(4.30) P{4 HVTs precent} = (z)Pc(l-Pc)
: k
P{pick decoy|k new decoys and £ HVTs}] = il
and
P = TR ‘A
c c o
P, = TmR" /A .
d d o




P is the probability any one HVT is present (within range of the

~
<

searcher). Pl 1s analogous.
d

Tn a similar munner we wrice

BTl M. a1 n ~1-k n n -4
c - . ~1- -
d ) k d ((% A c 2
y = 5 2 -p P (1-P -
(4.31) a23 2 ( . ’Pd(l d) ) c(l C) ik
L4 ;,'.‘

Note the difference between aog and aog is in the limits of summation

and the probability of picking the appropriate target.

Let's consider the special case where nC = 1. Then

(1.31) becomes

o omly n,~1-k
G
4.32) o« = P — P (1-F
( 23 cZk+l(k)d1d)

Similarly, (4,28) becomes

Ny n,-l n -1k
4.33) <« = (1-P Z( )p -p
( 29 ( C) , d(1 d)
k=1
ﬁg:} « n -1 n _~1=k
+ P —_— P -pP
c YA 1+ ( ) d(1 d)

n]~1 Pc [ nd
¢
- (1-P po——— P - -
! a (9 ] - Pu :kld v a pd) J

d d

]
~
—

]
o]

(¢
~
)
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o,

It is also clear that in general

{
i (4.34) @, 2 pPr{no HVTs or new decoys present!just finished a decoy?
n n -1
c d
= (1-P ) (1-P)) .
c d
The case n = 1 now make heck for + + = .
case c w s a good check case I a21 a22 323 1

¢ Density Approach

It is possible to drop explicit consideration of area
an¢ number of targets. Equations (4.57) znd (4.28) stiil houd, but the
binomial distribution is replaced by the Poisson distribhvtion. The

results are

0 2
bt s S st RSOl PR 307 o 8 M1 S = e e o, et

04 =
g 21 my
[+-]
l i k k k
3 (1'*'9) =X
4.35 o = AEe Y OTX
(4.35) 23 mx k(k")
k=1
3
4 o = 1l -o. -«
22 21 23
3 where
¥
x = & TR?
c ¢
= TTRC
y 6d d
P = x/v
e 7Y
‘ m = _ .
i l-e y
¥

Details are given in Appendix A.




® Effects of Overlap

Onc of thc¢ main assumptions has been random motion cf the
targets and unifomrm random cistribution of the targets at any given
instant in time. One suspects that the evader might improve his situation
by not alloving targets to congregate, as wili happen occasionally under
purely random motion., It happens that this suspicion is supported by
analysis to be given shortly. On the other hand, one also suspects that,
as the target density increasecs, it becomes increasingly difficult to

prevent congregation. This matter will be discussed also.

Suppose that it can be guaranteed that HVTs are kept a
sufficient distance {rom decoys to cause a°3 = 0., Compare this with the
situation where a°3 40, i.e., normal overlap. Consider the case where

the £, are exporential distributions (the Markov process) for one HVT.
i

we then have

4,36 (T, _in. =1 = 0) > E(T =1, 0
(4.36) EC 13‘ a =L %y =0 ( 13l“d L oy, #0)
from (4.12) with n, = 1. That 1s, forao__ # 0
d 23
" 2 ey _ B
‘ 127 k4B 7 V13 T A48
(4.37)
tczl = - P Ay, s Oray, = P
SO
. - | < i +;‘.
4.38 E =1, £ 0y = —=ih
(4.38) LML Ayy = O) (B+P ))..
where i

¢ the mean of f3(t).
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For o =0

23
(o4 = (o4 = __?_
‘ 12 AR 7 13 T 48
(4.39)
= 1 = 0
la21 r %9y %z
50
NEIX
4,40 E(T =1, &« =0 = T .
(4.40) ( )3‘"d ) ¥pz =0 B.

The inequality is now clear. Thus the evader does wish to separate an

HVT and a decoy, at least after the seuarcher has deployed and is searching.

® Model Restrictions Due to Cverlap

Turning to another question. one might ask whether it 1is
always of advantizge to the evader to use decoys. If the decoys and HVTs
are independent, the intuitive answer is ves. However, the model some-
" = n) and

. t
times answc»s 'No There are reasonable cases where E(T

1317
E(T3|nd = n) will at first decreas¢ as n is increased from zero. This
phenomenor is an artifact due to failure of the random motion, position
assumption., To gain at least a partial understarding of why it happens,
let us exmmine the case where the fi are exponential distributions (the

Markov process} for one HVT with first zero and then one decoy. Consid-

ering firsg Tl" we have
3

1
(4,41 g = 0) = =
) E(‘lslnd ) )
and
(4.42) EC. o uo=1) = etk
ras {. 13' Xd = = (B-}-pc;\\) }
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since with nl = 1 we have
[4
(4.43)

ln =0y, we

The dosirable gituation for the HVI is E(TJS\“U e 1) > B(T d

13
thus require

L ||+7\ .l..

(4.44) (BH’C)\);I > g

or

(4.45) B > pP .
e

The relation (4,45) can be interpreted as follows. At the beginning ol
decoy classification, the HVI is known not to be within detoction range.
As long as the mean classification time is long enough (i.e., (4.45)
satisfied), then this initial condition will dissipate, and the HVT
position will be uniformly random over the entire area at the end of
decoy classification. Failure of (4.45) to hold means the HVT speed

(or the classification time) is not high emough to dissipate this initial

condition, Notice that if overlap is prohibited so that « = 0, then

23

A
(1.44) becomes — > 0, which always holds (for ail practical situations).
i

Now consider T3 in the same manner we have just cxamined

T _. Then
13

1

4.46 = = = = (1~
(4.46) E(T,|n, = 0) plE(Tlsln 0) (1-F) 3
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since p1 =1 - Pc when nd = 0, and from (4.38)

4.47 E =1 = E o= 1) L (1 ~ 1
g (4.47) (Tylny = 1) PIET plny = 1)+ Ry BTy lny = 1)

where E(T = 1) is given above by (4.42). Substituting the values

n
13" d
of (4.43) into (4.14b) we get
3 (1~-P +
( c) A+B

4,48 E(T = =
( ) ( 23|nd 1) H(PCK+B) .

powe i 4 v
B R Y

e N

i
{
3
i
3
A
:
§
E
i
i
.;
b
i
3
H

E Py (u+h) + qu(l-Pc) + DZ(X+B)
F 4.49 E = =
3 ( ) (T3|nd 1) R .

E Thus in order to have E(T3|nd =1) > E(T3|nd = 0) we require
¢ 2 4 { 1) + (1~ - (1-P )} - (1- 2
b (4.50)  P,B" + B P, i) + plrC2 P +A] - (=P )y} - (1 PP ik 0

, 3 or, substituting

[ 3}]

(4.51) b pl(u+x) + pz[u(l-Pc) + 2] - (1'pc’“

(23
It

} (1-P P ud

we require
K (4.52) 8% + b -¢c 2 ©
. where

I (4.53) a>0 , c>0

L\ e
A

43
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Completing the square, (4.52) can be written as

b 1" ¢
(4.54) p(B) = [ﬁ + ;;] i ol 2 0 .

b 1 =z
Now p(B) is a quadraic form in 8 with two real roots - ;; + 5; b+ 4dac

1 .,
and a3 minimum of - z;? (b” + 4ac) at B = - . Fovrther

20

¢ + dac > B2

since a > 0 and ¢ > 0 so

Ve + 4ac > —b'

28 28

and hence

1{2'—-':
< 0 -0 < < — - -
p(B) for R 2 b* + dac bf

(4.58)

p(B) 2 0 for B = 5%{\/ﬁ+4ac-b} .

Since E(T3lnd =1) > E(Tslnd = 0) if and only if p(R) = 0, it is also
possible for the deployment of a decoy to be disadvantageous to the HVT
when using E(TS) 85 a measure. Unfortunately, this thresheld on B is

not as easily interpreted as when using E(T ). However, if b > 0 we

1
note that b + dac > \/b® + dac 2nd hence v(8) > 0 if B> \/E . In

particular, if y <1 (1'9;’ mean decoy classification time is greater

A

than 1 bhecur) and if \/[—— e
ir) 2p2 < Pc then uPc > ; since \/u > u; moreover,

14




—
B> P implies B » \/% . Hence in this case, any B good for E(le)
¢ : :

is good for E(Tg), snd taere may be a range of B good for E(Tq) wshich

is not goond for E(qu).*

e

-

P “ap §s not permitted so that aqg = 0, then since
in tihis case p3 = Pc instead of (4.50), we have mercly (pl + pq)k i p”b 20

. which always holds,

To summgrize thus far, if overlap is permitted we must

. check that B = uPc and p(B) 2 0 to guard against the fallure of the

W random pesition assumption, It is useful to note, however, that as the
,i E number of decoys increases this problem will diminish becau.ec eventually
iﬁé the target selection problem will overshadow the error in the probebility

of the HVT beirg present, Possibilities for removing these restrictions

are discussed in Section 7.

o
Lo

Q;: Unfortunately, these conditions alone are neither
-

G necessury nor sufficient to guarantee the accuracy of the model, even
i y

though the preceding discussion may seem to imply them. The reason is

d
st
I ATy

that a further problem remains in the fact that after having classified
N a decoy and returned to search, the search rate is not AP immediately.

In the case of @ single decoy the search rate is simply B until the

;5;5 effect of the information obtained in the {ast decoy classification has
e dissipated, at which time the search rate is restored to A+B. 1In the
3'
. | * Sample case: anticipating Section 4.7 we have for nd = 1 that
X! 1 p2 = Pd + pﬁ[1—2pd]/z; using formulas for Pc and Pd given with (4.30)
'} A
4 and letting V =15, V = = 20 = =
J g 5 » Ve Vd 20, Rc Rd 60, we get A < ,002
4 or 1/A > 500; from Table 2-1 we see this is not satisfied since
ﬁf 1/N = 45.67; since this is s typical case, the bound above doesn't say

too much.
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case of muttipie decoys, the sesrch rate immedlately after classification
Is something less than A+ until an appropriete time for restoration to
MB. {he transition probabilities are similarly affccted. 1In the case
where the obtalned i1nformation does Indeed dissipate, this problem is
solvable by adaing another stote to the model. This additional state
woitld be » secondary search statc that accounts for the informeation

dependency; a transition to the primary stavch siaze would be made after

n suitable length of time if the HVT is not found ia the interim. The
% case where the information does not dissipate (e.g., position plotting
of stationary decoys) must be treated in a different manner. A possible

E approach cxploiting special matrix structure is discussed in Section 7.

3 * Reauced Overlap

E Earlier, under the subheading "Effects of Overlap' it
‘1 wvas shown that it may be advantageous to eliminate, or at lease reduce,
overlap betveen HVTs and decoys. We now consider some ways of incorpo-

rating this reduced overlap into the model,

SO

Suppose the dezoys are not stationary (i.e., are mobile).

'i Then it may be feasible for them to know or recognize where the HVTs are
i going to be and simply stay a suitable distance, call it RS. away from

% them., Let RS = RC + pd whe}e bd = decoy classification range. In this

i case, If p(i is small, a simple appre :imation is to set 022 = 0. (See

% the end of Appendix D for further discussion of this approach.)

§

é: Suppose now that the decoys are stationary or that it is

5 not feasible for the decoys to know or recognize where the HVTs will be.
é Two basic methods of approaching this problem have been considered. Both
i require that an HVT have the capability to recognize and avoid a decoy.

; The first method is a queuing model which requires only specification of
; an operational parameter reflecting the objectives of the HVT activities.
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The scvcond method involves a class of models which basically requives
estimation of a parameter describing flecet operations o: fitting a
curve to observed data. Since the first method seems more suitable to
the course of the current analysis, it is presented here and the second

method is discussed in Appendix B.

Jet A , the rate at which HIVTs encounter decoys, he
C

defined as
4 2/VV
A ——R—sf—c-x-lg(v Fv)E(|[—22
(4.56) c - TIA d c Vv o+ V
o C d

where E(k) is the elliptic integral discussed in Section 2. Also

define

(4.57) Ao = maximum acceptable rate of HVT course change
for purpose of decoy avoidance.

For example, an HVT may be subject to constiraints such that it would be
willing to change course to avoid a decoy on the average only once in
every 5 hours, in which case Ao = 0.2 hr_l. We can now model the
situstion of a single HVT as a sirgle server queue with customer balking,
that is, when the customer arrives if the server is busy the arriving
customer leaves. In this case the HVT is the server and the customer is
a decoy. The customer arrival rate is kc and the service rate is ko.
Customer arrival corresponds to HVT contact of a decoy. Customer service
corresponds to the length of time after a decoy avoidance maneuver hefore
the HVT is willing to make another such maneuver. Such a queuing system

can be represented by a two-state Markov process, where the states 0 or 1
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correspond to the number of customers being served or, equivalently,
whetiner or not the server iy busy. The process can be vepresented by

the generator matrix
(4.58) Q = c c .

Let B denote "system in state 1" and I "system in state 0." Assume
the system is in steady state. Let P(B) = Pr(B) end P(8) = Pr(8) in

steady state. Then from Ref. 2 (p 194) we hava

A
[+d

PB) = 7%

(o] (o]

(4.59)

}\Q
P(B) m

o] [

We refer now to Fig. 4-2. As represents the area n(Rc + pd)2 and A*

the area ﬂﬁi. The decoy 1is centered in As' the searcher in A¥*, Denote

“"HVT in area A" by "HeA," We assume HeAs = B and hencs: P(leA* & ﬁiHeAs) =0

and P(BlneAs) = 1. Then

(4.60) P(HeA*|HeA ) P(HeA* & B|HeA ) + P(Hea* & B|Hea )
= P(HeA* & BlHeAs)

= P(HeA*|B & HeAS)P(BlHeAs)

= P(HeA*|HeA5)

= A*/A
]

= (R /R)® .
C 8
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FIGURE 4-2 AREAS IN QUEUE MODEL OF OVERLAP

Now

(4.61) P(HeA |B) = m@R_ +p )?/A
s c d o
50

(4.62) P(HeAS) P(HeAS & B) + P(HeAs & B)

WAV

DL
WO ey

= P(HeASIB)P(B)

A
c

Ao+ A
(o] C

AR Sy

> ¥ - 2
4 = [n@®, +0)?%/a]
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We interpret Pc as P = P(HeA*). Furthermore, P(HGA*|H§AS) = 0, Hence
c

14.63) P(HeA®) = p(HeA*}HeAS)p(HeAS) - p(neA*|H¢AS)P(u¢AS)
80
3 2
0y - n(Rc + pd) ES kc
(4.64) pc ol A R A+ A
0 ] (o] Cc
nR ° A
C C

A Ao+ ‘
(o] (o] [o4

Note that pd enters the equation through lc. We can now substitute

29 22 This epproach could

perhaps be generalized to priority queuing system with balking and two

PC(AO) for Pc in the computation of « and «

typ2s of customers, decoys and HVT activities, where the HVT activities
have priority cver decoy avoidance. This generalization is not deveioped
here for lack of time. A discussion of possible error due to a failure

of the implicit assumption that A*/As = (RC/RS)2 is given in Appendix C.

4.4 The P.D.F. Matrix

The form of fl(t) is dependent on the way in which a12 and 013 are
derived. Tite forms of fz(t) and f3(t) may be specified freely, and, s

noted previously, the form of f3(t) is irrelevant.

Referring to the discussion surroundinz (4.17) we see that we

should write*

(4.65) P('r1 £ t) P('r1 st&Y<X) + P('r1 S1L&X<Y)

P(YSX&EY<St) +P(X<Y&XSt)

-

*
Consider -1 = min (X,Y).
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Y = time to detect decoy

X = time to detect an HVT

where, recall,

Now

(4.66) P(YSX&YSt) =j
o
o

Similarly

P(X<Y&Xs ) =‘/

[}

-]

.

P(Y<sT&YS t)fx(T)dT

t

t ©
/ P(Y s T)fx('r)d'f + P(Y £ t) f
t

G o]

fx('f)d'l’ .

MX < t)fy(T)dT + P(X s t) f fy(’r)d'r .
t

We now axamine the exponential and Erlangian cases.

4,4,1 Exponential Case

Recall that in this cas

ae—BT

fx('!’) = , T>0

Thus, using (4.66) we have

(4.67)

P(Y=sX&Ys t)

e

and

fY(T)

g g
A+8 A+ B
51

= e ~A\T

e-(k+B)t

y T2 0 .

-(A+8)t
- e

t
/ (1 - e-)\T)Be-sTdT + (1 - e—)\t)e-st
(o

.

r

'
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Similarly

(4.68) P(X<Y&X§t) = 1-73 t 3 + t 5 e'(k+5)t _ e-(K+5)t .

Hence (4.65) gives us

(4.69) P(T, S t) = 1- o (MBI
or
(4.70) L) = O+ ) o (MBIt

4.4.2 Erlangian Case

Refer to the Erlangian part of Section 4.3.1, Using (4.21a)
and (4.22) we have

(4.71) P(YSX&Y<t)

t
f (1 - (2>cr+1)e'2)‘71482Te_ZBTd'f
(o]

+[1 - (.'z>\1;+1)e—z)‘t][za*cu]9'2Bt

B +38P\ [B“ +3Bz>\] -2 (\+p)
= 1 - ‘\0\4'5)3 + (>\+B)3 [2(}\+B)t + 1]8
2,2 "2(A+a)t —
A8 tle+ 3 - (2\t+1) (2Bi+1)e 2Bt

A similar expression holds for P(X < Y & X £ t). Add these expressions

to gev

-2 t
1 + [2(+B)t+1 - 2(2At+1) (2Bt+1) + 8ABt?]e (A+8)

(4.72) P('r1 < t)

1 - [2(>\+B)t+1]e-2()\+a)t
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which is Erlang with parameters 2 and A+B. Hence

(4.73) £ = 40e8te TP g

4.5 Renewal

As mentioned in Section 1, a quantity of interest is the number
of decoys encountered by the searcher. Here the renewal density hij(t)
and its integral Hij(t), as discussed in Section 3, come into play.
Recall that Hij(t) is the expected aumber of events of type j occurring
in the time interval (0,t) given tiat an event of type i occurred at
time zero. (Recall also that an ev.nt occurs when the process first

enters or renews a state,) We are interested in events of type j=2,

first encounters of decsys. From (3.2) and (3.3) we have

H*(s) = h*(s)

w j

where
n*(s) = g*(s) [I - g*(s)]>

with g*(s! and [T - g*(s)]™ given by (4.6} zud (4.8). Thus

4.7 * * - o -1
(4.74) b, (s) g, (s (1 -¢ (s)]_2

* * *
[el (), &],(a), &7,()] [,

€22

€32

= . ¥ = *,
By B12(S) PRELIY

o, £¥
12 1

1 - f£*% - IR 4 34
2272 ~ %2% 5%,
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Similarly

2
o ¥+ o t*
2172 © %a2%
*p kK
- . £
1= oty ™ 0%t %

* -
(4.75) hzz(s) =

We will now consider computation of le(t) for some special cases of

f1 and fz.

4.5.1 Exponential Case

In this case we have, using (4.70),

* _ )\'*'B * _ B
(4.76) fl(s) = Tipes and fz(s) = ot
and also
oA e o =
2 = 4B 13 A+
So
A+
A+B+s
* -
(4.77) h12(8) a12 . o ¥ e

a_ o
%2 u+s 12721 A4B+s  p+s

_ 8 + u
- °1120\+B) s +c.8+¢
1 2
where
c, = (1- dzz)p, +A +8
c, = (d23+0'21013)p,()\+s) .
Hence ’
* _ 1o
(4.78) le(s) = 3 hlz(s)

= am(m)[m’;(s) + umgcs)]
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where
1
* -
ml(s) - sa+cs+c
2
1 1

* *

= = = m (s
m2(S) 5(52 * cls - 02) s 1( )

By completing the square in the denominator we have

* —
(4.79) ml(s) ) P c?i
+ ——— - ——
ST 4 %
4
where it can be shown that -Z- -c, =20,
Let
(4.80) m¥(s) = -——71
<R 3 s° - p
where = l e® - 4c
P =3V
!
then * = m*(s- = -
e ml(s) ma(s a) where a ‘ 2
New
m*(s) «—> F_(t) = = sinh pt
3 3 P
and
m*(s-—a) > eatF (t)
3 3
S0
at eat
(4.81) m’{(s) P () = e F (1) = =~ sinh pt

]

1 {e(aﬂ:)t _ e(a-p)t]
2p
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By noting that ; m*(s) +— F(T)dT we obtain m;(s) = ; m;(s) by
integrating Fl(t). Thus
atp)t a-p)t
(4.82) F,(t) = tF(T)dT ——1-+-]=-[e( P -e( p)]
‘ 2 1 T oc 2p La+p a-p
(o] 2
From (4.78) it follows that
. = A F_(t) + uF_(t
(4.83) H o (t) x , (A4B) { L (8) + uFy( )]
i.e.,
o o, (A+B)
12 +p)t a-p)t
1 %23"%1%13 P P

where

c, = (A -o Ju+h+ B

1

ey = (ayy + oy @ Ju+d) \
a = = 01/2 ;4
T

Typically a + p is negative and very close to zero, so the right-hand
o
12

%3 * ¥1%3

term in (4.84) decays to zero as t # @ and le(t) /’ as

-+ o, 0) =0,
t ® Note H12( ) 0

By a similar approach sz(t) could also be found. Then,
the unconditional expected number of decoys encountered

(t) + pzﬂzz(t).

given pl and Py

is given by p1H12
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4.5.2 Erlangian (k=2) Case

Suppose, as in (4.73), that

-2(A+B)t

fl(t) = 40\+B)%t e t>0
and
£,(1) = 4t o Mt t >0
Then
%, _ [_20+p) T *oey _ 2 T
(4.85) £ = [2(x+s) + s and  f,(s) = [2u + s]
since
© -(2a+s)t ©
-(Za+s)t e 2a T
4 2 - Qe - 2 -
[ a’t e 4a (2ars)® ) (2a+s) 1] e 2a + s] ’
bi Thus
f
¥ 2(A+B) ]2
5 .86 * = 2048+
3 (4.86) h12(S) [ a ] [ 20B)
B %22 2u+s %12%21 2u+s 2(k+ﬁ)+s
5 L2(a+p)1P[2p+8]?
: %12 L2(+BY+s TPl 2+s)? - @, [zp]2[2()\+a)+s]2 o, 21[4u()\+B)J2
H
5 - 2 D(S)
g = 4a12(k+5) a(s)
;
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sin Dot}

where
p(s) = s + dus + 4°
a(s) = & + 40Br) S + Al Qpr)? + 2uB) - o u° ]S
+ 160 (A+B) [A4B + (1 - ozzz)qu - L) 1Py v 0y )
Moreover
(a.87) HE(S) = da), (MB)F :—‘(’Sl

Referring to the Heaviside expansion theorem (e.g., Ref. 6, 1021), we

can write )
r
akp(ak) akt
(4.88) le(t) = -;—(;—;—-e
k=1 ¥ “%

where r = 4 is the number of roots of ¢(s) = 0 and ak, k=1, ..., r are
the roots. Reference 4 (p 66 f£f) discusses methods for obtaining roots
of polynomials numerically; such methods are commonly available as

computer programs.

4.6 Distribution Function of First Passage Time

First pacsage time, Tij’ was defined in general in Section 3.2.
Expected first passage times for the search model were considered in
Section 4.2, 1In this section we derive the probability distribution
function Gls(t) for the conditional first passage (or absorption) time
T in the case of exponential fi(t)' The algebra here is quite

13
similar to that of the preceding section.
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i From (3.12) we have Gls(t) = P('l‘13 S ) = rls(t). Recalling that
g in the terminology of Section3, plg(t) 2 rls(t), and using (4.11), we
b have that
: *
; 4.89 sG_ (s) = sr* = * (s
; (4.89) 13 13(9) 5P 3(s)
% o £*(s) + (o - * * ]
- - [ 137, (8) + (oo, ¥13%p) 1 ()1, (s)
: 1 -0 f*(s) - o f* * )
E | 22%p(8) — 2, ()L, (8)
,i { Using (4.76), we obtain after simplification
A
| %13% * %
g (4.90) sG¥ (s) = (\+B) =
b 13 s + ¢c.s + ¢
4 1 2
where
4. = -, -a.Q
(4.91) o (1 =y, = ,e,))
" = - + +
| c1 (1 (222)11 A B
3 i
"
- & = + A+ = + .
g c, (a,, @, JuA+B) (A+B)e
3{ Hence
4
§ (4.92) 6r () = (4Ba_m*(s) + (A+B)e m*(s)
13 131 o2
E: where
‘, % 1
? m (s) = 2
5, + +
3 1 [ cls 02
;:
¢ 1
*
m.(s) = .
] 2 + +
J s(s c,s c2)
A
% .
. G 59
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Using the methods of Section 4.5 we arrive at

= L %2 | (a+p)t
(4.93) Gls(t) = 1+ - [(K+B)a13 + a+p]e

€ | (a-p)t
- [(A+B)a13 + ap e

where
= - 2
a cl/
1 /2
= - - 4 .
P 2 \1 ~ %
Note

a+p<o0

a~-p<ao .
Hence F(0) = 0 and F(+ ®) = 1, For a check on the result we can use

the fact

(4.94) E(Tls) = [ [1-013(t)3dt

A simple check is obtainable in the case nd = 1, where we can use
T S
equations (4.43) with (4.12) to obtain E(T13|nd =D =55 5 oow

the same result is obtained using (4.94).

By a similar approach, Gza(t) couid also be found. Then, given
p1 and pz, the distribution function Gs(t) of the unconditional time
T3 is given by
(4.95) Gs(t) = plGla(t) +92623(t) .
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4.7 1Initial State Probability Vector

The concept of initial state probebility was introduced ia
Section 3.3, In the present section we discuss a simple submodel for
computing these initial probabilities for the three-state search model

under consideration.

Assume that the searcher enter the operating area Ao in a blind
condition (at high speed, say) and remains blind until both the HVT and
decoy detection circles are inside Ao. Some time after the circles are
inside Ao(immediately perhaps), the search process begins when the
searcher instantaneously scans his search field. This initial scar
results in an event which places the searcher in one of the three states

of the model

1. The searcher sees no targets, and starts search

2, The searcher sees at least one decoy, selects a
decoy for classification, and starts classifying

3. The searcher sees at least one EVT, selects an HVT
for classification, and starts classifving.
These events are mutually exclusive and exhaustive. If we label them

with i, 1 = 1, 2, 3, then i occurs with probzbility pi and p1 + p3 +p, =1,

3
We have
P, = P{no targets present}
(4.96) p2 = P{at least one decoy p:iesent and pick decoy}
P, = P{at least one HVT present and pick HVT} .

Determination of the pi is very similar to the (Cetermination of the

a21 in Section 4.3.3. The reader is referred there for details.
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As before

unless we are using the reduced overlap submodel,

P (A ) instead
c' o

o]
i

TIR° /A
[+ (o]

la+)
|1}

nRZ /A
d o
in which case we use

of P . Then
c

n nd
(1-p) S(1-»)
c d

I}

= P{4 HVTs present and pick HVT}
£=0
n n
d c nd) « n-k /n n -4 B
= Z:(k,pdu-pd) <;)Pc(1-Pc) ¢ =
k=1 =0

Of special interest is nc = 1, in which the above expressions reduce to

nd
(1-P )(1-P)
c d

Pc(l'Pd)nd * [1 B (1'Pd)nd:l [Pd(nd+1) 'Vpc]/ [Pd(nd+1)]
n+1

Pc[l ~ (1-Pd) d ]//[Pd(nd+1)] .

n

An alternative approach is to assume the searcher makes his initial

scan at some point in time prior to entry of the complete detection circles
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in.o0 A . In thls case sppropriate area ratios other than Pc and Pd
o

woulrd be used., Note that the forward half of the circumferences of the

detection circles must be in Ao in order for the previously discussed

detection rates to be valiag.

4.8 Summary of Three~-State Model

A summary of the three-state model is given in Fig. 4-3 in the form
of a flow graph. For purposes of this flow graph the area approach is
used for caiculeting transition probabilities. and it is assumed that

search and classification times are exponentially distributed.

Assumptions that have been made, explicitly or implicitly, thus far

are

® At any fixed instant in time, positions of HVTs
and decoys are distributed over the operatirg
ares according to 2 uniform probability distribution

® Over short intervals of time, everythirg moves in
straight lines with uniformly random hzadings

® Definite range law for detection

® All detection circles lie inside the opersting area
(i.e., the searcher as well as the HVT knows what
the operating area is; see Appendix C for an analysis
of one place where this assumption may fail)

® When a decoy is classified; information obtained by
the searcher is dissipated rapidly enough so that
the classification has no operational effect on the
density of decoys

® VWhen presented with an array of targets (both
decoys and HVTs)} from which one is to be selected
for classification, the targets are equally likely
to be chosen (i.e., the decoys are identical ard
are indistinguishable from the identical HVTs unti
a classification is made)

¢ Stochastic independence of motion is assumed amoné
decoys as a group, among HVTs as a group, and between
the two groups cxcept in the case of reduced overlap
when HVTs avoid decoys.
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5. EXAMPLE RESULTS

Eight cases are defined for the purpose of aumerical illustration
of the three-state search model. The area approach to computing tran-
sition probabilities is used with a circular area of 200-nsutical mile
radius., A single HVT is assumed throughout (nc = 1); &« decoy classifi-

cation time of § hours is used in all cases (E(Tz) = u'l = 5).

The cases are defined in Table 5-1. 1In cases 1-4 the decoys
operate like the HVT, while in cases 5-8 the decoys operate in a
different manner than the HVT'. In particular, in cases 7-8 the decoys
are stationary, With one exception, to be discussed later, all search

times are taken to be exponentially distributed as in (4.70).

Table 5-1

CASES FOR NUMERICAL ILLUSTRATION

B Case Vs v V& Rc Rd
cEs) | (k) | (kEs) | (mit) | (niit) |
2 5 20 .20 8C 80 f{VT and decoy
R o w0 i | same
4,130 ] 20 | 20 } 50 | 50
6 {10 |10 |20 |15 |50 | HVF and decoy
7 5 10 0 25 80
'8 10 10 0 15 50 different

. '
Figure 5~1 displays conditional expected time (in hours) to HVT
1
detection E(T13lnd) versus number of deccys ny The broken versus
solid line distinguishes searcher speed (broken- Vs = 5 kts; solid-

Vs = 10 kts). The striking feature of the data in this figure is the
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effect of nonsimilarity between decoy and HVT. 1In all the sharply

rising curves the decoys are different in detectability and speed than

the HVT.

Fiéure 5-2 illustrates the effect on E(Tlslnd) of reduced overlap
between decoys and the HVT, Cases 4 and 7 are considered. A notable
feature in these data is the significant interaction between Ko and
case considered. Recall that Ao is the maximum acceptable rate of HVT
course change for purpose of decoy avoidance, i.e., lo"l is the mean
time between such course changes. The principal expression for the

queue model of reduced overlap is given hy (4.64).

Figure 5-3 shows, for C&s5 8, the conditional (on starting in
state 1) expected numbér of ducoys encountered prior to HVT detection
Hls(tlnd) as a function of time in days and number of decoys deployed.
The broken line is E(Tlalnd) in units of days. The limiting values of
Hla(t|nd)_as t % © gre shown oh the right.

Figure 5-4 shows, for Case 8, the conditional cumulative probability
Gls(tlnd) of HVT detection versus time qnd number of decoys. Recall that
Gls(tlnd) is the probability the HVT is detected«at‘or before t given
there are nd decoys deployed. The curves for nd = 0 and nd = 1 are
practically coincident and are represented by a single line. Thus, for
example,'in a 9~day operation, deployment of 20 decoys of Case 5 type

reduces the propabiiity of HVT detection down to .2 from the .6 obtained

with no decoys.

Figure 5-5 is the exception to the exponential distribution
Qentioned earlier, 1In this figure the solid lines represent search '
times with Erlang distribution as given by (4.73); the broken lines
are exponential data shown earlier in Fig. 5-1 and repeated here for
comparison, The peculiar shape of the curves resulting from the Erlang\

distribution is probably due to a failure of the randcm motion/position
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assumption and other considerations discussed for the exponential

o

distribution in Section 4.3.3 under "Model Restrictions Due to Overlap.”

TAA A%

Other data not included here indicate the Erlang results approach the
exponential results as nd becomes very large. However, for small numbers
of decoys there is a significant différence in the implications of the
two distributions. Specifically, dececys are much more eifective with
Erlang detection times than with exponential detection times. This is

R especially true since the errors in the Erlang curves presented here are
most likely in the direction of decreased effectiveness of the decoys;

% the exponential curves can be considered relatively free of error
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6. A TOUR-STATE MODEL

This section demonstrates how the three-state model can be
extended to a four-~state model to analyze the parcicular search proce-
dure of "sprint-drift" motion. It is important to empnasize that this
is & demonstration and not a final model in any sense. In particular,
not included in the model is a8 representation of the capability for the
searcher to look behind himself as he changes from sprint to drift,
Such a capability is asnalogous to the instantaneous scan discussed in
Section 4.7 with respect tolinitial stafe probabilities, except that
the scan is now periodic instead of‘?ccurring only at time zero. This

capability could be incorporated into a model but it is not done here

+

i

because of lack .of time.

1y

In'usiné the "sprint-drift" method, the searcher alternates
between high (Vsl) and low (Vsz).speed, with cof}espOuding detection
rangeg,Rcl, Reps Rdl’ Ry, 8nd encounter rates kl, kz, Bl, and ?z.
Typi >V 2 : 0 zero.
Typically, Vsl 152 and V82 will be close to zero. The speed Vsi

is maintained for a time t, after which speed is changed, unless a

i
detggtion occurs before ti’ in which case classification commences.

Iet the events be

1. Start seerch (vsl)
2, Start search (V )
s2
e 3. Start decoy classification

"4, Start HVT classification .
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As before, we assume state 4 to be absorbing. The transition matrix

is then
r “
¢ a12 C¥13 a14
6.1 - %y O %3 %y .
Uy 0 %3 %y
o o o 1

Note we are assuming that after classifving a decoy, if no other targets

" are immedietely visible, the secarcher makes a high speed sprint away from
-5 the decoy. Also, we allow a limited detection capability at sprint speed.
v

5 The f matrix is

b« . R

3 £ £ f f

6.1 The Transition Matrix

Consider first «__, which is actually Yla(tl) a function of search

13
{sprint) time tl. Thus
ala(tl) = Pr{Contact a decoy before an HVT and before t1|

started search at speed Vs1 at time zero} .

As before, let

>4
It

[

time to detect an HVT at V81

<
1}

ti to det tv '
1 me to detect a decoy a 81
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Writing

we have

so that

t.)
%3¢t

als(tl)

Analogously,

) 4¢t)

Ply <% <
{11 Yl and Yl tl}

= < < s
P{Yl xllyl tl}P{Yl t,)

C0
as < < < ' ) .
p{yl cl] jo[ P{Yl *cly1 tl}.’:xl(t dt

|
p{vl Sy S tl}

t

and FYI (t)

Fyl(t)
FYl(tl)

t
= / £y, (Ndr

o]

= P{Y1 s t]

itt=st
1

if t >
t1

1
1
= . i ] -
/ FYl(t)f}sllt)dt + FYl(tl) [- Fxl(tl)_l .

o]

t
i1

]

o

/ Py ()2, (D)at + By (¢)) [1 - Fz(tl)]
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and o = 1 -« - .

b .
There are also obvious analogies for d21(t2), d23(t2), and 024(t2)

One omput o th
may compute a31' a33’ 34 in e same manner as a21, azz, d23 were

computed in the three-state model. We consider now the case where

fxi(t) and in(é) are exponential as in (4.17a). Then for 1 =1, 2

[ - 1 -
Y ) - 1- Bi . (xi+Bi)ti . (>\1+£31)1::l
134 >‘1+Bi
ke -
A (A +B )t (A 4P )t
i 171774 i 7477
Ol(t)=1-—"'—-—"1-e - e
14" 1 hi + Bi ]
-\ +B )t
_ 1171
dlz(tl) e
~(A 4B )t
272" "2
azl(tz) = @ .

6.2 The £* Matrix and Expected Values

In this model we don't have a "p.d.£" matrix because L and 7,
(the length of time in states 1 and 2, respectively) are not continuous
random variables. Rather they are mixed random variables with a contin-
uous and a discrete component each., This is all right, though, because
all we need is the £* matrix (which still exists) and expected values

of the T,, As in the three-state model, the forms of £f_ and £ are

i 3 4
arbitrary, while the forms of fl and fz must remain consistent with
~% 1
e OIU g,

. The

We proceed now to exsmine the probability distribution of Tl

analysis for 72 is identical.
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We have

‘1 iftZtl
P(“i'1 < t) =
< < < X <t iIf0<t <t

lp(y1 XI&YI t) +P(x1 Yl& 1 ) 1
1 t=t

_ 1
o g 0<t<t
l 13t + @, (®) 1

Hence, in general, P('T1 5 t) is discontinuous at t = tl' We have*

‘,o t # t
P(Tl = t) = l
1~ am(t) - am(t) = am(t) if t = t1
< < ! - LI 4 1] = ] 0 < <
fl(t!o t<t) %4(8) + o (5) o), (£) for t<t
Thus
t1
- "o 1] .
E('rl) =t o:lz(tl) + [ tozm(t)dt
In the case where fxl(t) and txz(t) are exponential we have
t
-(A1+!51)'c1 1 ~(K1+Bl)t
E(Tl) = tle + t(l1+81)e dt
0
~(A+B )t
- -(A
e CRLINAN e (o +B )t e 1’
S ] 1 A+ B
BRI
. 1-e
kl * ﬁ1

An analogous equation holds for E(Tz). These terms are required in the

following subsuction for computing E(T14).

*
Where the prime indicates derivative with respect to t,
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Referring to (3.2), (3.11), and (3.16) we proceed to derive

E(T14). Dropping the s arguments of the fI(s) for sake of clarity, we

have

So

g*(s)

I-g*s)

0
%*
] Yarte
f*
%31%3
0
-
1
- f*
| %t
- *
*3,%3
0
ke
[ 4
b
A 1
%
0

2 o* * |
%ot1 %3ty %48
0 * *
%afy  %4fs
0 t* *
¥33f3  %34f3
0 0 *
t
~a. t* - £* - g £*
1271 %3%1 %41
- * - %
1 %32 %afa
0 - * -~ *
1 - agats %34f3
0 1 - £*
4
-l
8 8
b b
3 4
[
%3
0 d
4
o
80
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Thus

r -
g1 B B3 By
g g g g
2 22 B3 By
{1 -g") & !
€31 B35 B33 By
0 0 ¢ 344
., J
- - - - + - h
3% 2,39 d,(a,b,-a,) 8y(bgey b ey)* (age, -a )
- - - - - - - + b -a b
dg(byCyeyby) d le, 83%y)  ~dy(by-a b (bye, Bycy) by (ayc, -a c) ¢y (a;b ~a, by)
- - - b ~a )=c (1-a_b
d4c1 d4n2c1 d4(1 azbl) cl(a2 A aq) c4(1 a, 1)
0 0 0

cl(a2b3-33)+cs(l-a2bl)

where k = cld4(a2b3-.3) + c3d4(1-82b1) .

Now
P} (8) = L N O Q-tplrn*]
= (1-:3‘)11:4
= (-1} (a)1-g*(2)]7}
= (1":)’;[“12’24+“13“34+°14‘44]
where
€q = % tolnt s34 %430 1505 + R TCILI
* (”21“15°a4"°h1013“24+°%1“14“23'°51“14“33)‘:‘;f;
€34 = % TR NS %431 %% % a2

I S * *ok *,n
Baa = k01 oty o, 2l *12%1% %2

- wohkou
t 1%, %31%12%a T 1250

81




- . *(oy_ph ¥ * —e*y (1 *y (1= ok
ko= -y t30 f4’["’12"‘23'1’2“"’13’1] * QD Q-ag 1) (-0, o0 21725)
- T ¥y wok_ ek - o* tf-]
a f4)[1 33t %13%1 0 1 5 ¥ 2% T 1 ot (¥ %1 %0 %) 2% % ) T 12t
So
t* 4 q *ok - *pk . kpkok
.t (8) = %) Y%t (593070 0%80 % 5 ¢ %0 %a%s %e%s8 1 e 3
= . v . Yo¥ - e - Tphgh
14 Vmognls = 0000 00 8g = %% its * 9100 %g %0, 0 0T,
_ou(s)
T ov(s)
d t - ' {
E(T14) - -2 ,p;4(.)]‘ - uls)v (833(,;(.)u (s))
8=0 g0
But we find that u(0) = v{0) since
o+ + - -
14 ¥ %12%4 * Y4 T 4%t N2{%a% 4 %%
= 1m0y Ty T a0y F O, (0 Ay )
where
+ v, = .
ot ¥zt Oy Loy oyt = Loy tag,ta, =1
Hence
v'(C) - u'(0)
E(T,,) = o)

where E(Ti)

Note that if we set «

= (l-alz)(l-aas)z(wl) +

12""21*“24)[5“1) * E(Tz)]

+ [“33(1"’14) * “13‘“31*“34’]“"3)

(a21+a24)] [E(Tl) + E(wz) + E(-ra)]

T ["’23(“31*“34) " %

3
1 - -a - o -
%3 " %13%1 T N2%i1 * %2%1 %5 %%,
d
= - = 1%(g) .
ds 1 =0
= = T
12 0, azl 1, E( 2) = 0 and make the proper

identifications, we get (4.12).
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7. CONCLUSIONS AND RECOMMENDATIONS

This study has shown that the semi-Markov process is an effective
framework within which to study questions regarding the effectiveness
of decoys in delaying a searcher looking for a particular type of tar-
get. In particular, the four questions raised in the Introduction have
been answered in detail for a constant speed searcher and constant speed
targets. However, output expressions sz(t) and st(t), respeccively
the number of decoys encountered and the cumulative distribution of first
passage time for a searcher starting in the classify decoy state, remain
to be derived. 1he question of mean time has been answered to a degree
for a variable speed seurcher, Applications to other search and related
problems are implicit in the type of analysis that has been conducted.
For example, optimization of the "sprint-drift" search tactic is a
latent application of the four-state model discussed., A slightly up-

graded four-state model could provide much insight into "sprint-drift.”

Given the assumption of a constant range detection law, the three-
state model is a suitable representation of the search problem, within
the limits of the random motion/position assumption, the restrictions
due to overlap, and a large (relative to detection radii) operating area.
In order to extend these limits it is recommended that the effects of
geometry and time on the state transition mechanism in the three-state
model be studied in detail and the three-state model be expanded to four
states by including a secondary search state as discussed in Section 4.3.3.
The geometry/time study would likely include numerical calculations to
provide functional relations for generalized use within the context of
the three-state model and extensions, Such a study is necessary if the
model ieg to be used for optimization (where it is likely to be pushed to
extremes) or for study of relatively large decoys (where decoy coverage

approaches the size of the operating area).
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Several interesting questions involving constrained optimization
arise. Loosely srpeaking, it 1s clear that the more decoys that are
available the better for the HVT., However, it is also clear that the
choice of decoy configuration and number of decoys is a constrained
problem. This constrained choice problem will assume characteristics
dependent on the circumstance within which it arises. Some possibilities
are

1. Given specified limited funds how many decoys of

what configuration should be built to optimize

some operationai variable, such as probability
of HVT detection?

2, Funds are "limited' but not specified. Therefore,

it is desired to meet some operational performance

threshold (such as a minimum acceptable HVT

detection probability) with minimum cost. How

many decoys of what configuration should be built

and what is the cost?
A third question, of some interest in initial plenning stages, is how
the optimum number and configuration in (1) above vary as the amount of
available funds varies., For example, it may be of considerable interest
to know whether or not only the number an¢ not the configuration varies
with a change in the budget constraint. Of course, examination of any
of these questions requires development of the relation between per unit
decoy cost and decoy detection range, speed, and holding (classification)
time. 1In optimization studies such as suggested here, scenario depen-
dencies (such as size of operating area and operation duration) can be

removed to some extent by considering various scenarios and applying

probabilistic weighting factors at the appropriate places in the analysis.

Another area for analytic extension is the situation of stationary
decoys where the searcher can plot the position of classified decoys
and thus render them relatively ineffective. The three-state model is

not applicable in this situation because the transition probabilities
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change with each decoy that is classified. What 1s needed is a general
n-state formulation. Such au formulation may be obtainable by exploiting
and generalizing the special structure of the following six-state tran-
sition matrix (where the stars denote allowable transitions and the state

definitions follow)

1 a 3 4 5 6
1 0 * 0 0 0 *
2 0 O * 0 O *
3 ¢ 0 o * 0 *
4 6 0 0 O * *
5 0 o o 0 o *
6 0O 0 o O o 1

where
state 1 = search with 2 decoys unclassified
state 3 = search with 1 decoy unclassified '
state 5 = search with O decoys unclassified
state 2 = classify decoy with 2 decoys unclassified
state 4 = classify decoy with 1 decoy unclassi“ied
state 6 = classify HVT.

Results analogous to those for birth-death processes might be obtainable,

A ubiquitous assumption in this study is the definite range
detection law, The realized detection range in any real encounter is a
random variable that is represented in the models discussed here by a 7
fixed range R (which depends on the type of target and its speed as well
as searcher and environmental characteristics). If the target comes
within R of the searcher, the target is assumed detected; no detections

occur at ranges greater than R. The value assigned to R is ususlly the
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median value of a distribution generated by models outside the scope of
this study. The search models presented in this document permit sensi-
tivity studies on R but they do not take intc account the inherent
variability in realized detection ranges. Hence, it is recommended that
a study be conducted to determine the effect of this inhere.t variability
on the results produced by the current search models. Such a study could
be conducted with Markov process models and could examine fade zone

effects as well as variable detection range.
Recommendations for future work may be summarized as fcllows:

® Derive output expressions for a searcher starting
in the classify decoy state

® Incorporate geometry/time interactions into
the transition mechanism of the three-state
model

¢ Expand the three-state model to four states by
including a secondary search state

¢ Optimize decoy configuration using the three-
state model to gain insight into dependency of
optimum configuration on budget constraiats -

® Incorporate a ''clearing-turn’ maneuver into
the four-state model and subsequent optimization
study of "sprint-drift" (e.g., find the optimum
durations for sprinting and drifting)

® Develop a model to examine the situation
where decoy classification information obtained
by the searcher does not dissipate with time

@ Study the effects of detection range variatior
and fade zone phenomena.
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Appendix A: ALTERNATE COMPUTATIUN OF 020 AND d23

In Section 4.3.3 we determined Yo and 023 on the basis c¢f a
specified number of targets and finite speciiied srea. We now drop ex-
plicit consideration of erea and number and develop an approach hased
on target density. Equations (4.27) snd (4.28; still hold, but we re-
vlace the binomial distribution by the Pnisson distribintion. That ig,

we assume that as an element cf area M - 0 we hsave

Pr(0 decoys ir AA) = 1 - ApA + o(BA)
(A.1) Pr(l decoy in M) = AMA + o{pd)
Pr(0 HVTs in M) = 1 - BAA + o(AA)

Pr(l decoy in M) = BM + o(pA)

Consult Refs. 1 or 2 on the Poisson proc=ss. We further assume that the
number of decoys (or HVIs) in nonoverlapping areas are mutually indepen-

dent. Let K = number of decoys present and L = number of HVTs present.

Then

4
(A.2) P(L HVTs oresent) = P(L.=4) = e © fT £=0,1, ...
where x = 6 TR®
c ¢
(A.3) P(k new decoys present) = P(k+l total decoys present|at least

one dec¢oy present)

= P(X = k+1|K 2 1)
P(K =kl & K2 1)
= =0,
P > 1) x 1
= P{ = k+1)/P(K 2 1) k=0,1, ..
_ e-y yk+1 ) o 1
4 - Y 3 » I .
1 -7 (k+1)!
2
= T R
where y 6d Rd
89

Preceding page biaak




It is clear that

(A.4) a, = P(K= 1k 2 1) - B(L = 0)
- L&
1 - e-'y
and that
DD
(A.5) a, = P(K = k+1|K 2 D)P(L = §) -
23 & t;i 4K
-X=-y X 2 4 k+1
= N SR A
1 - -YZ Z:L+k L (k+1)!
€ k=0 4=1
Also
00 o0 K
(A.6) o, = kz_; ) T P(K = k+1|K 2 1)P(L = 4)

t
[e%)
t U
E
)
1 <
<
e
i
-
+ I
w
-
LA
”~~
I
=t
L

k=1 £=0
It happens that (A.6) is the more complicated expression and is Dbest
obtained as Voy = 1 = azl - dzs‘ So we examine (A.5). Let

—x..-y
(A.7) m o= - - and p = £,

.ay y
1 ~e
90
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Then we can write

-~
i~
~
+ X
- A
o)
4 -
L |
AVNX-
-y
A
&8
~ 3
-

(A.8)

[e(1+p)y - epy] dy

kek!

[ep)® - pk1y*

00
m xP:E::

k=1
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We have thus replaced a double sum by a single sum, but the
92
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Appendix B: ALTERNATE REDUCED OVERLAP MODELS

In Section 4.3.3 under the heading "Reduced Overlap' we considered
a queuing model of HVT/decoy interaction due to overlap. This appendix
presents an alternative class of models for representing the interaction.
This alturnative cless requires specialized data and has no special de-
cision variable for controlling overlap per se. The queuing model is
therefore viewed as a more fruitful approach and the alternative class

is presented basically for completeness.

We first consider Pc simply as a function of number of decoys or
decoy density. Define

(B.1) P = TR2/A
co c 0

and redefine P a function P (n ) or P (6 .) as P multip.ied by
c ¢c d c d co

weighting factor. For example, we could write

-and
(8.2) P(n) = Pco[l-e ] :

If we could establish, for example, that Pc(lo) = 1

P
2 co
have a = 0,069315. This function is dJdepicted in Fig. B-1,

, then we would

More generslly, we can consider the contact rate Ac 8s defined in

Section 4.3.3. We could then write

[ -ahc]
(B.3) Pc(?»c) = P |1 ~-6¢

co

or alternatively

i

[ -Zakc]
(B.4) Pc(kc) Pco 1 - (Zakc +1) e .
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FIGURE B-1

Using (B.4), suppose¢ we Knew Pc(l) =

Fig. B-2,

PAA )

10 20 ng

P, AS A FUNCTION OF NUMBER OF DECOYS

[ SH 1]

Pco. Then a = 0.85 and we have

cop~

FIGURE 8-2

P AS A FUNCTION OF ENCOUNTER RATE

c
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Extending this approach, suppose it could be determined that the

situation looks like Fig. B-3. That is, things can be Kept pretty well

PN

i

A A A

i 2 ¢

FIGURE B-3 EXTENSION OF P, AS A FUNCTION
OF ENCOUNTER RATE

under control until the encounter rate Ac reaches some critical level,
aZter which the ability to separate deteriorates rapidly. Such a curve

can be obtained by fitting data to the equation

A
k k c
ak k-1 -kau
(B.5) pc(kc) = P F(k)[ u e o du .

In the absence of data, (B.b) could be established by specifying two
points on the curve such as (Al,Pc(Xl)) and (Az,Pc(kz)) shown in Fig. B-3.

27




Steonit iy

Al

Fodad

W't AT S g

i o

N EEI T

o]
o

T

B b R

ps
pi
3

For example. we could establish "ecritical points" Kl and Az

A
1

where, respectively, "things

reign."

Pc(hl)

P
co

B
o
o

Pc(lz)

P
co

1}
©
[+

start to deteriorate”" and '"chaos begins to
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Appendix C: OVERLAP MODEL ERROR STUDY

In the discussion of the reduced overlap model in Section 4.3.3 it
was recognized that the assumption A*/As = (Rc/Rs)2 could fail. Indeed
it will fail if the decoy being classified ic within Rc + prj of the
perimeter of the operating area. In order to get a rough assessment of
the error introduced by this failure we examine a particular case with
R, = 70 nmi and Py =25 nmi. Let "r'" denote the event "decoy being
classified is located r nini from the center of the operating area.”
Assume r is uniformly distributed between O and Ro, the radius of the

operating area. Assuming that "r" is independent of "HeAs" we can write

(c.1) P(HeA*[HeA ) = 3, P(HeA*|HeA & r)P(r)
r

where we are implicitly quantizing r and P(r) is the probability of a

specific value of r. Actually, we consider 11 equally likely values of r,

ri = 201 i = 0, + 00y 10
p(ri) = 1/11 .
Hence,
. 10
(C.2) P(He. [HeA ) = (1/11) ) P(Hea*[HeA & r)).
s {0 8 i

P(HeA*|HcAs & ri) 18 further deeccmposed by conditioning on the location
of the searcher on the perimeter of the classification circle of radius
Py about the decoy. We assume the searcher is uniformly distributed
glong that portion of the classification perimeter that is located insids
the operating area., This assumption is questionable for those values of

r where the classification perimetar is entirely inside the operating
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area but is "close" to the perimeter of the operating area; for now we
ignore this possible source of error. This searcher distribution is also
quantized into discrete points (6 to 10 points depending on the value of
r and the resulting geometry). Wé¢ then have

n

r
p> p(HeA*IHeA*IHeAs &r, &8)
=1

% ' .
(C.3) P(HeA IHeA8 &r) =" (1/n) : g &8y

where "sJ" denotes searcher is in position j and n, is the number of

searcher positions for distance r.

The area P(HeA*!HeAS & rJ & sj) can now be measured. A planimeter
was used for the small study but the procedure could easily be programmed
for a digitel computer., The situation is depicted in Fig. C-1 for a
given value of r and SJ' The ratio of the shaded area to the crosshatched
area is the probability to be measured. The reader can compare Fig. C-1
with Fig. 4-2. The results obtained for P(HeA*lHeAs & ri) are shown in

Fig. C~2 with a smooth curve fitted to the data.

P(HCA*IHGAB) is then calculated to be 0,583 via the formula (C.3).
This is to be compared with the approximation (Rc/Rs’)a = 0,544, Thus,
the error appears to be small., An appropriate modification of the reduced
overlap model including the calculated value 0.583 was exercised and the
resulting change from using (RC/RB)2 in the operational measures E(Tla),

Hla(t)’ and G 3(t) was found to be negligible in the caege examined

1

( =70 =2 = 200).
(Rc y P 5, Ro )

d
Thus, although it is by no means a definitive error study, this

set of calculations indicates P(HcA*|HCAs) = A*/As is @ reasonable

approximation. The approximatioi: can be expected to break down as

Rc + pd approaches or exceeds Ro.
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Appendix D: A MINIMAL MARKOV PROCESS FORMULATION

As mentioned in Section 3 the specisl case where fi (t) = fi(t) is

an exponential distribution is a Markov process. Markovjprocesses are
discussed extensively in Refs. 1 and 2 where they are given enother char-
acterization, that of the minimal process, which arises from particuler
assumptions. The concept of minimal process, with its "infinitesi.al
generator matrix,”" and its relation to our present characterizstion of

the SMP is discussed by Kerlin (Ref. 2, Chs. 7 and 8). A brief discussion
is included here for completeness. The more clessicel minimsl process
spproach was not used in the main body of the study because the alterna-

tive was more suited to the events occurring in the real phenomens under

congideration.

We essume a stationary continuous (in t) transition probability

matrix P(t) = [pi (t)] defined by p, () = Pr{X(t+s) = i]x(s) = 1} where,

J J

using our previous terminology from Section 3

Pr{x(t+s) = j|x(s) = 1}

Pr{AJ(t+s)!Ai(s)}

with Q> AJ(t+s) {weQ:xw(t+s) = 3}

QD> Ai(s)

L1}

{weQ:ﬁD(s) = i} .

The relationship to our SMP terminology is given by

1- pii(h)
q = lm T
L~ 0+
p, (&}
J h = 0+
107
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K The question can be raised as to how to formulate our search
g problem so as to have a minimal Markov process. Let us assume that

for small At

plz(At) = ALt + o(At)

pla(At) = B.Ac 4+ o(At)

N P, (88) = (p-at + o(At)]al

Paa(8) = Lu-dt + o(88) ],

p31(At) = psZ(At) = 0 for all At

o Y fod B gt
RGBS T 42

e

where

2 PO i

Nl

P{no new targets in view when finished classifying decoy}

Eai
R
0

P{at Jleast one HVT in view and chosen from field of
targets when finished classifying decoy},

5 oA,

oo Yo A sy s
[

ll

Note 13 is given by (4.31), or (4.32) if nc =1, or (A.5)., We have
ng-1

- §
S T

> e

—
Ry ~
ety -

F T Gk o

n -
o given by o = (l-Pc) c(I-Pﬂ} where Pc and Pd are as hefore; or

1
o, can be given by (A.«s.
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We require

N\
= 2 =1, ..
1) f_‘ pij(t) 1 all t 2 0, all i=1
Je=1
(11) V_)U(t) 20 all t 2 0, all 1, j=1,
(111) P(t+sy = P(t)P(s)

1 i=]

(1iv) 1im p (t) = {O 14 .

£ 0+ 1

From the continuity properties of P(t) it can be shown that p;J(O)
exists for all 1 end j.

We define the state transition rate matrix (or infinitesimal

generator matrix) Q = (qij) as follows

L. (h)
ay ] p'iJ(O) = 1lim -3%—-< ® all 1#J
h=20
1-p ()
qii 4 . qi where a4, s . p;i(o) = lim ii .
h=0
In our case of a finite state space, qu <® gali i, J and E:—l qij = 0,

Q is nonpositive on the main diagonal, non-negative off the main

t
diagonal, and its row sums are zero. It can be shown that P(t) = eQ

(matrix exponential). Then by definition we have

= A = 8

92 1 Gyg =
= -

9, ™ 932 ght
= 0 =

93 434

end since the row sums are zero, we complete with

q = - (X+5)1

11

q22 = - (a1+‘:{3)u, q = 0.

33
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- (\+B) A 3 |
Q = o - (a1+a I Q’3p .
c 0 0

Using the method of Cox and Miller (Ref. 1, p 196 ff) we obtain

(d1+d3)p + A
[B(x 1+d3) + otak]u

E(Tla) =

This 1s identical with (4.12) when the following identifications are made

- —
% Y1 ¢ 4 %3
A 8
— o -—
%3 P 14 )
E(T.) +—> E(r) +— 1 |
1 - ) M

If we use the area approach in computing al and as and 1if we

consider the special case nc = 1, we can.use (4.32) to compute a3 and
ng-1

1 (1~P )(1~P ) , 80 that

n

d d

and
E(T13|n0=1) =

n -1 n
%p n +(1-p )[1-(1-p 4 e [pdnd+;1-pd) 4

l]z g+ Pdndl
n,

(Paccnolion ™Yool s ony ),

110




On the other hand, consider the case of no overlap, so that

dl =1, 03 = 0, Then .

E(T, |, = 1) =

| LA
13'71 B

W=
T

o So once all the verisbles determining A and B are fixed E(T13|a1= 1) is

-1
a8 linear increasing function of M , the mean classification time,
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