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ABSTRACT

A semi-Markov model representation of a submari.,e searching for a

high value target in a field of decoys has been developed. The model

was used to assess the potentials of tactical deception techniques in

antisubmarine warfare. This research memorandum describes the details

of the model structure. The assessment results are published in a

separate, classified, final project report. In its present form, the

model represents the first-generation of a promising approach that can

address a large class of tactical deception assessment problems.

Possible extensions and uses of the present model together with some

areas potentially requiring new formulation of the semi-Markov approach

are suggested in the research memorandum.
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SUMIARY

Model Framework

The semi-Markov process is an effective framework within which to

study questions regarding the capability of decoys to delay a searcher

lobking for a particular type of target.

The problem of search in the presence of decoys naturally lends

itself to representation by a semi-Msrkov process because the state of

the searcher and the transitions between states are well defined.

Although the necessary assumptions for a continuous time blarkov chain

can be intuitively Justified in some cases, placing the problem 4n, the

format of a more general semi-Markov process provides a framework which

can, accept experimental date that might not be well adapted, o the more

L<c 'zed Markov chain.A

A primary feature of the wprk reported:,Oivh ein ' is.,that the

sblutions to the various models considered are in anheasiiy, calculable

closed form.

The specific situation represented is as follows. A number of

high, valuq tpkkets f a e ra ngwithl" -- ertd.'i specified

area. Operating wti,in the same area are a number of low valuv tage

called decoys. A searcher enters the area at time zero ind begins

looking for the high value targets. (We assume"the-searcher wishes to "

destroy the HVTs, but this assumption is not crucial to model develo p;

ment.) In the search process the searcher encounters the decoys, .which

have characteristics similar to tho Ts. Because destruction of a ,

S -l



stroy decoys; he muist therefore bpend time to classify a target as high

A thi'ee-state semi-Markov modet' Was ihplemented that incorporates

the events: (1) start sedrci, (2) start cias~ifying A decoy, and

1(3) start clasgif ying an AWT. '#vent (3) is defined as the absorbing

state. tho following Absum~tidni9.governed t6i 'sructure of the model:

* At ainy- fixed instant in timfe, 0ositions of HVTs ahnd
decoys air6 diktributed ovier ',th4 oOehating aieea
apcdrdiig. to a-,uniform prigliability .4is6tribution

*Over ,,short intervaisI--'f t mee~tigrove,4. in
straight-lihei with uniiifoinlyrkando hekibinig

6DbtectionAs reitdbya enteago w

0* All- dftectioh. ekir1s. li" -,nside the; o~dr-ting -area-

the, prtn..r~ ~

4 When a: decoy is classified, iifoirtifon, obtained, by
*he b~ehibler, is--dissi~qted rhapdlye .nogh do -that
the clsiiainha6, -6 bpiriioiiil effe -at Olt the

deiiity6f ecoys

0When, piesdnted -wft i n-arkAy. of -targets (both
decoys and, ~s-fo-~wihoe-' to. be, secied
f or classificdVioni the targ t's 're equally likely
t& be-chosen (i i. he 46ecoy are Identi'dl- anbd

- are Andistifnguishable from the, ideitia Avts witil
a, classification is, m440)
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S Stochastic independence of motion is assumed among

decoys as a group, among HVTs as a group, and between

the two groups except in the case of reduced overlap

when HVTs avoid de oys.

In addition, it was assumed that search and classification times are

exponentially distributed (reducing the semi-Markov model to a Markov

model). Simulation studies, conducted as an adjunct to the sem!-Markov

model formulation, demonstrated that the assumed exponential search

time distribution and the adopted model for determining mean time to

target detection are in fact valid with respect to the assumptions made

concerning the search process (primarily the definite range detection

law). The validity of assuming expo~aential distribition for classifi-

cation time remains to be demonstrated. Mean time to classification is

handled as an input variable in the current stuhy. The three-state

model was used to address the following questions:

1. How long does it take the searcher to find a high
value target (i.e., what is the mean time)?

2. How many decoys are encountered before an WIT is
found (i.e.. mean number)?

3. What are the relative effects of decoy characteristics

such as number, speed, detectability, and realism
(classification time) on the quantities above?

4. How many decoys With the given characteristics are

required to provide a certain level of safety for
the high value targets (e.g., provioe a uzrtiin

minimum level of probability of an HVT being detected
over a specified time interval)?

Answers to the above questions for a realistic operational situation

are presented in a separate, classified, final project report.*

*A. Bien; "Evaluaticn of Tactical Deception Techniques in Carrier Task

Force Defense" (U), Final Report; SRI Project 1016-2465;ContracT
N00014-71-C-0119; Stanford Research Institute, Ifenle Park, California,

December 1971 (SECRET)
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Model Extension

The following are specific recommendations directed toward the

potential extension of the semi-ku.0cov model approach:

1. Derive output expressions for a searcher starting in
the classify decoy state.

2. Given the assumption of a constezt range detection law,
the three-state model is a suitable ieprosentat~on of
the search problem, within the limits of the random
motion/position assumptton, the restrictions due td
overlap, and a large (relative to detection-rudii)
operating area. In order to extend these limits it is
recommended that the effect's o* gecmiryadtieo
the state transition mechanism in the threei-6tate
model be studied 4n detail end the tI~ree-state~xmodel
ba e-nwndrl +n -Pit.' -mawha by i ----
search state.

3. A ubiquitous asstiption in th*As study is tho. defi*nite
range detection law. The realiza.d detvt.or rungp in
any real encouinter is a random variable thht is rdp-
resented in the models dincussed here by, a, fivqci range
R (which depends on the type of target and its speed
as well as, searcher and environimental bh~aracteri,'stics.
If the target t:omes within 9 of the. 8earchqrl, tle, targe t
is assumed detected; no detectiohs occut 'at rages #,06t~k
than R,, The value aseigned to R 4is, usually thio *,jWa
value. of a distribution generated by miodel' jqutsidet the
scope of this study. The seajrphiuodels" e'sei~ed in this,

Adocum~ent peridit senaitivity studies on R rjut they, donoqt
take into acebunt the inherent varialbility tn Xea1i!zed
detection, ranges. Hence, it is reconencdeo thdt a' study
be etil'ucted to determine tha effect of1 thisi inherefit
vr~riability on the results produced by the current search
models. Such a study could be conducted with Mimk~v
process modelv and could exaziine fade zone effects as4 well as variable detection range.

4. An area for ansilytic extension is the situationi of
stationary decoys where the searcher can- plot the
position of claaali ed deco~i and thuai render them
relatively ineffective. The th'-,ee-vtate model is
not applicable in this situation because the tran-

sition probabilities char~ge with each decoy that is

S-4



classified. What is needed is a general n-state
formulation.

5. Several interesting questions involving constrained
optimization arise. Loosely apeaking, it is clear

that the more decoys that are available the better
for the HVT. However, it is also clear that the
choice of decoy configuration and number of decoys
is a constrained problem. This constrained choice
probiem will assume characteristics dependent on the

circumstance within which it arises. Some possibilities

are:

0 Given specified limited funds, how many decoys
of what configuration should be built to

optimize some opbrational variable, such as

probability of HVT detection?

* In initial planning stages, how do the optimum
number and c iguration in tho preceding
question vary as the amount of available funds

varies?.

• Funds are "limited" but not specified. Therefore,
it is desired to meet some operational performance

threshold (such as a minimum acceptable HVT de-
tection probability) kith minimum cost. How many
decoys of what 0nfiguration should be built and

what is thb cost?

IC
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1. INTRODUCTION

This report discusses semJ-Markov models of a random search proces-

with dicoys. The primary situation envisaged is as follows. A number

of high value targets (HVTs) are operating within a certain specified

area. Operating within the same area are a number of low value targets

called decoys. A searcher enters the area at time zero and begins

looking for the high value targets. We assume the searcher wishes to

destroy the HVTs, but this assumption is not crucial to model develop-

ment. In the search process the searcher encounters the decoys. The

decoys have characteristics similar to the HVTs. Because destruc.ion of

a target involves expenditure of a limited fesource, as well as ?ossible

compromise of searcher concealment, the searcher does not wish to destroy

decoys; therefore he must spend time to classify a target as high value

or decoy. The searcher wants to minimize search time while the targets

wish to maximize it. The targets are not able to observe the searcher,

and the searcher must devote his attention to a single target if he

encounters several at one time or over a short interval of time. Targets

and searcher are assumed to be moving randomly in the following sense

i) At any fixed instant of time positions are uniformly

random over the operating area

ii) Over snort -Intervals of time everything moves in
straight lines with uniformly random headings.

These two assumptions, plus later assumptions regarding detection radius,

raise some difficult questions of validity near the boundaries of a

finite operating region. These questionb do not lend themselves to easy

analytical treatment. There are two methods of treating them. The

first is to assume the errors introduced are negligible or that there

t1
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are compensating errors. The errors will certainly be negligible if the

operating area is large enough. An example of compensating errors is

i) Target density within detection range of the searcher

will be less on the boundary of operating area than

within the area \iue to the fact that part of the area

swept by the searcher has zero target density),

ii) But the searcher will know this and concentrate his

efforts accordingly.

The second method of treatment is to drop explicit consideration of area

and numbers of targets and searchers and consider only densities instead.

This approach requires only minor adjustment of details and will be

discussed later.

Certain questions regarding the above situation are of interest

i) How long does it take the searcher to find a high

value target (i.e., what is the mean time)?

ii) How many decoys are encountered before an HVT is
found (i.e., mean number)?

iii) What are the relative effects of decoy characteristics

such as number, speed, detectability, and realism

(classification time) on the quantities in (i) and

(ii) above?

iv) How many decoys with the given characteristics are

required to provide a certain level of safety for

the high value targets (e.g., provide a certain

minimum level of probability of an HVT being detected
over a specified time interval)?

The above notions are random in nature and will be discussed in terms of

semi-Markov random processes.

The problem of search in the presence of decoys naturally lends

itself to representation by a semi-larkov process because the state of

the searcher and the transitions between states are well defined.

Although the necessary assumptir is for a continuous time Markov chain

2



can be intuitively justified in some cases, placing thc problem in the

format of a more general semi-iarkov process provides a framework which

can accept experimental data that might not be well adapted to the

more specialized Markov chain. Moreover, the semi-Markov process allows

us to look into some of those cases that definitely do not meet the

assumptions of the Markov process. Analysis of sprint-drift" is a case

in point. In sprint-drift holding times in certain states are bounded

and the ensuing resul+s are of a form that is quite different from the

results obtained if one assumes all holding times are (unbounded)

exponentially distributed.

A primary feature of the work reported on herein is tht the

solutions to the various models considered are in an easily calculable

closed form. For example, all matrix inversions required for model so-

lutions have been carried out in symbolic manipulations. Parametric

studies are therefore inexpensive to conduct. Extension of the work

reported here to more complicated state spaces or distributions may or

may not require more complicated numerical methods.

Analyais begins in Section 2 with a review of Koopman's formula for

detection rate. A general discussion of semi-Narkov processes follows

in Section 3. A three-state search model with constant speeds is devel-

oped in Section 4, and some s.nmple results are given in Section 5. A

four-state model for a variable speed searcher is developed in Section 6.

Finally, conclusions and recommendations are given in Section 7; where

several model extensions and optimization studies using the models are

suggested.

*1
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2. DETECTION RATE AND TIME

From Ref. 3 -ve adopt a model for determining rate of detection.

The following assumptions are made

i) The searcher is progressing on its course at constant
volocily u

ii) The searcher is moving among a uniform random distri-
bution of targets with uniformly randomly distributed
headings

iii) The targets are progressing at conscant velocity v

iv) The density of targets is 6 (targets per square
nautical mile, say)

v) The searcher irmediately detects all targets
which come within a range R (i.e., definite rangi
rule).

Then the rate p (i.e,, number per unit time) at which targets are

detected is given by

(2.1) p _ (u+v) , - k0siey dco

where k 2
U+v

and the integral is known as the complete elliptic integral of the seon

kind. Poivnomial approximatfons for this integral may be found in Ref. 6

(p 592).

Mean time to detection is given oy ths inversz rate, i.e., 1/0.

Some example mean times Lre given in Table 2-1 for various ranges

and speeds. The target density is equivalent to one target per ,(200)2

square nautical miles. Ranges are nautical milfs and speeds in Rnots.

For example, a searcher speed of 20 kt, a target speed of 15 kt, and a

Preceding Page blank
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Table 2-1

MEAN DETECTION TIME (HOURS)

Target Speed (v) - Knots

5 10 15 20 25 30

5 328.99 196.92 135.82 103 10 82.95 69.33

10 196.92 164.49 125,27 98.46 80.52 67.91

15 135.82 125.27 109.66 91.34 76.70 65.64
20 103.10 98.46 91.34 82.25 71.74 62.64

25 82.95 80.52 76.70 71.74 65.80 59.02

30 69,33 67.91 65.64 62.64 59.02 54.83

0O R = 30.0 nmi

5 164.49 98.46 67.91 51.55 41.47 34.67
10 98.46 82.25 62.64 49.23 40.26 33.96

'.d 15 67.91 62.64 54.83 45.67 38.35 32.82

20 51.55 49.23 49.67 41.12 35.87 31.32

P 25 41.47 4,. 26 38.35 35.87 32.90 29.51
P 30 34.67 33.96 32.82 31.32 29.51 27,42

R.)-- 60.0 mi

C3 --

5 109.66 65.64 45.27 34.37 27.65 23.11

10 65.64 54.83 41.76 32.82 26.84 22.64

15 45.27 41.76 36.55 30.45 25.57 21.88

20 34.37 32.82 30.45 27.42 23.91 20.89

25 27.65 26.84 25.57 23.91 21.93 19.67

30 23.1). 22.64 21.88 20.,Q 19.67 18.28

R = 90.0 nmri

T - (200) 2 targets per square nmi

6



detection range of 30 nmi yield a mean detection time of 91.34 hours,

For interpolation) and extrapolatier, in~erse mean time (rate) is linear

in range and target density.

Simulation studies* have shown. tha, formula (2.1) works qtl:te well

for a 200-nmi radius circular area under the following co.,dLtion. A

given vehicle (target or searcher) pursues a randomly selected heading

until the area boundary is reached, where s new random heading within

the area is selected ana followed until the boundary is again reached,

Z and so on.

Finally it is noted that no distinction is made here between thc

state of nature anid the searcher's state of knowledge of the state of

rzitte, so that detection iv synonymous with encnounter.

E. L. Wong; "Simulation Modei of Search in the Presence~ of Decoys,"

NWRC TN-33; SRI Projec 1016-245, Contra%, N00014-7t-C-0119; Atar.ford

Research Institute, Menio Park, Califaofn±L, July 1971



3. THE SEMI -MARKOV PROCESS

3.1 Definition

The semi-Markov process (SMP) is a stochastic process in which time

is the independent variable, and the dependent variable can assume only

a denumerable number of discrete values. A given value of the dependent

variable is called a state, and the collection of all possible values is

the state space. Transition from a present state to a future state de-

pends only on the present state, while the time required for such a

transition may, in general, depend on both the present state and the

future state. Consider a space of functions X = (xW(t); t > 0, wE01.

This space is the sample space and consists of functions of time, with

the generic functional form parameterized by w. Thus, a sample "point"

consists of the set of points [x W(t); t a 0); such a sample point is

called a "realization" of the process and will be denoted simply x W.).w

We will consider only a finite number of states, with a state denoted by

one of the numbers 1, 2, ..., N. Thus, for a fixed value of t,

x (t) [1,2,...,N]. Hence, it is characteristic of the process that each
w

realization x (.) is a staircase function; we will assume each realization
W

continuous from the right. This assumption is not universal. For example,

Cox and Miller (Ref. I) analyze SMPs which are continuous from the left,

although they also consider separately in some detail the special case of

Markov processes (NIP) which are continuous from the right. A typical

realization is plotted in Fig. 3-1 for a four-state SMP. The dots in the

figure represent "events," that is, points where a transition into a state

occurs. Transitions from a state into the same state may occur. If a

transition from state i to state j (i / j) occurs at time T, then x (.)

will be continuous from the right but discontinuous from the left

9 preceding page blank
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at t T Formally, we say the process is in state j at time t if the

last event to occur was of type j, where je (1, ... ,N.

4 -

2 0

1 -9

0

FIGURE 3-1 A TYPICAL REALIZATION OF A SMP

A SMP is often described in terms of what is called a semi-Markov

matrix F = [F..(t)], where F.(t) is a distribution function (or sub--
13 1j

distribution function) and

Fij (t-t )n = Px(t ) = j ' tn+l tix(t )n =i

where t is the random variable denoting the Lime the process makes the
nth

n transition (Refs. 8 and 9).

However, an alternative method (Refs. 1 and 10) more appropriate

for our purposes is to describe the process in terms of a transition

probability (stochastic) matrix A = (c*..) and a probability density
ij

function (p.d.f.) matrix f = If. (t)].
10

10
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We have

aij = Pr~next event is of type jllast event of type i}

and where

f. (t) = probability density function of transition time
given that last event was type i and next eveat
is type j.

The special case where f (Ct) is an exponential distribution,

depending only on i, is a continuous time Markov process. This formu-
NNEW lation of the continuous time Markov processes differs somewhat from the

so-called "minimal process" formulation given in Refs. 1 and 2. A
limited discussion of the minimal process approach is given in Appendix D.

3.2 Characteristics of the SMP

We now proceed to discuss and develop some interesting character-

istics of seni-Markov processes. Cox and Miller (Ref. 1) show the

following. If we let

h()= i Pr[event of type j in (t, t+At)levent of type i at 0O
h..(t)M lim 

A~At _# 0 A

then the conditional (on event type i at 0) expected number H..(t) of
13type j events in (0, t) is given by

t
J (3.1) Hi (t) f hj()dT

o11



If we denote the Laplace transform of a general function m(x) by

-sx
.,(s) -[ e m(x)dx and introduce matrix notation, then

(3.2) h*(s) = [h*.(s)]

= g*(s) LI -g*(s)] -

wherie

g*.Cs) - C..f*.(s)
ij ij ij

Furthermore, from the well-known properties of the Laplace transform we

have

(3.3) H*.(s) h*. (s)
13 s ij

and H(t) may be obtained by inverting the transforms. Cox and Miller

derived expression (3.2) in the context of a SNIP continuous from the

left, whereas ours are continuous from the right. However, inspection

of their derivation shows that the direction of continuity is irrelevant.

We say the system is in state j at time t if the last event to

occur before (or at) t was of type J. Let

p ij(t) = Pr(in state j at time tjevent of type i at time 03

and

P(t) = Fpi(t)].

Cox and Miller also develop an expression for P(t). However, this

derivation, ;n contrast to that for h*(s), is heavily dependent on the

12



direction of continuity. We proceed no% to develop an expression for

sP*(s) via integral equations in a manner similar to Cox and Miller.

We start with a two state process. The integral equatIons are of

the form

t
(3.4) p 1 1Ct) 1 1 F1 1 (t) + ael2F12 t) + all f hll(t-u)F1l(u)du

t
+a f h11(t-u)Fu12()du

N0
t t

(3.5) p 2  = a2 2  f h (t-u)F2 (u)du + a2 1 Ja h 2 (t-u)F (u)du

where

(3.6) F ij(t) = f (u)du

t i

One obtains p 22t) and p 21t) in an obviously similar manner.

To understand the derivation of (3.4) and (3.5), one should study

Figs. 3-2 through 3-4. Figure 3-2 represents the Cox and Miller

derivation of p11 (t), while Figs. 3-3 and 3-4 correspond to our deri-

vation of p1 1 (t) and p12 (t), respectively. The multiple components of

each of the figures represent an exhaustive classification of the ways

in which the desired state can be reached at time t. The expressions

on the right of the figures represent corresponding componrnts in

integral equations.

13



2

11 f h (t-u)F uWdu

t-u t

e ~21 h h12 (t-u)F 21(u)du

FIGURE 3-2 p 1(t) CONTINUOUS FROM LEF- (Cox & Miller)
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1. 12

13pa 1 J h h(t -U) F1 (u) du

tt

it 21a hl (t-u)F12l(U)dU

0

t-u t

FIGURE 3-3 p ,(t) CONTINUOUS FROM RIGHT

2 0 t

-1 a22  h 2 (t-u)F22 (u)du

0i I -
t-u t

2[

01 I 0
t-u t TIME

FIGURE 3-4 p 1(t) CONTINUOUS FROM RIGHT
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Note that

F (t) = Pr the transition from i to j takes c or longerl
ij

Thus in (3.4) p (t) consists of the components

l F li(t) = Pr1st transition is to state 1 and takes t or longerl

1 F 2(t) = PIrlst transition is to state 2 and takes t or longer}

t

f h1l(t-u)elFl1 (u~du

Jo

t

f] P1st transition leads to a sequence of events yielding

o an event 1 at t-u followed by a transition to state 1

taking u or longerjdu

t
(t-u)2 F (u)du

h11  12 12

ot Prf1st transition leads to a sequence of events yielding

an event I at t-u followed by a transition to state 2taking u or longer~du.

Note the general classification according to whether the first transition

occurs before or after time t. In determining p..(t), i j, the first
13

transition must occur before t.

16



Thus we can write, dropping the "s" arguments for clarity,

p *1 = a F* + a F* + ce h* F* + * F*

1 1. 11 12 12 11 11 11 12 11 12

P = c h F +a h*F*
12 21 12 12 22 12-22

(3.7) F* * + * F* + * F*

p2 2  21 21 22 22 21 22 21 22 22 22(ah F* F*

21 il 21 11 12 21 12

or in matrix form

P * p a * + *

p 2 1  11 12 12

n*I 0 F* + ct F

2 212P221 21 22 22J

(. [2 11 11 12 12 1 2F~~h 1  [a*2Q1

(3 .8) + [h~1  h~[ 2* + *J
h* h* 0 ce F* +F2
21 22 21 2i; 2 2

aF* -a F* 0[111 12 120
[I [+ h*]J

I 0 a" F* +a F*S22 22 22_

Noting that sF* = 1 - f we have
iJQ

(3.9) sP*(s) [I + h*] + 12( 1 2 ) 0

alc (1-f* )+ (1f21 21 22 22

17



In a three state process we have

p (s) = a F* + a F* + a F* + a h* F* + a h* F* + a h* F*
S11 11 12 12 13 13 11 11 11 12 11 12 13 11 13

(3.10) Pl2(s) = a h* F* + a h* F* + h* F*
•12 21 12 21 22 12 22 23 122 J

So it is clear that (3.9) generalizes to the ii-dimensional case

(3.11) sP*(s) = [I + h*(s)]W(s)

where

W(s) = [Wij (s)]

n

W *(s) : ak[1fl(s)] i j
iiE k i

k=l

i (s) j0 , i j

Note in the special case where f., = f. for all (i, j), we have
ij I

W = 1 - f*. Recall h*(s) is given by (3.2).
ii 1

Now, suppose an event of type i occurs at time t = 0. Let T . be
iJ

the (random) time the system first reaches state j; T is thus referred
N ii

to as the conditional (on i) first passage time. We would like to

develop an expression for the expected value E(T ij). Adapting a method

used by Cox and Miller (Ref. 1, p 196) for Markov processes, we proceed

as follows. Replace the matrix A = ('a) by Ao = (P) with ak = a
2ek o k Ak 2k

except o. = 0, 1- / j, k = 1, ..., n and o.P . = 1. Thus j becomes an
jk 'j

"absorbing" state--once the process reaches state j, it stays there,

although the event j may reoccur. Let the new sample space be

Y = ry (t); t 0 0, weQj. Let r ..(t) be the probability in the new

18



process that state j is occupied at time t if started with event i at

time 0. Thus r (t) in the new process corresponds to p..(t) in the old
ij 1j

process and rj (0) = 1. Then

(3.12) P(Tij t) = r ij(t)

Note that

(3.13) P(T .jt) = P(Wecix (0) = i, x (T) = J, x (T) d J, all T < T, some T < t)

and

(3.14) r ijt) P(WC0jY (0) = i, Yw(t) = J)

By construction we have yw(O) = i <--> x (0) = i and
w

yw(t) = j<-> (x W(T) = J, x W(T) j, all T < T, some T < t). So the set

of weQ( in (3.13) and the set of weC in (3.14) are the same, and hence

the probabilities are the same. (We have assumed the probability

measure on Q is the same in the new prosess as in the old.)

Now we have

r-sTj -Stp, <td

(3.15) Ee P (T ij J t tdt

o j e-Str ' (t)dt

- sr* (s) + r (+ 0)
iJ ij

- = srj (s)
ii

19



where the last equality holds because we assume no instantaneous

transitions at t = 0 can occur, that is, fij(t) has no probability mass
13

concentrated at t = 0.

To obtain E(T ij) we note that

(3.16) d E(e =) E(Ti)
ds ij

s()O

One is now tempted to write

(3.17) E(T) - = - sr' *(s) + r* (s)J4 (3.1) dLs= ij-- ds , i s=OS=

but sr'*(s) may be indeterminate, i.e., r'*(O) - , so the entire
1J Is=O ij

function sr..(s) must be developed.
1J

Thus we have developed formulas for

p. .(t) = time dependent transition probability
13

H1..(t) = conditional expected number of events
13

E(T..) = conditional expected first passage time.
13

3.3 Initial State Probabilities

So far the discussion of the SMP has centered on the transition

mechanism and the associated conditional probabilities, conditional

times, and conditional events, where the conditioning has been on the

initial state nf the process. If the probability distribution of the

initial state is specified, then these conditional quantities can be

combined in weighted averages to obtain the corresponding unconditional

20



I

quantities. Suppose we have the state space S = (1, 2, ... , N. Let

pi(t) denote the protjbility of being in state ieS at time t 0. The

probability distribution of the initial state assigns a probability

P (0 ) = Pi such that =P i = 1. The time dependent state probability

pi(t) is distinct from the time dependent transition probability p ij(t);

the row vector of p.(t) is denoted by p(t), and the matrix of pi.(t) by
2. 1j

P(t). Note that for the "well-behaved" processes under consideration

P(0) = I. We now have

N
(3.18) p(t) p (O)p ijt) for t 0

or

(3.19) p(t) = p(0)P(t) for t 0

Similarly, if we define

HjCt) = unconditional expected numter of type

j events in (0, t)

T = the time the system first reaches state jJ

then

N
Hj(t) = = p.(O)H ijt)

(3.20)
N

E(T , = (O)E(j)

I2



4. A THREE-STATE SEMI-MARKOV SEARCH MODEL

4.1 Definition

Referring to the operational situation described in Section 1 and

thc semi-Markov process described in Section 3, the following identifi-

cations yield a model of the search process with decoys present.

Let the events be

1. Start search

2. Start classifying a decoy

3. Start classifying an HVT.

The times of interest are

T time to start of HVT classification given
13

searcher starts in search state

T 2 time to start of HVT classification given23
searcher starts in decoy classification state

T time to start of HVT classification

(unconditional).

The stats generated by event (3) is considered absorbing because

a. Event (3) results in the destruction (or probable

destruction) of an HVT

b. Hence (3) is a highly significant event 'n itself

c. In the cases of interest in the present study, loss
of one of the small number of HVTs would cause sig-

nificant changes in HVT density, which in turn would

require considerable extension of the model.

Note, however, that (3) being an absorbing state has no direct

consequences on the interesting output except

a. On the form of 1 (t) and H (t)
12 22

b. On the interpretation of T and T23 as absorbtion13 233
times.

23
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It would be a very straightforward modification to consider (3) to be

other than absorbing. A situation of interest in this case would be

where the searcher is interested only in surveying the field of targets

to determine, for example, the number or density of HVTs.*

In the absorbing case, we postulate the transition matrix

(4.1) A = 21 a22 2

00 1

and the probability density function

/f f f

(4.2) f f 2 f2 f2

f 3 f 3 f 3

Here the densities are

f (t) = p.d.f. of the time T to detect a target
f1 1

f 2t) = p~d.f. of the time T_ to classify a decoy

f3(t) = p.d.f, of the time 'rT to classify a HYT
3

and the conditional probabilities are

C 12 = probability the Cetected target is a decoy

a 13 = probability the detected target is a HVT

* An interesting problem is: given such a model and a search history,

what are good estimates of density or number. Assume speeds and detection

ranges are measured with error.

24



= probability return to search after classify21
a decoy (i.e., no H1VT or other decoy present)

* 22 = probability that, after classify a decoy,

another decoy is present and selected, from

the field of visible targets, to be classified

*23 = probability that, after classify a decoy, an

HVT is present and selected, from the field

of visible targets, to be classified.

Note that since the columns of the matrix f are identical we have a

Markov process if the f.'s are exponenitial. The characteristics ofi

f 3t) other than tinite expected value turn out to be irrelevant to

any of the subsequent analysis due to the fact that nothing of interest

(in the present model) happens after state 3 is reached; let -1 be the

expected valuc. If the model were modified to a nonabsorbing situation

(for example, to include HVT mission consideration), then f 3t) would

acquire more importance.

We assume that all decoys are identical and all HVTs are identical

in their operating characteristics. A decoy may have characteristics

different from an HVT. If more than one type of decoy or HVT is re-

quired, modification of the subsequent analysis is required. Specifi-

cally, additional states and/or modified transition probabilities would

be required, depending on the type of information required. Many types

of information can probably be obtained through modification of the

transition probabilities.

4.2 Conditional Expected First Passage Time

Referring to equations (3.2) and (3.11) we have

(4.3) sP*(s) = [I + h*1 W(s)

25



where

(4.4) W(s) = 0 -ff J

(4.5) h*(s) = g*(s)[I - *sjl

and

j0 fl~ 1311
(4.6) 9*s 1 c.yf* f* f*

= 21 2 22 2 23 3

Thus

12 1 13 ~1
(4.7) I *(s) I- f~2 f.~:

21 22 2 23 2I

1a 2a 3

111b2 
b3
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So we can write

(4.8) - g*(s)] -1 -  g2 2  131
2 2 22 3

0 33]

b 2  -a 2  a 2 b3 -a 3b 2

b2-ab b2-a 2 b 1 c 3 (b2-a2b )

-b 1 s b -b
1 3 1 3

b2-a2b 1  b2-a2b 1  c3 (b2-a2b )

0 0 1
c

3

Noting that in the terminology of Section 3 we now have p 3(t) r 3(t)

and p (t) r (t), we proceed to get E(T1) and E(T2) 'y using equation
23 23 13 23

(3.16). We have*

(4.9) * (s) = [I + h*] W
13 10 .3

= [I + h*] W since W =W =013 33 13 23

= h* W = 3g* (s) [I -g*(s)] -

13 33 331. .3

=W33 ['a12 f1 , y13 fI 1 3

kg33 -

= (1f*)f* Cl g )
3 1 12g23 13g33

-* '
th th

Notation: A and A. refer to j column and the i row, respectively,

of the matrix A.
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where

a -93 f2 +f21 13 ff2

23= (1,f*)(1-a f*a *f
3 22 2 12 21 1 2

(4.10)

1

g33 -1 - f
3

So

e f* + (a a ,- a )f *f
(4.11) sP1() = 12 23 13 22 1 2

(4.11) s 13 ([)i a f * - a1 ax f*f *22 2 12 2112 J

Differentiating with respect to s, negating, setting s = 0, and using

f*(O) = 1 and f'*(O) = - E(T.), we find
i i 1

(C 21 23)E(T ) + a 12E(T2
(4.12) E(TI) = 2123 1 12 213 a2 3 +a2 a1

In working with the a. 's, the following identities are useful:
13

I- a ce22 - a 120a21 13 + 12 23 13 a22

(4.13) 23 +  21'13

and

22 + a 12 a21 + fe12 a23 - CY13 a22 12 "
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Similarly, we find that

af* + f * *
* 23 2 +13 21 1 2(4.l4a) sP23Cs) * *2f 1 *1f

23 1-a f -e a *ff
22 2 12 21 12

and

a 2E(-r1) + E(T 2 )

(4.14b) E(T 23) = 21 1 2

'23 + 21'13

Of course,

(4.14c) E(T 33) 0

4.3 The Transition Matrix

The matrix

0 a 2 a1 1

A s:21 a )2 2

0 )

is comprised of the transition probabilities.

Note that

(4.15) t12 + a13

21 22 a 23

The absorbing nature of state 3 is reflected in a33 = 1. The value of

Cti. = 0 is implied by the fact t:.-c the end of a search leg is marked

by the detection of a target which must be classified.
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From (4.15) we see that once a12 is determined, o13 is also

dctermined. Also, a21 is determined by a 92 and a 23 " We proceed to

discuss these independent quantities.

4.3.1 Determination of a12

If we let

n = number of 1tVTs
c

= number of decoys

it seems natural at first to define

n

(4.16) 
d

c d

This procedure, however, neglects the ef ects of relative detectability

of the two types of targets. We iiave seen in Section 2 that "detect-

ability" is a function of speed and detection range as well as numbei,

or density.

An alternative procedure, which yields a resl,, equally

intuitive for simple asstunptions, "s the following. Define the random

variables

Y = tiihe to detect a decoy

X = time to detect a high value target.

3Then

(4.17) a 12  P(Y < X)

= P(Y < XJX = xf x(x)dx

w,,,here f x(x) is the p.d.f. of X, and in the follow-ng, f y(y) is the p.d.f.
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of Y. Tue value of a]2 thus depends on the forms that are assumed for
the p.d.f.'s. We consider two cases: exponential and Erlangian with

parameter k = 2.

* Exponential Cas-

In this case

fy(y) e - Xy  y > 0

10 otherwise

(4.17a)

f x(x) =1e -Ox  x > 0

i0 otherwise

so

x

fI x e-Xd(4i8'(Y < X = x) =P(Y < x) J / e T h

-X x

Hence

(4.19) (Y12 = (le-x),8e dx

0

_X

Since X is rate at which decoys are detected and is rate at which

HVTs are det-eoced, (4.1J) is a highly intuitive result.
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It is of interest to no

IECY) - , E(X) =

(4.20) I 1 1
Var(Y) - Var(X) =

S Erlangian Case

The Erlang distribution is discussed in Ref. 5 (Hillier

and Lieberman, pp 303-304). It should be noted that the Erlang distri-

bution is similar to the gamma distribution but they are not different

names for the same thing. Although they have the same "shape," custom

has the parameters arranged with slight differences. If Z is a random

variable of Erlang distribution with parameters m > 0 and k > 0, then

the p.d.f. of Z is

(mk)k  k-1 -kmz
(4.21) fz(Z)  - z e dz for z 0.

z r(k)
1 1

The mean ai.d variance are - and -L. Note that k = 1 yields the
r, km2

exponential distribution. Figure 4-1 exhibits how k changes the shape

of the distribution for a given m.

Ik
k.3

k-i

FIGURE 4-1 ERLANG DISTRIBUTION FOR

VARiOUS VALUES OF k

32



We considc, the case k = 2. Thus

f (y) 4X ye - 2 Xy  y 0
y

(4.21a)

f X(X) = 4R2xe - 2 ox  x 0

So

(4.22) P(Y < x) 1 - (2Xx+l)e
- 2 Xx

and

a 12 = [1-(2Xx+l)e ]40 xe dx

(4.23)

A (X+B)

We note that if X = we have a =- which is intuitively reassuring.
12 21

It is useful to note that if experimental data are

available and appear to fit the family of Erlang distribLtions, the

parameters may be estimated. It seems ikely that the only other type

of experimentally derived distribution (in the context of what we are

trying to model) would be a bimodal (or multimoda]) distribution. In

that case it may be feasible to fit the data with a mixture of Erlang

distributions, that is, a distribution with p,d.f. given by

p I (z ) + p f (z 21] 2 2

where Z and Z represent two different Erlang distributions and] 2

p1 + p 2 = 1, 0 : P 1 1 1 0 r p2 1. Some interesting technical

questions are what conditions (if any) on the means and variances of
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Z1 and Z2 and on p and p2 yield a bimodal distribution? and what are

good estunators of thc six parameters? (It appears that maximum

likelihood estimators may be very nolinear.)

4.3.2 Determination of Detection Rates

The computation of a12 requires determination of the detection

r-tes X and $. In the absence of experimental data or for ease of para-

metric analysis, reliance must be placed on equation (2.1). Specifically

S4R (V+V s  I k2 sin 2 dy k - 2

T21 ' 1 Vd + V

(4.24)

41 c CR f2 2J -FiF
(V +V) / V - sin, dcp k 2 V + V

0c s

where V = speed of searcher
s

V = speed of decoysd

V = speed of HIVTs
c

R = detection range of decoyRd

R = detection range of ItVTs
c

= density of decoys

8 = density ff IVTs
c

= rate at .hich searcher detects IIVTs

. = rate at which searcher detects decoy.

The values of X and $ are expressed in inverse time units, and Pay

intuitively be considered detections per unit time.

34
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Two approaches may be taken regarding the dens-itic-s c and dC (I

First of all, the situation to be modelled may be considered purely in

terms of density and all questions of specific area size and number ol

targets ignored. On the other hand, we may compute

n
C

c 
A

(4.25) 
0

n

di A
0

where

n = number of high value targets
c

nd = number of decoys

A = area of operating regi.on containing
0

tne targets.

The former approach may be more theoretically aesthetic, %hile the

latter has more practical application. The cloice of alternatives nere

should be consistent with the choice made in the next subsection for

a22 and o23"

4.3.3 Determination of 22 t, nd c23

The probabilities a 22 and a 23 are defined by

= Pr~next event is "classify decoy" liast event %%as "'classify decoy"i

(4.26) 
2

( )23 Pr( next event is "classity IIVT" I last event was "classify decoy")

In other \uorc.s, e22 represents the probability of going from a decov to

another decoy Lnd a..)3 the probability of going fr.m a decoy to a high

value t.rget. By the la%% of total probability c )I, representng the

probaqbility of going from a decoy to search, is given by 1 - -
2:3
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It turns out that certain results are highly sensitive to

.22 and a2. Also, certain uitexpected and unusual, but explicable,

etfects are due to a,) . Hence a high degree of care must be exercised
23

in specifying e2'2 and U2
23

As with a12' 'here are two approaches to considering a22 and

a 2 3 : density or area. In aiddition, there is the question of adapting

the assumption of random movement to movement which is random %ith a

condition of reduced interaction or "overlap" on the targets.

* Area Approach

Consider an area of A square nautical miles containing0

n decoys, n high value targets, and oe searcher. Assume that at anycI c

given instant the decoys and HVTs are uniformly distributed at random

over the area.

The complete classification of a decoy anticipates an

event. The next event to occur can be either start of search, start of

classification of (another) decoy, or start classification of an HVT.

In order for the next event to be start of classification

of another decoy, at least one other decoy must be present and, if one

or more HVTs are also present, a decoy must be chosen from the array of

t .rgets.

So

O22= Pfat least one new decoy present and pick decoyljust finished
a decoy)

n -1
d

(.1.27) P Pk new decoys present and pick decoy just finished decoy)

k=l

, d c

- L Pi new decoys present, 1 HTs present, pick decoy
k=l ,=0 1just finishe' decoyj
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i.e.,

(4.28) d k d _ (nd ni n -1-kin \ c- k
22 k_ k!d~' d PLCp(p~ 0 -P,

(4.28) ff22 k=l 1=0 k Pdid )
,Pc -P }  

k

This last statement follows from

(4.29) P[k new decoys present, I 11VTs present, pick decoy)

= P(k new decoys present) * P[I HVTs present)

P(pick decoylk new decoys and I IVTs present)

plus the assumption that the motions of decoys and HV'rs 3re stochastically

independent and the fact tiat

P(A nq 3 n C) = P(A r) B)P(CIA , B) = P(A)P(B)P(CIA 0 B)

if A and B are independent events. Also

i. P~k new decoys present] d-=) P ) dl

(4.30) P(A HVTs presentl = (c (1-P ) c

Pfpick decoylk new decoys and A. HVTs = k~k+1

and

P =

c c 0

d= 1 R'Z

d d o
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P is t he probability any onu IINVT is present (%%ithin range of the

searcher) . P~ Is analogous.

In a simil-ir !i-,nner we write

n cI

(4.31) a .)7lP I- _23 dc

Notu the difference betu~een a 22 and a 23 is in thL limits of summation

and the probability of picking the appropriate target.

Let's consider the special case where n =1. Then
C

(1.31) becomes

(4.32) a23  I (n.- 1k ( rd)n-

k-O

n
P cI d / n d). n d-k

- c ~ ' (d J Ik 1 O )D

ci (cI -- kld d

P dcnd L1 - (-P d l

Similarly, (4.28) becomes

(4.33) a = (I-P ) Y': JP -P)22 c ~ k /d d
k= 1

r d-1l -
+ N k(fl-l)pk - d

c I~ k d d
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I
It is also clear that in general

(4.34) a = Prrno HVTs or new decoys presentIjust finished a decoyl
21

fn n -i
cd(1-P) Cl-P d d

cd

The case n 1 now makes a good check case for + + = 1.
c21 (22 '23

* Density Approach

I It is possible to drop explicit consideration of area

and number of targets. Equations (4.".' ) and (4.28) sttil ho.d, but the

binomial distribution is replaced by the Poisson distribvtioi,. The

results are

21 j _ ( gkk,) kk x

(4.35) a23  m k

23 k=l kk

22 = 21 '23

where

x = 6 TR'

c c

y = 6 fr'I dd

P = x/-

* 
X -y

Sm 
- Y

S1e-e

Details are given in Appendix A.
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4

o Effects of Overlap

One of th( main assumptions has been random motion of the

targets and uniforn random cistribution of the tdr6ets at any given

instant in time. One suspects that the evader might improve his situation

by not allo,,ing targets to congregate, as il happen occasionally under

purely random motion. It happens that this suspicion is supported by

analysis to be given shortly. On the other hand, one also suspects that,

as the target density increases, it becomes increasingly difficult to

prevent congregation. This matter will be discussed also.

Suppose that it can be guaranteed that HVTs are kept a

sufficient distance from decoys to cause a2 3 = 0. Compare this with the

situation -,%here a2 z 0, i.e., normal overlap. Consider the case where
23 '

thc f. are exporential distributions (the Markov process) for onc HVT.

",'e then have

(4.36) E(T131nd = 1, a23 = 0) > E(T31n d = 1, a23 / 0)

from (4.12) with n = 1. That is, for a 2 0,d 23

SI t.

1 2 - + a 1 3  - >*

('4.37) 3 = -

:dhere -is thc e' -an of f3(t).-i

,t0'



For 2 0a~23

(12 -+ '1l3 -
(4.39)

t0

"21 22 235

so

(4.40) E(T jn 1, ( -0) -

J3 d '23

The inequality is now clear. Thus the evader does .ish to separate an

HVT and a decoy, at least after the searcher has deployed and is searching.

Model Restrictions Due to OCcr.ap

Turning to another question. one might ask %hether it is

always of advantage to the evader to use decos. If the decoys and H{VTs

are independent, the intuitive answer is yes. Hoever, the model some-

times ans,¢-vs "No"' There are reasonable cases where E(Tin = n) and
13 d

E(T3n = n) will at first decreas( as n is increased from zero. This

phenomenon is an artifact due to failure of the random motion,'position

assumption. To gain at least a partial understarding of v|hy it happens,

let us examine the case where thp fi are exponential distributions (the

Marko process) for one HWI %kith first zero and then one decoy. Consid-

ering first T1 3 we havE

131

(4.41) E' 131n d  0) 1

and

(4.22) 13"'d = 1) - P 0
c
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since with 1n d I we inve

1.2 m - , 13

1 c a2 2  U, -

The dosirablo situation fo tho VT is E( ) > (t 1  = 0). We

t hus l're(llif'il

01.3(,I.Ii ).x >

C

or

(,4.,45) > lip c C

The relation (41.45) can be LnLerpreted as follows. At the beginning of

decoy classification, the IIVT is known not to be within detnction range.

As long as the mean classification time is long enough (i.U., (4.45)

satisfied), then this initial condition will dissipate, and the I1VT

position will be uniformly random over the entire area at the end of

decoy classification. Failure of (4.45) to hold means the HIr speed

(or the ctassification time) is not high enough to dissipate this initial

condition. Notice that if overlap is prohibited so that a23 = 0, then

(4.44) becomes -> 0, which always holds (for all practical situations).

Now consider T in the same manner we have just examined3

T 1 Then13'

(4.46) E(T3Ijn = 0) = p E(T 31nd = 0) = (1-F 1
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since P = 1 - P when n = 0, and from (4.38)1 c d

(4.47) E(TaInd = 1) = P E(T 1 = 1) + p. 1)(T n1 13 d 2 3  d 1

where E(TIn131 ) is given above by (4.12). Substituting the values

of (4.43) into (4.14b) we get

(1-P ) +
(4.48) E(T2  =1) = c

2 3I dj (P c k )

So

= 1) P1 ( 1i-+X) + P2 1 j(1-Pc) + P2 (X+8 )
(4.49) E(W in = 1) = 14 ~-

3 (1  = (P+P X)

c

Thus in order to have E(T 31n d = 1) > E(T3 In d  0) we require

(4.50) P2 + {(P(i+X) + p 2 [1(1-P) + X] - (1-P)m} - (1-Pc )Pcl > 0

or, substituting

a = p2

(4.51) b = P (11+) + p 2[1(1-P ) + X) - (1-P )A
c c

C= (1-P)PctpX

we require

(4.52) a02 + bp - c 0

where

(4.53) a > , c > 0
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Completing the square, ('1.52) can be written as

~(,4.5,4) p(5) = +ca0

Now p(O) is a quadraic form in 8 with two real roots b. - /b c
ab 2aand a minimum of - - (1)b + 4ac) at 8 - Frther49' 2a

b + 4ac > b2

since a > 0 and c > 0 so

1 i?+ 'ac 1
2a 2a

and hence

P(s) < 0 for 0 < p < {_ 7'+4ac- b2a f
(,4.55)

P(O) 0 for B { b2+ 4ac b2a fs

Since E(T 3n d = 1) > E(T 31n d = ) if and only if p(O) 0, it is also

possible for the deployment of a decoy to be disadvantageous to the 1IVT
when using E(T 3) as a measure. Unfortunately, this threshold on 0 is

not as easily interpreted as when using E(Ti3). However, if b > 0 we
note that b + 4-ac > %52 + 4ac nd hence p() > 0 if 0 > . In

particular, if u < ! (i.e., mean decoy classification time is greater

than 1 hour) and if 2
V P2 < 

P  then jP > since I > u; moreover,c c
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> P i implies > e. ence in this casie, any good for EI(T=' C 13tt"

is good for E(T3), and tLtero may be a range or good for .'(Tf ) 10110,
3 3

is not good for E(T 13).

ap is not perml I ted so that o2 - 0, the Sin ace

in this case ) = P instead of (4.50), we have merely (p1 + P,))X 4 p),3 c

which always holds,

To summarize thus far, if overlap is permitted we must

check that > lp and p(O) > 0 to guard against the failure of the

random position assumption. It is useful to note, however, that as the

number of decoys increases this problem will diminish becat,.e eventually

the target selection problem will overshadow the error in the probability

of the IVT being present. Possibilities for removing these rest.rictions

are discussed in Section 7.

Unfortunately, these conditions alone are neither

necessury nor sufficient to guarantee the accuracy of the model, even

though the preceding discussion may seem to imply them. The reason is

that a further problem remains in the fact that after having classified

a decoy and returned to search, the search rate is not %+0 immediately.

In the case of a single decoy the search rate is simply 0 until the

effect of the information obtained in the last decoy classification has

dissipated, at which time the search rate is restored to X+O. In the

*Sample case: anticipating Section 4.7 we have for n d= 1 that

p2 = Pd + P C[l-2Pd 1/2; using formulas for P and P dgiven with (4.30)d c dc d

and letting V = 15, V = V = 20, R = R = 60, we get X < .002
s c d c d

or 1/X > 500; from Table 2-1 we see this is not satisfied since

/X = 45.67; since this is a typical case, the bound above doesn't say

too much.
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case of mull tipl decoys, the search rate i|mmdliat uly after classi fication

is something loss thnn X., until an appropripte time for restoration to

XtB. rihe transition probabi lities are similarly affected. In the case

where tie obtained Intformat lod does indeed dt sipate, this problem is

solvable1 by ad61ng another state to the model. 'fhis additional state

would be a secondary search state that accounts for tie information

(lopoendency ; a transition to the primary starch s',a~e would be made af.er

a suitable length of time if the 11VT is not found in the interim. The

case where the information does not dibsipate (e.g., position plotting

of stationary decoys) must be treated in a different manner. A possible

approach exploiting special matrix structure is discussed in Section 7.

lReauced Overlap

Earlier, under the subheading "Effects of Overlap" it

was shown that it may be advantageous to eliminate, or at lease reduce,

overlap between IIVTs and decoys. We now consider some ways of incorpo-

rating this reduced overlap into the model.

Suppose the dezoys are not stationary (i.e., are mobile).

Then it may be feasible for them to know or recognize where the IlVTs are

going to be and simply stay a suitable distance, call it R , away from
s

them. Let Rs = Rc + Pd where pd= decoy classification range. In this

case, if pd is small, a simple apprc Aimation is to set a 22 = 0. (See

the end of Appendix D for further discussion of this approach.)

Suppose now that the decoys are stationary or that it is

not feasible for the decoys to know or recognize where the HVTs will be.

Two basic methods of approaching this problem have been considered. Both

require that an lHVT have the capability to recognize and avoid a decoy.

The first method is a queuing model which requires only specification of

an operational parameter reflecting the objectives of the IIVT activities.

46



The second method involves a class of models which basically rcqutr .s

estimation of a parameter describing fleet operations o: fitting a

curve to observed data. Since the first method seems more uitablc to

the course of the current analysis, it is presented here and the second

method is discussed in Appendix B.

Jet X , the rate at which IIVTs encounter decoys, beC

defined as

411 n n

(4.56) T_ s (V + V ) Ec TA d \V

where E(k) is the elliptic integral discussed in Section 2. Also

define

(4.57) X = maximum acceptable rate of HVT course change
0

for purpose of decoy avoidance.

For example, an [VT may be subject to constraints such that it would be

willing to change course to avoid a decoy on the average only once in
I-

every 5 hours, in which case X = 0.2 hr We can now model the0

situation of a single 11VT as a sir.gle server queue with customer balking,

that is, when the customer arrives if the server is busy the arriving

customer leaves. In this case the HVT is the server and the customer is

a decoy. The customer arrival rate is X and the service rate is X .
c o

Customer arrival corresponds to [[VT contact of a decoy. Customer ser'ice

corresponds to the length of time after a decoy avoidance maneuver before

the HVT is willing to make another such maneuver. Such a queuing system

can be represented by a two-state Markov process, where the states 0 or I
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correspond to the number of customers being served or, equivalently,

whether or not the server is busy. The process can be represented by

the generator matrix

(4.58) = c c

Let B denote "system in state V" and P "system in state 0." Assume

the system is in steady state. Let P(B) = Pr(B) and P(B) = Pr(B) in

steady state. Then from Ref. 2 (p 194) we hava

x
C

P(B) - +x
o C

(4.59)

P(fl) 0

o C

We refer now to Fig. 4-2. As represents the area T(Rc + pd )2 and A*

the area TTR 2 . The decoy is centered in A , the searcher in A*. Denote
C s

"IIVT in area A" by "HeA." We assume HeA B and henc- P(IICA* & B HeA ) = 0S 5

and P(BIHEA ) = 1. Thens

(4.60) P(HeA*IHeA ) = P(HCA* & BIHCA ) + P(HcA* & BIHcA )
s S S

= P(HCA* & BIHcA )

= P(HeA*IB & HCA )P(BIHeA )

- P(HcA*IHcA )

= A*/A
S

- (R /R ) 2

C s
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A -

1A

FIGURE 4-' AREAS IN QUEUE MODEL OF OVERLAP

Now

(4.61) P(HcA s B) = TT (R c+ p d) 2 /A0

so

(4.62) P(HeA ) = P(HcA & B) + P(HeA & B)

= P(HcA sIB)P(B)

= [T(R + P )2 /A C

0 C
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We interpret P as P -= P(HCA*). Furthermore, P(IHcA*IHJA ) = 0. HenceC c S

(4.63) P(IA*) = P(HcA*HA)P(IcA ) P(HeA*IH4As)P(ItAs)

so

TT(R + p (R)2
(4.64) P(X) = C d

c oS; 0+

R X

C C

A +X

Note that pd enters the equation through X . We can now substituted c
Pc (A ) for Pc in the computation of a22 and a 23' This approach could

perhaps be generalized to priority queuing system with balking and two

typ.s of customers, decoys and HVTT activities, where the PVT activities

have priority ever decoy avoidance. This generalization is not developed

here for lack of time. A discussion of possible error due to a failure

of the implicit assumption that A*/A = (R /R )2 is given in Appendix C.

4.4 The P.D.F. Matrix

The form of f (t) is dependent on the way in which a 12 and a 13 are

derived. Tiie forms of f 2(t) and f 3(t) may be specified freely, and, as

noted previously, the form of f 3(t) is irrelevant.

Referring to the discussion surrounding; (4.17) we see that we

should write*

(4.65) P('r T t) = P(T t & Y X) + P(T 1 t & X < Y)

= P(Y ! X & Y t) + P(X < Y & X : t)

Consider T, = min (X,Y).
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where, recall,

Y = time to detect decoy

X = time to detect an IVT

Now

CO

(4.66) P(Y X & Y : t) = ] P(Y 7 & Y t)fx(r)d

YP(Y T)fx (T)dT + P(Y 5 t) fX(,r)dT

0 ftj

Similarly

t

P(X < Y & X < ) = o (X ! t)f (T)dT + P(X t) f (T)dT=1 y

We now examine the exponential and Erlangian cases.

4.4.1 Exponential Case

Recall that in this case

fX(T) = e T > 0 and fy)= (e -Xe T>0
x Y

Thus, using (4.66) we have

of ~ _OT t eOt

(4.67) P(Y X & Y g t) = (1 - e-)Oe -dT + (1 - e )e

8 -(+8)t -(X+O)t
= 1l--+-e -eX+l X+B
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Similarly

(4.68) P(X<y & X t) e -e

Hence (4.65) gives us

(4 69) P(T t) -

or

(4.70%, ft M (+ )e

4.4.2 Erlangian Case

Refer to the Erlangian part o~f Section 4.3.1. Using (4.21a)

and (4.22) we have

t-2%' -2T

(4.71) N(Y .X & Y t) [1i (2XT+l)e )]402 Te d'
0

+ [1 - (2Xt+l)e2k ][20t+1]920

= 1 I~3~x 1I+30x [2(X+P)t + e

4%2t2 -2(X+O)t -(+~
+4X + (2%t+l)(20-.4+1)e

A similar expression holds for P(X -- Y &~ X t). Add these expressions

to get

(4.72) P(T 1  t)= 1 + [2(X+O)t+1 - 2(2Xt+l)(20t+]) + 8Xt23e2(+)

=1- [2(X+$)t+l3e2(+)
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which is Erlang with parameters 2 and X+O. Hence

(4.73) fl M = 4( )te - ( + )  t > 0

4.5 Renewal

As mentioned in Section 1, a quantity of interest is the number

of decoys encountered by the searcher. Here the renewal density h ij(t)

and its integral :I (t), as discussed in Section 3, come into play.
ij

Recall that H ij(t) is the expeetec number of events of type j occurring

in the time interval (O,t) given ti.at an event of type i occurred at

time zero. (Recall also that an evwnt occurs when the process first

enters or renews a state.) We are interested in events of type j=2,

first encounters of decoys. From (3.2) and (3.3) we have

H*(s) = h*(s)

where

h*(s) g*(s) [I -*)

with g*(s" and [I g*(s)]- given by (4.6) kld (4.8). Thus

(4.74) h* (s) = g*(S) [I - g*(s)]:l

12 1'-

[ g* (s), g*2 (S), g13 (s)] 1 2

I

=g2 2 " g1 2 (s = a12f 1g2 2

12 1
222 22 22
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Similarly

? f+ a f*
(21 2 22 2(47)ii s = * f*

22 1 -a f 2 - ff2 e21fl 2

We will now consider computation of H 2(t) for some special cases of

f and f2'

4.5.1 Exponential Case

In this case we have, using (4.70),

(4.76) f*(s) - X and f*(s) = .
1+8+s n 2 P+s

and also

l = - and x -
12 - + 13

So

(4.77) h* (s) = a

12 12 1 2 s 12
122 P+s 12021 K++s i+s

= 1 (X+O) SL
12 s + CS +c 2

where

C2  = (a- 22 ) (+ +

c 2  = (O23 4a21 113

Hence

1

(4.78) H* (s) = - h*(S)
12 S 12

= 1 (X+O)Em*(s) + Pm*(S)]
12 1 2

54



where

* 1
11

1 1*(

m2(s) = + c -+cs 1

By completing the square in the denominator we have

(4.79) m(s) = 1

c
2
1

where it can be shown that I - c 2 > 0.

Let

(4.80) m,(s) 2 1
3 s -

where p = c- 4c_
2 11

C

then m*(s) - r*(s-a) where a -1 3 2

NOw

m*(s) .- F3(t) = sinh pt
P

and

m * at
M*(s-a) -e Fat(t)
3 '3

so

at
(4.81) m(s) -- Ft M = e Fz(t) _ sinh pt1 1 3 P

= L (a-p)t]
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By noting that - m*(s)* _* F(T)dr we obtain m*(s) = -- m (s) by
s f2 si1

integrating F (t). Thus

t  f(a+p)t (a-p)tl
(4.82) F2 (t) = FI(T)dT 1 1 e e _

2 2 -- 2p a-pJ0 c2

From (4.78) it follows that

(4.83) H 12 (t) = 12 (X+O) [F1 (t) + pF2(t)]

i.e.,

(4.84) H 2 (it a 124 12 + e-apt + aP

12" " 23+C'21 t13 2p a-

where

c 1  = ( - 0Za ) + +

c 2 = (023 + 'X21"13

a = - C/2

V2 -D4
P 1 2

Typically a + p is negative and very close to zero, so the right-hand

term in (4.84) decays to zero as t 4 - and H 12 (t) / a12s
12 aV23 +a a12 f1

t -4 -. Note H2 (0) = 0.

By a similar approach H 22(t) could also be found. Then,

given p1 and p2 ' the unconditional expected number of decoys encountered

is given by pH 12(t) + p2H 22(t).
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4.5.2 Erlargian (k=2) Case

Suppose, as in (4.73), that

f (t) = 4(X+0)2 t e2(X+P)t t > 0

and

f 2(t) = 412 t e- 2 tt  t > 0

Then

(4 6) () (X+) 2L.1 ) -1 2 _
(4.85) f* (s) a f 12 and =

1 L2(X+O)+ .22 p + si

since

4a 2 t e-(2a+s)t = 4ae2 (2is)t [- (2a+s) - 13 O 2 a 1s

Thus

r 2(X+p) 12

(4.86) h* (s) = a 2 ti(-L+O)+siJ
2 12 15- F2 rit 2  2(X+) 72

22 L2p+s - 1221 L2+sJ L 2(X+O)+sJ

: [E2(x+ ))2 ] E[21+s]
2

12 [2(X+P)+s]2 [21 +s]
2 - 22 211 ]

2[2(X+o)+s]2 - 12 % 2141.(X+O)]2

= 4a (X+p) 2 p(s)
12 q(s)
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whle re

p(s) = s 2 + 4ps + 4i2
• , 2 1 _2

q(s) = s4 + 4(X+R+ )S3 + 4[(X+ +11) 2 + 2[(X+P) a 2 2 PJ

[x+8 + (1 - a22)1]s - [4p(X+P)] 2 (a +a a "+22 22 1221

Moreover

1* (s) = 4a (X+0)2 sp(s)

(4.87) 12 12 q(s)

Referring to the Heaviside expansion theorem (e.g., Ref. 6, 1021), we

can write

akP(ak) akt

C' (4.88) Hl2(t) = q, ak e
k=1l~k

where r =4 is the number of roots of q(s) = 0 and ak, k=l, ... , r are

the roots. Reference 4 (p 66 ff) discusses methods for obtaining roots

of polynomials numerically; such methods are commonly available as

computer programs.

4.6 Distribution Function of First Passage Time

First passage time, Tij, was defined in general in Section 3.2.

Expected first passage times for the search model were considered in

Section 4.2. In this section we derive the probability distribution

function G 3(t) for the conditional first passage (or absorption) time

T in the case of exponential f (t). The algebra here is quite13 1

similar to that of the preceding section.
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From (3.12) we have G1(t) P t) = l t). Recalling that
13 13 13in the terminology of Section3, p 3(t) r 13(t), and using (4.11), we

have that

(4.89) sG* (s) = sr* (s) = sp* (S)

13 13 13

01 11 S3

1 - 02 f*(S) - 0a1 af*(s)f*()22 2 12 21 1 2

Using (4.76), we obtain after simplification

a13 s + c
(4.90) sG (s) = (S+ ) 2 13 0

13 s +cs + c

where

(4.91) c = (l -2 a

o 22 1221

ClI  (1 -a )+ +

c = 23 + a 2 1 13) (X+0) = 0+0)c

Hence

(4.92) G* (S) = (X+O)a m* CS) + (X+O)c m* (S)13 131 o2

where

m (S)= s2 + 1 S+c 2

M*(s) =
2 s(s2 + c1s + c2)
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Using the methods of Section 4.5 we arrive at

(4.93) G 3 (t) = 1 + e + pJ

+ 2 a -ptj
- (X+ )U13 _+ e

where

a - c /2

2 1 2

Note

a +p<0

a -p<O .

Hence F(0) = 0 and F(+ 1) = 1. For a check on the result we can use

the fact

(4.94) E(T 1 3 ) = [I - G1 3 (t)3dt

A simple check is obtainable in the case nd = 1, where we can use

equations (4.43) with (4.12) to obtain E(TInd 
= 1) = ( + X X)

the same result is obtained using (4.94). C

By a similar approach, G 23(t) could also be found. Then, given

P and p2 P the distribution function G 3(t) of the unconditional time

T3 is given by

(4.95) G3(t) = PG (t) + PG(t)
3 1 13 2 23
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4.7 initial State Probability Vector

The concept of initial state probability was introduced i.a

Section 3.3. In the present section we discuss a simple submodel for

computing these initial probabilities for the three-state search model

under consideration.

Assume that the searcher enter the operating area A in a blind
0

condition (at high speed, say) and remains blind until both the HVT and

decoy detection circles are inside A . Some time after the circles are
0

inside A (immediately perhaps), the search process begins when the
0

searcher instantaneously scans his search field. This initial scar

results in an event which places the searcher in one of the three states

of the model

1. The searcher sees no targets, and starts search

2. The searcher sees at least one decoy, selects a

decoy for classification, and starts classifying

3. The searcher sees at least one KrVT, selects an HVT

for classification, and starts classifying.

These events are mutually exclusive and exhaustive. If we label them

with i, i = 1, 2, 3, then i occurs with probability pi and p1 + P3 + p3  1.

We have

p1 = Pfno targets present]

(4.96) P2 = Plat least one decoy piesent and pick decoyl

p3 = Ptat least one HVT present and pick HVT .

Determination of the pi is very similar to the determination of the

o2i in Section 4.3.3. The reader is referred there for details.

61



As before

P = TTR2/Ac c 0

P = TR 2 /A
d d o

unless we are using the reduced overlap submodel, in which case we use

P (X ) instead of P . Then
c o C

n n
(4.97) P1  = (1-P c) d dc d

n
d

p 2  = P(k decoys present and pick decoy)

n n

d Q.n d)pk(.)n d-k -k ,) n -

k=k

i (4.98) P =  1P)(-d) d

n

p 3 Pt(t HVTs present and pick HYT)

d C nd)Pk(-) nd-k /n\~e_ )n-.tA

Of special interest is n c= 1, in which the above expressions reduce to

n
(4.98) p1  (1-P )(l-P d d

n +1

p = P11 - 1P)d]/Pdcn+)

An alternative approach is to assume the searcher makes his initial

scan at some point in time prior to entry of the complete detection circles
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in;.o A . In this case appropriate area ratios other than P and P0 c d
would be used. Note that the forward half of the circumferences of the

detection circles must be in A in order for the previously discussed
0

detection rates to be valid.

4.8 Summary of Three-State Model

A summary of the three-state model is given in Fig. 4-3 in the form

of a flow graph. For purposes of this flow graph the area approach is

used for calculating transition probabilities, and it is assumed that

search and classification times are exponentially distributed.
t'K

Assumptions that have been made, explicitly or implicitly, thus far

are

* At any fixed instant in time, positions of HVTs

and decoys are distributed over the operatirg

area according to a uniform probability distribution

0 Over short intervals of time, everythirg moves in
straight lines with uniformly random headings i, -j

0 Definite range law for detection

* All detection circles lie inside the operating area
(i.e., the searcher as well as the HVT knows what

the operating area is; see Appendix C for an analysis

of one place where this assumption may fail)

* When a decoy is classified, information obtained by

the searcher is dissipated rapidly enough so that

the classification has no operational effect on the
density of decoys .,"!

0 When presented with an array of targets (both " 75

decoys and HVTs) from which one is to be selected

for classification, the tgrgets are equally likely

to be chosen (i.e., the decoys are identical aid

are indistinguishable from the identical HVTs until

a classification is made)

* Stochastic independence of motion is assumed among

decoys as a group, among HVTs as a group, and between
the two groups cxcept in the case of reduced overap

when HVTs avoid decoys.
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5. EXAMPLE RESULTS

Eight cases are defined for the purpose of numerical illustration

of the three-state search model. The area approach to computing tran-

sition probabilities is used with a circular area of 200-nautical mile

radius. A single HVT is assumed throughout (n = 1); . decoy classifi-

cation time of 5 hours is used in all cases (E(T 2) = p = 5).

The cases are defined in Table 5-1. In cases 1-4 the decoys

operate like the HVT, while in cases 5-8 the decoys operate in a

different manner than the HVT. In particular, in cases 7-8 the decoys

are stationary. With one exception, to be discussed later, all search

times are taken to be exponentially distributed as in (4.70).

Table 5-1

CASES FOR NUMERICAL ILLUSTRATION

V V V R H
Case d c dc~e(k s) (k s) (kts) (m)(nmi)

1 5 10 10 25 25 HVT and decoy
2 5 20 20 80 80
3 10 10 10 15 15 so8me
4 10 20 20 50 50

5 '5 10 20 25 80
6 10 10 20 15 50 Hvr anddecoy
7 5 10 0 25 80
8 10 10 0 15 50

Figure 5-1 displays conditional expected time (in hours) to HVT

detection E(T 13n versus number of decoys nd . The broken versus

solid line distinguishes searcher speed (broken- V = 5 kts; solid-fs

V = 10 kts). The striking feature of the data in this figure is the
6
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3L

effect of nonsimilarity between decoy and 11VT. In all the sharply

rising curves the decoys are different in detectability and speed than

the HVT.

Figure 5-2 illustrates the effect on E(T 13n d) of reduced overlap

between decoys and the 1IVT. Cases 4 and 7 are considered. A notable

feature in these data is the significant interaction between X and

* case considered. Recall that X in the maximum acceptable rate of IIVT
0

course change for purpose of decoy avoidance, ise., X -1 is the mean
0

time between such course changes. The principal expression for the

queue model of reduced overlap is givO by (4.64).

Figure 5-3 shows, for Cgep, 5 the conditional (on starting in

state 1) expected number of dticoys encountered prior to HVT detection

H13 (tnd) as a function of time in days and number of decoys deployed.

The broken line is X(T In ) in units ot days. The limiting values of
13d

H 13(tind) as t 4 w are shown on the right.

Figure 5-4 shows, for Came 5, the conditional cumulative probability

G 13(tin d ) of HVT detection versus time and number of decoys. Recall that

G 13(tin,) is the probability the HVT is detected at or before t given

there are nd decoys deployed. The curves for nd = 0 and nd = 1 are

practically coincident and are represented by a single line. Thus, for

example, in a 9-day operation, deployment of 20 decoys of Case 5 type

reduces the probability of HVT detection down to .2 from the .6 obtained

with no decoys.

Figure 5-5 is the exception to the exponential distribution

mentioned earlier. In this figure the solid lines represent search

times with Erlang distribution as given by (4.73); the broken lines

are exponential data shown enrlier in Fig. 5-1 and repeated here for

comparison. The peculiar shape of the curves resulting from the Erlang

distribution is probably due to a failure of the random motion/position
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assumption and other considerations discussed for the exponential

distribution in Section 4.3.3 under "Model Restrictions Due to Overlap.

Other data not included here indicate the Erlang results approach the

exponential results as nd becomes very large. However, for small numbers

of decoys there is a significant difference in the implications of the

two distributions. Specifically, decoys are much more effective with

Erlang detection times than with exponential detection times. This is

especially true since the errors in the Erlang curves presented here are

most likely in the direction of decreased effectiveness of the decoys;

the exponential curves can be considered relatively free of error

7.4
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6. A FOUR-STATE MODEL

This section demonstrates how the three-state model can be

extended to a four-state model to analyze the parcicular search proce-

dure of "sprin-drift" motion. It is important to empnasize that this

is a demonstration and not a final model in any sense. In particular,

not included in the model is a representation of the capability for the

searcher to look behind himself as he changes from sprint to drift.

Such a capability is analogous to the instantaneous scan discussed in

Section 4.7 with respect toinitial state probabilities, except that

the scan is now periodic instead of occurring only at time zero. This
IA

capability could be incorporated'intO a model but it is not done here

because of lack .of time.

In ,using the "sprint-drift" method, the searcher alternates*

between high (Vs) aid low (V ) speed, with correspoiiding detection
si s2

ranges, R 1 , Rc, Rd) Rd2 , and encounter rates Xl, X2 , ' and 2
T cal, V1  s2' 222

Typically, V >> V pnd V will be close td zero. The spoedV

is maintained for a time t after which speed is changed, uniess a

detection occurs before ti , in which case classification commences.

Let the events be *

gI 1. Start search (Vs)

2. Start search (Vs)
s27S ', ' • . 3. Start decoy classification

4. Start HVT classification

"I "

75



As before, we assume state 4 to be absorbing. The transition matrix

is then

12 13 14

AaQI1  0 a 23 aY24(6.1). A 2 2

a3 1  0 33 a34

0 0 0 1

Note we are assuming that after classifying a decoy, if no other targets

are immediately visible, the searcher makes a high speed sprint away from

the decoy. Also, we allow a limited detection capability at sprint speed.

The f matrix is

f f fl f1

f2 f2 f2 f2

(6.2) f 2 2 2

f3 f f3 f3

f4  f4  14 f4

6.1 The Transition Matrix

Consider first y13' which is actuall 'y13(tl) a function of search

(sprint) time t1 . Thus

C 13(t ) = PrfContact a decoy before an HVT and before tl1
started search at speed Vsl at time zero] 1

As before, let

Xs = time to detect an HVT at V
I sl

Y1 = time to detect a decoy at Vsl
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A Then

Q' 1 (t I P[Y 1 5Y andy Y '.t

= ( x~ I x y 1 5- t N~Y 1 t 1

1( 1 t1 1 l 1 9t1)-jt

Writing

F x (t) = (T d nd F~1 t =, Mt fYJ( )
0 01o

=p[%c I t] -P(Y I. t

we have

fF(t)
P( Y t'IY5 ~t FY1 tI if t :9t

if t > t

so that

tf1
011 (t 1 Py1(t)fx1 (t)dt + F Y(t I[ I. - FX1 (t 1 )

0

Analogously,

c14 (t 1  ] FX1  t)f YJ tM dt + PX tI l - F2( )

0 x(,



and 0 12 = 1 13 u14

There are also obvious analogies for a 21(t 2), a 23(t 2), and 24(t2).

One may compute a31 3, 3 34 in the same manner as a2 1 ' 22' '23 were

computed in the three-state model. We consider now the case where

fxi(t) and fyi(t) are exponential as in (4.17a). Then for i = 1, 2

C 3(t) 1- + -

(i+Si)ti ]  (Xi+ i)t i

= ( ti i

a12(tl) = e

'21 (+t )te

6.2 The f* Matrix and Expected Values

In this model we don't have a "p.d.f" matrix because a and '2

(the length of time in states 1 and 2, respectively) are not continuous

random variables. Rather they are mixed random variables with a contin-

uous and a discrete component each. This is all right, though, because

all we need is the f* metrix (which still exists) and expected values

of the Ti . As in the three-state model, the forms of f3 and f4 are

arbitrary, while the forms of f and f2 must remain consistent with

the aiji's,

We proceed now to examine the probability distribution of T1' The

analysis for T2 is identical.
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We have

t if t tP t)

1 ) I !I&1 ) +1 1 x I t) if 0 < t < t

P t tI=t 1

la 13(t) + 14( ) 0 < t < t1
V 1

Hence, in general, P(r 1 t) is discontinuous at t t I  We have*

ao t t
P( r = t) = 1

0(t1-1 (t) = 1 12(t) if t = t1

f (tO < t < t )= a t) + '" (t) a' (t) for 0 < t < t1 1 13 14 12

Thus

t
E(t) = t .. (t)+ 1 ta' (t)dt

1 1 12 1 f 12

In the case where fxl(t) and fx2 (t) are exponential we have

"(X +B )t / l ";iB )

E(I) = t1e 1 + tO, 1) e  dt

11 1 1)t. -ei1 1)t - )t

te 1 1 1 te 1 1 e -

I e101) 1-(X i+Bi) t
1 -e1 1

X +1

An analogous equation holds for E(T2). These terms are required in the
following subsection for computing E(T 14).

Where the prime indicates derivative with respect to t.
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6.3 Conditional Expected First Passage Time

Referring to (3.2), (3.11), and (3.16) we proceed to derive

E(T1). Dropping the s arguments of the f*(s) for sake of clarity, we
14 i

have

0 , f* Y* f*
12 1 13f1 14 1

Sf* 0 f* Y *
2*(s) 1 2 '23 2 24 2
a f* 0 1 f* f

31 3 0 3 33 3

0 0 0 f4
4

So

1•- _* f* f

12f1 13 1 14 1
x f* 1 - O f* f*

g*(s) 21 2 23 2 24 2
f * 1 - * *

31 3 33 343

0 0 0 1-f

1 a a a4

b 1 b b41 fi3 4

c 0 c3  c4

0 0 0 d4
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i

Thus

g11  g1 2  g13  g14

Ci - g*(s)]-, _ 21 g22  g23  g24

g3 1  g32 g33 g34

0 0 0 g44

C3d4  -a2c3d4  d4 (a2b3-a3) -a2 (b3c4-b4c3)+(ac4-a4c3)

-d 4 (blc3 CIb3 ) d4(c3"a3c
)  -d4(b3-a3 b I  (b3c4-b4c 3)-b (a3 c4-a 4 c3 )+cI(a3b4a4b3)

-d4c I  d4a2c1 d4 (-a2b ) -CI(a2b4-a4)-c4 (1-2 b )

0 0 0 c (a2b3 -a3 )+c. ( 1-a2b )

where k = Cd 4 (a2b 3-a3 ) + c3 d4 (1-a2 b)

Now

sp* (0) W s
1P4,) - (z~h*].. w.(a) =(1-t*)rIh*)1

14 '4 4 14

(1-f*)h*
4 14

= (1-f*)g*.($)I.g*srl

4 1. .4

=(1-t*) l l c9
4 ( if) t 12924 13 34+ 14 441

where

1 . + (ot20 - )f *f * + 01 0 f.*f.
524 2 c 24 2 3  '2 4 0'33 2 3 21 14 1 2

1 a *+o f*f*~(34 k 43 1431 122431 1 221 34 3"1 2 3

44 k ' 333 13 31f13 12 21 2

122133- 31120t23)f 'f23
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and

'4 ~~k = 3 f(-~[ at f* f*+af*] +t (1f)(f **(..
31 112'231~2 '1f +(f4 lC33f3) 12211 2

= (11) - f*-C f*f*..t a f*i*+(a a )f*f*f*l
4L 33 3 13 31 13 12 21 12 12'21'33C12'2331 1 2 3

So

Cl 1* +("1A -'1'33)~lf* ' 12(334-2 3)f*f*f*
sp* (1) a14ft + a'1 2a'2 4 f~f2 a 3 ~ 1  f * a1 ( 2 a 4 ' 12 3

14 11--a+f' - a a ff'3- a af3f* + a(a a -a
1 3.-3 -0133f113 -12'2112 1 1323 2

E( dxPu~)V~su-v~s)~s

14 do L 14(JIl-

But we find that u(O) = V(O) since

of4 + a ~+ ~ a( aa
14 12'24 + 13'34 '14'33 + 12(*2334 '24"33

ct33 - l13*31 - 12*21 + 12 21'33'23'31

where

12+a1 14 '21 + 23 + 24 1'031 + 33 + 34

Hence

E(T ) v'(O) - u'(Q)
14 V(O)

-(1-a 1 2 )(1-&33 )E(1 1l) + a'1 2 (aY2 1+C(24 4jE(T I + E(,T 2 ]

+ ["33(14) + 1(3'4) ')

+aCy12 La 23(*31 + 34) -a ',(a2+a'4) ["Y(r + E (' 2 + E(r3

1-a33 0113'31 -012"21 + 12 (a21'33'23'31

'4where E('r) d =N

Note that if we set (x12 =0, a 21 1, E(r 2 0 and make the proper

identifications, we get (4.12).

82



7. CONCLUSIONS AND RECOMMENDATIONS

This study has shown that the semi-Markov process is an effective

framework within which to study questions regarding the effectiveness

of decoys in delaying a searcher looking for a particular type of tar-

get. In particular, the four questions raised in the Introduction have

been answered in detail for a constant speed searcher and constant speed

targets. However, output expressions t 22(t) and G 23(t), respeci:ively

the number of decoys encountered and the cumulative distribution of first

passage time for a searcher starting in the classify decoy state, remain

to be derived. The question of mean time has been answered to a degree

for a variable speed searcher. Applications to other search and related

problems are implicit in the type of analysis that has been conducted.

For example, optimization of the "sprint-drift" search tactic is a

latent application of the four-state model discussed. A slightly up-

graded four-state model could provide much insight into "sprint-drift."

Given the assumption of a constant range detection law, the three-

state model is a suitable representation of the search problem, within

the limits of the random motion/position assumption, the restrictions

due to overlap, and a large (relative to detection radii) operating area.

In order to extend these limits it is recommended that the effects of

geometry and time on the state transition mechanism in the three-state

model be studied in detail and the three-state model be expanded to four

states by including a secondary search state as discussed in Section 4.3.3.

The geometry/time study would likely include numerical calculations to

provide functional relations for generalized use within the context of

the three-state model and extensions. Such a study is necessary if the

model is to be used for optimization (where it is likely to be pushed to

extremes) or for study of relatively large decoys (where decoy coverage

approaches the size of the operating area).
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Several interesting questions involving constrained optimization

arise. Loosely rpeaking, it is clear that the more decoys that are

available the better for the 11VT. However, it is also clear that the

choice of decoy configuration and number of decoys is a constrained

problem. This constrained choice problem will assume characteristics

dependent on the circumstance within which it arises. Some possibilities

are

1. Given specified limited funds how many decoys of

what configuration should be built to optimize
some operational variable, such as probability

of HVT detection?

2. Funds are "limited" but not specified. Therefore,
it is desired to meet some operational performance

£threshold (such as a minimum acceptable HVT
detection probability) with minimum cost. How

many decoys of what configuration should be built

and what is the cost?

A third question, of some interest in initial planning stages, is how

the optimum number and configuration in (1) above vary as the amount of

available funds varies. For example, it may be of considerable interest

to know whether or not only the number anO not the configuration varies

with a change in the budget constraint. Of course, examination of any

of these questions requires development of the relation between per unit

decoy cost and decoy detection range, speed, and holding (classification)

time. In optimization studies such as suggested here, scenario depen-

dencies (such as size of operating area and operation duration) can be

removed to some extent by considering various scenarios and applying

probabilistic weighting factors at the appropriate places in the analysis.

Another area for analytic extension is the situation of stationary

decoys whero the searcher can plot the position of classified decoys

and thus render them relatively ineffective. The three-state model is

not applicable in this situation because the transition probabilities
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change with each decoy that is classified. What is needed is a general

n-state formulation. Such d formulation may be obtainable by exploiting

and generalizing the special structure of the following six-state tran-

sition matrix (where the stars denote allowable transitions and the state

definitionb follow)

1 2 3 4 5 6

1 0 * 0 0 0 *

2 0 0 * 0 0 *

3 0 0 0 * 0 *

4 0 0 0 0 * *

5 0 0 0 0 0 *

6 0 0 0 0 0 1

where

state 1 = search with 2 decoys unclassified

state 3 = search with 1 decoy unclassified

state 5 = search with 0 decoys unclassified

state 2 = classify decoy with 2 decoys unclassified

state 4 = classify decoy with 1 decoy unclassilied

state 6 = classify HVT.

Results analogous to those for birth-death processes might be obtainable.

A ubiquitous assumption in this study is the definite range

detection law. The realized detection range in any real encounter is a

random variable that is represented in the models discussed here by a

fixed range R (which depends on the type of target and its speed as well

as searcher and environmental characteristics). If the target comes

within R of the searcher, the target is assumed detected; no detections

occur at ranges greater than R. The value assigned to R is usually the
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median value of a distribution generated by models outside the scope of

this study. The search models presented in this document permit sensi-

tivity studies on R but they do not take into account the inherent

variability in realized detection ranges. Hence, it is recommended that

a study be conducted to determine the effect of this inhere,t variability

on the results produced by the current search models, Such a study could

be conducted with Markov process models and could examine fade zone

effects as well as variable detection range.

Recommendations for future work may be summarized as follows:

0 Derive output expressions for a searcher starting
in the classify decoy state

* Incorporate geometry/time interactions into
the transition mechanism of the three-state
model

* Expand the three-state model to four states by
including a secondary search state

* Optimize decoy configuration using the three-
state model to gain insight into dependency of
optimum configuration on budget constraints

0 Incorporate a "clearing-turn" maneuver into
the four-state model and subsequent optimization
study of "sprint-drift" (e.g., find the optimum
durations for sprinting and drifting)

* Develop a model to examine the situation
where decoy classification information obtained
by the searcher does not dissipate with time

* Study the effects of detection range variatior
and fade zone phenomena.
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Appendix A: ALTERNATE COPUTATION OF C2 AND 2

In Section 4.3.3 we determined a22 and on the basis of a

specified number of targets and finite specified ares. We now drop ex-

plicit consideration of area and number and develop an approach based

on target density. Equations (4.27) and (4.28) still hold, but we re-

place the binomial distribution by the Poisson distribution. That is,

we assume that as an element cf area AA -* 0 we have

Pr(0 decoys in A) 1 - XAM + o(M)
Pr(l decoy in A) = XA + o(AA)(A.1I)

Pr(O HVTs in AA) = l- A + o(&A)

Pr(l decoy in AA) = AA + o(MA)

Consult Refs. 1 or 2 on the Poisson process. We further assume that the

number of decoys (or HVTs) in nonoverlapping areas are mutually indepen-

dent. Let K = number of decoys present and L = number of HVTs present.

Then

(A.2) P(U HVTs resent) = P(L.= 1) = e X = 0, 1,

where x = 6 TrR 2
c c

(A.3) P(k new decoys present) = P(k+l total decoys presentlat least

one dedoy present)

= P(. = k+IIK : 1)

P(K = k+1 & K 1)

P(K ; 1)

= P(K = k+l)/P(K k 1) k = 0, 1,

e- y k+ 1e kc = 0,1I,...

1 - -y (k+l)'

where y 6 TR2

d d
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ii
It is clear that

(A.4) a21= P(K = IlK 1 1) . P(L = 0)

ye-x-y

1 - e

and that

00 00

(A.5) =  V 1P(K =k+1K 1)P(L=) -
k--O

e-x-y 0 O k+l

1 -Ye Tk (k+l)!
k--O A=l

Also

00 00
(A.6) E22 = k- P(K = k+lK > 1)P(L=A)

-x-y 00 00 k+l

1 - e- y Eu E +k .(k+l) t
k=1 Z--0

It happens that (A.6) is the more complicated expression and is best

obtained as '-22 = - ' 23' So we examine (A.5). Let

e x
(A.7) m - and p = -

e-Y y
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Then we can write

00 00 A-1 k+l
(A.8) '23 m Vi x y

k=-O f=1

=m ] 1 __2

k~ 1,2- A+k A. k.

=m x E ypk J dy

k=1 A4=0

00~C~~) 0 0 k I

k= k k t-

00 k kk

k-kx

kkkl

kmi
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We have thus replaced a double sum by a single sum, but the

summation operation is still infinite.
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Appendix B: ALTERNATE REDUCED OVERLAP MODELS

In Section 4.3.3 under the heading "Reduced Overlap" we considered

a queuing model of HVT/decoy interaction due to overlap. This appendix

presents an alternative class of models for representing the interaction.

This alternative class requires specialized data and has no special de-

cision variable for controlling overlap per se. The queuing model is

therefore viewed as a more fruitful approach end the alternative class

is presented basically for completeness.

We first consider P simply as a function of number of decoys orc

decoy density. Define

(B.) P = TTR2 /A
co c 0

and redefine Pc a function P c(n ) or Pc (6 d) as Pco multipVied by

weighting factor. For example, we could write

(B.2) P(n) = Pco - eand

If we could establish, for example, that P (10) = P , then we would
c 2 co

have a = 0.069315. This function is depicted in Fig. B-1.

More generitly, we can consider the contact rate X as defined in

c

Section 4.3.3. We could then write

(B.3) Pc )c = Pco [ 1  e -akc]

or alternatively

(B.4) P ( ) = P 1- (2aX + 1) e
C c CO c
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P (n

Pco

10 20 nd

FIGURE B-1 PC AS A FUNCTION OF NUMBER OF DECOYS

Using (B.4), suppose we knew P (1) = -P . Then a = 0.85 and we have
c 2 co

Fig. B-2.

PCO

FIGURE 3-2 Pc AS A FUNCTKM OF: ENCOUNTER RATE
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Extending this approach, suppose it could be determined that the

situation looks like Fig. B-3. That is, things can be kept pretty well

Pci ;XCI

PCO

A.2 ACSI X2 C

FIGURE 8-3 EXTENSION OF PC AS A FUNCTION
OF ENCOUNTER RATE

under control until the encounter rate X reaches some critical level,c

after which the ability to separate deteriorates rapidly. Such a curve

can be obtained by fitting data to the equation

Sk k k c k-1e-kau

(B.5) P(X) ukek du
c c co r(k)

In the absence of data, (B.b) could be established by specifying two

points on the curve such as ( ,Pc (X )) and (2 ,Pc (X2)) shown in Fig. B-3.
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(/

For example. we could establish "critical points" X1 and 2

P (X )
c.  - .05

1 co

P c(X)

2 P 95
co

.-here, respectively, "things start to deteriorate" and "chaos begins to

reign."
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Appendix C: OVERLAP MODEL ERROR STUDY

In the discussion of the reduced overlap model in Section 4.3.3 it

was recognized that the assumption A*/A = (R /R )2 could fail. Indeeds c s

it will fail if the decoy being classified is within Rc + P of the
c d

perimeter of the operating area. In order to get a rough assessment of

the error introduced by this failure we examine a particular case with

Rc = 70 nmi and Pd = 25 nmi. Let "r" denote the event "decoy being

classified is located r nini from the center of the operating area."

Assume r is uniformly distributed between 0 and R , the radius of theo

operating area. Assuming that "r" is independent of "HeA " we can write
s

(C.1) P(HCA* HCA ) = P(HcA*IHeA & r)P(r)
s r s

where we are implicitly quantizing r and P(r) is the probability of a

specific value of r. Actually, we consider 11 equally likely values of r,

r, = 20 i = O,..., 10

P(r) = 1/1i

Hence,

10
(C.2) P(HCe1 tHeA5) = (1/11) E P(HA*jHCA & r

i=0

P(HcA*IHCAs & r i) is further deccmposed by conditioning on the location

of the searcher on the perimeter of the classification circle of radius

P about the decoy. We assume the searcher is uniformly distributed
d
along that portion of the classification perimeter that.is located inside

the operating area. This assumption is questionable for those values of

r where the classification perimeter is entirely inside the operating
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area but is "close" to the perimeter of the operating area; for now we
f

ignore this possible source of error. This searcher distribution is also

quantized into discrete points (6 to 10 points depending on the value of

r and the resulting geometry). We then have

n r

(C.3) P(HcA*tHeA, & ri) = ( 1/nr )  , P(HjA*jHeA*HcA & r I & s)
s' J=l S

where "s " denotes searcher is in position J and n is the number ofj r

searcher positions for distance r.

The area P(HcA*lHeAs & r & s ) can now be measured. A planimeter

was used for the small study but the procedure could easily be programmed

for a digital computer. The situation is depicted in Fig. C-1 for a

given value of r and s . The ratio of the shaded area to the crosshatched

area is the probability to be measured. The reader can compare Fig. C-1

with Fig. 4-2. The results obtained for P(HCA*IHCA & r ) are shown in

Fig. C-2 with a smooth curve fitted to the data.

P(HCA*IHCA ) is then calculated to be 0.583 via the formula (C.3).

This is to be compared with the approximation (R /R )2 = 0.544. Thus,

the error appears to be small. An appropriate modification of the reduced

overlap model including the calculated value 0.583 was exercised and the

resulting change from using (R AR )2 in the operational measures E(T 13),

H 13(t), and G 13(t) was found to be negligible in the care examined

(R = 70, pd = 25, R = 200).c do

Thus, although it is by no means a definitive error study, this

set of calculations indicates P(HCA*IHCA ) = A*/A is a reasonable5 s

approximation. The approximatioi* can be expected to break down as

R + P approaches or exceeds R .
c d o
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Appendix D: A MINIMAL MARKOV PROCESS FORMULATION

As mentioned in Section 3 the special case where f (t) = fi (t) is

an exponential distribution is a Markov process. Markov processes are

discussed extensively in Refs. 1 and 2 where they are given Pnother char-

acterization, that of the minimal proces3, which arises from particular

assumptions. The concept of minimal process, with its "infinitesi,.tal

generator matrix," and its relation to our present characterization of

th6 SNIP is discussed by Karlin (Ref. 2, Chs. 7 and 8). A brief discussion

is included here for completeness. The more classical minimal process

approach was not used in the main body of the study because the alterna-

tive was more suited to the events occurring in the real phenomena under

consideration.

We assume a stationary continuous (in t) transition probability

matrix P(t) = [p ij(t)j defined by p ij(t) = Pr(X(t+s) = JIX(s) = il where,

using our previous terminology from Section 3

Pr(X(t+s) = jiX(s) = il = PrA j(t+s) IA i(s)]

with A (t+s) = [WeQ:x W(t+s) = j

n A i(s) = {WeQ: xW(s) =i

The relationship to our SMP terminology is given by

q h lim

i lO Preceding page blarik
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of 1  /q i j

ij
S0 i=J

and 1

3

t f (t) = - e i , ... , n
iJ i qi

The question can be raised as to how to formulate our search

problem so as to have a minimal Markov process. Let us assume that

for small At

Pl2(At) = X.Ltt + o(At)

P 1 3(At) = O'AC + o(t)

P2 1
(At) = [P.At + o(At)]t 1

P2 3(At) = [I.At + o(At)] 3

P3 1 (At) = P3 2 (At) = 0 for all At

where

I = Ptno new targets in view when finished classifying decoy)

13 "" Pat least one HVT in view and chosen from field of

targets when finished clsssifying decoy),

Note V is given by (4,31), or (,'.32) if n = 1, or (A.5). We have
n nd-l c

a given by al = (1-P) (1-P,) where P and P arG as before; or
1 Cc d

can be given by (A.t,/.
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We require

(i) f p41.= 1 all t 0 0, all i=l, ..., N

(ii) P (t) 0 all t Z 0, all i, J=l, .., N

(iii) P(t+s) P(t)P(s)

(iv) lit. P(t) = i j
t.-# 0 +

From the, continuity properties of P(t) it can be shown that piJ' (0)

exists for all i and J.

We define the state transition rate matrix (or infinitesimal

generator matrix) Q = (q)ij as follows

(h)

q p p (0) = 1m all i j
ij ii h 0

- q wherq (0) lim iip~ 1

ii P, h-4 0 h

In our case of a finite state space, q < all i, j and q = 0.

Ij J=l i

Q is nonpositive on the main diagonal, non-negative off the main

diagonal, and its row sums are zero. 
It can be shown that P(t) = eQt

(matrix exponential). Then by definition we have

q = 12 q13 L 8

q2 1  = 1 p, q22  = '31'

=, 0 =q31 = 32

and since the row sums are zero, we complete with

qll = - (X+2), 2 - (C1 +'u3 ),, q3 3  = 0.
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Thus

F- (X+8) k8

1 01 (1+a 3 )p a 3

Using the method of Cox and Miller (Ref. 1, p 196 ff) we obtain

(011+a 3)P + X
E(T 1 3 ) = 10(al+) + a3X P

This is identical with (4.12) when the following identifications are made

a 1 l 21 C3 - a2 3
I5

a13  C1 14
1

E(1 E(T)
1 '2

If we use the area approach in computing a1 and 3 and if we

consider the special case n = 1, we can use (4.32) to compute a andnd- 1  c3

a1 = (1-P )(1-P d) , so that

1 +a P dnd- (1-Pc)[l-(1Pd)d I + P[Pdnd + ( 1 -Pd)nd 1]

and

E(T 31nc=) =

_ dnd+(l"PC)[l( -P d) +d- lI+ PC[Pd nd+,(I-Pd) nd- l 4 Pdnd
(dd +(l" cL_(~ ) d + PPdnd+(1-Pd) d-1 + "cL1-(l-P )d

d d ) I d110
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On the other hand, consider the case of no overlap, so that

I = , 3 =3 , Then

E(T Ia =1i) +

So once all the variables determining X and are fixed E(T Ie= 1) is
-13

a lineer increasing function of 1 , the mean classificatiop time,

I.I
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