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ABSTRACT

During the last eighteen months work has been underway
developing melt-grown oxide-metal composite structures for
electron emission testing. Prior to this report period,
successful growth had been achleved only in the system UOo-W
and to a lesser extent in stabilized Zr0Oo-W samples. The
successful development of Y203 stabllized Hf02-w as an
additional refractory oxide-metal combination suited for
composite growth is reported. Experiments using U02-Ta
mixtures have produced extensive areas of Ta fiber growth
in this oxide, and the growth of oxide-metal structures
using metals other than W appear feasible. Composition
profiles obtalned using the scanning electron microscope
showed this instrument provided the necessary spatial reso-
lution to examine individual oxide-matrix metal-fiber inter-
faces and suggested the major metallic impurity, iron, is
segregated in the W fibers.

The question of oxide stoichiometry and its influence
on composite growth was extensively considered during all
phases of composite growth, As a first step in the theo-
retical analysis of the emlission anticipated from the compo-
site structures, the electric potentigl distribution was
determined in the interelectrode gap for several different

array geometfies. Experimental electron emission current

xi



densities of approximately 100 mA/cm2 were routinely achieved,
and attempts to exceed this density were limited by the onset
of electrical breakdown in the test diode. With a segmental
collector the emission from selected areas of the emitter
surface was correlated with the growth-etch characteristics

acroses the emitting surface.
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SECTION I

INTRODUCTION

This is the third report describing research performed
on the "Melt-Grown Oxide-Metal Composite" Project, ARPA Order
Number 1637, and also the Semi-Annual Technical Report for
Contract DAAHOl-T1-C-1046, covering the report period 10 June
1971 through 10 December 1971. Previous reportsl’2 contained
detailed descriptions of the modified floating zone technique
and experimental facilities employed during the growth of the
oxide-metal composite struciures containing many millions of

less than 1y dlameter tungsten fibers per cm® uniformly embed

ded in an oxide (insulating or semi-conducting) matrix. This
informetion will be reviewed again only if it pertains to
specific results presented in this Report.

The primary technical objective of this study is to
understand the growth processes leading to coupled growth
and ordered mlcrostructures during the solidifications of
refractory oxide-metal mixtures and to successfully produce
useable samples of these composites and evaluate thelir poten-
tial for electronic applications, with the initial emphasis
on electron field emission. The research program is divided
into five areas to meet these objectives, and the work in

these areas is outlined below.



A. INDUCTION COUPLING AND SOLIDIFICATION BEHAVIOR OF CXIDES
AND OXIDE-METAL MIXTURES

A study of the chemical, thermal, electrical and mechani-
cal variables active during the solidification of numerous
induction melted oxides and oxide-metal mixtures is in pro-
gress to interpret and understand the parameters that control
the successful growth of oxlide-metal composites. Variocus
techniques including doping, higher sample densification and
higher preheat tempecratures have been used to increase the
number of oxide materials that can be internally melted by
induction heating. During this report period the size and
uniformity of stabilized ZrO,-W samples has been greatly
improved, and the first successful growth o’ oxlide-metal compo-
site structures in the system stabilized HfO,-W has been
achieved. Different refractory metals have been mixed with -

U0, to study composite growth in selected Uog-metal systems.

B. STRUCTURAL AND CHEMICAL CHARACTERIZATION OF OXIDE-METAL
COMPOSITES ‘

As the different composite samples become avallable,
they have been characterized with respeet to their growth
morphology and crystallographis orientation relationghips,
using predominantly x-ray diffraction and scanning electron
microscopy (SEM) techniques. The study of the amount and
location of impurities and dopants across cell and individual
oxide-matrix metal-~fiber interfaces, using primarily the

energy dispersive x-ray detector of the SEM, has been inltlated.




C. THE FORMATION OF OPTIMUM EMITTING ARRAYS

Composite growth experiments in the systems UO,-W and
Zr0,-W are in progress to determine the practical limits of
tungsten pin densities and diameters obtainable solidifying
near eutectic compositions. Techniques to improve the uni-
formity of these arrays, specifically in pin spacings and
diameters, and the continuity of the pins are under investi-
gation. The influence of oxlide stolchlometry changes on
composite growth in the system U02-W is discussed. Chemical
etching approaches are belng used to develop improved tech-
niques to expose, shape and recess the metallic pins in the

different oxlde matrixes.

D. FIELD EMISSION THEORY

Analytical and numeriqal techniques are belng used to
theoretically determine the field emission current from a
generalized emitting array. Such variables as pin shape, pin
height, pin radius and the properties of the matrix are inclu-
ded in the analysis. Since 1t 1s impossible to fabricate an
array having all pins of uniform height, radius and spacings,
the effects of distributions of these variables will 5§ con-
sidered. The electric field strength in the interelectrode

gap has peen determined for several different pin gecmetries.

o]




E. EXPERIMENTAL EMISSION MEASUREMENTS .

The electron emission performance of oxide-metal compo-
sites is being evaluated in a diode structure as a function
of array geometry and such electrical variables as field
strength and interelectrode spacing. Emission measurements
are conducted under carefully controlled conditions so that
the onset of physical damage to the emitter structure can be
determined. A segmental collector has proved especially
useful in equating emission characteristics with emitter
geometries. The emission measurements are ultimately directed
toward predicting the performance of the oxide-metal composite

cathodes in practical electron devices.
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SECTION II

INDUCTION COUPLING AND SOLIDIFICATION EEHAVIOR

OF OXIDES AND OXIDE-METAL MIXTURES

This section is subdivided into two subsections:

A) Induction Coupling and Melting Behavior of Oxide Systems,
and B) Solidification Behavior of Oxide-Metal Systems. These
subsections cover investigations designed to develop new
oxlde systems that are capable of belng internally melted by
high frequency induction heating and attempts to combine
lthese oxldes with »efraccory metals to form useful oxide-
metal composite structures. The description of current work

in the most advanced system, UOp-W, is covered in Section IV,

A. INDUCTION COUPLING AND MELTING BEHAVIOR OF OX1DE SYSTEMS

Melting and subsequent controlled solldification of
refractory oxides and oxlde-metal mixtures have been previ-

1,2 using high (4 to 30 MHz) frequency rf

ously accomplished
heating. This technique is limited to systems that have
sufficient electrical.éonductivity at elevated temperatures
to support eddy-current heating at the level required to pro-
duce internal melting.

During the first half of this contract period a number

of oxides, binary oxide compounds and oxide mixtures have

i
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been tested to determine their sultability for internal

melting using the rf coupling scheme. A complilation of the
test results including preheat temperatures, rf coupling and
melting behavior and miscellaneous comments for the three
classes of materials - oxides, oxide compcunds and oxide
mixtures - are presented in Tables I and II. Sample prepara-
tion and testing were carried out in the manner previously
describedl’2 except as noted in the Tables.

Of the single and binary oxide compounds tested (Table I),
Ti0,_y appears to be the best candidate for use in composite
structures. The addition of 5 weight % of -325 mesh titanium
metal seems to have eliminated the outgassing of oxygen
resulting from the change in stoichiometry. As can be seen
in Figure 1, the metal addition has changed the color of the
titania suboxide from white to black. Microscopic examina-
tion of the polished cross section did not reveal the presence
of a metallic phase. However, under bright field illumination
three oxide phases were observed: a matrix composed of light
and dark blue grains and orange colored platelets. Of the
oxide mixtures tested (Table II), HfO, + 10 mole % Ca0 and
Zn0 + 20 mole % Nb,O5 were the only ones to form a stable
molten zone. However, they both suffer from other préblems.
During melting of the Hf0,-CaO mixture, a reddiﬁh-browh gub-
stance was deposited on the quartz atmosphere tube of the
growth system which prevented accurate temperatﬁre measure

ments. This problem may be related to the formation of a

4
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Figure 1.

Polished Section of an Induction Melted Ti0p Sample
Containing 5 Weight % Addition of Ti Metal. X3.5.




compound between the two components of the mixture or between
the components and the glassy carbon preheat tube. The
ZnO-Nb205 eutectic mixture containing 30 mole % Nb205 (melting
point 1285°C) was unsuccessfully tested earlierl. This two
component system has another eutectic composition occurring
at approximately 20 mole % NboOg5 (melting point 1308°C). As
indicated irn Table II this second eutectlc was easily inter-
nally melted; but, because of the low melting temperature, the
surface of the pellet did not ewit enough thermal energy to
remain solid and contain the molten zone. This eutectic mix-
ture may have potentisl for developing low temperature oxide-
metal composites 1f the molten zone can be contained by using
a lower rf frequency or by cooling the external surface of
the sample.

Based on the experimental results observed during this

report period, it appears that because of rf arcing problems

the best method of improving the coupling efficiency of oxides
and oxide mixtures is to decrease the rf frequency and utilize
higher preheat temperatures to obtain the required electrical
conductivity to support eddy curreut heating.
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- B. SOLIDIFICATION BEHAVIOR OF OXIDE-METAL SYSTEMS

The research included in thils subsection was desilgned
to improve and interpret the growth of oxide-metal eutectic
structures in systems other than UOo-W and to determine 1if
oxldes that can be Internally melted by rf heating exhibilt
coupled (ordered) growth when solidified with metal additions.
Prior to this report period only the growth of U0o-W samples
had been controlled well enough to warrant emission testing.
Extensive ordered growth in the system stabllized ZrO,-W has
been achieved, and the initial emission testing of this mate-
rial 1s reported in Section V of this Report. The growth of
ordered W fibers in a stabilized HfO, matrix has been success-
fully accomplished, and the results of early work in thils
system are presented. A number of additlional metals besldes
tungsten have been tested as the metallic component during

the solidification of UO,-metal samples. Encouraglng results

2
with UO,-Ta samples have been obtained.

1l. Stabllized Zr02-W

The melt-growth of oxide-metal composites in the system
stablllized ZrO,-W has advanced signifilcantly during tpis
report period. Composite specimens with "good" fiber growth
running the entire length of the zone travel (v2 cm) have
been obtalned. Thls achlevement has primarily been the e~

sult of varying (lowering) the rf frequency employed during

13
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growth and establishing the influence that the stabilizer

and tungsten content have on the composite structures. Work
in these areas and the initial experiments designed to study
the effect of the atmosphere on the stoichiometry (0:2r ratio)
of molten ZrO0, are discussed in this subsection.

The frequency used to induction heat stabilized Zr0,-W
rods has a great effect in the ablility to establish a stable
internal molten zone. Frequencies used with Zr02-Y203-W
mixtures have been 16, 7.6, and 3.8 MHz. 1Initially the higher
frequencies were used because only at these higher frequencies
was 1t possible to establish eddy-current heating in these
poorly electrical conducting materials. With 16 MHz, Zr02-Y293
mixtures could be easily melted; but rf arcing and spills of
the molten zone were problems. At 7.6 MHz the samples could
also be melted and arcing problems were reduced; however,
there was difficulty establishing a power setting high enough
to insure complete internal melting while still maintaining
the integrity of the thin solid skin.

Improved coll-sample geometries and increased preheat
temperatures have lead to the successful rf melting of
Zr0,-Y503-W mixtures at 3.8 MHz. At this frequency the
increased rf penetration leads to a thick unmelted shéll to
contain the molten zone, and increased power assures cdmp;ete
internal melting. During typical experiments Zr02-Y203-W
rods approximately 19mm in diameter were preheatéd and sin-

tered using a N,-H, atmosphere at 1650-1700°C inside a

U




molybdenum tube and internally melted with a skin temperature
of about 1870°C. (These are uncorrected, as-read optical
temperatures obtained sighting directly on the Mo tube or
oxide-metal rod.)

Variations in the amount of Y203 stabilizer and metal
additions in the Zr02-Y203-W system have been studied to find
compositions suitable for composite growth. Duwez et.al.,3
report that Zr02 and Y203 form a cubic solid solution from
7 to 56 mole % Y203 at 200000. The Y203 addition is necessary
to produce a cubic solid solution which does not have any
disruptive crystal lattice changes. Pure ZrO2 and Zr02-Y203
mixtures with less than 7 mole % Y,03 show a lattice trans-
formation from monoclinic to tetragonal at about IOOOOC, and
a volume change of about 9% which would cause severe cracking,
especlally during cooling.

Samples containing 7.9 mole % Y203 and various amounts
of W were induction melted. When 5 weight % W was used, the
sample contained areas-of fiber growth and also large areas
of primary oxide without any W. With 10 weight % W, the sam-
ples contained uniform fibers throughout the melt zone. An
addition of 15 weight % W to the ZrO, - 7.9 mole % Yp05 mix-
ture produced W dendrites in addition to the W fibers;

Increasing the Yp03 content to 10 mole % also yielded
samples displaying "good" growth; however, with this oxide
mixture 15 weight % W was required. Tungsten additions above

and below 15 weight % produced similar structurel changes to
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that noted for the Zr0,-7.9 mole % Y2O3—1O weight % W ' _scribed
above,

In an initial experiment employirng 12.5 mole % Y203 and
15 weight % W additions to Zr0,, the structure shown in
Figure 2 was obtalned. With this composition the primary
oxide phase avmears at the cell (grain) boundaries rather than
in isolated circular areas typical of oxide-rich mixturesl’z.
This result seems compatible with the trend requiring an
increased amount of W as the quantity of Y203 stabilizer added
to Zr0, is increased 1in order to form "good" uniform oxide-
metal structures.

Transverse and longitudinal views typical of the stabi-
lized ZrO,-W composites using the 10 and 7.9 mole % addition
of Yp03 and the 15 and 10 weight % addition of W are presented
in Figures 3 and 4. Figure 3 shows a sample that was lowered
at 1.85 em/hr. The fibers are 0.3 microns in diameter, and
there are about 20 million fibers per cm2. Figure 4 shows
that the fibers are continuous but have a wavy pattern. In
addition to the uniform continuous fibers shown in these
Figures, other types of structures have been observed. Banded
fiber growth occasionally occurred in samples for reasons
unknown as yet, and two different forms of banding hé?e been

identified. In the first type, Figure 5, the fibers are sim-

ply interrupted by a band of oxide a few microns thick. The

fibers continue on the other side of the oxide band Just as

if the discontinuity had never occurred. In the second type

16

RIS A et T T




Figure 2. Transverse Section of a Zr0o-12.5 mole % YA0q4 -
15 Weight % W Sample Displaying Primary Oxgdé
Phase in the Cell Boundaries. Dark Field, X600.
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Figure 3. Transverse Section of "Good" Growth in a ZrO. -

10 Mole % Y503 - 15 Weight W Sample. Dark
Field, X600.

Figure 4. Longitudinal Section of "Good" Fiber Growth in a

Zr0o-7.9 Mole % Yp03 - 10 Weight % W Sample.
Dark Field, X600.
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of banded structure, shown in Figure 6, the oxide band 1is
wider; and the fibers appear to re-nucleate from a single point
and fan out. Posslible reasons for banded growth include non-
eutectic liquid composition, fluctuations in the power causing
remelting of an area already solidified, or fluctuations in
the lowering rate.

In addition to fiber growth, several samplés have shown
extensive areas contailning W platelets. The W platelets
appear about a micron thick and a few hundred microns on a
side. They are generally rectangular but sometimes have six
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