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S U M4 M A R Y

INTRODUCTION

When a force is impressed upon a body immersed in a fluid continuum,
the resultant motion of Lhe body is determined not by the impressed force
alone, as it would be in vacuo, but by the impressed force and the forces
arising from the body-Tidul 'Interaction.

If the body moves linearly with constant velocity through an other-
wise undisturbed homogeneous, incompressible fluid with sufficiently re-
mote boundaries, or if there is a uniform (constant velocity) flow of the
fluid past the body, the interaction force can be described as a resist-
ance, or drag. However, the body-fluid interaction for unsteady motions
is not adequately described by the drag for uniform linear motion. Cor-
responding relationships must be developed for the accelerating body. An
attempt to describe the acceleration-induced resistance leads to the con-
cept of virtual mass.

Motion of a body in a fluid medium results in the interdependent
phenomena of boundary layer, wake, and mass transport. For steady motion,
a total, or composite, drag, which includes deformation drag, friction
drag, and pressure drag, is defined, expressing the resistance to motion
as a quadratic law containing an empirical nondimensional drag coeffi-
cient. The total drag depends on the velocity, body geometry, and phys-
ical properties of the fluid, the parameters controlling the wake and
boundary layer. Although a net fluid mass transport occurs, it does not
contribute to the drag. 1 Only when acceleration takes place does the
effect of transported fluid mass become a factor in resistance.

WVhen a body is accelerated in a fluid, an inertial force occurs
because a mass of fluid is also accelerated. In otAer words, the force
which acts to impart kinetic energy to the body, through the body-fluid
interaction, imparts kinetic energy to the surrounding fluid, as well.

The total mass being accelerated, or apparently being accelerated,
is called the virtual mass. Therefore, the virtual mass is the sum of
the physical mass of the body and the hydrodynamic mass (often termed

"added" mass or "induced" mass). The hydrodynamic mass corresponds to a
volume of fluid defined conventionally in simple geometrical terms. The
simplified concept of an entrained fluid mass moving with the body rep-
resents a complex phenomenon of body-fluid interaction which plays an
important part in hydrodynamics.

Sonobuoy systems consist of essentially three elements: a surface
float, a hydrophone, and an intermediate suspension. As the surface
float is required to maintain an exposed antenna, it is designed to

1. See References, page 25.
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follow the ocean surface with a constant freeboard. The hydrophone, on
the other hand, is susceptible to adverse dynamic effects and is required
to be virtually motionless. 2 , 3 The function of the intermediate suspen-
sioi is to prevent the transmission of motion of one to the other.

A hydrophone suspension invariably takes the form of a simple sprinq-
mass system or series of spring-mass systems. It is so designed that its
natural frequency is below the range of ocean wave frequencies, and there-
fore, the motion amplitude of the hydrophone is attenuated from that of
the surface float. The smaller the natural frequency of the suspension,
the more effective the suspension is.

Three parameters affect the natural frequency - mass, spring con-
stant, and damping coefficient. For a low natural frequency, mass and
damping coefficient sLould be l3rge, and spring constant small. The jug-
gling of these parameters for optimum efficiency of motion isolation is
influenced to a certain extent by size, weight, and packaging considera-
tions.

Large physical mass means a heavy sonobuoy, but beyond this, a
weighty lower unit limits the use of a nighly elastic compliance in the
suspension. To overcome this limitation on the compliance, buoyancy can
be utilized to reduce weight while retaining mass. The use of buoyancy,
however, vastly increases size, possibly, beyond packageability. One
means of acquiring mass without significant weight or size problems is
the utilization of hydrodynamic mass.

Practical utilization of hydrodynamic mass for the design of a sono-
buoy suspension cannot be implemented until the phenomenon itself has
been sufficiently understood and described for design criteria to be de-
termined. These criteria have not heretofore been available. The task
of ascertaining these criteria was undertaken at NAVAIRDEVCEN under In-
dependent Rcsearch Task No. ZROll-OI-O1, Work Unit No. ES-I-O1.

RESULTS AND CONCLUSIONS

1. The hydrodynamic mass and acceleration resistance effects of oscil-
lating disks, cylinders, and tandem disks have been determined through
measurement of the frequency and amplitude of motion at resonance of a

`,spring-mass system.

2. The hydrodynamic effects on oscillating disks (and other bodies)
cart he expressed in terms of coefficients of hydrodynamic inertia, drag,
and total resistance, and can be correlated by the acceleration modulus
v2 /ad, which is a measure of motion amplitude, although no correlation
with Reynolds number is apparent.

2,3 See References. vage 25.
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3. The hydrodynamic coefficients describing a disk in harmonic accel-
eration can be written as:

Ci = mh/Pd3 = 1.2 (v 2 /ad) 1 / 2

CD = FD/(pAv 2 /2) = 2.2 (V2/ad)"1/2

CT = FT/(pAv 2 /2) = 5.2 (v2/ad)"1/2

within limits of motion approximated by 0.08 < v2 /ad < 3.

4. The hydrodynamic inertial effect is associated with the vortex for-
mation in the wake of the accelerated body, and an anomaly occurs whrn
the vortex is shed, causing unstable motion of the oscillating body.

5. Variation of hydrodynamic inertial effects of oscillating cylinders
with length-to-diameter ratio and of oscillating tandem disks with sepa-
tation-to-diameter ratio has been determined.

6. The data resulting from this investigation can be applied directly
to sonobuoy suspension systems, facilitating the analysis and design of
these systems.

-v
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N 0 M E N C L A T U1 R E

A = Projected surface area normal to motion

a = Acceleration

B = Volume characteristic of a body

= Drag coefficient

CI = Hydrodynamic inertia coefficient

CT = Total resistance coefficient

c = Damping constant

cc = Critical damping constant

d = Diameter of body

f = Frequency

FD = Drag force

F, = Hydrodynamic inertia force

FT = Total resistance force .

g = Gravitational acceleration

k = Spring constant

Z = Cylinder length

M = Magnification, y/yo

m = Virtual mass, mh + mp

Mh = Hlydrodynamic mass

mp = Physical mass

NF = Froude number

NRe = Reynolds number

St = Strouhal number
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NOMENCLATURE (continued)

s = Separation distance between tandem disks

To = Oscillation period

Ts = Vortex shedding period

t = Time

v = Velocity

x = Linear distance

y = Amplitude of oscillatory motion

Yo = Input amplitude to spring-mass system

v = Kinematic viscosity

p = Fluid density

S= Angular frequency, 2rf

= Undamped natural frequency of spring-mass system in air

wnd = Damped natural frequency of spring-mass system in fluid

i

- ix -
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BACKGROUND

The effect of acceleration on a body in a fluid was first noted in
the 1776 work of DuBuat with spherical pendulum bobs in water; then, in

the early nineteenth century, Bessel, Green, and Stokes laid the theoret-

ical foundation for the concept of virtual mass. Extensive bibliographies

on early work in this subject have been presented by Torobin and Gauvin4

and Stelson. 5

The theoretical basis for hydrodynamic mass arises out of potential

flow considerations of the kinetic energy imparted by a moving body to an

ideal, incompressible fluid of infinite extent. Milne-Thomson 6 considered

the disk as a special case of the planetary ellipsoid. From the complex

potential, the kinetic energy was determined to be pd 3v 2 /6, for a circular

disk of diameter, d, moving perpendicularly to its plane with velocity,
v, in a fluid of density, p. The hydrodynamic mass, therefore, is

mh = od 3/3 (1)

Kanwal 7 considered oscillating axially-symmetric bodies at small
Reynolds numbers to determine virtual mass arising in Stokes flow. The

formula derived for a circular disk moving broadside to the stream for

small Reynolds numbers exhibited a dependency on the square root of os-

cillation period. A similar result was obtained for the sphere, agreeing

with the parameter presented by Carstens 8 to describe spherical particle
motion in a fluid.

The treatment of in oscillating disk by the integration of pressures

method based on a vibrating circular piston in an infinite baffle 9 results

in a series solution for hydrodynamic mass. At high frequencies, the

value of hydrodynamic mass is approximated to exhibit a dependence on the

square of oscillation period, and at lower frequencies, mh approaches

pd 3 /3, the same value obtained in equation (1). The assumption of this

method is that the amplitude of oscillation be extremely small, since no

account is taken of boundary layer formation.

The conditions of an incompressibie; irrotational ideal fluid under

which the results of potential flow theory apply are difficult to achieve

with real fluids in any but very limited situations. For a circular disk

in flowing water, Stanton and Marshall 1 0 found a vortex-ring to have

formed at a Reynolds number of 5, and vortex shedding to have begun at

NRe = 195. Si'rmons and Dewey,11 Willmarth, et al, 1 2 and others have re-

ported the critical Reynolds number for vortex-i--lated instability-onset

in disk motion as 100. Once vortex formation occurs, the theoretical

solutions have no great practical importance.

5-12 See References, page 25.
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Small amplitude oscillations do approximate the conditions of the
theory, and the way in which the hydrodynamic mass behaves in this area
is of interest. Stelson5 reported on experiments with bodies oscillating
in fluid with amplitudes on the order of 0.01 inch at frequencies between
14 and 35 Hz. For 2-inch diameter disks, the values of hydrodynamic mass
obtained were in good agreement with the theoretical value, being slightly
larger when disk thickness was increased. Similarly small amplitudes
(0.002 to 0.011 diameter) for disks vibrating in water at 10.31 Hz were
employed by Bramig 1 3 who reported values of hydrodynamic mass below the
theoretical value but approaching it as the amplitude de-reased. Carstens5

noted the effect of increasing amplitude of oscillation on submerged
spheres to be a reduction of hydrodynamic mass from the theoretical value.

The indication, in the works of both Bramig and Carstens, that hy-
drodynamic mass decreases as the amplitude of oscillation increases, is
misleading, because larger amplitude oscillation experiments performed
more recently denote the opposite trend. This apparent contradiction
probably occurs because of the different flow regimes in which the exper-
iments took place.

The conditions of turbulent flow, which accompany any appreciable
motion of a bluff body in a reai fluid, have been encountered in experi-
mdents involving both linear motion and oscillation. Significant results
have been obtained for linear motion by Iversen and Balent 14 and Luneau 1 5

for disks, Keim16 for cylinders, and Bugliarello 1 7 and Lunnon 18 for
spheres. Oscillatory motion has been investigated for cylinders and flat
plates by Keulegan and Carpenter 19 and McNown and Keulegan, 2 0 for cylin-
ders and spheres by Crooke, 2 1 and for various bodies by Patton. 2 2 Many
of these investigations have been summarized by Torobin and Gauvin4 and
by Wiegel. 2 3 The hydrodynamic mass determined in these investigations
for several bluff bodies in two distinct modes of acceierated motion was
larger than the theoretical value for potential flow and showed a distinct
anomally when vortex shedding was initiated. Further reference to these
investigations is made in the subsequent discussion of the results of the
present study.

13-23 See References, pages 25 and 26.
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DISCUSS ION

DETERM1N1ATION OF IffDRODYNAMIC MASS

The experimental technique used to measure the hydrodynamic mass of
bodies in high amplitude oscillation was the natural frequency method.
This consisted of measuring the shift in resonant frequency and the am-
plification of body excursion for the spring-supported body in water and
air. In this manner, the effect of fluid damping was determined at the
same time as hydrodynamic mass,
Apparatus

The experiments were undertaken ING CAPLE E

using 1/16-inch thick aluminum disks ARM A RIG ABLE

of 2, 4, 6, and 12-inch diameters, SPEED

and a 12-inch diameter fiberglas A-DRIVE E
disks of the same thickness. The FOR
disk was mounted orthogonally on AMPLITUDE

the end of a 1/4-inch diameter rigid -ROD

rod, attached at its center, and the
rod was suspended from a helical
spring. A variable speed drive,
with adjustable input (forcing) am- WATER
plitude from 1.5 to 5.5 inches, was WOODEN CYLINDRICAL

used to oscillate the top end of the TANK

spring through a range of frequen- 12FT WATER DEPTH DISK
cies. The experimental setup is il- 2OFT DIAMETER
lustrated in figure 1.

The springs were fabricated of FIGURE 1 - Experimental Apparatus
piano wire wound in close coils.
The helical springs were designed to have negligible damping. With ap-
propriate masses, the springs exhibited internal damping ratios c/cc
< 0.005. The springs were determined to be linear and the spring con-
stants were invariable.

The water tank was cylindrical, having a depth of 16 feet and a di-
ameter of 20 feet. The disks were submerged in tap water to a mean depth
of 4 feet. Experiments were spheres by Stelson 5 indicated 2 diameter
submergence produced negligible freu surface effects. Muftha 24 places
this depth limit at 2.5 diameters for cylinders; Patton, 2 2 at S diameters
for spheres; mnd Waugh and Ellis, 2 5 at 2.5 diameters for spheres. Of
these investigators, only Patton experienced high amplitude oscillation.
Sufficient submergence depth was considered tc have been obtained for the
present experiments so long as the surface was not Disturbed by the disk

22-25 See References, page 26.

3-



NADC-AE-7120

motion. When the disk wgas too close to the water surface, a definite
rippling accompanied each motion cycle, and the resonant peak shifted to
a higher frequency than that observed when the disk was at sufficient
depth. Good agreement was obtained between the data from disks in this
large tank and those from similar preliminary tests in a 2- by Z-foot
square tank, having a depth of 3.5 feet, with disks up to 6-inch diameter.

Additional tests were conducted using cylinders of 2.S-inch diameter
and length-to-diameter ratios of one and two. These were oscillated ax-
ially. Two similar disks in tandem were also employed.

Procedure

The spring-mass system was assumed to be adequately described by the
linear single-degree-of-freedom equation:

my + cy + ky = Fo cos Wt, (2)

where m the virtual mass 'the sum of physical mass mp and hydrodynamic

mass mh) and c the damping coefficient for the disk in water are dependent
upon the system parameters. The peak amplitude and the frequency at which
it occurred were determined experimentally. This resonant frequency was
considered the damped natural frequency for the system in watt w nd and
comparison with the undamped natural frequency in air wn yield equations
for the hydrodynamic mass:

mh= ̀mp Q[(2 + Q)/6] [wn/wnd] 2 - J}, (3)

and coefficient of damping:

c = (mpw/wnd) V(4 - Q)(2 + Q)/9, (4)

where Q (equation (A-14); appendix A) depends solely upon the magnifica-
tion factor of the motion amplitude. Derivation of equations (3) and (4)
are shown in appendix A.

IHYDRODYNAMIC MASS AND DMIPING OF OSCILLATING DISKS

The drag of a bluff body in uniform flow is:

FD = CDpAv 2 /2, (5)

where CD is the nondimensional drag coefficierv., p is the fluid density,
A is the projected surfice area of the body normal to the direction of
flow, and v is the velocity of the body relative to the fluid. For a
body of a given shape, the drag is described by equation (5) and a plot
of C[) versus Reynolds number, as determined by experiment.

-4-
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Resistance to acceleration may be considered as a hydrodynamic iner-

tial force:

Fr = mha = CIoBa, (6)

where B is a volume characteristic of the body, a is the body accelera-
tion, and C1 , like CD, may be expected to be dependent upon the condition
of body motion.

Because most investigations of hydrodynamic acceleration effects
consider linear motion where the inertial and drag forces act in concert,
a variation of the resistance force equations has arisen:

FT z CopAv 2/2 + CIrBa = CTAV2 /2, (7)

where FT is a total resistance force, and CT is a total resistance coef-
ficient. In oscillatory motion where velocity and acceleration have a
w/2 phase difference, the concept of a simple summation of drag and hydro-
dynamic inertia as if they were a single drag force would seem of dubious
merit, considering the time-sequence of harmonic motion. However, the
values of hydrodynamic inertia and drag obtained in this investigation
resulted from evaluation of the motion cycle of the oscillating body and
may be said to represent steady-state equivalents rather than instanta-
neous values. As both the drag and inertial forces are acting in opposi-
tion to the body motion throughout the oscillation cycle, they can, in a
sense, be summed into the single resistance force in equation (7). Values
for CT have been calculated for the oscillating disk in this investigation
for comparison with linear motion data reported in the literature; how-
ever, this procedure must be accompanied by appropriate notation of the
phase discrepancy involved in placing the oscillatory data on the same
basis as the linear data.

Because the linear single-degree-of-freedom equation was used for
the calculation of hydrodynamic mass mh and damping coefficient c, a drag
coefficient corresponding to the turbulent damping was determined by
equating the damping force cv to a drag force:

cv = CDpAv 2 /2, (8)

defining the drag coefficient as:

CD = 2c/0Av. (9)

This value was umployed in equation (7) for the calculation of CT.

According to the theory of potential flow, the hydrodynamic mass is
the mass of a volume of fluid equivalent to 63.7 percent of the volume of
a sphere with the same diameter as the disk. This can be expressed more
simply as Pd 3/3. Therefore, the volume B in equation (6) is chosen as d 3

-L
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rather than the volume of a sphere, as the spherical volume has no partic-
ular physical significance for the disk. The inertia coefficient C1 for
potential flow is simply one-third, and in general:

C1 = mh/pd 3  (10)

Correlating Modulus

Dimensional analysis yields a number of nondimensional groups de-
scriptive of the body-fluid interaction. Those groups that are possibly
meaningful to this investigation include:

1. Reynolds number, NRe = vd/v;

2. Froude number, NF = v/rg;

3. Acceleration modulus, ad/v 2;

4. Acceleration rate of change modulus, id 2 /v 3 ; and

5. Time modulus, vt/d.

One or several of these dimensionless groups may be useful in correlating
the data in the form of the nondimensionsl coefficients CI, CD, and CT.

Free surface effects were found to be negligible in this investiga-
tion, as the test body was submerged to sufficient depth. Therefore, the
Froude number was not an influence upon the resistance to acceleration.

Reynolds number reflects the influence of viscous forces and is im-
portant in the correlation of drag coefficients for uniform flow. The
drag coefficients f~,r disks and thi.i plates in constant velocity motion
are shown in figure 2. Using the maximum harmonic velocity for calcula-
tion of the Reynolds number, the values of Ci, CD, and CT for the oscil-
lating disk are plotted in figures 3, 4, and S against Reynolds number.
No distinct correlation occurs. This agrees with the results of most
investigators.

Torobin and Gauvin, 4 in summarizing the literature of accelerated
motion effects, noted a trend for the effect of acceleration on drag
coefficient to be reduced as the Reynolds number, and therefore, the
turbulent component of the wake structure, was increased. There is not
sufficient evidence in the data of this 4nvestigation to 5ubstantiate
that reported trend.

The acceleration modulus, first employed by Iversen and Balent, 1 4
has proved valuable in correlating the data of acceleration-induced re-
sistance. The modulus ad/v2 has a significance that has been overlooked
or ignored by investigators in this area. To discuss this point, it is
convenient to define the reciprocal acceleration modulus v2 /ad.

-6-
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Considering the motion of a body accelerated from rest at a constant

acceleration, then:

a - - const

V x at

x a x at 2/2. (11)

The modulus reduces to a measure of the distance travelled:

v 2/ad = 2x/d. (12)

It z-.. be shown that similar results, with differences in proportionality
constants, can be obtained for linear motion associated with practically
any continuously acting monotonic acceleration.

In the case of oscillatory motion, maximum values ;re:

a - y = yw2;

V x y = yoy;

y = y; Q13)

and the acceleration modulus reduces to:

v 2/ad = y/d. (14)

This result imparts a physical significance to the v2/ad modulus and in-
dicates the relationship between linear and oscillatory motions.

The rate of change of acceleration modulus for oscillation is simply:

v 3/ad 2 = (y/d) 2  (15)

and can be considered within the framework of the modulus v2/ad.

The time modulus vt/d has been used by Keulegan and Carpenter 19 with
success in correlating the data of plates and cylinders in oscillating
flow. For oscillation, it is apparent that time modulus and acceleration
modulus are closely related:

vt/d = v/fd = yw/fd = 2wy/d. (16)

As it would be superfluous to employ both the time modulus and the
acceleration modulus to describe the motion, the succeeding discussion
considers 3nly the v 2/ad modulus.

-9-
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Inertial, Drag, and Resistance Coefficients

The hydrodynamic inertia coefficient CI for oscillating disks is
shown in figure 6 as a function of the modulus v2/ad. Correlation af the
sort that could not be obtained for Reynolds number does occur for the
acceleration modulus. Using the method of least squares, an aporoximate
equation for the inertia coefficient was determined:

CI = 1.2(v 2 /ad) 1/2 (17)

for 0.08 < v 2 /ad < 3. For values of v2 /ad < 0.08, the coefficient Cj =
1/3, the theoretical value. When v 2/ad > 3, the disk motion became er-
ratic and measurements could not be made.

Iversen and Balent 14 and Luneau 1 5 investigated the acceleration ef-
fects on circular disks in linear motion. The former operated with vari-
able acceleration (decreasing with time) and the latter with constant
acceleration. Thei- results are compared with those of the present in-
vestigation in figuii 7. It should be noted that the three curves rep-
resent different relationships between v 2/ad and y/d. For example,
Luneau's v 2/ad modulus is twice the distance travelled divided by disk
diameter [equation (12)], and the v 2/ad modulus for the present investi-
gation is one-half the total excursion of the oscillating disk divided by
the ac1ameter [equation (14)]. If these two curves were plotted on a
scale Lf equivalent distance travelled in diameters, they would fall much
closer together.

When the damping constant c of equation (2) is plotted against v2 /ad,
TnO correlation occurs (figure 8). However, when the damping constant is
converted into a drag coefficient by equation (9), correlation with v 2/ad
results, as shown in figure 9.

Employing equation (7), a total resistance coefficient CT was plotted

in figure 10. A least squares computation lead to the approximation:

CT = 5.2(v2/ad)-1/2. (18)

From equations (7), (17), and (18):

C3 = 2.2(v2/ad)"1/2. (19)

A comparison of the data of the present investigation for oscillating
disks with the lineai motion data fir disks from Iversen and Balent and
Luneau is showr. in figure 11. The conditions of potential theory for
hydrodynamic mass and of steady flow drag are shown as limiting valut3
after the technique of Burgliarello, 17 whose data on spheres followed
similar trends.

-10-
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Disks of square, hexagonal, and octagonal shape, having the same
area as the circular disk, were employed in a limited number of experi-
ments and yielded results that differed imperceptibly from those obtained
with circular disks.

Vortex Formation

When a bluff body moves linearly through a fluid with a constant
velocity, vortex formation and shedding occurs in the wake with a period
defined by:

Ts = d/Stv, (20)

where St is a Strouhal number (nearly constant over a wide Reynolds number
range). Bodies moving with different constant velocities shed vortices
at different periods; however, for steady flow conditions v = x/t, the
displacement x of the body during each shedding cycle is the same, inde-
pendent of the velocity:

x = d/St. (21)

For a flat plate normal to the flow, the Strouhal number was reported
by Lehnert 26 to be 0.147 for Reynolds numbers above 4000. Since the vox-
tex shedding from a plate occurs in alternate fashion, first from one side
then from the other, the distance of travel for the shedding of a vortex
pair is 6.8 diameters. Therefore, there is a 3.4 diameter spacing between
shed vortices.

If the flat plate were oscillated normal to its surface, the ampli-
tude of oscillation y would be just half the total excursion in one direc-
tion. To obtain a condition such that no vortices were shed during the
cycle except at the points of direction reversal, the amplitude of oscil-
lation must be limited to y = 1.7 d.

Keulegan and Carpenter 19 employed a stationary flat plate in oscil-
lating flow to measure the hydrodynamic mass coefficient in a range of
Reynolds numbers, based on maximum velocity, between 5,000 and 15,000.
The data were correlated by the time modulus vt/d using the maximum veloc-
ity v = 21ry/To, where To is the oscillation period. Since the time modu-
lus can be written in terms of v2 /ad [equation (14) and (16)], the data
of Keulegan and Carpenter are shown in figure 12.

The value of Cm, a hydrodynamic mass coefficient related to the vol-
ume of a cylinder of fluid with the plate as its largest cross section,

increases with distance travelled (y/d = v2 /ad) until the vortex shedding

cycle coincides with the oscillation cycle. The hydrodynamic inertia

begins to decrease beyond this point as vortex shedding occurs during the

oscillation cycle. When the amplitude of oscillation is large enough

that numerous vortices are shed per cycle, a quasi-steady condition is

reached.

S~- 15 -
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Modules for 2 Long Thin Plate in Oscillatory Flow

Stanton and Marshall reported shedding of vortex rings from a disk
at uniform velocity (NRe u 200) with a periodicity corresponding to 8
diameters of travel. Using Hoernerts 2 7 empirical function for Strouhal
number at Reynolds numbers above 103,

St = 0.21/CD3 /•, (22)

the Strouhal number for the circular disk is 0.192, and the distance for
vortex shedding is 5.2 diameters. Vortices shed from the disk do not
alternate as in the plate; therefore, one vrtex would be shed every 5.2
diameters, or when vZ/ad = y/d = 2.6, for the oscillating disk.

It was noted in the oscillation tests that when the amplitude of
disk motion was in the proximity of 3 diameters (2y = 6d), the disk be-
came unstable and tended to skew to one side. This was attributed tovortex shedding during the notion cycle. The effect was clearly detri-

mental to the accuracy and credibility of the data beyoni the critical
amplitude, and the experiment was limited to lower amplitudes. It is
important that utilization of the data of the present investigation be
accompanied by the caveat against extrapolation.

Inversen and Balent, reporting on linear motion of disks, show scat-
tered data above v 2 /ad = 5, although the data below v 2 /ad = 5 are well
correlated. The discrepancy is attributed to side-wall interference and
increasing inaccuracy in this range, but vortex shedding would appear to
be a highly probable source of the scatter.

16-
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When the hydrodynainic inertia and drag effects are combined into a
single drag force, the vortex anomaly, which occurs in the former but not
in the latter, has an effect of far lesser maZnitude, as Iversen and
Balent's and -eulegav and Carpenter's data illustrate. Only the cylinder
data of Keulegan and Carpenter are indicative t:,f the vortex anomaly in
the total resistance coefficient.

Description of an Oscillati'. Cycle

The oscillatory motion of a disk in a fluid is not a simple phenom-
enon, and it is instructive to follow the disk through the motion cycie,
noting the various fluid-body interactions.

When the disk is approaching the centerline of motion, the velocity
is nearing zero. The drag force, therefore, is increasing to its peak
value as iuertial resistance decreases. The moving disk has been accumu-
lating and continues to accumulate a vortex ring that forms like a dough-
nut in the wake, enlarging and elongating along the direction of motion
as the disk travels through the fluid. The energy associated with the
acceleration of the vortex and the surrounding fluid, which is not en-
trained by the disk, but nevertheless, is set into motion by it, are,
probably, the principal sources of hydrodynamic mass. Because the accel-
eration at this poinit is approaching zero, so too is the inertial effect
of the hydrodynamic mass. At the instant when the harmonic velocity is
maximum and harmonic acceleration is zero, the resistance force on the
disk is entirely drag, as in the case of the constant velocity linear
motion, and the hydrodynamic mass, although present, is undetectable.

During that portion of the motion cycle in which the velocity in-
creases from zero to its maximum, the Reynolds number describing the mo-
tion increases from zero to some maximum value indicative of both laminar
and turbulent conditions being experienced. However, as this motion cycle
is just one in a long series of oscillations, the fluid has been disturbed
by previous cycles, increasing t~ie turbulent content of the motion.

As the disk passes the centerline of motion, the velocity begins to
decrease and acceleration effects become more important. Duriiog this
quarter cycle, drag decreases to zero and the hydrcdynamic inertia in-
creases toward a maximum. Reynolds number decreases again, and the com-
ments made above apply. The v~rtex continues to grow. The condition for
vortex shedding has not been attained as yet, since a distance of travel
(or circumstance of v 2/a) equivalent to six or eight disP diameters is
required before sufficient vortex mass and elongation for shedding has
been achieved. If the disk were to exceed the vortex shedding condition,
the process of that shedding would cause an instability (presuming the
disk is not rigidly maintained in orientation) to send the disk askew and
cause considerable deviation from sinuscidal motion.

17-
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When the disk attains the endpoint of the motion cycle, velocity is
zero and the disk is instantaneously motionless. The vortex in the disk's
wake, however, is still in motion. It may be presumed that during the
previous quarter-cycle, this vortex has been pushing somewhat on the disk,
as the fluid entrained in the wake would lag the disk in decreasing its
velocity, but at the point of zero velocity of the disk, the vortex im-
pinges upon the disk, flowing over and around it. As the disk begins to
reverse direction of travel, it must overcGme the inertia of the vortex
formed in its previous half-cycle anu initiate the formation of a new
vortex on the other side, in its wake as it travels again toward the cen-
terline of motion, to repeat the events of the preceding half-cycle. It
is the flow-reversal with the momentary vortex-body cpposition which most
distinguishes the oscillato-.-y case from the linear one. The relative im-
portance of this end-point-of-motion effect to the cyclical hydrodynam,,ic
inertia of the oscillating body is not clear, and a detailed analysis of
the forces on the disk would be required to ascertain this.

CYLINDERS AND TANDEM DISKS

The emphasis of the present investigation was upon the determination
of the hydrodynamic effects of harmonically accelerated disks; however,
cylinders and disks in tandem were also considered, employing the same
procedures heretofore applied to disks.

Cylirders

Although numerous investigations of a cylinder in motion transverse
to its axis have been made, the cylinder in axial motion has been ne-
glected. Two and one-half-inch diameter cylinders with length-to-diameter
ratios (E/d) of 2, 1, and 0.025 (disks) were oscillated and values of
hydrodynamic mass and drag determined.

The hydrodynamic inertia coefficient based upon the cylinder volume,

CI = mh/C(w/4)d2t, (23)

was found to vary with the correlation modulus v 2 /ad and L/d, as shown in
figure 13. The results of Sarpkaya 3 with parallelepipeds in small ampli-
tude oscillation and Patton2 2 with parallelepipeds in large amplitude os-
cillation are shown for comparison. These data show the same trend of
increased hydrodynamic mass with increased motion amplitude as the cylin-
der data (y/d = v2 /ad). The drag coefficient was unchanged between 1/d
I and E/d = 2, as shown in figure 14 for several values of v2 /ad. The
drag coefficient for cylinders in constant velocity axial flow from
Hoerner 2 7 is also shown. The drag coefficient for unsteady flow approaches
the steady flow value as v2 /ad increases, as in the case of the disk.

A total resistance coefficient CT for cylinders was determined from
equation (7), using CI and CD from figures 13 and 14, and is shown in
figure 1S. Decrease of CT with both v 2 /ad and 1/d occurred.

I - 18 -
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Tandem Disks

Two disks 2f equal diameters separated by a distance s were used to
determine the hydrodynamic effects on oscillated tandem 4isks. The disks
used were 4 and 6 inches in diameter and they were separated by a 1-iich
diameter cylindrical rod.

The values of CI obtained were based upon a characteristic volume of
d3 , as in the case of the single disk (equation (10)). The hydrodynamic
inertia coefficient is shown in figure 16 for various values of separa-
tion-to-diameter ratio (s/d) and v2/ad. When s/d is very small, the data
of the single disk apply. As separation increases slightly, the two disks
maintain a semblance of the single disk, as the distance between the disks
is too small, in relation to the disk size, to allow much flow in this
gap. At somewhat more separation, a decrease in C occurs as destructive
interference of the vortex trying to develop behind the forward disk with
the rear disk takes place. This interference is evident for the range
0.1 < s/d < O.S, reaching a pmak between 0.25 an~d 0.35, with some depen-
dence upun v2/ad. Beyond s/d a 0.5, the tandem disks begin to exceed the
hydrodynamic mass of a single disk until at some large value of s/d (by
extrapolation s/d > 2), the tandem disks perform as two separate disks.

Drag coefficient and total resistance coefficient for tandem disks
arc shown in figures 17 and 18, respectively. The characteristics of
these two figures are such the same as in figure '6. It is noteworthy
that Hoerner' 7 describes the drag of tandem disks in steady flow by sm-
mation of a constant CD associated with the forward disk and a CD asso-
ciated with the rear disk which is negative in the range 0 < s/d < 2.3
and positive thereafter. The drag coefficient approaches that of two
separate disks beyond s/d = 7. The negative drag on the rear disk is
explained by the suction effect on it caused by the reduced dynamic pres-
sure within the wake of the forward disk. As v 2/ad increases in figure
17, thus beginning to approach the case of steady flow, the value of s/d
where CD begins to exceed the drag coefficient of a single disk increases.
The inset in figure 18, from Willmarth, et al, 28 indicate a change in
vortex interaction betwsen tanden disks it s-d = 0.35, which approximates
the condition noted in the present investigation.

-21-
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APPENDIX A

DETERMINATION OF THE HYDRODYNAMIC MASS AND
DAMPING CONSTANT OF OSCILLATING BODIES

The motion of the oscillating body submerged in a fluid is assumed
to be described by the linear single-degree-of-freedom equation for a
spring-mass system,

my + cj + ky = F (A-1)

The *zndamped natural frequency of the system is

c4 =Vk/mp (A-2)

where m1 is the physical mass and k the spring constant. In the fluid,
the "unaamped" natural frequency is

rk/n - =• =Vk/ ('mp (, h A-3)

where mh is the hydrodynamic mass and m is the virtual mass, m = mp + mh.
The damped natural frequency in the fluid is

wnd =Vk/m " - (c/2m)2 =V/t2 - (c/2m) 2T (A-4)

where c is the damping constant in the fluid (internal spring damping is
negligible). The critical damping constant in the fluid is

cc = 2 mwn = 2Vk(mp + mh) (A-S)

Combining equation (A-4) and equation (A-5)

(c/cc)2 = 1 - (wnd/wn) 2  (A-6)

The magnification at a frequency w is written

M = Y/y0 = - CW/wn)2] + [2(w/In) (c/cC)j2 1 (A-7)

or

M = y/yo = k [(k-mw2 ) 2 + W2 c2 ]- 1 / 2  (A-8)

- A-I -
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At w = tn,

S- c¢/2c (A-9)

and at w = Olid,

"tnd [I{ '"- (nd/wJJ212 ÷ 4(bd/a)2(C/Cc)2/ (A-1O)

and sub: tituting equation (A-6)

Mnd = (C/cc)" + 4CC/CC) 2 (1 (c/CC)21' (A/2l

Solving for (C/Cc) 2 ,

=C/Lc)2 ( (4 /16 - 'i/Md2)/6 (A-12)

and using equation (A-9)

Mn2 = 6/(16 W-,16 - 12Mnd 2 ) (A-13)

Since Mnd and Mn must converge as damping appraoches zero, i.e., Mn in-
creases as Mnd increases, the sign in equation (A-13) is negative (-).

Writing

Q =V/16 -12/Mnd 2 (A-14)

(C/Cc) 2  (4 - Q)/6 (A-15)

Combining equation (A-2) and equation (A-3)

(n = m/p =1 (inh/mp) (A-16)

Using equation (A-4)

(/wd = (1 + mh/mp)/[l (C/c) 2 ] (A-17)

mh mp (wn/Wnd )2 [1 -(C/CC)
2 ] - (A-18)

A-2-
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Substituting equation (A-IS),

% = sp [(2 + Q)/6] [(,/,,nd) 2 . i] (A-191

and

C = (Xp44 2 1 /ud) i/4 - Q) (2 + Q)/9 (A-20)

"-here Q is given by equation (A-14).

- A-3
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APPENDIX B

APPLICATION OF THE DATA TO SONOBUOY SUSPENSIONS

The sonobuoy suspension system may be considered as a spring-mass
system governed by the linear single-degree-of-freedon equation. As
might be expected, however, application of the results for the hydroay-
namic effects of oscillating disks to this equation are not simple, and
several alternative approaches are feasible.

.I - The physical parameters of the spring-mass system
(k, rt .et oprational freouency (tm), the input amplitude (Yo), fluid
density (p), .nd disk diameter (d) are known. The amplitude of motion
(y) is unk.awn.

1. Alternative One - Iterative Approach. The sagnification equa-
tion can be mritten

y - yOk [(k-.,w2)2 * 02C21- 1 / 2  (B-l)

a. Set a =-p m h and use figures 6 and 9 where

cV = pCD)AV2/2 (B-2)

or the equation

CI - 1.2 (y/d) 1/ 2  (B-3)

CD = 2.2 (y/d)"1/2 (B-4)

or

b. Set m = mp and use figure 10 or the equation

CT = 5,2 (y/d)- 1 / 2  (B-S)

where

cv = oCTAV2 /2 (B-6)

Estimate a value for y and determine the corresponding values of mh and/or
c to substitute in equation (B-l). If the resulting y does not equal the
original estimate, alter the estimate and repeat the procedure until the y
obtained from the equation and the estimate are equal.

- B-1 -
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2. Alternative Two - Reduced vari&bles approach. Comiining equa-
tions (B-2), (B-3), and (5-4) yields

1.44c - ohm (B-7)

ard equation (5-1) can be written relating y to either sh or to c. Iter-
ation can be used to determine y, or the equation (5-3) or equations (3-2)
and (B-4) can be used to write a single eqtation in y. This equation is

04(02_0)y3* + 2a(mpv2-k)y5/2 _ yo22 k2  (34)

where

a = 1.2 Pd5/2 (3-9)

and

B ao2d5/1.44 (B-10)

This equation may be used with an iteration approach somewhat simpler thap
the previous alternative, or solved numerically.

3. Alternative Three - Total resistance approach using equation
(B-S) and (3-6)

C2 : y2yw2  (B-11)

where

y 2,04pd 5/ 2  (B-12)

Substituting in equation (B-l) yields

y3 * [(k - pW2 )/yw21 2 V2 - (yok/yw2 ) 2 = 0 (B-3)

a cubic equation in the form'

y3 + A2y2 _ B2 = 0 (B-14)

Again, iteration may be applied or numerical solution computed. Knowing
A and B, the equation may be gv-,.•hed

F(y) y 3 + A2y2 
- 32 (B-1s:

- B-2 -
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Graphirg F() against y, the function has a maximm at y z -2A2 /3 Aaere
F(y) - [(4A*/27) - g2] and a minimum at y - 0 where F(y) = _82. Therefore,
F(y) cro3;es the y-axis (F(y) = 9) in three places, with two negative and
one positive value of y, if A0/92 3 2714; F(y) is ta~igent to the y-axis,
with two equal negative values and one positive valae of y, if A6/B 2 a
27/4; and F(y) crosses the axis unly once, with two imaginary values and
one positive real value of y, if A1S3 2 - 27/4. In each case, there exists
one real positive value of y which satisfies equation (B-14). The use of
this graphical method is illustrated in figure 8-I where A2 - 2 and 82 - 3
have been chosen arbitrarily. Intersection of F(y) and the y-axis yields
the value of y which satisfies the equation.

The equation (5-14) can also be used to generate a graph as shown in
firgn 8-2 where constant y curves are plot', - for values of A2 and P2.
For the above example of A2 a 2 and 82 = 3. the value of y obtained i'.
shown to agree with the valae obtained by graphing F(y).

Assution B - The physical parameters uf the spring-mass system
(k, ap), c-pe; tion frequency (w), the input amplitude (yo), fluid
density (o), and the desired amplitude of motion (y) are known. The disk
diameter (d) is unknown.

Several methods, similar to the above solutions for y may be used,
determining the value of d from the values of ah and c. Equation (B-13)
can be used directly since y is known to give

y2 = (yok/w 2 ) 2 (1/y 3) _ (k- mp02)2(j/y) (B-16)

and using equation (B-12)

d= (yok/p2)2(114.16y3) _ (k - Mw2)/pw2j 2 (l14.16y) (B-17)

B-
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FIGURE B-i - Graphical Solution of the Total Resistance Equation
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FIGURE B-2 - Concltdnt Amplitude Plot of the Total Resistance Equation
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