

19

 $\boldsymbol{\infty}$

9

00

AD

٢

AD

. •

CCL REPORT NO. 300

FINAL REPORT

STORAGE STABILITY OF BRAND TLUIDS IN TIN, STEEL AND GLASS CONTAINERS

BY

CHARLES B. JORDAN

JANUARY 1972

il.

17

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED

> NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

U. S. ARMY ABERDEEN RESEARCH & DEVELOPMENT CENTER COATING & CHEMICAL LABORATORY

> Aberdeen Proving Ground Maryland

UNCI	LASS	IFI	ED
------	------	-----	----

.

1

ì,

Security Classification

ĨĒ.

DUCUMENT C	CONTROL DATA - R	&D						
(Security classification of title, body of abatract and inde 1. ORIGINATING ACTIVITY (Corporate author)	exing annotation must be	2 REPC	INT SECURITY CLASSIFICATIO.:					
U.S. Army Aberdeen Research & Developm Coating & Chemical Laboratory	ment Center	Unclassified						
Aberdeen Proving Ground, Maryland 21005								
3 REPORT TITLE								
STORAGE STABILITY OF BRAKE FLUIDS IN 7	TIN, STEEL AND	GLASS CO	NTAINERS					
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)		• •	- <u></u> - <u>-</u>					
Final Report								
S ACTIVOR(S) (Last neme, inter neme, intral)								
Jordan, Charles B.								
6. REPORT DATE	78. TOTAL NO. OF	PAGES	7b. NO. OF REFS					
SHILLET OF GRANT NO.	1/	EPORT NUM	48 F R(S)					
AMCMS Code No. 502E.11.80200								
ο. 1 το 5 2 λο 5 λ 1 ο 9	CCL #30)						
6.	Sh OTHER REPORT NO(S) (Any other marked the							
	9D. OTHER REPORT NO(3) (Any other numbers that may be assigned this report)							
d. 10. A VAILABILITY/LIMITATION NOTICES								
This document has been approved for pu	ublic release a	nd sale;	its distribution is					
unlimited. Qualified requesters may on Documentation Center	obtain copies o	f this r	eport from Defense					
11. SUPPLEMENTARY NOTES	12. SPONSORING MIL							
	U.S. Army Washington	Materie	1 Command					
13. ABSTRACT	washing co							
			.					
fluids in tin, steel and glass contain	re the storage : ners.	stabilit	y of hydraulic brake					
Thirty brake fluids approved under Fed	leral Specifica	tion VV-	B-680 were stored in					
5 gallon steel drums, 1 gallon tin can	ns, and 1/2 gal	lon glas	s jugs for a period					
or pyears. Periodically, corrosion a								
on the fluids. Sediment formation was	nd oxidation s bserved.	tability	tests were conducted					
on the fluids. Sediment formation was	observed.	tability	tests were conducted					
on the fluids. Sediment formation was After storage for one year, an average and six failed to meet the oxidation s	and oxidation s observed. of three fluid stability requi	ds faile	tests were conducted d the corrosion test After five years					
on the fluids. Sediment formation was After storage for one year, an average and six failed to meet the oxidation s the average number of failures increas	and oxidation s bobserved. cof three fluid stability requi	ds faile rement. for the	tests were conducted d the corrosion test After five years corrosion test and					
on the fluids. Sediment formation was After storage for one year, an average and six failed to meet the oxidation s the average number of failures increas twenty for the oxidation stability tes	and oxidation s observed. tability requised to fifteen to fifteen	ds faile rement. for the samples	tests were conducted d the corrosion test After five years corrosion test and showed more than 0.05%					
on the fluids. Sediment formation was After storage for one year, an average and six failed to meet the oxidation s the average number of failures increas twenty for the oxidation stability tes sediment by weight, none of the sample discernible pattern regarding commonal	and oxidation s observed. tability requised to fifteen to fifteen to fifteen s showed more lity of failure	ds faile rement. for the samples than 0.1 unde; t	tests were conducted d the corrosion test After five years corrosion test and showed more than 0.05% 0%. There was no hese test conditions.					
on the fluids. Sediment formation was After storage for one year, an average and six failed to meet the oxidation s the average number of failures increas twenty for the oxidation stability tes sediment by weight, none of the sample discernible pattern regarding commonal The oxidation stability and corrosiven	and oxidation s observed. tability requised to fifteen to fifteen to Only four s showed more lity of failure mess results inc	ds faile rement. for the samples than 0.1 unde: t	tests were conducted d the corrosion test After five years corrosion test and showed more than 0.05% D%. There was no hese test conditions. hat a storage					
on the fluids. Sediment formation was After storage for one year, an average and six failed to meet the oxidation s the average number of failures increas twenty for the oxidation stability tes sediment by weight, none of the sample discernible pattern regarding commonal The oxidation stability and corrosiven stability requirement, which would scr	and oxidation s observed. tability requi- ted to fifteen to fifteen to only four to showed more tity of failure mess results inc- teen out those	ds faile rement. for the samples than 0.1 unde: t dicate t fluids w	tests were conducted d the corrosion test After five years corrosion test and showed more than 0.05% D%. There was no hese test conditions. hat a storage hose antioxidant and					
on the fluids. Sediment formation was After storage for one year, an average and six failed to meet the oxidation s the average number of failures increas twenty for the oxidation stability tes sediment by weight, none of the sample discernible pattern regarding commonal The oxidation stability and corrosiven stability requirement, which would scr corrosion inhibitor combinations are n should be added to all brake fluid spe	and oxidation s observed. of three flui stability requi sed to fifteen st. Only four st. Only four ity of failure mess results ind reen out those not stable over scifications.	ds faile rement. for the samples than 0.1 unde: t dicate t fluids w specifi	tests were conducted d the corrosion test After five years corrosion test and showed more than 0.05% D%. There was no hese test conditions. hat a storage hose antioxidant and ed storage periods,					
on the fluids. Sediment formation was After storage for one year, an average and six failed to meet the oxidation s the average number of failures increas twenty for the oxidation stability tes sediment by weight, none of the sample discernible pattern regarding commonal The oxidation stability and corrosiven stability requirement, which would scr corrosion inhibitor combinations are n should be added to all brake fluid spe	and oxidation s observed. to of three fluid stability requi- sed to fifteen to only four s showed more lity of failure mess results ind reen out those not stable over ecifications.	ds faile rement. for the samples than 0.1 unde: t dicate t fluids w specifi	tests were conducted d the corrosion test After five years corrosion test and showed more than 0.05% D%. There was no hese test conditions. hat a storage hose antioxidant and ed storage periods,					

15

Security Classification

.*

DDC AVAILABILITY NOTICE

•

.

.

Qualified requesters may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ч Ч

oust tur Prati Liser	WHITE SECTION
ST SERVES	
BISTA BUTION /A	VÁILAGILITY CODES' IL. md/ar Special
4	

UNCLASSIFIED

10

ŧ

ļ

•

i,

CCL REPORT NO. 300

FINAL REPORT

STORAGE STABILITY OF BRAKE FLUIDS IN

TIN, STEEL AND GLASS CONTAINERS

ΒY

CHARLES B. JORDAN

JANUARY 1972

AMCMS CODE NO. 502E.11.80200

DEPARTMENT OF THE ARMY PROJECT NO. 1T062105A108

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER COATING AND CHEMICAL LABORATORY ABERDEEN PROVING GROUND MARYLAND 21005

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED

UNCLASSIFIED

i

ABSTRACT

The object of this study was to compare the storage stability of hydraulic brake fluids in tin, steel and glass containers.

Thirty brake fluids approved under Federal Specification VV-B-680 were stored in 5 gallon steel drums, 1 gallon tin cans, and 1/2 gallon glass jugs for a period of 5 years. Periodically, corrosion and oxidation stability tests were conducted on the fluids. Sediment formation was observed.

After storage for one year, an average of three fluids failed the corrosion test and six failed to meet the oxidation stability requirement. After five years the average number of failures increased to fifteen for the corrosion test and twenty for the oxidation stability test. Only four samples showed more than 0.05% sediment by weight, none of the samples showed more than 0.10%. There was no discernible pattern regarding commonality of failure under these test conditions.

The oxidation stability and corrosiveness results indicate that a storage stability requirement, which would screen out those fluids whose antioxidant and corrosion inhibitor combinations are not stable over specified storage periods, should be added to all brake fluid specifications.

TABLE OF CONTENTS

Page No.

-

TITLE PAGE	i
ABSTRACT	ii
INTRODUCTION	I
DETAILS OF TEST	1 - 2
RESULTS OF TESTS	2 - 4
DISCUSSION	4
RECOMMENDATIONS	4 - 5
ACKNOWLEDGEMENT	5
REFERENCES	5
APPENDIX A	7
Tables I ~ IV	8 - 11
DISTRIBUTION LIST	13 - 14
DD FORM 1473	15

111

.*

I. INTRODUCTION

Two of the more important requirements for hydraulic brake fluids supplied to the Government under Federal Specification VV-B-680 are that they must be non-corrosive in brake systems and exhibit oxidation stability on extended use or storage. Tests for measuirng these criteria are included in the specification and conducted at the time of qualification.

Brake fluids are composed of many combinations of base lubricants, solvents and inhibitors. In current fluids base lubricants are generally polyglycols or castor oil derivatives; solvents are glycols, glycolethers, or alcohols; inhibitor combinations include alkaline materials and antioxidants. Upon storage, the corrosion inhibitors may interact, deteriorate, or become depleted by contact with metals in the containers, by presence of water and oxidation products in the fluid, or by fluctuating temperatures. If the inhibitors are consumed, corrosion may then take place.

Studies over the past two decades have shown a marked improvement in storage stability of brake fluids (LSD Report Nos. 145, 187 and CCL Report No. 176).

This report contains the results of a continuing program of monitoring the storage stability of fluids approved for use in Government vehicles.

11. DETAILS OF TEST

A. Brake Fluids Tested. All brake fluids appearing on the Qualified Products List for Federal Specification VV-B-680 at the beginning of the test were used in the program. There were 30 fluids from 9 different manufacturers. All fluids met specification requirements at the time of qualification.

B. Type of containers. Three types of containers were used as follows:

1. One-half gallon amber glass jugs with handles, closed by a plastic lid with an organic coated cardboard inner seal.

2. One gallon tin cans made of 0.5 electrolytic lin plate, fabricated with 60 lead/40 tin solder. These cans are "dry-doped" and of the type used in packaging brake fluids. The cans were closed by tin inner seals (until the time of the first inspection) and a screw-cap tin lid containing an organic coated cardboard inner liner.

3. Five gallon unlined steel pails used by the brake fluid manufacturers for packaging and shipping brake fluid. The pails met Federal Specification PPP-P-704, Type I. They were generally equipped with metal or polyethylene pouring spouts and closed by screw cap tin lids containing metal or organic lined cardboard inner seals.

1

^

C. Storage Data. The glass, tin, and steel containers were stored in an unheated warehouse for the entire 5 year storage period (average ambient temperatures at APG are included in Table IV). Samples were removed for test after 1 year, 2-1/2 years and 5 years. Unless otherwise stated containers were immediately resealed.

D. Tests Conducted.

1. Corrosion Test. All fluids were subjected to the corrosiveness test outlined in paragraph 4.6.11 of Federal Specification VV-B-680 after completion of the designated storage periods. This test consists of the immersion of a set of six different metal strips in electrolytic contact in the fluid being tested, and heating at 100°C. (212°F.) for 120 hours. On completion of the test weight loss of the metal specimens is measured and visual evidence of corrosion is noted.

2. Oxidation Stability Test. All fluids were subjected to the oxidation stability test specified in paragraph 4.6.14 of Federal Specification VV-B-680, at the end of the specified storage periods. This test consists of the partial immersion of a set of aluminum and cast iron test specimens electrolytically coupled in a sample of the fluid. 0.2% benzolperoxide and 5.0% water is dissolved in the fluid. The test specimens are immersed for 3 days at room temperature and then held for 7 days at 70°C. (158°F.), after which weight loss is measured and visual evidence of corrosion noted.

3. Water Tolerance Test. All fluids were subjected to the water tolerance test specified in paragraph 4.6.9 of Federal Specification VV-B-680. This test was conducted after 5 years storage only. It consists of exposing a sample of the fluid containing 3-1/2% water to a temperature of -40° C. (-40° E.) for 24 hours followed by exposure of the sample to a temperature of 60°C. (140° F.) for 24 hours. Evidence of separation or stratification is noted and the amount of sediment is determined in accordance with ASTM Method D-91.

4. Sediment Determination. The volume of sediment in the packaged fluids was determined after 5 years storage. The containers were well-shaken and samples were tested in accordance with ASTM Method D-91.

!!!. RESULTS OF TESTS

A. Corrosion Tests - (Table I).

1. Tin Containers. After one year 2 fluids failed; after 2-1/2 years 4 fluids failed; and after 5 years 13 fluids failed. Most failures occurred on brass and aluminum test specimens.

2. Glass Containers. After one year 4 fluids failed, after 2-1/2 years 5 fluids failed; and after 5 years 13 fluids failed. In the glass containers, brass and copper test specimens accounted for most of the failures.

3. Steel Containers. After one year 4 fluids failed; after 2-1/2 years 6 fluids failed; and after 5 years eight fluids failed. These values represent the least failures in corrosion tests found in any of the containers. Tin, brass and copper test specimens were the most prevalent failing metals in steel containers.

Fluids from each brake fluid manufacturer were included among the failing fluids in each of the three containers.

B. Oxidation Stability Tests (Table 11).

1. Tin Containers. After 1 year, 7 fluids failed the oxidation stability test in tin containers. After 2-1/2 years only 3 fluids were found to fail, but after 5 years 14 fluids failed. The cast iron test specimens failed more often than the aluminum.

2. Glass Containers. After 1 year and 2-1/2 years there were 5 failing fluids. All of these failures were on the aluminum specimen. After 5 years, 17 fluids failed of which 5 failed aluminum, 7 failed cast iron, and 5 failed both metals.

3. Steel Containers. After 1 year 7 fluids failed; after 2-1/2 years 16 fluids failed, and after 5 years, 25 fluids failed in the steel containers. Failures on the aluminum test specimens occurred in the first 2-1/2 years while the majority of the cast iron failures occurred after 5 years.

As was found in the corrosion tests, fluids from each manufacturer were included among the failing fluids in each of the three containers in the oxidation stability tests.

C. Sediment in the Fluids and Sediment after the Water Tolerance Tests (Table III).

1. Tin Containers. In the tin containers only one fluid showed greater than 0.05% sediment (#24 showed 0.07%). Also only one fluid showed greater than 0.05% sediment after the water tolerance test (#20 showed 0.08%).

2. Glass Containers. In the glass containers no fluid showed a measurable amount of sediment. After the water tolerance one fluid (#21) showed 0.10% sediment. No other fluid showed more than a trace.

3. Steel Containers. More sediment was found in the fluids stored in steel containers than was found in the fluids stored in tin and glass. Three fluids showed greater than 0.05% sediment (#22, #24, and #28 showed 0.10% sediment). After the water tolerance test #21 and #22 showed 0.10% sediment. All others showed less than 0.05% sediment.

IV. DISCUSSION

A comparison of test results with the results received at the time the fluids were originally qualified showed that in most fluids there was evidence of progressive inhibitor depletion upon storage, even though several of the fluids still met the minimum requirements of the specification. Recent brake fluid rulings issued by the National Highway Safety Bureau, Dept. of Transportation, state that brake fluid offered for sale to the public must meet certain minimum physical and chemical requirements as set forth in the D.O.T. Specification regardless of the date of manufacture of the fluid. In addition it would be undesirable from the military point of view to have a brake fluid in a vehicle which would not give satisfactory performance after limited standby storage. Results included in this report indicate that there is still a storage problem, and a comprehensive effort should be made by industry and the Government to overcome instability of brake fluid upon aging.

Federal brake fluid specifications are "performance" specifications and brake fluids meeting these specifications, as stated in the introduction, are composed of many combinations of base lubricants, solvents, and inhibitors. The inhibitors, usually reactive antioxidants and alkaline materials, interreact, deteriorate or become depleted. Subsequently, the solvents and base lubricants are free to oxidize to terminal organic acid molecules which attack and corrode the metal components of the brake system. Metal soaps are formed which account for gum buildup in the system, and malfunction of the brake system frequently occurs.

It is possible to prepare brake fluids which are satisfactory after 5 years' storage, as indicated by the test results in the tables. Also, the overall stability of brake fluids in storage and in use has markedly increased in recent years due to the presence of oxidation stability requirements in the specifications of both Government and Industry.

The results of this study will be brought to the attention of brake fluid suppliers and the automotive industry so that further investigation in the area of brake fluid stability can be made.

V. RECOMMENDATIONS

It is recommended that investigation continue on factors causing brake fluid instability and that an attempt be made to correlate brake fluid composition with fluid stability.

Based on the present study it is recommended that brake fluid be packaged in tin containers, preferably of small volume. This will decrease chance of contamination and mcisture pickup, and increase "turn-over" of stored fluid. It is recommended that a long term stability requirement be added to brake fluid specifications. It is further recommended that periodic inspection of stored fluids be accomplished and only those fluids found to be stable at the time of inspection be retained for use in military vehicles.

IV. ACKNOWLEDGEMENT

The assistance of Mr. H. R. Sheets in accumulating the test data included in this report is gratefully acknowledged.

V. REFERENCES

Ĩ

- 1. Federal Specification VV-B-680a, Brake Fluid Automotive, dated 18 18 October 1967.
- Federal Specification PPP-P-704, Pails, Metal: (Shipping, Steel, 1 through 12 Gallons) dated 16 August 1960.
- 3. ASTM Method D-91, Precipitation Number of Lubricating Oils.
- 4. LSD Report No. 145, Evaluation of Hydraulic Brake Preservative Compounds after 5 Years Storage, dated 24 January 1952.
- 5. LSD Report No. 187, Development of a Stability Test for Hydraulic Brake Fluids, dated 23 March 1953.
- 6. CCL Report No. 176, Preliminary Studies on the Storage Stability of Brake Fluids, dated 23 February 1965.

APPENDIX A

7

.*

Preceding page blank

- ----

•

Samp le		Tìn			Glass			Steel	
<u>ک</u> و.	1 Yr.	2-1/2 Yrs.	5 Yrs.	1 41.	<u>2-1/2 Yrs.</u>	5 Yrs.	۱ ۲۲.	2-1/2 Yrs.	5 Yrs.
-	8	ОĶ	УO ХО	ð	ХО	Хo	ХO	ОĶ	XO
7	Š	OK	о К	УO	Хo	ð	Ş	ð	ð
ŝ	ð	Х О	Ŀ	ð	ð	Уo	ð	ð	ð
4	Š	8	0K	8	0K	L.	Хo	ð	ð
ŝ	ð	ð	ð	УO	OK	ð	Хo	Š	ð
6	80	S	УO	ð	Хo	б	ð	8	S
~	ð	ð	Ş	оқ	Š	ð	ð	ð	Š
œ	ş	ð	ð	УO	ð	ð	ð	ð	Š
6	ð	8	80	Х0	У0 ХО	8	!	•	
0	8	. 80	о К	80	Х О	8	80	ХO	<u>ن</u> د
=	ð	Ŀ	44.	Ŀ	Ŀ	Ŀ	ð	OK	. LL
12	ð	ð	iL.	Š	ð	١.	ð	Xo	ð
13	Ŀ	Ŀ	Ŀ	8	ð	LL,	Š	ð	Xo
14	ð	ð	Ŀ	Š	Х Х	i.	80	8	ок Хо
5	ð	u.	Ŀ	OK	4.	Ŀ	L.	L	LL.
16	ð	ð	Х Х	оқ О	Х0	٩.	Хo	ð	ð
17	ð	ð	ð	Хo	У О	Хo	;	:	!
18	80	ð	LL.	Ŀ	ï۲	Ŀ	Ŀ	Ŀ.	Ŀ
19	ð	ð	Ŀ	У О	УQ	Ŀ	УO	Хo	Xo
20	ð	ХO	ð	8	8	ð	Хo	ð	У0 ХО
21	ð	Ş	Ŀ	Х О	OK	ХÓ	УÓ	ð	ok
22	ð	ð	ð	QK	оK	УÓ	8	Ŀ	L
23	ð	ð	80	Ŀ	Ŀ	L.	Хo	-	Ň
24	ð	ð	ð	Х Х	УO	оқ	Хo	ŝ	ð
25	ð	0X	Ŀ	У О	У0 ХО	Ŀ	Ŀ	. LE	Ļ
3 6	æ	ŏ	u.	Xo	УO	LL.	хo	L	XO
27	ð	о х	Ŀ	ų.	оқ	8	УÓ	OK	LL
28	ð	60	ð	Хo	УO	Х О	ð	Х Х	ð
29	ð	Х О	ð	1	;	;	УÓ	OK	0K
30	Ŀ	Ŀ	Ŀ	ð	iد.	Ŀ	L	ب	б ц
egends :	8 60	Borderline:	F = Fail.						

TABLE | Its on Brake Eluide After Storrow in

8

Results of Oxidation-Stability Tests on Brake Fluids After Storage in Various Containers TABLE II

•

	<u>5 Yrs.</u>	Ŀ.	Ŀ	Ŀ	Ŀ	Ŀ	LL.	Ŀ	LL.	ł	u.	L	LL.	Ŀ	Ŀ	u.	Ĺ	ł	u.	ч ь	u.	Ľ	Ŀ	Ľ	Ľ	ш	۱L	Ľ	ð	ő	ŏ
Steel	<u>2-1/2 Yrs.</u>	ï£	Li.	LL,	۱L	Хo	ð	u.	S	ł	ð	L.	Ŀ	Ŀ	L	Ŀ	u.	1	íL.	ıL	žo	ð	Ŀ	Ŀ	ð	Xo	Ŀ	žo	ð	ð	ОĶ
	1 Yr.	УO	ð	ð	ð	ð	ð	ð	Хo	ł	оқ	Ŀ	Ŀ	ð	Ŀ	9K	Ŀ	ł	LL.	Ŀ	о Хо	ð	Ŀ	Хo	Š	¥0	Š	, Э	хo	бĶ	ŏ
	5 Yrs.	Ŀ	LL	о Хо	Ŀ	о К	Ŀ	Уo	У0	Уo	Ŀ	Ŀ	Ŀ	оқ О	٤.	Ŀ	Ľ	ð	ш	LL.	о Хо	Ŀ	Ŀ	Ŀ.	оқ	LL.	Ŀ.	Š	УÓ	ð	оқ
Glass	<u>2-1/2 Yrs.</u>	OK	Хo	S	УO	УO	ð	Ŀ	ð	ð	¥0	t-	Ŀ	0K	Ŀ	9 S	ð	УO	Ŀ	У О	о Хо	У0	OK	ð	ð	ъ С	oK	ð	оқ	оĸ	оқ
	1 Yr.	УO	ð	ð	ð	ð	УO	٤.	šo	оқ	0K	LL.	Ŀ	Хo	Ŀ	0K	оқ	У О	Ŀ	У0 ХО	¥0	ð	Х О	¥0	оқ	УO	ð	бĶ	УÓ	оқ	Хo
	<u>5 Yrs.</u>	۶Ŀ	Ŀ	u.	Š	УO	Ŀ	У О	Ŀ	i.	L.	оқ	Ŀ	Хo	УÓ	¥0	Ŀ	Ŀ	Ŀ	u.	LL.	Хo	Ŀ	Ŀ	LL.	Ŀ	Ŀ	Ŀ	Хo	Хo	ЮК
Tin	<u>2-1/2 Yrs.</u>	Ŀ.	Хo	0K	ð	¥0	ð	УO	ð	ð	УÓ	S	ų.	¥0	S	ð	ð	Ŀ	S	9K	ð	S	о Хо	8 X	S	о К	УO	ð	Хo	оқ	оқ
	1 Yr.	Хo	УO	ð	8 S	S	Х О	о К	0K	Ş	ð	Š	Ľ	оK	Ŀ	¥0	Ľ	У ХО	L.	Ŀ	У О	Ŀ	Ŀ	ð	¥o	9K	Š	ð	Х О	ð	ð
Samp le	No.	-	2	m	4	Ś	9	7	œ	ه	01	Ξ	12	13	14	15	16	17	18	61	20	21	22	23	24	25	26	27	28	29	30

9

.*

Legend: F - Fail.

TABLE III

77

		Tin	G1	ass	Ste	el
		Sediment		Sediment		Sediment
6 1		After		After		After
Sample	Percent	Water	Percent	Water	Percent	Water
<u>NO.</u>	Sediment	Tolerance	Sediment	Tolerance	Sediment	Tolerance
ł	Trace	0.02	Trace	Trace	0.02	Trace
2	Nil	0.02	NII	Trace	NII	0 04
3	0.02	Trace	Nil	Trace	0.02	Trace
4	0.05	Níl	Nil	NII	0.025	0 02
5	0.025	NII	N i 1	Nil	0.025	0.02
6	NIT	Trace	NTI	NII	Trace	U.04
7	NTT	NIT	NII	NIT	NII	Trace
8	NIT	NII	NII	Trace	NET	Trace
9	Trace	NII	NII	0.02		Tace
10	0.02	NIT	NII	Trace	0 02	0.04
11	NII	NIT	NII	NII	Trace	0.04 Trace
12	0.02	0.025	NTI	Trace		Trace
13	Nil	NIT	NET	NTI	0.02 Trace	I Face
14	NII	NTT	NTI	N 1 1	Trace	
15	0.01	0.05	Nil	Trace		NI I
16	Trace	Trace	Nil	Trace	0.01	0.02
17	Trace	Trace	N I 1	Trace	0.02	Irace
18	Trace	NII	NTI	NI	Trace	
19	Trace	NII	NII	Trace	0.05	I race
20	0.05	0.08	NTT	NTI	0.05	
21	0.02	Nil	NII	0 10	0.05	1 race
22	0.025	0.05	Nil	N11	0.05	0.10
23	Trace	NII	NIT	NT1	U.10	0.10
24	0.07	Trace	NII	NTT		Trace
25	Trace	NII	NET	N 1 1	0.10 MT1	Irace
26	NII	NET	Nil	N 1 1		N 1 1
27	0.05	0.02	.N±1			NII
28	0.025	Trace	NII		Trace	<u>NII</u>
29	NII	0.02	NII	14 L L N 2 1	U. IU T	Trace
30	NII	Trace	N 1 1	N L I N 2 1	I race	0.02
•				M L 1	NLI	Trace

Sediment and Sediment After Water Tolerance Test on Brake Fluids After 5 Years Storage in Various Containers

.

TABLE IV

Month	Highest Temperature, °F	Lowest Temperature, °F.	Mean Temperature, °F.
January	72	3	32.9
February	81	3	34.7
March	86	10	42.7
April	90	13	50.5
May	97	34	61.4
June	100	40	70.6
July	103	50	75.2
August	97	49	73.1
September	96	38	68.4
October	92	25	56.1
November	79	8	44.9
December	68	5	35.5

Average Ambient Temperatures at Aberdeen Proving Ground, Maryland (15 Year period)

.*

.