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ABSTRACY

In earlier portions of the present research program, a precise
mathematical model was developed for the estimation of sound
absorption over a ground cover layer. The usefulness and
validity of this analysis was confirmed by r~sults obtained
through @ laboratory-scaled experiment. In the present study,
the above mentioned mathematical mode! is applied tu the
prediction of sound absorption over various types of ground
covers composed of natura! vegetations. Through an extensive
review of literature in agriculture and forestry, the physical
structure and relevant mechaniccl properties of ground cover
canopies have beer: determined. The acoustical properties of
the ground cover itself has also been estimated. Based on these
results, ground absorption spectra over various assumed ground
cover conditions have been calculated. The trends of the
prediction have been compa-ed with experimental results and
the limitaiions of the present study are discussea.
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1.0

INTRODUCTION

In earlier parts of the present study of sound absorption by natural ground cover, a
mathematical model has been developed for estimating the sound absorption

spectrum. The usefulness and validity of this model was confirmed by results from a
laboratory~scaled experiment of sound attenuation by simulated ground cover
(Reference 1), In this mcdel the ground cover is represented as a layer of acoustical
material of finite thickness. The concept is an extension of a representation chosen
by Ingard (Reference 2), where the ground or ground cover is des’ jnated as a semi—
infinite medium. The cnalysis is straightforward, and should be very accurate in

the far-field.

The peak absorption frequency and the general shape of the sound absorption spectrum
depend upon several principal parameters: the height of the sound source above the
ground; the thickness of the ground cover; acoustical properties of the ground cover;
and the normal acoustical impedance on the surface of the semi-infinite ground. In
this report, a detailed study of the mechanical structures of natural ground cover
such as forests and field crops, has been undertak2n. According to their mechanical
properties, the acoustical properties of natural ground cover are estimated. Thus, it
is feasible to make realistic predictions of sound absorption spectra of natural ground
covers over a considerable range of conditions. The results are presented in both
graphical and tabulated forms. With increased krowledge of the acoustical properties
of the ground cover, refinements of the predicted values can be made in the future,
However, the present results are censidered to be suitable for preliminary estimates
of ground absorptic: of sound in field conditions.

In the remainder of this report, a condensed description of the analysis and the resulting
equations are given in Section 2.0; a general description of the structure of different
types of forest and field crops is presented in Section 3.0; the detailed estimation of
acoustical properties of natural ground covers is discussed in Section 4,0; the pre-
dictions of ground absorption spectra under a range of given conditions are presented

in Section 5.0; and finally, the limitations of the present study and other general
discussions are included in Section 6.0, In addition, a FORTRAN computer program
which performs the calculation of the sound absorption spectrum is documented and
listed in the Appendix.
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2.0

MATHEMATICAL ANALYSIS

The precise analytic nature of sound attenuation near a boundary with known acoustic
impedance was first made clear in a series of studies by Rudnick (Reference 3), and
Ingard (Reference 2). The main application has been the estimation of ground attenu-
ation effects on sound propagation in the atmosphere, Some subsequent analytical
studies and experiments have further explored the details of this phenomenon. !a these
studies, the acoustic media above and below the boundary plane are assumed to be
semi-infinite. Constant values are ascribed to either the impedances of the iwo media
or the normal impedance of the boundary itself. However, in many situations with
practical importance, the boundary between the upper and the lower semi~infinite
acoustic media is not a simple plane, but a porous layer with finite thickness. It is
natural, then, to investigate the wave atteruation characteristics near such a com-
posite boundary.

Owing to the special nature of wave reflections at near glancing angies of incidence,
it is not possible to assign a constant value of impedance to the entire composite
boundary. A layered media representation becomes necessary in this case. It is
necessary to specify both the acoustic impedance and the wave transmission constant of
the porous transition layer. A new anaiysis is therefore required for estimating the
magnitude and characteristics of the ground attenuation of such a layered boundary.

In addition to the analysis, an experimental study was undertaken in the

previous year (Reference 1) to determine the attenuation characteristics of a layered
bcundary. The results of the experiment were intended for the verification of the theory
as well as for obtaining a separate view of the problem from an independent approach.
The experiment was performed under laboratory conditions so thar the ground atteny-
ation effects were studied without the uncertainty of other complications, such as wind
refraction and turbulent scattering, Overall, the study found significant departure in
several aspects of the attenuation characteristics of a layered media from those of a
simple boundary. Thus, one may find the results useful in dealing with a variety of
practical problems where a layered representation of the boundaries is warranted.

Geometrically, the space is assumed to be divided into three layers. The top semi-

infinite layer is assumed to be air, which has a density of Py speed of sound ¢, ,

and acoustic impedance of P, c0 . The middle layer is assumed to be a porous

material . Its density and speed of sound are, in general, complex quantities. In other
words, it has a complex acoustic impedance such that a plane wave transmitted from
the air into this layer will be refracted into the layer with a phase shift, and will be
attenuated as it propagates through this material, A third medium, which represents
the ground, occupies the lower half-space. To simplify the analysis, a constant
normal impedance is prescribed at the interface between the middle layer and the
semi-infinite ground.
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As pointed out in previous studies, the simple ray acoustics approach cannot account
for the observed ground ottenuation phonomenon, and a more rigorous mathematical
analysis must be foilowed. In the present study, the approach of Ingard (Reference 2),
together with coordinate systems and symbols in that paper, is adapted.

A spherical wavefront which originates from a point source can be represented as an
integral of its plane-wave elements

ikr . 2 n/2+i©
EkT - (ﬁ) f d¢f o lkpxrkyyrk (h-2)l g 4g (1)
0 0

In the above integral, the vector (k' , ko, ks) indentifies the wavenumber of a plane-
2

wave element, and h denotes the height of the sound source above the top of the
layered boundary. The reflection of the primary wave at a boundary can then
be represented os

2r w/2tio
r = () fd¢f etk ytlsbnlag orinede (2
0 0

where R(9,8) is the plane-wawe reflection ccefficient. The reflection coefficient
R(#,0 ) is a function of @ and 8.

It is more convenient for the purpose of integration to write Equation (2) in a new
spherical coordinate system where the principal direction of the reflected ray is
chosen as the reference axis (Reference 2). The new angular variables are defined
as ¥ and n. Equation (2) can now be represented as

(&) [

An integral of this form can be evaluated by using the method of steepest descent
(Reference ?) in the acoustic farfield, where the value of |<r2 is large compared to

m/2+i © er
"2 R(y,n) sinn dn (3)

unity. Along the paths of steepest descant in the complex n plane, a new variable
can be defined such that

cosn = 1+t (4)




where t is real and positive. The reflected wave can be then written as

2nr o

P, kr f/ ket Rty dr d¥ = —e-r—i (5)
2

which has the form of a wave originating from an "image source" located at a distance
h below the top of the layered boundary, with a variable strength Q.

For an arbitrarily given function of R(¥,8), Equation (5) can only be integrated
approximately. A first asymptotic approximation can be given as

ik
b = S ;R(ro) A LA AR R'(Yo)] } ©)

2
where

= 0
YO cOos 0

R' and R" are the first and second derivates of R with respect to y = cos8 . Equation
(6) serves as a starting point for the present analytical investigation into ground
attenuation due to layered media.

It remains here to determine the plane-wave refraction coefficient R(B) for a boundary
with a layered configuration, The over-all reflection coefficient accounts for the
wave reflection at the top of the middle layer, as well as the wave that is transmitted
into the middle layer, relfected by the ground, and returned into the air, Hence,

the over-all reflection coefficient of the layered boundary can be given as

(cosB - 3 cose) 46 cos® cosB (c059 8 )¢
R®) = (—§+5 cosB ) (cos@+6 cose )2 (cosGI+B ) 7)
2

with

V.
d = exp [Zih (n2-1+ cosze)/"J

-1 v
cosel = n [n2—1+cos29] 2

kit ke
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where SI is the specific admittance ratio of the middie layer with respect to air,

3 is the specific odmittance ratio at the interface of the middle layer and the ground,
2

and Gl is the refraction angle in the midule loyer. The functior. ® accounts for the

phase difference between the two reflected wave components. This phase shift is
caused by path difference and the wave transmission characteristics of the middle
layer,

The insrantaneous value of sound pressire in the farfield car now be determined as

) eik"| ‘e " k(e =) ‘ L 1 .
P Er‘ ) r2 A 1 K(Yo) + —IE:
o1 (T-y?)R"(r ) -y R'(y) (8)
127 VR R

The derivatives of R(B) with respect to cos® can be obtained from Equation (7). By
substituting the kriown expressions for R(8), R', and R" into Equation (6), an explicit
expression can be obtained for the reflected wave. The attenuation of sound near the
layered boundary can now be obtained by simply adding the incident and the reflected
sound-pressure fields,

The algebraic expressions involved in computing the sound-pressure field in
the upper half space are straightforward but relatively bulky. Therefore, the results
have been programmed for computer calculation, The asymptotic approximate solution
is very accurate for computing sound-pressure levels in the farfield, i. e., points
that are more than o few wavelengths away from the sound source, For the study
of ground attenuation effects, this is an insignificant restriction. In the computing
program, all of the geometrical and acoustical parameters can be varied independently,
In particular, the specific admittance ratios B‘ , B and the refraction index n are

2

assumed to be complex numbers,
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3.0

3.1

THE STRUCTURE OF FORESTS AND FIELDS

The structure of natural ground cover is determined by a wide variety of factors,
Climate, terrain, soil condition, rainfall, plant species, and the plant community
regeneration process all come into effect. For the present study, it is important
to know the vaiues of parameters such as height, foliage density in the canopy,
strctification of the canopy, nature of the undergrowth, and seasonal variations.
Many of these properties have been studied extensively in forestry literature,
Hcwever, since each forest being studied has its own special features, descriptions
are very difficult to make (References 4 through 10).

In this secticn, the general appearance and common variation of ecological conditions
of three mcjor categories of ground cover vegetations will be discussed. These mair:
categorie: are:

° The temperate forest
) The tropical rain forest
° The grain crop and the grass fields

The outward appearance and the fine structure of ground cover are entirely different
for each of these broad categories. Further classificatior. with each category will be
defined in the course of the discussions,

The Temperate Forest

In the temperate forest, the plant community is commonly dominated by individual
trees from only a few species. A single temperate forest rarely contains more than
twenty species of plant life forms. Most of the time, the ranking of the plant
species and their roles in the forest are clearly recognizable, The trees in a tem~
perate forest can be classified into five groups: standard trees; dominant trees;
codominant trees; dominated trees; and suppressed trees. Their descriptions ave
given below,

Standard Trees: These are isolated large trees in the stand. Their trunk
diameters are significantly larger than average and the crowns are fully
developed.

Dominant Trees: As a rule, these trees form the main part of the stand,
and have relatively well developed crowns.,

Codominant Trees: These trees have fairly normal, but comparatively
weak and narrow developed crowns.

Dominated Trees: The crowns are more or less stunted with one side
developed, or suffer severe pressure on one or more sides.

)
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(a) Trees with crowns in the middle story, their heads mainly
free but in most cases completely surrounded.

(b) Trees with crowns partly in the undergrowth,

Suppressed Trees: These trees are

(a) Trees with crowns capable of survival.
®) Trees with crowns dying or completely dead.

The main foliage canopy is formed by the crowns of the standard trees, dominant trees,
and the codiminant trees. Trees in these three classes have approximately the same
height; their differences are mainly their sizes and the crown development. The
bottom of the canopy is clearly defined in most cases. Undergrowth in a temperate
forest is usually sparse and orderly, and is composed of mainly seedling trees, sapling
trees, other small trees, and shrubs. The height of small trees and shrubs is somewhat
lower than the bottom of the main canopy. In most of the temperate forest, there is
only one main canopy. Only on rare occasions are there two stories of canopy.

On the floor of the forest, there is commonly a shallow layer of fallen leaves and twigs,
together with some growth of herbaceous plants. Otherwise, there should be no major
obstacles to interfere with clear passage on foot. Visibility through the tree stands is
variable, depending mainly on the height of the lowest level of branches on a tree,

and the seasonal manifestation of foliage and floration in the forest trees and the
undergrowth.

There are two main types of forests in the temperate zone: deciduous and evergreen,
Most of the deciduous trees are broad-leaf trees., However, a few species of needle-
leaf trees, such as eastern larch, are also deciduous. In a deciduous forest, seasonal
variation of foliage color and density can provide very striking changes of the
appearance of the forest stand. A mature deciduous forest reaches a height of approxi-
mately 80 ft. The bottom of the main canopy is 30 to 40 feet above the ground, and the
closed canopy is about 30 to 50 feet in thickness. A typical deciduous tree model is
shown in Figure 1(b). Owing to the variation of weather and water supply, the foliage
density in the main canopy can change not only with the season, but also from year to
year,

The dominant species for forest stands in the same general geographical region can be
different from location to location. The overall pattern may appear to be a mosaic of
splendid proportion. It is interesting to note that the seedlings and saplings in a
temperate forest stand may not belong to the same species as ihe dominant or codominant
trees in the same stand. This is because the saplings of the dominant species may not

be abie to survive the shade under the forest canopy. Hence, young trees of a
persistent and shade tolerant species will flourish, and eventually take over as the
dominant species in the next succession. Such a sequence of change in the dominant

7
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3.2

species has long been observed. For example, red meple will succeed blackgum, and
be replaced by beech (Reference 9).

In a temperate evergreen forest, the dominant species are needle-leaf tiees. These
species are generally called conifers. A mature evergreen forest can reach a

height of at least 120 feet, The thickness of the closed canopy is cbout

40 to 50 feet, the same as the deciduous forest. Thus, the bottom of the canopy can
be as high as 70 to 80 feet above the ground. Typical tree models are shown in Figure
1(a) and Figure 2. A conifer can keep its leaves for three to eight years. Both new
and old leaves are therefore staying simultaneously on the branches. As a conseauence,
the evergreen tree bz a iiuch greurer feaf mass then o deciduous *ree of the scme size.
Since the evergreen forest has a much greater leaf-area, and the leave; are finctioning
most of the year for the assimulation of bio-mass, it has a greater growth rate than a
deciduous forest. For this reason, management of evergreen forest crops for timber has
long been in practice. Such managed forests are widespread geographically.

In a managed forest, the tree stands can either be even-aged, or graded in age and :
size by means of rotation and selection. Such forests can achieve their optimum !
density of foliage for maximum forest yie!d. It is important to note that in a young ‘
even-aged conifer stand the trees have almost as much foliage as a mature conifer

stand. In comparison with a mature forest, a young tree stand has a higher number

density, a larger crown height to width ratio, and a larger number of leaves per

branch. in fact, leaves and small limbs of a young conifer stand may account for

50% to 60% of the total plant mass above the ground.

Other than the major types of forest as discussed above, there are aiso shrubs and
orchards which may cover large areas of land. In general, the temperate forests,
including small trees and shrubs, have a homogeneous and relatively simple structure.
The main canopy is commonly uniform in thickness, and has clearly defined top and
bottom., Undergrowth density is sparse, and its height is moderately below the bottom
of the main canopy. Density of the canopy depends on the species and seasons. From
a well stocked evergreen forest to a deciduous forest in winter, the foliage density
varies greatly, Correspondingly, their effects on ground attenuation of sound can
also be significantly different.

The Tropical Rain Forast

In a tropical rain forest, the plant community is extremely complicated. Some times,
ir seems to be such a chaos that nature appears to be anxious to fill every available
space with stems and leaves. Nevertheless, order prevails in the rain forests upon
close studies of the arrangement of the forest canopy and the ecology of the plant
community. Unlike the temperate forest, cne seldom finds less thon forty

species of plant life in any particular tropical rain forest locality. Most of the
plants are woody, and have thick leathery leaves. This may very well be the result
of physical adaptation to the humidity, temperature, and the strength required to
withstand heavy downpours in the tropical zone.
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Most of the tropical rain forests ure evergreen in appearance. However, there are
also deciduous tree species in a tropical rain forest. A single tree, or a group of
trees m. 1y suddenly change color in their foliage, and lose all the leaves for a short
period of time, say, from a few duys to o few weeks. The leaf renewal cycle

is not necessarily annual, It can lie between eight months to two and a haif

years, ond is not unitorm even for trees of the some species. Also, renewal and
shedding of leaves are not strongly related to the dry seasons in the tropical zcne.
Normally, all the deciduous species are large trees. Nearly all the undergrowth
plants are evergreen.

In a tropical rain forest, the crowns of the trees are arranged in many stories,
Although ro stondard of classification has been agreed upon in the literature, some
general description is possible. According to Richards (Reference 7), most of the
mixed tropical forest stands have a so-called A, B, C structure, The A-story is
composed mainly of standard trees. These trees are very large, and their crowns
develop freely. However, the crowns in this story seldom form a closed canopy. The
B-story is composed of dominant and codominant trees. A thick and nearly closed
canopy is formed. There are also the smaller trees, not necessarily of the same species
as the dominant or codominant trees, which will form a lower canopy, and is called
the C~story. A typical configuration is given in Figure 3.

Other than the mixed forest, there are also some tropical rain forests which are
dominated by a single species of large trees. The single-dominant forests have a
somewhat different structure., Instead of the A, B, C-structure as described above,
such forests can ke said to have an A,C-structure.

The condition of undergrowth inside a tropical rain forest is much more open than the
cluttered and impenetrable appearance as described in many literary writing. There
are two possible reasons that such impressions were conceived by earlier writers and
traveliers. It is possible that most of the early travellers made their passage through
the tropical rain forests on waterways and trails. Both light and water are richly
available along the banks of streams and rivers, Hence the undergrowth can expand
to an impressive thickness at all heights under the tree canopies. Similar conditions
prevail along trails where sunlight is readily available. Another reason, as offered
by Richards, is that the exaggerated manifestation of tropical plant forms would
tempt the early explorers to write accordingly. In general, the undergrowth in
tropical rain forests is much denser than those in a temperate forest. It contains also
a much larger variety of species of plant. However, passage on foot through the
jungle floor is not too difficult, though it may be necessary sometimes to remove a
low-hanging branch. Visibility inside the tropical rain forest is generally fair,

It depends mainly on the density of foliages at eye level. Hence, visibility is

not an accurate indicator of the density of plant masses in the forest as a whole,
These comments can be applied equally well to visibility conditions in a temperate
forest,

11
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3.3

A special feature in tropical rain forests is the abundance in growth of woody lianas.
These climbing species can reach great heights and their stems can have diameters of
up to a few inches. Their interacticn with the tree species in the tropical rain forest
can become an important part of the overal! plant ecology in certain locations. The
abundance of dependent and semi-dependent species is also characteristic of the rain
forests. The presence of these plants often adds significantly to the dramatic appear-
ance of a tropical rain forest.

In general, tropical rain forests include not only the "wet" evergreen forests as
described above, but diso some other forms of forests under limiting conditions. In
parts of the tropical zone, rainfall and mineral resources in the scil can fall far below
their normal conditions. Depending on the severity of these limitations, a typical
tropical rain forest can degenerate into a seasonal evergreen forest, a seasonal semi-
evergreen forest, a deciduous forest, shrubs and small trees, or simply a field of thorn
and cactus. A figure showing the general configuration and plant density in these
forms of tropical forests is adapted from Reference 7 (Figure 4).

The Grain Crop and the Grass Fields

Grain fields and pastures are perhaps the most expansive types of ground cover.

Inspite of the large variety in grair and grass species, their structural appearances are
generally similar. The entire canopy is commonly composed of purely u single species,
perhaps at most two to three; it is homogeneous; and it has a uniform cancpy thickness.
Most of the fieid crops are annual plant species: woody growth is uncommon except
special cases such as cotton and alfalfa, Leaves form the major portion of the plant
mass in the canopy.

The height and density of the canopy depend mainly on the species and the practice of
cultivation. Tall species include corn, wheat, barley, and sugar cane; medium height
species include rice, alfalfa, and timothy; short species include many common grasses
such as clover and bluegrass, Canopies with the highest densities are sugar cane and
corn for the tall species, and rice and clover for the short species, Actually, the
density in the canopy depends greatly on the stage of growth and the moisture content
at a particular time. The detailed quantitative description of the structure of field
crops will be discussed in the next section,

13
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THE ACOUSTIC PROPERTIES OF GROUND COVER

Materials commonly used in noise reduction or noise control engineering are mostly
porous acoustical materials. Basically, such materials are composed of either a fiber
mairix where air may pass through the remaining empty space, or simply ¢ homogeneous
solid with numerous openr and close ended air passages embedded in it. When sound is
propagating in such a medium, the air in the void is assumed to be the main wave
carrier, At the passage of sound wave, the friction between the moving air particle
and the surface of the solid matrix will cause a loss of acoustic energy. Moreover,
the elastic properties of wave propagation in small air passages can be significantly
different from the corresponding properties in free air. In many porous acoustical
materials, heat transfer occurs between th: air and the solid. The bulk elasticity
coefficient of air will take its value under isothermal conditions, instead of its usual
value under adiabatic conditions for sound propagetion in free air. The solid matrix
may, or may not, respond to the sound pressure fluctuation, For some porous muterial,
the matrix has a rigid structure, and thus remains statiorary for wave passage at all
frequencies. For others, the structure of the matrix is relatively compliant. At low
frequencies, the solid matrix oscillates with the surrounding air. Each of these types
cf porous acoustical material has different acoustical properties.

In Reference 11, Beranek introduced ¢ method to estimate the acoustical properties of
porous materials. The structural properties of @ typical porous acoustical materis! con
be represented by the following parameters:

Py = density of acoustical material

Y = porosity, the ratio of volume of voids in material to
total volume

k = structure factor, an empirical constant to indicate the
nature interstices in skeleton

R' = alternating flow resistance for unit thickness of material
Q@ = volume coefficient of elasticity of acoustical material
po = density of air

K = volume coefficient of elasticity of air for isothermal

conditions.

In Reference 11, all units are defined in mks units. The unit for alternating flow
resistance is defined as mks rayls. Two types of acoustical materials are considered by
Beranek: materials with a rigid matrix; ond, materials with a soft matrix where

K > 20Q. Important acoustical parameters are defined:

15
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b = (bR +j bl ) = wave propagation constant

Zm = characteristic impedance of acoustical material
Cm = speed of sound in the material
o = proportional to the real part of the wave propagation constant;

it represents the attenuation coefficient of sound in the material
per unit distance

w=2nf = frequency; radian/sec
n = refraction coefficient
B' = specific admittance ratio with respect to air
co = speed of sound in air
Z0 = characteristic impedance of air

The wave propagation constant is defined such that the sound pressure tluctuation can
be represented as a function of distance:

p(x) = exp (-bx)

Generally, the sound wave propagates in the porous material ot a speed lower than the
speed of sound in air, and it attenuates as an exponential function of disrance or time.
For materials with a rigid matrix, the following equations are given:

i |
p kY Z R Z
b = ju | ~Sp— e = ©)
pO
and
bK
‘n =71 Vu (10)

For materials with a soft matrix, where K > 20Q , the equation for the wave
propagation constant is:

A YA
b = J<%> {<p‘> g SR> an)
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CRY = R {] “p 0V, } (12)
| {100, 6N/ by } 2 {1+ @/ {140 611/ g, 1)

and

-2
Coomnt ]+(R'/pm@)2 (Y+pm/p0k>{] +p (k-l)/pm} 0

0 ]+(R|/pmm)2{]+po (k-l)/pm}""

The quantities ¢ P > and R‘ > are called the effective density and the effective

flow resistance, respectively. Other acoustical parameters can be derived from the
values of b and Zm :

m I

c = b, ; n=c0/cm;3' =Z,0/Zrn (14)

Beranek had used these formulas to predict the acoustical parameters of a number of
commercial acoustical porous material. The results agreed reasonably well with
experimental measurements,

The structure of a forest cancpy is typical of a porous acoustical material. The solid
matrix is represented by stems, branches, and the foliage of the plants. The total
area of exposed surface area of leaves and stems is appreciable, and a significant
value of alternating flow resistance :s expected.

The acousticcl properties of ground cover can be estimated by using the Beranek
equations. It is necessary, however, first to establish the structural parameters such
as porosity, effective matrix density, and flow resistance. The evaluations of these
parameters are discussed separately as given below,

Porosi ty

In a natural forest stand, the growth of the plants in the community is governed by the
avaiiability of light, mineral, water, and by their interdependence and the process of
selection, The maximum amount of plant masses which can survive over a unit area of
land is limited by these factors. In a well stocked forest stand, the average distance
between two neighboring trees is angroximately 12.5 times the average tree diameter
at breast height (d.b.h., breast height is defined as 4.5 feet or 1,3 meters above the
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greund). Most of the solid volume under the canopy is occupied by the trunks and
branches. The rest of the solid material will be leaves, twigs, lianas, and under-
growth. The ratio between branchwood volume and stemwood volume is about one to
four, depending on the condition of the individual foresis. Hence, if the tree trunk
is assumed to be conical in shape, it is easy to calculate that approximately 0.3
percent of the available space under the canopy is occupied by solid materials.
According to accurate measurements of timber volume in various forest stands, the
solid to total volume ratio can be as high as 0.45 to 0,52 percent.

On the other hand, some mixed deciduous forest stands, such as the oak-chestnut
forest in the southeast United States, the average tree distance to diameter ratio can
be as large as 20. In such cases. the solid volume to total volume ratio can be as low
as 0.1%. In Table 1, some typical statistics for forest stands of various species is
presented. In a forest, the total quantity of solid material represents the accumulated
yield from biological activities over a period of many years. For the canopies of
grain crops and pastures, the conditions are different. The total fresh weight of the
plants is commonly between 5 to 15 ton/acre, depending on the canopy height and
plant density. Hence, the solid volume to total volume ratio is limited to below
approximately 0,.3% . In many caces, this ratio can be as low as 0.05 to 0.1%.
Hence, the porosity of a natural ground cover can have a value somewhere between

0.995 and 0.999.

Effective Density

From Equations (9) to (13), it can be seen that the density of the matrix material is
meaningful only if such masses can respond to the sound pressure fluctuations ir the

air. It has been established in a study by Embleton (Reference 12} that even very

small branches respond only slightly to sound. Hence, it is reasonable to assume that
only the foliage in the canopy will respond to sound pressure fluctuation at very low
frequencies, following the definition of Q in the Beranek mode! of porous acoustical
matesial. In the literature, leaf mass has been measured in various experimental studies
in forestry (References 5 through 10).

It is important to note that the strategy of leaf growth on any plant is governed perhaps
entirely by the availability of sunlight. The photosynthesis process is fully effective
only if the available light intensity is above 20% of the average sunlight intensity.
In permanent shades where the light intensity falls much below this value, plant
growth will be impossible except for a few species of plant with extremely high shade
tolerance. It is explained by Horn (Reference ?) that there can te two strategies for
leaf arrangement for plant growth over a fixed unit area of land: the multilayer
strategy and the monolayer strategy. For an object in the sunlight, a shadow will be
casted behind it. However, the "hard" shadow will disappear after 30 or 40 diameters
away, because the sun is a light source of extremely large dimension. If a tree has
adopted the multilayer strategy, then the leaves on the top layer will have an area
density much less than the ground surface area, say, 50%. About 40 to 50 average
leave diameters away, a second layer of leaves will be grown, Since the sunlight

18
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TABLE 1

DENSITY OF VARIOUS TREE SPECIES FOR AVERAGE SITES
AT AGES OF CULMINATION

Average Separation
Species d : v: mgiench Trees Per Acre BZSCC:L A:eaﬂPer Distance to
T » 59 d.b.h. * Ratio

Red Fir 14,3 360 437 8.9
Redwood 10.4 628 372 9.6
Red Gum 3.3 3700 220 12,5
White Fir 10.0 585 317 10.4
White Pine (Wis.) 5.0 1600 195 13.3
Sitka Spruce 6.1 1130 216 12,6
S. White Cedar 1.8 7400 140 15.6
W .White Pine 5.8 1190 221 12,5
Red Spruce 4,1 1800 162 14,6
Shortleaf Pine 4.5 1480 158 14,7
Slash Pine 4.9 1090 148 15.2
Loblolly Pine 7.0 540 144 15.4
Lodgepole Pine 3.8 1490 118 17.1
Douglas Fir (NW) 5.4 800 122 16.8
Ponderosa Pine 3.1 1900 100 18.5
Jack Pine 3.4 1680 108 17.8
Longleaf Pine 3.8 1150 93 19.2
E. Cottonwood 8.5 320 126 16.5
Virginia Pine 2.5 2240 68 22.4
Oak

(Central States) 4.0 965 84 2.2
N. Hardwood

(Lake States) 6.7 390 90 19.5

* d.b.h.

= Diameter at Breast Height; Breast Height is defined as
4.5 ft or 1,3 meters above the ground.




coming through the gaps between the leaves in tle first layer will cast nc hard shadow
at the location of the second layer, the sunlight will appear as a diffused light source
with reduced intensity. By repeating the same tactics, more layers of leaves can be
grown profitably until the diffused sunlight intensity falls below the 20% limit. In

the monolayer strategy, a plant will grow as much non-overlapping leaves as possible

in one layer. Al! the available sunlight will be intercepted by this layer, and a hard
shadow will be casted on the ground. Leaf growth will not be possible below the mono-
layer of leaves.

Mathematically, the multilayer strategy can utilize the available sunlight more
efficiently, Because the effective interception of light in consecutive layers forms a
geometrical progression with a ratio of at least 1/2, the maximum leaf area per unit
land area is limited. In nature, it is found that the multilayer strategy is generally
followed by large trees and plants of higher ranking species. However, for the under-
growth in a forest, seedling trees, and other small plants, the monolayer strategy will
gather light most efficiently for an individual plant because very low average light
intensity prevails in such an environment. In Table 2, the leaf area and leaf mass

for various important species of trees have been summarized., Most of the given values
are obtained from the forestry literature by direct or indirect estimates. Their accuracy
is only nominal. In Table 3, typical values of leaf area to ground area ratio for grains
and grasses are tabulated. The average weight per unit area of grains and grasses has
not been tabulated because the value varies greatly with plant density, moisture, and
seasonal conditions. The overall value for the common field crops is estimated as
approximately 5 to 15 ton/acre of fresh weight.

Alternating Flow Resistonce

Direct measured values of alternating flow resistance of plants and foliages are not
available in the literature. An attempt is made here to obtain indirect estimates of
such values. As air flows through a porous acoustical material, the boundary layer
buildup at the exposed surfaces of the matrix material provides the mechanism for
momentum dissipation. In an ordinary commercial acoustical material, the exposed
surface area per unit volume is in the order of 100 to 10,000 ft~' . In Beranek
(Reference 11), the alternating flow resistance for various types of acoustical
material at varicus densities has been measured. It appears from these results of
measurement that the functional dependence of the alternating flow resistance on
density is practically the same for all materials. On a double-logarithmic scale,
all the Rl versus p  curves are parallel to each other. Their difference in point of

origin is strongly related to the characteristic value of exposed area per unit mass for
each given material. Some of the results given in Reference 11 are extrapolated for
lower densities, The curves are shown in Figure 5, By using the nominal values of
fiber diameter, the exposed area per unit solid mass has been estimated for the Aerocor
Fiberglas materials at a density of 0.5 Ib/cu ft, the minimum surface area per unit
volume is about 112 ™', Thus, the alternating flow resistance can be replotted as a
function of exposed surface area per unit volume (see Figure 6). In Reference 11, data

20
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|
’ - TABLE 3
LEAF AREA TO GROUND COVER AREA RATIO
e FOR GRAINS AND GRASSES
Species Leaf Area Ratio *
Proctor Barley 8.1
Winter Wheat 6.2
Spring Wheat 4.1
’ Herta Barley 3.7
Rice 10.2
’ Sugar Cane 11.8
Corn 8.5
’ Clover Grass 5.4
; Reed Canary Grass 3.7
- * The area is measured on only one side of the leaf,
!
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Figure 5. Air Flow Resistance as a Function of Acoustic Material Density,
Materials shown in this figure are: 1 - PF 105 XAA Fiberglas (1950);

2 ~ Aerocor Fiberglas (1954); 3 - Johns Manville Spintex (1954); and
4 - Canopy of Forest, Grain Crop, and Grass.
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has also been given for the flow resistance of coarse wire screen meshes. [f one assumes
that the exposed surface area of the wire mesh were distributed not at the plane of the
mesh, but throughout a layer of unit thickness, then the corresponding flow resistance
value can be represented as a data point in Figure 6. The value of flow resistance for
the coarse wire mesh is chosen because the distance between wires is significantly
large such that the boundary layers on neighboring wires are independent of each
other. By drawing a line through these data points and parallel to the alternating

flow resistance curve of the Aerocor fiberglas, another estimate of the flow resistance
can be established. [t should be noted that the flow resistance is proportional to the
1.34 power of the value of surface area per unit volume. In acoustical materials
commonly used for noise control, both the fiber size and the dimension of the air
passage are relatively small. The boundary layers on neighboring fibers merge rapidly.
Thus, the friction loss owing to boundary effects would resemble those of pipe flows.
However, for surface areas with very low densities, the boundary layers on different
surfaces may remain independent of each other at all times. In this case, the flow
resistance should be directly proportional to the surface area in a unit volume. This
postulation is represented by the dash line in Figure 6. Within the range of interest

of the present study, the differences among the above three estimates are rather small.

According to the values of leaf area ratio and canopy thickness for various piant
species, the leaf area per unit volume can be estimated. The typical ranges of values
are given in Figure 7, In some cases, the exposed surface area for stems and branches
may account for a significant portion of the total surface area in the canopy. It
depends on the total volume of wood and the average branch and stem sizes, Such
dependences are given in Figure 8. By using Figures 6 through 8, one can readily
estimate the alternating flow resistance of a given type of plant canopy.

Other Parameters and Considerations

There are three more parameters remaining to be considered: the volume coefficient
of elasticity of the porous acoustical material, Q; the volume coefficient of elasticity
of air, K; and, the structure factor, k. Since the porosity is extremely close to one,
the value of k can be assumed to be 1.0 for all cases. It is not necessary to know the
exact value of Q in the Beranek equations. Since both the material density and the
flow resistance are provided by the leaves, the plant canopy is assumed to be a soft
porous acoustical material, i.e., K > 20Q. For the forest canopies, the foliage
density is relatively low., The parameter K is assumed to take its value under isen-
tropic conditions. For dense plantation of grain crops or grasses, K can possibly
take its value somewhere between isothermal limit and isentropic limit. Further
studies are definitely required.

According to the above defined ranges of structural parameters, the acoustic properties
of ground cover materials have peen estimated. Computations are made assuming both
conditions where the matrix structure can either be rigid or be soft. The obtained values
for the refraction coefficient, n, and the internal transmission loss coefficient, «,

are plotted as 1 function of frequency.
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The results for the soft matrix materials are given in Figures 9 and 10. According to
the Beranek model of acoustical materials with a soft blanket, the velocity of sound
in the low frequenc, range is greatly reduced by the effective materiai density. For
higher frequencies, the sound wave can propagate in the acoustical material ot
nearly the speed »f sound in free air. For the attenuation coefficient a, the trend
with frequency is just the opposite. Since the matrix rides with the air flow at low
frequencies, very little friction is generated through friction between the cir flow
and the matrix. Hence, « is small in the low frequency range. As the frequency
increases, the inertial forces will keep the matrix material stationary, and thus the
relative motion between the matrix and air increases. Consequently, a increases
with frequency, and reaches o limiting value for very high frequancies.

Values of the refraction coefficient, n, for materials with ¢ rigid matrix are plutted

in Figure 11, For a rigid matrix acoustical material, the acoustical properties do not

depend on CH Hence, R is the only significont variable. The dependence of «
1

on frequency is very weak for acoustical materials with o rigid matrix. It remains
about constant for all frequencies. The value of « for an acousti~al material with

a rigid matrix is approximately the same as the limiting value of a at high frequencies
for a soft matrix material with the same value of R .
1
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5.0

PREDICTION OF ABSORPTION SPECTRA FOR VARIOUS TYPES OF NATURAL
GROUND COVER

In the previous section, the acoustic properties of canopies of trees, grain crops, and
grass fields have been estimated. According to these values of refraction coefficient,
acoustic admittance ratio, and the internal transmission loss coefficient, the ground
absorption spectra can be calculated.

The structural properties of natural ground covers, and consequently their acoustic
parameters, fall into three recognizable ranges:

) Trees and shrubs
° Grain crops and tall grasses
° Short, dense grasses

For trees and shrubs, the fresh leave weight per acre of ground area is between 4.0 to
19.0 tons per acre (Table 2). The leaf area to ground area ratio is generally in the
range of 5 to 25. For tall matured forests, the effective thickness of the closed canopy
is approxrmately 50 ft. Therefore, the 2ffective density for acoustic purposes is in the
order of 0. 075 to 0.200 kg/m3; and the leaf area per unit volume is in the order of
0.1 t0 0.5 ft™'. For young tree stands, tree species which are short by nature, and
shrubs, the effective thickness of the canopy can be 10 to 20 ft. At the same time,

the leaf mass and the leaf area ratio remain practically the same as the tall forests.
Hence the effective leaf density is in the order of 0. 20 to 0.6 kg/m ; and the leaf
area per unit volume is in the order of 0,30 to 2.5 ft™' . In the summer, the leaf area
dominate the total surface area in the canopy of a deciduous forest. In the fall or
winter, all the leaves will be fallen. The only exposed surface area will be those of
the stems and branches. For a forest conopY with a large portion of small branches, the
total surface area can be as high as 0.4 ft~

For grain crops and tall grass pastures, the structural parameters fall into an entirely
different range. The canopy height is commonly between 4 to 8 ft. The fresh weight
of the leafy portion of the plant is between 5 to 8 tons per acre, depending on the
species and the plant number density. The leaf density is approximately 0.4~1,0 kg/m>.
Since all the leaf shapes in grains and grasses are flat, the effective surface area for
acoustic resistance should be counted on both sides of the leaves. Hence the effective
leaf area ratio is twice that which is quoted in the agricultural literature where only
one side of the leaf is measured for photosynthesis purposes. The estimated leaf area
per unit volume is, therefore in the order of 1.0 to 4,0 fi~!

The highest foliage mass density and leaf area per unit volume can be found in grass
fields with an overall thickness of less than 24 inches. The effective density is in the
order of 1.0 to 2,0 kg/m®. The two-sided leaf area ratio is opprox:morely 10. Hence,
the leaf area per unit volume has a value between 5.0 and 10.0 f!
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The ranges of parameters for the above three classes of vegetation are summcrize in

Table 4,

Computer programs have been written to perform both the calculation of acoustical
properties of the ground cover and the computation of sound absorption spectrum using
the analysis given in Section 2.0. In the computation of the sound absorotion spectrum,
three acoustical parameters are required: the refraction coefficient, n; the specific
admittance ratio of the ground cover relative to air, 3' ; and the normal admittance |

ratio of the ground surface, 3 . The parameters n and 3] are generated by the
2

computer program according to the given structural properties of the ground cover.

Two values of 3 are assumed arbitrarily. For a forest stand, 8 is assumed to be
2 2

0.5 if the undergrowtt is relatively dense; it is assumed to be 0.2 if the undergrowth
is sparse and the floor of the forest is covered with only a shollow !ayer of fallen
leaves and branches. For grain and grass fields, the ground surface is expected to be
a loose top soil in most cases. Such a surface has a relatively high acoustic

impedance. Hence, the value of 3 s taken to be 0.2,
2

For forest canopies, the ground obsorption spectra for three sets of representative
acoustic parameters have been computed. The effective canopy thickness, instead

of the overall height of the forest itself, is chosen to represent the layer thickness

of the acoustic material as defined in the theory. In these computations, the receiver
is located either above the canopy, or immediately on top of the canopy. Computation
has not been made for receiver locations in the canopy, although in practical situations
the observer may very well be standing on the floor of a ferest and listening to the

noise produced by a low-flying aircraft. Under such practical conditions, one can
safely assume that the minimum excess attenuation is represented by the values predicted
for an observer located immediately on top of the forest canopy.

The computed results are given in Figures 12 through 14, and Tables 5 through 19, For
tree cancpies with very low density and air flow resistance, the acoustical effect of the
canopy on wave propagatior: is obvicusly very low. In Figure 12, the absorption
spec’;um for small canopy thicknesses exhibits clearly the characteristics of interference
effect for wave reflection next to a solid wall. It appears also that the tree formations
offer very little attenuation to sound at higher frequencies, owing to the ground effect.
The attenuation to higher frequencies is significant only if the sound propagates through
the leafy canopy itself. Significantly large attenuation is indicated by the transmission
loss coefficient, o, as given in Figure 10. In the winter time, perhaps very little
ground attenuation effect can be expected from a deciduous forest stand,

The absorption spectrum has also been computed for several densities and thicknesses of
grain and grass canopies. The results are given in Figures 15-19 and Tables 20-29,

The range distances and sound sources height have been limited to values at which field
measurements are commenly conducted. These tables and graphs are considered to be
reasonably accurate, They can be employed for preliminary estimates of ground
absorption of sound in actual field conditions,
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TABLE 4

MECHANICAL PROPERTIES OF THREE CLASSES
OF PLANT CANOPIES

Type of Foliage Density Surface Area Per Unit Volume | Air Flow Resistance
Ground Cover kg/m f! mks rayl/m
Trees & Shrubs
Tall Canopy 0.075 ~0.200 0.1 ~0.50 1.0~5.0
Short Canopy 0.20 ~0.60 0.3 ~2.50 3.0~28
Stems & Branches | 0.0 0.05 ~0.40 0.0~4.0
Groin < rops 0.40 ~1.00 1,00 ~4.0 8.0 ~50
rasses
Dense Short Grass | 1.0 ~2.0 5.0 ~10.0 50~120
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If the source heinht were different from those as given in the computed conditions,
the excess attenuation can be adjusted by using the formula

E = E -2Ilog, (H/Ho)

where E0 is the excess attenuation corresponding to a height of Ho , and E denotes

the required excess attenuation corresponding to a height of H. However, the above
equation is accurate only if both H0 and H ore at least one layer thick above the

top of the ground cover. In the tabulated results of the absorption spectrum, the
excess attenuation is given at various range distances. It can be noted from these
results that the excess attenuation increases at 6 dB per doubling the range distance
in the far-field, and increases at a somewhat smaller rate in small range distances
from the sound source.

35




6.0 CONCLUSIONS AND DISCUSSIONS

There are certain limitations to the present prediction scheme. First of all, the
Beranek model of porous acoustical material is a reliable method for the estimates of
acoustical properties of the ground cover, yet it is not the only available approach,
For example, in the high frequency range, the transmission loss of sound through a
plant canopy may depend on the diffraction effect of leaf surfaces. A recent study by
Aylor (Reference 13) has shown remarkable agreement between theory and experiment

. for sound transmission losses through high density brocd!eaf canopies. In the approach
taken by Aylor, diffraction and penetration of sound through the leaf mass are consider-
ed to be chief mechanisms. The improvement of the definition of acoustical properties for
ground cover material can be achieved by both theoretical and experimental approaches.
The experiments may include the measurement of physical properties of leafy canopies,
from which the acoustical properties can be estimated, or the direct measurement of

. the acoustical properties of the plant canopy. The improved knowledge of ground cover

acoustical properties can definitely be used advantageously in the present layered media
approach of dealing with the ground absorption of sound.

From the computations of Section 4.0, it is obvious that ail the ground cover materials
have very small acoustical "density" as compared to ordinary architectural acoustical

. materials. However, the lack of acoustical "density" is somewhat compensated by the
large spatial dimensions often encountered in field conditions. From the computed

- results, it becomes apparent that the ground absorption effect is significant only if the

- range distance is lurger than approximately 25 times that of the height of the sound

_ source. At range distance of less than 10 times that of the height of the sound source,

! not only the absorption is small in value, but also the spectrum is irregular and exhibits
no apparent trend. It is not clear whether the irregularity is caused partly by nature of
the ground absorption effect or that it is caused entirely by the inaccuracy of the
mathematical model in the near field. Fortunately, such near field conditions are

seldom of practical interest for noise control studies.

g Inspite of the limitations as mentioned above, the computed results seem to agree well
with experimental evidences, It was pointed out in the earlier publication under this
program (Reference 1) that the predicted ground absorption effects agreed closely with
the result of laboratory=-scaled experiments, In Section 5.0, there are several sets of
computations where the input parameters are typical of dense grasses and low bushes,
The height of the source and the receiver is assumed to be between 5 to 10 ft; the
thickness of the ground cover is from 6 in. to 6 ft; and the range distances are 250 and

- 500 ft. The spectrum shapes in the predicted cases are strikingly similar to those

measured in the field. The peak is located between 100 and 400 Hz, and the excess

attenuation is close to 15 dB for all cases. Similar values of ground absorption under
similar conditions have been observed before (Refererices 14 and 15), It is important
to note also that the transmission loss coefficient for wave propagation through the
canopy itself has been computed for a range of values in Section 4,0, For conditions
typical in a tree stand, I 0.225 kg/m*, and R‘ = 20 rayl/m. The computed
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transmission loss coefficient is about 5.5 dB/100 ft, This value is very close to those
observed previously by various authors (References 12, 16 and 17).

Several important trends have also been observed in this study. The peak of the
absorption spectrum is governed by several principal factors: the height of the sound
source * ; the thickness of the ground cover layer; and, the acoustical properties of
tha ground cover and the ground surfoce. In previous computations by Ingard, the
absorption peak is normalized with respect to the sound scurce height. The product of
the wavenumber and the source height, kh, has a value of approximately 11,0, In
the present study, the peak absorption frequency can be normalized against the layer
thickness. It is found in the computations that the peak of the ground absorption
frequency is dominated by the layer thickness, provided that the ground cover is
sufficiently dense. The value of kh is between 3,0 to 10.0. For layers with very
small density, such as the density of a deciduous forest, the influence of the height
of sound source on the peak absorption frequency will remain significant.

The predictions of ground absorption of sound over ground cover with very large
thicknesses, such as forest stands, remain to be compared with experiment measurement,
However, it is reasonable to assume here that the predictions as given in Section 5.0
should serve well as an indicator of the expected ground absorption levels in actual
field conditions.

According to the principal of reciprocity, the value of excess attenuation remains
invariant if the positions of the sound source and the receiver are exchanged. Hence,
it is not necessary to mention both the source height and the receiver height in the
discussions.
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Slecec? =0e11 Je30 2042
. 3931005 =11 Ne23 «0¢51
& SLiieks =017 *Ne0& «1s59
635%e0 =0e27 -Cslé Qe 28
73450¢3 *0eab «Je06 «0ea9
l 9356y *Qe48 *0e0s =Je Rk

51

Pu




B L B S RS G I,

-

-w

SY »
YSCs=
YhE=
]
32
SK
Y
rR1
M

ck
RL

nn " 4 nn v now

FRt g
he

IU.VQ
12es3
15045
1905
2Ye12
3182
35ean1
HLei 2
63015
79243
10Cey
125‘&3
i38e42
19533
£31+19
31€e23
3381}
231013
e30ev
734 e¢33
1edie 0
125032
123443
133%ecn
Eoliens
3lecez7
389381e02
Edllese
6390933
794325
999Y%¢ 34

D«15220E+02
0+100COE~+U1
0«Q00COE+CD
0+152Z0F+L2

0¢500C0E+CD » CeCOGOCE+OC

C+100C0OE+01
0+39600L+L0
Ce+150C0E+C2
0¢17500E4C0
C+1COCGE +Cw
0«1COCOE+LE
Cel118(0e+C1

ONE=THIRD=-3CTANE

Aht

TABLE 9
GROUND ABSORPTION SPECTRUM FOR TREE STANDS WITH HEAVY UNDERGROWTH

SAND FaCLSS ATTENUATION, Dt

A A A L LR XX R LB R N R R K L e R e N LI L

RANGE CISTANCES « FEET.
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TABLE 10
GROUND ABSORPTION SPECTRUM FOR TREE STANDS WITH HEAVY UNDERGROWTH
SY 5 0e274L0E+u02
YoC=z  04100C0F+0U1
YRz  Qe(00COE+GO
H = 030440401
R 3 §e500C0E+00 » («00000E+0C
Sk = 0+100C0E+0U1
Y ® (0e¢996COE~D
R1 = 0e¢30000E%02
RM 2 0e225C0E+UD = 0.5
Q = 0¢10000E+i4 B, =0.
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3162 1442 bok4d 8470 1382 19+39
32681 131 4006 793 1287 1825
5Cel2 1eld 3eby 6499 11462 16+30
63¢1) U9k 297 598 1032 1545
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; T GROUND ABSORPTION SPECTRUM FOR TREE STANDS WITH HEAVY UNDERGROWTH
E .
! SY = 0e24350E+402
SR YSCs  (e100CUE+ULY
f YRE= (0e000COE+0D
. H & QebUBEOE+L!
i RZ = 0eSCOLOE+LU » (e D0CUUE+NC
o Sk = 0«100COE+C1
CoL Y = 0e996C0E+00
Rl = (0e300C0OE+U2
RM = (e225C0E+L0O -0.5
Q = Ge10GCOE+CH B, =0.
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TABLE 12
GROUND ABSORPTION SPECTRUM FOR TREE STANDS WITH HEAVY UNDERGROWTH

SY = 0¢21310E402
Y5C= (0«10000E+C1L
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i 1. H = 091370401
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GROUND ABSORPTION SPECTRUM FOR TREE STANDS WITH HEAVY UNDERGROWTH
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GROUND ABSORPTION SPECTRUM FOR TREE STANDS WITH HEAVY UNDERGROWTH
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LA R X N NN N P Y RN XX RE R R PE LR LR R R X1 L X PR X
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57
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133¢
1357
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719
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=001
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TABLE 15
GROUND ABSCRPTION SPECTRUM FOR TREE STANDS WITH SPARSE UNDERGROWTH

L RN L L L AL E R Y N Y YRR LR LR R K

- FEI’:T.

2000.

Relk
Reb6?
Jel7
Jeb2
995
10012
1007
9e77
Jel1G
835
739
5033
Secb
4023
327
2+39
1061
0923
0032
«Del7
~0e54%
»(Qe75
“Ge7%
=0e5(
~Nelé
000
Nelb
=0e04
=Ds 10
Qe

400Q.

13«15
13469
1433
14¢87
15«29
15«55
1559
1532
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12«55
1122
985
8ehH2
7076
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3’26
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Qe 78
Qe 40
=001
=049
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=060
Qe 27
O+ i4

SY = Qe274C0L+02
YSC=  0610G00R+UT
YRE=  0+000LOE+00
H = 0630440L+01
BC 3 Qe20000E+LU » e COOOCE+OC
Sh = (0«10000E+C]
Y - Ce996C0E+CY Q
Rl = 0.20000E+u2 < aﬁv%
Ri1 = Qe225C0F +u0 \\
W = 0e100LOE+C4
Ch = 0+100C0OE+CH
e = (0611800k+0U1
BrE=ThIkD=3CTANE oAND EXCESS ATTENUATIBN, DB,
b KE 3 RANGE LISTANCES
H{ 250 500 1000
Uy -1e¢3h Oeb4 388
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iDexo =1e63 102 4e6%
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FLel? =1e3& 1¢3C 517
3162 =1e35 1e3” Se2¢
3Yex1 =1e24 127 210
LGelp ~1a17 116 41
naely »1e{9 102 4o 3K
79043 -0ed7 Ce&7 3.85
Icuely Qe 72 Je71 326
129ee3 =(ed2 QeS¢ 2467
lhoesy Qa3 039 2e1C
i%9e03 Ue D Cedb 1e56
Zh1lel) et Ge10 1.06
31673 Qe 32 «Ce(02 0«55
3061 =Ce 31 -Qe12 015
Hhlel3 «Ce/1 Q017 =0e2%
GaiieDD =043 «5els “Qené&
/7403 -Uedo 003 =Ce30
IClueuy «leng Cel2 =079
125092 ' =0«0n =0e30
lorderns =03 =0ei6
FSEegd =-5+05 =031
2otlens =001 =Cek &
3lazes) UrUH =0+3C
3HP%1eun «{e77 =CehH&
bullezo ~(e35 =0ed¢
033654 ~Ce56 =132
7243625 -9 069
993994 -~ 260 =-1.9¢
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TABLE 16
- GROUND ABSORPTION SPECTRUM FOR TREE STANDS WITH SPARSE UNDERGROWTH

) SY = Qgel43but+ud
Yols  §e1CG0COE+L]
Ynk=  Qe0COLLE+LY

. M= CebUBBOL+L1 L&
BE = 0s200C0E+00 # Lo OOUOOE +0C Qo0v°C
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- Rl = 0+20000E+02
KM 3 0022500 400
: v = 0+10000E 4w B, =0.2
. Ch = 0e12000F+C6
RL = 0o 11800E+C1

ONE=THIRD=JCTANE sAND EXCLSS ATTENUATIEN, DB,

—-—.----------.---—--...----.---0---—-..-----...-..-.--
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3941l -2¢3a =0+03 207 =0e 565
. Sulless -0+25 =034 009 =Qe72
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92355, =hHep 2 =1e67 006 0e16
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TABLE 17
GROUND ABSORPTION SPECTRUM FOR TREE STANDS WITH SPARSE UNDERGROWTH

SY = De213100+02
YoC= 0+¢1000GE+UL
YRE=  0«Q00CLOE+LU

M3 0e3132CE+C1 1
B& = 0e20000L+LC » 1 e0000OE+OC
SK = 0e10GCOE+01
Y = 0e996C0bl+00
Rl 5 0e20000E+G2
RM = De225CCE+0T
r G = GelGUCOE+M B, =0.2

Crh = QelUULCE+ULG

‘ KE 2 0ellB0UE+G1T

nhbeTelxU=dCTAne 2AND EXCLSS ATTENUATION, DR,

--.-.----oyunm-------n-.--_-------.--------c--.---m...-
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£3(0e95 =1¢39 ~e5x% “0e3C 135 504
/94% 353 ~1leb5 =(e 30 =038 He823 4910
16000 “3e56 “Ceip =0ed6 .37 3¢3%
12564972 “0e¢37 ~CePé “0eCo 2eb4
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v 291ivad -Ce Dk 0e7 “Debp Q0«65
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Bc = 0.20000E+00 r} t:e 200C0E +Q0C
Sk = (CelUOLOE+CL
Y = 0e9%960CE+L D
Rl =  G«30CC0L+LE
RiY = D.4T0COE+LD \!
B 2 0e100CCE+L4 B, =0.2 0“@&
Ch = Ce100LOE+.6 2 O
RL = 0e11800E+CL | &
WO
8 E=T-IRD=OCTANE RAND FXCESS ATTEAUATIAN, DB.
"Rtu '—\ANGE DIJTANCES - FEtTo
n/ 25¢C 530 100G. 200G 40C0
Icel) he 24 Q0+69 6el6 1191 1779
1ce59 =305 1¢6% 736 13011 18099
15055 =159 333 8450 1455 2043
1935 (e 31 459 1C«05 15¢73 2le67
Zoe g Ge32 5067 1111 1684 2271
3162 ledé 661 12+02 1773 23*6C
3Lei1 Ce&Z Teby 12e¢84 185 C4+ 358
S5Cel¢ 3en3 &oe34 1362 19e2% 25+ 1C
6oely 4¢93 9.25 léeiry cOe 03 25+ 86
7543 Av25 i0e2r 15435 2091 26653
igleLy 7469 1149 16647 185 2764
125e03 9443 1297 1772 €311 28+ 82
iheesy 1127 1he81 1S5.37 24065 30+« 3G
19V e85 1256 17+C1 2leb1 26169 32+1¢C
c51ely 1223 1297 chel3 €937 3479
J1beg 3 1Ge43 18+63 2581 32407 38072
3306611 824 1591 2377 3124 3800
Dulely 6¢e23 1281 1997 c6+93 3353
030695 4«50 10C7 1652 2303 2931
/350343 2¢39 7¢7C 1362 1974 2631
10000y 1voU 5064 1109 1694 2322
léhee 32 Ue27 381 8485 14643 2051
IDA4en3 106 15 682 1232 18+08
19394253 =Ce33 Cebl WheS6 1027 15+91
E€nlieed ®3e3a ~Ceb6 323 Be34 13+89
JiaZes?7 =399 ~2el4 163 6956 12+36
3"slels =3¢ /Y -3e30 Cel& 4¢9¢ 1066
YUiledé ~1e33 =4¢(03 =109 352 e 04
b1y eby 3+ 16 e (7 =204 2+39 772
794 5e75 167 ~2+89 =2+50 1¢53 681
919Y 494 “2v41] “0e&3 2o/ 122 6038
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TABLE 28

GROUND ABSORPTION SPECTRUM FOR DENSE, SHORT GRASSES

SY = 0.137C0E+(1
YSCz  Ce250LUE+LD
YhEz  95e13700b+0d
n s 0s15220E4L3
pe 2 02200Lut+L0 o LeOQOUO0E+OL
SA = 0e10003L+0l
Y = 0:99600t+(0
Rl = O'ﬁUC(JOt*v?_
RN = 0e80GLJE+LO
300% GelLOLOE+Ca B, =0.2 “G“ydt
CR = 0010CLOF +06 o800
Re = Gell8COk+CY S
Y
BME-TrIRD=UCTANE SAND FXCESS ATTENUATIONs Db.
FRE ) ~ANGE CISTANCES = FEETe
ne 250 5G0 1000 20C0Ce 4000¢
10eL) “geui 2437 7487 13462 19+51
12653 =131 3470 9.21 1495 2047
19685 0+ 3C 534 1087 16464 22454
19¢95 1469 6475 12429 18407 23496
212 248> 7496 13.44 19.22 25012
3ie€2 3e7n 8e81 14e34 20012 26CC
3oexl keSa 9.53 15.04 2080 26470
5Lele 5e15 10010 15458 21433 2720
23010 be7% 10463 16403 21476 27462
Geu3 6043 11+CY 16045 22+15 28+ 01
150eLy 7436 11+62 16489 22455 28939
125083 7475 12417 17438 £2+99 28+ 81
155043 BeSu 12+81 17.93 23450 29+29
135653 9e23 13+49 18454 £4407 29+83
£91e13 9.5% 1410 19.16 24467 30043
31€e€3 9.2¢ 1435 19-60 25016 30«95
39eel1 8416 1390 19+51 2525 31e12
ou1e13 Eeib 1254 18455 24457 3053
630y 4254 1054 16474 22491 28+ 98
/34033 2054 823 14047 2065 2723
15CLe L) Ges7 6403 12405 18+12 2460
lese ey “0e73 3487 9466 15469 21+94
123423 ~2413 1287 7437 13433 19040
1935s25 =3.26 003 5.20 11:04 16498
2511085 “4e 3G -1:63 315 2e81 14065
3lécez/ “4e.7 -3:06 1425 6065 12094
39814053 ~2e35 “4417 ~0e51 - 4070 10e72
SU11e86 1e0U3 =482 =209 P+80 861
6309054 4e22 “4465 ~3.43 1.11 6057
79430y ~2407 -2+91 ~bo4( ~0e k6 479
999% e 96 -3432 Oe4t “4e79 =155 3e82
71
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GROUND ABSORPTION SPECTRUM FOR DENSE, SHORT GRASSES

L
=
LU LR T I T R TR ]

0«137L0L+01
0e2B5000E+U0
013700t +01
Oel15ccOb+(U
C+200COE+LV
Ce1COC0OE+U1
0e9G6C0E+LY
Q0e90ulUE+L2
012000t +0 1
0+100uCL+u 4
De100Lur+ia
0¢118CCE+C1

OME=TnInD=0CTANE HSAND FACESS ATTENUATION, DB,

TABLE 29

u~0000%E «0C

FREJ KANGE CISTANCES = FEET
B 25¢L 500, 1000+ 2000. 4000,
100U “2e Y P77 8429 1406 19+95
1939 ~Gexl 424 9«79 1556 2le4p
19085 1e 50 6ely 1167 1746 23936
1995 2e bl 774 1332 1813 2503
Sel12 3e¢33 910 147G 7051 26be4p
EFRY-Y. be3n 1C+16 15+ 7¢ 21457 27+49
3Yen1 577 1094 1€«54 2235 2827
bUelp 6e37 11eb] 1709 2289 2880
63010 Oo 54 1192 17« 4& €327 29417
79e43 7ecl4 1225 17+76 £3¢54 2943
190eC0 762 1253 18.00 2375 29864
12€e573 739 12¢8C 18«22 2395 2987
1543 535 13«C7 1844 2413 2999
13553 Beba 13+32 1864 2he31 30e18%
e%1e¢13 8e73 1345 18.76 chedl 3030
310023 8e43 1335 18+69 24436 3025
396911 7000 12+77 1825 2402 29489
©ilel13 Geld 11e6¢ 17+3C 2316 29407
63095 4e55 1C«03 1581 21e7¢ 2767
/34e33 2el/? 8e 1 13.92 19+ 8% 2625
100CeCY Ce 32 6403 1181 1775 2403
1258492 =Ue /5 3¢96 9e6C 1553 clebb
1044029 “~cs21 1697 745 1333 1934
1¥55e2h -3 36 Celc Se34 1115 17eC&
£€o911ex3 4. )Y ~157 332 9.0C 1487
3162ee7 “4elc =30z 1e42 691 1318
3981003 ~Zsun ~4els «“0¢35° 4093 1098
SUlless le3p 4077 =1435 304 8+90
63(9eH4 3e94 “4¢57 =3.3C 1034 6en?
7943e2) ~1le35n ~2¢83 429 ~0+23 506
5939494 -3k Ce 35 4,71 ~137 376
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COMPUTER PROGRAM DESCRIPTION

By

D. M. Lister
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WYLE LABORATORIES

CCMPUTER PROGRAM DESCRIPTICN

Progrom Number:  72/002S-1

Author : D. M. Lister
Date : January 28, 1972
Computer : XDS Sigma 5
Source Language: Fortran 1V-H
Monitor System : RBM -1

PROGRAM TITLE

Computotion of ground attenuation effects on noise spectra.
PURPOSE

Given a mathematical definition of source height, refraction and specific admittance
coeffients, the program computes the spectral sound attenuation for five (3) horizontal
distances (x) from the source. The attenuation is computed ot five (§) heights for each

x and the average recorded. A third-octave averaging process is performed in order to
smooth the results. The user has direct control over the choice of spectral and averaged
plots to be produced.

METHDD
The method employed is described in Reference 1.

COMPUTER CONFIGURATION

The required hardware: XDS Sigma 5 computer with 16K core, card reader, lineprinter
and Calcomp plotter.

DATA iNPUT

The data input is in the form of punched cards, the formats of which are described in the
following table.




Fortran Card

Note | Cardj Variable] Symbol Description Formot | Cclumns
] 1 - 1P2(1) | Plot control parameters for 1/3 octave
averaged plots n 1
IP2 (2} { 1P2 (I) controls plot for range | n 2
| 1P2(3) } If IP2 (I) = O then no plot for range | It 3
i IP2(4) | 1f IP2 (1) = 1 then plot on new axes H 4
) IP2(5) | If IP2 (1) = 2 then plot on existing axes n 5 ]
5 2 Sy SYIN | The source height F5.0 1-5
) YsSC Scale factor fory - coordinates F5.0 6-10
YRE The receiver height F5.0 11-15
‘ 2 B, B2 The specific admittance coefficient
at the ground 2F5.0 16-25
2 HH Ground cover layer thickness 2F5.0 26-35
‘ 4 k SK Structure factor that introduces into
A equations nature of intersticies in
1 skeleton F5.0 36-40
Y Y Porosity FS.0 41-45
2 R, RI Alternating flow resistance F5.0 46-50
4 ‘ ¢ RM Density of acoustical material F5.0 51-55
P 3 m Volume coefficient of elasticity of
Q Q acoustical material F5.0 56-60
NCTES:
i 1. After processing each set of data the program returns to read another set of data - if an

END-OF~FILE is read then the program will terminate,

i 2, These variables are complex numbers, hence the real part followed by the imaginary part
must be supplied.

' 3. These variables are multiplied by 1000 by the program, thus adjust accordingly before
input. .
e 4, See Reference 2 for full description of this and following parameters.

5. All the dimensional units follow the mks system.




]

e am bea

6.0

7.0

8.0

9.0

LINERINTER OUTPUT

This cansists of an annotated copy of the input data, and a table of attenuctions at
various range distances for the frequency range of interest.

CALCOMP PLOTTER OUTPUT

This consists of plots of the attenuation levels requested for a frequency range, on a
log scale, from 10 Hz to 10000 Hz. The range of the attenuation levels is from -10 db
to 40 db on a linear scale.

DATA STATEMENT OF PROGRAM

The number of frequency points per decade (ANN)] is preset by a DATA statement to be
100.

The program will always compute three decades of frequency beginniag at FRZ which is
preset to 10 Hz.

The spectral plots for the various range distances may be obtained by altering the array
IPI according to the rules specified in section 5.0 for the array IPl. Each member of
the array IPI is currently set to zero.

REFERENCES

1. Pao, S.P., andEvans, L. B., "Sound Attenuction Over Simulated Ground Cover,"
Journal of the Acoustical Society of America, Vol. 49, pp 10/69-1075, 1971,

2, Beranek, L. L., "Noise Reduction," McGraw Hill Book Company, Inc., pp257-260

1960.
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COMPLEA SGD2RL1

COMPLEX VIA(46)sV2A(46)2ANT1(46)2AN2(46)

COMPLEX GZ2,G1,B1.B2,S1G2S12,V1,V01sVvID1,V2,VD?,VDD2,G72,G12,TEMP,R
14sR1,R22,R12:R2:K22sHIFNCIENT1,EN2s TWa TEMP2, AK,HH,) 2 ZER

COMMON/LIMITS/CZERS

CIMMEN/SVV/GZ,B1s82sV1sVD12VDD1aV2sVER22VDD25G10HaSIGaTWOPTIAXZ(S)sY
12(5) 2 IPI(S)sANNSFKZ,IP2(5))HH)ZZER

COMMAN SGD(301),801(301)
COMMBN FRQ(301)s90P(301)sX(31),Y(31,5)1,0B(5)1sPARM(7)swaDUM(12)

CIMENSIBW AKD (1)
UIMENSION HD(2)sR2D(2)sR1D(2),TWD(2)sGZD(2)sAK(2)2HHD (2)4B1D(2),S!I
1GD(2)272ERD(2)

ESUIVALENCE (AKDJFRQ)

EJUIVALENCE (HDstsHR)I S (HL (2)2HI ) s (R7D4RZIR S (RZD(2)2R1) 5 (FN,FNCHY, ¢
1R1DIRR1sK1)2 (RRISR1D(2))2(RZ2,RRIS (RF12,K12)2 (Tisa TWDLTWRIL (TWD(2),
STl ) a (Q2U2GLaGLRII(GZD(2)2GZI)s (AK2AKR) 2 (AK(2)2AK])

t JUIVALENCE (RHD,HHIHHR) » (HHD (2)aHHT ), (B1DsB1)s (S1GDLSIG)

t JUIVALENCE (72ERBs2ZERS7ZERD )2 (2ZER12ZZERD(2))

CATA TwBPl/6425831853/

CATA ANNLFRZ,CZERB,ZZERGLZZERT/10040210005345¢3124100020407/
UATA XZ2/1219¢2,6C96:304e85152e4,7642/

CATA YZ/0e0sCecS2Ce5,007%01e0/

CDATA IP] /02040CaCa0/

CALL PLEBT (OeQ2=12¢0,25)
CALL PLBT (0e021+5,25)
FNC=2(0e0s0+0)

~Z22=FNC

FlzsFNC

KRI=Jes

RIzQe0

cZI=0¢0

AKI=2QeC

h=FNC

READ (10523,END2999) (1P2(1)s1=2145)

FORMAT (511)

KEAD (10%24) SYIN,YSCHYRESB2,HHs (PARMII))12145)
FOKMAT (16F5.0) .
FARM(3)sPARM(3)#1000+0
FPARM(5)=PARM({5)%1000.0

PARM(6)21000C0e0

PFARM(7)=1+18

wiRITE(1082100) SYIN,YSCsrYREsHHRSR2
wRITE(1082110) (PARM(I)s181,7)

L8 20 Us1:+5

AN20e0

=0




[

1&

FRRsFR?

AnSK+]

FRA(K)sFRR
wsTWIP I #FRR
AKR=w/C2ERY

IF (J=t) 627.8

STEP &

CALL IMP(HD,ST1GD)
cls2ER/H

LWi(K)sbl

SaD(x)sS1G

Lo T3 9

bl=3D1(K)

S1G=sSGu(K)
AXzXZ()#AKR
FRadAR®AKR

nlzHH] 2 AKR

r2sXX#XX

SY=sSyIan#AKR

SYs3Y+rR

ZsHRsHR+R ] #H1

FPSGs0eC

LY 18 l=21.5

YY2Y/Z ([ )nYSC#AKR+HR+YRF#AKR +
Ti1zYY=SY

T22T1T1

KR=eT2+x2

RaSGRT(RR)
TlaYY+SYerR#240
T2=T1»T1

KkR12sT2+x2
wR1=SURT(RR12)
0LRsTi/RKY
ulR2s32R#+GZR
FingQe5a(1e0=52ZK2)

CALL Cvive
EN1sFNC#vDD1~-GZ2VD1
ENZEFNC#VDD2 =2 #VD2
K2zR14(2¢0s0e0)#H#{G1#SIC=G2)
TEMP2(Ue0slel ) (R2=R7)
TEMPsCEXP(TEMP)
TeMPeTEMPeKZ /]
TEMP2sRi/ H
TasTEMP#(V2=(Ce0s1¢0)#ENP/TEMP2)
TEMPa(Je021eU)#(({R12«R22)/(R14RZ))
T<MPsCEXP(TEMF)
TeMPaTEMP#RZ /R
TEMPRsENL/R]
TEMP2sTEMP2#(0e021+0)
TeMP2av1=TEMP2
TEMPaTEMPRTEMPE
TazTa+{16020e0)
TausToa+TEMP
AsCaTwk#TAR+T] #Tiw!
PSissPSGL+ABC
EIP(K)35+0/PSA
ANSAN+1 D
FRR23FR7#10¢Q02» { AN/ANN)
IF (KelLTe301) GO T8 5
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Dt Sl

20

3C

31

3¢

34
4C

5C

100

CALL PLOTIT (FRQ,008P,301,1IP1(J))

CALL TevJ)

COUNTINUE

x(1)sAkD(1)

LY 22 1=2,3C

rRa(]el)e1Q0+!

x{1)sAkD(K)

Xx(31)3AKD(301)

L8 30 ./1s1.5

CALL PLOTIT (xaY(10U)231,1P2(J))

CONTINGE

wnRITE (108,31

FIRMAT (//716Xs45HBNE=-THIRD«GCTANE RAND EXCESS ATTEMUATION, CBev
111X255(1H=)//711Xs 4HFREG 18Xs 23HRANGE NDISTANCES = FEETe/12Xs2HHZ,9X
24 3H25027X%251 5000s5Xs5H100025X25H2000¢25X25H4000e/11X24(1H=)s7Xs 4
35(1H=) /)

Ug 4.0 Is1,31

Cy 32 .s1,5

Coa(Jd)s10«0#ALBGIC(Y (12U

wRITE (108,34) X(1),DB(5),DB(4)2GB(3),0B(2),LB(1)

FOIXKMAT (SXsF10eP25Xs5(F8e2+2X))

CIONTINUE

we]TE (1C8250)

FORMAT (1H1)

ul T3 2

FURMAT (1CX25HSY s ,E12e5/

1 10X25KYSC= sE12e5/

A 10Xs5kRYRES 2E12e5/7 ~
2] 10Xs5HH =& »E12e5/ v
Z 10X25RE2 2 sE12e523H 5 JE1245)
FURMAT (10Xs5hSK = ,E125/

1 10Xx25KHY = ,E12¢5/

2 10x25HR1 = »E12e¢5/

3 1Cx25HRkY = sE12e5/

4 10425k = SE12.5/

5 10XsSHCK s »E1Z¢%/

6 10X25nR2 =2 »E12.5)
STeP 999

END

SUBRAUTINE THv(y)

COMMEBN SHARE (1204)

COMMAN X1(301),Y1(301)sX2(31)2Y2(31,5)
SUMSLeG/ZYLI(1)41eC/Y1(2)4100/Y1(3)410GC/7Y1(4)41e0/Y1(S)141e0/YL(6)
Y2(1laJ)=b6e0Q/5UM
SUM1eG/Y1(3C0)1+100/Y1(299)+1e/Y1(298)+10/Y1(297)41¢/¢1(296)+10/Y
11(301)

Y2(312J)86e0/5UM

CO 10 182,30

SUMEL (G

KE=I#1:=5

KSsKEe=§

L0 6 XaKS,KE

SUMaSUNM+1e0/Y1(K)

SUMSSUM+2e0/ (YL (KS=1)+Y1(KE+1))

Y2(lsJ)=10e0/5UM

RETURN

END

A-7




B N T i " L

L
I

e

e

. See

1CQ

1Ce

1C6

1.8

10

17¢C

20C

L T G et b e

SUBRYUTINE Cvive

CBMPLEx TEMFA,TEMPBJH

COMPLEX GZ2s01s812B2sS1G62512aV12VE1aVDD12V22VL22VDD22G722sG12,TEMP
LUMMIN/SVvV/G2,B12B22V1oV012VCD1ov22VD2,V0D2,G12HaS51Gs TWBP!
CIMENSIBN SD(2)

tSUIVALENCE (SCaSIG#SIK)»(SD(210S511),(GZRAG?)

ASzsABS(SI])

IF (XxS=1.CE=9) 100s1002108

XS8AcS(TIR)

ASEAAS(XSe1e0)

IF (XS=1+0£=9) 10221022108

vu12(0«0,000)

vudlzvil

Viz{(1¢3,0¢0)=B1)/((10C200)+R1)

V22 (4e5oCoU) #BLa(GZ=B2)/(GZ+B2)/((140000C)14R1V/((1+05,0¢0)+B1)
XSsAnS(GZK)

IF(XS=zeDE=1) 104,104,106

vuzsvol

vOoD2svi2

~ETURN
VU23(Be0s0¢0IRE12B2/((10¢0200C)14B1)/((1204000)4B1)/7(GZ2+B2)/7(GZ+B2)
VOD2avi2#(=2+0s00)/7(G2+82)

L1sa2

<8 T3 200

CONTINLE

Sl2sSIG#SI6

Ww22=G2xG2

0leS124¢G72= (1020 )

G1=C5GkT(GL)

L1=x31/51G

L12s31.G1

vis(LZ=-B1#31)/7(GZ+81#01)
vD18(2e0s0e0)1aB1#(G12e512«G221/512/61/7(02+B18G1)/(GZ2+B14#G1)
VOPSSVD1#(GZ2+(Fe0s0e0) 251225124 {30020CeD)2G70G1#B1)/(S122G12%(G7+R
11+510))

voolavi2

TEMPz(L,Z+B1%%1)

TEMP=TEMP2TEMP

V22 (31=82)%(4eCale0)#B1#G22G1/(TEMP(G1+52))

x5zA i5(GZR)

IF (aSe=1.0t=9) 1€0s160,17C

vues(0e0s0e0Q)

vobesvie

~e TUu=sN

vO2=s(8e0s000) g1 #R2#G22/(S12*TEMP#(G1+B2)#(G1+E2))
vo2evDe+veaV1Iw( (16020 0)=S12)/512/G12/G2
vuD2a((1¢0s0e0)=512)/512/G12/GZ#((V1#vE2+VD1#V2)aViav2#(S124G12+52
12#(2¢0,00))/S12/7G627C12)

TEMPAGZ2/7((GL+B1#(G1)#SIG*(G1+82))

TEMPsTEMP#TEMP

vIDeaVuD2+(16e0sCeU) #B12R2#TEMP#((140,000)/GZ=(SI2%G1+B1eG2)/S12/6
11/7(G2+01#G1)=GZ2/S12/7G17(G14B2)Y)

TEMPAsGZ#{0eCa2eC)/SIG/GY
TEMPRaTEMPA#TEMPA#H+(0e0s2¢0)#(SI2=(1e04CeC)Y)/sG12/G1/512/81G
voD2sveD2/sH

vOesvD2/H

vOCZavDD2+(2¢0s0¢0)#TEMPA®VD2+TEMPBavV?

vOzevD2+v2+TEMPA
KETURN ‘
END
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SUBROBUTINE PLOBTIT (XsYsNsIP)
DIMENSIBN X{1)aY(1)
CGHHBN/PLUT/XST)XAXIS:XDECADE)YAXIS:YDECADE:XQOYHXN
COMMON/AXIS/TT(8)

DATA TT/000458200096920015495002218,003012003979,005229200699/
DATA XST,XDECADE, YDECADE,»1Q/3¢022004s1¢5+5/
DATA YAXISsYMIN/7¢5,=1C0/
YSeYDECADE/Z10.0

IF (1P=1) 230,102,170

IF (ABS(X(1)e1¢0)=0+00001) 2C»20,30
ASCALE=1.0

Gé T8 &0

XM=ALBG10(X(1))

IF (X(1)*1¢0) 40420,50
Is]FIX(XM)=]
XSCALE=1¢0/10e0nnl

G9 T8 &0

IsIFIX{(XM+0e5)
XSCALE=1¢0/10e0#%x]

CALL PLOT (XSTs,0e0s25)
I=1FIX(ALBGIO0(X(N)#XSCALE)+10)
XAXIS=FLBAT(])#XDECADE
XSTeXAXIS+30

CALL PLBY (XAXISs0+0:,2)

CALL PLOBT (XAXIS,YAX1S,2)
CALL PLBT (0e0sYAXIS,2)

CALL PLBTY (0s0s040:22)
XXsXJDECADE

L8 80 k=1,

L0 70 J=1.8
ADsxXx=TT(9~J)#XDECADE

CALL PLBT (XCsGe0625,1)

CALL PLBT (XDsQels?2)

CALL PLBT (XX20e12%5,51)

CALL PLOT (X4sCeCa2)
XXxeXX+xDECADE

XAsXAXIS

YY=Ce(

L6 110 Ks1,1C

YDsYY

L8 9C J=lsé

YD=sYD+YS

CALL PLBY (XX,YDa1)

CALL PLBT (XXx=Ce05CaYDs2)
YDzYD+YS

CALL PLEBT (XX2YDs1)

CALL PLOBT (XXx=0e12YD,2)

L8 100 Jsl,4

YD=YD+YS

CALL PLBT (XXaYDsi)

CALL PLBT (Xx=Q0eC50,Y0D.2)
YYsYY+YDECADE

CALL PLBT (XXaYYs1)

CALL PLBT (Xx=0s150,YYs2)
CONTINUE

YY=YAXIS

LB 130 Kai,l

D8 120 Js1.8
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120

130

140

150

160
170

180
190

2Gs
213

XOsXxxeTT(.J)#XDECADE
CALL PLBT(XD,YY,1)
CALL PLOT(XDsoYYeCe0625s2)
AXsXx=XDECADE

CALL PLOT(XxX,YYs1)

CALL PLOBT(XXsYY=Cel125,2)

D8 160 Ks1,IG

YDsYY

U8 140 JUslaé

YDsYD=YS

CALL PLBY (0e¢0sYDs1)

CALL PLBY (0.050.YD,2)
YOsYDeYS

CALL PLBT (0¢0sYDs1)

CALL PLBTY (0s1sYDs2)

C8 190 Jslsé

YDeYDeyYS

CALL PLET (Qe02YD21)

CALL PLOBT (0e0502YD,2)
¥Y=sYY=YDECALCE

CALL PLBTY (0e0sYYs1)

CALL PLBT (0e1500YY,2)
CONTINGE
xXsAL.8:10¢(X(1)#XSCALE )#XCECADE
YYs10e#ALBGI0(Y (1) )= YMIN

IF (vY) 180,190,19C

YYa(j«0

YYsYY#YS

IF (YYsGTe9e0) YYm9e0

CALL PLBT (XXx.YYsl)

LI 220 le?2sN
AXsALBG1O0(X(1)#XSCALE Y#XDECALCF
YYs10eCaALOGIG(Y(]))mYMIN

IF (YY) 200s21Gsc1C

YYz2(e O

YYzYY#*YS

IF (YYeGTeSe3l) YY29e0

CALL PLBT (Xx,YYa2)

CONTINGE

FETURN

END
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SUBROUTINE IMP(ACD,SIGD)
COMPILEX BChXCs2C
CIMMON/LIMITS/CZERD

CIMMIN SPARE (1204)
COMMON FREQ(301)2DUMMY (492),5KaYsR1,RMsQsCKIRZ2WaDUD
COMMON Z2CD(2),BCD(2)axCh(2)

UIMENSION ACD(2)4SIGD(2)

EIVIVALENCE (BCDsBCsBR)» (BCD(2)2BI), (XCDIXCaXR) 2 (XCD(2)2X1)
EJUIVALENCE (ZCDsZCsZR)Y2(2CD(2)s21)

IF (Chk=G#200) 1C0,100,120
arRz1C
Alzer1/RZ/SK/W
*rCsC3LRT(XC)
thks0e(
ElsRZ*SKeY/CK/1 04
clsw*SART(8])
uC=BC#xC
(R=0«0
{1==CK/W/Y %100
LCslT#RC
(M=w/Bl
SIGD(1)=CZERB/CM
SIGL(2)=RR*CZERG/W
L8 T3 130
TERMi=1e0+RZ#(SK=140)/RM
TEARM12aTERML #*TERML
TERMZ22RMaw
TERMP2asTERM2#TERM
rl2srR]1#R1
TERM3=TERMz2+4TERM12
t3T4sl+0+R12/TERM3
rIKERZ#SK :
TIPe1eG+R12* (Y+RM/RZK) /TERM3
rdT72=1sC+RZ# (SK=1+C)/RM
F312RZK#TOP/38T4
hRB1=2140+RZ*(SK=1e0)/RM
FRilzRRB1#RRRH
EOT4=B3T4#RRE1
PRE13RI* (1e0=RZ#(1+0=Y)/RM)/EBTY
Ak=Rn1
Xxlz=RRR1/W
xCsCSGRT (XC)
lesY/Ch/Z1 64
cel=53RT(B])
cleblea
tReQeQ
tCebC#xC
Lo 79 110
CoaNTINUE
ACL(1)sZR
ACD(2)=Z]
RETURN
L ND
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