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FOREWORD

This report was prepared by the Boeing Company, Vertol Division,
Philadelphia, Pennsylvania, for the Air Force Flight Dynamics
Laboratory, Wright-Patterson Air Force Base, Ohio, under Phase
II of Contract F33615-69-C-1577. The contract objective is to
develop design criteria and aerodynamic prediction techniques
for the folding tilt rotor concept through a program of model
testing and analysis.

The contract was administered by the Air Force Flight Dynamics
Laboratory with Mr. Daniel E. Fraga (FV) as Project Engineer.

This report covers the period from June to December 1970.

The reports published under this contract for Design Studies and
Model Tests of the Stowed Tilt Rotor Concept are:

Volume I Parametric Design Studies

Volume II Component Design Studies

Volume III Performance Data for Parametric Study
Volume IV Wind Tunnel Test of the Conversion Process

of a Folding Tilt Rotor Aircraft Using a
Semi-Span Unpowered Model

Volume V Wind Tunnel Test of a Powered Tilt Rotor
Performance Model
Volume V1 Wind Tunnel Test of a Powered Tilt Rotor

Dynamic Model on a Simulated Free Flighu
Suspension System

Volume VII Wind 'unnel Test of the Dynamics and Aero-
dynamics of Rotor Spinup, Stopping and
Folding on a Semi-Span Folding Tilt Rotor
Model

2 Volume VIII Summary of Structural Design Criteria and

k> Aerodynamic Prediction Techniques

.3 Volume IX Value Engineering Report

This report has been reviewed and is approved.

£, Q)

Ernest J. €ross, Jr
= Lt. Colonel, USAF
L Chief, Prototype Division
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ABSTRACT

Wind tunnel test data obtained with a full span, two prop,
tilt rotor, powered model in the Boeing V/STOL wind tunnel
are reported. Data were taken in hover, transition and
cruise flicht conditions and include performance, stability
and control and blade loads information. The effects of the
rotors, tail surfaces and airframe on the performance and
stability are isolated as are the effects of the airframe

on the rotors.

The airfirame and the rotors are not dynamically representative
of the full scale aircraft but the rotors are flexible out of
plane having a flapwise natural frequency between 1.4 to 1.66
per rev and are stiff in-plane with a natural frequency between
1.7 and 2.0 per rev. Predicted rotor frequencies were veri-
fied, both static and rotating, and since they influence rotor
response characteristics,correlation for stability and blade
load data is included.

iii



e gt NadlotnEaiad mat A e oy TR —
SRS A e Pl S N A S S B S it et i Yl * ia® S S e e e MG S L Tk et Sk S e St i S A s e o e o o
- LR S Y < * - . - ~ - - ks - - -, -

. ek
Bk P, T N T AR S

SUMMARY

A wind tunnel test (BVWT 062) of a 1/10 scale full span, tiit

rotor, powered performance model, rotor diameter 5.5' and wing
span 6.78' rotor center to center was conducted in the Boeing

V/STOL tunnel. This test produced performance, stability and

control, and rotor loads data in hover, transition and cruise

flight to provide verification of aerodynamic prediction tech-
niques and establish structural design criteria.

The report is divided into performance, stability and control
and rotor loads sections and a brief summary of each section

follows.

Performance

Total aircraft lift data in hover with leading edge umbrella
flaps shows that a download of 5 percent of the aircraft thrust
occurs out-of-ground effect for this configuration and is reduced
as ground height is reduced.

Airframe lift data in the STOL mode IGE shows that the 1ift due
to the ground cushion decreases with speed and vanishes when the

downwash tucks under the aircraft.

Performance data were obtained in transition and cruise flight
regimes for correlation with theory.

Stability and Control

Control morent data in hover show that adequate pitch and yaw
control can be obtained with cyclic pitch control. The effects
of ground proximity on control moments were found to be small for
tests with one rotor. Tests with both rotors were prevented by
motor failure. Twin rotors could give different results.

Rotor stability derivatives measured in transition show that the
rotor contribution is large and destabilizing, and that wing and
rotor stall now define the limits of the transition envelope.

Roll and yaw control in transition can be provided by the use of
differential thrust and differential cyclic pitch. The required
mixing for pure control based on test data and crossplots fron
test data are presented.

iv
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A comparison of the predicted isolated rotor pitching moment
derivative and test data crossplotted to zero wing lift in cruise
show good agreement and indicates a 50-percent increase in hub
moment due to wing-rotor interference. The total model pitching
moment derivative is unstable and this is predicted by the iso-
lated rotor theory corrected for wirg interference. The same
methodology was used to compute the full-scale aircraft derivativ
which is shown to be stable because of the differences in model
and full-scale rotor dynamics.

Rotor Loads

Rotor loads data were obtained in the hover, transition and cruis
modes. The test objectives included the determination of rotatir
blade frequencies in the hover mode and the effect of various til
rotor flight conditions on blade bending moments and rotor loads.

A coupled flap-lag frequency analysis was used to predict the
rotating blade frequencies for the first flap and first lag bend-
ing modes and an uncoupled flap-lag-torsion frequency analysis
was used to predict the first torsional frequency. Baffle test
data substantiated the analysis.

Past prop-rotor and helicopter blade stall flutter inception
data were used to predict the inception of stall flutter in
hover at a collective pitch of 14 degrees. No stall flutter
was found.

The effect of angle of attack on blade flap bending in cruise was
predicted by the coupled flap-pitch uncoupled lag analysis and
correlation of the test data with prediction is good. The hub
moment due to angle of attack in cruise and the effect of wing
flap deflection on blade flap bending in cruise were also pre-
dicted and the correlation with test is good.

Dynamics

Pre-test predictions of the modal frequencies and dampings were
¢ made prior to the 1/10-scale performance model wind tunnel test

to insure structural integrity of the model during the test.

The analyses used accounted for the dynamic interactions pro-

& duced by rotor airframe coupling effects. During the test,
baffles were used to determine blade frequencies at discrete
rotor speeds. The measured blade flap frequencies are in
excellent agreement with the predictions and the blade lag
frequencies are slightly higher than predicted.

v
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Step aircraft angles of attack were input into the model in
cruise, transition and hover flight modes to determine the air-
craft's susceptibility in whirl flutter modes to forcing func-
tions of this type. Results of the test show the aircraft to be
insensitive to this type of forcing function.

vi
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1.0 INTRODUCTION

The stowed tilt rotor aircraft hovers, executes transition and
cruises at low speed in the same manner as a pure tilt-rotor
aircraft. When the aircraft reaches conversion speed, the
rotors are feathered and folded, propulsion being maintained
by convertible fan engines. The Boeing Company is conducting
a program of parametric design, analysis and wind tunnel test-
ing to establish design criteria and aerodynamic prediction
techniques for this concept under Contract Number F33615-69-
C-1577 from USAF Flight Dynamics Laboratory. This program
consists of two phases. Phase I studies (Reference !) in-
cluded the preliminary design of stowed tilt-rotor vehicles
for (1) high-speed, long-range rescue, (2) capsule recovery,
and (3) VTOL trarsport, and laid the ground work necessary

to plan Phase II. Phase II consists of a series of four wind
tunnel tests designed to provide experimental data on which

to base design criteria and prediction methods and to verify
preliminary design information.

This volume reports the second of the four test programs and
describes investigations of performance, stability and control
and blade loads in hover, transition and cruise. This test
program was conducted using the Boeing powered tilt-rotor per-
formance model in the 20'x20' Boeing V/STOL tunnel. The model
is a transport aircraft configuration with 5.5-foot diameter
rotors. The model rotors are not dynamically representative
of the full scale aircraft; however, the blade properties have
a large effect on blade loads, stability, control and aircraft
performance. The effects of blade flexibility (Reference 3)
must be considered in order to understand and scale these data
to full-scale design points. In order to verify the rotor
blade natural frequencies in both static and rotating cases, a
unique test was performed using baffles to provide blade load
excitation and identify blade resonances.

The instrumentation system was designed to allow rotor-airframe,
airframe-rotor and tail effects to be isolated and the breakdown
of aircraft forces and moments into component parts is shown.
The nacelles of the model are oversize relative to the rest of
the aircraft in order to enclose the electric motors. The
model, provides performance, stability and control, blade loads
and dynamics information for correlation with prediction tech-
niques and extrapolation to full-scale design points using

those techniques.
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2.0 OBJECTIVES

This test program is aimed at producing wind tunnel data to
verify calculation procedures for the performance, stability,
control and blade loads of a stowed tilt-rotor aircraft in
all of the rotor-driven flight modes. The test objectives
are summarized in Table 2-1 and formulated more fully below.

Objective 1

a. Define the natural frequencies of the model rotor blades.

Data was obtained from the "baffle" test reported in Section 7.1.
This requirement is the result of the high sensitivity of blade
loads, aircraft performance, stability and control to rotor
flexibility (See Reference 2).

Objective 2

a. Obtain the rotor wake flow visualization pictures for hover
OGE and IGE.

b. Determine whether there is any adverse yaw/roll coupling
for hover IGE.

c. Establish the configuration that maximizes aircraft
performance in hover.

d. Investigate hover skittishness.

Objective 2a, c are dealt with in Section 4.1.1, 4.1.3 respectively,
and objective 2b and 4 in Section 5.1.3 and 5.1.5.

Objective 3

a. Establish the wing and horizontal stall tail boundaries in
transition and cruise £flight.

b. Determine whether these boundaries represent flight envelope
limits due to (1) buffet, (2) moment nonlinearities.

Data concerning Objective 3a are given in Section 7 and 3b in
Sections 4 and 5.
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Objective 4

a. Obtain blade load data in hover and transition to define and
evaluate the prediction techniques.

b. Determine effects of ground height and cyclic pitch on blade loac

- Data for these objectives are given in Sections 6.2 through 6.5.

Objective 5

a. Determine the prop/rotor static stability derivatives
in hover, transition and cruise.

Data is shown in Sections 5.1.1, 5.2.1, 5.3.1 and 5.4.1.

Objective 6

a. Obtain force and power polars from hover through transition
and cruise to be utilized as a basis for comparison with
prediction methods.

Measured data are compared with precdictions in Section 4.1.2.

Objective 7

a. Determine the blade loads during rotor start-up in a
30-knot crosswind.

b. Determine wing interference effects on blade loads.

Objective 7a is not answered by this test. Objective 7b is
dealt with in Section 6.6.2.

Objective 8

a. Define control moments due to cyclic pitch and differential
thrust in hover and transition.

b. Establish how these controls should be mixed and phased.

These objectives are answered by data given in Sections 5.1.3,
5.1.4 and 5.4.2.

Objective 9

a. Determine the whirl flutter modal damping of this model.
b. Determine the dynamic rotor stability derivatives.

Data obtained in Section 7.1 for Objective 9a; for 9b, Section 5.4.1

3
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TABLE 2-1

OBJECTIVES OR TEST PROGRAM II

I _ ) l
CONTRACT DATA '
TEST OBJECTIVES REQM'T. OBTAINED |
- - — |
|
1. ROTOR BLADE DYNAMICS SUBSTANTIATION !
(BAFFLES) NO YES j
e am—— - - .. . amame . es ‘ ot
2. NEAR HOVER FLOW FIELD STUDIES ' YES YES
A. FLOW RECIRCULATION ;
B. ADVERSE YAW WITH ROLL AT 30
KNOTS IGE
C. NEAR HOVER DOWNLOAD
D. HOVER SKITTISHNESS
3. WING AND HORIZONTAL TAIL STALL
BOUNDARIES YES YES

A. BUFFET ‘
B. MOMENT NONLINEARITIES
4. STALL FLUTTER LOADS IN HOVER
AND TRANSITION NO YES
A. IGE VS OGE
B. EFFECT OF CYCLIC PITCH
r e e L s e e g e e e e e n
5. PROP/ROTOR STATIC STABILITY DERI-
VATIVES YES YES
A. HOVER (CYCLIC)
B. TRANSITION

emme e .- - aaod

C. CRUISE
6. PERFORMANCE ’ YES YES
7. BLADZ LOADS (OTHER THAN STALL

FLUTTER) !

A. START-UP LOADS IN 30-KNOT :
CROSSWIND - NO NO
B. WING INTERFERENCE ‘ NO YES
8. ROTOR HUB VIBRATORY LOADS NO YES
9. CONTROL MOMENTS YES YES

10. ANGLE OF ATTACK STEPS TO EXCITE

DYNAMICS i NO YES
A. WHIRL FLUTTER MODAL DAMPING ‘
B. DYNAMIC STABILITY DERIVATIVES
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3.0 DESCRIPTION OF TEST INSTALLATION

3.1 MODEL DESCRIPTION

The 1/10-scale, powered aerodynamic model of the Boeing Model
160 tilt rotor aircraft, Figure 3-1 was used in this test.

The model was originally built for the Boeing Company by Atkins
and Merrill Corp. The primary structure of this model is steel
and aluminum. Fuselage shell, nacelle fairings, fillets, etc.
are constructed of wood and/or fiberglass. The model was de-
signed to permit testing at dynamic pressures up to 125 PSF.
Dimensions and sketches of the model are given in Table 3-1

and Figures 3.2 to 3.4.

The configuration of the model is that of a two-rotor, high-wing,
monoplane transport aircraft with T-tail and wing-tip-mounted
tilting nacelles. The wings are constant chord, constant thick-
ness and untwisted. Manually adjustable leading edge umbrella
flaps are provided for download reduction in hover. Remotely
controlled trailing edge flaperons are provided for further
download reduction and to increase lift in transition. The
horizontal stabilator is designed to be remotely controllable
but was fixed at zero degrees incidence for these tests. The
vertical tail has a manually adjustable rudder that was set at
zero degrees deflection for the test. ©Nacelle incidence is
manually adjustable in 5-degree increments and was varied during
the test.

The rotors are 5.5 feet in diameter with three fiberglass blades
each. Elastomeric bearings are used for blade retention in the
hub. The collective pitch of each blade is set manually by
loosening the clamps and physically turning the elastomeric
bearing in its seat. Small changes in collective pitch (+5°)
can be obtained by changing the length of the pitch links. Cyc-
lic pitch on the blade is obtained by means of a manually ad-
justable swashplate.

The blades were geometrically scaled from the full-scale Model
160 blade. The blades are flexible but do not match the stiff-
ness characteristics of the full-scale blades. The model blades
had a flapping frequency/RPM ratio of 1.46 at the RPM for full-
scale hover tip speed (2600 RPM and 750 FPS, respectively). This
is about 17% higher than the full scale flapping frequency ratio.
Blade physical properties are discussed in greater detail in
Appendix A. The results of a test to determine the blade shear
center and the elastic coupling between vibratory modes are given
in Appendix A.

Each rotor is powered by a 52 nominal HP Task motor driving through
a transmnission. At 2600 RPM, the maximum indicated output of these
motors was 26 HP for continuous running or 38 HP for up to three
minutes.
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TABLE 3-1

Rotor

Number of Blades
Radius

Solidity

Effective Disc Area
Blade Area

MODEL DIMENSIONS

- .
.....

Wing

Airfoil

Span (Nacelle Cp, to Nacelle Cp)
Chord (Constant)

Area

Aspect Ratio

Flap Chord aAft of Hinge
Flaperon Area Aft of Hinge Line

3
2.750 ft
.0857
23.750 ft?
2.034 ft?

NACA 634421 (Modified)

6.78 ft
.858 ft
5.85 ft?
7.93
.206 ft

1.00 ft2(.5 ft?/flaperon)

o s e o

Nacelle Pitch Axis 31% Chord
Wing Angle of Attack with 2.5 deg
Respect to Fuselage Waterline
Upper Umbrella Chord .150 ft
Lower Umbrella Chord .137 £t
Horizontal Tail
Airfoil NACA 0015
Root Chord .883 ft
Tip Chord \ .616 ft
Span ' 3.14 £t
Area 2.355 ft?
Aspect Ratio : 4.20
Vertical Tail f
Airfoil ! NACA 0015
Root Chord i 1.215 ft
Tip Chord .750 ft
Span 1.408 ft
Aspect Ratio 1.43
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The instrumentation capabilities of the model are summarized in
Table 3-2. Of this capability, only the fuselage pressure trans-
ducer and the horizontal stabilator pot were not used. The slip-
ring capability was used to transfer strain gauge moment data.
One blade on each rotor was instrumented with strain gauges at
32.5%R to give blade torsional moment. As a precaution, the
motor and gearbox on each rotor were equipped with thermocouples
to permit temperatures to be monitored.

Air flow patterns in hover were recorded with the aid of tuft
grids (Figure 3-5) and high-speed moving pictures. Two grids
below the wing and one grid above the wing consisted of wires
strung between brackets installed at the wing tips and fuselage.
Wool tufts were knotted and bonded on the wires. The grids below
the wing were 5" apart with the forward grid located at the

- l7-percent chord position. The upper grid was located at 25
percent chord. Figure 3-5 shows the model with the tuft grids
installed.

The blade frequency substantiation tests were performed in hover
with pieshaped baffles mounted under the rotor to give 1, 2, 3
and 4/rev excitation. A sketch of the test set~up is shown in
Figure 3-6.
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TAELE 3-2

MODEL INSTRUMENTATION

PARAMETER TYPE SENSOR LOCATION

ROTOR FORCES AND MOMENTS Component Strain One in Each

Gage Balances (2) MNacelle
6 Component Strain
' Gage Balance

| 6
L _ !
=
MODEL FORCES AND MOMENIS ! Between Fuselage

and Wind Tunnel

IO SR

45

- - : - Sting
X4 e - — Cmmmmeeee e S
B FUSELAGE PRESSURE | Pressure Trans- . On Side of Fuse-
FLUCTUATIONS ducer i lage Under Wing
ROTOR RPM (2) Gear and Tacho- i One in Each .
g ) meter ! Nacelle
1-PER-REV INDICATOR Magnetic Pick-up | One in Each
| e ' Nacelle
S - i —
! WING FLAP DEFLECTION Potentiometer ; Trailing Fdge of ‘
{  Wing and in
i Fuselage
i
. HORIZONTAL STABILIZER Potentiometer In Vertical
DEFLECTION Stabilizer
MODEL ATTITUDE Potentiometers In Sting and
. Pendulum Pot in
oz, Fuselage
X SLIP RING CAPABILITY 3 pata Channels Nacelle
Y per Rotor
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3.2 TUNNEL INSTALLATION

The model was sting-mounted in the 20x20-foot test section of
the Boeing-Vertol V/STOL Wind Tunnel, Figure 3-1. A variable
bent/offset adapter was used which gave a bend in the sting in

- the pitch direction and offset the model 16.5 inches to the
right of the tunnel centerline. The bend permitted a pitch
range of -15° to +30° with the model in the center height of
the tunnel. The offset permitted a sideslip range of -5° to
+15° with minimum wall interference. Model height, pitch and
yaw angle were controlled from the tunnel console while roll
was manual. Figure 3-7 presents a sketch of the model mounted
on the sting in the test section and defines the height of the
model from the tunnel floor. Included on the figure is a

- tabulation of the rotor height/diameter ratio, rotor height
and the associated Gilmore height reading utilized in the test
program. The test section walls and ceiling were removed for
the hover and low g tests to reduce flow recirculation effects.
The tunnel floor was used as a fixed ground plane. The boundary

layer on the tunnel floor, being approximately 5 inches thick,
has no effect on the mcdel since the bottom of the fuselage was
7 inches from the floor at the liowest height to diameter ratio

tested. A closed test section was used for the transition and
cruise tests.
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3.3 DATA REDUCTION
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Test data were collected or presented on three media:
a. Steady-state model and tunnel data on computer output.

b. Dynamic and static model data in digitized form on
magnetic tape.

c¢. Dynamic model data in analog form on oscillograph.

Output of all tunnel and model sensors after appropriate signal
conditioning and sampling was processed by an IBM 1800 computer.

Balance data were¢ corrected for interactions on the sensing
elements and for weight tares to give the absolute values for
the loads and moments at or around designated positions in the
model.

The main model data were presented in reference to the 1/4
chord point and the nacelle data in reference to the inter-
section of the shaft axis and the rotorplane.

The absolute loads and moments were converted to coefficient
form and referred to three standard wind tunnel axes systems
and with respect to tunnel and slipstream dynamic pressure.
Rotor coefficients, calculated from the nacelle balances, were
expressed in body and wind axes only but also with respect to
tunnel and slipstream dynamic pressure.

The model pitch angle was corrected for model normal force and
pitching moment to eliminate the error introduced by sting and
model deflections. The yaw data are not corrected - deflection
data is included in Appendix C.

The dynamic data from the blade gauges and balances were digi-
tized and stored on magnetic tape. Identification, with respect
to run number and test conditions, was added for later retrieval
and processing. During certain test conditions, ten parameters
were selected for on-line dynamic printout. Maximum, minimum,
alternating and steady values in combination with the azimuth
angle where they occurred,were presented at the end of the static
data output. All other dynamic data could be harmonically
analyzed with an offline computer program.

Selected parameters were recorded on three oscillographs. Cali-
bration factors were, in advance, established from direct cali-
brations or from voltage equivalents. A time and rotor speed re-
ference was added to all oscillograph records. The data from
these records were manually reduced and analyzed.
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Aircrgft moment data presented in this report are referred to
the wing quarter chord. Figure 3-8 gives the model dimensions
necessary to transfer moments and forces. The sign convention
for positive forces and moments is shown in Fiaure 3-9.
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MODEL 160 WIND TUNNEL MODEL TOP VIEW

FIGURE 3-3
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/ NACELLE BALANCE CALIBRATION CENWTER

aTh 28.37
ST 28.97

NACELLE PWOT POWT

WL T.63

NACELLE BALAIIE CENTERLINE WL 4.43%

WATER LWNE 3.Q0 L

MAIN  BALANCE CALIBRATION
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FIGURE 3-8 MODEL REFFRENCE CENTER GEOMETRY
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4.0 PERFORMANCE

Tests were performed in hover, transition and cruise flight

modes and a brief synopsis of the performance data obtained
follows.

Total aircraft 1ift data in hover with and without umbrella flaps
are shown in Figure 4-1 for various ground heights together with
previous model test and fuil-scale data. A download of 5 percent
of the aircraft thrust occurs out-of-ground effect for this
configuration and is reduced as ground height is reduced. Flap
and umbrella settings have no effect on the rotor performance;
therefore, the minimum download configuration tested produced

the best total aircraft performance (Figure 4-2).

Airframe lift data in the STOL mode IGE are shown in Figure 4-3
with previous test data. The data show the presence of a ground
cushion in hover (Cp.=1.0). The lift due to the ground cushion
decreases with speed‘and vanishes when the downwash tucks under
the aircraft. The difference between the ideal line and the data
is a measure of the downwash-airframe interference lift.

Performance data was obtained in transition and cruise flight
regimes (Figures 4-4 and 4-5) and will be used for correlation
with theory in the final report. The data presented here, being
greatly influenced by the model rotor dynamic characteristics,
cannot be scaled up and be representative of the full scale
Model 160 aircraft since the rotors are not dynamically scaled.
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4.1 HOVER PERFORMANCE

The hover mode refers to operation with the nacelle incidence
at 90-degrees and with zero forward velocity. This discussion
addresses download, flow recirculation, rotor performance, and
the integration of these in total aircraft performance.

4.1.1 Download and Flow Recirculation
Download

The tilt rotor develops its lift in cruise from a wing and its
propulsive force from rotors mounted at the wing tip. To hover
the rotors are tilted up 90-degrees to provide vertical thrust,
but the rotors are directly over the wing resulting in a download
penalty. There are two download reduction devices; umbrella
flaps on the leading edge of the wing, and the conventional
trailing edge flap. Figure 4-6 illustrates the download of these
configurations when hovering out of ground effect as a ratio of
download-to-thrust. This ratio is used since the download is a
vertical drag that is a function of a drag coefficient of the
configuration, exposed area, and the slipstream dynamic pressure
which is directly dependent on thrust. Therefore, dividing the
vertical drag, or download, by thrust results in a ratio that is
dependent only on the product of drag coefficient and the exposed
area, which is a constant for a given configuration. The plain
wing has a download/thrust ratio of 0.127 or 12.7% of the rotor
thrust. Deflecting the 25 percent chord trailing edge flap 60-
degrees reduced this to 0.087, a 32 percent reduction in download.
Opening the 15 percent chord leading edge umbrellas produced a
further reduction in download. This lower umbrella was set at
70~-degree, and the upper umbrella was varied. A minimum value

of ‘download/thrust ratio of 0.050 was achieved at 75-degrees upper
umbrella angle, 70-degrees for the lower umbrella, and the trail-
ing edge flap deflection of 60-degrees, providing a net reduction
of 61 percent. With the umbrella angles optimized at 75 and 70-
degrees (upper and lower respectively) the flap deflection was
varied to determine if any further reduction in download was
attainable. This is presented in Figure 4-7 and indicates that

a minimum download/thrust ratio of 0.048 was achieved with a 70
degree flap deflection. The download was minimized out of ground
effect and the effect of ground height is presented in Figure 4-8.
There is a sliaht decrease in download (0.048 to 0.040) as the
height, represented by the ratio of height of the rotor disc
above the ground to the rotor diameter, is decreased from 1.82
(out of ground effect) to 1.0. As the height is further reduced
the download decreases rapidly to zero at the height/diameter
ratio 0.66. At this point there is no download on the airframe
and the lift is equal to the rotor thrust. The height is decrease
further, to the point equivalent to the landing gear touching

the ground, resulting in a negative download/thrust ratio of
0.072. This means that there is an upload equivalent to 7.2 per-
cent of the rotor thrust. It appears to be a result of the rotor
downwash creating a pressure pad under the fuselage.
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A final area of investigation was the effect of the fuselage

angle of attack on download. Figure 4-9 presents this effect
and indicates that there is no change in download with angle

of attack.

It is concluded from this analysis that the minimum download

is achieved by deflecting the umbrella flap angles to 75 for
the upper and 70 degrees for the lower flap, and the trailing
edge flap to 70 degrees to achieve a download to thrust ratio
of 0.048. The prediction technique utilized in Figures 4-7 and
4-8 will be presented in vVolume VIII.

Hover Flow Recirculation

The trajectory of the rotor wake was visualized using tuft grids.
The high-speed movie film data are summarized for a ground height
of h/D=.39 in Fiqure 4-10. At this ground height, the vortices
are seen to turn outward and create an upwash over the outer
portion of the wing. The vortex trajectories seemed to oscillate
over a wide band as indicated by the broken lines. The rotor
downwash creates a pressure pad under and around the fuselage
resulting in an upward flow around the fuselage. Another zero
flow region or high static pressure zone appears under the
outboard part of the wing and nacelle causing the rotcr down-
wash to turn. It is thought that this pressure is maintained

by the curtain effect of the rotor downwash outside the wing tip.
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As the model ground height is increased to h/D= 0.65, Figure
4-11, a similar flow field is observed. The regions of zero
flow still occur; however, since the turning effect on the
rotor downwash is reduced, the static pressures under the model
N must be smaller as would be anticipated from increased fore

o and aft leakage.
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The upward flow over a large part of the wing at the two
ground heights precludes the formation of large wing Karman
vortices; no evidence of wing Karman vortices was observed.

4.1.2 Rotor Performance

Rotor performance data was obtained in conjunction with the
download testing. Data was obtained for both rotors operating
5g and also with one rotor stopped. Figure 4-12 presents the

N variation of rotor thrust coefficient with rotor power coeffi-
: cient for the right and left rotor when operating separately.
x The resulting trend indicates that the right rotor produces
] slightly more thrust for the same power. Also included on

: this figure is the prediction of the rotor performance. The
o relationship of the prediction and the test data indicates

: that the rotor blade may be "unwinding" or decreasing the twist
. as a result of the lift pitch coupling.
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For all the configurations tested which have large variations
in wing area exposed to the slipstream in hover and therefore
various amounts of blockage, there is a potential influence on
the rotor performance. The exposed area of the plain wing is
4.1 sq.ft. which is reduced to 3.70 sq.ft. by deflecting the
flap 60 degrees and is further reduced by opening the umbrellas
(6,=75°/70°) to 3.3 sq.ft. However, Figure 4-13 presenting
data at rotor tip speeds from 575 ft/sec to 750 ft/sec for the
left rotor in the twin rotor configuration, shows essentially
no effect from the change in blockage associated with deflectirg
the flap and then the umbrellas.

A comparison of rotor performance with both rotors operating and
with one rotor alone is shown in Figure 4-14. The data indicate
an increase in power required when both rotors are operating.
This is contrary to tandem rotor helicopter test data which in-
dicates a diminishing interference effect as the overlap approaches
zero and suggests the possibility of a favorable effect for
negative overlap as tested here. The alternating blade loads
data, Section 6 increase with two rotor operating compared with
one rotor alone. Model oscillations may be causing data system
errors. Further tests are recommended to define the cause of
this apparent performance loss.

4.1.3 Ailrcraft Performance

Total aircraft performance is an integration of the hover down-
load and the rotor performance data discussed in the previous
sections. This is presented in Figure 4-15 and shows the
variation of the gross weight coefficient with power coefficient
for various configurations tested. As indicated in Section 4.1.2,
the changes in umbrella and flap setting do not affect the rotor
performance. Therefore, the only difference will be a result

of the download variation with the configuration chances. The
level shifts in Figure 4-15 are commensurate with download varia-
tion in Section 4.1.1.

Reflected here is the increase in download/thrust ratio from
0.048 to 0.087 resulting from the umbrellas being closed. The
lowest level of performance shown here represents the 0.127
download/thrust ratio associated with the plain wing with the
flaps not deflected. This indicates that the best performance
is obtained with the flap deflected 70 degrees and the umbrella
flaps set at 75 and 70 degrees for the upper and lower flaps
respectively.
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4.2 STOL PERFORMANCE

For the STOL flight regime, two primary performance areas in-
vestigated in this testing were the ground run and the climbout.
The ground run was made with a nacelle incidence of 70-degrees
and a rotor height-to-diameter (h/D) ratio of 0.39, equivalent to
a wheel height of zero feet. A nacelle incidence »f 70-degrees
was utilized since it will provide the takeoff distance over a 50
foot obstacle of 500 feet as indicated in Reference 10. The
~limb-out was made at an acceleration of 0.l"g's from a zero
vheel height to the out of ground effect regime (h/4=1.82).

4,2.1 Rotor Airframe Interactions

In the STOL takeoff the rotor wake has a significant impact on
the performance characteristics of the aircraft as a result of
the interactions with the airframe. 1In hover and very low for-
ward speeds the ground cushion produces an increment in lift. At
higher speeds the rotor wake tucks under eliminating the ground
cushion and the rotor downwash produces a download which decreases
with increasing forward speed.

It was of major importance to establish that the ground cushion
effect that existed in hover at this ground height had been
eliminated before climb-out was initiated. 1If not the aircraft
would settle after the climb-out had begun since the ground ef-
fect decreases very rapidly with increased height. Figure 4-16
presents the variation of airframe slipstream lift coefficient
with aircraft slipstream thrust coefficient (CTS) for the

ground run. Slipstream thrust coefficient has a value of 1.0 at
zero forward speed and approaches a value of zero at high forward
speed. If the rotor produced no ground cushion or downwcsh on
the airframe then the airframe lift variation would be a straight
line; zero in hover (Cpg=1.0), and 1.2 in high speed flight
(Crg=0) as shown in Figure 4-16 by the ideal 1lift variation.

The variation of the slipstream thrust coefficient with advance
ratio in the ground rvn is presented in Figure 4-17. For the
break-ground condition defined by the 0.1 "g" acceleration, the
aircraft slipstream thrust coefficient is 0.36 which indicates in
Figure 4-16 that the aircraft is beyond the point in transition
where the ground cushion has been lost. The rotor downwash re-
duces the airframe slipstream lift coefficient by 0.1, approxi-
mately three percent of the total aircraft 1lift. Also shown on
this figure is data obtained from the previous test of the 1/10
scale performance model, Reference 9. for a similar configuration.
The ground cushion decreases to zero at Cpg of 0.83 as the rotor
wake tucks under the aircraft and the rotor downwash <ffect be-
comes predominant.
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4.2.2 Rotor Performance

For the STOL flight regime, testing was conducted for the ground
run with a nacelle incidence of 70-degrees and at a rotor height-
to-diameter ratio of 0.39 equivalent to a wheel height of zero
feet. Figure 4-18 presents the rotor thrust variation during

the ground run for the left and right rotors and indicates that
rotor thrust gradually decreases with increasing advance ratio.
The associated rotor power is presented in Figure 4-19.

Testing was performed in the climb-out at an advance ratio of
0.206 which was defined by a propulsive force to 1lift force

ratio (X/L) of 0.1. Figures 4-20 and 4-21 present the rotor
thrust and power variations for the left and right rotors from
zero wheel height (h/D=0.39) to the out of ground effect condi-
tion (h/D=1.82). There was a slight decrease in thrust and power
as the height/diameter ratio was increased to 0.8 and any

further increase in height did not produce any change in thrust
or power.

4.2.3 Aircraft Performance

The total aircraft performance for the ground run was obtained
with a nacelle incidence of 70-degrees and an equivalent zero
wheel height (h/D=0.39). Figures 4-22 and 4-23 present, for
this condition, the variation of the aircraft slipstream lift
and propulsive force coefficient with advance ratio. These
data were combined in Figure 4-24 to show the acceleration cap-
ability during the ground run by presenting the propulsive force
variation with 1lift. A 0.1 "g" acceleration, indicated on this
figure by the dashed line, defined the breakground condition at
which the climb-out was investigated. Figure 4-25 presents the
variation of the rotor power coefficient with advance ratio for
the ground run indicating a constant power takeoff.

Climb-out performance is rresented in Figures 4-26 through 4-28
indicating the aircraft 1lift, propulsive force and rotor power
variations with rotor height-to-diameter ratio. There is a
slight decrease in the 1lift and power as the rotor height is
increasad. Associated with this is approximately a 15 percent
decrease in propulsive force, but the net acceleration only
decreases to 0.09 "g's".
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4.3 TRANSITION PERFORMANCE

The transition mode refers to operation out-of-ground effect
from hover to the cruise regime. The nacelles rotate from 90-
degree incidence (iN) to zero-degree incidence. During this

- flight regime, the rotor has a significant influence on the
aircraft pnrformance since it provides the majority of the lift
as well as all the propulsive force.

4.3.1 Rotor Airframe Interactions

In the transition regime, the high rotor induced velocity and
rotor shaft angles have a significant impact on the local angle
of attack of the wing and possibly have some impact on the tail
and fuselage contribution to the airframe characteristics.

This effect results in a snifting of the airframe 1lift by an
incremental angle equal to the average downwash over the wing.

The aircraft 1ift data are precsented in Figures 4-29 and 4-30
for the 70 and 45-degree nacelle incidences. At 70 degrees,

the airframe minas tail lift curve slope (Cp/a) of 0.065 per
degree is increas=d to 0.083 per degree by the addition of the
horizontal tail. Adding the rotors increase the 1lift curve
slope to 0.217 per degree. Maximum wing lift coefficient (Cy

of 1.64 occurs at 8 degrees angle of attack with the tail andMhX
rotors removed. The horizontal tail increases the wing Cp ... by
0.06 but does not change the angle of attack at which it

occurs. Testing was terminated at 13 degrees with the rotors on
as a result of model operational limitations. Total aircraft
lift does not appear to have reached stall but included in Figure
4-29 is the 1lift of the airframe obtained by subtracting the
rotor l.ft contribution from the total aircraft. This airframe
lift curve is displaced approximately 6 degrees as a result of
the rotor dewnwash and stall occurs at 13 degrees with a maximum
lift ccefficient of 1.45.

)

When changing the nacelle incidence to 45 degrees, the 1lift
curve slope with tail on increases from 0.083 to 0089 per degree
and increases to 0.175 per degree with the addition cf the rotors.

The maximum airframe 1lift coefficient obtained with the nacelle
incidence of 43 degrees is 1.83 as compared to 1.70 when the
nacelles were at 70 degrees. This again indicates an increased
lift effectiveness of the wing and nacelle. A maximum lift
coefficient of 5.1 is obtained at 21 degrees anglc of attack
for the total aircraft and 4.65 for the aircraft minus tail.
Included in fiqure 4-30 1s the lift of the airframe obtained

by subtracting the rctor lift contribution from the total air-
craft. This airframe lift curve is displaced by approximately
3 degrees at zero lift but decreases as the angle of attack is
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increased. The increase in lift curve slope appears to be the
result of the increase in local dynamic pressure over the wing
produced by the rotor. This also accounts for the increase in
maximum lift coefficient to 2.0. Stall for the aircraft with
the rotor on is very gentle with the maximum lift occurring at
16 degrees angle of attack.

The displacement of the lift curve at 70 and 45 degrees nacelle
incidence is approximately the same as the downwash angle defined
by the induced velocity through the rotor disc and freestream
velocity.

Figures 4-31 and 4-32 present the influence of the rotors on

the airframe characteristics in yawed flight. Airframe data
obtained with the rotors off is compared to the total aircraft
data and the aircraft minus the rotor contributions. The shaded
area indicates that the rotor downwash on the airframe produced

a change in the side force/yaw angle slope. This is a result

of the rotor induced velocity producing a local angle of attack
change on the fuselage and the nacelles. For the nacelle inci-
dence (iN) of 70 degrees. Figure 4-31, the rotor downwash appears
to have delayed a possible separation of flow on the fusealge

or nacelles occurring at -12 degrees of vaw. At a nacelle in-
cidence of 45 degrees, Figure 4-32, the rapid change in side force
at -12 degrees yaw is not evident in the airframe data. This
indicates that the flow separation in iy=70 was occurring on the
nacelle and was eliminated by the rotor downwash.

4.3.2 Rotor Performance

Rotor performance data was obtained in the transition regime

at nacelle incidence values of 70 and 45 degrees to provide data
that would adequately describe the performance capabilities
between hover and cruise. Data obtained with the nacelle inci-
dence of zero and the flaps deflected 60 and 0 degrees is also
presented to represent the end of transition and the beginning
of cruise.

The rotor thrust variation with angle of attack is presented _n
Figures 4-33 and 4-34. For the shaft incidence of 70 degrees
(¢/Vp=0.206 and 0.234) there is a definite reduction in slope at
approximately minus two degrees angle of attack. A similar

but less severe change in slope occurs at an angle of attack of
12 degrees for the nacelle incidence of 45 degrees (V/Vp=0.269).
This is indicative of stall and to confirm it, the associated
thrust/power variation is presented in Figures 4-35 and 4-36 for
nacelle incidence values of 70 and 45 degrees respectively.
Rotor stall is evident by the sharp decrease in slope resulting
from the reduced thrust-angle of attack slope and the associated
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increase in rotor power. The rotor loads discussed in Section 6
show that the rotor is at the stall flutter inception point.
First harmonic flap bending is reduced as shown in Figure 6-74
and thus explains the marked reduction in pitchinc moment deri-
vative observed in Figures 5-46 and 5-47.

Indicated also in Figures 4-33 and 4-34 is the influence of flap
deflection on the rotor thrust at the end of transition at a
nacelle incidence of zero degrees. Deflecting the flap from

60 to 0 degrees decreased the wing circulation which affects

the flow through the rotor disc and results in a decrease in

the thrust.

The power variation with angle of attack for the transition
regime associated with the thrust data of Figures 4-33 and 4-34
is presented in Figures 4-37 and 4-38.

4.3.3 Aircraft Performance

The testing performed in the transition regime was accomplished
at nacelle incidence values of 70 and 45 degrees. The perform-
ance data obtained with the nacelle incidence of zero and the
flaps deflected 0 and 60 degrees is also presented to represent
the end of transition and the beginning of cruise. Shown in
Figure 4-39 is the variation of slipstream lift coefficient with
angle of attack. This indicates that the flap increases the lift
coefficient by 1.05 and any additional 1lift is provided by the
rotors as they are tilted up from the horizontal position. When
the ro:crs are tilted up to 45 degrees additional increment in 1lif
coefficient produced by the rotors is 0.8 and approximately 1.6
to 2.0 for 70 degree nacelle incidence.

Figure 4-40 presents the variation of aircraft propulsive force
with 1lift for the angle of attack sweeps shown on the previous
figure. For the 70 degree nacelle incidence there is a decrease
of 0.35 in propulsive force coefficient associated with the
change in advance ratio of 0.206 to 0.234. Only one advance
ratio is presented for the 45 degree incidence because of model
motor operational problems. Two advance ratios are presented
for zero nacelle incidence indicating a 0.11 propulsive force
decrease when the advance ratio is increased only 0.06. These
variations illustrate the sensitivity of the rotor propulsive
capability with small changes in advance ratio. It also indi-
cates that the rotor is most sensitive to forward speed or rotor
speed in the end of transition since the blade section angle of
attack is very low.

The associated aircraft rotor power required characteristics are
presented in Figure 4-41. This data in conjunction with Figures
4-39 and 4-40 provide a summary of the aircraft performance data
of the transition regime and will also form the basis for compari-
son of the existing prediction techniques and development of new
methodology where none exists currently.
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4.4 CRUISE

The cruise mode, as discussed here, will refer to operation as

a conventional aircraft with the nacelle in the full-down posi-

tion (iy=0°) and the rotor is in axial flight. 1In this flight

regime, the rotors have a major impact on the aircraft stability

and performance in that they are larger and more flexible than

R conventional propellers. Both these factors can greatly affect
the rotor performance and cust sensitivity.

4.4.1 Rotor Performance

Rotor performance data was obtained at a nacelle incidence of
zero degrees for a range of flap deflection (0°,45° and 60°)

- at a speed representative of the end of transition and the
beginning of cruise. Figures 4-42 and 4-43 present the rotor
thrust variation with angle of attack. This indicates that
deflecting the flap increases the wing circulation and produces
an increase in rotor thrust at angles below stall. The thrust
variation with angle of attack for 45 and 60 degrees is approxi-
mately the same; this is due to the small increase in lift and
a slight variation in advance ratio offsetting the increased
circulation sensitivity of thrust to advance ratio. The rotor
thrust coefficient decreases from (.0015 to 0.0005 as a result
of increasing the advance ratio from 0.380 to 0.386. The
rotor characteristics are significantly affected by changes in
the local flow field and hence the local blade angle of attack.
Since there is a difference in the dynamic characteristics be-
tween the model rotor and the full scale rotor and result in
different blade response, the performance data presented here
cannot be scaled up and be representative of the full scale
aircraft.

Figures 4-44 and 4-45 present the model rotor power variation
with angle of attack associated with the thrust data of Figures
4-42 and 4-43.

4.4.2 Aircraft Performance

From the testing accomplished ir cruise, the basic model per-

¢ formance characteristics will be presented here for an advance
ratio of 0.386. This is representative of the end of the transi-
tion regime before the blade folding conversion is initiated.

« The variation of the aircraft lift with angle of attack is pre-
sented in Figure 4-46 for flap deflections of 0, 45 and 60 degrees.
It indicates that there is an increase in lift coefficient of
0.9 for 45 degrees and 1.05 for 60 degrees at zero angle of attack.
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Figure 4-47 presents the variation of aircraft propulsive force
with lift for the angle of attack sweeps presented in the previous
figure. There is a decrease in propulsive force coefficient of
.02 for 45-degree flap deflection and 0.06 for the 6C-degree flap
deflection. From Figure 5-129,the drag coefficient increase
associated with the 60-degree flap deflection is 0.19 at zero
degree angle of attack but the change in propulsive force is only
0.13. This indicates that the deflecting of the flap increases
the rotor propulsive capability by 0.06. Also shown in this
figure is the large variation in rotor thrust that results from
very small changes in rotor tip speed or forward speed. This
increment in rotor propulsvie force obtained from a l.5-percent
increase in tip speed is almost the same magnitude as that asso-
ciated with a 60-degree flap deflection. The associated rotor
power required characteristics are presented in Figure 4-48. De-
flecting the flap 60 degrees has increased the rotor power from
0.00072 to 0.00085 at zero angle of attack but the variation of
advance ratio from 0.386 to 0.380 increases the power coefficient
(CPA/C) from 0.00072 to 0.00105.

In obtaining the performance characteristics of the aircraft, it

is necessary to determine the effects of yawed flight. Aircraft

lift variation with yaw angle is very slight as illustrated in

Figure 4-49. The propulsive force increase with yaw angle pre-
sented in Figure 4-50 is typical of the thrust increase resulting
from a rotor angle-of-attack change. Figure 4-51 shows the power
increase with yaw angle is directly proportional to the increase

in rotor thrust and indicates no influence in rotor cruise efficiency.
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4.5 CONCLUSIONS - PERFORMANCF

Analysis of the performance test data presented here allows
the following conclusions to be made:

1. Minimum download was achieved in hover with a flap
setting of 70 degrees and umbrella flaps set at
75°/70°. The download out of ground effect is less than
5 percent of the aircraft thrust.

2. Flap setting and umbrella angle has no effect
on rotor performance.

3. The minimuw. download configuration produces the
best total aircraft performance.

4. The maximum 1lift loss due to rotor airframe inter-
ference is 3 percent of the total 1lift available
in STOL operation.

5. The total aircraft maximum lift occurs at an
angle of attack of 20 degrees in mid-transition.

6. The rctor performance data cannot be scaled up
and be representative of the full scale aircraft
but is adequate for the correlation with theory
for the contract final report.

83

......




........................

.........................
PR

5.0 STABILITY AND CONTROL

A brief summary of the stability and control data obtained in the
hover, transition and cruise flight regime follows.

Control moment data in hover show that adequate pitch and yaw
control can be obtained with cyclic pitch controi (Figure 5-1).
The effects of ground proximity on control moments were found to
be small for tests with one rotor. Tests with both rotors were
prevented by motor failure. Twin rotors could give different
results.

Rotor stability derivatives measured in transition are shown in
Figure 5-2. At 12 degrees angle of attack, the rotor stalls and
accounts for the derivative becoming stable. The total aircraft
stability derivative data for the same condition (Figure 5-3;, show
that the rotor contribution is large and destabilizing. The
change in slope between 5 and 10 degrees reflects wing stall fol-
lowed a few degrees later by rotor stall. Wing and rotor stall
now define the limits of the transition envelope. The model
rotors, not being dynamically scaled, produce more destabilizing
moment than the full scale aircraft would as a result of the sig-
nificant difference in flapwise frequency ratio and blade Lock
Number.

At the test conditions the model has a flapwise frequency ratio
(M2) 1.66 and a blade Lock Wumber (y) of 17.28 while the full
scale Model 213 rotor has a flapwise frequency ratio of 1.22 and
a Lock Number of 11.8l. This is a substantial difference.

Roll and yaw control in transition is provided by the use of dif-

ferential thrust and differential cyclic pitch. Figure 5-4 shows

the required mixing for pure control based on test data and cross-
plots from test data.

A comparison of the predicted isolated rotor pitching moment
derivative and test data crossplotted to zero wing lift in cruise
show good agreement (Figure 5-5) and indicates a 50-percent in-
crease in hub moment due to wing-rotor interference. The total
model pitching moment derivative (Figure 5-6) is seen to be un-
stable and this is predicted by the isolated rotor theory cor-
rected for wing interference. The same methodology was used to
compute the full-scale aircraft derivative and is shown to be
stable.

84




~ . W o e Lt . . W F L, " . m w s e m At et e T s I
, n KOM L TR R TN TN T T - g VAt Y R L
........... Pam g s My oy e u'~.‘..\~_... LA AR DL L N RACEE I I S et
O M e e T I L B R e i T T L R

NOTE§ Callculaffed from regsultant force ahd
monfent data diven |in filgure l5-16.

7
}\// T
.10

N 1/

.06

/ /ﬁ?
04 / NOTEE :

YAW CONTROL MOMENT ~ ACyy x 104

"

90°

N Umbl. opeh

0 1.0 2.0 3.0 4.0 5.0
CYCLIC PITCH ~ DEGREES

¥ FIGURE 5-1 YAW CONTROL HOVER, OGE

v 85




47
Com ¢ //U
N2 L
0.0024 Q::;\\
AN~ o ks Right
f s e g ka —~—31
ﬂ//\& BN Vil Rotior
* __,-_*'D____ RN —— 1t -
TSRS S| A L e
a ’ Rotor
0.0020 -
= //
n‘ 4
U !
‘ 7
E" ‘l,
2 Vi
B 0,0016 ;
3] L/
5 4
3 /]
3 /
9 /
B 0.0012 v
= g
o 4
= RN NUSN SR /
O /
5 4 Sym. {Run {3 95} i 8
= 0.0008f 1 o e
’_E:: A & 63 18°} 45°}] 60°
H i & 101 | — | 45°| 60°
a4 Fi
8 ,,F:
e P
R 0.0004 i
+—}— No Ibladds (hib tane)
\ TARES
- - . L@t ROTor
(N ’ s oSt e -(—‘-a . N
0 63 ety =-f’?3_~ar‘* B o ==l 2 43T T Rilght Rotorx
-20 -10 0 10 20
FUSETLAGE ANGLE OF ATTACK ~ a ~ DEGREES
FICURE §-2 ROTCR PITCHING MOMLNT/ANGLE OF ATTACK o
VARIATION AT V/Vp = 0.260 WITH i, =45
86

...........

........




B ) ~ =
...............

A O R, : B R A A RGN VRN

- s
o W T

¥ S
n
2.0 o
b
/ %TY}\\
./ :
. o4 Z/ tj
} - MNircrgrt
1.6 7"LE Mimos
* . "‘.j//,}fuj \\ ’] ail
" .
< e / E\,
. 7
B Pl NERNU
= "--*')-l.l “, : H o -'.,\‘\ ;.]
S 1.2 / L 4 .
1 i / & Pocal Airdgoafi
‘ 4
= - —
m 7
3 &
= .
& .8 / _/.
%)
O /
© / -
& ~o b
5] N .
2 / \‘ -~
O 0.4 RS
= % AN
2 ) £53 - Airframed
‘_,' H — $ v—“‘? i H-S-—---»'—w-» 2
th N / .
: § Ay . #] rai
A ~ -~ R Saaes ~"!_
o A 0 N P N -
1 Lot
] [_‘ .. N \_\
3 I
.:{:’i/ R
3] - g N Hirframe
% S S )
=i &
H 3 £
Z X
- -0.4 - -
_ o
Sym. jRun 16 95} 1y Op \
- & 3 18¢ | 45°| 60° ~
< | as 0o 45°| 60° -
-0.8 ¢ > :
. & 1101 0°} 45°}| 60°
- & 59 18°) 45¢} 60°
: -20 -10 0 10 20 30
: FUSELAGE ANGLE OF ATPACK ~ a ~ DEGREES

i FIGURE 5-3 CONTRTBUTION OF PROP/ROTCRS AND HORI-

S _ ZONTAL YATL TO AIRCRAFT PITCHING MOMLNT
5 AT V/Vep = 0.26 WITH iy = 45°

X 87




~ . - - .
v
et e LT Tty e carmmr—anmar | ¢ e wes e et wen  mncama bt
o et e
l [ M B
WL
eI e b LT (U SUEVISyRIGU SISO, ISUSURUUY SN SIS P S L~ SN W

chn.f‘nﬁ: Vo fL30 10/
]

- . o
150 onl 02 (404 :- ge) oo 0

fomtr it ot Biamrme # e Yo s - e memmatan § rasesd dt e ot e v ] e - -

. Qo
.24 | b ACs 280
\\ it 10 {1t
\/
-O i/
.....('[,... g v —— e s et f it e e i nd e e aer e - e e eyt imneiae ] —

.
N
o
V)
N

é

!

i

‘Alc
/s
/’
y
N, ’7,,
T
p
e
9

/ \ 5 - ~ o N e B -‘ e

-
ot
[x]
I\
s
A

-

!

e jme e aman o e e ...-L——-—.—-w Arme v vk
N

—
o
N
L/
N
i v
AN
~

(=)
o

s o = e o

' ROLLING MOMENT COZFFICIENT ~ Cpy
N
i
]

X
\

e 04 ==

AL
Pt .

Id
/
o

l’ 1.0‘
7/
7
“
N
/./ Qo
R
7
y

N,

z
AV I N NS 7N ° S
/ \Q‘.’/ " 4ERNP i NEY
X \ Q
B AR V4 3 } SN
l

: N R
/ o
/Q./ i\ / ,/'\ \ .
AN
/ 2 N\ __/
< -

I

AN
.04 .08 22 .

st
Al PP Phy 4

€ L aA I
I~‘I ‘I)“l ‘l—

P

I

i ‘:f*

O
=
>
- “"
-
=z
(3]
=
o
v
=
)
45
()
@]
e
2
es]
—
(@]
o]
]
pd
3
Q

FIGURD 5—21 CONTROL MIXING DURING THANSTITION

88




] -
Lefi§ Rotdr
38 SR, -
-~ Woa Bub nbfert
20 (b Ldded Lo
- e oo oot roung
~lno : vrncinadion doer
Sp =10 Sy P e
- - TL2)
Ed z"
d% PR —— N
ACppmddu =10.0040% " .-
1 PM 7o o . .
ST Rany aft e G
52 .0004 — T D,
Lo S " i b p~rrddar
a I ¢Cp o = V.00026
O oo/
3 I T
I
o) Vi
O 0 & 3
P .7
£ ]/«./
& Lot
S a-
< =4 e -
(@]
=
2 0004 /
& -, - N
H /.-.
o <
& vV
H £
(¥ /i
7 ~f
(o] /
. 8 -.0008 : .
& NGIT:  (Roto:} hub Jtares
are yomovgd
hQ -
....,‘ r o farer mw W Yo Sy #fre N iein -
- o Tovas { M
¥ Sym. Ran {0 - §, -
-3 -.0012 7 T
-, > 79 | 30°f 0° | G°
.

- -20 -10 0 10 20 30
FUSELAGE AVWGLE OI' ATTACK ~ a ~ DEGRLES

3 FIGURE 5-5 INFT,UENCE OF WING LII'T 0¥ ROTOR
e PITCHING MOENT AT V/VT = (0.386

= ' 89




............
--------------

......

<
) 0.2 \l Predictidns
M¢del
= \ Y - Me
1 7 \\
E‘ \\\
; S W
H 0 /;;P ‘\)?
[$]
(]
o A\ Prddictions
8 X FTotal Airgraft] (Full-Scal
o Total Alrcraft \
8§ -0,
Z
5]
=
o
=
(V]
&
:tn) -Ond: \
|3
-
o
3
E Predictibn Method Airframe
redictién Metho
© -0.§ Airframe| DAfCoM (FeL-If)
= (Ref. )
< Roters: |AHS 443
Sym.|Run |6 i S \ l
-0.48 ym .15 N F
79 30°}] 0° 0°
d 92 0°} O° 0°
-20 =10 0 10 20 30
FUSELAGE ANGLE OF ATTACK ~0C ~ DEGREES
FIGURE 5-6 CONTRIBUTION OF PROP/ROTORS AND HORI-

........

ZONTAL TAIL TO AIRCRAFT PITCHING
MOMENT AT V/VT = 0.386

90

e)



_____________________________________________________

5.1 huVER STABILITY AND CONTROL

The hover mode refers to operation with the nacelle incidence
at 90 degrees and with zero forward velocity. This discussion
addresses rotor and aircraft stability, cyclic pitch control,
control phasing and ground effect and skittishness.

5.1.1 Rotor Stability Derivatives

As can be seen from Figure 5-7, angle of attack changes produce
no variation of rotor pitching moment during hovering in ground
effect, i.e., sggm_o. The data shown is for both left and

right rotors. Similarly, rotor normal force is insensitive to
angle of attack, 3Cy =0, for the hovering case, as can be seen

Ja
in Figure 5-8. Similarly, 3C m and 3C are zero for out of

__pm ™ _ N
ground effect operation as sggn from %ggure 5-9. It is to be
noted that although this flight condition was performed at a
freestream dynamic pressure (gq) of 4 psf the rotor pjcching
moment and normal force are insensitive to angle of attack
changes.

5.1.2 Aircraft <+ability Derivatives

The aircraft 1lift coefficient based on slipstream dynamic pres-
sure, gs, from Figure 5-10 varies linearly with fuselage angle
of attack for the range of angles from -5° to +5°, thus giving

the stability derivative, 3Cpg 0.033/4 . The pitching
—==_ =0. egree

moment derivative with o for the linear range from -5° to approxi-
.6° i p Fi -11.
mately 2.6° is, agam =.0245/degreefrom igure 5-11

5.1.3 Cyclic Pitch Control

Two runs were obtained in the hover tests with cyclic pitch on
the right-hand rotor only. For these runs, the rotor swashplate
was set to give 3 degrees nose-up cyclic. The control phase
angle was set at 65 degrees; that is, the swashplate was set so
that the zero longitudinal cyclic pitch position was at 65 de-
grees azimuth (Figure 5-12) rather than 0 degrees as for pure
helicopter phasing. The model rotor heights used were 2.15

feet and 10 feet.
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The rotor forces and moments generated by cyclic pitch are

shown in Figures 5-13 through 5-16. The rotor normal force
generated by 3 degrees cyclic pitch is about 4 percent of the
thrust. The corresponding thrust vector tilt is about .8 degrees
per degree of cyclic pitch. The rotors are also strong hub
moment producers because of the stiffness of the blades.

The data indicate an increase in power coefficient of 8 percent
with a 3 degree increase in cyclic as indicated in Figure 5-15.
A large part of this may be due to increased friction in the
swashplate bearing with cyclic on, however. The magnitudes of
the resultant in-plane force and moment vectors due to cyclic
are given as a function of rotor speed in Figure 5-16. These
data show little or no variation with RPM. This is typical of
the rest of the rotor data in coefficient form.

5.1.4 Control Phasing

The effect of blade stiffness is seen in the cyclic phase angles
required for pure longitudinal or lateral control. The control
phase angle is the angle through which the zero cyclic pitch
axis must be shifted in order to align the moment vector due to
cyclic with the aircraft axis about which control is desired.
This angle is the complement of the angle between the axis for
maximum cyclic excitation and that for maximum control output.
Thus, for a hinged rotor, the phase angle is 0 degrees (90 degrees
between maximum cyclic and maximum disc plane tilt). For a
completely rigid propeller, the phase angle is 90 degrees (0
degrees between cyclic input and hub moment output).

The control phase angles obtained in the tests are shown in
Figure 5-17. 1Included for comparison are results from the first
test series with this model (Reference 9 ). Two angles are
shown: one based on hub moment and other based on in-plane force.
The moment phase angles are close to 90 degrees as might be ex-
pected for very stiff blades. The in-plane force phase angles
are small indicating that some flapping freedom remains; however,
since the in-plane forces are very small, the magnitude of the
flapping is very small.

The moment phase angles obtained in this test agree very well
with those obtained in the Reference 9 tests. The phase angles
obtained from in-plane forces are independent of RPM for this
test series; however, the Reference 9 tests indicate variations
of phase angle with RPM. The cause of this has not yet been
determined.
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The influence of cyclic phase angle on control power is illus-
trated in Figures 5-18 and 5-19. These data have been calcu-
lated from the resultant in-plane forces and moments shown in
Figure 5-16. For yaw control in hover, a small phasc angle will
be required for longitudinal cyclic due to the small in-plane
forces. It is noted that the yaw control shown for 30 degrees
phase angle in Figure 5-19 is larger than with 75 degrees phase
angle. The 30-degree phase angle, however,reduces the pitch
control power somewhat as indicated in Figure 5-18. In actual
operation, wing torsional bending will act to give additional
effective yaw control due to rotor disc plane tilt (on the
order of 1.5 degrees which is equivalent to almost 2 degrees of
cyclic). During these tests, the stiff wing did not contribute
this to yaw control.

5.1.5 Ground Effect and Skittishness

Ground Effect

No large effects of ground proximity can be detected in the data
shown in Figures 5-13 through 5-16. It cannot be concluded that
ground effects are small however, since only one rotor was
operating in the hover cyclic tests. This removed the image
effect of the other rotor and changed the character of the rotor
downwash field obtained in ground effect. Further tests are
required with both rotors operating to determine the effect of
ground proximity on control effectiveness.

Skittishness

Skittishness is the name given to unexpected movements of VTOL
aircraft in hover or near-hover flight. Past experience in this
area is summarized by References 3 to 8. The causes of these
motions on previous VTOL aircraft have been ascribed to various
phenomena, control slop, harmony, force feedback, gusts, pilot
technique, downwash, upwash, Karman vortices and so on. Almost
no measured data exist and most of the data are in the form of
pilot opinion. The "skittishness" experienced on VTOL aircraft
has been experienced only in-ground-effect operation in hover
and low forward speed. The only reported data on a tilt-rotor
vehicle is the XV-3 which exhibited an erratic tendency to dart
laterally and oscillated in roll when hovering within 5 feet of
the ground. The tests described in this section were performed to
determine if this model showed evidence of skittishness and if
its causes could be isolated.

Tests were performed in hover both in and out-of-ground effect
at various rotor RPM's and also RPM splits. Further, the
effect of tilting the wing and rolling the model were also in-
vestigated. The model balance in the fuselage recorded oscil-
latory moments in one or more directions at nearly all of the
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Mg hover test conditions both in and out of ground effect. These
oscillations were approximately at the natural frequency of

the model on its balance-sting mounting as determined from
static disturbance tests reported in Appendix B. Vibratory
moments were 2l1so noted in roll in the cruise flight mode with
rotors off. No long-period oscillations in model forces were
observed in any flight condition; however the model natural fre-
quencies in the force directions are high (of the order of two
per rev; see Appendix B). Model oscillations occur whenever the
model damping is low. In hover, the roll model damping ratio

is L¢/Iyy=-0.6 and for the full-scale, L$/Iyy=-2.0. The yaw

démping of the model is also very low. (N&/Izzmodel =-,00292,
Ny/Izz=-0.08 full scale.)

The oscillatory model moments measured are shown in Figures 5-20
to 5-25.

The response of the model at its natural frequencies is indicative
of an impulsive or random disturbance. Several potential excita-
tion forces exist. The prebend in the sting mount causes an iner-
tial torque or roll moment on the model balance which could cause
the model to oscillate in roll when ground height was changed. The
rates of change of RPM with time are not equal for the two rotors,
and hence, can provide roll and yaw disturbances due to the

manner in which the test point conditions are set up.

The absence of the cross-shaft allows a further possible ex-
citation from the rotor out-of-balance forces. When the rotors

are at slightly different RPM's, an out-of-balance beat phenome-
none exists. The potential aerodynamic excitations are thought

to be 1) the effects of rotor downwash and induced flows on the
fuselage and wings, and 2) wing Karman vortices causing the rotor
downwash to oscillate backward and forward, and 3) the rotor tip
vortices could also produce beating phenomena at slightly different
RPM's.

Figure 5-26 shows a comparison of alternating roll moments
measured on the model for various tests plotted against test

point number (as an approximate time indicator) from the last
change in RPM. For most of the tests, the RPM was a variable

but for Run No.33, where the RPM was a constant, the data indicate
reduced amplitude with time. On this run, the incidence in-ground
effect was varied for -4 to +4 degrees. The initial point at

zero incidence gave an alternating roll moment equivalent to a
29.5 percent lift offset. The zero incidence point at the end

of the run showed no alternating roll moment. The data obtained
at various ground heights, Run 24, were also at constant RPM and
do not seem to be time dependent, but the data trend could be the
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result of inertial disturbances due to the model movement.
Time dependence of the amplitude of the vibratory moments
measured would indicate the vibratory moments are not present
for the model in quiescent air but are the result of an extra-
neous disturbance (for example, tunnel operator induced).

The yaw data shown in Figure 5-27 show a much smaller reduction
with time. The steady model yaw moments are shown for a small
angle of attack range and two roll angles in-ground effect in
Figure 5-28. There are no substantial changes in the steady
moments. A low conficence level must be ascribed to the data
because of the presence of unrepresentative excitations and the
low damping of the model.

It is recommended that this model be retested with additional
damping provided up to expected full scale damping ratios. Tests
should be run allowing time for model motions due to test con-
dition set up to damp out before data are taken. Deliberate

and measured control inputs (i.e., differential thrust) can be
made to determine their effects on model behavior. Trace records
over at least one minute should be taken in order to provide
adequate visibility in the data.

Steady forces and moments in ground effect should be measured
over a wide range of incidence, roll and control input to
determine if any large non-linearities in aircraft stability
or control derivatives exist.

Tests of the dynamic model should be performed in and out of
ground effect using accelerometers to measure model response.
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5.2 §STOL STABILITY

£ STOL refers to the in-ground effect rolling takeoff associated
= with the overload gross weight coadition. Testing was performed
to examine the in-ground effect takeoff and climb-out. This
discussion includes the aircraft stability characteristics of
this flight regime.

5.2.1 Rotor Stability Derivatives

Testing accomplished in the STOL flight regime investigated the
rotor stability characteristics in three individual areas:

the ground run, break ground and cimb-out. The ground run is
representative of a rolling takeoff with a rotor height/diameter
ratio of 0.39 and a nacelle incidence of 70 degrees. Figures
5-29 through 5-32 present the rotor pitching moment, normal
force, yawing moment, and side force, variation with advance
ratio for this condition. There is a significant increase in
the rotor normal force and pitching moment, and accounts for

the total aircraft pitching moment doubling as discussed in
Section 5.2.2. The rotor yawing moment variation with advance
ratio is approximately the same as the pitching moment indicating
the flapping is increasing but the phase angle is not changing
significantly.

A second phase of the STOL takeoff is breakground. Testing of
this regime was rerformed at a 0.1 g aircraft acceleration at

a rotor height/d.ameter ratio of 0.39. The rotor yawing moment,
side force,pitching moment and normal force variation with yaw
angle are presented in Figures 5-32 through 5-37. There is some
evidence of stall appearing in the right rotor normal force at
yaw angles less than negative 5 degrees; therefore, the deri-
vatives tabulated below are obtained from the left rotor.

V/VT QCYM/Bw QCSF/Bw BCPM/Bw acN/aw

70° 0.206 0.000028 0.00002 0.000042 0.000008

Climb-out testing was performed at an advance ratio of 0.206
which was defined by the 0.lg acceleration in the ground run.
Figures 5-38 through 5-41 present the pitching moment, normal
force, yawing moment and siue force variation with rotor height/
diameter ratio. There is a very slight variaticn in these
characteristics up to a h/D of 0.8 but no change beyond this
which indicates there is only a minor ground effect on the rotor
stability.
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5.2.2 Aircraft Stability Derivatives

To define the aircraft stability characteristics for the STOL
flight regime, the following three areas were investigated:
ground run, break ground and climb-out. Figure 5-42 presents
the variation of aircraft pitching moment during the ground

run at a height-to-diameter of 0.39. As the advance ratio is
increased, the pitching moment coefficient decreases but the
pitching moment is increasing. To illustrate this point a line
of constant pitching moment was added to Figure 5-42 and indi-
cates that as the advance ratio increases from 0.11] to 0.35 the
pitching moment doubles.

The breakground condition was defined as the speed at which the
propulsive force-to-lift force ratio was 0.l1l. Directional
stability characteristics of side force and yawing moment are
presented for this condition in Fiqures 5-43 and 5-44 respectively.
For the rotors off case the side force has a slope of 0.017 per
degree and reaches a minimum value at approximately 14 degrees.
Addition of the rotors increases this slope to 0.038 per degree.
The yawing moment variation presented in 5-44 indicates a stable
yawing moment derivative of -0.0018 per degree. The addition

of the rotors results in a unstable derivative of 0.0007 per
degree. At approximately 7 degrees negative yaw there is a re-
versal in the yawing moment which is due to blade stall effect
on rotor normal force (Figure 5-37).

Figure 5-45 presents the variation in the aircraft pitching moment
during the climb-out phase. There is a slight increase in moment
up to a height-to-diameter ratio of 1.0, but it is effectively
constant, at a value of 2.70, for any further increase in height.
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5.3 TRANSITION STABILITY AND CONTROL

The transition mode refers to operation out-of-ground effect
from hover to the cruise regime. The nacelles rotate from
90-degree incidence (ipy) to zero-degree incidence. During
this flight regime, the rotor has a significant influence on
the aircraft stabiliity and control since it provides the
majority of the 1lift as well as all the propulsive force.
Included in this section is the discussion of the rotor
stability, the total aircraft stability,control mixing and
attitude effects on control.

5.3.1 Rotor Stability Derivatives

Testing was performed to obtain data that would define rotor
force and moment variation with angle of attack for nacelle
incidence (iy’; angles between hover (iy=90°) and cruise
(iN=0°). Two incidence values were selected that would provide
a wide coverage of the transition regime. These angles were

70 and 45 degrees.

A summary of the longitudinal and directional rotor stability
derivatives is presented in Table 5-1 for transition as well
as the derivatives obtained in cruise (iy=0°). Thz data are
presented for the left rotor and indicates the derivatives for
flight in the unstalled region of the rotor operation.

Figures 5-46 through 5-53 present the rotor characteristics

for a nacelle incidence of 70 degrees at an advance ratio of
0.206 and 0.234 as the angle of attack is varied. The test

data presented in transition incl-de the aerodynamic interference
effects of the wing. Figures 5-46 and 5-47 present the rotor
pitching moment vacriation with angle of attack and indicates

a decrease in slope as the angle of attack becomes more positive
than minus 2 degrees. This is due to rotor stall as discussed

in Section 4.3.2. For operation below stall, the derivatives

are 0.000064 and 0.000072 per degree for advance ratics of 0.206
and 0.234, respectively. The reduction in flapping is thought to
be the result of a reduction in first harmonic blade torsion due
to stall, Figure 6-84. The rotor elastic axis is aft of the aero-
dynamic center of the blades (See Appendix 1l). This implies

that a-part of the descabilizing rotor moment in transition is
due to lift p:tch coupling prior to stall as evidenced by the in-
creasing first :.armonic torsion loads shown in Figure 6-83.

The normal force data are plotted in Figures 5-48 and 5-49,inj
dicate a derivative of 3Cy/30=0.00002, and also show a reduction
in derivative consistent with stall.
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TABLE 5-1

TRANSITION ROTOR STABILITY DERIVATIVES

LEFT ROTOR

LONGITUDINAL MODE
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N (gpm) |°-75 3Cy/ 30 acy/da 3Cypm/ 30 3Cgp/3a
70 0.206 | 14° | 0.000064 | 0.000020 |-0.000033 [ -0.000010
(1980)
70 0.234 | 14° | 0.000072 | 0.00C022 |-0.000038 | -0.000010
(1980)
45 0.260 | 18° | 0.000074 { 0.000035 |-0.000067 | 0.000002
(1800)
0 0.386 | 30° | 0.000090 | 0.000068.|-0.000118 | 0.000058
(2000)
DIRECTIONAL
i
. v/V
iy (RPE) 8 45 | 3Cyy/3¥ | 3Cgp/o¥ 3Cpy/3V 3Cy/3V
70 0.206 | 14° | 0.000026 {0.000025 | 0.000043 | 0.000011
(1980)
45 0.260 | 18° | 0.000027 | 0.000035 [ 0.000051 | -0.000004
(1800)
0 0.386 | 30° | 0.000060 |0.000137 | 0.000107 | -0.000031

(2000)
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The rotor yawing moments (Figures 5-50 and 5-51) have a slope

of 9Cyy/3a of -0.000033 and~0.000038 for advance ratios of

0.206 and 0.234. An inflection is shown in the data at about -2
degrees and finally, the derivative is reduced to zero between

5 and 10 degrees. The torsional blade loads show a marked
increase in this range, mostly due to the seventh and eighth
harmonics. The rotor torsional natural frequency at this RPM is
7.5 per rev. The change in hub moments at this point is probably
due to the first harmonic torsion phasing changing. Further
investigation is required to define these phenomena.

The rotor side force data, Figures 5-52 and 5-53, show only a
small change due to stall consistent with the normal force.

The conditions under which stall occurred on this model are not
necessarily flight limits on the full-scale aircraft since they
depend upon the rotor dynamics which are not scaled. Further,
although the Cj;, Cy trim point for the model lies in the stall
region, the aircraft pitching moment is not trimmed and the cyclic
required to trim will change the blade section angles of attack.

The same rotor trends are presented for a nacelle incidence of
45 degrees in Figures 5-54 through 5-58 for an advance ratio

of 0.260 and the associated blade load trends shown in Figures
6-76 , Section 6.4. As discussed in Section 4.3.2 there is a
definite indication of rotor stall at fuselage angles of attack
greater than 12 degrees for a nacelle incidence of 45 degrees.
The derivatives that are defined for this nacelle incidence

are therefore obtained for the fuselage angle of attack range
pelow 10 degrees. Pitching moment data presented in Figure 5-54
indicate a slope of 0.000074 that becomes zero or negative
beyond 12 degrees angle of attack. The first harmonic of the
flap bending, Figure 6-76,shows a smaller change in slope than
did the data for a nacelle incidence of 70 degrees. Further
investigation of the change in moment derivatives is required.

- This same effect is present in the normal force trends presented
in Figure 5-55 and for the yawing moment, in Figures 5-56 and 5-57.
The associated derivatives are: 3Cy/32=0.000035 and 3Cypm/30=

-0.000067. Stall produces an unusual effect on the trend of
sideforce with angle of attack shown in Figure 5-58. For the
left rotor, there 1s a positive slope at low angles of attack, an
alimost neutral slope in the mid-angle of attack range arn” a
negative slope at high angles. Although these data cannot be
directly interpreted as flight envelope limits for the full-scale
aircraft, they provide a means of veriiying the methodolcgy for
the prediction of rotor stall which was an objective of this test.
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It should be pointed out that the rotor was run at approximately
1800 RPM because of motor power limitations for this collective
and nacelle incidence, whereas the others configurations were
tested at approximately 2000 RPM. This reduced RPM increases

the flapwise frequency ratio, reduces the flapping derivative and
results in a lower pitching moment and higher normal force deri-
vatives than would be obtained from operation at approximately
2000 RPM. The flapwise frequency increase also decreases the
phase angle at which maximum flapping occurs.

Phase Angle
for
Maximum Flapping

p=0°

y =90° \ - -———— y=270°

\\‘____/

v =180°

Since the phase angle decreases, it decreases the side force
derivative and increases the yawing moment derivative.

Looking at the trend of the longitudinal derivatives with advance
ratio in Table 5-1 indicates that the data presented for an

advance ratio of 0.26 (operating at 1800 RPM) do not conform

with the data for advance ratios of (.206, 0.234 and 0.386 obtained
with a rotor speed of 2000 RPM. The derivatives for pitching
moment and side force are lower than the trend and normal force
yawing moment are higher than that trend that is evident from

the data for operation at 2000 RPM.

Testing was also done to obtain the directional stability charac-
teristics for the configurations with the nacelle incidence of

70 and 45 degrees. Figures 5-59 through 5-63 present the rotor
yawing moment (right rotor),yawing moment (left rotor), side force,
pitching moment, and normal force respectively for a nacelle
incidence of 70 degrees at an advance ratio of 0.206.
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Tabulated below are derivatives obtained from the left rotor
at yaw angles more negative than -5 degrees.

iy V/Vq | 3Cyy/39 5Cgp/ 3V 3Cpp/3¥ 3Cy /3y

70 .206 0.000026 0.000025 0.000043 0.000011

For the configuration with the nacelle at 70 degrees, the left
rotor is operating in stall at zero degrees yaw and angle of

. attack. It appears from the data that at yaw angles more nega-
tive than -5 degrees this stall condition is alleviated and re-
sults in large force and moment derivatives.

When yaw sweeps were made for the configuration with the nacelle
incidence of 45 degrees as stated before there appears to be no
stall for zero yaw and angle of attack. This is shown by no
significant change in slope in the rotor yawing moment, side force,
pitching moment and normal force presented in Figures 5-64 through
5-68 respectively. The derivatives obtainea from this data are
presented in the following tabulation:

iN V/VT BCYM/Sw BCSF/Bw acPM/aw acN/aw

45 0.260 0000027 0.000035 0.0C0051 -0.000004

Since this testing was performed at a rotor speed of 1800 RPM it
will result in the yawing moment and normal force derivatives
- being lower than those that would be obtained at 2000 RPM. Also
the side force and pitching moment derivatives will be higher for
1800 RPM than for 2000 RPM. As discussed in the previous para-
graphs on the longitudinal derivative this is a result of the
- first mode flapping frequency ratio increasing as RPM is decreased.
It is of major importance to repeat this fact, to make clear that
the data obtained at 45 nacelle incidence must not be used in con-
junction with the 70 ancd zero degree nacelle incidence to define
a consistent trend with advance ratio.

These derivatives have been defined for transition, out of ground
effect, from hover to cruise. In ground effect testing with a
nacelle incidence of 70 degrees has been performed in conjunction
with STOL takeoff tc define the directional stability character-
istics. A comparison is included here to determine if there are
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any differences in the rotor stability derivatives when operating
in or out of ground effect. Presented in Figures 5-69 through
5-73 are the yawing moment, side force, pitching moment and normal
force variations with yaw angle in ground effect, at a rotor
height to diameter ratio of 0.39, and out of ground effect. The
conclusion drawn from this data is that there is no change in
rotor stability derivatives induced by flying in ground eftect.
The difference in level of the two sets of data can be attributed
to a slight difference in angle of attack.

SRS | Koty
. ERC I « a4

5.3.2 Aircraft Stability Derivatives

Testing performed to define the rotor stability in transition was
supplemented with tail-off runs to define the total aircraft
stability in transition. From these data, an assessment can be
made of the contribution of the prop/rotor and the tail touv stabili-
ty. This section presents the analysis of longitudinal stability
for nacelle incidences of 70 and 45 degrees and a discussion of
directional stability including the impact of ground effect.

Figure 5-74 shows the total aircraft stability and the contribu-
tion of the horizontal tail and the prop/rotor with a nacelle in-
cidence of 70 degrees. The airframe minus tail is unstable having
a stability derivative (3Cppy/da) of 0.015 per degree. This de-
creases to approximately zero beyond 8 degrees angle of attack, re-
flecting stall. Adding the tail decreases the derivative to -0.040
per degree providing a very stable aircraft. Adding the rotor
results in an unstable aircraft at angles of attack more negative
than -5 degrees. As the angle of attack is increased, the aircraft
becomes neutrally stable and then as stable as the rotors-off
aircraft up to 10 degrees angle of attack. This is a result of

the stall effect of the rotor contribution to the total aircraft
stability. As discussed in the previous section, stall reduces

whe rotor stability derivatives contribution to the total aircraft
and therefore explains why the aircraft has neutral to positive
stability at angles of attack greater than -5 degrees.

w3}
5
)

For the nacelle angle of 45 degrees, the airframe-minus-tail
stability derivative is 0.018 per degree as presented in Figure
5-75. This is a slight decrease in stability resulting from the
change in the nacelle incidence. The slope of the moment re-
duces to zero at eight degrees indicating wing stall. This
matches the maximum lift shown in Figure 4-30. This stall effect
is very pronounced in the airframe characteristics in that the
tail effectiveness increases because of the reduczd downwash.

{'_l’»'t"ﬁ‘

Catufors

LN

For this configuration, data were obtained for tail on and off with
the rotors on. The aircraft minus tail reflects the destabilizing
contribution of the rotor and shows the impact of rotor and power
or. wing stall at app: »ximately 10 degrees. Adding the tail im-
proves the total a.rcraft stability resulting in a derivative that
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is approximately the sare as the airframe minus tail for angles

of attack more nose~-down than 5 degrees. Since the rotor and
wing stall result in a stabie derivative at angles of attack

above 5 degrees, the addition of the tail just increases the level
of the pitching moment derivative. As discussed in the cruise
section, the rotor contribution of the model is significantly
higher than that anticipated for the full-scale aircraft. This
would reduce the unstable contribution of the rotor to a level
that would have neutral to positive stability.

An examination of the directional stability characteristics is
presented in Figures 5-76 and 5-77 for 70 degrees nacelle in-
cidence. The variation of side force with yaw angle presented

in Figure 5-76 becomes a minimum at -12 degrees yaw, indicating
that there is possibly a flow separation occurring. The vertical
tail increases the slope of the side force variation with yaw
angle from 0.0077 to 0.018 and the rotor further increases the
slope to 0.031. The addition of the rotors esxtends the linear
side force beyond 12 degrees. This is representative of flow
re-attachment increasing the effectiveness of the fuselage,

wing and nacelle {9 produce side force. The yawing moment variation
with yaw angle is presented in Figure 5-77. Stability derivatives
shown in this figure indicate that the airframe minus tail is un-
stable (3Cym/3%=0.00183) and when 12 degrees of yaw is reached,
the aircraft is very unstable. The tail having an incremental
yawing moment slope of 0.0036 per degree, improves the stability
up to 12 degrees but at greater angles, the tail is inadequate

to stabilize the airframe which is separated. Adding the rotors
with an unstable contribution to total aircraft stability results
in the total aircraft characteristics, as demonstrated by the model,
being as unstable as the model minus the tail. At approximately

8 degrees negative angle of yaw, the aircraft derivative is
neutral and then becomes positive as the yaw angle is decreased.
This appears to be the impact of flow re-attaciment improving the
tail effectiveness at a greater rate than the rotor comtribution
as evidenced by the side force variation.

For the nacelle incidence of 45 degrees, the side force variation
with yaw angle is presented in Figure 5-78. The contribution of
the vertical tail is the same as that presented in Figure 5-76
but the influence of the rotor tends to reduce the tail cont:r .-
bution. The associated variation in yawing moment is presented
in Figure 5-79. Airframe-minus-tail indicates an unstable confi-
guration with a yawing mcment derivative (3Cypy/3v) of 0.0023 per
degree and the addition of the tail provides a stable aircraft
with a 3Cypy/2y of -0.0007 per degree. Addition of the rotors
produces an increase in the unstable moment by 0.003 per degree
resulting in a model with a directional stability derivative of
-0.0023 per degree which is the same as the airframe minus tail.
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The characteristics of the model rotor are such that they pro-
duce a larger destabilizing moment than would be expected from
the full aircraft. Also the model nacelles are oversized to
provide clearance for the electric motors and balance support
which contributes a large amount to the unstable characteristics
of the airframe. Both these items result in longitudinal and
directional stability characteristics for the model that are
more unstable than the full scale aircraft would be.

An assessment has been made for cruise in Section 5.4.2 in-
dicating that the full scale rotor is significantly less un-
stable resulting in a stable aircraft.

5.3.3 Control Mixing

A series of runs was made during the transition tests for the
purpose of measuring control power in transition. The model
was set up for a typical mid-transition condition; i.e., 45°
nacelle incidence 60° flaperon and leading edge umbrellas
closed. The swashplates were set to give differential cyclic:
3° nose~-down on the left-hand rotor and 3° nose-up on the

right-hand rotoi. The control phase angle was set at 65°,
similar to the hover runs.

The data obtained show the effects of angle of attack, yaw and
advance ratio on the rotor control forces and moments and the
cyclic pitch phase angles. 1In addition, data were obtained
with differential thrust and cyclic for the purpose of investi-
gating roll and yaw control mixing in transition.

The results of the contrel mixing tests are sr~wn in Figure 5-80.
The data show larce changes in rolling and i>+ing moment due to
differential thrust and little or no effect due to differential
cyclic pitch. The latter is caused by the input cyclic phase
angle being close to that required for maximum hub moment as
shown in Figure 5-8l. Estimated rolling and yawing moment

trends for differential thrust and cyclic are presented in

Figure 5-80 for the phase angle for maximum in plane force.

Thus, for example, a differential thrust coefficient of ACpg=0.02
(model scale) and differential cyclic of 4 degrees (that is, 4
degrees nose-up on the left-hand rotor and 4 degrees nose-down on
the right-hand rotor) results in roll control (CrM=0.049) with no
yaw coupling. The complementary condition (4 degrees nose-down
cyclic on the left-hand rotor and 4 degrees nose-up on the right-
hand rotor) produces yaw control (Cym=0.049) with no roll coupling.
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5.3.4 Attitude Effects on Control

Angle of Attack

The variations of the roll control forces, moments and phase
angles with angle of attack are shown in Figures 5-82 through
5-84. The force and moment data shown are the increments in
rotor normal force, side force, pitching moment and yawing
moment coefficient due to 3° cyclic. In general, these
parameters are insensitive to angle of attack except for a
loss in pitching moment at high angles where rotor stall
occurs as discussed in Section 4.3.2.

The effect of angle of attack on cyclic phase angle is shown
in Figure 5-84. Both the moment and the force phase angle
show an increase with increasing angle of attack, up to a=6°.

Yaw

The effects of yaw on the transition control parameters is
shown in Figures 5-85 to 5-87. As can be seen from these
figures, pitching and yawing moment are unaffected by yaw
angle variation.

Advance Ratio

The changes in transition control parameters with advance
ratio are shown in Figures 5-81, 5-88 and 5-89. Also shown
for comparison are the hover points for the right-hand rotor.
The hover and transition results show consistent effects of
advance ratio on the control parameters ./
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5.4 CRUISE STABILITY

The cruise mode, as discussed here, will refer to operation as a
conventional aircraft with the nacelle in the full-down position
(iy = 0°) and the rotor is in axial flight. 1In this flight re-
gime, the rotors have a major impact on the aircraft stability in
that they are larger and more flexible than conventional propel-
lers. These rotor properties decrease its static stability and
increase the gust sensitivity of the aircraft. The following
section discusses the analysis of the rotor stability and then
the impact on total aircraft stability.

5.4.1 Rotor Stability Derivatives

Rotor Static Stability

Testing was performed to establish the variation of the rotor
forces and moments with angle of attack and yaw in "axial" flight.
Since the rotors are large, flexible and lightly loaded, changes
in blade section angle of attack resulting from any disturbance

in the flow through the rotor or blade flapping response will
have a large impact on the rotor stability derivatives. The

model rotors are not dynamically scaled and have a Lock Number

of 17.28 and a flapwise freguency of 1.66 in the cruise condition.
Both these parameters are significantly higher than the properties
of the full scale rotor with a Lock Number of 11.81 and a flapwise
frequency ratio of 1.22. This results in model rotor derivatives
being higher than that of the full scale rotor. The wing circula-
tion can significantly affect the rotor forces and moments also.

A summary of the rotor stability derivatives is presented in
Table 5-2 in both longitudinal and directional modes. It indi-~
cates the magnitude of the derivative as obtained directly from
the test data and also what they would be with the wing lift equal
to zero, equivalent to an isolated rotor, obtained by cross plott-
ing test data. As can be seen in this table, the wing lift sig-
nificantly affects rotor pitching moment and sideforce, increasing
the pitching moment derivative by approximately 50 percent and

the side-force by approximately 90 percent. There is also a 10

to 1l5-percent increase in the normal force and yawing moment
derivatives.
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TABLE 5-2
CRUISE ROTOR STABILITY DERIVATIVES
LEFT ROTOR

LONGITUDINAL MODE

WING

XAt
2ilaldl s

Ot Aok

BCPM/QG 3CN/3a

l“
R P-4

iy

LIFT

3Cym/ 3¢

BCSF/aa

VARIABLE

ZERO

0.00009

0.00006

0.0001e68

0.000143

-0.000118

-0.000106

0.000058

0.000030

DIRECTIONAL MODE

WING

LIFT acym/aw

BCSF/Bw acPM/aw BCN/Bw

CONSTANT 0.00006 0.000137 0.000107 -0.000031
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As substantiation for the derivatives in pitch with the
wing lift removed, the comparable derivatives in yaw

are shown directly below the pitch derivatives. The
variation in lift with yaw angle is negligible and there-
fore will not affect the derivative. The agreement in
magnitude is very good and indicates that the wing lift
effects as obtained from analyses of these test data are
correct. The reversal in signs on the directional pitch-
ing moment and sideforce derivatives is a result of sign
convention. A detailed discussion of the analysis is
contained in the following paragraphs.

To define the rotor longitudinal stability derivatives
requires making pitch angle sweeps. Since lift also
varies as angle of attack, it is necessary to first
determine if wing lift has any effect on the rotor forces
and moments. This can be done by changing lift for fixed
angles of attack by deflecting the flaps. Figure 5-90
indicates the influence of flap deflection and angle of
attack on airframe lift. Figures 5-91 and 5-92 present
the variation of rotor pitching moment coefficient and
hub tares with angle of attack for flap deflections (SF)
of 0 and 45 degrees.

Figures 5-93 and 5-94 present rotor normal force coeffi-
cient; Figures 5-95 and 5-96 show rotor yawing moment
coefficient; and Figures 5-97 and 5-98 illustrate rotor
sideforce coefficient’variag}ons with angle of attack for
flap deflections of 0 and 45. Testing was also performed
to obtain the variation of the rotor characteristics for
yaw angle sweeps. Figures 5-99 to 5-102 present the yaw-
ing moment, sideforce, pitching moment and normal force
coefficients for yaw angle sweeps with the flap deflection
of 0 degrees. 1In the presentation of these test data, hub
tares are represented by Runs 90, 91, 92 and 93.

As shown in Figure 5-90, there is an increment in lift
coefficient of approximately C.9 for a flap deflection of
45 degrees. Associated with this increased lift at a

fixed angle of attack is a change in rotor pitching moment
coefficient (Cpy) of 0.0003 as shown in Figure 5-103.

This is equivalant to changing the rotor angle of attack
by four degrees,. To better understand the wing lift influ-
ence, Figures 5-90 and 5-103 have been combined in Figure
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5-104 to show the rotor pitching moment variation with
1ift at fixed angles of attack for the two flap deflec-
tions. Extrapolating the fixed angle of attack lines

{ back to zero lift will define the variation of the rotor
. pitching moment coefficient without the effects of wing
- circulation. This is presented in Figure 5-105 as the
G zero wing 1lift line which has a pitching moment deriva-
2% tive (3CpM/dx) of 0.00006 per degree which agrees with

| . the prediction. As indicated in this figure, the rotor
= derivative in the presence of the wing is 0.00009 per
TEAR degree, a 50-percent increase over that of an isolated
= rotor.
{d To provide further substantiation that the pitching moment
Sy derivative obtained with the wing lift effects extracted,

o a comparison of this data was made with the variation of
rotor yawing moment in a yaw angle (¥) sweep. During the
yaw sweep, the wing lift remains constant which will

2 affect the level of the yawing moment but not the slope

el with yaw angle. This comparison is made on Figure 5-106

ﬁf showing the pitching moment variation with angle of attack
:ﬁ with and without the wing lift effect (previously shown in
ﬁé Figure 5-105) and the yawing moment variation with yaw

b2 angle with and without wing lift. Of major significance

{ is that the yawing moment derivative aCym/s f is 0.00006

;ﬁ which is exactly the same as the pitching moment derivative
0 ICpM/ax with wing lift effects removed. Also shown in

§ Figure 5-106 is that the wing lift effects on the yaw sweep

o are low at zero fuselage angle of attack and results in a
- small level shift.

The other major rotor characteristic affecting total air-

craft longitudinal stability is normal force. Figure 5-107
- shows that the 0.9 increase in lift coefficient due to a
®p = 45° causes a 0.00020 increase in normal force which is
equivalent to changing the rotor angle of only one degree.
To define the impact of wing lift and establish the normal
force derivative (3Cy/dx) without the wing circulation
effect, the variation of normal force with lift for fixed
angles of attack is developed in Figure 5-108. Extrapolat-
ing the lines of constant angle of attack back to zero lift
will define the normal force variation without any wing
circulation. This is presented in Figure 5-~109 and indicates
that the wing increases the normal force derivative of
0.000143 by approximately 17 percent. To confirm the zero
1ift normal force derivative, a comparison was made with the
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variation of sideforce with yaw angle. This is shown
in Figure 5-110 and indicates relatively good agreement:
aCNMBx = 0.000143 and ACSF/QW = 0.000137.

Analyses of the wing lift effects on yawing moment and
sideforce variations with angle of attack are done in
the same manner as described above for pitching moment
and normal force. Increasing the lift with a 45-degree
flap deflection, as shown in Figure 5-111, decreases

the yawing moment coefficient by 0.00008 which is equiv-
alent to decreasing the angle of attack by approximately
one degree. Figure 5-112 presents the variation of yaw-
ing moment with airframe lift for 0 and 45~degree flap
deflections. This provides the basis for extracting the
N wing lift effects that account for approximately a 12-

¥ percent increase in the isolated rotor derivative shown
Ny in Figure 5-113. To cnonfi-m this trend of yawing moment
3 with angle of attack, the v.riation of pitching moment
with yaw angle must be explained. For the rotor being
used in this discussion, it is important to understand
its response to pitch and yaw angle disturbances and the
impact on the forces and moments. When increasing the
rotor angle of attack, the blade section angle of attack
is increased on the advancing side (right, looking from
behind the rotor) and decreased on the retreating (left)
side. This produces an increase in lift on the advancing
side and a decrease in lift on the retreating side. The
net effect is that the rotor normal force increases with
increasing rotor angle of attack as shown in Figure 5-107.
Blade flexibility allows the rotor to flap aft on the top
and retreating side of the disc with increasing rotor
angle of attack. This produces a positive pitching mo-
ment, sideforce and a negative yawing moment as shown in
Figures 5-103, 5-97 and 5-111, respectively.

Correspondingly, in a yaw sweep, the advancing blade is
now at the top of the rotor and the retreating blade is
on the bottom of the rotor. When increasing the yaw angle
(right side moving back), the blade section angle is de-~
creased on the advancing and increased on the retreating
side. This results in an increase in sideforce to the
right, as shown in Figure 5-103. Blade flexibility will
cause the rotor to flap aft on the top and right sides
causing a positive pitching moment, yawing moment and
negative normal force, as shown in Figures 5-101, 5-99
and 5-102, respectively. Therefore, the yawing moment
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derivative with angle of attack (3Cyyq/2a) will be negative and

the pitching moment derivative with yaw angle (3Cpy/3y) will be
positive but both will have the same magnitude if there is no wing
circulation effect. This is indeed the case as presented in

Figure 5-114: 3Cyy/da is -0.000106 and 3Cpy/3v is +0.000107.

The analysis for the wing lift effects on the side force are

similar to that presented for the normal force. Deflecting the
. flap 45° decreases the side force by approximately 0.0003 or an
equivalent four-degree decrease in angle of attack as shown in
Figure 5-115. These data are then combined with the data of
Figure 5-90 as the variation of side force airframe lift in Figure
5-116. The variation of side force with angle of attack for zero
wing 1lift is then defined. Figure 5-117 presents this side force
derivative (3Cgp/3a) and indicates that the wing lift increases
the isolated rotor (wing lift=0) by approximately 93 percent. To
verify the zero wing lift line, a comparison is made with the
variation of rotor normal force with yaw angle (aCN/aw) in Figure
5-118. This comparison indicates that the side force and normal
force derivatives are of the same magnitude but opposite in sign:
: 9Cgp/3a= 0.00003, 3CyN/3y=-0.00003). This is consistent with the
) Giscussion of the variation of forces and moments in pitch and
: yaw sweeps presented earlier.

The influence of the wing on the rotor stability derivatives has
the largest effect on pitching moment and side force. With
counter rotating rotors, the effect of the wing on side force is
equal and opposite; therefore, it has no impact on the total air-
craft stability.

A single test run was made at an advance ratio of 0.57 to provide
data that would assist in the definition of rotor stability deri-
- vative variation with advance ratio. The power requirements and
Pi model blade loads associated with this cruise condition were

.

high and resulted in an aborted run with two data points. These
data are presented in Figures 5-119 through 5-122 showing the

- variation of rotor pitching moment, normal force, yawing moment
and side force variation with angle of attack. The derivatives
obtained from these data are presented in the table below.

TRV

WING

MODE LIFT

3Cpum/da 3Cy/ 30 3Cym/da | aCgp/da

:
:
:
.
.
.
'n
\-
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Longitudinal | Variable 0.000187 0.000414 -0.000225 | 0.000151

i‘"’ifTT

S

%ﬁ These derivatives, although based on only two data points, result
4 in approximately 1l50-percent increase in the force derivatives

§ﬂ and 100 percent in the moment derivatives compared with Table 5-2.

L
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This indicates that the phase angles at which the blade angle
reaches a maximum and where the moments are a maximum for an
advance ratio of 0.57 are approximately the same as those at an
advance ratio of 0.386. Therefore, the rotor response has not
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changed and the first harmonic thrust and the flapping magnitudes
have increased with speed as would be expected.

Correlation of Theory with Test Data

A simplified method of predicting rotor stability derivative is
presented in Reference 2 . Utilizing this prediction technique
for the model rotor, with a Lock number (y) of 17.28 and a flap-
wise frequencey ratio (w/Q) of 1.66, a pitching moment derivative
(3Cpy/da) of 0.0000538 per degree is obtained and presented on
Figure 5-105. The theory and the test data have approximately
the same slope(aCPM) but there is a difference in level. The

da

primary reason for this is that the model was yawed approximately
0.8 degrees during this test run and the cross coupling between
the rotor pitching and yawing moment in yaw reduces the pitching
moment approximately 0.0001. Accounting for this yaw angle re-
duces the increment between the theory and test to half that shown
in Figure 5-105. The same prediction technique was utilized to
define the normal force derivative in pitch (3Cy/da) and is shown
in Figure 5-109. The predicted value of 3Cy/%o is 0.000164; this
is slightly higher than the test data with the wing lift removed.

Accounting for the 0.8 degree of yaw will lower the zero lift line
very slightly (0.000025).

The simplified theory provides a rapid and relatively accurate
method of defining the roctor stability derivatives and their
contributions to total aircraft stability. It is significant to
note that the prediction of the normal force is high and the
pitching moment is low. This would indicate that the contribu-
tion made by the longitudinal and lateral flapping is underesti-
mated since this contribution tends to reduce the normal force
and increase the pitching moment.

Rotor/Rotor Interference on Cruise Rotor Characteristics

Another potential source of disturbance to the rotor flow field
and hence, an additional influence on the rotor stability deri-
vatives is the effect of one rotor on the other when in the cruise
mode. If there is a rotor-to=rotor interference in cruise, it

can be determined by first testing with both rotors operating and
then with only one operating for the same test conditions. This
testing was performed and the data are presented in Figures 5-123
to 5-126 showing pitching moment, normal force, yawing moment and
side force, respectively. Runs 79 and 80 are the twin rotor cases
at tunnel dynamic pressures (q) of 55 lb/ft?and 50 lb/ft?, re-
spectively. The associated advance ratios (V/Vg) are 0.386 and

0.380. ~he small difference in advance ratio should have nagligible

196




(el T it AN IV RIS N S AV RIS A RS
LI AN I T I S T B A T _ ~

*

g

4

effect on the forces and moments presented here and is demon-
strated in the above figures with the exception of side force.
There are small deviations in advance ratio within these two
runs which possibly accounts for the scatter. When comparing
the isolated rotor (Run 85) to the twin rotor cases, there is a
level shift in each of the rotor parameters presented. As in-
dicated by the previous discussion on the rotor derivatives, a
level shift can be the result of having a difference in yaw
. angle between the two pitch sweeps. Close scrutiny of the test
data indicated that Runs 79 and 80 were tasted at a negative
yaw angle of approximately 0.8 degree which accounts for the
level shifts presented here. This, therefore, indicates that
there is no rotor-to-rotor interference when operating in the
cruise mode.

Rotor Dynamic Stability
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The rotor derivatives of pitching moment and normal force with
X were obtained from the initial input data of Runs 83 and 84.
These are as follows:

N
+— = .00189
da

and

ER Y
ok aa,

”
-
- A

SCPM = 0008

30

o

It is to be noted, however, that the rotor and balance inertia
effects are included in the determination of these derivatives
since response data were used. Since rotor inertia was not
scaled from the full scale, the magnitudes are presented to
show relative magnitudes.

The effects of velocity on pitching moment and normal force for

low-speed flight (helicopter mode) may be seen in Figures 5-127

and 5-128. The stability derivative of normal force is seen to

be 3Cy/sV=.0000124. Since pitching moment is a function of V2,
- then 3Cy/3V must be calculc 2d at each trim speed.

5.4.2 Aircraft Stability Derivatives

- Aircraft Static Stability
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Testing was performed in cruise to define the total stability
characteristics of the wind tunnel model as well as the contri-
butions of the prop/rotors, and the horizontal and vertical tail.
As indicated in Section 5.4.1, the model rotor derivatives are
significantly larger than those of the full scale rotor because

. the model rotor is not dynamically scaled. Since the rotor con-
tribution to the total aircraft is destabilizing, the total model
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stability derivativos obtained from the test data cannot be
scaled up and be zepresentative of the full scale aircraft.
The estimated full-scale stability will be discussed later in

this section presenting the correlation of prediction techniques
and test data.

When determining the stability, it is of primary importance to
obtain the airframe characteristics, estabiish the w.ng and tail
stall and define any associated moment nonlinearities. Tn addi-
tion, data were obtained for the total aricraft and its components
to provide a basis for a correlation effort of existing prediction
techniques to be conducted in the next phase of the current
contract. 1In conjunction with this later :‘equirement, airframe
lift and drag characteristics were obtained with rotors removed
and are presented in Figure 5-129. Illustrated in this figure

is the prediction of the airframe lift variation with angle of
attack, obtained using the methods described in DATCOM. The
prediction shows good correlation.

As indicaced in Figure 5-129, there is a break in the lift curve
at approximately 8° angle of attack with a reduction in slope

from 0.092 to 0.052 per degree out to 16° for zero-degree flap
deflection. This is typical for the NACA 634421 airfoil wing
section of this model. The data presented for 6C° flap deflection
indicate that there is an increase in aircraft drag coefficient

of 0.19 and maximum lift occurs at 7.5 degrees angle of attack.

It is important to define effect of the rotors on these character-
istics and determine the tail contribution. Figures 5-130

through 5-132 present the prop/rotor and horizontal tail contri-
butions to the aircraft lift variation with angle of attack for
flap deflections of 0, 45 and 60 degrees. The increase in 1lift
curve slope (ACLa) associated with the tail is 0.018 per degree

for the three flap deflections. Since thereis not a significant
increase in the airframe-minus-tail lift curve slope, there should
be nc increase in the rate of change of downwazsh at the tail with
angle of attack and hence, no change in the incremental lift curve
slope from the tail. The maximum airframe 1ift coefficient (CE)
of 1.57 is obtained at 19 degrees angle of attack for the fuselaqe
when the flaps are not deflected (§.,=0). Deflecting the flap 45
degrees provides an increase in lifg coefficient of 0.9 at zero
angle of attack and a maximum Cr, of 1.90 at 7.5 degrees angle of
attack. Increasing the flap to 60 degrees gives an additional
0.15 increment in Cy, and maximum C1, but dces not change the stall
angle. The variation of lift beyond stall shows a gentle stall
characteristic at positive angles. Testing was performed at
negative angles of attack up to -15 degrees which appears to be
the angle of negative stall for zero flap deflection. The rotgr
contribution to the lift characteristics indicates an increasein
lift curve slope <CLa) of 0.015 and reduces the impact of stall.

It provides an extension in the maximum lift angle of at least 12
degrees for a flap deflection of 45 degrees and 7 degrees for a
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flap deflection of 60 degrees due to reduction in wing angles
of attack by the rotor slipstream. 1In Figure 5-132, a maximum
lift coefficient of 2.6 is achieved from 11 to 15 degrees angle
of attack. This is constant since the decrease in airframe

lift is approximately egual to the increase associated with the
rotor.

Longitudinal stability characteristics, pitching moment variation
with angle of attack, associated with the 1lift characteristics
discussed above, are presented in Figures 5-133 through 5-135.
These figures present the total aircraft and the contrikution of
the rotors and also the horizontal tail to the pitching moment.
The longitudinal stability derivative (3Cy/3a) for the airframe
minus the tail indicates an unstable slope of 0.019 per degree

up to an angle of attack of 8 degrees. There is a sharp de-
crease in slope beyond this angle indicating the same trends as
the lift coefficient.

Deflecting the flap to 45 and 60 degrees decreases the magnitude
of the airframe-minus-tail pitching moment by 0.19 and 0.22,
respectively, but not the slope. These increments directly re-
flect the increase in lift coefficient for a fixed center of
precsure. Adding the horizontal tail to make the aircraft stable
decreases the stability derivative to -0.0315 per degree to 8
degrees angle of attack. Beyond this angle, there is a further
decrease in slope which is indicative of the decrease for the
airframe minus tail. Stall is directly reflected in pitching
monent by the sharp reversal from very stakle to unstable beyond
20 degrees angle of attack. A significant item to point out is
that the magnitude and slope of the airframe pitching moment does
not vary with flap deflection. This results from the increase in
downwash increasing the tail contribution by the same magnitude
that the wing pitching moment decreases.

The rotor contribution to total aircraft stability is destabiliz-
ing. For zero flap deflection, the rotor has an incremental
stability derivative of 80 percent of the tail contribution which
is 0.05 per degree. When deflecting the flap 45 and 60 degrees,
the rotor derivatives increase,as discussed in Section 5.4.1, and
its destabilizing increment is approximately equal to the stabiliz-
ing contribution of the tail; therefore, the total aircraft has
low angle of attack stability characteristics similar to the air-
frame minus tail. The rapid change in the airframe slope beyond

8 degrees is large enough to overcome the rotor contribution and
is the reason that the total aircraft becomes stable beyond 8
degrees angle of attack for each of the flap deflections. The
basic trend exhibited by these three configurations in the cruise
mode is that the longitudinal stability of the airframe itself

is very stable but the addition of the model rotors with its large
destabilizing contribution results in an unstaple aircraft.
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Examining the directional stability characteristics in cruise
indicates that the variation of side force with yaw (acSF/aw)

is increased from 0.0096 to 0.02 as shown in Figure 5-136 by the
addition of the tail. There is an increase in slope at approxi-
mately positive four degrees and negative seven degrees in the
airframe minus tail. This could be a result of flow reattachment
on the aft end of the fuselage. When the vertical tail is

added, the change in slope increases in the high yaw angle region
indicating that the base of the tail is less separated and there-
fore produces increased side force. The rotors provide an addi-
tional increase in slope of 0.0135 resulting from the variation
of side force with yaw angle. This is approximately the same
increase in slope as obtained in lift.

The associated yawing moment characteristics are presented in
Figure 5-137. For the airframe minus tail, there is a decrease

in the slope of yawing moment at approximately minus 7 and plus

4 degree= that would Le representative of an aft shift in center
of pressure in conjunction with the increased side force slope.
Incorporating the tail makes the aircraft stablz and also makes
the decreased slopes very pronounced beyond minus 7 and plus 4
degrees yaw. This significant change in the stability increment
of the tail confirms the flow reattachment and increased tail
effectiveness suggested above. When the model rotors are added,
the destabilizing contribution more than offsets the vertical tail.
The addition of the rotors,as represeni:’ by the total aircraft
line in Figure 5-137, appears to cause :a4il stall as represented
by the reversal in the yawing moment a: approximately 12 degrees.
This is not the case, for the increase in effectiveness of the tail
in providing the stabilizing moment is greater than the destabiliz-
ing contribution of the rotor. While analyzing the directional
stability, & check was made to determine if any cross coupling
effects existed between roll and yaw. NoO unusual trends were
exhibited in the rolling moment variation with yaw angle for the
ariframe with or without the tail in Figure 5-138; but the total
aircraft rolling moment maximized at -14 degrees yaw and then in-
dicated a slope reversal. This was inconsistent with the trends
of side force and yawing moment. A close study of the variation
of the rotor characteristics indicate that the rotor normal force
maximizes at approximately -12 degrees yaw, as shown in Figure
5~102, for the left rotor. This does not occur in the right rotor
normal force indicating the possible influence of the fuselage on
left rotor normal force in yawing to the left.

Basic directional stability trends presented here indicate that

the airframe is very stable but the addition of the model rotors
introduces a large unstable contribution resulting in an unstable
aircraft directionally as well as longitudinally. These charac-
teristics are not representative of the :ull-scale aircraft in

that the model rotor has different flapping and damping character-
istics. The estimated full-scale stability will be discussed later
in this section presenting the correlation of prediction techniques
and test data.
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The evaluation of the aircraft stability characteristics is

ii significantly affected by the rotor forces and moments. Any

. influence of the rotor slipstream on the airframe is not imme-~
diately obvious. To examine this effect, the rotor contributions
were subtracted from the total aircraft and compared with the
airframe characteristics for pitching moment in Figure 5-139

and yawing moment in Figure 5-141. The solid lines,noted as rotors
on, indicate the aircraft minus rotors or airframe characteristics
including slipstream effects. The dashed lines are the data
obtained with rotors off. The difference between the lines

i - defines the horizontal tail contribution shown in Figure 5-140

-3 and the vertical contribution in Figure 5-142. There is a negli-
g gible slipstream effect exhibited in both of these figures.
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. Pretest predictions of the airframe, the prop/rotor and tail
contributions to total aircraft pitching moment characteristics
were made and are compared to the test data in Figure 5-143. The aix
frame components were predicted by the methods defined in Reference ]
DATCOM. Airframe-minus-tail pitching moment prediction of 3Cpy/da=
0.011 is lower than that obtained from test, 3Cpy/34=0.018.
Further analysis to be accomplished in the next phase of the stowed
rotor effort must be performed to understand this difference.
The contribution of the horizontal tail to total aircraft stability
(A3Cppm/230) is 0.052 per degree as predicted by the methods defined
by DATCOM. Adding this increment to the airframe-minus-tail test
data results in excellent agreement with the airframe test data.
This indicates that the tail characteristics as well as the wing
downwash are correctly accounted for. The rotor contribution was
defined by the isolated rotor characteristics as discussed in
Reference 2 increased by the emperical 1lift effects induced by
the wing. This results in a rotor contribution of 0.043 per degree
and when adding this to the airframe test data indicates good
agreement with the total model aircraft data.

The model nacelles are oversized to house the electric motors.

Rotor characteristics for the model are such that they produce

a larger destabilizing moment than would be expacted from the
full-scale rotor. A preliminary estimate of the increments in pitch
stability associated with these two items is -0.003 per degree

for the nacelles and -0.013 for the rotors. This indicates that

the full-scale aircraft would have a total aircraft longitudinal
stability derivative -0.016 per degree more stable than the test
data. This is represented by the dotted line on Figure 5-143,

showing that the full scale aircraft is stable.

Aircraft Dynamic Stability

As discussed in Section 7.2,a model step input in angle of attack
was used to examine the whirl flutter phenomenon. Alternately,
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the dynamic response of the model system to a 4-degree step input
is shown in Figure 5-44. As can be seen from the pitching moment
response, the resulting damped oscillation has a frequency of

9 CPS with damping of 2.55 percent. The sting natural frequency
as obtained from disturbance tests (Table B-5) is 4 CPS with 4-
percent damping. The corresponding sting plus model and balance
frequency in the static position was 24 CPS with damping of 0.9%
{Table B-3). Thus, rotor damping, as a result of the step in-
put, shows a value almost equal to the basic sting system, with
the corresponding frequency. Similarly, the normal force re-
sponding frequency is seen to be 5 CPS as compared to a balance
natural frequency of 4 CPS. Based on these data, it appears that
rotor derivatives are not able to be separated from the system
dynamics.
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5.5 CONCLUSIONS - STABILITY AND CONTROL

1S

Py
Y]
.

Analysis of the stability and control test data presented here
allows the following conclusions to be made:

l. Hover, pitch, roll and yaw control powers measured are
sufficient to meet the specifications of Level 1 flying
qualities of Reference 8.

2. The rotor has a large destabilizing effect on the air-
craft in transition and cruise.

3. Rotor stall limits the destabilizing effects of the
model rotor in transition.

‘E
2%

Egé 4. Roll and yaw control moments can be obtained in transi-
i tion using differential thrust with differential cyclic
ol used as a decoupler.

e
i
4

The wing lift interference effect increases the rotor
pitching moment derivative by 50 percent in cruise.

Predictions of isolated rotor derivatives agree well
with data at zero wing lift.

Correlation of theory and test rotor stability derivatives
provides confidence that the full-scale design aircraft
will be stable as predicted.
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6.0 ROTOR LOADS

Rotor loads data were obtained in the hover, transition and cruise
modes to accomplish rotor loads objectives. The test objectives
included the determination of rotating blade frequencies in the
hover mode and the effect of various tilt-rotor flight conditions
on blade bending moments and rotor loads.

A coupled flap-lag frequency analysis was used to predict the
rotating blade frequencies for the first flap and first lag bendin
modes and an uncoupled flap-lag-torsion frequency analysis was
used to predict the first torsional frequency. Baffle test data
were used to substantiate the analysis and a comparison of test
data and prediction are shown in Figure 6-1.

A semi-empirical approach was used to predict blade loads in hover
due to cyclic pitch. Blade loads due to ground proximity effects
were predicted from past test data and blade loads due to cyclic
were predicted by a coupled flap-pitch uncoupled lag rotor loads
analysis. Correlation of the test data with prediction is shown
in Figure 6-2. Correlation of the hub moment test data with
prediction is shown in Figure 6-3.

Past prop-rotor and helicopter blade stall flutter inception data
was used to predict the inception of stall flutter in hover.
Stall flutter was predicted to occur at hover at a collective
pitch of 14 degrees. Stall flutter did not occur in hover.

The effect of angle of attack om blade flap bending in cruise was
predicted by the coupled flap-pitch uncoupled lag analysis and
correlation of the test data with prediction is shown in Figures
6-4 and -6-5. Hub moment due to angle of attack in cruise was also
predicted and the results are shown in Figure 6-6. The effect of
wing flap deflection on blade flap bending in cruise was also
predicted and the results are shown in Figure 6-7.
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6.1 BLADE FREQUENCY SUBSTANTIATION

The primary blade loads objective was to determine the first flap
and first lag rotating frequencies for hover collective and cor-
relate the results with a coupled blade frequency analysis. Test
results show good agreement with analysis and substantiate the
predicted first flap and first lag modes for the test RPM range.
Blade torsion data was also obtained and the results show good
agreement with the predicted first torsional mode.

Substantiation of the first two rotating blade frequencies can be
accomplished if integer values of frequency ratios at various
RPM's can be determined by test. If a forcing function is pro~
vided with the same frequency as a bending mode, the blade bend-
ing moments will respond predoninantly at that frequency. Baffles
were placed under the rotor disc plane in the hover position to
provide a 1, 2, 3 and 4 per rev excitation. The baffles excite
the blades by restricting the downwash as each blade passes over
a baffle. Since the rotor wake is subsonic, any downwash re-
striction in the wake will immediately influence the flow field
in the disc plane., A description of the baffle arrangement is
shown con Page 17 in Section 3.

The baffle arrangement was induced a 1, 2, 3 or 4 per rev distur=-
bance. Alternating blade bending moments showed amplification
when the rotor RPM was such that the excitation frequency of the
baffles was close to a predicted first flap bending or first lag
bending frequency. Harmonic analyses of the right rotor data
show that a RPM's corresponding to local blade bending moment
amplification, the largest harmonic component was the blade
natural frequency at that RPM.

6.1.1 First Flap Mode

Left and right rotor alternating flap and chord bending moments
for each baffle run are shown in Figures 6-9 through 6-15 and
6-20 through 6-26. Harmonic analyses of the right rotor flap
and chord bending data are shown in Figures 6-16 through 6-19
and 6-27 through 6-30. A summary of the baffle test results for
the first flap and lag modes is presented in Figure 6-8. 1In a
number of cases a graph is shown of the harmonic responses of the
blade to the one-per~-rev baffle for the right rotor but the over-
all response of the blade is missing. Those data were lost and
are not retrievable.
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Due to the small amount of data points, the 3P and 4P frequency
crossings for the first flap mode were difficult to determine
accurately. Amplification of alternating flap bending moments
near the predicted 3P and 4P frequencies were small and in one
case was misleading. For the 3P baffle configuration the right
rotor.alternating flap bending in Figure 6-14 showed a peak at
750 RPM. Harmonic analysis of the data in Figure 6-18 showed
that the 3rd flap bending harmonic peaked at 650 RPM and the flap
bending at 750 RPM was predominantly 2/rev. Since no data was
taken below 650 RPM, this RPM was taken as the 3P flap frequency
crossing due to the peak in 3rd harmonic flap moment.

Since harmonic analysis was not available for the left rotor,
frequency crossings had to be determined by alternating bending
moment values. Figure 6-11 shows a local alt. flap moment peak
at 750 RPM for the 3 baffle configuration and Figure 6-12 shows
a local peak at 430 RPM for the 4 baffle configuration.

Determination of the 2P frequency crossing for the first flapping
mode was difficult due to flap bending response to a 4P lag fre-
quency crossing. Left and right rotor alternating flap bending
moments for the 2/rev baffle are presented in Figures 6-~10 and
6-13, respectively, and show a local maximum at 1500 RPM. Har-
monic analysis of the right rotor for the 2/rev baffle in Figure
6-17 shows a high 2/rev component from 1380 to 1570 RPM and a
high 4/rev component at 1500 RPM. The 4/rev component is due to
a first lag mode 4P frequency crossing at 1500 RPM. The close
proximity of the lag mode 4P frequency crossing to the flap mode
2P crossing causes the blade to respond with high second and
fourth harmonics and amplification of the blade flap bending re-
sponse to the 2P frequency cannot be distinguished from the
response to the lag mode 4P frequency crossing. Blade flap bend-
ing response to the 4P lag mode frequency would be expected since
the aerodynamic damping in the lag mode contributes to the meas-
ured flap bending moment.

kot s i
Lt S
YA EEL,

Th=2 local maximum of the right rotor second harmonic flap bending
at 1380 RPM was taken to the 2p flap frequency crossing. The 2P
flap frequency crossing for the left rotor was not determined
since harmonic analysis was not available. Harmonic analysis

is required to separate response to the 2P flap mode crossing
from response to the 4P lag mode crossing. Alternating flap
bending data shows a maximum of 1500 RPM but the waveform was
predominantly 4/rev.

A
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6.1.2 First Lag Mode

The 3P and 4P frequency crossings for the first lag mode were
clearly recognized due to high amplification of the alternating
chord bending as shown in Figures 6-22 and 6-23 for the left rotor
and Figures 6-25 and 6-26 for the right rotor. The local maxi-
mums at 1500 RPM and 2050 RPM agree well with the predicted 4p
and 3P lag mode frequency crossings, respectively. Harmonic
analysis of the right rotor chord bending for the 3 and 4 baffle
configurations in Figures 6-29 and 6-30 show the third harmonic
response dominates the alternating chord bending at 2100 RPM and
the fourth harmonic is dominant at 1500 RPM.

The good agreement with prediction of the 3P and 4P lag mode fre-
quency crossings indicate the blade elastic stiffness properties
have been correctly represented in the frequency analysis since
the first lag frequency is highly dependent on elastic stiffness.

6.1.3 First Torsional Mode

Determination of the blade first torsional mode was not expected
since the torsional frequency was predicted to be higher than the
4/rev baffle excitation frequency at limiting NPM. Harmonic

analysis of the right rotor blade torsion data indicates that the

rotor is oscillating in torsion at its torsional natural frequency

regardless of the baffle excitation frequency. Alternatirg blade
torsional moments for the right rotor are shown in Figures 6-33
through 6-=35. Harmonic analysis of the right rotor data is shown
in Figures 6-36 through 6-39.

Figure 6-2 summarizes the test results for the first torsional
mode and shows good agreement with the uncoupled torsional fre-
quency analysis. Operation of the blade at its torsional natural
frequency is probably due to the nature of the baffle forcing
function. The baffle arrangement used induced a 1, 2, 3 or 4 per
rev impulsive disturbance rather than a 1, 2, 3 or 4 per rev
sinusoidal disturbance. An impulsive disturbance would tend to
force the blade at its torsional natural frequency and indicated
in Reference 12. Figure 6-32 shows the waveform of the blade
torsion response to the 2/rev baffle at 1100 RPM. The waveform
shows the torsioral response to the disturbance and decay during
a rotor revolution.
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6.2 HOVER BLADE LOADS

Primary blade loads objectives in hover were to determine the
effect of cyclic pitch on alternating blade bending moments
and to determine the effect of stall flutter on alternating
blade torsicn. Test data were obtained to answer these objec-
tives and the results show that cyclic pitch substantially
increases flap bending loads but has little effect on chord
bending. Investigation for stall flutter shows that for the
conditions tested, stall flutter did not occur. Additional
data were obtained in hover to show the effects of aircraft
height rotor-rotor interference and low forward speed on
blade loads.

6.2.1 Effect of Cyclic Pitch

The effect of cyclic pitch on alternating blade bending moments
is shown in Figures 6-40, 41 and 6-42. Flap bending moments
due to cyclic shown in Figure 6-40 increase with RPM and are
mostly first harmonic due to one-per-rev flapping. The 2zero
cyclic loads shown in the same figure are due to configuration
effects. The downwash is restricted by the wing and causes
first harmonic as well as higher harmonic bending moments.
Rotor height is shown to have little effect on flap bending
moments with and without cyclic pitch. Operation of the rotor
with cyclic in the cruise position to minimize wing blockage

is also shown to have little effect on alternating flap bending
moments. ’
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Cho?d bending moments due to cyclic are shown in Figure 6-41.
These data show no difference between blade loads with and
without cyclic. Ground proximity and configuration éo not
affact these blade loads since the data show that operating

in or out of ground effect or operating the rotor in the cruise
position does not change the blade chord bending. The source
of these loads are not known but blade dynamics and model
mounting are likely to be involved.
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Alternating blade torsion due to cyclic pitch is shown in Figure
6~42. These data show an increase with RPM and no effect of
rotar height.

A semi-empirical approach was taken to predict blade loads in
hover due to cyclic pitch. Blade loads due to ground proximity
and configuration effects were predicted from past test data
obtained from the model for hovering conditions without cyclic
pitch. A coupled flap-pitch uncoupled lag rotor loads analysis
was used to predict hover blade loads due to cyclic pitch.
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The empirical contribution due to ground proximity and con-
figuration effects and the theoretical contribution due to
cyclic pitch were assumed additive and the sum represented
the blade loads prediction for hover cyclic conditions. The
empirical prediction was made for both rotors operating simul-
taneously while test data for 3 degrees of cyclic pitch were
taken with the right rotor operating dne to motor problems

on the left rotcr. A comparison of test data and prediction
for h/D=.39 is shown in Figure 6-43. Flap blade bending
moment data for zero cyclic and both rotors operating agree
with the empirical prediction and the chord bending data for
the same condition are 16% lower than predicted. The good
agreement cf the predicted and measured slopes of flap and
chord bending moments with cyclic shows that the uncoupled
rotor analysis accurately predictes hover hlade loads due to
cyclic pitch, since the ccnstant difference between predicted
loads for twin rotor operation and the measured loads for
single rotor operation are due to configuration effects.
Figure 6-44 shows a comparison of prediction and measured
data for hover cyclic at h/D=1.82. Measured alternating flap
bending for both rotors operating with zero cyclic is 50%

(50 in-1b) lower than predicted and chord bending is 8%

(20 in-1b) higher than predicted. The measured slope of flup
and chord bending with cyclic agrees well with the predicted
slope. This is further evidence that the uncoupled analysis
accurately predicts blade loads due to cyclic pitch and also
indicates that the configuration effects of twin rotor operation
on blade loads are significant.

6.2.2 Stall Flutter

The criteria used to determine stall flutter inception in hover
were that a large increase in alternating blade torsion would
result and the predominant harmonic of the torsion would corres-
pond to the first mode ‘orsional frequency. Using these criteria,
stall flutter inception could be found by the intersection of

the slopes of alternating torsion versus RPM before and after in-
ception. A collective pitch of 14 degrees was expected to pro-
vide thrust coefficients for sustained stall flutter and the
results are shown in Figures 6-45 through 6-48. There was no
sudden increase in alternating torsion and stall flutter did

not occur for the RPM range tested.

The torsional loads shown in Figures 6-45 thru 6-48 are due to the
wing acting as a baffle and restricting the downwash. This re-
sults in a small impulsive once-per-rev change in blade angle

and alternating blade torsion responds at its first mode torsion-
al frequency. A typical waveform of blade torsion in Figure 6-45
shows that it is operating at its natural frequency. To deter-
mine the effect of ground proximity and rotor-rotor interference
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i on stall flutter inception, testing on one rotor was done in
{ and out-of-ground effect and both rotors were operated out-of-
; ground effect. As shown in Figures 6-46, 47, 48, neither

- ground proximity nor rotor-rotor interference caused stall

) flutter inception.

An empirical approach was taken to predict stall flutter inception
in hover. Past test data for stall flutter inception on heli-
copter blades and prop/rotors were used. The range of test for
stall flutter is compared with the prediction of flutter in-
ception in Figure 6-49. Since stall flutter did not occur the
prediction is shown to be conservative for this rotor.

6.2.3 Rotor Height

Additional data were obtained in hover to show the effect of
rotor height on blade loads. Out-of-ground-effect blade loads
are caused by wing blockage of the downwash and also rotor-rotor
interference. In-ground-effect blade loads are caused by dis-
tortion of the downwash due to ground proximity. The effect of
rotor height on alternating flap and chord bending and alter-
nating torsion is shown in Figures 6-50 through 6-60. Alternating
flap bending moments at aircraft touchdown (h/D=.39) are nearly
double those when cperating out-of-ground effect at h/D=1.82

and are approximately half of the flap bending loads due to 3
degrees of cyclic pitch. Distortion of the downwash due to
ground proximity when operating in-ground effect has a large
effect on flap bending than configuration effects when operating
out-of-ground effect.
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Alternating blade chord bending data decrease with increased

rotor height and are comparable in magnitude to chord bending
loads for 3 degrees cyclic pitch. The source of the chord bending
loads is not known but disturbance of the velocity flow field

in the disc plane is shown to affect chord bending.
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Alternating blade torsion data decrease slightly with increased
E-v rotor height and are approximately half of the blade torsion
loads due to 3 degrees cyclic pitch.

6.2.4 Rotor-Rotor Interference

¥
-

' Rotor-rotor interference results when the downwash of one rotor

E disturbs the velocity flow in the disc plane of the other rotor.
Rotor-rotor interference is therefore dependent upon collective
pitch and rotor RPM and is also dependent upon rotor height since
ground proximity affects rotor thrust. Figures 6-61 and 6-62

show rotor-rotor interference data for rotor heights corresponding
to aircraft touchdown (h/D=0.39). Right-hand rotor alternating
blade bending moments are shown for single rotor operation and
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for both rotors operating when the left-hand rotor RPM was
maintained at 2000 RPM. 2t an h/D of 0.39, flap and chord
bending moments are nearly constant with RPM for 51ng1e

rotor operation. The rotor wake for this condition is similar
to that for an isolated rotor IGE where the downwash trans-
lates radially away from the rotor. When both rotors are
operating and the left-hand rotor RPM is constant, right rotor
bending momerts increase with RPM and reach a maximum magnitude
at 2200 RPM.

The local maximum in bending moments at 2200 RPM is due to dis-
tortion of the rotor downwash near the wing. As discussed in
6.2.3 the rotor wake is restrained from traveling under the
fuselage by the ground and by the downwash of the other rotor.
This condition is stable until the differential rotor thrust
and resulting differential downwash is large enough so that the
downwash from the rotor with the largest thrust overcomes the
downwash restriction of the other rotor and travels under the
fuselage. The wake from the rotor with the largest thrust is
then similar to an isolated rotor OGE and this condition is
stable as long as the minimum required differential thrust is
maintained. Transformation of the downwash from the restricted
wake to the isolated rotor wake is unstable and increased down-
wash distortion results. The unstable downwash condition causes
blade loads which are larger than those caused by either the
restricted wake cc isolated rotor wake condition.

Rotor-rotor interference data out-of-ground effect at h/D=1.82
are shown in Figuras 6-63 and 6-64. These data show a small
increase in right-hand rotor bending moments when the left

rotor is operating at 2000 RPM. Since the rotor is out-of-ground
effect, there is no restriction on the downwash from each rotor
and the downwash is not distorted regardless of the differential
thrust. Out-of-ground effect rotor-rotor interference is limited
to the vorticity of one rotor influencing the flow field of the
other rotor. A comparison of the data at the two rotor heights
shows that rotor-rotor interference effects on blade loads are
largest wh2n operatina in-ground effect.

6.2.5 Low Forward Speed

Blade loads data were obtained in low-speed flight near the
ground to determine the effect of low g on blade loads. Blade
moment waveforms shown in Figure 6-65 are nearly sinusoidal and
show no impulsive response to blade-tip vortex intersections.
Blade-tip vortex intersections have occurred in helicopter
practice for low-speed flight conditions near the ground and are
due to the forward airspeed forcing tip vortices to travel in
close proximity to the rotor before translating vertically away
from the disc plane. The increased nacelle tilt from edgewise
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flight (iy=70°) and the high disc loading for these test

conditions were beneficial in reacting airspeed effects on the

tip vortex trajectory since increased nacelle tilt decreases
the in-plane component of the forward velocity and the large
downwash velocity adds to the forward velocity out-of-plane
component. The resulting distance between the tip vortex
trajectory and the disc plane is sufficiently large so that
blade tip vortex intersections do not occur.

Alternating blade moments are shown in Figures 6-66 through
6-67 for two aircraft heights. These data show that blade
loads increase with increased airspeed in and out-of-ground
effect. Blade loads for these conditions are due to a sinu-
soidal inflow variation which causes a once-per-rev change
in local blade angle of attack. Since the change in blade
angle is a sinusoidal once-per-rev change, cyclic pitch can
be used to decrease blade loads in low-speed flight.
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6.3 HOVER HUB MOMENT

6.3.1 Effect of Cyclic Pitch

n

i
Hd AN AR

Rotor hub moment which results from one-per-revolution cyclic
- blade bending moment is practically zero for hover without
blade cyclic pitch. Figure 6-72 shows hub moment versus rotor
RPM with 3 degrees cyclic for two different h/D values with
the nacelle inthe hover position and also for 3 degrees cyclic
with the nacelle in the cruise position. The forward velocity
is zero for all three conditions. The data show that the
height of the rotor above the ground and the presence of the
wing in hover did not effect the hub moment.
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The uncoupled rotor loads analysis was used to predict the
rotor hub moment due to 3 degrees cyclic pitch in hover. A
comparison of the predicted and measured hub moment is shown
in Fi nre 6-73. The good agreement of the predicted ard
measured hub moment demonstrates that the hover blade flapping
frequency has been correctly represented and the analysis
accurately predicts hub moments in hover due to cyclic.
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6.4 TRANSITION BLADE LOADS

Blade loads data were obtained in transition flight to show the
effects of aircraft angle of attack, cyclic pitch and aircraft
yaw. Results of these data show that blade loads increase with
aircraft angle of attack. Nose-down cyclic pitch descreases
blade loads and nose-up cyclic increases blades loads. Aircraft
vaw has little effect on blade loads.

6.4.1 Attitude Effects

Blade loads data presented in Figures 6-74 thru 6-77 show the
effect of aircraft angle of attack on alternating flap and
chord bending. The increase of flap and chord loads with angle
of attack is due to rotor inflow and wing interference.

Blade loads data presented in Figures 6-78 and 6-79 show the
effect of aircraft yaw on blade flap and chord bending. Air-
craft yaw has little effect on blade loads. Ixncreased blade
loads for yawed conditions are due to rotor inflow since wing
1ift remains nearly constant. The results of these data show
that increased rotor inflow due to aircraft yaw in transition
has little effect on blade loads. The change in local blade
angle due to rotor inflow for yawed conditions in transition
is smaller than that due to the same yaw angle in cruise flight
since nacelle tilt decreases the rotor inflow when all other
conditions are kept constant. For 90 degrees nacelle tilt
(edgewise flight), no rotor inflow occurs for yawed conditions.

6.4.2 Effect of Cycli‘ Pitch

Blade loads data presented in Figures 6-80 through 6-82 show

the effect of cyclic pitch when the aircraft is pitched or yawed.
These data show that 3 degrees nose-up cyclic increases and nose-
down cyclic decreases alternating flap bending when the aircraft
is pitched. Phasing of lateral and longitudinal cyclic was set
for a pure rotor pitching moment in hover and therefore, the
phasing for transition is not optimized to decrease blade loads.
The correct phasing for minimum blade loads would be set to mini-
mize the once-per-rev change in local blade angle due to rotor
inflow. Therefore, for correct cyclic phasing, blade loads

with angle of attack would be smaller for 3 dedgrees nose-down
cyclic than those shown on Figure 6-80. The effect of cyclic on
blade loads when the aircraft is yawed is shown in Figures 6-81
and 6-82. Nose-up cyclic increases and nose-down cyclic de-
creases flap and chord bending. Since cyclic phasing was not
optimized for decreased blade loads, the correct phasing, which
would be 90 degrees less than for aircraft pitch, would minimize
blade loads for the same value of cyclic for these test conditions.
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6.4.3 Stall Flutter

Stall flutter was experienced in transition flight at a

nacelle tilt of 70 degrees and advance ratio of 0.21 The

effect of stall flutter in transition on alternating blade
- torsion is shown in Figure 6-83. Blade torsion increases
sharply when the angle of attack is increased above zero
degrees. Figure 6-84 shows that alternating torsion is pre-
dominantly a one and eight-per-rev response. As discussed
in Section 4.3.2, blade stall at the blade tip is evident
at -5 degrees angle of attack since first harmonic flapping
decreases and as shown in Figure 6-84, first harmonic torsion
also decreases. The blade first torsional natural frequency
is nearly eight per rev at 1970 RPM and as shown in Figure 6-84,
the torsional eighth harmonic increases rapidly as the angle
of attack is increased above 5 degreazs. Five degrees angle
of attack is the stall flutter inception point and torsional
wave-forms before and after stall flutter inception are shown
in Figure 6-85. At stall flutter inception, alternating torsion
is 1.15 times that for 3 deyrees of cyclic in hover at 750 FPS
tip speed. Auv 12.5 degrees angle of attack, alternating torsion
is 2.28 times that for 3 degrees of hover cyclic.
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6.5 TRANSITION HUB MOMENTS
6.5.1 Attitude Effects

Rotor hub moment for the transition flight mode (with nacelle
angle equal to 45 degrees) resulting from aircraft pitch angle
variation is shown in Figure 6~86. As for the cruise mode, the
right and left rotors are identical and the hub moment is caused
by the Aq condition and by wing interference.

6.5.2 Effect of Cyclic Pitch

Cyclic pitch will be considered as a means of reducing blade
bending loads and hub moments in the transition flight mode.
Figure 6--87 shows rotor hub moment for the same conditions as
Figure 6-86 except that the cyclic pitch for each rotor is 3
degrees. Nose down cyclic pitch decreases blade flapping
due to Aq and therefore decreases the hub moment.
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6.6 CRUISE BLADE LOADS

The blade locads objectives in cruise were to determine the
effects of aircraft angle of attack, wing flap incidence and
aircraft yaw cn alternating blade bending moments. Substantial
‘ data were obtained to answer the blade loads objectives and
the results show that blade loads in cruise are affected by
rotor inflow due to aircraft angle of attack and aircraft yaw,
and wing circulation due to aircraft angle of attack and wing
. flap incidence. Wing interference effects cause approximately
20 percent of the alternating flap bending moments when the
aircraft is pitched 10 degrees and have no effect on alternating
flap bending when the aircraft is yawed.

6.6.1 A+titude Effects

The effect of angle of attack on blade flap and chord bending
and blade torsion is shown in Figures 6-88 through €-100. These
data show a near-linear increase in blade loads as the aircraft
angle of attack is varied from zero. This trend is expected
since a change in rotor angle of attack from zero increases the
rotor inflow and results in a once-per-rev sinusoidal variation
of blade section angle of attack around the azimuth. Wing cir-
culation also affects alternating blade moments when the aircraft
angle of attack is such that the wing is producing lift. The
downwash from the wing due to wing lift alters the velocity flow-
field in the rotor disc plane and this results in a change in
blade section angle of attack around the azimuth. The change

in local blade angle due to wing interference is not sinusoidal
but it is additive to the once-per-rev change in blade angle

due to inflow. Rotor inflow and wing circulation both increase
the blade angle on the advancing side of disc when the aircraft
angle of attack is increased from zero. Rotor inflow and wing
circulation effects on blade loads are also additive when the
aircraft angle of attack is negative and the wing is producing
negative 1ift since rotor inflow and wing circulation decrease
the blade angle on the advancing side of the disc.

The uncoupled rotor loads analysis was used to predict the com-
bined effect of rotor inflow due to rotor angle of attack and
wing interference due to aircraft angle of attack on blade
loads in cruise. The velocity flowfield in the disc plane due to
wing circulation was input into the analysis and a comparison
of the predicted and measured alternating flap bending moments
- is shown in Fiqure 6-101. The prediction is in good agreement
with the test data and demonstrates that the uncoupled analysis
can predict the effects of wing circulation and rotor inflow on
blade flap bending in cruise. A comparison of the predicted
and measured flap bending waveform for 10 degrees angle of attack
is shown i Figure 6-102. Good agreement of the measured and
predictec phase angle of the flap bending one-per-rev response
shows that the first out-of-plane frequency has been correctly
represented in the analysis.
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Figure 6-103 is a comparison of predicted and measured alter-
nating chord bending due to wing circulation and rotor inflow.
Correlation of the chord bending with prediction is not as
good as the flap bending correlation.

Representation of the blade lag properties in the uncoupled ana-
lysis is suspected to be the source of error. The blade lag
mode frequency is highly dependent upon elastic stiffness and

a small error in the lag mode frequency can result in large
errors in blade loads predictions.

The effect of aircraft yaw on blade loads in cruise are shown
in Figures 6-104 through 6-~111. These data show the same trend,
but increase less per degree change in angle, when the aircraft
was pitched. Less sensitivity of blade loads to yaw angle
changes than to pitch angle changes is expected since wing in-
terference effects do not increase when the aircraft is yawed.

6.6.2 Effect of Wing Flap Deflection

To determine the effect of wing circulation on blade loads in
cruise, the wing flap was varied at zero aircraft angle of attack.
A summary of wing interference effects on cruise blade loads is
presented in Figures 6-112 and 6-113 and shows that large changes
in wing flap incidence (up to 60 degrees) result in small changes
in alternating blade moments. Changing wing lift by flap de-
flection isolated wing interference effects and allowed a
comparison of inflow effects and wing interference effects to be
made. For a wing flap deflection of 24 degrees at zero aircraft
angle of attack, the aircraft 1lift (C;=1.039) is equivalent to

a l0-degree aircraft angle of attack and zero flap incidence
condition and therefore, wing interference would have the same
effect on alternating blade flap bending for both conditions. From
Figure 6-112,alternating flap bending is 55 in-1b at 24 degrees
flap incidence and from Figure 6-94, alternating flap bending is
260 in-1lb at 10 degrees angle of attack. Winyg interference effects
cause 55 in-lb (21 percent) of the total alternating flap bending
at 10 degrees angle of attack.

The effect of wing circulation due to flap deflection was pre-~
dicted in cruise with the uncoupled analysis. A comparison of
predicted and measured alternating flap and chord bending is shown
in Figures 6-114 and 6-115. Flap bending prediction agrees well
with the measured data and demonstrates that the isolated effect
of wing interference on blade flap bending in cruise can be pre-
dicted. Chord bending prediction does not agree with the measured
data as well as the flap bending. Chord bending prediction shows
mare sensitivity to flow field disturbances in the disc plane.
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6.7 CRUISE HUB MOMENTS
6.7.1 Attitude Effects

Rotor hub moment for the cruise flight mode resulting from
aircraft pitch angle variation is shown in Figure 6-116. The
right and left rotor hub moments are shown to be identical.
The hub moment is caused by the Ag condition and by wing
interference effects.

The effect of rotor inflow and wing circulation on hub moments
in cruise was predicted by the uncoupled rotor loads analysis
and a comparison of predicted and measured hub moments is shown
in Figure 6-117. The analysis accurately predicts hub moments
with angle of attack. Results of the analysis without wing in-
terference show that 17 percent of the hub moment is due to
wing interference at 10 degrees angle of attack.
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Rotor hub moment for the cruise flight mode resulting from
aircraft yaw angle variation is shown in Figure 6-118. The

hub moment is caused by the Ag condition only. For a yaw angle
of 10 degrees, the hub moment is 65 ft-1lb. From Figure 6-116,
the hub moment for 10 degrees of pitch angle is 78 ft-1lb. The
difference between these two values is 13 ft-1lb. This indicates
that the wing interference effect accounts for 17 percent of

the hub moment due to aircraft pitch angle.
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- 6.8 CONCLUSIONS - ROTOR LOADS

Analysis of the rotor loads test data presented here allows
2 the following conclusions:

sl 1. The baffle test can be used to measure rotating
li blade natural frequencies aand verifies analysis.

2. Blade loads data in hover due to cyclic are
correctly predicted using the uncoupled flap-

;' lag analysis.

. )

» 3. Stall flutter did not occur up to blade loadings
q in excess of expected inception loadings.

*: 4, WVing interference increases rotor blade loads

o as much as 21 percent in cruise and these effects
ﬁ are correctly predicted by analysis.

E 5. Hub moments are correctly predicted by blade loads
- analysis in hover, due to cyclic, and in cruise,

due to angle of attack.

393




o T L T S
ARt At N

P T R DR
s

7.0 DYNAMICS

Pre-test predictions of the modal frequencies and dampings were
made prior to the 1/l0-scale performance model wind tunnel test
to insure structural integrity of the model during the test.

The analyses used accounted for the dynamic interactions pro-
duced by rotor airframe coupling effects. Durang the test,
baffles were used to determine blade frequencies at discrete
rotor speeds. Measured blade flap and blade lag frequencies for
given rotor speeds are presented in Figure 20 along with the
predictions. The measured blade flap frequencies are in excel-
lent agreement with the predictions and the blade lag frequencies
are slightly higher than predicted.

Step aircraft angles of attack were input into the model in
cruise, transition and hover flight modes to determine the air-
craft's susceptibility in whirl flutter modes toc forcing functions
of this type. Results of the test show the aircraft to be
insensitive to this type of forcing function.

7.1 FREQUENCIES AND MODAL DAMPING

Pretest predictions of the modal frequencies and dampings versus
rotor speed for hover and modal fregquencies and dampings versus
equivalent forward speed in the cruise mode were made prior to
the wind tunnel test for the 1/10-scale performance model
(Figures 7-1 to 7-4). Positive (stabilizing) damping was pre-
dicted (Figures 7-2 and 7-4) for all modes; thus no instabilities
were expected during hover or cruise testing and none were re-
countered during the test.

During the test, baffles were placed under the rotor disc plane
in the hover position to provide a 1,2,3 and 4-per-rev excitation.
The response of the blades to these excitations was measured.
Blade frequencies as a function of rotor speed were determined
from peak responses. Measured blade flap and blade lag frequen-
cies for given rotor speeds were plotted in Figure 7-1. The
measured blade flap frequencies are in excellent agreement with
the predictions. The measured blade-lag frequencies are slightly
higker than predicted.

7.2 RESPONSE TO STEP ANGLE OF AIRCRAFT ATTACK

Step aircraft angles of attack were input into the model during
the test to determine the aircrafts susceptibility in whirl
flutter modes to forcing functions of this type, and,if sus-
ceptible, to measure the modal damping. Results of the test

show the aircraft to be insensitive to this type of forcing func-
tion. Examination of oscillograph records at the completion of
the step inputs in the cruise, transition and hover flight modes
shows no amplitude of response decrease with time. Emphasis

was placed on the blade flap response, as any significant whirl
flutter response should include increased blade flap motion.
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The insensitivity of the aircraft model is additionally empha-
sized by Figures 7-5 to 7-7. Peak-to-peak blade flap bending
during continuous aircraft model angle of attack change is
shown for cruise, transition and hover. For cruise and 45-
degree transition, peak-to-peak blade flap bendingy at discrete
- aircraft angles of attack is superimposed. Note that there

) is no tendency for higher responses due to the step input

L (forcing function)nature of the aircraft model attack angle.

F * 7.3 INFLUENCE OF FUSELAGE ANGLFE OF ATTACK

The aircraft lift coefficient (with the nacelle in the cruise
position) as a function of fuselage angle of attack for a wing
trailing edge flap incidence (§p) of 45° and 0° is shown by
Figures 5-130 and 5-131. For both a wing flap 45° and 0°
incidence, the break in the dC;/du line (indicating onset of
stall) occurs at a fuselage angle of attack near 8 degrees.
Figures 7-8 and 7-9 show nondimensional fuselage balance moments
as a funccion of fuselage angle of attack. A sharp increase

in the yaw response occurs near 10° for a ép of 45° and near 8°
for a S of 0°. This could indicate some response increase due
to buffeting produced by the wing stall; however, the yaw re-
sponse in each case is just as great for fuselage negative andgles
of attack where there is no wing stall.
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7.4 CONCLUSIONS - DYNAMICS

Analysis of the dynamics data presented here allows the
following conclusions to be made:

1. The predicted modal frequencies and damping
variation with rotor RPM show good agreement
with test data.

2. Test results show the model to be insensitive
in hover, transition and cruise flight modes
to step angle of attack inputs.

3. All airframe moments were shown to be sensitive
to fuselage angles of attack greater than +10.
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8.0 CONCLUSIONS

Test data were obtained to meet 90 percent of the stated ob-
jectives of the test including 100 percent of the contractual
obligations. Analysis of the test data allows the following
general conclusions to be made:

l. Minimum download was achieved in hover with a flap
setting of 70 degrees and umbrella flaps set at
759/70°. The download out of ground is less than
5 percent of the aircraft thrust.

2. Flap setting and umbrella angle has no effect on
rotor performance.

3. The minimum download configuration produces the
best total aircraft performance.

4. The maximum lift loss due to rotor airframe
interference is 3 percent of the total 1lift
available in STOL operation.

5. The total aircraft maximum lift occurs at an
angle of attack of 20 degrees in mid-transition.

6. The rotor performance and stability data cannot
be scaled up and be representative of the full
scale aircraft but is adequate for the correlation
with theory for the contract final report.

7. Hover, pitch, roll and yaw countrol powers measured
are sufficient to meet the specifications of Level 1
flying qualities of Reference 8.

8. The rotor has a large destabilizing effect on the
aircraft in transition and cruise.

9. Rotor stall limits the destabilizing effects of
the model rotor in transition.

10. Roll and yaw control moments can be obtained in
transition using differential thrust with differ-
ential cyclic used as a decoupler.

1l1. The wing lift interference effect increases the rotor
pitching moment derivative by 50 percent in cruise.

12. Predictions of isolated rotor derivatives agree
well with data at zero wing lift.
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13.

14.

15.

le.

17.

18.

19.

20.

w 21.

........................

Correlation of theory and test rotor stability
derivatives provides confidence that the full-
scale design aircraft will be stable as predicted.

The baffle test can be used to measure rotating
blade natural frequencies and verifies analysis.

Blade loads data in hover due to cyclic are
correctly predicted using the uncopuled flap-
lag analysis.

Stall flutter did not occur up to blade loadings
in excess of expected inception loadings.

Wing interference increases rotor blade loads
as much as 21 percent in cruise and these effects
are correctly predicted by analysis.

Hub moments are correctly predicted by blade
loads analysis in hover, due to cyclic, and in
cruise, due to angle of attack.

The predicted modal frequencies and damping
variation with rotor RPM show good agreemert
with test data.

Test results show the model to be insensitive
in hover, transition and cruise flight modes
to step angle of attack inputs.

All airframe moments were shown to be sensitive
to fuselage angles of attack greater than +10.
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9.0 RECOMMENDATIONS

l.

Conduct additional tests, using the dynamic model,
to define the apparent rotor mutual interference
effect on rotor efficiency and blade loads.

Conduct tests in transition at various flap settings
to determine the magnitude of wing rotor inter-
ference on the rotor force and moment derivatives.

Conduct tests in ground effect with two rotors to
define the effects of ground proximity on control
moments due to cyclic.

The representation of the blade lag properties in
cruise should be modified in current prediction
technique to more accurately represent the blade
lag frequency so that rotor inflow and wing inter-
ference effects on alternating chord bending can be
more accurately predicted.

The unsteady aerodynamics capability of Program D-88
should be utilized to predict stall flutter inception
in hover and resulting blade torsional moments.

Conduct additional testing on the performance model
in hover with additional damping provided to deter-
mine if any non-linearities or random variations in
aircraft stability.
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APPENDIX A

ROTOR BLADE PHYSICAL PROPERTIES

Table A-1 presents the rotor blade physical properties. A compari-
son of the design and measured blade twist is shown in Figure A-1,
The predicted blade natural frequency spectrum is shown in

Figures A-2 and A-3. PFigure 2A-4 presents the first mode bending
normal to the rotor disc and is used *o define the virtual flap
hinge and also Lock number. Included herein is a discussion of

the test program conducted to define the shear center and elastic
coupling of the 1/10 scale blade.

Blade Shear Center and Elastic Coupling Test Results

A bench test was conducted in February 1970 to determine the shear
center and elastic coupling of the Model 160, 5.5' diameter stiff
in-plane rotors. The deflections at .75R on one left-hand and one
right-hand blade were measured. The major results of the test
were as follows:

a. The blade shear centers as measured at 3/4 radius were at
37.5% chord for the left-hand blade and 48% chord for the
right-hand blade. The predicted value was 25% chord.

b. The relationship between flap and chord bending moments and
elastic change in twist at 3/4 radius does not vary between
left and right-hand blades.

c. The elastic coupling of blade pitch and blade flapping exhibited

a positive 88, effect. As blade flapping angle increased,
the angle of attack at 3/4 radius decreased.

d. The horizontal deflection of the blades increased opposite
in direction to the applied chord bending moment (tension in
trailing edge). As the chord bending moment was increased
further, the change in horizontal deflection became zero and

then decreased.

e. For chord bending moments at .35R greater than 100 in-1bs,
the coupling of elastic twist angle at 3/4 radius and bladg
lead-lag is such that an increase in lag angle is accompanied
by an increase in blade pitch.
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A static blade deflection test was performed on the Model 160,
5.5' diameter, stiff in-plane prop/rotor. The purpose of the

test was to determine the blade shear center at 3/4 radius and
e the elastic couplings between blade elastic twist angle, blade
N flapping, and blade lag at 3/4 radius.

The test set-up is shown in Figure A-5. Loads were applied at
the blade tip and linear and angular deflections were measured
at 3/4 radius. During testing Hr shear center, loads of 5, 10,
15 pounds were applied perpendicular to the 3/4 radius chord-
line. The chordwise position of the load application point

was varied and the loading repeated. During testing for blade
elastic coupling,the load applicaticn point was set at the
measured shear center location and the direction of loading was
varied from vertical to nearly horizontal with the blade angle
at 3/4 radius nominally zero. The load was resolved into flap-
wise and chordwise bending moments at .35 radius. This is the
radius location where the model blade is strain-gauged for flap-
wise and chordwise bending during wind tunnel testing. Under
rotating conditions, the model blades operate in the quadrant of
tension in the lower surface and tension in the leading edge.
The test was conducted with tension in the lower surface and
tension in the trailing edge to avoid buckling of the trailing
edge. A summary of the test data is presented in Table A-2.

The results of the test for shear center are shown in Figures

A-6 and A-7. The shear center at 3/4 radius for the left-hand
blade was determined to be .375 chord ¥.01 chord. The shear
center for the right-hand blade at 3/4 radius was determined to
be .48 chord ¥.01 chord. Predicted shear center location for
both blades was .25 chord. The large variation between predicted
and measured shear center location is difficult to understand
since the measured values are considered accurate within the
stated tolerance. It is suspected that the crossply outer wrap
contributes more than calculated for prediction. Also, the large
variation in measured shear center location for the left and
right-hand blades suggests that small differences in blade layup
such as resin content contribute significantly to shear center
location. This effect is not limited to differences between left
and right-hand blades. Variation in resin content could also
occur between the three blades on either rotor.
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Figures A-8 and A-9 show the change in elastic twist angle at 3/4
radius with applied flap and chord bending moments. A comparison
of Figures A-8 and A-9 indicates that there is little difference

< in elastic twist change between the left and right-hand blades
under the same loading conditions. The data in the quadrant of
tension in the lower surface and tesnion in the leading edge was
extrapolated from the test data. Typical wind tunnel test data

for the subject blades are shown in Figure A-8. The arrow indi-
cates the general direction of alternating flap and chord bending
for that condition. For the hover condition with 3° cyclic pitch,
the change of angle of attack at 3/4 radius oscillates +0°, ~4°
from an average of +.6°. As the cyclic pitch increases to its
maximum value, there is no elastic contribution to angle of attack
change. As the cvclic pitch decreases to its minimum value, there
is an additional decrease of -.4° due to elastic coupling. For

the hover condition without cyclic, the change in angle of attack
due to elastic coupling varies +.4°, ~.5° from an average value of
+.3°. As the blade flaps up and lags,the angle of attack increases;
and as the blade flaps down and leads,the angle of attack decreases.
Although the range of alternating flap and chord bending moments
are smaller for this case than for the hover case with 3° cyclic,
the oscillatory change in angle of attack at 2/4 radius due to
elastic coupling is twice as large. It can be concluded that the
aerodynamic forcing function acting on the rotor governs to a

large extent the effect of elastic coupling on oscillatory change
in angle of attack due to elastic coupling whereas wing-rotor inter-
ference or a random forcing function seems to maximize the gradient
of elastic angle of attack change.
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Elastic pitch-flap coupling results are shown in Figures A-10 and
A-11. The data illustrates that the blades have a positive elastic
63 effect. As the flapping angle increases, the elastic twist
angle at 3/4 radius decreases. A comparison of Figures A-10 and
A-llindicates that elastic pitch~flap coupling is the same for left
and right-hand blades.

Figures A-12 and A-13 show the effect of applied moments on blade

lag angle at 3/4 radius. Loading the blade to produce tension in

the lower surface and tension in the trailing edge caused the blade
to deflect in a positive lag direction. As the loading was increased,
the lagging deflection beca.e zero. For chord bending mcments above
100 in-1lbs, the blade deflected forward (negative lag). Deflection
of the blade opposite in direction to the load is difficult to
understand. The high twist and high in-plane stiffness probably
contribute significantly to this effect.
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Figures A-14 and A-15 show tha elastic pitch-lag coupling results.
As the loading increases, the ratio of elastic twist angle at

3/4 radius to elastic lag angle at 3/4 radius increases. This
effect is caused by a negative increase in pitch angle and a

decrease in lag angle with increased loading even though the sign
of the lag angle is positive.

. Conclusions and Recommendations

a. The blade deflection test served to give insight into the
elastic couplings of highly twisted prop/rotors. It is
emphasized that the test blades wevre stiff in-plane and
that conclusions concerning soft in-plane rotors should
not be drawn from the data presented. An elastic coupling
test on a soft in-plane rotor is presently in progress and
the data should serve as a comparison with the stiff in-
plane data presented.

b. The analytical determination of shear center location should
be reviewed to ascertain the difference between predicted
and measured values.

c. Differences in resin content and resin flow should be care-
fully considered during fiberglass blade construction.

d. Any further tests c¢f blade elastic couplings should employ
the use of strain gauges to measure bending moments. This
method would reduce test time, ease data reduction and elim-
irate errors in extrapolation of bending moments between
two spanwise stations. Further tests should also include
more spanwise stations to determine the dependence of elastic
coupling on blade station.
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APPENDIX B
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L.

STATIC DISTURBANCE TESTS

Background

. The static natural frequencies and damping of the model on its
balance and also the influence of the sting mounting are re-
quired in order to analyze oscillatory phenomena such as long-
period forces and moments measured in hover. The blade tweek
data provide the natural freguencies of the rotor blades at
zero RPM and are correlated against blade predictions.

Test Technique

The model was caused to oscillate at its natural freguency by

a sharp rap with a rubber mallet so as to produce as rure a
response as practically pcssible in the desired direction. The
response was measured using CEC traces enabling the frequency
and damping to be obtained. This procedure was performed for
all six components of the fuselage balance. Blade tweeks were
performed by deflecting the blade tip in flapwise, chordwise
and torsion directions relative to 35% radius station. Blade
strain gauges were used to record the blade response. These
tests were perrformed at intervals throughout the test program.

Further disturbance tests were performed to excite the sting
deflection modes where the excitation was applied aft of the
model. The difference between these ta2sts and the mcdel dis-
turbance tests is shown schematically in Figure B-1l.

Test Data

The frequencies and damping for the uninstrumented blades obtair
from the static disturbance tests are given in Tables B-1 and
B-2 and compared with the pretest calculated frequencies. The
natural frequencies and damping of the model on its balances
excited as shown in Figure B-1l are given in Tables B-3 and B-4.
The data obtained when the excitation was applied to the sting
are given in Tables B-5 and B-6 , and the nacelle balance data ¢
tabulated in Table B-7.
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RUN FLAP_BENDING CHORD BENDING TORSION
DATE NO. FREQ. DAMPING FREQ. DAMPING FREQ. DAMPING
)
PRE- j ; .
8/20 | TEST | 24.5 | 1.42  81.0 ' 0.34 258 ° 0.32
’ !
8/26 0 | 24.5 , 0.842 86.6 | 0.56 | 259  0.22
3 i : , :
8/27 2 24.6  1.295 82.0 | 0.44 | 256 0.234
j ' l |
| |
8/29 | 14 23.9 | 0.85 84.0 - | 264 0.289
9/2 56 24.2 | 1.24 81.0 | 0.265 i 262 | 0.241
i | ?
Predjcted 30.0 | - 86.0 - | 250 I -
! : i

NOTES: 1. Response data obtained from
strain gauges at r/R = 0.35

2. Frequencies in hertz, damping
% critical

TABLE B-1 STATIC DISTURBANCE DATA -
RIGHT-HAND ROTOR BLADE DATA
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RUN FLAP BENDING CHORD BENDING TORSION
DATE NO. FREQ. DAMPING FREQ. DAMPING FREQ. DAMPING
8/26 2 25.5 0.63 94.0 1.1 264 -
9/2 56 25.7 0.925 91.0 0.33 278 .251
9/3 72 25.2 0.99 89.0 - 268 .366
Predicted 30.0 - 86.0 - 250 -

NOTES: 1. Data obtained from strain gauge
at r/R = .35

2. Frequencies are in hertz damping
$ critical

TABLE B-2 STATIC DISTURBANCE DATA -
LEFT-HAND ROTOR BLADE DATA
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RIGHT-HAND NACELLE BALANCE NATURAL FREQUENCIES

———a
T
'

STATIC DISTURBANCE DATA

*
-
HANEY
"-
.
.
-

TT
ca=t
'\'K I‘

o4 3
AtAla e

Y
o i

i e
Tut

Eﬂ Normal Force 12.92  Hertz

5

o Sideforce 18.7

At

5 2xial Force - Not Recorded
Yaw Moment 18.1
Pitch Moment 11.8
Roll Moment 19.6

_ Rotor Blades ON

TABLE B-7 NACELLE BALANCE STATIC DISTURBANCE DATA
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APPENDIX C

Deflection Test

The rotor hub calibration fixtures were used to apply loads

to the rotor hub in the normal force, side force, pitch

moment and yawing moment. The resulting deflections of the
sting, model fuselage, wing and nacelle, defined in Figures

C-1l and C-2, are tabulated in Tables C-1 to C-5. These data
provide a means of establishing the effect of mcdel deflection
on the stability and performance data measured and these effects
are discussed in Section 5.1.5.



...................................................

PR I T SR TN I S U D T S e L SR e S A T A T e
E"‘:‘ﬁ“\"}ﬂ’i\'q‘-fﬂ LI P S T P 2

-

-—— .
\g}f”l NACELLE
N\ ¢ \ \ Wi

FUSELAGE

/7
7
/
£
3

/
= __

/\

7/
/
S

STING

JC
/

FIGURE C-1 DEFINITION OF YAW DEFLECTION ANGLES DUE
TO SIDEFORCE AND YAWING MOMENT LOADINGS
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STING

FUSELAGE

DEFINITION OF PITCH DEFLECTION ANGLES FOR
442

NORMAL FORCE AND PITCH MOMENT LOADINGS

FIGURE C-2

\.c v
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Sting Deflection ¥ = 0.0004125°/1b Y
Sting and Fuse Deflection st = 0.00074599°/1b Y
Fuselage Deflection ¥¢ = 0.0003335 °/1b Y
Nacelle, Sting and Fuse ¥gfp = 0.002055°/1b Y
Rotorshaft Deflection 9’n = 0.001309°/1b Y
Fuselage-Balance Yaw Stiffness = 2.06 x 103 ft-1lbs/®
Nacelle-Balance Yaw Stiffness = 0,525 x 103 ft-1bs/°
TABLE C-1 YAW DEFLECTION'S DUE TO SIDEFORCE APPLIED

AT ROTOR HUB
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Sting Deflection P, = 0.0000752°/ft 1b
Sting and Fuse Deflection VS = =0,000425°/ft 1b
Fuselage ¥; = =0.0005002°/ft 1b
Nacelle, Sting and Fuse ¥ ;= .001345°/ft 1b
Rotorshaft Deflection ¥ = 0.00177°/ft 1b

Fuse Balance Yaw Stiffness = 2.0 x 103 ft-1lbs/°
Nacelle Balance Stiffness = 0.562 x 103 ft-1lbs/°
TABLE C-2 YAW DEFLECTIONS DUE TO PURE YAW MOMENT

APPLIED AT THE ROTOR HUB
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.....................

o nfsw

.001038 °/1b

.001015 °/1b

.000665 °/1b

.00168 °/1b

.000665 °/1b

.002718 °/1b

Fuselage Balance Pitch Stiffness

Nacelle Balance Pitch Stiffness

2.21 x 103 ft-1bs/°

0.66 x 103 ft-1lbs/°

TABLE (C-3

PITCH DEFLECTIONS DUE TO NORMAL FORCE
LOADING AT THE ROTOR HUB
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oL ¢ = .000417 °/ft 1b

oLgg = -000417 °/ft 1b

oL ygs = 000734 °/ft 1b |

o w = .000317 °/ft 1lb

R .00225 °/ft 1b |
!

o< g = .001516 °/ft 1b |

L

Fuse Balance Pitch Stiffness

Nacelle Balance Pitch Stiffness

2.4 x 103 ft-lbs/°

0.66 x 103 ft-lbs/°

3

Wing Torsional Stiffness = 3.13 x 107 ft-1bs/°

TABLE C-4

PITCH DEFLECTIONS DUE TO A PURE PITCH-
ING MOMENT APPLIED AT ROTOR HUB
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APPENDIX D

Test Run Log

Enclosed is a copy of the on line test rﬁn log that describes
the model configuration for each test run and any additional
a notes required to define the test conditions.
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