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ABSTRACT

The Kalman filter sequentially generates the minimum variance estimate of

the state of a linear dynamic system. This estimate is a function of the

covariance parameters of the dynamic system model which implies that these

be known a priori. Unfortunately some or all these covariance parameters

are often unknown in engineering applications of the Kalman filter. In this

report the maximum-likelihood estimates of the unknown covariance param-

eters of a time-discrete nonstationary linear system are computed from

measurement residuals of a suboptimal sequential filter. Results for non-

stationary linear systems are useful for nonlinear systems because most

nonlinear estimation problems are solved by linearization which results in

linear nonstationary plant and measurement models.
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SECTION I

INTRODUCTION

The problem of estimating the states of dynamic systems with unknown

covariance parameters has been stuiied by several investigators. Bucy and

Follin published some significant results for linear stationary dynamic sys-

tems in 1962 (Ref. 1] not long after Kalman's paper [Ref. 21 appeared.

Many navigation problems are nonstationary and the results for stationary

systems do not apply. The reason is very basic: time-averages cannot be

interchanged with ensemble-averages in nonstationary problems. This

interchange is the crux of the methods used in stationary problems. Jazwinski

[Ref. 3] and Abramson [Ref. 4) have studied nonstationary systems.

Ramon Mehra published an important paper on identification of parameters

in linear stationary systems (Ref. 51. The author's results reported here

are direct descendants of this work in that Mehra's formulation is general-

ized to nonstationary systems while the variables to be estimated are

restricted to constant covariance parameters.

The method is as follows: A general class of suboptimal linear

sequential filters is defined by letting the gain in the Kalman filter be an

arbitrary (suboptimal) residual weighting matrix. Then the distribution of

the measurement residuals generated by this filter is derived. The

unknown covariance parameters are collected into a vector 0, and 0 is esti-

mated from the measurement residuals by the method of maximum likelihood.

It follows immediately that the likelihood function (and hence 9) depends on

the sample dispersion matrix of the measurement residuals.

The likelihood equations are too complex to soive for the estimate

directly, so approximate solutions are outlined. In a special case, closed

form, minimum-mean-square unbiased estimates can be derived. The

example of a satellite attitude determination problem is discussed.



SECTION II

PLANT, MEASUREMENTS, AND FILTER

A set of n-dimensional vector-valued random variables {x(i): i = 1,

N} are generated by a linear stochastic difference equation called the

plant

x(i + t) = o(i) x(i) + r(i)u(i) (1)

where {U(i): i = i... N - 1} is a set of independent vector-valued random

variables each of which is distributed N9g(0, Q).t The initial condition

X(1) for Eq. (1) is distributed N n(X, M(1)). The values of the random vari-

ables {X(i): i = 1, ..... NJ for a particular realization are estimated sequen-

tially from a series of m-dimensional vector-valued measurements {Z(i):

i = .... N} which are related to the states by N linear relations

Z(i) = H(i)x(i) + w(i) (2)

where {w(i): i =i .., N} is a set of independent vector-valued random

variables each of which is distributed Nr(0, R). The matrices M(i), Q,

and R are positive semidefinite. In many engineering problems, elements

of M(i), Q, and R are unknown. Assume the random variables {U(i) = 1,

*..., N i} and{W(i): i = i, .... , NJ and X(i) are mutually independent.

Eruation (1) is often the result of linearizing a set of nonlinear equations

about a nominal and so the state estimate covariance is a function of the

nominal. A suboptimal filter for the states is

TThe notation N1 (0, Q) means the vector-valued random variable U(i) is

normally distributed with mean 0 and covariance Q. The dimension of
U(i) is 1.

Preceding page blank
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3r'(i + 1) 0 (i) R'(i) + 0(i) K(i) V(i) (3)

where

V(i) = Z(i) -H(i) R'(i) R'(m = . 4)

and where the known sequence of gains {K(i): i =, ...1 N} has finite ele-

ments but is otherwise arbitrary. The estimate 3'(i) is the (suboptimal)

one-step extrapolated estimate of X(i) based on the measurements {Z(i):

j = 1, ... , i - f}. To simplify the algebra, some notation is

introduced. Rewrite Eq. (3) using {Z(i): i = 1, .... , N} as the input.

"_1( + )=•i I - K(i) H(i)) 3e(i + 0(i) K(i) z(i) (5)

The fundamental matrix of Eq. (5) is

T(i+ j - 1) ... T(i) ; j>i

O(i + j, i) T(i) j=i (6)

j=O

whe re

T (i) 04@() (1 - K(i) H(i)) (7)

The vector-valued random variables x'(i) and V(i) are linear combinations

of U(i) and W(i), and so it follows that T'(i) and V(i) are multidimensional

gaussian random variables. The distributions of R'(i) and V(i) are derived

in Ref. 6.

v(i) N-NM(, B (i)) B(i) = H(i) M(i) HT(i) + R (8)

4



c(i + j, i) E (i + j) VT(i(9)

C(i + j, i) = H(i + j) O(i + j, i + i) O(i) (M(i) HT(i) - K(i) B(i)) (10)

V(i) - N.n(x(i), M(i))

M(i + I) = T(i) M(i) TT(i) + O(i) K(i) RKT(i) M0T(i) + r(i) QrT (i) (Ii)

The initial condition for Eq. (11) is M(i).

Collect the unknown elements of M(1), Q, and R into an r-dimensional

parameter vector 9 and denote its true value by 9 . The relationship between

9 and the residuals {V(i): i = i, .... N} is established in the following lemma.

Lemma 2. 1

If: (Ii) {K(i): i i, .... , N}are given.

Then: (RI) The elements of C(i + j, i) and B(i) are affine functions
of the elements of 0.

Proof: The closed form for the covariance equation [Eq. (ii)] is

M(i) = D(i, i) M(1) T (i, i)

i-i

V..T T T+ E (i + 1, j + 1) O(j) K(j) RKT 0) 0T(j) .0T(i + i, j + 1)

j=i

i-i
+• E (i + t, j + o) "(j) or T(j) T (i + I, j + 1) (12)

j=1

5



Substitute Eq. (12) into Eq. (8). It follows that the elements of B(i) are

affine functions of the elements of M(1), R, and Q and hence of 0. The proof

for C(i + j, i) follows in the same way.

QED

The significance of this lemma is that the partials -. ' and

aCli + j, i) are independent of t. n

8en

The Kalmnan filter is of course an important special case in the general

class of linear sequential filters. Two important statistical properties of

the Kalman filter are summarized in the following lemma.

Lemma 2. 2

If: (Ii) R is positive definite.

(12) K(i) = M(i) HT(i) B'i(i) (13)

Then: (R I) Tr IM(i)] is minimal. If M(i) is positive definite,
IM(i)l is minimal.

(RZ) C(i+ j, i) = 0 for allj. (14)

Proof: See Ref. 6.

If R is singular then the pseudo inverse is used in 12 if B(i) is singular.

RZ is not a sufficient condition for RI [Ref. 6.1

6



SECTION III

ESTIMATION OF COVARIANCE PARAMETERS

The measurement residuals from a suboptimal filter are not statisti-

cally independent and the usual methods in parameter estimation must be

extended to dependent samples in order to estimate 0.
Define a composite vector V(N) of the measurement residuals {V(i):

i = 1, 2 ... , N} generated by the suboptimal sequential filter. V(N) is a

p-dimensional random variable distributed N (0, Z(N)), where p 4 Nm and
p

where E(N) is the following composite matrix:

B(1) C(i, 2) C(1, 3) .... C(1, N)

C(2, 1) B(2) C(2, 3) .... C(2, N)

C(3, 1) C(3, 2) B(3) .... C(3, N)

Z (N)=

C(N, 1) C(N, 2) C(N, 3) .... B(N) (15)

If E(N) is positive definite, the probability density of V(N) is

p(V(N)I6) = (4"J-r)1P lX(N)i exp L vT(N) ZIl (N) V(N) (16)

The maximum likelihood estimate maximizes p(V(N) 19) (or equivalently

log p (V(N)10)) for the observed value of V(N).

7



max log p(V(N)IG) = log p(V(N)!O) (17)

Define

1N0) 4 log p(V(N)I0) (18)

-- log IZ(N)l - Tr ['i(N) V(N) VT(N)] (19)

A necessary condition for i to be a relative maximum of JN is

N() =0 (20)

Define the score (a classical term) of 

IBN(19)

SNO) Vt OJN(0) = (21)

81 N(e)

r

and the following notation for the partial derivatives of E(N),

W(N;i) 4 8 ;( (22)

By Lemma 2. 1, WN;i) is independent of 0 for all i. Hence it follows that

8



8-"ATr L(N) W(N;j) I-E (N) V(N) V T(N)) 0 (23)

ae, I

j=i, .... ,r

In general, Eq. (23) must be solved numerically. The average score AN(O)

is defined by

AN09) 4 E[ISN (9]

The variance of the score is Fisher's information matrixJN(O) and is given

by

The expectations which define AN (0) and JN(6) are taken over the probability

density function p(V(N) 100).

The Cramer-Rao inequality is a lower bound on the mean square error

of an arbitrary estimator# [Ref. 71. If Xis an unbiased estimator of 0,

then

cov J•; (00) (24)

If the equality in Eq. (Z4) holds for a particular unbiased estimate , then 9
is the minimum-mean-square unbiased estimate of 90.

The information matrix is a measure of the sensitivity of the distribu-

tion of the residuals with respect to variations in the unknown parameter 9.
At one extreme, if there is a one-to-one correspondence between each

sequence of residuals and each value of 9, then the sensitivity or information

is a maximum. At the other extreme, if the distribution of the residuals is

9



independent of e, then the information about 0 is a minimum. An expression

for the information contained in the residuals is derived next.

Lemma 3. 1

If: (Ii) Z(N) is a positive definite for 8 = 0

Then: (Rt) AN(o) = 0.

(R2) The (i, j) element of JN(0) equals

[ZJN(e- E 86i --j evaluated at= 0

(3)E , JN(ae1 2 Tr[Z (N) W(n;j) M-(N) W(N;i) (25)

Proof: Ri and RZ are standard results which follow immediately
from the definition of expectation [Ref. 7]. R3 follows
from Eq. (19).

As an example, suppose there is just a single scalar covariance

parameter, 0. From Lemma 2. 1, it follows that Z(N) can be written

2;(N) = W(N) 0 (26)

A closed form maximum likelihood estimate of 0 can be obtained in this

particular caue. Drop the index N for clarity. From Eq. (23)

S(O) Tr [mf W(I - VVT)] = 0 (27)

10



But since ; WA where 0 > 0, it follows that

S(e) I Tr I- w V1 vT] 0 (28)

IVT w-iV
N WV(29)

The following lemma is an application of the Cramer-Rao inequality which

shows that the maximum likelihood estimate in this case is also the

minimum-mean-square unbiased estimator for 0.

Lemma 3.2

If: (It) 6 > 0

(12) W is positive definite.

Then: (RI) 0 = N VT W 1 V (30)

is the minimum-mean-square unbiased estimate cf S.

Proof: (P1) From Eq. (29),

Eli) =- Tr weO = e0 (31)

(P2) cov(•] var (01 - 2 (32)

E[02] = - E[(VT W-1 V)2] (33)
N 2

It



E[6 2] =-4. 22 Tr(W_ 1X) 2] + (Tr [(W-'z]2 (34)

Eli?-) -L T2Ne 2 + N2e21 (35)E Nj= - IN~

See Ref. 6 for the details of this last step.

c 2v[jZ] = j_ 02 (36)

(P3) Fisher's Information is

J()= TrI Z i W)] N= (37)

RI follows from the Cramer-Rao inequality.

QED

In general, of course, the maximum likelihood estimate does not have any

optimal properties for finite N.

12



SECTION IV

APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES

In general, closed form solutions of Eq. (23) do not exist, hence

Eq. (23) must be solved numerically for 9. For large p, storing and

inverting 2(N) is impractical. A feasible approximate solution to Eq. (23)

can be computed if the elements of K(i) are reasonably near the elements of
HT -I

M(i) HT(i) B' (i) in value and the eigenvalues of 0(i + j, i) decrease to zero

for increasing j for all i. These conditions can usually be fulfilled in prac-

tice. E(N) may then be approximated by a band matrix. For example,

define the following band matrix by replacing C(i + j, i) with zeros for

j 3, ... N - i for i = 1, ... , N.

"B(1) c(1, 2) 0 ... 0

0(2, t) B(Z) C(Z, 3) ... 0

0 C(3, 2) B(3) ... 0

Z2 (N) = (38)

o 0 0 ... B(N)

Band matrices retaining higher order lag correlations can be defined in the

same way. Special algorithms can efficiently compute the vector Ebt(N)
-ibV(N) and the matrix E b (N) W(N;i) where Eb(N) is a band matrix. To reduce

the computer storage requirements, W(N;i) may be approximated by a band

matrix as well. An iterative technique for solving Eq. (23) is described in

Ref. 7.

13



SECTION V

EXAMPLE

A single axis analog of a satellite in a, planar orbit is examined (see

the sketch below). The problem is to estimate the attitude of the satellite

with respect to an inertial reference line.

STAR LINE
OF SIGHT

BODY

REFERENCE

INERTIAL REFERENCE

A star mapper attached to the body measures 0 at time t.

om(ti) = 0(ti) + w(i) &(ti) - a(ti) + w(i) (39)

Preceding page blank
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w(i) is the measurement error and Y is determined from star charts. A

gyro continuously monitors the angular rate w

WM = w + n (40)

where n is the random drift rate. The attitude error is e, where

a= + e Z = (41)

& -a 0  w m- m = n (42)

Integrate 4 between star sightings.

e(ti + i) = e(ti) + u(i) (43)

ti+1

u'(i) = f. (t) dt (44)

The angle u'(i) is the drift error of the gyro between the star sighting time

and is accurately modeied by a gaussian random variable with the following

statistics:

E [u'(i)J = 0 (45)

E [u'(i) u'(j)] = (ti + i " ti) q 6ij (46)

16



Subtract the nominal attitude predicted from the angle measured by the star

mapper.

=~i 4 m(ti) - a 0(ti) - Y (ti) e(t i) + w(i) (47)

Assume that w(i) is a gaussian random variable with the following statistics:

E [w(i)] 0 (48)

E [w(i) w(j)] = r 6 (49)

Define the following variables:

x(i) e(ti) (50)

r~i) , + i"ti (5it)

u(i) u' (i) (52)r(TI

Hence Eqs. (43) and (47) become

x( i + i) x(i) + r(i) u(i) (53)

z(i) x(i) + w(i) (54)

E [x(i)] = 0 E [u(i)] = 0 (55)

E [xz(i)] : m(I) E [u(i + j) u(i)I = q (56)

17



A constant gain suboptimal filter [Eq. (3)] for x(i) is

ZI(i + i) = 3'(i) + k(z(i) - X-"(i) (57)

The sequential filter given by Eq. (57) can be implemented on-board

the satellite and the estimates and star sighting times relayed back to earth.

It is desired to estimate q and r from these data in order to estimate m(i)

(which is an affine function of q and r) and to detect a failure in the gyro or

star mapper [Ref. 8). After substituting, one finds

-Z2 2
m(i + I) m(i) + k r+r (i) q (53)

ri)A -- =

m(i) = cov [•'(i)] k i i - k (59)

c(i + j, i) = mJ me(i) - -j-i kr (60)

Define the unknown parameter vector.

(q= ) (61)

Denote o'(i, j) as the i, j element of Z(N) and w, (i, j) as the i, j element of

W(N;I), I = 1,2. One finds from Eqs. (60) and (58) the following expressions:

TV 8m2i) + k10 k 512; j 1 .... N - i
kao

w1 (i + j, i) = (62)

8m(il + 112 j = 0

18



I2

where

am(i + 1) = -2 Lm(i- + k2  2(63)
Bee BeO 612 + P (i) 6pi

m(I) = 0 (64)
'901

N may range up to 25 sightings for a single orbit.

The degree of correlation {v(i): i -, . ... , N} depends on k. For insight,

it is convenient to let c(i) = I for the present, so that the sequence

{v(i): i = t, ..... N} is asymptotically stationary. The correlation coeffi-

cients of {v(i): i = i, ... , N} are computed from Eq. (58).

m=k•2 m + k2 r + q rn = lim m(i) (65)
i - CO

k r= (66)

c(j) =km -k kr c(j) limc(i + j, i) (67)

P(j) C .-'.I"n . (68)
m + ri

As a numerical example, let q = 45 arc secZ and r = 90 arc sec2 . Then, one

finds from Eq. (66), for various values of k,

19



k = t/3 m = 99 arc sec

k z 1.' rn = 90 arc secz (69)

k = 3/4 m = i02 arc sec

Notice that m is relatively insensitive to variations in k about the optimal.

This is true for the nonstationary case also. The correlogram for each k

is graphed below.

0.6 k

0.4 --
" ~~0 k=

0.2 -":.
k

0.0

-0.2 -- 1 ,2 3 4 5
iII I

I-0.4 -- A•

-0.6

When k = 1/3 (less than optimal), the filter is underdriven and suc-

cessive measurement residuals are positively correlated. When k = 1/2

(optimal), the residuals are uncorrelated [Lemma 3. 2). When k = 3/4

(greater than optimal), the filter is overdriven and successive measurement

20



residuals are negatively correlated. In both suboptimal filters the

correlation is essentially zero between v(i + j) and v(i) when j is greater

than 5. Intuitively this means that there is very little information about r

and q in c(i + j, i) when j is greater than 5. Hence if c(i) is near i, on the

average, one expects the band matrix approximation to be very good.

The speed and accuracy of the band matrix approximation for this

example described in Section IV were examined. The irregular star

sighting times were simulated by

2I
r(i) =- sin i (70)

For simplicity, the following initial conditions were used for all cases:

'(1i) = x(i) = 0 m(l) = 90 arc sec (71)

The random numbers u(i) and w(i) were precomputed and adjusted to have j
zero sample means and sample variances equal to q and r respectively.

For the case where k = 1/3, the following relative times were required

to compute the estimate for various band sizes:

t = 0.24 b= i

t = 0.44 b = 3 (72)

t = t. 00 b = 24

The relative difference between the time required for inverting a full matrix

and its banded approximation increases as N increases.

The following tabulation is a list of typical estimates of r (= 90 arc sec )

and q (= 45 arc sec ) for a single run for various values of b and k.

21



Estimates for k = 1/3 Estimates for k = 3/4
Pa rame te r s

b= i b = 3 b=24 b = I b = 3 b =24

q 10.91 12.50 12.50 See 14. 19 15.76
Text

r 149.08 142.36 142.84 158.09 141.96 134.59

The same sequence of random numbers was used to generate the

filter residuals, so the differences in the estimates are due to the different

band approximations and the filter gains k. For b = 24 (the last columns),

the estimate is the exact maximum likelihood estimate. Notice that the

approximate estimate for b = 3 differs only slightly from the exact estimate.

The q estimate computed for b = l and k = 3/4 was negative. Clearly a

better estimate in this case is zero since q is non-negative.

The Cramer-Rao bound [Eq. (24)) was computed for k = 1/3.

1608 - 668

- 668 
125t/

Since the elements of 0 for this example are always positive, a non-negative

estimate (which is biased) would have a mean-square error which is less

than that of an efficient unbiased estimate. This, in fact, appears to be the

case for this example. Ten runs were made and the sample bias and mean-

square error were computed for k = 1/3.

t6. 1

t2



to c:2t6 -66:)

The sample mean-square error is lower than the Cramer-Rao bound.

Again, this can occur because the maximum likelihood estimates are biased. J

23



SECTION VI

CONCLUSION AND APPLICATIONS

The maximum likelihood estimates of the covariance parameters of

a linear time-discrete system have been derived. Approximations are

required, in general, to make their computation tractable.

One application of this work is "adaptive" filtering where the filter

gain is made a function of the estimated covariance parameters. References

6 and 8 contain examples of adaptive filters. Another application is off-line

filtering, such as post-flight data reduction. The increased computation

required to estimate the unknown covariance parameters is not prohibitive

in off-line applications.

P
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