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Final Report

This report is a summary of the work accomplished during the year 1970-1971,

under AFOSR Grant 1916-70. The work consists in three main parts:

(a) The development of mathematical constitutive theory for Inelastic
materials undergoing deformation in a non-isothermal environment.

(b) The application of the theory to certain specific situations, where
experimental mcasurements were made by other people in the past; the purpose
part (b) was to establish the physical soundness of the theory and to illus~
trate its applicability.

(c) The performance of a set of critical experiments with a view to de-
termining the material (heredity) functions that appear in the constitutive
equation derived in (a). Knowledge of the material functlions will help in
their analytical represcntations necessary for the solution of problems
relevant to the analysis and design of aerospace systems.

The development of the theory Is based on the principles of irreversible
thermodynamics and the axiom that the stress is determined by the previous
history of deformation defined on a time scale which is itself a property of
the material at hand.

The foundations are then laid for a class of constitutive equations which
govern the behavio. of inelastic materials when these are subjscted to
coupled thermomachanical disturbances. This is done in ;he first report
entitlied, "A Theory of Viscop!listicity Without a Yield Surface Part | -
General Theory''.

Applications of the theory are dealt with in extenso in the second report
entitled, "A Theory of Viscoplasticity Without a Yield Surface Part 1i -

Application to Mechanical Behavior of Metals'.




A number of problems involving complex deformation of metals under iso-
thermal conditi@ni gf small strain, are given analytical solutions for the
first time. These solutions are compared with experiments and such compari-
sons, in alil cazcs favorable, speak elcquently for the power of the theory.

L. In paraiiel with the theoretical effort, an experimental program was
undertaken to elucidate a number of points which are likely to be of import-
ance in the further development and application of the theory. |In particular
the physical basis for the assumption of plastic incompressibility was
tested; it was found {just as Bridgman did in 1948 but his work went un-
noticed) that no such basis exists. Detailed discussion of this azpect of
the work is found in Report 3, entitled, '""Material Instabilities in the Ex-

perimental Study of the Plastic Compressibility of Some Important Metals''.

Further, the form of the heredity functions, that appear in the theory,
was investigated expe?imentally for copper and aluminum, Realistic anal;}ical
representations of these functions is now possible for the future application
and further refinement of the thecory. This part of the experimental program
Is discussed in Report 4 entitled, "Experimental Determination of the Heredity
Functions of Copper and Aluminum'.

Reports | and 2 haﬁe already becn published in the Euvropcan Journal,
Archivum Mechanik! Sostowanej. Published by the Polish Academy of Science.
The reference Is: Arch. Hech. Sost., &, (1971).

In summary, visible progress (conceptual as well as analytical) has been

- made, In this onc year !n the understanding of the phenomenslogical descrip-

tlon of the mechanical behavior of metals, as a result of this Grant.

7 Vidure!/

K. C. Valanis 4"”’

Professor and Principal Investigator

éff




A THEORY OF VISCOPLASTICITY
WITHOUT A YIELD SURFACE
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ABSTRACT

Herein, we propose a mathematical theory of thermo-viscoplasticity
which is a synthesis of experimentally observed material behavior on one
hand, and the concepts of irreversible thermodynamics on the other.

The underlying principle is that the history of deformation is de-
fined in terms of a "time scale" whic“ is not measured by a clock, but
is in itself a property of the material at hand.

The theory is unifying in the sense that theories of plasticity,
viscoelasticity and elasticity can be obtained from it as special cases

-~

by imposing suitable constraints on the material parameters involved;

furthermore, it does not make use of the idea of a yield surface.




Section 1. Erdochronic Theory of Viscoplastieity

In current theories of plasticity, to explain the observed discontin-
uities in material behavior upon loading beyond the "yield point" and upon
unloading, one has to introduce the concept of a yield surface in stress
space as well as a "loading function" to distinguish betwcen loading and un-
loading. Similarly, in the case of viscoplasticity, the existence of a
static stress-strain relation and a yield surface are assumed and the stress
increment, with respect to the static value, is related to thc strain rate,
or more generally to the strain history, by a constitutive equation.

Howev..r, the fact that the phenomenon of yield is usually a gradual
transition from a linear to a non-lincar stress-strizin response, makes it
difficult to say precisely where yield has occurred, to the extent that_
different definitions of yield are used for this purpose. Three such defin-
itions, for instance, are (a) the Jdeviation from linearity in the relation
between some measure of strain and stress (b) the ‘ntersection of the
initial part of a stress strain curve and the backward linear extrapolation
of the "plastic" part of the curve and (c¢) a value of "proof" stress
corresponding to an arbitrarily defined value of “proof" strain.

Though, from an engineering viewpoint, the initial vield surface is not
overly influenced by the definition of yield, it has been 1ound experimentally
that subsequent yield surfaces of a strain hardening material are influenced
by the definition of yleld to an extraordinary degree. (See Appendix I). 1f
we insist that the increment {n plastic strain i{s to be normal to the yield |
surf-ce, then, for compiex stress h! .tories, each such definition will give
rise to a different plastic strain history. Only one of these can be the

correct one.




The conceptual difficulties that arc encountered by the introduction of
the yield surface are completely circumvented by our theory of plasticity
which is developed on the basis of the observation that the state of stress
in the neighborhood of a point in a plastic material depends on the set of

all previous states of deformation of that neighborhood, but it does not

depend on the rapidity at which such deformation states have succeedcd one

another®,

The independence of stress of the rapidity of succession of deformation
states is achieved by introducing a time scale § which is independent of t,
the external time measured by a clock, but which is intrinsically related to
the deformation of the material.

Of course there arc many ways of introducing such a time scale. However,
it appears almost mandatory that £ should be a monotonically increasing. func-
tion of deformation, otherwise two different states of deformation could exist
“simultaneously"” i.e. for the same value of {. Furthermore, a positive rate
of change %% » of the internal encrgy density ¢ with respect to £ could not oe
interproted unambiguously as aprocess of increasing ¢, if df could be negative.

A logical definition®® for [ is then given by the r1elation

*In the present Section and in subsequent Sections (with the exception of
Section 2) we shall assume that mechanical changes take place in a constant
tesperature environment, such as an isothermal atwosphere. The therwal
changes in the material will, therefore, be mechanically fnduced and, in
general, will remain small, Conversely, only thermal changes of this nature
will be considered in this papsc. '

*2Alternative but less gensral definitions h?vg appeared in the litera-
ture. For instance, Ilyushin{l) and later Riviin{2) defined a "time" s by

the relation ds? = dC,,dC; . However, ve have found that this definition is
too narTov to describe, quantitatively, material behavior in the plastic

range as will be discussed later. The effect of temperature on §, will at
this time, be considered sufficiently small to be neglipible. For a more

vague allusfon to this possibility see also, Schapery (3),




dg? dc, .dc, , (3.1)

* Py5kedCi59Ck

where cij is the Right Cauchy-Green tensor and Pijkl is a fourth order tensor
which could depend on cij . The positive definite nature of df2? requires

that Pijkl be positive definite. In the case of small deformation

2 =
&% = Pysxedtsyieye
where cij is the small deformation strain tensor and pijkl could depend on
:ij.

Actual materials, on the other hand, do, in general, depend on the his-
tory of deformation as well as on the rapidity, or rate, at which deformation
states succeed one another., To describe materials of this type one may con-
struct a theory of viscoplasticity by introducing a time scale { which is re-

lated to the external time t.

It appears logical to define ¢ by the relationship

dg? = a2dg2 + 82dt?

where o and 8 are scalar material paramcters. Henceforth df will be called
an "iatrinsic time measurc", and =(), such that %% > 0 (0<gen), will be
called an “intrinsic tiée scale”.

In our theory, the stress (among other properties) is necessarily, a
functional of the strain history, d?fined with respect to the intrinsic time

scale, the latter being a property of the material at hand, As a result we

have called our theory an endochronic theory of viscoplasticity.

The theory will now be developed in a general thermodynamic framewvork io
Section 3. BRefore this is done, however, the thermodynamic foundations are

laid in Section 2.




Section 2. Thermodynamic Foundations

The following are the fundamental laws of thermodynamies, which apply
to all continuous media irrespective of their constitutive properties. (For '
materials that are solid-like, in the sense that they have a memory of
their initial configuration, it is more convenient to express these laws in

the material coordinate system xi). In differential form, these are the

first law of thermodynamics,

€ = (p°/2p) 3 éij - hii +Q, (2.1)

——

the rate of dissipation inequality,
6y = (p /20) ¥3 &, -~ ¥ -nb> 0 (2.2)
° i3 -
and the heat conduction inequality
i
"h Q,‘ :_o . (2‘3)

The symbols in eq.'s (2.1), (2.2) and (2.3) have the follcwing meaning: PoC
is the internal energy per unit mass; ® and p are the initial and current
mass densities respectively; Y‘j is the stress tensor in the material coor-
dinate system xi; t‘.‘(j is the right Cauchy-Green tensor, hi'ls the heat flux
vector per unit undefurmed area in the material system; °oQ is the heat supply
per unit mass; 8 {s the temperature, y the irreversible entropy and ¢ and n
are the free energy snd entropy, respectively, per unit undeformed volume
finally a subscript folloulng‘a comma denotes differentiation with respect

to the corresponding material coordinate. A dot over a quantity denotes

saterial derivative with respect to time. To avoid repetitious statcments,

henceforth ve shall refer to cij as the "deforwation®.




In the case of dissipative materials the stress, the internal energy
and entropy densities (and, therefore, the free energy density) of a material
neighborhood depend on the entire history of deformation and temperature of
that neighborhood, . ;

In the theory of irreversible thermodynamics the effects of history are
taken into account by specifying that the stress and free energy density are
functions of the current values of Cij and 8 as well as n additional
independent variables q , not necessarily observable, called "internal veari-

a

ables". These may be scalars or components of vectors or tensors in the

matertal frame; whatever their gecretric nature they must remain invariant

with trenslation and rotation of the spatial system to satisfy the principle

of material indifference. Thus:

v (Cij s 6 4 qa) (2.4)
ij - ij )
T 1 (th s 6, qa) (2.5
It has been shown elsewhere(“) that
s ij
L)
n - ae (207)
. 3“, :
9Y - - -&:a ‘(‘ 3_ 0 (208)

Furthermore the heat flux vector hi is a function of 6, , 0 , Cij and

q i.e.,
[

i

i ;.
h* =1 »_(9.1 y 0 ?kt , qa) (2.9)

subject to the conditions:




hil = 0, hia,i < 0. (2.10 a, b)

—a—

Finally eq. (2.1) in conjunction with eq.'s (2.6) and (2.7) yields

i .5 ()& G
hyy =8 (ae 3qa i, + Q (2.11)

The remarkable property of the abové equations is that they apply to all
materials irrespective of their constitution. This has not been generally
recognized. In fact the constitutive nature of the material follows from
the constitutive properties of qn. For example, in elastic materials q = 0,

a
whereas in viscoeclastic materials 4 are given by a set of differential

.

equations of the type,
E’u z fu (qB, ci'j’ e) (2.12).

The question of how q, are determined for viscoplastic materials is consi-

dered in the next Section.




Section 3. Constitutive Equations in Viscoplasticity

From the right hand side of eq. (2.8) and the fact that %% > 0 and

dz/dy > 0, it follows that

dq )
Wy 3, 0 (o not summed) (3.1)
3qn dz -~
. . ‘ dqa
where the inequality is valid unless i C 0. It also follows from inequality
dqu e 99 dqu
(3.1) that & % 0 S and 6 must be related otherwise b, and == could

be prescribed indgpendently and in such a fashion, that the inequality would

be violated. In this event there must exist a set of relations

dqu
Frali fa(cij » 9p 6) (3.2)
for all o, where the functions f°l are material functions.

It must be noted that, as a result of eq. (3.2) q, are indeed functionals
of the histories of deformation and temperature with respect, however, to the
intrinsic time scale z which is, itself, a material property.

Thus, at least formally, the constitutive equations'of the endochronic
theory of viscoplasticity are now complete in the sense that given the mate-

i then for some specified deformation and temperature

i3

rial functions fa,w and h
historie;, q, are found from eq. (3.2) and thus 1"’ and n are found from eq's.
(2.6) and (2.7) respectively; similarly h1 the heat flux vector is determined
from eq. (2.9).

Ideally, one would like to knc: the thermomechanical three-dimensional
response of a material over the whole spectrum of mechanical and thermal con-
ditions, i.e., under all variations in strain, strain rate (or more generally,

history of strain) and temperature. However, such a task would be a momentous,

if not an impossible, undertaking; the experimental evaluation of the material

NS A S e B
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functions involved, under wide conditions of strain and temperature, would be
impractical.

Fortunately the domain of specification of design conditions is usually
limited in some way; for instance usually, (a) large changes of temperature,
fast ;ates of ;oading, but small strains are prescribed; or (b) small changes
in temperature and small rates of loading but large strains and/or displace-
ments prevail. More extreme mechanical as well as thermal conditions are
rarer,

It is reasonable to expect that material behavior would he easier to
describe mathematically over a narrower domain of environmental conditions,
where the applicability or "correctness" of such mathematical formulation
would be easier to check experimentally.

In what follows we shall consider situations in which the strain id a

" material region R as well as the temperature changes relative to a uniform

reference temperature 60 are "small". To make the above statement more pre-
cise let eij(z’) denote the history of the strain tensor®, for z < z° < 2

where z, is some initial intrinsic time. Set

Ilegsa | ey stz cij(z')}” (3.3)

and let the supremum of ||cij(z')||be A.

Similarly let 9(z”) be the history of the temperature increment relative
to the reference temperature 6 and let the supremum of |9(z°)| be &§. The
notion of smallness is made precise by stipulating that A<<l and §<<l.

Thus, formally

6= +9 (3.4)

*‘ij = ) (C:ii - 613)
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8, |Nz*)|_._ =8 (3.6)

sup

Ilcij(z')llsup =

To complete the formalism let x be the entropy change relative and a
reference uniform entropy n, » and let oij denote the stress tensor. The re-
ference state is defined by the condition that oij =0, p=V=x= 0, q, = 0.

Under these conditions, eq.s (2.4) through (2.9) and eq. (2.10b) become,

b= leg oY q) (3.7)
L el 6.0
X = - _g_g_ (3.9)
Oy = - %{‘u 9 20 | (3.10)
hy = Ky N] ' (3.11)
hy D,y 20 | (3.12)

where kij is the thermal zonductivity tensor,

Finally eq. (2.11), L.comes

hy g o (3 - ?,%° g *+Q - (3.13)

It is shown in Appendix II that chl and liol may stag small in the sense
that given two positive numbers 6: and 6; » however small, A and § can be cho-
sen small enough such that |q | < 6: and Iicl < 6; .

At this stage one may obtain the corresponding equation for 9, by
linearizing eq. (3.2). However it is physically more meaningful and, a pos-

teriori, more rewarding to examine more closely the rate of change of




% 4

irreversible entropy ; .

From eq. (3,10),

dq
dy . _ 3 "%
®oq ™ "3 & 2° (3.14)
It follows from eq.'(s) (3.18) and (3.2) that %%-may be expressed as a func-
Q
tion of a—;‘-‘- . cii and s Subject to the condition that g—;— = 0 whenever

dq
325 = 0 for all a . Thus, if we expand Bo %% in a Tavlor series and ignore

terms of order higher than 0(62)* and observe the inequality (3.10), thercby

eliminating the linear terms in the expansion, then
0 =—=3b  e—mm = : (3.15)

Eq.'s (3.14) and (3.15) are simultancously satisfied if

: dq }
% R
aqu + bus 32 0 (3.16)

With eq. (3.16) the constitutive description of a viscoplastic material is
now complete.

Explicit Constitutive Equations

Explicit constitutive equations for viscoplastic materials under condi-
tions of small strain and small changes in temperature are obtained by ex-
panding ¥ in eq. (3.7) in Taylor Series and omitting terms of order higher
than 0(52); * linear terms must vanish to satisfy the i{nitial conditioms.

Before the expansion is carried out, however, it appears desirable to
regard q, Dot as scalars but components of second order tensors. This, as
will be shown, obviates certain difficulties which arise with the represen-

tation of fourth order tensors. For instance, In Ref. (&), we were faced

*6‘ is the largest of 6: and 6;. Also, 3 is the largest of &, A and 6:.

o it i
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with having to assume, without proof, that a fourth order tensor cijkl such
that,

Ciske = G5ixe = Cisex ° iy
is given by the series

Cisne * & a—ijﬁil—“ : (3.17)

a
where aiju are second order symmetric tensors and a  are scala;s. Problems
such as this are obviated by giving the internal variables a tensorial char-
acter. Thus the free energy density and other thermodynamic‘quantities are
now functions of €5 0 9 and n internal variables qgj (a=1,2....n),
where q(i‘j are symmetric second order tensors, with respect to the material

systemx, . In this notation, eq.'s (3.13) through (3.16) now read,

. 0w k1] o0 s
b= %3 - ;—c qgy + Q {3.18)
qij
dq?
o . 3 _ii,, - (3.19)
o dz 3q° dz2 -
ij
d a a a
8 3% * BPigne %—‘}15 Skt (3.20)%
and |
dq°
? a ki
-!;“l * By Tt O (3.21)
3q‘j

(o not summed)

8
| 4q}, dq
a8 i kl af a B8
#Expansions of the type bljkt Tx‘ia?" and Aijkl qi.j 9t reduce to
the above form, See Ref. S.

et -
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Furthermore, in view of my previous discussion,
- a ) a o o _a
V= BArae €5 ket Bigre €35 %ke *ECigke %3 ke
a a 2
+ Dijaci]. + Eijsqij + KFD (3.22)

Though, in principle, eq.'s (3.8), (3.9), (3.18), (3.21) and (3.22) ave
sufficient for the derivation of explicit constitutive equations, we shall
obtain these only for isotropic material, so as to keep the algebra at a

minimum. For such materials

~

Aiske = By Sig Skp t Ay Sy S5
B, ,=8%6.,6,+B 6, &
ijkL 1745 k& 7 T2 Tik 3L

a (+ ] Q
Cisce = €1 %45 ke * ©2 St S52

Dij =D 615 (3.23 a-f)
a a

Eij = E éij

kij ® k 6lj

e a a
bigre ® b1 855 Sk * Py Sk S50
It is worth noting that here we consider materfals which are “stable"
in the sense that straining of the reference configuration under isothermal
a
conditions will increase the freoc energy density ¢ . Thus A1 3ke and cijkt
: and c; are all positive,

Omitting superfluous algebra, the coupled thermowechanical constitutive

o
kk
s

are positive definite. As a consequence A1 ’ A2 s €

equations take the following form in terms of the hydrostatic stress o =

the deviatoric stress tensor °ij » the increment in temperature 9 , the
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hydrostatic strain Cyk the deviatoric strain tensor e s and the

entropy increment x ; in terms of the above notation:

z aei.
55 ° 2 L p (z-2") -a-z-.—ldz'

°
z 3zkk 4

g = I K(z-2') -a?.-—-dz' + I D(z-2') -—- dz'
%o %o

2 oc z
X = %% = I D(z-2') asz dz' + Iz F(z-2') 22 dz!

z
° °
where,
p% a.a
-~ B, B -0 2
2 u(z) = (A, Z m)}l(z)*{?m?e‘Il
a C2 a 02
B°° 68 .
K(z) = (A - ] =—2) 2z +} -£L151 ¢®
C° a c°
B E B E -z
D(z)=(D-2°°°)H(z)+):°n°e°
a C° a Co
a .06 =A%z
Fz) = (F-}:B )H(z)*z-!-:-u-z- e?
Co %

Ao s 1/3 (“1 + A

2
& o
P E e A B e
e bﬁ ] bc-
2 °

(] a a
bo ] 3b1 + b2

The heat conduction equation is similarly found to be:

de 2 [* w0 ., ) o d
Tl.ks.ii o vy I' C'(l-l )s;, ds! - .° 7Y I:l'tt-! )s‘;“"‘!
°

(3.24)

(3.26)

(3.27)

(3.28)

(3.29)

(3.40)

), Bol 173 (381 + 52) v C, 1/3 (acl + Cz) (3.8)

(3.92)

(3.38)

O 755 AR 51 mv{,-A/lVaﬂr»« .,-..,.'::/..“--' A . :
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(3.34)
where
Cv(z) z - ao F(z) (3.35)

and a roof over a quantity implies differentiation with respect to z. The

lower limit z, denotes the intrinsic time of the reference state.




15

Section 4, Endochronic Theory of Plasticity and its Relation to Present Theories

Our theory of plasticity, which is a rate independent endochronic theory,
is obtained by replacing the time measure di by df. The time scale now becomes
2(£), but the form of the constitutive equations remains unaltered, In parti-

cular, the "linear" form of our theory is obtained by setting
d£2 = p de,, de (s.1)
ijke i3 ke

where Pisxe is a positive definite fourth order material tenscr. We repeat
the constitutive equations of the linear theory, in the particular casc when
the deforma..... is isotherial so that a comparison may be made with currcnt

theories. When 9 E 0, then eq.'s (3.24) and (3.25) become,

: 4 de
s“ 2 I u (z-2') E—%idz' {4,2) 4
x ;
:° a‘kk t
O = 2 I K(z-z') -ﬁ-,—dz' (u.3)
s

°
where z = 2(§),

If the matcrial behaves elastically under pressurc (so-called plasti-

cally incompressible) ‘hen K(z) is a constant and in this case

okk L axtkk (‘.‘)
Whereas,
t“ x 2 ]: u (zs-2') dcﬁ(:') | ('0-5)
Te

Let now u (z) consist of a single exponential term {.e.

Big) = "o"" (».8)




R
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In this event

Z
'ij = 2y o I ;u(z-z.') deij (z') ¢:.") #

The integral eq. (4.7) is reducible to the differential equation

- ....L - ..----1

Now, E%TE' dsij may be identified as the "elastic" component of deviatoric

strain of classical plasticity. If one follows the traditional definition

of "plastic strain® de; P given below, i.e.,
ij

e
deijp = dtij - dtij (uog)

then in view of eq. (48)

P..0
deij : 555 dz sij (u.10)

But these are the Prandtl-Reuss relations. Hence our present theory contains
these reclations as a special case. Where then does it differ from this theory?
It does in the interpretation of the proportionality coefficient dz. In the
Prandtl-Reus ; theory df may be positive negative or zero, and in fact, s has
been identified with the yield surface, i.e., plastic action is assumed to

oceur when dx > o, where
E 3 '(sij) (~’11);
but thatbdc‘jp is sero whenever

ds < (%.12)

In the present theory dx  is alvays positive if the material is deforming (it

is zero only when deformation does not take place). Thus alvays,
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dz > o (1.13)

Furthermore dz is not given by eq. (4.11) i.e. it is not related to some
yield surface but its definition is entirely kinematic. Thus, no yield
phenomenon or surface are postulated here. One obtains the stress respoﬁse
by merely monitoring the history of strain.

Also the theory adﬁits a further generality since u(2) néed not consist
of a single exponential teru.

For instance u (z) may be of the form

- -uz
- u(Z)-uowle . (4.14)

In this case, however, the differential form of eq. (4.7) becomes:

2(uy + uy) deij t2uga ey, dz = dsij tasy dz . (4.15)
The shear modulus u, at z = 0, (initial modulus), is (u o ¥ 1)- The

"plastic" components of the deviatoric shear strain tensor are given from

eq0 (l‘og). icet )

p a
de1j =5 - dz S5 - 2u €y (4.18)

Note that eq. (4.16) does not satisfy the Prandtl-Reuss relations, which are
also violated if one adds more exponential terms to tﬁe right hand side of
eq. (4.14). In fact these relations will be satisfied if and only if u (z )
is given by eq. (4.6), f.e., u is represented by a single exponential term
only. This situation is not particularly disturbing, Peters _t Als(uO)
carried out experiments on thin walled 14S-Tu4 aluminum alloy cylinders by

loading these in combined compressiocn and torsion and found that the Prandtl-

Reuss relations were not satisfied, for this particular metal.




3
3

k&

£
§: -
f

f

18

Conclusions

A theory has been presented here, the scope of which is wide encugh to
allow a rational phenomenological description of mechanical behavior of
» materials under various histories of strain and temperature. In particular,
the viscoplastic behavior of materials is formulated mathematically, without
recourse to the dichotomy of the deformation history in plastic and clastic
parts and without the necessity of introducing discontinuitics in material
behavior, such as yield surfaces.
The theory merely asserts that, to every history of deformation gradient
;; and temperature of a neighborhood there corresponds & unique state of stress
in that neighborhood. An entirely novel feature of the theory is that these

histories are defined with respect to a time scale, which itself is a mate-

S T s

rial property.

In this paper, we have merely presented the framework of the theory
without actually evaluating the material functions involved, through tﬁe use
of experimental data. This, however, will be done in Part II of this paper,
:A where it will be shown that the theory describes experimentally observed

plastic behavior of metals with a remarkable degree of accuracy.

Stipulation

_ This manuscript is submitted for publication with the understanding that
the United States Government is authorized to reproduce and distribute re-
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The following is a short account of the experimental work on (a) the

effect of the definition of yield on the shape of the yield surface and (b)

of the work on viscoplasticity. The references given are by no means exhaus-

tive and the author wishes to apologize to people of whose work he is not
currently aware,

In Ref.'s 6 and 7, aluninum alloy tubes®® were subjected to shear pre-
strain by twisting well into the plastic region by a predetermined amount.

The yield surface corresponding to this degree of prestrain was established

by loading the tubes in combined tension and torsion.

In Ref. 6, Naghdi fc nd that subsequent yield surfaces distorted in the
direction of the shear axis with a pronounced Bauschinger effect in shear

but there was no effect on the yield stress in tension (i.e. the yield locus

did not change in the vicinity of zero shear stress).

On the other hand, in Ref. 7, Ivey observed that the yield surface, in
addition to distortion, underwent a large amount of translation in the direc-

tion of the shear axis, so that for large prestrains the origin of the stress

space was outside the yield surface. However, he was in agreement with

Naghdi in that the presence of shear prestrain did not affect the yield stress

in tension. Both authors used deviation from linearit, in a stress strain

diagram as a definition of yleld.

Mair and Pugh(s) to check the absence of "cross effect", carried out

their own experiments on copper with a high degree of isotropy. However they
used a different definition of yield, this being the point of intersection
of the initial straight part of the stress-strain curve with a backward linear

extrapolation of the "plastic" part of the stress-strain curve.




Their results varied significantly ftrom those of Ivey and Waghdi. They
found that expansion and distortion of the initial locus took place with a
striong cross effect between shear and tension. Also a pronounced Bauschinger
eff.ct in torsion was found with large initial positive pretorsion. These
authors also observed pronounced "plastic" unloading in shear,

.(9)

The resuits of Szezepinski and Miastkowski tend to confirm the find-

(8)

ings of Mair and Pugh’ ‘. Their results, morcover, were significant in ofhcr
respects. Specifically, using the proof strain to define yield, they studied
aluminum alloy sheets under biaxial tension with the intention of finding

the effect of prestrain on the shape of the yield surfaces. They observed,
migration, distortion, expansion and sometimes rotation of the initial yield
locus.

Simjlar conclusions® can be drawn from Szczepinski's paper(lo), as well
as Miastkowski and Szczepinski's(l7), in which tubular brass specimens were
subjecfed to combined axial and circumferential stress.

Initial and sulsequent yield loci were plotted when yield was defined
(a) as departure from linearity or (b) when it was set to correspond to a
certain proof strain. In particular, when definition (a) was used, subse-
quent yield loci did not contain the initial locus, but when (b) was used,
with proof strain set at 0.5% subsequent loci ¢~~* ° ~ the initial locus.

Aftempts to describe the change of the yield locus with prestrain, by
simple models have not proved satisfactory. Batdorf and Budianski(ls),

suggested that after prestrain, the yield locus is the minimum surface

®* In this connection, see also work of the same general nature by
Bertsch and Pindley(ll) and Hu and Bratt(lz)
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through the point of prestrain and the initial yield locus. This model
however does not account for the Bauschinger effect. The kinematic hardening
rule®* proposed by Prager(lu), was partially successful, in so far as it can
be of value only when the stress-strain curve of a materiai in simple tension

|
is bilinear(ls). Otherwise subsequent shapes of yield locus must be defined

in terms of a parameter that depends on the history of strain(lS)

to ottain
realistic unloading behavior.

A more realistic model is the one by Hodge(ls) which includes transla-
tion, expansion and distorsion of the yield surface. This model covers all
contingencies but does not include the history of stress ca the shape and

position of the yield locus. ]

Hovever, every definition of yield gives rise to a different yield sur-

face. If we insist that the increment of plastic strain is to be nornal to '%

the yield surface, then, for a complex but specific loading history, each

such definition will give rise to a different plastic strain history. Only

one of these can be the ¢correct one.

So it appears that through Eisenberg's and Phillip's(ls)

mathematical
description of a yield surface has been most promising, we must be prepared
to question, if necessary, whether the concept of yield point and yield
surface are the only way by which plastic effects may be described, especially
in view of the fact that these may take place immediately following the ini-
tiation of deformation of material, though they may be negligible in the

e region of small strains. This would agree with the point of view that dis-
locations (and, thercfore, plastic behavior) originate immediately upon

initiation of the loading.

#% See also Ref, (19).
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Viscoplasticity }

The need for the development of the theory of viscoplasticity arises
from the recognition of the strain rate sensitivity of metals under dynamic ﬂ
loading.

The difficulty in trying to'synthesize a rational "rate" theory from

experimental observations, a priori, lies in the fact that under dynaunic

conditions the inertia effects are significant. In the absence of a consti-
tutive theory, these effects cannot be calculated.® Therefore, in the case

of dynamic theories, such as viscoplasticity, theory and experiment must

advance together.

The literature abounds with data on the subject of strain rate sensiti-

(20-30) (32)

vity, particularly in one dimensien. Lindholn

carried out dynamic
experiments in one and two dimensions in an attempt to generalize results
which were arrived at, by consideration of thermally activated processes and
their relation to dislocation theory in metals. Sce Ref.'s 35-40,

An early attempt at a theorctical viscoplastic constitutive equation in

(31,32)

one dimension is due to Malvern. This equation assumes the existence

of a "static" stress-strain relation and then relates the stress increment,
with respect the static value, to the strain rate.

Modifications and generalizations of Malvern's equation were made by

Lnbliner(aa)

(3u)

who included a limiting maximum stress-strain curve, and by

Perzyna . Perzyna and Hojno(as) who proposed a multiaxial generalization

& (Constant strain rate experiments would appear to be an exception, by
being less susceptible to inertia effects. However, Ref. 38 tends to negate

this. Long specimens give different responses to short ones, under the same
conditions.
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for finite strains, assurming the additivity of the elastic and plastic strain

(39)

components and by Perzyna who used concepts of internal coordinates and

irreversible thermodynamics to eliminate the above assumptions and to put the

theory orn sounder foundations.

Though, in his last treatment, Perzyna(ag) abandoned the additivity of

plastic and elastic strains, he still retained the concepts of yield stress
(and yield surfacc) and the hypothesis of a datum plastic stress strain rela-
tion, with respect to which "strain history" is to be related to the "excess"
stress through the internal coordinates,

Qur theory differs from Perzyna's theory in this respect.

We close by mentioning that, with the exception of the papers by

(39)

Perzyna » only a moderate research effort has been made in the area of

coupling between a viscoplastic and a thermal process, However, Chidister

(25) (27) (37)

and Malvern s Lindholm » considered

and Trozera, Sherby and Dorn
the effect of a change in uniform temperature on viscoplastic behavior, with

A view to confirming some results of the dislocation theory.




Appendix 11

The form of eq. (3.22) for isotropic materials, according to eq.'s (3.22

. i a-e), is
a a
vek Al ciiejj +% A2 ci)clj + % cliq B2 €53 qii
- & a 0ge Q&
r ‘ +!5c a5 n-kaq ij*nsejj*}:gqii
+%Fd2 (A.2.1)
As a result eq.'s (3.8) and (3.9) yield:
-~
1 , °ij = Al Gij Exk + A’fij + 8% ei qkk + 8% qi)
% + D96ij (a summcd) (A.2.2)
‘ -x = %-g- = Deg, + Euq‘;i + FO (a summed) (A.2,3)

On the other hand,

y a a a
; = By g 6 13 % B2 &34+ C) 855 9y
qij

+ c; q:j + cue ( not summed) (A.2.3)

Hence, use of eq. (3.21) in sccordance with eq. (3.23f) yields a set of first
order differential equations for q:j; these can be expressed as a set for
Qp and another for the deviatoric pert of q:j, vhich we denote by p;j. Thus
in the notation of aq.'s (3.31) and (3.33)

. dqﬂ
a CI a ‘kk
ﬁ a o '

e
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In both eq.'s (A.2.4) and (A.2.5) a is not summed. It follows from the

above two equations that

o
B 12 - S 4
' U = - =5 N I 2alz2")903 13020 (a.2.8)
a | kk [*]
b z b z
g ° ° 0 o
o .
B Pz o
p;. S Epu(z z )ei.(z')dz' (A.2.7)
3 2 o

where Ao and p are given by eq. (3.32).

In the light of the tensorial notation that we have adopted for the

internal variables, let

€. =4, (le l = A, le = A (A.2.8)
15l gyp gy 2 Kklgyp 0
i where, ||cij|| = ’cij cijlk, etc. Evidently ,
2 _ 42 .1 ,2 .
A€ = Al + 3 Ao (A.2.9)
Then as a result of eg.s (A.2.7) and (A.2.8)
a
| Phy || < I%] 5 (A.2.1C]
3
] gl
o 0 E
Qkk _‘_ ;; 60* ca é (A.?.n)
[ ° °
vhere as before |3 oup L

Also from eq. (A.2.%),

133 |12 . ,u242 2,22 2
l s ) “ = (82 “g,,, H + (e ”p”“ | (A.2.12)

+282 ¢ | Py 4y |

£28,2
(bz)

However, since

b sl 210

‘ P13 °15
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it follows from (A.2.12) that

dpi. _ a
A a;—l- <284, |B, (A.2.14)
Also as a result of eq. (A.2.4)
dq° |
a kk a a
B || <2 Bol s, + 2[E%] & (A.2.15)

At this point we order our internal variables as shown,

1 2 m 1 2 m
pij » Pij L L L pij ’ qkk ’ qkk « s e . qkk .

Let %Y be a typical internal variable. Then, whether it belongs to the p-
group or the g-group above, as a result of eq.'s (A.2.22), (A.2.11), {A.2.14)
and (A.2.14), given two positive members 8, and §,, however small, we can

choose Ao and A1 (and therefore 4) and & such that

"‘ui-‘-‘x‘““ I':’:‘E 58,
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ABSTRACT

Tre endochronic.theory of viacoplasticity develcped previously
by the author is used to give quantitative énalytical predictions on

the mechanical response of aiuminum and copper under conditions of

complex strain histories. One single constitutive equation describes

with remarkable accuracy and ease of calculation diverse phenomena, such
as cross-hardening, loading and unloading loops, cyclic hardening as
well as behavior in tension in the presence of a shearing stress, which

have been observed experimentally by four different authors.
-~
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1. Introduction

In Part I of this work, a theory of viscoplasticity (of which the
theory of plasticity was a part) was developed on the basis of the concept
that the current state of stress is a functional of the entire history
of deformation and temperature,

but the history was defined with respect to a time
. scale which is in itself a property of the material
at hand,

In particular for the case of strain-rate-independent materials under
isothermal conditions, which is the topic of this part of our work, it

was shown that within the restriction of small strains

t 3ck e
k i
°15 ° 813 /o Mz-z!) o= dz' 42 /o waz) gl at Q)

where

x(Z) = A+ ) A, e Pr® (1.2)
r=l ' :
-a 2 o
u(z) =y + E v, e : o (1.3)
r=l ‘
where A_, xr, Ugr Ups P, and a, are positive constants and
dz
z=z(%); 3¢ > 0 220, (1.4 a,b)

The symbol z denotes a positive monotonically increasing time scale

with respect to a time weasure d; such that

t

2
&’ = Pyike dcij de,, (1.5)

where pijkz is a material tensor, which is positive definite and which, for




the isotropic materials envisioned in Eq, (1,1), has the form

CPyske T Ky Sgq Sip * Ky Sy Sy (1.6)
k
where kl and k2 are material constante, such that kl + 33- > 0, kz.:_o.

It is evident from Eq. (1.5) that d; is independent of the natural
time scale given by a clock and thus materials described by Eq. (1.1) are
strain history dependent but strain-rate indeperndent,

The derivation of constitutive equation (1.1} was given in detail and
its relation to classical theory of plasticity was examined, in some of its
aspects, in Part I,

In the present paper we shall be concerned with the real behavior of
metals under conditions of room temperature and slow straining., By exam-
ining daéa on copper and aluminum which were obtained in the laboratory
by various experimenters, we shall show that Eq., (1,1) does indeed have the

capability of explaining quantitatively and with remarkable aecuracy such

diverse phenomena as cross-hardening f,e. hardening in tension due to torsion,
loading-unloading loops, and hysteresis loops during repetitive tension-
unloading - compression-unloading histories, as well as behavior in tension

in the presence of shear stress due to torsion.

2, Discussion of Equation (1.1)

At the present time one cannot find sufficient experimental data in
the literature to determine the functions z({), £f(z) and u(z). Therefore in
order to use the theory at all, with the objsct of interpreting available
experimental data, wg have to seek other avenues, essentially heuristic, to

deternmine the form of the abova functions,

£
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e
£
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With repard to z(r), we recall that the rate of dissipation ? was

given by Eq. (3.15) of Part I, i.e.,
B o
¢ A a 2 ,~ GGa G s G~ @
= 607 E (bl + T ) Q5 qij + b2 pij pi]' ' (2,1)
(a suimed)

where a roof over a quantity represents its derivative with respect to z,

and pij“ is the deviatoric component of the tensorial intermal variable

a
qij .
For the sake of argument let
1
A -, A GA @O
? (a summed)
p : Then as a result of Bq. (2.2)
¥ ' dy dp
| e vk L (2,3)
x (a summed)

Equation (2,3) may now be written in the form,

¢ dYD (l])i
0, & = b, £(5) ----L "'a”i‘ (2.4)
§ (o suumod)

where, it will be recalled,

14
o f Peges, {864 586,, 12 . (2.5)

.0, ¢ is a FUNCTIONAL of the strain history, and

dx = %&7' , (205‘) »

Of course if we set,




gt £ e —

T

a

A o 2 A ar a
(a summed)
then,
dy b.°® dq a dq @
v a 2 13
o 3T = b, + =) £(0) —-g-g— (2.7b)
(a summed)

At this,point various possibilities present themselves, The simplest is

to take f(z) = constant, in which case,
.z s ‘1 L+ (o (2.7¢)

where ;°>and ;1 are constants, However it can be shown (and will be
demonstrated in later sections) that this choice eliminates "cross~-hardening"
in the sense that a change in the yniaxial stress-s.rain behavior due to
shear prestrain cannot be accommodated. This effect has been observed “in
practically all experiments on metals that have ever been reported. There-
fore, though Eq. (2,7) is convenient, it is not very useful,

This observation applies to Ilyushin;s and Rivlin's theory, where

3=y ¢+ co and

<
« b
g j; (deyy dey,)

Note that Eq. (2,7d)is a parcicular case of Eq. {2.6)} also note the

(2,7d)

absence of the material constants k, and k, from Eq, (2,R)s vhich renders
¢ independent of the material at hand. In other words their theories are
not gndochronic,

The next natural choice is to consider £(g) to be a linear function

of ¢t 1.e.

£(¢) =1+ 8¢ (2.0)

e
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where B is a positive constant, Note that 8 > 0 because b2° > 0, as well
dy
as 2 > 0, thus necessitating that £(z) > 0, for all ., As a result of

Eq.'s (2.7) and (2,8),

z= %—1og (1 + B7) (2.9)

an expression which has been found to give excellent agreement in the cases

of som2 significant experiments, as will be shown in subsequent Sections.

In the absence of experimental data, the question of the form of the
"pelaxation" functions A(z) and u(z) is equally difficult,
There are two simplifying assumptions, however, which lead to a

relation between A(z) and u(z), so that one is left with the problem of

finding the form of only one of these functions, One is that of an elastic

hydrostatic response and the other is the assumption of constant Poisson's

ratio.

Efficient use of the first assumption is made by writing Eq. (..1)

in terms of the hydrostatic and deviatonic components of °ij' in which case

z
Oy = 3 / Kz-z') 2Skk dz' (2.10)
o K
z aeii
'1j e 2 Jf ulz-t') TET. dz' (2.11)
°

vhere K(2) is the bulk modulus, Elastic hydrostatic response implies that
Kz) = Ki(z), in which case Eq. (2,10) becomes,

okk L Skkk (2‘12)

The assumption of constant Bbisson ratio leads to the conclusion that

p(z) and Kz) differ by a multiplicative constant, and can both be written




in terms of a single function G(z), such that
K(z) = Kk, 6(z) (2.13)
u(z) = u  G6(z) (2,1%)

where G(0) = 1,

This assumption has the added advantage that, under condition of
plane stress, or uniaxial strain, the strain in the unstressed directi.n
is related to the strains in the stressed directions by a multiplicative
constant, Thus the strain increments in the direction of zero stress
may\?e easily eliminated from the expressionfor d; so that the latter may
be expressed solely in terms of the strain increments in the stressed

directions,

3, Crosshardening_in Tension-torsion

It has been observed that in aluminum and copper as well as in other
metals, prestraining in torsion, well into the plastic range, has a signi-
ficant hardening effect on the stress strain curve in tension,

In this Section we shal) analyze data by Mair and Pugh, vho have
investigated this effect on annealed copper. Their experiments were per-
formed accurately and with care, on ‘ery thin circular cylinders which
wvere twisted well into the plastic region, so that upon unloading there
remained a permanent rcsidual shear strain., The effect of initial shear
prestrain on the tensile response was then obtained by loading the cylinders
in tension,

The constitutive equations pertinent to the above situation are sasily

found to be:
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z
¢ = LE(z-z')%—E-. dz' (3.1)

: z
122 / u(z-z') g_!!.' dz' (3.2)
z
°
where 0 and ¢ are the axial stress and strain, respectively, and t and
n are the respective shear stress and tensional shear strainj the moduli

E(z) and u(z) are interrolated through the bulk modulus K(z). Their re-

lating is best expressed through their Laplacc transforms:

!-: = -G-‘-l- (3.3)

To deal with the effect of cross-hardening analytically, we have

assumed a constant poisson ratio, As a result Eq, (3,3) reduces to the form:

E(z) = Eoc(z) (3.4)
where
k7]
Bo s o-.o-‘r- . (305)
14 -
X,

Regarding the form of G(z) we have taken the simplest possible view

by assuming that

G(z) = o"%* (3.6)
Despite these simplifications we have been sble to obtain excellent
agreenent with experimental data that have hitherto lucked analytical

representation,

Analysis
In the tension-torsion test the effect of constant poisson ratio is to
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reduce d;2 to the form

2

2 2 :
ay = kl de” ¢+ k? dﬂ (3,7}

where kl and k2 are material constants, not 1..c same as those in Eq. (1.6).

Durii.g torsion (e=0),
¢ = k,n (3,8)
whercas during tension (n=n°) and after pretension

where n, is the maximum shear prestrain,

Equation (3.1) may now be written in the form

; -
osE f clz(z)-2(z')] %5-, ag! (3.10)
C 4
©

(vhere Cr kzno) when allowance is made of the fact that ¢ = 0 in the
range 0¢< T < kzno. Thus eross-hardening is taken fully into account by
Eq. {3.10), through the shear prestrain parameter Cos vhich appears &8s a
lover limit on the integral on the right hand side of Eq. (3.10), If,

in particular, we assume that G(Z) is given by Eq. (3.6) and use of this
is made in Eq, (3,10) the latter becomes

¢ go,-u(c) /“ 233") {{-. dgt (s.11)
(N '

The integral in the right hand side of Eq. (3.,11) can be evaluated

explicitly by using Eq. (2.9) and noting that during monotonically increasing

exi. nsfion %%5 ® kl o Ounitting the algebrs,




o s OV e P (3.12)
whoere

ncl +§_ (3.13)
and

8o L8 =&, ke (3.18)

Equation (3,12) represents a famfiy of stress strain waves in tension,
in terms of the prestrain paramcter [ and the “cross-hardeninz" parametert 8,

To determine the material paramcters in Eq. (3,12) we note that in the
absence of shear prestrain (co = 0),

E (148.¢)
o 1 =1
o= -—-'é-a-—-—'(l - (l*Blt) )] (3.15)

1
where Bl = le.
It may be verified that as ¢ + 0, 0= Ec ice, 258 is the initial shape
of the stress-strain curve, Also as ¢ increases, ¢ tends symptotically to

the linear expression

o= f_';__ (148,¢) (3.16)
Bln

* Thera is ample justification for calling 8 the cross-hairdening parametar,

Indeed in the limit of 8 = 0, and using Eq. (3.9) Eq, (3,12) becomes:

E
o= r:-'-; (1-¢7%%)

which is indopondent of $o in other words cross-hardening cannot take

place whan 8 = 0, as pointed out carlior,




ETE

ir Et is the slope (tangent modulus) of the asymptotic sStraight line,

then
E

n = E—°— (3.17)
t

Also, as shown in Fig, 1, if one extrapolates backwards the asymptotic
straight line to intersect the strecs axis one obtains an intercept o,

from vhich Bl is determined by the relation
E
B, & b (3.18)

1 %

3imilarly integration of Eq. (3.2) yields an equation analogous to
Eq. (3016); this is
2u (1+8_n -
T2 (1o (87 (3.19)

B2n

where 8, = k28. Thus, 8, and LS be determined from Eq. (3.19}.
Finally we observe from Eq, (3.12) thal the intercepts go' in the

presence of shear prestrain co are given from the expression
! = = o
o) =0, (1+8c°) o, (l+82n°) (3.20)

Equation (3,20) was used to confirm the self-consistency of the theory,

k
However Eq.'s (3,12), (3,1 ) and (3,19) can only yield the ratio (Elo
2

but the constants kl and k2 cannot be evaluated, In this sense, and for

these experiments one may choose k2 arbitrarily; we chose k, = 1,

2
Experimental data obtained by Mair and Pugh that illustrate the effect
of cross-hardening are given in Fig. 2,

Curve 0 is the virgin stress strain curve for the type of copper they

used. The circles on the curves A, B and C are experimental points corres-
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ponding to initial shear prestrains of ,25x10° °, 1,5%10"2 and 3x10™2

respectively,

From curve 0, E_ = 1x10% 1b/1n?, B, = ,53x10%, n = 46, With
Kz = 1, Eq. (3,20) was used to give k = 1,00, The curves A, B and C
were then calculated and plotted as shown. Without a doubt the afree-

ment between thmorv and experimant is remarkable,

4, Repetitvive loading-unloading cycles

The tensile strain history €(g) corresponding to a typical towsile
loading-unloading sequence is shown in Fig, 3. We use the terms "straining"

and "unstraining" in the following sense!

Lp <. ¢ represent straining

The ranges Of_c < cl 1;2<__(< CS’ CBf_C< Cs

in tension.

&

The ranges le‘ r< czﬂcaf_ g< CA' 55 <t < CC represents unstraining in
tension,
The ranges CA < g« cu, ;c;t_ ;< CG' c.’f_ g < ('8 represent straining in
compreasion,
The ranges c“ <5< CB’ c6<_ g < ;7, ca < &< CD represent unstraining in
comprassion,

Points on the g-axis denoted by Cr (r=l42,44.) represent points of

discontinuity in de. brought about by reverting from straining to unstraining
4
histories, or vice-versa,

A perusal of esperimental data on copper, shows that the constitutive

equation of the metal varies depending on its previous history of manufacture

and subsequent annealing, The single term form of G(;) that explained Mair

and Pugh's data(Q) so well was found inadequate to explain data by Lubahn(a)
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and by Wadswox‘th(u).

We found however, that the adoption of a single extra term for l

G(z) sufficies to describe quantitavely broad trends of their data, In

effact we took

6(z) = E, + cze'°z (1,1)

1

or

E, + E.e 0% , (4.2)

E(z) 1 9

n

Let g, {(m = 1,2,444) be the last point of discontinuity in §§° Then using

Eq's. (2.9), (3.11) and (4.1) and in the range e, %

(1487 )"
- m 1 mn v+l r-,
o= (l+3§)0°{(—1) - (14.3;)“ + 2 §1 (-1) W‘}+Ele (_lh3)

-

The quantities ¢, may be evaluated explicitly in terms of €. (the values
of strain corresponding to { ) by the formula !;

\ r s~-1
g, = 2‘1 sgl (-1) €

r
r + kl(‘l) Cr : (uo”)

The effect of Elion the unstraining characteristics ia remarkable,
especially since its effect on the shape of the straining part of the
stress-strain cnrve is minimal, Let the history e(z) be one of continuous

straining, Then Eq, (4.,3) becomes:

€)

E.(148 -
' (1-(148,¢) ™) (4.5)

¢ = El €+ ? o

1
1

From Eq. (4.5) we obtain the following relations in the notation of

Section 3.
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El + E2 = Eo ‘ (4,6a)

E2

&0 (!#.Gb) ]
B T
El + aosl = Et (4.6¢c)

Equations (4.6a-c) do not suffice for the determination of the four

unknown material constants El, EQ, n, Bl' It has been found that a fourth

relation can be obtained by considering the "unloading" portion of the stress-

strain history.

Fig. 4. shows the stress-strzin relation for a uniaxial specimen
which has been strained in tension to a strain value €y whercupon it is
unloaded and compressed until the final strain is zero.

The strain-intrinsic time measure history e(f) corresponding to the
above stress~strain history is also shown in Fig. 5.

Equation (4,3) in conjunction with the above history yields the
relation, at ¢ = 0:

201482071
0 9 0 (1482) { =1+ mwwemeSoc—e } (4.7)
(148¢)

If the value of'el is sufficiently large (in the case of copper this value

was found to be 50x10’3, or so) then ooc is given very mearly by the

expression

¢
9, = - a°(1+28;l) 3 - ao(l+261cl) (4,8)

The constant B, can now be obtained from Eq. (4,8) and the constants E,
E,) and n can be found from Eq's. (4,6a-c),

We illustrate the points made in the above discussion in Fig, 6 where stress




strain curves for three different materials are given when these are
subjected to the same strain history shown in Yig, 5.

The constants for these materials are given in the following table:

., E E 8 n
Q. 1 2
6 2
1 0 6. 1x10 Bx10 25
2 ,2x10° 5,0x10° 0 o |
3 ,12x10° 6,02x10° ,2x102 50

What is remarkable is that changing B results in these materials having

indigtinguishable stress-strain curves during straining but wildly

é differing ones during unstraining.

In Fig, 7 we illustrate an attempt to predict analytically the
loading-unloading~loading respcnse of copper in simple tension, Thé
solid line is an experimental curve obtained by Lubahn(3) for a copper
speciren which had already undergone similar strain cycles, We have assumed,

however, that these have a negligible effect in the response shown because

" they occured sufficiently far in the distant "past",

The triangular points shown, were obtained theoretically from Eq. (4.3)
by assuming that the specimen was continually extended (without unstraining)
; until the strain ¢ = 51,6x10™° was rcached, The unstraining-straining
cycle was then applied.

: : Desnite the fact that E(z) was approximated by two terms, as in
! .7” Eq. (4,2) the agreement botween theory and experiment is remarkable, The
| constants employed were, 9.7 5x103. El = .l25x10§, B = .O2x103, n = 160,

In fact we are not aware of another instance where an attempt was made

to describe such experimental data analytically by means of one single

1




constitutive equation, In addition we can say with essurence that the
observed difference between theory and observation can be reduced further
by including more exponentisl terms in the series representation for E(z),
We ¢onclude this Section by considering the effect of work hardening under
cycli§ straining, In particular we shall examine the work of Wadsworthﬁ(h)
and show that our theory egain provides un excellent analytical basis for
his results,

In this work single copper crystals were tested under conditions of
uniaxial cyclic strainj The data was presented in terms of the resolved
shear stress and strain in the plane of slip.

Fig. 8 gives the first few cycles of his straining program, in which
a crystal was cycled under fixed limits of resolved shear strain of 7x10-3.
The "peak stresses" corresponding to the extreme values of tensile and
compressive strain increased monotonically with the number of cycles.

In Fig., 9 the values of peak tensile and compressive stresses have been
plotted by Wadsworth against lin]. 1z is rather interesting that he
felt that such a plot was meaningful, without further claboration on this
point. Of course |dn|, but for a scalar factor, is our intrinsic time
measure,

The history of the resolved shear strain versus ¢ is shown in Fig, 10,
From this Figure it follows that £m = (2m-l)Ak1. Equations (4.6c) and (u,8)
were now utilized to find Bkl, which we denote by Bl' and E_, It was found

1

that B, = 12,3 and E, = 2x10° Exgu At this point n could not be determined
cm

1 1
because the initial slope of the stress-strain curve corresponding to 3-51

could not be evaluated accurately.

However letting t , it was found that as m + =, Eq. (4,3)

* r|€=£m

15
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yields the asymptotic expression:

T = nBro A+ El A (4,9)

ol aerany

Hence, from the tensile experimental curve of Fig., 4 of Ref, 4 , n could
\ be determined explicitly and was found to be equal to 225, For this value
of n the term Tﬁi 7oy D vas found 1o be negligible for m > 1,
m

Thus for the history in Fig., 10, Eq, (4,3) gives %

1+(2r=1)8. 8 | n re+l

(4,10)
Toey = To (148, (2m+1)a] -1)"+2 rgl 1—135;333 7l (<1} + Ee i
The above equation can be simplified further for large values of m, In
E particular for m > 50, it was found that the series in the bracket on the
? right hand side of Eq. (4.,10) degenerates into the geometric series ;
]
I, () - B (4.11)
r¥l ~ - TH . '
where
1+(2m-1)8.4 yn
= rer s (4.22)
1+(2m+l BlA
Equation (4,10) may now be written in an asymptotic form in terms of the
absolute value of the shear stress as follows:
lrml =(1+8(mello k(-1 + m»z A (4,13)
For very large values of m {m >> n) Eq, (4,13) simplifies further and
becomes
1 nd 1t A
[+ ,= -2 Epl (4,14)

16




Thus,
Limlrm[ =nfyT A+ EIA (4,15)
m« @
In Fig, 11 a plot has been made of the theoretical rélation between
'Tml and md obtained from Eq., (4.,13)., The experimental points obtained
by Wadsworth are also shown. The following comments are in order, Though
our theory does give values for L1 which are different in tension from those
in compression, the difference is not as great as the experimental data
indicte, and is too small to be plotted on the scale shown, However, the
theoretical curve lies very close to, and is in fact bounded by the exper-
imental points, which irdicate a deviation between the values of compressive
stress and those of tensile stress which increases with m but is never greater
than 5,5%,
This is the first time that a theory of plasticity has provided a national

explanation for the phenomena of cyclic hardening.

S, Tensile responsc in the presence of initial shear stress

In Section 3 we obtained a theoretical predistion of the effect of
prestra.a in tﬁrsion on the stress strain curve in tension, In this Sectioen
we shall examine theoretically, in the light of our endochronic theory, the
effect of initial constant prestress in torsion on the stress~strain curve
in tension, To do this, we have assumed, just as we did in Secction 3, that
F(z) and y(z) are proportional to some relaxation function G(z), and further-
more that G(z) consists of a single exponential term i,e, it is given by
Eq. (3.6). Thus

E(z) = E % (5.1)

17




In the light of Eq. (5.1) and bearing in mind Eq. (2,9), the constitutive

Eq.s (3,1) and (3,2) can be reduced to the differential equations

de _ a0 ; do

D (5.2)
dn _ av d
DodE T ' (5.3)

where, as in Section 3,

2 2

ac? = k. de? + k,dn

1

As mentioned above the test to be Jliscussed consists of applying an initial
stress 1° corresponding to an initial strain N’ then keeping 1° constant,
a axial strain ¢ is applied and the axial stress o is mecasured, The obje t
at hand is to deduce from Eq.'s (5.1-5,4) the relation between ¢ and ¢,

and compare with tho experimental data obtained by Ivey(S).

To accomplish this we proceed as follows, From Eq, (5.4) it is clear

that the axial straining process begins at { = co where
¢ = kon (5.5)

During this process %%-= 0, so that from Eq. (5.3)
°
at dg 6
dn = Tﬁ: T8¢ (5.6)

Equations (5.4) and (5.,6) now combine to show that during the exisl st.aining

process,
o2 2
2, 2,2, 2@ &
dg” = k,© de” ¢ k)" (gem) ey (5.7)
1 2 By o)

At this point we introduce the variable 6 such that

13




¢ =k ?© (5.8)

1
k2 o
Also let (=)= k, k8 =8 andc = (kav™/2u ). Then, in terms of © and
2
as a result of Eq. (5.7)
do l - = dC (5.8)
(1+8,6)

Equation (5.,8) may be integrated subject to the initial condition that at
= k2"o' € =03 or, 6= eo = kno, € =0,

Equation (5,2) may now be integrated with respcct to 6 to yield

E 0
0 & cmmeamnm (148,06') (a/8,-1) /(1+sle')2-c’ de'  (5.9)
0
. |

(l+810)(a/81)

We introduce now a change of variable by the relation .

l+ 8,6 =c¢ coshd (5.10)

1

whereupon Eq. (5.9) becomest

E

--—-—-—r f (coah ¢! - cosh™ -2 ¢')de' (5.11)
3 CQﬂh

whore a8 before, n = 1 ¢ «E—- .

fcosh“n dx = 9—:;-1- feosh B2, ax ¢ ;1'- cosh™ *x sinx (5.12)

Since for asymptotically larbe n (say n > 30), 9-';-1- ~1l, it follows
from Eq. (5.12) that in this instance
(cosh®x = cosh™?n) dx w écosh“'ln sinhx (s.. ?

19




The rosult of Eq. (5.13) can be utilized to obtain a closed form solution

for ¢ whkich now becomes,

Boc coshoo n=1
o = E;a' {SinhO - (W ) SinhOO . (5.14)

Equation (5.8) may also be integrated with respect to ¢ to yield

= S. .
€= BI(F(O) F(Oo) } (5.15)
where
F(¢) B sinh¢ - tan'l (sinh¢) (5.16)

Thus o0 and ¢ are related parametrically through ¢ and .o such that

(148 kn )
0 * cosh™? { e‘ o) (5.17)

The relation between ¢ and ¢ has been calculated with the following values

of the constants:
E° 3
k=], 9% ] rl“ s 17,ux10" 1b/lin

2 ge20,n¢ 33,

The result was compared with onc of Ivey's expsriments in which ©° mao’

lb/ng. n, * 2.35uo'3. The predicted and exporimental stress-ctrain

responses compare very favorably. See Fig. 12,
Conclusion

On the evidence of the results presented above it appears that the
endochronic theory of p.asticity can predict ~-curately the mechanical
respons¢ of metals under complex straining histories. The full implications
of the theory will be investigated further in our future lock,
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Abstract

The hypothesis of plastic incompressibility, which is pivotal in the
development of the classical theory of plasticity has been tested by means
of a series of simple tension tests on aiuminum, copper and low carbon steel.
The experimental measuremcents show conclusively that these metals are plas-
tically compressible, the compressibility increasing with straining in the
plastic regioa.

A ncew phenomenon, termed lateral instability, has also been observed,
consisting in an abrupt plastic flow in the transverse direction either im-
mediately preceding or immediately following yield in the longitudinal direc-
tion, during a simple tension test on low carbon steel. To a less pronounced
extent such a phcnomenon has also been observed in the case of commercially

pure aluminum.
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cally by means of a series of simple tension tests on aluminum, copper and

I. Introduction

One of the assumptions of the classical theory of plasticity is that
the material remains piastically incompressible while it undergocs plastic
deformation., This implies that the hydrost«iic response of the material

remains elastic, (linearly, for small strains) even after yielding has

occurred., This assunption also leads to the concluzion that Poisson's ratio®

tends to % as the plastic strain increases[l’QJ.

In the present investigation the abeve essumption is evali “ted criti-

low carbon steecl, We shall show in the following, that cur experimental

data do not support the hypothesis of plastic incompressibility. Moreover,
Poisson's ratio does not tend to %—as the plastic strain increases but, on
the contrary, its value decreases and becomes smaller than its "elastic"

value,

_ A newly observed form of material instability. The above statements

on the observed behavior of Poisson's ratio, are true for copper and broadly
true for aluminum and mild steel. However, in the case of mild steel (and
to a lesser extent, aluminum) an unusual phcnomenon, which we shall call
LATERAL INSTABILITY, was observed for what is believed to be the first time.
At least, to our knowledge no such phenomenon has ever been reported in the

literature in the past.

*It must be pointed out that, in this revort, we do not regard Poisson's
ratio as some fundamental physical property or function, but simply as the
ratio of the algebraic values of the tra~everse and longitudinal strains,
in a uniaxial test. On the other hand i.cause the experiments reported here
were carried out in the small strain range, Poisson's ratio is a convenient
quantity to work with, since it can be used to relate directly the uniaxial
to the volumetric strain; the latter is an important parameter in our inves-
tigation,




Lateral instability is defined by one of the following two observed

sequences of events during a simple tension test.
(a) As the yield point of a low carbon steel specimen is reached,
the material begins to flow longitudinally (i.e,, in the direction
of applied stress) and one observes the usual increase in longitu-

E di. 1) struin while the longitudinal stress remains constant.

However an abrupt occurcnce of plastic flow in the transverse
direction has also been observed, just after longitudinal flow
has ceased and strain-hardening has begun.

(b) Abrupt transverse flow occurred just before the onset of longitu-

: ’ dinal flow,
It is significant that no transverse flow has been observed during the

process of longitudinal flow., A more detailed discussion of this phenomenon

! will be given in text.

In the casc of alumirum the onset of lateral plastic flow was not abrupt,
but what was observed ancunted te a significant increase in the transverse
strain during a relatively small incremant infiongitudinal strain, A quanti-
tative plot of these events is shown in later figures.

Loaéing-unloading loops have also been observed in some of the tests,

It will be shown In later sections that loops are also odtained in plots of

transverse strain versus longi‘udinal strain, and hydrostatic stress versus

volumetric strain.
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II. Materials and Specimens

Altogether three metallurgically important metals were tested. They
were commercially pure aluminum, electrolytic tough pitch copper and low-
carbon steel. The aluminum specimens were sheared from an 1100-0 aluminum
sheet, &1l the copper specimens were cut out of an electrolytic tough pitch
copper 110 (99.9+% copper) bus bar, and the steel specimens were cut from a
cold drawn C 1018 flat. The nominal dimension of all the aluminum and copper
specimens was Ln x-%"x 15" and that of all the low~carbon stecl specimens

8
was %ﬂ'x %ﬂ'x 12", All the specimens of the same metal were considered to
be identical prior to the heat treatment, These specimens have been divided
into several groups, crccording to the annealing temperatures and purposes of

study. They are listed in Table I.




III. The Equipment and Strain Measurcments

All tests were conducted at room temperature on a Tinius Olsen Lo Cap
3
universal testing machine with strain gage load cell weighing and equipped i
§
with a Tinius Olsen Model 51 electronic recorder. The load readings on the {

dial indicator were calibrated against a Tinius Jlsen proving ring with the

electrical vibrating reed.

A Tinius Olsen S-400-2AB ext~nsomcter was used to measure the longitu-
dinal strains of all the specimens except those of group IXI of aluminum.
This is an averaging type extensometer with a gage length of two inches.
The accuracy of the extensometer is # 0.0001 in/in as guaranteed by the
manufacturer and was calibrated against the SR-4 electric strain gages of
type A-7 which have the accuracy of 2 x J.O'5 in/in. The load vs. longitu-
dinal strain €, curves were plotted by the Model 51 recorder during experi-
ments.

To measure the transverse strains cy, a SR-4 electric strain gage of
type A-7 was transversely put on one side of each specimen. The transverse
strain was then read directly from a SR-4 portable strain indicator at the
accuracy of 2 x 10™° in/in.

The strain measurements of the specimens of group III of aluminum were
specially arranged for greater accuracy. A-7 type strain gages were longitu-
dinally and transversely glued on both sides of each specimen belonging to
this group, in order to cancel out the bending effect, The strain reading
of each gage was then obtained from a SR-4 portable strain indicator with
the help of a BLH Model 225 switching and baluncing unit. Finally, the

average value of the readings of the two longitudinzlly arranged strain

gages gives us the longitudinal strain L and the average value of the




readings of the two transversely arranged strain gages gives us the transverse

B e i =i bt i ;2

» strain € .
% y
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IV, Description of Tests and Results

Experiments on Aluminum

The first group of aluminum specimens was tested under the "as-received"
condition. During the tests, the Tinius Olsen machine was operated at a
constant rate of crosshead separation, The rate was 8 x lO-Q in/sec, which
corresponds to a strain-rate of approximately 5 x 10-5 in/in/sec for the
specimens used, The recorder traced out the load versus e, curve as readings
of load and of traansverse strain were taken simultaneously at predetermined
readings of load, at small longitudinal strains, and at predetermined read-
ings of longitudinal strains, when the strain was large.

~

The stress-strain curves are shown in Fig, 1, in which the curve for
specimen #1 is identical to that for specimen #2, Fig. 2 shows the relations
between the transverse and the longitudinal strain, and Fig. 3 shows the
hydrostatic stress (x 3) versus the volumetric strain curve for aluminum of
group I. A loading-unloading loop was generated at the end of each test, and
we obtain lcops, which is similar to the hysteresis loops, in the curves of
Figures 2 and 3 (not shown). More observations and discussions of the loops
will be presented later in this report., The large increase of -cy at a lon-
gitudinal strain of approximately 2.5% (see Fig. 2) corresponds to a case of
"mild" lateral instability as compared to the "strong" lateral instability
observed in low-carbon steel, We shall mal.: more observations later about
the lateral instability of aluminum,

The second group of aluminum specimens was tested exactly in the same
way as those of group I, except that the specimens were first anncaled at a

temperature of 600°F for two hours and then oven cooled to the room tempera-

ture before testing, This annealing process removes most of the effects due
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to cold work, and the material can thus be considered as isotropic, The

stress-strain curves for specimens AL #3 and AL #4 are shown in Fig. 4, in
which the two curves are indistinguishable. We notice, however, that the
material is considerably softened due to the heat treatment,

To see the sudden increase in magnitude of the transvirse strain at a
longitudinal strain of approximately 2.2%, which has been an observed fact
in the test of group I, this series of tests was carried out to the extent
that the longitudinai strain at the time of termination of the test was ap- |

proximately 9%. Here, ageain, we have observed a sudden increase in -e_ at a

longitudinal strain of approximately 2.2%. This phenomenon has been observed
both for specimens AL #3 and AL #4.

The -cy vs. € curves are plotted in Fig., 5, and the Oy VSe €, curves
are given in Fig., 6. The sudden increcase of the transverse strain in fig. 5
gives rise again to the sudden decrease of the volumetric strain in Fig. 6
which corresponds to the lateral instability mentioned earlier. In this
series of test, the loopings of the curves are once morc present in all the
figures concerned (not shown). These loopings are due to the loading-unload-

ing test conducted at the end:of each study.

It is important to point out, that aside of the sudden change of
Poisson's ratio immediately following ylelding, Poisson's ratio remains ap-
proximately constant throughout the range tested, Poisson's ratio in the

plastic range is dcfined in the present investigation by the expression

€
A
‘X

which, in fact, is 2lso used in elasticity (see footnote in the introduction).

Group II11 of the aluminum specimens was tested quasi-statically, f.e.,

readings were taken after the machine had been stopped and time of 5 minutes
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had already elapsed. By doing this, it is believed that the results obtained

ave time independent., As it has already been described earlier in this ra-
port that four strain gages were applied to each specimen of this series to
eliminate the bending effect due to the possible eccentricity of the loading
arrangement, The comparison of the present results (shown in Figur;s 7-12)
with those obtained earlier in groups I and II of the aluminum specimens shows
that reliable data can be obtained without the complicated strain gage set-
ups of grouvr ITI, In fact, the grips of the Tinius-Olsen machine are of the
self-aligning type, therefore, eccentricity is to be expected at its minimum,
Loops are again present in all the figures concerned (Figures 7-12). It
is ;;en from Figures 9 and 10 that Poisson's ratio decreases again drastically

immediately following yielding.

The fact that all the curves in Figures 3, 6, 11 and 12 bend over toward

the cxk-axis leads to the conclusion that aluminum is plastically compressible,

at least when the hydrostatic stress is of a tensile nature. The assumption of

plastic incomgressibility in the classical theory of plasticity would lecad to a

linear relation between hydrostatic stress and volumatric strain; this apparently

is not the case.

Experiments on Copper

The experiments on group I of the copper specimens were designed to fur-
ther study the loops which we had observed in the tests of aluminum specimens,
Thes: specimens of copper were tested under the "as-received" condition. The
rate of crosshecad motion was kept constant (8 x 10'“ in/sec) during this
series of test, The loading-unloading curves for specimens Cu f1 and Cu #2

x
are shown in Figures 15 and 16. We see here again that loops are definitely

are shown in Figures 13 and l4, ard the corresponding -cy versus ¢_ curves

in existence and that, after & loop has been completed, the curve of -ty




versus € is virtuaily a continuation of the original -¢

versus e curve,

The plots of %k VS Eux for these specimens are given in Figures 17 and 18.
The copper specimens of group II were tested in exactly the same way

as those of the aluminum specimens of group II, except that the annealing

temperature was 750°F, The results are showmn in Figures 19, 20 and 21. We

rerark that in contrast with the aluminum specimens wc¢ do not observe the

sudden increase in the magnitude of the transverse strain for all the copper

specimens concerned. As a result, Poisson's ratio lr approximately a con-

stant throughout the range tested.

Experiments were conducted on group I1I of the copper specinens under

quasi-static conditions, i.e. readings were taken after the machine had been

stopped and 5 minutes had elapsed. The results of this series are given in

Figures 22, 23 and 24, We again observe no sudden incrcase in the magnitude

of the transverse strain and that Poisson's ratio is virtually constant

throughout the range tcsted,

The tests on coprer specimens of groups I, II and III shov conclusively

that copper is also plastically compressible, as it is seen casily from

Figurcs 17, 18, 21 and 2u; otherwise these plots would have been straight

lines.

Experiments on Low Carbon Steel

The same experimental procedure as described above was followed when the

five low-carbon steel specimers were tested, All the five specimens were

annealed, prior to tests, at a tempcrature of 1250°F for one hour and then

oven cooled to room temperature. Thus, all the specimens can be considered

to be identical and the material can be considered to be isotropic.

The tests were carried out under quasi-static conditions, and & typical

stress-strain curve for these specimens is given in Fig. 25.

In Fig. 26, the
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relation between the transverse strain and the longitudinal strain is plotted
for all the five specimens, It is seen .hat aside of the portion reflecting
"laiwcral instability" the curve is almost a straight line, Of all the speci-
mens tested in this series, three of them (#1, #2 and #4) showed lateral
instability before the occurrence of the longitudinal plastic flow, and follow
the path OABDL in Fig. 26, The rest of the specimens (#3 and #5) experienced
lateral instability immediately after the longitudinal plastic flow had been
accomplished, i.e., latcral instability had occurred before the material

strain-hardcned, In this case, curve OACDE of Fig. 26 is followcd,

We conjecture that had the material been homogencous as well as isotropic
then longitudinal and transverse flow would have taken place simultancously.
Since in practice this is rarely true, the order in vhich these flows occur
f must then be decided by slight differcnces in the directional properties of

the specimen,

To ensure the correctness of our observation about the lateral instabil- !b
ity as a material property of low-carbon steel. The transverse dimcncion of
all specimens was measurcd after the experiments by means of a micrometer,

The permanent transverse strains werc then calculated referring to the orig-
inal dimensions of the specimens, The results checked favorably (with less
accuracy, of course) with those obtained by means of electric strain gages.
Two of the five experiments (#2 and #u) vere terminated right after the occur-
rence of the transverse plastic flow and before much longitudinal flow had
occurred, in order for us to study the lateral instability more closely.
Measurements by means of both electric strain gages and micrometer showed

that large amount of plastic flow did occur transversely at yielding. If {t

vas not for the transversc plastic flow, the transverse permanent strains

would have been very small for these two specimens.
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The relation between the hydrostatic strecs and the volua:iric strain

is shown in Figures 27-31., The alphabetical order of letters in the figures
denotes successive states of the material during the tests. The last letter
irn the figurc gives us the position where the correspoiding test was termi- -
nated. It is seen that the latceral instability corresponds te a sudden de- i ‘i
crease of volumetric strain, In the case when lateral instibility occurs

before the longitudinal plastic flou, the volumetric strain could become nega- F
tive! A very strange result!

(6]

However, a similar phenoircnon wos obscerved by Bridgman™ -, He investi-

gated, by means of a dilatometer, volume changes during simple compression

in the plastic range, in various materials, such as mild steecl, Norway ironm,
cast iron and rock (soapstone, marble and diabase). He observed an increase
in volume under conditions of compressive hydrostatic stress, when the axial

compressive stress excceded its yield value,
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V. On the Accuraecy of the Ixperimental Measurements

It is to be noted that is is impossible to glve a strain gage on the
specimen such that the strain gage makes an angle of exactly 90° degrees
with the longitudinal direction of the specimen. Slight errors are always
possible, and these errors tend to make the readings of transverse strain
smaller than it should be, These are, however, small since the gages are
in the principal strain directions. According to Pervy and Lissnerts], & 2
degree error in gage alignment would only result in an error of less than
1%.

Our purpose in the present experimental study is not the determination
of the exact value of Poisson's ratio. Our primary concern is the trend in
the variation of Poisson's r.tio -c the longitudinal straln increases. For
this reason, the above mentioned deviations due to the misalignment of the
transverse strain gages are not important, since they hardly affect the broad
trends in the vaviation of Poisson's ratio, which are of interest here.

Slight scattering of some of our experimenial data for different speci-
mens may be attributed partially to thé above mentioned misalignments of the
transvers. strain gages. We nciice, however, that our data are very consis-
tent in general, and the slight scattering of data occurs only in the case
of copper specimens #5 and #6., Even in these cases where data are scattered
slightlv. the curve for each specimen is itself smooth, which indicates that
scattering is due to a large extent to variability in the properties of the
specimens.,

0f course corrections must also be made on the readings of the transverse

strain cy duc to the effect of transverse sensitivity of the electric strain

gages, The transverse sensitivity factor for A-7 strain gage is given by

S
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. This observation is not in agreement with the present findings.

[3] ‘ € - €

Perry and Lissner as k = -0.01, The error, which is defined by e = L

€
where €. is the apparent strain and e is the true strain, is 3% for a Poisson's

ratioc of 0.3 and is 2.6% for a Poisson's ratio of 0.33. It is equivalent to
saying that € = 0.971 €e for material with Poisson's ratio of 0,2 and € =
0.984 €. for material with Poisson's ratio of 0.33. We have thus seen thét
the true transverse strain is 2,9% smaller than the apparent transverse
strain when v = 0.30, and is 1.6% smaller than the apparcnt transverse strain
when v = 0,33, This correction is however in a different direction from the

one due to the misalignment of the strain gages, therefore some of the errors

should cancel out.

{4]

Stang, Greenspan and Newman reported in as early as 1946 their experi-
mental ctudy on Poisson's ratio of aluminum alloys 24 ST and 24 SRT, chrome-
molybdenum steel plate and structural and fully killed low-carbon steel plate. E:
In allicaées these authors reported the increase of Poisson's ratio beyond '?

its initial (elastic) value throughout the longitudinal strain range tested,

We like to mention that the above discussed misalignment in the trans-

verse strain gages also existed in the tests by Stang et altu) In addition

to this, as it was poirted out by these authors themselves in their report,
there were large discrepancies in the values of Poisson's ratio obtained by
them for two nominally identical specimens.

Finally, from a thermodynamic point of view the hydrostatic stress versus
volumetric strain curve should bend over toward the ¢ k-axis[SJ' this agrees

k )
with our own observations.
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VI, Fonclusions

The following conclusions can be drawn from the present experimental

study;

(1) The curve of hydrostatic stress versus volumetric strain bends
over toward the volumetric strain axis for all three materials
tested. This implies that the commercially pure aluminum, the
electrolytic tough pitch copper and the low-carbon steel are plas-
tically compressible, (at least when the hydrostatic stress is of
a tensile character) and that the most important assumption in the
classical theory of plasticity concerning the plastic incompress-
ibility of material lacks experimental justification.

(2) Lateral instabilify occurs weakly in the case of aluminum and
occurs strongly in the case of low-carbon steel. Lateral i;stabil-
ity always follows the longitudinal plastic flow for aluminum, "
whereas two possibilities arise in the case of low-carbon steel-
lateral instability may precede or follow the longitudinal plastic
flow as dictated by the anisotropy of the material. No phenomenon
of lateral instability has been observed for the copper specimens
tested,

(3) The lateral instability corresponds to a decrease in volume due to
a slight increase in load for the case of aluminum, and éovresponds
to a sudden decrease in volume while the load remains constant for
the case of low-carbon steel. Where the lateral instability occurs,
Poisson's ratio has a large increase.

(4) Poisson's ratic for the commercially pure aluminum decreases consic-

erably after yield has occurred, from an initial value of 0.30 to a




’ (5)

(6)

(7)

value as low as 0.06 corresponding to a longitudinal strain of

approximately 2%; beyond this point it increases continuously

and at an axial strain of 3% it reaches a value of 0,15 which re-
mains approximately constant up to € 9%,

For the clec.rolytic copper, Poisson's ratio decr:ases continuously
with €, from a value of 0.35 to a value of 0.3 at €, = 9%,

For the low-carbon steel, two possibilities prevail, If the later-

al instability occurs before the longitudinal plastic flow then
Poisson's ratio increases suddenly at yielding from its initial
value of 0.29 to a value as high as 6.0. It then decreases grad-
ually and reaches a value of 0.3 at €y = 3%, Beyond this point,
Poisson's ratio remains approximately constant up 1o € © 9%, 1If
the lateral instability »sccurs after the longitudinal plastig flow,
then Poisson's ratio decreases considerably after yield has occurred
from an initial value of 0.29 to a value as low as 0,02 correspond-
ing to a longitudinal strain of approximately 2.5%, beyond this
point, it increases continuously and at an axial strain of 3% it
reaches a value of 0,3 which remains approximately constant there-
after.

Loops similar to the hysteresis loops are present in curves ob.ained

by plotting -cy against € and also in curves of Ok against €k

for all three materials tested,
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Metal

¢

At
1100-0

Cu
110

Carbon
Steel
Clol8

Group

I

111

Specimen

#l
#2

#3
#u

#5
#5

il
#2

#3
#y

#5
#6

f
f2
#’
u
5

TABLE I

Heat Treatment

No

Annealed at 600°F
for 2 hrs. and then oven
cooled to room temperature

Annealed at 600°F
for 2 hrs. and then oven
cooled to room temperature

No

Annealed at 750°F
for 2 hrs, and then oven
cooled to room temperature

Annealed at 750°F
for 2 hrs. and then oven
cooled to rocm temperature

Annealed at 1250°T
for 1 hr, and then oven
cooled to room temperature

Remarks

Constant strain~-rate test

Constant strain-rate test

Quasi-static test, loading-
unloading loops observed
strain gages on both sides
of specimens.

Constant strain-rate test,
loading-unloading loops
observed.

Constant strain-rate test

Quasi-static test

Quasi-static test,
lateral instability
observed
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Abstract

The endochronic theory of plasticity, developed previously by the first
author, has been shown to give an accurate prediction of metallic response in
the plastic range. The mechanical behavior of an isotropic material is given in
terms of two "heredity' functions similar to those encountered in the theory of
lincar viscoelasticity, In the present paper the ''tensile’ and "transverse'
heredity functions of copper and aluminum are determined experimentally using

the above theory. Thre properties of these functions are also discussed.




I. Introduction
The recently proposed "endochronic theory of plasticity' has been shown
to give accurate analytical predictions to a variety of experimental observa-
tions on metals such as copper and aluminum(]). This theory differs from
previous theories in that a yield surface is not nccesﬁary for the development

of the .onstitutive equations and that the stress (under 'sothermal conditions)

is determined by the previous deformation history defined on a time scale which

is independent of the real time, but is itself a property of the material at

hand.
(M)

In a previous paper it was shcwn that diverse phenomena such as cross-
*
hardening , loading-unloading loops, cyclic hardening and effects of prestress,
can be described quantitatively and accurately with a single constitutive equa-
tion. . ';
Specifically, this equation has the following form for small deformation

and initially isotropic materials:

2 ) Bekk b4 ae’.
g,, = §6,, AMz-z) =—— dz' + 2 f u(z-z') -1J- dz' (1.1)
ij ij o 92 o 92
where
n -
A(Z) = A+ I A ePf? (1.2)
L r=]l r
n -a z
ul(z) = u_  + Lyvper

\ \
where A_, ‘pr Vo B pr and a_ are positive constaats and

z=z () %3;’ > 0, z>0. (1.4a,b)

e

* This term means a change in the uniaxial stress-strain relation due to a
torsional prestrain or vice-versa.




B e

——— S e
¢ wworre

The symbol z denotes a positive monotonically increasing time scale with

respect to a time measure df such that

2 .
dg” = Pijkl ds.‘j de,, (1.5)

where Pijkl i5 a material tensor, vhich is positive definite and which, for

the isotropic materials envisioned in Eq. (1.1}, has the form

ke k1 81y %k YR Tk S (1.6) *
where k] and k2 are material parameters, such that k] + 2 > 0, k2 > 0.

3

P

Materials described by Eq. (1.1) are strain history dependent but strain-
rate independent. The derivatic~ of constitutive equation (1.1) was given in

detail in Ref. 1.

It may be seen that eq. (1.1) is uniquely described by means of two
material “heredity functions', A(z) and u(z). However, eq. (1.1) may be .
described instead in terms of the function p(z) and K(z), the '"shear end bulk

heredity functions', respectively. Specifically:

b4

e
Siy - [ u(z-2') -.5;;1- dz' (1.7a)
)
z
13
Oy = 3 [ K (z-2') 3;#5 dz (1.7b)
)

and s'J and e‘j are the stress and strain deviatcrs. The functions A(z),

u(z) and K{(z) are related as follows:

K(z) = A(z) + -§- u(z) (1.8)

From an experimental viewpoint it [s more convenient to relate 6‘j(z) and
e'j(z) to the functions E(z) and v(z), which we shall call the "tensile' and

“transverse' heredity functions. This relationship Is:




[ . z 97, .
oty UL T U S Voo
j E(z-z") ey dz cij + r' v(z-2') o dz Gij
o o

(1.9)

The functions E(z) and v(z) are ielated to the previous functions through their

Laplace transforms as follows:

- 1 1 E
- R (1.11)
1+ B
3K

where a bar over a function denotes its Laplace transform with respect to the

parameter p.

In the present paper we present forms of the functions E(z), v(z) that
have been determincd experimentally in the case of copper and aluminum; these
will be discussed in later sections. The experimental measurements necessary
to determinc the above functions were also used to evaluate critically the
implications of the assumption of plastic incompressibility, normally made in
the classical theory of plasticity. These experiments are reported in detail

in Ref. 2.

As is well known, this assumption leads to the result that Poisson's ratio
tends to %-as the plastic strain® increases. Our experimental results do not
support this conclusion. In the classical theory of plasticity, plastic in-

compressibility has also becn Interpreted to mean that the hydrostatic stress

* The term ''plastic strain'" is used In the content of the classical theory
of plasticity. The endochronic theory does not recognize the dichotomy
of strain into elastic and plastic parts.
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#% 2. Experimental determination of the heredity functions.

is @ linear function of the hydrostatic strain; our experimental data do not

support this either.

0f course in its broader aspect, plastic incompressibility may imply a

reversible, though non-linear, volumetric response. However, the observed

volumetric response was decidedly irreversible. Consequently oui experimental

measurements do not support the assumption of plastic incompressibility, at

least when the hydrostatic stress is of tensile character. (A non-linear

irreversible volumetric response in simple compression has also been reported

in the literature by Bridgman(3).)

r. it is significant that the endochronic theory can predict plastic com-

pressibility, exactly, provided that the heredity function K(z) is chosen
i

appropriately, or is determined experimentally.

In the case of the simple tension test eq. (1.9) reduces to the following

two eq.'s:

¥4

asx

k = -l — 1

; UX I E(Z ¥4 ) 32! dz (2-1)
; o
ii 3ex
¥ - = -2') !
1 €y I v(z-2') 5T 9z (2.2)
F
* o

In Ref. 1, the time scale z was related to the intrinsic time { by the equation
: = -;- log (1 + B2) (2.3)

which proved very satisfactory in providing agreement between the theory and a

variety of experiments as discussed in the Introduction. For this reason eq.

(2.3) will be retained in this paper.




As a result of eq.'s (1.5) and (1.6) 1

2 2. 2,2, .2 .
(dex + ZEY) + kz(dex + 2dey) (2.4

Because k] and k2 are not known and to illustrate the methodology f the

theory, we have taken kl = 0. In this event
. d 9 ) 1/2
(=]
dz = Kk, { 1+ 2 &, J de, (2.5)

If, in addition, an experim:ntal relation between 9, and €, 3s well &
between Cy and e were known, then from eq.'s (2.3) and (2.5) €, would be a

known function of z, in which case Oy and ey would also be known functicns

of z. ~

Equations (2.1) and (2.2), which are Volterra integral equations, would
then be solved to yield the functional form of the Kernels (hcredity functions)

E(z) and v(z).

In the particular use where €, is a linear function of z (expcriments
show that this Is a very good approximation as will be shown later) eq.'s (2.1)

and (2.2) can be solved exactly to yield the relations:

E(z) = h { %% - Bo(z% (> 6)

-v(z) = h {g{l eey(z)} (2.7)
where dz = h de, (2.8)
and de 2 1/2

h o= k, {! +2 (FE:) (2.8a)

In Ref, 2 we presented experimentally obtained uniaxial stress-strain
*
curves for a large number of copper and aluminum specimens . We also present-

ed experimental curves showing the relation between cy and “x for these same

X
Electrolytic tough pitch copper and commercially pure aluminum.




%t
specimens. In Fig.'s 1-4 we show such typical curves .

Now, using the experimental curves of Fig.'s 3 and 4, eq. (2.5) €, Was
determined as a function of 7 for copper and aluminum and the curves of these
functions are shown in Fig. 5, with k2 remaining undetermined. Similar curves

were obtained for cy as a function of ¢ and appear in Fig. 6.

One can sce in Fig. 5 that the relation between €y and ¢ is linear to a
very good approximation for both copper and aluminum. Therefore, eq.'s (2.6)
and (2.7) may be considered as approximate solutions of the Volterra integral
equations (2.) and (2.2) and may be used to determine the form of the heredity
functions E(z) and v(z). This was donc as follows: Eq.'s {2.6) and (2.7) may

be wiltten in the alternative form:

E(z) = g-‘cleﬁz - h8o(2) (2.9)

dey B2
- = -—-y- -
v(z) dor © thY(z) (2.10)
where nows h Is taken for consistency to be the mean value of the slope of the
approximate linear -elation between <, and L. Using cq.'s (2.9) and (2.10)

and Fig.'s (1-4), E(z) and v(z) wcre calculated for copper and aluminum; these

appcar in Fig.'s 7-8 and 9-10 for various valucs of 8.

Discussion of the heredity functions

(a) Copper: Two characteristics of the tensile heredity function E(2)
merit discussion, In the region of small z, E(z) exhibits a pcint of inflexion;

this implies that the second derivative of E{z) changes sign at that point.

A%k
For copper specimen 4 and aluminum specimen & of Ref. 3.




This behavior is not predicted by the current form of the theory, according to
which
n -
E(z) = 1 E e r (2.11)
r=|
2

- . d<E .
where Er and a, are positive constants. Evidently ey L calculated from
the above equation, is always positive. However, except for this small region
in the vicinity of z=0, the expcrimental curve assumes a shapc not unlike the
one predicted by the eq. (2.11). On the other hand the form of the function

E(z) does not appear to be particularly sensitive to changes in 8, particularly

at modcrately small values of z,

The transverse heredity function v(z) decreases slowly as 2z Increases but
remains virtually constant (over the range of z shown) if 8 is small, Therc-
fore, as far as copper is concerned the assumption of constant Poisson's ratio

Is true, to a very good approximation.

(b) Aluminum: The tensile heredity function for aluminum is very similar
to that of copper. The transverse heredity function, however, exhibits a strik-
ingly differcnt behavior. At modecrate strains it decreases from Its intﬁial
value quite rapidly, vntil it becomes virtually zero; then, at higher strains
it increascs abruptly to a value which is three times the lnitial value. Then
it decreases again and at still higher strains, it tends tu & constant value,

which is nearly cqual to the initial value.

No physical explanation can be offered at this time for this behavior,
which Is certainly not duc to necking of the specimen; quite definitely, neck-

Ing did not occur in the range of deformation ind7-ted in Fig. 8.




3. Material compressibility under hydrostatic tension

In this section we shall discuss the experimental measurements which led
to the conclusion that the assumption ¢f plastic incompressibility (normally

made in the classical theories of plasticity) is not tcnable.

The experiments, simple in nature, consisted in monitoring the axlal
stress as well as the axial strain and onc transverse strain of a thin flat

%
bar in uniform uniaxial tension . This simu'e test has enjoyed a great deal

(

A

3
' where '"'transverse strain'

of popularity but we could find only one Instance
measurements were mode in the plastic range. This is surprising, since this
test affords a very critical evaluation of the assumption of plastic incom-

pressibility.

The classical plasticity theory yields the following result, assuming

elastic compressibility and a Von Mises yicld surface:

de £
4 ) 1 t
-a.l-; = 3 ('i- \)o) ""‘EQ (3- ')

where €y and cy are the longitudinal and transverse strains respectively,
Eo and Vo Are the elastic Young's modulus and Polsson's ratio respectively,

and Et is the tangent modulus of the tensile “iress-strain curve.

£g. {3.1) can be Irtcgrated numerically to yield a relation between %y

and cg. This has been done for aluminum and copper.

The aluminum specimens were shearcd from g 1100-0 aluninu~ sheet and
anncaled at 600°F for two hours and then oven cocled to rvon teperature.
The copper specimens were cut out from an electrolytic toush piteh copper
110{99.9 + % cu) bus bar and anncaled at 7SU°F and then coven cocled to roor

temperature.

-

*
Detailed description of the apparatus and the experimental p accdure Te to
be found in Ref. 2.




\0

he results are shown in Fig.'s 3 and 4 1t nay be scen that the
classical plasticity theory gives a poor prediction of transverse strain re-

sponse, particultarly for aluminum.

Cn the other hand the assumption of constant Poisson's ratio is quite
good over a wide range of axial strain for aluminum and is almost exactly
true in the case of copper. For this reason the assumption of constant

Poisson's ratio was adopted in the analysis.

Also shown in Fig.'s 11 and 12 are plots of Ok Versus g . These plots

show very vividly that hydrostatic response is not elastic, at least when the
~

hydrostatic stress is tensile. |If one extrapolates from one's experience in

elasticity, the effect of this assumption is likely to be large in the case

of kinematically constrained configurations.
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