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Final Re prt

This report is a summary of the work accomplished during the year 1970-1971,

under AFOSR Grant 1916-70. The work consists in three main parts:

(a) The development of mathematical constitutive theory for Inelastic

materials undergoing deformation In a non-isothermal environment.

(b) The application of the theory to certain specific situations, where

experimental measurements were made by other people in the past; the purpose

part (b) was to establish the physical soundness of the theory and to illus-

trate Its applicability.

(c) The performance of a set of critical experiments with a view to de-

termining the material (heredity) functions that appear In the constitutive

equation derived in (a). Knowledge of the material functions will help In

their analytical representations necessary for the solution of problems

relevant to the analysis and design of aerospace systems.

The development of the theory Is based on the principles of Irreversible

thermodynamics and the axiom that the stress is determined by the prev!ous

history of deformation defined on a time scale which is Itself a property of

the material at hand.

The foundations are then laid for a class of constitutive equations which

govern the behavio. of inelastic materials when these are subjected to

... coupled thermomechanical disturbances. This is done in the first report

entitled, "A Theory of Vlscoplbstlcity Without a Yield Surface Part I -

General Theory".

Applications of the theory are dealt with In extenso In the second report

entitled, "A Theory of Viscoplasticity Without a Yield Surface Part II -

Application to Mechanical Behavior of Metals".
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A number of problems involving complex deformation of metals under iso-

thermal condltions of small strain, are given analytical solutions for the

first time. These solutions are compared with experiments and such compari-

sons, in all ca:--s favorable, speak elo.uently for the power of the theory.

In parallel with the theoretical effort, an experimental program was

undertaken to elucidate a number of points which are likely to be of import-

ance in the further development and application of the theory. In particular

the physical basis for the assumption of plastic incompressibility was

tested; It was found tjust as Bridgman did in 1948 but his work went un-

noticed) that no such basis exists. Detailed discussion of this a-pect of

the work is found in Report 3, entitled, "Material Instabilities in the Ex-

perimental Study of the Plastic Compressibility of Some Important Metals".

Further, the form of the heredity functions, that appear In the theory,

was investigated experimentally for copper and aluminum. Realistic analytical

representations of these functions Is now possible for the future application

and further refinement of the theory. This part of the exDerimental program

Is discussed in Report 4 entitled, "Experimental Determination of the Heredity

Functions of Copper and Aluminum".

Reports I and 2 have already been published in the European Journal,

Archivum Nechaniki SostowaneJ. Published by the Polish Academy of Science.

The reference Is: Arch. Mech. Sost., j, (1971).

in sumiary, visible progress (conceptual as well as analytical) has been

made, In this one year !,q the understanding of the phenomenological descrip-

tion of the mechanical behavior of metals, as A r.'%ult of this Grant.

K. C. ralanis
Professor and Principal Investigator
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ABSTRACT

Herein, we propose a mathematical theory of thermo-viscoplasticity

which is a synthesis of experimentally observed material behavior on one

hand, and the concepts of irreversible thermodynamics on the other.

The underlying principle is that the history of deformation is de-

fined in terms of a "time scale" whic', is not measured by a clock, but

is in itself a property of the material at hand.

The theory is unifying in the sense that theories of plasticity,

viscoelasticity and elas"Licity can be obtained from it as special cases

by imposing suitable constraints on the material parameters involved;

furthermore, it does not make use of the idea of a yield surface.



Section 1. Erdochronic Theory of Viscoplasticity

In current theories of plasticity, to explain the observed discontin-

uities in material behavior upon loading beyond the "yield point" and upon

unloading, one has to introduce the concept of a yield surface in stress

space as well as a "loading function" to distinguish between loading and un-

loading. Similarly, in the case of viscoplasticity, the existence of a

static stress-strain relation and a yield surface are assumed and the stress

increment, with respect to the static value, is related to the strain rate,

or more generally to the strain history, by a constitutive equation.

Howev. r, the fact that the phenomenon of yield is usually a gradual

transition from a linear to a non-linear stress-strain response, makes it

difficult to say precisely where yield has occurred, to the extent that

different definitions of yield are used for this purpose. Three such defin-

itions, for instance, are (a) the deviation from linearity in the relation f
between some measure of strain and stress (b) the tntersection of the

initial part of a stress strain curve and the backward linear extrapolation

of the "plastic" part of the curve and (c) a value of "proof" stress

corresponding to an arbitrarily defined value of "proof" strain.

Though, from an engineering viewpoint, the initial yield surface is not

overly influenced by the definition of yield, it has been iound experimentally

that subsequent yield surfaces of a strain hardening material ame Influenced

by the definition of yield to an extraordinary degree. (See Appendix I). If

we insist that the incrmant in plastic strain is to be normal to the yield

surf-te, then, for complex stress hi ,tories, each such definition will give

rise to a different plastic strain history. Only one of these can be the

correct one.
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The conceptual difficulties that are encountered by the introduction of

the yield surface are completely circumvented by our theory of plasticity

which is developed on the basis of the observation that the state of stress

in the neighborhood of a point in a plastic material depends on the set of

all previous states of deformiation of that neighborhood, but it does not

depend on the rapidity at which such deformation states have succeeded one

anothert.

The independence of stress of the rapidity of succession of deformation

states is achieved by introducing a time scale C which is independent of t,

the external time measured by a clock, but which is intrinsically related to

the deformation of the material.

Of course there arc many ways of introducing such a time scale. However,

it appears almost mandatory that E should be a monotonically increasing func-

tion of deformation, otherwise two different states of deformation could exist

"simultaneously" i.e. for the same value of E. Furthermore, a positive rate

dcof change , of the internal energy density c with respect to E could not oe

interpreted unambiguously as a process of increasing c, if dt could be negatl'e.

A logical definition** for C is then given by the velation

*In the present Section and in subsequent Sections (with the exception of

Section 2) we shall assume that mechanical changes take place in a constant
temperature environment, such as an isothermal atmosphere. The thermal
changes in the material will, therefore, be mechanically induced and, in
general, will remain small. Conversely, only thermal changes of this nature

will be considered in this pap r.

**Alternative but less geeral definitions h¢vy appeared In the litera-
ture. For instance, Ilyushin(l) and later RIvlin 2) defined a "time" s by
the relation d82 a d i dCir Howev•ev, we have found that this definition is
too narrow to describes quantitatively, me rial behavior In the plastic

range as will be discussed later. The effect of temperature on C, will at
vague allusion to this possibility see also, Schapery (3).



3

dW 2 - pikdCiidCkt (3.1)

where C.. is the Right Cauchy-Green tensor and P is a fourth order tensor
1) ij ic(

which could depend on C.. . The positive definite nature of d 2 requires1)

that PijkL be positive definite. In the case of small deformation

dE2 = Pijkldcij dckt

where ¢ij is the small deformation strain tensor and Pijkt could depend on

=ij"

Actual materials, on the other hand, do, in general, depend on the his-

tory of deformation as well as on the rapidity, or rate, at which deformation

states succeed one another. To describe materials of this type one may con-

struct a theory of viscoplasticity by introducing a time scale C which is re-

lated to the external time t.

It appears logical to define c by the relationship

dW;2  02dC2 + B
2dt2

where @ and 8 are scalar material parameters. Henceforth d( will be called

da
an "intrinsic time measure", and x(.), such that , 0 (O<v-), will be

called an "intrinsic time scale".

In our theory, the stress (among other properties) is necessarily, a

functional of the strain history, defined with respect to the intrinsic time

scale, the latter being a property of the material at hand. As a result we

have called our theory an endochronic tho of viscoplasticity.

The theory will now be developed in a general thermodynamic framework in

Section 3. Before this Is done, however, the thermodynamic foundatlons are

laid in Section 2.
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Section 2. Thermodynamic Foundations

The following arc the fundamental laws of thermodynamics, which apply

to all continuous media irrespective of their constitutive properties. (For

materials that are solid-like, in the sense that they have a memory of

their initial configuration, it is more convenient to express these laws in

the material coordinate system x ) In differential form, these are the

first law of thirmodynamics,

P (p/2p)T 1 ij 2 
h

1
i

the rate of dissipation inequality,

= (o /20) T e 0 (2.2)

and the heat conduction Inequality

_hi 1 11 0 .(2.3)

The symbols in eq.'s (2.1)s (2.2) and (2.3) have the follcwIng meaning: poc

is the Internal energy per unit mass; o and P are the initial and current

0ss densities respectively; il j is the stress tensor in the material coor-

dinate system x C is the right Cauchy-Green tensor, h . is the heat flux

vector per unit wndeformed area in the material system; o Q is the heat supply

per unit mass; 8 is the temperature, y the Irreversible entropy and # and r,

ar the fhee ene W  and entropy, respectively, per unit undefoimed volume

finally a subscript following a coma denotes differentiation with respect

to the corresponding material coordinate. A dot over a quantity denotes

aterlial derivative with respect to time. To avoid repetitious statements,

henceforth we shall refer to C/j as the "deformation".
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In the case of dissipative materials the stress, the internal energy

and entropy densities (and, therefore, the free energy density) of a material

neighborhood depend on the entire history of deformation and temperature of

that neighborhood.

In the theory of irreversible thermodynamics the effects of history are

taken into account by specifying that the stress and free energy density are

functions of the current values of C.. and e as well as n additional
1)

independent variables q , not necessarily observable, called "internal vari-

ables". These may be scalars or components of vectors or tensors in the

materi-al fr'ame; whatever their gec-etric nature they must remain invariant

with trenslation and rotation of the spatial system to satisfy the principle

of material indifference. Thus:

6(Cij , 9 qa) (2.4)

ij ij (CkZ ' e , qa) (2.5)

It has been shown elsewhere(4) that

Ti) z ? - (2.6)
0 acij

0 = - 1) 1.e(2.7)

act 0.C (2.8)

Furthermore the heat flux vector h is a function of 0, , 0 ,C 4 and
- ij

i q i.e.,

h h (e, , e , CkL , q) (2.9)

subject to the conditions:
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hi 0, hi8,i <0. (2.10 a, b)

Finally eq. (2.1) in conjunction with eq.'s (2.6) and (2.7) yields

0 -q a 2.1

The remarkable property of the above equations is that trey apply to all

materials irrespective of their constitution, This has not been generally

recognized. In fact the constitutive nature of the material follows f,_om

the constitutive properties of q., For example, in elastic materials q 0,
5

whereas in viscoelastic materials qu are given by a set of differential

equations of the type,

S (q , cii, 0) (2.12).

The question of how qa are determined for viscoplastic materials is consi-

dered in the next Section,

IJ
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Section 3. Constitutive Equations in Viscoplasticity

From the right hand side of eq. (2.8) and the fact that > 0 and
dt

dz/dt > 0, it follows that

- d > 0 (a not summed) (3.1)
aqa dz

dqa
where the inequality is valid unless = 0. It also follows from inequality

dq a  dqa
(3.1) that - , qa C and e must be related otherwise and could

be prescribed independently and in such a fashion, that the inequality would

be violated. In this event there must exist a set of relations

dqa-- = f qO ,) (3,2)

for all a, where the functions f are material functions.

It must be noted that, as a result of eq. (3.2) qa are indeed functionals

of the histories of deformation and temperature with respect, however, to the

intrinsic time scale z which is, itself, a material property.

Thus, at least formally, the constitutive equations of the endochronic

theory of viscoplasticity are now complete in the sense that given the mate-

rial functions f a,* and h i then for some specified deformation and temperature

histories, qa are found from eq. (3.2) and thus T and n are found from eq's.

(2.6) and (2.7) respectively; similarly h i the heat flux vector is determined

from eq. (2.9).

Ideally, one would like to kncr the thermonechanical three-dimensional

response of a material over the whole spectrum of mechanical and thermal con-

ditions, i.e., under all variations in strain, strain rate (or more generally,

history of strain) and temperature. However, such a task would be a momentous,

if not an impossible, undertaking; the experimental evaluation of the material



functions involved, under wide conditions of strain and temperature would be

impractical.

Fortunately the domain of specification of design conditions is usually

limited in some way; for instance usually, (a) large changes of temperature,

fast rates of loading, but small strains are prescribed; or (b) small changes

in temperature and small rates of loading but large strains and/or displace-

ments prevail. More extreme mechanical as well as thermal conditions are

rarer.

It is reasonable to expect that material behavior would he easier to

describe mathematically over a narrower domain of environmental conditions,

where the applicability or "correctness" of such mathematical formulation

would be easier to check experimentally.

In what follows we shall consider situations in which the strain iB a

material region R as well as the temperature changes relative to a uniform

reference temperature 6 are "small". To make the above statement more pre-

cise let c W(z*) denote the history of the strain tensor*, for zo  ' < z

where z is some initial intrinsic time. SetIo
11IW% 1 M(o)II z C j( (3.3)

and let the supremum of IIlj(z°)Ilbe A.

Similarly let O(z') be the history of the temperature increment relative

to the reference temperature 0 and let the supremum of IO(z')l be 6. The

notion of smallness is made precise by stipulating that A<<l and 6<<l.

Thus, formally

0 0 + (3.4)

* ij X (C i - 5i
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n= no +X (3.5)

li. (z-)ll , I(Z')IUP5  6 (3.6)

To complete the formalism let x be the entropy change relative and a

reference uniform entropy no , and let aij denote the stress tensor. The re-

ference state is defined by the condition that oij = 0, =:X 0, q , = 0.

Under these conditions, eq.'s (2.4) through (2.9) and eq. (2.10b) become,

* 4 (cij , ), (3.7)

: )- (3,8)
ij Dcj

X - (3.9)

0 aq C1~

hi  kt 3, (3.11)

h 0 (3.12)

where k is the thermal conductivity tensor.
ii

Finally eq. (2.11), Licomes

h %) + Q; (3.13)

It is shown in Appendix II that Jq I and I4I may stay small In the sense

that given two positive numbers 61 and 6 , however small, A and 6 can be cho-

sen small enough such that %1 6 and I2 •

At this stage one may obtain the corresponding equation for q by

linearizsng eq. (3.2). However it Is physically more meanirful and, a pos-

teriori, more rewarding to examine more closely the rate of change of



irreversible entropy y

From eq. (3.10),

SAy dq> 0 (3.14)
odz 3q dz

It follows from eq.'(s) (3.14) and (3.2) that -.may be expressed as a func-
dq dz

tion of -- i, and subject to the condition that -. = 0 whenever

0 for all a . Thus, if we expand 0 Ly in a Taylor series and ignore
dz o dz

terms of order higher than 0(62)* and observe the inequality (3.10), thereby
a

eliminating the linear terms in the expansion, then

dy b dq a dqB

eo dz 0 baldz dz--(.

Eq.'s (3.14) and (3.15) are simultaneously satisfied if

dq0
b as o (3.16)aq 
b

With eq. (3.16) the constitutive description of a viscoplastic material is

now complete.

Explicit Constitutive Equations

Explicit constitutive equations for viscoplastic materials under condi-

tions of small strain and small changes in temperature are obtained by ex-

panding 0 In eq. (3.7) In Taylor Series and omitting terms of order higher

thaen 0(62); * linear terms must vanish to satisfy the initial conditions.

Before the expansion is carried out, however, It appears desirable to

regard q. not as scalars but components of second order tensors. This, as

will be shown, obviates certain difficulties which arise with the represen-

tation of fourth order tensors. For Instance, in Ref. (4), we were faced

*6 isthelargestofa and 6 Also, Is the lareest of 6. A and 61.
ea 1 2ioa



11

with having to assume, without proof, that a fourth order tensor C jkt such

that,

Cijkl Cjikt Cijtk Cktij

is given by the series

Ci l r(3.17)F ijkt a

where aija are second order symmetric tensors and a are scalars. Problems

such as this are obviated by giving the internal variables a tensorial char-

acter. Thus the free energy density and other thermodynamic quantities are

now functions of c , and n internal variables q! (a = 19 2 n).

where qij are symmetric second order tensors, with respect to the material

systemx, . In this notation, eq.'s (3.13) through (3.16) now read,

h qi +  (3.18)
1,. as aaqij

S adz !1 # 0 (3.19)
o dt a dz -

o . r ibijk 1j jkt (3.*20 )*

z qi

and

b a (3.21)

qij

(a not summed)

* d ijj dq~ kS as a*Expansions of the type b a
1k T' Tz- and Aia kt q qi reduc. to

the above form. See Ref. S.
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Furthemnore, in view of my previous discussion,

Sijkt ij kt + Bijk Cij qkt aCijkt qij q k

+ D c.i + qij + F 2  (3.22)
ij lj 1) Ij

Though, in principle, eq.'s (3.8), (3.9), (3.18), (3.21) and (3.22) are

sufficient for the derivation of explicit constitutive equations, we shall

obtain these only for isotropic material, so as to keep the algebra at a

minimum. For such materials

A jkt A1 6ij 6kt + A2 6ik 6 I-

ik. 1 ij 6kt 2 aik itCa

ijkt e1 'ij 6kt + C2 6ik 6It

Dij D 6ij (3.23 a-f)

' a En E

ii

kij k 6ij

b ba 6 6 + b 6 6

ijkt, 1 ij ktb2 6 A It

It is worth noting that here we consider materials which are "stable"

in the sense that straining of the reference configuration under isothermal

conditions will increase the free energy density 4 Thus Aljkt and Ciikt

are positive definite. As a consequence A1 , A2  C and C2 are all positive.

Omitting superfluous algebra, the coupled thermaechanical constitutiye

kk
equations take the following form in terms of the hydrostatic stress o 3
the deviatoric stress tensor oij, the increment in temperiture 3 , the
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hydrostatic strain Ckk ' the deviatoric strain tensor ei. and the

entropy increment X ; in terms of the above notation:

si= 2 fz (z-zl) aei.dz' (3.24)
ij z az't z

0
z" 'zk z  a

a :( K(z-z') 4dz' + D(z-z') T dz' (3.25)
'z z 3z'

gZ oCf

-x: D(z-z') w dz' J F(z-z') (dz' 3.26)
z zo 0

where,

B a Ba a B z2 v(z) (A- 2 H(z) +  _ 2_o 2 (3.27)

C

0 2B aE B a B -

D()BDIa-~i~ a S (3s .29)
D) (D a a

0
K(.W (AOE .- . H(Z)II~ + (3.28)

o 0

A0 • 1/3 13Ai A2 ) , Boa 1/3 H3B( t B2) ,C O • 1/3 13C1 E C2) (3.31)

lz (F aaa (314)
C2  C

** s ,Aa-s.(3.32)
b2

b a 3b5 a ba (3.33)

0 1 2

The heat conductLon equation is slUdlarly found to be:

dT- k " I CCl-'') ' - o  "2-s') * c ,

0 0
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+ Q b1qiqj 1b2qjqj(.4

where

CV(z) - 0 F(z) (335

and a roof over a quantity implies differentiation with respect to z. The

lower limit z denotes the intrinsic time of the reference state.

I0
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Section 4. Endochronic Theor of Plasticity and its Relation to Present Theories

Our theory of plasticity, which is a rate independent endochronic theory,

is obtained by replacing the time measure d; by dt. The time scale now becomes

2(Q), but the form of the constitutive equations remains unaltered. In parti-

cular, the "linear" form of our theory is obtained by setting

" i k

where pijkt is a positlve definite fourth order material tensor. We repeat

the constitutive equations of the linear theory, in the particular case when

the deforw'_.... is Isother.ial so that a comparison may be made with currcnt

theories. When S E 0, then eq.'s (3.24) and (3.25) become,

aSj 2 i (s-z') dx.

o 3 J X(z-z')- d-' (4.3)

where z : s(V.

If the material behaves elastically under pressure (so-called LAstF.

cally incempressible) 'hen K(s) Is a constant and in this case

*k 3Kc (*Okk • kk('.)

Whereas,

a 2 rag (s-')delCs') ((2.)

0

Let now u (a) consist of a single expomntnial te i.e.

u (a • u e (',.B)
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In this event

2 g (zz) (z') (*. )si 2P o is deij (:: C1

0

The integral eq. (4.7) is reducible to the differential equation

dei: =a2 dz sij + -1- dsij (4.8)

Now - ds,, may be identified as the "elastic" component of d,vitoric

R Now2 0

strain of classical plasticity. If one follows the traditional definition

of "plastic strain" deijP given below, I.e.,

dejj p a dcj - dc I (4.9)

then in view of eq. (48)

do - -- dzs (4.10)
i 2u0 ij

but these are the Prandtl-Reuss relations. Pence our present theory contains

these relations as a special case. Where then does it differ from this theory?

It does in the interpretation of the proportionality coefficient ds. In the

Prandtl-Rut.. theory dt may be positive negat-ve or zero, and in fact, s has

been identified with the yield surface, i.e., plastic action is assumed to

Occur when da - o, %here

a s(asj }) O..li)

but that dejP Is zero whenever

da t 0.12)

to the present theory da is always positlve if the mate.ial is deforaming (it

is zero only whn deformation does not take place). Thus al ,
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dz > o (4.13)

Furthermore dz is not given by eq. (4.11) i.e. it is not related to some

yield surface but its definition is entirely kinematic. Thus, no yield

phenomenon or surface are postulated here. One obtains the stress response

by merely monitoring the history of strain.

Also the theory admits a further generality since u(z) need not consist

of a siiigle exponential term.

ror instance p (z) may be of the form

.. u (z) =u 0 + V 1 e - z  (4.14)

In this case, however, the differential form of eq. (4.7) becomes:

2(U0 + V1 ) de j + 2 0 a eij dZ = dsij + a sij dz . (4.15)

The shear modulus u, at z = 0, (initial modulus), is (u 0 +  1 ). The

"plastic" co.mponents of the deviatoric shear strain tensor are given from

eq. (4.9), i.e.,

dep a dz si . - 2p e. (4.16)

Note that eq. (4.16) does not satisfy the Prandtl-Reu-"n relations, which are

also violated if one adds more exponential terms to the right hand side of

eq. (4.14). In fact these relations will be satisfied if and only if u (z)

is given by eq. (4.6), i.e., u is represented by a single exponential term

Only. This situation Is not particularly disturbing. Peters ;t Als(40)

carried out experiments on thin walled l4S-T4 aluminum alloy cylinders by

loading these i, combined compression and torsion and found that the Prandtl-

Reuss relations were not satisfied, for this particular metal.



Conclusions

A theory has been presented here, the scope of which is wide enough to

allow a rational phenomenological description of mechanical behavior of

materials under various histories of strain and temperature. In particular,

the viscoplastic behavior of materials is formulated mathematically, without

recourse to the dichotomy of the deformation history in. plastic and clastic

parts and without the necessity of introducing discontinuitics in material

behavior, such as yield surfaces.

The theory merely asserts that, to every history of deformation gradient

and temperature of a neighborhood there corresponds a unique state of stress

in that neighborhood. An entirely novel feature of the theory is that these

histories are defined with respect to a time scale, which itself is a mate-

rial property.

In this paper., we have merely presented the framework of the theory

Y! without actually evaluating the material functions involved, through the use

of experimental data. This, however, will be done in Part !I of this paper,II
where it will be shown that the theory describes experimentally observed

plastic behavior of metals with a remarkable degree of accuracy.

Stipulation

This manuscript is submitted for publication with the understanding that
the United States Government is authorized to reproduce and distribute re-
prints for governmental purposes.
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Appendix I

The following is a short account of the experimental work on (a) the

effect of the definition of yield on the shape of the yield surface and (b)

of the work on viscoplasticity. The references given are by no means exhaus-

tive and the author wishes to apologize to people of whose work he is not

currently aware.

In Ref.'s 6 and 7, aluminum alloy tubes** were subjected to shear pre-

strain by twisting well into the plastic region by a predeternined amount.

The yield surface corresponding to this degree of prestrain was established

by loading the tubes in combined tension and torsion.

In Ref. 6, Naghdi ft nd that subsequent yield surfaces distorted in the

direction of the shear axis with a pronounced Bauschinger effect in shear

but there was no effect on the yield stress ia tension (i.e. the yield locus

did not change in the vicinity of zero shear stress).

On the other hand, in Ref. 7, Ivey observed that the yield surface, in

addition to distortion, underwent a large amount of translation in the direc-

tion of the shear axis, so that for large prestrains the origin of the stress

space was outside the yield surface. However, he was in agreement with

Naghdi in that the presence of shear prestrain did not affect the yield stress

in tension. Both authors used deviation from linearit, in a stress strain

diagram as a definition of yield.

Mair and Pugh(s) to check the absence of "cross effect", carried out

their own experiments on copper with a high degree of isotropy. However they

used a different definition of yield, this being the point of intersection

of the initial straight part of the stress-strain curve with a backward linear

extrapolation of the "plastic" part of the stress-strain curve.
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Their results varied significantly from those of Ivey and faghdi. They

found that expansion and distortion of the initial locus took place with a

strong toss effect between shear and tension. Also a pronounced Dauschinger

eff ;ct in torsion was found with large initial positive pretorsion. These

authors also observed pronounced "plastic" unloading in shear.

The results of Szczepinski and Miastkowski(9 ) tend to confirm the find-

ings of Mair and Pugh (8). Their results, moreover, were significant in other

respects. Specifically, using the proof strain to define yield, they studied

aluminum alloy sheets under biaxial tension with the intention of finding

the effect of prestrain on the shape of the yield surfaces. They observed,

migration, distortion, expansion and sometimes rotation of the initial yield

locus.

(10)Similar conclusions* can be drawn from Szczepinski's paper (  , as well

as Miastkowski and Szczepinski's (17 ), in which tubular brass specimens were

subjected to combined axial and circumferential stress.

Initial and subsequent yield loci were plotted when yield was defined

(a) as departure from linearity or (b) when it was set to correspond to a

certain proof strain. In particular, when definition (a) was used, subse-

quent yield loci did not contain the initial locus, but when (b) was used,

with prJf strain set at 0.5% subsequent loci r--- the initial locus.

Attempts to describe the change of the yield locus with prestrain, by

simple models have not proved satisfactory. Batdorf and Budianski(lS),

suggested that after prestrain, the yield locus Is the minimum surface

* In this connection, see also work of the same general nature by

Bertsch and Findley(11 ) and Hu and Bratt (12).
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through the point of prestrain and the initial yield locus. This model

however does not account for the Bauschinger effect. The kinematic hardening

(14)
rule** proposed by Prager I , was partially successful, in so far as it can

be of value only when the stress-strain curve of a material in simple tension

((15)
is bilinear(1 5 . Otherwise subsequent shapes of yield locus must be defined

in terms of a parameter that depends on the history of strain(15) to obtain

realistic unloading behavior.

A more realistic model is the one by Hodge (16 ) which includes transla-

tion, expansion and distorsion of the yield surface. This model covers all

contingencies but does not include the history of stress ca the shape and

position of the yield locus.

However, every definition of yield gives rise to a different yield sur-

face. If we insist that the increment of plastic strain is to be nornal to

the yield surface, then, for a complex but specific loading history, each

such definition will give rise to a different plastic strain history. Only

one of these can be the correct one.

So It appears that through Eisenberg's and Phillip's(15) mathematical

description of a yield surface has been most promising, we must be prepared

to question, if necessary, whether the concept of yield point and yield

surface are the only way by which plastic effects may be described, especially

in view of the fact that these may take place immediately following the Ini-

tiation of deformation of material, though they may be negligible in the

region of small strains. This would agree with the point of view that dis-

locations (and, therefore, plastic behavior) originate Imediately upon

initiation of the loading.

** See also Ref. (19).
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Viscoplasticity

The need for the development of the theory of viscoplasticity arises

from the recognition of the strain rate sensitivity of metals under dynamic

loading.

The difficulty in trying to synthesize a rational "rate" theory from

experimental observations, a priori, lies in the fact that under dynallc

conditions the inertia effects are significant. In the absence of a consti-

tutive theory, these effects cannot be calculated.* Therefore, in the case

of dynamic theories, such as viscoplasticity, theory and experiment must

*advance together.

The literature abounds with data on the subject of strain rate sensiti-

vity, particularly in one dimension.(20-30) Lindholn(32 ) carried out dynamic

experiments in one and two dimensions in an attempt to generalize results

which were arrived at, by consideration of thermally activated processes and

their relation to dislocation theory in metals. See Ref.'s 35-40.

An early attempt at a theorctical viscoplastic constitutive equation in

one dimension is due to Malvern.(31,32) This equation assumes the existence

of a "static" stress-strain relation and then relates the stress increment,

with respect the static value, to the strain rate.

Modifications ^n1 generalizations of Malvern's equation were made by

Lubliner(33) who included a limiting maximum stress-strain curve, and by

Persyna ( 34 ) , Persyna and WoJno 3 5 ) who proposed a oultiaxial generalization

* Constant strain rate experiments would appear to be an exception, by
being less susceptible to inertia effects. However, Ref. 38 tends to negate
this. Long speclens give different responses to short ones, under the same
conditLons.
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for finite strains, assuming the additivity of the elastic and plastic strain

components and by Perzyna ( 39 ) who used concepts of internal coordinates and

irreversible thermodynamics to eliminate the above assumptions and to put the

theory on sounder foundations.

Though, in his last treatment, Pcrzyna (3 9 ) abandoned the additivity of

plastic and elastic strains, he still retained the concepts of yield stress

(and yield surface) and the hypothesis of a datum plastic stress strain rela-

tion, with respect to which "strain history" is to be related to the "excess" '

stress through the internal coordinates.

Q4r theory differs from Perzyna's theory in this respect.

We close by mentioning that, with the exception of the papers by
; Perzyn(39)

Perzyna , only a moderate research effort has been made in the area oi

coupling between a viscoplastic and a thermal process. However, Chidister

and Malvern(25 ). Lindholm(27 ) and Trozera, Sherby and Dorn (3 ), considered

the effect of a change in uniform temperature on viscoplastic behavior, with

R view to confirming some results of the dislocation theory.

V.-
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Appendix II

Th, form of eq. (3.22) for isotropic materials, according to eq.'s (3.22

a-e), is

A1  iic i+ A 2  ijij +Bciiqj + B2 cij qi.

, q i qjj C c qij q'j + D tj+ E* 5qo

+ k r5 2  (A.2.1)

As a result eq.'s (3.8) and (3.9) yield:

aa
AI 61ij Ckk + A2 ij + B1 £ kkij + B qij

+ D36 (a summcd) (A.2.2)
ij

-X C :D + E a a* F9 (a summed) (A.2.3)

On the other hand,

a I Zkk 6ij 2 ij: I il6J qkk
j

+ C * + ( not summed) (A.2.3)2 % a  1

Hence, use of eq. (3.21) in accordance with eq. (3.23f) yields a set of first

order differential equations for q,,; these can be expressed as a set for

and another for the deviatoric part of qa, which we denote by " Thus

in the notation of eq.It (3.31) and (3.33)

a a dqk(

~~, e0 * -q * *b (A.2.5.)

B2 ij * C2 PL I '2 (A.2.S)
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In both eq.'s (A.2.4) and (A.2.5) a is not summed. it follows from the

above two equations that
Ba J ;A 'l Ea x C1(z- Z' z ') A 2 6

kk = - 9 a(z-z) Ckk(z')dz' - 5zz' )dz, (A.2.6)

0 0 0 0

0a B2~ J ~P (Z-Z')e(zt)dzl (A.2.7)
b2 z0

whaer Xa and p are given by eq. (3.32).

In the light of the tensorial notation that we have adopted for the

internal variables, let

1 Cijiisup A , 11 ls Al1 , IkkI su " (A.2.8)

where, Iljijl = cij ci..I, etc. Evidently

A2  2  & -
2  -(A.2.2)1 30o

Then as a result of eg.s (A.2.7) and (A.2.8)

_ o  (A. 2.11)Ca
a

6j 12a (A. 2.11),

0

where as before li.,~3
Also from eq. (A.2.5),

(b;)2 ~~ 2l 2ii 11, (5) 112 +(2)2 ]Ilpil 2A22

(B 
C

However, since

P (A.2.13
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it follows from (A.2.12) that

2~ jdzi &l 1 2 1~~
Also as a result of eq. (A.2.4)

dq m
bo Idz I '2 AB o + 2Ea a (A.2.15)
o dz PI 001

At this point we order our internal variables as shown,

1 2 m 1 2 m
Pi j Pj . . . . . Pij 'qkk 'k Y)

Let q. be a typical internal variable. Then, whether it belongs to the p-

group or the q-group above, as a result of eq.'s (A.2.10), (A.2.1l), (A.2.14)

and (A.2.14), given two positive members 61 and 62, however small, we can

choose A° and aI (and therefore A) and 6 such that

% a.nd % .'!

2

II
a2
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ABSTRACT

The endochronic.theory of viscoplasticity developed previously

by the author is used to give quantitative analytical predictions on

*- the mechanical response of aluminum and copper under conditions of

complex strain histories. One single constitutive equation describes

with remarkable accuracy and ease of calculation diverse phenomena, such

as cross-hardening, loading and unloading loops, cyclic hardening as

well as behavior in tension in the presence of a shearing stress# which

have been observed experimentally by four different authors.



1. Introduction

In Part I of this work, a theory of viscoplasticity (of which the

theory of plasticity was a part) was developed on the basis of the concept

that the current state of stress is a functional of the entire history

of deformation and temperature,

but the history was defined with respect to a time

scale which is in itself a property of the material

at hand.

In particular for the case of strain-rate-independent materials under

isothermal conditions, which is the topic of this part of our work, it

was shown that within the restriction of small strains

iji j j A(z-z') -,k &z' 2 dz' (1.1)

where

A: : A : A e rz  (1.2)
r=l

OZ

r~rr:J r

where A., A t UOP U r0 r and a are positive constants and

zz(,); dz > O6 z > o. (1.4 a,b)

The symbol z denotes a positive monotonically increasing time scale

with respect to a time measure dr such that

d d2 Pijkt dcij dckl (1.5)

where Pijkt is a material tensor, which is positive definite and which, for

1



the isotropic materials envisioned in Eq. (1.1), has the form

Pijkt = k 1 6ij akt + k2 6ik 61 (1.6)

where k and k2 are material constants, such that k1 + - ), k2-0'

It is evident from Eq. (1.5) that d; is independent of the natural

time scale given by a clock and thus materials described by Eq. (1.1) are

strain history dependent but strain-rate independent.

The derivation of constitutive equation (1.1) was given in detail and

its relation to classical theory of plasticity was examined, in some of its

aspects, in Part I*

"In the present paper we shall be concerned with the real behavior of

metals under conditions of room temperature and slow straining. By exam-

ining data on copper and aluminum which were obtained in the laboratory

by various experimenters, we shall show that Eq. (1.1) does indeed have the

capability of explaining uantitatively and with remarkable accuracy such

diverse phenomena as cross-hardening i.e. hardening in tension due to torsion,

loading-unloading 1 and hysteresis loops during repetitive tension-

unloading - compression-unloading histories, as well as behavior in tension

in the presence of shear stress due to torsion.

2. Discussion of Equation (1.1)

At the present time one cannot find sufficient experimental data In

the literature to determine the functions z(C), f(z) and o(z). Therefore In

order to use the theory at all, with the object of interpreting available

experimental data, we have to seek other avenues, essentially heuristic, to

determine the form of the abova functions.

2
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With regard to z(;), we recall that the rate of dissipation y was

given by Eq. (3.15) of Part I, L.e.,

A ~ ~ C1 2 ^C C^ ^ C1
0o Y (ba + qj q~i jj + -bPJ i (2.1)

(a sutnmed)

where a roof over a quantity represents its derivative with respect to zo

and pija is the deviatoric component of the tensorial internal variable

a

For the sake of argument let

b2' a i ^aA .  (2.2)

(a summed)

Then as a result of Eq. (2.2)

dD b2  1 (2.3)

(a summed)

Equation (2.3) way now be written in the form,

d'rD a *~*~ dp1
b f(0 (2.4)

(o sumed)

where, it *ill be recalled,

PLjk ( dcj dckt )11 (2.5)

i.e. i is a FUNCTIONAL of the strain history, and

da 'I . (2.6)

Of couwse If we set,

3
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eOY v 2 (b 1 + - ) qii qjj (2.7a)

(a summed)

then*

dy V t b 2dq dq i
0 0 r (b1  + ~ -) (2.7b)

(a summed)

At this,point various possibilities present themselves. The simplest is

to take f(C) = constant, in which case,

z C C + C (2.7c)

where c and C 1 are constants. However it can be shown (and will be

demonstrated in later sections) that this choice eliminates "cross-hardening"

in the sense that a change in the uniaxial stress-s rain behavior due to

shear prestrain cannot be accommodated. This effect has been observed 'in

prftctically all experiments on metals that have ever been reported. There-

fore, though Eq. (2.7) is convenient, it is not very useful.

This observation applies to Ilyushines and Rivlin's theory, where

a C + C and

0,

Note that Eq. (2.7d)is a parcicular case of Eq. (2.6) also note the

absence of the material constants k and k2 from Eq. (2,1),which renders

C independent of the material at hand. In other words their theories are

n t end ec hron.ic,.
The next natural choice is to consider V(C) to be a linear function

of C i.e.

00) 1 + *C (2.6)



where B is a positive constant. Note that B > 0 because b2 > 0, as well
dYD

as -- > 0, thus necessitating that f(4) > 0, for all C. As a result of

Eq.'s (2.7) and (2.8),

l log (I + BC) (2.9)

gn expression which has been found to give excellent agreemont in the cases

of soma significant experiments, as will be shown in subsequent Sections.

In the absence of experimental data, the question of the form of the

"relaxation" functions X(z) and u(z) is equally difficult.

There are two simplifying assumptions, however, which lead to a

relation between X(z) and v(z), so that one is left with the problem of

finding the form of only one of these functions. One Is that of an elastic

hydrostatic response and the other is the assumption of constant Poisson's

ratio.

Efficient use of the first assumption is made by writing Eq. (-.1)

in terms of the hydrostatic and deviatonic components of aip in which case

z
a 2 fo (z-t') DIi? dz' (2.11)

where K(W) is the bulk modulus, Elastic hydrostatic response implies that

K(Z) A i(z), in which case Eq. (2.10) becomes,

ao 3 (2.12)
kk kk

The assumption of constant Pbisson ratio leads to the conclusion that

o(z) and V(z) differ by a multiplicative constant, and can both be written

5



in terms of a single function G(z), such that

K(z) n K G(z) (2.13)

P(z) - Vo G(z) (2.14)

where G(O) = I

This assumption has the added advantage that, under condition of

plane stress, or uniaxial strain, the strain in the unstressed directi..n

is related to the strains in the stressed directions by a multiplicative

constant. Thus the strain increments in the direction of zero stress

may be easily eliminated from the expressionfor d so that the latter may

be expressed solely in terms of the strain increments in the stressed

directions.

3

It has been observed that in aluminum and copper as well as in other

metals, prestraining in torsion, well into the plastic range, has a signi-

ficant hardening effect on the stress strain curve in tension.

In this Section we shal3 analyze data by Hair and Pugh, who have

investigated this effect on annealed copper. Their experiments were per-

formed accurately and with care, on -ry thin circular cylinders which

were twisted well into the plastic region, so that upon unloading there

remained a permanent residual shear strain. The effect of initial shear

. prestrain on the tensile response was then obtained by loading the cylinders

in tension,

The constitutive equations pertinent to the above situation are easily

found to be:

6



ftz2 z-l d' dz' (3.1)
0 

z

where a and c are the axial stress and strain, respectively, and r and

n are the respective shear stress and tensional shear strain; the moduli

E(vz) and 15(z) are interrelated through the bulk modulus K(z). Their re-

lating is best expressed through their Laplace transforms:

E (3.3)

To deal with the effect of cross-hardening analytically, we have

assumed a constant poisson ratio* As a result Eq. (3M) reduces to the form:

w re E(z) = E 0G(z) (3.ai)

3o0g (3.5)

Regarding the form of G(z) we have taken the simplest possible view

by assuming that

G(R) a 0 (3.6)

Despite these simplifications we have been able to obtain excellent

agreement with experimental data that have hitherto lacked analytical

representation.

Analysis

in the tension-torsion test the effect of constant poisson reat o Is to

7



2
reduce d;2 to the form

2 2 2
dc ak de + k d (3.7)

12

where k1 and k2 are material constants, not ,c same as those in Eq. (1.6).

DurLg torsion (=O),

k 2ri (3.8)

whereas during tension (n=q o ) and after pretension

" k2 r + k1e (3.9)

where na is the maximum shear prestrain.

Equation (3.1) may now- be written in the form

a Glz(0-z(Q')] dc' (3.10)

(where c x k no) when allowance is made of the fact that c v 0 in the
0 2no

range 0 c c c k Thus Cross-hardonlng is taken fully into account by

Eq. (3.10), through the shear preatrain parameter co. which appears as a

lower limit on the integral on the right hand side of Eq. (3.10). If,

in particular, we assume that G(M) is given by Eq. (3.6) and use of this

Is made In Eq. (3.10) the latter becmes

e -oe'(€) 03W( )  'd ,(v1

CO

The integral in the right hand side of Eq. (3,11) can be evaluated

elicitly by using Eq. (2.9) and noting that during monotonically increasing.

Xv.n eon k • , Omitting the algebra,

It

U



E (1+0 )+0C -n (3.12)= 2 - o, )

where

a1+1 (3.13)

and

CO I_ C W Co + k'= (3.14)

Equation (3.12) represents a family of stress strain waves in tension,

In terms of the prestrain parameter C;0 and the "cross-hardenina" parameter 0.

To determine the material parameters in Eq. (3.12) we note that in the

absence of shear prestrain (C = O),

E (1+8 C)o 1 - ( 1 +0 0 ( 3 .1 5)

01

where 0 z k 00

It may be verified that as c * 0, a E c i.e. r is the Initial shape
0 0

of the stress-strain curve. Also as c increases, o tends symptotically to

the linear expression

* Thera is ample justification for calling B the cross-hardening paraatar.

Indeed in the limit of A s Ol and using Eq. (3.9) Eq. (3.12) becomest

~E o

which is indopondent of Col in other words cross-hardcenng cannot take

place when B t 0 as pointed out earlier.

~9



it Et is the slope (tangent modulus) of the alymptotic straight line,

then
E0 

(3, 17)
n = a-3.7

Et

Also, as shown in Fig, 1# if one extrapolates backwards the asymptotic

straight line to intersect the stress axis one obtaiins an intercept a

from which 01 is determined by the relationEt
1 = -- 

(3.18)

3imilarly integration of Eq. (3.2) yields an equation analogous to

Eq. (3.16); this is

2(1+6 2n -~no 2 (- ( 2n) )
B~n

where 82 = k28. Thus, 02 and po may be determined from Eq. (3.19).

Finally we observe from Eq. (3.12) thaL the intercepts ao' in the

presence of shear prestrain Co are given from the expression

a ' a ( +8 ) a (l+82 n ) (3.20)0 0 00 20

Equation (3,20) was used to confirm the self-consistency of the theory.
k1

However Eq.'s (3.12), (3.1 ) and (3.19) can only yield the ratio (7)
2

but the constants k and k2 cannot be evaluated. In this sense, and for

these experiments one may choose k2 arbitrarily; we chose k2 = 1.

Experlmental data obtained by Mair and Pugh that illustrate the effect

of cross-hardening are given in Fig. 2.

Curve 0 is the virgin stress strain curve for the type of copper they

used. The circles on the curves A, B and C are experimental points corres-

10



ponding to initial shear prestrains of .25x0
"2, 1.5xlO-2 and 3xlO 2

respectively.

From curve 0, E 0= 1 l4 6 lb/in 2 , 8, *53xd.02, n _46, With

k 12 = I, Eq. (3.20) was used to give k 
= 1.00. The curves A, B and C

were then calculated and plotted as shown. Without a doubt the abree-

ment between theorv and experimant is remarkable.

4. Reettive loading.unloadinp rcles

The tensile strain history c(;) corresponding to a typical toesile

loading-unloading sequence is shown in Fig. 3. We use the terms "straining"

and "unstraining" in the following sense:

The ranges 0 < C < < C <5 CB C represent straining

in tension.

The ranges Cl C< C2 C3<--  < CA 15.--  < {C represents unstraining in

tension,

The ranges CA C < C4 *o < o 6' -<  8 represent straining in

compression.

The ranges 4 C < CB' 46 - < C7' 8 -- C. represent unstraining in

compression,

Points on the C-axis denoted by 4r (r-'i2sae") represent points of

dt
discontinuity in * brought about by reverting from straining to unstraining

histories, or vice-versa,

A perusal of ehperimental data on copper, shows that the constitutive

equation of the metal varies depending on its previous history of manufacture

and subsequent annealing. The single term form of G(C) that explained Mair

an uh' aa(2) (3)h~~and Pugh's data ( ) so well was found inadequate to explain data by Lubahn

I1



(4)
and by Wadsworth

We found however, that the adoption of a single extra term for

G(z) sufficies to describe quantitavely broad trends of their data. In

effect we took

G(z) = EI + G2e'Oz (4.1)

or

E(z) = E1 + E2e'az (4.2)

Let (m = 12....) be the last point of discontinuity in . Then using

Eq's. (2.9), (3.11) and (4.1) and in the range C.

a = (-+00o )m - + 2 M l f +E c (4.3)0 1+3o' 2r -1) 5 1

The quantities ;r may be evaluated explicitly in terms of cr (the values

of strain corresponding to C ) by the formula

2k l ) s + k(')r (4.4)

The effect of E on the unstraining characteristics is remarkable,
1

especially since its effect on the shape of the straining part of the

stress-strain curve is minimal. Let the history e(z) be one of continuous

straining. Then Eq. (4.3) becomes:

a E €+ B 1 -(1+0l)n (4.5)
1 n

From Eq. (4,.5) we obtain the following relations in the notation of

Section 3.

12



E + 2 E (4.6a)
1 2 o

£2
2 =  (4.6b)

E + aoa E (4.6c)1 oX1 t

Equations (4.6a-c) do not suffice for tho determination of the four

unknown material constants EIt E2, n, 01, It has been found that a fourth

relation can be obtained by considering the "unloading" portion of the stress-

strain history.

Fig. 4. shows the stress-strain relation for a uniaxial specimon

which has been strained in tension to a strain value ci whereupon it is

unloaded and compressed until the final strain is zero.

The strain-intrinsic time measure history c() corresponding to the

above stress-strain history is also shown in Fig. 5.

Equation (4.3) in conjunction with the above history yields the

relation, at c = 0:
Ii 2(l+OC )n-i

If the value of e is sufficiently large (in the case of copper this value

-3cwas found to be 50X10 , or so) then a is given very nearly by the

expression

a -ao(1+280) -a (1+2l0 c) (4.8)

The constant 01 can now be obtained from Eq. (4.8) and the constants El,
IT

E and n can be found from Eq's. (4.6a..c),

We illustrate the points made in the above discussion in Fig. 6 where stress

13



strain curves for three different materials are given when these are

subjected to the same strain history shown in Fig. 5.

The constants for these materials are given in the following table:

• E1  E2  8 n

1 0 6,14x106  4xlO2 25

2 .24x106 5.9xlO6  0

6 6 23 .12xlO 6.02x106 2xlO 50

What is remarkable is that changing 0 results in these materials having

indiqtinguishable stress-strain curves during straining but wildly

differing ones during unstraining.

In Fig. 7 we illustrate an attempt to predict analytically the

loading-unloading-loading respense of copper in simple tension. The

solid line is an experimental curve obtained by Lubahn(3) for a copper

specimen which had already undergone similar strain cycles. We have assumed,

however, that these have a negligible effect in the response shown because

they occured sufficiently for in the distant "past".

The triangular points shown, wore obtained theoretically from Eq. (4.3)

by assuming that the specimen was continually extended (without unstraining)

-3
until the strain c 51,Gxl0 was reached. The unstraining-straining

cycle was then applied.

Desn'te the fact that E(z) was approximated by two terms, as in

Eq. (4.2) the agreement between theory and experiment is remarkable. The

constants employed were, a C 6xI0 3 E* 125x!0 B6 *02xlO3. n a 160.

In fact we are not aware of another instance where an attempt was made

to describe such experimental data analytically by means of one single
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constitutive equation. In addition we can say with assurance that the

observed difference between theory and observation can be reduced further

by including more exponential terms in the series representation for E(z).

We bonclude this Section by considering the effect of work hardening under

cyclic straining. In particular we shall examine the york of Wadsworth's(4)

and show that our theory again provides ,n excellent analytical basis for

his results.

In this work single copper crystals were tested under conditions of

uniaxial cyclic strain; The data was presented in terms of the resolved

shear stress and strain in the plane of slip.

Fig. 8 gives the first few cycles of his straining program, in which

a crystal was cycled under fixed limits of resolved shear strain of 7x10 3 .

The "peak stresses" corresponding to the extreme values of tensile and

compressive strain increased monotonically with the number of cycles.

In Fig. 9 the values of peak tensile and compressive stresses have been

plotted by Wadsworth against iinj. Ir is rather interesting that he

felt that such a plot was meaningful, without further elaboration on this

point. Of course 1dul, but for a scalar factor, is our intrinsic time

measure.

The history of the resolved shear strain versus t is shown in Fig. 10.

From this Figure it follows that (2m-l)Ak Equations (4.6c) and (4.8)

were now utilized to find Okl, which we denote by 01, and E, It was found

that 0 12.3 and E 2xlO 9 d At this point n could not be determined
cm

because the initial slope of the stress-strain curve corresponding to E k1

could not be evaluated accurately.

However letting T it was found that as m Eq. (4.3)
t m



yields the asymptotic expression:

- nT0 A + tE A (4.g)
0

Hence, from the tensile experimental curve of Fig. At of Ref. 4 , n could

be determined explicitly and was found to be equal to 225. For this value

of n the term n was found i o be negligible for m > 1.

Thus for the history in Fig. 10, Eq. (4.3) gives

T (1+01 (2m )AJ (l)+ 2  (-1) + E (4.10)

The above equation can be simplified further for large values of m. In

particular for m > 509 it was found that the series in the bracket on the

right hand side of Eq. (4.10) degenerates into the geometric series

m _Ur,(4,11)

where
(l (2m-l)8 A n

U 1 (4,12)

Equation (4.10) may now be written in an asymptotic form in terms of the

absolute value of the shear stress as follows:

IT ( 1+0 (2m+l)h h (-1 + i + A (4.13)
m 0 l+U 1

For very large values of m (m > n) Eq. (4.13) simplifies further and

becomes
nB r° i

Imj nO1T + EA (4.14)

16



Thus,

Lim1Tm= n~zxo A + ElA (4.15)

In Fig, 11 a plot has been made of the theoretical relation between

IT 1 and mA obtained from Eq. (4.13). The experimental points obtained

by Wadsworth are also shown. The following comments are-in order. Though

our theory does give values for T which are different in tension from thosem

in compression, the difference is not as great as the experimental data

indic-te, and is too small to be plotted on the scale shown, However, the

theoretical curve lies very close to, and is in fact bounded by the exper-

imental points, which indicate a deviation between the values of compressive

stress and those of tensile stress which increases with m but is never greater

than 5.5%,

This is the first time that a theory of plasticity has provided a national

explanation for the phenomena of cyclic hardening.

5, Tensile response in the presence of initial shear stress

In Section 3 we obtained a theoretical pred ition of the effect of

prestra= in torsion on the stress strain curve in tension. In this Section

we shall examine theoreticallyp in the light of our endochronic theory, the

effect of initial constant potess in torsion on the stress-strain curve

in tension, To do this, we have assumed, just as we did in Section 3. that

£(z) and P(z) are proportional to some relaxation function G(z), and further-

more that G(z) consists of a single exponential term i.e# it is given by

Eq. (3.6), Thus

E(z) e a  (5.1)

17



In the light of Eq. (5.1) and bearing in mind Eq. (2.9), the constitutive

Eq.s (3.1) and (3.2) can be reduced to the differential equations

E dc ao = d (5.2)

2 dn aIT dT(.3

where, as in Section 3,

2 2 2
dc r kldc2  2dn

As mentioned above the test to be liscussod consists of applying an irttial

stress To corresponding to an initial strain no; then keeping Yo constant,

a axial strain c is applied and the axial stress a is measured. lhe object

at hand is to deduce from Eq.'s (5.1-5.4) the relation between o and c,

and compare with the experimental data obtained by Ivey( )

To accomplish this we proceed as follows, From Eq. (5,4) it is clear

that the axial straining process begins at C = Co where

C 0 = k2%o (5.5)

d-t
During this process 0 0, so that from Eq. (5.3)

dn ° dz (5.6)
0

Equations (5.4) and (5.6) now combine to show that during the axial stainingI

process,

d 2  k 2 dc2  2  2 d2 (5.7)

At this point we introduce the variable 0 such that

13



, k1O (5.8)

k2
Also let k, k1 = : and c z (ka-° /2u) Then, in terms of 0 and

as a result of Eq. (5.7)

de I - 1 dc (5.8)

Equation (5.8) may be integrated subject to the initial condition that at

k2n 0; or 0 = kn0  C 0.

Equation (5.2) may now be integrated with respect to 8 to yield

Eo ae (,of) (aI/O -I) 2_-

00

-o1fl0 (=/......(lt8 ') 2-c2 dO' (5.9)

(1 Ole)(a/81) 1

* We introduce now a change of variable by the -elation

1 + 616 a c cosh (5010)

whereupon Eq. (5.9) becomest

E c
0 n • f (cosh * - cosh '4)d#' (5.11)

whore asbefore, n a 1 + r

f cwnn d a 21 cosh "-2x 1x + c n-aim(,2

I Since for asymptotically labe n (say n , 30). I. It foll-s

from Eq. (5.12) that in this Instance

(€oehax - coshn"2D) dx N cosh n-l sinhx (S.. I

19



The rosult of Eq. (5.13) can be utilized to obtain a closed form solution

for a which now becomes,

a c (sinh- cosh#° n-l sinhJ(

Equation (5.8) may also be integrated with respect to # to yield

--- ( F(o ) } (5.15)

where

F() I sinhO - tan "1 (sinh#) (5,16)

Thus a and c are related parametrically through # and #o such that

(1+01kn 0 )to = osh 4l ( € }~2mm (5.17)
# o s c

The relation between a and c has been calculated with the following values

of the constatnts:

k w 11 a = • 17.4x10 3 lb/In2 , 6 a 20$ n a 33.

The result was compared with one of Ivey's experiments In which 't a l~xlO 3

lb/lo n a 2.35x10 " 3  The predicted and experimental stress-ttrain

responses compare very favorably. See rig. 12.

Conclus ion

On the evidence of the results presented above it appears that the

endochronic theory of pasticlty can predict -- curattly the aechanical

response of metals under complex strmainig histories. The full implications

of tht theory will be Investigated further in our future loA.
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Abstract

The hypothesis of plastic incompressibility, which is pivotal in the

development of the classical theory of plasticity has been tested by means

of a series of simple tension tests on aluminum, copper and low carbon steel.

The experimental measurem'.nts show conclusively that these metals are plas-

tically compressible, the compressibility increasing with straining in the

plastic region.

A new phenomenon, termed lateral instability, has also been observed,

consisting in an abrupt plastic flow in the transverse direction either im-

mediately preceding or immediately following yield in the longitudinal direc-

tion, during a simple tension test on low carbon steel. To a less pronounced

extent such a phenomenon has also been observed in the case of commercially

pure aluminum.



I. Introduction

One of the assumptions of the classical theory of plasticity is that

the material remains piastically incompressible while it undergoes plastic

deformation. This implies that the hydzost,'ic response of the material

remains elastic, (linearly, for small strains) even after yielding has

occurred. This assuTption also leads to the conclusion that Poisson's ratio*

tends to I as the plastic strain increases
2

In the present investigation the above essumption is eval, )tcd criti-

cally by means of a series of simple tension tests on aluminum, copper and

low carbon steel. We shall show in the following, that cur experimantal

data do not support the hypothesis of plastic incompressibility. Moreover,
I

Poisson's ratio does not tend to 1 as the plastic strain increases but, on

the contrary, its value decreases and becomes smaller than its "elastic"

value.

A newly observed form of material instabilit . The above statements

on the observed behavior of Poisson's ratio, are true for copper and broadly

true for aluminum and mild steel. However, in the case of mild steel (and

to a lesser extent, aluminum) an unusual phenomenon, which we shall call

LATERAL INSTABILITY, was observed for what is believed to be the first time.

At least, to our knowledge no such phenomenon has ever been reported in the

literature in the past.

*It must be pointed out that, in this retort, we do not regard Poisson's

ratio as some fundamental physical property or function, but simply as the
ratio of the algebraic values of the trA-zverse and longitudinal strains,
In a uniaxial test. On the other hand A.cause the experiments reported here
were carried out in the small strain range, Poisson's ratio is a convenient
quantity to work with, since it can be used to relate directly the uniaxial
to the volumetric strain; the latter is an important parameter in our Inves-
tigation.



2

Lateral instability is defined by one of the following two observed

sequences of events during a simple tension test.

(a) As the yield point of a low carbon steel specimen is reached,

the material begins to flow longitudinally (i.e., in the direction

of applied stress) and one observes the usual increase in longitu-

dL,,il strain while the longitudinal stress remains constant.

However an abrupt occurance of plastic flow in the transverse

direction has also been observed, just after longitudinal flow

has ceased and strain-hardening has begun.

(b) Abrupt transverse flow occurred just before the onset of longitu-

dinal flow.

It is significant that no transverse flow has been observed durinS the

process of longitudinal flow. A more detailed discussion of this phenomenon

will be given in text.

In the case of aluminum the onset of lateral plastic flow was not abrupt,

but what was observed arounted to a significant increase In the transverse

strain during a relatively small incremant in longitudinal straiin A quanti-

tatlve plot of these events is shown in later figures.

Loading-unloading loops have also been observed In some of the tests*

It will be shown in later sections that loops are also obtained In plots of

transverse strain versus longiludinal strain, and hydrostatic stress versus

volumetric strain.
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II. Materials and Specimens

Altogether three metallurgically important metals were tested. They

were commercially pure aluminum, electrolytic tough pitch copper and low--

carbon steel. The aluminum specimens were sheared from an 1100-0 aluminum

sheet, all the copper specimens were cut out of an electrolytic tough pitch

copper 110 (99.9 % copper) bus bar, and the steel specimens wore cut from a

cold drawn C 1018 flat. The nominal dimension of all the aluminum and copper

specimens was v x .1 x 15" and that of all the low-carbon steel specimens
8 4

was x Ix 12". All the specimens of the same metal were considered to
8 2

be identical prior to the heat treatment. These specimens have been divided

into several groups, occording to the annealing temperatures and purposes of

study. They are listed in Table I.
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III. The Equipment and Strain Measurements

All tests were conducted at room temperature on a Tinius Olsen Lo Cap

universal testing machine with strain gage load cell weighing and equipped

with a Tinius Olsen Model 51 electronic recorder. The load readings on the

dial indicator were calibrated against a Tinius alsen proving ring with the

electrical vibrating reed.

A Tinius Olsen S-400-2AB ext' nsometer was used to measure the longitu-

dinal strains of all the specimens except those of group III of aluminum.

This is an averaging type extensometer with a gage length of two inches.

The accuracy of the extensometer is ± 0.0001 in/in as guaranteed by the

manufacturer and was calibrated against the SR-4 electric strain gages of
0-5

type A-7 which have the accuracy of 2 x 10 in/in. The load vs. longitu-

dinal strain c curves were plotted by the Model 51 recorder during experi-

ments.

To measure the transverse strains c y, a SR-4 electric strain gage of

type A-7 was transversely put on one side of each specimen. The transverse

strain was then read directly from a SR-4 portable strain indicator at the

accuracy of 2 x 10- 5 in/in.

The strain measurements of the specimens of group III of aluminum were

specially arranged for greater accuracy. A-7 typo strain gages were longitu-

dinally and transversely glued on both sides of each specimen belonging to

this group, in order to cancel out the bending effect. The strain reading

of each gage was then obtained from a SR-4 portable strain Indicator with

the help of a BLH Model 225 switching and balancing unit. Finally, the

average value of the readings of the two longitudinally arranged strain

gages gives us the longitudinal strain cx. and the average va~ue of the

..... .. ... .. a
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readings of the two transversely arrangcd strain gages gives us the transverse

strain c
y



IV. Description of Tests and Results

Experiments on Alumintun

The first group of aluminum specimens was tested under the "as-received"

condition. During the tests, the Tinius Olsen machine was operated at a

constant rate of crosshead separation. The rate was 8 x 10- 4 in/see, which

corresponds to a strain-rate of approximately 5 x 10 in/in/sec for the

specimens used. The recorder traced out the load versus c curve as readingsX

of load and of transverse strain were taken simultaneously at predetermined

readings of load, at small longitudinal strains, and at predetermined read-

ings of longitudinal strains, when the strain was large.

The stress-strain curves are shown in Fig. 1, in which the curve for

specimen 1 is identical to that for specimen #2. Fig. 2 shows the relations

between the transverse and the longitudinil strain, and Fig. 3 shows the

hydrostatic stress (x 3) versus the volumetric strain curve for aluminum of

group I. A loading-unloading loop was generated at the end of each test, and

we obtain loops, which is similar to the hysteresis loops, in the curves of

Figures 2 and 3 (not shown). More observations and discussions of the loops

will be presented later in this report. The large increase of -c at a lon-y

gitudinal strain of approximately 2.5% (see Fig. 2) corresponds to a case of

"mild" lateral instability as compared to the "strong" lateral instability

observed in low-carbon steel. We shall ma'. more observations later about

the lateral instability of aluminum.

The second group o aluminum specimens was tested exactly in the same

way as those of group I, except that the specimens were first annealed at a

temperature of 600or for two hours and then oven cooled to the room tempera-

ture before testing. This annealing process removes most of the effects due
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to cold work, and the material can thus be considered as isotropic. The

stress-strain curves for specimens At #3 and At #4 are shown in Fig. 4, in

which the two curves are indistinguishable. We notice, however, that the

material is considerably softened due to the heat treatment.

To see the suddeti increasL in magnitude of the transv,,se strain at a

longitudinal strain of approximately 2.2%, which has been an observed fact

in the test of group I, this series of tests was carried out to the extent

that the longitudinal strain at the time of termination of the test was ap-

proximately 9%. Here, again, we have observed a sudden increase in -c at a
y

longitudinal strain of ai)proximately 2.2%. This phenomenon has been observed

both for specimens At #3 and At #4.

The -Ey vs. £ curves are plotted in Fig. 5, and the akk vs. Ckk curves

are given in Fig. 6. The sudden increase of the transverse strain in Fig. 5

gives rise again to the sudden decrease of the volumetric strain in Fig. 6

which corresponds to the lateral instability mentioned earlier. In this

series of test, the loopings of the curves are once morc present in all the

figures concerned (not shown). These loopings are due to the loading-unload-

ing test conducted at the end~of each study.

It is important to point out, that aside of the sudden change of

Poisson's ratio immediately following yielding, Poisson's ratio remains ap-

proximately constant throughout the range tested. Poisson's ratio in the

plastic range is defined in the present investiCation by the expression

C

Cx

whir*h, in fact, is also used in elasticity (see footnote in the introduction).

Group III of the aluminum specimens was tested quasi-statically, i.e.,

readings were taken after the machine had been stopped and time of 5 minutes
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had already elapsed. By doing this, it is believed that the results obtained

ere time independent. As it has already been described earlier in this rz-

port that four strain gages were applied to each specimen of this series to

eliminate the bending effect due to the possible eccentricity of the loading

arrangement. The comparison of the present results (shown In Fip.ures 7-12)

with those obtained earlier in groups I and II of the aluminum specimens shows

that reliable data can be obtained without the complicated strain gage set-

ups of Zrokn 1I. In fact, the grips of the Tinius-Olsen machine amo of the

self-aligning type, therefore, eccentricity is to be expected at its minimula.

Loops are again present in all the figures concerned (Figures 7-12). It

is seen from Figures 9 and 10 that Poisson's ratio decreases again drastically

immediately following yielding.

The fact that all the curven in Figures 3, 6, 11 and 12 bend over toward

the..axis leads to the conclusion that aluminum is plastically zompressible,

at least when the hydrostatic stress is of a tensile nature. The assumption of

plastic incompressibility in the classical theor of plasticity would lead to a

linear relation betwen h ydroatatic stress and voluirn tric strain',_ this aparently

Is not the case.

Experiments on Copper

The experiments on group I of the copper specimens were designed to fur-

ther study the loops which we had observed in the tests of aluminum specimens.

These specimens of copper were tested under the "an-received" condition. The

rate of crosshead motion was kept constant (e x lo" In/sec) during this

series of test. The loading-unloading curves for specimens Cu 11 and Cu #2

are shown in Figures 13 and 14, ard the corresponding -c versus cX curves

are shown in figures 15 and 16. We see here again that loops are definitely

in existence and that, after a loop has been completed, the curve of -c
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versus E is virtually a continu ttion of the original -c verous c curve.x y x

The plots of akk vs. rkk for these specimens are given in Figures 17 and 18.

The copper specimens of group II were tested in exactly the sarmie way

as those of the aluminum specimens of group II, except that the annealing

temperature was 7500F. The results are shoim in Figures 19, 20 and 21. We

remark that in contrast with the aluminum specimens w;c do not observe the

sudden increase in the magnitude of the transverse strain foi all the copper

specimens concerned. As a result, Poisson's ratio :r approximately a con-

stant throughout the range tested.

Experiments were conducted on group III of the copper speciLmens under

quasi-static conditions, i.e. readings were taken after the machine had been

stopped and 5 minutes had elapsed. The results of this series are givers In

Figures ?2, 23 and 24. We again observe no sudden incrcase in the magnitude

of the transverse strain and that Poisson's ratio is virtually constant

throughout the range tcsted.

The tests on copper specimens of groups I, II and III shoi conclusively

that coper is also plastically compressible, as itis seen easily from

Figures 17, 18 21 and 24; otherwise these plots wo'uld have been straLhr

lines.

Expriments on Low Carbon Steel

The same experimental procedure as described above was followed when the

five low-carbon steel specimer.3 were tested. All the five specimens were

annealed, prior to tests, at a temperature of 12SOoF for one hour and then

oven cooled to room temperature. Thus, all the specimens can be considered

to be identical and the material can be considered to be Isotropic.

The tests were carried out under quasi-static conditions, and a typical

stress-strain curve for these specimens is given in Fig. 25. In Fig. 26, the
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relation between the transverse strain and the longitudinal strain is plotted

for all the five specimens. It is seen Lhat aside of the portion reflecting

"laieral instability" the curve is almost a straight line, Of all the speci-

mens tested in this series, three of them (#1, #2 and f4) showed lateral

instability before the occurrence of the lonaitudinal plastic flow, and follow

the path OABDE in Fig. 26. The rest of the specimens (13 and #5) experienced

lateral instability immediately after the longitudinal plastic flow hzd been

accomplished, i.e., lateral instability had occurred before the material

strain-hardoned. In this case, curve OACDE of Fig. 26 is followed..

We conjecture that had the material been homogeneous as well as isotropic

then longitudinal and transverse flow would have taken place simultaneously.

Since in practice this is rarely true, the ordcr in which these flows occur

must then be decided by slight differences in the directional properties of

the specimen.

To ensure the correctness of our observation about the lateral instabil-

3fty as a material property of low-carbon steel. The transverse dinn.sion of

all specimens was measured after the experiments by mean. of a micrometer.

The permanent transverse strains were then calculated referring to the orig-

inal dimensions of the specimens. The results checked favorably (with less

accuracy, of course) with those obtained by means of electric strain gages.

Two of the five experiments (92 and 04) were terminated right after the occur-

vence of the transverse plastic flow and before much longitudinal flow had

occurred, in order for us to study the lateral instability more closely.

Measurements by means of both electric strain gages and micrometer showed

that large amount of plastic flow did occur transversely at yielding. If it

was not for the transverse plastic flow, the transverse permanent strains

would have been very small for these two specimens.
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The relation betweel the hydro. tatic stress and the volu.*,tric strain

is shown in Figures 27-31. Th.: alphabetical order of letters in the figures

denotes successive states of the material during the tests. The last letter

in the figurc gives us the position where the correspo:1ding test was termi-

nated. It is seen that the lateral instability corresponds to a sudden de-

crease of volumetric strain. In the case when lateral instebility occurs

before the longitudinal plastic flow, the volunintric strain could become nega-

tive! A very strange result!

However, a similar pheno;mnon waz observed by Eridgman [6]. He investi-

gate4, by means of a dilatometer, volume changes during simple compression

in the plastic range, in various materials, such as mild steel, Nonray iron,

cast iron and rock (soapstone, marble and diabase). He obser~ved an increase

in volume under conditions of compressive hydrostatic stress, when the axial

compressive stress exceeded its yield value.
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V. On the Accurcy of the n;oerinenta! Measurements

It is to be noted that is is impossible to glve a strain gage on the

specimen such that the strain gage makes an angle of exactly 900 degrees

with the longitudinal direction of the specimen. Slight errors are always

possible, and these errors tend to make the readings of transverse strain

smaller than it should be. These are, however, small since the gages are

in the principal strain directions. According to Pervy and Lissner [3], & 2

degree error in gage alignment would only result in an error of less than

%.

Our purpose in the present experimental study is not the determination

of the exact value of Poisson's ratio. Our primary concern is the trend in

the variation of Poisson's r..tio :-s the longitudinal strain increases. For

this reason, the above mentioned deviations due to the misalignment of the

transverse strain gages are not important, since they hardly affect the broad

trends in the variation of Poisson's ratio, which are of interest here.

Slight scattering of some of our experimenal data for different speci-

mens may be attributed partially to the above mentioned misalignments of the

transvers" strain gages. We ntice, however, that our data are very consis-

tent in general, and the slight scattering of data occurs only in the case

of copper specimens #5 and #6. Even in these cases where data are scattered

slightly, the curve for each specimen is itself smooth, which indicates that

scatterinr is due to a large extent to variability in the properties of the

specimenn.

Of course corrections must also be made on the readings of the transverse

strain c duc to the effect of transverse sensitivity of the electric strain
y

gates. The transverse sensitivity factor for A-? strain gage is given by
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(31 £ -C
Perry and Lissner as k -0.01. The error, which is defined by e

where c is the apparent strain and c is the true strain, is 3% for a Poisson's
C

ratio of 0.3 and is 2.6% for a Poisson's ratio of 0.33, It is equivalent to

saying that c 0.971 c for material with Poisson's ratio of 0.3 and E

0.984 c for material with Poisson's ratio of 0.33. We have thus seen thatc

the true transverse strain is 2.9% smaller than the apparent transverse

strain when v 0.30, and is 1.6% smaller than the apparent transverse strain

when v 0.33. This correction is however in a different direction from the

one due to the misalignment if the strain gages, therefore some of the errors

should cancel out.

[4)Stang, Greenspan and Newman reported in as early as 1946 their experi-

mental study on Poisson's ratio of aluminum alloys 24 ST and 24 SRT, chrome-

molybdenum steel plate and structural and fully killed low-carbon steel plate.

In all cases these authors reported the increase of Poisson's ratio beyond

its initial (elastic) value throughout the longitudinal strain range tested.

This observation is not in agreement with the present findings.

We like to mention that the above discussed misalignment in the trans-

[4)verse strain gages also existed In the tests by Stang et al .in addition

to this, as it was pointed out by these authors themselves in their report,

there were large discrepancies in the values of Poisson's ratio obtained by

them for two nominally identical specimens.

Finally, from a thermodynamic point of view the hydrostatic stress versus

volumetric strain curve should bend over toward the c -axis]; this agrees

with our own observations.
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VI. Conclusions

The following conclusions can be drawn from the present experimental

study:

(I) The curve of hydrostatic stress versus volumetric strain bends

over toward the volumetric strain axis for all three materials

tested. This implies that the commercially pure aluminum, the

electrolytic tough pitch copper and the low-carbon steel are plas-

tically compressible, (at least when the hydrostatic stress is of

a tensile character) and that the most important assumption in the

classical theory of plasticity concerning the plastic incompress-

ibility of material lacks experimental justification.

(2) Lateral instability occurs weakly in the case of aluminum and

occurs strongly in the case of low-carbon steel. Lateral instabil-

ity always follows the longitudinal plastic flow for aluminum,

whereas two possibilities arise in the case of low-carbon steel-

lateral instability may precede or follow the longitudinal plastic

flow as dictated by the anisotropy of the material. No phenomenon

of lateral instability has been observed for the copper specimens

tested.

(3) The lateral instability corresponds to a decrease in volume due to

a slight increase in load for the case of aluminum, and corresponds

to a sudden decrease In volume while the load remains constant for

the case of low-carbon steel. Where the lateral Instability occurs,

Poisson's ratio has a large increase.

(4) Poisson's ratio for the commercially pure aluminum decreases consid-

erably after yield has occurred, from an initial value of 0.30 to a
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value as low as 0.06 corresponding to a longitudinal strain of

approximately 2%; beyond this point it increases continuously

and at an axial strain of 3% it reaches a value of 0.15 which re-

mains approximately constant up to x

(5) For the electrolytic copper, Poisson's ratio decreases continuously

with c from a vi.lue of 0,35 to a value of 0.3 at E = 9%.x x

(6) For the low-carbon steel, two possibilities prevail. If the later-

al instability occurs before the longitudinal plastic flow then

Poisson's ratio increases suddenly at yielding from its initial

value of 0.29 to a value as high as 6.0. It then decreases grad-

ually and reaches a value of 0.3 at c = 3%. Beyond this point,

Poisson's ratio remrains approximately constant up o cr9%. If

the lateral instability )ccurs after the longitudinal plastic flow,

then Poisson's ratio decreases considerably after yield has occurred

from an initial value of 0.29 to a value as low as 0.02 correspond-

ing to a longitudinal strain of approximately 2.5%, beyond this

point, it increases continuously and at an axial strain of 3% it

reaches a value of 0.3 which remains approximately constant there-

after.

(7) Loops similar to the hysteresis loops are present In curves obained
by plotting -c against c and also in curves of okk against kk

for all three materials tested.
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TABLE I

Metal Group Specimen Heat Treatment Remarks

91 Constant straln-rate test
No

#2

At #3 Annealed at 600°F
II for 2 hrs. and then oven Constant strain-rate test

#4 cooled to room temperature

#5 Annealed at 600F Quasi-static test, loading-
III for 2 hrs. and then oven unloading loops observed

#6 cooled to room temperature strain gages on both sides
of specimens.

01
No Constant strain-rate test,

#2 loading-unloading loops

observed.

Cu 93 Annealed at 750F

110 for 2 hrs. and then oven Constant strain-rate test
#4 cooled to room temperature

#5 Arnealed at 750F Quasi-static test
III for 2 hrs. and then oven

.6 cooled to ron-t temperature

#1

#2
Low- Annealed at 12500r
Carbon #3 for 1 hr. and then oven Quasi-static test,
Steel cooled to room temperature lateral instability
C1018 #4 observed
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Abstract

The endochronic theory of plasticity, developed previously by the first

author, has been shown to give an accurate prediction of metallic response in

the plastic range. The mechanical behavior of an isotropic material is given in

terms of two "heredity" functions similar to those encountered in the theory of

lin~ar viscoelasticity. In the present paper the "tensile" and "transverse"

heredity functions of copper and aluminum are determined experimentally using

the above theory. The properties of these functions are also discussed.



1. Introduction

The recently proposed "endochronic theory of plasticity" has been shown

to give accurate analytical predictions to a variety of experimental observa-

tions on metals sxch as copper and aluminum 1 . This theory differs from

previous theortes in that a yield surface is not necessary for the development

of the .onstitutive equations and that the stress (under "sothermal conditions)

is determinc, by the previous deformation history defined on a time scale which

is independent of the real time, but is itself a property of the material at

hand.

In a previous paper (  it was shown that diverse phenomena such as cross-

hardening , loading-unloading loops, cyclic hardening and effects of prestress,

can be described quantitatively and accurately with a single constitutive equa-

tion.

Specifically, this equation has the following form for small deformation

and initially isotropic materials:

z ac k
X(z-z') -- dz' + 2 ij(z-z') L dz' 0.0°Ij = ij z @ z,

0 0(

where
Wn PzA(z) E+ A rePr (1.2)

r=l r

n -a z
= + rl vr e r

where X. , r' V40, Or' pr and a r are positive constants and

z-( j > 0, z > 0. (i.4a,b)

* This term means a change In the unlaxial stress-strain relation due to a
torsional prestrain or vice-versa.
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The symbol z denotes a positive monotonically increasing time scale with

respect to a time measure dr, such that

d2 Pijk, de dckg (5)

where P. is a material tensor, which is positive definite ond which, for

the isotropic materials envisioned in Eq. (1.1), has the form

Pijkk=kl Iij kk + k 2 ik ai (1.6)

where k and k2 are material parameters, such that k + k- > 0, k > 0.1 21 3 2

Materials described by Eq. (1.1) are strain history dependent but strain-

rate independent. The derivatic- of constitutive equation (1.1) was given in

detail in Ref. 1.

It may be seen that eq. (1.1) is uniquely described by means of two

material "heredity functions", )X(z) and p(z). However, eq. (L.1) may be.

described instead in terms of the function IJ(z) and K(z), the "shear end bulk

p heredity functions", respectively. Specifically:

z

SSj J P(Z-Z') dz' (1.7a)

0

(z aEk
k =3 K (z-z') -k--- dz (I.Tb)

fo

and s and e,1 are the stress and strain deviatcrs. The functions X(z),

P(z) and K(z) are related as follows:

K(z) -X(z) + (I.8(z)1

From an experimental viewpoint It is more convenient to relate 61j(z) and

CW(Z) to the functions E(z) and v(z), which we shall call the "tensile" and

"transverse" heredity functions. This relationship Is:
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zt. 3.. [z .

1 E(z--z') ;dL dz' a.. + v(z-z') . dz' -6dZ' = j fi dz' "j

0 0

z (19)
v(z-z' ak

0

The functions E(z) and V(z) are telated to the previous functions through their

Laplace transforms as follows:

-- 1K

= 3P (1.11)
"" I+L

3R

where a bar over a function denotes its Laplace transform with respect to the

parameter p.

In the present paper we present forms of the functions E(z), v(z) that

have been determined experimentally in the case of copper and aluminum; these

will be discussed in later sections. The experimental measurements necessary

to determine the above functions were also used to evaluate critically the

Implications of the assumption of plastic Incompressibility, normally made In

the classical theory of plasticity. These experiments are reported in detail

in Ref. 2.

As Is well known, this assumption leads to the result that Po;sson's ratio

I*
tends to y-as the plastic strain increases. Our experimental results do not

support this conclusion. In the classical theory of plasticity, plastic In-

compressibility has also been Interpreted to mean that the hydrostatic stress

* The term "plastic strain" is used in the content of the classical theory

of plasticity. The endochronic theory does not recognize the dichotomy
of strain Into elastic and plastic parts.



4f.

is a linear function of the hy,;rostatic strain; our experimcntal data do not

support this either.

Of course in its broader aspect, plastic incompressibility may imply a

reversible, though non-linear, volumetric response. However, the observed

volumetric response was decidedly irreversible. Consequently our experimental

measurements do not support the assumption of plastic incompressibility, at

least when the hydrostatic stress is of tensile character. (A non-linear

irreversible volumetric response in simple compression has also been reported

in the literature by Bridgman (3).)

It is significant that the endochronic theory can predict plastic com-

pressibility, exactly, provided that the heredity function K(z) is chosen

appropriately, or is determined experimentally.

2. Experimental determination of the heredity functions.

In the case of the simple tension test eq. (1.9) reduces to the following

two eq.'s:

z

a = E(z-z') a-n dz' (2.1)

-y f v(z-z') dz' (2.2)

0

In Ref. 1, the time scale z was related to the Intrinsic time C by the equation

Z log ( + 0) (2.3)

which proved very satisfactory In providing agreement between the theory and a

variety of experiments as discussed in the Introduction. For this reason eq.

(2.3) will be retained In this paper.
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As a result of eq.'s (1.5) and (1.6)

=k 2 (d + 2c )2 + k 2(dE2 + 2de) (2'

Because ki and k2 are not known and to illustrate the methodology f the

theory, we have taken k1 = 0. In this event

d - kI I + 2 2 dE (2.5)

If, in addition, an expcr,r tal relation between a and Ex as well a

between cy and c were known, then from eq.'s (2.3) and (2.5) Ex would bc a

known function of z, in which case a. and c would also be known functions

of z. -

Equations (2.1) and (2.2), which are Volterra integral equations, would

then be solved to yield the functional form of the Kernels (heredity functions)

E(z) and v(z).

In the particular use where E is a linear function of z (experiments

show that this Is a very good approximation as will be shown later) eq.'s (2.1)

and (2.2) can be solved exactly to yield the relations:

E(z) - h dzz(76

-V(z) W h {dc_.. Oey(z)} (2.7)

where dz W h dcx (2.8)

and { ) 21 112
h - k + 2 (dex (2.8a)

In Ref. 2 we presented experimentally obtained unlaxial stress-strain

curves for a largc number of copper and aluminum specimens We also present-

ed experimental curves showing the relation between cy and Xfor these same

Electrolytic tough pitch copper and commercially pure aluminum.I!



6.

specimens. In Fig.'s 1-4 we show such typical curves *.

Now, using the experimental curves of Fig.'s 3 and 4, eq. (2.5) ex was

determined as a function of C for copper and aluminum and the curves of these

functions are shown in Fig. 5, with k2 remaining undetermined. Similar curves

were obtained for c as a function of and appear in Fig. 6.

One can see in Fig. 5 that the relation between c and C is linear to a

very good approximation for both copper and aluminum. Therefore, eq.'s (2.6)

and (2.7) may be considered as approximate solutions of the Volterra integral

equations (2.1) and (2.2) and may be used to determine the form of the heredity

functions E(z) and v(z). This was done as follows: Eq.'s (2.6) and (2.7) may

be wrltten in the alternative form:

E(z) - L hoo(z) (2.9)

dcz - B" - h8c (z) (2.10)dex y
where nowi h Is taken for consistency to be the mean value of the slope of the

approximate linear -elation between c and C. Using eq.'s (2.9) and (2.10)

and Fig.'s (1-4), E(z) and v(z) were calculated for copper and aluminum; these

appear In Fig.'s 7-8 and 9-10 for various values of 8.

Discussion of the heredity functions

(a) Copper: Two characteristics of the tensile heredity function E(z)

merit discussion. Ir, the region of small z, E(.) exhibits a point of inflexion;

this implies that the second derivative of E(z) changes sign at that point.

**For copper specimen I and aluminum specimn 4 of Ref. 3.
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This behavior is not predicted by the current form of the theory, according to

which
n

E(z) = E E e re (2.11)

r~1 r
d2Ewhere E and a are positive constants. Evidently -dz , as calculated fromr r

the above equation, is always positive. However, except for this small region

in the vicinity of z-O, the experimental curve assumes a shape not unlike the

one predicted by the eq. (2.11). On the other hand the form of the function

E(z) does not appear to be particularly sensitive to changes in 0, particularly

at moderately small values of z.

The transverse heredity function v(z) decreases slowly as z Increases but

remains virtually constant (over the range of z shown) If 0 Is small. There-

fore, as far as copper Is concerned the assumption of constant Poisson's ratio

Is true, to a very good approximation.

(b) Aluminum: The tensile heredity function for aluminum is very similar

to that of copper. The transverse heredity function, however, exhibits a strik-

Ingly different behavior. At moderate strains it decreases from Its initial

value quite rapidly, vntil it becomes virtually zero; then, at higher strains

It Increases abruptly to a value which Is three times the Initial value. Then

it decreases again and at still higher strains, it tends tv a constant value,

which Is nearly equal to the Initial value.

No physical explanation can be offered at this time for this behavior,

which is certainly not due to necking of the specimen; quite definitely, neck-

Ing did not occur In the range of deformation ind7-'ted in Fig. 8.



3. Material coipressbilbii ty under hydrostatic tension

In this section we shall discuss the experimental measurements which led

to the conclusion that the assumption (f plastic incompressibility (norrrally

made in the classical theories of plasticity) is not tenable.

The experiments, simple in nature, consisted in monitoring the axial

stress as wcll as the axial strain and onc transverse strain of a thin flat

bar in uniform uniaxial tension . Th;s sim,,0e test has enjoyed a great deal

of popularity but we could find only one Instance (  whcr "transverse strain"

measurements were mwde in the plastic range. This is surprising, since this

test affords a very critical evaluation of the assumption of p!astic incom-

presslbll Ity.

The classical plasticity theory yelds the following result, assuming

elastic compressibility and a Von Mises yield surface:

1 - L (3.1)

dX 2 2 0 o
where c and c are the longitudinal and transvcrse %trains respectively,

E and v are the elastic Youag's modulus and Poisson's ratio respectively,

and E is the tangent modulus of the tensile .:-ress-strain curve.

Eq. (3.) can be Irtegrated nunerically to yield a relation between

and cX. This has been done for alumiinu and copper.

The aliunum spccimens ure shcarcd frc-i a 1100-0 aluninu. sheet and

annealed at 6000 F for two hours and then oven cooled to roo , te-pcrazure.

The copper specimens were cut out fror, an electrolytic tou;h pitch copocr

110(99.9 4 % cu) bus bar and annealed at 7SuoF zmd then cven cooled to re!--

temperature.

Detailed description of the apparatus and the experinental p Cc4 e is to
be found in Ref. 2.



he results are shown in Fig. 's 3 arid h. It may be seen that the

classical plasticity theory gives a poor prediction of transverse strain re-

sponse, particularly for aluminum.

On the other hand the assumption of constant Poisson's ratio is quite

good over a wide range of axial strain for aluminum and is almost exactly

true in the case of copper. For this reason the assumption of constant

Poisson's ratio was adopted in the analysis.

Also shown in Fig.'s II and 12 are plots of 0kk versus ckk. These plots

show very vividly that hydrostatic response is not elastic, at least when the

hydrostatic stress is tensile. If one extrapolates from one's experience in

elasticity, the effect of this assumption is likely to be large in the case

of kinematically constrained configurations.
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