OFFICIAL FILE COPY

AFML-TR-68-181 Part III AD073677ネ

KINETIC ANALYSIS OF THERMOGRAVIMETRY

Part III: Experimental Modifications

IVAN J. GOLDFARB

TECHNICAL REPORT AFML-TR-68-181, PART III

SEPTEMBER 1971

This document has been approved for public release and sale; its distribution is unlimited.

*

AIR FORCE MATERIALS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

20040303051

BEST AVAILABLE COPY

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AFML-TR-68-181

Part III

:

KINETIC ANALYSIS OF THERMOGRAVIMETRY

Part III: Experimental Modifications

IVAN J. GOLDFARB

ş

 $1 \le 1$

This document has been approved for public release and sale; its distribution is unlimited.

FOREWORD

This report was prepared by the Polymer Branch, Nonmetallic Materials Division. The work was initiated under Project No. 7342, "Fundamental Research on Macromolecular Materials", Task No. 734203, "Fundamental Principles Determining the Behavior of Macromolecules" with Dr. I. J. Goldfarb (AFML/LNP) acting as task scientist. The work was administered under the direction of the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.

The author wishes to thank Dr. D. R. Bain for his many helpful suggestions and the late Mr. R. R. Luthman, Jr., for his valuable assistance in the experimental work.

This report covers research conducted from September 1968 to July 1970. This report was submitted by the author in March 1971 for publication as a technical report.

This technical report has been reviewed and is approved.

S. L. Van Neusen

R. L. VAN DEUSEN Chief, Polymer Branch Nonmetallic Materials Division Air Force Materials Laboratory

ABSTRACT

The experimental apparatus for temperature programmed thermogravimetry has been modified to more effectively obtain kinetic parameters for the degradation of polymers. The thermobalance was modified to incorporate direct sample temperature measurement thereby to minimize temperature measurement errors. An automatic data acquisition system was incorporated into the apparatus and appropriate computer programs to handle the magnetic tape data were written. The modified apparatus has been tested with several polymer systems and it was demonstrated that the use of the magnetic tape data recording system permitted greatly increased output from the thermobalance.

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTIÓN	1
II	MODIFICATION TO THE AINSWORTH RV THERMOBALANCE TO INCORPORATE DIRECT SAMPLE TEMPERATURE MEASUREMENT	
	MEASUREMEN I	2
	1. Introduction	2
	2. Modifications	2
	3. Testing Under Run Conditions	8
	4. Conclusions	11
III	COLLECTION, PROCESSING, AND ANALYSIS OF TGA DATA	12
	1. Introduction	12
	2. The SRL Model 837 Data Aquisition System	12
	3. Conclusion	16
	REFERENCES	17
	APPENDIX	19
	Program 1	20
	Program 2	27
	Program 3	3.3

ILLUSTRATIONS

FIGURE		PAGE
1.	Ainsworth RV Balance - General Arrangement with Wires and Thermocouple Support System	3
2.	Details of Wires Attached to Balance Beam and the Thermocouple/Support Arrangement	4
3.	The Thermocouple/Support	6
4.	Effect of Sample Weight Changes on Beam Position	7
5.	Activation Energy as a Function of Weight Loss for Polytetrafluoroethylene	9
6.	Arrhenius Plots for PTFE at 50% Weight Loss	10
7.	Model 837 Dual Channel Data Aquisition System Block Diagram	13
8.	Transfer of Data From Small Tape to the Master Storage Tape	14

SECTION I

INTRODUCTION

In the previous report (Reference 1) a method of obtaining kinetic parameters for the degradation of polymers using temperature programmed thermogravimetry was described. The experimental procedures and a method of processing TGA data on the computer were described including the application of the technique to several polymers. The technique has since been applied to a variety of polymer systems with considerable success (References 2 and 3). Routine operation of the system revealed two possible limitations to the accuracy and usefulness of the apparatus in its present form.

1. The temperature of the degrading sample was assumed to be that of a thermocouple placed near the crucible with some temperature correction applied.

2. The output was limited by the speed at which data could be read off the chart and prepared for processing by the computer.

Since the system had been shown to be capable of producing high quality data, it seemed desirable to redesign the apparatus to remove these limitations on its use. This is described in detail in the following sections.

SECTION II

MODIFICATION TO THE AINSWORTH RV THERMOBALANCE TO INCORPORATE DIRECT SAMPLE TEMPERATURE MEASUREMENT

1. INTRODUCTION

In TGA it is customary to calibrate the temperature inside the sample holder against an external thermocouple placed as close to the operating position of the sample holder as possible, under normal run conditions (heating rate, etc.) except that weight is not being recorded. Providing the same conditions are observed during the normal run there is no reason to suppose this technique is inaccurate. However, for a large number of samples, heating rates, etc., this represents an inordinately large number of calibrations and this still presupposes absolute reproducibility of the two runs. A much more satisfactory method is to measure the temperature of the sample directly during the degradation, particularly in kinetic studies where temperature is so important. The evaporation of material from degrading polymers can cause considerable decrease in sample temperature, particularly when rate of weight loss is high. For example, polytetrafluoroethylene loses 16%/minute at its maximum rate of weight loss under the conditions used to study this polymer.

2. MODIFICATIONS

The Ainsworth RV thermobalance used in this work is particularly suitable for conversion to direct sample temperature measurement. All of the parts are accessible when the cover is removed. The fact that the balance is not the null deflection type poses some problem since, at some stage, wires have to be taken from the beam to a measuring device thereby interfering with the normal free swing of the balance. The configuration of the wires described in this section was arrived at by trial and error.

Figure 1 shows a general view of the balance with the bell jar in place. Figure 2 shows the detailed arrangement of the connecting wires.

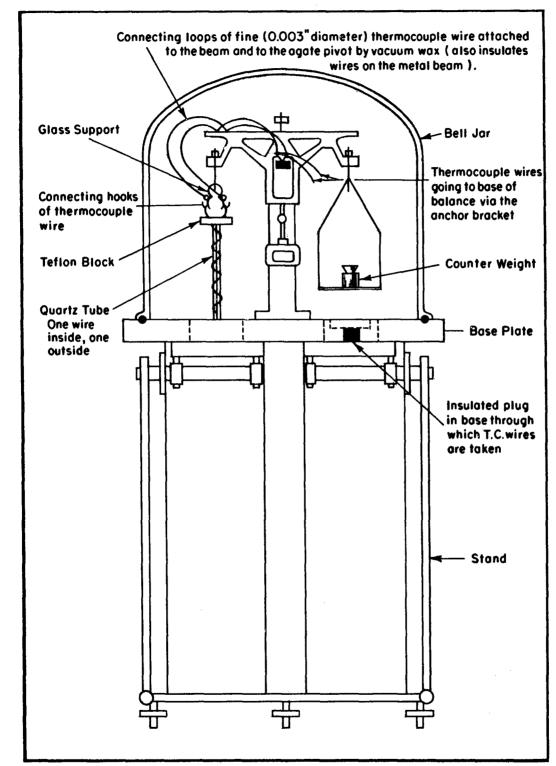


Figure 1. Ainsworth RV Balance - General Arrangement with Wires and Thermocouple Support System

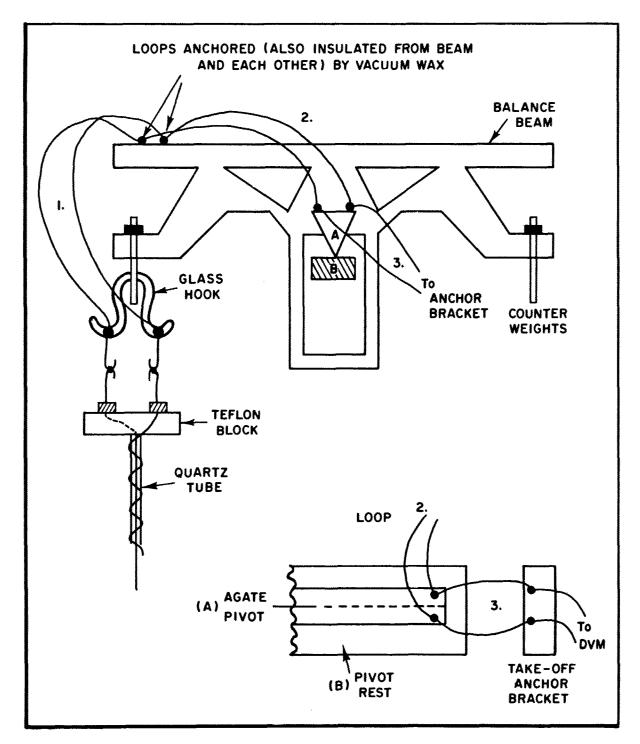


Figure 2. Details of Wires Attached to Balance Beam and the Thermocouple/Support Arrangement

Originally the balance was wired with Chromel/Alumel wire because of its high millivolt per degree output (0.04 mv/°C), but because the wire is magnetic there was considerable interaction with the furnace electrical supply up to 300°C. Weight readings below this temperature could not be used. The balance was later rewired with platinum-platinum/10% rhodium wires which are nonmagnetic. The lower EMF was measured with a Digital Voltmeter. The real problem in direct sample temperature and weight measurement is in finding some way of transferring the EMF signal from the balance beam without interfering with the weighing characteristics. Any attachments to the beam have the potential of upsetting both the sensitivity and the zero of the balance, especially as the Ainsworth is not a null deflection balance. The wire attachments are shown in Figure 2. Loop 1 joins the thermocouple/suspension to the beam. Consider the effect of changes in sample weight on this loop. The situation is shown in Figure 4. α_1 , is the angle between the beam and suspension, initially, and a_2 the angle after the sample has lost weight. It can be seen that the arrangement of Loop 1 will tend to restrict this motion and cause anomalous weight readings. The arrangement of Loops 2 and 3 will have a similar effect. Loop 3 was found to have a profound effect on the zero of the balance. Careful arrangement of the length and position of the wires resulted in a stable system provided certain limitations were recognized. Although this balance can follow weight changes up to 200 mg using multiple chart scans the weight loss that could be followed was less than 10 mg, i.e. one span of the recorder chart. Some relaxation effects were noted when the beam was switched from one position to another by adding or subtracting 10 mg to the counter weight. This limitation of 10 mg samples is of little importance since heating effects and diffusion usually restrict sample size. A detailed drawing of the support suspension is given in Figure 3. Removing and rehanging the suspension was found to give small variations in readings so the balance could not be used to measure absolute sample weight. In practice this was not a problem since either the sample degraded completely or the weight added to the crucible could be measured with sufficient accuracy.

AFML-TR-68-181 Part III

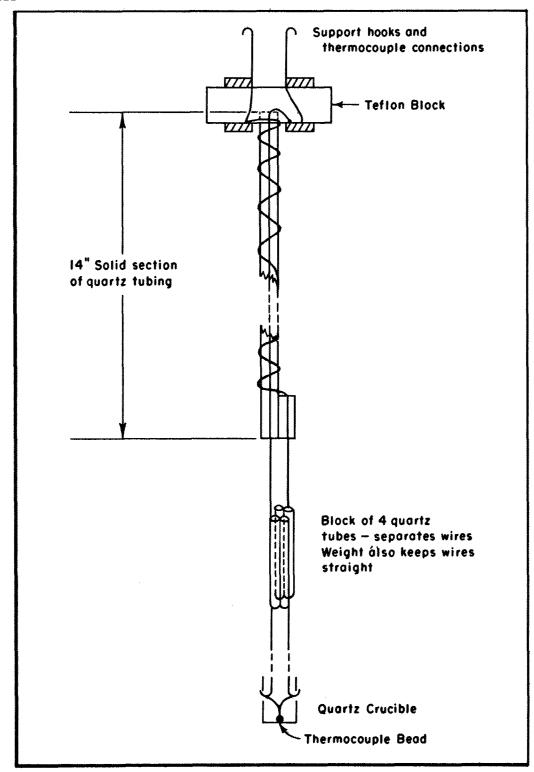


Figure 3. The Thermocouple/Support

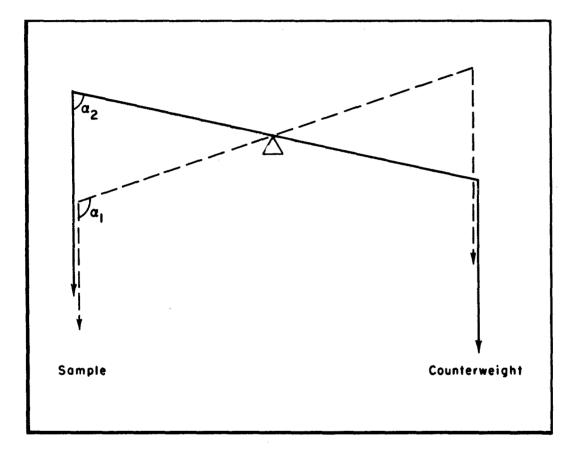
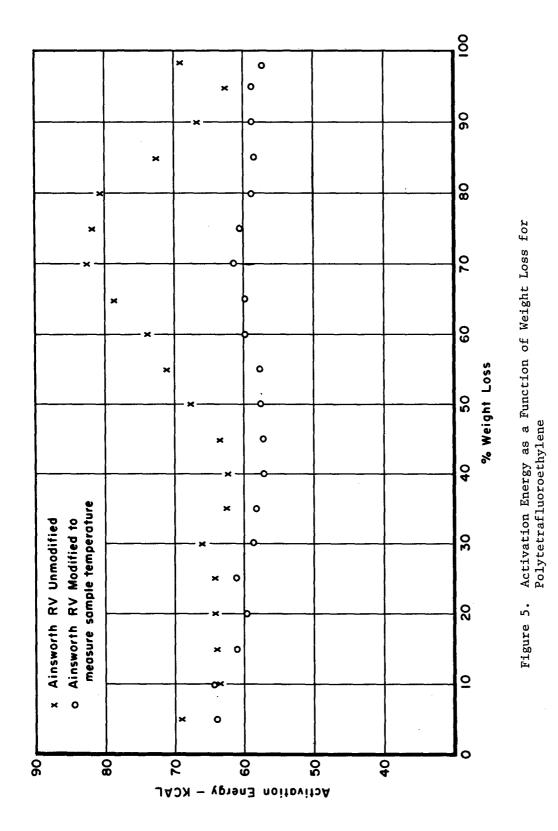


Figure 4. Effect of Sample Weight Changes on Beam Position

The operation of the balance is very convenient for checking zero and sensitivity, and long-term drift in both. If the balance is adjusted to give a zero or 100% reading on the chart, adding or subtracting 10 mg by the remote control switches the balance from one extreme to the other. In this way changes in zero and sensitivity can be detected and adjusted. In practice, as well as checking the sensitivity before a run, the weight was arranged such that, at the end of the degradation, the balance was close enough to the zero position to allow switching and a further check. Sensitivity variations were usually less than 1%. The constancy of buoyancy correction is another "built-in" check on the accuracy of operation.


The weight of the Teflon block and quartz rod in the suspension was found to give good electrical contact at the hooks. The black wax used as an anchor for the wires on the balance beam also acted as an effective insulator. To check the electrical integrity of the system, the sample temperature as measured by the suspension was checked against an independent thermocouple in the crucible. Variation was less than $1^{\circ}C$ at $600^{\circ}C$.

3. TESTING UNDER RUN CONDITIONS

Since an extensive study of the degradation of polytetrafluoroethylene had been made on the unmodified balance (Reference 1) a complete kinetic analysis was carried out on the polymer using the balance with the wires attached.

Samples of Teflon molding powder (8-9 mgs) were degraded at nominal heating rates of 75, 150, 300, and 450° C/hour. The data was analyzed by the standard procedures detailed in Reference 1.

A plot of Activation Energy against % weight loss is shown in Figure 5, before and after balance modifications. The results of this work show an average activation energy of 59.5 kcal compared with 69.3 kcal for the previous work (both for 10-80% of the reaction). The earlier results, however, show a considerable increase in activation energy after 50% weight loss.

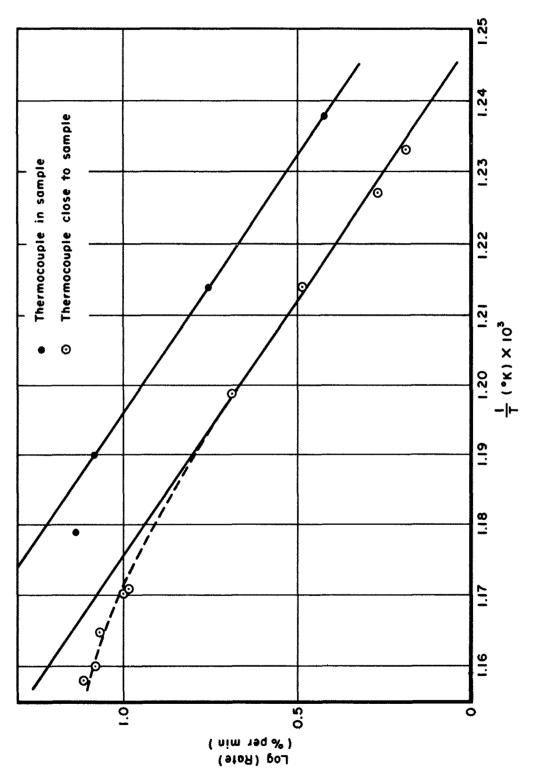


Figure 6. Arrhenius Plots for PTFE at 50% Weight Loss

A better comparison of the result is obtained by comparing the Arrhenius plots for the two series at 50% weight loss. The points at lower heating rates in both cases fall on parallel straight lines indicating the same activation energy. The separation of the lines represent a temperature difference of 13°C, the sort of difference one might expect between thermocouples placed in and adjacent to the sample. It is interesting to note that, with the thermocouple in the sample, the data at 300°C/hour heating rate falls on the straight line whereas it does not in the previous data. This is probably due to the temperature in the sample being lower than that recorded in the earlier work. Deviations occur in both cases at 450° C/hour. At this heating rate the rate of volatilization is of the order of 16% per minute and questions of how well the thermocouple can respond to the changes and how the sample is distributed with respect to the thermocouple arise. There also exists the possibility of lower rates due to diffusion effects at high heating rates, particularly in the larger samples used in the earlier work (100 mg). This effect of sample size may have something to do with the otherwise unexplained increase in activation energy after 50% reaction, observed in the earlier work.

4. CONCLUSION

In general the agreement in the two sets of data is good indicating that the attachments to the balance beam have had little effect on the accuracy of the system. The modified system is, however, inherently more accurate since the temperature sensor is inside the crucible, although question may still arise about contact with the sample, thermal conductivity of the sample, temperature gradients and heat being conducted away from the sample by the wires (Reference 4).

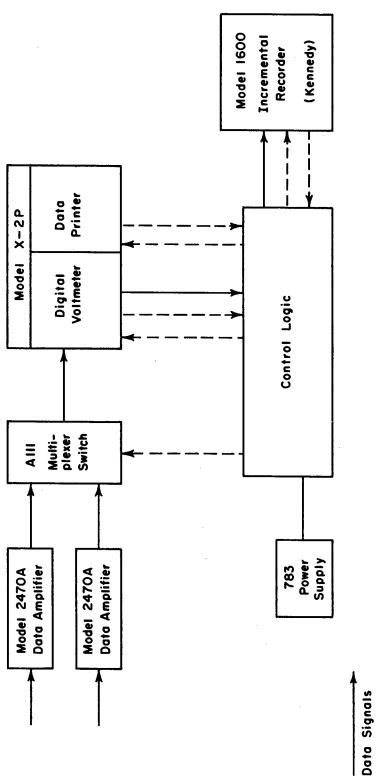
Confidence in the stability and response of the balance was further increased when a set of data obtained with a chromel-alumel system with manual reading of data from a recorder chart, gave the same kinetic parameters for BBB degradation as the same balance wired with platinumplatinum/10% rhodium and using a magnetic tape recording of the data.

SECTION III

COLLECTION, PROCESSING AND ANALYSIS OF TGA DATA

1. INTRODUCTION

In the previous reports (References 1 through 3) TGA data was obtained by reading several hundred sets of weight/temperature data points from the recorder chart, and having the data transferred to punched cards for processing by the computer. This operation was both time consuming and tedious and considerably reduced the amount of data that could be produced. The method had also considerable potential for human error. Modern advances in instrumentation have suggested the replacement of the chart recorder by another device such as a magnetic tape or paper tape recorder which can be read directly by the computer. For this purpose an SRL Model 837 Data Aquisition System was acquired. This is described in the next section.


2. THE SRL MODEL 837 DATA AQUISITION SYSTEM

A block diagram of the apparatus is shown in Figure 7. The system consists of the following components:

- 1. Two model 2670 Data Amplifiers Hewlett-Packard.
- 2. A model X-2P Digital Voltmeter Non-Linear Systems, Inc.
- 3. A model 1600 Incremental Tape Recorder Kennedy.

4. Scanner and Counter Logic - SRL design using Digital Equipment Corporation Flip Chip Modules and power supply. The complete system is housed in a 67-inch Honeywell modu-mount enclosure and each basic component has its own power supply, switch, and fuse.

Electrical signals proportional to the weight and temperature are fed to the two Data Amplifiers, the levels of which can be adjusted to send a measurable output to the digital voltmeter. The two signals are scanned alternately, the scanning interval varying from 0.5 to 10 seconds (i.e. the interval between two successive weight or temperature readings can be varied from 1 to 20 seconds). If necessary a permanent record of the data can be obtained from the printer in which case the

Control Signals

AFML-TR-68-181 Part III

lower limit of the scan interval is governed by the tracking speed of the printer. In practice the printer is only used during testing or trouble-shooting. The amplified signals are fed to the magnetic tape recorder. Data is recorded in records of a length determined by the control logic, with a record gap at the end of each record. At present the apparatus is set up to receive 18 sets of weight/temperature data but this can be varied. This short length is very suitable for correction as will be discussed later. When the "Stop" button of the system is activated, recording continues to the end of the record. At the end of the last record an "End of File" code must be recorded. This is used by the computer to detect the end of the data and without it data cannot be recovered.

Once the data is recorded it is now in a form suitable for processing on the IBM 7094 computer.

To minimize the loss of data which could occur due to various failures, each run is recorded on a separate magnetic tape (Ampex Data Mailer, 200 ft). Since it is necessary to retain data for some time but undesirable to accumulate numerous magnetic tapes, the data is transferred to a master storage tape during the initial processing A block diagram of the tape manipulation is shown in Figure 8.

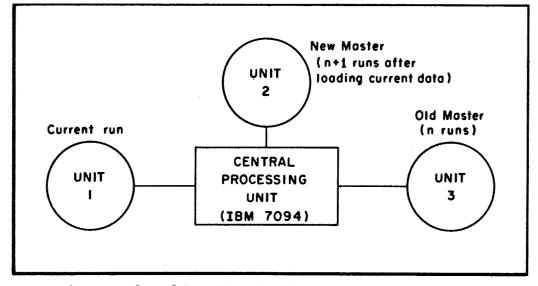


Figure 8. Transfer of Data From Small Tape to the Master Storage Tape

Transfer and storage of data is carried out when the data is sent for preliminary examination using Program 1 (Appendix). To minimize loss of data due to machine or operation error, three master tapes and at least the six most recent runs are retained. The three storage tapes have n, n-1 and n-2 runs. When hung in the configuration shown, the tape with the largest number of runs is the old master tape which is read only. The tape with the least number is the new master. The n-1 tape is meanwhile safely stored. The data from the old master is written on the new master (Step 1) followed by the current run data (Step 2). This tape then becomes the main master storage. The method also allows the erasure of the latest record should the output show the data was unsatisfactory.

As well as handling the storage of data, Program 1 also displays the weight loss, temperature, and rate of weight loss at each of the weight losses, along with a record by record account of the data as stored on the tape. Both the records and the number of data points are counted and those figures are particularly useful for identification purposes in the case of bad data. Three types of bad data have been encountered and Program 1 is available with modification to cope with each:

1. Redundant records caused by write errors, eg parity errors, in the recording. Provided they do not occur at critical stages in the degradation up to nine records can be discarded. This type of failure is recognized by the computer in reading the tape and the number of redundant records is shown on the initial print out.

2. Records which have bad data but which are not redundant and are not detected by the machine. If they do not occur at a critical stage in the degradation they can be discarded.

3. Bad data points in a record. These can be replaced by values in keeping with the rest of the data.

Once a set of satisfactory runs have been loaded on to the master tape, the data is reprocessed using Program 2. This program, provides a print out of the rate of weight loss at 1% intervals and also gives the output on IBM punched cards for use in the Arrhenius Program (Program 3, Appendix).

3. CONCLUSION

The complete series of modifications to the thermogravimetric system described in this report have been tested on a series of styrene-acrylonitrile copolymers. These copolymers have a very high rate of weight loss providing an effective test for the direct sample temperature measurement. As with the degradation of Teflon, it was shown that good Arrhenius plots could be obtained provided the heating rate did not exceed 300°C/hour. The short degradation time was useful in testing the efficiency of the data recording system. It was clearly demonstrated that the use of the magnetic tape data recording system permitted maximum output from the thermobalance. The system is set up such that if the output is to be further increased a second thermobalance could be readily accommodated, one balance being loaded and evacuated while the other is being used. Detailed results of the analyses of the kinetics of degradation of the styrene-acrylonitrile copolymers will be described in another report.

REFERENCES

- 1. I. J. Goldfarb, A. C. Meeks, R. McGuchan, AFML-TR-68-181, Part II.
- 2. I. J. Goldfarb, R. McGuchan, AFML-TR-68-182, Parts I and II.
- 3. I. J. Goldfarb, A. C. Meeks, AFML-TR-68-367, Part I.
- 4. H. C. Anderson, in Thermal Analysis, Vol. 1, Ed. P. E. Slade and L. T. Jenkins.

APPENDIX

PROGRAMS 1 - 3

PROGRAM 1

This program transfers current run data to master storage tape, provides record by record output of data as it appears on the tape, and provides a preliminary print out of the rates for examination.

.

	TGTAPE 09/17/7C	
	TGTAPE - EFN SOURCE STATEMENT - IFN(S) -	
C	PROGRAM 1 TAPE PREPARATION AND INITIAL EXAMINATION OF DATA	
č	PREGRAM TO REAC CURRENT DATA AND TRANSFER IT TO THE MASTER TAPE	
Č	ALCNG WITH ALL THE DATA ON THE OLD MASTER	
č	THE PROGRAM ALSO PRINTS OUT THE DATA OF THE CURRENT RUN AND	
C	DETERMINES RATE OF WEIGHT LOSS AT ONE PER CENT INTERVALS	
Č.	UNIT 1 = SMALL TAPE WITH CURRENT RUN	
С	UNIT 2 = NEW MASTER TAPE	2 (2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	UNIT 3 = CLD MASTER TAPE (CAN BE READ ONLY)	
C	PREGRAM USES SUBROUTINE EOF TO PERMIT READING OF A NUMBER OF	
	FILES SEPARATED BY END OF FILE MARKERS	
C	INPUT TEMPERATURES ARE FITTED TO A FIFTH DEGREE POLYNOMIAL USING A	
<u> </u>	LEAST SQUARES SUBROUTINE (PLSQ).	
C	WEIGHTS CORRESPONDING TO SHORT TEMPERATURE RANGES ARE FITTED TO A	
<u> </u>	CUACRATIC BY PLSG.	
C	INPUT WEIGHTS DIFFERING FROM FITTED LINE BY MORE THAN ONE PERCENT OF THE	
C C	TOTAL WEIGHT LCSS ARE REPLACED BY THE CURVE FIT VALUE. W = WEIGHT CATA POINT READ OFF TAPE	
	T = TEMPERATURE DATA POINT READ OFF TAPE (IN MV.)	
C	TI =TIME DATA POINT CALCULATED FROM TIME INTERVAL AND NO OF CATA POINTS	
	TINT THE INTERVAL	
Ĉ	WW =WEIGHT LOSS AT 1 PER CENT INTERVALS	
	DWDI=RATE CF WEIGHT LOSS AT 1 PER CENT INTERVALS	
C	TDER=HEATING RATE AT 1 PER CENT INTERVALS	·
C.	IPCLY=IEMPERATURE CORRESPONDING TO EACH PER CENT WEIGHT LOSS, CALCULATED BY	
С	PLSQ	
<u>C</u>	INW=_TIME_CCRRESPONDING_TO_EACH PER_CENT_WEIGHT_LOSS	
C	PLCT = DIMENSIONS FOR GRAPH PLOT SUBROUTINE	
<u>C</u>	B = COEFFICIENTS OF 10TH ORDER POLYNOMIAL FITTING TEMP/EMF DATA FOR	
C	PLATINUM*PLATINUM 1CPER CENT RHODIUM	
<u> </u>	C = CCEFFICIENIS OF WEIGHT/TIME PLSQ QUADRATIC	
C	D = COEFFICIENTS OF 5TH ORDER PLSQ USED TO FIT TIME/TEMP.DATA	
	RTEMP =RECIPRUCAL ABSOLUTE TEMPERATURE	
C	FOLDWALFNEE (TITAL) OLOTALLY ALD TALLY ADATES (TALLY ADATES TALLY)	
	EQUIVALENCE (TI(1), PLOT(1)), (ID, JZ(1)), (DATE1, JZ(2)), (DATE2, JZ(3))	
	1,(COM1,JZ(4)),(COM2,JZ(5)),(COM3,JZ(6)),(COM4,JZ(7)),(TINT,JZ(8)) DIMENSION_II(5500),WW(101),TNW(1C1),DWDT(101),Y(120),C(6),A(1),	
	1W(55CC),T(5500),Z(42),X(36),PLOT(50,110),TDER(101),TPOLY(101),	
	IRTEMP(101), B(11), D(6), JZ(8)	
	INTEGER DUMMY	
	CATA DUMMY/4HZERO/	
	98 CALL READ(3, JZ, 8, J)	2
	IF (ID-EQ.CUMMY)GO TO 114	-
	CALL WRITE(2,JZ,8)	7
	97 CALL READ(3,X,18,J)	9
	IF (J-1) 111,112,113	
1	11 CALL WRITE(2,X,18)	
	GO TC 97	
1	12 CALL CLCSE(2,2)	10
-	GO TC 98	
1	13_WRITE(6,115)JZ(1)	18
	15 FORMAT(2X, A5, 39HREDUNDANCY ENCOUNTERED - RUN TERMINATED)	
	14 REAC(5,10CC)ID,DATE1,DATE2,COM1,COM2,CCM3,COM4,TINT	19
<u> </u>	00 FORMAT(8X, 45, 1X, 46, 42, 2X, 346, 43, 6X, F6, 4)	21
	CALL WRITE(2,JZ,8)	2

	TGTAPE	09/17/70
	TGTAPE - EFN SOURCE STATEMENT - IFN(S) -	
	L=C ASSIGN 20 TC IEOF	
		25
10	CALL EOF(IECF) L=L+1	25
10	N=18+L	
	IF(N.GT.55CC)GC TO 400	
	M=N-17	
	READ(1,10C2)(W(1),T(1),I=M,N)	32
1002	FORMAT(36(F6.2,1X))	
	CALL WRITE(2,W(M), 18)	42
	CALL WRITE(2,T(M), 18)	45
	GO TC 10	
20	L=L-1	
	N=18+L	
	CALL CLOSE(2,2)	50
	CALL WRITE(2, DUMMY, 8)	52
25	LK=L-5	
	DO 380 K=1,LK,5	
	WRITE(6,4)IC,K	57
4	FORMAT(1H1,10X,A5,5X,6HREC NO,13//38X,3(1HW,11X,1HT,11X))	
	KT=K+4	
	CO 370 J=K,KT	
	KB=18*J-17	
	KE=18*J-12	
	DO 365 I=KE,KE	
365	WRITE(6,5)W(I),T(I),W(I+6),T(I+6),W(I+12),T(I+12)	65
5	FORMAT(35X,6(F7.2,4X))	
	WR [TE(6,381)	72
	FORMAT(1HO)	
	CONTINUE	
<u> 38C</u>	CONTINUE	
	LR=L-(L/5)*5	
	IF(LR.EC.O)LR=5	
		01
	hRITE(6,4)IC,M	
	DO 385 J≒M,L	
·····	KB=18*J-17	
	KE=18*J-12	
205	CO 395 I=KE,KE WRITE(6,5) W(I),T(I),W(I+6),T(I+6),W(I+12),T(I+12)	89
292	WRITE(6,381)	96
205	CONTINUE	
	JJ=.C1C+FLCAT(N)	
	LL = MAXO(JJ, 1C)	
r		
Č	JJ = 1 PERCENT OF NO. OF DATA SETS READ IN	
<u> </u>	LL - NO OF CURVE FIT DOINTS (LATED - NN)	
-	WRITE (6,3CCO)	10
3000	FORMAT (1H1)	an a
	WRITE (6,3C50) ID, CATE1, DATE2, COM1, COM2, COM3, COM4	10
3050	FORMAT(4X, A5, 8X, A6, A2, 1CX, A6, A6, A6, A3//)	
		10
	FORMAT(10X,14HTIME INTERVAL=,F6.4)	
	WRITE (6,3170) LL	10
	FORMAT (10x,25HNC CF PTS IN CURVE FIT = ,12)	

	TGTAPE 09/17/7C TGTAPE - EFN SOURCE STATEMENT - IFN(S) -	
	WRITE (6.3C10) N	
2010	FORMAT (10X,21HTOTAL NO CF POINTS = ,14)	┉╓╼┲╶┉⋚╷┻╌┻╷╌╸
	$\frac{1}{NN} = LL$	
C		
č	K = POLYNCMIAL ORDER.NEEDED FOR PLSQ SUBROUTINE. LIST = 0 FOR NO ERROR	
C	ANALYSIS OF PLSQ	
Ċ	D = TOTAL WEIGHT LCSS	
C		
	D = w(1) - w(N)	
<u></u>	B(1)=-6.885309E-6	
	B(2)=3.5215C5E-4	
	<u>6(3)=-7.783805E-3</u>	
i	B(4)=9.75327E-2	
	B(5)=-7.656367E-1	
	B(6)=3.943215EC	
	B(7)=-1.367422E1 B(8)=3.274186E1	
	$B(2)=3 \cdot 274186E1$ $B(9)=-5 \cdot 749C16E1$	
	B(10)=1.819171E2	
	B(11)=3.812777E-2	
	DO 55 I=1.N	
	W(I) = 100 (100. * (W(I) - W(N))/D)	
	TI(1)=(2.*FLOAT(1)-1.)*TINT/60.	
	POLY=8(1)	
	DO 3CC J=2,11	
300	POLY=POLY*I(I)/10.+B(J)	
	T({)=POLY	
	CONTINUE	
Ç		
<u> </u>	CURVE FIT OF TIME AND TEMPERATURE DATA	
C		
·	<u>K = 5</u>	
	LIST = 0 CALL PLSQ(TI.T.N.K.D.LIST, EMAX, ERMS, EMEQ)	129
	WRITE (6,51CO) EMAX	130
5100	FORMAT (10X+17HMAX TEMP ERROR = $+F10+6$)	190
	WRITE (6,52CO) ERMS	131
5200	FORMAT (10X.30HTEMP ROOT MEAN SQUARE ERROR = .F10.6)	
	WRITE (6,5300)	132
5300	FORMAT (10X,15FTEMP POLY COEFF)	
	WRITE (6,5400) (D(I),I=1,6)	133
	FORMAT(13X,E12.6)	
С		
_ <u>C</u>	START MAJOR LOOP	
C		
· 58		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NWINK) = FLUAIINWI	
	COAN NETCHT NATA FOR ONE CLOCE TO DUT HUST OBEATED THAN ONE REPORTING VETCHT	
	LUSSE LI -INUER UP INAT PUINT	
	DD 6C Ι=Ι [ΝΓΛ.Ν	
• <del>*</del> ••		
	CO_1CQ_NW = 1,99 II = LINDA-1 WW(NW) = FLCAI(NW) SCAN WEIGHT DATA FOR ONE CLOSE TO BUT JUST GREATER THAN ONE PERCENT WEIGHT LOSS. II = INDEX OF THAT POINT DO 6C I=LINCA.N II = II+1 IF (W(I).GT.WW(NW)) GO TO 70	

TETAPE 09/17/7	C
IGTAPE - EFN SOURCE STATEMENT - IFN(S) -	
6C CONTINUE	a ny saratan'i Milana ila ny saratany - aka ma
7C  LINUA = II-(LL/2)	
C LINCA = INCEX OF FIRST DATA TO BE USED BY PLSQ	
C DO 8C J=1,LL	
JI = L INDA+J-1	
TI(J) = (2.*FLOAT(JI)-2.)*TINT/60.	
Y(J) = W(J)	
8C CONTINUE	
C CURVE FIT CF TIME AND WEIGHT DATA	
<u>C</u> K = 2	
K = 2 LIST = C	
CALL PLSQ(TI,Y+NN,K,C,LIST,EMAX,ERMS,EMEQ)	168
	105
$r_{N} = 1$	
C START LCOP TO CHECK FOR BAD INPUT DATA C	
JI = LINDA+J-1	
C WE = WEIGHT CALCULATED FROM POLYNOMIAL	
C WE = WEIGHT CALCULATED FROM POLYNOMIAL	
WE=C(1)*TI(J)**2*C(2)*TI(J)+C(3)	
C COMPARE CALCULATED AND DRIGINAL DATA	
IF (ARS(WE-W(JI)).GT.1.) GO TO 82	
<u>GO_TC_81</u>	
82 WRITE (6,4CCO) JI,W(JI),WE	182
4000 FORMAT (10X, 9HAT PT NO , 14, 10H WEIGHT = , F5.1, 13H REPLACED BY ,	
.F5.1)	
C REPLACE BAC DATA BY CALCULATED VALUES	
C REPEACE BAL DATA BY CALCOLATED VALUES	
W(JI) = WE	
KK = 2	,
81 CONTINUE	
GO TC (83,58),KK	
C	
C CHECK FOR IMAGINARY ROOTS IN SOLUTION OF QUADRATIC	
$\mathbf{C} = \mathbf{C} = \mathbf{C} + $	
$\frac{83 \text{ SCREW} = C(2) + C(2) - 4.0 + C(1) + (C(3) - WW(NW))}{\text{IF} (SCREW.LT.0.0) \text{ GD TO } 90}$	
C	
C USE REAL ROOT TO DETERMINE TIME CORRESPONDING TO EACH PERCENT WEIGHT LOS	S
C	
TNW(NW) = (SQRT(C(2)*C(2)-4.0*C(1)*(C(3)-WW(NW)))-C(2))/(2.0*C(1))	
<u>C</u>	
C DWDT = RATE OF WEIGHT LOSS	
C EWET = RATE OF WEIGHT LOSS C	194
C DWDT = RATE OF WEIGHT LOSS	194

24

.

TCTAPE TGTAPE - EFN SOURCE STATEMENT - IEN(S) -	09/17/7C
DWCI(NW) = C.0	
C C WRITE OUT ICENTIFICATION AND LOCATION OF BAD DATA	
WRITE(6,316C)NW.II, TNW(NW), W(II) 3160 FORMAT(2X,17HSCREW LESS THAN 0,1CX,3HNW=,I3,10X,3HII=,I4,10X, 2HT=.F6.2,1CX,2HW=.F5.1)	202
100 CONTINUE	
3110 FORMAT(//3X,11HWEIGHT LOSS,6X,8HDWDT(NW),14X,4HTEMP,6X,	
<u>.4HTDER.11X,5HRTEMP.16X,4HTIME)</u> CO 12C NW=1,99	
CT=TN% (NW)	
TSTOR = D(1) C	
C LOCP TO EVALUATE TEMPERATURE POLYNOMIAL FOR EACH VALUE OF CT	
DO 2CO I=2,6 ZOCTSICR = TSICR*CT+DII)	
TPCLY(NW) = TSTOR	
$TSICR = 5 \cdot * C(1)$	
DO 250 I=2,5 J = 6-1	
250 TSTOR = TSTOR*CT+FLOAT(J)*D(I) C C TDER = TEMPERATURE DERIVATIVE C RTEMP = RECIPROCAL OF ABSOLUTE TEMPERATURE	
C IDER(NW) = ISTOR	
RTFMP(NW) = 1.0/(TPOLY(NW)+273.16)	
WRITE (6,3120) NW, CWDT(NW), TPOLY(NW), TDER(NW), RTEMP(NW), CT 3120 FORMAT (6X,13,10X,E12.5,7X,F9.3,2E15.5,5X,F7.2)	<u> </u>
120_CONTINUE	
STEER = 0.C	
C CALCULATE AVERAGE TEMPERATURE DERIVATIVE (AVE)	
C 125 I=1,99	
STCER = STCER + IDER(I)	
125 CONTINUE AVE = STDER/99.0	
WRITE (6.3125) AVE	241
3125 FORMAT (//1CX.27H AVERAGE TEMP DERIVATIVE = .E15.5)	
C CSET_UP_CUMMY_PCINTS_FOR_GRAPH_PLCTTING_SUBROUTINE_(GP)	
C	
$WW(1CC) = C \cdot C$ $DWCT(1CO) = C \cdot C$	
INW(1CO) = INW(99)	
TDER(1C0) = 0.C	
WW(1C1) = 1C0.C $EWET(1C1) = C.C$	
TNW(1C1) = TNW(99)	
TDER(101) = TDER(99)	242
WRITE (6,313C) ID	243

TGTAPE 09/	/17/70
TGTAPE - EFN SOURCE STATEMENT - IFN(S) -	
313C FORMAT (1CX,19FDWDT VS WEIGHT LOSS,20X,A5)	
L = 3	
LS = 5	
LW = 1C1	
LN = 50	
M = 1C1	
DATA A/IH./	
JN = 1	
<u>C</u>	
C PLCT GRAPH OF RATE OF WEIGHT LOSS AGAINST PERCENT WEIGHT LOSS	
C	
CALL GP (WW,DWCT,L,LS,M,JN,LW,LN,A,PLOT)	250
WRITE (6,3CCO)	<u>251</u>
WRITE (6,3140) ID	252
3140 FORMAT (10X,19+WEIGHT LOSS VS TIME,20X,A5)	
C	
C PLCT GRAPH OF PERCENT WEIGHT LOSS AGAINST TIME	
C	a sen a sen a su al su al su a su a su a su a su a
CALL GP (TNW,WW,L,LS,M,JN,LW,LN,A,PLOT)	253
WRITE (6,3CCC)	254
WRITE (6,3150) ID	255
3150 FORMAT (1CX,12HTDER VS TIME,20X,A5)	and a second
c	
C PLCT GRAPH CF TEMPERATURE DERIVATIVE AGAINST TIME	
C	
CALL GR (TNW, TDER, L, LS, M, JN, LW, LN, A, PLOT)	256
GO TC 500	
400 WRITE(6,6000)	258
6000 FORMAT(10X,48HNUMBER OF DATA POINTS EXCEEDS NUMBER DIMENSIONED)	
SOC STCP	
ENC	

# PROGRAM 2

This program provides print out of rates also rate and temperature on punched cards for use in Program 3.

	TGTAPE 09/17/70	
	TGTAPE - EFN SOURCE STATEMENT - IFN(S) -	
C	PRCGRAM 2 CUT OFF AND RATE CATA FOR A SERIES OF RUNS	
<u>C</u>	FREGRAM TO READ A SERIES OF RUNS FROM THE MASTER FILE, APPLY THE	
C	APPRCPRIATE CUT OFF VALUE, AND OUTPUT THE RATE OF WEIGHT LCSS AT	
<u>C</u>	1 PER CENT INTERVALS ON CARDS FOR USE IN THE ARRHENIUS PROGRAM	
C	INPUT TEMPERATURES ARE FITTED TO A FIFTH DEGREE POLYNOMIAL USING A	
<u>c</u>	LEAST SQUARES SUBROUTINE (PLSQ). WEIGHTS CORRESPONDING TO SHORT TEMPERATURE RANGES ARE FITTED TO A	
	CUACRATIC BY PLSC.	
<u>c</u>	INPUT WEIGHTS DIFFERING FROM FITTED LINE BY MORE THAN ONE PERCENT OF THE	
č	TCTAL WEIGHT LOSS ARE REPLACED BY THE CURVE FIT VALUE.	
č	CUTPUT DATA IS PUNCHED ON TO CARDS FOR FURTHER PROCESSING (TO CALCULATE	
č	ACTIVATION ENERGY ETC).	
č	W = WEIGHT DATA POINT READ OFF TAPE	
	T = TEMPERATURE DATA POINT READ OF TAPE(IN MV.)	
<u>c</u>	TI =TIME CATA POINT CALCULATED FROM TIME INTERVAL AND NO OF DATA POINTS	
С	TINT=TIME INTERVAL	
C	WW =WEIGHT LOSS AT 1 PER CENT INTERVALS	
<u>C</u>	CWCT=RATE OF WEIGHT LOSS AT 1 PER CENT INTERVALS	
	TDER=HEATING RATE AT 1 PER CENT INTERVALS	
C	TPCLY=TEMPERATURE CORRESPONDING TO EACH PER CENT WEIGHT LOSS, CALCULATED BY	
C	PLSC	
<u></u>	TNW= TIME CORRESPONDING TO EACH PER CENT WEIGHT LOSS	
C	PLCT =DIMENSIONS FOR GRAPH PLOT SUBROUTINE	
<u>c</u>	B = CCEFFICIENTS OF 10TH ORDER POLYNOMIAL FITTING TEMP/EMF DATA FOR	
	PLATINUM*PLATINUM 10PER CENT RHODIUM C = CCEFFICIENTS OF WEIGHT/TIME PLSQ QUADRATIC	
<u>с</u> с	C = CCEFFICIENTS OF WEIGHT/TIME PLSQ QUADRATIC C = CCEFFICIENTS OF 5TH ORDER PLSQ USED TO FIT TIME/TEMP.DATA	
	RTEMP = RECIPROCAL ABSOLUTE TEMPERATURE	
C C	RIEFT SKEETFKBEAL ADSDEDTE TEMPERATORE	
v	EQUIVALENCE (TI(1), PLOT(1)), (ID, JZ(1)), (DATE1, JZ(2)), (DATE2, JZ(3))	
· <del></del>	1, (COM1, JZ(4)), (COM2, JZ(5)), (COM3, JZ(6)), (COM4, JZ(7)), (TINT, JZ(8))	
	CIMENSION T1(5500), WW(101), TNW(101), DWDT(101), Y(120), C(6), A(1),	
	1W(55C0),T(5500),Z(42),X(36),PLOT(50,110),TDER(101),TPOLY(101),	
	1RTEMP(101),B(11),D(6),JZ(8)	
	CIMENSION IDA(12), DCA(12)	
	INTEGER DUMMY	
	CATA CUMMY/4HZERO/	
	NF=1	
	5 REAC(5, 1010) IDA(NF), CCA(NF)	2
1010	0 FCRMAT(8X,45,1X,F5.3) IF(ICA(NF).EC.CUMMY)GO TO 20	
	NF=NF+1	
·	GC TC 15	
21	0 NF=NF-1	
	CC 5 INF=1,NF	
99	9 CALL READ(3, JZ, 8, J)	16
	IF(IC.EQ.CUMMY)GO TO 101	
	IF(IC.EQ.ICA(INF))GO TO 97	
9	8 CALL READ(3,W,18,J)	26
	IF(J-1)98,99,98	
	1 WRITE(6,4500)	29
450	O FORMAT(10X,25HSEARCH EXCEEDS VALID FILE)	
	STCP	
9	7 EC=ECA(INF)	
	L=0	

•

TCTAPE 09/17/70	
TGTAPE - EFN SOURCE STATEMENT - IFN(S) -	
25 №=18*L+1	
CALL READ(3,W(M),18,J)	34
IF(J-1)10,51,30	
10 CALL READ(3,T(M),18,J)	39
IF(J-1)40,50,30 50 kRITE(3,1000)IC,L	43
1000 FCRMAT(2X,21HOUT OF PHASE DATA IN ,A6,18H, AFTER RECORD NO ,I3)	
STOP	· · · · · · · · · · · · · · · · · · ·
40 L=L+1	
N=18*L GC TC 25	
30 WRITE(6,6)(Z(I),I=1,42)	47
6 FORMAT(1H1,10X,39HTAPE READ ERROR IN THE FOLLOWING RECORD/(8X,14(A	
16,2X)))	
STCP 51 JJ=.010*FLOAT(N)	
LL = MAXO(JJ, 10)	
C	
C JJ = 1 PERCENT OF NO. OF DATA SETS READ IN	
C LL = ND. OF CURVE FIT POINTS (LATER = NN) C	
WRITE (6,3000)	54
3000 FCRMAT (1H1)	•
WRITE (6,3050) ID, CATE1, DATE2, COM1, COM2, COM3, COM4	55
3050 FCRMAT(4X, A5, 8X, A6, A2, 10X, A6, A6, A6, A3//)	F/
WRITE(6,3060)TINT 3060 FGRMAT(10X,14HTIME INTERVAL=,F6.4)	56
WRITE (6,3170) LL	57
3170 FORMAT (10X,25HNO OF PTS IN CURVE FIT = ,I2)	
WRITE (6,3010) N 3010 FCRMAT (10X,21HTOTAL NO OF PCINTS = ,14)	58
$\frac{5010 \ FCRMAT (10x) 210101AC NO OF FCINTS - (14)}{NN = LL}$	
WRITE(6,3020)DC	59
3020 FCRMAT(10X,9HCUT OFF =,F5.3)	
C C K = PGLYNOMIAL ORDER,NEEDED FOR PLSQ SUBROUTINE. LIST = O FOR NO ERRCR	
C ANALYSIS OF PLSO	
C C = TOTAL WEIGHT LOSS	
C	
LINCA = 1 $C = h(1) - W(N)$	
£(1)=-6.885309E-6	
E(2)=3.521905E-4	
£(3)=-7.783805E-3	
E(4)=9.75327E-2 E(5)=-7.656367E-1	
E(5)=3.943215E0	
E(7)=-1.367422E1	
E(8)=3.274186E1	
E(9)=-5.749016E1 E(10)=1.819171E2	
£(11)=3.812777E-2	
DC 55 I=1,N	
W(I) = 100(100.*(W(I)-W(N))/D)	
W(I)=W(I)/DC TI(I)=(2.*FLCAT(I)-1.)*TINT/60.	
+ 1 ( 1 / - ( 2 + +) ECH ( 1 / - 1 + / + 1 1) ( / GU +	

		TGTAPE 09	/17/70		
		TGTAPE - EFN SOURCE STATEMENT - IFN(S) -			
		PCLY=8(1)			
		CC 3CO J=2,11			
3	00	PCLY=POLY*T(I)/10.+B(J)			
		T(I)=POLY			
	55	CONTINUE			
С С		CURVE FIT OF TIME AND TEMPERATURE DATA			
č	•	CORVE FIL OF TIME AND SEMELATORE DATA			
č		K = 5			
		LIST = O			
		CALL PLSG(TI,T,N,K,D,LIST,EMAX,ERMS,EMEQ)			81
		WRITE (6,5100) EMAX			82
51	00	FCRMAT (10X, 17HMAX TEMP ERROR = F10.6)			0.7
52	200	WRITE (6,5200) ERMS FCRMAT (10X,30FTEMP ROOT MEAN SQUARE ERROR = ,F10.6)			83
20	.00	WRITE (6,5300)			84
53	300	FCRMAT (10X, 15HTEMP POLY COEFF)			• •
		WRIT5 (6,5400) (C(I),I=1,6)			85
	100	FCRMAT(13X,E12.6)			• •• •• ••
ç					
C C		START MAJOR LOOP			· ·
C		EC 100 NW = 1,99			
	58	II = LINDA-1			
		w(NW) = FLOAT(NW)			
C					
C		SCAN WEIGHT DATA FOR ONE CLOSE TO BUT JUST GREATER THAN ONE PERCENT	WEIGH	н	
С С		LCSS. II =INDEX OF THAT POINT			
C		CC 60 I=LINDA,N			
		II = II + I			
		IF (W(I).GT.WW(NW)) GO TO 70			
		CONTINUE			•
c	79	LINCA = II-(LL/2)			
с с		LINCA = INCEX OF FIRST DATA TO BE USED BY PLSQ			• ••
č		Frunk - function (function) - for an analysis of a second second			
		CC 80 J=1,LL			
		JI = LINCA+J-1		-	
		TI(J)=(2.*FLCAT(JI)-2.)*TINT/60.			
	80	Y(J) = W(JI) CONTINUE		· ·· ·	
С	00				
č		CURVE FIT OF TIME AND WEIGHT DATA			
С					
		LIST = O CALL PLSQ(TI,Y,NN,K,C,LIST,EMAX,ERMS,EMEQ)		<i></i>	117
		KK = 1			
С					
С		START LOOP TO CHECK FOR BAD INPUT DATA			
С					
		CC 81 J=1,LL JI = LINCA+J+1			· · ·
C.			•	-	
C		WE = WEIGHT CALCULATED FROM POLYNOMIAL			

TGTAPE 09/17/70 TGTAPE - EFN SOURCE STATEMENT - IFN(S) -	
C WE=C(1)*TI(J)**2+C(2)*TI(J)+C(3)	
C CCMPARE CALCULATED AND ORIGINAL DATA	
IF (ABS(WE-W(JI)).GT.1.) GO TO 82 CC TC 81	
82 WRITE (6,4000) JI,W(JI),WE 4000 FCRM&T (10X,9HAT PT NO ,I4,1CH WEIGHT = ,F5.1,13H REPLACED BY , •F5.1) C	2
C REPLACE BAC DATA BY CALCULATED VALUES	
W(JI) = WE KK = 2 81 CONTINUE GC TC (83,58),KK C	
C CFECK FOR IMAGINARY ROOTS IN SOLUTION OF QUADRATIC	
83 SCREW = C(2)*C(2)-4.0*C(1)*(C(3)-WW(NW)) IF (SCREW.LT.0.0) GO TO 90 C	
CUSE REAL ROOT TO DETERMINE TIME CORRESPONDING TO EACH PERCENT WEIGHT LOSS	
TNW(NW) = (SQRT(C(2)*C(2)-4.C*C(1)*(C(3)-Wh(NW)))-C(2))/(2.0*C(1)) C	
C CWDT = RATE OF WEIGHT LOSS C 144 CWDT(NW) = 2.0*C(1)*TNW(NW) + C(2)	4
GC TC 100 90 TNW(NW)=(2.*FLOAT(II)-4.)*TINT/60.	
CWCT(NW) = 0.0 C C write out identification and location of bad data	
C hRITE(6,3160)NW,II,TNW(NW),W(II) 3160 FCRMAT(2X,17HSCREW LESS THAN 0,10X,3HNh=,I3,10X,3HII=,14,1CX, •2FT=,F6.2,10X,2HW=,F5.1)	2
100 CCNTINUE WRITE (5,3110) 3110 FCRMAT(//3X,11+WEIGHT LOSS,6X,8HDWDT(NW),14X,4HTEMP,6X,	6
•4HTCER,11X,EHRTEMP,16X,4HTIME) CC 120 NW=1,99 CT=TNW(NW) TSTCR = D(1)	
C C LCCP TO EVALUATE TEMPERATURE POLYNOMIAL FOR EACH VALUE OF CT C	
EC 200 I=2,6 200 TSTCR = TSTOR*CT+D(I) TPCLY(NW) = TSTOR TCTCP = D(I)	
TSTCR = 5.*C(1) CC 250 I=2,5 J = 6-I 250 TSTCR = TSTOR*CT+FLOAT(J)*C(I)	

TGTAPE - EFN SOURCE STATEMENT - IFN(S)	09/17/70
C C TDER = TEMPERATURE DERIVATIVE	
C TEER = TEMPERATURE DERIVATIVE C RTEMP = RECIPROCAL OF ABSOLUTE TEMPERATURE C	
TDER(NW) = TSTOR RTEMP(NW) = 1.0/(TPOLY(NW)+273.16)	<u> </u>
WRITF (6,3120) NW, DWDT(NW), TPOLY(NW), TDER(NW), RTEMP( 3120 FCRMAT (6x,13,10x,E12.5,7x,F5.3,2E15.5,5x,F7.2)	(NW),CT 174
120 CONTINUE STRER = 0.0	
C C CALCULATE AVERAGE TEMPERATURE DERIVATIVE (AVE) C	
CC 125 I=1,99	
125 CENTINUE	
AVE = STDER/99.0 WRITE (6,3125) AVE	186
3125 FCRMAT (//10X,27H AVERAGE TEMP DERIVATIVE = ,E15.5) C	
C SET UP DUPMY POINTS FOR GRAPH PLOTTING SUBROUTINE (C	5P)
w(100) = 0.0 EWET(100) = 0.0	
$\frac{TNW(1C0) = TNW(99)}{TCER(100) = 0.0}$	
W(101) = 100.0 CWCT(101) = 0.0	
TNW(101) = TNW(99) TCER(101) = TDER(99)	
WRITE (6,3000)	187
WRITE (6,3130) ID 3130 FCRMAT (10X,19HDWDT VS WEIGHT LOSS,20X,A5)	188
L = 3 LS = 5	
LW = 101 LN = 50	
N = 101	
$\frac{\text{CATA A/1H}}{\text{JN} = 1}$	
C C	IGHT LCSS
CALL GP (WW,CWCT,L,LS,M,JN,Lh,LN,A,PLOT) hrite (6,3000)	195 196
CWCT(100) = 0.0	
TPCLY(100) = 0.0	
C PUNCH OUTPUT CARDS CONTAINING PERCENT WT. LOSS(NW) 1 C TEMPERATURE AND RATE OF WEIGHT LOSS DATA C	THEN THREE PAIRS CF
CC 150 NW=1,100,3 FUNCH 5020,IC,NW,DWDT(NW),TPOLY(NW),DWDT(NW+1),TPOLY	
•CWCT (NW+2), TPOLY(NW+2) <u>5COO FCRMAT (1X, A5, 14, E13.5, F6.1, E13.5, F6.1, E13.5, F6.1)</u> 150 CONTINUE	198
TGTAPE	09717770
TGTAPË - EFN SOURCE STATEMENT - IFN(S)	
5 CENTINUE STEP	arthologicae a' o gal antides ant ann an gund Alban. Na sua cha a' de Mel Rey Annae, agus antaing gal a
ENC	

PROGRAM 3

.

,

Arrhenius Program. Calculates E at 1% intervals.

	TGA 05/04/70	
	PLOT - EFN SOURCE STATEMENT - IFN(S) -	ala artis 1. artisti. 1. art. 1. t
C	PROGRAMME TO CETERMINE TGA PARAMETERS BY FRIEDMANS METHOD	
C	PROGRAMME ACCEPTS DATA CARDS HAVING THREE SETS OF DATA PER CARD.	
Ç	LAST CARE OF EACH DECK MUST HAVE A ONE IN COLUMNI. LAST CARD OF	
C	LAST DECK FOR CNE POLYMER SYSTEM MUST HAVE A TWC IN COLUMN 1 INSTEAD	
C C	TO RUN A SECOND SET OF DECKS, PUNCH A CARD WITH A THREE IN COLUMN 1 AND PLACE BETWEEN SETS	
č	AT THE END OF ALL DECKS PLACE A BLANK CARD THEN AN SEOF	
c		
	SYMBOLSDWDT = RATE CF WEIGHT LOSS, RTEMP = RECIPROCAL OF ABSOLUTE	
С	TEMPERATURE, RATE = LCG RATE OF WEIGHT LOSS, SLCPE = SLOPE OF ARRHENIUS	
Ç	PLOT, PREX =PRE-EXPONENTIAL FACTOR, PLOT = DIMENSION OF GP SUBROUTINE	
Ç	ACTE = ACTIVATION ENERGY, X AND Y REPRESENT DATA TREATED BY GP	
	TPOLY = INPUT TEMPERATURES, ID = ICENTIFICATION, A = NOL OF SYMBOLS IN GP	
C C	AA = PERCENT WEIGHT LOSS, AFW = FUNCTION FROM FRIEDMANS EQUATION FW = AVERAGE AFW, BB = LOG (PERCENT RESIDUE), WF = AVERAGE AFW	
č	FR - AVERAGE ALBY 00 - LUG (FERGENT RESILUCI) HT - AVERAGE ALB	
	DIMENSION DWDT(100,10), RTEMP(100,10), RATE(100,10), SLOPE(100),	
,	<pre>.PREX(100),PLCT(50,100),ACTE(100),X(10),Y(10),</pre>	
	.TPOLY(1CC,10),ID(10),A(1),AA(101),AFW(10),FW(10C),BB(95),WF(95),	
	.SPS(100),SDS(100),SDI(100),B(8)	
1	READ (5,1000) IG,COM1,CCM2,CCM3,COM4,COM5,COM6,CCM7,COM8 WRITE (6.3000)	1
		3
	WRITE (6,1100) IG, COM1, COM2, COM3, CCM4, COM5, COM6, COM7, COM8	4
	0 = U (+L = L	
C		
	START LCCP TC READ IN DATA	
С		
	DO 20 Nh = 1, 97.3	
ç	LBJ = 1 IN COLUMN 1 OF LAST CARD OF A DECK, LAST CARD OF LAST DECK FOR	
СС.	ONE POLYMER SYSTEM NEEDS LBJ = 2.	
č	UNE FOLIPER SISTER NEEDS EDS - 2.	
•	READ (5,1200) LBJ, ID(J), IW, CWDT(NW, J), TPOLY(NW, J), DWDT(NW+1, J),	
	.TPOLY(N+1, J), CWDT(N+2, J), TPOLY(N+2, J)	
С		
<u> </u>	CHECK THAT INPUT CARCS ARE IN CONSECUTIVE ORDER	10
C	IF (IW-Nh)3,4,3	10
	IF (IW-Nh)3,4,3 WRITE (6,1900) NW, ID(J), IW	21
	STOP	
	AA(NW) = FLCAT(NW)	
	$\Delta \Delta (NW+1) = FLCAT(NW+1)$	
	AA(NW+2) = FLCAT(NW+2)	
	IF (LBJ.EQ.1) GO IO 10	
	IF (LBJ.EQ.2) GO TO 25	
.25 C	.XJ.≠J	
	WRITE LIST OF RUN IOS	
č		
	WRITE (6,1800)(ID(I), I=1, J)	
С		
	CHECK FOF AT LEAST THREE DATA DECKS	
C		36
	IF(J-3) 30,35,35	

	TGA05/04/7	0
	PLCT - EFN SOURCE STATEMENT - IFN(S) -	
	WRITE (6,2000)	44
	GG_TC_300	46
	TSUM = 0	
	N = 0	
	SPREX = 0.0	
	START LECP TO CALCULATE LEAST SQUARES LINE OF LOGIRATE) VS. RTEMP	
		······································
	DO 45 NW = 4,98	
	SUMXX = 0	
	SUMX = 0 SUMY = 0	
	SUMXY = C	
	$DO 40 K = 1_{sJ}$	
:		
	CHECK FOR ZERC RATES	
	IF(DWDT(NW,K).LT.1.0E-10) G0 T0 65	
	RATE(NW,K) = ALOG10(CWDT(NW,K))	58
	RTEMP(NW,K) = 1.0/(TPCLY(NW,K)+273.16)	
	SUMXX = PARTIAL SUM OF X SQUARED ETC.	
	SUMXX = SUMXX + RTEMP(NW+K)**2	
	SUMYY = SUMYY + (RATE(NW+K))**2	
	SUMX = SUMX + RTEMP(NW+K)	
	SUMY = SLMY + RATE(NW,K)	
40	SUMXY = SUMXY + RTEMP(NW,K) *RATE(NW,K)	
•	GO TO 55	
:	SET UP DUMMY POINTS FOR GP IF A DWOT VALUE IS ZERO	
	5 ACTE(NW) = 0.	
	PREX(NW) = 0.	
	RATE (NW,K) = 0.	
	RTEMP (Nh,K) = 0.0015	
55	GO TO 45 5.slope(Nk) = (XJ*SUMXY-SUMX*SUMY)/(XJ*SUMXX-SUMX*42)	
	SPS(NW) = ((SUMYY-(SUMY*SUMY/XJ)-((XJ*SUMXY-SUMX*SUMY)**2/	
	• (XJ*XJ*SUMXX-XJ*SUMX*SUMX)))/(XJ-2.0))	
	ALPHA = (SPS(NW)/(SUMXX-(SUMX*SUMX/XJ)))*4.576	
	IF(ALPHA) 58,58,57	
	7 SDS(NW) = SCRT(ALPHA)	85
	GO_TC_59 3 SDS(NW) = 0.0	· · · · · · · · · · · · · · · · · · ·
	9 BETA = (SPS(NW) +SUMXX/(XJ*SUMXX-SUMX*SUMX))	
	IE(BETA) 62.62.61	
61	SOI(NW) = SQRT(BETA)	94
	GD TO 63	
	2 SDI(NW) = 0.0 3 ACTE(NW) = -SLOPE(NW)*4.576	
60	PREX(NW) = _SLUPE(NW)+4.576 _PREX(NW) = (SUMXX*SUMY-SUMX*SUMXY)/(XJ*SUMXX-SUMX**2)	
	IF (NW.LT.20) GC TO 45	

	TGA 05/04/70	
	PLCT - EFN SOURCE STATEMENT - IFN(S) -	
	TSUM = TSUM-SLCPE(NW)	
	SPREX = SPREX + PREX(NW)	
	N = N+1	
45	5 CONTINUE	
C		
C	CALCULATE AVERAGE ACTIVATION ENERGY AND PRE-EXPENENTIAL FACTOR	
C		
	AVPREX = SPREX / FLOAT(N)	
	AVEA = TSUM/FLCAT(N)	
	AVACTE = AVEA+1.987+2.3C3	
C		
C	START LOCP TO CALCULATE AFW	
C		
	DO 70 Nh = 4,98	
	Z = Q	
· · · · · · · · · · · · · · ·	$\frac{DD}{M} = 1 J$	
	AFW(K) = RATE(NW,K) + AVEA*RTEMP(NW,K)	
9(	1 Z = Z + AFW(K)	
	FW(NW) = Z/XJ	
	WN = FLCAT(NW)	126
	GG = ALCG10(100WN)	
· · · · · · · · · · · · · · · · · · ·	SD = 0	
63	DO 93 K = 1+J 3 SD = SD + (FW(NW)-AFW(K))**2	
	YK = J-1	
	SDAFW = SQRT(SD/YK)	
C		
č	WRITE OUT RESULTS' PERCENT WT. LOSS, ACTIVATION ENERGY, PRE-EXPONENTIAL	
C	FACTOR, AVERAGE FW, AND STANDARD DEVIATIONS, ALSO LOG WEIGHT REMAINING(GG)	
C	-	133
70	WRITE (6,1400) NW,ACTE(NW),SES(NW),PREX(NW),SDI(NW),FW(NW),SDAFW,	
	•66	134
	WRITE (6,1425) AVACTE	141
	WRITE (6,1435) AVPREX	142
	WRITE (6,1440)	
. <u>C</u>		
ç	SET UP INFORMATION FOR CP SUBROUTINE, SEE OTHER PROGRAMS	143
£		143
	LS = 5 LW = 100	
	LN = 100	
	M = J	······
	DATA A/1F./	
	JN = 1	
.c		
C	START LCCP FCR PLOTTING GRAPHS AT 10 PERCENT WEIGHT LOSS INTERVALS	
C		
	$DO 200 NW = 1C_{+}99_{+}10$	
	DD 100 K = 1.J	
	X(K) = RTEMP(NW,K)	
100	) Y(K) = RATE(Nh.K)	1/0
	WRITE (6,3000)	160
	WRITE (6+1700) NW	
ç	NOT CRACH OF LOC TRATE OF METCHT LOSS' ACATMET DECIDEDEAL	
	PLOT GRAPH OF LOG (RATE OF WEIGHT LOSS) AGAINST RECIPROCAL	

	TGA O	5/04/70
	TGA OF PLGT - EFN SOURCE STATEMENT - IFN(S) -	
C	OF TEMPERATURE	
<u> </u>	O CALL GP (X,Y,L,LS,M,JN,LW,LN,A,PLOT)	<u> </u>
	M = 100	
	WRITE (6,3000)	167
	WRITE (6,3100)	
С		
	PLOT GRAPH OF ACTIVATION ENERGY AGAINST PERCENT WT. LOSS	
С		168
	CALL GP (AA, ACTE, L, LS, M, JN, LW, LN, A, PLOT)	
	WRITE (6,3000) WRITE (6,3200)	170
С	WALLE 10,32007	
č	PLOT GRAPH OF PRE-EXPONENTIAL FACTOR AGAINST PERCENT WEIGHT LOSS	
C		171
	CALL GP (AAsPREX,L,LS,M,JN,LH,LN,A,PLOT)	
	WRITE (6,3000)	173
	WRITE (6,3300)	174
	DO 75 I=1,87	
	BB(I) = ALDG10(100AA(I+3))	179
	15  WF(I) = FW(I+3)	
	LW = 95 M = 87	· · · · · · · · · · · · · · · · · · ·
c	FT - 01	
Č C	PLOT GRAPH OF LOG(AFW) AGAINST LOG(PERCENT RESIDUE WEIGHT)	
•	CALL GP(EB,WF,L,LS,M,JN,LW,LN,A,PLOT)	188
	WRITE (6,3000)	189
	LW = 101	
	M = 101	
	DATA B/1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8/	
• • • • • • • • • • • • • • • • • • • •	AA(100) = 0.0 AA(101) = 100.0	
	$D0 \ 101 \ \text{K=1,j}$	
	DWDT(100,K) = 0.0	<u> </u>
10	$D_{\rm L} = 0.0$	
	WRITE (6,3400)	199
	CALL GP (AA, DWDT+L+LS+M+J+LW+LN+B, PLOT)	200
	WRITE (6,3000)	
<u> </u>		
C	LOOK FOR FURTHER SETS OF DATA	
. C	CO READ (5,1300) MORE	201 202
	IE(MORE.E0.3) GO TO 1	202
	BO STOP	
	00 FORMAT (2X.A3.2X.8A6)	
	CO FORMAT (10X,A3,2X,8A6)	
	CO_FORMAT_(11,A5,14,E13.5,F6.1,E13.5,F6.1,E13.5,F6.1)	
	DO FORMAT (I1)	
	10 FORMAT (10X+13+4X+-3PE7.3+5X+F6.3+5X+0PF6.3+2(5X+F6.3)+2(5X+F6.4))	······
	25 FORMAT (//10X,29H AVERAGE ACTIVATION ENERGY = ,-3PF7.3)	
	35 FORMAT (10X,17H AVERAGE LOG PREX,10X,2H= .F6.3)	
	TO FORMAT(10X,34HBOTH FOR 20-60 PERCENT WEIGHT LOSS)	
	CO_FORMAT_(/BX,7HWT_LOSS,2X,8HEA(KCAL),3X,8HST.DEVN.,3X,8HLOG_PREX, .3X,8HST.CEVN.,2X,10HAV.LOG_AFW,2X,8HST.DEVN.,2X,11HLOG_RES.WT.)	······
1.70	10_FORMAT_(10X_18HLOG_RATE_VS_1/TEMP/10X.14HWEIGHT_LOSS = (14)	

TGA			05/04/70
PLCT	- EFN SOURCE	STATEMENT - IFN(S) -	
1800 FORMAT (/10X,	11HRUN IC NOS .9(A	5,28,1)	<u></u>
1900 FORMAT (10X.1	3HERROR FOR W ≠,14	,7HRUN NO ,A3,6H READ ,13	÷
.9H INSTEAD.)			
2000 FORMAT (10X,2	SHLESS THAN 3 HEAT	ING RATES/1H1)	
3CCO FORMAT (1H1)			
3100 FORMAT (10X.3	2HACTIVATION ENERG	Y VS WEIGHT LOSS)	
	2HPRE-EXP VS WEIGH		
		LOG PERCENT WEIGHT REMAL	NING)
		OF WT. LOSS VS. FERCENT W	
END			

-

UNCLASSIFIED			
Security Classification	NT CONTROL DATA	2 0	
<b>DUCUME</b> (Security classification of title, body of abstract a	NT CONTROL DATA - F		overall report is classified)
. ORIGINATING ACTIVITY (Corporate author)			ECURITY CLASSIFICATION
Air Force Materials Laboratory		Unclas	ssified
Air Force Systems Command	01.1.1.5/00	2b. GROUP	
Wright-Patterson Air Force Base	, Ohio 45433		
REPORT TITLE			
KINETIC ANALYSIS OF THERMOGRAVI	METRY Part III Exp	erimental N	Modifications
	•		
4. DESCRIPTIVE NOTES (Type of report and inclusive date			
September 1968 - July 1970	8)		
5. AUTHOR(S) (First name, middle initial, last name)			· · · · · · · · · · · · · · · · · · ·
Teres I Colliforni			
Ivan J. Goldfarb			
REPORT DATE	78. TOTAL NO.	OF PAGES	7b. NO. OF REFS
Septembar 1971			4
a. CONTRACT OR GRANT NO	98. ORIGINATO	R'S REPORT NUN	1 B E K(3)
<b>Б.</b> РКОЈЕСТ NO. 7342	AFML-TR-	68-181, Pai	rt III
• Task No. 734203	9b. OTHER REF this report)	PORT NO(5) (Any	other numbers that may be assign
	inia report)		
d.		·····	
10. DISTRIBUTION STATEMENT	• • • • •		
This document has been approved	for public releas	e and sale	; its distribution i
unlimited.			
11. SUPPLEMENTARY NOTES		GMILITARY ACT Materials	Laboratory (LNP)
		Systems Co	
			Force Base, Ohio 45
IS. ABSTRACT	,,,,,,	<u> </u>	
The experimental apparatus for	temperature progra	mmed therm	ogravimetry has been
modified to more effectively ob	tain kinetic param	eters for t	the degradation of
polymers. The thermobalance wa	s modified to inco	rporate di	rect sample temperat
measurement thereby to minimize	temperature measu	rement erro	ors. An automatic
data acquisition system was inc	orporated into the	apparatus	and appropriate
computer programs to handle the	magnetic tape dat	a were wri	tten. The modified
apparatus has been tested with	several polymer sy	stems and :	it was demonstrated
the use of the magnetic tape da	ta recording syste	m permitted	d greatly increased
output from the thermobalance.			
DD 1 NOV 65 1473		UNCLASSIF	TED

Security Classification

UNCLASSIFIED

	Classification	LINI					INKC	
	KEY WORDS	ROLE	WΤ	ROLE	wτ	ROLE	WΤ	
Thermogray	vimetry (TGA)							
Polymer De	egradation							
Kinetics								
Ranoulos								
				1				
			l					
					1			
			l					
			1		1			
		l	l	1		1	l	
				1		1	ł	
			1	1				
				1				
			l					
			1					
			1		1			
			1					
			[	1	1	1		
			1					
			1		1			
						1		
						1		
				1				
			1					
			1			1		
			1		1			
				1				
			1		1			
		1			1			
				1				
			1	1	1		1	
						1		
			1		1	1	1	