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ABSTRACT

The Covering Condition (enabling the application of necessary
tests on all cells in an array) and the Existence of Sensitized Path
Condition (enabling the propagation of the effcct of a faulty cell to some
boundary output) for the testability of combinational cellular arrays of
rectangularly and unilaterally interconnected cells are analyzed separately
in this paper. Some properties on the existence of a rectangular-tessera
covering some ClO-statuses are uncovered. A necessary condition, namely
the full-balance condition, for the existence of a set of rectangular-tesserae
covering all CIO-statuses on the CIO-table specifying a cell, suggests
that the result of a simple calculation will enable one to determine the need
for finding some prime tessellation with respect to a CIO-status, A
procedure for finding a prime tessellation with respect to a given CIO-status
is presented. It is seen, for a class of combinational cellular arrays, that
some arrays can be very efficiently tested independent of the size of the
array where only nonprime tessellations are to be found and the number of
tests depends on the size of the testable array where a prime tessellation
with respect to some CIO-status is to be found. This property is con-~
ceivably true for the general class of combinational cellular arrays. Two
necessary conditions for the combinational cellular array testing, which
are also sufficient for the detection of the presence of a single faulty cell,
are analogously carried over to the situation for the testing of sequeatial
cellular arrays. The resulis regarding the testability of combinational
cellular arrays are immediately extendible to fault detectinn and location
in the first categcry sequential cellular arrays where the state of each
memory element in every cell can be set or reset through the external
control. An immediate implication is that if the logic circuit in each ceil
under some state can facilitate an efficient testing on a first category

sequential cellular array of cells each under that state, then the array is

i
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testable; furthermore, the faultlessness of this "hardcore" enables the
loceation of a faulty cell with some uncertainty, Some convenient assump-
tions enable one to establish some sufficient conditions for the etficient
fault detection and location in second category sequential cellular arrays,
of two dimensions as well as of one dimension, wihere each cell is some
finite-state machine. Information losslessness (of a finite-state machine)
is a sufficient, but not necessary, <condition for reconstructing the cell
response to some test sequence from some sequence of boundary outputs.
A considerably lower upper bound ov' the finite order of the information
losslessness of the finite-state machine, where the cardinality of the input
set equals that of the outprut set, is conjectured. In a special case where
the assumption that each cell can be initialized to its initial state at any

time upon a command is not made, one is able to determine the testability.

il




CHAPTER I, INTRODUCTION ......covvvevenennen,

TABLE OF CONTENTS

LR R A R A A

CHAPTER II, FAULT DETECTION IN COMBINATIONAL CELLULAR

A-

D.

Introduction ........covvvvennienen,
General Conditions for Testability .......
Two-Dimensional Arrays ,.......

1. Covering Each Cell in an Array With Every Possible
Input Combination ....... e

a. Existence of Rectangular-Tesserae and
Tessellations ........ ceeierenas ..

b. Tessellations for Arrays of Cells With Binary
Horizontal Input and Binary Vertical Input

c. Tessellations for Arrays of Cells With Multiple
Horizontal Input Terminals and Multipl~ Vertical
Input Terminals

------------------------------

2. FExistence of a Sensitized Path

Remarks ..........

CHAPTER III. FAULT DETECTION AND LOCATION IN FIRST

A.

CATEGORY SEQUENTIONAIL CELLULAR ARRAYS

Introduction

-------

One-Dimmensional Arrays

1. Arrays With Autonomous Cells, Where Z=2=Q and
x=x#¢ ..... s & @ * 8 ¢ 0 4w e ® @ & ¢ ¥ 0 0 ® S s w9 B2 e8GR

2. Arrays With 2=0, 2#0, and X=X#D ........ov.uu.. e
3. Arrays With X=V#@ ., 240, and 2=0 ..........v.... ..
4. Arrays With Z=X#0 , 24D, and 20 . ..ouvvvvnn... ..

Two- Dimensiona. Arrays

1. Covering Each Cell in an Array With Every Possible
input-State Combination

iv

32
32
35

37
38

18
38
39
40
40

41




AT

B il i i s

et S Y PR AR P PRI O R T BBy i

Page

2. Existence of a Sensitized Path -~ A Sufficiency
for Satisfying the Condition B .......0e0vvvvveenees. 42

CHAPTER IV, FAULT DETECTION AND LOCATION IN SECOND

CATEGORY SEQUENTIAL CELLULAR ARRAYS ..........

A, Introduction ........ccietiviiiiiaineiiinienennes eee 45
B. ASpecial Case...voivivrvnvnonncrnnnss ceesen vesesss 45
C. General Conditions for Testability ......... v seerevaans 56
L. One-Dimensionel Arrays....... tecessesneesaene veesess 98
1. Arrpys With Autonomous Cells, Where Z=2=(D and
=XAD ..... et e ee ettt 58
2. Arrays With che Typical Cell Having No External Cell
Input, Where Z=0, Z#®D, and X=X#D . .. .vvervvrencn.. 60
3. Arrays With X=8¢0, Z#p, and Z=0 ........ e 61
4. Arrays With X=X#0, Z#D, ard 2#D .........c.vun... 63
E. Two-Dimensional AITays ... cvv it eiirerennerenrenannens 64
BIBLIOGRAPHY .. .tiiiiiiiinntrnnnsonrocosasennsonnenons ee.. B9
VITA
v




Chapter 1

INTRODUCTION

The essential part of the analysis of the fault detection and loca-
tion in cellular arrays is to develop a procedure for determining where or
not a cellular array of arbitrary size, with a given specificationinterms
of the external behavior of the typical cell without any implication with
regard to the physical implementation of each cell, is testable. By
testable it means that the presence of a single faulty cell in the cellular

array can be detecied by observing the boundary output sequence in

responding to some boundary input sequence. An e¢ssential interest is to

find the properties of the cell, in terms of itz external behavior, of the

cellular array of arbitrary size such that the cellular array with these

properties is testable. Another interest is to find the boundary input

sequence to be applied to the cellular array of arbitrary but finite size
such that all cells in the cellular array can bhe tested completely, Only
after the testability of a cellular array is affirmed, can one study addi-
tional constraints on the cellular array for the location of the single faulty
cell within some Number '

! of cells, where 1: is called thc uncertainty

in location, or even to the location of multiple faults.

Some work has been done with regard to the fault detection [11],
(123,(17],:8] and location [11], [18] in combinational cellular arrays. It
is known that therzs are combinational cellular arrays where at least one
CI0-status cannot be covered by any nonprime tessellation; but no
procedure was givern for finding some tessellation, specifically, some
prime tesscllation with respect to a given CIO-status, to cover that
ClO-status. PBreuer [3] has investigated the fault detection in a linear
cascade of identical machines, where each machine is finite state,

reduced, strongly-connected, and can be reset to its initial state at any

time upon a command.
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In this paper, a cellular array is a uniformly, rectangularly,
and unilaterally interconnected array of identical rells, This does not
necessarily constrain one from extendirg the study in this paper to the
situation where diagonal interconnections are allowed. Throughout this
paper, the assumpcon of the presencz of single faulty cell in a cellular
array will be maintained, the fault in a cell in a cellular array is assumed
to be nontransient aid may affect the cell output in any arbitrary way,
anc all logical functions are understood to be completely-specified,

Some prorerties on the combinational celiular array testing ure
developed and a praocedure for finding some prime tessellation with respect
to a given CIO-sta:us is presented in Chapter II. The results for the
combinational cellular array testing can be easily extended to the fault
detection and location in second category sequential cellular arrays (both
one-dimensional and two-dimensional) are investigated in Chapter IV.
Some convenient assuvmptions enable one to establish some sufficient
conditions for the second category sequential cellular array to be testable.
In a special case where the assumption that each cell can be initialized
to its initial state at any time upon a command is not made, some properties
are found to be necessaryand sufficient for the celluler array of that case

to be testable.




Chapter 11

FAULT DETECTION IN COMBINATIONAL
CELLULAR ARRAYS

A, Introduction

Since the specification of the typical cell in the combinational
cellular array is given in terms of the external behavior of the cell without
any implication of its physical implementation (at gate level) and the fault
within a cell may affect the cell output in any arbitrary way, it will be
assumed that all in:ut combinations are to be applied to a cell to test the
cell completely in this chapter. At the end of this chapter, remarks will
be made in counnectior. with the situat’'on where the physical implementation
of the cell in the combinational cellular array is known. Within the scope
of this chaptzr, an array will be understood to be a combinational cellular
array unless otherwise stated.,

Twe necessary conditions for the array testing will be analyzed
separately for two-dimensional arrays. Some properties of the cell in the
array are found to be sufficient for obtaining efficient boundary input
combinations to test an array completely independent of the array size.
There are cases where at least one input combination is not applicable
to the typical cell in the array. There are cases where some procedures
are to be followed suca that some boundary input combinations can be
determined which enable all cells in the array to have some input combi-
nation applied. The implication of a CIO-statuses-compatible mapping
on the array is that with the application of some boundary input ccmbina-
tion to the array, each cell in the array has some input combination applied

as described by the CIO-statuses-compatible mapping on the array.
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B. General Conditions for Testability

Under the assumption that all input combinations are necessary to
test a cell, these are two, well-known, necessary conditions that must be
satisfied for array testing for the detection of the presence of a faulty cell

in an array. They are the Covering Condition and Sensitized Path Condition

as follows,
Covering Condition: Every input combination must be
applicable to every ceil in the array.
Sensitized Path Condition: For each input combination to
a cell and each possible cell output change due to a fault,
there must exist at least one sensitized pathl from that cell
to one of boundary outputs,

These two conditions together are sufficient for the Detection of the

presence of single faulty cell in an array.

C. Two-Dimensional Arrays

Let SI be the set of all positive integers. Let zach element in
the set SIxSI identify the iocation of some cell in the doubly-infinite array
of cells. Thus, Cii' where i,jeSl, denotes the cell at the location (i,]j)
in an array of cells. The general configuration of a two-dimensional array
of finite size is shown in Figure 1. For a cell, the finite horizontal input

set, the finite vertical input set, the finite horizontal output set, and the

1Consider cells in an array as nodes, boundary input terminals as sources,
boundary output terminals as sinks, interconnections and the connections
to boundary terminals as edges in an oriented graph, then a sensitized path
from a cell, denoted by node n,, to a boundary output terminal, denoted by
sink n, , i{s a path from n, to such that when the leading edge of the path
(coming out from n,) is perturbed from its nominal value, the remaining
edges on the path are perturbed from their respective nominal values.




é finite vertical output set are denoted by X,Z,X, and i,respectively. X,2.
%, and 2 are arbitrary elements of X,Z,)ﬁ(, and Z, respectively. )2= X and
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Let the input-output behavior of the cell in an array be described
in terms of a mapping F:XxZ-OExZ. This mapping can be specified in a form
of the cell-input-output-table, abbreviated as CIG-table, listing all

possible cell input combinations and the coirespcnding cell outputs. A
CIO-status is an ordered pair of a cell input combination and its corresponding
cell output, in other words, a CIO-status is an element in {(x,z,®, %) keX,

2eZ.ReX, 2¢Z, and (%,2) = Flx,2) 1.
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The Coveriny Condition and the Sensitized Path Condition for the

testing of two-dimensional arrays are analyzed separately.

1. Covering Each Cell in an Array with Every Possible Input Combination

The problem of determing the constraints on the cell external
bahavior under which every possible input combination can be applied to
any typical cell in a two-dimensional array is not easy because a cell
input combination to a typical cell in the array is provided by an entire
subarray of cells neither to the right nor below that cell with that cell
excluded where the matching of the cell input and the cell output on
adjacent cells must e observed.

By a CIO-status on a given cell is compatible with the CIO-statuses
on all adjacent cells it means that the horizontal input part of the CIO-
status on that cell is the same as the horizontal output part of the CIO-
status on the cell to the left of that cell and the vertical input part of the
CIO-status on that cell is the same as the vertical output part of the CIO~
status on tne cell above that cell.

Given the input-output behavior of the cell in an array of size

MxN in terms of the mapping F:XxZ*)?xZ, define a CIO-statuses-compatible

mapping on the array to be a mapping G:C-osF where
C= rcijliefl,z,s,...,Ml and je¢f1,2,3,...,N11,
S.=f(x,z,R,2) xeX,zeZ,%eX, 2¢ Z, and (%,3) = F{x,2)}, and for every

F
Ci ¢C, the CIO-statuson C ,, i.e. G(‘Cij)' is compatible with the CIO-

st«jatuses on all adjacent ceﬁs in C. A CIO-statuses-compatible mapping
or: the doubly-infinite array, i.e: the arfay of size MxN where M +4»and N+ «, is
said to be a tessellation.

The following two theorems are obvious.
Theorem 1: The Covering Condition for testing an array of size MxN is
satisfied if and only if there exists a nonempty set S of ClO..statuses-
compatible mappings on the array such that each CIO-status on the ClO-

table specifying the cell occurs on qj in at least one mapping in the set S

6




for vie{1,2,3,...,M? and Vjefl,2,3,...,N}.

Theorem 2: The Covering Condition for testing an array of arbitrary size,
where the CIO-table specifying the cell is given, is satisfied if there
exists a nonempty set St of tessellations such that each CIO-status on the
CIO-table occurs on Ci)’ in at least one tessellation in the set St for VieS

and VjeSI.

I

In recalling that the existence o1 @ nonempty set of tessellations
such that each CIO-status on the CIO-table occurs on Cij in sor.e tessel-
lation in the set Vie:SI and VjeSI is also necessary for satisfying the
Covering Condition for the double~infinite array, one can conceive that this
property is also necessary for satisfying the Covering Condition for very
large (in both dimensions) finite arrays.

The tessellation problem here is actually a special case of the
Domino Problem. A domino is a square plate with edges colored, one color
on each edge but different edges may have the same color. The type of a
domino is identified by the colors on its edges. Hence, a lomino can be
thought of as a guadruple (a,b,c,d) where a,b,c and d represents the
color on lst, 2nd, 3rd, and 4th edge, respectively. The domino game is to
take a finite set of domino types with infinitely many pieces of every type
and try to cover the infinite plane with dominces of these types such that
any two adjoining edges have the same color and nonz of the dominoes is
rotated or reflected in the covering. A finite set of domino types is said
to be solvable if and only if the infinite plane can be so covered with

dominoes of these types. The Domino Problem is to find an algorithm to

decide, for any given finite set of domino types, whether it is solvable.

Kahr et al. [10}, Wang [19], and Berger [2] have proven that the Domino
Problem is undecidable meaning that there does not exist a general algorithm
which, given the specifications of an arbitrary (finite) domino set, will
decide whether or not the set is solvable. Tammaru [18] carried the same
conclusion of the undecidability of the Domino Problem over to the tessel-
lation problem for "vo-dimensional arrays. In essence, Seth [17) conjectured

that in general the condition on the existence of at least one tessellation for

7
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every CIO-status on the CIO-table may not be a solvable problem. Notice
that the Domino Problem deals with the ciass of all domino sets. In
identifying the special features of the tessellation problem with respect

to the Domino Problem, Kautz [11] noted that whether or not the special
features of the tessellation problem permit the existence of a procedure for

solving the tessellation problem remains te be determined.

a. Existence of Rectanqular-Tesserae and Tessellations

One can also consider a CIO-status a as a quadruple (a,b,c,d),
where a,b,c, and d are x-component, z-component, X-component, and
Z-component of a respectively. A superscript on a CIO-status can be
used to designate its component, for instance, ax is the x-component of a
In the remainder of this chapter, these notations on the CI O-status will be
adopted.

For some finite positive integer n, an n-tuple of CIO-statuses
(31,32,33, cen 'an) , where aieSF = [(x,2z,R%,2)|xeX, zeZ, %eX, 2¢Z, and
(%,2) = Fix,2)) for ¥ie(l,2,3,...,n?, is said to be a row-chain if and only
if a); = a;; and 3’: = af—l for Vie{2,3,4,...,n}. Similarly, for some finite
posi*ive integer m, an m-tuple of CIO-statuses (31,32,33, - 'am) , where

eS_f for Vie(l, 2, 3 ..,m}, is said to be a column-chain if and only if

q1 m and qi‘= q for Vie{2,3,4,...,m). For some finite positive

integers m and n, an m-n-tuple of CIO-statuses ((q

- Y )
11'q12'q13""'q1n'

-+
(q211q221q231oo.,q2n)l LI Y] ((qmllqmzlquIQo.lqmn))l Wher\. qijeSF

for Vie{l1,2,3,...,m} and Vjc{l 2,3,...,n) is said to be a rectangular-

tessera if and only if (qu, q12' q13 cey 31 j 1s a row-chain for Vie{l1,2,3,
Y

’ q2j’ q3j
This rectangular-tessera is said to be of order mxn.

..mY and (qu ) is a column-chain for ¥je{1,2,3,...,n}.
Another way of viewing a rectanular-tessera (pl. rectangular-tesserae)

is as follows. For some finite positive integers m and n, an m - n-tuple of

-+ -+ -+ -+ - -+ - -+
CIO'—StatUSGS ((qlll qlzl qlsl..-, qln)l (q21' qul q23loosl qzn)l"'°'l
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Theorem 3. Given an n-tuple of CIO-statuses (q1 q2 o ,c'q’

- - -» Y - .
(qml,qmz,qm3,...,qmn)),where qijeS for Vie{1,2,3, ..,m} and

F
Vie{1,2,3,...,n} is said to be a rectangular-tessera if and only if there

pe where D={C, . C iy Crprn)* ’Cr(k+n—l)'

Cesnk Cer) () Cirst) (k42) 7 Clrat) (kan=1)*** * Steem-1’ Cleam-1) k1)’

S(ﬁm"n (k+2)" """ 'C(r+m-1)(k+n-1)} for some r,keSI, satisf ying (1) H(Cij)

q(i 1) (j=k+1) for Vie{r, r+l, r+2, ... ,r+m-1% and Vje{k, k+1, k+2, ..., k+n-11,

(2) for every CUeD the CIO-status on C is compatible with the CIO—statuses
= x 3

on all adjacent cells in D, and (3) H(Ci(k+ 1)) H(Cik) and H(C (r+m- 1)J)

H(er)Z for Vie{r, r+1,r+2,..., r+m-1} and Vje{k,k+l, k+2,..., k+n-1}.

exists a mapping H: D2S

A rectangular-tessera T is said to cover all CIO~statuses in a set S
if every CIO-status in the set S appears in the rectangular-tessera T.

-.
, qn) , where

n-1
q eS = {(x,2,%,8) \xcX, zeZ, %keX, 5¢2, and (%,2) = F(x,2)} for vie{l,2....,n}
for some finite positive integer n, if (1) (q1 q2 .. ,a 1'5 ) is both a row-

-+

chain and a column~chain, (2) (q1 1dyre e .4 ..4 ) is a row-chain and

n-1

-’
(qn NETERE ,qz,qli 1s4a column—;chiin, or (3) (ql' yrve s 'qn—l'qn) is a
column-chain and (q LR Y ql) is a row-chain, then there exists a

rectangular-tessera of orcer nx" covering all CIO-statuses ql q2 ooy

q d
9y a0 q

Proof: Suppose the hypothesis holds.

(1) 1f (31'32' - a ,an) is both a row-chain and a column-chain,

-

- n-1
then \qz ceesq

n-l’qn’ql) is both a row-chain and a column~-chain,

4 + 9 o
(q3, oy n—l'qn'ql’qz) is both a row-chain and a column-chain,...., and
(q ql’a"' .o ,a -l) is both a row-chain and a column-chain. Thus,

4 + 4 9

+ -+ -4 -
((q qzl"‘lq lq)l(qzl"‘lqn_llqnlql)l(q3l"’anIQIIqZ)I ¢ v o0y

(q ql'q2’ R )) is a iectangular-tessera of order nxn covering all
-+

qllqzl—--lq 1, Gndq

“+
(2) 1If (ql,qz,...,qn 1,_.q ) is a_’now-cham and (q ,q 1 ..,qz,ql)
is a column-chain, then (q ql,q2 el 2,q ) is a row—-chain, ..... .

Y

-
(q3,q4,. ...qn,ql,qz) is a row-chain, (qz.q3,". . ’qn'ql) is a row-chain,




- -+ <+ -+

+ - -+ 4
(ql.qn,qn_l,...,qs,qz) is a column-chain, (q2 1y rGseeeidys q3) is a

,q 2,....q2,q1 ,a ) is a column--chain.

Ln-l
-+ + 1
Thusl ((ql (Izltoclq llq) (q ql ..:q qu l) 'cll(—{z q3100-lq ql))

column-chain, ..., and (a

{s a rectangular-cessera of order nxn covering all ql q2 .o .q , and q

l
-;’
(3) 1f (ql,q2 b ,qn_l, n’ is a column-chain and (qn, 9y .,qz;ql)

is a row-chain, then by symmetrical arguments to that in (2)
-+ -+ -+ > 4 - -+ - )

-
((qqun:qn_ll' .. lqalqz)l (qZIqllqnl" 'qulQ3 ’

4 +
(@ .4 _;.--+.d,.G)) Is a rectangular-tessera of order nxn covering all

(—0 -+ 4 )
LI qn-llqn-zl'.‘lqllqn'

4+ 4 -+ +
ql,qz,...,qn_l,and qn.l .

- -
Given that T = ((qlllalzlql3l LI Ialn)l (32113221323,- L lqzn)l . e g

4 -+
(

-» -+

qml,qmz,qu,...,qmn)), where qijeSF for ¥iefl1,2,3,...,m? and

Viefll, 2,3, .n1 for some finite posltive integers m anc n, is a rectangular-
Py

te Sera then, ((qll qiz 4q}3:---,qln:qn qlz %3'...'qln) R

q21""22"‘23 v Gy dy) qzz'qza""'qz Voo z'qma""‘

q_ ) is also t lar-tesse Th latter i
qmn ml .q 13" ""qmn is a rectangular-tessera. e latter is

said to be obtained from the former by iterating the vattein (of the former)

once in the horizontal dimension. Similarly, the rectangular-tessera

R R P R Y R P o P T ¥ R
3..4,..4q 3).6Q,,.4,..49 g ) @ .4 .9 =I)
TR VR R PR T Y R L R v PR e R T oy LR e

is said to be obtained from the rectangular-tessera T by iterating the pattern

(of the rectangular-tessera T) once in the vertical dimension,

Given any two rectangular-tesserae T, and T, , {f T, can be obtained

1 2 2
from Tl by iterating the pattern of Tl at least once in the horizontal dimension
or the vertical dimension, then T2 is said to be implied by ’1‘1 or Tl is said to

imply T,. A rectangular-tessera T {s said to be minimel if and only if T is
implied by no rectangular-tessera. In the remainder of this paper, all
rectangular-tesserae are understood to be mininial.

let k be a fixed positive integer and a and b be any two integers.
We define a = b mod k if k divides (a-b). For any integer ¢, we define

rmod k to be the positive integer d where d = c mod k and 0 < ¢ < k.

10




Let T and T be two rectangular~tesserae of the same order, say

T=<<aa% 3 ). @,.4...3 . ) q ..4...3

q 11’ 121 13!"" l‘\l q21lqzzl 23!"'Iq2n F B I qmllqmzlqmal"'l
d Nand T = (B, By RrnseeerD )ol®r BB reeribe o

mn p 11712713 "FIn 21'722'%23° ‘Tan’’ !

-+ I . o
(pmllpmz,me re e ,pmn}) are two rectangular-tesserae of finite order mxn,

Tp is said to be obtainable from T with horizontal-wise rotation of k slots,

for some integer k, if Bij = ai(j—l) for ¥iefl,2,3,...,m?} and
Viefl,2,3,...,n3. Similarly, Tp Ts?dsarﬁd to be obtainable from Tq with

vertical-wise rotation of k slots, for some integer k, if Sij = a(i—k)

for ¥iefl1,2,3,...,m? and ¥jefl,2,3,...,n3.

mod m’

Let S be a set of all rectanguler-tesserae of same order, Define

X sze S, iss2 if and

2 is obtainable from s1 with horizontal-noise rotation of k slots

and with vertical-wise rotation of r slots for some integers k and r. One

the binary relation R on the set S as follows: for all s

only if s

can verify that the binary relation R on the set S is reflective, transitive,
and symmetric. Hence, the binary relation R is an equivalence relation on

the set S. For any two rectangular-tesserase T, and T, of same order, T

1 1

is said to be equivalent to T, or vicz versa if and only if T R

2 T.”

Given a rectangular-tessera of order mxn, one can mérk the sub-
array of ceills C“,Clz, ce ’Cln’CZI' (322, e ’CZn' .. ,le,sz, ....and
Clrrm in the doubly-infinite array with CIC~statuses according to the pattern
of the given rectangular-tessera and then mark the remaining cells in the
doubly-infinite array with CIO- statuses according to the resuliant pattern
of iterating the pattern of the given rectangular-tessera infinitely many
times in the horizontal dimension and then iterating the intermediate result
infinitely many times in the vertical dimension to obtain a tessellation.
The given rectangular-tessera is said to induce the tessellaticn. A tessel-
lation which can be obtained from the resultant pattern of such an iteration
on a pattern of some rectangular-tessera is said to be nouprime. A tessel-

lation which is not norprime is said to be prime.

For aity two nonprime tessellations "Jl and "J') which are induccd

<

1 and TZ' respectively, if ’1‘1

same order and equivalent, then “‘\Tl {s said to be equivalent to trz or "\]1

by the rectangular-tesserae T and T, are of
&

and J, are sald to be equivalent.

11
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Given a rectangular-tessera T, then, the equivalence class of

rectangular-tesserae represented by T iscl(T) = [TilT1 is a rectangular-

tessera of the order same as T and TRT 1.

Theorem 4: Given an array of arbitrary size where the CIO-table specifying
the cell is known, if there exists a rectangular-tessera T covering all
CIO-statuses in a subset S of the set of all CIO-statuses on the CIO-table,
then each CIO-status 1n S can occur on Ci}' in at least one tessellation in
the set S(T of all nonprime tessellations induced by all rectangular~tesserae
in cl(T)for VICSI and VjeSI. Moreover, the number of steps required to
enable all cells in the array to experience all CIO-~statuses in S can be not

greater than |c1(T)!, where Ic1(T) denotes the number of clements in the

se:! cl(T) and is bounded from above by m.n where mxn is the order of T.
Proof: Suppose the hypothesis holds. The systemic way of generating

cl(T) from T, where the order of T is mxn, is obtaining an element incl(T)
from T with horizontal-wise rotation of k slots and with vertical-wise
rotationofr slots first fork = 0 and r= 0, second fork =0 andr =1,

third fork =0andr=2,..., fork=1land r=n-1,..., for k = m~l and
r=0, fork=m-landr=1,..., and finally for k = m-]1 and r = n-1. Thus,
lcl{T)! < m+n. Let Sﬂf be the set of all nonprime tessellations induced by
all rectangular-tesserae incl(T). It is clear that ’S?J = lcl(T)]. It is also
clear that each CIO-status in S can occur on CJ in at least one noaprime
tessellation in S:’ for vie{l1,2,3,....m" and ¥je{l,2,3,...,n). Therefore,
each CIO-status in S can occur on Cl)' in at least one nonprime tessellation
in Sg_ for VIcSI and VjeSI. Each nonprime tessellation in SZJ' facilitates a
step to enable each cell in the ariay to experience some CIO-status in S.

All nonprime tessellations in SS' provide sufficient steps to enable all cells
in the array to experience all ClO-statuses in S. Hence, the number of
steps required to enable all cells in the array to experience all CIO-statuses

in S needs not be greater than ’Sﬂ'" '

12
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The following theorem is then obvious.
Theorem 5: Given an array of arbitrary size where the CIO-table specifying
the cellis known, if there exists a rectangular-tessera T covering all
CIO-statuses in a subset S = {31’32’ e ,E}t} of the set of all CIO-statuses
on the CIO-table, then the number of steps required to enable all cells
in the array to euxperience all CIO-statuses in S in utilizing the information

provided by the set of all nonprime tess<llations induced by all rectangular-
men

tesserae in cl(T) is bounded below by -I , where mxn is
min, (7 ..M,

ln re e
the order of T, 7, is the number of appearancels to E]'i in ’1I for Vie{l,2,...,t?,

i
min.(ﬂl,nz,.. .,ﬂt) is the smallest one of M, M,,..., " and [r] is the

smallest integer not less thanr.

Given an n-tuple of CIO-statuses (31,32,33, S ,Sn), where for

every 1¢f1,2.3,...,n7, aieSq{(x,z,i,é)'xeX,zeZ,ie)Z,ieff, and (x,z) =
A
] = = 1 = = 1
ijx,f) _,’X X _’fxl, 2,x3,...,xj ,and 2 =2 (21'22'23""’21( . Then,
(q‘,qz,q3, e ,qn) is said to be in x/X-balance if and only if the frequency

~

X

-+ -+ 2
of occurrences of x, at the x-input component over (ql,a2 Ayreee ,qn) equals

i
that of x at the x-output componert over (E;'I,Efz , 83, R ,an) for all
_’
iefl,2,3,...,j". (al,qz,a3, .. .,an) is said to be in z/2-balance if and
only if the frequency of occurrences of Zi at the z-input component over

+ 4 > -» -
(ql,q2 ,q3 PN ,qn) equals that of zi at the z-output component over
-

-+ - - -+ -+ B

LI L & i r [ ’ [ L 7. , ’ L L i i
(ql,qz,q3, qn) for all ief1,2,3 k (q1 d, q3 qn) is said to
be in full-balance if and only if it is both in x/x-balance and in z/Z-balance.

) 4+ 4 -+
Given an n-tuple of CIO-statuses (ql,q2 < PP ,qn), for some

3
positive integer m such that m< n, an m-tuple of CIO-statuses
-+ -+

® p
3.5,

4+ -’)'f-‘
30 > 1'90 9y q) Py

.‘
is identical to exactly one of al'q2'83' R 37 is identical to exactly

one of the remainder of 31,32,?;3, ..., and E’;n after the one identified with

. 'Sm) is said to be a sub-n-tuple of (q

61 is deleted, and 5 is identical to exactly one of the remainder or

1
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99y 93 i-1 2
deleted for every i¢{3,4,...,m}. For an example, (ql 1 qz) is a sub~5-

.., and an after those identified with 31,32 4.+., and p

R
tuple (a,,9,.9),d,.d,).
Theorem 6 (Property 1): Given a set of 3 (distinct) CIO-statuses

S= {31,32,337, if (31,31,32 03; is in full-balance but no sub-4-tuple of

the 4-tuple (31,31,32,33) is in full-balance, then there exists a rectangular-

tessera covering all CIO-statuses in the set 5,

Proof: Suppose the hypothesis holds and E;'l ‘al'bl ,C, . d ) c{2 (a z'CZ'dZ)’

and 33 = (a3,b3,c ,d ). Then, two possible cases are cons.‘,uered.

Casel, a #c: Since (@, /by d) ( 'b.c).d ),(a ,bz,cz,dz),

(63’b3 3" 3)) is in full- balance a # Cl implies that C,=Cy= a1 and

a, =a, =c. Thus, each of ((a bl cl,dl),(az, 2,c,z,dz)) and ((al,bl,cl,dl), |

(a 37 b3 Cqe .d )) is a row-chain. :
Subcase la, b1 ﬂl: Under this subcase, d2 = d3 = b1 and b2 = b3=d1, :

then (az,bz,cz,dz)) and (a3,b3,c3,d3) are not distinct, a3 contradiction to the ',;

hypothesis. Hence, subcase la is impossible. "
Subcase 1b, b1 =d1: That ((al'bl'cl’dl) (al,b1 c d) (a 2 b2 Cy .d )

(a3,t3,c3,d3)) is in full-balance and bl = dl implies that e'ther () b2 = d2

and b, =d, or (b)) b, =d, and b, =d.. Under (a), then each of

3 3 2 3 3 2
(@).b).c,.d) . (a,.b,.c,.d))) and ((a),b.c).d)), ay.bs,ch.d5)) is in full-

1’
balance, a cont'adiction to the hypothesis. Under (b), then each of

((al’bl’c d),fa b,, S ,d.)) and ((a ,b ,c‘,d ),(a ,b..c ,d )) is a column-~

1’ 3'73
chain. Hence, there exists a rectangular—tessera (((a bl c dl)'
(az,bz,cz, 2,),((a1,bl,cl, 1),(a3, 3" 3'd3))) of order 2x2 ccvering all

CIO-statuses in the set S.

Case 2, a, =¢,: Ya, =c¢,, then ((d,,b,,c,.4d,),(a, . b C‘dl)) is a row-chain

1 1 1 1’ s Bt R S R |
and b1 # dl' Thus, d2 d3 = bl and b2 = b3 = dl' Hence, each of
((al’bl'ci'dl)’(aZ' 2Cye .d )) and ((al' 'S 'dl)’(a3’b3'c3’d3)) is a column-
chain.
14
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Subcase 2a, a, 2=yt Under this subcase, ((a b € ,d)

(a2

Hence, subcase 2a is impossible.

X c2 dz)) is in full balance, a contradiction to the hypothesib.

Subcase 2b, a, # C,: nder this subcase, that ((al,b ’cl'dl)'
&

i
(al b e ) bZ’CZ'dz)’ (aa,b3,03,d3)) is in full-balance forces that
Cq = aZ and 33 C,- Then, ((az,bz,cz,dz), (a3,b3,c3,d3)) is a row-chain,

Hence, there exists a rectangular-tessera (((al'bl'cl’dl)’(al'bl’cl’dl))’
((a b /Gy dz) 3 3,c3,d3))) of order 2x2 covering all CIO-statuses in

the set S.

Theorem 7 (Property ZLZ: If the cell in an array of arbitrary size is chosen

such that the mapping F:XxZ"f(xé describing the external behavior of the
cell is one-to-one, then, there exists a set of rectangular-tesserae covering
all CIO-statuses in the set SF of CIO-statuses describing the cell, more-
over, the number of steps required to erable all cells in the array to experi-
ence all CIO-statuses in S Is IX}-12].
Proof: Suppose the hypothesis holds. Let N'= {(x,2) IxeX and zeZ?. Let
each member in the set 'N' identifies a node in an oriented graph Q = (N', F),
where £ is a set of edges obtained as following: an edge e from the node
(x , 2 )eN to the node (xz,zz)eN' exists and is in the set # if and only if
( X2 ) (x 12 ). Since F:XxZ-4XxZ is one-to-one (also onto because
XxZ = XxZ and 1s finite), each node in the graph G— has precisely one
incoming edge and one outgoing edge. Then the graph Gr is actually a
graph consisting of separated subgraphs where each subgraph is a loop. (A
loop can be a self-loop or a loop containing two or more nodes.) Let
(L L Lk? be a set of all loops in the graphCr and ¢ L ) be the

number of nodes in the loop Li for ¥ie{1,2,....k?. One can \,lalm that there

2
A special case in Kautz [11] (Theorem 12). The "proof" given by Kautz
does not appear to be adequate.
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9 Tk where T1 is a

rectangular-tessera obtained from the information revealed by the loop L

exlsts a set of rectangular-tesserae {Tl,T

i
and is of order C(Li) X g(Li) for ¥ie{l,2,...,k?, covering all CIO-statuses

in the set SF' Indeed, if a loop LleL is a self-loop containing a node

(xi,zi)eN" , then, clearly (xi,z!,xi,zi) is a ClO-status in the set SF‘

thus, there exists a rectangular-tessera, say T,, consisting of the CIO-

i
i’ i
C(Li) nodes (xl,zl),(xz,zz),(xa,x3),..., and (XC(L) L
F(xl’zl) = (x,.2,), F(xz,zz) = (x3,23),..., and P(x

statuses (.. {12 %2 ). Suppose, in general, L eL is a loop containing

)) , where

; )
(Li)'zc(L) 1'21 '

Ix
%502, 3.23). q3 (x3.23,<4,z4) , and

),xl,zl). Then, noticed that ql qz.q3

(x
4 +

I;et q = (xl.zl,xz.zz), q,
9w L)' Zr (L

= (x
c
also the C(Ll) -tuple of CIO-statuses (ql, q2 ,q3, .

+9e () ¢SF

.. 'qr(L p!s both a row~

chain and a column-chain, Then, by Theorem 3, there exists a rectangular-
tessera, say Ti’ of order C(Ll) X C(Li) covering all the CIO-statuses
al'az ,21’3 ;ees, and aC (L)’ Furthermore, the number of steps required to

erable all cells in the array to experience all distinzt CIO-statuses
-+ -+ -Go

ql qz 3 FAE I N
obvious one-to-cone correspondence between the set A of nodes in the graph
Q and the set SF'

iu the set {'I‘l,T2 ress ,Tki. Thus, there exists a set of rectangular-tesserae

covering all CIO-statuses in the set SF and the number of steps required to

., and qC(L ) is C(L ) by Theorems 4 and 5. In fact, there is an

Each loop in the graph & identifies a rectangular-tessera

16




enable all cells in the array to experience all CIO-statuses in the set SF

is the number of CIO-statuses in the set S, which is IX] - IZI y 4
Given a mapping F:Xx2Z -oXxZ a reduced mapping F] for some

2) 62 is the mapping F] X-oXxZ where 1‘] (x) r(x,zl) for Vxlex.

Theorem 8 (Property 3)3} Let the cell in an array of arbitrary size be

described by a mapping F-XxZ—o)A(xﬁ and the two mappings Fx:XxZ -o)A( and

F :XxZ +Z be defined by (F .7, P (x,2)) = F(x,z) for ¥xeX and Vzuz. 1t
the cell in the array is chosen such that the reduc ed mapping F.. ] X-o;(

is one-to-one for ¥z¢Z and the reduced mapping FA] :Z+Z is one- to-one

for ¥x¢X, then, there exists a set of rectangular-—tesserae covering all
CIO-statuses in the set SF of CIO-~statuses describing the cell, moreover,
the number of steps required to enable all cells in the array tc experience
all CIO-statuses in the set S is D ARRVAR

Proof: Suppose the hypothesis holds. Let W'= r(x,2)IxeX and Z¢Z} . Then,
there is an one-to-one correspondence between the set ' and the set SF
because Fé]))i:z +Z is one-to-cne also onto (note: Fé]i:z-oi is one-to-one if
and only if Fﬁ]x:z +7 is onto since Z = 2 and is finite) for ¥xeX. Let each
mumber in the set N’ identifies a node in an oriented graph G— = (‘N' ,e),
where ¢ is a set of edges obtained as following: 3n edge e from the node
(xl, eN" to the node (x2,z e?v' exists and is in the set £ if and only if

there exists a CIO-status quF such that g = xl’ab: ‘1,q X,
az = ﬁz. Then, that each node in the graph §- has precisely one outgoing

and one incoming edge follows the facts that there is an one-to-one corre-

X,.,and

spondence between the set N’ and the set S and the reduced mapping

~ - F
Fﬁ]‘zﬁ:X-o X is onto also one-to-one for ¥z¢Z, Thus, the graph Q is
actually a graph consisting of separated subgraphs where each subgraph is

aloop. LetL=fL,L_,...,L Y be the set of all loops in the graph &- and

1'72 k
C(Li) be the number of nodes in the loop Li for ¥iefl,2,...,k7. Ore can
claim that there exists a set of rectangular-tesserae le,Tz P ,Tk’-, where

3A special case in Kautz [11] (Theorem 13). The "proof"” given by Kautz does
not appear to be adequate.
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Ti is a rectangular-tessera obtained from the information revealed by the
loop Li and is of oder g(Li)x C(Li) for 1¢f1,2,...,k}, covering all CIO-

statuses in the set SP’ Indeed, if a loop LieL is a self-loop containing a

node (xl,ﬁi)eN’ , then, clearly (xi,éi,xl,:?:l) Is a CIO-status In the set S,

thus, there exists a rectangular-tessera, say T,, consisting of the CIO-

i

status (xi,ﬁl,xi,éi). Suppose, in general, LieL is a loop containing C(Li)
nodes (xl,zl), (xz,zz), (x3,z3), ..., and (x(_,(L yiew )) where there exists
an edge from the node (x z ) to the node (x1 1,z ’for vie{l,2,3,... ,C(Li)—l‘
and there exists an edge from the node (x (L o2 (L )) to the node (xl,él). Let
.Q

1' (x1 zz,xz.Z). qz- (x .z3 3,22), 3 (x 24 x4 2 ) ‘o and

E(Li) (xc(L) 1’ 1' c())- Then. one can see that e qz"‘a ((L) Sr

also (q1 qz,q3 ..,q (L )) is a row-chain and(q ‘L)’ ..,q3 qz,ql) is a

column-chain, By Theorem 3, there exists a rectangular-tessera, say Ti'
-

+ -+
of order _c(Li)x C(Li) covering all the CIO-statuses CITLPRL PR and 9wy

What's more, the number of steps required to enakle all cells in the array
-

2,q3,...

to experience all distinct CIO-statuses 313
by Theorems 4 and 5. Indeed, each loop in the graph G— identifi%as a

_.
, and A (L) is C(Li)

rectangular-tessera covering some CIO-statuses in the set SF' The fact

that the graph &. is a graph of isolated loops LI'LZ’ ..., and Lk reveals

the partition on the set SF such that each CIO-status in the set SF is in

exactly one rectangular-tessera in the set {Tl,TZ, .o ,Tk‘. Thus, there
exists a set of rectangular-tesserae covering all CIO-statuses in the set
SF and the number of steps required to enable all cells in the array to
experience all CIO-statuses in the set SF is the number of CIO-statuses in

the set SF which is 'X!. 12! &

Theorem 9: There exists a rectangular-tessera consisting of t (not necessarily

distinct) CIO-statuses 51,32, ..., and at only if the t-tuple of CIO-statuses
(31.32 vees ,3t) is in full-balance.
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Proof: This theorem is obvious in light of the fact that every row-chain

is in the x/®-balance and every column-chain is in z/Z-balance. &

The converse statement to Theorem 9 is not true. As a counter-
example, a 3-tuple of CIO-statuses ((1,a,2,b),(2,b,2,a),(2,¢,1,¢)) is in
full-balance but there exists no rectangular-tessera consisting of the three
CIO-statuses (1,a,2,b),(2,b,2,a), and (2,c,1,c).

Given a set S of CIO-statuses, if there exists a set S of rectangu-
lar-tesserae rTl T2 ,Tt , wWhere T consists of K CIO- statuses for
Viefl,2,....t}, covering all CIO-statuses in the set S, then, any (Z K )-
tuple of CIO-statuses consisting of all CIO-statuses in 2]l rectanguﬁar-
tesserae in the set St is in full-balance.

Theorem 10: Given a set S of j CIO-statuses fal,a? faee ,317, there exists
a nonempty set St of rectangular-tesserae covering ‘all ClO-statuses in the
set S only if there exists a j-tuple of positive integers {m_, m,. . ,mj) such

I

that any (;1 i) ~-tuple of CIO-statuses consxstmg of m, copies of q1

1 2

copies of *2, ..., and mj copies of qj is in full-balance.
Following Theorem 10, one has the following result.
Theorem 11: Given a set SF of k CIO-statuses f-c;l,az, ’ak] on the
CIO-table, if all the possibie nonnegative integer solutions to
1) po S N fo X _ R 4% . N 4% 4
M) * My Tee e T MG =MA) T MGy v T M Q. an
+z +z +2 4z 242 42
+ + + = L+
(2) 19 *mady .. ¥ m g omgitmig, ¢ m, q
for ml,mz,. .., and my render some mi =0, ie{l,2,...,k?, then ai can not

be covered by any rectangular-tessera,
Given a set Sr of k CIO-statuses fq°l,32 rees ,ak? on the CIO-

table specifying the kcell in an array of arbitrary size, the nonnegative integer

—‘A
solution to (1) = m_a).(= by mia? and (2) mlc;f“ = I m. qzl for
i= = i= 1
ml,mz, ., and mklis1 not unilque. The existence of a solu’hon where mi S

are all positive integers reveals the possibility that one might find a set

of rectangular-tesserae covering all ClO-statuses in the set SF' If all the
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possible nonnegative integer solutions to (1) and (2) for mi's rander at least
orie mj =0, jefl,2,....k}, then at least 31 can not be covered by any

rectangular-tessera, consequently,at least the existence of a set St of
prime tessellations such that E;'j occurs cn Cip in at least one tessellation
in the set St for ’«IleSI and VpeSI is necessary for the Covering Condition
for testing the array to be satisfied.

For a CIO-status 31 in the set SF of all CIO-statuses on the CIO-
table specifying the cell in an array of arbitrary size where a), can not be

covered by any rectangular-tessera, a prime tessellation with respect to

the ClO-status 3}. is a mapping G:C-»SF where C = fCiplie{l,Z,B, e M2

and pefl,2,3,...,N1Y, G(Cy,) = 3},, where M+ and N, and for

every Cipec’ the CIO-status on Cip' i.e. G(Cip)' is compatible with the
CIO-statuses on all adjacent cells in C. The existence of a prime tessel-
lation with respect to the CIO-status aj implies the existence of a set St

of prime tessellations such that E{’j occurs on Cip in at least one tessellation

in the set St for VieSI and ¥peS_and hus enables all cells in the array to

I
experience the CIO-status aj'

b. Tessellations for Arrays of Cells with Binary Horizontal Input and
Binary Vertical Input

It is to be determined in this section whether or not the Covering
Condition can be satisifed for each one in a class of arrays, say of size
MxN where M > 2 and N > 2, with each cell having a binary horizontal input
and a binary vertical input. (That it also has a binary horizontal output and
a binary vertical output {s understood.) Specifically, for an array in this
class with its cell described in terms of a set of four CIO-statuses
(31’82’33’541 on the CIO-table, can the Covering Condition be satisfied?
If yes, what is the number of steps required to apply all input combinations

to all cells in the array?
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S1.

S2.

S3.

54.

S5.

S6.

S7.

S8.

S9.

The Procedure P to be followed is following.

+ +
Solve m +m2q2 m3q3 m4q m q

1q1 4™

+Z
+ - +

1q1 m,d, + 3q3 m,d, - mdyrmd;

for a nontrivial nonnegative integer solution for m

and m

m ,m., and m

' 3 4’

(A minimal solution is preferable.)
If all the possible nontrivial nonnegative integer solutions for m;,

m,, and m, in step Sl render some m, = 0, where ieA = {j lmj =07,

My 4
go to step S6. Otherwise, proceed to the next step.

For a solution for m,, m ,m,, and m obtained in step Sl, let

B={j |mj >01. Forin az(. X m.)—tup?e of CIO-statuses with mj
copies of 3], for all jeB. JeBLet it be .

Partition £ into several sub-( ¥ m )-tuples =1,&‘2, ..., and 2
such that F is a (minimal) sub (v mJ) tuple of F satisfying full-

je

balance condmon for each iefl, 2, k1 and q is in at least one
fe .. ,0.., 3 jeB.

o &'1 2 and kfor every jeB

Obtain rectangular-tesserae T,,T,,..., and T, from = ,* ., and

172 k 12"
F. . Go to step S8.

F}cir each aic{aj ljeAY, determine a prime tessellation with respect to
31 using Procedure P_.

If all prime tessellations stated in step S6 are found, go to step 83.
Otherwise, return with an indication that the Covering Condition is
not satisfied.

(Note that the Covering Condition is satisfied.) From the necessary
prime tessellations obtained, determine the number of steps required
for enabling all cells in the array to experience all aie(a}_ ljeAY .
Determine the number of steps required for enabling all ceils in the
array to experience all CIO-statuses in the set faj 'jeB} from the

ncnprime tessellations induced by the rectanguiir-tesserae obtained

in step S5, take into account the possibility where the number of




s e

steps for enabling all cells in the array to experience some CIO-
status in the set {31116‘3} might have been accounted for in step S8,
however.

S10. Take the sum of results in step 58 and in step S9. Return with the

result,

Procedure P for determining a prime tessellation with respect to
-+ > 4 9 4 .
a given qieS = {ql,qz,q3,q41 in an array with a binary x-input, a binary
z-input, a binary X-output, and a binary Z-output:
-+

I.1. For the convenience, denote the four CIO-statuses q1

34 in a given ClO-table byl , 2, 3, and’4 , respectively.

,az,a.,,and

1.2. Consider finding a prime tessellation with respect tc a aieS as
marking unit squares each with some a ¢S on the second quadrant
of the infinite plane such that the most lower-right square is
marked with 31 and for each square the compatibility of the CIO-
status with that of its neighboring squares is satisfied.

I.3. An ordered pair (r,c) is used to identify a square, where r and c
identify, respectively, the row and the column the square is in.
The enumeration on columns is from right to left and that on rows
is from bottom t> top. The distance d of (r,c) square is defined
as d(r,c) 4 r+c,

1.4. For some positive integers M and N, the Procedure P, for marking

the array of MxN squares each with sonme 858 such téat Q,n
square is marked with 31 and for each square the compatibility of
the CIO-status with that of its nelghboring squares is satisfied,
is following:

I.4.a. Set COPY=A and FLAG=G.

I.4.b. Proceed the following Temporary Marking Procedure for each of
unmarked squares in the array starting from one square with the

smallest distance and in the order of monotonically nondecreasing
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in the distance. After going through the Temporary Marking

Procedure for all unmarked squares, if the number of unmarked
squares remains the same, go to step 1.4.y., otherwise,
proceed to step I.4.c.

Temporary Marking Procedure:

(1} For a typical square identified by (r,c). 1i (r,c~1) square has
been marked and each CI0O-status has the same x~-component,
say o, then mark (r,c) square with all apraesla’ﬁ ol

separated by @ slash ”/" and make the "« " indication at

the common boundary of (r,c) and (r,c-1) squares, go to
step (5). Otherwise, proceed to the next step.

(2) If (r-1,c) square has been marked and each CIO-status has

the same z~component, say R, then mark (r,c) square with
all aefagSlaz= Bl separated by a slash "/" and make the
"t " indication at the common boundary of {r. ¢} and (r-1,c)
squares, go to step (5). Otherwise, procced to the next step.

(3) If (r,c+)) square has been marked and each ClO-status has
the same X-component, say ¢, then mokr {r,c) square with
all &'era’es!&’x = x) separated by a sluosh "/" and make the
" 9 " indication at the common boundary of {r,c) and (r,c+l)
squares, gc to step (5). Otherwise. proceed tc the next step.

(4) If (r+1,c) square has been marked and each CIO-status has
the same z-component, say 8, then mark (r,c} square with
all ae{aeslaz = @1 separated by a slash "/" and make the
"1" Indicatlon at the common boundary of {r,c) and (r+l,c)
squares, go to step (5). Otherwise, make no marking on
(r.c) square, proceed to the next step.

(5) Return (to the calling routine).

I.4.c. Proceed the following Compatibility Marking Procedure for each
of all palrs of marked nelghboring squares (rl,cl) and (rz,cz).
where d(rz,c2)< d(rl,cl) and no Indication appears at their
common boundary.

23
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1.4.d.

I.4.e,

(1)

@)

(3)

" 1q)

(5)
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Compatibility Marking Procedure:

If under no circumstance can a CIO-status on (r ,cl) square
be compatible with a CIO-status on (rz,cz) square, return
(to the calling routine) with FLAG=R, Otherwise, proceed
to the next step.

If ¢, =¢,, 9o to step (3). Otherwise, r, = r, here, if all

CIO-statuses on (r2 ,cz) square have the sarie x-component,

say o, delete those CIO-statuses on (rl,cl) having some
X-component different from o, go to step (4), else if all CIO-
statuses on (rl,cl) square have the same 2-component, say f,
delete those CIO-statuses on (r2 ,cz) square having some
x~-component different from 8, go to step (4), otherwise, go to
step (5).

If all CIO-swatuses on (r2 ,cz) square have the same z-component,

say ¢, delete those CIO~status on (rl,c ) square having some

Z-component different from #, go te ste; (4), else if all CIO-
statuses on (rl,cl) square have the same Z-component, say 8,
delete those CIO-statuses 01 (rz,cz) square having some
z-component different from 6, proceed to step (4), otherwise,
go to step (5).

Make the "A" indication at the common boundary of (rl,cl)
and (r2,c2) squares.

Retu.m (to the calling routine).

If FLAG=R an.! COPY=A, return (to the calling routine) with an

indication that i». is impossible to mark the array of MxN squares
as specified. If FLAS=R and COPY=R, go to step I.4.h. Other-

wise, FLAG=G here, pro-eed to the next step.

If there exists any pair of n. rked neighboring squaz-s where their

common boundary is without ar.;* indication, go to step 1.4.g.

Otherwise, proceed t. the next sizpD.
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1.4.f. If by heuristic observaticn over the pattern of marked squares
developed so far, one can (correcily) obtain the marked array
of MxN squares satisfying all the constraints on it, return to
the calling routine with the result. Otherwise, go to step [.4.b.

I.4.g. Let RECORD be a copy of the array of marked squares with the
indications on common boundaries of neighboring squares
developed so far., Among those squares marked with multiple
CIO-statuses, select the one containing E{’i, provided there exists
one, otherwise drop this criterion for seiection also with the
smallest distance, break a tie by selecting the one closest to a
square marked with single CIO-status during the temporary
marking. Make a choice among the marked CIO-s:atuses on that
chosen square by choosing ai if possible, otherwise choose some
other one. Set COPY=R. Let RUNNING-COPY be a copy of
RECORD with the exception that the chosen square is marked with
the chosen CIO-status instead of all CIO-statuses. Record the

choices on RECCRD. Use RUNNING-COPY .+s the marking on the

arrray of squares developed so far, go to step 1.4.c.

I.4.h. from RECORD, construct a current RUNNING- COPY which is the
same as RECORD except the chosen square is marked with an
alternate CIC-status. Record this alternate choice on RECORD.
If this is a last alternate CIO-status on the choscn square, sef
COPY=A, otherwise, COPY=R stands. Use the current RUNNING-
CCPY as the marking on the array of squares developed so far,
go to step [.4.c.

Pl. Execute the Procedure P, with M=N=2. If the result is an indication

f
that it is impossible to mark the array of 2x2 squares as specified,

proceed to the next step. Otherwise, go to step P2.
P2. Return (to the calling routine) with an irndication that there exists

-+
no prime tessellation with respect to the agiven qi.
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P3. Execute the procedure Pf with some larger integer for M and N, say
M=N=6. In doing so, the result obtained so far can, of course, be
utilized. If the result is an indication that it is impossible to mark
the array of MxN squares as specified, go to step P2. Else if by
heuristic observation over the pattern of the result so far, one can
(correctly) obtain a prime tessellation with respect to the given CIO-
status, return to the calling routine with the completed result,
otherwise, proceed to the next step.

P4. Execute the Procedure Pf with some larger integer for M and N, say
M=N=12. The handling of the result is same as that stated in step P3.

PS.

Example 1: Consider an MxN array with a specification of the cell as
Folk,2) =X +zand Fylx,2) =x +z. Let 31 = (0,0,1,1), E;’z = (0,1,1,1),
33 =(1,0,1,0), and 34 ={1.1,0,1). All nontrivial nonnegati re integer

solutionstom, 0 +m_0+m -!+m, 1l-me!+m_ 1+ _-1+m_«0

1 2 3 4 1 2 3 4
andm1‘0+m2-l+m3-0+m4-l;m1-1+m2ol+m3-0+ m4-l for
ml,m7,1n3. and m, render m1 = (. This reveals the need to find a prime

tessellation with respect to 31 as far as enabling all cells in the array to
experience the CIC-status Z]’l is concerned. Some intermediate steps in
following the Procedure Pp for determining a prime tessellation with respect

to 31 are as follows.
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By heuristic observation over the pattern of marked squares as shown in

step f, one can obtain a prime tessellation with respect to E;’l as follows,
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This prime tessellation with respect to the CIO-status 31 implies that

M+ N -1 steps are required to enable all cells in the array to experience
the CIO-status 31. To see this point, one can observe a specific case,
say for M= 4 and N = 5, where 4+5-1 = 8 CIO-statuses-compatible
mappings on the 4x5 array can be obtained from the prime tessellation with

respect to 51 as follows.

sJelololo| [olololole] |@@0]0 6
ep/ololo| 006 00 .|00000
© ®0/0.0, 00,000 |%0060.0
®ee[00! (@60/0|e] @000,
Ml ' N, M2 M3
elo®lo e (@0 0lee @[©F®‘¥@;§{
00,060 o@D oo @66 00
olejololo] @20 0.0) [@®® 60
ojejo[@e] @@ 0| (9 6
M4 M5 M6
eololelojo] @leol@0
@ ®6|0|e 0 ﬁ@@ﬂ@ @
o ololoe @0
@ele|elo] @8
M7 M8

With the application of 00000 to the vertical boundary inputs, in the order
from left to right, and 010l to the horizontal boundary inputs, in the order
from top to bottom, of the 4x5 array, all cells on the dotted line in Ml
have the input combination corresponding to 31 applied, Similarly, with
the application of 11000 to the vertical boundary inputs and 0101 to the

horizontal boundary inputs of the 4x5 array, all cells on the dotted line in
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M6 have the input combination corresponding to 31 applied. These 8 CIO-
statuses-compatible mappings on the 4x5 array imply that 8 s.eps are
required to enable all cells in the 4x5 array to experience the CIO-status E;’l.
A nontrivial nonnegative integer solutiontom,«0+m_.0+m_+1+m, ¢ 1

1 2 3 4

= mlol +m2~l+m3-0+m4-0 and m1-0+m2o1 +m3-0 m4-1 =

ml-l +m2-1 +m3-0 +m4-1form1,m2,m3,m4 is

_ - - 2 2
m, = 0, m, = 1, m, = 1, and m, 1. Let ¢ (qz,q3,q4). Notice

that ¢, = (33) and F_ = (32,34) are both in full-balance, furthermore, 33

alone lis a rectangulzar—tessera and (32,34) i a rectangular-tessera of
order 1x2. Thus, it follows from Theorem 4 and Theorem 5 that one step is
required to enable all cells in the array to experience the CIO~status 33
tndependent of the size of the array and two steps are required to enable
all cells inthe array to experience the CIO-statuses 32 and q4 independent
of the size of the array. Therefore, 1+2+ (M+N-1) steps are required to
enable all cells in the MxN array to experience all CIO-statuses 31'32'
33, and 34.

The reiultszof this subsection are summarized in Table 1. Of all
the possible 22 x22 = 256 cases, when a prime tessellation with respect
to some CIO-status is required, most cases require at mcst reaching step
P3 in Procedure Pp. There are 96 cases corresponding to those entries in
Table 1 with *'s where in each of these cases at least one input combina-
tion is not applicable to the lower-right cell of a 2x2 array and thus not
applicable to the typical cell in any MxN array, where M> 2 and N> 2.

An exhaustive search on the result on Table 1 reveals one fact about
the class of arrays with each cell having a binary horizontal input and a
binary vertical input related to the minimum number of array tests which is

the numberof tests required for testing a single cell, i.e., four in this

class of arrays. This is stated in Theorem 12,
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T3 . . . -1) | o o [2(M1
(n) (n) | (n) | (n) | (n) (n) | (n) ltnsp) | (n) (nsp)
sloMd 1,1 lele 1424N141 1als Rela1 12620 T3, (M [14le
= ) N frel I tod P g P e® . Mk ;,f'fy ey J#1-1) [MeMeN
xz * * . . '
Yng; Vinep) | tnap) | (nsp) | (nsp) | (nap) (n&p) (n&p)}(n&p) (ntp) | (n&p)
203 [Le2e21 204 | 343 | led (1424 ] 304 | 20 [ 242+ 344
+N }
Roz . * -1) o POLY .
(n) | (n) [ (n) | (n) | (n) [(n&p)| (n) | (n) [(n&p) (n)
203 (14242 264 | led | 343 344 2424 J 263 | 3e4 |}02¢
N
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(n) [ (n) | (n) | (n) | (n) (n) {n&p) (n) | (n) | (nsp)
1414M1,141] 242 MolaM ToloM (L142¢ (2024 [1edelin,) +14N
ﬁ |11l 2920 Lee LN Loy '(14{!)! oy t_r_ﬁil)v AR N
e . » (N—H - -
n&p) | (n&p)| (nep)| (nap)| (nép)l (nsp)(nsp) |(nsp) | (n&p) (n&p)L (n&p)
243 203 ] 204 Llea 343 | B2 344 521 3| 203
%= Y - 2(M=1 . . -1) Py
(n) (n) | (n) [ (n) | (n) Unep) (n) (n&p)| (n) | (n)
1414 14141 (14141 | 14141] 2424 1
ARoll] LT e ez il Vel | T2 P TR b
- - » »
e * rg; * (nsp)| (n&p)| (nip)| (nép) {n&p)] (n&p) (n&p}(nkp) |(n&p) L | {n&p)
synbolst (n)ionly nonprime tessellations required

(n&p)inonprime and prime tessellations required

#1at least one CIO-status can not be experienced by a typical Cell in the array

fable 1. The numbar of steps required to apply all cell input combinations to all cells in an

array of sice

MxN in the class of arrays with each cell having a binary horizonte:

input, a binary vertical input, a binary horizontal output, and a binary vertical

output,
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Theorem 12: Given a 2-dimensional array of arbitrary size with each cell

having a binary horizontal input, a binary vertical input and a set of CIO-

statuses {31,32,33,341 describing the cell in the array, the number of

steps required to apply all possible input combinations to all cells in the

array is equal to the minimum number of array tests, which is four, if and
ly if (,.d,.9..9,) is ta 1all-bal

only if {q,.q,.49,,49,) is la1ill-balance.

c. Tessellations for Arrays of Cells with Multiple Horizontal Input
Terminals and Multiple Vertical Input Terminals

For the general class of arrays of cells each with multiple hori-
zontal input terminals and multiple vertical input terminals, when a prime
tessellation with respect to a given CIO-status in a set of CIO-statuses
specifying a cell is to be found, the Procedure I:’p in the preceding sub-
section can be extended to adapt to the general class of arrays here. One
thing one must be aware of is that the condition that n-tuple of CIO-statuses
C is in full-balance is, in general, not sufficient for the existence of a
rectangular-tessera or rectangular-tesserae covering all distinct CIO-
statuses in the n-tuple C.

2. Existence of a Sensitized Path

Let the cell in a two~-dimensional array be described in terms of

two mappings F;(:sz-o X and F,:XxZ+2 , then, one has the following theorem

2
regarding the existence of a sensitized path.

Theorem 13: If the logic of the cell in a two-dimensional array is chosen

such that

(1) the mapping F:XxZ-+%xZ , defined by F(x,z) = (F (x,z),Fz(x,z)) for

VxeX and ¥zeZ, is one-to-one (and/or onto), *

(2) Fi:XxZ-» X Is as such that any change in x while z is constant or
any change in z while x is constant induces some change in £ and
F.:XxZ-+ 2 is any (well-defined) mapping,

2

(3) FQ:XxZ +Z is as such that any change in x while z is constant or any
change in z while x is constant induces some change in z and

FQ:XxZ-o)A( is any (well defined) mapping, or
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(4) Fx:XxZ—» X is as such that any change in x while z is constant
induces some change in X and PE:XXZ-’Z is as such that any change
in z while x is constant induces some change in 2,

then, for all possible input combinations to a cell and each possible

cell output change due to a fault, there exists at least one sensitized

path from that cell to one of the boundary outputs.

Proof: Part (1)

Suppose a cell C

1 on the diagonal line Di is faulty as indicated
in Figure 2. Then, at least one of the outputs of the cell C1 is perturbed

/7 1 ¥ ] [] 1

/ ] ' t 1 '

/ ] f ] : :

Di+2 ;; ;, ; ; ;
Symbols: O : node (cell)

®: sink (boundary output terminal)

Figure 2. Graph for the Proof of Part (1) of Theorem 13.
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from its nominal value. This causes the input change to at least cne of

two cells C, and C, on the diagonal line Di+ recelving an input from the

2 3 1
cell Cl' Thus, at least one of the outputs of cells C2 and 03 is perturbed
from its nominal value. Eventually, the output change of cell C1 is

propagated through diagonal lines D1+1' Di+2 3 etc. until one or more of
boundary output terminals is reached,
Part (2)

An equivalent statement for that F;(:XxZ-o X is as such that any
change in x while z is constant or any change in z while x is constant
induces some change in % is that Fi:XxZ-» X is a mapping ¥here Iilz lz1,
()2=X of course), Fg] ‘Z is one-~to-one for ¥z¢Z, and F)’E « is one-to-one
VxeX. Now, suppose there is a ®-output change due to a fault in a cell
C,. This change in X of the cell C

f f
the cell Cg immediately to the right of the cell C

, or equivalently, the change in x for

£ causes at least the

change in X of the cell Cg. Thus, the R-output change due to a fault is
at least propagated along a row until the boundary output terminal is

reached. Suppose the fault in cell C, causes the change in Z-output of

f

cell Cf. This change in 2 of the cell Cf, or equivalently, the change in

z for the cell Ch immediately below the cell C

change in X of the cell C

Y causes at least the

b And, this change in X of the cell Ch is then

at least propagated along a row until the boundary output terminal is

reached. Of course, the fault in cell C, causing changes of both R-output

f
and 2-output wili be detected at least at the boundary output terminal in
the same row as cell Cf.

Part (3)

This is symmetrical to Part (2).
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Part (4)

Here, F)A(:sz - )A( is a mapping where }ili is one-to-one for
¥ze¢Z and F2:XxZ-92 is a mapping where Fé] x is one-to-one for ¥xeX.
Any R-output change due to a fault in a cell Cf, or equivalently, a change
in x for the cell Cg immediately to the right o{ the cell Cf, causes the
change in & of the cell Cg. This R-output change due to a fault is propa-
gated along a row until the boundary output terminal is reached. Any

Z-output change due to a fault in a cell Cf, or equivalently, a change in

2 for the cell Ch immediately below the cell C_, causes the change in

f

z of the cell Ch' This £ output change due to a fault is propagated along
a column until the boundary output terminal is reached. Certainly, the fault

in cell C, causing changes of both %-output and 2-output will be detected

f
at the boundary output terminal in the same row as cell Cf as well as at

that in the same column as cell Cf. y 4

Recall that the presence of a single faulty cell in an array can bhe
detected if and only if both the Covering Condition and the Sensitized Path

Condition are satisfied.

D. Remarks

If the realization (at gate level) of the cell in an array is known
or the erroneous effects on the cell input-output behavior due to all possible
faults are known, then, a set of essential input combinations for testing a
cell completely is obtainable [1], [8),(13],[16],[18], which is some subset
of a set of all cell input combinations, Chances are the set of essential
input combinations for testing a cell completelv is a proper subset of the
set of all cell input combinations. During the process of finding a non-
empty set of tessellations to cover all ClO-statuses in a given CIO-table
in & manner described in this chapter, one can find cut, tor each CIO-status
a in the given CIO-table, whether or not a can appeadar in some tessella-

tion (be it nonprime or prime). As long as each of the essential input

35




o

combinations is applicable to every cell in the array, or each of the
corresponding CIO-statuses appears in some tessellation, the Covering
Condition is satisfied for the given array even though there exists some
input combination which is not applicable to some cell in the array.

On the other hand, there is a possibility that the Covering Condi-
tion is not satisfied when considering only the set of essential CIO~
statuses corresponding to the essential input combinations but the Covering
Condition would be satisfied if the set of ali CIO-statuses in the CIO-table

or some alternative realization of the cell were considered.

36

-1




Chapter III

FAULT DETECTION AND LOCATION IN FIRST CATEGORY
SEQUENTIAL CELLULAR ARRAYS

A, Introduction

A first category sequential array is a sequential array of cells each
having some memory element as well as some logic circuit, where the
state of each memory element in each cell can be set or reset through the
external control. The permutation array and the accumulator array in
Kautz [12] and tte class of cutpoint cellular logic arrays in Minnick [14],
where a cutpoint being "open" or "closed” can be though of the state of
a memory element being "0" or "1", are examples of the first category
sequential arrays. Under the assumption that all input-state combinations
are necessary to test a cell completely, the two necessary conditions that
must be satisfied for array testing for the detection of the presence of a
faulty cell in a first category sequential array are same as the Covering
Condition and the Sensitized Path Condition in Chapter II except that

"input combination" is replaced by "input-state combination"., They are:

Condition A: Every input-state combination must be applicable to

every cell in the array.

Condition B: For each input-state combinaticn to a cell and each
possible cell output change due to a fault, there must exist at

least nne sensitized path from that cell to one of boundary outputs,

Again, these two necessary conditions together are sufficient for the de-
tection of the nresence of single faulty cell in a first category sequential

array. The results with regard to the lault detection of combinational
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arrays can be easily extended to the case here. In this chapter, an array

shall ke underswod to be a first category sequential cellular array.

For a cell in an array, the finite horizonta! wnput set, the finite
vertica! input set, the finite nonempty state set, the finite horizontal
output set, and the firite vertical output set are denoted by X, Z, S,
f(, and 2, respectively. x, z, s, X, and Z are arhitrary elements of X,

Z, S, 5(, and 2, respectively.

B. One-Dimensional Arrays

1. Arrays With Autonomous Cells, where Z=2=Q and ,‘(=)§4¢

Let the cell be described in terms of a mapping F:SxS*f(, then one

has the following.

Theorem 14: A one-dimensional autonomous array is testable 1f and only
if there exists some s¢S such that the reduced mapping T ]“::X—‘.;( is one-to-
one (and/or onto); moreover, the number of tests required- to test the array
is in the range from 'X|+]s| to |X|«(n-1S]-n+1) where - is the nunber of
cells in the array.

Theorem 15: Any single faulty cell in 3 one-dimesisionai autonomous array

can be located with an uncertainty of 1 if and only if there exists some

-
-

seS such that (1) the reduced mappin ° ji:X‘*)A( is one-to-one and (2) the

response at the boundary output with respect to the ])’] test steps, where

all cells are set to the state s and each of IXI pos.ible cell inpu* combina-

tions is applied to the first ~ell step by step, is nominal,

2. Arrays With 2=0 . Z#0 . and X=X#D

Let the cell be described in terms of two mappings F)A{:Sxx-*f( and
FE:SxX-'ﬁ, then one has the following.

38
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Theorem 16: A one-dimensional array with Z=0, 27@, and X=§(#¢ is testable

if and y if there exists some se¢S such that the reduced mapping
F&]E:X-')? is one-to-one (while Pé:SxS-*i is any well-defined mapping);
moreover, the number of tests required tc test the array is in the range
from |X!+|8| to |X|+(n+|S|-n+1) where n is the number of cells in the
array.

Theorem 17: Any single faulty cell in a one-dimensional ariay with the
typical cell having no external cell input can be located with an uncertainty
of 1 if and only if there exists some seS such that (1) the reduced mapping
P;(]:‘:X-*)h( is one-to-one and (2) the response at the x-output of the last
cell with respect to the |X| test steps, where all cells are set to the state
s and each of l)\] possible cell input combinations is applied to the first
cell step by step, is nominal; however, any singie faulty cell in the array
can be located with an uncertainty of 2 if there exists some sLsS such that

€S such that F.JS is one-
zls

18 .
F.J“ is one-to-one and there exists some s
xJs 2

2
to-orie provided |2}2]x].

3. Arrays With X=X#0, Z#®, and =@

Theorem 18: Given a one-dimensional array wiih X=X#®, Z#®, 2=0, and
the cell is described in terms of a mapping F:SxX.xZ—*)A{, then it is testable

if and only if there exist some seS and z¢Z such that the reduced mapping

BERPA
F_}s.iz'
the array is in the range from |[X|+|2]+ 18] to |X]+(n-|S|+]|2]-n+1) where

X~X is one~-to-one; morenver, the number of tests required to test

n is the number c¢f cells in the array.

Theorem 19: Giver a one-dimensional array with X=X£@ , Z#0, 2= and
the cell is described in terms of a mapping T:SxXxZ~X, then any single
faulty cell can be located with an uncertainty of 1 if and only if there

R I A
exist some slcS and z_¢2Z such that (1) Fi_ |

:X=X is one-:0-one and
1 4 J2

]
(2) the response at the boundary output with respect to the le test stepe,
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where all cells are set to the state sl, the z-input to every cell is z1 .
and each of |X| possible x-input combinations is applied to the first cell

step by step, is nominal.

4. Arrays With X=X#0 , Z#0, and Z#0

Theorem 20: Given a one-dimensional array with X=X#0, 2#0, 2#®, and the
cell is dascribed in tarms of two mappings P;(:SxXxZ*;{ and F2:SxXxZ-°2, then

it is testable if and only if either (1) there exist some slcS and zch such

that the reduced mapping Fi]i ]3 :X~% is one-to-one or (2) for any xeX,
there exist some xeX, sch, and z;cz such that P).{(s2 ,x,zz)=§c and there
exist some s3cS and z3cZ, where s3 is not necessarily distinct from s2
and 23 is nothnecessarily distinct from zz, such that the reduced mapping
Fé‘:'g ]: :X-+Z is one-to-one provided |2|2|X| .

Theoraem 31: Given a one-dimensional array with X=X#0, Z#®, Z#®, and the

cell is described in terms of two mappings l-‘).(:SxXxZ-')A( and FQ:SxXxZ-*Z . then
any single faulty cell can be located with an uncertainty of 2 if for any

%eX, there exist some sleS, xeX, and zleZ such that F)Ac(s1 ,x,zl)=52,

|Z|2|X|, and there exist some s, ¢S and z,eZ, where s, is not necessarily

2 2 2

distinct from sl and z, is not necessarily distinct from zl, such that the
1§z s
reduced mapping Fi_'s Jz :X~Z is one-to-one; however, any single faulty

cell can be located wi%h axzx uncertainty of 1 if and only if there exist some
Al

, S 2 5. e
sBcS and z3eZ such that the reduced mapping F)'E]s 1y :X-X is one-to-one

and the response to the |X| test steps, where all cells’are set to the state

s, , the z-input to every cell is z_, and each of le possible x-input

3’ 3’
combinations is applied to the first cell step by step, is nominal.

C. Two-Dimenslional Arrays

One way to specify the cell in an array is by the cell-input-state~-

output-table, abbreviated as CISO-table, listing all possible cell
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input-state combinations and the corresponding cell outputs. A CISO-

status is a triplet (i,s,o) where i, s, and o are the cell input, state, and

the corresponding output, respectively,

1. Covering Each Cell in an Array With Every Possible Input-State

Combination

Let Sf be a set of all CISO-statuses in the CISO-table TCISO

describing the cell in an array. Let TCIO be a CIO-table carrying in-
complete information about the table TCISO in that the state information in

the table TCISO are discarded in the table TCIO' Let S1 be a set of all

(distinct) CIO-statuses in the teble TCIO' Clearly, one has the following.

Theorem 22: The Condition A is satisfied if there exists a nonempty set

St of tessellations such that each CIO-status in the set S1 occurs on Cij

in at least one tessellation in the set St tor VicSI and VjeSI.

Notice that the existence of a nonempty set St of tessellations such
that each CIO-status in the set S1 occurs on C” in some tessellation in the
and YieS :

set St for VieS is also necessary for satisfying the Condition A

I 1
for the doubly-infinite array, one can conceive that this property is also
necessary for satisfying the Condition A for very large (in both dimensions)

finite arrays.

The procedures in obtaining tessellations in section II.C.1. are
applicable to the situation here except that in calculating the number of
steps required for applying all possible input-state comrbtinations to all

cells in the array, one needs to refer back to the table TCISO since a

CIO-status in the table TCIO might represent two or more distinct CISO-

statuses in the set Sf.
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2. Existence of a Sensiti.ed Path -- A Sufficiency for Satisfying the
Condition B

Let the cell in a two-dimensional array be described in terms of two
mapping F).(:SxXxZ*ﬁ and FE:SxXxZ-'Z, then one has the following theorem re-

garding the existence of a sensitized path,
Theorem 23: If t.ie cell in a two-dimensional array is chosen such that

(1) there exists some sleS such that the reduced mapping F_l XxZ-~XXZ,,
where F:SxXxZ-XxZ is defined by F(s,x,z)= (F (s,x,2), F (s x,z)) for

VseS, ¥xeX, and ¥ze¢Z, is one-to-one,

(2) there exists some seS such that the reduced mapping FA J X-'X is
A
one~-to-one for ¥ze¢Z, the reduced mapping F)‘(Ji |X:Z-'X is one~to-one
for VxeX provided |§(|2|Z| , and FE:SxXxZ-@ is any (well-defined)

mapping,

(3) there exists some seS such that the reduced mapping Fé_]i]i:z-*i is
- -
one-to-one for ¥xe¢X, the reduced mapping Fé_‘i]z:x-z is one-to-one
for Vz ¢Z provided ]2|2|X| , and Fi:SxXxZ-')E is any (well-defined)

mapping, or

1812, &
(4) there exists some s¢S such that the reduced mapping F. 'S]Z:X-*X
! -
is one-to-one for ¥z¢Z and the reduced mapping FEJSJX:Z-*Z is one-

to-one for ¥xeX,
then, the Condition B is satisfied.

Proof: Part (1)

By setting all cells in an array satisfying (1) to the state sl, the
logic of all cells behaves in a manner described in (1) of Theorem 13,

The proof here, then, follows that for Part (1) of Theorem 13,
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Similarly, Part (2), Part (3), and Part (4) here follow the implica-
tion of the proufs for Part (2), Part (3), and Part (4) of Theorem 13,

respectively. y 4

Theorem 24: Let the cell in an array be described in terms of two mappings
P).E:SxXxZ-')A( and Fé.'SxXxZ-'i. If the cell in an array is chosen such that there

exists some sleS such that

! (1) the reduced mapping F}: XXZ~XXZ, is one-~to-one, where F: SXXXZ~XXZ
| is defined by P(s,x,z)=(Fli(s,x,z) ,Fé(s,x,z)) for VseS. ¥xeX, and

VzeZ, or

(2) the reduced mapping F)"c :i ]g:x~>‘< is one-to-one for ¥ze¢Z and the

reduced mapping P,JS JX:lZ-*Z is one-to-one for ¥xe¢X,
z s1 X

then, the array is testable; moreover, the minimum number of tests required

to test all possible input-state combinations on all cells 1n the array is

1x)-1z}-|s}.

Proof: Suppose the cell in an array is chosen such that the hypothesis is
satisfied. Then, that the Condition B is satisfied follows Part (1) or Part
(4) of Theorem 23. That the Condition A is satisfied follows the implica-
tion of Theorem 7 or Theorem 8 in Chapter II. Thus, the array is testable
meaning that the presence of a single faulty cell in the array can be

detected.

Suppose the cell in an array is chosen such that (a) the reduced

ha A A
mapping FJi:XxZ*XxZ is one-to-one for ¥seS or (b) the reduced mapping
G

Fi]g_é:x—oﬁ{ is one-to-one for ¥se5, ¥z¢Z and the redvced mapping

Fﬁ ‘s x:z~2 is one-to-one for ¥s¢ S, V¥xeX, then, the number of tests re-
-9od
quired to test all possible input-state combinations on all cells in the

array is ]X] . IZI . ]SI which is the minimum numb=r of tests in the array

testing. A
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Theorem 25: Let the cell in an array be described in terms of two mappings
F;{SxXxZ*)Z and Fﬁ:SxXxZ-'ﬁ. If the cell in an array is chosen such that

there exists some sleS such that
9

(1) the reduced mapping P:]Z’ XxZ~%xZ 1s one-to-one, where F:SxXxZ~Xx2
is defined by F(s,x,z)=(l"1*(s,x,z) ,Pé(s,x,z)) for Vse¢S, VxeX, and

¥ze¢Z, or

(2) the reduced mapping Fi‘c S ]i:x-')n( is one-to-one for ¥z¢Z and the

reduced mapping F£]§ x:IZ-°§7 is one-to-one for ¥xeX
1

and the response to the |Xl . ]Z] tests, where every cell in the array is
set to the state Sy enabling the checking for all those CISO-statuses

each having s1 as its state-component in the set Sf on all cells in the
array, is nominal, then, any faulty cell in the array can be located with

an uncertainty of 1.

In fact, for any array satisfying the hypothesis in Theorem 25, all
possible faults in any cell in the array are effectively those faults each
introducing some erroneous cell output while the cell is in some state
other than the statc s_, hence, each of multiple faulty cells in the array

1
can be located with an uncertainty of 1.
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Chapter IV

FAULT DETECTION AND LOCATION IN SECOND CATEGORY
SEQUENTIAL CELLULAR ARRAYS

A, Intrcduction

A second category sequential array is a sequential array of cells
each having some memory element as well as some logic circuit where the
state of each memory element in each cell is controlled by some logic
within the cell and each cell behaves as a deterministic, strongly-
connected, completely-specified, finite-state, and synchronous sequen-
tial machine. In this chapter, an array shall be understood to be a second

rategory sequential cellular array.

Again, for a cell in an array, the finite horizontal input set, the
finite vertical input set, the finite nonempty state set, the finite
horizontal output set, and the finite vertical output set are denoted by X,
Z, S, 5(, and 2, respectively. x, z, s, X, and z are arbitrary elements of

X, 2,8, 5(, and 2, respectively.

B. A Special Case

In this section, the investigation is on the detection and location
of a faulty cell in a synchronous sequential array of cells each with a
trigger flip-flop as its memory element as shown in Figure 3. C1 and C2
are timing signals (pulses) enabling the cell to behave in the synchronous
manner. The combinational logic within a cell, F:SxXxZ~X where
X=2=5S=X={0,1}, can be specified in the form of a L-table, which is

actually a Karnaugh map with 8 entries in two rows each corresponding to

45




1
®
X o )’E
c. L. 3
S
C
T. F. F.J€—— 2

Figure 3. Acell in a synchronous sequential array of cells each

with a trigger flip-flop as its memory element.

a distinct state of the memory element and four columns each corresponding

to a distinct cell input combination,

. . n
Given a Boolean function F(x1 SIS SRR ,xn).{O,l} {0,1},
the subcomplement of F‘(x1 RPN SRR ,xn) with respect to
) " is .
xl, xz, ..., and xk, denoted by F X% is a mapping
F* (X, X, 00e )X 00X 5:{&,1]“—'{(},1] defined as following:
xl.xz,...,xk 1'7°2 k n
Let V0 be a collection of 2n-k vertices where x1=0, x2=0, e
xk=0, \/'1 be a collection of Zn-k vertices where x1=0,x2=0, e ,xk_1=0,
x,=1, V, be a collection of 2" Vertices where x1=0,x2=0, Y
xk=0, ...... , and Vzk_.1 be a collection of 2" ¥ vertices where x1=1 ,
LERE ,)ﬁ:l . Let S={V0,Vl ,\l2 Cee e ,Vzk__1 }. Partition S into two blocks
S andS ., i.e., S US =S and S NS =@, according to the criterion that
c d c d c d

VieSc if and only if F(v) are identical for all chl. Then,

(1) for all i such that V ¢S and for all veV , F* (vi=F(v),
i" ¢ 7 oxX, X, ,000.X
12 k
and
* =F
(2) for all j such that Vjch and for all ch’, Px1 Xy 'xk(v) F(v).
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Theorem 26: The presence of a single faulty cel! in a one-dimensional
array (a horizontal linear cascade) of identical cells of the type as shown

in Figure 3 can'be detected if and only if

(1) for any state a cell is in, there exists some zleZ such that any change

in x-input induces some change in the cell output (X-output),

(2) the fault of the combinational logi. in the cell is not the one, in
effect, causing the logic to realize the subcomplement of F with re-
spect to x and z, where F is the Boolean function specified for the

combinational logic, and

(3) F is not independent of s.

Proof: Necessity

In order to provide all possible horizontal input combinations, i.e.,
%=0 and x=1, to a typical cell, both 0 and 1 must appear as entries in the
L~table specifying the combinational logic in a cell. It is impossible to
keep every ceil in the array in a particular state at all time during entire
test schedule, what's more, any cell output change due to a fault must be
detectable at the boundary output (x-output of the last cell), thus, for any
seS, there must exist some ZI(Z such that F(s,x1 ,.21)#F(s X, ,zl) for any
pair xl ,xz,eX with xl#'xz. Therefore, the condition (1) is necessary.

That the condition (2) is necessary can be shown by contradiction.
Suppose that there are two separate cells A and B cf the type as shown in

Figure 3 both satisfying the conditicns (1) and (3) but the logic of cell A

is realizing F and the logic of cell B is realizing F; . Suppose the in-
put combination of x=aAz=b for some a be{0,1} is applied to the two sepa-
rate cells A and B simultaneously, if the two entries under the column

x=aAz=b in the L-table specifying F are same, say cach is a 0, then the

corresponding two entries in the L-table specifying F; z are same, namely

'
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each is a 0, thus the output of cell A is same as the output of cell B in :~-
sponding to the input combinration of x=aAz=b regardless of the states of
these two cells, if the two entries under the column x=aAz=b in the L~
table specifying F are different, say the entry corresponding to s=0Ax=aAz=b
is a | and the entry corresponding to s=1Ax=aAz=b is a 0, then the corres-
ponding two entries in the L-table specifying F;’z are different, namely A
the entry corresponding to s=0Ax=aAz=b is a 0 and the entry corresponding
to s=1Ax=aAz=b is a 1, thus the output of cell A at state ceS={0,1} is same
2s the output of cell B at state © in responding to the same input condi-
tion; furthermore, if the next state of cell A remalns same as its present
state, then the next state of cell B remains same as its present state, if
cell A changes its state, then cell B changes its state. Therefore, the
sequence of the output of cell A initially at state ¢ is zame as that of cell
B initially at state ¢ with response to the same input sequence, Herce,

if the conditions (1) and (3) are satisfied but the condition (2) is not met,
then the occurrence of the fault in a cell of the array, in cffect, causing
the logic in the cell to realize l’-‘; instead of the specified F, can not be

' 2

detected. This shows that the condition (2) is necessary.

That t*.z condition (3) is necessary is obvious: if F is independent
of the state of the cell, then whether the memory element is functioning
properly or not has no effect on the input-output behavior of a cell, thus

the fault in the memory element of a cell can not be detected.

Sufficiency

The proof is by construction, namely, it is to be shown that ir a
one-dimensional array of identical cells of the type as shown in Figure
3 satisfied the conditions (1), (2), and (3), then a test schedule can be
derived which enables the detection of the presence of a faulty cell in

the array. Three cases are cornisidered,
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Case 1. The conditions (1), (2), and (3) are satisfied where there exists
some zleZ such that any change in x-input induces some change
in the cell output and the two entries in the L-table under each
of the two columns corresponding to z=z1 are same, i.e.,
F(0,0,21)=P(1 ,0,21) , F(O,l,zl)=F(l | ,zl) , and F(0,0 ,zl)%
P(O,l,zl) for some zch.

Without lcss of generality, suppose the two entries under the
column x=x_ Az=z_ are 0's for some xlf{O ,1}, then the two entries under

1 1
the column x=X_ Az=z_are 1's. Then, the essential part of the test

schedule is aprilyinglzl to each z-input of all cells in the cascade and the
input sequence of xl—?f'l-xl—?l to the x-input of the first cell in the
cascade, It is easy to verify that if none of cells in the cascade is stuck
at any state and the sequence of the boundary output in responding to the
essential part of the test schedule is correct, then the four entries in the
L-table under the two columns corresnonding to z=zl are known to have
been checked for every cell in the cascade. The fact that the boundary
output sequence in responding to the essential part of .2 test schedule is
correct ensures the existence of a sensitizing path by virtue of applying

z1 to each z-input of the sezond to the last cell while testing the first
cell and ihus the subsequent part of the test schedule can he subsequently
proceeded. If the boundary output sequence in responding to the essential
part of the test schedule is not correct, then, the presence of a faulty
cell is detected and there is no need tc proceed to the subsequent part cf
the test schedule. The subsequent part of the test schedule begins with

applying z_  to each z-input of the second to the last cell in the cascade

1
and appropriate sequence of input combination to the first cell to complete
the test on the first cell since the output of the first can be determined by

observing the boundary output and tracing bsckward along the sensitized
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path to the output of the first cell. The fault, if any, in the first cell can
thus be detected. Depending upon the actual specification of the combina-
tional logic within a cell, it requ..es four to six test steps to check the
four entries unde: the two columns corresponding to z='z'1 for a cell. Y¥or

instance, suppose that the two entries under the column x==x2Az=El, for

some xze{O,l}, are distinct and the 0-entry corresponds to s=sle=x2Az=~"1

for some sle {0,1}, furthermore, the two entries under the column

x=7<'2Az=El are both 1's. Then, if the first cell is fault-free and is in state

El , then the output sequence of the first cell should be 1-0-1~1 in respond-

=— - — =— —I‘ ——.
2/\z zl) (x szz zl) \A“Xz

2l\z=El) . If the first cell is fault-free and is ir;. state Sl' then its out-

put sequence should be 1-1-0-1-1 in responding to the input sequence of

ing to the input sequenrce of (x=x Az=§1)-

(x=x

(x=x Az='z_1)-(x=x Az=§1)-(x=x, Az=El)-(x=3E

2 2 2 1 2
in mind, then if the output of the first cell is 0 in responding to the test

Az='z"1)-(x=§ .’\z='z'1). With this

step of (x=x2Az=E,) ., then the first cell is faulty, otherwisc, proceed the
1

second test step of (x=x Az='z'1) and the third test step onward should be

2
depending upon its output in responding to the second iest step. Note

that any fault in the combinational logic excluded by the condition (2) or
any fault in the memory element of the first cell should result an output
sequence at the first cell other than 1-0-1-1 in responding to the input

sequence of (x=% Az=7'z‘1)-(x==x Az=—z'1)-(x=§ Az='z-1)—(x=x Az=21) and

2 2
1-1-0-1-1 in responding to (x=x

2
Az='z'1) -(x=x

2

2 2I\z=zl)-(x=x2

Az='z'1) . After the first cell has been checked to be

- Az=zl)-
(x=x1 Az=zl)-(x=x2
fault-free, the test on the second cell can be proceeded, similarly, by

applying z, to the z-inputs of all cells but the second cell in the cas-

1
cade and appropriate sequence of x-input to the first cell and z-input to
the second cell. A similar test procedure is then used to test the re-
maining cells in the cascade if necessary. Therefore, vith a test

schedule of at most 6n+4 test steps, where n is the number o1 cells in
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the cascade, the presence or absence of a faulty cell in the cascade can be

detected.

Case 2. The conditions (1), (2), and (3) are satisfied, the additional speci-
fication stated in Case 1 is not met, and there exists some zl.;z
such that any change in x-input induces some change in the cell
output and the two entries in the L-table under each of the two

columns corresponding to z=z_ are distinct, i.e., F(0,0,zl);t’

1
F(1,0,2,), F(O,1,2,)#F(1,1,2)), F(0,0,2,)#F(0,1,2,), and

P(l,O,zl)#F(l,l,zl) for some zle{O,l}.

Depending on the actual specification in terms of the L-tahle, the
next state of a cell can be set to the state 1 or reset to the state 0 with an
input combination of FOAZ=21 (or x=1Az=zl) regardless the present state of
the cell. Thus, a cascade of n cells under this case can bc initialized to

some state with some sequence of n steps of inputs.

The essential part of the test schedule is applying 21 to each z-
input of all n cells in the cascade and appropriate sequence of n steps of
x-input to the first cell to initialize the cascade to some state followed
by appropriate sequence of x-input to the first cell to check, for each of
all cells in the cascade, all four entries in the L-table corresponding to

z2=2 If the response (the sequence of X-output at the last cell) to this

1'
essential part of the test schedule is nominal, i.e., unperturbed, then by

virtue of anplying z_ to each z-input of the sensitized path, while com-

pleting the test on tlhe tirst cell, is assured. To see this, one can visual-
ize that if a fault within a cell results in some change in its input-output
behav.or, it might also result in some false state initialization on that
cell and the following cells. Now, suppose that the specification for the
combinational logic within a cell in this case is F and that the response
to some test sequence for checking the four entries corresponding to z---z1 .
51
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) with z-input fixed at z_,
nominal 1

while the state of the cell is initially at Sq is O With z-input

say the horizonta! input sequence of I

nominal’

fixed at zl, the fault in the logic that can produce the response of

, o . ,
Onominal in responding to *-e horizontal input sequence of Inominal is the

one, in effect, causing the logic to realize some Boolean function Ff which

is consistent with P}*c z at least at the four entries corresponding to z=z1 ,

!

while the state of the cell is incorrectly initialized at’s This situation

0
does not prevent the cell from correctly responding to any change in x-
input as long as the z-input to this cell is Z)- If the logic of the cell is

correct but its state is incorrectly initialized at —s'o due to a fault in one of

the preceeding cells, then, with z-input fixed at z_, the only horizontal

1
input sequence I which can produce the response of O

. is
nominal

. where 'fnom1 is obtained by complementing each step of the

nal
One can see that no fault in the combinational logic within the

I=1 ,
nominal

I . .
nomrinal

cell can produce the response ofB in r=sponding to the horizontal

nominal
input sequence I with z-input fixed at 2_. Without loss of
nominal ‘ 1
generality, suppose the entry corresponding to s=0Ax=x1/\.z=z1 in the L-

table describing F is a 0 for some xlc{O .1}, then, the entry corresponding

to s=1Ax=x1Az=z1 is a 1, the entry corresponding to s=0l\x=’>'<1Az=z1 is a

1, and the entry corresponding to s=1/\x='>_c1Az=z1 is a 0. In any test

sequence to the cell to check the four entries corresponding to z=z1 ,

there must exist two consecutive steps (s=1Ax=x Az.=zl)-(s=0Ax=x Az=zl)

1 1

or (s=0Ax=x l\z=zl)-(s=1A)wr=§1 Az=zl) . With z-input fixed at z). if there

1

were some fault in the logic of the cell causing the response of O ,
nominal

1 should the cell be fault-free, in responding to the
to the cell, then the fault either

instead of O
nomina

horizontal input sequence of I
nominal

would have been rendering an output of 0 while the state is at 816{0 1}

with the innut combination at x=x_Az=z_ and rendering an output of 1

1 1

while the state is also at S with the input combination &lso at x=xll\z=z1 '
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which is a contradiction, or would have been rendering an output of 0 while

the state is at 5, € {0,1} with the input combination at x=§l/\z=z1 , which i3

also a contracdiction,
If the response to the essential part of the test schedule is in-
correct, then the presence of a faulty cell is detected and there is no need

to use the subsequent part of the test schedule.

The fact that the response to the essential part of the test schedule
is nominal enables one to use the subsequent part of the test schedule
which is the part to test the four entries corresponding to z=El for the
first to the last cell in the cascade one by one. By applying z] to each
z-input of the second to the last cell and appropriate sequence of input
combination to the first cell, the first cell car thus be tested completely.
The only fault in the first cell which might produce :he nominal response
at its output is the one, in effect, causing the cell to realize F;,z instead
of F. But this is excluded by the condition {2). After the first cell has
been checked to be fault-free by applying z1 to all z-invuts except the
z-input of the second cell, El to the z-input of the secondcell, and
appropriate horizontal input sequence to the first cell, the test on the

second cell can thus be completed. In a similar manner, all cells in the

cascade can be tested in succession,

Case 3. The conditions (1), (2), and {3) are satisfied but neither the

constraint in case 1 nor the constraint in case 2 is satisfied.

Under this case, there exists precisely one zlc{O,l} such that
F(0,0,2))#F(0,1,2)), F(1,0,2.)=F(1,1,2 ), F(l,o,E])#F(l,l,El), and
F(0 ,O,'z—1)=F(0,1 ,'51) and there exists some column, say corresponding to
x-xll\z=zz where x1 ,zzc{O, 1}, in the L-table such that the two entries
under that column are distinct.

Since there exists some column in the L-table such that the two
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entries under the column are distinct, a cascade of n cells under this
case can be initialized to some state with some sequence of n steps of in-

put combinaticn,

The essential part of the test schecule is applying an appropriate

sequence of n steps of input combination to a'! n cells in the cascade to

initialize the cascade to some state, say sésgsg. .o .sg, where sé, sg,
sg, cen .sge{O .1}, followed by appropriate sequence of input combinations

to check, for each of all cells in the cascade, the four entries in the L-

table corresponding to s=0Ax=0/\z=zl, s=0/\x=1.'\z=zl, s=1Ax=0Az=z , and

1
s=11\x=1/\z=_z'1 . If the response to the essential part of the test schedule

is nominal, then, by virtue of applying appropriate z-input to each of the
second to the last cell, the existence of a sensitized path, while com-
pleting the test on the first cell, is assured. By appilying aporopriate z-

input to a cell here, it is meant that z_ is applied to z-input of the cell

1

while its state is supposedly at 0 and z, is applied to the z-input of the

1
cell while its state is supposedly at 1. In fact, the fault in the logic

within the cell that can produce the nominal response with respect to the

input sequence I supposed to check the four entries the essential

nominal
part of test schedule is designed to check is the one, in effect, causing
the logic to reaiize some Boolean function Ff which is consistent with

F; 2 at least at the four entries corresponding to s=0/\x=0Az=z1 .

s=0/\:r(---1Az=z1 , s=1Ax=0Az=El, and s=11\x=ll\z=?:'1 , while the state of the

cell is incorrectly initialized at EO where 54 is the supposed initial state

of the cell. This situation does not prevent the cell from correctly re~

sponding to any change in x-input as long as the appropriate z-input

is applied to tnis cell. As to the situation where the logic of the cell is
correct but its state is incorrectly initialized at ;0 due to a fault in one
of the preceeding cells, as long as appropriate z-input is applied t> the

cell at each test step, no horizontal input sequence can produce the
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response of Or is the nominal respons e with

, where O
nomi

1ominal nal
respect to I \ while the initial staie 1s s .
nominal 0

If the response to the essential part of the test schedule is in-

correct, then, the presence of a faulty cell is detected and there is no

need to proceed with the subsequent part of the test schedule.

The fact that the response to the essential part of the test schedule
is nominal enables one to proceed to the subsequent part of the test
schedule which is the part to test the other four entries corresponding to
s=0Ax=0Az=El, s=0Ax=1Az=El, s=ll\x=0Az=z1 and s=ll\x=ll\z=z1 for the
first to the last cell in the cascade in succession. The only fault in any
ceil in the cascade which might produce the nominal response at its out-
put is the one, in effect, causing the cell to realize F* _ instead of F,

But this is excluded by the condition (2). Therefore, the presence or

absence of a faulty cell in cascade can be detected. &

Theorem 27: A faulty cell in a one-dimensional array of identical cells of
the type as shown in Figure 3 can be located with an uncertainty of 1 if

and only if

(1) the array is testable, i.e., the conditions (1), (2), and (3) stated in

Theorem 26 are satisfied, and

(2) the response to the essential part of the test schedule described in the

proof for Theorem 26 is nominal,

Proof: Necessity

That an array is testable is essential to the location of a faulty

cell, hence, the condition ‘1) here is necessary.

If the ar&‘ay is testable but the response to the essential part of

the test schedule doscribed in the proof for Theorem 26 is not nominal for
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each of all possible alternatives4, then, as one can see while following
the proof for Theorem 2€, the presence of a faulty cell in the cascade can
thus be detected but there exists no proper sensitized path, the faulty
cell could be at anywhere from the first to the last cell position. Thus,

the location of the faulty cell with an uncertainty of 1 is impossible.

Sufficiency

Follcwing the Sufficiency part of the Proof for Theorem 26, it is
easy to see that the addition of the condition (2) here to the conditions
(1), (2) . and (3) stated in Theorem 26 essentially enables the complete
test on the first cell to the last cell in the cascade in sucession. There-

fore, a faulty cell in the cascade can be located with an uncertainty of 1. &

C. General Conditions for Testability

Two necessary conditions that must be satisfied for array testing
for the detection of the presence of a faulty cell in a second category

sequential array are the Condition A* and the Tondition B* as follows.

Condition A*: Some test zoquence to test a cell completely must

be applicable to every cell in the array.

Condition B*: The sequence of outputs of any cell in the array
with response to any test sequence must be (correctly) reconstruct-
able from some sequence of boundary outputs, i.e,, it can be
uniquely determined by observing a sequence of some boundary

outputs of some length.

4lF‘or an example, it is possible that F(0,0,z,)=F(1,0,z ) F(0,1,z,)=
F(1,1,z,), and F(0,0,2 )#F(0,1,2,) forz e& also P(O 0 zz) F(l 6 z

),
F(O,l,zz) F(l,l,zz) ané F(0,0,z )I#F(O 1,2 ) for z, ¢Z where z #z 2

2
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These two conditions together are sufficient for the detection of the

presence of single faulty cell in an array.

It is further assumed in the remainder of this Chapter that some
test se quence for a cell, with which it can be determined whether or not
the cei. is fauity, is known [5], (6], [9], [15]. Furthermore, it is
assumed that each cell in an array is a reduced machine and despite the
presence of a faulty cell in an array, all cells except the faulty one can

be correctly initialized to a unique initial state.

A machine is said to be information lossless (IL) if the initial

state, the final state, and the response to an unknown input sequence are
sufficient to uniquely determine the unknown input sequence. A machine

M is defined to be IL of finite order r if M is IL and the initial state, the

current and last r output symbols are sufficient to uniquely determine the
rth past input symbol. r is the smallest integer which satisfies this
definition. Procedures for testinug whether or not a machine is IL or IL of

finite order are'given in Huffman [7] and Even [4].

If a finite-state machine M with finite nonempty state set S is IL
of finite order r‘, then the obvious upper bound forr is |S|CZ' Given a
deterministic, ;educed, strongly-connected, completely-specified, and
finite-state machine M with finite nonempty state set S, finite nonenipty

input set I, finite nonempty output set O, and |1{=|O], if M is IL of

finite order r, then a lower upper bound for r can be given in the form of
a conjecture as follows: r < LlogziCU where | aj denotes the largest

integer not greater than a.

For a machine M=(1,0,8,6,8) wherel, O, S, §, and B are finite
nonempty input set, finite nonempty output set, finite nonempty state set,

next-state mapping, and output mapping, respectively, specifically,

57




A T R PR Nyt

T e

6:SxI~S and B:SxI~C , I is used to denote a sequence of symbols over the
t, . L) =1iio.uo i I} ) § e o0 0 g I}
set I of some length, e.g., [ 1213 i.k where 11 12 13 lkcI
is an input sequence of length k, the length of the sequence I is denoted
by 1g(1). The extension of § over input sequences is denoted by 8, €.B.,
8(s ,1) is the state M enters when starting in state s and applying the in-
put sequence I. The state sequence formed is denoted by §, e.g.,
§(s,X) denotes $,8,84....5, where )_(=x1x2x ceeeX . Sp=S, sk=6(s X,
and si=6(si—l ,xi) for vie{1,2,3,....,k}. The similar notation is used for
O and 8.

D. One-Dimensional Arrays

1. Arrays with Autonomous Cells, Where Z2=2=0 and X=X#?

Given the next-state mapping and the output mapping for a cell
as §:5x¥~S and 8:SxX~X, respectively, the cell is said to be x/%-informa-
tion iossless (x/x-I1) if and only if for each pair (s,X) there does not
exist a )_(d;!)_( such that &(s ,)_{d)=5(s,§) and 8(s ,)_(d)=_§(s,§). A procedure

given in Breuer [3] can be used for testing whether or not the cell is

x/%-1L or x/%-1L of finite order. An oriented graph G, called a testing
graph, which consists of a set of nodes and a set of branches, is to be

constructed, Each node identifies a pair of states (si,sj) called x-

compatible state pair. States s, and sj form a x-compatible state pair

(si,sj) if either

Pl: there exist some s¢S, x,xdcx, where xd#x, such that &(s,x)=s

1'
6(s,xd)=sj, and B(s,x)=B(s,xd), or

P2: (Sk'sl) is a x-compatible state pair and there exist some x,xdcx,

where xd is not necessarily distinct from x, such that 6(sk.x)=s
6(31 :xd)=sj: and B(Sk,x)=8(sl .xd) R

t'




There exists a branch from node (sk,sl) to node (51'51) in G if and only if

these two nodes satisfy P2. Then,

R1: the cell is x/%-IL if and only if G contains no node of the form (sl,si)

and

R2: if the cell is x/%X-IL, then it is x/%~IL of finite order r if and only if
G is loop free and the length of the longest path in G has r nodes.

Theorem 28: A one-dimensional autonomous array is testable if the cell is
chosen such that the reduced mapping B]i:x~§( is one-to-one (and/or onto)

for V¥seS.

Proof: If the cell of a one~-dimensional autonomous array is chosen such
that the reduced mapping B]i:X*f( is one-to-one for ¥s¢S, then B]i:X-')A(
is also onto for Vse¢S, what's more, the cell is x/x-IL of zero order, or
equivalently, any change in the cell input induces some change in the

cell output at any instance (meaning for ¥s¢S). The procedure of testing

the array, say of N cells Cl‘ Cz, C3, ...., and CN chosen as above, is
as follows, first for i=1, then for i=2, i=3, ,.., and finally i=N.
(1) Initialize Cl' CZ’ C3, ..., and CN to the unique init:al state.

(2) Apply input sequence 51 to C1 such that the input sequence to Ci is

t . \
X which is a test sequence to test a cell completely.

(3) Reconstruct the response of C1 in responding to the test sequance
t .
X by observing the boundary »utput sequence (i.e., the output

sequence of C__ here).

N

Suppose C, is faulty by the assumption of the presence of single faulty

i

cell, Cj must be operating correctly for all je{l,2,...,i-1,i+1,... ,N}.

Hence, any x-input is correctly applicable to Ci at any instance meaning

that any test sequence is correctly applicable to Ci; furthermore, tt »
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output sequence of Ci is correctly reconstructable from the boundary output
sequence. Then, the perturbed output sequence of Ci inresponding to the

test sequence to Ci reveals that C1 is in error. &

Note that it is impossible to locate a faulty cell for any array here.

2. Arrays With the Typical Cell Having No External Cell Input, Where
2=p, Z#D, and X=X¢®

Given the next-state mapping and the output mapping for a cell as
§:SxX-S and B:SxX-*ixf( respectively, let BA:SxX-é and BA:SxX-‘)A( such that
B=8.x8., then, the cell is said to be x/zx- 1nformat10n lossless (x/2x-1L)
if and only if for each palr (s,X) there does not exist a X #X such that
6(s,_)_(d)=6(s ,X) ard B(s X )=ﬁ(s,§) . The cell is said to be x/z-information

lossless (x/z-1L) if and only if for each pair (s,X) there does not exist a

Kd#z such that §(s ,2(_d)=§(s ,X) and gﬁ(s,)_(d)=_§£(s,)_(). To test for x/zx-IL

or x/zx-1L of finite order, the procedure in Section IV.D.i. is applied, and
the appearances of x/%-IL in Rl and R2 are replaced by x/zZx-IL. To test
for x/z-1L or x/Z-1L of finite order, the same procedure is applied except
all appearances of B are replaced by Bﬁ' and the appearances of x/x-IL

in R1 and R2 are replaced by x/z-1L.

Theorem 29: A one-dimersional array with Z=0, Z#@, and X=X#D is test-

-

sble if the cell is chosan such that the reduced mapping BiJi:X-OA{ is one-

to-one for VseS.

Proof: The proof is similar to that for Theorem 28, Note tha: part of the

response of a cell, namely the output sequence at Z-output, in responding

to a test sequence is directly observable. &

Theorem 30: If some test sequence is applicable to every cell in a hori-

zontal cascade of identical cells with Z=0, Z2#®, and X=X#D , then the
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cascade of cells is testable if the cell is either x/2x-IL of finite order or
x/2-1L of finite order.

2 [ C3 1 o s 00 g
and CN chosen as stated in the hypothesis is as follows, first for i=1,

then for i=2, i=3, ..., and finally for i=N.

Proof: The procedure of testing the cascade of N ~ells Cl' C

(1) Initialize C1 , Cz, C3, ..., and CN to the unique initial state.

(2) Apply input sequence _‘41 to C1 such that the input sequence to Ci is

t
X which is a test sequence to test a cell,

(3) Next apply to C1 any known additional input sequence )_(:J of length
L=(N-i)r if the cell is x/Zx-IL of finite order r, or of length L=r if the

cell is x/z-IL of finite - derr.

(4) Reconstruct the part of response, namely, sequence of X-output, of
, Lt
Ci in responding to X by observing the boundary output sequence of
Ci+1 (at z-output) if the cell is x/Z-1L of finite order or by observing

the boundary output sequences of Ci+1' C , and C__ if the

irz ’ LRI I ) N
cell is x/zx-IL of finite order in responding to the input sequence of
gir to Cl . The output sequence at Z-output of Ci in responding to

X" is directly observable.
The presence of a single faulty cell in the cascade can thus be detected. Y 4
Following the Proof for Theorem 30, one has the following.

Theorem 31: If some test sequence is applicable to every cell in a hori-

zontal cascade of identical cells witl Z=0, 2;4(2), and X=)A(75§0, then, a
single faulty cell in the cascade can be located with an uncertainty of 2

if the cell is x/z-1L of finite order.

3. Arravs With X=X#0 2#0, and Z=0

Given the next-state mapping and the output mapping for a cell as
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§:5xXxZ~S and B:SxXxZ-*)A(, respectively, in a horizontal cascade where the
z-input to each cell is a boundary input, then, the cell is said to be
x/%-1L if and only if for each triplet (s,X,2) there does not exist a l(d;ég
such that (s .Xd._Z_)=8(s,_)_{,Z_) and 8(s ,gd.§)=g(s.£.§) . The procedure for
testing whether or not the cell is x/%~1L or x/X-1IL of finite order is same as
that in Section IV.D, 1. except the arguments for § and B are adjusted

accordingly.

Theorem 32: If the cell of a cne-dimensional array with X=X#0, Z#®, and
2=¢ is chosen such that the reduced mapping e]i:sz-o“( is onto for V¥seS,

then, any test sequence is applicable to every cell in the array.

Theorem 33: If some test sequence is applicable to every cell in a horizontal
cascade of identical cells with X=X#0, Z#0, 2=¢ and the cell is x/%-1L of

finite order, then, the cascade is testable.

Proof: The proof is similar to that for Theorem 30 uader the situation the
cell there is x/zx-1L of finite order except (2), (3), and (4) should be as
follows.

(2) Apply boundary input sequences (__ Z ) to C Z2 to C Z3 to C

2" =t 3’
..., and ZN to C,. tuch thut the mput sequence to C is (_ Zt) which

N
is a test sequence to test a cell completely.

(3) Next apply any known additional boundary input sequences ()_( ,ula

to C,, Zfd toC,, ..., and _Z_I:I te C,; each of length L=(N- l)r if the

cell is x/%-1L of finite order r,

(4) Reconstruct the response of C in responding to the test sequence
(_ Zt) by observing the boundary output sequence at CN of length
lg(_")+(N i)r in responding to the boundary input sequ=nces

1 1a 2,2a N, Na 7

Lx 2,2 )tocl zz toC,, ..., an dzz to Cy
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The status of a cell at one particular instance can be denoted by a

! X xl, z1 are the state, the input at the x-input,

the input at the z-input, respectively, of the cell at that particular instance.

triplet (Sl,x ,zl) where s

. . . 5
Define the cet of potentially information lossy statuses as

SL={(s,x,z) |seS,xeX,z¢Z and 3 xch with xd;!x satisfying B(s,x,z)=B(s,xd,z) }.

The following Theorem is then obvious.

Theorem 34: If some test sequence is applicable to every cell in a hori-

zontal cascade of identical cells C1 . Cz, ..., and CN with X=)A(#¢, Z#D

and 2=(Z) but the cell is not x/%-IL, the presence of an error in Ci is still

detectable by observing the boundary output sequence if none of Ci+1 .

Ci+2’ ..., and CN is in a status in the set SL during the testing for Ci'

4, Arrays With X=?A(#SZL 2#0 , and Z#D

Given the next-state mapping and the output mapping for a cell as
§:SxXxZ~S and B:SxXxZ—éx)h(, respectively,in a horizontal cascade where
the z-input to each cell in the cascade is a boundary input, let
Bi:SxXxZ—'é and Bé:SxXxZ-vi such that B=Bix8).(, then, the cell is said to
be x/2x-1L if and only if for each triplet (s,X,2) there does not exist a
zd;é_)g such that (s ,zd,g)=8(s ,X.,2) and 8(s ,3_<d,g)=§_(s ,X,2). The definition
for x/2~IL is similar to that for x/2%X-IL except the appearances of B are
replaced by gé. The procedure for testing whether or not the cell is
x/2%x-1L, x/2x-1L of finite order, x/2-1IL, or x/z-1L of finite order is

similar to that in Section IV.D.1. where the adjustment on the arguments

|

A remark with regard to the special case in Section IV.B. can be made
here. It is not assumed there that all cells can be correctly initialized
to a unique initial state. The cell in a horizontal cascade of cells satis-
fying the hypothesis in Theorem 26 might not be x/X-IL, but a particular
input to the z-input of a cell could prevent the cell from entering into
any potentially information lossy status, thus, render the detection of a
faulty cell in the cascade possible.
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for 6, B, and B2 is required.

Theorem 35: If the cel! of a one-dimencional array wiih X=f(;‘¢, Z#0, and
2;@ is chosen such that the reduced mapping Bi-_} i:XxZ*f( is o..to for VseS,

then, any test sequence is applicable to every cell in the array.

A good understanding of the proof for Theorem 30 and that for

Theorem 33 enables one to justify the following theorem.

Theorem 36: If some test sequence is applicable to every cell in a hori-~
zontal cascade of identical cells with X=f(#@, Z#0, 2%{2) , and the cell is
either x/Z-1L of finite order or x/Zx-1IL of finite order, then, the cascade

is testable.

Define TL={(s,x,z) lseS,xeX,zeZ and } xdex with xd#x
satisfying B;(s,x,z)=aé(s,xd,z)}.

The following theorem is obvious,
Theorem 37: If some test sequence is applicable to every cell in a hori-
zontal cascade of identical cells C1 , Cz', cene CN with X=X#0, Z#®, and
240 but the cell is neither x/2-IL nor x/2x-1L, the presence of an error in
C1 is still detectable by observing the boundary output sequences at Ci'
Ci+1 ) eees CN if none of Ci+1’ ct+2' «:..., and CN is in a status in the
set SL or the set TL during the testing for Ci'
Theorem 38: If some test sequence is applicable to every cell in a hori-
zontal cascade of identical cells with X=%#@, Z#D, and Z#D, then a
single faulty cell in the cascade can be located with an uncertainty of 2
if the cell is x/Z-IL of finite order.

E. Two-Dimensional Arrays

Given the next-state mapping and the output mapping for a cell as
5:5xXx2~S and B:SxXxZ~ZxX, respectively, let B,:5xXxZ~2 and B).(:SxXxZ*f(
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such that B=B£x6&, then, one has the following theorem.
Theoiem 39: If the cell of a two-dimensional array is chosen such that

“ ~
(1) the reduced mapping B.—J‘EJZ:X-X is onto for Vs¢S and Vz¢Z and the re-

187K "5
duced mapping BéJst'z Z is onto for VseS and VxeX,

. ~81Z & 187Z,, 5
(2) |x]212| and the two reduced mappings By |g XX and By | 1 X2
are both onto for VseS and ¥ze¢Z, or

_ SIX _ - a8X , 4
(3) 1z]2]X| and the two reduced mappings ch]s]x'z X and Bﬁ_jij-z Z

are both onto for ¥seS and ¥xeX,
then, any test sequence is applicable to every cell in the array.

Proof: Suppose the hypothesis holds, then, at any instance, i.e., no
matter the states all cells are in, any input combination to a cell is
applicable to any cell in the array with an application of some bcundary

inputs. Thus, any test sequence is applicable to every cell in the array. &

If the hypothesis in Theorem 39 is not satisfied, then, in order
that a test sequence, say @t,_Z_t) . where §t=x1x2x3. X and
_Z_t=z 2.2, .. .zp, may be applicable to th.e cell (i,j) in ith row and jth

2
coluimzo; a MxN array, at every particular instance, say at time tk'
1<ksp, all the states in the cells in the first i rows and the first j
columns except the cell (i,j) must be known and the marking of CISO-
statuses (tessellation problem) on these cells must be solved where the
input combination to the cell (i,}) is to be (xk,zk) and the CISO-status

compatibility of a cell with respect to its neighboring cells is to be met,

A cell is said to be information lossless (II) if and only if for each
triplet (s,X,2) there does not exist _)ﬁd, gd, where either xd;fz or _Z_d?-‘_Z_ or
both, such that 8(s ,_)Sd,_Z_d)=5(s ,X.2) and B(s ,Kd,z_d)=g(s,g(_,_Z_) . In con-

structing a testing graph G for testing whether or not a cell is IL or IL of
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finite order, each node represents a compatible state pair (si,sj) , where

states s, and s, for. - cempatible state pair (si'sj) if either

i
P3: there exist some s¢S, x,xdgx, z ,zdeZ, where either xd;!x or zd;‘z or
both, such that 6(s,x,z)=si, 6(s,xd,zd)=sj, and B(s,x,z)=B(s,xd,zd) ,
or
P4: (sk,sl) is a compatible state pair and there exist some x,xdeX, z,zdez,
where xd is not necessarily distinct from x and zd is not necessarily
distinct from z, such that 6(s

_ d d
B(sk.x,2)~8(sl,x 2 ).

d
k,s,z)—si, 6(s1,x ,zd)-sj, and

There exists a branch from node (sk,sl) to node (si,sj) in G if and only if
these two nodes satisfy P4. Then, one has two results same as Rl and

R2 in Section IV.D,1. except all appearances of x/x-IL are replaced by IL.

Theorem 40: If some test sequence is apnlicable to every cell in a two-
dimensional array and the cell is IL of finite order, then the array is

testable.

Proof: Suppose a MxN arrav of cells Cll' C C C

12" °°°" TINT T21 CZZ' T
C . CMI' CMZ’ ..., and CMN satisfies the hypothesis and the

cell is IL of finite order r, then, the testing procedure is testing M+N cells

11" then ClZ' Cl3' coes CZl' C22,

the testing on the typical cell C1j is as follows.,

one by one starting at the cell C

e.s..., and finally CMN’

(1) Initialize all cells to the unique initial state.

(2) Apply some boundary input sequences to boundary cells such that the

t
input sequence to C1 is (X ,_Z_t) which is a test sequence to test a

J
cell completely.

(3) Next apply to boundary cells any known additional boundary input
sequences of length I={M-i+N-j)r,
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(4) Reconstruct the response of C, i in responding to the test sequence

()_( Zt) by observing the boundary output sequences.

Suppose C1j is faulty, by the assumption of the presence of single faulty

cell, all other cells in the array must be operating correctly. Hence, the
test sequence is correctly applicable to Cij' what's more, the ocutput

sequence of C, , is correctly reconstructable from the boundary output

ij
sequences. Then, the perturbed output sequence of Ci! in responding to
the test sequence reveals that C,, is in error., &

ij
Define UL={(s,x,z) |seS,xeX,ze2 and }xdex,zdez, where either
xd#x or zd;!z or hoth, such that B(s,x,z)=B(s,xd,zd) }. Then the following

theorem is then obvious.

Thecrem 41: If some test sequence is applicable to every cell in a8 MxN
array of cells Cll' Clz’ CIN’ CZI' sz, CZN' e CMl’

CMZ' ..., 3nd CMN but the cell is not IL, the presence of an error in cij

is still detectable by observing the boundary output sequences if none of
Ci(j+l)' Cig+2)r *+ Cin C(i+l)j’ S+ o SN
2y Cwrargr e SNt e Mj* CMG+1) M)
..., and CMN is in a status in the set UL during the testing for Cij'
Theorem 42: If the cell of a two- dimensional array is chosen such tha the
reduced mapping B JSJZ X~X is onto for VseS and ¥zeZ and the reduced
mapping Ba ] _l 'Z—'Z is onto for VseS and VxeX, then, a single faulty cell
in the array can be located with an uncertainty of at most M+N-1, where

M and N are the numbers of rows and columns, respectively, of the array.

Proof: Suppose the cell of 2 MxN array of cells C1 C12 P oeeeay CIN'
C C C

21" 22,..é,ZZN ........,CM1 CMZ ...,andCMNischosen
such that B ]] X=X is onto for VseS and ¥z e¢Z and B . ] _l Z-*Z is onto

for VseS and VxeX. Then, by Theorem 39, any tect sequence is applicable
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onto for ¥seS and Vze¢Z implies that B.. J J X-'X is one-to-one for Vs cS and

to every cell in the array. Since X—X Z~Z and are finite, 8.

VzeZ, and B. J ] :2~Z is onto for ¥seS and ¥xeX implies that 8 ] _] :2-2

is one-to-one for Vs¢S and ¥xe¢X, Now, suppose cell Cij is faulty, then,
by the assumption of the presence of single faulty cell, all other cells in

the array must be fault-free., During the array testing, if the X-output of
C.. is perturbed due to the fault, then, the X-output of C,

ij i(j+1)
eventually, the X-output of CiN" which is a boundary output, is perturbed,

is perturbed,

while the boundary outputls at ClN' (JZN' CSN' ve.., and C(i—l)N are

nominal, if the z-output of Cij is perturbed due to the fault, then, the

z-output of C is perturbed, eveatually, the z-output of C, .., which is
(i+1)4

Mj

a boundary output, is perturbed, while the boundary outputs at CMI . CMZ'
CM3’ v.es, and CM(j 1) are nominal. Certainly, the presence of the fault

in Cij is detectable at boundary outputs.

Now, suppose in responding to the array testing, the boundary out-

put sequences at ClN' L'ZN' CBN' ceve, C(p-l)N' M1’ CMZ' C'MB'

eeeo. and CM(q-l) are nominal put that at CpN and CMq are perturbed for

some 1spsM and 1sqsN, and that at the remaining boundary cells each
might be nominal or perturbed, ther, the faulty cell could be any one of

’ L ’ 4 ’ C 2 ® 00 ey C )
C1q* C2n' C3q e-1a" “p1* Cp2’ Cp3 olg-1)" 379 Cpq

i.e., the faulty cell could be located with an uncertainty of (p-1)+{q-1)+1=p+

q-1. In general, the range of uncertainty is from 1 to M+N-1. Thus, the
Theorem follows. A&
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