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ABSTRACT

The Covering Condition (enabling the application of necessary

tests on all cells in an array) and the Existence of Sensitized Path

Condition (enabling the propagation of the effhct of a faulty cell to some

boundary output) for the testability of combinational cellular arrays of

rectangularly and unilaterally interconnected cells are analyzed separately

in this paper. Some properties on the existence of a rectangular-tessera

covering some CIO-statuses are uncovered. A necessary condition, namely

the full-balance condition, for the existence of a set of rectangular-tesserae

covering all CIO-statuses on the CIO-table specifying a cell, suggests

that the result of a simple calculation will enable one to determine the need

for finding some prime tessellation with respect to a CIO-status. A

procedure for finding a prime tessellation with respect to a given CIO-status

is presented. It is seen, for a class of combinational cellular arrays, that

some arrays can be very efficiently tested independent of the size of the

airay where only nonprime tessellations are to be found and the number of

tests depends on the size of the testable array where a prime tessellation

with respect to some CIO-status is to be found. This property is con-

ceivably true for the general class of combinational cellular arrays. Two

necessary conditions for the combinational cellular array testing, which

are also sufficient for the detection of the presence of a single faulty cell,

are analogously carried over to the situation for the testing of seque.ntial

cellular arrays. The resuhs regarding the testability of combinational

cellular arrays are immediately extendible to fault detectinn and location

in the first category sequertial cellular arrays where the state of each

memory element in every cell can be set or reset through the external

control. An immediate implication Is that if the logic circuit In each cell

under some state can facilitate an efficient testing on a first category

sequential cellular array of cells each under that state, then the array is

ii



testable; furthermore, the faultlessness of this "hardcore" enables the

location of a faulty cell with some uncertainty. Some convenient .issump-

tions enable one to establish some sufficient conditions for the efficient

fault detection and location in second category sequential cellular arrays,

of two dimensions as well as of one dimension, where each cell is some

finite-state machine. Information losslessness (of a finite-state machine)

is a sufficient, but not necessary, ,condition for reconstructing the cell

response to some test sequence from some sequence of boundary outputs.

A considerably lower upper bound or the finite order of the information

losslessness of the finite-state machine, where the cardinality of the input

set equals that of the outpIut set, is conjectured. In a special case where

the assumption that each cell can be initialized to its initial state at any

time upon a command is not made, one is able to determine the testability.
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Chapter I

INTRODUCTION

The essential part of the analysis of the fault detection and loca-

tion in cellular arrays is to develop a procedure for determining where or

not a cellular array of arbitrary size, with a given specification in terms

of the external behavior of the typical cell without any implication with

regard to the physical implementation of each cell, is testable. By

testable it means that the presence of a single faulty cell in the cellular

array can be detected by observing the boundary output sequence in

responding to some bound 3ry input sequence. An essential interest is to

find the properties of the cell, in terms of its external behavior, of the

cellular array of arbitrary size such that the cellular array with these

properties is testable. Another interest is to find the boundary input

sequence to be applied to the cellular array of arbitrary but finite size

such that all cells in the cellular array can be tested completely. Only

after the testability of a cellular array is affirmed, can one study addi-

tional constraints on the cellular array for the location of the single faulty

cell within some Number J of cells, where is called the uncertainty

in location, or even to the location of multiple faults.

Some work has been done with regard to L.he fault detection [R 1,

12],(17], [18] and location [11, [18] in combinational cellular arrays. It

is known that there are combinational cellular arrays wiiere at least one

,IO-status cannot be covered by any nonprime tessellation; but no

procedure was giver, for finding some tessellition, specifically, some

prime tessellation with respect to a given (i10-status, to cover that

210-status. Breuer [3] has investigated the fault detection in a linear

cascade of identical machines, where each machine is finite state,

reduced, strongly-connected, and can be reset to its initial state at any

time upon a command.

I



In this paper, a cellular array is a uniformly, rectangularly,

and unilaterally interconnected array of identical r.ells. This does not

necessarily constrain one from extending the study in this paper to the

situation where diagonal interconnections are allowed. Throughout 'this

paper, -the assumpcion of the presence of single faulty cell in a cellular

array will be maintained, the fault in a cell in a cellular array is assumed

to be nontransient and may affect the cell output in any arbitrary way,

and all logical functions are understood to be completely-specified.

Some properties on the combinational cellular array testing are

developed and a prDcedure for finding some prime tessellation with respect

to a given CIO-sta,:us is presented in Chapter II. The results for the

combinational cellular array testing can be easily extended to the fault

detection and location in second category sequential cellular arrays (both

one-dimensional and two-dimensional) are investigated in Chapter IV.

Some convenient assumptions enable one to establish some sufficient

conditions for the second category sequential cellular array to be testable.

In a special case where the assumption that each cell can be initialized

to its initial state at any time upon a command is not made, some properties

are found to be necessaryand sufficient for the celluler array of that case
to be testable.

2



Chapter II

FAULT DETECTION IN COMBINATIONAL

CELLULAR ARRAYS

A. Introduction

Since the specification of the typical cell in the combinational

cellular array is given in terms of the external behavior of the cell without

any implication of its physical implementation (at gate level) and the fault

within a cell may affect the cell output in any arbitrary way, it will be

assumed 'that all in',ut combinations are to be applied to a cell to test the

cell completely in this chapter. At the end of this chapter, remarks will

be made in connectior, with the situat'on where the physical implementation

of the cell in -the combinational cellular array is known. Within the scope

of this chapt,'r, an array will be understood to be a combinational cellular

array unless otherwise stated.

Two necessary conditions for the array testing will be analyzed

separately for two-dimensional arrays. Some properties of the cell in the

array are found to be sufficient for obtaining efficient boundary input

combinations 'to test an array completely independent of the array size.

There are cases where at least one input combination is not applicable

to the typical cell in the array. There are cases where some procedures

are to be followed suh that some boundary input combinations can be

determined which enable all cells in the array to have some input combi-

nation applied. The implication of a CIO-statuses-compatible mapping

on the array is that with the application of some boundary input combina-

tion to the array, each cell in the array has some input combination applied

as described by the CIO-statuses-compatible mapping on the array.

3



B. General Conditions for Testability

Under the assumption that all input combinations are necessary to

test a cell, these are two, well-known, necessary conditions that must be

satisfied for array testing for the detection of the presence of a faulty cell

in an array. They are the Covering Condition and Sensitized Path Condition

as follows.

Covering Condition: Every input combination must be

applicable to every cell in the array.

Sensitized Path Condition: For each input combination to

a cell and each possible cell output change due to a fault,

there must exist at least one sensitized pathI from that cell

to one of boundary outputs.

These two conditions together are sufficient for the Detection of the

presence of single faulty cell in an array.

C. Two-Dimensional Arrays

Let SI be the set ot all positive integers. Let each element in
the set S~xSI identify the location of some cell in the doubly-infinite array

of cells. Thus, Ci., where i,jcSI, denotes the cell at the location (1,J)

in an array of cells. The general configuration of a two-dimensional array

of finite size is shown in Figure 1. For a cell, the finite horizontal input

set, the finite vertical input set, the finite horizontal output set, and the

1 Consider cells in an array as nodes, boundary input terminals as sources,
boundary output terminals as sinks, interconnections and the connections
to boundary terminals as edges in an oriented graph, then a sensitized path
from a cell, denoted by node nf, to a boundary output terminal, denoted by
sink nk, is a path from nf to .nk such that when the leading edge of the path
(coming out from nf) is perturbed from its nominal value, the remaining
edges on the path are perturbed from their respective nominal values.

4
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finite vertical output set are denoted by X, Z, X, and Z,respectively. x, z..

A, and 2 are arbitrary elements of XZ,X, and Z, respectively. X= X and

Z= Z are implicit here.

SI

C C

C. x C

I 
+9

C •2 C M) i

mn

Figure 1. A Two-Dimensional Array of Size mxn.

Let the input-output behavior of the cell in an array be described

in terms of a mapping F:XxZ-.XxZ. This mapping can be specified In a form

of the cell-input-output-table, abbreviated as CIG-table, listing all

possible cell input combinations and the coresponding cell outputs. A

CIO-status is an ordered pair of a cell input combination and its corresponding

cell output, in other words, a CIO-status is an element in f(xz,:R,2) ýKCX,

zcZ,A6X'2CZ, and (iZ,2) = F(x,z)'.

5



The Covering Condition and the Sensitized Path Condition for the

testing of two-dimensional arrays are analyzed separately.

1. Covering Each Cell in an Array with Every Possible Input Combination

The problem of determing the constraints on the cell external

behavior under which every possible input combination can be applied to

any typical cell in a two-dimensional array is not easy because a cell

input combination to a typical cell in the array is provided by an entire

subarray of cells neither to the right nor below that cell with that cell

excluded where the matching of the cell input and the cell output on

adjacent cells niust be observed.

By a CIO-status on a given cell is compatible with the CIO-statuses

on all adjacent cells it means that the horizontal input part of the CIO-

status on that cell is the same as the horizontal output part of the CIO-

status on the cell to the left of that cell and the vertical input part of the

CIO-status on that cell is the same as the vertical output part of the CIO-

status on the cell above that cell.

Given the input-output behavior of the cell in an array of size

MxN in terms of the mapping F:XxZ-+Xx2, define a CIO-statuses-compatible

mapping on the array to be a mapping G:C- SF where

C =fC lirfl,2,3,...,M1 and jcfl,2,3,... N1 1,
ii

S = f(x, z,9,) )xeX,zc 7,iX,2 e2, and (Z, 2) = F(x,z)3 , and for every

C 0cC, the CIO-stitus on CG, i.e. 0(C0.), is compatible with the CIO-

statuses on all adjacent cells in C. A CIO-statuses-compatible mapping

on the doubly-infinite array, i.e. ,eYaFrray of size MxN where M-4oand N-+, is

said to be a tessellation.

The following two theorems are obvious.

Theorem 1: The Covering Condition for testing an array of size MxN is

satisfied if and only if there exists a nonempty set S of CIO..statuses-

compatible mappings on the array such that each CIO-status on the CIO-

table specifying the cell occurs on q, in at least one mapping in the set S

6



forViefl,2,3, . M1 , and Vjfl,2,3, . N).

Theorem 2: The Covering Condition for testing an array of arbitrary size,

where the CIO-tabie specifying the cell is given, is satisfied if there

exists a nonempty set St of tessellations such that each CIO-status on the
CIO-table occurs on C,, in at least one tessellation in the set S for VieS

t I
and VjeS.

I*
In recalling that the existence of a nonempty set of tessellations

such that each CIO-status on the CIO-table occurs on C. in sorie tessel-

lation in the set VieS and VjeS is also necessary for satisfying the
I I

Covering Condition for the double-infinite array, one can conceive that this

property is also necessary for satisfying the Covering Condition for very

large (in both dimensions) finite arrays.

The tessellation problem here is actually a special case of the

Domino Problem. A domino is a square plate with edges colored, one color

on each edge but different edges may have the same color. The type of a

domino is identified by the colors on its edges. Hence, a cIomino can be

thought of as a quadruple (ab,c,d) where ab,c and d represents the

color on 1st, 2nd, 3rd, and 4th edge, respectively. The domino game is to

take a finite set of domino types with infinitely many pieces of every type

and try to cover the infinite plane with dominoes of these types such that

any two adjoining edges have the same color and none of the dominoes is

rotated or reflected in the covering. A finite set of domino types is said

to be solvable If and only if the infinite plane can b. so covered with

dominoes of these types. The Domino Problem is to find an algorithm to

deciae, for any given finite set of domino types, whether it is solvable.

Kahr et al. [10., Wang [19], and Berger [2] have proven that the Domino

Problem Is undecidable meaning that there does not exist a general algorithm

which, given the specifications of an arbitrary (finite) domino set, will

decide whether or not the set is solvable. Tammaru [18] carried the same

conclusion of the undecidability of the Domino Problem over to the tessel-

lation problem for ,',o-climensionol arrays. In essence, Seth [17] conjectured

that In general the condition on the existence of at least one tessellation for
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every CIO- status on the CIO-table may not be a solvable problem. Notice

that the Domino Problem deals with the class of all domino sets. In

Wdentifying the special features of the tessellation problem with respect

to the Domino Problem, Kautz [11] noted that whether or not the special

features of the tessellation problem permit the existence of a procedure for

solving the tessellation problem remains to be determined.

a. Existence of Rectanl dar-Tesserae and Tessellations

One can also consider a C10-status q as a quadruple (a,b,c,d),

where a,b,c, and d are x-component, z-component, i-component, and

,-component of q, respectively. A superscript on a CIO-status can be-+x
used to designate it.; component, for instance, q is the x-component of q.

In the remainder of this chapter, these notations on the CI 0-status will be

adopted.

for some finite positive integer n, an n-tuple of CIO-statuses
(qi0q2 q3t .... ), where =SF f(x,z,A,) xX, zeZ, AeX, isZ, and

2' ~n
= F(x,z)I for Viefl,2,3, .... nl, is said to be a row-chain if and only

if q q n and qi =qi- for Vif2,3,4, . .. n). Similarly, for some finite

4+ 4 ,whrpositive integer m, an m-tuple of C0O-statuses (ql' q2 fq 3 . .m), where

q eS for Viefl,2,3, . ..ml, is said to be a column-chain if and only if
SZ ql"• -#d -=4z= for Vie(2,3,4, ... ,ml . For some finite positive

integers m and n, an m-n-tuple of CIO-statuses ((qill ql2,ql3, qln)(4 -4 -4 -# ) . . ((• qm -- "4q ¢S

21'22'23'" .... '2n .... ml*m2' m3' ' mn)), where
forVicl,2,3 .... m) and Vj( 1,2,3,. .. nl is said to be a rectangular-

tessera if and only if (qil' q12 ' qi 3 ,'''' qin isa row-chain for1Viql,2,3,

.m and ( q',,, .... qmj ) is a column-chain for Vjel,2,3 ..... nl.

This rectangular-tessera is said to be of order mxn.

Another way of viewing a rectanular-tessera (pl. recta ngular-tesserae)

is as follows. For some finite positive integers m and n, an m - n-tuple of

CIO-statuses ((qill l2 'q13"' q.. ), 21' q22'q23 " 1 q2 n

8



(qm 2q3.. m )q q where q es for Vie(l,2,3, .. ,m) and
ml' m2' m3 mn ij F

Vjefl,2,3,...,nJ is said to be a rectangular-tessera if and only If there

exists a mapping H: D-+S F where D= [C rk, C C CFrk r(k+I) ' r(k+i2)....' Cr(k+n-1)'
C (r+l)k' C (r+l) (k+O' C (r+l) (k+2) ... '(r+l) (k+n- 1) ... '(r+m-1)!' C (r+m-1) (k+l)'

C (r+in-1) (k+2) . (r+m-1)(k+n-l) for some r, ke SI satisfying (1) 11 (C) =

q(t-r-)(k) for Vie(r, r+l, r+2, .r. r+m-l1 and Vjefk, k+l, k+2 .. , k+n-l,

(2) for every C1jeD, the CIO-status on C is compatible with the CIO-statuses

on all adjacent cells in D, and (3) H(C i(k+n1)) = H(Cik)x and H(C(r+m-l)

H(C rj)z for Viefr, r+l, r+2, . .. , r+m-1 and Vjiek,k+l, k+2, .. .. k+n-11.

A rectangular-tessera T is said to cover all CIO-statuses in a set S

if every CIO-status in the set S appears in the rectangular-tessera T.

Theorem 3: Given an n-tuple of CIO-statuses (q 1 1q 2  q 1 '1 'qn), where

q eSF= f(x,z,'Z,2)IxcX, zeZ, ceX, ie2, and (k,i) = F(x,z)I for Vie[1,2..... ,n

for some finite positive integer n, if (1) (2q qnIqn) is both a row-

chain and a column-chain, (2) (qlI ... qn 2 q ) is a row-chain and
+ -4 4 4 -4 -4(q q n-l 1... q 21 q 1 ) is a column-chain, or (3) (q1 1 q2 P....qn-'q) is a

column-chain and ( n'.qn-J' 21 ) is a row-chain, then there exists a

rectangular-tessera of order n x ,, covering all CIO-statuses ql I q 2

qn-l# and qn
Proof: Suppose the hypothesis holds.

(1) If (Nl1q2 , .. q qn_+n) is both a row-chain and a column-chain,
4 - 4 -4

then 'ýq 2 q.. -.. ' q n, q) is both a row-chain and a column-chain,
"4 4 -4 -4

(q3 .... ,qnl q n,qliq 2 ) is both a row-chain and a column-chain ..... , and
(4 -4 "4 -4
(q ql,q,,...I,qn) is both a row-chain and a column-chain. Thus,

S- - -4 - 4

(qnqlq 2 , ... 2 q nl) is a iectangular-tessera of order nxn covering all
-0 -4 -+ -4

ql1 q 2 ... 'qn-l' and q.n
(2) -f (- nl• n•-4 2•

(2) If 'l' 2 q" ' q is a row-chain and ( - .
44 -4 -4is a column-chain, then (' qn lq 2' I ... qn-2'qP-1 is a row-chain.....

(-0 + -4 -4 -4 -' _# - -4
(q3' q4... qn ,qlq2) is a row-chain, (q22 1 3 .q.. q1 Iq) is a row-chain,

9



(qlqn'qn ... q) is a column-ch3in, (4 -• 4q,1n qF q" ) is acolu n-chln 3.. and n•- 4: .93

column-chain,.,a'qn-2 a ( q.... 2 ,qAn )is a column-.chain.
Thus V 2 ' n-l'-*n)' n , , q n-2' qn-l q 2 'q3 ... 'n' ql)

_* + -9 _+

is a rectangular- Lssera of order nxn covering all ql1 q2 , 2... qn-l' and qn"

(3) If (q' I' 2 q n-l' qn is a colurrn-chain and (-q n 11. ..9q2:ql1

is a row-chain, then by symmetrical arguments to that in (2)
4 4- 4 -4( q-,Iqn'q n-I' q3' q2 ) I q21 ql q nl o q4' a3 " 4 -' n 2 ql' q )n

(qn' qn-1 . q. 2 q2 is a rectangular-tessera of order nxn covering all
4 "4 +

q'q 21 .... n-' 11and qn
Given that T = ((ql ql2+ l .... qn(q21 q22'23'.. qn)..

,qm2,m3' ..... where q, eSF for Viefl,2,3,... ml and

Vjefl,2,3 ... nl for some finite positive integers m and n, is a rectangular-
- - - -4 -0 • _# _#

tessera, then, ((q-+-q4 2+4l 3 ..... q qn 23. -n

-4 -4 "4 •4 -4 -4 -4 -4 -4 -qm -4q 21' q2 2' q 3' "'' 2n' q21' q22' q23 ' ... 2n (q ml 2' q M3 ,..
4 4 - -4
qmnml' qm2' qm3' .. qmn )) is also a rectangular-tessera. The latter is

said to be obtained from the former by iterating the pattein (of the former)

once in the horizontal dimension. Similarly, the rectangular-tessera
+1 ' -4 " ) (-24 -4 -) -m

ill 12'131 .... 1 ln 2' ' 22 q23 .. . 2n ml .. . m2'qm3 ....

4 -4 44 (24 -4 4 -4 )qll12' q13 .... . .'q22'q23'..... 2n ml" m2 q 3P ..... mn'

is said to be obtained from the rectangular-tessera T by iterating the pattern

(of the rectangular-tessera T) once in the vertical dimension.

Given any two rectangular-tesserae T1 and T"2# if T2 can be obtained

fromn T by iterating the pattern of T at least once in the horizontal dimension

or the vertical dimension, then T2 is said to be Implied by T1 or TI is said to

imply T2 . A rectangular-tessera T is said to be minimal if and only if T is

implied by no rectangular-tessera. tn the remainder of this paper, all

rectangular-tesserae are understood to be mlninial.

Let k be a fixed positive integer and a and b be any two integers.

We define a- b mod k if k divides (a-b). For any integer c, we define

cmod k to be the positive integer d where d = c mod k and 0 < d c k.

10



Let T and T be two rectangular-tesserae of the same order, say
q4 p4  -~4 4 -4

Tq I ql2q13...p qln 1 (q 21'q 22 1 q 23 .. q2n ' q ml'm2'qm3 I..q and Tp Up (( p- ) - (P21 /2 P) '

(Pmlprm2'p m3"' Pmn )) are two rectangular-tesserae of finite order mxn.

T is said to be obtainable from T with horizontal-wise rotation of k slots,
p q•

for some Integer k, If p., = q .(. 1 ) fod n.r,,, n
Vjefl,2,3,...,n1. Similarly, T md sad to be obtainable from T withp q
vertical-wise rotation of k slots, for some integer k, if p q(-k)d

forVlel,2,3, ... ml and Vjefl,2,3,....nl. modm

Let S be a set of all recta ngul r-tes serae of same order. Define

the binary relation R on the set S as follows: for all s. S2C S S Rs2 If and

only if s2 is obtainable from s1 with horizontal-noise rotation of k slots

and with vertical-wise rotation of r slots for some integers k and r. One

can verify that the binary relation R on the set S is reflective, transitive,

and symmetric. Hence, the binary relation R is an equivalence relation on

the set S. For any two rectangular-tesserue T and T, of same order, T

is said to be equivalent to T2 or vic2 versa if and only if T RT
1 T

Given a rectangular-tessera of order mxn, one can mark the sub-

array of cells C C C C C C C C .. and
111 12''"' in' 21' 22'~ 2n' ~'ml, mn2' *'

C in the doubly-infinite array with CIO-statuses according to the patternmn

of the given recta ngular-tessera and then mark the remaining cells in the

doubly-infinite array with CIO-statuses according to the resuIlant pattern

of iterating the pattern of the given rectarigular-tessera infinitely many

"times in the horizontal dimension and then iterating the intermediate result

infinitely many times in the vertical dimension to obtain a tessellation.

The given rectangular-tessera is sai-l to induce the tessellation. A tessel-

lation which can be obtained from the resultant pattern of such an iteration

on a pattern of some rectangular-tessera is said to be nonprime. A tessel-

lation which is not nonprime is said to be prime.

For ai.y two nonprime tessellations 0s and O2 which are induccd

by the rectangular-tesserae 'rI and T 2 respectively, if T1 and T2 are of

same order and equivalent, then *' is said to be equivalent to T or 71

and ', are said to be equivalent.
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Given a rect.,ngular-tessera T, then, the equivalence class of

rectangular-tesserae represented by T iscl(T) = IT ITi is a rectarngular-

tessera of the order same as T and TRR T 1.

Theorem 4: Given an array of arbitrary size where the CIO-table specifying

the cell is known, if there exists a rectangular-tessera T covering all

CIO-statuses in a subset S of the set of all CIO-statuses on the CIO-table,

then each CIO-status in S can occur on C,, in at least one tessellation in

the set S!r of all nonprime tessellations induced by all rectangular-tesserae

in cl(T)for VIeSI and VieSI. Moreover, the number of steps required to

enable all cells in the array to experience all CIO-statuses in S can be not

greater than Icl (T) F, where Icl (T) denotes the number of elements in the

se, cl(T) and is bounded from above by m. n where mxn is the order of T.

Proof: Suppose the hypothesis holds. The systemic way of generating

cl(T) from T, where the order of T is mxn, is obtaining an element incl(T)

from T with horizontal-wise rotation of k slots and with vertical-wise

rotatlonofr slots first for k = 0 and r = 0, second for k = 0 and r 1,

third fork= 0 and r= 2,..., fork=land r = n-l,..., fork =m-land

r = 0, for k = m-I and r = I ..... and finally for k = m-l and r n-l. Thus,

Icl) in m- n. Let St, be the set of all nonprime tessellations induced by

ill rectangular-tesserae lncl(T). It is clear that Is !cl(T) j. It is also

clear that each CIO-status in S can occur on C. in at least one nonprime

tessellation In Sý. for Viel,2,3 .... rnI and Vjef1,2, 3, n1. Therefore,

each CIO-status in S can occur on C in at least one nonprime tessellation

in S 7 for VIeSI and VjFS I. Each nonprime tessellation in S facilitates a

step to enable each cell in the ariay to experience some CIO-status in S.

All nonprime tessellations in Sý. provide sufficient steps to enable all cells

in the array to experience all CIO-statuses in S. Hence, the number of

steps required to enable all cells in the array to experience all CIO-statuses

in S needs not be greater than I S~j I .
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The following theorem is then obvious.

Theorem 5: Given an array of arbitrary size where the C10-table specifying

the cell is known, if there exists a rectangular-tessera T covering all

CIO-statuses in a subset S = fql,q 2 .... qtI of the set of all CIO-statuses

on the CIO-table, then the number of steps required to enable all cells

in the array to experience all CIO-statuses in S in utilizing the information

provided by the set of all nonprime tessel~ations induced by all rectangular-

tesserae in cl(T) Is bounded below by (m .n where mxn is

the order of T, 'n1 is the number of appearances o1 qi in for Vifjl,2,. .. J1,

min. (11.1 21.. . is the smallest one of ' . and Frl is the

smallest Integer not less than r.

Given an n-tuple of CIO-statuses (q1'q2''3.. q), where for

every iefl,?.3,... n', qieS qf(x,z,R,i)xeX,zEZ,xeR,zcZ, and (i,5)=A q

F(x,z) , X=X= fXl,X 2 ,x 3 1 .... x, and Z z I'= fZ 1, 2 ,z 3, .... Zkl. Then,4I

q' , q') is said to be in x/R-balance if and only if the frequency

of occurrences of x at the x-input component o-zer (q l'q2' q, .... ,qn) equals
4 4

that of x. at the k-output component over (q, q2 q q ) for all1 ' 2' 31 .. . nJ o l

ifl, 2,3,. .. j. (qIq 2 q3'.. .,q n) is said to be in z/2-balance if and

only if the frequency of occurrences of z, at the z-input component over

q1q2'q3..... qn equals that of z. at the 2-output component over

(q1,q2' q 3) qnfor all i Q,(2,3, 1 , l 2'q3 "' qn) is said to

be in full-balance if and only if it is both in x/k-balance and in z/.-balance.
'4 -4 4 ,frs m

Given an n-tuple of CI0-statuses ('q 2 'q 32 3''. .n-q), for some
positive integer m such that m< n, an m-tuple of CIO-statuses

''!'. .... 3'p pM) is said to be a sub-n-tuple of (q 1 q 2 q 3 '..q.. n Pl
is identical to exactly one of q1Vq 2 'q 3 . .... qn ' P2 is identical to exactly

one of the remainder of ql' q2 , q 3 .... and q after the one identified with
4 

-p is deleted, and P is identical to exactly one of the remainder or
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qlq 2'q 31 ... ,and qn after those identified with PI'P2...,I and pi-I are

deleted for every ie 3,4, ... ,mI. For an example, N ,ql, q2) is a sub-5-

tuple 'q 21 ,q1 1 3 1 q2).

Theorem 6 (Property 1): Given a set of 3 (distinct) CIO-statuses
40 -+ -+ 4 4 -4 4 .

S = I q21q23 if (q1'q]q 2,a3) is in full-balance but no sub-4-tuple of

the 4-tuple 'qlq'q2' q3 ) is in full-balance, then there exists a rectangular-

tessera covering all CIO-statuses in the set S.

Proof: Suppose the hypothesis holds and qI = (al'blCldI)I c2= (a2 'b 2 c2 d 2)

and q3 = (a3 b3 c3,d 3 ). Then, two possible cases are cons!dered.

Case 1, a c Since (al1blCldI),(al,bl,Cl,d), (a2 b 2,c2 d ),

(a, b 3 ,c 3 ,d3 )) is in full-balance, aI X cI implies that c2  c3 = a and

a2 = a3 = c . Thus, each of ((al,bl,c ,d ), (a 2,b 2,c 2,d 2)) and ((al,bl,Cl,d ),

(a3 b 3 1 c3 1 d 3 )) is a row-chain.
Subcase Ia, bj dl: Under this subcase, d2 = d3 = bI and b2 = b 3=dI

then (a 2 ,b 2 ,c 2 ,d 2 )) and (a 3 ,b 3 ,c 3 ,d 3 ) are not distinct, a contradiction to the

hypothesis. Hence, subcase la is impossible.
Subcase lb,.-_ b l =dl: That ((allblCl,dl), (al,blCl,dl) 2 ,b2 c 2,d2)

k1'a 1 bc 1d imlie(tatb1 ,c1  (a)( 2' 2'2
3,13, c 3,d3)) is in full-balance and b1 =dlimplies that1ther (a) =d2

and b3 = d3 or (b) b2 = d3 and b3 = d Under (a), then each of
((aII bIC1Idl,(a b 2' c2,d2)) and ((al blcl,d ), (a 3,b3 c 3d 3)) is in full-

balance, a cont'adiction to the hypothesis. Under (b), then each of

((al, ldl), c alblClIdl)) and ((a2,b2,c,,d2), (a3,b3,c3,d3)) is a column-

chain. Hence, there exists a rectangular-tessera (((al~blCldl)

(a 2,b2 c 2d 2'), ((a1,b1,c1,d ), (a3 b 3c 3d 3))) of order 2x2 covering all

CIO-statuses in the set S.

Case 2, a, = cl: If a =c,, then ((al,bl,cl,dl),(al,b,,Cl,dI)) is a row-chain

and b I d Thus, d 2  d3 b and b2 = b3 = d Hence, each of

((a1 ,bl,Cl,d1), (ab2,b2,c2d2) and ((alIblCl~dl), (a3,b3,c3,d3)) is a column-

chain.
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Subca... e 2a, a q2: Under this subcase, (ablCd

(a 2 ,b 2 ,c ,d )) is in full-balance, a contradiction to the hypothesis.

Hence, subcase 2a is impossible.

4 Subcase 2b, a2 c,2: Under this subcase, that ((a, bl Cl,d ),

(a,bcl,d)ia, (ab 2 c d )(a b c d )) is in full-balance forces that
1 1 212 2' 2 2 '3' 3' 3' 3Vc =c a and a3 = 2.a Then, ((a2,b2,c2,d2),(a3,b3,c3d3)) is a row-chain.

i•Hence, there exists a recta ngular-tes sera (((aI, bI,cI,d 1l), (aIbI, cI,d l)

((a2 ,b 2 c2 ,d 2 )(a 3 b3 c3,d 3))) of order 2x2 covering all CIO-statuses in

the set S.

Theorem 7 (Property 2) : If the cell in an array of arbitrary size is chosen

such that the mapping F:XxZ'*XxZ describing the external behavior of the

cell is one-to-one, then, there exists a set of rectangular-tesserae covering

all CIO-statuses in the set SF of CIO-statuses describing the cell, more-

over, the number of steps required to enable all cells in the array to experi-

ence all CIO-statuses In SF is Xr.• IZI.
Proof: Suppose the hypothesis holds. Let 7\t= t(x,z)1xcX and zeZ 1 . Let

each member in the set ?I identifies a node in an oriented graph • =

where p is a set of edges obtained as following: an edge e from the node

(xlZI)en to the node (x2 ,z 2 )cV exists and is in the set P if and only if

F(xlz 1 ) = (x2 ,z2). Since F:XxZ-iXxZ is one-to-one (also onto because

XxZ = XxZ and is finite), each node in the graph A- has precisely one

incoming edge and one outgoing edge. Then the graph ;- is actually a

graph consisting of separated subgraphs where each subgraph is a loop. (A

loop can be a self-loop or a loop containing two or more nodes.) Let

L= fL 1 ,L 2 9.. ... Ki be a set of all loops in the gcaph ; and c(L.) be the

number of nodes in the loop L. for ViEil,2, .... k. One can claim that there

2I
A special case in Kautz [ll] (Theorem 12). The "proof" given by Kautz

does not appear to be adequate.
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exists a set of rectangular-tesserae fTT,T T 1, where T is a
2' k 1

recta ngula r-tes sera obtained from the Information revealed by the loop Li

and is of order C(Li)x C(Li) for Vie[l,2,... ,kl, covering all CIO-statuses

in the set S F, Indeed, if a loop L icL is a self-loop containing a node
(xI )• I , then, clearly (xi ,zi xI ,z i) is a CIO-status in the set SF0

thus, there exists a rectangular-tessera, say Ti, consisting of the CIO-

statuses (.,,,xi,zi). Suppose, in general, L L is a loop containing
c(Li) nodes (x,zl), (x2 ,z 2 ), (x3 ,x 3 ) 3 ... and (x(L ,z (), where

F(x.,z.) = (x2 ,z ), F(X 2 ,Z2 ) = (x , z ), .... and F(x- , = (xIZ
22 2'23 r(L) C(L) 1 z.

Let q, (xli' I 2 z 2 )1 q2 =x2 21 x3 ,z3)3 q3 =(x)3,z3 x4,z 4 -9 and
zX -x 34 4+

z) noticed that ql,q2, q3..... qrC(L eSFqrL)=(L 123.,ll.Thn * c(-L" F

also the c(Li) -tuple of CIO-statuses (q 1' 2,q 3+ ..2. q qr(L Lis both a row-

chain and a column-chain. Then, by Theorem 3, there exists a rectangular-

tessera, say TV, of order c(LI) x C(Li) covering all the CIO-statuses

qlq 2,q 3 ...q , and qC(Li). Furthermore, the number of steps required to

erable all cells in tie array to experience all distinct CIO-statuses
-, 4 4 -4
q1 q2 ,q 3 .... , and q (L is r(L by Theorems 4 and 5. In fact, there Is an

obvious one-to-one correspondence between the set ¶V of nodes in the graph

% and the set S Each loop in the graph Cr identifies a rectangular-tessera

in the set [T 1 ,T 2 ,... ,Tk 1. Thus, there exists a set of rectangular-tesserae

covering all CIO-statuses in the set SF and the number of steps required to
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enable all cells In the array to experience all CIO-statuses in the set SF

is the number of CIO-statuses in the set S F which is 1lX Iz!.•A

Given a mapping F:XxZ-.XxZ, a reduced mapping F] Z for some
Z AA 7 -

Zlcz is the mapping F]Z :X-+XxZ where F] (x) = F x, z) for VxlX.z z ''

Theorem 8 (Property 3)31 Let the cell in an array of arbitrary size be
described by a mapping F:XxZ-.XxZ and the two mappings F :XxZ-+X and

F^:XxZ4.Z be defined by (F (x,:),Fi(x,z)) = F(x,z) for VxeX and VzcZ. 11

the cell in the array is chosen such that the reduced mapping F] X-Xxz
is one-to-one for VzEZ and the reduced mapping F] X:Z-#2 is one-to-onezx

for Vx6X, then, there exists a set of recta ngular-tesserae covering all

CIO-statuses in the set SF of CIO-statuses describing the cell, moreover,

the number of steps required to enable all cells in the array to experience

all CIO-statuses in the set S is !X.I ZI.F
Proof: Suppose the hypothesis holds. Let V= r(x,2) IxeX and iZ}. Then,

there is an one-to-one correspondence between the set '/w and the set SF
X -X A

because FP] :Z4Z is one-to-one also onto (note: F]x :Z-*Z is one-to-one if

and only If FA] :Z4Z is onto since Z = • and is finite) for VxeX. Let each
zx

mnumber in the set 7 identifies a node in an oriented graph Z- = ( P')
where P, Is a set of edges obtained as following: in edge e from the node

(xi,.) to the node (x2 , z2 )OV exists and is in the set P' if and only if

there exists a CIO-status qES such that q = xl,q zql, = x 2 , dnd
4zq = Z 2. Then, that each node in the graph C has precisely one outgoing

and one incoming edge follows the facts that there is an one-to-one corre-

spondence between the set " and the set SF and the reduced mapping

F I :X- X is onto also one-to-one for VzEZ. Thus, the graph C. is

actually a graph consisting of separated subgraphs where each subgraph is

a loop. Let L = fLIL2 L.... L k be the set of al! loops in the graph ;- and

r(L ) be the number of nodes in the loop Li for V1 F,2, 2 .... kkl. One can

claim that there exists a set of rectangular-tesserae fTIT 2, .. .. ,T k, where

3A special case in Kautz [11] (Theorem 13). The "proof" given by Kautz does
not appear to be adequate.
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T is a rectangular-tessera obtained from the information revealed by the

loop Li and is of order ((L )xC(L1) for iefl,2,... ,kl, covering all CIO-

statuses in the set S Indeed, if a loop L eL is a self-loop containing a

node (xi, i•i)e , then, clearly (x ,iX xi ) is a CIO-status in the set SF,

thus, there exists a rectangular-tessera, say T1, consisting of the CIO-

status (xi ,z I',xz I ). Suppose, in general, LIeL is a loop containing r(L )

nodes (x 1,,), (x 2 , 2 ),A(x 3 , 3 ).... and (x ( where there exists
1 12 '3(L) I rL lweeteeeit

an edge from the node (x, .) to the node (x z) )'or Vi•el,2,3, ....- (Ll)

and there exists an edge from the node (x ) ( ) to the node (x,.l). Let
r L,) (L)I-4^ ^4 A. ... -A i and

1 2 (lZ'2Z) 2 =' (x2 3 1x3z 21, q3 =(:• x,3 .. n-4 1

q•'L'= (X(L.)l1' IZi L x )" Then, one can see that qlIq2,q3 q esF
4 -41 -4 I- -4 -4

also (qIq2,q 3.... qC (Li ) is a row-chain and(qr(L q 3 q3,q2,qI is a

column-chain. By Theorem 3, there exists a rectangular-tessera, say Ti,
-4-4-4 -4

of order C(LI)xC(Li) covering all the CIO-statuses q 1,q 2 ,q 3 ..... and qr (L Y

What's more, the number of steps required to enable all cells in the array

to experience all distinct CIO-statuses ql,q 2 q 3 1 .... and q is C(Li)

by Theorems 4 and 5. Indeed, each loop in the graph Q. identifies a

rectangular-tessera covering some CIO-statuses in the set S . The fact

that the graph 4. is a graph of isolated loops L1 ,L 2 .... , and Lk reveals

the partition on the set SF such that each CIO-status in the set SF is in

exactly one rectangular-tessera in the set [TI,T 2 .... ,Tk 1 . Thus, there

exists a set of rectangular-tesserae covering all CIO-statuses in the set

SF and the number of steps required to enable all cells in the array to

experience all CIO-statuses in the set SF is the number of CIO-statuses in

the set SF which is 1XI. ZI.0

Theorem 9: There exists a rectangular-tessera consisting of t (not necessarily

distinct) CIO-statuses ql,q 22 ..... and q only if the t-tuple of CIO-statuses

1q I , q2 q)is in full-balance.
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Proof: This theorem is obvious in light of the fact that every row-chain

is in the x/R-balance and every column-chain is in z/2-balance. A'

The converse statement to Theorem 9 is not true. As a counter-

example, a 3-tuple of CIO-statuses ((1,a,2,b), (2,b,2,a),(2,c,l,c)) is ;n

full-balance but there exists no rectangular-tessera consisting of the three

CIO-statuses (1,a,2,b),(2,b,2,a), and (2,c,l,c).

Given a set S of CIO-statuses, if there exists a set St of rectangu-

lar-tesserae rT1,T .... ,T I, where T. consists of K. CIO-statuses for
2 t 1 1 t

Vie l,2..... tl, covering all CIO-statuses in the set S, then, any ( F K i)-

tuple of CIO-statuses consisting of all CIO-statuses -in ll rectangu'la~r-

tesserae in the set St is in full-balance.

Theorem 10: Given a set S of j CIO-statuses r ... .q there exists

a nonempty set St of rectangular-tesserae covering ill CI0-statuses in the

set S only if there exists a j-tuple of positive integers (m1 ,m 2 . ... m) such

that any (9 m )-tuple of C0O-statuses consisting of mI copies of ql'm
M 14 of +m

copies of q2 .2... and m. copies of q. is in full-balance.I jJ
Following Theorem 10, one has the following result.

-4 -4 -
Theorem 11: Given a set S of k CIO-statuses fql'q2 q k on the

CIO-table, if all the possible nonnegative integer solutions to
-x# -#x _4x -an -dX -+

m1qI + 2 q2 +. +mk qk m11q 2 q2 +..+Mkqkar
(1) mq +rnq + . kq mlq +m q +... + q

1 1 -2z -k 2-.f kk

for mlm 2 , ..2 and mk render some m. = 0, iE1,2 .... k , then qi can not

be covered by any recta ngular-tessera,

Given a set S of k CIO-statuses ýql,q2 ..... qkI on the CIO-

table specifying the cell in an array of arbitrary size, the nonnegative integer
k 4x k k 4 k .0z k _.i

solution to (1) -q m q = i q and (2) T mq. = i miqi for
i=l o = i=l 1 1

i i 2 ... and mk is not unique. The existence of a soluon where mi s

are all positive integers reveals the possibility that one might find a set

of rectangular-tesserae covering all CIO-statuses in the set S . If all the
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possible nonnegative integer solutions to (1) and (2) for mi s render at least

one mi = 0, Jgfl,2,...,k., then at least qJ can not be covered by any

rectangular-tessera, consequently,at least the existence of a set St of
-4

prime tessellations such that q. occurs cn Cip in at least one tessellation

in the set S for VieS and VpeS is necessary for the Covering Condition
t II

for testing the array to be satisfied.

For a CIO-status qj in the set SF of all CIO-statuses on the CIO-

table specifying the cell in an array of arbitrary size where q. can not be

covered by any recta ngular-tessera, a prime tessellation with respect to

the CIO-status g. is a mapping G:C4SF where C = fC iplicfl,2,3, ... M1

and pefl,2,3,.... N , G(CN) = q, where M-*o and N-#-, and for

every CipC, the CIO-status on Cip, i.e. G(Cip), is compatible with the

CIO-statuses or all adjacent cells in C. The existence of a prime tessel-

lation with respect to the CJIO-status q, implies the existence of a set S
of prime tessellations such that q, occurs on C. in at least one tessellation

in the set S for VieS and kpeS and Lhus enables all cells in the array to

experience the CIO-status q.

b. Tessellations for Arrays of Cells with Binary Horizontal Input and
Binary Vertical Input

It is to be determined in this section whether or not the Covering

Condition can be satisifed for each one in a class of arrays, say of size

MxN where M Ž 2 and N > 2, with each cell having a binary horizontal input

and a binary vertical input. (That it also has a binary horizontal output and

a binary vertical output is understood.) Specifically, for an array in this

class with its cell described in terms of a set of four CIO-statuses

fqI'q 2,,q 31 q 4 1 on the CIO-table, can the Covering Condition be satisfied?

If yes, what is the number of steps required to apply all input combinations

to all cells in the array?

20
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The Procedure P to be followed is following.

Si. Solve ml 1 + m2 q + m 3q +m 4  - m -- m +nm +rm3.q +m 4 q4

and ml 1q m 22 m 3  m 4 m3q qm 2 q 2 m 3  m4 q4

for a nontrivial nonnegative integer solution for m1,m 2 , mi3 , and m 4 .

(A minimal solution is preferable.)

S2. If all the possible nontrivial nonnegative integer solutions for m1 ,

m2 ,m 3 and m4 in step Sl render some m. = 0, where ieA= film =0m,
2i 3 4

go to step S6. Otherwise, proceed to the next step.

S3. For a solution for m1,m 2 1 m , and m4 obtained in step SI, let

B = film >01 . Form a ( 2 m.)-tuple of CIO-statuses with mj
3# j FB

copies of qj for all jCB. Let it be

S4. Partition F into several sub-( 7' m.)-tuples 1 , and F

such that F. is a (minimal) su- (7- m.)-tuple of F satisfying full-
I jcB J _4

balance condition for each iefl, 2 ..... k and qi is in at least one

of Fl 2 ,. .... and Fk for every jcB.

S5. Obtain rectangular-tesserae T, T 2, ... and Tk from cI . .2 a nd

Fk" Go to step 58.

S6. For each q cfq. ljcAl, determine a prime tessellation with respect to

qi using Procedure P .p
S7. If all prime tessellations stated in step S6 are found, go to step S3.

Otherwise, return with an indication th&t the Covering Condition is

not satisfied.

S8. (Note that the Covering Condition is satisfied.) From the necessary

prime tessellations obtained, determine the number of steps required

for enabling all cells in the array to experience all qi• 6qj hjAl1 1

S9. Determine the number of steps required for enabling all cells in the

array to experience all CIO-statuses in the set rqjj1.-B) from the

nonprime tessellations induced by the recta ngui ir-tes serae obtained

in step S5, take into account the possibility where the number of
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steps for enabling all cells in the array to experience some CIO-

status In the set [q 1jeBjf might have been accounted for in step S8,

however.

S10. Take the sum of results in step S8 and in step S9. Return with the

result.

Procedure P for determining a prime tessellation with respect to

a given _#= fl 2 q3 'q 4 I In an array with a binary x-input, a binary

z-input, a binary i-output, and a binary i-output:

I.1. For the convenience, denote the four CIO-statuses q1 ,q 2 ,q 3 , and

q4 in a given CI0-table by,!7 , 2 , 3 , and , respectively.

1.2. Consider finding a prime tessellation with respect to a qIeS as
4

marking unit squares each with some q eS on the second quadrant

of the infinite plane such that the most lower-right square is

marked with q and for each square the compatibility of the CIO-

status with that of its neighboring squares is satisfied.

1.3. An ordered pair (r,c) is used to identify a square, where r and c

identify, respectively, the row and the column the square is in.

The enumeration on columns is from right to left and that on rows

is from bottom to top. The distance d of (r,c) square is defined

as d (r, c) 1 r+c.

1.4. For some positive integers M and N, the Procedure Pf for markingIi

the array of MxN squares each with some qcS such that (1,1)

square is marked with q and for each square the compa.tibility of

the CIO-status with that of its neighboring squares is satisfied,

is following:

I. 4,a. Set COPY=A and FLAG=G.

I. 4. b. Proceed the following Temporary Marking Procedure for each of

unmarked squares in the array starting from one square with the

smallest distance and in the order of monotonically nondecredsing
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in the distance. After going through the Temporary Marking

Procedure for all unmarked squares, if the number of unmarked

squares remains the same, go to step I.4.y., otherwise,

proceed to step I.4.c.

Temporary Marking Procedure:

(1) For a typical square identified by (r,c). ji (r,c-l) square has

been marked and each CIO-status has the same x-component,

say ry, then mark (r,c) square with all q6•S1 q= C

separated by a slash "/" and make the " " indication at

the common boundary of (r,c) and (r,c-1) squares, go to

step (5). Otherwise, proceed to tne next step.

(2) If (r-l,c) square has been marked dnd each CIO-status has

the same z-component, say R, then mark (r,c) square with

all qcfq,,Slq = B1 separated by a slash /" and make the

"indication at the common bouniary of (r c" and (r-1,c)

squares, go to step (5). Otherwise, proc~eed to te next -;.ep.

(3) If (r,c+l) square has been marked and ei h (C1O-status has

the same i-component, say • , then mokr (r,c) square with

allq S = Al separated by a sLosh "/" and make the

" -+ " indication at the common boundary of (r,c) and (r,c+D)

squares, go to step (5). Otherwise, oroceed to the next step.

(4) If (r+l,c) square has been markod and each CIO-status has

the same i-component, say 9, then mark (r,c) square with

all "cfqcSiqz = 1 separated by a slash "/" and make the

"SI " indication at the common boundary of (r,c) and (r+l,c)

squares, go to step (5). Otherwise, make no mark!ng on

(r,c) square, proceed to the next step.

(5) Return (to the calling routine).

I. 4.c. Proceed the following Compatibility Marking Procedure for each

of all pairs of marked neighboring squares (rl,c ) and (r2,c2

where dUr2 ,c 22k d(rl,c 1 ) and no indication appears at their

common boundary.
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Compatibility Marking/ Procedure:

(1) If under no circumstance can a CIO-st,6atus on (rl,c1) square
be compatible with a CIO-status on (r2,c2) square, return

(to the calling routine) with FLAG=R. Otherwise, proceed

to the next step.

(2) If c= c , go to step (3). Otherwise, r = r2 here, if all

CIO-statuses on (r2 1 c 2 ) square have the same x-component,

say ct, delete those CIO-statuses on (rlc 1 ) having some

x-component different from e, go to step (4), else if all CIO-

statuses on (r1,c 1) square have the same R-component, say R,

delete those CIO-statuses on (r2 ,c 2 ) square having some

x-component different from 8, go to step (4), otherwise, go to

step (5).

(3) If all CIO-statuses on (r2 , c2 ) square have the same z-component,

say ý, delete those CIO-status on (rl,c 1) square having some

--component different from F, go to step (4), else if all CIO-

statuses on (r c1) square have the same 2-component, say 0,

delete those CIO-statuses o-i (r 2,c 2) square having some

z-component different from 0, proceed to step (4), otherwise,

go to step (5).

'-'4) Make the "t" indication at the common boundary of (rl,c 1 )

e.nd (r2 1 c 2 ) squares.

(5) Retu,-n (to the calling routine).

1.4.d. If FIAG•-R an,' COFY=A, return (to the calling routine) with an

indication that 1. is impossible to mark the array of MxN square,;

as specified. If FLWG=R and COPY=R, go to step 1.4.h. Other-

wise, FLAG=G here, proceed to the next step.

1.4.e. If there exists any pair of nirked neighboring squar-3 where their

common boundary Is without ar.:, Indication, go to step 1.4.g.

Otherwise, proceed t. the next stco.
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1. 4. f. If by heuristic observation over the pattern of marked squares

developed so far, one can (correctly) obtain the marked array

of MxN squares satisfying all the constraints on it, return to

the calling routine with the result. Otherwise, go to step 1.4.b,

1.4.g. Let RECORD be a copy of the array of marked squares with the

indications on common boundaries of neighboring squares

developed so far. Among those squares marked with multiple

CIO-statuses, select the one containing q provided there exists

one, otherwise drop this criterion for seiectionalso with the

smallest distance, break a tie by selecting the one closest to a

square marked with single CIO-status during the temporary

marking. Make a choice among the marked CIO-scatuses on that

chosen square by choosing qi if possible, otherwise choose some

other one. Set COPY=R. Let RUNNING-COPY be a copy of

RECORD with the exception that the chosen square is marked with

the chosen CIO-status instead of all CIO-stituses. Record the

choices on RECORD. Use RUNNING-COPY is the marking on the

arrray of squares developed so far, go to step 1.4.c.

1.4.h. From RECORD, construct a current RUNNING-COPY which is the

same as RECORD except the chosen square is marked with a-a

alternate CIC-status. Record thiis alternate choice on RECORD.

If this is a last alternate CIO-status on the chosen square, set

COPY=A, otherwise, COPY=R stands. Use the current RUNNING-

COPY as the marking on the array of squares developed so far.

go to step 1.4.c.

P1. Execute the Procedure Pf with M=N=2. If the result is an indication

that it is impossible to mark the arraiy of 2x2 squares as specified,

proceed to the next step. Otherwise, go to step P3.

P2. Return (to the calling routine) with an indication that there exists

no prime tessellation with respect to the given q."
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P3. Execute the procedure Pf with some larger integer for M and N, say
M=N=6. In doing so, the result obtained so far can, of course, be

utilized. If the result is an indication that it is impossible to mark

the array of MxN squares as specified, go to step P2. Else if by

heuristic observation over the pattern of the result so far, one can

(correctly) obtain a prime tessellation with respect to the given CIO-

status, return to the calling routine with the completed result,

otherwise, proceed to the next step.

P4. Execute the Procedure Pf with some larger integer for M and N, say

M=N=I2. The handling of the result is same as that stated in step P3.

PS.

Example 1: Consider an MxN array with a specification of the cell as
F(X, Z)x =x + zand F 2(x' Z) = x + Z. Let _q4 = (0, 0,1, 1) , q,2 = (0,1,I,1),

q3 = (1,0,1,0), and ( 1..,0,1). All nontrivial nonnegati 'e integer

solutions to m1,0 + m2.0 + M3.!+ m4.1 - m l+m 2.1 + .l 3 + m4. 0

and m1.0 + m2  +m3. 0 + m4. 1 = mII + M2. 1 + m3 + m .1 for

ml,m 2, i 3 and m render mI = 0. This reveals the need to find a prime
3'4 1#

tessellation with respect to q as far as enabling all cells in the array to

experience the CIO-status ql is concerned. Some intermediate steps in

following the Procedure P for determining a prime tessellation with respectP
-4to q are as follows.
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Step a

Step b
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IF A A

Step e Step f

By heuristic observation over the pattern of marked squares as shown in

step f, one can obtain a prime tessellation with respect to q as follows.

". !. . . ' a .r , , ® ®o

..- ,-* -,\ e.. *,o 0 • __.

~~'0 OD 1.
• ",""." r.® '•, •),(:i• i''
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e 03
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This prime tessellation with respect to the CIO-status qimplies that

M+N-l steps are required to enable all cells in the array to experience

the CIO-status qI. To see this point, one can observe a specific case,

say for M = 4 and N = 5, where 4+5-1 = 8 CIO-statuses-compatible

mappings on the 4x5 array can be obtained from the prime tessellation with

respect to q Ias follows.

F--•e -

M4 MS M6
&I

(3 e__ 04_ 1_

M7 M8

With the application of 00000 to the vertical boundary inputs, in the order

from left to right, and 0101 to the horizontal boundary inputs, in the order

from top to bottom, of the 4x5 array, all cells on the dotted line in Ml

have the Input combination corresponding to ql applied. Similarly, with

the application of 11000 to the vertical boundary inputs and 0101 to the

horizontal boundary inputs of the 4x5 array, all cells on the dotted line in
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M6 have the input combination corresponding to ql applied. These 8 CIO-

statuses-compatible mappings on the 4x5 array imply that 8 s.eps are
-4

required to enable all cells in the 4x5 array to experience the CIO-status q1 "

A nontrivial nonnegative integer solution to mI. 0 + m2 0 + m 1 + m4. 1
12* 3 4.

m In 2 + i 1 + m 30 + m4 .0 and m1 .0 + m2 1 + m3 .0 m4 * 1
1 2 3. 4 1 2 33 m ism.i + m2. I + m3. 0 + m4. 1 for ml~m2,mm4 Is

0, m2 = 1, m3 = 1, and m4 = 1. Let q q). Notice4 4 4 4

that F1 = (q3 ) and F2 = (q2 q4 ) are both In full-balance, furthermore, q

alone is a rectangular-tessera and (q2 'q 4 ) is a rectangular-tessera of

order 1x2. Thus, it follows from Theorem 4 and Theorem 5 that one step is

required to enable all cells in the array to experience the CIO-status q3

independent of the size of the array and two steps are required to enable

all cells In the array to experience the CIO-statuses q2 and q4 independent

of the size of the array. Therefore, 1+2+(M+N-I) steps are required to
-4-4

enable all cells in the MxN array to experience all CIO-statuses qqlq 2 ,
-4

q3 , and q4 "

The re~ults of this subsection are summarized in Table 1. Of all
2Z2 2

the possible 2 x2 = 256 cases, when a prime tessellation with respect

to some CIO-status is required, most cases require at mcst reaching step

P3 in Procedure P . There are 96 cases corresponding to those entries inP

Table I with *'s where in each of these cases at least one input combina-

tion is not applicable to the lower-right cell of a 2x2 array and thus not

applicable to the typical cell in any MxN array, where MŽ_ 2 and N - 2.

An exhaustive search on the result on Table I reveals one fact about

the class of arrays with each cell having a binary horizontal input and a

binary vertical input related to the minimum number of array tests which is

the numberof tests required for testing a single cell, i.e. , four in this

class of arrays. This is stated in Theorem 12.
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Theorem 12: Given a 2-dimensional array of arbitrary size with each cell

having a binary horizontal input, a binary vertical input and a set of CIO-
statuses ql,q 2 ,q 3 ,q4 I describing the cell in the array, the number of

steps required to apply all possible input combinations to all cells in the

array is equal to the minimum number of array tests, which is four, if and

only if () is ia iill-balance.

c. Tessellations for Arrays of Cells with Multiple Horizontal Input
Terminals and Multiple Vertical Input Terminals

For the general class of arrays of cells each with multiple hori-

zontal input terminals and multiple vertical input terminals, when a prime

tessellation with respect to a given CIO-status in a set of CIO-statuses

specifying a cell is to be found, the Procedure P in the preceding sub-P
section can be extended to adapt to the general class of arrays here. One

thing one must be aware of is that the condition that n-tuple of CIO-statuses

C is in full-balance is, in general, not sufficient for the existence of a

recta ngular-tessera or rectangular-tesserae covering all distinct CIO-

statuses in the n-tuple C.

2. Existence of a Sensitized Path

Let the cell in a two-dimensional array be described in terms of

two mappings F::XxZ-* X and F :XxZ-4Z, then, one has the following theorem

regarding the existence of a sensitized path.

Theorem 13: If the logic of the cell in a two-dimensional array is chosen

such that

(1) the mapping F:XxZ -4 x2, defined by F(x,z) = (F :(x,z) , F (x, z)) for

VxeX and VzEZ, is one-to-one (and/or onto),

(2) F.:XxZ-4 k is as such that any change in x while z is constant orx
any change in z while x is constant induces some change in A and

F :XxZ-+ 2 is any (well-defined) mapping,

(3) F :XxZ-.Z is as such that any change in x while z is constant or any

change in z while x Is constant induces some change in . and

F,:XxZ-+ X is any (well defined) mapping, or
x
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(4) F :XxZ-4 X is as such that any change in x while z is constant

induces some change in iý and F.:XxZ4Z is as such that any change
z

in z while x is constant induces some change in 2,

then, for all possible input combinations to a cell and each possible

cell output change due to a fault, there exists at least one sensitized

path from that cell to one of the boundary outputs.

Proof: Part (1)

Suppose a cell C on the diagonal line D. is faulty as indicated

in Figure 2. Then, at least one of the outputs of the cell C is perturbed

D- -

Di ii,,' i,

Symbols: 0: node (cell)

09: sink (boundary output terminal)

Figure 2. Graph for the Proof Of Pdrt (1) of Theorem 13.
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from its nominal value. This causes the input change to at least one of

two cells C2 and C3 on the diagonal line Di+, receiving an input from the

cell Cl. Thus, at least one of the outputs of cells C and C is perturbedl'2 03
from its nominal value. Eventually, the output change of cell C is

propagated through diagonal lines D 1+, D +2 etc. until one or more of

boundary output terminals is reached.

Pai•. (2)

An equivalent statement for that F^:XxZ-o X is as such that anyx

change in x while z is constant or any change in z while x is constant

induces some change in A is that F.:XxZ-. ) is a mapping where IXIz izi,

(X=X of course), F Z is one-to-one for VzcZ, and F] is one-to-one

VxEX. Now, suppose there is a A-output change due to a fault in a cell

C f This change in 5 of the cell Cf, or equivalently, the change in x for

the cell C immediately to the right of the cell Cf, causes at least the

change in X^ of the cell C . Thus, the R-output change due to a fault isg
at least propagated along a row until the boundary output terminal is

reached. Suppose the fault in cell Cf causes the change in i-output of

cell C This change in 2 of the cell C or equivalently, the change in

z for the cell Ch immediately below the cell Cf, causes at least the

change in c of the cell C And, this change in A of the cell Ch is then

at least propagated along a row until the boundary output terminal Ls

reached. Of course, the fault in cell Cf causing changes of both R-output

and 2-output will be detected at least at the boundary output terminal in

the same row as cell Cf.

Part (3)

This is symmetrical to Part (2).
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Part (4)

Here, F.:XxZ.0 X is a mapping where F is one-to-one for
S 1 z

VzcZ and iis one-to-one for VxeX.
z z

Any i-output change due to a fault in a cell Cf, or equivalently, a change

in x for the cell Cg immediately to the right of the cell CI causes the

change in JZ of the cell C . This R-output change due to a fault is propa-

gated along a row until the boundary output terminal is reached. Any
z-output change due to a fault in a cell Cf, or equivalently, a change in

z for the cell Ch immediately below the cell CfI causes the change In

z of the cell Ch' This 2 output change due to a fault is propagated along

a column until the boundary output terminal is reached. Certainly, the fault

in cell Cf causing changes of both ,^-output and s-output will be detected

at the boundary output terminal in the same row as cell Cf as well as at

that in the same column as cell C if
f.

Recall that the presence of a single faulty cell in an array can be

detected if and only if both the Covering Condition and the Sensitized Path

Condition are satisfied.

D. Remarks

If the realization (at gate level) of the cell in an array is known

or the erroneous effects on the cell input-output behavior due to all possible

faults are known, then, a set of essential input combinations for testing a

cell completely is obtainable [1), [8],[13][i6,[18], which is some subset

of a set of all cell input combinations. Chances are the set of essential

Input combinations for testing a cell completely is a proper subset of the

set of all cell input combinations. rDuring the process of finding a non-

empty set of tessellatlons to cover all CIO-statuses in a given CIO-table

in :: manner described In this chapter, one can find out, for each CIO-status

q in the given CIO-table, whether or not q can appear in some tessella-

tion (be It nonprime or prime). As long as each of the essential input
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combinations is applicable to every cell in the array, or each of the

corresponding CIO-statuses appears in some tessellation, the Covering

Condition is satisfied for the given array even though there exists some

input combination which is not applicable to some cell in the array.

On the other hand, there is a possibility that the Covering Condi-

tion is not satisfied when considering only the set of essential CIO-

statuses corresponding to the essential input combinations but the Covering
Condition would be satisfied if the set of ali 010-statuses in the 010-table

or some alternative realization of the cell were considered.
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Chapter III

FAULT DETECTION AND LOCATION IN FIRST CATEGORY

SEQUENTIAL CELLULAR ARRAYS

A. Introduction

A first category sequential array is a sequential array of cells each

having some memory element as well as some logic circuit, where the

state of each memory element in each cell can be set or reset through the

external control. The permutation array and the accumulator array in

Kautz [12] and tUe class of cutpoint cellular logic arrays in Minnick [141,

where a cutpoint being "open" or "closed" can be though of the state of

a memory element being "0" or "I", are examples of the first category

sequential arrays. Under the assumption that all input-state combinations

are necessary to test a cell completely, the two necessary conditions that

must be satisfied for array testing for the detection of the presence of a

faulty cell in a first category sequential array are same as the Covering

Condition and the Sensitized Path Condition in Chapter II except that

"input combination" is replaced by "input-state combination". They are:

Condition A: Every input-state combination must be applicable to

every cell in the array.

Condition B: For each input-state combinaticn to a cell and each

possible cell output change due to a fault. there must exist at

least onc sensitized path from that cell to one of boundary outputs.

Again, these two necessary conditions together are sufficient for the de-

tection of the presence of single faulty cell in a first category sequential

array. The results with regard to the fault detection of combinational
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arrays can be easily extended to the case here. In this chapter, an array

shall be understood to be a first category sequential cellular array.

For a cell in an array, the finite horizontal tnput set, the finite

verticai input set, the finite nonempty state set, the finite horizontal

output set, and the finite vertical output set are denoted by X, Z, S,

X, and Z, respectively. x, z, s, x, and i are arbitrary elements of X,

Z, S, X, and Z, respectively.

B. One-Dimensional Arrays

1. Arrays With Autonomous Cells, where Z=Z=O and X=22ý

Let the cell be described in terms of a mapping F:SxS-X, then one

has the following.

Theorem 14: A one-dimensional autonomous array is testable if and only
isif there exists some sFS such that the reduced mapping F :X-X is one-to-

one (and/or onto); moreover, the number of tests required te test the array

is in the range from 1XW. ISI to IX! .(n.- SI-ni) where , is the nuinber of

cells in the array.

Theorem 15: Any single faulty cell in a one-dimevsionai autonomous array

can be located with an uncertainty of 1 if and on2v' if there exists some

scS such that (1) the reduced mappL' "- I x-k is oae-to-one and (2) the~Is*
response at the boundary output with respect to the jvj test steps, where

all cells are set to the state s and each of IX! pos. Ible cell input corrblna-

tions is applied to the first v-ell step by step, is nominal.

2. A.rays With Z=O. ZýO, and X=X#0

Let the cell be described in terms of two mappings F.:SxX-X andx
F.:SxX-Z, then one has the following.

z
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Theorem 16: A one-dimensional array with Z=O, 720, and X=R340Z is testable

if and y, i there exists some scS such that the reduced mapping

Fj]:X-'X is one-to-one (while F.:SxS-Z is any well-defined mapping);

moreover, the number of tests required to test the array is in the range

from IX. I SI to IXI .(n. ISI-n+l) where n is the number of cells in the

array.

Theorem 17: Any single faulty cell in a one-dimensional array with the

typical cell having no external cell input can be located with an uncertainty

of I if and only if there exists some sES such that (1) the reduced mapping

Fj :X-X is one-to-one and (2) the response at the x-output of the last

cell with respect to the lXI test steps, where all cells are set to the state

s and each of IXI possible cell input combinations is applied to the first

cell step by step, is nominal; however, any singie faulty cell in the array

can be located with an uncertainty of 2 if there exists some s ES such that

F•S - is one-to-one and there exists some s ES such that F 1,s is one-
x1 soe 2 S2to-one provided I2 ,lxI.

3. Arrays With XA/0, Zj0I ard

Theorem 18: Given a one-dimensional array wiith XzX/0, Zý0, =4, and

the cell is described in terms of a mapping F:SxXxZ-X, then it is testable

if and only if there exist some scS and zEZ such that the reduced mapping
F S- Z1x-.) is one-to-one; morerver, the number of tests required to test

the array is in the range from IXI'IZL.!SI to IXI'(n'ISL'IZ'-n+l) where

n is the number of cells in the array.

Theorem 19: Given a one-dimensional array with X=X#0, Z0, Z=0 and

the cell is described in terms of a mapping T:SxXxZ-'X, then any single

faulty cell can be located with an uncertainty of 1 if and only if there

exist some s ES and z (Z such that (1) F ; iz!:X-X is one-to-one and
(2) the response at the boundary output with respect to the 1xI test steps,
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where all cells are set to the state si, the z-input to every cell is z1

and each of jXj possible x-input combinations is applied to the first cell

step by step, is nominal.

4. Arrays With X=XW, Z/0, and Z.0

Theorem 20: Given a one-dimensional array with X=XW0, Zý0, .20, and the
cell is described in terms of two mappings F.:SxXxZ-'X and F^:SxXxZ-., then

x z
it is testable if and only if either (1) there exist some s 1S and z 1Z such

that the reduced mapping F•j ]S :X-X is one-to-one or (2) for any xCX,

there exist some xrX, s ES, add z21Z such that F (s ,x,z )=R and there
'2 2 x'2 ' 2

exist some s 3S and z 3Z, where s3 is not necessarily distinct from s2

and z is not necessarily distinct from z 2 , such that the reduced mapping
F.Sz :X-Z is one-to-one provided XZ1Žlxi.

F)3 1 z
Theorem hi: Given a one-dimensional array with X=R/0, Z0, W.0, and the

cell is described in terms of two mappings i ^:SxXxZ-X and F^:SxXxZ-Z , then
x z

any single faulty cell can be located with an uncertainty of 2 if for any

xEX, there exist some s ES, xEX, and z EZ such that F.(s ,x,zl)=^,
1 1 xl 1

I7.!;tXI , and there exist some s2 ES and z 2Z, where s2 is not necessarily

distinct from s Iand z is not necessarily distinct from z I such that the
-1S -IZ A

reduced mapping Filj j :X-_Z is one-to-one; however, any single faulty

cell can be located with an uncertainty of 1 if and only if there -!xist someJS :XRi net-n
s3ES and z 3Z such that the reduced mapping F, s. :X-X is one-to-one3 3 si
and the response to the 1xI test steps, where all cells3 are set to the state

s3V the z-input to every cell is z 3 , and each of IX! possible x-input

combinations is applied to the first cell step by step, is nominal.

C. Two-Dimensional Arrays

One way to specify the cell in an array is by the cell-input-state-

output-table, abbreviated as CISO-table, listing all possible cell
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input-state combinations and the corresponding cell outputs. A CISO-

status is a triplet (i,s ,o) where i, s, and o are the cell input, state, and

the corresponding output, respectively.

1. Covering Each Cell in an Array With Every Possible Input-State

Combination

Let S be a set of all CISO-statuses in the CISO-table TCISO
f CS

describing the cell in an array. Let TCIO be a CIO-table carrying in-

complete information about the table TCISO in that the state information in

the table TCISO are discarded in the table T CIO Let S be a set of all

(distinct) CIO-statuses in the table TCIO. Clearly, one has the following.

Theorem 22: The Condition A is satisfied if there exists a nonempty set

S of tessellations such that each CIO-status in the set S occurs on C_
t 1 11

in at least one tessellation in the set St for VieSI and VjcSI.

Notice that the existence of a nonempty set S of tessellations sucht

that each CIO-s.tatus in the set S occurs on C.. in some tessellation in the1 1

set St for ViESI and VJ SI is also necessary for satisfying the Condition A

for the doubly-infinite array, one can conceive that this property is also

necessary for satisfying the Condition A for very large (in both dimensions)

finite arrays.

The procedures in obtaining tessellations in section II.C.1. are

applicable to the situation here except that in calculating the number of

steps required for applying all possible input-state combinations to all

cells in the array, one needs to refer back to the table TCISO since a

CIO-status in the table TCIO might represent two or more distinct CISO-

statuses in the set Sf.
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2. Existence of a Sensitied Path -- A Sufficiency for Satisfying the

Condition B

Let the cell in a two-dimensional array be described in terms of two

mapping F.:SxXxZ-X and FA:SxXxZ-Z, then one has the following theorem re-x z

garding the existence of a sensitized path.

Theorem 23: If tie cell in a two-dimensional array is chosen such that

(1) there exists some s ES such that the reduced mapping FSj :XxZ-xZ,
wher 1 sxz=F( ~ 1

SF:SxXxZ-XxZ is defined by F(s,x,z)=(F (s,x,z), F (sx ,z)) forkher

VscS, VxEX, and VzEZ, is one-to-one,

(2) there exists some sES such that the reduced mapping FJsz:X- is

one-to-one for VzZ, the reduced mapping F.SIX:Z-" is one-to-one

for VxEX provided I lkj IZ , and F,:SxXxZ-Z is any (well-defined)z

mapping,
-S -1 Xz-Z

(3) there exists some seS such that the reduced mapping F 2JsJ is

one-to-one for VxcX, the reduced mapping F•.|siz:X- is one-to-one

for VzEZ provided 1Z!>-XI , and F.:SxXxZ-X is any (well-defined)
x

mapping, or
7S7iZ _.

(4) there exists some srS such that the reduced mapping F^ 5ji : X

is one-to-one for VzcZ and the reduced mapping F• SJx'Z Z is one-

to-one for Vx(X,

then, the Condition B is satisfied.

Proof: Part (1)

By setting all cells in an array satisfying (1) to the state sl, the

logic of all cells behaves in a manner described in (1) of Theorem 13.

The proof here, then, follows that for Part (1) of Theorem 13.
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Similarly, Part (2), Part (3), and Part (4) here follow the implica-

tion of the prozfs for Part (2), Part (3), and Part (4) of Theorem 13,

respectively. Ar

Theorem 24: Let the cell in an array be described in terms of two mappings
A A

FA:SxXxZ-X and F,:SxXxZ-Z. If the cell in an array is chosen such that there
x z

exists some s lS such that

i S A
(1) the reduced mapping F'I :XxZ-XxZ is one-to-one, where F:SxXxZ-XxZ

is defined by F(s,xz)=(F.(s,x'z) Fi(s,xz)) for VSESS VxcX, and
xz

VzEZ, or
. -'S iZ •

(2) the reduced mapping F j! :X-.X is one-to-one for VzEZ and the

reduced mapping F^ X.z-ýz is one-to-one for Vx(X,
is1X

then, the array is testable; moreover, the minimum number of tosts required

to test all possible input-state combinations on all cells in th(! array is

Wxz.IszI.

Proof: Suppose the cell in an array is chosen such that the hypothesis is

satisfied. Then, that the Condition B is satisfied follows Part (1) or Part

(4) of Theorem 23. That the Condition A is satisfied follows the implica-

tion of Theorem 7 or Theorem 8 in Chapter HI. Thus, the array is testable

meaning that the presence of a single faulty cell in the array can be

detected.

Suppose the cell in an array is chosen such that (a) the reduced

mapping Fj :XxZ-XxZ is one-to-one for VscS or (b) the reduced mapping
FS•Zx- is one-to-one for Vs(S, VzEZ and the redUced mapping

F.. :Z-Z is one-to-one for Vsc S, VxcX, then, the number of tests re-z_ S.jx

quired to test all possible input-state combinations on all cells in the

array is XI IZI Z ISI which is the minimum number of tests in the array

testing. Ar
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Theorem 25: Let the cell in an array be described in terms of two mappings

F^SxXxZ-X and F.:SxXxZ-Z.. If the cell in an array is chosen such thatx z

there exists some s IES such that
S

(1) the reduced mapping F]S :XxZ-.%xZ is one-to-one, where F:SxXxZ-XX2

is defined by F(s,x,z)=(1(s,x,z),F.(s,x,z)) for VscS, VxcX, and

VzEZ, or

(2) the reduced mapping F. S z :X-.X is one-to-one for VzcZ and the

reduced mapping F. .._ -Z-, is one-to-one for VxcX

and the response to the lxI" IzI tests, where every cell in the array is

set to the state s enabling the checking for all those CISO-statuses

each having s1 as its state-component in the set Sf on all cells in the

array, is nominal, then, any faulty cell in the array can bo located with

an uncertainty of 1.

in fact, for any array satisfying the hypothesis in Theorem 25, all

possible faults in any cell in the array are effectively those faults each

introducing some erroneous cell output while the cell is in some state

other than the stat( s1, hence, each of multiple faulty cells in the array

can be located with an uncertainty of 1.
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Chapter IV

FAULT DETECTION AND LOCATION IN SECOND CATEGORY

SEQUENTIAL CELLULAR ARRAYS

A. Introduction

A second category sequential array is a sequential array of cells

each having some memory element as well as some logic circuit where the

state of each memory element in each cell is controlled by some logic

within the cell and each cell behaves as a deterministic, strongly-

connected, completely-specified, finite-state, and synchronous sequen-

tial machine. In this chapter, an array shall be understood to be a second

-ategory sequential cellular array.

Again, for a cell in an array, the finite horizontal input set, the

finite vertical input set, the finite nonempty state set, the finite

horizontal output set, and the finite vertical output set are denoted by X,

Z, S, R, and Z, respectively. x, z, s, x, and z are arbitrary elements of

X, Z, S, X, and 2, respectively.

B. A Special Case

In this section, the investigation is on the detection and location

of a faulty cell in a synchronous sequential array of cells each with a

trigger flip-flop as its memory element as shown in Figure 3. C and C2

are timing signals (pulses) enabling the cell to behave in the synchronous

manner. The combinational logic within a cell, F:SxXxZ-'X where

X=Z=S=={0O, }, can be specified in the form of a L-table, which is

actually a Karnaugh map with 8 entries in two rows each corresponding to
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Figure 3. A cell in a synchronous sequential array of cells each

with a trigger flip-flcp as its memory element.

a distinct state of the memory element and four columns each corresponding

to a distinct cell input combination.

Given a Boolean function F(x 1 ,x 2 ...... X , .. Xn):to, In--'tO, 11,

the subcomplement of F(xi ,x2 ..... xk..... x ) with respect ton
x1 ,x 2 .... and x denoted by F* is a mapping
F* Nxk(x .... xk .... x:, 1 In-(, 11 defined as following:

X1 ,2X 2 .... k 1 2 k n

Let V0 be a collection of 2n-k vertices where xl=0 , x2=0....

x k=0, V be a collection of 2n-k vertices where xl=O,x 2=0 .... x k-1=0,

Xk=l, V2 be a collection of 2n-k vertices where x=0 ,x 2 =0 ,.....x kl=1,

Xk=0 ....... and V 2k_ be a collection of 2n-k vertices where xl=1,
S2=1' ..... X-1 Let S=[V0,V1,V2 ...... V2 k_ . Partition S into two blocks

Sc and Sd' i.e., S cUS d=S and S cnS =, according to the criterion that

V.ES c if and only if F(v) are identical for all vi'V C Then,

(1) for all I such that V iS and for all vWVi, F* (v)=F(v),
a d c xI# , 2 ..... x k

and 1

(2) for all j such that V cS and for all vcV F* M .... (v).
d I O2
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Theorem 26: The presence of a single faulty cell in a one-dimensional

array (a horizontal linear cascade) of identical cells of the type as shown

in Figure 3 can-be detected if and only if

(1) for any state a cell is in, there exists some z IZ such that any change

in x-input induces some change in the cell output (i-output),

(2) the fault of the combinational logi in the cell is not the one, in

effect, causing the logic to realize the subcomplement of F with re-

spect to x and z, where F is the Boolean function specified for the

combinational logic, and

(3) F is not independent of s.

Proof: NEcessity

In order to provide all possible horizontal input combinations, i.e.,

x=O and x=l, to a typical cell, both 0 and 1 must appear as entries in the

L-table specifying the combinational logic in a cell. It is impossible to

keep every cell in the array in a particular state at all time during entire

test schedule, what's more, any cell output change due to a fault must be

detectable at the boundary output (i-output of the last cell) , thus, for any

s S, there must exist some z 1Z such that F(s,x, zI )F(s ,x 2 z) for any

pair x, x 2X with x Ix Therefore, the condition (1) is necessary.

That the condition (2) is necessary can be shown by contradiction.

Supposc- that there are two separate cells A and B of the type as shown in

Figure 3 both satisfying the conditions (1) and (3) but the logic of cell A

is realizing F and the logic of cell 8 is realizing F* . Suppose the in-

put combination of x=aAz=b for some a b(-{0, 1 is applied to the two sepa-

rate cells A and B simultaneously, if the two entries under the column

x=-aAz=b in the L-table specifying F are same, say each is a 0, then the

corresponding two entries in the L-table specifying F* are same, namely
X,z
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J,

each is a 0, thus the output of cell A Is same as the output of cell B in :'e-

sponding to the input combination of x'=aAz=b regardless of the states of

these two cells, if the two entries under the column x=aAz=b in the L-
table specifying F are different, say the entry corresponding to s=OAx=-aAz=b
is a I and the entry corresponding to s=lAx=aAz-b is a 0, then the corres-

ponding two entries in the L-table specifying F* are alfferent, namely
Xz

the entry corresponding to s=OAx=aAz=b is a 0 and the entry corresponding

to s=IAx=aAz=b is a I, thus the output of cell A at state cES=[0, 11) is same

es the output of cell B at state F in responding to the same input condi-

tion; furthermore, if the next state of cell A remains same as its present

state, then the next state of cell B remains same as its present state, if

cell A changes its state, then cell B changes its state. Therefore, the

sequence of the output of cell A initially at state c is z:ame as that of cell

B initially at state j with response to the same Input sequence. Hence,

if the conditions (1) and (3) are satisfied but the condition (2) is not met,

then the occurrence of the fault in a cell of the array, in ,ffect, causing

the logic in the cell to realize F* instead of the specified F, can not be
Xz

detected. This shows that the condition (2) is necessary.

That tK.- condition (3) is necessary is obvious: if F is independent

of the state of the cell, then whether the memory element is functioning

properly or not has no effect on the input-output behavior of a cell, thus

the fault in the memory element of a cell can not be detected.

Sufficiency

The proof is by construction, namely, it is to be shown that iU a

one-dimensional array of identical cells of the type as shown in Figure

3 satisfied the conditions (1), (2), and (3), then a test schedule can be

derived which enables the detection of the presence of a faulty cell in

the array. Three cases are considered.
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Case I. The conditions (1), (2), and (3) are satisfied where there exists

some z cZ such that any change in x-input induces some change

in the cell output and the two entries in the L-table under each

of the two columns corresponding to z=z are same, i.e.,

F(O,O,Z )=F( O,z I ), F(0, l,z )=F(l ,l,z 1), and F(0,0,lz

F(O, 1,z ) for somez IIZ.

Without loss of generility, suppose the two entries under the

column x=x1Az=z 1 are O's for some x EtO, I1, then the two entries under

the column x=ýl Az=z are l's. Then, the essential part of the test

schedule is applying z 1 to each z-input of all cells in the cascade and the

input sequence of x 1 7 1- x -A1 to the x-input of the first cell in the

cascade. It is easy to verify that if none of cells in the cascade is stuck

at any state and the sequence of the boundary output in responding to the

essential part of the test schedule is correct, then the four entries in the

L-table under the two columns corresponding to z=zI are known to have

been checked for every cell in the cascade. The fact that the boundary

output sequence in responding to the essential part of Lr.e test schedule is

correct ensures the existcnce of a sensitizing path by virtue of applying

z to each z-input of the second to the last ce!l while testing the first

cell and thus the subsequent part of the test schedule can be subsequently

proceeded. If the boundary output sequence in responding to the essential

part of the test schedule is not correct, then, the presence of a faulty

cell is detected and there is no need to proceed to the subsequent part of

the test schedule. The subsequent part of the test schedule begins with

applying z to each z-input of the second to the last cell in the cascade

and appropriate sequence of input combination to the first cell to complete

the test on the first cell since the output of the first can be determined by

observing the boundary output and tracing backward along the sensitized
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path to the output of the first cell. The fault, if any, in the first cell can

thus be detected. Depending upon the actual specification of the combina-

tional logic within a cell, it reqL.1 es four to six test steps to check the

four entries undet the two columns corresponding to zv=71 for a ceil. For

instance, suppose that the two entries under the column x=x 2 Az=: 1 , for

some x2 E (0,1, are distinct and the 0-entry corresponds to s=s Ax=x 2Az=1

for some s1c (0,1 ), furthermore, the two entries under the column

x=2 Az=F1 are both l's. Then, if the first cell is fault-free and is in state

S1 then the output sequence of the first cell should be 1-0-1-1 in respond-

ing to the input sequerce of (x=--2 Az= )-(x=x2 Az=ý )-(x=2 Az= 1)-

(x=x2 Az=I) . If the first cell is fault-free and is irn state s then its out-

put sequence should be 1-1-0-1-1 in responding to the input sequence of

(x=x Az=:I -(x=x Az=I) -(x-x2Az=-F -(x=- Az=ZI -(x=5 Az=7l). With this2 1 2 1 2 1 1 12 1
in mind, then if the output of the first cell is 0 in responding to the test

step of (x-x Az=T,) , then the first cell is faulty, otherwise, proceed the
2 1

second test step of (x=x 2Az=ý I) and the third test step onward should be

depending upon its output in responding to the second test step. Note

that any fault in the combinational logic excluded by the condition (2) or

any fault in the memory element of the first cell should result an output

sequence at the first cell other than 1-0-1-1 in responding to the input

sequence of (x=X Az=Y )-(x=x Az=) )-(x=i2 A=z )-(x=x Az=: ) and2 1 2 1 2 1 2 1
1-1-0-1-1 in responding to (x=-R Az=Z )-(x=x Az=; )-(x=x Az=Z )-

2 1 2 1 2 1
(x=i1 Az=z 1 )-(x=i 2Az=l). After the first cell has been checked to be

fault-free, the test on the second cell can be proceeded, similarly, by

applying z to the z-inputs of all cells but the second cell in the cas-

cade and appropriate sequence of x-input to the first cell and z-input to

the second cell. A similar test procedure Is then used to test the re-

maining cells in the cascade if necessary. Therefore, with a test

schedule of at most 6n+4 test steps, where n is the number or cells in
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the cascade, the presence or absence of a faulty cell in the cascade can be

detected.

Case 2. The conditions (1), (2), and (3) are satisfied, the additional speci-

fication stated in Case 1 is not met, and there exists some z 1 Z

such that any change in x-input induces some change in the cell

output and the two entries in the L-table under each of the two

columns corresponding to z=z1 are distinct, i.e., F(O,0,z I)

F(l,0,z 1), F(0,lZ 1 O F(l,l,Z ) , F(O 0, z 1)/F(0,1,z,), and

F(l,O,zi)jIF(l , z ) for some z 1EO 1.

Depending on the actual specification in terms of the L-table, the

next state of a cell can be set to the state I or reset to the state 0 with an

input combination of x=OAz=zI (or x=IAz=z I) regardless the present state of

the cell. Thus, a cascade of n cells under this case can bc, initialized to

some state with some sequence of n steps of inputs.

The essential part of the test schedule is applying zI to each z-

input of all n cells in the cascade and appropriate sequence of n steps of

x-input to the first cell to initialize the cascade to some state followed

by appropriate sequence of x-input to the first cell to check, for each of

all cells in the cascade, all four entries in the L-table corresponding to

z=zI. If the response (the sequence of k-output at the last cell) to thi,,

essential part of the test schedule is nominal, i.e., unperturbed, then by

virtue of a'plying z1 to each z-input of the sensitized path, while com-

pleting the test on the first cell, is assured. To see this, one can visual-

ize that if a fault within a cell results in some change in its input-output

behavk'or, it might also result in some false state initialization on that

cell and the following cells. Now, suppose that the specification for the

combinational logic within a cell in this case is F and that the response

to some test sequence for checking the four entries corresponding to zzl,
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1.

say the horizontal input sequence of I with z-input fixed at z1

while the state of the cell is initially at so, is 0nominal. With z-input

fixed at z 1 , the fault in the logic that can produce the response of

0 nominal in responding to ÷"e horizontal input sequence of Inominal is the

one, in effect, causing the logic to realize some Boolean function Ff which

is consistent with F* at least at the four entries corresponding to z=z 1X,z
while the state of the cell is incorrectly initialized at-o This situation

0*
does not prevent the cell from correctly responding to any change in x-

input as long as the z-input to this cell is z 1 . If the logic of the cell is

correct but its state is incorrectly initialized ats 0 due to a fault in one of

the preceeding cells, then, with z-input fixed at zl, the only horizontal

input sequence I which can produce the response of 0 is

I=Inominal, where InominaI is obtained by complementing each step of the

Inominal' One can see that no fault in the combinational logic within the

cell can produce the response of 0 nomina in r=qponding to the horizontal

input sequence I with z-input fixed at z Without loss of
nominal 1

generality, suppose the entry corresponding to s=OAx=x Az=z in the L-

table describing F is a 0 for some x c(0, 1i, then, the entry corresponding

to s=lAx=x Az=z is a 1, the entry corresponding to s=0Ax=ý Az=z is a

1, and the entry corresponding to s=lAx=l Az=z1 is a 0. In any test

sequence to the cell to check the four entries corresponding to z=z,
there must exist two consecutive steps (s=lAxx 1Az=z )-(s=0Ax=x1 Az=z)

or (s=OAx=--Az=Z1)-(s=lAx=ý 1 Az=zl). With z-input fixed at z 1 . if there

were some fault in the logic of the cell causing the response of 0 nominal'

instead of 0 nomina should the cell be fault-free, in responding to the

horizontal input sequence of I nomina to the cell, then the fault either

would have been rendering an output of 0 while the state is at s 1 E,1 1
with the input combination at X=XlAZ=z1 and rendering an output of 1

while the state is also at s1 with the input combination also at x=x 1Az=z 1 ,
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which is a contradiction, or would have been rendering an output of 0 while

the state is at s 1 e (0, 1 ) with the input combination at x=31 Az=z, which is

also a c-ontraCiction.

If the response to the essential part of the test schedule is in-

correct, then the presence of a faulty cell is detected and there is no need

to use the subsequent part of the test schedule.

The fact that the response to the essential part of the test schedule

is nominal enables one to use the subsequent part of the test schedule

which is the part to test the four entries corresponding to z=T..1 for the

first to the last cell in the cascade one by one. By applying zI to each

z-input of the second to the last cell and appropriate sequence of input

combination to the first cell, the first cell cat. thus be tested completely.

The only fault in the first cell which might produce :he nominal response

at its output is the one, in effect, causing the cell to realize F* instead
Xz

of F. But this is excluded by the condition (2). After the first cell has

been checked to be fault-free by applying z to all z-inputs except the

z-input of the second cell, zi to the z-input of the second cell, and

appropriate horizontal input sequence to the first cell, the test on the

second cell can thus be completed. In a similar manner, all cel!s in the

cascade can be tested in succession.

Case 3. The conditions (1), (2), and (3) are satisfied but neither the

constraint in case 1 nor the constraint in case 2 is satisfied.

Under this case, there exists precisely one z c(0,1 ) such that1

FNO,0,0Z )I F(O,1,zl ), F(1,0,z.)=F(1,1,lz ) F(l ,0,_z )F(1, )1,I, and

F(0 0,z )=F(0, ,'z ) and there exists some column, say corresponding to

X-x Az=z2 where x, z 2c(0,1), in the L-table such that the two entries

under that column are distinct,.

Since there exists some column in the L-table such that the two
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entries under the column are distinct, a cascade of n cells under this

case can be initialized to some state with some sequence of n steps of in-

put combination.

The essential part of the test schedule is applying an appropriate

sequence of n steps of input combination to a l n cells in the cascade to
123 n 1 2initialize the cascade to some state, say s 0 s 0 s 0 .... so, where so, sI,

3 n
Sol .... s 0c(,,1 ), followed by appropriate sequence of input combinations

to check, for each of all cells in the cascade, the four entries in the L-

table corresponding to s-OAx=OAz=z1 , s=OAx=lAz=z1 . s-1Ax=OAz-= 1, and

s=lAx=IAz=z If the response to the essential part of the test schedule

is nominal, then, by virtue of applying appropriate z-input to each of the

second to the last cell, the existence of a sensitized path, while com-

pleting the test on the first cell, is assured. By applying aporopriate z-

input to a cell here, it is meant that z1 is applied to z-input of the cell

while its state is supposedly at 0 and1 i s applied to the z-input of the

cell while its state is supposedly at I. In fact, the fault in the logic

within the cell that can produce the nominal response with respect to the

input sequence I supposed to check the four entries the essential
nominal

part of test schedule is designed to check is the one, in effect, causing

the logic to realize some Boolean function Ff which is consistent with

F* at least at the four entries corresponding to s=OAx=OAz=z 1 ,
XZ

s=OAx=iAz=zI , s=lAx=OAz=zI, and s=lAx=lAz=zI , while the state of the

cell is incorrectly initialized at 10 where so is the supposed initial state0L
of the cell. This situation does not prevent the cell from correctly re-

sponding to any change in x-input as long as the appropriate z-input

is applied to tnis cell. As to the situation where the logic of the cell is

correct but its state is incorrectly initialized at so due to a fault in one

of the preceeding cells, as long as appropriate z-input is applied 0 the

cell at each test step, no horizontal input sequence can produce the
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response of 0 nomina, where 0 nomina is the nominal response with

respect to I nomina while the initial sta.e is so.

If the response to the essential part of the test schedule is in-

correct, then, the presence of a faulty cell is detected and there is no

need to proceed with the subsequent part of the test schedule.

The fact that the response to the essential part of the test schedule

is nominal enables one to proceed to the subsequent part of the test

schedule which is the part to test the other four entries corresponding to

s=OAx=-OAz=;, s=OAx=lAz=:z, s=lAx=OAz=zI and s=lAx=lAz=zI for the

first to the last cell in the cascade in succession. The only fault in any

cell in the cascade which might produce the nominal response at its out-

put is the one, in effect, causing the cell to realize F* instead of F.
Xz

But this is excluded by the condition (2). Therefore, the presence or

absence of a faulty cell in cascade can be detected. I

Theorem 27: A faulty cell in a one-dimensional array of identical cells of

the type as shown in Figure 3 can be located with an uncer':ainty of 1 if

and only if

(1) the array is testable, i.e. , the conditions (1), (2), and (3) stated in

Theorem 26 are satisfied, and

(2) the response to the essential part of the test schedule described in the

proof for Theorem 26 is nominal.

Proof: Necessity

That an array is testable is essential to the location of a faulty

cell, hence, the condition 'I) here is necessary.

If the array is testable but the response to the essential part of

the test schedule described in the proof for Theorem 26 is not nominal for
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4
each of all possible alternatives4, then, as one can see while following

the proof for Theorem 26, the presence of a faulty cell in the cascade can

thus be detected but there exists no proper sensitized path, the faulty

cell could be at anywhere from the first to the last cell position. Thus,

the location of the faulty cell with an uncertainty of 1 is impossible.

Sufficiency

Following the Sufficiency part of the Proof for Theorem 26, it is

easy to see that the addition of the condition (2) here to the conditions

(1), (2) and (3) stated in Theorem 26 essentially enables the complete

test on the first cell to the last cell in the cascade in sucession. There-

fore, a faulty cell in the cascade can be located with an uncertainty of 1. '

C. General Conditions for Testability

Two necessary conditions that must be satisfied for array testing

for the detection of the presence of a faulty cell in a second category

sequential array are the Condition A* and the Condition B* as follows.

Condition A*: Some test :z-p'ence to test a cell completely must

be applicable to every cell in the array.

Condition B*: The sequence of outputs of any cell in the array

with response to any test sequence must be (correctly) reconstruct-

able from some sequence of boundary outputs, i.e., it can be

uniquely determined by observing a sequence of some boundary

outputs of some length.

4 For an example, it is possible that F(, 0, z )=F(1,0,z.) F(0,1,z
F(l,l,z ) and F(0,0,z )WF(0,1,z ) forz z• alsoF(0,10,z )=F(I,,z 2 ),

1' 1 2~ f2hre
F(0,1,z )=F(, l,z 2 ) ancF(0,Oz 2 F(0,1,z 2 for 2cZwherez2 PI.
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These two conditions together are sufficient for the detection of the

presence of single faulty cell in an array.

It is further assumed in the remainder of this Chapter that some

test seguence Lbr a cell, with which it can be determined whether or not

the ceL is fauity, is known [5], [6], [9], [15]. Furthermore, it is

assumed that each cell in an array is a reduced machine and despite the

presence of a faulty cell in an array, all cells except the faulty one can

be correctly initialized to a unique initial state.

A machine is said to be information lossless (I) if the initial

state, the final state, and the response to an unknown input sequence are

sufficient to uniquely determine the unknown input sequence. A machine

M is defined to be IL of finite order r if M is IL and the initial state, the

current and last r output symbols are sufficient to uniquely determine the

rth past input symbol. r is the smallest integer which satisfies this

definition. Procedures for testi.ig whether or not a machine is IL or IL of

finite order are given in Huffman [7] and Even [4].

If a finite-state machine M with finite nonempty state set S is IL

of finite order r, then the obvious upper bound for r is ISIC Given a
i -

deterministic, reduced, strongly-connected, completely-specifted, and

finite-state machine M with finite nonempty state set S, finite nonenipty

input set I, finite nonempty output set 0, and JI1=10 , if M is ILof

finite order r, then a lower upper bound for r can be given in the form of

a conjecture as follows: r < Liog 2 %IJ where Laj denotes the largest

integer not greater than a.

For a machine M=(I,O,S,8,0) where I, 0, S, 6, and $ are finite

nonempty input set, finite nonempty output set, finite nonempty state set,

next-state mapping, and output mapping, respectively, specifically,
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6:SxI-S and $:SxI-<.,_I is used to denote a sequence of symbols over the

set I of some length, e.g.,_I-i11213 .... ik' where i i23 ..... k CI,

is an input sequence of length k, the length of the sequence I is denoted

by lgW. The extension of 6 over input sequences is denoted by 6, e.g.,

6(s,,j) is the state M enters when starting in state s and applying the in-

put sequence_I. The state sequence formed is denoted by6, e.g.,

I(s,_V denotes 1 2 3 * where X=x x s 'C(s ,

and si=6(s il,xi) for Vic[l,2,3 ..... ,k). The similar notation is used for

0 and 1.

D. One-Dimensional Arrays

1. Arrays with Autonomous Cells, Where Z=2=0 and X=X&0

Given the next-state mapping and the output mapping for a cell

as 6:SxX-S and B:SxX-X, respectively, the cell is said to be x/k-informa-

tion iossless (x/ý-IT) if and only if for each pair (sX2 there does not

exist a xd /X such that 6 (s,Xd=6(s,X) and 8(s,Xd)=.E(s,X). A procedure

gi';en in Breuer [3] can be used for testing whether or not the cell is

x/k-IL or x/k-IL of finite order. An oriented graph G, called a testing

graph, which consists of a set of nodes and a set of branches, is to be

constructed. Each node identifies a pair of states (s, s) called x-

compatible state pair. States si and s form a x-compatible state pair

(s ~sj) if either

P1: there exist some srS, x,xd EX, where x d x, such that 6(s,x)=si,

6 (s,xA=s , and 8 (s,x)=O(s,xd), or

P2: (sks1) is a x-compatible state pair and there exist some x,x dx,

d
where x is not necessarily distinct from x, such that 6(3 kX)=s2,

6(s, dcd=sj and O(s x)=O(s1, Ox'.
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There exists a branch from node (s ks ) to node (sits ) in G if and only if
these two nodes satisfy P2. Then,

RI: the cell is x/ý-IL if and only if G contains no node of the form (si, s)

and

R2: if the cell is x/A-IL, then it is x/k-IL of finite order r if and only if

G is loop free and the length of the longest path in G has r nodes.

Theorem 28: A one-dimensional autonomous array is testable if the cell is

chosen such that the reduced mapping 5]S:X-X4 is one-to-one (and/or onto)IS

for VsES.

Proof: If the cell of a one-dimensional autonomous array is chosen such

that the reduced mapping 8 15 X-R is one-to-one for VscS, then -i:X

is also onto for VscS, what's more, the cell is x/k-JL of zero order, or

equivalently, any change in the cell input induces some change in the

cell output at any instance (meaning for VsES). The procedure of testing

the array, say of N cells C1, C2, C3 ...... and CN chosen as above, is

as follows, first for i=l , then for i=2, i=3, . . . , and finally i=N.

(1) Initialize C1 , C 2, C .3... and CN to the unique init-al state.

(2) Apply input sequence X to C1 such that the input sequence to C1 is

Xt which is a test sequence to test a cell completely.

(3) Reconstruct the iesponse of C in responding to the test sequmnce

Xt by observing the boundary output sequence (i.e., the output

sequence of CN here).

Suppose C is faulty by the assumption of the presence of single faulty

cell, C must be operating correctly for all J{1l,2,... i-li+l, .... N).

Hence, any x-input is correctly applicable to C1 at any instance meaning

that any test sequence is correctly applicable to C.; furthermore, ti
5
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output sequence of C. is correctly reconstructable from the boundary output

sequence. Then, the perturbed output sequence of Ci inresponding to the

test sequence to C reveals that C is in error.
i I

Note that it is impossible to locate a faulty cell for any array here.

2. Arrays With the Typical Cell Having No External Cell Input, Where

Z=0 , W,#, and X=Xi/0

Given the next-state mapping and the output mapping for a cell as

6:SxX-'S and 8:SxX-iZxX, respectively, let 8.:SxX-Z and $.:SxX-X such that
z x

5=Bzx$, then, the cell is said to be x/ik-information lossless (x/ic-IH)
zx d

if and only if for each pair (s ,X) there does not exist a X •X such that
6(s,Xd)=&(s,_V ar-] _(s,xd )=§(s,X). The cell is said to be x/.-information

lossless (x/i-II. if and only if for each pair (s ,X there does not exist a
xdqx such that 8(s,Xd)=5(s,X) and j,(s,X_=j,(s To t

or x/ix-IL of finite order, the procedure in Section IV.D.i. is applied, and

the appearances of x/ýc-IL in Rl and R2 are replaced by x/ik-IL. To test

for x/i-IL or x/i.-IL of finite order, the same procedure is applied except

all appearances of 8 are replaced by Bi , and the appearances of x/c-IL

in R1 and R2 are replaced by x/i-IL.

Theorem 29: A one-dimerzional array with Z=0, 2.40, and X=XR0 is test-
-s

Dble if the cell is chosen such that the reduced mapping js:X-X is one-

to-one for VscS.

Proof_: The proof is similar to that for Theorem 28. Note that part of the

response of a cell, namely the output sequence at i-output, in responding

to a test sequence is directly observable. F

Theorem 30: If some test sequence is applicable to every cell in a hori-

zontal cascade of identical cells with Z---, .20, and X=-X^, then the
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cascade of cells is testable if the cell is either x/•-IL of finite order or

x/i-IL of finite order.

Proof: The procedure of testing the cascade of M .-ells C1 , C 2 , C3

and 0IN chosen as stated in the hypothesis is as follows, first for i=l,

then for i=2, i=3, ... , and finally for i=N.

(1 Initialize ClI C21 C31 .... and CN to the unique initial state.

(2) Apply input sequence X to C 1 such that the input sequence to C. is

X which is a test sequence to test a cell.

(3) Next appl), to C 1 any known additional input sequence X.a of length

L=(N-i)r if the cell is x/i-IL of finite order r, or of length L=r if the

cell is x/.-IL of finite l;er r.

(4) Reconstruct the part of response, namell, sequenco of k-output, of

C in responding to Xt by observing the boundary output sequence ofi
Ci1t 1 (at .- output) if the cell is x/.-IL of finite order or by observing

the boundary output sequences of Ci+1 , Cir2 ..... and CN if the

cell is x/zi-IL of finite order in responding to the input sequence of

XtX_ to C The output sequence at .- output of C in responding to

X is directly observable.

The presence of a single faulty cell in the cascade can thus be detected. •

Following the Proof for Theorem 30, one has the following.

Theorem 31: If some test sequence is applicable to every cell in a hori-

zontal cascade of identical cells w:2h Z=0, W.0, and X=Xk0, then, a

single faulty cell in the cascade can be located with an uncertainty of 2

if the cell is x/^-IL of finite order.

3. Arrays With X=_ Z.0, and Z=0

Given the next-state mapping and the output mapping for a cell as
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6:SxXxZ-S and O:SxXxZ-X, respectively, in a horizontal cascade where the

z-input to each cell is a boundary input, then, the cell is said to be
d

x!k-IL if and only if for each triplet (s,X,Z_) there does not exist aX _xdA

such that 6(s,X Z)=6(s,X,Z) and .(s ,xdZ_)=A(s,X,Z). The procedure for

testing whether or not the cell is x/i-IL or x/k-IL of finite order is same as

that in Section IV.D.1. except the arguments for 8 and 8 are adjusted

accordingly.

Theorem 32: If the cell of a one-dimensional array with X=XR,0, ZP0, and

Sis chosen such that the reduced mapping Sj :XxZ-X is onto for VscS,

then, any test sequence is applicable to every cell in the array.

Theorem 33: If some test sequence is applicable to every cell in a horizontal

cascade of identical cells with X=V,0, Z/0, 2=0 and the cell is x/A-IL of

finite order, then, the cascade is testable.

Proof: The proof is similar to that for Theorem 30 under the situation the

cell there is x/ix-IL of finite order except (2), (3), and (4) should be as

follows.

(2) Apply boundary input sequencPs (-i,Z ) to Ci - t
NI i 1  2 toc 1Zt 03

andZ to C LUch thut the input sequence to C is . ,Zt) which
-i N

is a test sequence to te3t a cell completely.

(3) Next apply any known additional boundary input sequences (.aZla)
.2a Na

to C1 to C2 ... , andZ tc C each of length L=(N-i)r if the
V-I ... N

cell is x/k-IL of finite order r.

(4) Reconstruct the respoase of Ci in responding to the test sequence
tILZtz) by observing the boundary output sequence at CN of length

lg(X)+(N-t)r in responding to the boundary Input sequinces
aX-Xaz1zi ) to c Z, 2 .. ,a

I, 91ZZ to C2  and2 Z1  to CN. '
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The status of a cell at one particular instance can be denoted by a

triplet (S x, z 1) where sI, X1 , z 1 are the state, the input at the x-input,

the input at the z-input, respectively, of the cell at that particular instance.

Define the ,et of potentially information lossy statuses5 as
d d d

SL=f(s,x,z)IscS,xEX,z.fZ and 4 xdEX with xdgx satisfying 0(s,xz)=O(s,x ,z)}.

The following Theorem is then obvious.

Theorem 34: If some test sequence is applicable to every cell in a ho-i-

zontal cascade of identical cells CI, C 2 .... and CN with X=X#0, Z•d0

and Z=0 but the cell is not x/k-IL, the presence of an error in C, is still
I

detectable by observing the boundary output sequence if none of Ci+,

0 1+2' .... and CN is in a status in the set S Lduring the testing for C..

4. Arrays With X=X0., ZUO, and iO

Given the next-state mapping and the output mapping for a cell as

6:SxXxZ-S and 5:SxXxZ-ZxX, respectively, in a horizontal cascade where

the z-input to each cell in the cascade is a boundary input, let

0 :SxXxZ-Z and O.:SxXxZ-X such that 5=B.xB then, the cell is said to
X z z x

be x/£-IL if and only if for each triplet (s ,X,Z) there does not exist a

XX such that s,_X ,_Z)=8(s,X,Z) and (s,xdZ)=J(s,X,Z). The definition

for x/z-IL is similar to that for x/•z-IL except the appearances of A are

replaced by I9" The procedure for testing whether or not the cell is

x/ik-IL, x/i-IL of finite order, x/i-IL, or x/•-IL of finite order is

similar to that in Section IV. D. 1. where the adjustment on the arguments

5A remark with regard to the special case in Section IV. B. can be made
here. It is not assumed there that all cells can be correctly initialized
to a unique initial state. The cell in a horizontal cascade of cells satis-
fying the hypothesis in Theorem 26 might not be x/A-IL, but a particular
input to the z-input of a cell could prevent the cell from entering into
any potentially information lossy status, thus, render the detection of a
faulty cell in the cascade possible.
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for 6, B, and B. is required.

z

Theorem 35: If the cel. of a one-dimeniional array with X=X, ZV0, and

Z.0 is chosen such that the reduced mapping . S:XxZ-X is o-to for VscS,

then, any test sequence is applicable to every cell in the array.

A good understanding of the proof for Theorem 30 and that for

Theorem 33 enables one to justify the following theorem.

Theorem 36: If some test sequence is applicable to every cell in a hori-

zontal cascade of identical cells with X=XR, Z-0, Z7., and the cell is

either x/i-IL of finite order or x/iý-IL of finite order, then, the cascade

is testable.

Define TL =(sx,z) iscS, xX,XzZ and T x eXwith xd x
dsatisfying 0i(s ,x,z)= z(sx ,Z)

The following theorem is obvious.

Theorem 37: If some test sequence is applicable to every cell in a hori-

zontal cascade of identical cells C, C2. ..... C with X=X#0, Z/0, and

Z40 but the cell is neither x/i-IL nor x/ic-IL, the presence of an error in

C1 is still detectable by observing the boundary output sequences at C.,

C+1, ... , CN if none of Ci+1, C+2 ...... and CN is in a status in the

set SL or the set TL during the testing for C .

Theorem 38: If some test sequence is applicable to every cell in a hori-

zontal cascade of identical cells with X=R/', Z#0, and W'0, then a

single faulty cell in the cascade can be located with an uncertainty of 2

if the cell is x/i-IL of finite order.

E. Two-Dimensional Arrays

Given the next-state mapping and the output mapping for a cell as

6:SxXxZ-S and O:SxXxZ-ZxX, respectively, let O.:SxXxZ-* and O.:SxXxZ-X
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such that 0=0ix8 , then, one has the following theorem.

Theorem 39: If the cell of a two-dimensional array is chosen such that

(1) the reduced mapping 0. 1 j :X-'X is onto for VSES and Vz(Z and the re-

duced mapping OijsJx:Z-2 is onto for VscS and VxcX,

(2) jXjz-jZI and the two reduced mappings OijsJz:XX• and 0. 1 : X-Z

are both onto for VsES and VzEZ, or

(3) IZJ[IX! and the two reduced mappings 0.]sJx:Z-" and ý,.S1X:Z-sx

are both onto for VseS and VxEX,

then, any test sequence is applicable to every cell in the array.

Proof: Suppose the hypothesis holds, then, at any instance, i.e., no

matter the states all cells are in, any input combination to a cell iF

applicable to any cell in the array with an application of some bcundary

inputs. Thus, any test sequence is applicable to every cell in the array. •

If the hypothesis in Theorem 39 is not satisfied, then, in order
t t tthat a test sequence, say(_ ,zt), where Xt=x x ... x and

_Z =Z 1Z2Z.. .Zp , may be applicable to tLe cell (i,j) in ith row and jth

column of a MxN array, at every particular instance, say at time tk,

lk:p, all the states in the cells in the first i rows and the first j

columns except the cell (ij) must be known and the marking of CISO-

statuses (tessellation problem) on these cells must be solved where the

input combination to the cell (i,J) is to be (xkzk) and the CISO-status

compatibility of a cell with respect to its neighboring cells is to be met.

A cell is said to be information lossless (I) if and only if for each
d d d d

triplet (s ,X,Z) there does not exist X , Z , where either X •X or Z 9Z or

both, such that 8 (sxd,zd)=g( ,XZ)-and .§(sxd,zd)=8(sX,Z). In con-

structing a testing graph G for testing whether or not a cell is IL or IL of
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finite order, each node represents a compatible state pair (s, s j), where

states si and si fo, -. ccirTpatible state pair (sil,sj) if either

P3: there exist some sES, xx dX, z,,z dZ, where either x dx or zdz or

both, such that 6(s,x,z)=s., 8(s,x ,z ,)=s and o(s,x,z)=O(s,x ,z ),I
or

d dP4: (s ks 1) is a compatible state pair and there exist some x,x EX, z,z dZ,
where xd is not necessarily distinct from x and zd is not necessarily

distinct from z, such that 6(s s,z)=si, ,(sx zdz= , and

B(s kx,z)=8(s dx d zd)

There exists a branch from node (s ks ) to node (s is ) in G if and only if

these two nodes satisfy P4. Then, one has two results same as RI and

R2 in Section IV. D. 1. except all appearances of x/,-IL are replaced by IL.

Theorem 40: If some test sequence is applicable to every cell in a two-

dimensional array and the cell is IL of finite order, then the array is

testable.

Proof: Suppose a MxN array of cells C .... C C .C
11' 12' .. iN' 21' 22'

C C C and C satisfies the hypothesis and the
2N ..... Ml M2'" MN

cell is ILof finite order r, then, the testing procedure is testing M.N cells

one by one starting at the cell C11 , then C12, 013 ... , C2 1 , C22

........ and finally CMN, the testing on the typical cell C is as follows.

(1) Initialize all ceils to the unique initial state.

(2) Apply some boundary input sequences to boundary cells such that the

input sequence to Cij is _tZ) which is a test sequence to test a

cell completely.

(3) Next apply to boundary cells any known additional boundary input

sequences of length L=(M-i+N-J)r.
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(4) Reconstruct the response of C in responding to the test sequence
t,_) by observing the boundary output sequences.

Suppose Cij is faulty, by the assumption of the presence of single faulty

cell, all other cells in the array must be operating correctly. Hence, the

test sequence is correctly applicable to C.,, what's more, the outpi.t

sequence of C is correctly reconstructable from the boundary output

sequences. Then, the perturbed output sequence of C in responding toij

the test sequence reveals that Cij is in error. Af

Defne =(S,,Z)I ESCX,(7 d d
Define =UL s x,z)Is•S,xcX,z(Zand4x Ex,z FZ, where either

d d d d
xd9x or zdýz or both, such that B(s,x,z)=B(s,x ,z )}. Then the following

theorem is then obvious.

Theorem 41: If some test sequence is applicable to every cell in a MxN

array of cells C11 , C 1 2 , .'... CIN, C2 1 , C 2 2 , .... C 2N' CM.i
C M2# ." ,.and CMN but the cell is not IL, the presence of an error in Cij

is still detectable by observing the boundary output sequences if none of

Cij+l)' C (J+2) '* .... CiN' C (i+l)jI C(+)l(j+i) ...... C(i+ 1) N'
C(i+2)j' C(i+2)(j+l) ..... ' C(i+2)N ........... CMj, CM(j+I0' CM0+2)

and CMN is in a status in the set UL during the testing for Cij.

Theorem 42: If the cell of a two-dimensional array is chosen such that the
-I S--,Z ^

reduced mapping •.jsJz:X--X is onto for VsES and VzEZ and the reduced
mappingS0. :z-*t is onto frVsCS and VxcX, then, a single faulty cl

mapping is sonx for cell

in the array can be located with an uncertainty of at most M+N-1, where

M and N are the numbers of rows and columns, respectively, of the array.

Proof: Suppose the cell of a MxN array of cells Cll, C 12 .... , ClN,

C C C I.. ... , and C is chosen
21. ..'.CM'I CM2' ' ^SN is onto

such that "]' :X- is onto for Vs(S and VzfZ and

for VscS and VxcX. Then, by Theorem 39, any test sequence is applicable

67



-S-1 z
to every cell in the array. Since X=X, Z=Z, and are finite, x.sJ: is

onto for VscS and Vz Z Implies that j :X-k is one-to-one for Vs S and

Vz(Z, and B.S:Z-2 is onto for VsCS and VxCX implies that S. :X:z-.z

is one-to-one for VserS and VxfX. Now, suppose cell C is faulty, then,

by the assumption of the presence of single faulty cell, all other cells in

the array must be fault-free. During the array testing, i- the R--output of

C is pe:urbed due to the fault, then, the k-output of Ci(1 +l) is perturbed,

eventually, the k-output of CiN. which is a boundary output, is perturbed,

while the boundary outputs at C, C C ... , and C are
IN' 2N' 3N .... (')

nominal, if the i-output of CO. is perturbed due to the fault, then, the

.- output of C i+1) 1 s perturbed, eveatually, the i-output of CMjP which is

a boundary output, is perturbed, while the boundary outputs at CMi, CM2

CM 3 1 . . . . , and C M(j1) are nominal. Certainly, the presence of the fault
in Ci, is detectable at boundary outputs.

Now, suppose in responding to the array testing, the boundary out-

put sequences at C C C C ,MI'C C
1N 2N' 3M. ..... (p-l)N' Ml' MV' MV

and CM(q_1) are nominal out that at C and C are perturbed forM~-pN Mq
some lp<M and lsqgN, and that at the remaining boundary cells each

might be nominal or perturbed, then, the faulty cell could be any one of

C C 2  C3 q ....... C~p.liq, Cp!, Cp 2 , C ...... Cp(q.1), and Cpq,

i.e., the faulty cell could be located with an uncertainty of (p-l)+(q-l)+l=p+

q-1. In general, the range of uncertainty is from 1 to M+N-1. Thus, the

Theorem follows. jf
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