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§l3‘.\ArSTRACT
A program to explore the behavior of ATJ-S graphite under multiaxial stress states
is described. The program includes biaxial tests, off-axis uniaxial tests, and

the development of a triaxial test capability.,

The first phase of the program is to conduct fracture tests on specimens of ATJ-S
graphite under biaxial stress states at room temperature and 2000°F at low strain
rates. (approximately-10=2/min). The biaxial tests consist of simultaneous axial
loading and internal pressurization of hollow cylindrical specimens. The biaxial
stress-states investigated include cembinations of across-grain tension with
with-grain tension, and across-grain compression with with-grain tension. The
second phase is to conduct uniaxial tensile and compressive tests on ATJ-S specimens
oriented at 0°, 459, 70° and 90° to the across-grain axis of the material.f'f

Loy
The biaxial and gff-axis uniaxial tests have been completed, The results ard
presented in a preliminary manner in this report. The biaxial results suggest that
there is a reduction in average tensile strength when a second principal stress is
applied to ATJ-§ graphite; however, the lower bound of the data conforms quite well
to a maximum principal stress criterion. Another significant result is that the
strains measured under biaxial tension are greater than would be predicted from
uniaxial strains using current :onstitutive equations. The off-axis results show
that the off-axis compressive strength is approximately equal to the with-grain

compressive strength, that the off-axis tensile strengths lie between the across-
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grain and with-grain tensile strengths, and that the off-axis Young's
moduli increasz monotonically with off-axis angle. The probable shape
of the biaxial failure envelope under off-axis loading is deduced from
the uniaxial off-axis data; it is concluded that the differences in
strength bhetween on-axis and off-axis biaxial loading are likely to be
minor in comparison to the scatter observed in on-axis biaxial tests.
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FOREWORD

This interim report was prepared for the United States Air Force
Materials Laboratory (AFML), Wright-Patterson AFB, Ohio under
Contract F33615-71-C-1143, Project 7231, Task 738102. Lt. John

R. Koenig, LAS, is the AFML Project Engineer. This report des-
cribes the results of biaxial testing and off-axis uniaxial testing
of ATJ-S graphite which were the first two phases of the program
entitled Exploratory Development of Multiaxial Behavior of ATJ-S
Graphite. The program was initiated on 1 December 1570; the period
of performance is ten months. The work reported here was performed
between 1 December 1970 and 15 May 1971,

J. Jortner is program manager and principal investigator at the
McDonnell Douglas Astronautics Company-West (MDAC-West). Othurs

who contributed their efforts and knowledge to the program include
J. C. Schutzler (deputy principal investigator), B. R. Lyons (stress
analysis), W. W, Reinhardt (material screening), and T. T. Sakurai

(mechanical testing).

Publication of this report does not constitute Air Force approval
of the report's findings or conclusions. It is published only for

the exchange and stimulation of ideas.

L[] Ll

L. N, Hijelm &

Chi~f, Space and Missile Systems
Support Branch

Materials Support Division
Air Force Materials Laboratory

This document was prepared as MDAC-West report number MDC G2078.
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ABSTRACT

A program to explore the behavior of ATJ-S graphite under multi-
axial stress states is described. The program includes biaxial

tests, off-axis uniaxial tests, and the development of a triaxial
test capability.

The first phase of the program is to conrduct fracture tests on
specimens of ATJ-S graphite under biaxial stress states at room
temperature and 2000°F at low strain rates (approximately 10-2/min).
The biaxial tests consist of simultaneous axial loading and internal
pressurization of hollow cylindrical specimens. The biaxial stress-
states investigated include combinations of across-grain tension with
with-grain tension, and across-grain compression with with-grain
tension. The second phase is to conduct uniaxial tensile and
compressive tests on ATJ-S specimens oriented at 0°, 45°, 70° and

90° to the across-grain axis of the material.

The biaxial and off-axis uniaxial tests have been completed. The
results are presented in a preliminary manner in this report. The
biaxial results suggest that there is a reduction in average tensile
strength when a second principal stress is applied to ATJ-S graphite;
however, the lower bound of the data conforms quite well to a maximum
principal stress criterion. Another significant result is that the
strains measured under biaxial tension are greater than would be
predicted from uniaxial strains using current constitutive equations.
The off-axis results show that the off-axis compressive strength is
approximately equal to the with-grain compressive strength, that the
off-axis tensile strengths lie between the across-grain and with-grain
tensile strengths, and that the off-axis Young's moduli increase mono-
tonically with off-axis angle. The probable shape of the biaxial
failure envelope under off-axis loading is deduced from the uniaxial
off~axis data; it is concluded that the differences in strength between

on-axis and off-axis biaxial loading are likely to be minor in comparison

to the scatter observed in on-axis biaxial tests.
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Section 1

INTRODUCTION

A need exists for data on the mechanical behavior of ATJ-S graphite under
multiaxial loads. In particular, multiaxial failure data are needed to
guide the design of thermostructurally loaded ATJ-S components. At present,

no experimentally verified failure criterion exists.

A biaxial test program of limited scope (rcom temperature, tension-tension
only) was recently conducted on ATJ-S (special process) graphite at MDAC-West
(Reference 1). Some biaxial data is also reported in Reference 2. However,
there is a clear need for more data, particularly with respect to the effects

of elevated temperature, off-axis lcading, and triaxial stress states,
The current program has the following objectives:

A. To provide on-axis biaxial test data on ATJ-S graphite at room and
elevated temperature in the across-grain tension/with-grain tension

and the across-grain compression/with-grain tension quadrants.

B. To provide test data at room temperature on the strength of ATJ-S
under off-axis loading.

C. To evaluate the feasibility of conducting meaningful triaxial tests
and, if the evaluation warrants, recommend a triaxial test program
for possible future effort.

This interim report describes the nature of the program and presents, in a

preliminary manner, the results of the biaxial and off-axis test efforts.
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Section 2

BACKGROUND

2,1 Material Anisotropy

ATJ-S graphite is mechanically orthotropic. When fabricated in the form

of a cylindrical billet, the axis of the billet coincides with one principal
material direction (the across-grain direction). The other two principal
material directions lie in the plane perpendicular to the billet axis and
the material is isotropic in that plane. Directions within the plane of
isotropy are referred to as with-grain directions. Because the material is
weaker in the across-grain direction, a billet may be thought of as behaving
somewhat like a stack of weakly-bonded circular platelets as suggested in

Figure la.

Figure la is somewhat simplified because a typical billet will probably not
be uniformly anisotropic; that is, the principal material directions, and the
difference between with-grain and across-grain properties, may vary somewhat

from location to location within a single billet.

When describing the behavior of ATJ-& under stress, it is necessary to
specify the magnitudes of the applied principal stresses and their orienta-
tion with respect to the principal material directions. Figure 1b shows
the terminology used here. The ¢ axis is the across-grain direction while

the a and b axes denote any two mutually perpendicular with-grain directions;

the 1, 2, and 3 directions refer to principal stress directions; 6 is the angle
between the ¢ axis and the 3 direction; ¢ is the angle between the 2 direction

and the intersection of the a~b and 1-2 planes. Thus five independent parame-

ters (01' 09y 03, 6 and ¢) are to be considered in describing the multiaxial
failure envelope for ATJ-S graphite, in addition to the usual variables such

as temperature, rate of stressing, volume under stress, environment, etc.

When 6 is zero, the stress state is referred to as being "on-axis"; when 6

is non-zero, the stress state is "off-axis".

Preceding page hiank
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2.2 Conditions of Interest

To narrow the scope of the problem, it is useful to consider the type of
stress states to be expected in the applications of immediate interest.

The prime applications involve externally heated, thermally stressed bodies
of revolution. The heat input, and therefore the stress situation, is
approximately axisymmetric; the axis of the body coincides with the across-

grain or "c" direction of the material.

From considerations of symmetry, it may be shown that ¢ is zero for such
components, and that the off-axis stress states of primary interest may be

specified in terms of 6 alone.

The temperatures of intsrest range from about room temperature up to above
5,000°F (at the external surface), However, the interior regions, where
tensile stress may be expected to approach the failure level, are not

expected to exceed 3,500°F,

2.3 Available Test Techniques

A variety of biaxial and triaxial stress states can be mechanically induced
in hollow cylindrical specimens by suitable combinations of axial icad,
internal pressure, and external pressure. An alternate approach would be
to combine the aforementioned loadings with torsion applied to the ends

of the cylinder. However, a facility capable of applying torsion in
combination with other loads is not available to this program. An obvious
restriction in both approaches is that the radial stress can only be com-

pressive.

For ATJ-S, the only way of excising a cylindrical specimen so that the stress
state is homogeneously oriented with respect to the material anisotropy is to
align the cylinder axis with the across-grain (or "c¢") direction. This corre-
sponds to the Type 1 specimen shown in Figure 2. As suggested in the figure,

a varying wall thickness would be necessary to control the failure location
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in specimen Types II and III. To avoid the complications implicit in
making, testing, and interpreting data from Type II and III specimens,
only Type I specimens are considered in the current program. This
restriction implies that:

A. Testing of off-axis orientations of multiaxial stress-sta’»s is
precluded.*®

B. Of the two with-grain stresses, one (corresponding to the radial

direction) must always be compressive (or zero).

Biaxial tests under internal pressure and axial load can be conducted in
the MDAC facility at Santa Monica which has been used (References 1 and 3)
to test graphite under biaxial stress states up to W4000°F. Triaxial tests
can be conducted, at room temperature only, in a high-pressure facility of
the type available at Pennsylvania State University (PSU) as described in
Reference 11. The PSU facility is capable of applying axial load, internal
pressure, and external pressure simultaneously to generate any desired tri-
axial stress state (with the obvious exception of triaxial tension) in a
hollow cylindrical specimen. Strains at the external wall of the specimen
can be measured using strain gages. The pressure capacity of the system
exceeds the uniaxial‘compressive strength of ATJ-S graphite by one order of
magnitude,

Off-axis tests can readily be conducted in uniaxial tension and comprassion.
Some problems attend the off-axis testing as a result of unsymmetrical defor-
mations of the specimens (References 4 and 5). These effects can be minimized
in tension (as noted in Reference 5) by providing a relatively long gage
section. In compression, however, short specimens are necessary to avoid
buckling; off-axis tests in compression should therefore be accompanied by

an analytical estimate of the true stress state at failure.

%*With the excepticn of equi-biaxial tension, see Section 3.2
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Section 3

SCOPE AND STATUS OF CURRENT PROGRAM

3.1 Biaxial Tests

It may be noted that, for ATJ-S, there are seven independent on-axis
biaxial quadrants:®

2 b L. ;
Quadrant 1 0 + :
Quadrant 2 0 - E
Quadrant 3 - ] -
Quadrant 4 - 0 +
Quadrant 5 + + 0
Quadrant 6 + - 0
Quadrant 7 - - 0

The quadrants selected for investigation in the current program are the
first two (Numbers 1 and 2) listed above, primarily because they are the
most readily explored with the existing biaxial facility at MDAC-West.

However, the biaxial failure picture would be incomplete without some
definition of behavior in the other quadrants, particularly KNumbers u,
5, and 6 listed above. With the possible exception of quadrant 5, these

might eventually be investigated (at room temperature) in a triaxial
facility.

In selecting biaxial stress states to be tested, it is helpful to postulate

T S AT GOSN WA ¢ O ke i x| e 58 i e S o s i e
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an idealized fracture envelope and consider which stress-states would be
most effective in revealing the difference between actual material behavior
and the assumed ideal. Somewhat arbitrarily, but with available biaxial
data for graphites (References 1,2,3 and 6) in mind, the idcalized envelcope

selected consists of the combination of a maximum principal-stress envelope

and a maximum shear-stress envelope,

*In the tabulation + denotes tensile stress and - denotes compressive stress
in the a, b, or ¢ direction, be,

Preceing page blank 3
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This combined envelope is shown as a dotted line in Figure 3. Several
stress-ratios which might be effective test conditions are also shown.

Of particular interest are the following stress states.

Nominal
Axial-to-Hoop
Stress Ratio Remarks
1:0 Across-grain uniaxial reference
1l:1 Applies to off-axis study (Section 3.2); fills
in between 1:0 and "corner".
Op i0q Approximately 1:1.2 stress state; explores
c "corner" of tension-tension quadrant.
1:2 Readily tested (requires no axial load); fllls
in between "corner" and 0:1.
0:1 With-grain uniaxial reference.
-1:1 For ATJ-S this stress state is close to the

"corner" in compression-tension quadrant

With the exception of the -1:1 stress staté, biaxial data has been obtained
on ATJ-S material at room temperature in a previous effort at MDAC (Ref-
erence 1). The current program is intended to supplement that data at

room temperature and to provide some data at elevated temperature. The
elevated temperature selected for test is 2000°F because it appears
(Reference 7) that ATJ-S exhibits the lowest tensile strain=-to-failure at

temperatures in the range 1500 to 2500°F.

The biaxial test matrix is given in Table I, The tests have been completed

and the data is presented in Section 4 of this report.

3.2 Off-Axis Tests

Under equibiaxial stress, such as the 1:1 stress state, the direction of
the principal stresses is not unique; this may be inferred from, for
example, the fact that the appropriate Mohr's circle vanishes into a
point. Therefore the 1:1 on-axis test is actually an off-axis test.

This being so, an economical way of estimating the off-axis effect on

10
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TABLE I

BIAXIAL TEST MATRIX

Stress State Number of Test Points (2) (3)
(l) Ruom
Ratio, Axial to Hoop Stress Temperature 2000°F
1:0 5(4) L
1:1 (k) -
1:x(5) 5(k) 7
0:1 5(k) 6
-1:1 I 5
Totals 19 22

NOTES

(1) A1l specimens are biaxial cylinders (Figure 9) with axis aligned with across-
grain direction. ’

(2) Crosshead speed 0.02 to 0.05 in./min; test to failure under simultaneocus axial
load and internal pressure, Measure failure load and pressure,

(3) Axial and hoop strains measured with strain gages at room temperature and with
optical extensometers at elevated temperature.

(L) Some data available, Reference 1

(S5) Stress state in biaxial tension; X aporoximates ratio of average uniaxial
with~grain strength to average uniaxial across-grain strength.

12
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is to supplement the 1:1 test with some uniaxial off-axis tests at various
off-a«is angles 8 (Figure 4) and from the data estimate the likely form
of the failure envelope (dotted line in Figure 4). The test matrix, Table
II, includes tensile tests at room temperature at angles 6 of 0 degrees,
45 degrees, 70 degrees, and 90 degrees. The emphasis on angles greater
than 45 degrees is based on off-axis results for filamentary composite
materials which suggest that the 45-degree tensile strength might be

rather close to the 0-d:gree strength.

Available evidence (Figure 20 of Reference 8) suggests that compressive
failure of ATJ-S takes place by shear at an angle approximately 45 degrees
to the loading axis. Biaxial data for AXF graphite (Reference 3) suggest
that in a portion of the compression-tension quadrant a critical shear
stress theory may apply. For ATJ-S, it would be of interest to determine
how the critical shear stress varies with orientation; for example, the
layer-structure model suggests that compressive strength would be least
when the load is oriented 45 degrees to the c-axis because the maximum
shear stress would then act on the weakest plane. It seems that a knowl-
edge of off-axis compressive strengths could aid in estimating the off-
axis effect on the compression-tension failure envelope. The test matrix,
Table II, includes compressive testing at angles 6 of 0 degrees, 45 degrees,
and 90 degrees; these angles should reveal the extremes of compressive
strength variation. One additional orientation, selected at 70 degrees,

is intended to fill in the trend.

The planned off-axis tests have been completed. A preliminary description

of the results is presented in Section 5 of this report.

13
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TABLE II

OFF-AXIS TEST MATRIX
(ROOM TEMPERATURE)

9, Load Axis Angle from ¢ Direction

0° 50 70° 90°

Tension 3 3 3 3
Compression 3 3 3 3
NOTES

(1) Uniaxial specimens.

(2) Crosshead speed 0.05 in./min;

two axially oriented strain
gages on each specimen

15
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3.3 Triaxial Test Development

The on-axis triaxial envelope for ATJ-S occupies eight octants in
principal stress space. Because of the equivalence of the a and b
with-grain directions, only six octants require independent investi-
gation:

2 b <
Octant 1 + + +
Octant 2 + + -
Octant 3 + - +
Octant 4 + - -
Octant 5 - - +
Qctant 6 - - -

Octant No. 1 is beyond the present scope of study because adequate
triaxial tension tests have not beeu developed. A variety of triaxial
tension tests have been attempted on other materials (for example, see
page 178, Reference 9). The problems associated with sufficiently precise
definition of the actual stresses at failure lead to the conclusion that
adequate definition of the triaxial tension failure envelope for graphite
is beyond present experimental capabilities. However, the problem merits
further study in the hope that a useful technique can be developed. Octant
No. 6, triaxial compression, is of little interest to current component
designs. Octant No. 2 is eliminated from consideration at this time
because the requirement that both with-grain stresses be tensile imposes

the experimental difficulties noted in Section 2.3.

The loads and pressures required to investigate the remaining three
octants (Numbers 3, 4, and 5) can readily be applied. The knowledge of
the triaxial failure surface which might be gained by conducting tests

in these octants might be of direct help in component design; aiso, it
would probably be useful in assessing the validity of theoretical failure
criteria. The feasibility of obtaining useful triaxial fracture data is

dependent upon several considerations:

16
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Accurate load and pressure measurement capability.

Ability to seal the specimen material from the pressurizing
medium,

Ability to maintain accurate alignment of the specimen
relative to the axial load to minimize parasitic bending
strains.

Ability to measure specimen strains during loading.

Ability to design specimens which do not fail prematurely
in buckling under compressive stresses, and which do not
exhibit excessive stress variations in the gage section.

Under the current program, the use of solid and hollow cylindrical

specimens, subjected to internal and external pressures and to tensile

or compressive axial loads, is being investigated. It is planned to

study the experimental aspects of the problem by using the triaxial

facility at Pennsylvania State University. At this time preliminary

specimen and fixture designs have been completed and are being reviewed

for experimental feasibility and for conformance to the desired stress

uniformity and buckling resistance. :

17
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Figure 5, Billet Cutting Plans - Schematic
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TABLE IV

CHARACTERISTICS OF BIAXIAL SPECIMEN CORES

Electrical Acoustic
Specimen Bulk Density Resistivity Velocity
Number (grams/cc) (Qem X 103) (in/ sec)

1 1,840 1,009 0.0861
2 1.847 1.015 0.0859
3 1.843 1.02h 0.0854
L 1.848 1.031 0.0857
5 1.842 1.020 0.0861
6 1.849 1.007 0,0868
7 1,842 0.998 0.0868
8 1,848 0.995 0.0871
9 1.8k2 0.996 0.0870
10 1,846 0.996 0.0868
11 1,843 0.988 0.0869
12 1,847 0.997 0.086L
13 1.836 0.992 0.0868
14 1.8k 0.991 0.0865

15 1.837 0.975 0.087L -
16 1,847 0.987 0.086k4
17 1.8k 0.991 0.0870
18 1,846 0.993 0.0863
19 1.847 1.053 0.0873
20 1.853 1.058 0.0876
21% 1.853 1.070 0.0868
22 1.855 1.073 0.0871
23% 1.855 1.071 0.0871
24 1,856 1.083 0.0866
o5 1.855 1.053 0.0878
26 1.851 1.075 0.0874
27* 1.854 1.060 0.0880
28 1.853 1.052 0.0882
9% 1.852 1.051 0.0878
30 1.852 1.0Lk2 0.0884
31 1.835 1.066 0.0851
33 1.834 1.071 0.084T
35 1.836 1.057 0.085h
37 1,831 1.04k2 0.0857
39 1.828 1.047 0.0856
F b1 1.828 1.046 0.0857
43 1.827 1.048 0.0856
- 45 1.827 1.052 0.0856
L7 1.830 1.059 0.0854
: 1S 1.843 1,002 0.0864
1 2s 1,843 1.002 0.0863
] 3 1.8L7 1.059 0.087h
4s 1,848 1.065 0.0873

# These specimen cores are six inches long.

"z
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TABLE VII

SPECIMEN ALLOCATIONS

Parent
Billet
(APJ-S)

Test Temperature and Stress State(l)
Billet Specimen 70°F 2000°F

~1:1

1C0-15

Region Number 1:0f 1:X]0:1 —l:l.FV}JO 1:X [0:1

Top X !

Bottom 2 X !

Core 1-8 X

16K9-27

Top 19 “ X '

Bottom 20 X
22(3) '
24 X
26 X
28 X
30

»s

Core 3-8 X
h-g !

X

(continued next vpage)
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TABLE VII (Cont'd)

Parent Test Temperature and Stress State(l)
billet Billet Specimen 70°F 2000°F
(ATJ-S) Region HJumber 1:0 |1:X { O:1f-1:1 1:0] 1:X] 0:1}-1:1
10vo-27 Middle 31 X
33 , X
35 X
37 L
39 X
L] X
h3 X
L5 X
L7 X
‘'otal liumber Specimens 5

sslsuu're

Svecimen

a2

Stress state given as ratio of axial to hoop stresses.
Cpecimen 12 broken accidentally before test

damaged in machining

26
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References 1 and 3. Biaxial stresses are obtained by combining axial

load with internal pressure applied to a hollow cylindrical specimen.

The axial loads are applied in a fixture designed to limit bending
strains in the specimen, Alignment checks performed before each series
of tests show that the bending strains introduced into the biaxial
specimen are less than 3% of the average axial strain both in tensile

and compressive loading.

All tests were conducted using approximately radial loading. That is,
the pressure was manually controlled to increase in proportion to the
axial load so that the ratio of axial stress to hoop stress was approxi-

mately constant.

4.,2,1 Room Temperature Tests - As indicated in Figure 6 a thin rubber

balloon was used to prevent penetration of the pressurizing fluid (water
containing soluble o0il) into the graphite specimen. Two strain gages

were used to monitor strains. One gage was oriented axially, the other
circumferentially. Both gages were Micromeasurements Type EA-06-125AD-120;
this gage type has a gage factor of 2.10 and a transverse sensitivity
factor of +0.8%. The gages were applied with Eastman 910 cement to the

external surface at midlength.

4.2,2 2000°F Tests - As indicated in Figure 7, a metal foil bladder -ias
used to seal the pressurizing medium (argon). The bladder was a seamless
electrodeposited nickel tube 0.002 to 0.003 inches thick. At 2000°F the
flow strength of the nickel bladder is low and at failure of the graphite
specimen accounts for less than two percent of the load and pressure carry-
ing capacity of bladder/specimen combination, Strains were measured op-
tically using a Physitech Model 440 extensometer aimed at graphite "flags"
mechanically attached to the specimen for axial strains, and an Optron
Model 800 extensometer aimed at the diametral extremes of the specimen
gage section for hoop strains. Figure 8 shows the flags and the relation
of optical sighting points to the specimen. Axial sightings were at

opposite sides of the specimen to minimize the effects of bending. The

27
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flags were designed to be flexible so they exert little diametral
constraint on the specimen while maintaining contact in spite of
diametral strains. Calibration tests on the optical extensometers
show that the strain data is repeatable and accurate within approxi-
mately + .0002 inches per inch.

4.2.3 Data Reduction - Stresses were calculated from the loading data

using the following equations:

2
+ mrf, P
g, = L "Tib
A
nr - 2)
o i
= Pr,
%4 Tib
v =Ty
where
g, = axial stress, psi
o = hoop stress, psi
L = measured load, lb¥%
P = internal pressure, psi
r = outer radius of gage section, in.
r, = inner radius of gage section, in.
riy * effective inner radius, in.

For tests at room temperature rib was taken as equal to r, on the assump-

tion that the rubber bladder acts like a fluid under pressure. For tests

at 2000°F, r;, was taken as the nominal internal radius of the nickel

bladder, LTS = r, - 0.003.

It may be noted that the equation for hoop stress is the thin-wall
approximation and thus provides only an approximate value of stress.

The reader is referred to the stress analysis described in Reference 1,

#The measured load may be about one percent less than the true load sustained

by the specimen because of friction between the load train and the guide
bushings used to provide alignment (Reference 1; see also Figure 47).
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and in Section 4.3 of this report, for an estimate of the stress gradients

in the gage section of the specimen.

Strains were obtained from the strain gage and extensometer readings in
the usual manner. In the case of strain gages the readings were correc-
ted for the transverse sensitivity of the gage using the transverse

sensitivity factor supplied by the gage manufacturer.

4,3 Biaxial Specimens

The specimen used at both room and elevated temperature is shown in
Figure 9. The specimen is longer than that used in the study reported
in Reference 1; the longer specimen was selected because it reduces the
nonuniformities in stress, as described in Section 4.3.2. The wall
thickness used is 0.050 inch as in previous work (References 1 and 3).
Some doubts were expressed in Reference 1 as to the ability of so thin
a wall to represent the bulk behavior of *he material; to help resolve
these doubts, the experimental study briefly described in Section 4.3.1

was conducted under a concurrent MDAC program.

4.3.1 Wall Thickness Study -~ Hoop tension tests were conducted on ATJ-S

graphite ring specisens of two different wall thicknesses, The specimens
were hollow cylindrical rings of uniform wall thickness and were tested
under internal pressure and zero axial load at MDAC in a fixture patterned

after that in Reference 10.

The specimen dimensions and test results are summarized in Table VIII.
The specimen dimensions were selected to give equal volumes and equal
ratios of radius to thickness for both wall *“hicknesses so as to minimize
the potential effects of volume and thick-wall stress gradients on the

comparison of results.

It is seen that increasing the wall thickness does not increase the
average strength of the specimens, and that the .050-inch wall specimens
give strength values closer to those expected in the with-grain direction
for tnis material. This result suggests that there would be no advantage

1o increasing the wall thickness of the biaxial specimen.
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4.3.2 Biaxial Specimen Analysis® - Stress analysis of two biaxial

specimen configurations was conducted to select the best design for
this program. The configurations are shown in Figures 9 and 10. The
4.0 inch long specimen (Figure 9) is the standard configuration used
at MDAC-West for biaxial strength tests. Th2 3.15 inch long specimen
(Figure 10) was used in a recent study (Relerence 1) and was designed
to that length for the purpose of conserving material. While material
conservation was not a major consideration in specimen selection for
the current program, it was initially considered desirable to use the

same specimen as in Reference 1 for the purpose of data comparison.

The short (3.15 inch) specimen was previously analyzed (Reference 1)

to determine the stress distributions under various loading conditions.
It was determined from these analyses that the combination of internal
pressure and axial tension resulted in the most severe stress nonunifor-
mities in the specimen. The stress distribution for this case is shown
in Figure 11. The increase in the axial and hoop stresses near the end
of the gage section is a result of discontinuities in specimen stiffness
between the thin wall section and the heavy ends, and the eccentricity

of the axial load application relative to the thin section. Both effects
cause cylindrical be.ding stresses in the specimen which, in biaxial

tension, add to produce the stress nonuniformities shown.

Using the same analyticai technique and assumptions (Reference 1), the
long (4.0 inch) specimen was analyzed in this study for the combination
of internal pressure and axiazl tensile loading, for comparison to the

analytical results for the short specimen.

The stress analysis results for the 4.0 inch long specimen are shown in
Figure 12, Comparison of the stress distributions to those previously
predicted for the short (3.15 inch long) specimen indicates that the
4,0 inch specimen is more favorable. The diXferences between peak and
nominal stresses are about 1/2 of those in the shorter specimen. This

reduction is presumed to be a result of a more gradual transition in

*by B. R. Lyons and J. C. Schutzler
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Figure 11. Stress Distribution in Short Biaxial Specimen
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stiffness between the gage section and the heavy ends. On the basis
of these comparisons, the standard 4.0 inch long specimen was selected

for use in this program.

4,.3.3 Inspection of Specimens - All specimens were inspected for con-

formity to the dimensional tolerances shown in Figure 9. No signifi-
cant deviations were discovered during the dimensional inspection, which
was conducted using standard machine-stop inspection practices. The
wall thickness was measured directly using a dial gage set-up rather
than by taking the difference between outer and inner diameters

because it was found that the action of a three-point inner-diameter
micrometer could deform the specimen wall enough to cause error in the
wall thickness measurement. The actual wall thicknesses varied between

.04380 to .0505 inches from specimen to specimen.

All specimens were sent to the Air Force Materials Laboratory for X-ray
inspection of the gage section. No defects were discernible on the
radiographs; however, some radiographs have been returned to AFML for
image-enhancing treatment to determine whether some of the lower
strengths measured in biaxial testing might be attributable to defects

discernible under enhanced conditions.

The exterior surface of the gage section was inspected visually after

being wiped with alechol., A fair number of small pits on some specimens

was discovered in this manner. However, there appears to be nu correlation
between the location of fracture and the location of these pits. The lack
of correlation may be due to the existence of more severe pits at the inner-
diameter surface (which was not inspected because of its relative inaccessi-
bility) or may imply that such surface pits are not as effective as other

types of defects in reducing strength.

4.4 Fracture Patterns

Photographs showing the typical appearance of fracture crack patterns
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observed in the biaxial tests at 70°F are shown in Figures 13 through
18. The specimens were reconstructed after failure with the aid of

; adhesive tape. The original crack segment at which fracture initiated
is usually determinable by following the crack bifurcation patterns
back to their apparent origin., Figure 16 shows a particularly clear
example; the original crack is identified with an arrow. The orienta-
tion of the original crack with respect to the specimen axis may be

summarized as follows:-

{} 1) In uniaxial tension (under axial load applied along the
3 specimen axis) the crack is perpendicular to the axis
(Figure 13).

2) In uniaxial hoop tension (under internal pressure) and
also under axial compression combined with hoop tension,
the original crack is parallel to the speczimen axis (Figures
14 and 15).

3) In biaxial tension where the axial stress and the hoop stress
are nearly equal, the crack orientation is random (Figures
16, 17, and 18).

These observations, which are no different than those noted in References
1 and 3, imply that the failure plane is normal to the maximum principal
tensile stress in all the stress states tested with the exception of near-

equibiaxial tension. In near-equibiaxial tension the angular variation

of normal tensile stress is small and the fracture plane tends to be

randomly oriented.

At 2000°F, the specimens shattered upon failure into too many pieces to
conveniently reconstruct the crack pattern (Figure 19 shows only part
of the remains of a typical specimen). However, limited evidence tends

to show that the initial crack orientations follow the same trends
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observed it 70°F. Figure 20 shows & typical uniaxial failure at 2000°F
in which, as expected, the fracture plane is normal to the applied tensile
stress., Figures 21 and 22, incomplete with respect to the reconstruction
of the graphite specimen, show the tear in the nickel bladder which pre-
sumably followed the original crack in the graphite. Figure 21 shows

that the original crack in compression-tension was axially oriented,

and Figure 22 shows that the original crack in near-equibiaxial tension

was at an "odd" angle.

4.5 Fracture Data

The failure data are summarized in Table IX for room temperature tests,
and in Table X for 2000°F. The table for room temperature results
includes a listing of the parameters 6, X and o, defined in Figure 23,
which characterize the location of the midpoint of the initial crack
and its orientation. It may be seen, in Table IX, that the midpoints
of all initial cracks tend to occur within the uniform-wall-thickness
gage section of the specimen; however, as Figure 12 shows, the uniform-
stress section of the specimen is only about one half the length of the
one~-inch gage section; thus the actual stresses at failure might vary from
the nominal tabulated stresses (obtained from the equations of Section
4.,2.3) by a few percent, in addition to the usual "thick-wall' effect,

depending on the location of the fracture.

The stresses and strains measured at failure are plotted in Figures 2u
through 27. To aid in interpreting the data different symbols are used
to identify the parent billet of each specimen. The dotted lines in
Figures 24 ana 26 indicate the approximate lower-bound of the rocr:

temperature data previously reporteu in Reterence 1.

At the start of the program it was hoped that the three billets of ATJ-S
t

used in the biaxial tests would be sufficiently alike in properties that

ey

the mechanical data might be pooled to give biaxial failure envelopes
of some significance for similar billets of ATJ-S. Unfortunately, as

the strength data in Figures 24 and 25 show, the three billets are dis-

ug
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TABLE X

SUMMARY OF BIAXIAL FAILURE RESULTS AT 2000°F

(ATJ-S GRAPHITE)

Nominal - FAILURE CONDITIONS
Stress Specimen Axial Hoop Axial Hoop
State Number Stress Stress Strain Strain
(pgi) (psi)
1:0 5 L4910 —— .0058 -.,0005
1k L6860 ——— 0051 -.000k
26 5180 B .0053 -,000C
39 L340 - .00k9 -.000C
1:1.10 7 4110 4570 .0038 .0032
15 3390 3730 .0032 ,0026
3-8 4600 5070 .0043 .0032
1:1.20 33 L4090 4930 n.d. n.d.
1:1.35 18 3520 k700 .0033 .0030
19 k430 5860 .00L0 .00L3
28 3920 5380 .0026 .0035
0:1 Q 0 5120 -,0007 .0033
16 12 5120 -.0006 .0031
21 18 6750 n.d. .00kl
~0.1:1 10 ~600 5930 n.d. .0036
23 -7h0 T030 n.d. ,00k1
-1:1 17 -L820 k920 -.0062 .00kl
2-8 -4700 L8ko -,0057 .0038
4-8 -h130 41k4o -.00347 .0035
37 -3960 Loko ~-.00447 .0035
k1 -h620 4750 -, 0064 .0038
5y
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Figure 24. Biaxial Failure Stresses at 70°F (ATJ-S)
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cernibly different in biaxial behavior., Billet 10V9-27 is generally
distinctly weaker than the other two at room temperature, but seems

to be similar to 1C0-15 at 2000°F; billet 16K9-27 appears to be the
strongest at 2000°F and in the 1:1.26 stress state at room temperature,
although in compression-tension at 2000°F an anomalously low strength
was obtained. At room temperature billet 1C0-15 appears closer in
strength to 16K9-27 than to 10V9-27., Because of these differences
among billets it is doubtful that simply averaging the strengths
obtained in each stress-state, from specimens representing each of

only three disparate billets, would have much significance.

The data for each billet show that the average tensile strength in the
with-grain (hoop) direction tends to be reduced somewhat by the appli-
cation of either a tensile or compressive stress in the across-grain
divection, both at 70°F and 2000°F., The magnitude of this strength
reduction appears to vary from billet to billet. However, more data
points would be necessary to substantiate and quantify these tentative

conclusions.

For the design analysis of components, the lower-bound envelope of
strength is probably of greater interest than the average or median
envelope. It seems noteworthy that, at room temperature, none of the
data points violate the lower bound of the biaxial strength data reported
in in Reference 1. This lower bound, shown as the dotted line in Figure
24, appears nearly isotropic and conforms well to a maximum principal

stress envelope.

It should be noted that, whereas the stress states are biaxial (except

for a small radial compiessive stress resulting from the internal pressure),
the strain states are distinctly triaxial because the radial strains are

not necessarily negligible. In the absence of direct measurement, the

radial strains might be analytically estimated if an adequate constitutive
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law were available for the material (see Section 4.6). Furthermore,
the strains were measured at the external surface of each specimen.

It may be shown that the hoop strain gradient across the wall thickness
is greater than the corresponding stress gradient; therefore, the l
maximum hoop strains experienced by the specimen might be significantly
(hy ten percent or more) different from the measured values presented

in Figures 26 and 27.

4.6 Stress-Strain Behavior

The results of Refernce 1 showed that the tensile strains measured in
biaxial tension were larger than would be estimated from uniaxial
tensile stress-strain curves and the constitutive relations that are
commonly used (for example Reference 12) in stress analysis of graphite
components. This finding is corroborated by the results obtained here.
Figure 28 shows the strains measured on biaxial specimens in various
Stress states at a stress level such that the maximum principal stress
is 3500 psi. The data points in biaxia: tension iie on the same trend
line that was reported in Reference 1. The data shov that, instead of
the stiffening of strain response which might be expected from Poisson's
ratio effects, there exists a biaxial "softening" effect which produces
slightly higher strains in biaxial tension than in uniaxial tension. The

strains measured at 2000°F (Figure 29) follow a similar trend.

As pointed out in Reference 1, these findings suggest that revision of
presently used constitutive relations is necessary before accurate

stress analysis of ATJ-S components can be conducted.
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Section §

OFF-AXIS TESTS

5.1 Material and Anisotropy

The off-axis tests were conducted on material cut from ATJ-S billet
16K98-27. The characteristics of this billet, which was also used for
some biaxial specimens, have been summarized in Section 4.1. Figure
30 shows how billet 16K9-27 was cut; the sections used for the off-

axis study were:

P-1 used for off-axis tensile specimens (Figure 31)
P-II, used for on-axis tensile specimens (Figure 32)

P-III, used for measurements of acoustic velocity as
function of direction (Figure 33).

P-IV, used for on-axis and off-axis compression specimens
(Figure 34) ”

Acoustic velocities were measured along the axis of each tensile specimen
blank (6 inch long by 5/8 inch wide by 1/4 inch thick) and each compress-
ion specimen blank (5/8 inch diameter by 2 inch long). These measurements

and also the bulk density of each blank are presented in Table XI.

Acoustic velocities were also measured across the diameter of each of

the three disks excised from P-III (Figure 33); ihese measurements were
taken at 15 degree intervals around the circumference, and are summarized
in Figures 35, 36, and 37. It seems that acoustic velocity is a fairly
sensitive indicator of orientation. In each disk the maximum and minimum
velocities are obtained in directions that are 90 degrees apart. In the
2-3 disk (Figure 35) the difference between velocity extremes is large and b
the maximum and minima coincide with the 2 and 3 axes; this suggests that
the 2 and 3 axes coincide with the b (with-grain) and c¢ (across-grain)
directions of the material. In the 1-3 disk, (Figure 36) the difference
between maximum and minimum velocities is approximately the same as in the 2-3 N

disk, but the directions of maximum and minimum velocities are approximately
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TABLE XI

CHARACTERIZATION OF SPECIMEN BLANKS (OFF-AXIS STUDY)

Axial

Bulk Acoustic

Orientation Specimen Density Velocity
Angle Number gm/ce in/microsec
(1) (2) (5) (3) (%)

0° 01T 1.850 ,0859
027 1.849 0859
03T 1,848 086l
ouT 1.851 0861
0ST 1.857 .0866
01C 1.854 .0870
02C 1.854% .0875
03C 1.855 .0865
150 451T 1.853 .0925
452T 1.852 0943
453T 1.849 .0936
451cC 1.854 .0942
452C 1.851 .0958
453C 1.850 .0957
70° 701T 1,849 .1008
702T 1.8590 .1006
703T 1.851 .1007
701C 1.847 .1035
702C 1.848 .1034
703C 1.854 .1025
g0° 901T 1.856 .1040
902T 1.854 .1031
903T 1.855 .1025
901C 1.854 .10u48
902C 1.854 .10u0
903C 1.853 .1036

(1) Angle between specimen axis and parent billet axis
(2) T = tensile specimen; C = compression specimen
(3) By weight and external dimensions

(4) Measured at 1.0 MHz.

(5) All specimens fro= ATJ-S billet 16K9-27.
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Figure 35. Angular Variation of Acoustic Velocity, Disk
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T

15° displaced from the 1 and 3 axes; this implies that the true with-
grain (a) and across-grain (e) directions in the material do not coin-
cide, in that region of the billet, with the respective nominal direc-
tions (perpendicular and parallel to the geometric axis of symmetry of
the billet). Similar discrepancies between the nominal geometric axes
of a billet and the true principal axes of anisotropy have been measured
in ATJ graphite by X-ray techniques (Reference 13). Thus the discrep-
ancy noted in disk 3-1 is not necessarily due to an error in marking the
disk orientation. In the 1-2 disk (ligure 37) the difference between
maximum and minimum velocities is small leading to the conclusion that
the 1-2 plane approximates (withir about 15°) the a-b plane of the
material.

It seems apparent that excising a mechanical test specimen at a known

angle with respect to the geometric axis of the billet does not ensure

that the specimen axis has the same angle with respect to the true local

across-grain direction in the material. To explore this point, the

acoustic velocities measured on the test specimens have been plotted in }
Figure 38 as a function of nominal geometric angle; also shown in Figure l
38 is the expected trend of velocity vs angle of anisotropy (based on

the data from disks 2-3 and 1-3), It is seen that the trend of velocities

measured on the tensile specimens is approximately parallel to the expected

trend except that the velocities in the tensile specimens are generally

lower; this apparent low velocity in the tensile specimens may be due to

a systematic error in the velocity measurements resulting from the differ-

ence in geometry between the tensile specimen and the disks used to gener-

ate the expected trend. Because of the agreement between data points and

the parallel trend line, it is believed tha; the geometric angles of the

tensile specimens are close to the anisotropy angles, except for the nominal

45° specimens which may actually be closepr to 40°., The velocities measured

on the compressive specimens also seem to be systematically lower than

those measured on the disks; the specimens cut nominally at 70° appear to
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have, based on the trend line drawn parallel to the expected trend,
velocities corresponding to an anisotropic angle close to 80°. ‘hese
remarks relating the nominal geometrical angles of the specimens to
the anisotropy angles are necessarily speculative; they are intended
to point out some of the uncertainties in determining the true angle

between load axis and true across-grain direction.

5.2 Analysis of Shear Coupling Effects®

When a specimen of ATJ-S with uniform cross-section is loaded uniaxi-
ally along the c-axis or along any direction in the a-b plane, the
specimen deforms in the manner schematically indicated in Figure 39(a);
there are uniform lateral and longitudinal deformations, and the shear
strain exy’ is zero, However, under off-axis loading at some angle

to the c-axis, an unrestrained specimen would tend to deform as shown

in Figure 39(b); in addition to the uniform lateral and longitudinal
deformations there is a shear strain component Cuy’ The shear strain
results from the existence of terms in the off-axis matrix of elastic
constants which couple shear strains to normal stresses. This phenomenon
is peferred to as shear coupling. In a real specimen it is virtually
impossible to design the load introduction system (grips in tension,
loading platens in compression) so that it exerts no restraint against
the shear deformation. Under full restraint (rigid grips or platens
which allow no rotation or lateral deformation) specimen deformations
wou.d be as shown in Figures 39(c) and 39(d). In the case of on-axis
loading, a complex state of stress exists near the restrained ends, but
at some distance from the erlc 2 state of simple tension exists. In the
case of off-axis loading, the moments and shear forces applied by the

grips produce complex stress states throughout the specimen.

Full restraint at the specimen ends is probably never achieved in any
reai iest, and the actual degree of restraint may be difficuit to analyze.

To estimate the potential effects of shear coupling on off-axis strength

*The analyses described in this section were performed by B. R. Lyons
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data, some simplified analyses of stress distributions in off-axis

specimens were performed, as described below,

5.2.1 Simplified Analysis - A closed-form analysis of off-axis shear
coupling effects is available in Reference 15. The analysis assumes

a flat rectangular-section specimen in a state of plane Stress (Gzz =

Os = cy” = 0), with a partial restraint at the specimen ends:

u - - - =

5y = v=0;aty=0,x=0,1
where u = displacement in x-direction

v = displacement in y direction

This restraint may be thought of as a "clamping" of the specimen
centerline at each end.

The analytical solution of Reference 15 was applied to the case of
ATJ-S graphite using the approximate secant elastic constants listed in
Table XII. Figure 40 shows some results for specimens with length-to-
width aspect ratios of 2 and 6 at an orientation angle of u5°,

For an aspect ratio of 2 the axial stress at specimen mid-length shows

a maximum variation of 2% compared to the mean stress. For an aspect
ratio of 6 the effect of and restraint on the stresses at the mid-length
of the specimen is about 0.4%. The effect of the end restraint is to
increase the axial stresses at the ends of the specimen by approximately
12% and 22% for aspect ratios of 6 and 2, respectively. These results
indicate that the effect of partial end restraint on the axial stresses
at the mid-length of a uniform-section specimen is small. However, the
resulting stress concentrations at the ends of the specimen suggest the

use of a tapered specimen to prevent failure at the ends.

5.2.2 Tapered Specimen Analysis - A tapered specimen design does not

lend itself to an analysis using a closed form solution. Therefore, the
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TABLE XII

ELASTIC MODULI ASSUMED IN SHEAR-COUPLING ANALYSIS

Young's Moduli:

_ _ 5 .
E, = Eb = 1.35 x 10 psi

0.70 x 10% psi

3
1

Poisson's Ratio:

Vae = 0.10

Shear Modulus:

6 .
Gac = 0,475 x 10" psi

Note: Values above are estimated secant moduli at tensile

fracture stress.
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Figure 40. Axial Stresses at Mid-Length and Ends of Partially-Restrained
Uniform-Section OFf-Axis Specimens
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finite element program described in Reference 16 was employed. The

finite element model, like the closed form solution, assumes a flat,

plane stress, specimen; however, the end conditions are rigid non-
rotating grips. The specimens analyzed are shown in Figure ul.

Figures 42 and 43 show the stress distribution across the specimens

at the mid-length, end, and plane of peak stresses, for a 45° orien-
tation angle. Figures 44 and 45 show the stress distributions along

the length of the specimens at the center and near the edge of the tensile

and compression specimens respectively.

For the longer specimen, the effect of orientation angle on peak stress

concentration is summarized below:

6 Ratio of maximum stress
degrees to nominal stress
15° 1.02
459 l.04 )
70° 1.025 b
750 1.02 §

Altnough tapering the specimens does not eliminate the higher stresses

due to shear coupling, the stress concentrations are significantly reduced.
In the case of the short specimen, which corresponds roughly to a typical
compression specimen design, the peak stress is about 9% higher than the
nominal stress. In the case of the long specimen the peak stress is about
4% higher than the nominal stress. The distribution of axial stress at

the midlength of both types of specimens is almost uniform. These calcu-
lations were based on full restraint at the specimen ends. Actual restraint
is likely to be less severe and, presumably, the actual stress concentra-
tions would be smaller. It should be noted that the analysis was linear,
based on estimated secant moduli, and that it applies strictly only to thin

flat specimens.
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5.3 Compressive Test Method

The specimen configuration used for compression testing, a circular-
section dogbone design, is shown in Figure 46, The ratio of length
to diameter is necessarily small to avoid buckling. The specimens
were marked during machining to retain knowledge of their orientation
wizhin the billet.

The specimens were tested in the fixture shown in Figure 47. The
rigid yoke, guide bushings, and load rods, are the same as used in
biaxial testing at room temperature. Loads were applied with an

Instron test machine at a cross-head speed of 0.05 inches per minute.

Strains were measured using bonded strain gages mounted at the mid-
section of the specimen as indicated in Table XIII, Two axially
oriented gages were used in all cases to allow estimates of average
axial strain relatively free of the influence of bending. Additional
gages were provided in some instances to give transverse strain infor-

mation.

5.4 Tensile Test Method

The tensile specimen used for the off-axis program has a 1/4-inch square
cross-section and is tapered in the a-c plane of the material (Figure u48).
The length of the gage section (2 inches) is 8 times the width and the
total length of the graphite piece 1is 6 inches. The design was intended
to provide sufficient length to minimize the shear-coupling effects dis-
cussed in Section 5.2. To further reduce the shear-coupling effects, the
load was introduced through pin-loaded aluminum doublers bonded to the
graphite using a relatively "soft" adhesive, 3M Company EC2216. The bond-
ing and curing (4 hours at 180°F) of the adhesive was done in a specially-
built jig (Figure 49) which ensures that the pin-centers are aligned with

the centerline of the gage section.

Rectangular-section specimens, rather than the standard circular-section

specimens, were selected because of greater ease in applying strain gages
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TABLE XIII

STRAIN GAGES USED IN OFF-AXIS COMPRESSION TESTS

Strain Gage Positions:z) Orientation(s)
and Type (&)

Specimen L;it R;ght F;gnt

Number
(1) A T A T

01C, u51C, 701C, 9G1lC v - v -

02C, uS2C, 702C v v v -
03C, 453C, 72¢3C

902C, 903C v Iv v Iy

(1) Specimen number code: for example, 01C denotes 6 = 0°, Specimen #l, compression;
(2) Position numbers shown in sketch be Q?F denotes 6= 45, Specimen #3, compression.
(3) Orientation: A = axial, T = transverse

(4) Strain gage type IV = Micromeasurements Inc. Type EA-13-062AK-120

(see also Table XV) V = Micromeasurements Inc. Type EA-06-125AD-120

LOAD l
)

NOMNAL C-ANS

| wa-—— MID-LENGTH

3

4
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so that their axis is oriented accurately with respect to the load axis,
and so that the plane of strain measurement is well defined with respect

to the billet axis.

The specimens were pulled in an Instron test machine at a cross-head

speed of 0.05 inches per minute. The load train is shown in Figure 50.

Strain information was obtained using bonded strain gages. A variety
of gage positions and orientations was used, as indicated in Table XIV.
In additi. . to measurement of axial strains at the midpoint of the gage
section, the strain gages listed in Tapble XIV permit the measurement
of some transverse strains at the mid-length, and axial strains at the
tangent point where the gage section blends into the fillet section.
The strain m=asurements at the tangent point are intended to provide a
measure of the maximum Stress concentration resulting from shear cou-
pling effects since the analysis of Section 5.2 predicts that maximum
stresses will occur near the tangent point. Table XV summarizes the
manufacturer's information on the characteristics of the strain gages

used on both the tensile and compressive specimens,

5.5 Results in Compression

5.5.1 Fracture Surfaces - Upon fracture, each compression specimen

shattered into several fragments; however, it i.as possible to reconstruct
the specimens. In each specimen, with the exception of specimens 702C

and 902C, a well-defined plane of characteristic surface texture was
identified as being the primary path of fracture. Typical examples are
shown in Figure 51. To the naked eye, these primary planes have a grossly-
textured smeared appearance which coatrasts with the appearance of typical
tensile failures wnich nave a fine-grained "crystalline" appearance. In
most cases, the surfaces of what are believed to be secondary fractures

in the coupressive specimens had the appearance of typical tensile failures.

In some cases the primary fracture surface consisted of two intersecting

planes as shown schematically in the sketch in Table XVI. The angles
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Figure 50, Tensile Load Train for Off-Axis Tests.
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TABLE XIV

STRAIN GAGES USED IN OFF-AXIS TENSILE TESTS

y
Strain Gage Positionsz) Orientationsa) and Type( ).
Tensile Mid-Length Tangent Point
Specimen Left Right Front Back Left |Right
Number (1) #1 #2 #3 #u #5 #6
A(a) T A T A T A T A A
01T, 451T, 703T, soiT | I - I -] - - - - I I
05T I - I - I - I - - -
ouT - - - - | - - - - - -
02T 452T 701T _ - - - 1I TiI iI 11X - -
03T 4537 702T
9027, 903T II I1I II IIT |11 I1I II II1 - -

(1) Specimen number code: for example, OLT denotes 0° specimen, number 1, tension;
453T denotes 45° specimen, number 23, tension.
(2) Strain gage position numbers shown in sketch below.
(3) Orientation: A = axial
T = transverse
(4) Strain gage type: =~ = No strain gage

(see also I = Micromeasurements Inc. Type EA-06-125BB-210
Table XV) II = Micromeasurements Inc. Type EA-13-062TT-120, Section 1
II1 = Micromeasurements Ine. Type ©A-13-062TT-120, Section 2
LoAD
5 NoIMINAL C-AXIS

54 | &—q- -TANGENT PoINT
i t
X 1.0
143 2 YV o MID-LENGTH
3!
B 785
4
92




TABLE XV

STRAIN GAGE CHARACTERISTICS, OFF-AXIS STUDY

Transverse Grid Grid
Gage Sensitivity Length, Width,

Number Manufacturer's* Designation Factor Percent Inch Inch
I EA-06-125BB-120 2.085 +0.8 0.125 0.088
II EA-13-062TT-120, Section 1 2.015 +1.7 0.062 0.075
III EA-13-062TT-120, Section 2 2.035 +1.1 0.062 0.075
1v EA-~13-062AK-120 2.05 +0.9 0.062 0.062
v EA-06-125AD-120 2.10 +1.3 0.125 0.125

Note: All gages installed using Eastman 910 cement.

*Micro-Measurements, Romulus, Michigan
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FRACTURE ORIENTATIONS
OFF-AXIS COMPRESSION (ATJ-S GRAPHITE)

TABLE XVI

AN \)\2\

N

0

“~ NoMINAL a-c PLANE

95

Specimen
] Number B A Ao Remarks
0 01C 0 y1o -
02C 50° ylo -
03C 80° 35° -
y50° 451C 28° 33° -
452C 0° 28° y1°
453C 11° 22° yyo
70° 701C 50 26° y2¢
702C (0°) ? ? complex fracture
703C 26° 36° -
90° g9nic 110 37° - complex fracture
902C (5°) (30°) ?
303C o° 33° y5°
Note: 8, 7‘1’ and A2 are defined in sketch (below) of broken specimen.



between the load axis and the primary fracture planes ranged between
22° and 45° as indicated in Table XVI., When the fracture plane orien-

tations are related to the geometry of the parent billet, as in Figure
52, it is found that:

a) In the off-axis tests at 6 = u45° and 70°, the fracture
planes seem to lie preferentially so that they make as
large an angle as possible with the nominal c-axis of the
material; in other words, the fracture tends to occur

nearly on the a-b plane,

b) In the on-axis tests in the across-grain direction
(6 = 0°) the fracture plane orientations are approxi-
mately 40° to the c-axis. As might be expected from
the "layer" model (Figure 1) these planes seem random-
ly oriented with respect to the plane of the parent
slab.

¢) In the on-axis tests in the with-grain direction
(6 = 30°) the fracture planes tend to occur so that
their normal vector lies in the plane of the parent
slab.

These observations seem to support the view that compressive failures
occur as a result of shear stresses, and that the plane of lowest shear
strength is close to the a-b plane of the material. These conclusions
must be tempered by the fact that the mechanisms of compressive failure
are poorly understood in general, and by the possibility that in so
short a specimen the shear coupling effects may be of overriding sig-
nificance. Another related factor is that the projected axial length
of the primary fracture plane typically is greater than the 1/2-inch

gage length of the specimen; thus there are significant stress variations
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along the fracture plane (see Figure 45 for general insight, although

the analysis was for flat rather than round specimens).

5.5.2 Compressive Data - The strength results are summarized in Table

XVII. TFigure 53 provides a plot of strength versus 6, the angle between
load axis and the billet axis of symmetry. Also plotted is the Young's
modulus which was taken as the quotient of the nominal stress and average
axial strain, measured at a stress level of 500 psi. Figure 54 shows
typical axial strain response curves for each orientation and Figure 55
provides a cross plot of strain data at two selected stress levels.
Analysis of the transverse strain data was not completed in time for

inclusion in this report.

The strength data (Figure 53) shows the with-grain (8 = 90°) with strength
to be lower than the across-grain (8 = 0°) strength, and the off-axis
strengths to be about the same as the with-grain strength. The anticipated
(Section 3.2) minimum in strength at 6 = 45° was not observed. The trend
of strengths seems at odds with the inference drawn from the fracture
plane orientations (Section 5.5.1) that the plane of maximum shear stress
in a 45° test is the weakest plane in the material. No convincing argu-
ment has been formulated to explain the observed trend of compressive

strengtihs; factors which may enter into such an explanation include:

a) the stress gradients resulting from shear-coupling effects

in the off-axis tests.

a) the effect on the material of the relatively large axial

strains measured near fracture.

The strain data (Figures S4 and 55) follow, qualitatively at least, the
expected trend of increasing stiffness with increasing 6. However, it
shoutd be noted that the compressive Young's moduli measured at all
values of 6 other than zero degrees, are lower than those measured in

tension (see Section 5.6). A similar discrepancy between compressive
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TABLE XVII

SUMMARY OF COMPRESSIVE FRACTURE DATA (OFF-AXIS STUDY)

Axial
Orientation Specimen Ultimate Strain
Angle Number Stress at
(1) (2) psi Failure
(3)
0° 01C 14050 - (4)
02C 14000 -
03C 13800 -
y59 451C 13100 -
452¢C 13100 .054
453C 13000 .052
70° 701C 12900 -
702C 12700 -
703C 13200 -
90° 901C 13100 .042
902C 13200 .0usg
903C 13300 046

(1) Angle between load axis and parent billet axis
(2) All specimens from ATJ-S billet 16K9-27

(3) Tabulated strains are average of two strain gages mounted 180°
apart at specimen mid-length.

(4) Absence of strain data due to strain gage failure prior to
specimen failure,
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and tensile moduli has been reported for ATJ-S graphite in Reference
14, However, the discrepancy does not seem to be understood at this

time,

5.6 Results in Tension

5.6.1 Fracture Orientations - Figures 56, 57, 58, and 59 show the

fractured tensile specimens., In Figures 56 and 57, which show the

0° and 90° specimens, the fracture planes are at 90° (within 1°) to
the load axis as might be expected. In the case of the off-axis
specimens, Figures 58 and 59, the fracture planes tend to be angled
(between 3° and 9) to the plane that is normal to the load axis. When
the fracture plane in the off axis tests is related to the billet
geometry it is found in all cases that the angle is such that the

fracture plane is closer to the a-b plane of the material (Figure 60).

Six ou*t of the fourteen specimens tested failed at the tangent point
betuc.. the gage section and the fillet. However, no obvious corre-

lation between failure location and measured strength was observed.

5.6.2 Mechanical Data in Tension - The fracture results are summarized

in Table XVIII and plotted as a function of angle 6 in Figure 61,

Young's modulus, estimated as the quotient of stress and strain taken

at 1000 psi stress, is also plotted in Figure 61. Figure 62 shows

typical axial strain responses. The data show relatively little scatter ;
and provide fairly smooth trends of properties as a function of angle.

The transverse strain measurements and the axial strains measured at

the tangent poin®t were not analyzed in time for presentation here.

5.7 Comments on Cff-Axis Biaxial Strength

Figure 4 in Section 3.2 showed schematically how off-axis tensile data
might bs used to infer an approximate failure envelope in the tension- :
tension quadrant. Also, in Section 3.2, the suggestion was made that

failure in the highly compressive portion of the compression-tension
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TABLE XVIiI

SUMMARY OF TENSILE FFACTURE DATA (OFF-AXIS STUDY)

Orientation Specimen Ultimate Axial
Angle Number Stress Strain
(D) (2) psi at Failure
(3)
0° 01T 4075 .0053
02T 4200 .0057
03T 4100 .0052
ouT 4290 - (4)
0ST 4540 .0058
y50 451T 4750 .0051
4527 4650 ,00u9
4537 4640 .0051
70° 701T 5100 .0046
702T 5050 .00us6
703T 5030 .00uU6
90° 9017 5400 .00u7
902T 4850 .0639
903T 5350 oous

(1) Angle between load axis and parent billet axis.

(2) All specimens from ATJ-S graphite billet 16K9-27,

(3) Tabulated strain is average of two strain gages.

(4) Specimen 04T was not strain-gaged.
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quadrant occurs as a result of the maximum resolved shear stress. In
Figure 63, the off-axis trends obtained in this study are superposed
on the available biaxial data (Section 4.5) to provide an estimate of
off-axis effects on the median biaxial failure envelope. In preparing
Figure 63, only the data from billets 1CO0-15 and 16K9-27 was used in
estimating median strengths; however, the "lower bound" line includes
all data obtained in this program and also from Reference 1, Since
biaxial specimens typically give somewhat lower strength values in
uniaxial tension than do uniaxial specimens, the uniaxial off-axis

points plotted in Figure 63 have been normalized to the biaxial data.

Figure 63 shows that the potential effects of off-axis biaxial loading
are small in comparison to the scatter in on-axis biaxial data. Further-
more, the lower bound strength envelope in biaxial tension appears to be
more isotropic than does the median-strength envelope. Therefore, the
sensitivity of the lower-bound biaxial tension envelope to off-axis
loading might be rather small. In the compression-tension quadrant,

in the absence of more compression-tension data, the dotted lines

suggesting the median failure envelopes ar¢, of course, speculative.
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Section 6

CONTINUING EFFORTS

This interim report is being published to disseminate a preliminary

summary of available data as soon as possible. Analysis of the biaxial

and off-axis data is continuing and the results are to be published in

the next report. Among the continuing efforts are:

1)

2)

3)

The biaxial fracture data obtained in this program and the previous
effort (Reference 1) are being reviewed to assess the role of billet-
to-billet variations. An attempt will be made to pool the data in a

way which best vreveals the behavioral trends cf the material.

Biaxial stress-strain curves are being prepared. The specimen stress
analyses will be reviewed to determine to what extent specimen configura-
tion may be responsible for the biaxial "softening" described in Section
4.6. The results of Reference 3 are also being reviewed to determine

whether similar effects were measured on AXF-85Q graphite.

Further analysis of the off-axis data is being conducted. Transverse
strain curves are being prepared which, hopefully, will give further
insight into the constitutive relations of ATJ-S graphite. The finite
element stress analyses are being reviewed to provide estimates of
shear-coupling effects on measured strains and on fracture plane

orientations.

In addition, the development of triaxial test techniques is continuing

and will be described ii. the next report.

Preceding page blank
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