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ABSTRACT

Ti-6AI-4V plates were spin-forged into hemispheres so that the

effect of the spinning process on plastic strain anisotropy could be examined.

Spinning temperatures were varied from 400 to 17250F, and plastic strains

in the longitudinal and transverse directions were measured. The plastic

strain anisotropy and texture developed by spin-forging were similar to those

produced by other forms of processing and resulted in texture strengthening

at low spinning temperatures.
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I. INTRODUCTION

Biaxial strengthening can be achieved in hexagonal close-packed metals

when texturing minimizes the through-thickness strain (Refs. 1-3). This

strengthening can be used in pressure vessel applications, in which biaxial

stress conditions obtain (Ref. 4). Techniques for producing textured pressure

vessels in the alpha-beta titanium alloy Ti-6A1-4V have been developod that

involve first rolling into sheet and then drawing into hemispheres or welding

into cylindrical tanks (Ref. 5). Previous studies on the effect of forming

processes on plastic strain anisotropy indicated that spin forming may pro-

duce texturing in a hemisphere without further processing (Ref. 6).

There are a number of different types of spinning operations, including

conventional spinning (sometimes called shear spinning), extrusion spinning,

draw spinning, and spin forging. Of these, two are suitable for production of

domes that can be used for fabrication of spherical pressure vessels. These

are conventional spinning and spin forging, which are illustrated in Figure 1.

In conventional spinning, shown on the left in Figure 1, each element in the

blank undergoes appreciable radial displacement with little change in thickness.

This is essentially a process of laying the sheet back over the mandrel. In

spin forging, shown on the right in Figure 1, each element is reduced in thick-

ness with a simultaneous elongation in the axial position. There is relatively

little change in the radial position. This is essentially a squeezing process.

The deformations in spin forging are shown in Figure 2. The deformation

takes place by shear in a direction parallel to the spinning axis. If the man-

drel were conical with a half angle a, the final thickness of the piece would be

given as

tf t sina

where to is the original thickness. However, for a hemidpherical mandrel,

the spinning angle a varies with the distance along the spinning axis and is
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Figure 1. Two Spin-Forming Methods for Production
of Hemispheres
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Figure 2,. Schematic Diagram Showing the Parameters
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given by the angle between the spinning axis and the tangent to dome. This

creates three problems: (1) the thickness of the spun piece varies along

the axial direction, (2) there is too little deformation near the pole of the

dome, and (3) there is too much deformation at the equator; in fact, as the

spinning angle approaches zero, the shear strains approach infinity.

These problems can probably be overcome by (1) a combination of

internal and external spin forging, (2) intentional underspinning, or (3) con-

ventional spinning of preformed spin-forged cones.

This study examined the effect of the spinning process on plastic strain

anisotropy to determine whether texture strengthening would result.

-4-



II. EXPERIMENTAL PROCEDURE

The spin-forging for this program was done by Trimetals Corp. of

Santa Fe Springs, California. Blanks 8 in. in diameter, of 150-in. -thick,

mill-annealed Ti-6A1-4V, were spin-forged into 6-1/2-in. -diam hemispheresr ~at various temperatures from 1725 to 400'F. The temperatures were

measured with a contact pyrometer both before and after spinning. The

final thickness of the blanks near the bottoms of the hemispheres ranged

from 0. 045 to 0. 085 in. The spinning was carried out .'ntil the shear

strains for fracture were exceeded.

The test specimens were taken from near the bottoms of the domes,

so that material processed to its limit of spinnability was examined.

Figure 3 shows the direction of the specimen with respect to the spun

dome. The tensile axis is in the circumferential direction. Pole figure speci-

mens 2 in. in diameter were also taken from near the bottom of the dome.

The techniques used for pole figure determination have been described

previously (Ref. 7). Because of the difficulty in working with curved speci-

mens, sections were cut from the dome and preflattened in a hydraulic press

after they were heated to 13000F. This technique was chosen because work

at Lockheed (Ref. 5) indicated that no serious reduction in plastic strain

anisotropy would result from this treatment.

After flattening, the specimens were spark-discharge-machined to a

length of 2-1/2 in. and to a gage section 1-1/4 in. long by 1/3 in. wide. The

specimens were then ground to a gage thickness of about 0.040 in.

Plastic strain anisotropy was measured by use of stacked rossette

strain gages in the longitudinal and transverse directions. The strains

were measured to 3 percent; the thickness strains were calculated from

the measured strains with the assumption of constant volume in the

plastic range. The very small final thickness of the tensile specimens

made the use of thickness gages quite impractical in this case. In previous

studies with Ti-6A1-4V, the constant-volume approximation was corrpared

-5-
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to strains measured in the through-thickness direction and found to be valid

(Ref. 6). The strains from the rossette were recorded on en X-Y recorder,

and a stress-strain diagram was also plotted with a strain-gage extensometer.

A I

f
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Table 1. Theoretical Biaxial Strengthening due to
Plastic Strain Anisotropy

R BIAXIAL YIELD STRENGTH

UNIAXIAL YIELD STRENGTH
0.5 0.93
1.0 1.00

2.0 1.22

3.0 1.41

4.0 1.58

5.0 1.73

9.0 2.24



III. THEORETICAL BACKGROUND

Plastic-strain anisotropy is expressed in terms of the strain ratio R,

defined as the ratio of the increment in plastic strain in the width direction

to the increment in plastic strain in the thickness direction when a uniaxial
1

tension is applied in the longitudinal direction. Biaxial strengthening can be

calculated from the plastic strain anisotropy by use of Hill's theory:

~x
l ='r2 = -2 RI(R+ I)

where a 1 and a2 are the principal stresses, R is the strain ratio, and X is

the uniaxial tensile yield strength.

Table 1 presents the theoretical biaxial strengthening, expressed in

terms of the ratio of biaxial to uniaxial yield strength, due to plastic strain

anisotropy with the assumption of isotropy in the plane of the sheet. For

R < 1, the biaxial yield is approximately nine-tenths of the uniaxial yield

strength. For isotropy, R = 1, the ratio of biaxial to uniaxial yield is one.

Values of R greater than one result in biaxial strengthening. For instance,

at R = 9, the biaxial yield strength is 2-1/4 times the uniaxial yield strength.

A previous study of the effect of processing on texture strengthening of

Ti-6AI-4V, Figure 4, reveals that the R value depends on the forming tempera-

ture (Ref. 6). The high rolling temperatures result in R < 1, indicating biaxial

softening. Some biaxial strengthening occurs from 14000F rolling, while cold

rolling produces considerable texture strengthening. Cross cold rolling results

in exceptionally high R values.

The important conclusions of the previous study were (1) temperature of

forming influences the plastic strain anisotropy, with greater R values occur-

ring at the lower forming temperatures and (2) the type of processing also

influences plastic strain anisotropy; for instance, cross rolling is more

effective than unidirectional rolling.

o-9,-
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IV. RESULTS

Table 2 summarizes the results of the spinning experiments performed

over the range of temperatures from 400 to 1725 0 F. The final thickness is

f the minimum thickness that occurred near the maximum spinning angle at the

base of the dome. As the spinning temperature decreases, the maximum

spinning angle increases. The spinning angle is reflected in the final thickness;

however, these values are about 150 to 200 percent greater than the final

thickness calculated from the sine law. This underspinning is due to elastic

recovery.

The R ratio increases with decreasing spinning temperature. At 17250F,

R < 1. 0, indicating texture softening. At 14000 F, the R is slightly greater

than 1. 0, indicating some texture strengthening. Strong texture strengthening

occurs at spinning temperatures of 1000°F and below, but especially at 4000 F.

Because the maximum spinning angle at 4000F is very large, there were no

attempts to spin-forge at lowe" temperatures.

The R values are an average of two specimens from along the circum-

ference of the dome, except for the domes spun at 850, 750, and 4000F, for

each of which only one specimen was obtained. The scatter between specimens

from the same dome was generally small, except for one of the domes spun at

10000F. The absolute scatter in R for the first three domes spun between 1725

and 1000 0 F does not exceed ±-0. 2. Scatter from the specimens of the fourth

dome was d 0.7.

The values of R from two domes spun at the same nominal temperature

can be different. For the case of the 10000F spinning, the scatter between

domes falls within the scatter for the specimens from each dome. For the

600 0 F spinning, the difference in R values between domes is large, while the

scatter for each specimen from the same dome is very small. This discrep-

ancy is probably due to the fact that the nominal temperatures can vary by plus

or minus fifty degrees from the true spinning temperature, especially at low

~-II-



temperatures, since the spinning temperatures were measured only at

the beginning and the end of the spinning pass.

IL

Table 2. Summary of Results

TEMP, FINAL THICKNESS R MAX SPINNING
OF to , in. ANGLE a, deg

1725 0.051 0.7 3

1400 0.046 1.3 3

1000 0.050 2.5 12

1000 0,055 2.9 14

850 0.056 2.1 15

750 0.049 3.0 12

600 0.046 2.3 12

600 0.059 3. 17

400 0.085 4.5 23
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V. DISCUSSION

Figure 4 compares the R values from spin-forging to those from other

types of processing. The trend for all forming processes is clear; the R

values increase with decreasing forming temperature. At spinning tempera-

tures of 1000 F and less, the plotted points are the average of the two

specimens from each dome. At 1400 and 1725 F, the R values from each

specimen are plotted. The figure presents the total scatter for all specimens

tested, except for those from the 1000 0 F dome.

There are insufficient data to conclusively indicate whether processing
K does indeed influence plastic strain anisotropy, at least above room tempera-

ture. For instance, at 1725 0F, the absolute scatter in R for each process

(forging, rolling, and spinning) was ± 0. 1, which suggests that the effect is

relatively small. The solid curves in Figure 4 bracket the range of R values

for all processes, but, at room temperature, the spread is actually due to

real differences in R resulting from processing differences between unidirec-

tional and cross rolling. The absolute scatter for the cross-rolled matexial

is ± 0. 1; for the unidirectionally rolled it is :h 0. 6. Moreover, there are

distinct textural differences that suggest that the cross-roll d material should

have a higher R value than unidirectionally rolled material.

The degree of plastic strain anisotropy can be qualitatively predicted

from the basal pole figures for the various forming processes. The ideal

texturing would consist of all basal poles in the sheet direction so that thare

are no <1120> slip vectors through the plane of the sheet.

Figure 5 presents the (0001) basal pole figures for three processing

cases with high R values: cross-rolled at room temperature, unidirectionally

rolled at room temperature, and spin-forged at 400 0 F.

In cross-rolled material, there is a strong basal pole concentration near

the sheet normal, while in the unidirectionally rolled material, there is a

strong concentration of basal poles in the transverse direction as well as in the

-13-
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AT RT ROLLED AT RT 400OF

Figure 5. Typical Basal Pole Figures Resulting from
Processes that Produce High Strain-Ratio Values

R :0.6 R: 1.0 R 1.3
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ROLLED AT SPIN-FORGED SPIN-FORGED
1725 0F 1725 0 F 1400 0 F

Figure 6. Typical Basal Pole Figures Resulting from
Processes that Produce Low Strain-Ratio Values
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sheet normal direction. Ihis accounts for the lower R values in the unidirec-

tionally rolled material. Spin-forging at 400°F results in a distribution of basal

poles and an R value similar to that for room temperature, unidirectionally

rolled material.

Figure 6 shows the basal pole figures from material that exhibited low

R values. For the case of 17 Z5 qF rolled material with R < 1, strong

concentrations of basal poles occurred in the principal directions. For the

material forged at 1725°F or spin-forged at 1400 0 F, the distribution of basal

poles is more general. For these cases, R is equal to or a little greater than

one.

-15-



VI. CONCLUSIONS

1. Plastic strain anisotropy, which should produce texture

strengthening, can be induced in Ti-6AI-4V by spin forging.

2. The plastic strain anisotropy resulting from spin forging is

similar to that resulting from other forms of processing.

3. R values increase with decreasing spinning temperatures.

4. Basal pole figures qualitatively predict the degree of plastic

strain anisotropy for all forming processes.
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