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UNCLASSIFIED ABSTRACT

PRECISION CENTRIFUGE TESTING OF AN TR-0172(S2970-10)~1
ACCELEROMETER, by C H. Neugebauer 71 SEP 15

A simple, direct, mathematically correct procedure for reducing accelerometer data
obtained on a precision centrifuge is presented. The procedure provides a means of
optimally separating even and odd terms and is applicable to the determinatior of all
the nonlincar coefficients of the assumed model equation. The effects .of the radial
acceleration gradient and of rotation are investigated. Criteria for establishing the
statistical significance of the coefficients and the validity of the model equation
(dependent on the application) are also presented. Finally, there is a discusgsioa on
the limitations imposed on the determination of the coefficients by angular compliance
of the centrifuge and of the mounting fixture, by misalignment angles, by uncertainties
in the length of the radius arm, and by relative:-magnitudes of the coefficients.

(Unclassified Report)
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SECTION 1
INTRODUC TION

Accurate knowledge of accelerometer nonlinearities is required in the

application of guidance control to today's missiles and space vehicles, Though some
attempts have been made to determine these coefficients on a precision linear shake
table, the only successful method, thus far, has been by use of a precision ccntrifuge.
However, the use of a precision centrifuge does not guarantee that the noniinear
coefficients will be accurately determined since there are several significant error-

sources that must be controlled,

i A data reduction procedure to minimize the effects of misalighmeats and radius-

: arm uncertainties has been described by Evans and Fuhrman (Ref. 1)and is widely -

) used by the industry. In this-procedure, quadratic equations ara ’sepag:i'atcly fitted :
to accelerometer output data taken-in two positions -(acceleration vector ‘aléhg*"pl'u_'s
and minus input axis) by the method of least squares, "‘i’ﬁe constailt'aﬁd lihear terms,
so obtained, are. subtracted from the data and a best fit cubic equation is. ﬁtted to 7

<,

[N
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the resultmg combined residuals.

Though- the above procedure is- mathematically incorrect, it works- faii.‘ij"we‘l'l" 7 :
for determining the. nonlinear coefficients because these coefficients are relatively :
small and do not need to-be known with great precision. 7 ‘ ;
] Evans and Fuhrman have also cutlined: an iteration procedure- to improve:the f
accuracy with- which the nonlinear coefficients inay be obtained. R
v;;:

In this paper, a simpler, more direct, more accurate,, and=mathexqatigauy
correct data reduction:procedure-is presented. It is a procedure- in which all the
data (bipolar) are combined-at once for the optxmum separation.of even and odd terms.
It does involve a larger matrix of simultanecus equations than the-method- of Evans
and Fuhrman but-with.modern computers, even desk computers, this is no great

byt
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The data reduction procedure hus been applied not onty for obtaining the input
axis nonlincar coefficicnts but also for obtaining all the sther nonlinear coefficients

~

of the assumed model equation. Eq. (2-1). Methods for establishing the uncertainties
of the cocfficients and the adequacy of the model equation for particular applications

are also presented.

It is shown that the radial acceleration gradient, inherent to a centrifuge, has
no cffect on a rigid body pendulum but that the rotation may affect the results due to
product of incertia torques. In addition, there is a discussion on the severe limitations

imposed on the determinat.on of these cocefficients by

(1) misalignment angles

(2) uncertainties in the length of the radius arm

{3) relative magnitudes of the coefficients

(4) angsular compliance of the centrifuge arm and of the mounting

fixture about all three principal axes.

The above limitations arc reasonably independent of the data reduction procedures.
Limitations (1) and (2), above, were discussed by Evans and Fuhirman with regard to
obtaining bivs and scale factor but not with regard to their effects on the determination

of the nonlinear cocfficients. in general,

The misalignments include not only the misalignments of the true input axis
with respect to the accelerometer mounting surface(s) but also the misalignments of
fixture mounting surface(s) and the centrifuge mounting surface(s) with respect to the
centrifuge and gravity acceleration vectors, In addition, misalignments can be introduced

by tightening of mounting serews, by dirt on the mwunting surfaces, or by cther causes.

Depending on the magnitude of the nonlinear co-fficients, it was found that the
angular compliance of the centrifuge arm and mounting fixture should not exceed about

1 or 2 arc second per g about any axis.




SECTION 1l

MODEL EQUATION

For convenience in this presentation, the model equation for a linear, pendulous,
nongyroscopic, torque balanced accelerometer is expressed in terms of the applied
acceleration components along the true input, pendulous, and output axes rather than
aiong the reference axes as given in Ref, 2. The misalignments 6 P and 6 o (Ref. 2)
of the true input axis with respect to the input reference axis are included later in the
misalignments of the accelerometer axes with respect to the centrifuge and gravity
acceleration vectors.

_E_ _ ‘ 2., .3 2 3
A= Kli = Ko +a, o+ KZiai + l<3iai + szap + K3pap
2 3 i (2-1)
* K203‘0 * KSan * Kipaiap * l(‘poapao * Koi”‘oai * Kt|ai|ai
where
A = acceleration indicated by the accelerometer — gl
E = accelerometer output-output units
2y ap, a, = applied acceleraltion2 components along the true input,
pendulous, and output (pivot) or flcxure axes, respectively —g.
Ko = bias~g
Ky; = scale factor — output units/g
, 2
Ko = second order input axis coefficient ~g/g

lg is a unit of acceleration. For convenienc?, it is usually taken in be the local value
of gravity though some standard value may be chosen, if desired.

‘)‘Applied acceleration refers tc nongravitaticnal acceleration since an accelerometer
cannot sense the acceleration of free fall. The attractive force of gravity acting on
an earthbound accelerometer is equivalent in its effect to an upward applied
acceleration of one g.

w
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Kq; = third order input axis coefficient —g/;_.;.3
Koy Koo = second order cross-axis coefficients — g./g2
Kap’ K3o = third order crecss-axis coefficients — g/g_a
Kip’ Kpo’ K,j = cross-coupling coefficients -—g/g_z

K = torquing power (heating) coefficient — g/gz

t

The output units may be in volts, mA, pulses/sec or other convenient units.
Linear cross-axis sensitivity terms, Kpap and K 0% have not been included in the
mode! equation since they cannot be distinguished from misalignments of the input

axis about the pendulous and the output axes.

The input reference axis (IRA), the pendulous reference axis (PRA), and the
output reference axis (ORA) form a cartesian, orthogonal coordinate system which is
generally indicated by case markings and/or mounting surface(s). The true input
axis (IA), pendulous axis (PA), and output axis (OA), to which Eq. (2-1) refers, are
generally slightly misaligned with respect to the reference axes and can ouly be
de‘ermined by test, The output axis (OA) is mechanically determined by the flex or
pivot axis und the pcsitive direction is chosen arbitrarily. The positive direction for
PA is orthogonal to OA and in the direction from the flex or pivot axis through the
centroid of the proof mass when the proof mass is at its null position. The three
axes form a right-hand orthogonal, coordinate system with the origin at the centroid

of the proof mass and such that

OA x 1A = PA (2-2)
where OA, IA, and PA are unit vectors along OA, IA, and PA, respectively.

If the torquing power is kept constant, as it is in some pulse torgued systems,
then the coefficient Kt of Eq. (2~1) may be zero:.; Terms may be added to or deleted

from Eq. (2-1) as appropriate for the type of accelerometer and the requirements of
the application, The data reduction principles outlined herein may be applied to any

reasonable modei equation.

3'I'hem may be other scurces than torquing power for this term.




SECTION III

ACCELERATION GRADIENT EFFECTS

In centrifuge testing of an accelerometer, it is evident that the acceleration
field is nonuniform; it varies linearly with the radius from the axis of rotation. The
question is frequently asked: What effects, if any, does this linear acceleration gradient

have on the accelerometer ?

Construct a right-hand, orthogonal coordinate system X¥Z that rotates with
the centrifuge as shown in Fig. 1. The Z axis coincides with the rotation axis and
the X axis passes through the center of gravity, C, of the proof mass (the procf mass
includes all pendulous parts and, in general, must be treated as a compound pendulum).

Z
b e
k
t E 0 = o Y
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- M
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Figure 1. Proof Mass
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Construct an xyz coerdinate system with the center of gravity, C, of the proof

mass as the origin and parallel to the XYZ system as shown in Fig. 1.

Let
1.k = unit vectors along X, Y, Z axes, respectively, Also
along X, y, 2z axes, respectively
RT = radius vector from the Z axis to the center of gravity, C,
of the proof mass.
R = projection on XY plane of the radius vector from the Z axis

to any point P of the proof mass

r = radius vector from pomt C to point P
re. ry, r, = componenis of r paraliel to the x, y, and z axes respectively
Q = steady-state angular velocity of the centrifuge about the
Z axis with respect to inertial space
M = mass of the proof mass,

Consider a differential mass, dm, at point P, The centripetal force acting on

the differential mass is
(3~-1)

aF = -0%R dm

But, from Fig, 1, it is evident that

R = Rci +r - rzk {3~2)

Therefore, if we substitute Eq. (3-2) in Eq. (3~1) and integrate over the entire
body of the proof mass, we find

Fo=-02 [TRC fdm +»f§'dm-i?‘/‘r7 dm]
But f 4m = M, the total mass of the proof mass, and the other two integrals define

the eenter of gravity of the proof mass and are equal to zero. Therefore

F=-02RMT (3-3)

6




and the acceleration gradient has no effect on the central force vector acting at tha

centroid of the proof mass,

Let us now dztermine if the acceleration gradient causes any moments to act on
the proof mass. The moment of the centripetai force acting on the differential mass
about the centroid, C, is

dT=rxdF=-0°dmTF x R (3-4)

Substitute Eq. (3-2) in Eq. (3-4) and integrate ov2r the entire body of the proof mass.

r — - -
T = -92 Rc rxidm +frxrdm~frxrzkdm]
our
T--g?[-R Efe dm+r Tfr, d Tfr,r,d
= -0 _-c rym+ o ) rzm+j rzrxm

(3-9)

- i ryrzdml

The first two iategrals in Eq. (3-5) define the centroid and, therefore, are equal
to zero., The next two integrals define products of inertia of the proof mass. Therefore

- = T a2

T = (Iyzi L.i)e (3-6)
wherc Iyz and I, ¢ are products of inertia of the proof mass. This torque is a
dynamic unbalance torque produced by rotation about the Z axis or an axis parailel

to the Z axis. If the z axis is a principal axis of the proof mass, then Iy 2= sz =Q,

The construction of most accelerometers is such that IA, - PA, and OA are
nominally principal axes of inertia of the proof mass. In all mounting positions
considered in this paper, the centrifuge rotation axis is nominally parallel to 1A,
PA, or OA and no product of inertia effects are included. In general, only product
of inertia torque comoonents about OA need be considered and these vary linearly
with acceleration,
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ACCELERATION COMPONENTS

In this section, the effccts of earth's rate, nonverticality of the centrifuge axis,
angular deflections of the centrifuge radius arm, and misalignments of the true
. accelerometer axes with respect to the accelerometer reference axes are considered.

It is assumed that the accelerometer reference axes are defined with respect to the

centrifuge and gravity acceleration vectors,

The following notation, in addition to that previously defined, will be used:

_'i; a, = centripetal acceleration at centroid of proof mass —g
z 2 ay, a, = components of applied acceleration along the x, y, and
o, z axes, respectively —g
CHPR SR = components of applied acceleration along the u, v, and
w axes, respectively —-g
a;, a D’ a, = components of applied acceleration along 1A, PA, and
OA, respectively - g
G = magnitude of g—ft/sec2
kx, 3, kz = compliance coefficients of mounting fixture and centrifuge
about the x, y, and z axes, respectively —rad/g
T = period o1 revolution with respect to earth-sec
Yy 'Yy’ Y, = angular deflections of mounting fixture and centrifuge
about the x, y, and z axes, respectively, as a function
of a, - rad
€,y = angle between Z axis and local vertical — rad
] = angular displacement of the centrifuge arm with respect

to an earth-fixed reference plane containing the Z axis —rad

Preceding page biank
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0. op, o, - small successive Euler angle displacements about IRA,
PRA, and ORA to transform acceleration components
along aceclerometer reference axes to components along

the true axes -~ rad

A = astronomic latitude at centrifuge —deg
Q. = angular velocity of the centrifuge relative to earth-rad/sec
@, = angular velocity of earth relative to inertial space-rad/sec

The carth sidercal rate is quite small (wc = 72,9211 x 10'"6 rad/sec) and may
be neglected in the calibration of some accelerometers, except on centrifuges with
long radius arms and at low centrifuge rates of rotation. The angular velocity <f
the centrifuge with respect to inertial space is

Q= Qr + w, sin A

and the centripetal acceleration at the proof mass centroid is

a = =

2 . 2 2 .
) Rcsz ) Rc(szr +we sin 7\) - 11‘352r - 2we sin A -
¢c~"G G G “-1)

r

Thus the vertical compaonent of carth rate at the middle latitudes would result in an
error of approximately 10'2/\/.5'0% for Rc = 32 ft and varies approximately as the
square root of the radius.

The centripeta] acceleration is a function of the angular velocity and the radius
arm. The anguiar velocity, corrected for earth rate, if necessary, may be determined
quite precisely by measuring its period of rotation, T, over geveral revolutions. The
radius to the centroid of the proof mass is more difficult to obtain. Some centrifuges,
such as the 100-inch centrifuges at Holloman AFB, have a cage rotating about a vertical
2xis which permits a fairly accurate datermination of the radius arm. An error of
0.1 percent in the radius arm will result in an error of approximately 0.2 gercent in
a quadratic term and sbout 2.3 percent in a cubie term, which is usually auite

acceptable. 2 centripetal acceleration at the proof mass centroid is

10




4> R, To, sin A\
2 VT (4-2)

GT
Due to rotational stresses that vary as the square of the centrifuge rate, the

T e (TN T T e I TR AT

radius arm length may change. It would probably be safe to assume that arm stretch,

whether positive or negative, is proportional to er . It is comparatively easy to
accurately measure arm stretch, so it will be assumed that this is done and used in
the data reduction procedure, if required. In general, measurements of arm stretch
dc not include changes that are due to bending of the mounting fixture.

The centrifuge axis in a well-instalied and adjusted centrifuge should be very
close tou vertical so that €0 € 1. Assuming that this angle is independent of Q "
which is not necessarily true, €,, may be determined by cbserving a low threshold,
high resolution, precision hubble level mounted parallel to the X axis, The bubble

: level reading should vary sinusoidally as the centrifuge is rotated from one position

to another, i.e.

0, =9, * €, CO0s (6 + )

where
Sp = angular reading of bubble - rad
0 = offset angle (bias) of bubble ~ rad
8 = phase angle with respect to reference plane - rad

The magnitude of €v is equal to one-half the variation in @), overa complete
revoiution,

As mentioned previously, the centrifuge axis of rotation may vary with speed
but probably not by significant amounts. The.acceleration components in the xyz
system are

a = e~a <+
X c €Z

8n {5 + B) : “-3

VOOS ¢ + B)

8
1

y ~ Czv

14
]

2 cos sz
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From Egs. (4-3), it is secn that the x and y components of acceleration
arising from nonverticality of the centrifuge axis average out to zero over an integral
number of revolutions, However, it is best to have the axis vertical within one or two
arc minutes so that the output reading is not necessarily tied down to averaging over an
integral number of revolutions and any rectification effects are negligible. It will now
be assumed that the centrifuge axis is adjusted to within one or two arc minutes of the
vertical, The average acceleration components along the x, y, and z axes, in g units,

are:

a =0 4-4
y (4-4)
az > ]

Due to bending of the centrifuge arm and of the mounting fixture induced by
dynamic unbalance, aevodynamic effects, or heating effects, the accelerometer
mount may deflect angularly as a function of acceleration level. As a first approxi-
mation, it wifl be assumed that angular deflections will be preportional to the
acceleration level, i.e.

Yy = kx a,
'yy = l:y ac (4-5)
Yo T kz s

In a well constructed, dynamically balanced centrifuge with a rigid mounting
fixture, the angular compliance should be less than two arc seconds per g. For
example, the compliance of the MIT/CSDL 32-foot arm centrifuge was found to be
less than 0.2 arc seconds per g. The ¢compliance of the Holloman 100-inch urm
centrifuge about the y (tangential) axis has been found to be less than 0.25 arc seconds
per g on some centrifuge runs but as much as 4 arc seconds per g on other runs. The
latter variationgs may be due to variations in the dynamic unbalance of the birdcage
for the different setups. It should be noted that the contribution of the mounting
fixture to the angular compliance may vary as a function of the accelerometer

mounting position,

12




Construct a right-hand, orthcgonal coordinate systera uvw derived from the
xyz system (sec Fig. 2) by the Euler angle rotations Ty ‘yy, Yy The uvw system
coincides with the xyz system when a, = 0.

r 4
w

D R T T P T e T P T T T T e

(9]

PR ST A8 S 0 e

71 25794 02

X" u

Figure 2. Coordinate Systems

Though angular displacements about orthogonal axes are not commuiative, they may
be treated as commutaiive when they are very small, say less than five arc minutes,
Using small angle approximations, the acceleration components in the uvw system

are:
a =~ u_+ -
u x T3V T3

a, = dg +ay - éxyz \ (4-6)
a, > a, +ay -ay

From Egs. (4-4) thru (4-6)
a =~ e (] +ky)ac

- 2
a, kx a, + kz a, (4~
: 2

. aw===1-kyac

13




Next use small successive Euler angle displacements ¢ op, 2y to transform

acceleration components along the accelerometer reference axes to aceeleration
components along the true accelerometer axes.
given in Eqs. (4-8).

The resulting relationships are
a, - A, co 0s + ino, si n + si . A
i Aje sopc SO, Ap(smolsmopc 50, +sing coso¢;)
g ino _sino, -cos 0. si
* \o(sncosmol csolsmopcosoo)

"p .-\p (cos p ¢0s 0, - sino, sin ep sin oo) + Ao (cos 9, sing, 3 (4-8)

+ €0s 0; sin op sin oo) - A.coso _sino

a = :\3 COs 0, COS op + Ai sin (Dp - Ap sin ¢, cos ¢

Let us specify that the magnitudes of the misalignment angles (gbi, ¢p’ )

be limited to 0.01 rad (34.4"), i.e. |o | <0.01 rad, where 3—1 p, o. Recall
that these misalignment angles mclude misalignments of the mounting fixture and of
the centrifuge mounting surfaces with respect to the centripetal and gravity vectors

but not misal.gnments due to angular compliance. We may now use the small angle
approximations:

sin o) = oj with an absolute error less than 3.3 x 10”7
CcC > oj ~ ] - % oj2 with an absolute error less than 4 x 10-10
Substitute the above approximations in Eqs. (4-8) and neglect third order errors,

i.c. triple products of oj, j =1, p, oand products of ¢ j and the compliance
cocfficients k\_, k., k.

y' "z

. _1 2 12, _ _ -

a = A (1-202 L2069 + A (o +e 0 )-A0 (4-9)
p p 2 21 o"i "pTo i"o

0 = o _l,2 1.2 -

Ay = Ay =59 2¢p) * Aiop Apc)i

14




SECTION V
MOUNTING POSITIONS AND LIMITS

In order to determine the coefficicnts of the model equation, it is necessary to
test the accelerometer in a number of different mounting positions and at many
acceleraticu leveis, The chosen positions (others are possible) are shown in Figs, 3

LIRS AN

3 L2

and 4. Recall that the centripetal acceleration vector ch is in the minus x direction

and the cffect of gravity is equivalent to an upward acceleration of one g.

s Wanil Kl tedg o

§ Table 1 shows the model cquation coefficients that will be determined in each

position vair of Figs. 3 and 4,

UK R ST by

Table 1

: Position Pair Coefficient
: 1 and 2 Ky Ky Ky
: 3and 4 sz, K3p

5 and 6 Kyor Kgg

7 and 8 Kip

9 and 10 K

po
11 and 12 K,;

Based ou past experience with this tyne of torque balanced pendulous
accelerometer, we may conservatively assume that the model equation coefficients

satisfy the following limits:

Ky s 1Kpp Lo 1Kol 1Ky | 5 1Kgh s 1Ky <207 g/g?
Kgg | o 1Ky L 1Ky 1 <107 grg (5-1)

L lkyl sk < 1073 rad/g (1 arc sec/g) )

15




w, ORA w, ORA

.v, PRA
/ As
(@) POSITION 1 U IR POSITION 2
w, ORA w, ORA
v
u, FRA
(¢) POSITION 3 (d) POSITION 4
w, IRA w
} |
ORA
r 4 a
- cs v, PRA
”
Z »v, PRA / i
) = Ay W T |
; IRA
g (e} POSITION § (f) POSITION 6

Figure 3. Accelerometer Mounting Positions
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Figure 4. Accelerometer Mounting Pogitions (Top Views)
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Recall that we have already limited the misalignment angles to
lo;1 <0.01 rad (34.4"), j=1, p, o.

Further, in our development of the centrifuge equations, let us neglect
errors less than the following magnitudes:

Bias terms <1078 4

Linear terms < 1075 g/g
Quadratic terms < 1077 g_/g2 (5-2)

Cubic terms < 1070 g/g_a

b
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g
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SECTION VI

INPUT AXIS NONLINEAR COEFFICIENTS K2i’ K, in

S L T D R s o i

6.1 MOUNTING AND DATA TAKING

Glentey e At
i

For maximum accuracy in the separation of the quadratic and cubic terms,

24

data should be taken with the input acceleration along both the positive and the

T

negative input reference axis such as positions 1 and 2 of Fig. 3.

Mount the accelerometer on its fixture in position 1 and check for proper
operation. Align the input axis (IA not IRA) to the radial d’rection on the centrifuge
within .01 rad (34 r?fi?.) about the pendulous and output axes. Align the output axis
(OA) to the vertical within 0.61 rad. Determine the radius arm to the centroid of
the proof mass by whatever procedure is appropriate for the particular facility.

Measure and record the nominal bias and scale factor by the two-point static

TR TP R

test method (IA up and IA down) before and after the group of runs in each position.
Preferably  these should be made in the centrifuge environment. The measurements
are to be used as a check on the drift or shift in the accelerometer bias and scale
factor due to centrifuge action or other environmental changes. Any drift or shift

of these parameters will aifect the accuracy of the centrifuge tests.

Tne accelercmeter should be tested at a nuraber of acceleration levels which
are approximately everly spaced over the input range in each mounting position. The
centrifuge speed should be smoothly an?d unidirectionally increased from one acceleration
level to the next and allowed to stabilize at each level since there may be heating effects
at the different torquing levels. When the accelerometer hag been tested at its peak
acceleration level, decrease the centrifuge spred smoothly and unidirectionally from
one acceleration level to the next. Test at approximately the same levels as for
increasing speed. In each mounting position the accelerometer should be tested at
2 minimum of 11 acceleration levels: at 5 acceleration levels each for increasing
and decreasing speeds plus the peak acceleration level. More acceleration levels are
desirable since redundancy reduces the uncertainties in the coefficients determined by
the centrifv = tests,
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The output of the acceierometer should be averaged over a number of
revolutions sufficient to minimize quantization errors; quantization may be a function
of the instrumentation as well as of the accelerometer. The period of the centrifuge
relative to carth, the output of the accelerometer, the radius arm, the arm stretch,
and the angular compliance (if available) must be determined as precisely as possible
and recorded. It is common practice to make three sets of measurements at each
acceleration level and to use either the median or the mean of the three sets of

measurements in the data reduction,
6.2 OUTPUT EQUATIONS

In position 1 of Fig. 3, the acceleration components along the input, pendulous,

and output reference axes, sec Egs. (4-7), arc:

Ajp=-g, =+ ky)acr

- = ok .
Apl =-a =~ (kx 2ot l‘z ‘lcr)\
= 21- 2
Agp =8y =1 ky Aer

Substitute the above values in Eqs. (4-9). Let a subscript 1 denote the
misalignments and outputs in position 1 and a subseript r denote the variable
accelcration level for this position. Let n equal the number of acceleration test
levels in position 1 so that r =1, 2, 3, ..., n, From the limits set in Eqs. {5-1)
and (5-2), it is evident that we may neglect products of the misalignment angles by

the compliance coefficients, e.g. kx P01

0. = “L,2 1,2 - -

215 % 1 -3 opl 2%0 * ky) @pl ®o1 ?11)

Y - - -

‘lpl = "% kz qer (¢ol * kx> * wil * Q’pl ¢ol) (6-1)
= 32 L2k 2

%01 % Tl ky T3y q)pl Fl=-59;1-3 °p1)

Substitute Eqs. (6-1) in the model equation, Eq. (2-1), and apply the limits of
Egs. (9-1) and (5-2). The acceleraticn indicated by the accelerometer in position 1

is given by Eq. (6-2).
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Ay = [Ko “fp1 T %1 %1t Koo t Ky t Ko O T Ky °p1]

12 1.2 - )
* 2 [1 "5 %1 "3 %, * Ky " @Ky * 2K - 2K, 3K30)®p1

2 3 ] (6-2)
* Kip %11 - Kpo Yo1 " Koi:] " Aer [Kzi * R+ (K 3Kg) °p1

3
" Kip °01] * Kgy2er

In position 2 of Fig. 2 the acceleration components along the accelerometer

reference axes are:

A, =a = --(1+ky)aCS

i2 u
A,a =k a +k a2
p2 v xcs 2 °Ccs
- -1 - 2
Aoz =y 1 ky 3es

Substitute the above values in Egs. (4-9). Let a subscript 2 denote the
misalignments and outputs in position 2 and a subscript s denote the variable
acceleration for this position. Let m equal the number of acceleration test levels
in position 2 so that s=1, 2, 3, ..., m. Note that the misalignment angles with
the accelerometer mounted in position 2 will not be the same as the misalignment
angles with the accelerometer mounted in position 1, in general,

1 2 1 2

2 = "85 (1 -390 "5 %5 * ky) = ®p2 %02 %ig)

a =ka2 +a_ (0, tk )+ (9, +0 .0 ,)

P2 z%%ct  “es Vo2 X i2 p2 T o2 (6-3)
- _a2 - 1.2 1 2

302 ¥ " 3cg k 3es o1.\2 +(1 2 %2 "2 °p2)

Substitute Eqs. (6-3).in Eq, (2-1) and apply the limits of Eqs. (5-1) and (5-2).
The indicated acceleration is given by Eq. (6-4).
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AZS N [}\0 - op2 * 002 °i2 ¥ K20 * Kso * 1\po °i2 - l\'oi °p2]

. - .1. - .]l. - 3 - < -
~a [1 5Oy =3 Ocp * ¥y = (2Ky * 2K, = 2Ky = 3Ky )0 )

) 1. .2 [ (6-4)
* Kip %2 ~ Koo * l\oiJ\“ os |Kai = Ky * (Ko = 3Kgy) 0050

. . .3
- Kip °02] = Ky s
It is evident that the unknown misalignment angles and the uncertainty in the

radius arm, which affccts the value of - and a s’ makes it impossible to

preciscly dotermine either the bias or the scale factor from Eq. (6-2) and/or
Eq. (6-4). If ‘K?.i + Kt) and (K2i - Kt) are to be determined from Egs. (6-2)
and {6~4) with an errcr less than 10 percent (aside from noise in the data), then
the magnitudes of the terms 3K3i’ Kip’ and K, may not exceed the magnitude

of K2i or Kt’ whichever is larger, by more than a factor of two or three. If the
magnitude of these coefficients exceed those limits or if the allowable error is less
than 10 percent, then the misalignment angles ¢j (3 =i, o, p) must be reduced
proporticnately. If the ubove conditions are met, then Eqs. (6-2) and (6-4) may

be simplified to:

- 2 3 -
Alr - B0 * Bl der ¥ B2 ar * K3i qer (6-5)
C C, a* 8 6-6
Ags = Cp ~Cp g *Coapg = Kyy g (6-6)
where

By C0 = constant terms of Eqs. (6-2) and (6-4), respectively
B, C1 = linear terms of Fqs. (6-2) and (6-4), respectively
By = Ko + Ky

g T Ky = Ky
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Then

K (B2 + C2)/2 (6-7)

2i

K

. = (By - Cy/2 (6-8)

The effect of arm stretch and earth rate must be considered in determining
ap and Ag0 if necessary, Remember that both A and 2,5 2-e the centripetal
accelerations and are always positive.

6.3 DETERMINATION OF THE COEFFICIENTS

In the proposed data reduction procedure, the method of least squares is
applied to all the data at once rather than in the three stage method of Evans and
Fuhrman. In order to accurately determine the coefficients for the quadratic and
cubic terms, it is vital to have the cubic coefficient, at least, be common to both
positions as in Egqs. (6-~5) and (6-6). Let the best fit combined outputs of positions 1
and 2 as obtained from Eqs. (6-5) and (6-6) be

2

Ajk=(Bo+Blacr+ 2 cr)‘S +‘C Cla‘chrCZacs)éa-;
3 (6-9)
* Ky (acr r ~%gs0g)
where
Kjk = best fit value of output for jk = 1r or 2s
Ajk = measured value of output for jk = 1r or 2s
Gr = 1 and Gs =0whenk=r,
68 = 1and 6r =0 when k = 8,
The residual at centripetal acceleration level a ok (k=r or s) is:
rk=Ajk"Ajk= (Alr ar +A Gs) - [(BO * B1 dor * B2 cr)‘5
(6-19)
*(Cy-Cyag +Cy cs)(‘s * Ky (a(,r r 2cs 63)}
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and the sum of the squares of all the residuals is

2\ .
- [<Bo ¢ Bl e * 132 ucr>°r + <CO - C1 acs + C2 acs)(ss (6-11)
/

3 3
* l‘3i< er Op 'acsas>}

In the method of least squares (Ref. 3), the sum of the squares of the
residuals is minimized by setting the partial derivatives of Eq. (6-11) with respect
to cach unknown coefficient (Bo, B B CO’ C C2, and K3i) equal to zero, ' The
resulting normal equations are gi ven in mwtmx form by Eq. (6-12). Recall that

2. and a cs Are centripetal accelerations and are always considered to be positive,

Solve Egs. (6-12) and (6-10) for the unknown coefficients and each residual,
respectively, The coefficients B, and CO should closely approximate the bias
determined from a two or four position test, within approximately 9.01g. The
coefficients B1 and C1 should closely approximate unity with an error less than
0.15 percent if the radius arm has been determined within 0.1 percent, The
coefficients K2i and l‘t of the model equation are determined from Egs. (6-7)
and (6-8). A plot of the residuals vs. g level will be used to estimate the adequacy

of the model equation. The residuals will also be used to determine the uncertainty

of the coefficients,

If Kt = 0, as may occur in puise torqued systems of constant power input,

then B,=C, = K

9 9 9 and the best fit equation becomes:

6.)

)0g + Ky (acrr css

J_—(B +B )6 +(C 1cs

3
* K (acr r - acsés)

(6-13)
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The residuals arec;

Ty = Ajk - Ajk T Ay 0t Ay 00 - [(BO *Byag o, +(Co-Cpagg)dg

R ):l (6-14)

-3 0
r Cs S

+ K (9.2 ) +a2 6 )+ K (a3 )
2iter 'r cs S 3iter

The normal cquations are obtained, as before, by taking partial derivatives
of the sum of the squares of the residuals with respect to each unknown coefficient
(BO, Bl’ C., C., K

0 U1 Tav
normal equations are given in matrix form by Eq. (6-15).

and Kqi) and setting each derivative cqual to zero. The

Solve Egs. (6-15) and (6~14) for the unknown coefficients and each residual,

1 respectively.
6.4 STANDARD DEVIATION OF THE RESIDUALS

The standard deviation of the residuals is a measure of the fit of the maode?

equation to the measured accelerometer output. It is not necessarily a measure of
the accuracy or completeness of the model equation in describing the phenomena.

The unbiased estimate of the standard deviation of the residuals is given
by the formula of Eq. (6-16) (Ref. 3).

212 M SRR A A g LA R ot P

e, = (6-16)
; where
w Q(rk) = unbiased estimate of the standard deviation of the
residuals r (k=r, s)-g
Y. rlz{ = gum of the squares of all the residuals ~ gz
; n+m = total number of data points for k equal r and s
q = total number of coefficients BO’ Co, ete,

Engo, q = 7 in qu (6"12)
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6.5 UNCERTAINTY OF THE COEFFICIENTS

The unbiiased estimate of the uncertainty of the coefficients (Ref. 3) cbtained

from kq. (6-12) or {(6-15) are

0Q - o (r,) —UMDQ (6-17)
where
G(Q) = uncertainty of coefficient Q
Q : one of the cocfficients in the second (column) matrix of
Ed. (6-12) or (6-15), such as B2
D = determinant of the left-hand matrix in Eq. (6-12) or (6-15)
M (Q) = minor of the determinant D for the coefficient Q. E.g.,

M(Bz) is obtained by deleting column and row indicated by
asterisks in Eq. (6-12)

It is quite possible that a coefficient of Eq. (6-12), or of a similar equation,
should actually be zero but, because of the small number of observations, it is
practically certain that we would obtain a nonzero value. We may determine if a
coefficient Q is likely to be zero by assuming the null hypothesis, i.e., Q =0,
and applying a statistical significance test, such as the Student's t statistic to the
significance ratio |Q| / 0(Q). The Student’s t statistic varies with the number of

degrees of freedom (f = n4m-q) and the chosen rejection level for the nuli hypothesis,
The rejection level depends on the application and is a matter of judgment; however,

a 5 percent recjection level is commonly used. By a 5 percent rejection level, we
mean that the null hypothesis will be rejected if there is cnly a 5 percent chance

that Q=0 if |Q| / T (Q) of our sample exceeds a certain value. This is equivalent
to saying that we can be 95 percent confident that the coecfficient is significant if the

significance ratio exceeds the Student's t statistic,

At the 5 percent rejection levei (2 sided), the t statistic varies from 3,182
for f - 3t01.96 for f = o, Since we should have 2 minimum of 22 data points

(n+m >22) and since the maximum number of coefficients ir Eq. (6-12)is 7 (q= 1),
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the minimum number of degrees of freedom is f = n+m-q = 15, At the 5 percent
rejection level and f = 15, the Student's t statistic is 2,13. With our assumptions,
the t statistic can vary only jrom 2,13 for f = 15t01.96 for f = w, Therefore, we
may apply the simple rule that the null nypothesis will be rejected if |Q| /T (Q) > 2.
For a more extensive discussion on the null hypothesis and the various significance

tests, see Ref. 4, or equivalent.

If a coefficient is set equal to zero as u result of the t test, Eqs. (6-2) and
(6-4) thru (6-15) should be modified appropriately.

6.6 "GOCDNESS" OF THE MODEL EQUATION
6.6.1 Introduction

There are no general rules for defining the "goodness' of a model equation

though we may apply one or more criteria such as:
(1) Is it derived from basic physical principles ?
(2) Is it simple?
(3) How well does it fit the observational data ?
(a) What is the value of the standard deviation of the residuals ?
(b) What is the magnitude of the peak residual ?
{4) Waild a different model equaazn fit the observational data l;etter ?

It is apparent that the "goodness' of a model equation is a subjective question
which can be settled only by each person for each application. There are some
statistical eriteria that we may apply, but they must be applied with judgment.

Thus, in Section 6.5, we showed how to apply the null hypothesis and the
Student’s t significance test to the coefficients of our best-fit equation, but at an
arbitrary 5 percent rejection level, which was a matter of judgment, In examples 1
and 2, below, we will illustrate some of the decisions or judgments that may be
required in adopting a maodel equation.
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It is obvious that observational data must be valid, i.e. without systematic
error and with & minimum of noisc, if we are to obtain a "good' model equation,
Care must be taken in the choice of instrumentation, the test sctup (including temperature
control), the mounting fixture(s), the data-taking procedures, and data processing

{(such as smoothing) in order to avoid systematic errors and excessive noise.

Use of one madel equation for all accelerometers in all apptications is to
we deplored. A model equation which is satisfactory for a particular model of
accelerometer, in a particular application, may be quite unsatisfactory for a
differcent accelerometer and/or a different application, Equally deplorable is a data
reduction program which grinds out coefficients, even programs with statistical

criteria. without the intervention of human interpretation and judgment.

6.6,2 Exampie 1

The effects of an incorrect model equation will now be illustrated with an
ar.ificial example. For acceleration inputs only along plus and minus IA, let the

true and exact output couation be:

-7 4

+ 1078 a? + 107" a (6-18)

A= 2x1078 9 ‘;2

+a, o+ 10 7 a;

The caleulated outputs A over the input range from +30 g to -30 g in 2 g
steps is given in column 2 of Table II with the results rounded off at six decimal
places. ‘The tabulated inputs and outputs of columns 1 and 2 will now be treated as
obscrvational data to which we will fit a cubic equition by the method of least squares.
The cesulting cubic cquation is:

6

R'=-5.83326 X107 + . + 9.2¢107° 2% + 107 a2 (6-19)

Note that the linear and cubic coefficients are unchanged, as would be
expected, since it is only the symmetric fourth degree term which has been omitted.
Also note that the K, cocfficient is un order of magnitude larger than that of
Eq. (6-18).
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Table I

1 3 4 5
ai K E' r' = Av _A r' = An _K
30 30, 119000 30. 10396674 -0, 01503326 -0, 007200
28 28, 093258 28, 08824674 -0, 00501126 0.002822
26 26, 072034 26, 07393474 0.00190074 0. 009734
24 24, 054762 24, 06098274 0. 00622074 0.014054
22 22, 040914 22, 04934274 0. 00842874 0.016262
20 20, 030000 20, 03896674 0. 00896674 0. 016800
18 18,021570 18, 02950674 0. 00823674 0.016070
16 16. 15210 16. 02181474 0. 00660474 0. 014438
14 14, 010546 14. 01494274 0. 00439674 0.012230
12 12.007242 12. 00914274 0. 00190074 0.009734
10 10, 005000 10,00436674 -0, 00063326 0. 007200
8 8,003562 8. 00056674 -0, 00299526 0.004838
6 6. 002706 5.99769474 -0, 00501126 0. 002822
4 4,002250 3, 99570274 -0. 00654726 0.001286
2 2, 002050 1.99454274 -0. 00750726 0.000326
0 0. 002000 -0, 00583326 -0, 00783326 0. 000000
-2 -1,997966 -2, 00547326 -0, 00750726 0. 000326
-4 ~3,997878 -4,00442526 -0, 00654726 0.001286
-6 -5.997726 -6, 00273726 -0. 00501126 0. 002822
-8 ~7,997462 -3,00045726 -0, 00299526 0.004838
-10 -9,997000 -9,99763326 -0. 00063326 0. 007200
-12 -11,996214 -11, 99431326 0. 00190074 0.009734
-14 -13. 994942 -13. 99054526 0. 00439674 0.012230
-16 ~15,992982 -15, 98637726 0. 00660474 0.014438
-18 . ~17.990094 -17, 98185726 0. 00823674 0.016070
-20 -19, 986000 -19, 97703326 0. 00896674 0. 016800
=22 -21,980382 -21. 97195326 0. 00842874 0.016262
-24 -23,972886 -23, 96666526 0. 00622074 0.014054
-26 -25.963118 -25,96121726 0. 00190074 0. 009734
-28 -27.950646 =-27.95565726 -0, 00501126 0.002822
-30 -29, 935000 -29, 95003326 -0, 01503326 -0. 007200
Rms Value = 6.9 x 1073 10.5 x 1073
Yr'=1x10"
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The outputs, A'. and the corresponding residuals, A' - A. were calculated
to 8 decimal places and arc tabulated in columns 3 and 4 of Table i, The sum of the
residualg is not quite zero due to round-off errors,

Using FEq. (6-16), the unbiased estimate of the standard deviation of the
residuals is G (') = 7.422 x 1073 g. The cocfficients and the uncertainties of the
coefficients of £q. (6-19) arce listed along with the significance ratio |Q| /T (Q) in
Table 1,

Table I}

Q G (Q iQl/7 @
K = -5.83326x107° 1.333x1073 4.37
K = 1 0.187x10° 5.35
K, = 9.2x107 0.467x107° 19.7
Ky = 1x1078 0.298x10™° 3.36

Note that K', is not the scale factor as defined in Eq. (2-1) but is in g/g.

The application of the Student's t statistic for f = 31-4=27 degrees of freedom
shows that all four coefficients are significantly different than zero at a 99 percent or
higher confidence level. (1 percent rejection level) However, two of the coefficients

are far different than the corresponding coefficients of the exact model equation,
Eq. (6-18).
Let us not stop here but let us plot the residuals given in the fourth column

of Table II, sce Fig. 5. Even a casual glance shows that the residuals are not

B aot s i i e

randomly distributed, therciore, the residuals are not primarily due to noise in the
observational data but are largely systematic. From the shape of the curve (3 maxima),
we should suspect that a fourth degree term should be added to the model equation.

If this is done, we know that we would get Eq. (6-18) except for slight computational
cerrors, If there had been four maxima in Fig. 5 instead of three, we woujd have

RGOt LR SR N0 8 riotie S Sitrrosions

suspected that the mode! equation required a fifth degree term,
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RESIDUALS - 1077 g
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Figure 5. Residuals, Ex, 1
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It should be remembered that this illustration is an ideal case with no noise
in the data except that due to rounding-off errors. In an actual case, the residual plot

would be distorted and roughened by noise.

Let us now consider one more fact that is best illustrated by this artificial
example., As indicated previousl,, it is presumed that the bias and scale factor obtained
by reduction of centrifuge data is probably seriously in error due to ir isalignments
and uncertainty in the radius arm to the centroid of the proof mass. The bias and
scale factor are generally obtained from a two, four, or six point static calibration
test in a onc g ficld, In this example we would find it to be those of Eq. (6-18), i.e.
Kp=0.002g end K'y =1 g/g. The nonlinear coefficients would be those of Eq. (6~19).
Thus, it would be presumed that the output equation is:

5 2

Av=2x10"3 4 g 9,2x10" h 6

+ 1070 a3 (6-20)

In many applications, the bias is subtracted from the output but the other

errors are tolerated; the errors, for this example, would be:
r=A -~ (a; + 0,002) (6~21)

In other applications, not only the bias but also the errors due to the
nonlincar terms are removed by a computer. The errors would be the difference
between the predicted output of Eq. (6-20) and the true output of Eq. (6-18), i.e.

the errors would be:
r'"= A" <A (6-22)

The residuals r' are given in column 5 of Table II. As would ke expected,
the rms value of ' is larger than the rms value of r': in this example, over

50 percent larger,

Exampie 1 illustrates that it is not sufficient to look at the standard deviation
of the residuais nor to compute the statistical significance of the coefficients to
determine if we have a "good' model equation; we must also look at a plot of the
residuals, If the residuals look as if they are randomly distiributed, we probabiy
cannot obtain a better fit model equation, but we might try a polynomial of lower
degree to determine if it is satisfactory, If the residuals are not randomly distribnted,
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we might try a more complex model equation, or we might decide that the model
equation is satisfactory for the particular application, i.e. the errors are acceptable.
However, we should also recognizc that the actual residuals are larger than the
calculated residuals as illustrated by the difference between columns 5 and 4 of

Table II.,

6.6.3 Example 2

In this example, we will use actual experimental data and obtain certain
coefficients of the model equation, Eq. (2-1): first, with the assumption Kt #0
and second with the assumption that K = 0. The input and output data of the binary
pulse torque accelerometer (constant torquing power) are listed in Tables IV and V.
The input data have been partly processed to save time and space, i.e. the input
acceleration has been derived from the period of the centrifuge and the radius arm
with corrections for arm stretch and earth rate. At the end of the increasing run,
the centrifuge was run beyond 45 g before starting the decreasing run,

The data in Tables 1V and V are substituted in Egs. (6~12) and (6~15) to
determine the coefficients BO’ CO’ etc. The resulting coefficients, the unbiased
estimate of the standard deviation of the residuals from Eq. (6-16), the uncertainties
of the coefficients from Eq. (6-17), the number of degrees of freedom, and the
significance ratios are given in Table VI, The residuals were determined using

E3s. (6-10) and (6-14) and are plotted in Figs. 6 and 7.

Normally, we would expect the unbiased estimate of the standard deviation of
the residuals for Eq, (6~12) to be less than for Eq. (6-15) since Eq. (6-12) has more
coefficients and, therefore, it should give a better fit. Actually, the rms of the
res’duals is legs for Eq. (6-12) by approximately 1 percent but this is more than
offset by the effect of the reduction in the degrees of freedom from 30 to 29.

'The significance ratio for B,, Cz, and Koy of Eq. (6-12) indicate that these
coefficients may not be significantly different from zero. On the other hand, all the
coefficients of Eq. (6-15) are significantly different from zero at a 99 percent or
higher confidence ievel, This is not too surprising when we consider that B2 and 02
are of opposite sign and of different magnitudes; therefore, the combination has some
of the characteristics of boin quadratic and cubic terms. Thus, we have three terms
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POSITION 1 OF FIGURE 3 (3, > 0)

Table 1V

Increasing Data

Decreasing Data

Input Output Input Output
Ber A1r der A1r
5.000281 5.034095 45, 048050 45,119699
10,020010 10, 059407 40, 040700 40,108608
15,018229 15,063017 35,022121 35,086046
20,030342 20,080320 30, 020392 30.080080
26.015052 25,069831 25,015060 25,070167
30, 020392 30.079824 20,030342 20.080584
35,022121 35. 085875 15. 018229 15,063135
40, 040700 40,105535 10, 020008 10, 059338
45,048050 45.119553 5.000280 5,033769
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Table V

POSITION 2 OF FIGURE 3 (a; < 0)

Increasing Data

Decreasing Data

Input Output Input Output
s AZs Aes AZs
5,000281 ~4,976889 45,048050 -45,055412
10.020010 =10, 000542 40,040717 -40, 044992
15,018225 -15.002753 35,022108 -35.022991
20. 030336 -20,018835 30,020392 -30.018014
25.015060 -25,007460 25, 015052 ~25.008900
30, 020392 -30.016623 20.030336 ~20.€20096
35.022108 -35,022125 15,018229 -15.003737
40,040717 -40, 044235 10.020010 -10.001131
45, 048050 -45,0549173 5.009281 ~-4,976946
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performing the function of two terms, at least partially, and all three are weakened
by this process. In other words, it is difficult t¢ separate an odd square term (a
quadratic term with change of sign at 0) such as the Kt|ai| a; term from a cubic term,

It is apparent that Eq. (6-15) is a more appropriate equation to use than
Eq. (6-12) for this example since it is simpler, the unbiased estimate of the standard
deviation of the residuals ts smaller (though not significantly so), and the coefficients
are statistically more significant as shown by the significance ratios,

Though we have shown that Eq, (6-15) is better than Eq. (6-12) for this case,
we have not demonstrated that it is the '"best" equation. The plots of the residuals
in Figs. 6 and 7 confirm wr previous conclusion that Eqs. (6-12) and (6-15) fit the
data about equally well and they also show that the residuals are definitely not random.

However, unlike our Example 1, we cannot reduce the residuals significantly
by going to a higher-order polynomial since the residual errors are primarily due to
hysteresis for negative input accelerations,

At this time, the mechanism causing the hysteresis is unknown. The hysteresis
could be due to a number of causes of which some may be inherent to the accelerometer
design or it could be due to the fixturing (including the centrifuge) or to the instrumenta-
tion.

If we had blindly used Eq. (6~12) and accepted the derived coefiicients, we
would have determined values of Ko and K, by means of Eqs. (6-7) and ("-8).
These would be -1.412 pg/g and -2,761 p g/gz, respectively. However, when we
applied the Student's t statistic to the significance ratio, we showed that, statistically,
those coefficients were not significantly different than zero, Physically, we should
not be surprised if Kt = 0 since this is a binary, pulse-torqued accelerometer with
constant power input,

2N
LN
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SECTION VII

PENDULOUS AXIS, NONLINEAR COEFFICIENT K

Positions 3 and 4 of Fig. 3 will be used to obtain the value of K, and K

AND K

2p 3p

2p 3p* The

mounting and data taking procedures for the accelerometer in these positions would be

similar to those outlined in Section 6, 1,

In position 3 of Fig. 3, the acceleration components along the accelerometer

reference axes are:

_ _ ‘2
Ais == kx Aor * kz qcr

Ap3 =g, = (14 ky) Bor

Substitute the above values in Eqs, (4-9). Let a subscript 3 denote the cutputs
in position 3 and a subscript r denote the variable acceleration level for this position,

Let n equal the number of acceleration test levels in position 3 so that r=1, 2, 3,

... N, Neglect second order errors as was done in Section 6,2, From here on, it is

to be understood that the misalignments q)j (j =i, p, o) will be different, in general,

for each mounting position, For convenience, the subscript numbers on the mis-

alignments will be dropped.

o a2 - -

33 "acrkz'racr ®o* 9 ¢p+kx) (¢p %61
_ 12 12

23 = Zer (-39, 2¢i+ky)+(¢i+¢p¢o)
e enl? k- 1,2 1.2

803 © acrl‘y, acr¢i+(1 2 %3 2¢p}

(7-1)

g

>

Substitute Eqs, (7-1) in the model equation and apply the limits of Eqx, (5-1)
and (5-2). Since the bias and Jinear terms are so uncertain because of misalignments,

Preceding page blank
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etc,, we will not list the individual factors in these terms, The acceleration indicated

by the accclerometer may be expressed in the following form:

)oi+k a2 + K a3 (7-2)

A ?D+Dln'c * z| “cr 3p“cr

ar ™ Do p ¥ | Kop * Kip 00 + (3Kg - K

po
In position 4 of Fig, 3, the acceleration components along the accelerometer
reference axes are:

- - L .2
Ai4 Tomae (l‘xacs * l‘z acs)

Ap4= a, = —(1+ky) s

A= 2= 1- ky Aes

Substitute the above values in Eqs. (4~9). Let the subscript 4 denote the outputs
in position 4 and a subscript s denote the variable acceleration level for this position,
Let m equal the nun.ber of acceleration test levels in position 4 so that s= 1, 2, 3,
..., m, Neglect second order errors, The acceleration components along the true

axes are:
5 )
Ay = g Ky T 25 059 °p+kx)"”p~¢’o°i)
ca 1-l,2_1.2 i
apll = acs(l 5 90 "5 O +ky)+(¢i+¢p oo) ) (7-3)
-2k ea-lg2 1,2
Bo4 = s l\y+acs°i -39 -3 "))p) )

Substitute Egs. (7-3) in Eq, (2-1) and apply the limits of Eqs, (5-1) and (5-2).

The indicated acceleration in position 4 is

. 2 3 -
A4s— E0 - E1 a.s + sz + Kip 2 + (3K3p - Kpo) 95 kz] a,q K3p 2.q (7-4)

~

If sz is to be obtained from Egs. (7-2) and (7-4) with an error of no more than
10 percent (aside from noise in the data), then the magnitudes of the products of the
accelerometer coefficients by the misalignment angles which appear in those equations
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must be smaller than sz. If those products are sufficiently small, then Eqs. (7-2)
and (7-4) may be simplified,

Ag.=Dy+Dja_ +D, a<2:r + Kgpagr (7-5)
Ay =Ey-Dja +Eya - K, aS (7-6)
p“es :
where
D2 = sz + kz
E‘.‘3 = sz - kz

The coefficients DO’ E o Di’ etc., and their uncertainties are determined by
the methods outlined in Section 6, If it is assumed that the compliance coefficient kz
is the same for both positions 3 and 4 (depends on construction of mounting fixture)

then

1
sz =3 (D2 + E2) (7-7)
The residuals should be determined and plotted to see if there are systematic
errors that indicate the model equation is incomplete, The standard deviation of the
residuals and the uncertainty of the coefficients are obtained in a manner similar to

that outlined in Sections 6.4 and 6, 5.

Suppose that in place of positions 3 and 4 of Fig. 3, we were to use the
alternate positions of 3' and 4' of Fig., 8 for the determination of sz and K3p. The
oufput for the latter positions are:

1
A3r

1 - 2 3 -
- Dy + Dja, + [x2p+ Ky + 3Kq) 00 =K o ¢o+ky]acr+x3pacr (7-8)

t t . - - - 2 - 3 -
b= By - Epa + [K2p+(Kip 3Kap) 90 = Kpo 9; ky]acs KgpPes (7-9)
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W w, IRA
PRA
I/
OCV/( -é—b-V, ORA acs/( v, ORA
/l
4
u |
' u, PRA
§ IRA
- (a) POSITION 3' (b) POSITION 4'

Figure 8, Alternate Mounting Positions

The only significant difference between the above equations and Eqs, (7-2) and
(7-4) is that the compliance coefficient ky has replaced the coefficient kz in the
quadratic term, It would be desirable to use Eqgs, (7-8) and (7-9) instead of Egs, (7-2)
and (7-4) if:

@) ky is measured or known but kz is not

(b) if ky< kz

(¢) if ky is the same for positions 3' and 4' but kz is not the same for

positions 3 and 4,
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SECTION VIII

OUTPUT AXIS, NONLINEAR COEFFICIENT K20 AND KSO

Positions 5 and 6 of Fig, 3 will be used to obtain the value of K2 o and K3 o
The mounting and data taking procedures for the accelerometer in these positions would

be similar to thouse outlined in Section 6. 1.

In position 5 of Fig, 3, the acceleration components along the accelerometer

reference axes are:

_ -1 2
Ais =a, = 1 ky a.

_ _ 2
ap5 = a,= kx"’cr * kz Aer
Aps= "By =1+ ky) Zor

dubstitute tbe above values in Eqs, (4-9). Let a subscript 5 denote the cutputs
in position 5 and a subscript r denote the variable acceleration level for this position,

Again neglect second order errors. .
3
A = 'azr ky " Ao Bp =96 %9) (- % 0?, - % ¢g)
35 = a<2:r kytag, 0+ %0 % * ko =% f (8-1)
a05='acr(1"%¢?'%¢12)+ky)+¢p )

Substitute Eqs, (8-1) in the model equation and apply the limits of Eqs. (5~1)

2 3

] 0 17cr

In order to minimize the uncertainty in K2 o introduced by the compliance ky,
position 6 has been chosen which is obtained by rotating about the v axis rather than

47

Agp= Fo + Fyag, + [K20+Kpo 93+ (3Kgy = Koy) 9p 'ky]acr+K30acr (8-2)
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along the accelerometer reference axes are:

2
Ajg = (- l\_y Aes)

-

A,=a=ka +Kk a
s z°¢s

ps v Xc

Agg ™8y~ ~ (1 ky) s

the w axis as was done to obtain positions 2 and 4,

The acceleration components

In the usual manner, we find the acceleration components along the true

axes are:
a..=-a . k +a (0. -0 o)-(l--l-m
“i6 cs vy ‘esVp oi 2
= a2 K - ‘ -
6 = Yes K, =2 (°i+°p 05 = kg * 0,
- - I PR -
R (1 50 "% op +ky) op

2
p

SN
-
200)

)

(8-3)

Substitute Eqs. (8-3) in Eq, (2-1) and apply the limits of Eqs. (5-1) and (5~2),

A, =G -G, a + | K

6s 0 1 ¢cs 2 po

If Kzo is to be obtained from Egs. (8-2) and (8-4) with an error of no more

. o qaw . 2 _ 3
oH\ % (3h30FKoi)®p+ky es K:ioacs

(8-4)

than 10 percent (aside from noise in the data), then the magnitudes of the products of

the accelerometer coefficients by the misalignment angles which appear in those
equations must be much smaller than K2 o If those products are sufficiently small,

then Eqs. (8~2) and (8~4) may be simplified,
3

— n n 0 2
A5r - IVO + Pl o * I‘2 Aor KSo Aer
A. =G.~G +G,a> -K, a°
gs™= 0 "Y1 %s T Y2 %s " "30 %es
where
F2 = I\’20 - ky
62 = K20+ ky

(8~9)

(8-6)
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Assuming that ky is the same for positions 3 and 4, then

1l e
Koo = 3 (Fg + Gy) (8-17)

The values of K2 o and K30 are obtained in a manner similar to that used for

the determination of K, and qu in Section 7.

2p
If there is any advantage to having the compliance coefficient kz instead of ky

in the quadratic term use alternate positions in which IRA is along the plus v axis when
ORA is along the minus u axis and in the second position IRA is along the minus v axis

when ORA is along the positive u axis,
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SECTION IX
CROSS COUPLING COEFFICIENT K‘p

For the assuraed model equation, the best mounting positions for determining
Kip are those in which the accelf:ration components along IRA and PRA are both
reversed in sign, This results in a common cubic term which is vital for accuracy
in separating the guadratic and cubic terms of the cutput equations, In order to S
separate the compliance term J_ kz from Ki p’ it is necessary to choose pc;s_izit)ns
in which one and only one of these terms reverse sign, Positions 7 and 8 of Fig. 4
is one set of positions which satisfy the above criteria providing kz is the same for

the two positions,

The acceleration components along the accelerometer reference axes in these
posilions are:

2
k +a, (1+kx+ky)]

la .a)=1
i7 f( _\/"‘ Aer *z

-
g
3
%
iy
153
i
v

.1 3 . ) f |
Ap7—- —\/E (au+av)- J—[ crkz acr(l kx-f-ky)l (9-3,
A_=a =1-k a°
o7 ‘w y “er y

= 1 3 [

Ais—ﬁ( -a,)= [acskz+as(1+kx+ky)]
A = }-(a +a )= 1 ["‘ k - a, (1~k +k ) g (9-2)
p8 _/—2 u v \/’2‘ “cs "z X 'y

Substitute Egs. (9-1)-and (9-2) in Eqs, (4-9) to ebtain the acceleration components
along the true axes of the accelerometer, neglect second order errors, These components
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and (5-2), the output equations are:

2 -
Ccr

r 0 1%r 2 2i

a
A, =H +H a +—-[¢_x +K) (1+2) - 3K

Equations (9-3) and (9-4) show that, due to the magnitude of the allowable
misalignment angles, the value of Kip can be determined from the quadratic terms
only if the magnitudes of the products-of the accelerometer coefficients by the mis-

B e e e A e ST DT BT S NP AAN R 3 et R e D A T IR S TR S T A=

~

* Koi)_(*’i "°p) +J2—kz * Kip] * (Kai * Ksp)
‘ v

2
acs
= [(xzi-xt) (1+20) - 3K

1Y
QW W

P e S N e e e e S e

_ are then substituted in the model equation, Eq, (2-1), Using the criteria of Egs. (5-1)

2p (1- 200) + 3K3p 9y
(9-9)
2p (1-2 oO)
s
2y 2

alignment angles gre—s\mall compared to the magnitude of: Kip’ It may be:found
necessary to tigi:t)en the tolerance on the misalignment angles. It should be recalled

at-this point that'the misalignment angles o j_(j = i, p, .0) are unknown and, -in.general,

are different in each mounting position,

If the above criteria are satisfied, then-Eqs. (9-3) and (9-4) may be simplified

to:
A, =H +H a +H az + K a3
Tr (1 1%r 2 “cr 3ip “cr
T -1 7 2 _ R )
A8s_Io I1 acs+12 s Kaip‘ 2.
where
_ i
Hy = 3 [K2i+Kt+K2p+ﬁkz+ Kip]~
L, =;_;_ ,Kzi-xt+1<2p-.\/—?kz+xip]

Koy~ (Kg; *+ Kgp) /2J/2
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(9-5)

(9-6)

~

(9-7)
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The coefficients Ho, Io, Hl’ etc., and their uncertainties are determined

by the methods outlined in Section 6, The value of K;, is obtained from Egs. (3-7)
E and (3-8) and the previously determined values of Kzi and sz, i.e,
Kip = Hy * 15 = (Kp; + Ky =)
Even though the parameters of the output equations and their uncertainties are

. such that Kip. cannot be determined from these tests, nevertheless, the centrifuge
s test may be useful for determining if there ure t.ackling or ciher unexpected effects,
: As usual, the residuals should be plotied to see if they are randomly or systematically

distributed,
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SECTION X

CROSS PRODUCT COEFFICIENT Kpo

The hest mounting positions for obtaining the cross product coefficient K po are
those fn which the acceleration components along PRA and ORA are reversed in sign,
This is necessary in order to have-a common-cubic term for optimum separation of the
quadratic and cut. - ferms, The compliance term in the quadratic coefficient of the
output equations are reversed in the two positions relative to the cross coupling term,

Positions 9 and 10 of Fig. 4 satisfy the above criteria; The acceleration
comporents along-the reference axes are: )

N\
_ 1. 2
. Ais a‘w"1 ky Aer :
I U U O 11 ]
. Apg -‘/2_:(au ay) —\/; [acr k:z"':acr a +'kx+ky)ﬁ]) (10-1)
c- Ll rayeel [k ca a-wkn] |
‘A‘og—_ A\/_z_.(au_‘!- a )= Jz_ .[aqr lgal Aor (1- kx+ky)’]r, p
and .
\ A =-a =-(=-k a Y
10~ " 3= " (1=K 2.
. Agg= La +a)= L [ 2% k -a (L-k_+k) : ﬂ» (10-2)
p10 Jz u - v J2 cs z: “c8" R A N
= .1.. - -.:..1‘. ’ 2- ) .

) Substitute Eqs, (10-1) and:(10-2) in Eqs. (_4‘-9)-io~obtain the-acceleration
components along the true axes for each position, These comporients are then
substituted in Eq, (2-1) in accordance with the criteria of Eqs. {5-1) and (5-2).
The output equations are: 7
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a
_ Yer |, o\ o ol )
Agp= Jotdyag + =5 [Kop (14209 < 8Kgp0,+ Kog (1 =209
a3
» cr
+ 3Kgo 0 = (Kyp + Ko) (0 = 05) = 2k, + Koy l * (Kgp + Kgo) 2 /T (10-3)
acs
Aps= Lo~ L1%s* 73 [KZp (1+20)) +3Kqy 0, + Koy (1- 20, - 3Kq, 0,
3
acs 10-4
-(K. +K - +2k +K - + —

Because of the magnitude of the allowable misalignment angles, the value of K
in the quadratic terms of Eqs. (10-3) and (10-4) can be determined only if the magnitudes
of the products of the accelerometer coefficients by the allowable misalignment angles
are small compared tn the magn:ifude of Kpo‘ As previously mentioned, it may be
necéessary to tighten the tolerance on the misalignment angles,

1If the above criteria are satisfied, then Egs, (10-3) and (10-4) -may be

; simplified to:

- 2 3 i
Agp=Jdg+ Iy tdg o, + Kopo 2o (10=5)
- - 2 _ 3 .
AlOsT Lo~ Lyt Ly acs K3po Acs (10-6)
where
- l - - 3 -
J2 =3 [K2p+K20 2ky+Kpo] (10-7)
S -
L2 = 2[K2p+K20+2ky+Kpo_] (10-8)

K, = (Ksp/xso)/z\/?

The coefficients J 0° Lo, Jys etc,, and their uncertainties are determined by
the methods outlined in Section 6, The value of K 0o is obtained from Egs, (10-7) and

(10-8) and the previously determined values of sz and Koo i.e.

Kpo= Jg + Ly = (Kgp + Kpg) (10-9)
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_ SECTION XI

CROSS PRODUCT COEFFICIENT Ko:i

- Usini; the same reasoning-as in Sections 9 and 10, the mourting positions 11
and 12 of Fig. 4 were chosen for deterinining K oi* Gther combinations of positions
may also satisfy our criteria. The acceleration components along the reference axes
for these positions are:

me L caye 11,2 * )
Apr” N @y -2y= V2 :[acr Ky *8gp (1 4Kyt kb')] :
Ajp1= " 3= a- ky a cr) . (11-1)
__ 1 S O e
. Ag11™ \/— (@, +a))= \/E [acr l?z Aor 1 kx + ky) y
~ < y .= -].'. . - = 1 2 — )
Ailzﬁ\/‘; (@ = 3y) == Jz [acs ky * 8 (1+k Tk y _
Ap™ =3y = " (1_ ky acs) ) (11-2)
A va»)— 1: k -a, (l-k +k)
012~ \/'— \/2— cs "Z Xy J

Substitute Eqs, (11-1) and {11-2) in Eqs, (4~9) to-obtain the acceleration
components along the true axes for each position, These components are then
substituted in Eq, (2-1) in acéordance with the criteria of Eqs. (5-1) and (5-2).
The output equations are:

A1 MO + M, a,.+ ‘[(Kzi +Ky) (1 -'2¢p) - 3K3i 9yt Kzo 1+ 2_°p)

' ~ - ' 2 aﬁr
+ 3K 1 " Kyp KPO)’(% =)t V2 k, + Koi] Ao + (Bgo* Kgy) ;:/75 (11-3)
A .
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1 - \
+ 5 [(KZi “Kp (1~20} <3K3;0 4+ Kyy (1420} + 3Ky 0,

Ajgg = Np-Nya,
3
J2k +K ] - Ky, 2 (11-4)
~(K +K ) (o +0,)~ - -
ip po’ Vo i Z oi 2ﬁ

As in the determination of Kip and Kpo , the prodigcts of the accelerometer
coefficients by the allowable misaiignment angles in the quadratic terms of Egs. (11-3)
and (11-4) must be small compared to the magnitude K If these products are small,

i.
then Eqs. (11-3) and (11-4) may be simplified to:
A, =M +M.a_ +M. a2 +K. . a3 (11-5)
ilr 0 1 cr 2 cr 30i “cr
A, =N, -N.a_+N,a> -K, . aS (11-6)
128 "0 1%s "27cs 3oi “cs- - ] .
where ‘ 7 ‘
e Lk : - ’
M, =3 A[Kzi R v Ky + 2k, + Ko.i]: (11-7)
i, - ‘ -
N, «2[1(21 K+K lec +Ki] (11-8)
K3oi 31' Y/ 2‘/—
'fhe coefficients MO’ NO’ Ml' etc., and their uncertainties are determined

by the method of l2ast squares as outlined {n Section 6, The value:of K is obtained
. from. Eqs. (11-7), (11-8) and the previously determined vaiues of K and KZO’ i.e,

Ky = My + Ny - (K, + K

oi 2 20)

58




N 07 B RG e O T . o ot s 9 "
] ; g 3 2 T LR TR T T P o P MR e et ¥
A T S W o b, P e = e e o8 . .

2.

REFERENCES

B. H, Evans and T, Fuhrman, Determination of Accelerometer Nonlinearities
from Precision Centrifuge Testing, presented at the Second Inertial Guidance
Test Symposium, 1964,

IEEE Standards Publicatioa No, . Specification Format for Linear,
Single-Axis, Pendulous, Analog Torque Balance Accelerometer.
(To be published)

E. Whittaker and G. Robinson, The Calculus of Obs.rvations, Dover
Publications, 1967,

Paul G, Hoel, Introduction to Mathemalical Statistics,  John Wiley and Sons, 1954,

59

A\ et e e b B B S e A




