
£ 
8 

a. 

TR1 Call No. J.^OQO 
ESD-TR-7I-34I Copy No., of cys. 

THE TREATMENT OF DATA TYPES IN ELI 

Ben Wegbreit 

August 1971 ESD RECORD COP/ 
RETURN TO 

SCIENTIFIC & TECHNICAL INFORMATION DIVISION 

(TRI), Building 121Q 

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS 
HQ ELECTRONIC SYSTEMS DIVISION (AFSC) 
L. G. Hanscom Field, Bedford, Massachusetts  01730 

Sponsored by:   Advanced Research Projects Agency 
1400 Wilson Boulevard 
Arlington, Virginia   22209 

ARPAjprder No. 952 

Approved for public release; 
distribution unlimited. 

(Prepared under Contract No. FI9628-68-C-0379 by Harvard University, 
Cambridge, Massachusetts   02138.) , _J tow* 



LEGAL NOTICE 

When U. S. Government drawings, specifications or other data are used for any 
purpose other than a definitely related government procurement operation, the 
government thereby incurs no responsibility nor any obligation whatsoever; and 
the fact that the government may have formulated, furnished, or in any way sup- 
plied the said drawings, specifications, or other data is not to be regarded by 
implication or otherwise as in any manner licensing the holder or any other person 
or conveying any rights or permission to manufacture, use, or sell any patented 
invention that may in any way be related thereto. 

OTHER NOTICES 

Do not return this copy.    Retain or destroy. 



ESD-TR-7I-34I 

THE TREATMENT OF DATA TYPES IN ELI 

Ben Wegbreit 

August 1971 

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS 
HQ ELECTRONIC SYSTEMS DIVISION (AFSC) 
L.  G.  Hanscom Field, Bedford, Massachusetts  01730 

Sponsored by:   Advanced Research Projects Agency 
1400 Wilson Boulevard 
Arlington, Virginia   22209 

ARPAsprder No. 952 

Approved for public release; 
distribution unlimited. 

(Prepared under Contract No. FI9628-68-C-0379 by Harvard University, 
Cambridge, Massachusetts   02138.) 



FOREWORD 

This report presents the results of research conducted by Harvard 
University, Cambridge, Massachusetts in support of ARPA Order 952 under 
contract F19628-68-C-0379.  Dr. John B. Goodenough (ESD/MCDT-1) was the 
ESD Project Monitor. 

This technical report has been reviewed and is approved. 

EDMUND P. GAINFS^/JR., Colonel, USAF 
Director, Systems Design & Development 
Deputy for Command & Management Systems 



ABSTRACT 

In constructing a general purpose programming language, a key issue is 
providing a sufficient set of data types and associated operations in 
a manner that permits both natural problem-oriented notation and very 
efficient implementation. The language ELI contains a number of features 
specifically designed to simultaneously satisfy both requirements. The 
resulting treatment of data types Includes provision for programmer- 
defined data types and generic routines, programmer control over type 
conversion, and very flexible data type behavior, in a context that 
allows efficient compiled code and very compact data representation. 

Ill 



TABLE OF CONTENTS 

Page 

I. Introduction  1 

II. A Brief Sketch of ELI  2 

III. Mode Union  9 

IV. Mode Construction  11 

V. The Evaluation of Mode Definitions  15 

VI. Generi c Routi nes  18 

VII. Type Conversion  25 

VIII. Programmer Specified Mode Behavior  31 

IX. Conclusion  40 



THE TREATMENT OF DATA TYPES IN ELI* 

Section 1:   Introduction 

The prime function of a problem-oriented language is to provide a set of 

data types and associated operations sufficient to represent the unit objects 

and operations of its problem domain.   This representation must on the one 

hand be very natural to the programmer and on the other be implementable on 

computing machines in a very efficient fashion.   The success of FORTRAN, 

SNOBOL,  and COBOL is due principally to their respectively providing such 

representation for scalars and arrays of numbers,   strings,  and data process- 

ing records.   Each language has an envelope of applications in which program 

creation is natural and program execution is efficient.   This envelope is 

determined primarily by the set of data types and operations it provides. 

In recent years there has been considerable effort to construct languages 

with significantly larger performance envelopes [l, 2, 3, 4, 5] ,    that is, 

languages to serve many or all problem domains.   In constructing such 

languages,   the principal problem is providing a sufficient set of data types and 

associated operations in a manner that affords both naturalness of notation and 

efficiency of representation.   We wish to stress that both considerations are 

absolutely vital.   Either alone can be satisfied fairly easily.   However,   simul- 

taneously achieving very efficient representation and natural notation for a wide 

variety of data types is a quite difficult matter.     We stress the importance 

of both considerations because the  really  significant problems of 

computer science generally entail difficult programming projects where 

considerable effort is required for program creation and development and 

* Also included as number 4-71 in the publication series of the Harvard 
Center for Research in Computing Technology. 



where the final result must be a very efficient running program. 

The purpose of this paper is to discuss how this problem is solved in the 

programming language ELI.     ELI is a working programming language^ 

currently under further development as part of a research project in extensible 

languages at Harvard University.     It has a number of features specifically 

designed to make possible a very flexible, yet very efficient,  treatment of 

data types.   These features,  their shaping of data type handling,  and their 

interaction with other aspects of the language are the topics of this paper. 

This paper is divided into nine sections of which this is the first.   Section 2 

is a brief sketch of the language ELI,  outlining its main features and establish- 

ing the notation to be used in the rest of the paper.   ELI gives a somewhat un- 

conventional treatment to the union of data types;   since this concept arises in 

several contexts,  it is examined in detail in section 3.   Section 4 describes the 

basic data type definition facilities of ELI.   Section 5 discusses the evaluation 

of data type definitions and the implications of this to compilation.   Section 6 

discusses the treatment of generic routines (roughly,  routines whose action 

depends on the types of their arguments).   Section 7 discusses type conversion 

and its interaction with generic routines.   Section 8 deals with the more sophisti- 

cated aspects of the ELI data type definition facility:   the mechanisms which 

allow the programmer detailed control over data type behaviors.   Section 9 turns 

from the specific to the general—abstracting the techniques used in ELI and ex- 

amining to what extent they can be applied to other problem-oriented languages. 

Section 2:   A Brief Sketch of ELI 

In written appearance,  ELI is a fairly conventional programming language 

in the Algol 60 tradition.   It includes variables and subscripted variables, 

'The present version of ELI runs on the PDP-10 under the 10/50 monitor. 
A version for TENEX PDP-10 is imminent.  Versions for other machines 
are contemplated. 



prefix and infix operations,  labeled statements and gotos,  block structure,  pro- 

cedure calls,  and assignments,  all written in standard fashion.   Many standard 

forms are somewhat generalized in ELI.   For example,  assignment is treated 

as a binary operator whose value is its left-hand operand.   Also,  blocks have 

values — the value of the last statement executed.   Hence, 

X   -   BEGIN   B[j-J+l]-COS(W);  FUM(B[J],Y)   END 

adds one to J,  then assigns COS(W) to B[J],  then applies FUM to B[j] and Y,  and 

finally assigns the result of FUM to X.   Conditionals are specific types of state- 

ments in blocks.   An if-then statement is written with a right-pointing arrow. 

That is,  the Algol 60 construct "if 0> then £ " is written in ELI as 

^- £ 

For example,  in 

BEGIN 
I -   0; 

L:   A[I-I+1] -   0; 
I<N - GOTO L 

END 

the loop is repeated until I reaches N.   There is a second form of conditional 

statement, written with a double-shafted arrow,  interpreted as:   if the left-hand 

side is true,   execute the right-hand side and exit the block with that value. 

Hence, the Lisp conditional (COND (^ £.) (0>2£ 2) . . . {&  £  ) )   is written 

in ELI as 

BEGIN 

^2 => & 2 ' 

&   => £ n        * n 
END 

Simple conditionals,  block-exit conditionals and unconditional statements can be 

freely intermixed.   For example,  the following block computes an approximate 



square root of a number A with initial approximation X to within EPS 

BEGIN 
L:   ABS(X**2-A)<EPS => X; 

X - (X+A/X)/2; 
GOTO L 

END 

The block is exited only when the left-hand side of the first statement is true; 

when the exit is taken,  the value of the block is X. 

Variables are either formal parameters to a routine or variables local to 

a block.   In either case,  a variable is declared to be of some specific data type 

and is restricted to contain values of that type throughout its lifetime. 

Data types,  termed "modes" in ELI,   include the following built-in types: 

BOOL (Boolean),  CHAR (character),  INT (fixed point),  REAL (floating point), 

REF (pointer unrestricted as to the mode of the object it can point to), 

SYMBOL (corresponding to non-numeric atoms in Lisp),  MODE (the data type 

"data type"),   FORM (the Lisp S-expression),  and ROUTINE (procedure or 

operator).   From the standpoint of creation,  assignment,  and use as arguments 

or formal parameters, all these modes are equally valid.   Hence: 

DECL   I,J: INT; 

creates integer-valued variables named I and J,  while 

DECL   Ml, M2, COMPLEX: MODE; 

declares three mode-valued variables,  and 

DECL   Fl, FOO, FUM, CSIGN: ROUTINE; 

creates four routine-valued variables.   While all these modes are equally valid, 

they vary considerably in complexity.   For example,  a BOOL value is a single 

bit while a MODE value has associated with it all the information needed by the 

language to implement a data type.   However,  from the standpoint of the program- 

mer,  the complexity is largely invisible.   He is concerned only with the behavior 



of values having these modes:   a BOOL value can be used in the left arm of a 

conditional while a MODE value can be used in declaring the type of a variable. 

Objects are distinct from variables in ELI.   Variables may name objects, 

but the mapping is not one-to-one.   That is,  while each variable names some 

object,   several variables may name the same object (e.g.,  when an argument 

is passed by reference to a routine),   several variables may name different 

parts of a single object,  and an object may be named by no variable.   An object 

lies either on a block-structured stack (like that of Algol 60) or in the free 

storage region termed the heap (like that of Lisp  or Algol 68).   In the former 

case,  the lifetime of an object is concomitant with that of the block in which it 

was created.   In the latter case,  an object remains until no variable names it 

and no pointers reference it.   Garbage collection periodically reclaims objects 

in the heap no longer in use and returns them to the free storage pool. 

An object has a mode determined at the time of object creation.   An object 

is created in one of two ways,  either implicitly as the result of a declaration, 

or explicitly by means of the generators CONST and ALLOC.   Objects created 

implicitly by declaration reside on the stack.   Objects created by the explicit 

generator CONST also reside on the stack;  objects created by the explicit gener- 

ator ALLOC reside in the heap.   As an example,   suppose that the mode COMPLEX 

has been defined (a definition in the language will be given in section 3),  then 

consider 

CONST(COMPLEXOF X, Y) 
ALLOC(COMPLEX OF X, Y) 

The first line constructs a complex number on the stack and returns this com- 

plex as its value;  the second line constructs a complex number in the heap and 

returns a pointer to the complex number as its value.   As an example of how the 

latter value may be used,   consider 

DECL   P:REF; 

P - ALLOC(COMPLEX OF 3., 4.); 



The first line creates a pointer-valued variable P unrestricted to the sort of 

object it can point to;  the second line assigns to P a pointer to the complex 

number 3+4i.   Given a pointer such as P,  the object pointed to can be accessed 

by applying the function VAL,  e.g., 

VAL(P) 

is the complex number 3+4L   The only means for creating a new pointer value 

is ALLOC.   Hence,  pointers point only to the heap,  never to the stack. 

In ELI,  the notion of a routine embraces both procedures and operators. 

A routine-valued variable may be assigned a routine-value,  e.g., 

CSIGN ~- EXPR (XrREAL; CHAR) 
BEGIN 

X > 0 =>   'P; 
X < 0 ==> 'N; 
'Z 

END 

Here the routine has a single parameter'  named X of mode REAL,  delivers a 

CHAR value and has a body consisting of a block which computes the sign of its 

argument and yields the character P,  the character N or the character Z.   Any 

routine may be written as a function and applied to its arguments 

CSIGN(A[J]) 

In addition,  a routine-valued variable can be declared to be a prefix operator 

and then applied to a single argument without enclosing the operand in 

parentheses.   A routine taking two arguments can be declared as an infix 

operation and used accordingly.   The standard operators such as +, *, -, /, >, <, 

and others are defined in this way as part of an initial,   system-provided 

^The formal parameter X is bound by reference (in the sense of Fortran or 
PL/I),  i.e.,  an assignment to X would change the value of the argument.   Where 
this is not desired,  one can declare that a formal parameter is bound by value 
(in the sense of Algol 60),  in which case a private copy of the value of the argu- 
ment is made.   Assignments to the formal will then affect only the formal and 
will not change the value of the actual argument. 



extension  set. 

The principal concern of this paper is with mode-valued constants,  mode- 

valued variables,  and mode-valued routines.   The primitive data types (BOOL, 

CHAR, INT, REAL, and REF) mentioned previously are examples of mode- 

valued constants.   To make the notion clear,  consider 

DECL P:  BOOL; 

P - TRUE; 

This creates a Boolean valued variable P and later assigns it the Boolean value 

true (denoted by the Boolean constant TRUE).   Analogously,  consider 

DECL Ml:    MODE; 

Ml *- INT; 

This creates a mode-valued variable Ml and later assigns it the mode-value 

integer (denoted by the mode constant INT).   In addition to the mode constants 

mentioned earlier,  there are two others:   NONE and ANY.   The former is the 

mode of the empty object.   The latter is the union of all possible modes; 

section 3 discusses this and other mode unions. 

A mode-valued variable may be used in any position where a mode value is 

required. For example, suppose that after the above assignment has been exe- 

cuted the following block is entered 

BEGIN 
DECL J:    Ml; 

END 

In this block,  J is an integer valued variable.   If Ml had some other mode value, 

say ^4f',  then J would be an ^-valued variable. 

The concept of mode-valued routine is a logical consequence of treating 

modes as values.   The simplest such routine is MD which takes a single 



8 

argument and delivers its mode.   For example,  MD(FALSE)=BOOL and 

MD(SIN(X))=REAL.   A more significant application of mode-valued routines is 

mode construction.   That is,  a set of primitive mode-valued routines provides 

the means for constructing new modes.   These primitive mode constructors 

take modes as arguments and define new modes in terms of these.   From the 

primitive mode constructors, the programmer can define other mode- 

constructing routines by means of functional composition,   iteration,  con- 

ditionals,  and recursion.   Mode constructors,  primitive and programmer- 

defined,  are discussed in sections 4, 5, and 8. 

The above sketch of ELI treats those facets of the language required for 

the purposes of this paper.   (A more complete explanation of the language and 

a formal definition of both its syntax and semantics is found in [6].) However, 

the traditional discussion of a language per se neglects many facets of its 

usage and implementation.   For ELI those considerations are particularly   im- 

portant,  and an understanding of several "extralingual" facets is essential to an 

understanding of this paper.   ELI is the language component of a programming 

system called ECL.T   The system is used on-line with two fully compatible 

language processors — an interpreter and a compiler.        Compiled and interpre- 

ted routines may be freely intermixed with no restrictions. 

One key point of the ECL system is that there is no rigid "compile time " 

"load time ," "run time" distinction.   Routines are interpreted until explicitly 

^The system includes the usual facilities for on-line interaction such as a text 
editor,  a trace feature,  and a debugging package.   It also includes multitasking, 
multitasking control primitives,  and programmer-controlled interrupt process- 
ing.   An overview of the entire system is given in [7]. 

*'Although there is an interpreter and compilation is optional,  the language has 
been strongly shaped by the expectation that production programs will be eventu- 
ally compiled.   For example,  an interpretable-only language could be "type-less" 
with all variables free to take on values of any type.   However,  efficiency con- 
siderations lead one to a compiler and with it typed variables.   Most of the de- 
clarative data type information is really of interest only to the compiler.   How- 
ever, to maintain compatibility between language processors,  the interpreter 
verifies that the data type constraints are satisfied. 



compiled.   Compilation is carried out by calling the compiler as a subroutine 

and passing as argument the routine to be compiled.   The compiler can be 

called at any point,   e.g.,  while executing a routine.   Hence,   it is possible to 

compile a routine several times with very precise control over the degree of 

"binding." For each compilation of a routine,  one can compute certain invari- 

ants of that compilation instance and then compile code which reflects these 

invariants.   That is,   suppose P is a routine with free variables I- ... I   . 

Suppose some  k of these  I.    ... I.    are bound to specific values V. . . . V,   and 
h Jk Ik 

the result is compiled.   The code generated will be better,  often substantially 

better,  than the code for P had all variables been left free. 

The ELI compiler is called with two arguments — a procedure P and a list 

L of variables free in P which are to be so bound.   For each variable I on L, 

each appearance of I in P is replaced by its value at the time of compilation. 

Such a variable is said to be frozen.   If a routine identifier,  the free variables 

of the routine,  and the arguments to the routine are all frozen (or are otherwise 

constant) then the routine is evaluated during compilation and the value thus pro- 

duced takes the place of the call.   Applying this rule recursively,   arbitrarily 

large amounts of a routine being compiled may collapse into values,   i.e., 

become frozen.   For example,   if FOO, FIE, X and Y are all on L,  then 

FOO(3, Y, FIE(X, Y, 3.2)) 

may be so frozen.   In general,  any syntactic unit made up only of constants or 

frozen forms is said to be evaluatable;  it is replaced by its value and becomes 

frozen.   Hence,  depending on L,   compilation may leave none or all free vari- 

ables in P and generate very tight or very loose bindings. 

Section 3:   Mode Union 

The concept of mode union is treated rather specially in ELI.   As an ex- 

ample of this treatment,  recall that the mode constant ANY denotes the "union" 



10 

of all modes.   Consider an assignment to the routine-valued variable F 

F - EXPR (X:ANY; BOOL) BEGIN   . . .   END; 

F  then takes as argument a value of any mode,  e.g., 

F(3),  F(3.),  F("W"),   F(TRUE),   F(REAL) 

are all legal calls on F.   In each case,  the X of this invocation of F is bound 

to the argument.   The critical point of the ELI treatment of unions is as 

follows:   in each case the X of this invocation of F takes on the mode of the 

argument and henceforth cannot change throughout its lifetime.   Hence,  in the 

first call on F,  X is bound to 3 and becomes an integer.   The value of X can be 

changed by an assignment,  e.g., 

X- 4; 

but the mode of X is fixed.' 

In section 4 we discuss modes which act as "restricted" unions, that is, 

mode    or mode„ or ... or mode  .   There,  as here,  a formal parameter de- 

clared to have such a mode is bound at the time of call to some specific 

alternative from the set of possibilities;  just which alternative is determined 

by the argument.   Subsequent to creation,  the formal parameter cannot change 

from that alternative mode.   For example,  a negation routine may be defined to 

have a single parameter whose formal mode is int or real or complex.   The 

mode of the argument determines which one of these is the actual mode. 

'An analogy may be made with the length of an Algol 60 array.   Consider,  for 
example,  the Algol 60 fragment 

begin real array A[1:N]; 

end 

A  is declared to be an array of length N.   For each instance of the block (i.e., 
block activation),  the length of A is fixed to the then current value of N at the 
time of block entry.   Subsequently, the value of A may change but not its length. 



11 

The ELI union differs from a set theoretic union in exactly one respect: 

after an object is created,  its mode is fixed to be a specific alternative.   A set 

theoretic union would allow objects whose modes as well as values could be 

changed throughout their lifetime.'    Clearly,  the ELI union is a subcase of the 

more general set theoretic union.   This restriction is imposed for two reasons: 

implementation efficiency and linguistic simplicity.   By requiring objects to 

assume some definite (i.e.,  non-united) mode,  there is never the need to allo- 

cate extra stack storage to provide for the contingency of a variable changing 

its mode and thereby assuming a larger size.   Among other consequences,  this 

makes possible a stack implementation of the mode ANY;  (this,   of course, 

would not be possible for a set theoretic ANY).   Since union is treated as post- 

ponement of a mode choice,  the concept of union does not exist for the evalu- 

ator;  i.e.,  each object has a definite unchanging mode.   Hence,  there is no need 

for special semantic rules to deal with unions.        This simplifies both the 

learning and use of the language.    Finally,  the treatment of union in ELI inte- 

grates smoothly with the use of generic routines;  this is discussed in section 6. 

Section 4:   Mode Construction 

Given sets t.., . . . , t ,  one can form new sets from these in several ways: 

(1) Cartesian product: 

(2) self product — definite 
and indefinite: 

(3) union: 

(4) mappings: 

'This is,  for example,  the treatment of mode union given in [8]. 

ft As an example of the sort of issue we thereby avoid,  consider the following. 
Let A be a true set theoretic union of int and bool and let its current value be 
an int.   Suppose A is passed by reference (in the sense of PL/I) to a routine 
F which takes an int formal parameter named X.   Since A currently has an int 
value,, presumably this is legal.   What if F uses A free and assigns a bool value 
to it?'  Does this affect X? 

tj x t2 X . . . X t n 

. k             °° 
i     and   U t.k 

k=0 I 

tjUt2U .. . Ut n 
(tj X . . . X t n> ^ W 



12 

These have the natural interpretations:   structures (in the sense of COBOL or 

PL/I),  arrays,  unions,  and routines.   These four formation rules define 

classes of modes and,  by the usual abuse of notation,  four classes of objects 

belonging to these modes.   Corresponding to each formation rule there is a 

primitive ELI routine - STRUCT, ARRAY,  ONEOF,  PROC - which generates 

new modes of that class.    The basic mode definition mechanism of ELI is the 

set of primitive mode-valued constants and the set of primitive mode-valued 

routines.   All other modes are generated from these. 

STRUCT takes as arguments a list of pairs (name.: mode.),  where mode. 

is the mode of the i     component and name, is the symbolic name.   For example,' 

LIGHT_BULB - STRUCT(HOURS_USED:REAL, 
WATTS: INT, 
COLOR: CHAR, 
BURNT_OUT:BOOL) 

defines a mode of class structure consisting of four fields:   a real,  an integer, 

a character,  and a Boolean named HOURS_USED,  WATTS,   COLOR,  and 

BURNT_OUT,  respectively.   The mode thus defined is assigned to the mode- 

valued variable LIGHT_BULB.   Subsequent to the assignment,  the variable may 

be used as a type declarer 

DECL   X,  Y,  Z : LIGHT_BULB; 

creating variables X,  Y,  and Z of mode LIGHT_BULB,  and three associated 

objects (in the stack) named by the identifiers.   The individual components can 

be referred to by qualified naming (in the style of PL/I) so that 

Z. COLOR 

^The promised definition of the data type complex is: 

COMPLEX *- STRUCT(RE: REAL,  IM: REAL) 

If Z is a complex variable,  then Z.RE  and Z.IM denote its two REAL com- 
ponents. 



13 

is a character field.   Alternatively,  a component can be selected by an integer 

subscript so that 

Z[J] 

is identical to Z.COLOR if and only if J has the value 3.   Assignment of one 

LIGHT_BULB to another is denoted in the usual fashion 

X *- Z 

and copies all components of the structure. 

ARRAY generates either definite or indefinite self product,  depending on 

how it is called. 

ARRAY(K,^) 

generates the mode Jt     while 

ARRAYS) 

00 k 
generates the mode   U ^U   .   In the latter case,  the mode is said to be length 

k=0 
unresolved.   While the mode is length unresolved,  any particular instance of 

such a mode has a fixed length determined at the time the instance is created. 

For example, 

CARD - ARRAY(80, CHAR); 

defines the mode "array of 80 characters" and assigns it to the mode-valued 

variable CARD.   Any variable of mode CARD 

DECL   C:   CARD; 

has exactly 80 components which may be accessed by subscripting 

C[I] 

The mode "length unresolved array of characters" may be defined by 

STRING - ARRAY(CHAR); 



14 

This creates a mode whose instances may be of any length.   The length of each 

instance is,  however,  fixed at the time of creation 

DECL   S: STRING  BYVAL CONST(STRING SIZE   200); 

This creates a variable S of mode STRING and initializes it to a STRING of 200 

components.   Subsequently,  the values of S's components may change but not the 

number of components.   The number of components in an array may be deter- 

mined by applying the primitive routine LENGTH,  e.g.,  LENGTH(S)=200.   As 

with structures,  assignment of arrays is written using the assignment oper- 

ator and copies all components. 

ONEOF (t,,t0, ... ,t )  defines a "union" of n alternative modes t, ... t  , 1    2        ' n In' 

where "union" is used in the sense described in section 3.   That is,  a variable 

declared to be of such a mode takes on some specific alternative determined 

by its initial value.   For example, 

ARITH - ONEOF(INT,REAL); 
SIGN - EXPR(X : ARITH; ARITH)   BEGIN . . . END 

SIGN(-13) 

DECL Y: ARITH BYVAL P(X) 

In the second line,  the routine is declared to take a single argument which is 

either INT or REAL.   In the call to SIGN,  in line 3 an INT is used so that X in 

this invocation of SIGN is an INT.   In the fourth line,  Y is declared to be either 

an INT or a REAL — which one is determined by the mode of P(X) on each exe- 

cution of this line. 

PROC (L, ... , t ; t +1)  defines the mode "mapping from t.X ... Xt    into 

t   .   ".   For example, n+1 r    ' 

TRIG *- PROC(REAL; REAL) 

defines the mode "set of routines which map reals into reals," while 

CODE - PROC(CHAR;INT) 



15 

defines the mode of routines which convert characters into integers. 

In addition to the four classes of modes described above,  there is a fifth 

class which arises from other than set theoretic considerations:   the class 

pointer.   PTR(t) is the mode "pointers restricted to point to objects of mode  t" 

and PTR(t-, ... , t ) is the mode "pointers restricted to point to t  's or t„'s or 

...   or t  's".   Here,  unlike the situation with ELI unions,  no commitment is n 
made when such a pointer is created.   Such a variable may first point to at 

later to a t  ,  and still later to a t9.    For example, 

DECL   SP: PTRtfNT, REAL, COMPLEX); 

creates a variable SP whose mode is "pointer to INT or REAL or COMPLEX." 

Like all pointers,   SP is given the default initial value NIL,   meaning a pointer 

to nothing.   Assignments to SP may change this value 

SP -  ALLOC(COMPLEX OF   3., 4.) 

so that SP points to a complex number whose value is   3+4i. 

Section 5:    The Evaluation of Mode Definitions 

All the primitive mode generators share one common trait — they evaluate 

their arguments and these arguments may be any syntactic form which yields an 

appropriately typed value.   This trivially leads to multidimensional arrays such 

as 

REAL_MATRIX *-  ARRAY(ARRAY(REAL»; 

multilevel structures,  arrays of structures such as 

ARRAY(4, STRUCT(RE : REAL, IM : REAL)) 

and structures of arrays and pointers such as 

STRUCT(A: INT,  B: PTR(INT),   C: ARRAY(INT)) 

This illustrates only one case of evaluated arguments to mode generators. 



16 

Mode-valued variables,  conditionals,  and other routines are equally acceptable. 

For example, 

ARRAY(N**2, F(X)) 

defines the mode:   "array of N    F(X)'s" where N and F(X) are determined at the 

point that ARRAY is called.   Turning to a more complex example,  the following 

loop computes the mode:      complete binary tree of depth N whose terminal nodes 

are integers" 

BEGIN 
DECL TEMP : MODE BYVAL INT; 
DECL I: INT BYVAL N; 

L: (I - 1-1) < 0 => TEMP; 
TEMP - STRUCT(L: TEMP, R: TEMP); 
GOTO L 

END 

The declaration creates a local variable TEMP of type MODE and initializes it to the 

value integer.   The loop assigns to TEMP successive elements from the sequence 

STRUCT(L: INT, R: INT) , 

STRUCT(L: STRUCT(L: INT, R: INT) , 
R: STRUCT(L: INT,  R: INT)) , 

It should be noted that the ELI treatment of mode definition is quite differ- 

ent from that found in other programming languages,   such as Algol 68.     Tra- 

ditionally,   mode definition has been a static operation carried out at compile 

time.   By treating the mode-defining operators as executable routines which 

evaluate their arguments,  ELI obtains a more flexible and more powerful means 

of mode creation.   The most important single consequence is the notion of 

programmer-defined,  mode-valued routines.   Consider,  for example,  convert- 

ing the above binary tree generator into a routine. 

TREE - EXPR(I: INT BYVAL, M: MODE BYVAL; MODE) 
BEGIN 

L: (I*-I-l) < 0 => M; 
M - STRUCT(LEFT: M, RIGHT: M); 
GOTO  L 

END 



17 

TREE takes the depth (I) and leaf mode (M) as arguments — both passed by 

value.   The loop is the same as before,  except that now it generates the sequence 

depending on the value of the leaf mode.   Hence,   TREE(I, M) is the mode binary 

tree of depth I and leaves of mode M,  for any integer I and mode M. 

A second example may be of use.   Consider defining the mode ' multi- 

dimensional array of order K of Ms.     (For illustrative purposes,  we use a 

recursive definition;  an iterative one would,  in fact,  do just as well.) 

MULTI_ARRAY -   EXPR(K : INT,   M : MODE;   MODE) 
BEGIN 

K=0 => M; 
ARRAY(MULTI_ARRAY(K-1, M)) 

END 

MULTI_ARRAY of K M's is either M (if K is 0) or is an ARRAY of the result 

obtained by applying MULTI_ARRAY to K-l and M.   The definition is obvious 

and would be somewhat uninteresting were it the only one possible.   However, 

there are other ways of constructing multidimensional arrays which,  for some 

purposes,  are far superior to the one given above.   If,  for example,  a frequent 

operation is exchanging entire rows,  then it will be advantageous to use an 

array of pointers to the constituent rows.   The generalization of this to order K 

is defined 

P_ARRAY -  EXPR(K: INT,  M: MODE;  MODE) 
BEGIN 

K=0 => M ; 
K=l => ARRAY(M); 
ARRAY(PTR (P_ARRAY (K-l, M))) 

END 

The K=0 case should be obvious; for K=l we define a conventional array; for 

higher K's we construct an ARRAY of PTRs to the result of P_ARRAY applied 

to K-l and M. 

The point of programmer-defined mode routines is that they permit signifi- 

cant functional abstraction.   Instead of talking loosely about some collection of 

related modes,   one can define a collection precisely by means of a routine 



18 

which generates it.   Mode sets such as matrices,  binary trees,  lists,  rings, 

hash tables,   etc.,of various element types can be defined by their generators. 

This permits the  creation of mode-definition libraries.      More  im- 

portant,  it allows the programming of algorithms which act on a class such as 

binary trees without regard to the constituent elements.   Only during compi- 

lation is it necessary to freeze free variables to determine which specific sort 

of binary tree.   Finally,   it allows one to prove properties of mode sets inde- 

pendent of their particular elements by appealing to the properties of the mode 

set generating routine. 

It must be stressed that the considerable generality provided by dynamic 

execution of mode definitions does not exact a price in inefficient code.   If any- 

thing,  the facility allows for far better code generation.   It was explained in 

section 2 that in compiling a routine Rl,  one could freeze the values of free 

variables to their then current values.   Suppose we execute 

M -  P_ARRAY(^1, £2) 

M then assumes some definite mode value.   If Rl uses M as a type declarer, 

leaving M as a free variable,  then Rl may be compiled with M frozen.   The 

specific mode value of M will be used.   It is therefore possible and practical for 

a program to compute the modes it uses and compile parts of itself specific to 

these computations. 

Section 6:   Generic Routines 

The main reason for having united modes (e.g., ANY and those generated 

by ONEOF) is to type formal parameters for routines which accept several 

distinct types of arguments.   Such routines (e.g.,  the operator + in Algol 60) do 

not convert these arguments to fixed types but rather perform different actions 

dependent on argument types.   Such routines are termed generic.   Almost all 

languages have such routines, but almost always as built-in operations.     In this 

section we discuss how the programmer defines his own generic routines in ELI. 



19 

The basics have already been discussed:   one needs the ability to declare 

formal parameters having united modes and a means of testing the actual modes 

of these parameters.   The latter is provided by the primitive routine MD; for 

any expression^,  MD(i)  is the mode of the value of £.   To illustrate a possible, 

if far from satisfactory technique,  consider defining + to act on INTs,  REALs, 

and COMPLEXs. 

SCALAR -  ONEOF(INT, REAL, COMPLEX); 

+ -  EXPR(X:SCALAR,   Y:SCALAR;  SCALAR) 
BEGIN 

(MD(X)=INT) AND  (MD(Y)=INT) => FIXADD(X, Y); 
(MD(X)=COMPLEX) AND  (MD(Y)=COMPLEX) => 

CONST(COMPLEX OF X.RE+Y.RE, X.IM+Y.IM); 
(MD(X)=INT)  AND (MD(Y)=REAL)   => 

FLOATADD(FLOAT(X), Y); 
etc. 

END 

The + routine is here declared to take two arguments — each of which may be 

one of {INT, REAL, COMPLEX}.   The routine body tests the types of its argu- 

ments on each invocation and dispatches to the appropriate code section. 

This has two principal defects:   (1) The type testings and their conjunctions 

are redundant and hence tedious to read and write.   (2) It is difficult for the com- 

piler to exploit knowledge it may have concerning the modes of arguments.   For 

example,  if A has been declared to be an INT,  then A+3.2 will invoke the third 

alternative,  but how is the compiler to know this?   It could,  of course,  make 

the deduction by "interpreting" the + routine.   While this will work in principle, 

it seems an unnecessarily difficult approach.   Instead,  we impose additional 

structure on the program — structure which simultaneously makes the code more 

readable by man and more comprehensible by the compiler. 

The traditional means for imposing structure in a programming language is 

with a new syntactic form,  here the GENERIC form.   A GENERIC form'  is 

'A GENERIC form may appear anywhere within a routine;  the left-hand arm of 
each statement is always compared with the arguments to the routine itself. 
This is useful for routines which take one or more generic arguments, but 



20 

delimited by the brackets "GENERIC" and "END" and contains a set of 

conditional-like statements whose left arm is a set of modes and whose right 

arm is an alternative value of the generic form.   For example,  the above + 

routine may be directly recoded using a GENERIC form as its body 

+ *- EXPR(X:SCALAR, YrSCALAR; SCALAR) 
GENERIC 

[INT, INT] =*• FIXADD(X, Y); 
[COMPLEX, COMPLEX] => CONST(COMPLEX OF X.RE+ 

Y.RE, X.IM+Y.IM); 
[INT, REAL] => FLOATADD(FLOAT(X), Y); 
etc. 

END 

This may be read as an analogue to a set of conditionals: 

if the 1st arg is an INT and the 2nd arg is an INT then FLXADD(X, Y); 

else if the 1st arg is a COMPLEX and the 2nd arg is a COMPLEX then 
construct a COMPLEX of X.RE+Y.RE and X.IM+Y.IM; 

else if . . . then . . . 

The alternatives are considered in turn until one is found which matches the 

actual modes of the arguments on this invocation of +.   The last statement can 

optionally be of the form 

ELSE (expression) 

If this is present and none of the alternative sets match,  the last (expression) 

is taken as the value of the GENERIC;  if this is not present and there is no 

match,  a system error routine is called.   The importance of the GENERIC to 

compilation is,  of course,  that "considering the alternatives" can usually be 

carried out during compilation so that compiled calls on + can usually be re- 

placed by a call on the right-hand side of the appropriate alternative statement. 

contain substantial computation £ which does not depend on the modes of these 
arguments (e.g.,  computation based on the non-united arguments).   Such 
routines can be written with an embedded GENERIC form.   The code for £ is 
then effectively shared among the various generic alternatives. 



21 

It should be obvious that if there are several generic formals,  the number 

of possible combinations can grow to unwieldy size.   Even with a concise 

notation for expressing alternatives, this is unacceptable.   It need not, however, 

arise.   An element of the mode set of a GENERIC statement can be an arbitrary 

syntactic form,  so long as the value it produces is a mode.   Hence,  a GENERIC 

statement such as 

[CHAR, ONEOF(INT, STRING), ANY] =>  . . . 

will cover (i.e.,   match against) each of the following sets of argument modes 

{CHAR, INT, REAL},  {CHAR, STRING, INT},  {CHAR, STRING, MUMBLE}, 

In general,  a mode G in a mode set covers an argument mode A if any of the 

following hold: 

(1) G = ANY 

(2) G is a generic mode ONEOF(t   ... t ) and A = t. for some i 

(3) G = A 

Even collections of modes will, in some cases, prove too restrictive in 

performing generic selection. Consider, for example, a print routine which 

takes a single argument X — an object to be printed 

EXPR(X:ANY; NONE) . . . 

X can be of ANY mode and no result is returned.   The routine is to print X in 

one of three formats,  depending on whether X is a structure,  an array,  or a 

pointer.   Testing this is straightforward:   ELI includes a primitive routine 

STRUCTP which is a predicate true of structures only.   Hence 

STRUCTP(X) =2> . . . 

is the test which checks for the first print class.   The trick is to make the dis- 

crimination while compiling a call on the print routine. 

This can be done if the left-hand side of a generic statement is general- 

ized to 



22 

where the J?s are forms which evaluate to modes to be compared to the argu- 

ment modes and  & is an arbitrary form producing a Boolean value.   An 

alternative is chosen only if all modes match and & is true.      For example, 

the desired print routine has the structure 

EXPR(X:ANY; NONE) 
GENERIC 

STRUCTP(X) => . . . ; 
ARRAYP(X)    => . . . ; 
ELSE   . . . 

END 

Any predicate whatever can be used as part of a generic alternative.   This 

provides a very general mechanism for the programmer to control compilation, 

i.e., to perform once at compile time a choice which would otherwise be made 

repeatedly during execution.   Hence,  the generalized GENERIC form is quite 

powerful.   The facility it provides is related to the freezing of free variables 

during compilation.   The difference is this.   Freezing allows one to produce 

individual compilations of a routine,   each tailored to some specific environ- 

ment; the GENERIC form allows a single routine to take several alternative 

actions, yet allows choice among the alternatives to be made when compiling 

a call on the routine. 

The compiler gives special treatment to GENERICs under two circum- 

stances:   (1) in compiling a routine whose body is a single GENERIC form, 

and (2) in compiling another routine which contains one or more calls on 

routines of type 1.   We consider these in turn. 

When given a routine such as + whose body is a single GENERIC form, 

the compiler produces: 

' & may be absent,  in which case it is taken as TRUE.   Similarly,  any of the 
^s can be absent,  in which case they are taken as ANY.   Note that the mode set 
is semantically unnecessary since all mode checks could be carried out in the 
predicate.   However,  factoring the selection into two parts — a simple pattern 
match and an arbitrary predicate — is useful for pragmatic reasons. 



2 3 

(1) a main body for the routine, 

(2) a set of alternative bodies — one for each alternative GENERIC statement. 

The main body consists of 

(1.1) a flag indicating that this is the main body of a GENERIC, 

(1.2) executable code, 

(1.3) a table of alternative mode/predicate sets, 

(1.4) an array of pointers to the alternative bodies. 

The main body has the original formal mode set,   e.g.,   for the + routine this is 

(SCALAR, SCALAR; SCALAR).   It can be called directly (e.g.,  from interpreted 

code),  in which case it tests the alternative mode/predicate sets against the 

arguments and dispatches to the appropriate alternative body.   That is,  calling 

the main body simply invokes type testing during execution.   The alternative 

bodies are themselves complete code blocks' which can be called directly. 

Consider next the actions of the compiler on another routine,   say FOO, 

which contains a call on a generic routine (e.g.,  the + routine in X+FUM(Z)   ). 

Since the + body is flagged as being GENERIC,  an attempt is made to discover 

which alternative would be chosen were the decision deferred until run-time. 

There are two possibilities:   (1) Some alternative is chosen,   say the i    ,   in 

which case the compiler generates a call directly on the i     body.     (2)  The 

'Mode information derived from the generic alternatives can be used to con- 
siderable advantage in compiling these bodies.   For example,   consider 

EXPR(X:ANY, Y:ONEOF(BOOL, CHAR, STRING); REAL) 
GENERIC 

[DMT, BOOL] ==> ff.; 
[ONEOF(REAL,CHAR), STRING] =>  0^; 

END 

The first alternative,  {F.,  has the formal modes (ENT, BOOL; REAL) and is com- 
piled under the assumption that X is an INT and Y is a BOOL.   Similarly,   ^ has 
the formal modes (ONEOF(REAL, CHAR), STRING; REAL) and is compiled accord- 
ingly.   It may be that JF-. and $2 are textually identical,  yet the different assump- 
tions of argument modes will lead to different compiled code,  each block being 
tailored to its formal modes. 



24 

compiler discovers that it cannot make a choice,  in which case it generates a 

call on the main body.   Which case applies is determined by the modes of the 

arguments and the alternative mode/predicate sets in the GENERIC. 

Consider first the modes of the arguments.   When the + routine is called, 

its two arguments will have some definite (i.e.,  non-generic) mode.   However, 

the compiler has access only to declarative information and from this must 

deduce what we shall term compilation modes.   In some cases, these will be 

less precise than the actual argument mode.   For example,  a formal parame- 

ter which is ONEOF(INT, REAL) has a  united   compilation mode.   Similarly, 

a block such as 

BEGIN   P(X) => "IN";    0.   END 

returns either a SYMBOL or a REAL and hence has compilation mode 

ONEOF(SYMBOL, REAL). 

Since the compilation mode of an argument may be united, the generic 

selection mechanism must in general be prepared to take a united argument 

mode.   Hence, the definition of covers given above must be expanded to include 

this case.   In general,  a mode G in a mode set covers an argument mode A if 

any of the following hold: 

(1) G = ANY 

(2) G is a generic mode ONEOFCt- ... t ) and A=t. for some i 

(3) G = A 

(4) G and A are both generic and each alternative of A is an alternative of 

G (i.e.,  G D A). 

The fourth clause raises the possibility of the compiler deciding that it cannot 

make a compile-time choice.   If G is ONEOF(t.  ... t ) and A is ONEOF(f. ...t   ), 

it may be that G does not cover A but G covers one or more of the t's.   We say 

that G partially covers A.   If the actual mode is one of the t's in G,  then G will 

cover the actual mode and the alternative may be chosen,  otherwise it will not. 



25 

The compiler cannot tell which will be the case and hence must postpone generic 

selection until execution of the function call. 

Given a set of compilation modes (~^  ... *M ) for the arguments and a table 

of alternative mode/predicate sets each of the form [&.. ... £F-   \&-,  choosing the 

appropriate GENERIC alternative proceeds as follows.   The alternative sets are 

considered in turn,   starting with the first.   If each formal mode JF.. covers ^. 

and if 0*. is evaluatable and true,  then the i     alternative is chosen.   If for 
1 

some  j,    *5.. partially covers ^'.,   or if  &. is not evaluatable,  then generic 

selection cannot be made during compilation.   Otherwise,  the next alternative 

set is considered. 

A key point here is determining whether a predicate is evaluatable.   This is 

handled by a variation of the technique for free variable freezing discussed in 

section 2.   The compiler treats specially those primitive routines whose value 

might be known (e.g.,  STRUCTP,  LENGTH,  MD).   Each such routine has a set 

of enabling conditions which depend only on data known during compilation. 

When these are satisfied,  values can be calculated and substituted into the 

computation tree of the predicate.   Whenever a routine and its arguments in the 

computation tree of the predicate are thus fixed,  the routine is applied,  propa- 

gating the values upward.   The compiler applies this process wherever possible 

until all possible upward propagation has been carried out.   If the entire compu- 

tation tree of the predicate collapses into a single value,  then the predicate is 

evaluatable and its value is known;  otherwise,  the predicate is not evaluatable. 

Section 7:   Type Conversion 

The most important single point concerning type conversion is that it is 

different from the generic mechanism.   The two concepts are,  in fact,  almost 

orthogonal.   Both are mechanisms which allow a routine to be called with argu- 

ments belonging to a set of possible modes,  but here the similarity stops.   With 



26 

the generic mechanism,  the routine has a corresponding set of possible parame- 

ter modes.   With the type conversion mechanism,  the routine has a single 

parameter mode and values of different modes are converted to that mode. 

Traditionally,  the choice of conversion routines to be used is fixed for all 

time by the language designer.   Even in traditional languages,  there is little 

reason for this early freezing.   Where it is possible for the programmer to 

define new types,   it becomes essential that he be permitted to specify the as- 

sociated conversions. 

Hence,  the treatment of type conversion in ELI is designed to satisfy two 

goals:   (1) smoothly meshing type conversion with the generic mechanism and 

(2) allowing the programmer to specify what the type conversion will be.    In out- 

line,  the technique used in ELI is as follows.   First a test is made to see if the 

formal mode covers the argument mode (i.e.,  either the modes are equal or the 

formal is generic and one of its alternatives is equal to the argument mode). 

Failing this,  the argument is converted to a value belonging to the formal mode 

using a type conversion routine associated with the argument mode. 

For example,   suppose that the + routine has been defined on pairs of 

SCALARS (defined as ONEOF(COMPLEX, REAL, INT)) and that + is called with 

a STRING-valued argument A.   In computation tree terms, we have the direct 

tree for the computation,   say 3+A 

+ 

Since the formal mode of the second parameter (SCALAR) does not cover the 

argument mode (STRING),  the direct tree is replaced with the implicit tree 

VC(STRING) 

SCALAR 



27 

where C(STRING) is the conversion routine associated with string.   As with all 

conversion routines,  this takes two arguments:   the object to be converted and 

the desired mode of the converted result.   Here,  the desired mode is the formal 

mode of the second parameter — SCALAR. 

The association of a conversion routine with a mode is performed by an 

assignment.   A mode such as STRING can be treated as a structure having a 

set of components,  one of which is named CONVERT.   Assignment of a routine 

to the CONVERT field of a mode establishes that routine as the conversion 

function for the mode.   For example,  a possible conversion routine for STRING 

could be set up by: 

STRING.CONVERT - 
EXPR(X : ANY,  FM : MODE; ANY) 
GENERIC 

FM  COVERS INT  => STRING_TO_INT(X); 
FM  COVERS SYMBOL ==> HASH(X); 

END 

Like most conversion routines,  this is a GENERIC.    The first alternative 

consists of a single predicate which uses the infix operator COVERS.   This 

is true if   its left-hand operand is a mode which covers its right-hand oper- 

and.   Hence,  the first GENERIC is chosen whenever the desired mode 

includes INT.   This is the case in the above call on +,   so STRING_TO_INT 

is applied to A.   The result,  an integer,   is taken as the actual argument to 

the + routine.   As with other generics, the significant point is choosing the 

appropriate alternative of STRING.CONVERT when compiling the call on +. 

We address this pragmatic question after examining a few semantic issues. 

In so doing,  a summary of the discussion thus far may be of use. 

During evaluation,  the interpreter may have in hand some actual value of stf 

of mode ^U.'.  and some desired formal mode ^__, such that U0L does not 

cover -^\ •   The programmer can arrange that in all such circumstances 



28 

st be converted by applying a routine F by associating with *JK.  a GENERIC 

conversion routine having the form 

EXPR(X : ANY,   FM : MODE;  ANY) 
GENERIC 

FM  COVERS Jt¥  => F(X); 

END 

This allows point-to-point conversion between any actual value and any target 

mode (which can,   if desired,  be generic). 

One could apply this schema to all ( source, destination) pairs for which 

conversion was desired.   However,  even using generic destination modes to cut 

down on the number of distinct destinations, the number of pairs could be un- 

desirably large.   Further,  when defining a new mode ~^A,  it would be necessary 

to explicitly define each desired conversion to an existing mode.   Again,  the 

number of such conversions may be undesirably large. 

In the ELI framework,   such an exhaustive enumeration of point-to-point 

conversions can be avoided by judicious use of functional composition.   Consider, 

for example,  the conversion from a CHAR argument to a REAL formal mode. 

The conversion CHAR -*• REAL is almost surely the composition of CHAR -* INT 

and INT - REAL.   Similarly,  COMPLEX - INT is surely COMPLEX - REAL 

followed by REAL -•> INT.   This suggests an analogous functional composition of 

conversion routines.   For example,  the conversion routine for CHAR might be 

written 

EXPR(X:ANY,  FM : MODE; ANY) 
GENERIC 

FM COVERS STRING  =^> CONST(STRING OF X); 
FM COVERS INT  => CHAR_CODE(X); 
(FM COVERS REAL) OR (FM COVERS COMPLEX) => 

INT.CONVERT(CHAR_CODE(X), FM); 

END 

The third alternative tests whether either REAL or COMPLEX is acceptable; 

if so, X is converted to an INT and the INT conversion routine is called to 



29 

complete the work.   The test in this case is used to insure that the process 

does not run into a dead end. 

In general,   specifying conversion by composition allows the programmer to 

factor the conversion bush stemming from a data type.   This does not address 

the question of what the paths should be when there is more than one path logi- 

cally possible.   An answer to the question can only come from a knowledge of 

what the data types represent;  i.e.,  a decision must be based on the specific 

application.    The point of the factoring scheme is to provide a concise notation 

for expressing the desired paths,   once a decision has been made. 

Thus far the discussion has centered around a hypothetical evaluator with 

an actual argument requiring conversion in hand.   That is,  we have described 

the actions of the interpreter and neglected the compiler.   In explaining the 

semantics of type conversion,  this benign neglect is actually quite appropriate. 

One general rule of ELI semantics is that the evaluator model dictates actions 

in complex circumstances; the compiler is constrained to produce code that does 

the same thing.   Applying the general rule to type conversion results in the follow- 

ing dictum:   the compiler must generate code for type conversions which has 

results identical to those which would have been obtained using the interpreter. 

To take a concrete example,   consider a function call 

FOO(MUMBLE(X)) 

where the formal parameter of FOO has mode ^^ and the formal result type of 

the MUMBLE routine is ^V,.   There are three cases: 

(1) ^F covers ^V> 

(2) ^p, does not cover ^R and ^R is non-generic 

(3) ^p, does not cover ^R and ^R is generic. 

In case 1,  no conversion is required. 

In case 2,  the function call is treated as if the program had read 

FOO(^R.CONVERT(MUMBLE(X), ^p) ) 



30 

Most likely JtR.CONVERT is GENERIC so that the compile-time GENERIC 

selection mechanism is invoked to choose the appropriate alternative.   There 

is one new point here:   one or more of the predicates may contain expressions 

of the form 

FM COVERS J(. 
1 

where FM is the second formal parameter — the desired mode.   To make a 

compile-time selection here,  the compiler must handle generic conversions 

somewhat specially and recognize that in such cases it knows the value of FM 

so that the predicate may be evaluatable.   This is related to a point mentioned 

earlier:   the compiler must recognize that it may know the value of functions 

such as STRUCTP and LENGTH appearing in predicates of other GENERICs. 

The compiler has,  of course,  considerable specific knowledge of this sort. 

Once an alternative code body is chosen,  compiling the call is straightforward. 

Here,  as with any other call, there is a choice to be made between generating 

code to call the existing code block and generating an in-line expansion.   The 

choice is best made by the compiler,  based on the size of the code to be copied 

and the setting of parameters which control the space/time trade-off. 

Case 3 is somewhat subtle.   It is known that the actual result mode,   ~^A, 

will be one of the alternatives of -^R-   Either (I) ^F covers ~^A,  in which case 

no type conversion is required,  or (II) it does not,  in which case the conversion 

routine ^..CONVERT must be invoked.   However, the compiler has no way of 

determining what J£* will be.   Hence,  it generates code which tests the mode 

of MUMBLE(X) at run time and invokes the conversion routine for that mode if 

II holds.   The use of run time type testing here is vital.   It would not be accept- 

able to interpret case 3 as FOO(^R.CONVERT(MUMBLE(X))).   The generic 

mode Ul-a could call for conversions quite different from those invoked by the 
it 

actual result mode;   compiled code could then produce quite different results 

from the same program run interpretively. 



31 

The case of a generic compilation mode ^#„ which is not covered by a 

formal mode ^L, is not confined to the values of routines.   Similar situations F 

are produced by blocks, variables,  etc. — wherever the compiler cannot com- 

pletely determine the data type of a construct.   In the important case of blocks, 

the different data types frequently arise from different block exits.   Hence,  the 

compiler can distribute the type conversion in space so as to use the efficient 

case 2 treatment.   For example,   suppose that FOO is called with the argument 

BEGIN 
P(X)  => Y; 
ELSE   J 

END 

where MD(Y)=REAL,   MD(J)=INT,   so that the compilation mode ^ of the block 

is ONEOF(REAL, INT).   Suppose ^    does not cover this.   A commonly used tech- 

nique in language design is to "widen" the result of the block to REAL and com- 

pile in code for REAL to ^U conversion.   This is poor design,   since the technique 

can result in unnecessary conversion steps.   The solution used in the ELI com- 

piler is to treat each statement that can lead out of a block independently.  Hence, 

the block is compiled as if it had been 

BEGIN 
P(X)   => REAL.CONVERT(Y, X,); 
ELSE       INT.CONVERT(J,^_)F 

END F 

This is better,  in both time and space,  than forcing an artificial widening.   It is 

particularly attractive when ^V-, covers either REAL or INT so that the appro- 

priate conversion routine is omitted. 

Section 8:   Programmer Specified Mode Behavior 

The treatment of mode definition given in section 4 centered on the con- 

struction of modes.   That is,  a mode WALDO can be defined to be a set of 

objects having fields A, B, C of types t., t„, t„, etc.   Such a syntactic specifi- 

cation is,  however,  only one aspect of mode definition.   Indeed,  at a sufficiently 



32 

high level of abstraction,    a level which is often only implicit in programming, 

the syntactic specification is irrelevant;  what is of interest is how an object 

behaves.   In this view of programming,  a syntactic mode specification is a 

lower level concept which serves to implement some higher level set of be- 

havioral laws.   The definition mechanism of section 4 is then a necessary pre- 

requisite, but only as a basis on which to build a sophisticated mode definition 

mechanism.   Given that this is the direction to be taken in providing a truly 

problem-oriented language, the issue is what constitutes a higher level mode 

definition and how to state such a definition in a convenient way. 

To some extent,  section 6 has shown the approach to be taken.   Consider 

two modes Ml and M2,  defined 

Ml - SI: : ARRAY( 16, BOOL); 
M2 *- MANT: : ARRAY(16, BOOL); 

This introduces a sixth primitive mode constructor denoted by the infix operator 

: : '.   This takes a variable name as its left-hand operand and a mode as its 

right-hand operand and constructs a new labeled mode distinct from all modes 

which may be structurally similar but have different or no labels.   In the above 

example,  SI and MANT serve as labels for their respective modes,  so that the 

two modes are not equal and neither is equal to ARRAY(16, BOOL).   Since Ml 

and M2 are different modes, they can be assigned different conversion routines, 

say Cl and C2,  respectively.   Suppose XI and X2 are variables of modes Ml and 

M2,  respectively.   Structurally,  they are identical.   However,  if used in a 

position where conversion is required (e.g.,  3+X1 or 3+X2),  they may act quite 

differently.   To take a simple example, SI: : ARRAY(16, BOOL) may represent 

15 a signed integer whose magnitude is less than 2      using 16 bits in two's complt 

ment notation, while MANT: : ARRAY(16, BOOL) may represent a real number 

'Such layers of abstraction are directly related to the strata of Dijkstra's 
structured programming [9].   We pursue this point later. 



33 

between 1 and 0.   These facts about representation are stored in the routines 

that handle conversion from these modes to other modes (here,  SCALAR).   The 

algorithm which uses XI and X2 itself displays none of these representational 

issues.   It performs the abstract operation of addition and the data type defi- 

nitions of XI and X2 determine the rest.   It should be noted that two mechanisms 

are employed — the implicit type conversion for the arguments to the + routine 

and the GENERIC mechanism in the + routine itself.   For the purpose of this 

discussion,  the former is the more important since it is more global in scope — 

the conversion routine for Ml will be applied in any situation where a value of 

mode Ml causes a type fault. 

This separation of abstract process-oriented algorithm from detailed mode- 

dependent manipulations is clearly a step in the right direction.   To push this 

further,  we need only find other "global" situations in which mode-specific 

manipulations should be called into play.   Two'  others have been chosen for 

consideration in ELI — selection and assignment.   To pursue the above example, 

programmer control over the meaning of assignment would allow one to specify 

that 

XI *- -34.2 

is to cause the real value to be converted to an integer and that value packed 

into 16 bits. 

A second example may be useful to illustrate the power of this technique. 

For debugging and other purposes,  it is frequently useful to be able to monitor 

the value of a variable and take some special action (e.g.,  output of an error 

message) under certain abnormal conditions (e.g., when its value exceeds the value 

of another variable).   Let X be such a variable of mode M,  let P(X) be a predi- 

cate which tests for abnormal conditions,  and let A(X) be the action to be taken. 

'It would be easy to justify additional ones,   such as generation or storage 
reclamation.   Some experience will perhaps be required before a completely 
satisfactory set is found. 



34 

One can define a new mode M1 in terms of M, P, and A as follows: 

(1) M's are structurally identical to Ms. 

(2) Whenever a formal mode M is required and an actual value of mode M1 

is in hand,  the M' is treated as if it were an M. 

(3) Whenever an object of mode M' is assigned a new value X,  the predi- 

cate P(X) is evaluated;  if the result is true, A(X) is executed. 

One can go further and automate this process by defining a routine 

SENSITIVE_MODE (as a function of one mode M and two routines P and A) that 

constructs the new mode M'.   Having written this one routine,  the programmer 

has at his disposal the notion of "sensitive object" for any mode M.   Redeclaring 

any variable to be a SENSITIVE_MODE(M, P, A) inserts the monitoring probes 

with no other changes to the program required. 

To provide some substance to the discussion,  we turn to a third example 

which we treat in detail.   Consider defining the mode "ring buffer of characters . 

If X is such a buffer,  its chief characteristics are: 

(1) An assignment of a CHAR value to X pushes the character onto the back 

end of the buffer if there is room,   else error. 

(2) Use of X where formal mode CHAR is desired pops a character from 

the front end of the buffer   if the buffer is non-empty,   else error. 

Very likely,   other properties would be desirable: 

(3) The buffer can be treated as if it maintained at all times a correct count 

of the number of characters it holds and X.COUNT accesses this com- 

ponent. 

(4) The top element of the buffer can be inspected without popping it by 

selecting the TOP element,  i.e.,  X.TOP. 

A possible structure for such buffers is 

STRUCT(FRONT:INT, BACK:INT, BODY:ARRAY(K, CHAR)); 

where K is some constant — the maximum number of characters the buffer is 



35 

to hold.   (To simplify the discussion,  we suppose a given value for K,   say 200.) 

FRONT and BACK will be indices to the front and back ends of the buffer,  with 

the convention that characters go in the back end and out the front end.   Hence, 

FRONT chases BACK backward around the ring with modulo K arithmetic. 

To establish the desired behavior,   it will be necessary to use rather special 

assignment,   selection,  and conversion functions.   We do not want these applied 

to arbitrary objects that happen to have the above structure;  hence,  in actually 

defining the desired mode,  we use a label to create a unique mode 

RBUFF «- RB: :STRUCT(FRONT:INT, BACK:INT, BODY:ARRAY(K, CHAR)); 

RBUFF is a mode-valued variable.   Its value is defined (by the assignment) to be 

RB: :STRUCT(FRONT:INT, BACKrINT, BODY:ARRAY(200, CHAR)) which differs 

from other modes having identical structure but different (or no) label. 

The desired behavior of RBUFF is established by assignment to the 

SELECT, ASSIGN,  and CONVERT fields of this mode.   We consider these in 

turn.   We have established that if X is an RBUFF,  there are to be two and only 

two "fields" which may be selected: 

X.COUNT    which gives the number of items in the buffer 

X.TOP which gives the top item of the buffer. 

That these fields do not actually exist as such is irrelevant,   so long as the 

mode definition creates the desired behavior (illusion if you will).   Further, 

when using an RBUFF as an RBUFF,  there is no need to directly access the 

fields FRONT,  BACK,  and BODY.   The job of the selection routine is to define 

the desired fields "COUNT" and "TOP" in terms of the fields which actually 

exist and simultaneously render these latter fields unavailable to direct access. 

The language evaluator provides a triggering mechanism for this definition.   It 

calls the selection routine'  of RBUFF on any selection of the form 

X.( fieldname) 

'If no explicit definition is made,  a system-generated selection function is used. 
It is this that establishes the "normal" meaning of selection for a defined mode. 



36 

where X is of mode RBUFF.   It will be passed two arguments — the object being 

selected from and the name of the field represented as a symbol.   Consider 

RBUFF.SELECT - 
EXPR(X:RBUFF, FD:SYMBOL; INT) 
GENERIC 

FD="TOP"      => BEGIN 
UR(X).FRONT*UR(X).BACK => 

UR(X).BODY[UR(X).FRONT] 
ELSE BUFF_EMPTY(X); 

END 
FD=MCOUNT" => BEGIN 

DECL F:INT BYVAL UR(X).FRONT; 
DECL B:INT BYVAL UR(X).BACK; 
F>B     =>    F-B; 
F<B     =£>     200-B+F; 
ELSE     0 

END 
ELSE SELECTION_FAULT(RBUFF,FD) 

END 

The routine tests the field name by comparing it to the symbol-valued constants 

"TOP" and "COUNT."   Based on this comparison,  the main conditional discrimi- 

nates between three main cases:   (1) the (fieldname) is TOP,  (2) the (fieldname) 

is COUNT,  and (3) neither of the above.   The last case is treated as an error and 

a system error routine is called.   Consider the case  FD="TOP."    We adopt the 

convention that FRONT is the index of the first good element to be emptied on 

output and BACK is the index of the next element to be filled on input; hence the 

buffer is non-empty whenever FRONT^BACK.   However,   it is not possible to 

make the required test by writing 

X.FRONT^X.BACK 

Since X is an RBUFF,  this would invoke the selection routine for RBUFF recur- 

sively.   What we need is the selection routine not for RBUFF but rather for the 

underlying representation STRUCT(FRONT:INT, BACK:INT, BODY:ARRAY(200, 

CHAR)).   The primitive routine UR maps X onto an object having the same pattern 

of bit values but a different mode,  the mode of the underlying representation.   In 

fact,  no copying need be done:   X and UR(X) refer to the same object,  they just 

ascribe different modes to this object.   With this explanation of UR,  the rest of 



37 

the code should be fairly clear:   if the buffer is not empty,  its top element is 

selected.   As to the case F = "COUNT",  the block uses two local variables simply 

to avoid writing UR(X).FRONT and UR(X).BACK repeatedly;  the number of char- 

acters is calculated in the obvious way. 

Consider next the conversion routine for RBUFF.   Assuming for the sake of 

simplicity that the only conversion to be considered is RBUFF -»• CHAR,  we obtain 

RBUFF.CONVERT *- 
EXPR(X:RBUFF, FM:MODE; CHAR) 
BEGIN 

DECL F:INT BYVAL UR(X).FRONT; 
DECL TEMP:CHAR; 
FM^CHAR => TYPE_FAULT(RBUFF,FM); 
F = UR(X).BACK =$> BUFF_EMPTY(X); 
TEMP *- UR(X).BODY[F]; 
F - UR(X).FRONT *- F-l; 
F=0 - UR(X).FRONT«-200; 
TEMP 

END 

This creates a local variable F initialized to the value of UR(X).FRONT and a 

TEMP of mode CHAR to hold the result of the routine.    The next two lines test 

that the desired mode is CHAR and that the buffer is not empty.   Then TEMP is 

assigned the top element and UR(X).FRONT is decremented.   If the new value is 

zero,  UR(X).FRONT is wrapped around the buffer.   Finally,  the block (and hence 

routine) returns TEMP as its value. 

The assignment routine is similar and should be self-explanatory: 

RBUFF.ASSIGN - 
EXPR(X:RBUFF, Y:CHAR; CHAR) 
BEGIN 

UR(X).BODY[UR(X).BACK] - Y; 
UR(X).BACK - UR(X).BACK-1; 
UR(X).BACK=0 - UR(X).BACK-200; 
UR(X).BACK*UR(X).FRONT =*> Y; 
ELSE BUFF_OVERFLOW(X) 

END 

One point should be noted.   Suppose Bl and B2 are both RBUFFs and consider 

the assignment 

Bl *- B2; 

Since the left-hand operand is an RBUFF,   the RBUFF assignment routine is 



38 

called.   Binding its formals to its arguments proceeds as follows.   The formal 

X is an RBUFF so this is bound directly to Bl.   However,  the formal Y is a 

CHAR and the argument B2 is an RBUFF.   Hence,  the conversion routine for 

RBUFFs is called with arguments B2 and CHAR.   The result is to pop an ele- 

ment from B2 and bind the formal Y to this.   Hence,  the assignment causes an 

element to be popped from the front of B2 and added to the back of Bl. 

Turning from the specific to the general,   several points should be noted. 

(1) It is straightforward to treat the buffer size K and the mode M of its con- 

stituent elements as parameters and write a routine BUFFER(K, M) that produces 

a mode for any values of K and M.   Such a BUFFER routine can be viewed as a 

realization of one implementation technique of the concept of buffer.   From an- 

other point of view,  one can ignore the implementation and take BUFFER as an 

abstract set of data types with certain properties.   (2) The notion of underlying 

representation has a natural extension.   We have just used the mode 

STRUCT(FRONT:INT, BACK:INT, BODY:ARRAY(200, CHAR)) as a basis for 

defining RBUFF so that the former is the underlying representation of the latter; 

we could equally well use an RBUFF as a basis for defining a new mode,  for 

which RBUFF would be the underlying representation. 

We illustrate this notion with an example.   A character stream is frequently 

used to encode a virtual character set greater than that actually available by 

using one or more characters as escape characters whose appearance changes 

the interpretation of characters which follow them.   In such cases,  a virtual 

character is an array of actual characters.   It is then useful to consider a class 

of buffers into which single CHARs can be pushed at the back end but which 

deliver STRING'S at the front end.   Let this mode be called STRBUF.   One could 

in principle define STRBUF in terms of the underlying representation 

STRUCT(FRONT:INT, BACKrINT, BODY:ARRAY(200, CHAR)).   However,  it is 

far more convenient to use RBUFF as the underlying representation.   Then 

STRBUF can be defined in terms of COUNT,  TOP,  and the operations of 



39 

assigning to and converting from RBUFFs.   In this definition,  if X is an STRBUF, 

then UR(X) is to be interpreted as an RBUFF.   In this fashion,   any existing data 

type can be used as the basis for defining a new type. 

The syntax for carrying this out is simple since the labeling of modes can 

be cascaded.   If ^Jt is a mode,  and ^Y is an identifier,  then 

is a new mode with label ^V based on the mode ~fl.   For example, 

WALDO: :RBUFF 

defines a new mode equal to WALDO::RB::STRUCT(FRONT:INT, BACK:INT, 

BODY:ARRAY(200, CHAR)).   If X is an instance of this mode, UR(X) is an RBUFF. 

This new mode can itself be used as the second argument to the :: operator 

to build up a hierarchy of mode definitions.   Such a definition scheme has a 

number of consequences closely related to Dijkstra's structured programming. 

In writing a program in the style of structured programming,  one builds a 

"string of pearls.     Each pearl has its own set of abstract operations and data 

types defined in terms of lower level pearls.   Realizing this for operations is 

straightforward;   higher level routines are composed from lower level routines. 

Programmer control over mode behavior,  as discussed in this section,  provides 

an analogue for data.   A mode ^U. at one level in the string can be based on one 

or more modes at lower levels.   A well-engineered definition set will use the UR 

routine only in the mode specification routines (selection,   conversion,  and 

assignment).   Operations at that level see only the behavior of the defined mode 

Jt.,  not its definitions in terms of lower level notions.   Hence,  the actual repre- 

sentation used to achieve this behavior is irrelevant at this and higher levels. 

Without changing other parts of the program,  one can vary this representation 

at will.   This affords a very powerful means to (1) modify the program to perform 

related tasks,  and (2) optimize performance for a given task. 



40 

Section 9:   Conclusion 

The treatment of data types in ELI rests on nine points: 

(1) modes as values in the language, 

(2) the facility for freezing free variables during compilation, 

(3) the generic interpretation of mode union, 

(4) routines as a unification of operators and procedures, 

(5) inclusion of both generic routines and type conversion, 

(6) programmer-defined generic routines and programmer control over type 

conversions, 

(7) interpreter-based semantics for generic selection and type conversion 

which the compiler is constrained to follow, 

(8) programmer control over mode behavior, 

(9) the notion of underlying representation and the basing of one mode on the 

behavior of another. 

Some of these are independent of one another and of the ELI language; these 

can be applied directly to other languages.   Other points depend strongly on the 

language;  carrying these over is a bit tricky.   However,  none of these is par- 

ticularly difficult to implement. 

The most radical points are the first and second.   These are also the most 

significant.   The inclusion of modes among the legitimate values in a language 

allows modes to be computed,  providing a very powerful definitional capability. 

A direct consequence is the concept of programmer-defined,  mode-valued 

routines and,  hence,  the functional abstraction these provide. 

The first point demands the second (or a functional equivalent).  Computed 

mode values are of interest only if they can be used as the types of variables in 

compiled routines.   Hence,  there must be some mechanism to specify that a 

particular non-primitive mode value is to be used as a data type.   The specific 

technique used in ELI, the "freeze list," is somewhat immaterial.   Other 

equivalent techniques could be used to the same effect.   What is important is 



4] 

the concept of evaluability and the upward propagation of computation-tree 

collapse.   The utility of this mechanism goes beyond its use in connection with 

data types.   It allows the programmer to nail down invariants of all sorts and 

have the program reflect the consequences of these invariants. 

Turning to point 3,  we note that there are many possible interpretations of 

"union" as applied to data types.   The one used in ELI was chosen on the basis 

of simplicity,   implementability,   and because it meshes most smoothly with the 

generic routines.   This interpretation of union — the generic — treats a united 

mode as the postponement of a commitment until execution.   Hence,  during exe- 

cution the concept largely disappears,   simplifying the semantic description. 

The use of routines as a unification of operators and procedures hardly 

requires comment.   Apart from external syntax,  there is no real difference 

between the two.   A language which allows the programmer to define both should 

surely provide identical semantics for the two.   The alternative is harder to 

communicate,  learn,   and implement.  Regrettably, it is the common practice. 

Having both generic routines and type conversion is almost a necessity. 

Neither alone provides the right flexibility;  neither is a good substitute for the 

other.   The scheme used in ELI may be briefly summarized as:   if a formal 

mode cov .he argument mode,  binding is direct;  otherwise,  the argument 

is converted to some mode that is covered. 

Given that a language includes generic routines and type conversion,  it 

should follow that these be controllable by the programmer,   i.e.,  that he be 

permitted to define generic routines (in addition to the built-in set)  and that he 

be permitted to specify the type conversions.   This is not hard to implement. 

Most of the necessary mechanisms are already present to handle the built-in 

definitions.   Implementation of programmer control is mostly a matter of em- 

ploying these mechanisms on programmer-supplied definitions. 

The only subtle point is choosing a semantic model.   Generic selection and 

type conversion can become complex,   since conversions are typically cascaded 



42 

and often applied to the arguments of generic routines.   A compiler model is 

awkward,   since it either imposes language restrictions to insure compile- 

time knowledge of modes or,  lacking this,  produces a description which de- 

pends not on modes but the compiler's knowledge of modes.   The use of an 

interpreter (i.e.,  run-time) model greatly simplifies the descriptive task. 

Giving the programmer control over the behavior of the modes he defines 

is again easy to implement,  provided the implementation is done correctly. 

Any system which allows the definition of new data types must construct tables 

or their equivalent to give meaning to subsequent assignments,   selections,  type 

conversions,  etcv using variables of these types.   It is a short step and a con- 

siderable improvement from such tables to system-generated routines tailored 

to each new data type.   The next step is to allow the programmer to specify the 

routines he wants invoked.   His routines must define their operation in terms 

of a machine-independent underlying representation.   If this is done correctly, 

the layering of underlying representations falls out naturally. 

In summary,  the treatment of data types in ELI is based on a set of fairly 

straightforward notions,  most of which are simple to implement.   Much of this 

treatment can be carried over to other high level programming languages.   The 

linguistic power they add is considerable. 



43 

REFERENCES 

1. PL/I Language Reference Manual. Form C28-8201-2. IBM Syst. 
Ref. Lib. (1969). 

2. Abrahams, P.S., et ah The LISP2 Programming Language and 
System. FJCC 1966", vol. 29, 661-676/ 

3. Van Wijngaarden, et al. Report on the Algorithmic Language 
ALGOL 68. Mathematisch Centrum, Amsterdam, MR 101, 
February 1969. 

4. Garwick, J.V. GPL, A Truly General Purpose Language. CACM, 
vol. 11, no. 9 (September 1968), 634-638. 

5. Hoare, C.A.R. Record Handling. In Programming Languages, ed. 
by F. Genuys. Academic Press, New York, 1968, pp. 291-347. 

6. Wegbreit, B. Studies in Extensible Programming Languages. ESD- 
TR-70-297, Harvard University, Cambridge, Mass., May 1970. 

7. Wegbreit, B. The ECL Programming System, Technical report, 
Division of Engineering and Applied Physics, Harvard University, 
Cambridge, Mass., April 1971. (To appear in Proc. FJCC 1971.) 

8. Reynolds, J.C. A Set-Theoretic Approach to the Concept of Type. 
Working material for the NATO Conference on Technigues in 
Software Engineering, Rome, Italy, October 1969. 

9. Dijkstra, E.W. Notes on Structured Programming. T.H. Report 
70-WSK-03, Technological University Eindhoven, The Netherlands, 
April 1970. 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA -R&D 
(Security classification of title,   body of abstract and indexing annotation must be entered when  the overall report is classified) 

I.  ORIGINATING  ACTIVITY (Corporate author) 

Harvard University 
Center for Research in Computing Technology 
Cambridge/ Massachusetts  02138  

2a.   REPORT   SECURITY   CLASSIFICATION 

UNCLASSIFIED 
2b.    GROUP 

N/A 
3     REPORT   TITLE 

THE TREATMENT OF DATA TYPES IN ELI 

4.   DESCRIPTIVE NOTES (Type of report and inclusive dates) 

None 
5.   AuTHOR(S) (First name, middle initial,   last name) 

Ben Wegbreit 

6     REPORT   DATE 

August 1971 
7a.    TOTAL   NO.   OF   PAGES 

49 
7b.   NO.   OF   REFS 

    9 
8a.    CONTRACT   OR   GRANT   NO. 

FI9628-68-C-0379 
b.   PROJEC T   NO 

9a.   ORIGINATOR'S   REPORT   NUMBER(S) 

ESD-TR-7l-34f 

9b.   OTHER  REPORT  NOIS) (Any other numbers  that may be assigned 
this report) 

10.   DISTRIBUTION   STATEMENT 

Approved for public release; distribution unlimited. 

II.   SUPPLEMENTARY   NOTES 12.   SPONSORING   MILITARY   ACTIVITY 

Deputy for Command and Management Systems 
Hq Electronic Systems Division (AFSC) 
L G Hanscom Field, Bedford, Mass.   01730 

13.   ABSTRAC T 

In constructing a general purpose programming language, a key issue is 
providing a sufficient set of data types and associated operations in a 
manner that permits both natural problem-oriented notation and very efficient 
implementation.  The language ELI contains a number of features specifically 
designed to simultaneously satisfy both requirements.  The resulting treatment 
of data types includes provision for programmer-defined data types and generic 
routines, programmer control over type conversion, and very flexible data type 
behavior, in a context that allows efficient compiled code and very compact 
data representation. 

DD,FN°ORVM
6,1473 UNCLASSIFIED 

i^.-iiiu.diiun 



IINPI ASSTFTFn. 
Security Classification 

KEY WO ROS 
LINK B 

Data types 
Modes 
Mode unions 
Type conversion 
Coercion 
Generic functions 
Extensible languages 
Data type definition 
Data description language 
Compilation 

UNCLASSIFIED 
^•"uritv Plassifir a*^on 


