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ABSTRACT 

A numerical solution of the laminar, steady near wake 
of an axisymmetric body in supersonic flow is developed. 
The body considered is a spherically capped cylinder with 
a truncated base.  The full set of compressible partial 
differential equations are solved. 

The numerical approach is a two-step time dependent 
finite difference procedure similar to that used by Chang 
and Allen in two-dimensions.  The primary feature of this 
scheme is the elimination of the viscosity dependent sta- 
bility condition for the time dependent solution. A 
variable mesh grid system is included to provide higher 
resolution in areas of flow nonuniformity and both the 
equation system and the finite differencing are done in 
conservation form.  The difference forms at the boundaries 
are obtained by means of telescoping with the internal 
difference forms. 

A series of numerical examples were calculated on a 
CDC 6600 computer with both a coarse and fine mesh config- 
uration for various free stream Reynolds numbers. 
Convergent, steady state solutions were obtained which 
exhibited definite recirculation regions and showed evidence 
of recompression shocks.  Restrictions on the Reynolds 
number for a given mesh size were investigated, as was the 
relationship between solution curvatures and mesh size. 

TR-763 ü 



TABLE OF CONTENTS 

SECTION PAGE 

INTRODUCTION 1 

MODEL PROBLEM AND INTERNAL NUMERICAL SCHEME 3 

Configuration 3 

Spatial Differencing 3 

Time Differencing 8 

BOUNDARIES 17 

Upstream 17 

Body Wall and Base 17 

Centerline 24 

Downstream 30 

Upper Boundary 31 

NUMERICAL RESULTS 36 

Computer Program 36 

Input Data 37 

Time Step and Steady State Criteria                   39 

Numerical Examples 40 

Coarse Mesh Solutions 40 

Fine Mesh Solutions 42 

SUMMARY 45 

REFERENCES 47 

FIGURES 48 

TR-763 iii 

^■J-Ssfefttö-Äii« Zä^MUtUÜfr   HgH 



TABLE OF CONTENTS (continued) 

SECTION PAGE 

APPENDIX I - SPATIAL DIFFERENCING FUNCTIONS FOR 1-1 
BOUNDARIES 

APPENDIX II- COMPUTER PROGRAM - INPUT-OUTPUT DESCRIPTION II-l 

APPENDIX III - A FEASIBILITY STUDY FOR TURBULENT 
COMPRESSIBLE FLOW ANALYSIS III-l 

TR-763 iv 



NOMENCLATURE 

a   General coefficients in difference forms and constant 
in Sutherlands Law 

d Constant in isentropic pressure density relationship 

e Energy normalized by free stream value 

e Normalized energy resulting from first iteration step 

f General function in difference forms 

F8, 
1 Functions appearing on right hand side of difference 
form of continuity, axial momentum,radial momentum 
and energy equations (Equations 8 and 9). 

F   Portions of F functions consisting of non-central parts 
of twice spatially differenced diffusive terms 

Fi, 

F8,I F functions for continuity, axial momentum, radial 

F3* 
momentum and energy equations 

F 4 

G   Functions containing updated central portions of twice 
spatially differenced diffusive terms 

G functions appearing in denominators of difference 
form of axial momentum, radial momentum and 
energy equations. 

Portions of F functions which are not twice spatially 
differenced diffusive terms and constant stagnation 
enthalpy along streamline 

k   Thermal conductivity normalized by free stream value 

k   Normalized thermal conductivity resulting from first 
iteration step 

M   Mach number 
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M    a ua/e • «»     • 
M    » 1/y Ma 

P Normalized static pressure 

Pr Prandtl number 

q    - {us4v*)Hm/2 

r Radial coordinate normalized by base half height 

P. Gas constant 

Re Reynolds number based on base half height 

ReA Reynolds number based on mesh size 

t Time normalized by base half height T u^ 

u Axial velocity component normalized by free stream velocity 

u   Normalized axial velocity resulting from first iteration 
step 

v   Radial velocity component normalized by free stream 
velocity 

v   Normalized radial velocity resulting from first iteration 
step 

x Axial coordinate normalized by base half height 

X . (y - !)/(> - I) 

a Ratio of adjacent axial mesh sizes 

ß Ratio of adjacent radial mesh sizes 

y Ratio of specific heats 

6   natio of mesh sizes Ar .. and Ar 
m+2      m 

Ar Radial mesh size 

At Normalized time step 

Ax Axial mesh size 

c Limiting value for stability criteria 

C - {y-l)R/{ym-l)Rm 

C Value of C   resulting from first iteration step 

6 Flow deflection along upper boundary 
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ß Fluid viscosity normalized by free stream value 

u Normalized viscosity resulting from first Iteration step 

v Kinematic viscosity 

p Density normalized by free stream value 

p Normalized density resulting from first Iteration step 

Subscripts 

A   Starting point of upper boundary characteristics 
extrapolation 

B   Intersection point of first family characteristic line 
and upper boundary line 

c Centerllne value 

C Intersection point of streamline and x ■* x. line 

m Radial mesh point index 

M Upper boundary line index 

n Axial mesh point index 

N Donmstream boundary line index 

w Body wall value 

• Free stream value« ahead of bow shock 

0 Point one half mesh from wall 

1 Point one and one half meshes from wall or 
point one mesh from f, 

2 Point two meshes from £ 

Superscript 

j        Time step index 
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INTRODUCTION 

This work aims at treating the laminar,* steady, axisymmetric 

near wake of a body with a cylindrical base traveling at super- 

sonic velocity by the numerical solution of the full set of com- 

pressible partial differential equations governing the motion. 

This approach eliminates the need for approximations, such as the 

boundary layer approximation and the patching of separate regions 

where different approximations are made.  Numerical solutions also 

have the advantage that they give all the details of the flow, 

while methods such as approximate integral solutions do not.  In 

theory at least, numerical solutions can be used to check their 

own accuracy by making calculations at successively smaller grid 

sizes. 

The differential equations under consideration are the full 

compressible Navier Stokes equations in axidymmetric coordinates and 

the numerical scheme consists of a two-step time-dependent finite 

difference procedure.  Several such techniques have been considered, 
3 

but the most promising appears to be the approach of Cheng and 
4 5      4 

Allen. '  Allen has treated the two-dimensional case, utilizing a 

uniform, but non-square mesh and assuming constant viscosity and con- 

ductivity and simplified outside flow. The present work attempts to 

extend this to an axisymmetric configuration and realistic outer flow 

Moreover, a nonuniform mesh is being introduced to give greater reso- 

lution in the high-gradient regions. 
1,2 

The other possibly competitive techniques   have been considerec 

and discarded.  Schemes with viscosity dependent stability criteria, 

such as Reference 1, appear to be susceptible to numerical diffi- 

culties in the body wall and base regions, those difficulties taking 

the form of very small or even negative density values as the 

time-evolution of the flow computation proceeds.  Such phenomena 

* The feasibility of extending this work to turbulent flows is 
discussed in Appendix III. 
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play havoc with the stability of the computation.  The scheme of 

Reference 2 was found to have stability difficulties at the outflow 
4 

and possibly the upper boundaries.  We are attempting to take 

advantage of the numerical discovery by Cheng and Allen, of these 

pitfalls and of the techniques which appear to avoid their 

occurrence. 
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MODEL PROBLEM AND 

INTERNAL NUMERICAL SCHEME 

Configuration 

The type of axisymmetric body being considered is shown in 

Figure 1. Note that the base section is cylindrical, which is 

a simplifying assumption of this program.  The calculation domain 

being considered is ABCFGHJA.  The inflow boundary AC is set 

back upstream of the base HJ to permit upstream influence in the 

boundary layer to occur.  The bow shock and the outer region CDEF 

are computed by the method of characteristics, where character- 

istic BF defines the limit of influence of the boundary layer 

up to point A.  This characteristics calculation is used to 

obtain the inviscid portion of the flow field upstream of the 

line ABCD. The viscous region upstream of line AB is obtained 
6 

from a boundary layer calculation, which is started far upstream 

of point A with an initial step profile. The downstream boundary 

6F is located where the flow has become entirely supersonic. 

The data on this boundary is obtained by an extrapolation from 

the calculated flow field. 

Spatial Differencing 

Since a steady state solution is the objective, it is 

necessary to develop a consistent set of spatial differencing 

approximations for the steady state terms. The flow field being 

considered is expected to contain discontinuities such as shocks. 

Therefore it is desirable as pointed out by Lax, Wendroff et al. 

to use the conservation form of the differential and difference 

equations.  In principle the conservation form of the Navier 

Stokes equations in three-dimensional cartesian coordinates can 

be retained under a transformation to three-dimensional cylindric 
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coordinates.8 However, when this conservation-preserving set of 

equations is reduced by the assumption of axisymmetry, circum- 

ferential terms and derivatives vanish except for a circumferential 

normal stress term in the radial momentum equation. This term 

cannot be put into conservation form but this should not be 

disastrous since there will be no jumps across discontinuities 

in the circumferential direction. The resulting non-dimensional- 

ized,  unsteady continuity, axial and radial momentum and energy 

equations are: 

(pr)t + (Dru)x + (prv)r = 0 

(pru)t + [oruv - ^ (vx + u^ + [Dr(u» + ^eX) - | ^ ux 
CD CD 

+ ^ ^- (v +h (v  + -) ' = 0 
3 Re   r  r je 

(r,rv)t +[pruv -^-(vx + u^^ 

+ i;r(v»+ft ex) - ||«- v + | ¥~{u  4^)1 
f     co '   3 Re  r  3 Re  x r ir 
*" CD » "* 

. pfe ex - | -^-(v +U )   + i -«- ^ = o y • 3Rerx        3Rer 
(1) 
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v. 
[pr(e+q)]t + ^Dru(Ye+q) - j^-  rrk(Ce)x] 

- if" C f ^(u»)x ^ f (v')x - f ruuvr+ruVur. f uuv]} 

Y 
+ {orvCye+q) - p*^  [rk(^e)r] 

•    CB 

- -^ [ 7 ru(va)  +|u(ua)  - 7 ruvu 
Re  L 3  M   r  2    r  3 M > 

OD 

2 + ruuv x-fuv=]}r. 
(1) concluded 

where 
Y-l 

Y-l/ R 

R 
c v-1 ]  » 

M. q -(ua + v8) —' 

M - uVe 
CD      «0   < 

y M a 

y is the ratio of specific heats, R is the gas constant. Re the 

Reynolds number, Pr the Prandtl number, and all flow variables are 

normalized by their values in the free stream, which are denoted 

by the subscript *. 

Since localized areas of interest such as boundary layers, shear 

layers, and shocks, are present in the flow field, a non-uniform- 

grid finite difference scheme is desirable. This will allow use of a 

fine mesh in these special areas, while a coarser grid can be used in 

other areas preventing machine time from becoming unwieldy. 
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A second order accurate centered finite difference scheme 

for a variable mesh will yiold approximations for both the 

first and second derivatives which depend upon the values of 

the function at three grid points; the one at which the deriv- 

ative is required and the two adjacent points.  If such a scheme 

is applied to the steady terms of the continuity equation, for 

instance, it is easily shown that the inclusion of the central 

term in the first difference approximation yields a difference 

equation which is not in conservation form. Therefore, a first 

order accurate, centered difference scheme, which yields a set 

of difference equations in conservation form, is used. For two 

axial steps with a length ratio a the first and second differences 

of a function f are 

n-1 

Ax 

n n+1 

abx 

«x'n 
n+l   n-1 
(a+Dtoc (2) 

(f ) xx n 

fn^l - (1+tt)Va fn-l 
a(a+l)Ax8 (3) 

with similar expressions for the radial difference with the radial 

step size ratio ß  replacing a. 

Taylor series expansions of f ., and f . about f show the ' ^ n+1     n-1      n 
error of the above schemes with respect to the error of the second 

order central scheme for a uniform mesh to be, respectively 

TR-763 



V* 
and 

J IOL-X; xx  n 
Ax "xxx'n 

4(gri) "xxx'n 
AX xxxx n 

(4) 

Therefore, the accuracy of the present scheme can be controlled 

by keeping the relative grid spacing a close to unity. 

Since variable viscosity and heat conductivity are being 

considered, difference approximations for terms of the form 

(af )  and (af ) will be required. These can be obtained by 
XX X JT 

successive applications of the first difference expression (2) 

C(afK)x:i
m:„^Vn+l 

+ am,n) fm,n+l 

nwn+i        m,n    m,n~i m,n 

+ a(a   + a 
m»n   m ,)fra n 1 I A^+1)AXa ,n-l m#n-i J ^ 

(5) 

A similar expression for (af ) can be obtained by replacing a by 

9* Ax by Ar, and interchanging m and n, where ß is the ratio of 

successive mesh Intervals In the radial direction. The cross 

derivative expressions are 

- m+1 

BAr 

m 

Ar 

m-1 
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'■(afx)r^m.n =  ^am+l,n(fm+l,n+l"  fm+l,n-l) 

" Vl.„(f
m.l.n+r  ^-l.n-l'l/ ta+1> (S+1)Äxir      (6' 

T (af )   ]        - [a      _._, (f  ^     ^  - f    ,     ^,) -      r xJm,n       L m,n+l    m+l.n+l        m-l,n+l 

" am,n-l(fm+l,n-l " Vl^ V (o+1) (P+1) ^ (7) 

Time Differencing 

The form of the spatial difference influences the choice of 

a time differencing scheme through stability considerations.  One 

stable scheme consistent with the above spatial differencing is 

the two-step scheme of Brailovskaya.  There are two stability 

criteria on time step associated with this scheme, one linearly 

dependent upon the spatial step size (At £ ^—)  and the other pro- 

portional to the square of the spatial step size divided by the 

kinematic viscosity (At * T"~ ) •  In the present problem, there is 

a large expansion of the flow around the base and the density in 

the base region becomes small. This will result in a large kine- 

matic viscosity and severely limits the time step results. 
4 

Allen has considered a modification of the Brailovskaya 

scheme which removes the diffusion dependent stability criteria. 

The modification consists of writing the independent variables 

appearing in central terms of twice spatially differenced diffusive 

terms at the updated time level and combining them with the time 

differenced unsteady terms to solve for the independent variables 

at the new time level. This works because we are only interested in 

the steady state solution and how we get there, i.e., the time 

evolution of the solution is irrelevant. 
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Then the Vime difference scheme for the present differential 

equations can be written in two steps: 

1) 

2) 

^1.0J  +At    j>uj>vj) 
nwn   m.n  r  i        tn^n m 

C(ou,« n+ ^ F5(o
j,uj,vj,ej.uJ.Xj)m J 

Qj+1      
m'n    rm 2 m>n        (8) 

°m+n+firG2^J)
m„ m,n       r Re       2 nun m    • 

[(pV)m   n   +  ^ F,(oJ,UJ.Vj,eJ,uJ,XJ)m      1 ..,                 n»»n      r      J                                        m,n 
vJ+1 ,  IS  

in,n      r Ke      3        m,n m    * 

j+1       (CpC^^-^^f F4(pU^J..^^^J.+1v- m., 
Vn- ^ j+l ^^   ^GA(kj) 

Km,n      P Re      r      4        m.n 

j+l j At „   /-j+l -j+l -j+l, 
m,n        in*n      r_    i ra#n in 

... m#n      r       * ni»n 
\xJ      ■   

m'n j+l + At  G      j+l 
pm,n      r Re      2^        m,n m    o» 

r#      tj At  „    /-j + l   „j+l   wj+l   -j+l   -j+l   S  J+lv T 
j.,                 in,n      r      J                                                                   in,n 
j+j. in  

m,n      r Re      3 m,n 
m    « 

(9) 
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..+1       tp(e+q)r   -(pqK    + fz ^AoJ V   ,vJ   ,eJ  ,uJ  71cJ   ,£•>  ,-/ ,vt .v^")      } 

m(n 
m#n      PrRe    r      4 m,n r     OB    m 

'here 

P.Cp^u^v5) 

-■(^I)^r(pru)m,n+1 "   (pru)m.n-l] 

m.n* 

■(^IT7rC(prV)m+l,n-   (orv)m-l,n] 

P,(pJ.uj.vj,ej,aj.Xj)m n 

- T-TT— <-pr(u8+M eX^]j    ^1   - [pr (ua+M eX) ]j       .) 
(a+l)Ax yM •       Jm,n+1      LM •      Jm#n-1/ 

"   (ß+mx [(pruv)m+l.n "   (prUv)Ll,n] 

{ jiZl 
Re a(a+l)Axa L'ru) 

m,n+l 
+   (ru)£ ^] uj 

m,n      m,n+l 

(10) 

+ aC(rM)^ n
+(ru)^ n  i ]u^ 

ß(P+l)Ar m+l,n      ^ m,!!      m+l,n 2    i [(ru)^     +(ru)i    1 u 

+ ß[(ru)^ n +  (ru)^ .   nW n\,n ni-i,n    m—i,n 
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2/3 i j j 
(a+D (ß+l)Ax^r^(ru)m,n+l   (Vm+l,n+l ~ Vm-l,n+l' 

m,n-l    m+l#n-l        m-l,n-i 

  [ (ra)^ (v^ - v3 ) 
(a+D (P+l)AxAr  L v ^'m+l#n   l m+l,n+l        m+l,n-l 

m-i,n      ni-i»n+i        m~i,n-i 

-■Ärt<^)i>n+1- (uv)^]} 

P,   (p:i,uj,vj,ej,uj,xj)m „ 

" TiTlhr ^Pr(va^ex)]^1#n- [or^^ex)^^] } 

f— [(pruv)^ ^  -   (oruv)^ M  ,] (a+Dftx u  H        m#n+l '      m,n-l 

If        4/3        [ r     ^ (    \1     i    ^ 
Pe    1 ßO+l)Ara \ Lr,J,m+l#n       ^ru,m,nJ Vm+lfn 

+ a(a+l)Axa    |r(rw)m,n+l +  ^"^.n^ Vm,n+1 (io cont 

+ aC(ru)^      +  (ru)^ n  , ] v;j 
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(a+1) (B+DAx^r  ^ (ru)m+l,n   (Um+l,n+l ' Um+l#n-l) 

iwl «..i <uLi .+i - ^^ (a+D («+l)AXÄr  LK^'m,n+l   %vm+l.n+l      "m-l.n+l' 

2/3 JtZT^t^il.n-   ^ll.J 

(ß+l)Ar     l m+l,n        m-l.n 

+  SLÜ1   /u3 _ u3 ) 
(a+l)Ax        m,n+l        m,n-l 

A   (,iV)i n - A      vi 10 cont'd . ± sun i + (pM ex J 

3 r J        vp  •    'm.n 

y.J.vl.J.nK*i.t4*i+\*i+\,n- 

-  ta^ ^^tn+l - ^^^'in-! } 

-jg^ {[P^^)^+I.„ " tp^ve.,) 3l.1>n } 
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00 f 
+ Tit i^m*   l^'m-n« +  (rt)i.n^Ce'..„+l r      oe ' 

+ aC(rk)^n+  Wl^   Win.! 

j 
+ B[(rk)^n+  (rk)^1/n](Ce)^lin|} 

m,n m,n-lJ '"m,!!-! 

"   (a+D (fl+l)AxArt(ruu)m,n+l   (vm+l,n+l " Vm-l,n+l) 

"   ^i.n-1   (vi+l,n-l " Vm-l,n-l)] 

+   (a+D (P+D&xAr  C(ruv)m.n+1   (um+l.n+l ' Um-l,n+l) 

(10 conf 

"   {x^K,n-l  (um+l,n-l " Um-*l,n-l^ 
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" [(^'iL.n +  (1+6) (ru)m.n+ p'^'Ll.n^O' 

(10 concld) 

2/3 - r/ \i (rJ .   - u3.,   _   ,) -   fa^fa^ t(rUv)^lin <um+1,n+1 - Vl.n-l 

"  (r"v'i-l,n  <um-l,n+l " um-l,n-l 

"  "W'Ll.n  (vi-l,n+l - Vl.n-l'^ 

-■Ärc("va)^n-^'l-i^> 

and 
G2(uJ)mn" 2        m«n 

JA? C(ru)i,n+1 -(^) <ru>l,n * «^'»,„.1^        ('» 
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MiTIÜP- [<ru,m+l,n +   (1+P'(r"'m,„ + e   ^'m-l.n^ 

,4/3 
P ' 

O (kj) 
4        m,n 

1 * * * 

, 77:—^[(rlc)3    JL1   +  (l+aXrk)3      +a(rk):,      . ] a(a+l)ÄX8   L        m,n+l m,n m#n-lJ 

+ »TTITT: a  [(rk)^.       +  (1+P)(rk)j      + e(rk)j  ,     ] Plfi+l)^3  L        m+l,n m,n m-l,nJ 

(11 concld) 

The normalized viscosities, u, are obtained from e   through r m,n 

Sutherland's law 

V        = (e  )3/2 (l+a)/(e  +a) 
mfn    m,n m,n 

where a is a constant and the normalized thermal conductivity, k, 

from the definition of Pr (for a perfect gas k = ^*). 

Note that the same functions F and G are used in both steps of 

the iteration procedure and the same mesh is used for both steps. 

As pointed ou1 

considerably. 

3. 4 5 As pointed out by Cheng and Allen, '  this simplifies the program 
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In the actual computer programming of these difference equations 

the F functions are broken into the sum of two functions, F and H. 

The F terms contain the non-central portions of the twice spatially 

differenced diffusive terms whose central portions have been used at 

the updated time level. These updated central terms have been 

transposed, combined with the left hand side and divided through, 

appearing as the G functions. The F function, which is part of 

the energy equation, is somewhat special in that it also contains 

some complete differenced velocity terms in which the central 

terms are at the updated time level. These updated velocities 

are known from the solution of the momentum equations. 

The H functions contain all of the terms which are not 

twice differenced diffusive in nature and therefore have no 

portions at the updated time level. These terms are calculated 

by general differencing subroutines, which use difference forms 

given by Eqs. (2), (6) and (7) at time level j. 

This break up of the F functions removes the requirement 

of writing out and programming the difference form of the 

complete set of differential equations. Only the F and G 

functions need be written out explicitly while the H terms 

are calculated from the general subroutines. 

The requirement used to check the approach of the un- 

steady calculation to the steady state is that the density 

change between two successive time steps at the grid point 

of maximum change should be less than a prescribed small 

number. 

max , j+1   j, .... 
m,n I"   -P I < e (12) 
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BOUNDARIES 

The preceding set of difference equations is used to compute 

the flow field in the interior of the domain ABCFGHJA of Figure 1. 

It remains to develop procedures for treating the six boundaries 

of this domain. 

Upstream 

As noted earler, the flow field along the upstream boundary 

ABC is known from a patching of an inviscid characteristics solu- 

tion and a boundary layer solution.6 The values of the independent 

variables; p, u, v, e, from these solutions are used as fixed 

(with time) upstream boundary conditions along line AC. 

Body Wall and Base 

The body wall and base boundaries, AJ and JH respectively, can 

be made equivalent to each other by interchanging x and r.  In 

accordance with Allen's numerical results of negative densities on 

the body,4 mesh points on the body base and wall are being avoided 

and these boundaries are taken at mid-mesh locations as shown below 

for the body wall. 

flAr 

4E. 
2 w 
7 V / / / / ///'/ ////// 
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Allen's emphasis on the preservation of conservation in the differ- 

ence formulation of boundary conditions is being observed; however, 

our approach to this differs from his (which appears to break down 

for a nonuniform mesh). We accomplish conservation through an 

inverse consideration of telescoping of terms under quadrature 

approximation to integration.  That is, we form the boundary condi- 

tions so that telescoping of internal contributions and proper 

appearance of wall terms occurs under quadrature.  This procedure 

should automatically insure the global conservation of mass, momentum 

and energy. 

An open ended trapezoidal integration of the difference form 

is carried out between the wall and the outer boundary, i.e., for 

the first radial difference: 

r 
r ' f dr = f - f - f 1 {tepÜL)  + f L (ALimJL)  + . 
^   r     •»   w   r,o2       r'l   2 

(13) 

r w 

Point 1 and those above it are general points, so a general radial 

first difference form similar to Eq. (2) is used for f I., f |0 etc, ^ r'l  r'2 
Then satisfaction of the telescoping requirement near the wall in 

Eq. (13) leads to a three point first difference form at point o 

f,  +f   - 2f 
l,n otn 

r'o.n    (l+/3)Ar 
f i   = 1fn QJIL SLU (^y 

Actually, this procedure will also yield a special difference form 

for f | , but it will never be used since no difference equations 

are applied at the cuter boundary. This same procedure can be used 

for the second derivatives and cross derivatives. 
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(af  )   I = {CCL+2j8) (a       +a       )   + 2a       ]  f r r'cn       l o,n    l,n w,n      l,n 

-   (l+2fl)[a       +a + 2(1+218)   a       ]  f o,n     i«n w,n      o#n 

+ 8/50+1)   aw^n  fw n } / /9(l+/8) (1+2^)   Ar3 

(15) 

^Vr'cn =  ^l.n^Un+l^l.n-l)   + ao,n ^o.n+l^cn-^ 

-2 Vn(fw,n+r
fw,n-l>3/(1+a,(1+',)   Ax*r 

(16) 

^r^'cn =  Cao.n+l
(fo,n+l

+fl,n+l " 2  ^^ 

-    a« «  i<f    «  i+fi  «  i  " 2  fu, «  1)]/(l
+a)(l+/5)  AxAr (17) o,n-l    O/n-1    l,n-l w,n-l  - r 

A possibly more accurate scheme can be obtained by using 

closed ended integration 

r 

J " f rdr - f    - f    = f  I    ^ + f  I     (^ + ^ J co        w        rlw4 r'o^ 2 

+ t^^mmii) + ... (18) 

r w 

Point 1 and those above it are still general. However, a second 

order accurate difference formula can be used at point o 

-4Ä8 f  + (4^-1) f  +f1 

r'cn ß{2ß+l)   Ar ^  ' 
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and conservation form can still be retained by solving for the 

f |  which satisfies Eq. (18). 

r'w,n /5Ar 

This backed out difference iorm at the wall is never actually 

used since no difference equations are used along the wall but 

a half mesh out. The difference forms obtained from this closed 

integration scheme were programmed but no calculations were 

carried out. All of the results discussed later use the open 

ended integration difference forms given by Eq. (14) - (17). 

For reference, the second and cross difference forms for the 

closed integration scheme are presented here, even though they 

have not yet been used in the numerical examples. 

"Vrlo.nit'4*-1' ao,„ + al,„] fl.„ 

+ [(l+2*)(4*-6S+1) a0in-.1/n - 8faWinJ f^ 

<afr'xlo.n = KW-^'w.n.l^-1» fo.n+l
+fl.„+1

] 

- ao.n-lt-4^ f
w,„-l

+<^-l> fo,n-l + *!,„.!V»(^)(^^)^r 
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(afx'rlo.„= {-4»aVn(fW,n+r
f„,n-l' + (4'?-1' »en (fo,„+r

fo,„-l' 

+ al,„(fl,n+r
£l,„-l'} / «'^x^»)  "" • 

Since the finite difference equations are not applied along the 

wall it is necessary to obtain wall values by other means. The 

velocity components u and v are both known to be zero on the body 

wall and base.  For other quantities such as p,   rji, rk, X and (, 

a two point extrapolation is used 

f   = [(1+2^) f   - f,  V2/5 (20) w,n o#n   i,n 

The wall density need only be computed at the final time if the 

cts (pu)   and (pv)   are recognized as being zero. 

Either of two wall boundary conditions are employed to obtain 

1 

setting 

products (pu)   and (pv)   are recognized as being zero. 

>f two wall boun 

e  . A constant wall temperature condition can be applJ . by simply 

e   = constant (21) 

It appears that it would be possible for this constant to vary along 

the wall, but this was not attempted here for the sake of simplicity. 

For an adiabatic wall the condition that de/dr = 0 can be satisfied 

by requiring 

e   = e (22) 
w,n   o,n 

Both of these options are provided in the computer program. 
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The general point time difference scheme, namely Eqs. (8) and 

(9) can still be used for points one half mesh from the body.  The 

F functions are broken up into F and H functions as described 

before.  The H functions remain the same as the general case except 

that Eqs.(14) to (17) are used to compute all radial differences. 

The P and G functions for points one haxr mesh from the body surface 

are given for reference in Appendix I.  The quantities (r|i)   , 
W f n 

(rk)   and t are obtained from the extrapolation formula (20) 
w,n    ^ w,n 

at each time step.  The difference equations along a line of gr d 

points one half a mesh behind the body base can be similarly ob- 

tained or can be evolved from the body wall equations by inter- 

changing x and r, a and ß,  and u and v. 

There are three points at the corner formed by the body wall 

and base, which require special considerations.  These points are 

designated in Figure 2 as m, n-1; m,n and m-l,n.  They are special 

because mixed derivatives require difference forms of both side 

wall and base wall types.  Judicious use of the individual differ- 

ence forms results in the following results for the mixed derivative 

differences at these points. 

(af ) I   , = (a   (f ^,  -f ,  ) 
r x'm.n-l   I m,n m+l,n m-l,n 

-[(l+«)/fl]am n ,(f . n  ,-f n  ,)V(
1+a) (l+«)AxAr 

(23a) 
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^Vrlm^n-l^m+l^n-l^m+l^n^m+l,!!^ 

"   am   n    1  (fm   n-fm   n    0) ^il^^   ^^ m,n-i    m,n    in,n-^ O^K^ 

^^^x'm.n" iam,n+l(fm+l/n+l"fm-l,n+l) 

-C(l+«)/8] ^^^.^^yiWW)   AxAr 

U3c) 

^x^r^m,^  rm+l.n^m+l.n+l'^+l.n-l5 

+[(l+a)/a] am  .  n     (f    . n.,-f    ,  n))/(l+a) {1+/5)  AxAr in—i,n in-i#n+i    m—i,n j 
(23d) 

^^^'m-l.n SS  l-am-l#n+l(fm,n+l"fm-2,n+l) 

m-i,n    m#n    m-2,n .,,_   . 
(23e) 

(af )   I     .       = (a       (f      ^ -f .) 
x r'm-l,!!       I m,n    m,n+l    111,11-1 

(23f) 
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These derivatives only appear in the H functions, therefore the 

appropriate F and G functions can be used at each point with 

special subroutines for the mixed derivatives in the H functions 

only. 

Centerline 

Along the boundary represented by the axis of synunetry in the 

wake,mesh points are again avoided. A special finite difference 

equation for use one mesh away from the axis has been developed 

using an inverse telescoping procedure similar to that used for 

the wall boundaries. This case is more complex since the radial 

difference schemes depend on whether the function being differenced 

is odd or even with respect to radius near the axis. The two odd 

variables are r and v, while the other variables p,u,e,^,etc. 

are even. Combinations of these variables are considered even if 

they contain none or an even number of odd variables and are con- 

sidered odd if they contain an odd number of odd variables. 

By definition, an even function has zero first derivative at 

the axis, r = 0. Therefore, if an open ended integration of the 

first difference similar to Eq. (13) is carried out between the 

center line and the outer boundary 

r 

J-fdr-f-f gf |  (^W) +f | (i^rlfiM) + ... Jr     OBC   r'l   2       r'Z   2 
o 

(24) 

and th' general first radial difference form, equivalent to Eq. (2), 

is uded for points 2 and abcve, the satisfaction of the telescoping 
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ßbi 

Ar 

• c- 

requirement in Eg. (24) yields a special first difference form 

for point 1. 

fr.ll    «   =    (fl    „+f5   n-2fo   J'^+ß)    Ar <f   eVen) (25) 
r' l,n l,n    2,n      c,n 

For an odd function f = 0 instead of f I . Then the general fcrm c r'c 
can be used at point 1 and a special form for f |  determined by 

the telescoping requirement. However, since no difference equations 

are used at the center line this special difference form is never 

used.  Since f s 0, the first difference form at point 1 reduces to 

frll,„ - f2.„/'1+'» " (f odd) (2M 

For an even function the value of the function on the center 

line, f , is required. For this scheme f is obtained by a two c        • c 
point extrapolation 

f„ «" tf, „(1+/8)" " f, n]/0(/5+2)     (f even) c,n   J.#n r * # n (27) 
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The higher order differences can be obtained in a similar 

manner.  Inspection of the differential equations shows that all 

coefficients a in derivatives of the form (a fc)r are odd. Using 

a =0, the telescoping requirement yields the second difference 
c 

forms 

(af ) I. „ = (a.+a.) (f^fJ/ßdS+l) Lra (f even) rri«n    i d,      A    I 

(28) 

(afr)r'l.n"{(ai+a2)f2"[(1+|5)al+a2:ifl}/A(/5+1Ura    (f 0dd) 
(29) 

Eq. (29) is the general form with f »0. 

The cross derivative difference forms are obtained similarly, 

exercising care as to the odd or even nature of the coefficients a 

•"Vxlx.n " tal,n+l
(fl,n+l

+f2,n+1-
2 ^.n+l» 

(f even)    (30) 

(£ odd)     (31) 

(aVrll.n " ^l.n^l.n^-'l.n-l» 

I* * \ fa even, f even"\ + ^V^.n+r^.n-l'      \a oddor f dd J 

- 2*^  ^(f „.,-f „ 1)]/(l+a)(l+a) Ax&r       (32) c#n c,n+i c,n-l 
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(af
X'rll,„ ' a2,n(f2,r,+r

f2,„-l,/(1+a'1+8' Äx" 
ra even, f odd "i 

(33) 

Eqs. (25) to (33) represent the difference scheme actually pro- 

grammed for points one mesh off the wake center line.  However, 

the numerical solution showed kinks near the axes in the radial 

density plot.  The extrapolation for center line values of even 

functions was judged the cause of these kinks and a new center 

line differencing scheme was developed but is not incorporated 

into the computer program from which numerical results were 

obtained.  The change concerns the even functions, which have 

fr =0.  Instead of finding f  by telescoping and extrapolating 

for f , the general difference form can be used for fr. and the 

telescoping requirement on Eq. (24) used to find f .  This results 

in 

f = f1 (f even) (34) 

and eliminates the need for extrapolations. The first difference 

form is then 

fJi « = <f9 «-fi J/(1+/3) Ar    (f even)       (35) r i,n    z,n    i,n 

The second difference forms are unchanged and the cross-derivatives 

which are changed are 

"■Vxll,- " Cal,n+l
(£2,n+r

fl,n+1>     
(f even) 

-''l,„-l(f2,„-l-
f
l,n.l)^(^'(l+») mr   (36) 
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i  * \   \ r if * \ /a evenz  f odd \ 
(aVrll,n "  La2,n(f2,n+rf2,n-l) la odd.     f even' 

-   ao   n(fl     n+l-f1    n     ,) V U**)  U+ß)     ^XAr (37) c,n    .L#n+i     i,n-i 

At the final time step Eq. (27) can be used to obtain center line 

values of the even functions.  The F and G functions resulting 

from using these difference forms in the differential equations 

are identical for either scheme and only the subroutines for 

computing the H functions are affected. 

It should also be noted that a completely different center 

line differencing scheme can be obtained by use of closed ended 

integration in the telescoping condition.  Most of these improve- 

ments were programmed in preparation for a trial of a turbulent 

base flow calculation (see Appendix m) but no actual calculations 

were carried out. 

The F and G functions for points one mesh above the axis 

which are used in the general iteration scheme, are given in 

Appendix I. The H functions are the same as a general point with 

Eqs. (25) to (33) supplying the special difference subroutines for 

the center line. 

Special difference formulas are needed at point 1, 0 (see 

Figure 3), since it is adjacent to both the base wall and the wake 

center line.  The first and second differences are the same as those 

along the boundaries they include.  The axial (x) derivatives are 

the same as those one half mesh from the base wall, i.e., the axial 

forms of Eqs. (14) and (15), while the radial derivatives are the 

same as the center line forms, Eqs. (25)-(27).  The mixed derivatives 

are obtained by successive applications of the respective first 
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differences.  These are listed below for reference: 

^r^ll^o'K^o^l^^^-^co) 

♦^i^i^r^ci* (f even) 

-2al,w(fl,w+f2,w-2fc,w) }/Cl^)(^) Ax^r 
(38) 

^Vxll.O = {ai,of2,o+ai,lf2,r2 al,wf2.W}
/(1^) (1+^ ^r 

(f odd)       (39) 

(af ) I,  = (a,  (f,  +f,  -2f,  ) 
x r'l.o  I l,o l,o 1,1  l,w 

(•a even, f even-. 
+ a2,o(f2,o+f2,r2f2,w)   ia odd,0rf odd J 

" 2ac.o(fc,o+fc#r
2fc,w,}/(l+a)(l+^) AxAr    (40) 

^x^ll.o ' a2,o(f2,0+f2/^
2f2,w)/(1+a)(1+Ä, AxAr 

(a odd, f even)     (41) 

Values of functions at point c, o are obtained by the normal 

center line extrapolation formula, Eq. (27), while functions at 

point 1, w are obtained by extrapolation from the axial form of 

Eq. (20). All the functions required at point c, w contain 

u   or v   which are zero making extrapolation unnecessary. 
c,w    c,w 

TR-763 29 



»tmmmf*im*t-<*»mm 'ill iif    \   iriiiiniiH i nii'irifilWIltlWllllllBMiiiiiiliiiiillWlitnitiiiMW^^^  •"•Tiiir'l'I'I'II n  mw i 

However, it would be of interest to have values for o   anc* Mc,w 
e   for the final steady state solution.  Except for the 
c ,w 

constant wall temperature case where e   = e » these variables r c#w   w 
have been left undetermined due to the ambiguity of the extrapola- 

tion procedures. 

The general forms of the H functions are used with the 

appropriate difference forms. This special point requires its 

own set of F and G functions for use in the general iteration 

scheme. These are listed in Appendix I. 

Downstream 

The downstream boundary conditions have been formulated in a 

three-point, variable mesh extrapolation along lines of constant 
4 

radius. Allen found this procedure to be satisfactory if the 

boundary is chosen far enough downstream for the flow to have 

returned to almost completely supersonic speeds (for use of the 

downstream data line as input to a far wake program the flow must 

be completely supersonic). Another restriction is that the angle 

between the streamline and the constant radius line at each down- 

stream boundary point must be less than the local Mach angle. 

Otherwise the upstream points on the constant radius line will not 

lie in the zone of influence of the boundary point. 

Figure 4 shows the nomenclature for the downstream extrapola- 

tion. The second order accurate, three point, variable mesh 

extrapolation formula for point m,N is 

fm,N " C&XN-2(&V^N-l){&VAXN-l+AXN-2) fm,N-l 

" &XN(&XN-l+AV2)(&V&Vl+AXN-2) fm,N-2 

+ ^VVl^V^N-^ fm,N-3^/AXN-l&XN-2(AXN-l^XN-2) 

(42) 
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This relation can be used to obtain the values of each variable 

at each time step for both parts of the two step iteration. 

Upper Boundary 

It is desired to obtain values of the independent variables 

at outer most radial grid (CF in Figure 1) by an extrapolation 

procedure.  The location of this upper boundary line is picked in 

such a way that the flow adjacent to it is inviscid and super- 

sonic.  The downstream boundary, EG, is picked where the center 

line flow is expected to be supersonic.  Then the first family 

characteristic line, BF, is constructed from point B, which is in 

the supersonic, inviscid region of the upstream data line above 

the boundary layer.  Point F is determined by the intersection of 

this line and the downstream boundary line EG. Then line CF will 

lie completely above characteristic line BF and the flow adjacent 

to it will be inviscid since the viscous effects generated in the 

boundary layer portion of the inflow, AB, cannot propagate across 

the characteristic line. 
4 

Allen used an extrapolation procedure which involves an 

inviscid, steady state simple wave characteristic solution. The 

present problem requires a more complex procedure due to the axi- 

symmetry and the nonuniform flow external to CF, which is obtained 

from an independent inviscid flow field calculation. The current 

method involves a steady state, two step characteristics extrapola- 

tion.  The use of a steady state solution means the numerical 

results will be incorrect during their time evolution, but when 

a steady state is reached, it will be correct. 

Figure 5 shows typical grid points near the upper boundary. 

The line designated by M represents line CF in Figure 1. All 

points up to line M-l are computed by the internal difference equa- 

tions and it is desired to extrapolate this solution to a typical 

point M,n. 
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Before describing the technique« some consideration should 

be given as to just how much data at M,n should be prescribed 

from the known inviscid solution and how much extrapolated from 

the interior. For the situation of Figure 5,data are transmitted 

out of the calculation region at B along two lines; the streamline 

and the first family characteristic line, while the second family 

line at B transmits data into the region.  Each of the character- 

istics carries one piece of data, via the characteristic equation, 

while the streamline carries two pieces via the isentropic and 

constant stagnation enthalpy conditions. Therefore, for this case 

one piece of data is prescribed from the external flow, namely the 

flow deflection 0, and three variables are extrapolated. The 

numerical examples considered later coincide with this geometry. 

If a problem with a different characteristics-streamline arrange- 

ment were considered the computer program would require modification. 

The characteristics iteration is started by knowing from the 

interior calculations, all the variables along the line of constant 

radius represented by M-l and inputing the flow deflection, 9, at 

each point along the M line. Then for the first iteration step the 

first family characteristic can be constructed from A to intercept 

the M line at B (see Reference 9). The x location of point B can 

be found from 

^""A*'VW^-'V"^ <43' 
where 

eA - tan"
1(vA/uA) (43a) 

the Mach angle 

H    - sin"1(l/MA) (43b) 

and the Mach number 

MA - C2qA/v(y-l) e^]* (43c) 
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The value of 0  can be found by interpolating between points M, 

n and M,n+1. 

Next the streamline from B back toward A can be constructed 

using an average of slopes at A and B.  This locates point C. 

r„ = rM " ^xi»-x« i) (tan öa
+tan e_)/2 (44) CM     B  n-1        A      B 

It is assumed that the variables at point M, n-1 are known from 

the preceding extrapolation.  If n-1 is the upstream boundary 

they would be prescribed.  Then the values of p,e and q at C can 

be found by interpolation between points A and M,u~l. 

Two conditions are known to apply along the streamline CB,^ 

The first, which requires the flow to be isentropic along the 

streamline can be expressed by relating the normalized pressure 

and density as follows 

P = d py (45a) 

where d is a constant and the equation of state gives P = X «e. 

Elimination of P allows Eq. (45a) to be written 

d = X e(p)1"V (45b) 

The second condition is that the stagnation enthalpy is constant 

along a streamline 

H = e + q = constant (46) 

The values of the constants d and H can be evaluated by applying 

equations (45b) and (46) at point C.  These will be used later at 

point B. 
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9 
Next the first family characteristic equation along line 

AB can be used to obtain the normalized pressure at B.  For the 

first iteration step this equation is 

PB - PA - C2y
aPA/(v+l) ] ((«B-fiA)/cos ^A sin vA 

+ [sin aA/rA cos MA COS (eA+MA) 3 <XB-
X
A) J      (47) 

Since d and H are constant along streamline CB, their values at 

B are the same as at C so Eqs. (45a), (46) and the state equation 

can be used at B to determine p  ,  e and a from P . 

PB - (PB/d)
1/v (48) 

eB " V^B (49) 

qB » H - eB (50) 

These quantities together with A represent the first step of the 

iteration solution at point B. For the second step the process is 

repeated using average values of the slopes at both ends of the 

characteristic anJ stream lines. This more accurately locates 

points B and C.  Equation (47) is recomputed using similarly 

averaged coefficients of the $ and x terms and final values of 

p  ,  e  ,  q^ and 6L are determined. After the second iteration step 

is completed, the velocities u and v can be obtained from 
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UB  =   ^B^JH COS  eB 

VB  =   {2%MJ      Sin  eB 

The values of the four independent variables p,u,v and e can be 

obtained at M,n by interpolating between points M#n-1 and B. 

In an actual problem point B may not fall between line n 

and n+1 but may be between n+1 and n+2 or between n-1 and n, etc, 

The computer program has taken these possibilities into account 

by using various interpolations and or extrapolations.  The only 

geometric restriction on the flow is that one characteristic 

line and the streamline lie below the upper boundary line, while 

the other characteristic line lies above. The program can be 

adapted to other cases but this has not been done as yet. 
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NUMERICAL RESULTS 

Computer Program 

The finite difference scheme described in the preceding sections 

was programmed in FORTRAN Version 2.3 (includes all features of 

FORTRAN IV plus some additions) for the CDC 6400/6500/6600 computers. 

Three grid configurations were used: 

Configuration 

r direction grid points 

x direction grid points 

Total points in mesh 

Execution time for 2 haIf-steps 
on CDC 6600 1.4 sec  15 sec 20.8 sec 

The total number of points for any configuration is equal to the 

product of the numbers of points in the x and r directions minus 

those points which fall within the body. 

It is our estimate that the maximum size grid configuration 

that could be run (by expanding the appropriate program dimensions) 

is 90 x 90 or some other combination of x and r grid points whose 

product is equivalent. This maximum grid size estimate is based 

upon the program volume, plus the storage necessary for the com- 

puter operating system, plus the additional storage needed at load 

time. The cost of running th* expanded grid is approximately pre- 

dictable from the above table by equating the ratios of execution 

time and total mesh points.  There is another cost factor.  The 

number of iterations to reach convergence is greater with the 

finer mesh because a disturbance can propagate at most one grid 

point in one half step. 
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A separate computer program was written to take data from the 

intermediate data files (TAPE 7) and create digital plots of 

velocity vectors, streamlines and pressure contours in the flow 

field.  The plotting war performed on a Calcomp Plotter.  The 

CDC 6600 software required to run this program is the Calcomp 

Plotter Software package; specifically, subroutines PUÖT, SYMBOL 

and NUMBER. Instructions for data input to the plotting program 

are given in Appendix II... 

Input Data 

Essentially, the required input consists of the grid geometry, 

flow parameters and initial data for the entire grid. A complete 

card file input description is given in Appendix II.. 

The first step in choosing the grid configuration is the 

location of the boundaries of the numerical calculations. As out- 

lined in the section on boundaries, the upstream boundary is placed 

about five boundary layer thicknesses upstream of the base, the 

downstream boundary is placed at a location where the flow is 

acpected to have returned to completely supersonic and the upper 

boundary is located so that it is in a completely inviscld flow 

regime.  In picking a mesh size it must be remembered that the 

object is to compute flow fields of interest with as much accuracy 

as possible. Since the spatial stability is dependent upon the 

Reynolds number per mesh (Re ), too large a value causes the program 

to fail. Therefore, the use of a coarse mesh requires a restriction 

of the magnitude of the free stream Reynolds number (Re ), in order 

to limit Re .  On the other hand, the interesting features of the 
A 

flow, such as the recirculation region, tend to be stretched out 

over a greater area as Re is increased. This shows the opposing 
CD 

effects of trying to have the recirculation region large enough to 

be observable, which requires large Re , and trying to use a coarse 
OD 
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mesh to cut running costs, which requires a lower Re to give 

spatial stability. Furthermore, the grid must be fine enough 

to resolve the resulting flow field (e.g., the gradients in the 

body boundary layer).  The axial step size is usually taken 

larger than the radial since smaller gradients are expected in 

the axial direction. Care must be exercised in using the 

variable mesh feature since the magnitude of a or 0 affects the 

order of accuracy of the difference formulas (Eq. (4)).  The 

final configurations must represent a compromise between these 

considerations. 

The flow conditions are described by specifying the free 

stream (ahead of shock) Mach number, Reynolds number, M =u8/e , 
OB   «D   e» 

V i   Pr and for the constant wall temperature case, e /e  (see 

Appendix  II).  It is also necessary to give the values of the 

four independent variables on the upstream boundary and the flow 

deflection along the upper boundary. 

'io start a calculation, initial values of each independent 

variable must be known for each grid point at which the finite 

difference equations are applied.  The very first time a case is 

run a guess is made for this data.  This can be based on the given 

upstream data, a known inviscid flow field or can be a uniform 

flow, etc.  In practice, the computation is run for a set number 

of time steps, and the results observed.  Then another series of 

time steps is run using the results of the previous computation 

as initial data.  Means of doing this are described in Appendix II... 

When it is desired to vary flow parameters, say Re ,itjs advantageous 
00 

to start from some intermediate step in a previously run case whose 

Reynolds number is closest to the desired. Also, if a finer mesh 

is desired, the output from a coarse mesh run can be interpolated 
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and used as initial data. The machine output at the steady 

state condition has the same form as the initial data as 

described in Appendix II. 

Time Step and Steady State Criteria 

The time step size is related to the spatial mesh size by 

the stability condition. Normally there are two stability con- 

ditions, howevei, it is assumed that the differencing scheme 

used here has eliminated the viscosity dependent condition. An 

approximation to the other stability condition can be obtained by 

considering the differential equations with inviscid terms only 
(4) 

and linearizing them. Following the procedure of Allen   the 

axisymmetric stability condition is 

at . i(i^) ar / {(£«) ^ |u| + |v| 

Equation (52) is computed for each point at each step of the itera- 

tion. To be sure of stability, the program uses a ^t equal to 

85%  of the minimum value obtained from Eq. (52). For the coarse 

mesh (170 points), At *, 0.13 to 0.14, while for the fine mesh 

cases (2040 - 3040 points), At « 0.03 to 0.04. 

The solution is assumed to have reached the desired steady 

state when the density changes by less than a small number c 

between successive time steps as given by Eq. (12). For the caseja 
-5 

considered here, • o- 10  was found satisfactory. 
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Numerical Examples 

The computer program for a spherically capped cylindrical 

body was run initially with a coarse mesh grid for various 

Reynolds number flows.  Even though they lack accuracy these 

coarse mesh runs, which are relatively inexpensive, can be used 

to learn much about the program's limitations, such as maximum 

Reynolds number for a given mesh size, before running the more 

expensive fine mesh cases. 

All the cases considered had a free stream Mach number, 

M =12.5, uVe =78.8, y=y  =1.3, and e /e «*■ 6 for constant 
MOO« ''• W» 

wall temperature cases.  The Reynolds number. Re , was varied 

between 40 and 10,000 and two values of the Prandtl number were 

used, Pr = Pr = 1.0 and 0.72.  An independent inviscid character- 

istics calculation was used to obtain the upper boundary flow 

deflection and the inviscid portion of the upstream boundary line. 

A boundary layer calculation was made to complete the upstream 

data requirements. 

It should be noted that all dimensions are in terms of the 

base half height or cylinder radius, and • refers to the uniform 

conditions outside the bow shock.  The lower Reynolds number cases 

were treated with a coarse grid having 170 points, while a fine 

mesh having 2040 points was used for the larger Reynolds numbers. 

Coarse Mesh Solutions :  The first runs were made with a 

coarse grid for the constant wall temperature conditions, A low Rey- 

nolds No.case. Re = 40 was used to see if convergence to a steady 

state solution was obtainable.  A steady state was approached for 

this case after many parameter adjustments required in getting 

familiar with the program operation.  However, for this coarse 

mesh the recirculation region was not observable.  Therefore, a 
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case for Re = 400 was run. A converged solution was obtained but 
CD 

the recirculation region was still not evident. A run was then 

made with Re = 1200.  This solution converged and showed a 
OS 

definite recirculation region.  This is evidence of the mesh 

size tradeoff mentioned previously.  If the Reynolds number is 

kept small to insure stability for a coarse mesh, which is cheaper 

to run, the recirculation region will be small and the coarse mesh 

will not intercept it.  It should be mentioned that some of these 

coarse mesh runs have small negative density values behind the 

base.  These seem to be localized and do not affect the rest of the 

flow field.  They tend to disappear as steady state is approached, 

especially for the finer mesh cases. 

Once it was established that a recirculation region could be 

obtained, the next step was to increase the Reynolds number to 

find the limit for which a solution could be obtained for the coarse 

mesh.  After an Re = 1800 case was run to convergence a value of 

Re = 4000 was attempted. For this later case it was not possible 

to obtain a steady state condition. The calculation terminated 

itself when the internal energy became negative in a small region 

of the grid. This is a positive definite quantity for which negative 

values are unacceptable. All computations for which steady state 

solutions could not be reached were terminated in this manner.  Sub- 

sequently, a case with Re s 2500 was run. This case also failed, 
CO 

giving a limiting Re of between 1800 and 2500 for coarse grid. 

Since the terminating factor appears to be negative internal 

energy it would seem likely that the upper limit of Re could be 

increased by increasing the effect of the energy dissipation terms. 

This was investigated by reducing the Prandtl number, which appears 

in the denominator of these terms, from 1.0 to 0.72. when the 
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Re = 2500 case was rerun for Pr = 0.72, a converged solution 

was obtained. This was also true for Re ■ 3000; however, an 
«0 

Re ■ 3500 case failed. Therefore, the Reynolds number limit for 

a given mesh can be increased by enhancing the effect of the 

energy dissipation terms. All subsequent calculations were run 

with Pr ■ 0.72. Many additional partial runs with different 

Reynolds numbers and coarse grid arrangements were initiated in 

the course of the learning process. These are not reported here 

since they do not lead directly to any conclusions. 

Fine Mesh Solutions;  The coarse grid cases discussed above 

cannot be expected to give accurate results. They have been used 

to investigate the feasibility of obtaining solutions and the 

nature of the breakdown at large Reynolds numbers. In order to 

obtain a usable solution a fine mesh of 50 x 50 points was con- 

sidered. Due to the body location there are actually only 2040 

computation points. Running times to reach steady state for this 

mesh depend upon initial data but were between 1 and 1-1/2 hours 

for the cases considered. The initial case run on this mesh was 

the largest Reynolds number case obtained for the coarse mesh; 

Re = 3000. A convergent solution was obtained. 

An analysis of Burgers' equation in one-dimension shows that 

for local Reynolds numbers, based on step size, greater than 2.0, 

the numerical solution exhibts point-to-point oscillations. 

However, for our more complex system and geometry, this does not 

seem to be true. Point-to-point oscillations do arise, however, 

for this Re - 3000 fine mesh case, and accompany large curvatures 

in the solution. 
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Figure f> presents radial plots of the density at stations 

upstream of the corner. The solid curve without circles is the 

upstream starting profile, and the circles represent computed 

points somewhat downstream.  In the left hand curve for constant 

wall temperature, the computed points show point-to-point oscilla- 

tions near the body surface even though Re  is smaller there than 
Ar 

at larger values of r. However, in the range of radius r where 

oscillations occur, the starting profile and the computed profiles 

have large curvatures. It was therefore concluded that point-to- 

point oscillations can occur when the mesh is not fine enough to 

represent curvature or local changes in a variable. 

To check this conclusion, an adiabatic-wall case, which has 

a smoother density profile, was run.  The right hand side of Figure 6 

shows that no oscillations are present. The values of Re  in this 
Ar 

case were small, and in order to further verify the dependence of 

oscillations on large curvatures the same case was run at a larger 

free-stream Reynolds number (10,000 instead of 3,000). This computation 

and the results appear in Figure 7.  Now Re  is large but no oscilla- 

tions exist since the curvatures are small. 

Figure 8 shows the axial variation of density just above the 

body surface. The upper curves are for the constant wall tempera- 

ture case and show oscillations, evidently remnants of the radial 

oscillations. The two curves show the time evolution of the 

solution. The lower curves are for the adiabatic wall. Re =10,000 

case and show only slight oscillations even though values of Re 
Ar 

are about the same as for the constant T case. w 
Figure 9 shows radial plots of density and internal energy 

for the constant T case at a location one half height behind the w ' 
base. The density oscillations present in the body boundary layer 
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have propagated downstream. The adiabatic wall. Re -  10,000 

case is plotted in Figure 10 at the same station and contains 

no oscillations. The time evolution of p is also indicated. 

Figure 11 is a similar plot for the adiabatic wall. Re »10,000 

at a station one diameter behind the base. 

Figures 12, 13 and 14 are additional machine plotted 

results (see Appendix II) of the adiabatic wall. Re =10,000 case. 
CO 

Figure 12 gives streamline contours.  The recirculation region is 

well defined by the closed contours, which are plotted at finer 

increments of the stream function than the outer flow. The stag- 

nation point is indicated by the intersection of the zero stream- 

line and the flow center line (r ■ 0). 

The lines in Figure 13 represent the velocity vectors through- 

out the computed field.  Each vector starts at the small cross, 

each of which represents a grid point. The stagnation point is 

represented by the asterisk. 

Machine-plotted pressure contours are shown in Figure 14. The 

convergence of the contours at the downstream end of the calcula- 

tion field evidently represents the formation of a recompression 

shock. 

The increasing of Re from 3,000 to 10,000 caused the Mach 

number at the downstream end of the grid to become subsonic. 

Hence a computation with a longer domain (50 x 70) was carried 

out to insure supersonic flow at the downstream boundary. The 

results in Figures 15 and 16 show that the curves plotted for the 

short-domain calculation are only slightly affected. 
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SUMMARY 

GASL has developed a computer program which treats the 

near wake of an axisymraetric body having a truncated cylindri- 

cal base.  The numerical approach is a two-step time-dependent 

finite difference procedure for the compressible Navier Stokes 

equations. 

The program has the following features: 

1) Axisymmetric flow field. 

2) The calculated flow field includes the 

region upstream of the base where corner 

effects are present. 

3) The inviscid flow along the outer hori- 

zontal boundary may be nonuniform. 

4) A variable mesh is used to allow higher 

resolution in areas of flow nonuniformities. 

5) Variable viscosity and conductivity are 

admitted. 

6) Options of adiabatic wall or fixed wall 

temperature are admitted. 

7) Both the equation system and the finite 

differencing are done in conservation form. 

8) The stability condition for the time-dependent 

solution is independent of the viscosity 

(Cheng-Allen scheme). 

9) Difference forms at the boundaries are 

obtained by means of telescoping with the 

internal difference forms. 
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A number of numerical examples have been run. Calculations 

using a coarse grid have shown that for small Reynolds numbers, 

where the recirculation region is small, the recirculation region 

may not be intercepted by the grid.  For larger Reynolds numbers 

the recirculation region becomes evident, however, a limit of 

Reynolds number is reached for which a given grid size will not 

yield a convergent, steady state solution. This upper Reynolds 

number limit can be increased by enhancing the effect of the 

energy dissipation; by decreasing the Prandtl number, for 

instance. 

Point-to-point oscillations in fine mesh solutions do not 

necessarily arise when the local Reynolds number, based on step 

size, is greater than 2.0 as is the cane for the one-dimensional 

Burger's equation. However, such oscillations do arise when the 

mesh is not fine enough to accurately represent curvatures in 

tbo solution variables. This was verified by obtaining smooth 

solutions for an adiabatic wall case, with small variable curva- 

tures, for either the s?.me free stream Reynolds number or local 

Reynolds number per mesh as a constant wall temperature case with 

large curvatures,which exhibited oscillations. 
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