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SUMMARY

The general analysis of instability mude by Westergaard (Reference 1) in 1922
indicates that the deformation of a body, the initial imperfection, and the
critical and actual load levels can be associated by a single law. South-
well (Reference 2), in independent research made in 1932, examined this
situation in detail for a column and proposed a method of plotting experi-
mental results for imperfect specimens which could predict the instabillity
load for the perfect column. He indicated in his paper that the process
should have a wider content than that in which he worked. Subsequent
research has verified this conjecture for a wide range of problems.

This report is concerned with the instability behavior of spherical shells
for which, so far as can be traced from a broad literature survey, no
application of this technique has been considered. Moreover, it is an area
in which the scatter between experimental results is normally great and in
which there is still considerable analytical effort being made.

The report demonstrates that the Southwell Plot approach gives an inter-

pretation of experimental data which is consistent with the findings of
small displacement computations.,
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INTRODUCTION

The behavior of spheres and spherical caps under the action of destabilizing
forces is a subject of considerable interest in many areas. This report
presents the results of research made to correlate the data obtained in
tests with the predictions of theory.

In all research on the stability of bodiles, difficulty occurs in the defin-
ition of the instability point. Basically, no realistic body can behave in
a manner analogous to that described by the analyst. Initial Imperfection
of shape causes motions to occur from the very onset of load application.
These motions increase in magnitude with an increase in load and ultimately
cause collapse. Thal there is an extremely rapid rate of growth of defor-
mation prior to collapse is unquestionable. But the association of this
point, obtained for the imperfect body, with the classic critical value for
the perfect specimen is virtually impossible. Therefore, effort has ™een
concentrated in a new approach to the interpretation of experimental data.
Westergaard (Reference 1), in his general treatment of elastic stability,
has suggested that the relationship between deformations and loading actions
may be a consistent character for a wide variety of structures and load

¢ vironments. Southwell (Reference 2), in independent research, explored
this situation in depth for the column and presented a powerful tool for
interpreting test data for such structures. Other researchers have shown
that this approach can be extended to other vehicles. Thus, this report
concerns the load-displacement pattern for spheres and spherical caps and
attempts to show, from currently existing data and theory, that a 1l:1
correspondence can be established.

The theory of instability for spheres amd spherical caps was established by
Zoelley (Reference 3), Schwerin (Reference 4), and A. Van der Neut (Refer-
ence 5). The latter author also developed a geueral solution for unsymme-
trical buckling. Biezeno (Reference 6) presented the analysis for a spheri-
cal cap subjected to a concentrated load. This theory is valid within
limits which will be defined later. Von Kirmédn and Tsien (Reference T)
noted the rapid falloff of the load-carrying capacity of thin shells after
buckling and reported tests conducted on hemispherical brass shells sub-
Jected to external pressure. These experiments were conducted by Sechler
and Bollay (Reference 8). Von Kdrmén and Tsien considered the buckle-dimple
as a shallow shell and the buckling motion as a "snap-through" of a spheri-
cal cap. From this study, they were led to distinguish an upper-buckling
load and a lower-buckling load, now termed the buckling load and postbuckling
load, respectively. On this basis, tr.y compared the experimental results
of Sechler and Bollay (Reference 8) with their theoretical work. They found
good agreement between thelr predicted postbuckling load and the actual
eritical load experimentally established by Sechler and Bollay. This
practical buckling load was about a quarter of the classical value.

Friedriche (Reference 9) refined the above theory by using asymptotic
expressions to represent the dimple shape. He treated the clamped-edge
problem of the dimple as "a boundary layer phenomenon". At the same time,
he removed the assumption that the deflection was parallel to the axis of
revolution, for this assumption had "an exceedingly strong effect".

1l



Subsequently, Tsien (Reference 10) introduced an energy criterion which
predicted a vuriation of buckling load with test system stiffness. The
validity of this criterion as applied to spheres and spherical caps 1s
questionable, as is indicated by the research of Krenske (Reference 11);
Carlson, Serdelbeck, nnd Hotf (Reference 12); and Kaplan and Fung (Ref-
erence 13). These direct observations are confirmed by studies on cylin-
drical shells, such as those reported by Horton and Bailey (Reference 1lL).

The theory of spherical shells has received much attention during the last
twenty years. All lurce deflection analysis contains the assumption that

the buckle has the shape of a spherical cap. The ridge of the buckle has
been considered as a "boundary layer phenomenon" by Friedrichs and a yield
hinge by Hoff and Soonr (Refexence 15). The equations have been treated by
means of a perturbation solution by Kaplan and Fung (Reference 13) and by a
numerical process. Ashwell (Reference 16) developed what he termed a

"theory of applicable surfaces" 1in order to study the problem. Despite these
many attempts to match theoretical and experimental work, the disagreement is
still large. Fung and Sechier (Reference 17) expressed the view that "In
order to bring theory and experiments to complete accord, it would seem more
profitable to explore the effects of residual stresses, initial imperfections
and dynamic disturbances." It is very difficult to take exception to this
statement. Nevertheless, it seems clear that eiffort must also be extended to
derive data for the perfect body from results on imperfect structures. The
desirability of establishing the soundness of a theory of perfect structures
bafore extension to the imperfect is undertaken seems to be & logical neces-
sity. The majority of experimental results avallable today are for shallow
spherical caps. Tests of complete spheres are relatively scarce. This 1is
not surprising since the spherical shell is a much more difficult body to
fabricate, unless it contains joints or seams which might influence its
behavior. Recent development in plating technology hes improved thils state
immeasurably.

An important series of tests was made by Kaplan and Fung (Reference 13).
They tested shallow spaerical magnesium caps under uniform external pressure
using either air or oil pressure loading. Fung and Sechler (Reference 17)
discussed this work and denied the validity of the perturbation technique
used in the theoretical computation.

Later, Ashwell (Reference 16) conducted four point-loading experiments on
aluminum alloy shells in order to determine the load-deflection relationship.
He compared his experimenial results with Tsien and Biezeno's theories.

Thompson (Reference 18) tested two complete polyvinyl chloride spheres under
uniform external pressure. Finally, Loo and Even Iwanowski (Reference 19)
studied experimentally the deformations and collapse of spherical caps sub-
jected to concentrated point load and uniform pressure. The work of Carlson,
Sendelbeck, and Hoff is a genuine contribution to research on the complete
sphere and will be discussed later. The basis for the present report is
provided by the experiments of Ashwell (Reference 16); Fung and Kaplan (Ref-
erence 13); Thompson (Reference 18); Loo and Evan Iwanowski (Reference 19 and

20).



DETERMINATION OF THE VALUE OF CRITICAL LOAD
FOR AN IDEAL SHELL USING A REAL STRUCTURE

As far as the method of experimentally determining the critical load for a
perfect sphere .or a spherical cap using a realistic specimen has been derived,
it is possible that the statistical approach developed by Horton and Durham
(Reference 21) for cylinders could be applied. Certainly, spherical shells
can be completely filled with buckles provided they have an internal mandrel.
This is clearly seen from Figure 4. However, the purpose of this study is
much broader than the consideration of instability under uniform external
pressure. Thus, since the statistical technique referred to is limited by
the need for a whole population, it is not considered here. Instead,
attention is directed to the possibility that the load-displacement behavior
at a well-chosen point on the surface of the shell will enable the critical
value to be determined by application of the so=-called Southwell Plot.

The literature contains many examples of applicability of this process to a
wide range of problems. These are discussed in detail for column and plate
structures by Horton, Cundari, and Johnson (Reference 22). Donnell (Ref-
erence 23) has investigated the possible use of the technique in the case of
cylinders. Flugge (Reference 2L), in his textbook on shells, indicates that he
and his co-workers have had success in such applications. However, he
cautions that the location of the displacement transducer must be chosen
with great care.

Currently available test data on spheres under various load conditions
have been examined to determine whether or not any of these data could be
analyzed using this technique. The results of the study are presented here.

Basically, the process depends upon the fact that, in many cases, the relation-
ship between the initial imperfection, the displacement under load, the load

value, and the classical instability can be expressed approximately in the
form

b
) (% ) = constant (1)

This is the equation of a hyperbole. If the variables are altered from P
and § to §/P and §, this equation cean be rewritten as

VP - § = constant (2)

which represents a straight line whose slope is the critical load. The
specimen imperfection is defined by the value of the constant.

In many cases, the law expressed in Equation (1) must be modified as
follows:

5 (E%E = 1) (N) = constant (3)



whei1» A is a parameter dependent upon the quality of the specimen and the
motion under load.

This parameter must be very close to unity if the method is to produce good

results. Consequently, the range of applicability might be severely
restricted.



REMARKS ON THE DISCREPANCY BETWEEN tHEORETICAL
PREDICTIONS AND EXPERIMENTAL RESUL S

Generally speaking, analytical studies are concerned with perfect hodies of
specimens with idealized imperfections acted upon by accurately defined lozd-
ings. On the other hand, experimental studies must be made on realistic
structures under imperfectly controlled load systems. The problems caused

by these differences are accentuated by the fact that the boundary conditions
preseribed for theoretical study are rarely, if ever, those attainable in the
laboratory. Thin shell bodies of all types appear to be remarkably censitive
to these several deviations from ideal, and it is customary to find that test
data on such vehicles are at variance with prediction. While theoreticians
have striven to widen the basis of these analyses by taking into account
deviations of t.e specimen loading systems and boundaries from the ideal,
experimentalists have attempted to improve the geometric and mechanical
qualities of their test specimens and to control the test environment more
vigorously. In shell structure tests, several experimentalists have teen
able to develop their techniques of manufacture and testing to such an extent
that they have been able to generate extremely high values aof tests to theor-
etical loads. For example, in the case of circular cylindrical shells in
axial compression, Teunyson (Reference 26) has shown that it is possible to
develop a buckling load of the ideal of 90% of the classic value using a near-
perfect specimen, while similar results have been obtained by Carlson,
Sendelbeck, and Hoff (Reference 12) for accurate spheres under external
pressure loading. These high values of load are tie exception rather than
the rule.

As already implied, the low values of critical loads are ascribable to speci-
men or loading imperfections. Generally, in bodies of single curvature,
these do not appear to have any pronounced influence on the shape of buckles,
but in spherical shells this does not appear to be the case. Spherical
shells, particularly under point loads, will buckle in both symmetric and
asymmetric patterns. There is some evidence presented later in the report
that, if the buckle motion versus load history is considered, then in those
cases of symmetrical distortion, the load-displacement curve will be hyper-
bolic at the buckle center. If this fact is used in a Southwell fashion,

the critical load levels determined from slope considerations will be more
consistent with prediction than those determined by other means. However, in
nther cases, in which the distortions are not symmetric, the load-displacement
relationships may not be hyperbolic, and, indeed, they frequently seem to
differ in form among themselves. Thus, there is no possibility of a South-
well interpretation in many cases, unless it is possible to make observations
at a number of points and to perform a harmonic analysis.

The wide scatter that is normally experienced is very evident in Figures 1
and 2.
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INSTABILITY OF SPHERES UNDER VARIOUS LOAD CONDITIONS

SPHERES LOADED BY UNIFORM EXTERNAL PRESSURE

The instability of spheres loaded in this fashion is very dynamic. The
buckle develops .t the weakest point, frequently at the junction of the
sphere with the tube used for evacuation, because the reinforcement needed

at this point induces higher stresses and bending moment. The buckle pattern
is shown in Figure 3.

The buckle motion, which is very hard to follow, can be restrained by an
interior mandrel, as shown in Figures 4, 5, and 6.

When this is done, it is seen that circular indentations are formed. These
grow in size and coalesce into a pattern of hexagons and pentagons as the
pressure increases. The gap between specimen and mandrel decides not only
the size anl] amplitude of the buckle but also whether or not there will be
plastic stresses in the fold lines along their common boundaries.

The technique for electrodepositing spheres on wax mandrels was developed
by Sendelbeck (Reference 25).

SPHERES LOADED BY NORMAL AND TANGENTIAL FORCES

In Figure 7, we can see the buckling pattern developed on & sphere by a
normal force. The buckle develops in the neighborhood of the point of
application of the force. Figures 8, 9, 10, 11, 12, 13, and 14 shov a
spherical shell with internal mandrel subjected to various loading conditions.



Figure 3.

Buckling of a Thin-Walled Spherical Shell
Loaded With Uniform External Pressure.




Figure 4.

Buckling of a Thin-Walled Spherical
Shell Loaded With Uniform External
Pressure When Buckling Motion is

Restrained by an Interior Mandrel.

10



Figure 5. Closeup View of Buckle Pattern.



Figure 6. Closeup View of Final Buckle Pattern
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Figure T. Buckling of a Thin-Walled Spherical Shell by a Force
Normal to its Surface.
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Figure 8. Buckling Patterns for Thin Spherical
Shells Subjected to Various Loading
Conditions When Buckle Motion is
Restrained by an Interior Mendrel.
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Buckle Pattern - Normal Tension Force

Figure 9.
With External Pressure.
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Figure 10. Buckle Pattern - Normal Tension
Force After Release of External
Pressure.



Figure 1l. Buckle Pattern - Surface Shear
Force,
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Ficure 12. Buckle Pattern - Surface Tension
Force



Figure 13. Buckle Pattern - Two Perpendicular
¢ arface Tension Forces.
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Figure 14. Buckling Pattern for a Thin-Walled Spherical Shell With
a Solid Bottom Half and Tension Applied by Means of an
Internal Spherical Cape.

20



SOUTHWELL APPROACH APPLIFD TO KNOWN EXPERIMENTAL DATA

KAPLAN AND FUNG'S EXPERIMENTAL DATA ON SPHERICAL CAPS

The pressure deflection curves obtained by Kaplan and rung (Reference 13) are
reproduced in Figures 15 and 16, from which the load-displacement curves

of the specimens 3, 4, 5, 7, 10, and 16 have been selected. In Tables I, TI,
IT1I, IV, V, and VI, the ratios of the displacement to the load, corresponding
to each of the above-~-mentioned specimens, have been computed. In Figures

17, 18, 19, 20, 21, and 22, the deflection w_ versus the ratio w /P has been
plotted. It is seen that stralght lines areobtained.

From these figures, the slope of the straight lines has been computed. The
following values were obtained:

Slope Slope
Specimen 3 15.5 Specimen 7 T2..5
Specimen k4 34 Specimen 10 182.0
Specimen 5 b1 Specimen 16 b7

The first of these values have been plotted in Figure 23, which is the
theoretical curve cof buckling load:

1 - u2(a>h - % ( ,
P.,==% T)d versus A = 2L5(l- J t)

obtained by Kaplan and Fung (Reference 13).

We can observe from this figure that there is very good agreement between
the Southwell determination of the buckling load for the ideal specimen
and the classical determination of the buckling load.

However, it must be noted that the theoretical load-displacement curve by
Kaplan and Fung (Figure 15) for A = 4 yields a straight line also, as
computed in Table VII and shown in Figure 24. But the critical load given
as the slope of this straight line does not sgree with the theoretical
curve of critical load versus A (Figure 23).

Thus, one can establish the Southwell analysis of' experimental buckling as
a criterion for the validity of a theory; i.e., a tuneory which yields a
Southwell plot for a theoretical load-displacement curve whose slope is
close to the theoretical value of buckling (such a theory is valid).

The remaining point cannot be correlated with Kaplan and Fung's computation
since their values of A are outside the range covered by the analysis.
However, if all of the Southwell-derived critical loads are plotted versus
A on a common plot, it is readily apparent that they are of the same family.
This is clearly shown in Figure 25,

21
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TABLE I. GOSPECIMEN 3 (NACA TN 3212)

A= 4,16

Pcr = 1505
g : vof?
L3838 12.35 .0718
Bk 12,2 .0688
<706 11.85 .0596
593 11.2 .053
H09 11 0517

TABLE II. SPECIMEN 4 (MACA TN 3212)

N = 4.8

P, = 3k
o L Wo/P
LTh6 20.85 .0358
635 20.3 .0312
578 19.5 .0296
%20 18.7 .0281
1460 17.6 .0261
.378 15.8 .0239

2h




TABLE III. SPECIMEN 5 (NACA TN 3212)

A= L.9L
P =11
cr
L P wO/P
633 23.3 o)
578 22.3 .0259
525 21.6 0243
460 20.1 0229
.378 18.1 .0209
292 15.3 .0192
TABLE IV. SPECIMEN 7 (NACA TN 3212)

A= 57

B o) = [0
W P wo/P
o7 54,2 .0129
.65 . 53.5 0122
.6 52.0 .0115
'55 5101 .0108
5 49.5 .0101
45 46.5 .0096

25




TARLE V. GPECIMEN 10 (NACA TN 3212, Poge 50)

A= T.22
Wo d wo/P
3 148 0054
3 147 .00510
.7 1445 .00485
.05 1L .00L55
o0 139 .00430

"TABLE VI. GPECIMEN 16 (NACA TN 3212, Page 56)

» = 8.98
wo P wo/P
sl 206 .0019L
U5 218 .00206
25 229 .00218
55 239 .00230
.6 243 00242
.65 250 .00260
5% 252 .00218

26




TABLE VII. THEORETICAL CURVE (NACA TN 3212)

A= b

W, P wo/P
<746 13.9 L0545
634 13.3 0476
578 12.6 0L6

.536 12.15 0Ll
<460 11.2 0412
377 9.995 .0319

TABLE VIILEVAN IWANOWSKI AND LOO (CUC 037)

) P 6/p
.8 1.46 549
T 1.43 L1489
.6 1.39 432
5 1.345 372
ok 1.3 .308

27
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|
32+
P.r Determined Using Two
Terms of Series for P
28+ o) Pog Determined Using the
Southwell Approach
24—
20+
16—
i
(3]
[
12—
8..—
Al )
intmum Value
of X at Which
Buckling Occurs ="
v | I | ] L
] 1 2 3 4 S
N

Figure 23, Comparison of Theoretical Critical Load and Southwell

Values of Buclling (NACA IN 3212),
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200 r—

Critical Pressure P
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120 +—

&5
T

Geometric Parameter A\

Figure 25, P.,. Versus A as Derived From Southwell Plots of Kaplan
and Fung's Data (Reference 21),
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EXPERIMENTAL DATA OF EVAN IWANOWSKI ET AL ON SPHERICAL CAPS

From the work of Evan Iwanowski (Reference 19) on the deformation and
collapse of spherical domes subjected to uniform pressure and normal con-
centrated loads at the apex, the three tests reported in Figure 26 have been
chosen. The analyzed tests were performed on domes with clamped edges; the
concentrated load at the apex was given a constant displacement.

The same procedure as before is used, and the numerical values are reported
in Table VIII to XIV. Good Southwell plots result. These are presented
in Figures 27, 28, and 29.

In a prior paper, Evan Iwanowski, Cheng, and Loo reported tests made on
spherical caps with concentrated loads applied at the apex. In this work
several of the load curves are seen to be hyperbolic in form. These have
been analyzed in Figures 30 and 31. The Southwell plots which correspond
to these curves are given in Figures 32, 33, 34, and 35. When the slope
values from these presentations are plotted against the appropriate geo-
metric parameter, they are seen to form a smooth curve (Figure 36).

ASHWELL'S EXPERIMENTAL DATA ON SPHERICAL CAPS

Ashwell (Reference 16) has performed four experiments on aluminum spherical
caps subjected to a point load. We have selected the expe .ment reported in
Figure 37 because, from the value of A (geometrical parameter) equal to

A = 6.4, one obtains about the same value of P__, according to Ashwell's

and Biezeno's theories. We have shown in Tabl&'XV and in Figure 38 that a
Southwell plot can he derived for this experiment, and that the slope of the
straight line so obtained gives P _ = 3.09, a value which is in agreement
with both Ashwell's and Biezeno's“fheories (as shown in Figure 39).

EXPERIMENTS ON A NICKFL SPHERE

The vehicle used for these tests was a complete sphere built by Sendelbeck
(Reference 25). Its geometric properties were

Radius 4.2 in.

Thickness 2.1 x 1075 in.
It was subjected to uniform external pressure, and the inward motion of the
wall under this loading condition was measured with a Fotonic sensor. This
device is a noncontacting optical measurement instrument. It is capable of
determining motion of 1 reflecting surface to an accuracy of 1 micron.
The load-displacement curve obtained for the randomly chosen point was a
straight line. From this line, the mechanical properties of the material,
at least the Young's modulus, were computed to be as follows:

E = 29.3 x 106 lb/in.2

This value is in excellent agreement with that determined by Carlson, Sendel-
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Figure 206,
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CUC 137
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CUC 034
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Cuc n32
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Load-Displacement Curves of Spherical Caps Subjected to
Internal Pressurc and Concentrated Load at the Apex
(Loo and Evan Iwanowski, Page 303), Boundary Condition,

Ldges Clamped,
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TABLE IX. EVAN IWANOWSKI AND LOO (CUC 034, Page 303)
) P 8 /P
o 1.18 .330
D 1.33 376
N6 .44 T
7 1.53 457
.8 1.6 500
TABLE X. EV N IWANOWSKI AND LOO (CUC 032, Figure 13J)
) P 5/p
0.5 1.02 490
006 1015 ’538
0.7 1.210 578
0.8 1.295 617
0.9 1.38 652
1.0 1.455 .686
1.1 1.525 .720
1.2 1.615 760

39
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IABLE XI. EVAN IWANOWSKI, CHENG, AND LOO (3C 303)
w P W/P
9 6.62 «1355
o3 6.2 «129
£ 5.69 123
0 5.13 117
D 4,51 .1108
N 3.81 .1052




TABLE XII. EVAN IWANOWSKI, CHENG, AND LOO
(sc okl, Figure 18)
A= 6.30

6 PR En’

s PR
2 1.53 .13
25 1.6 143
e3 1.86 161
.35 1.98 177
u 2,08 92
U5 2.16 .208
5 2.2k .223
.55 2.30 239
6 2435 255
65 2.39 271
o7 2.h2 289
T 2.h5 .306
.8 2.6 .32k

b




‘T'ABLE XILII. EVAN IWANOWSKI, CIENG, AND LOO

(5C 0h2)
A= 099
6 h BS= Ej 5/P
Et
e 1.88 .100
A5 2.06 Jd21
E 2525 <188
35 2.38 147
A 2.52 159
it 2.63 A71
) 2.7h 183
55 2.85 193
.6 2.93 .205

L2




TABLE XIV. EVAN IWANOWSKI, CHENG, AND LOO
§/n 253 Corrected
Et

2 1.59 NE 27k
25 1.85 .88 295
.3 2.12 7L .308
.35 2.31 1.050 .333
o 2.b5 1.12 357
45 2.59 1.19 378
5 2.70 1.2k 403
5P 2.78 1.275 432
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ﬂ_ o= 13,2

b o.1817
o

P = Concentrated Load
§ = Apex Displacement
R = Shel)l Radius

)
E 4 t = Shell Thickness
2 E = Young's Modulus

s h = Risec of Shell

b -

1

R W W N N N -
0 .2 4 .6 .8 1,0 1.2 1.4

4

Figure 30, Symmetric Mode of Buckling (Evan Iwanowski, Cheng, and
loo, Figure 1A, Page 572) SC 303,
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Figure 33. Southwell Plot of Specimen sC 039 (Loo, Cheng, and Iwanowski) .
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[TABLE XV. ASHWELL (Reference 10, Figure 12, Puge 00)

a! = 60)‘

v, P W, /P
2433 2.23 1.0k
1.8 2.13 845
1.38 1.9 727
1.11 1.7 655

93 1.51 «555

137 1.21 535

2




W

1 ] l 1 | |

1

.5 .6 .7 .8 .9 1.0
Wo/P

Figure 38, Ashwell's Experimental Data,
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[TABLE XVI. TEST I - SPHERE = S058

P W
(in.Hg) (microns)
1l 2.5

2 4
8 6
4 TS
5 9
549 11
6,45 12
T.05 13
7.65 14
8.25 15
8.55 155

Determination of E From Figure 38
E=-i-=%£% w = 10 microns
P = 5.8 incHg
E=29.3" 10 1b/sq in.

29




beck, and Hoff (Reference 12) from similar vehicles. The value of Poisson's
ratio was taken to be 0.3.

With these geometric and mechanical properties, the shell had a theoretical
critical pressure given by

2
_ . 6 (2-.1) k!
Pcr—2x0.6x29.5x10 X T.5 l? psi

0.3 x 29.3 psi = 8.79 psi

During the first test on the vehicle, the point of first buckling was
determined. The motion permitted during this test was very slight; and as

& consequence, the sphere was not damaged by the test. The Fotonic sensor
was repositioned at the center of the prime buckle, and the test was repeat-
ed. The load displacement was recorded and is as depicted in Figure 41. It
is seen from this figure that initially the sphere has a linear relationship
between load and displacement, but there comes a point at which the character
of this motion changes. The displacement curve appears to be hyperbolic.

When the hyperbolic portion of the curve is examined from the Southwell
linear relationship aspect, it is seen (Figure 42) that a very good straight
line exists. The slope of this line is computed to be 3.93 psi, a value
which should agree with the classic critical value. There is a most unfor-
tunate discrepancy; the ratio of

critical 5.23
classical oH 79 b7

It 1s seen in Figure 41 that the initial portion of the load-displacement
curve is linear. When a modulus value for the sphere is computed from this,
the local modulus is much less than that previously determined. In fact,
the ratio of this modulus to the quoted value is

g%g = 96

Hence, we conclude that in this case at least we have established that the
cause of the discrepancy lies in a local reduction in effective modulus.
The correlated ratio of determined critical pressure to classic value is

92,

However, it is important to realize that the local correction for modulus
could not have been observed if extremely sensitive transducers had not been
used. The overall displacement used in the computation is of the order of

7 microns.

EXPERIMENTS ON A PLASTIC SPHERE

Thompson (Reference 18) reported what is probably the first load-displacement

60
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TABLE XVIl. TEST 17 GPHERE 5958

P W w - w_/P*
(in.Hz) (microns) °

0 0

1 3

2 it 4,00

3 8 5433

L 9.5 7

> 12 9.k

6 15.5 12,66

6.5 19.75 16.8

*The abscissa is taken for v, = 6 microns.

W - Wy is measured in mm. in Figure 41 from this
new origin.

TABLE XVIII. THOMPSON DATA

W P/Pc* w/P/P,
STh 2.75 261
.85 297 279
9 3.14 287

1.08 3.4 312
1.27 3.66 345
1.k 3.78 37

1.62 3.83 123

A scale factor of .2/1.68 takes care of the units
chosen in the preseBt table. Computation of E

6 R pR_pR V3(1-p°
E=<%"° 2t‘£‘w7c?_(—u
p= 48 t=.1 R=2.1 Eth=l+5o
P/P, = 6 w =14 E= 348
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study on a complete spherical shell. The data which he gave are reproduced
in Figure 43. If these data are examined in the manner previously discussed,
then the relationship between the elastic deformation and the pressure

which produces it is as given in Table XIX. When these results are plotted
(Figure 4k4), it is seen that the Southwell linear relationship exists and
that the value of the critical pressure derived from this plot (P/P _ = .7T74)
does not agree with the theoretical level (P/P__ = 1), when this le¥8l is
computed on the basis of natural properties gi%gn by Thompson. However, if
the sphere modulus is determined from the natural slope of the load-displace-
ment curve, it is found that Thompson's value of modulus is in error. The
effective modulus is less than he prescribed. From the curve which he shows,
the modulus is 396 psi, whereas the computation of P/P was made on the basis
of 450 psi. The slope of the Southwell line is comput&d to be P/P__ = .999.
Thus, when this is corrected by the ratio of h50/396 which takes iﬁ%‘o account
the local E variation, we find that the classic critical value 1s established.



A
m = Apex Deflection
t = Shell Thickness
.6[- v = Poisson's Ratio
P = Uniform External Pressure
P 4P
2
2 -
| | —
0 2 4
0 /3@V)
N l=v

Figure 43, Dimple Amplitude Paramecter Versus Pressure
(Reference Thompson, Figure 5, Page 193).
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