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SUMMARY 

The general analysis of instability mude by Westergaard (Reference l)  in 1922 
indicates that the deformation of a body,  the initial imperfection,  and the 
critical and actual load levels can be associated by a single law.    South- 
well (Reference 2),   in independent research made in 1932,  examined this 
situation in detail for a column and proposed a method of plotting experi- 
mental results for imperfect specimens which cculd predict the instability 
load for the perfect column.    He indicated in his paper that the process 
should have a wider content than that in which he worked.    Subsequent 
research has verified this conjecture for a wide range of problems. 

This report is concerned with the instability behavior of spherical shells 
for which,  so far as can be traced from a broad literature survey,  no 
application of this technique has been considered.   Moreover,  it is an area 
in which the scatter between experimental results is normally great and in 
which there is still considerable analytical effort being made. 

The report demonstrates that the Southwell Plot approach gives an inter- 
pretation of experimental data which is consistent with the findings of 
small displacement computations. 
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IMTRODUCTION 

The behavior of spheres and spherical caps under the action of destabilizing 
forces is a subject of considerable interest in many areas.    This report 
presents the results of research made to correlate the data obtained  in 
tests with the predictions of theory. 

In all research on the stability of bodies,  difficulty occurs in the defin- 
ition of the instability point.    Basically,   no realistic body can behave in 
a manner analogous to that described by the analyst.    Initial imperfection 
of shape causes motions to occur from the very onset of load application. 
These motions increase in magnitude with an increase in load and ultimately 
cause collapse.    Thai: there is an extremely rapid rate of growth of defor- 
mation prior to collapse is unquestionable.    But the association of this 
point,  obtained for the imperfect body, with the classic critical value for 
the perfect specimen is virtually impossible.    Therefore, effort has been 
concentrated in a new approach to the interpretation of experimental data. 
Westergaard (Reference l),  in his general treatment of elastic stability, 
has suggested that the relationship between deformations and loading actions 
may be a consistent character for a wide variety of structures and load 
e 'vironraents.    Southwell (Reference 2),  In Independent research,  explored 
this situation in depth for the column and presented a powerful tool for 
interpreting test data for such structures.    Other researchers have shown 
that this approach can be extended to other vehicles.    Thus,  this report 
concerns the load-displacement pattern for spheres and spherical caps and 
attempts to show,  from currently existing data and theory,  that a 1:1 
correspondence can be established. 

The theory of instability for spheres and spherical caps was established by 
Zoelley (Reference 3),  Schwerin (Reference 4),  and A. Van der Neut (Refer- 
ence 5)»    The latter author also developed a general solution for unsymme- 
trical buckling.    Blezeno (Reference 6) presented the analysis for a spheri- 
cal cap subjected to a concentrated load.    This theory is valid within 
limits which will be defined later.    Von Karman and Tsien (Reference 7) 
noted the rapid falloff of the load-carrying capacity of thin shells after 
buckling and reported tests conducted on hemispherical brass shells sub- 
jected to external pressure.    These experiments were conducted by Sechler 
and Bollay (Reference 8).    Von Karman and Tsien considered the buckle-dimple 
as a shallow shell and the buckling motion as a "snap-through" of a spheri- 
cal cap.    From this study,  they were led to distinguish an upper-buckling 
load and a lower-buckling load,  now termed the buckling load and postbuckling 
load,  respectively.    On this basis,  th -y compared the experimental results 
of Sechler and Bollay (Reference 8) with their theoretical work.    They found 
good agreement between their predicted postbuckling load and the actual 
critical load experimentally established by Sechler and Bollay.    This 
practical buckling load was about a quarter of the classical value. 

Friedrichs (Reference 9) refined the above theoiy by using asymptotic 
expressions to represent the dimple shape.    He treated the clamped-edge 
problem of the dimple as "a boundary layer phenomenon".    At the same time, 
he removed the assumption that the deflection was parallel to the axis of 
revolution, for this assumption had "an exceedingly strong effect". 



Subsequently, Tsien (Reference 10) introduced an energy criterion which 
predicted a variation of buckling load with test system stiffness.    The 
validity of this criterion as applied to spheres and spherical caps is 
questionable,  as is Indicated by the research of Krenske (Reference ll); 
Carlson,  Serdelbeck,   and Hoff (Reference 12);  and Kaplan and Fung (Ref- 
erence 13).    These direct observations are confirmed by studies on cylin- 
drical shells,   such as those reported by Horton and Bailey (Reference 1^). 

The theory of spherical shells has received much attention during the last 
twenty years.    All large deflection analysis contains the assumption that 
the buckle has the shape of a spherical cap.    The ridge of the buckle has 
been considered as a "boundary layer phenomenon" by Friedrichs and a yield 
hinge by Hoff and Soonr (Reference 15).    The equations have been treated by 
means of a perturbation solution by Kaplan and Fung (Reference 13) and by a 
numerical process.    Ashwell (Reference 16) developed what he termed a 
"theory of applicable surfaces" in order to study the problem.    Despite these 
many attempts to match theoretical and experimental work,  the disagreement is 
still large.    Fung and Sechler (Reference 17) expressed the view that "In 
order to bring theory and experiments to complete accord,  it would seem more 
profitable to explore the effects of residual stresses,  initial imperfections 
and dynamic disturbances."    It is very difficult to take exception to this 
statement.    Nevertheless,   it seems clear that effort must also be extended to 
derive data for the perfect body from results on imperfect structures.    The 
desirability of establishing the soundness of a theory of perfect structures 
before extension to the imperfect is undertaken seems to be a logical neces- 
sity.    The majority of experimental results available today are for shallow 
spherical caps.    Tests of complete spheres are relatively scarce.    This is 
not surprising since the  spherical shell is a much more difficult body to 
fabricate, unless it contains joints or seams which might Influence its 
behavior.    Recent development in plating technology has improved this state 
immeasurably. 

An important series of tests was made by Kaplan and Pung (Reference 13). 
They tested shallow spherical magnesium caps under uniform external pressure 
using either air or oil pressure loading.    Fung and Sechler (Reference 17) 
discussed this work and denied the validity of the perturbation technique 
used in the theoretical computation. 

Later,  Ashwell (Reference 16) conducted four point-loading experiments on 
aluminum alloy shells in order to determine the load-deflection relationship. 
He compared his experimenual results with Tsien and Biezeno's theories. 

Thompson (Reference 18)  tested two complete polyvlnyl chloride spheres under 
uniform external pressure.    Finally, Loo and Evan Iwanowski (Reference 19) 
studied experimentally the deformations and collapse of spherical caps sub- 
jected to concentrated point load and uniform pressure.    The work of Carlson, 
Sendelbeck,  and Hoff is a genuine contribution to research on the complete 
sphere and will be discussed later.    The basis for the present report Is 
provided by the experiments of Ashwell (Reference 16) j Fung and Kaplan (Ref- 
erence 13); Thompson (Reference 18); Loo and Evan Iwanowski (Reference 19 and 
20). 



DETERMINATION OF THE VALUE OF CRITICAL LOAD 
FOR AN IDEAL SHELL USING A REAL STRUCTURE 

As far as the method of experimentally determining the critical load for a 
perfect sphere .or a spherical cap using a realistic specimen has been derived, 
it is possible that the statistical approach developer! by Horton and Durham 
(Reference 2l) for cylinders could be applied.    Certainly,   spherical shells 
can be completely filled with buckles provided they have an internal mandrel. 
This is clearly seen from Figure k.    However,   the purpose of this  study is 
much broader than the consideration of instability under uniform external 
pressure.    Thus,   since the statistical technique referred to is limited by 
the need for a whole population,   it is not considered here.    Instead, 
attention is directed to the possibility that the load-displacement behavior 
at a well-chosen point on the surface of the shell will enable the critical 
value to be determined by application of the so-called Southwell Plot. 

The literature contains many examples of applicability of this process to a 
wide range of problems.    These are discussed in detail for column and plate 
struccures by Horton,  Cundari, and Johnson (Reference 22).    Donnell (Ref- 
erence 23) has investigated the possible use of the technique in the case of 
cylinders. Flügge (Reference 2k), in his textbook on shells.   Indicates that he 
and his co-workers have had success in such applications.    However, he 
cautions that the location of the displacement transducer must be chosen 
with great care. 

Currently available test data on spheres under various load conditions 
have been examined to determine whether or not any of these data jould be 
analyzed using this technique.    The results of the study are presented here. 

Basically,  the process depends upon the fact that,  in many cases,  the relation- 
ship between the initial imperfection,  the displacement under load,  the load 
value,  and the classical instability can be expressed approximately in the 
form 

/ cr 
\ P J      = constant (l) 

This is the equation of a hyperbole.    If the variables are altered from   P 
and 6 to 6/P and 6,  this equation can be rewritten as 

vP - 6 = constant (2) 

which represents a straight line whose slope is the critical load. The 
specimen imperfection is defined by the value of the constant. 

In many cases, the law expressed In Equation (l) must be modified as 
follows: 

6 (~ - l) (\) = constant (3) 



whei^ X Is a parameter dependent upon the quality of the specimen and the 
motion under load. 

This parameter must be very close to unity if the method is to produce good 
results.    Consequently,   the range of applicability might be severely 
restricted. 



REMARKS ON THE DISCREPMCT BETWEEN THEORETICAL 
PREDICTIONS AND EXPERIMENTAL RESUL?S  

Generally speaking,   analytical studies are concerned with perfect bodies of 
specimens with idealized iraperfections acted upon "by accurately defined load- 
ings.    On the other hand,   experimental studies must be made  on realistic 
structures under imperfectly controlled load systems.    The problems caused 
by these differences are accentuated by the fact that the boundary conditions 
prescribed for theoretical study are  rarely,   if ever,   those  attainable  in the 
laboratory.    Thin shell bodies of all types appear to be remarkably sensitive 
to these  several deviations from ideal,   and it is customary to find that test 
data on such vehicles are at variance with prediction.    While theoreticians 
have striven to widen the basis of these analyses by taking  into account 
deviations of t.ie specimen loading systems and boundaries from the ideal, 
experimentalists have attempted to improve the  geometric and mechanical 
qualities of their test specimens and to control the test environment more 
vigorously.    In shell structure tests,   several experimentalists have teen 
able to develop their techniques of manufacture and testing to such an extent 
that they have been able to generate extremely high values of  tests to theor- 
etical loads.    For example,   in the case of circular cylindrical shells  in 
axial compression,  Tennyson (Reference 26) has shown that it is possible to 
develop a buckling load of the ideal of 90$ of the classic value using a near- 
perfect specimen, while similar results have been obtained by Carlson, 
Sendelbeck,   and Hoff (Reference 12)  for accurate spheres under external 
pressure loading.    These high values of load are the exception rather than 
the rule. 

As already implied,  the low values of critical loads are ascribable to speci- 
men or loading  Imperfections.    Generally,  in bodies of single curvature, 
these do not appear to have any pronounced influence on the shape of buckles, 
but in spherical shells this does not appear to be the case.    Spherical 
shells,  particularly under point loads, will buckle in both symmetric and 
asymmetric patterns.    There is some evidence presented later in the report 
that,   if the buckle motion versus load history is considered,  then in those 
cases of symmetrical distortion,   the load-displacement curve will be hyper- 
bolic at the buckle center.    If this fact is used in a Southwell fashion, 
the critical load levels determined from slope considerations will be more 
consistent with prediction than those determined by other means.    However,   in 
other cases,   in which the distortions are not symmetric,  the load-displacement 
relationships may not be hyperbolic,  and,   indeed,  they frequently seem to 
differ in form among themselves.    Thus,  there is no possibility of a South- 
well interpretation in many cases,   unless it is possible to make observations 
at a number of points and to perform a harmonic analysis. 

The wide scatter that is normally experienced is very evident in Figures 1 
and 2. 
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INSTABILITY OF SPHERES UNDER VARIOUS LOAD COMDITIOKS 

SPHERES LOADED BY UNIFORM EXTERNAL PRESSURE 

The instability of spheres loaded in this fashion is very dynamic. The 
buckle develops at the weakest point, frequently at the junction of the 
sphere with the tube used for evacuation, because the reinforcement needed 
at this point induces higher stresses and bending moment. The buckle pattern 
is ühown in Figure 3« 

The buckle motion, which is very hard to follow, can be restrained by an 
interior mandrel, as shown in Figures k,  5, and 6. 

When this is done, it is seen that circular indentations are formed. These 
grow in size and coalesce into a pattern of hexagons and pentagons as the 
pressure increases. The gap between specimen and mandrel decides not only 
the size anJ amplitude of the buckle but also whether or not there will be 
plastic stresses in the fold lines along their common boundaries. 

The technique for electrodepositing spheres on wax mandrels was developed 
by Sendelbeck (Reference 25). 

SPHERES LOADED BY NORMAL AND TANGENTIAL FORCES 

In Figure 7, we can see the buckling pattern developed on a sphere by a 
normal force. The buckle develops in the neighborhood of the point of 
application of the force. Figures 8, 9, 10, 11, 12, 13, and Ik-  show a 
spherical shell with internal mandrel subjected to various loading conditions. 

8 



Figure 3« Buckling of a Thin-Walled. Spherical Shell 
Loaded With Uniform External Pressure. 
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Figure Buckling of a Thin-Walled Spherical 
Shell Loaded With Uniform External 
Pressure When Buckling Motion is 
Restrained by an Interior Mandrel. 
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Figure 5• Closeup View of Buckle Pattern. 



Figure 6. Closeup View of Final Buckle Pattern 
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Figure 7. Buckling of a Thin-Walled Spherical Shell "by a Force 
Normal to its Surface. 
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Figure 8. Buckling Patterns for Thin Spherical 
Shells Subjected to Various Loading 
Conditions When Buckle Motion is 
Restrained hy an Interior Mandrel. 
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Figure 9. Buckle Pattern - Normal Tension Force 
With External Pressure. 
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Figure 10. Buckle Pattern - Normal Tension 
Force After Release of External 
Pressure. 
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\ 

Figure 11. Buckle Pattern - Surface Shear 
Force» 
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Figure 12 • Suckle PQ-"fc*fcern ~ Surf&ce lonsion 
Force. 

] 8 



Figure 13. Buckle P a t t e r n - Two Pe rpend icu la r 
f i r f ace Tension F o r c e s . 
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Figure 1^. Buckling Pattern for a Thin-Walled Spherical Shell With 
a Solid Bottom Half and Tension Applied hy Means of an 
Internal Spherical Cap. 
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SOUTHWELL APPROACH APPLIED TO KNOWN EXPERIMENTAL DATA 

KAPLAN AND FUNG'S EXPERIMENTAL DATA ON SPHERICAL CAPS 

The pressure deflection curves obtained by Kaplan and Fung (Reference 13)  are 
reproduced in Figures 15 and 16,   from which the load-displacement curves 
of the specimens 3^   ^  5>   1,   10,  and .1.6 have been selected.    In Tables 1,   11, 
III,   IV,  V,  and VI,   the ratios of the displacement to the load,   corresponding 
to each of the above-mentioned specimens,   have been computed.    In Figures 
17,   18,   19,  20,   21,   and 22,   the deflection w    versus the ratio w /P has been 
plotted.    It is  seen that straight lines are obtained. 

From these figures,   the  slope of the straight lines has been computed, 
following values were obtained: 

The 

Specimen 3 
Specimen h 
Specimen 5 

Slope 

15.5 

hi 

Specimen 7 
Specimen 10 
Specimen 16 

Slope 

72.5 
182.0 
417 

The first of these values have been plotted in Figure 23, which is the 
theoretical curve of buckling load: 

cr 
1 - H2/a\ 

E      \t/ 

h 
versus 

i        1 
h,2 

X ^ 2[W)J (^ 

obtained by Kaplan and Fung (Reference 13), 

We can observe from this figure that there is very good agreement between 
the Southwell determination of the buckling load for the ideal specimen 
and the classical determination of the buckling load. 

However,  it must be noted that the theoretical load-displacement curve by 
Kaplan and Fung (Figure 15)  for \ = k yields a straight line also,  as 
computed in Table VII and shown in Figure 2k,    But the critical load given 
as the  slope of this straight line does not agree with the theoretical 
curve of critical load versus \ (Figure 23). 

Thus,  one can establish the Southwell analysis of experimental buckling as 
a criterion for the validity of a theory;   i.e.,   a tneory which yields a 
Southwell plot for a theoretical load-displacement curve whose slope is 
close to the theoretical value of buckling (such a theory is valid). 

The remaining point cannot be correlated with Kaplan and Fung's computation 
since their values of \ are outside the range covered by the analysis. 
However,  if all of the Southwell-derived critical loads are plotted versus 
\ on a common plot.   It is readily apparent that they are of the same family. 
This is clearly shown in Figure 25. 
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1 TABLE I.    SPECIMEN 3 INACA TN 3212) 

X = 1+.16 

Pcr = ^^ 

1          w 
0 

P Vo/P            1 

.888 12.35 .0718 

,        .tik 12.2 .0688 

.706 11.85 .0596      ! 

.593 11.2 .053 

.569 11 .0517 

1                                                                 . - -J 

1 TABLE II.    SPECIMEN k (MCA TN 3212)                                          | 

\ = k.Q 

P     =3^ cr 

w 
0 

P Wo^           j 

j       .7^6 20.85 .0358    ! 

.635 20.3 .0312 

,        .578 19.5 .0296 

.525 18.7 .0281 

.460 17.6 .0261 

.378 15.8 .0239 

2k 



1 TABLE III. SPECIMEN 5  (NACA TN 3212 )                                        1 
i                                                                                                                       i 

\ = h.9k 

P      =  kl cr 

1             0 
P w /p 0                   1 

.633 23.3 .0272 

.578 22.3 .0259 

.525 21.6 .02i+3               | 

.1+60 20.1 .0229               | 

.378 18.1 .0209 

1     .292 15.3 .0192 

■                                     ■                                 1 

I TABLE IV.     SPECIMEN 7 (NACA TN 3212)                                        1 
1                                                                                                                       1 

\ =  5.57 

?„ =T2.5 cr 

w 
1         0 

P "o^            1 

•7 5^.2 .0129 

1     .65 53-5 .0122 

.6 52.0 .0115 

.55 51.1 .0108 

.5 J+9.5 .0101 

A5 ^6.5 .0096               I 

1                           •                                    •                                1 

25 



1 TAKLE V.     SPECIMEN 10 (NACA TN 3212,  Page 56)                | 
l                                                                                                                                                                               i 

\                                             *■ =  T-22                                                      1 

w 
1               0 

P w /P 
0'               i 

1          .8 11+8 .005^           5 

.75 Ikl .00510          j 

• 7 lkk.3 .001+65 

.65 lk2 .00455             | 

.6 139 .001+30             1 

     ...1 

I TABLE VI.     SPECIMEN 16 (NACA TN 3212,  Page 56)             1 
i                                                                                                      1 

x = 8.98 

V 
0 P *<>/*              1 

1      ^ 206 .00194              | 

.45 218 .00206              j 

1      .5 229 .00218               | 

i      .55 239 .00230               j 

.6 21+3 .0021+2 

.65 250 .00260 

•7 252 .00218 

.,   _   , 1 

26 



1 TABLE VII. THEORETICAL CURVE (NACA TN 3212) 

!                                     \= h 

w 
o i            P Vo/P                      1 

i   ^k6 
13.9 .05^5                      1 

1         '62k 13.3 .01+76                     1 

.578 12.6 .0^6 

1         .536 12.15 .oMa 

.U60 11.2 .0^12 

• 377 9.995 .0319               1 

..                        .   . ,       ,.    ..       —          1 

1 TABLE   VIII. EVAN IWMOWSKI AND LOO (cue 037)                  1 
1                                                                                                                       1 

i     s p 6/P 

1     '8 1.46 .5^9                    | 

1     ^ l.h3 .^9                    | 

!         .6 1.39 .^32 

*5 1.3^5 .372                    | 

1    .1+ 1.3 .308        i 

1 
i 

27 
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Figure 18.   Southwell Plot of Specimen 4 (NACA TN 3212). 
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32 
l'gj.  Determined Using Two 

Terms of Series for P 

28|—   o   Pcr  üetermincd Using the 
Southwell Approach 

24 

lb 

u 

12 

Minimum Value 
of X at Which 
Buckling Occurs" 

ligurc 23.    Comparison of Theoretical Critical Load and Southwell 
Values of Buckling   (NACA TN 3212). 
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Geometric Parameter \ 

Figure 25. Pcr Versus X as Derived From Southwell Plots of Kaplan 
and Fung's Data (Reference 21). 
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EXPERIMENTAL DATA OF EVAU IWMOWSKI ET AL ON SPHERICAL CAPS 

From the work of Evan Iwanowski (Reference 19) on the deformation and 
collapse of spherical domes subjected to uniform pressure and normal con- 
centrated loads at the apex,   the three tests reported in Figure 26 have been 
chosen.    The analyzed tests were performed on domes with clamped edges;  the 
concentrated load at the  apex was given a constant displacement. 

The same procedure as before is used,   and the numerical values are  reported 
in Table VIII   to    XIV. Good Southwell plots  result.    These are presented 
in Figures 27,  28,  and 29. 

In a prior paper,  Evan Iwanowski,  Cheng,  and Loo reported tests made on 
spherical caps with concentrated loads applied at the apex.    In this work 
several of the load curves are seen to be hyperbolic  in form.    These have 
been analyzed in Figures 30 and 31«    The Southwell plots which correspond 
to these curves are given in Figures 32,   33,   3^,   and 35 •    When the slope 
values from these presentations are plotted against the appropriate geo- 
metric parameter,  they are seen to form a smooth curve (Figure 36). 

ASHWELL'S EXPERIMENTAL DATA ON SPHERICAL CAPS 

Ashwell (Reference 16) has performed four experiments on aluminum spherical 
caps subjected to a point load.    We ha^e selected the expe   .ment reported in 
Figure 37 because,  from the value of \ (geometrical parameter) equal to 
X = 6.U,  one obtains about the same value of P    ,  according to Ashwell's 
and Biezeno's theories.    We have shown in Table XV and in Figure 38 that a 
Southwell plot can be derived for this experiment,  and that the slope of the 
straight line so obtained gives P      = 3*09^   a value which is in agreement 
with both Ashwell's and Biezeno'sctheories (as shown in Figure 39). 

EXPERIMENTS ON A NICKEL SPHERE 

The vehicle used for these tests was a complete sphere built by Sendelbeck 
(Reference 25).    Its geometric properties were 

Radius        k,2 in. 

Thickness 2.1 x 10 J in. 

It was subjected to uniform external pressure, and the inward motion of the 
wall under this loading condition was measured with a Fotonic sensor. This 
device is a noncontacting optical measurement instrument. It is capable of 
determining motion of  1 reflecting surface to an accuracy of 1 micron. 

The load-displacement curve obtained for the randomly chosen point was a 
straight line.    From this line,  the mechanical properties of the material, 
at least the Young's modulus, were computed to be as follows: 

f) ? 
E = 29.3 x 10    lb/in. 

This value is in excellent agreement with that determined by Carlson, Sendel- 
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Figure 26. Load-Uisplacemcnt Curves of Spherical Caps Subjected to 
Internal Pressure and Concentrated Load at the Apex 
(Loo and Evan Iwanowski, Page 303), Boundary Condition, 
l.dges Clamped. 
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1 TABLE IX.    EVAN IWMOWSKI AM) LOO (CUC 03'+, Page 303)         i 
i.                                                                                                                        1 

6 P 6/P                  j 

.4 1.18 • 330               1 

•5 1.33 • 376 

.6 l.kh .1+17 

• 7 1.53 .i+57              \ 

i              '8 1.6 .500                        ! 

I TABLE X.    EV JJ IWMOWSKI AM) LOO (CUC 032, Figure 1^^ 
1                                                                                                                                                                                                                                                       1 

6 P |           6/P                1 
1 

0.5 1.02 .1+90 

1             0*6 
1.15 .538 

|             0-7 1.210 .578 

0.8 1.295 .617 

1            0'9 1.38 .652               | 

1.0 1.^55 .686 

1.1 1.525 .720              j 

1.2 1.615 .760              | 
i 

   

39 



[TABLE XI. EVM IWMOWSKI,   CHENG,   AM) LOO (3C 303)               1 

I                                                                                                                               i 

!      w P V/P            1 

.9 6.62 .135 

.0 6.2 •129            | 

.7 5-69 •123 

.6 5.13 .117 

.5 4.51 .1108          j 

.k 3.81 .1052             | 

" 

ko 



1 TABLE XII.    EVAN IWMOWSKI,  CHENG,  AND LOO                          1 
!                           (SC Okl,  Figure 18) 1 

i              x = 6.30                  j 

i   6 PR 

ER3 

'                Eh3 

PR             j 

•2 1.53 .13 

.25 1.75 .11+3 

.3 1.86 .161        1 

.35 1.98 .177        | 

.h 2.08 .92 

A5 2.16 .208          | 

•5 2.2i+ .223 

.55 2.30 .239          | 

.6 2.35 .255 

.65 2.39 .271          j 

•7 2.1+2 .289 

.75 2.U5 .306 

.8 2.1+6 • 321+ 

kl 



TABLE XIII.    EVAN IWANOWSKI,   CHENG,   AM) LOO             1 
(SC Ok2)                                                          \ 

\ - 6.99 

6 h P _ PR 
"       3 Et-5 

6/P                             8 

1.68 .100              1 

.25 2.06 .121 

• 3 2.2l3 •133                    I 

• 35 2.38 • 1^7 

j       .h 2.52 .159                 | 

.h5 2.63 .171 

.5 2.71t- ■ 183 

1            •55 2.85 •193                 ! 

|            .6 2.93 .205 

1 

h2 



i TABLE XIV .    EVM IWMOWSKI,   CHENG,   AM) LOO               ! 
i                                                                                                                 i 

6/h 
PR 
—Corrected 
Et-3 

.2 1.59 .73 .274 

.25 I.85 .81r8 .295 

• 3 2.12 .97^ .308 

• 35 2.31 1.050 .333 

.k 2J+5 1.12 .357 

M 2.59 1.19 .378 

• 5 2.70 1.2^ .U03 

• 55 2.78 1.275 .432 

L .                                                                                                      i 

^3 
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Figure 30. Synaetric Mode of Buckling (Evan Iwanowski, Cheng, and 
Loo, Figure IA, Page S72) SC 303. 
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ITAHLE XV. AI3J1WELL (Reference 1*., Pltjuro 12. Page 60J      1 

a« - 6.h 

V 
0 

P w^ 

2.33 2.23 1.04 

1.8 2.13 .845 

1.38 1.9 .727 

1.11 1.7 .655 

.93 1.51 .555 

.737 1.21 .535 
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Pcr ■ 3.09 
X > 6.4 

± _L ± X ± 
.6 .9     l.U 

Figure 38. Ashwell's Experimental Data. 
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1 TABLE XVI. TEST I - SPHERE - S^5Ö 

P 
j       (in.Hg) 

1        7 
w   ,          ! 

j      (microns) 

I         1 2.5          j 

1          2 ^             ! 

3 6           1 
k 7,5         1 

i       5 9 

i        5-9 11          | 

1               6-45 12             I 

j               ^•05            1 13            | 

I        7.65 lk                               | 

8.25       1 15 

I         8-55       |       15.5 

Determination of E From Figure 38 

3       E = - = iil          w=10 microns 
!          c  wdt          p = 5.8 in.Hg 

E = 29.3 • 10°   Ib/sq in.             | 
1  .                                ^^^^                   ^IBl                                                                                                                                    "* 
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beck,  and Hoff (Reference 12) from simliar vehicles.    The value of Poisson's 
ratio was taken to be 0.3» 

With these geometric and mechanical properties,   the shell had a theoretical 
critical pressure given by 

2 
Pcr = 2 x 0.6 x 290 x 106 x (|i|)   • -ig   psi 

= 0.3 x 29.3 psi = 8.79 psi 

During the first test on the vehicle, the point of first buckling was 
determined.    The motion permitted during this test was very slight;  and as 
a consequence,  the sphere was not damaged by the test.    The Potonic sensor 
was repositioned at the center of the prime buckle,  and the test was repeat- 
ed.    The load displacement was recorded and is as depicted in Figure kl.    It 
is seen from this figure that initially the sphere has a linear relationship 
between load and displacement,  but there comes a point at which the character 
of this motion changes.    The displacement curve appears to be hyperbolic. 

When the hyperbolic portion of the curve is examined from the Southwell 
linear relationship aspect,  it is seen (Figure k2) that a very good straight 
line exists.   The slope of this line is computed to be 3»93 psi,  a value 
which should agree with the classic critical value.    There is a most unfor- 
tunate discrepancy; the ratio of 

critical 3^ _    M,., 
classical    1S 8^9 " 

It is seen in Figure hi that the Initial portion of the load-displacement 
curve is linear.    When a modulus value for the sphere is computed from this, 
the local modulus is much less than that previously determined.    In fact, 
the ratio of this modulus to the quoted value is 

Hence,  we conclude that in this case at least we have established that the 
cause of the discrepancy lies in a local reduction in effective modulus. 
The correlated ratio of determined critical pressure to classic value  is 
.92, 

However,   it is important to realize that the local correction for modulus 
could not have been observed if extremely sensitive transducers had not been 
used.    The overall displacement used in the computation is of the order of 
7 microns. 

EXPERIMENTS ON A PLASTIC SPHERE 

Thompson (Reference 18) reported what is probably the first load-displacement 
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TABLE XVII.      TEST II SPHERE S95Ö                                    I 
1 

P W v - v /P* 
(in.HiO (microns) 0 

0 0 

1 3 
2 7 ^.00 

3 8 5.33 
h 9-5 7 

5 12 9A 

6 15.5 12.66 

6.5 19-75 16.8 

■KThe abscissa Is taken for w    = 6 microns. 
o 

w - w0 is measured in mm.  in Figure hi from this 
new origin. 

I   TABLE XVIII.    THOMPSON DATA                                                | 
1                                                                                                           1 

vr P/Pc* v/P/Pc 

.7^ 2.75 .261 

.85 2.97 .279 

•9 3.14 .287 

1.08 3.4 .312 

1.27 3.66 .345 

1.4 3.78 .37 
1.62 3.83 .^3 

*A scale factor of .2/1.68 takes care of the units 
chosen in the present table.    Computation of E 
E _ 6 _ R     ER _ £Rl ^3(1-K

2
) 

^ "  e     m     2t     2¥td      1 - ix 

H =  .48   t =  .1   R = 2.1   Eth = 450 

P/Pc = .6   w = l.Ul   E = 348 

....       _        I 
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study on a complete spherical shell. The data which he gave are reproduced 
in Figure k^.    If these data are examined in the manner previously discussed, 
then the relationship between the elastic deformation and the pressure 
which produnes it is as given in Table  XIX. When these results are plotted 
(Figure kk),  it is seen that the Southwell linear relationship exists and 
that the value of the critical pressure derived from this plot (P/P  = .77^) 
does not agree with the theoretical level (P/P  = l), when this level is 
computed on the basis of natural properties given by Thompson. However, if 
the sphere modulus is determined from the natural slope of the load-displace- 
ment curve, it is found that Thompson's value of modulus is in error. The 
effective modulus is less than he prescribed. From the curve which he shows, 
the modulus is 396 psi, whereas the computation of P/P  was made on the basis 
of ^50 psi. The slope of the Southwell line is computeS to be P/P  = .999. 
Thus, when this is corrected by the ratio of h^O/y^S which takes into account 
the local E variation, we find that the classic critical value is established. 

6k 



p 
p 

m - Apex Deflection 
t = Shell Thickness 
v - Poisson's Ratio 
V ■ Uniform External Pressure 

1 

T  1-v 

Figure 43. Dimple Amplitude Parameter Versus Pressure 
(Reference Thompson, Figure 5, Page 193). 
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