AD-736 296

TCLASSIFIED							
Security Classification							
DOCUMENT CON	NTROL DATA - R	& D					
Security classification of (Do, budy of abstract and indexin 2009/94 (Do ACTIVITY (Commente author)	ne annotation must be	entered when the	e overall report is classified)				
California Institute of Technology	of Technology ory P.O. Bin 2, Arroyo Annex		UNCLASSIFIED				
Seismological Laboratory P.O. Bin 2, Arro							
Pasadena, California 91109							
REPONT TITLE							
SELOCITY GRADIENTS IN THE CONTINENTAL CRU	ST FROM HEAD-	WAVE AMPL	LTUDES				
· TESCHIPTIVE NOTES (Type of report and inclusive dates)							
ScientificInterim							
AUTHORISI (First name, middle initial, last name)							
David P. Hill							
AEPORT DAJE	74. TOTAL NO. C	OF PAGES	75. NO. OF REFS				
			1.9				
12 CONTRACT OF GRANT NO. 5 1/62060-0-0067	SE. ORIGINATOR'S REPORT NUMBERIS						
	1						
40 1 722							
	A OTHER REP	T NOIS /Any	other numbers that may be assigned				
62701D	this report)						
4.	Artha - 11-72-0261						
DISTRIBUTION STATEMENT	<u></u> L						
Approved for public release; distribution	umlimited.						
SUPPLEMENTARY NOTES BUON	12. SPONSORING MILITARY ACTIVITY						
Geophysical Monograph Series V14	th Series VI4 Air Force Office of Scientific Research						
The Structure and Thysical Properti		on Bouleva	ard (NPG)				
of the Lorth's Crust Marical Bas-	hy Arlingtor	i, Virginia	a 22209				
ADSTRACT SICOL UNION GASAINSTON J.C. 1	971						
1171-75 1971							
	a moleculine huminan	have a menou	need officiation the				
spectral amplitudes of head waves. Neg	a remoting marizon	nts and anclas	ticity (U ⁽¹⁾) resu it				
in a similar amplitude decay with distance for narrow-bandwidth data. Positive velocity							
graduats result in a net amplitude gain toppost prove perfectly electic reference	with distance comp	ared with the l	icail wave from a				
to published amplitude data for the ma	viave-medirement ex- lior crustal refraction	pressions 10, (n	and P [*] . suggest				
that the 'granitic' crust in the Basin and I	Range province has	either negative	velocity gradients				
of the order of 10 ⁻¹ km/sec/km or an ar	of the order of 10 [°] km/sec/km or an anelastic Q of the order of 400, whereas the 'granitic'						
gradients, Similarly, the 'basaltic' interm	ediate layer appear	ast nas sugnity s to have a ner	ntive gradient of				
the order of 10 * sec-1 under the Snake	River plain and n	ull or slightly	positive gradients				
under Lake Superior and Mississippi, Velocity gradients inferred from inboratory measure-							
ments on granite and basic igneous rocks, together with published geothermal gradients, are generally consistent with the gradients inferred from amplitude data							
Construction of the second sec							
· •		· ·					

.

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22131

ħ.

BEST AVAILABLE COPY

m.

1

DAVID P. HILL

Seismological Laboratory, California Institute of Technology, and U. S. Geologicai Survey, Pasadena 91109

D736296

ŧ

Abstract. Small velocity gradients in a refracting horizon have a pronounced effect on the spectral amplitudes of head waves. Negative velocity gradients and anelasticity (Q^{-1}) result in a similar amplitude decay with distance for narrow-bandwidth data. Positive velocity gradients result in a net amplitude gain with distance compared with the head wave from a homogeneous, perfectly elastic refractor. Wave-theoretical expressions for these effects applied to published amplitude data for the major crustal refraction branches. P_{θ} and P^{ϕ} , suggest that the 'granitic' erust in the Basin and Range province has either negative velocity gradients of the order of 10^{-2} km/sec/km or an anelastic Q of the order of 400, whereas the 'granitic' crust in the eastern United States and on the California coast has slightly positive velocity gradients. Similarly, the 'basaltic' intermediate layer appears to have a negative gradients under Lake Superior and Mississippi. Velocity gradients inferred from laboratory measurements on granite and basic igneous rocks, together with published geothermal gradients, are generally consistent with the gradients inferred from amplitude data.

VELOCITY GRADIENTS AND AMPLITUDES

Recent wave-theoretical studies show that the spectral amplitudes of critically refracted waves (head waves) are quite sensitive to small velocity gradients in the refracting horizon [Cervený and Jansky, 1967; Hill, 1971]. Negative gradients and anelasticity (Q^{-1}) result in a similar amplitude decay with distance for narrow bandwidth data; positive gradients result in a net amplitude gain with distance with respect to theoretical amplitudes for head waves refracted from a homogeneous medium with infinite Q. These theoretical effects of velocity gradients on head-wave amplitudes are illustrated in Figure 1. The negative gradient case is based on asymptotic solutions obtained by *Hill* [1971]; the positive gradient case is adapted from Cervený and Jansky [1967].

In a preliminary attempt to determine the existence and distribution of velocity gradients in well-established crustal horizons, these theoretical results have been applied to published amplitude data for the major crustal travel time branches P_{\bullet} and P^{*} . In this study, only firstarrival data for these branches are included.

RELATION BETWEEN Q' and velocity gradients

Effective Q values (hereafter referred to as Q') were computed for each amplitude data set by determining in a least squares sense the net gain (-Q') or decay (+Q') of the observed data with respect to theoretical head-wave amplitudes from homogeneous, infinite Q refractors. The results are interpreted in terms of negative velocity gradients for Q' values smaller than 10^s, null gradients for Q' values greater than 10^s, and positive gradients for negative Q'values as summarized in Table 1. Four examples of the amplitude data showing the least squares fit for Q' are given in Figure 2.

Q' versus regional heat flow

The distribution of Q' values for the data considered is shown in Figure 3, together with regional heat flow contours presented by Archambeau et al. [1968]. From the figure, we see that

"Approved For Public Release; Distribution Unlimited"

¹ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, Contribution 1914. Publication authorized by the Director, U. S. Geological Survey.

B-10-3

102

0~

Fig. 1. Amplitude curves illustrating effect of positive ($\beta = 10^{-3} \sec^{-1}$), null ($\beta = 0$), and negative ($\beta = -10^{-3} \sec^{-1}$) velocity gradients on headwave amplitudes, together with effective Q values (Q') with respect to the $\beta = 0$, $Q = \infty$ case. The reflected wave amplitude r, which is insensitive to small gradients in the refracting medium, is shown for reference. The arrow at C.D. indicates the ray-theoretical critical point. These curves were generated for 6-Hz waves in a 6.4-km/sec layer 30 km thick over an 8.0-km/sec half-space. The positive gradient case is adapted from *Červený* and Jansky [1967].

there is a general inverse correlation between Q' values and heat flow, Q' values in the 'normal' heat flow provinces of the eastern United States and west coast are greater than 10⁸ or are negative; these values imply null or small positive velocity gradients for both the upper portions of the crystalline crust ('granitic layer') and the intermediate layer in these regions. Q' values in the Basin and Range high heat-flow province, which probably includes the Snake River plain, are generally smaller than 10° . These low Q' values common to the Basin and Range province may be due to: 1, scattering of the critically refracted waves by relief on the refractor associated with Basin and Range faulting; 2, a temperature-dependent anelastic Q; or 3, negative velocity gradients in the upper portions of the crystalline crust associated with high geothermal gradients.

Available information is insufficient to quantitatively assess effects of the first two factors, and they remain as possible contributing factors. The third factor can be assessed quantitatively and is found to be consistent with the correlation between Q' and heat flow mentioned above. Heat flow studies suggest that the crustal geo-

CONTINENTAL SEISMOLOGY

thermal gradients in the Basin and Range heat flow province is 30°/km or possibly somewhat higher [Roy et al., 1968; Lachenbruch, 1970; Minster and Archambeau, 1970]. This geothermal gradient, rogether with partial derivative data for *P*-wave velocities in granites with respect to pressure, $(\partial V_a/\partial P)_T$, and temperature, $(\partial V_a/\partial T)_F$, measured in the laboratory [Hughes and Maurette, 1956], suggests negative velocity gradients of

$$eta \sim -0.8 imes 10^{-2} \, \mathrm{km/sec/km}$$

in the 6.0-km/sec 'granitic' horizon of the Basin and Range province. The lower geothermal gradients (about 15°/km) that are associated with the 'normal' heat flow province, when combined with the same partial derivative data, suggest positive velocity gradients of

$$\beta \sim 0.5 \times 10^{-2} \,\mathrm{km/sec/km}$$

in the upper crystalline ernst. Thus, the differences in velocity gradients in the upper part of the crystalline ernst (P_r refractor) between the Basin and Range and eastern United Stateswest coast heat flow provinces inferred separately from P_r amplitudes and geothermal gradients are reasonably consistent.

Similar calculations using the partial derivative data for P waves in basic igneous rocks reported by *Hughes and Maurette* [1957] indicate that the 'hasaltic' 0.7-km/sec intermediate layer has negative velocity gradients of

$$\beta \sim -1.6 \times 10^{-3} \, \mathrm{km/sec/km}$$

heneath the Snake River plain and

$$\beta \sim -0.3 \times 10^{-2} \,\mathrm{km/sec/km}$$

beneath Lake Superior and Mississippi. As before, a geothermal gradient of 30° /km is assumed for the high heat flow region (the Snake River plain) and 15° /km is assumed for the 'normal' heat flow regions (Lake Superior and Mississippi). These velocity gradients inferred from geothermal data are more negative than these implied by the Q' values obtained from P^* amplitude data in these regions (Table 1). If we accept this result at face value, then a compositional gradient (increasingly mafic with depth) is required in the npper parts of these intermediate layers to bring the velocity gradient estimated from the geothermal gradient

DAVID P. HILL

TABLE 1. Summary of Q' and Velocity Gradients from Crustal Amplitudes Data Standard error refers to Q'^{-1} fit to amplitude data, β is velocity gradient, and 'null' and '+' β indicate zero and positive gradients, respectively.

Region and Profile	Phase	0'	() ' la	Std. Error	B(500-1)a	Sourco
	-	٠٤	٠٤	···· · ··· ···	P (i)	
Basin and Range						
Fallon-Eureka	Ρ,	471	2.10	0.91	-15	Eaton [1963]
Fallon-S.F.	P_{e}	760	1.22	0.36	- 9.7	Eaton [1963]
Fallon-Owens V.	P,	-446	-2.2	1.16	+	Eaton [1963]
Eureka-Fallon	P.	972	F.03	0.47	- 7.5	Eaton [1963]
Eureka-North	P_{a}	-1290	-0.77	0.88	-+-	Hill & Pakiser [1966]
Mt. City-South	P_{\bullet}	403	2.48	3.71	-18	Hill & Pakiser [1966]
NTS-East	P	117	8.50	0.87	-26	Rualt & Stuart [1963]
California	- •			0.01		
S.FFallon	Р.	3810	0.262	0.076	mill	Eaton [1963]
S.FS. Monica	Р.	-1580	-0.63	1.13	-4-	H_{ca}/v [1963]
Camp Roberts	P_{\bullet}	2860	0.349	0.87	กม่ไ	H_{caly} [1963]
S. Monica-L. Mead	- "	230	4 34	2 17	-15	Roller & Healy [1963]
San Juan (6.66)	- ,	-47	-21	4 9	- L	Stewart [1968b]
San Juan (6.35)	$\frac{1}{P}$?	54	18	3 7	-20	Stewart [1968b]
Colorado Plateau		,	10.	0.1	20	Stewart [10000]
Hanksville	Р.	1260	0 795	1 02	null	Roller [1965]
Chinle	p	921	4 53	1 22	- 16	Roller [1965]
Missouri	10	221	1.00	1.00	10	1010 (1000)
Hannibal	Р	-613	-1.63	0.86	_ _	Stewart [1968a]
Swan L. Hannibal	p	- 549		0.54	-1-	Stewart [1968a]
Swan L. St Joseph	p	1960	-1.62	0.622		Stewart [1968a]
St Logonh		- 1500	-9.10	0,000	+	Stewart [1968a]
Missigginni	1 g []•	- 1200	-2.10	0.03	+	$W_{annon} of al [1066]$
Laka Superior	1 D+	21 700	-2.02	0,92	+	() Daine [1069]
Lake Superior	I	31,700	0.0315	0.004	num	O Drich [1908]
Boise-South	p •	337	2 97	0.84	- 4 4	Hill & Pakiser [1966]
Boise-South	<i>P</i> *	337	2.97	0.84	- 4.4	Hill & Pak

• 1 \times 10⁻³.

Fig. 2. Examples of P_g amplitude data in four regions: *a*, Fallon toward Eureka in the Basin and Range [*Eaton*, 1963]; *b*, San Francisco east in California [*Eaton*, 1963]; *c*, Hanksville north in the Colorado I lateau [*Roller*, 1965]; and *d*, Hannibal west in Missouri [*Stewart*, 1968*a*]. Continuous line is least squares fit for Q' through the amplitude data. Broken line shows amplitude decay with $Q' = \infty$ for comparison.

l

Fig. 3. Location of seismic profiles and the relation of Q' to heat flow. Number beside each profile is $Q' \times 10^{-2}$. The dark broken contour line separates the region in which Q' is less than 10³ from that in which it is either greater than 10³ or negative. Regional heat flow patterns are adapted from Archambeau et al. [1968]. Numbers associated with heat flow contours have units μ cal/cm²/sec.

(e.g., $-16 \times 10^{-3} \text{ sec}^{-1}$ in the Snake River plain) to the level of the velocity gradient estimated from Q' (4 $\times 10^{-3} \text{ sec}^{-1}$ in the Snake River plain). However, neither the amplitude nor the thermal data are of sufficient accuracy to provide much confidence for this suggested compositional gradient in the intermediate layers.

CONCLUSIONS

Thus, on the basis of P_{\bullet} amplitudes and thermal data, we conclude that a slight P-wave low velocity zone may exist in the upper crystalline crust in the Basin and Range high heat flow province and that such zones are unlikely in the eastern United States and west coast normal heat flow provinces. In the Basin and Range province, the crustal low velocity zone would have the form of a gradual decrease in velocity from the top of the crystalline crust downward (at a maximum rate of about 1×10^{-3} km/ see km) and would terminate rather abruptly at the top of the intermediate layer. The abrupt, pronounced crustal low velocity zone at depths of about 10 km of the type proposed by Mueller and Landisman [1966] could be present in either the Basin and Range province or the eastern United States, but such a zone would be difficult to detect using the data and methods described in this paper.

Acknowledgment. I would like to express my appreciation to C. B. Archambeau and D L. Anderson for many helpful discussions.

This research was supported in part by the Advanced Research Projects Agency and was monitored by the Air Force Office of Scientific Research under contract (F44620-69-C-0067).

REFERENCES

- Archambeau, C. B., R. F. Roy, D. D. Blackwell, D. L. Anderson, L. Johnson, and B. Julian, A generalized study of continental structure (abstract), Eos Trans. AGU, 49, 328, 1968.
- Červený, V., and J. Jansky, On some dynamic properties of the diving wave, Proc. 7th Assembly European Seismol. Comm., Copenhagen, 397-402, 1967.
- Eaton, J. P., Crustal structure from San Francisco, California, to Eureka, Nevada from seismicrefraction measurements, J. Geophys. Res., 68, 5789-5806, 1963.

DAVID P. HILL

- Healy, J. H., Crustal structure along the coast of California from seismic refraction measurements, J. Geophys. Res., 68, 5777-5787, 1963.
- Hill, D. P., Velocity gradients and anelasticity from crustal body wave amplitudes, J. Geophys. Res., 76(14), 3309-3325, 1971.
- Hill, D. P., and L. C. Pakiser, Crustal structure between the Nevada Test Site and Boise, Idaho, from seismic-refraction measurements, in *The Earth Beneath the Continents, Geophys. Monogr. Ser.*, vol. 10, edited by J. S. Steinhart and T. J. Smith, pp. 391-419, AGU, Washington, D.C., 1966.
- Hughes, D. S., and G. Maurette, Variation of elastic wave velocities in granites with pressure and temperature, *Geophysics*, 21, 277-284, 1956.
- Hughes, D. S., and G. Maurette, Variation of elastic wave velocities in basic igneous rocks with pressure and temperature, *Geophysics*, 22, 23-31, 1957.
- Lachenbruch, A. H., Crustal temperature and heat production: Implications of the linear heat-flow relation, J. Geophys. Res., 75, 3291-3300, 1970.
- Minster, J. B., and C. B. Archambeau, Systematic inversion of continental heat flow and temperature data, (abstract), *Eos Trans. AGU*, 51, 824, 1970.
- Mueller, S., and M. Landisman, Seismic studies of the earth's crust in continents, 1, Evidence for a low-velocity zone in the upper part of the lithosphere, *Geophys. J. Roy. Astron. Soc.*, 10, 525-538, 1966.

O'Brien, P. N. S., Lake Superior crustal structure-

A reinterpretation of the 1963 seismic experiment, J. Geophys. Res., 73, 2669-2689, 1968.

- Roller, J. C., Crustal structure in the eastern Colorado plateaus province from seismic refraction measurements, Bull. Seismol. Soc. Amer., 55, 107-110, 1965.
- Roller, J. C., and J. Healy, Seismic refraction measurements of crustal structure between Santa Monica Bay and Lake Mead, J. Geophys. Res., 68, 5837, 1963.
- Roy, F. R., D. D. Blackwell, and F. Birch, Heat generation of plutonic rocks and continental heat flow provinces, *Earth Planet. Sci. Lett.*, 5, 1-12, 1968.
- Ryall, A., and D. J. Stuart, Travel times and amplitudes from nuclear explosions, Nevada Test Site to Ordway, Colorado, J. Geophys. Res., 68, 5821-5835, 1963.
- Stewart, S. W., Crustal structure in Missouri by seismic-refraction methods, Bull. Seismol. Soc. Amer., 53, 291-323, 1968a.
- Stewart, S. W., Preliminary comparison of seismic travel times and inferred erastal structure adjacent to the San Andreas fault in the Diabb and Gabilan ranges of central California, in Proceedings of Conference on Geologic Problems of San Andreas Fault System, Stanford Univ. Pub., Geol. Sci., 11, edited by W. R. Dickinson and A. Grantz, pp. 218–230, Stanford Univ. Stanford, California, 1968b.
- Warren, D. H., J. H. Healy, and W. H. Jackson, Crustal seismic measurements in southern Mississippi, J. Geophys. Res., 71, 3437-3458, 1966

DISCUSSION

Porath: You have a uniform 6.4-km/see velocity for the Columbia plateau. Might you not expect a lower velocity at depth because the plateau basalts probably cover an ancient granitic crust?

Hill: The data only give the time it takes a *P* wave to travel from the Moho to the surface; there is no way of dividing the crust up into layers, so this is just an average velocity.

1

Meyer: Did yns oansider using a lawer Qand positive gradient in the Lake Superior region? Hill: All I did was to fit the homogeneous head-wave potential, derived from the amplitude data published by O'Brien, and make a least square solution for Q. This gives an estimate of the lower limit for the gradient and an upper limit for Q.

Higgins : What is the physical significance of a negative Q?

Hill: That is an artifact; in reality there must be positive Q and a positive velocity gradient to give the amplitude increase.