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ABSTRACT

Theoretical laminar flow solutions for heat transfer
and flow friction are of considerable importance in the
development of new types of compact heat exchangers. Gen-
erally the higher the degree of compactness, the lower is
the Reynolds number and the greater is the relevance of the
theory solutions.

In this report these solutions are compiled, using a
common format, for twenty one straight ducts and four curved
ducts. The steady state, constant properties, Newtonian
fluid flowing through a stationary, two-dimensional duct
is considered. The effects of free ccuvection, mass transfer
and change of phase are omitted. Some new analytical solu-
tions are obtained by writing a general computer program
for the following ducts: rectangular, isocceles triangular,
rounded corner equilateral triangular and sine ducts.

Application of the analytical solutions to the gas
turbine regenerator is discussed. Specific recommendations
are made for further work.

iit




ADDENDUM

The following important paper appeared in the literature
after the present report was almost completed.

J. E. Porter, Heat transfer at low Reynolds number

(highly viscous liquids in laminar flow) -- In-

dustrial research fellow report, Trans. Instn

chem. Engrs 49, 1-29 (1971).

With the cooperation of thirty industries, Porter com-
piled the laminar flow solutions for Newtonian as well as
non-Newtonian fluids with constant and variable fluid prop-
erties. The purpose of the survey was to identify those
areas which presented difficulties in thermal designs of
chemical, plastic, food etc. industrial problems. He sug-
ges.ed the best design equations available to date and made
specific recommendations for future investigation.

The present report is limited to constant properties
Newtonian gas flows in laminar regime, in contrast to the
very general problem considered by Porter, However, the
present report is much more exhaustive in the more limited
area and thus complements the work of Porter.

TO THE READER

An effort was made to compile the laminar flow analytical
solutions from all available literature sources. However,
it is probable that several important sources may not have
come to our attention, We will be grateful for any informa-
tion in this respect. Any other suggestions and criticisms
will also be appreciated.

R. K. Shah
A. L. London
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NOMENCLATURE .

English letter sym*-ls

R L R e V)

A heat transfer or flow friction area
A, flow cross section ares
i a radiug of a circular duct, half width of rectan-
kS gular duct, semi-major axis of the elliptical duct,
E half base width of triangular or sine duct, a > b
for rectangular and elliptical ducts with symmet-
ric heating
a' duct wall thickness
B;,B, constants; see Eq. (76)
f b half spacing of parallel plates, half height of
E ' rectangular duct, semi-minor axis of elliptical
H duct, half height of triangular or sine duct,
i b < a for rectangular and elliptical ducts with
i symmetric heating
b amplitude of cosine heat flux variation around
the periphery of a circular duct; see Fig. 7
C flow stream capacity rate, ch
cy a pressure gradient parameter, (dp/dx)/(k/g,)
¢y a temperature gradient parameter, (dt/dx)/a
- c3 thermal energy source parameter, S/k
1 cy a parameter, c;c,
1 2
1 Cq a parameter, c3/cua
4 cs a parameter, gc(dp/dx)/pcp(at/ax)
i cp specific heat of the fluid at constant pressure
Dh hydraulic diameter of the duct or flow passages,
D, = 4r
h h
, E(m) complete elliptical integral of second kind
; f "Panning" or "small" friction factor, for fully.
2
developed flow if no subscript, T/(pum/2gc), di-
mensionless
XX
L____________m_____________
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ave

b 4
app

average Fanning friction factor in hydrodynamic
entry length, defined by Eq. (26), dimensionless

ap Earent Fanning friction factor, defined by Eq.
), dimensionless _ T

;Darcy" or "large" friction factor, 4f, dimension-
ess

fluid mass velocity, pu,

proportionality factor in Newton's second law of
motion

boundary condition referring to constant and uni-
form axial -as well as peripherial wall heat flux,
also uniform peripherial wall temperature; boundary
condition valid only for the circular tube, par-
allel plates, and annular ducts

boundary condition referring to constant axial wall
heat flux with uniform peripherial wall temperature,
expressed by Eq. (7)

boundary condition referring tO'bcnstant axial wall
heat flux with uniform peripherial wall heat flux,
expressed by Eg.

boundary condition referring to constant axial wall
heat flux with finite peripherial wall heat con-
duction, expressed by Eq. (9)

boundary condition referring to exponential axial
wall heat flux with uniform peripheriel wall tem-
perature, expressed by Eq. (10)

convective heat transfer coefficient, for fully
developed flow if no subscript is used

mechanical to thermal energy conversion factor
Colburn heat transfer modulus, StPrd/3, dimensionless
Dean number, Re,/a/R , dimensionless

pressure drop increment due to hydrodynamic en-
trance region, defined by Eq. (35), dimensionless

K(x) evaluated at x - w , defined by Eq. (31),
dimensionless

xxi




Nux:( )

Nu

tu

flow friction modulus, fRe , dimensionless
heat transfe:r modulus, jRe , dimensionless

peripheral wall heat conduction parameter,
kwa'/kgh , dimensionless _

thermal conductivity, for fluid if no subscript
length of the duct

hydrodynamic entrance length, defined as the duct
length required to achieve the duct centerline
(maximum) velocity as 99% of the corresponding
fully developed magnitude when entering flow is
uniform

thermal entrance length, defined as the duct length
required to achleve the value of local Nusselt nunm-
ber Nu as 1.05 Nu

%;:;HSLOHlGSS hydrodynamic entrance length,
D, Re
h

dimensionless thermal entrance length, Ly /Dy, Pe
a parameter for elliptical duct geometry,

J1 - 1/a*?

Nusselt number, for fully developed flow if neither
X nor m appear as subscript, th/k s dimensionless

local Nusselt number for the thermal entrance re-
gion. The second subscript in ( ) designates the
associated thermal boundary condition. The local
Nusselt number is an average value with respect to
perimeter at any given cross section x

overall Nusselt number associated with QED bound-~
ary condition, defined by Eq. (49a), diméhsionless

number of heat transfer units, h A/Wc s St L/r._ ,
dimensionless

number of sides of a regular polygon or a cusped
duct

outer normal direction to the duct wall

xxii
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dimensionless distarce n/Dh measured &long the
outer normal direction

wetted perimeter of the duct

Péclét number, Pe = RePr = D,u /a , dimensicnless
Prandtl number, ucp/k , dimensionless

fluid static pressure -
dimensionless pressure drop, Ap/(puﬁ/egc)

a parameter for the curved duct heat transfer,
(K?Pr)l/u, dimensionless

volumetric flow rate _

heat transfer rate per unit length ' e duct

heat flux, heat transfer rate per unit hest transfer
surface area of the duct

incident radiative heat flux

radius of curvature of the centerline of the curved
duct

.Reynolds number, GDh/u s dimensionless

dime?gignless wall thermal resistance, defined by
Eq.

boundary condition referring to finite thermel re-
sistance at the well, expressed by Eq. (11)

boundary condition referring to radiative flux at
the wall, expressed by Eq. (12)

radial distance inu cylindrical coordinates
hydraulic radius of the duct, AC/P

inner radius of concentric annular duct or radius
of circular centered core of a regular polygonal
duct

radius of heat transferring wall of the concentric
annular duct

xxiii
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r*

St

X*

e

outer radius of a concentric annular duct or radius
of a circular duct having regular polygon as cen-
tered core

thermal energy source function, thermal energy
generated per unit volume of the fluid

Stanton number, h/ch s dimensionless
distance along the periphery I' of the duct
half of the tube bundle pitch; see Fig. 61

Bempergture"of the fluid, on the‘absolute.scale,
R or

boundary condition referring to constant and uni-
form wall temperature, both axially and peripher—
ally, expressed by Eq.

thermal boundary condition expressed by Eq. (1)

temperature of the fluid to a specified arbitrary
datum, ©F or °C

ambient fluid temperature; see Fig. 4
bulk average fluid temperature, defined by Eq (45)
wall or fluid temperature at the duct wall T

wall conductance with suffix w , i or o ; Uo
is defined by Eq. (48)

fiuid axial velocity, fluid velocity component in
x direction

average axial velocity, defined by Eq. (22)

fluid velocity component in y direction or radial
direction

fluid macs flow rate through the duct
fluid velocity component in 2z direction
103x+

1O3x*

xxiv
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N

axial coordinate in cartesian and cy,inurical
systems

dimensionless axial coordinate for hydrodynamic
entrance regioﬁ, x/DhRe

dimensionless axial coordinate for thermal entrance
region, x/DhPe

ox*

a spatial coordinate in cartesian coordinate system

a spatial coordinate in cartesian coordinate system

Greek letter symbols

a

a
W

a*

thermal diffusivity, K/pcp
absorptivity of wall material, dimensicnless

aspect ratio of rectangular, isosceles triangular,
elliptical and sine duct, a* = 2b/2a , for a
symmetrical geometry with symmetrical heating,
otherwise o¥* = 2a/2b , so that it ranges from O
to 1l

‘a function of x alone, defined by Eq. (104)

periphery of the duct

radiative wall heat flux boundary condition param-
eter, ewcTzDh/k , dimensionless

prefixes denoting a difference

a parameter, uclzDh3/k(bt/an)P

heat exchanger effectiveness, the ratio of actual
heat transfer rate to the thermodynamically limited,
maximum possible heat transfer rate as would be
realized only in a counterflow heat exchanger of
infinite area, dimensionless

emissivity of the wall

mean velocity weighing factor; see Eq. (106)

ratio of thermal to hydrodynamic boundary layer
thickness

XXV
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a parameter to account fluid viscous dissipation,

_ uui/q"Dh , dimensionless

imensionless wall to fluid bulk mesan temperature
difference, defined by Eq.

angular coordinate in cylindrical coordinate system

dimensionless fluid temperature when used with sub-
sceript

dimensionless fluid temperature for () , defined
by Eq. (76

a parameter defined by Eq. (106 )

exponential akial wall heat flux parameter, defined
vv Eq. (10a)

dynamic fluid viscosity coefficient; see footnote
on p. 24 .

kinematic fluid viscosity coefficient, W/p

perpendicular distance from center of duct to side
of the regular polygon; see Fig. 57

distance measured from the center to the corner of
a regular polygon; Se€ Fig. 59

fluid density

Stefan-Boltzmann constant

wall shear stress due to skin friction
dimensionless wall heat flux for concentric annular
ducts when used with superscript and subscript, de-

fined by Eq. (134)

dimensionless total wall heat flux for C) boundary
condition, q"Dh/k(tw-te)

dimensionless local wall heat flux for (:) boundary
condition, q;Dh/k(tw-te)

half apex angle of isosceles triangular,sinusoidal,
circular sector, circular segment flat sided cir-
cular ducts and moon shaped ducts

xxvi




Subscript

fa

Hl
H2

HY4

Am

max

min

Rl

effectiveness coe€

denotes gradient, de rivat

direction

curved duct

jnitial value at

fficient; see Eq. (73)

x =0 (at entrance) or where

the heat transfer starts, e.g. Xe

fully developed laminar f£1ow

referring to (@) boundary condition

referring to @
referring to @
roferring to @
referring to @

inner surface of the concentric ga.nnular duct

logarithmic ‘mean

‘mean

maximum

minimum

outer surface of
referring to @
referring to @
straight duct

poundary condition
pboundary condition
pboundary” condition

boundary condition

the concentric annular

boundary condition

boundary condition

referring to @ poundary condition

denoting arbitrary
s locel value as oppose

wall

referring to fully

xxvil

jve with respect to normal

gsection along the duct length,
d to a mean value

developed laminar flow
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Superscript

*,+ designates a normalized or dimensionless quantity
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I. INTRODUCTION

Interest in heat exchanger surfaces with a high ratio of
heat transfer area to core volume is increasing at an accel-
erated pace. The primary reasons for the use of these more
compact surfaces is that a smaller, lighter weight and lower

cost exchanger is the resuls. These gains are brought about

by both the direct geometric advantage of higher "area den-
sity" and because forced convection heat transfer in small
dimension passages generally results in higher heat transfer
coefficients (heat transfer power per unit area and tempera-
ture difference) for a specified flow friction power per unit
area.

The flow passages for these compact or high area density
surfaces have a small hydraulic radius. Consequently, with
gas flows particularly, the heat exchanger design range for
Reynolds number usually falls well within the laminar flow
regime. It follows then that the theory derived laminar flow
solutions for friction and heat transfer in ducts of various
flow cross-section geometries become important and these
solutions are the subject matter of this report. A direct
application of these results may bLe in the development of
new surfaces with improved characteristics. A critical exam-
ination of the theory solutions may prove to be fruitful be-
cause there is a wide range for the heat transfer coefficlent,
at a given friction power for different cross-section geom-
etries. | |

It has long been realized that laminar flow heat transfer
is dependent on the duct geometry, flow inlet velocity pro-
file, and the wall temperature and/or heat flux boundary con-
ditions. These conditions are difficult to control in the
laboratory, nevertheless there is a substantial ongoing ex-
perimental research effort devoted to this task. A theory
base is needed in order to interpret the experimental results




and to extrapolate these results for he task of designing
practical heat ekchangef systems., However, it is recognized
that this theory is founded on idealizations of geometry and
boundary corditions that are not necessarily well duplicated
either in application or even in the laboratory. The devel-
opment of this theory base has been a fertile field of ap-
plied mathematics since the early days of the science of
heat transfer. Todsy, by the application of modern computer
technology, analysis to some degree has exceeded experimental
verification.

Drew [1]1 in 1931 prepared a compilation of existing
theory results for heat transfer. Dryden et al. [2] in 1932
compiled the fully developed laminar flow solutions for
ducts of various geometries, Later several literature surveys
were made for particular geometries. In 1961, Rohsenow and
Choi [3] presented a. limited compilation of solutions for
simple cylindrical ducts. Kays and London [4] published a
compilation in 1964 pertinent to compact heat exchangers.

The theoretical deVeloPment'as well as the detalls of
analysis are described in depth by Kays [5] in 1966,
The specific obJectives of this report are the following:

(1) To provide an up-to-date compilation of available
analytical solutions with results in numerical and

graphical non-dimensionalized form.

(2) To present an unified treatment for the nomenclature
and dimensionless flow friction and heat transfer
characteristics,

(3) To £ill some of the gaps where solutions are needed
because of the current state of the art of the gas
turbine regenerator applications.

lThe numbers in brackets denote references at the end of

the report.
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(4) To indicate those areas where applied mathematicians ‘
may make their contributions.

Primarily english language literature up to Decemter
1970 is reviewed. The available analyticsl solutions for
the laminar flow friction and heat transfer through twenty
one straight ducts and four curved ducts are described. When-
ever possible, the results are summarized in tabular and
graphical form.

Emphasis 1s given to the analytical solutions for heat
transfer and flow friction for fully developed and developing
flow through axisymmetric and two-dimensional straight and
curvilinear ducts. ~Only the forced convection steady laminar
flow of constant property Newtonian fluid through a stationary
duct is considered. Magnetohydrodynamic flows, electrically
conducting flows, the high temperature (heat radiating) flows
etc. are not considered. Also omitted are the effe:ts of
natural convection, change of phase, mass transfer, chemical
reaction, etc.

The applicable momentum and energy equations with ap-
propriate boundary conditions are outlined ir Chapter II to
describe the flow characteristics and heat transfer through
the duct. The definitions and general correlation schemes
for the laminar duct flow and heat transfer problem are
described in Chapter III. The general methods used in the
heat transfer literature to solVevthe problems formulated in
Chapter II are presented in Chapter . Chapter V describes
the solutions obtalned for various duct geometries. Com-
parisons and discussion of analytical solutions and thermal
‘boundary conditions ere presented in Chapter VI. Conclusions
and summary of these solutions are presented in Chapter‘VII.
Recommendatiohs for future studies and presentation of new
work are made in Chapter VIII. Appendix A lists the tech-
nical journals from which laminar flow heat transfer litera-
ture has been located.




II. MATHEMATICAL FORMULATION

‘The applicable momentum and energy equations with ap-
propriate boundary conditions are outlined to describe the
flow characteristics and heat transfer through the duct.
The solutions to these equations for ¢ particular geometry
w*ll be described in Chapter V.

I1.1 Fully Developed Flow
Far downstream from the flov entrance region of the

iuct, the fluid velocity no longer depends upon the axial
distance x , and the flow becomes hydrodynamically fully
develcped; i.e.

u=u(y,z) or u(r,8) only (1)

For several of thermal boundary conditions, as described
below the dimensionless temperature profile also becomes in-
variant with the axial distance, thereby designated as ther-
mally developed flow. In this case,

t -t
) Ww,m

S5 I (2)
ox tw,m-tm

Note, however, t 1is a function of x as well as y and
Zz , unlike u .

The terminology "fully developed flow" or "fully de-
veloped laminar flow" will be used throughout the report when
the flow is both hydrodynamically and thermally developed.

II.1.1 Flow Friction .

("-nsider a steady state, fully developed laminar
flew in a two-dimensional stationary cylindrical duct bounded
by a closed curve [ (Fig. 1). Also assume that the fluid
is incompressible and the fluid properties p,cp,k are con-
stant, independent of fluid temperature, and the body forces,

i




Fig. 1 A two-dimensional duct

viz,, gravity, centrifugal, Coriollis, electromagnetic qtc.
do not exist. The applicable differential momentum equation

is [5]
7

IS

u =

F‘GQ

0
jo
o

= cl (3)

o B
b

where x 1is the axis of the duct and c; 1is defined as the
pressure drop parameter. The V2 is the two-dimensiehal
Laplacian operator, Wote that the right hand side of Eg.

(3) is independent of (y,z) or“(r;e); so it is designated as
a constant ¢y . Eq. (3) in cartesian coordinates is -

82u 52u '
% =c - 3a)
2 ta2m o

and in cylindrical coordinates is

2
150+ 5o (30)

r2 892

The boundary condition for the velocity problem is no slip
boundary condition, namely,

u=0 on I' , (%)
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By the definition of fully developed laminar flow of
the incompressible fiuid, the solution of the continuity

‘equation (conservation of mass) is implicitely given by Eq.

(1). Moreover, the continuity equation is already built into
Eq. (3). Consequently, the continuity equation is not re-

quired separately2 for the solution of fully developed laminar
flow friction and the heat transfer problem described below.

I1.1.2 Heat Transfer

In addition to the idealizations made for flow fric-
“ion problem, it is assumed that there is no mass diffusion,
chemical reaction, electromagnetic effects etc., but there
may be uniform intensity thermal energy sources (erroneously
referred to as heat sources) present within the fluid, The
governing differential energy equation for a perfect gas or
an incompressible fluid is as follows [5], after the intro-
duction of the rate equations for the heat conduction and

shear stress. :
2 2
(&) ()] 9

_ ku ot
kv2t_5-3§-s-é:—j
Here again the flow is assumed steady, laminar, fully de-
veloped with constant u and k . When the axial thermal
conduction is not neglected in the fluid, the V2 is a
three-dimensional Laplacian operator. On the right hand side

of the Eq. (5), the second term represents the thermal energy
sources within the fluid, while the third term represents
part of the work done by the fluid on adjacent layers due to
action of shear forces. This third term 1s usually referred
to as viscous dissipation or unfortunately as friction heat
in the literature. Under the assumptions mentioned as above,
Eq. (5) is exact for incompressible liquids, p = constant.

2The continuity equation, in addition to the momentum equa-
tion, is required separately for the exact solution of de-
veloping velocity profile in the duct entrance region.

6
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However, for perfect gases, there is an additional assump-
tion involved that the wu(dp/dx)/J term is negligible, so
it does not appear in Eq. (5). This latter term is conven-
tionally referred to as the gas compression work. It appears
in the energy equation when the energy conservation equatioﬁ
is manipulated with the momentum equation, canceiling the
kinetic energy term [5].

Note that if Eq. (5) is operated by V> , the right hand
side of Eq. (5) would contain V2u which equals to cj from
Eq. (3). The resulting equation will be a fourth order dif-
ferential equation for the dependent variable t .

The boundéry conditions associated with Eq. (5) will be
discussed separately in the following section, °

I1.1.3 Heat Transfer Boundary Conditions

A variety of boundary conditions can be specified
for the heat transfer problem. These boundary conditions can
be categorized in two classes. In the first class, the pe-
ripheral wall temperature or wall ‘heat flux is uniform. In
the second class, the peripheral wall temperature or wall

' heat flux is arbitrary. The boundary conditions of the first

class are described by an equation form in the following sub-
sections. The boundary conditions of the second class are
analyzed by the superposition methods [6,7,8].

For all the boundary conditions of class one and two,
the fully developed laminar Nusselt number is found to be in-
dependent of x , Pr and Re , but dependent on the duct
geometry and other relevant parameters.

II.1.3.1 Specified Wall Temperature Distribution

The wall temperature is arbitrarily specified along
the periphery of the duct and is constant in the axial di-
rection, The case of arbitrary peripheral temperature is
not investigated in the literature. The case of constant
and uniform wall temperature for the whole duct is a boundary
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condition of considerable technical importance. It occurs
for the heat transfer in condensers and evaporators etc.

| wherg the temperature of the fluid on one side is approxi-

v mately uniform and constant, and the thermal resistance on

3 the constant fluid temperature side is relatively small. In
: this case, .

t|p = t, = & constant, independent of (x,¥,2) (6)

- The uniform and constant wall temperature condition can,
however, be pictured in two ways: (a) thermal resistance of
wall and other side of the fluid is zero and the temperature
of ambient fluid is constant (Fig. 4). In this case, the
axial wall thermal conductivity can be arbitrary but the
radial thermal conductivity is infinite, (b) infinite wall
thermal conductivity in axial and peripheral directions as
well as radial. This bcundary condition will be referred tc
as () boundary condition. The Nusselt number or related
parameters evaluated for this case will have a suffix T .

II.1.3.2 Specified Wall Heat Flux Distribution

The wall heat flux distribution is specified in
arial as well as peripheral direction. The following four
special cases of this boundary condition have been considered
in the literature. Arbitrary variations in peripheral wall
temperature or wall heat flux can be handled by the super-
position techniques [6,7,8]. For the case of circuiar tube

and parallel plates, the (:D 5 (:) and @i) boundary con-
ditions described below are identical and hence will be

designated as C) boundary condition.

(a) Constant axial wall heat flux with uniform peripheral
wall temperature, GZ)

dt
q' = We, EEE = h(tw-tm) = constant (Ta)

8




(b)

t|p =t = a constant, indeperdent of (y,z) (7o)

For this boundary condition, the wall thermzl conductivity
ky 1s implicitely assumed to be zero in the axial di-
rection and infinite in the peripheral direction. This
means wall thermal resistarre is infinite in the axial
direction and zero in the peripheral direction, This
boundary condition will be‘referred to as GED with the
Nusselt number having H1 as a suffix. It may be dif-
ficult to achieve QED boundary condition in practice
for noncircular ducts [9]. However, mathematically it
is the most amenable, and consequently, most freqyuently
investigated boundary condition in the literature for
noncircular ducts.

Constant axial wall heat flux with uniform peripheral
wall heat flux, @

dat
= 8 - nh(t - -
q' =W, 33 h(tw,m t,) = constant (8a)
dt
k 3E|F = a constant, independent of (y,z) (8b)

This boundary condition corresponds to having zero
k, in axial as well as peripheral direction (infinite
wall thermal resistance in axial and peripheral direc-
tion). It will be referred to as QE) boundary condition.
It is a limiting case of the more realistic boundary con-
dition QZ) described below,

Constant axial wall heat flux with finite peripheral wall
heat conduction, (:). From the steady state energy
balance on the wall element ds of unit depth in Fig. 2,
the temperature distribution in the wall is related to

\O
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the wall heat flux as follows:

n+a'
| " 3t 3¢
1 | q" - ks—ﬁ|F+kw—a-? t,dn = 0 (9a)
; g =
q"ds

duct inside periphery T

Fig. 2 Energy transfer terms in the duct wall cross section
for finite peripheral conduction

It is assumed that the axial kw is zero. The tem-
perature across any cross section for a thin wall may be
taken as uniform. If the thin wall thickness a' s

uniform, then
n+a'

f t,dn = a't|p

n

After dividing n and s Dby the characteristic dimen-
sion D, , Eq. (9a) reduces to

10
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(d)

"
4P at 3% :
- + - = 0
T ot % el (90)

k a'
where Kﬁ = EE;- = peripheral heat conduction parameter.

This boundary condition will be referred to as Qz) .
The Kb = ® andi o corresponds to the (:D and @i)
boundary conditions respectively.

Electric resistance heating, nuclear heating and
counterflow heat exchangers with fluid thermal capacity
rates being equal are some examples that approximate
Qi) boundary condition.

Exponentizsl axial wall heat flux, 6{)

Ax¥*
q;c = q_e' e o (10a)

t|p = t, = a constant, independent of (y,2) (10b)
In this case, it is also implicitely assumed that the wall
thermal conductivity is zero in axial direction and in-
finite in peripherial direction. This boundary condition
will be referred to as @) . The @) and @ boundary
conditions are special cases of the general exponential
wall heat flux boundary condition as described below.
For the case of circular tube, with varying values of
A , the wall and fluid bulk mean temperatures obtained
are shown in Fig. 3 [10]. For the circular duct, the

1) and (:) boundary conditions are special cases of
% boundary condition with A=0 and -14.632 respectively.
The QE)Aboundary condition with an appropriate value of
A can be used to approximate either the parallel or
counterflow heat exchangers where the temperature dis-
tribution varies exponentially along the duct.

11
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Fig. 3 Qi) temperature variations along the tube length

I1.1.3.3 Heat Flux at the Wall Dependent Upon the Wall

Temperature

The local wall heat flux is dependent linearly or
non-linearly on the local wall temperature. Two special
cases of this boundary condition are technically important
and have been considered in the literature, namely the finite
wall thermal resistance and the radiant flux surface con-
ditions.

(a) Finite thermal resistance at the wall, QED . The duct
wall, transferring heat to the fluid, has a finite
thermal resistance in the normal direction. The wall
thermal resistance, 1/U,, is composed of two thermal
resistances (wall and outside wall to fluid) as shown

" in Fig. % and is expressed as

1 _ 1
ﬁ;‘k_+h (11a)

This boundary condition, will be referred to as ’
for the finite wall thermal resistance, is expressed as

oty _
: 3nir - Uw(ta'tw)
(11b)

t|F = t. = a constant, inde-
pendent of (y,z)

12




It is impiicitely assumed that the peripheral kw is
infinite, the axial kW is zero, and the radial or
normal kw is finite. The ncrmal kw is used in the
expression for U, , Eq. (1la). The ambient fluid tem-
perature ta is assumed tc be uniform and constant. The
wall thermal resistance 1/Uw always has been treated

as a constant in the theoretical analysis.

.ta

= - U, relates to
& these two
resistances only

7 1/h .

Fig. 4 Thermal circuit representation of the resistances

Two limiting cases are of interest: (1) If the wall
thermal resistance 1/U,W is zero, the @ boundary con-
dition reduces to @ boundary condition. (2) If
/0, >> 1/h , then q" is virtually independent of 1/h
and q" tends to be a constant, if (ta-tw) > constant.
Hence, if the wall thermal resistance l/Uw is infinite,
it reduces to @ boundary condition.

Nonlinear radiant-flux boundary condition, @ . When
the duct wall is radiating the thermal energy to the
environment at zero degree abs_olute temperature, this
beounaary condition, referred to as @ , 1s encountered.

13
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a constant, inde-
pendent of (y,z)

T[F=Tw

It is implicitely assumed that the wall thermal conduc-
tivity is infinite in peripheral direction, while it is
zero in the axial direction. Heat transfer to and from
the surfaces in a vacuum may be an area of application
of the Q{) boundary condition,

Non-dimensionalizing the temperature and the normal
direction with Te and D
condition (12a) reduces to

v respectively, the boundary

OT* b

a-nﬂl, = 2 7 T; (12b)
where the radiation parameter v = ewcTe3Dh/k . Similar
to limiting cases of boundary condition, for v
equals infinite and zero, the @ boundary condition re-
duces to (:) ana GED boundary conditions respectively.

A more generalized boundary condition, which takes
into account the peripheral wall heat conduction as well
as the dependency of local wall heat flux upon the local
wall temperature [e.g. and @ ], is discussed by
Liczkowski et al. [11].

A1l the boundary conditions outlined in this section

are summarized in Table 1.

II.2 BHydrodynamically Developing Flow

As the fluld flows through a duct, its veloéity profile

undergoes a change from its initial entrance form to that of
a fully developed profile at an axial locaticn far downstream
from the entrance. The hydrodynamically developing flow

14
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Table 1.

Summary of heat transfer boundary conditions

fer fully developed laminar flow through ducts

s Desig-
nation

Description

Equations

i @)

Constant and uniform
wall temperature
peripherally as
well as axially

t r = tw , a constant
independent of (x,y,z)

@

Constant axial wall
heat flux with uni-
form peripheral
wall temperature

dt,,
q' = ch Ix~ = constant

tlr =t  , aconstant in-

Constant axial wall

heat flux with uni-
form peripheral
wall heat flux

dependent of (y,z)
dt

q'" = We = constant

p dx

k%%lr = constant

wall heat  flux

Y . dt
Constant axial wall q' = We EEE = constant
@ | heat flux with fin- P
‘ ite peripheral 1" _
wall heat conduction| @ °h _ ot | +K 3%t | =0
k on¥ Ip P 3s#° E
' Ax*
Exponential axial q& = qé e

th =t, .2 constant inde-
perient of (y,z)

Finite thermal re-
sistance at the
wall

ot |’
REHIP = Uw(ta'tw)

tlp = t, , & constant inde-
pendent of (y,z)

®

2 A A b S i, Bl e

Nonlinear raciant-
flux boundary
condition

oT 4
- Eﬁlp = €97y

TlF'= w 2 constant inde-

pendent of (y,z)

15
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resion is referred to as that region from entrance to where
the fully developed invariant conditions are achieved. The
lefinition of hydrodynamic entrance length will be presented
in Crhapter I1I,

The axlal pressure gradient is higher in the entrance
region tran that in the fully developed region due to two
effects: (a) the increase in momentum oi' fluid as the veloc-
ity profile becomes less uniform, and (b) the higher wall
shear caused by higher transverce velocity gradients.

The determination of velocity profile, wall shear stress
distribution, pressure drop, and the location to achieve in-
variant flow conditions ete. is considered as the solution
to hydrodynamically developing flow problem (also referred to
as hydrodynamic entry length problem).

All the idealizations made in the fully developed case
are stil’ applicable here. Additionally, the rate of change
of shear stress u(bgu/axz) (also referred to as the dif-
fusion of vorticity) in axial dircction is treated as zero.
Even though the physical concept3 of boundary layer intro-
duced by Prandtl is not applicable to the developing duct
flow, the boundary layer idealizations,

u D> v,w (13a)
ou du 55 3u Ov dv dv Ow Ow  Ow (13b)
wxﬁ/ﬁaﬁ:yrﬁygfia‘;:ﬁ >

“A mementurm or velccity boundary layer is a thin region very
clcege to the boldy surface or well where the influence of
£luil viscority is predominant. The remainder of the flow
Sieli o can to a good approximation be treated as inviscid

ans ~an be analyssd by the potential flow theory.

16




are also a gbod approximation for laminar flow in ducts. As
a result, it is found that the fluid pressure is a function
of x only. The governing boundary layer momentum equaticn,
for axially symmetric flow, in cylindrical coordinates is

(5]

du ou _ & dp ‘. .1 du y
uB-)'c“f'Va—i;——F—dxi'Va—ry'*'?s; (18.)
and in cartesian coordinates,
du Ju ou € 4 3%u . d%u
113I+V35+wa?= -p—a§+v(g;-§+gz§. (14b)

The no slip boundary condition for this case is

u,v,w = 0 on T (15)

An initial condition is also required, and usually uniform
velocity profile is assumed at the entrance.

u=u =u at x =0 (16)

In addition, the continuity equation needs to be solved
simultaneously. In cylindrical coordinates [5], it is

?%%"‘?ﬁ*% - 0 (17a)

and in cartesian coordinates [5],

%%+g-&‘i+§§=o. (17v)
17
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The sclution t& the hydrodynamic entry length problem is
obtained by sclving the Eqs. (17) and (14) simultaneously
with the boundary and initial cenditions of Eqs. (15) and
(16). ‘
IT.53 Thermally Develcping Flow

As the fluid (at different temperature than that of the
duct walls) fiows through the duct, its temperature profile
changes from uniform at the point where heating started to
an invariant form downstream. The thermal entry length is
referred to as duct length required to attain fully developed
invariant temperature profile. The definition of thermal
entry iength will be given in Chapter III.

Thermal entry length problem is classified in three
categories: (i) the vélocity profile is fully developed and
remains fixed while the temperature profile develops, (ii)
the simultaneous development of velocity and temperature
profile, and (iii) at some point in the hydrodynamic entry
region, the temperature profile starts developing. The first
problem is an excellent approximation for high Prandtl number
fluids for which the velocity profile develops much more
rapidily than the temperature profile. For fluids with
Pr = 1 , the second problem approximates the actual situation
in most cases. The third problem is important for some
special cases when eithe: rr < 1 or high viscous fluid
(Pr >> 1) flow in short duc.s (small values of L/Dh).

The rate of heat transfer and consequently the heat
transfer coefficient h (and Nusselt number) are higher in
the thermal entrance region than that in the fully developed
region due to higher fluid temperature gradients at the wall.

The determination of temperature profile, wall heat
flux distributions, local and mean Nusselt numbers (or h),
and the location to achieve invariant dimensionless temper-
ature prcfile ete. is considered as the solution to the

therral entry length problem.

18
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All the idealizations made in the fully developed case
are still applicable except that the axial heat conduction,
thermal energy sources and viscous dissipation within the.
fluid are neglected. Also, the bcundary layer idealizations,

(13) and

g}r , S>> 8t (18)

are invoked. Refer to icotnote 3 on p. 16 and associated
discussion. The governing boundary layer energy equation
for the developing laminar temperature profile of a perfect
gas or an incompressible liquid is [5]

. 2 2
ek o@e1Ee) o
or ox
in cylindrical coordinates, and
3t 3t 3t , 3%, 3%t )
u +v + W = + (19p)
9x 3- 3z (By 322 x°

in cartesian coordinates. Eq. (19a) includes the idealization
that the heating 1s axially symmetrical.

In addition to the heat transfer boundary conditions,
an initial condition is also required and is normally employed
as the uniform temperature at the point where heating (or
cooling) started.

t =t  at x =x (20)
For the exact solution to the thermal entry length

problem, the continuity and momentum equations need to be
solved first.

19




I1.3.1 Heat Transfer Boundary Conditions

Heat transfer boundary condifions for a thermally
developing flow can be categorized in two classes: (i)
Those boundary conditions of Secticn II.1.3 (Table 1), where
t,» 4", R, etc. are axially constant. (Also the axially
constant (tw-tm) boundary condition, to be discussed, would
fall in this class.) (ii) Arbitrarily specified axial dis-
tribution of t_, a", R, etec.

II.3.1.1 Axially Constant t_, a”, R, (tw~tm) etec.

All the heat transfer boundary conditions outlined
in Section II.1.2 and summarized in Table 1 are¢ also applied
tc thermally developing flow. Additionally, the @ boundary
condition, defined in Eq. (21), will be considered, since
the counterflow heat exchanger with C ; /C . =1 (e.g.
the gas turbine regenerator) has a boundary condition be-

tween @ and c

At =t - t_ = a constant inde-
pendent of x
(e1)

t!r = t = a constant, inde-
pendent of (y.z)

In case of the fully developed flow, the constant wall
heat “lux boundary condition @ is the same as the constant
wall to fluid bulk mean temperature difference boundary con-
dition . This is because the heat transfer coefficient
h is found to be independent of x 1in fully devaloped
laminar flow. However, for the case of thermally developing
flow, the @ and boundary conditions are different,
as the heat transfer coefficient is dependent on x along
+he thermal entrance. In the gas turbine regencrator liter-
ature, the boundary condition, Eq. (7), is exclusively
~mpleyed or implied, except for the case of circular tube

~onsildered by Rays [127.
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I1.3.1.2 Axially Arbitrarily Specified t,, q", R, etc.

The axial distribution of wall surface temperature,
wall heat flux, wall thermai resistance or wall radiant heat
flux 1s specified arbitrarily. The solution of energy equa-
tion with this class of bcundary condition can be obtained
by the superposition techniques if the energy equation is
linear and homogeneous. This is the situation when the
thermal energy sources gnd visconus dissipation with the
fluid are neglected. Then a sum of solutions is again a
solution. Thus by Superposing thermal entrance solutions
for ssxially constant t,,s q" etc., any arbitrary axial var-

iations in t,» q" ecc. can be handled.

The general thermal entry length problem with arbitrary
axial i&riations in wall tempe.;ature has been considered by
(5,13,14]1, The same problem with arbitrary axial variations
in wall heat flux has been tackled by [5,15,16].

I11.3.1.3 Axial Wall Heat Conduction

Wall heat conduction axially generally lowers the
heat transfer coefficient for the duct flow., The Importance
of taking axial wall heat conduction into account has been
realized [4], and some work has been done in this area.

Rotem [17] considered the effect of axial wall heat
conduction in the beginning of thermal entrance region. He
presented a method for rapid, approximate calculation of
both the temperature and film coefficient for two cases of
almost isothermal wall and constant heat flux wall.

Davis and Gill [18] analyzed the laminar Poiseuille-
Couette flow between parallel plates with finite axlal heat

2l




conduction in solid. The Poiseuille now5 and Couette flow6
are special cases of the Poiseuille-Couette flow. vThey con-
sidered the constant axial heat flux at the outside wall
boundary. They concluded that the axial conduction in the
solid boundary can significantly affect the temperature field

in the fluid phase and lower the Nusselt number associaied
with the heat transfer.

5Fully developed, steady state, laminar flow of an incom-
pressible fluid through a stationary circular or parallel
plate duct is referred to as Poiseuille or Hagen-Poiseuille
flow. The viscosity of the fluid is specified as constant,
and the body forces are absent. The invariant velocity
profile obtained for the Poiseulle flow is parabolic at any
cross-section of the duct.
6Fully developed, steady state, laminar flow of an incom-
pressible fluid between two parallel plates (one of which
is at rest, the other moving at a constant velocity par-
allel to itself) is referred to as Couette flow. The vis-
cosity of the fluid is assumed as constant, and there are
no body forces. The invariant velocity profile obtained
for the Couette flow is linear at any cross-section of the
duct.

22




III. DEFINITIONS AND GENERAL CORRELATIONS

In the previous chapter, appropriate differential equa-
tions as well as the boundary conditions wers outlined for
the laminar flow friction and heat transfer problem for
single and multiply connected cylindrical ducts., The fric-
tion factor, Nusselt number and other assoclated dimension-
less terms, which are used hy an engineer in practice, are
defined in this section. Also presented are the relation-
ships between these terms and the solution to the problems
formulated in the previous section. L

III.1 Flow Friction

From an englneering point of view, it is important
to know how much power will be needed to flow the fluid
through the heat exchanger. The fluid pumping power is pro-
portional to the pressure drop in the fluld across the heat
exchanger. The pressure drop in fully developed flow occurs
due to the wall shear. While in the developing flow, it
~occurs due to the wall shear and the change in momentum
(flow acceleration) across the two duct sections of interest.
Throughout the analysis and result of this report, considera-
tions of abrupt contraction and expansion losses at the duct
entrance and exit are omitted as well as form drag and flow
acceleration pressure effects due to density chenges. In
design applications, these factors also have to be considered
[4]. Fortunately, these factors are additive for the evalua-
tion of total pressure drop. |

The velocity distribution for a given duct geometry is

determined from the applicable Eq. (3) or (14). The mean
velocity wu, and the local wall shear stress T, are then

evaluated. They are defined as

/ udA (22)
C
AC

23
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For the Newtonian fluid flowing through a circular duct,
the local wall shear stress is given by [5]

_ 4 ,Qu 7
Tx —fg-ga?) _ (23)

r=a

The local wall shear stress for other duct geometries can be
expressed similarly for the cartesian coordinate system. Ex-
cept where more detailed information is needed, the local
wall shear stress is consistently defined as average uall
shear stress with respect to the perimeter of the duct; e.g.
for the axisymmetric flow in a rectangular duct, Fig. 5, at
any cross section x ,

—T- ' * 2b
?b > 2 o = 5=
R2

Fig. 5 A cross section of a rectangular duct

a b
N U du ./f Ju
EREAC) f & Sy @

The local and average Fanning friction factors are subsequently
determined. They are defined as

7The dynamic viscosity coefficient u defined here 1s the
g times the usual fluid dynamics dynamic viscosity coef-
ficient. Hence note that Newton's second law of motion 1s
not invoked in Eq. (23), even though g, appears in that
equation,

24
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f = _._T‘._ ) (25)

fove = -—5%?--_ (26)
Fuy /28,

For constant density flow in the duct of Fig. 1, pressure
drop from the section x =0 to x can be found by applying
Newton's second law of motion and conservation of matter as

Ja} X 2 L ERY ’
_"22___ = Tave T, TR f (G)"aA, - 2 (27)
c % m
e

Py, /28,

where fave is given by Eqg. (26), u 1is the velocity pro-
file at the cross section x . However, this representation
of pressure drop is not useful for engineering calculations .
because first the .fave and the velocity profile u are
needed as a function of x and then the integral must be
evaluated. Alternative means of evaluating Ap will be
presented in the following subsections.

In addition to the pressure drop and velocity distribu-
tion in the¢ entrance region of flow, the knowledge of hydro-
dynamic entrance length is essential. The hydrodynamic en-
trance length, Ihy , 1s defined as the duct length required
to achieve the duct centerline (maximum) velocity as 99% of
the corresponding fully developed magnitude when the entering

flow is uniform.

III.1.1 Fully Developed Flow
In case of fully developed flow through a duct, the

velocity profile is invariant across any flow cross section.

25
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the wall shear stress does not change axially,
actor is the same as the local
that part of the duct beyond the hydro-
In this case, the constant density
ss sectlions separated

Consequently,
and the average friction T

friction factor for

dynamic entry length.
ressure Grop across two flow cro

flow D
by a distance 1. takes the following form instead of Eq.
(27).
p . orL (28)°
pu,/ 28, h

In fully developed region, Eq. (28) may be rearranged, using

the definitions of Re and Cq to
c,D 3
_ 1°h ;

Also, based on the solution of differential equation (3) 1t

can be shown that

fRe = K¢ (30)

where X, 1s a constant dependent on the geometry of the

f B
duct cross section, and Re 1s the Reynolds number based on
nydraulic diameter.

In a long duct, in which
fect of the entrance region, as men-

£1uid enters at a uniform

velocity profile, the ef

B1n the literature, the "1arge" or Darcy friction factor 1s
also used., It is jefined such that

£, = b

and the right hand side of Eq. (28) becomes iDI/Dh .

26
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tioned earlier, jg to increase€ the pressure drop compared to
that for the fully developed flow. This increment in pres-
sure drop, designated as K(») , is defined by

___@2—-— = f ._.—L + K(oo) : E
5 E : @D
p 2gc fa Ty

In heat exchenger analysis, only the knowledge of entrance
length and ffd 18 sufficlent to establish the total pres-
gure drop; & detalled jnvestigation of velocity and pressure
distribution in the flow field is not needed. Iundgren et
al. [19] devised an approximate enalytical method for cal-
culating K(m) for the ducts of arbitrary cross section;
They obtained

3 2
K () =-2;\-; [ (%) - (%—q ]dAc (32)

' ‘ AC

Thus the fully_developed velocity profile (ufd/um) from the
golution of Eq. (3) 1s needed to evaluate K(») . The

fDRe and K(W) were_determined for circular tube, elliptical
ducts, rectangular ducts, i{sosceles triangular duc.s and the
concentric annular quets in [19]. McComas [20] extended this
analysis to approximately determine the hydrodynamic entry
length. He assumed Schiller yelocity profile [21] but only
dealt with the inviscid core, i.e., the flow along the center
1ine of the tube was assumed to be jnviscid up to the axial
1ocation where the boundary layer had completely t+illed the
dquct. He also imposed the condition that the center line

was the line of maximum velocity for the fully qeveloped flow.
The hydrodynamic entrance length, from nhis analysis, is

given by

G
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MzComas presented in tabular form the iiy , (umax/um) ,
K(») and K, = fRe for fully developed laminar flow through
circular, elliptical, annular, rectangular and isosceles
triangular ducts,

III.1.2 Hydreodynaemicelly Developing Flow

In tne fully developed region, the velocity dis-
trivbution is obtained from the solution of Eq. {(3) with
boundary cendition of Eq. (4), The friction factor and in-
cremental pressure drop are then determined from Egs. (25)
or (29) and (32) respectively.

In case of hydrodynamically developing flow, the veloclty
distribution is obtained from the solution of Egs. ({14) and
(17) with the boundary end initial conditions of Ege. (15)
and (16). The friction factor and incremental pressure drop
are then calculated from the following equations,

As in Eq. (27), the pressure drop from x =0 to x

is obtalned as

2
A X 2 A
NI R S
us/2 ave Iy A, Uy, C
pu,/ 28, . Ag

However, &s noted before this representation of pressure drop
is operatlionally not ccnvenient. Therefore, it 1s presented
in the following two ways for engineering calculations:

..é&L__. = f&pp %— (34)
PuR/08, L
2 = foy &+ K(x) (35)
pu=/2g fd ry
m C
23
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These equatlions definn the apparent Fanning frictlon ‘actor
fapp and tha'pressure drop increment K(x) due to entrance
region. The K(x) consgists of two additive components:

(1) the momenium chunge between the entiance section x =0
and the downstream section x , and (ii) azcumulated incre-
ment .n wall shear between a developing and a fully developed
flow. The value of K iIncrease monotomicaliy from O at

x =0 to a constant value in the fully developed region.

The f , K(x) and L, » based on the solution of Eq. (14)

apy
are found to have the functional form as follows.

o r X
forp = fappkﬁgﬁg) (35)
K(x) = K(Di-ﬁg) (37)
I

Lhy - ﬁJ%E = constant (de- (33)
h pending on duact
geometry

If the boﬁndary layer assumptions are not invoked, but rather
complete Navier-Stores =zquatimns ere solved, the functional

forms are found as

Lapp = fappzfl’fﬁg » Re) (39)
K(x) = K(ﬁﬁg‘g , Re) (40)
Uy = Iy (Re) | (41)

11I.2 Heat Transfer

For the duct fluid flow problem involving heat transfer,

wall heat flux 4q" and fluid and wall temperatures are re-
quired., 1If the fluid inlet conditlons are g.!ven, the outlet

29
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conditions can be Jetermined, if the wall heat flux dis-
~tribution is known aleng with the flow path geometry, Al
térnatively, 17 the Inilet and outlet conditions are kbown,
the length of the duct (o: & heat exchanger) of a given
cross sectional geometry can be determined from the wall heat
flux distrivution. The formulae for q and other related
Leat transfer parameters follow, ’

The peripheral average neat flux at the wall for a
fluid flowing through a ducy i3 given by Fouriler's law of
hea. conduction as ‘

S -k(Vt)w’m (42)

This equation is the rate equation for the conduction heat
transfer. Considering the general case of nonuniform periph-
eral heating, the mean temperature gradient at the wall in
Eq. (42) is cbtained by averaging with'respect to the periph-
ery ' of the duct. ,

The convection rate equation, defining the heat transfer
conductance 1is

"o - -~
q" =n(t, .-t,) (43)
r where tw m ard t are the mean temperature of wall and
bulk mean temperature of the fluld respec "vely, defined as
- & [l
tw’m =¥ ftwds ' ()4#)
r
. jr ut dh (:5)
m Au - c <
cm
o Ac

In a thermal circuit representation such as Fig. 4, 1/h sig-
nifies a thermal resistance between tw,m and tm potentials,
In some of the solutions outlined in Chapter V, the h will
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be either infinity or negative, This means the temperature
difference (tw,m'tm) is elther zero or negative even though
tr.e heatr [lux is finite and directed into the f{luid.

From Eqs. (42) and fL3), the wall heat flux is given by

TP TT .
\

"o rerg =
g = k\Vt}w’ n(‘cw'n m) (46)

Once the temperavure field ie known, (Vt) can be eval-
uated and h can be determined from Eq. 56)

In case of QED boundary condition, the overall heat
trarsfer coefficient Uo is of primary practical importence,
The U_. 1is defined from

o
a" = Ug(ty-t,) (b7)
waere from Fig. 4,
f L 11
C I S . (48)
Uo th UW

The lam:nar low heat transfer results are generally
correlated in termms of dimensionless heat transfer modulus,

F ; the Nusselt aumber, defined as
hD
[ o | Nu = kh (ug)

' where“Dh ls the hydreulic dlameter of flow passages based

on the flow wetted perimeter, In case of boundary cen-
aiticn, the overall Nusselt number, defined as

J D
Mu, = 2, (49a)

is operationally convenient. In e.sence of thermal energy
sources, viscous dissipation and axial heat conduction within
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the fluld, che fully developed laminar flow Nusselt number ic
forind t¢ be a constent, indep ndent of x , Pr and Re but
depvending upor: the duct cross section and the boundary con-
ditions cf Table 1. Clearly it is more convenlent to pre-
sent the Nusselt number r:ther than other dimensionless heat
transgfer modulus such as St which does depend on Re and
Pr . Note that from the definition of individual moduli

Mu = St Re Pr

The Nusselt number can also be presented In terms of
the fluld bulk mean temperature gradlent along the flow
length., In absence of the thermal energy sources, viscous
dissipation, and fluild axial heat conduction, an energy tal-
ance on the duct length ©&x will yield

"P bx = (pA.u Jc ~EEE 5x | (50)
9 = PA Uy p dx -

Combining Egs. (43), (49) and (50) with the deflinition of
hy raulic diameter,

"
= ua(zh uTt_j sz (51)
W ,m m

This result will be useful later in the discusslon of Section
v.b4.1.2.2.

For fully developed turbulent flow in cylindrical pas-
sages, the heat transfer data are well correlated by plotiing
a Colburn factor (a counterpart of the friction factor)
versus Reynoids number fcr the moderate Prandtl number range
(0.5 < Pr ¢ 10). This correlati~n is not strongly dependent
on passage cross section geometry, provided that the char-
acteristic dimension used in Re 1: the hydraulic diameter,
The Colburn fector j 1s defined es

PR

T

e — e




-1/3 _
o g=str /3 Nu-lﬁ?.!.:._/ O (52)

To be consistencrwith turbulent flow correletiona and pecaus:

St is more ‘closely related to the Ntu s 8 convenient design

parameter, the laminar flow heat transfer G sign qcta for
heat exchangers are also presented ia terms of J versus = Re
plet With Prandtl number as & cons%ant end for fully devel-

oped laminarf "ow, Eq; (52) becomes

43@ - Kﬁ (= NuPr L/3) a constant : 153)

The similarity cf ch. (30) and (53; is of inferes».

~ For the boundary condition, the dimensionless wall
thermel resisulnce ig defined as the retio of wal. thermal
resistence to_the pume conductive fluid thermal resistance
for & ccnduction peth lengxh Dh ) Lee. N

,/U K , L _
%mm" Fo (54)

The raciprocal of R, has been called variously the wall |
Nusselt number and the wall Biot number in the literature.
But as 1/Rw does- not have ‘the usual physical significence
assigned elither to Nusselt number or Biot -number, this un-
fortunate terminology should be replaced. The wall thermal
resistance parameter - ‘which does have & simple pbvsioal
significance of its own, 1is used for this purpose.

II11.2.1 Fully Developed Flow
As discussed eariier, in fully developed flow, an

invariant nondimensiona.l axial temperaturw profile results

for the previously described wall temperature boundary con-
ditions, The temperature profile, -solution’ of Bq. (R), can
be described in a closed form for simple geometries or de--
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termine? by other methods discusrzd in the next chapter.
Knowing the temperature distributior.,, the h and hence Iu
are determined from Egs., (46) and (49).

(a) (T) Bourdary Joncition., The Nusselt number for fully
developed, laminar flow heat transfer lg found to be a func-
tion of Pe .,

Nugp = Nup(Pe) (55)

Here Pe , the Féclét number, is associated with the effect
of axial heat conduction within the fluid. Hennecke [22]
shows that for Pe > 50 , the axial fluild heat conduction
can be neglected, and NuT is a constart as a consagueucs:,
The effect of thermal energy sources and viscous dizgipaiion
on NuT has not been investigated.

(b) @) and @ga__Boundary Condition. The fully developed
laminar flow Nusselt number for these boundary conditions is
expressed in the folliowing functional forms.

SD

Nqu = Nqu (a‘l'l‘l:'l‘ s T ) | | a (56 )
| 8D, .

vhere SDh/q" and 1 (or 5) represent respectively the ef- .
Tfect of uniform intensity thermal energy sources and the
viscous dissipation in the fluid. For thése thermal boundary
conditions, the axial heat conduction within the fluld is .
constant, and consequentiy does not affect the Nusselt number.
Tyagi [23,74,25,26] coiniudes that if |n| or s8] > 0.1,
the effect of viscous dissipation is siguificant. Cheng [27]
concludes that the effect of viscous dissipation 1s greatest
for the circular duct, decreases for the regular polygonal
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duct with decreasing number of sides, and is leant ior the
aquilatera. <riangular duct.

(e) _@gl Bow.dery Condition. For finiwa peripheral wall
heat conduction, the Nusselt number is & function of the
peripheval conduction parameter X ‘

p

Nugs = Nugs {1%) (58)

(a) jgg Boundary Condition. For exponential wall heat flux
boundary condition, Eq. (10), the Nusselt number is a func-
tion of the exponent A .,

NuHu_ = NuH4 (7\) : (59)

when the effect of fluld axial heat conduction, thermal
energy sources and viscous dissipation is neglected.

(e) QEQ Boundary Condition. For finite thermal resistance
at the wall, the fully developed-laminar flow Nusselt number
is found as :

Nug, = 'NuR_i (R,sPe) - (60)

where the effect of axial heat conduction in the fluld is
represented by the dep .dency on Péclét number, Pe . The
effect of thermal energy sources and viscous dissipation is

~not investigated so far.

(£) _®3) Boundary Condition. For the non-linear radiant
flux boundecy condition, the fully developed laminar {low
Nusselt number is found as & function of v .

Nups, = NuRz(y) . | (1)
where v = ewcszn/k 5
35
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_ I1I.2.2 Thermall  Develoni:g Filow

b - In developing tenp:rature profile case, the solution '

of Eq. (19), the fluid <emperature distridution is obtained '
by one of the methods outlined in the next chapter for a
glven boundary condition. FKnowing the temperature distribu-
tion, the dimensionless heat transfer characteristics for a
given duct under specified boundary condition is analytically
correlated by either of the following two methods: (i)
generally accepted and well-known Nusselt rumber correlation,
and (ii) recently proposed [28] dimensionless temperature
corrclation, It will be showu that the recently proposed

2 correlation 1s an extension of the Nusselt number correlafioﬁ.

:' These correlations, specirfically for (:) and {:D' boundary
conditlions, will be described below,.

In addition, the knowledge of thermal entrance length

1s essential. The thermal enirance length, L, , 1s de- :
fined as the duct length required to achieve the valuz of !
local Nusselt number Nux as 1.05 Nufd . The local NUsselt :
number 1s defined as :

[AEL I R el R SIS v A b

RE RV W B Nt ot

et

Ao 2N AR

Nu, = —28 (62)

where the local heat transfer coefficient is defined the seme

way as in Eq. (43)

1] 0 _ :3
= : _ qx _ k(v ‘M 6 )
) hy =% T % (63
J.m o m w,m m .

In case of uniform peripheral surface temperature, tw,m =
W w,m W .

The local Nusselt number depends upon the axial distance
from the point where hrating (or cooling) started. 'The.di-
mensionless axial distance is defined as ' '

* X . X
| " 7B T R ™
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Wita thic cholce of x* , the energr equation i'or the Graetz
problem9 becomes parameier free. Throughout ithe 1{hermal en-
trance heat transfer literature, the x* or J1/x% s
designated as the Graetz number, McAdams [29] defines the
Graetz number quite differently as Gz = We /KL = PeP/Ll ,
Tc avoid the confusion of the definition of Graetz number,
the x¥ will be used as the dimensionless axial distance.
The x* defined by Kays [5] is cimply related to x* as
x¥ = 2x%

First the case of fully developed velocity profile and
] developing temperature profile will be considered. Next the
comblned entry length problem will be discussed.

. T T T

III.2.2.1 Hydrodynamically Developed Flow

(a) (T) Boundary Condition

In this case, fluld bulk mean temperature dis:iribution,
the local and total wall heat flux are urknown., Knowing one
-of these three unknowns, the required heat transfer surface
area and remaining unknowns can be determined. For this
purpose, two different ways of correlation have been pro-
posed: (1) Nusselt number correlatibn, (1j)hdimension1ess
tempereature correlation, '

: (1) [Kusselt lumber Correlation. Based on the solution of
Eq. (19), the local anc mean Nusselt numbers are presented
as a function of the dimensionless distence x* . The local
Nusselt number is defined by Eq. (62). The mean Nugselt

3 number is.defined as

. h D , :
Mu, = | (65)
X
n z.l.'fh dx - (65)
“m X X
. |

9éhe Graetz problem 1é described in Chapter V, Section 1.3.1.
| | 37
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o aboonee ot o axlal neat conductlion, viscous dissipation
W he

Chermal ooy sources within the fluid, based on the

chmpieoenerey balance, bgs, (50) and (66), 1t can be shown,

tor unitorm et rTuld temperature te y» that
SoN .
L L) =t h Px -N

£ = Hom— e 1 - eup(- ) =1 -0 WY (67)
e D

o tiply ing munerator and denomenator on the left hand
Shde vl 0) by We o, 1t can be interpreted as the rafio
o thee aciunl hent Lransferred in distance x to theirmo-
Aynamieal Ly maximum possible heat transfer. This ratio is
reloered to oas the effectiveness, & , of the heat exchanger
ﬁ the "luld bulk mean temperature t, at outlet

(«=0) ot the duet Ls known, h L can he determined from Tq.
(57).  Prom the known solution MNu = Num(x*)_,AEX 1teration
the lengtn L. and hence the heat transfer area can be cal-
culatadl,  Ar hm does nct vary much except very close to
inles, only two Lterations would suffilce in practice. If the
heat btronsfer arca A 1s known, tm can be calculated

v

directy trom g, {67), The total wall heat flux from

¢ o= We €(t -t ) = ch(tm-te) (68)

1

VT b e g 4 T e Ty
Altornatively,

(70)
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where
(t.=t. ] - ([t -t (x)]
(A )gm = L T _tw L (71)
n W e
tw-tm

However, when the axial heat conduction within the fluld
is considered, a simple relationshlp of Eq. (67) or (68) does
not result, The local Nusselt number is defined by Eq. (62)
as before, The total wall heat transfer rate cannot be cal-
culated based on the mnean Nusselt number defined previously,
Eq. (65). Instead, the dimensionless total wall heat flux
® defined as follows is determined and presented as a func-
tion of the dimensionless distance x¥* ,

qu
¢ = EI*E"E‘T’ (72)
Vo™ %e
end is evaluated from
X
D
h 1 "
P = En—w—_—FeT "—c' f qx dx (725)

o]

where qﬁ is given by Eq. (63). Note ‘that inappropriately
this dimensionless wall heat transfer rate ¢ nas been termed
a mean Nusselt number in [22] and [30]. The "mean heat "
transfer coefficient” in ¢ does not represent a thermal
conductance in a thermal circult for a heat exchanger nor
does it approach to the fully developed value at large x*
(when x¥* - o),

If the effect of axisl heat conduction in the fluid is
considered in the energy balance, Xg. (50), 1t can be shown
that the Eq. (67) transforms to

E=1 - <!J(x*,:Pe)e-Ntu (73)
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