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ABSTRACT 

Theoretical laminar flow solutions for heat transfer 

and flow friction are of considerable importance in the 

development of new types of compact heat exchangers. Gen- 

erally the higher the degree of compactness, the lower is 

the Reynolds number and the greater is the relevance of the 

theory solutions. 

In this report these solutions are compiled, using a 

common format, for twenty one straight ducts and four curved 

ducts. The steady state, constant properties, Newtonian 

fluid flowing through a stationary, two-dimensional duct 

is considered. The effects of free convection, mass transfer 

and change of phase are omitted. Some new analytical solu- 

tions are obtained by writing a general computer program 

for the following ducts: rectangular, isosceles triangular, 

rounded corner equilateral triangular and sine ducts. 

Application of the analytical solutions to the gas 

turbine regenerator is discussed. Specific recommendations 

are made for further work. 
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ADDENDUM 

The following important paper appeared in the literature 

after the present report was almost completed. 

J. E. Porter, Heat transfer at low Reynolds number 
(highly viscous liquids in laminar flow) -- In- 
dustrial research fellow report, Trans. Instn 
chem. Engrs 49, 1-29 (1971). 

With the cooperation of thirty industries, Porter com- 

piled the laminar flow solutions for Newtonian as well as 

non-Newtonian fluids with constant and variable fluid prop- 

erties. The purpose of the survey was to identify those 

areas which presented difficulties in thermal designs of 

chemical, plastic, food etc. industrial problems. He sug- 

gested the best design equations available to date and made 

specific recommendations for future investigation. 

The present report is limited to constant properties 

Newtonian gas flows in laminar regime, in contrast to the 

very general problem considered by Porter. However, the 

present report is much more exhaustive in the more limited 

area and thus complements the work of Porter. 

TO THE READER 

An effort was made to compile the laminar flow analytical 

solutions from all available literature sources. However, 

it is probable that several important sources may not have 

come to our attention. We will be grateful for any informa- 

tion in this respect. Any other suggestions and criticisms 

will also be appreciated. 

R. K. Shah 

A. L. London 

iv 



ACKNOWLEDGMENTS 

This research was sponsored by the Office of Naval Re- 

search under the contract Nonr 225(91), NR-090-3^2. 

The authors are grateful to Dr. Wibulswas for furnish- 

ing written permission to reproduce the data of Tables 17, 

19, 20, 21, 22, 26 and 29 from his Ph.D. thesis. Also, the 

authors express their thanks to the following researchers 

for providing the following tabular information: Prof. 

Manohar for Table 5; Prof. Ratkowsky for Tables 4 lb and 43b; 

Prof. Schmidt for Tables 6, 7, 8b, lib, 12, 14, 15, 24 and 

25; Prof. Ash for Tables 2 and 9; and Prof. Haji-Sheikh for 

the results of circular sector ducts of Table 28. Addition- 

ally, extensive correspondence was carried out with Prof. 

Sparrow, Prof. Cheng, Prof. Perkins, Dr. Iyczkowski, Dr. 

Hobler, Prof. Snyder, Dr. Hsu and Mr. Akiyama. 

Mr. R. N. Noyes of the General Motors Technical Center 

made important contributions in the early stages cf the 

development of the computer program used in this work. The 

GM program, patterned after Sparrow and Haji-Sheikh's [57] 

provided valuable guide lines for the present program. 

The difficult task of typing this report was done by 

Miss Jan Elliott with her uncommon expertise. Mr. Dale 

Sekijima did the drafting of many illustrations. The authors 

thank Jan and Dale for their excellent work. 

v 



TABLE OF CONTENTS 

Page 

M         ABSTRACT  iii 
I 

ACKNOWLEDGMENT  v 

LIST OF TABLES .-  ix 

LIST OF FIGURES  xiv 

NOMENCLATURE  xx 

I.  INTRODUCTION "  1 

II.  MATHEMATICAL FORMULATION  4 

III.  DEFINITIONS AND GENERAL CORRELATIONS  23 

IV,  GENERAL METHODS  48 

V.  ANALYTICAL SOLUTIONS   6l 

Part 1. STRAIGHT DUCTS  62 
1. CIRCULAR DÜC-!  62 
2. PARALLEL PLATES  9& 
3. RECTANGULAR DUCTS  Il6 

!               4.  ISOSCELES TRIANGULAR DUCTS    134 
( 5.  EQUILATERAL TRIANGULAR DUCT WITH ROUNDED 
! CORNERS .147 
I               6.  RIGHT TRIANGULAR DUCTS  148 

7. SINE DUCTS  153 
8. CIRCULAR SECTOR DUCTS  155 

;               9.  CIRCULAR SEGMENT DUCTS    157 
10.  CIRCULAR DUCTS WITH DIAMETRICALLY OPPOSITE 

1                  FLAT SIDES  158 
I              11.  REGULAR POLYGONAL DUCTS  159 
i              12.  CUSPED DUCTS  lol 
|              13. ELLIPTICAL DUCTS  l62 
I 14. MOON SHAFED DUCTS .168 
I              15.  CARDIOID DUCTS  170 
I              lb.  CONCENTRIC ANNULAR DUCTS    172 

17. ECCENTRIC ANNULAR DUCTS   192 
18. ANNULAR SECTOR DUCTS    196 
19. REGULAR POLYGONAL DUCTS WITH CENTRAL CIR- 

CULAR CORES                    ... 199 
i              20.  CIRCULAR DUCTS*WITH CENTRAL REGULAR POLYGONAL 
I                   CORES  201 
f              21.  LONGITUDINAL FLOW BETWEEN CYLINDERS   204 

22.  MISCELLANEOUS GEOMETRIES  .......... 209 

vii 



Page 

PART 2.  CURVED DUCTS .  212 

23. CURVED CIRCULAR DUCTS  213 
24. CURVED RECTANGULAR DUCTS .......... 219 
25. CURVED ELLIPTICAL DUCTS  222 
26. CURVED CONCENTRIC ANNULAR DUCTS  222 

VI.  DISCUSSION AND COMPARISONS  . 223 

VII.  SUMMARY AND CONCLUSIONS  2^3 

VIII.  RECOMMENDATIONS  248 

REFERENCES  . 253 

APPENDIX A  279 

viii 



Table 

1 

4 

5 

8a 

8b 

10 

LIST OF TABLES 
Page 

Summary of heat try-J«*«^^^1^ . 
for fully developed laminar flow xnruuty 

Ci£cuiaLJuct    Nu,    as a function of    Pe    for 
fully developed laminar flow,  from Ash [123]   .   • 

for fully developed laminar flow   

Circular duct    Nu0    and    Nu^    as functions of 
"^   and   Pe'for Jolly developed laminar flow    . 

Wrcular^uct    uffia)/um , *<*&**]>  '***£ 
ond   K(x)    as a function of   *<- f^l\°T 

developing laminar flow, from Manohar [137]    .   • 

.■ +    «•     Re    and   K(x)    as a function fMrcmlar duct    f —Re    a™    ^ ' 

15 

64 

64 

68 

70 

of    x for 

f      Re 
~Re =100,  500 and 10,000  , from 

Schmidt [138] 

Circular duct energy content of the fluid for 
developing temperature profile (developed vel- 
ocity profile) when fluid axial heat conduction 
is considered, from Schmidt [138]    

and Nu as 

r.irnular duct Nu^T >    x 
4>  and <t> for fully 

72 

80 

Hornbeck [113]   

Parallel plates NuT 
as a function of Pe for 

Paraiiex pxaoc    r[l 

fully developed laminar flow, from Ash [123] 

Parallel plates u/u  and flow Q as a func- 
■  uminar flow, from 

94 

101 

tion of x 
Bodoia [lBl] 

Tor  developing laminar flow,fro» ^ ^ 

ix 



Table Page 

11a     Parallel plates umax/um , Ap* , fam)
Re and 

K(x) as a function of x+ (= x/DhRe; for de- 

veloping laminar flow, from Bodoia [l8l] .... 104 

lib     Parallel plates fapp
Re and IC(x) as a func- 

tion of x+ for Re = 10,000, 500 and 100, 
from Schmidt [138] 104 

12 Parallel plates energy content of the fluid for 
developing temperature profile (developed ve- 
locity profile) when fluid axial heat conduction 
is considered, from Schmidt [138] 108 

13 Rectangular ducts fRe , K(«) , l£ , NuT , NuH1 

and NuH2 for fully developed laminar flow, 

when all four walls are transferring the heat . 117 

14 Rectangular ducts Nu« for fully developed 

laminar flow, when one or more walls are trans- 
ferring the heat, from Schmidt [138] 120 

15 Rectangular ducts NuH1 for fully developed 

laminar flow when one or more walls are trans- 
ferring the heat, from Schmidt [138] 122 

16 Square duct Nu„n fcr fully developed laminar 

flow, from lyczkowski et al. [11] 125 

17 Rectangular ducts Nux T and Num T as func- 

tions of x* and a* for fully developed ve- 
locity profiles, from Wibulswas [116]    128 

18 Rectangular ducts Nux T as functions of x* 

and a* for fully developed velocity profiles, 
from Iyczkowski et al. [11] 128 

19 Rectangular ducts Nux H1 and Num H1 as func- 

tions of x* and a* for fully developed ve- 
locity profiles, from Wibulswas [116]    131 

20 Rectangular ducts Num T as functions of x* 

and a*    for simultaneously developing profiles, 
Pr =0.72 , from Wibulswas [116] 132 



Table Page 

21 Rectangular ducts Nux H1 and Num R1 as func- 
tions of x* and a* for simultaneously de- 
veloping profiles, Pr = 0.72 , from Wibulswas 
[116] 132 

22 Rectangular ducts (a*=0.5) Nu H1 as functions 
of x  and Pr for simultaneously developing 
profiles from Wibulswas [116]   133 

23 Isosceles triangular ducts u
max/

u
m > ^(°°) > 

L. , fRe , NuT , NuR1 and NuR2 for fully 
developed laminar flow, from Shah [60] 139 

2k Isosceles triangular ducts NuT for fully de- 
veloped laminar flow when one or more walls are 
transferring the heat, from Schmidt [138] .... 140 

25 Isosceles triangular ducts NuH1 for fully de- 
veloped laminar flow, when one or more walls 
are transferring the heat, from Schmidt [138] . . 142 

26 Equilateral triangular duct Nu « , Nu, „, , 
Nu, T„ and Nu, „n as functions of x* and 

X,rLL m,rll 
Pr , from Wibulswas [ll6] 144 

27 Equilateral triangular duct with no, one, two 
and three rounded corners geometrical, flow and 
heat transfer characteristics, from Shah [60] . . 146 

28 Right triangular and Circular sector ducts fRe , 
K(~) , NuR1 and Nu^ for fully developed 

laminar flow 1^9 

29 Right-angled isosceles triangular duct Nux T , 
Nu rp , Nu H1  and Nu H1  for Pr = °° , 6.72 m,T   x,Hl       m,ni 
and 0 , from Wibulswas [ll6] 151 

30 Sine ducts umax/um , K(«) , I^y , fRe , NuT 
NuH1 and Nu„2 for fully developed laminar flow, 
from Shah [60] 152 

xi 

L 



Table Page 

31 Circular segment ducts, Circular ducts with 
diametrically opposite flat sides and Moon 
shaped ducts fRe ,   K(°°J , Nunl and Nu^" 

for fully developed laminar flow   157 

32 Regular polygonal ducts fRe , NuH1 and Nu„2 

and Cusped ducts fRe for fully developed 
laminar flow l6l 

33 Elliptical ducts fRe , K(°°) , L*,  NuR1 and 

NuT for fully developed laminar flow 165 

3^      Concentric annular ducts fRe , K(°°) , L|L , 

NUm and NuH for fully developed laminar flow. 175 

35 Fundamental solutions for concentric annular 
ducts 176 

36 Concentric annular ducts fundamental solutions 
of first, second, third and fourth kind for the 
fully' developed laminar flow   177 

37 Concentric annular ducts Nusselt numbers for 
specified constant temperatures and axial heat 
fluxes at inner and outer walls for fully de- 
veloped laminar flow l80 

38 Eccentric annular ducts fRe for fully devel- 
oped laminar flow, from graphical results of 
Jonsson [268]    193 

39 Eccentric annular ducts NUR for fully de- 
veloped laminar flow, from Cheng and Hwang 
[55] 195 

40 Annular sector ducts fRe for fully developed 
laminar flow 196 

4la Regular polygonal ducts with central circular 
cores fRe for fully developed laminar flow, 
from Cheng and Jamil [5*]   200 

4lb Regular polygonal ducts with central circular 
cores fRe for fully developed laminar flow, 
from Ratkowsky [271] 200 

xii 



Table Page 

42      Regular polygonal ducts with central circular 
cores NuH1 for fully developed laminar flow, 

from Cheng and Jamil [54] 197 

43a     Circular duct with central regular polygonal 
cores fRe for fully developed laminar flow, 
from Jamil [235] 20k 

43b     Circular duct with central regular polygonal 
cores fRe" for fully developed laminar flow, 
from Ratkowsky [271] 202 

44 Circular duct with central regular polygonal 
cores NUrn for fully developed laminar flow, 

from Jamil [235] 202 

45 Longitudinal flow between cylinders (tri- 
angular array) fRe , NuH1 , NuR2 for fully 

developed laminar flow   206 

46 Curved circular ducts tJtB    and Nuun „/Nu„  . C  S n±,C   n,S 
for fully developed laminar flow 214 

47 Curved rectangular ducts fRe and NuR1 for 

fully developed laminar flow, Pr =0.73 >  from 
Akiyama [28l] . 218 

48 Curved square duct fRe and NuH1 for fully 

developed laminar flow; the influence of Pr 
on fRe and NuR1 , from Akiyama [28l] .... 221 

49 Idealizations of wall thermal conductivity 
for some thermal boundary conditions   225 

50 Solutions for heat transfer and friction for 
fully developed flow  228 

51 Summary index of available laminar flow sol- 
utions for straight and curved ducts 244 

xiii 



LIST OF FIGURES 

Figure Page 

1 A two-dimensional duct 5 

2 Energy transfer terms in the duct wall cross 
section for finite peripherial conduction ... 10 

3 \By   temperature variations along the tube 
length  . 12 

4 Thermal circuit representation of the re- 
sistances  13 

5 A cross section of a rectangular duct 2h 

6 Energy transfer terms and temperature distri- 
bution with the fluid axial heat conduction . . 40 

7 Cosine heat flux variation along circular tube 
periphery 66 

8 Circular duct Nu^^ for fully developed 
laminar flow, from Hasegawa and Fujita [10]  . . 67 

9 Circular duct f
aüD

Re for developing laminar 
flow 74 

10 Circular duct K(x) for developing laminar 
flow 74 

11 Circular duct energy content cf the fluid for 
developing temperature profile when fluid axial 
heat conduction is considered, from Schmidt 
[138] 81 

12 Circular duct Nu -, as functions of x* and _____—___—__■—•«—'        m, J. 

Pe for simultaneously developing flow, from 
Hornbeck [113]   9° 

13 Circular duct Nu „    as functions of x* and 
 1 -   x, 1 
Pe for simultaneously developing flow 92 

14 Circular duct Nu -, as functions of x* and 
 ■ — -'    X, ri 

Pe for simultaneously developing flow, from 
Hornbeck [113]   92 

xiv 



Figure Page 

15 Four fundamental problems for parallel plates . 97 

16 Temperature profiles for four fundamental 
problems . 98 

17 Specification of wall temperatures and heat 
fluxes for parallel plates   99 

18 Parallel plates energy content of the fluid for 
developing temperature profile when fluid axial 
heat conduction is considered, from Schmidt 
[138] 108 

19 Rectangular ducts fRe , K(°°) and l£  for 
fully developed laminar flow 118 

20 Rectangular ducts NuT , Nufil and Nu„2 for 
fully developed laminar flow 118 

21 Rectangular ducts NuT for fully developed 
laminar flow, when one or more walls are trans- 
ferring the heat, from Schmidt [138] 120 

22 Rectangular ducts NuH1 for fully developed 
laminar flow, when one or more walls are trans- 
ferring the heat, from Schmidt [138]  ..... 122 

23 Rectangular ducts Nu « for fully developed 
x, 1 

velocity profile; the influence of a* on 
Nu T . Similar influence can be expected for 
N%T ' NUX,H1 and Num,Hl 0f Tables 17>   19 
and 20 129 

24 Rectangular ducts (a*=0.5) Num H1 as func- 
tions of x* and Pr for simultaneously de- 
veloping profiles, from Wibulswas [ll6] .... 133 

25 An equilateral triangular duct 134 

26 An isosceles triangular duct 136 

27 Isosceles triangular ducts fRe , K(°°) and 
L!~  for fully developed laminar flow 138 

xv 



Figure Page 

28 Isosceles triangular ducts Nu« >  NUrt, and 
NuH2 for fullv developed laminar flow 138 

29 Isosceles triangular ducts NuT for fully de- 
veloped laminar flow, when one or more walls 
are transferring the heat, from Schmidt 
[138] 140 

30 Isosceles triangular ducts NuH-, for fully 
developed laminar flow, when one or more walls 
are transferring the heat, from Schmidt 
[138]  142 

31 Equilateral triangular duct Nux T ; the in- 
fluence of Pr on Nu ^ from Wibulswas [ll6]. 

x, 1 
Similar influence can he expected for Nu ^ , 

m, JL 
Nu un and Nu „-, of Table 26 \hk 

32 An equilateral triangular duct with rounded 
corners 1^7 

33 A right-angled isosceles triangular duct .... 1^8 

34 Right triangular ducts fRe , K(°°)  and NuH1 
for fully developed laminar flow, from Sparrow 
and Haji-Sheikh [230]    1*9 

35 Right-angled isosceles triangular duct Nux T 
as functions of x* and Pr , from Wibulswas 
[116] 151 

36 A sine duct 153 

37 Sine ducts fRe , K(°°) and 1^  for fully de- 

veloped laminar flow 15^ 

38 Sine ducts NuT , NuR1 and NuR2 for iully 
developed laminar flow   15^ 

39 Circular segment ducts fRe , K(°°) , NuH1 and 
Nu„0 for fully developed laminar flow Vß 

ric. 

xv i 



Figure Page 

40 Circular sector ducts fRe , K(°°) , NuH1 and 
NuH2 for ^^y developed laminar flow, from 

[57] 156 

41 Circular ducts with diametrically opposite flat 
sides fRe and Nuui  for fully developed 

laminar flow, from Cheng and Jamil [54,235]  • • 158 

42 Regular polygonal ducts fRe , Nu„., and Nu„2 
for fully developed laminar flow 160 

43 An elliptical duct 162 

44 Elliptical ducts fRe and LjL for fully de- 

veloped laminar flow 164 

45 Elliptical ducts NuT and NuR1 for fully de- 

veloped laminar flow   164 

46 A moon shaped duct 168 

47 Moon shaped ducts fRe for fully developed 
laminar flow . 7" 169 

48 A cardioid duct 170 

49 A concentric annular duct 172 

50 Concentric annular ducts fRe , K(°°) and L 

for fully developed laminar flow   174 

51 Concentric annular ducts NuT and NuR for 

fully developed laminar flow 174 

52 Concentric annular ducts Nui and NuQ for 

constant temperatures on both walls for fully de- 
veloped laminar flow l80 

53 Concentric annular ducts Nui and NuQ for 

constant axial heat fluxes on both walls for 
fully developed laminar flow . . . 184 

54 Eccentric annular ducts fRe for fully devel- 
oped laminar flow \   T~ 193 

xvii 



Figure page 

55 Eccentric annular ducts NuH for fully de- 

veloped laminar flow 195 

56 Annular sector ducts fRe for fully developed 
laminar flow . ! ]   T 197 

57 Regular polygonal ducts with central circular 
cores fRe for fully developed laminar flow, 
from Ratkowsky [271] 198 

58 Regular polygonal ducts with central circular 
cores Nu" for fully developed laminar flow, 

from Cheng and Jamil [54] 198 

59 Circular duct with central regular polygonal 
cores fRe for fully developed laminar flow, 
from Ratkowsky [271] 203 

60 Circular duct with central regular polygonal 
cores NuH1 for fully developed laminar flow, 

from Jamil [235] 203 

61 Triangular and square array arrangements for 
longitudinal flow between cylinders    204 

62 Longitudinal flow between cylinders fRe , NuH1 
and NuH2 for fully developed laminar flow . . 206 

63 Geometries and results considered by Gunn and 
Darling [274]    209 

64 An internally finned tube 211 

65 Curved circular duct t(/fB    and NuH1 c/NuR g 

for fully developed laminar flow   214 

66 Curved rectangular ducts fc/fg for fully de- 

veloped laminar flow, from Cheng and Akiyama 
[280] • 218 

67 Curved rectangular ducts NuH1 c/NuH1 g for 

fully developed laminar flow, from Cheng and 
Akiyama [280]   220 

68 Curved square duct NuR1 c/NuH1 g as functions 

of K and Pr for fully developed laminar 
flow, from Cheng and Akiyama [280] 220 

xviii 



Figure Page 

69 Fluid temperature profiles for © and (?) 
boundary conditions    229 

70 Flow area "goodness" factors for some duct 
geometries of Table 50 230 

71 Volume "goodness" factors for some duct geom- 
etries of Table 50 230 

72 Corner effects for limiting geometries  .... 233 

73 Comparison of flow friction behavior -- 
isosceles triangular and sine ducts 240 

74 Comparison of heat transfer behavior -» 
isosceles triangular and sine ducts   240 

xix 



NOMENCLATURE 

English letter symbols 

a' 

B1'B2 

b 

C 

c1 

u3 

c4 

c5 

c6 

CP 

Dh 

E(m) 

f 

heat transfer or flow friction area 

flow cross section area 

radius of a circular duct, half width of rectan- 
gular duct, semi-major axis of the elliptical duct, 
half base width of triangular or sine duct, a > b 
for rectangular and elliptical ducts with symmet- 
ric heating 

duct wall thickness 

constants; see Eq. (76) 

half spacing of parallel plates, half height of 
rectangular duct, semi-minor axis of elliptical 
duct, half height of triangular or sine duct, 
b < a for rectangular and elliptical ducts with 
symmetric heating 

amplitude of cosine heat flux variation around 
the periphery of a circular duct; see Fig. 7 

flow stream capacity rate, Wcp 

a pressure gradient parameter, (dp/dx)/(n/gc) 

a temperature gradient parameter, (öt/äx)/a 

thermal energy source parameter, S/k 

a parameter, c.Cp 

a parameter, c^/cuar 

a parameter, g (dp/dx)/pc (dt/dx) 
c y 

specific heat of the fluid at constant pressure 

hydraulic diameter of the'duct or flow passages, 

complete elliptical integral of second kind 

"Fanning" or "small" friction factor, for fully 

developed flow if no subscript, T/(pujtf/2gc), di- 
mensionier s 

xx 



fave    average Panning friction factor in hydrodynamic 
entry length, defined by Eq. (26),  dimensionless 

f«n«    apparent Panning friction factor, defined by Eq, 
app    (^ dimensionless 

fD      "Darcy" or "large'
1 friction factor, if, dimension- 

less 

G       fluid mass velocity, pu 

g      proportionality factor in Newton's second law of 
motion 

(g)     boundary condition referring to constant and uni- 
form axial as well as perlpherlal wall heat flux, 
also uniform peripherial wall temperature; boundary 
condition valid only for the circular tube, par- 
allel plates, and annular ducts 

boundary condition referring to constant axial wall 
heat flux with uniform peripherial wall temperature, 
expressed by Eq. (7) 

boundary condition referring to constant axial wall 
heat flux with uniform peripherial wall heat flux, 
expressed by Eq. (8) 

boundary condition referring to constant axial wall 
heat flux with finite peripherial wall heat con- 
duction, expressed by Eq. (9) 

boundary condition referring; to exponential axial 
wall heat flux with uniform peripherial wall tem- 
perature, expressed by Eq. (10) 

h       convecttve heat transfer coefficient., for fully 
developed flow if no subscript is used 

J       mechanical to thermal energy conversion factor 

i Colburn heat transfer modulus, StPr*'3, dimensionless 

K       Dean number, Re y/a/R ,  dimensionless 

K(x)     pressure drop increment due to hydrodynamic en- 
trance region, defined by Eq. (35)>  dimensionless 

K(°°)     K(x) evaluated at x -♦ oo , defined by Eq. (31), 
dimensionless 

xx i 



Kf      flow friction modulus, fRe , dimenslonless 

K^      heat transfer modulxis, JRe , dimenslonless 

K       peripheral wall heat conduction parameter, j 
k^a'/fcO^ , dimenslonless 

k       thermal conductivity, for fluid if no subscript 

L       length of the duct 

L       hydrodynamic entrance length, defined as the duct 
^ length required to achieve the duct centerline 

(maximum) velocity as 99$ of the corresponding 
fully developed magnitude when entering flow is 
uniform 

Lth thermal entrance length, defined as the duct length 
required to achieve the value of local Nusselt num- 
ber Nu  as 1.05 Nuf, 

L       dimenslonless hydrodynamic entrance length, \ 
^       VV6 

L+,      dimenslonless thermal entrance length, ^.v/^h^6 

m       a parameter for elliptical duct geometry, 

■*,() 

/i 
*2 1 - 1/a' 

Nu      Nusselt number, for fully developed flow if neither 
x nor m appear as subscript, hD./k , dimenslonless 

Nu.. / \  local Nusselt number for the thermal entrance re- 
gion. The second subscript in ( ) designates the 
associated thermal boundary condition. The local 
Nusselt number is an average value with respect to 
perimeter at any given cross section x 

Nu      overall Nusselt number associated with (gp bound- 
ary condition, defined by Eq. (49a), dimenslonless 

N.      number of heat transfer units, hmA/Wc , St 1/*^ > 
dimensionless '   p 

n       number of sides of a regular polygon or a cusped 
duct 

n       outer normal direction to the duct wall 

xxii 
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n*      dlmenslonle88dl8tar.ee n/Il  measured along the 
outer normal direction 

P wetted perimeter of the duct 

Pe Peclet number, Pe ■ RePr « ^K/a »  dlmenslonless 

Pr Prandtl number, y-c^k , dlmenslonless 

p fluid static pressure 

Ap* dlmenslonless pressure drop, Ap/(puJn/2gc) 

Q a parameter for the curved duct heat transfer, 

(ITPr) '9  dlmenslonless 

Q volumetric flow rate 

q1 heat transfer rate per unit length   the duct 

q"      heat flux, heat transfer rate per unit heat transfer 
surface area of the duct 

q"      incident radiative heat flux 

R       radius of curvature of the centerline of the curved 
duct 

Re      Reynolds number, GD^/n , dlmenslonless 

K dlmenslonless wall thermal resistance, defined by 
*      Eq. (5fc) 

boundary condition referring to finite thermal re- 
sistance at the wall, expressed by Eq. (11) 

boundary condition referring to radiative flux at 
the wall, expressed by Eq. (12) 

r       radial distance iu cylindrical coordinates 

rh      hydraulic radius of the duct, Ac/P 

r       inner radius of concentric annular duct or radius 
1      of circular centered core of a regular polygonal 

duct 

r1      radius of heat transferring wall of the concentric 
"      annular duct 

xxiii 



rQ      outer radius of a concentric annular duct or radiue 
of a circular duct having regular polygon as cen- 
tered core 

r*      r1/ro 

r5       r/ro 
S       thermal energy source function, thermal energy 

generated per unit volume of the fluid 

St      Stanton number, h/Gc , dimensionless 

s       distance along the periphery r of the duct 

s       half of the tube bundle pitch; see Fig. 6l 

T       temperature of the fluid, on the absolute scale, 
°R or °K 

© boundary condition referring to constant and uni- 
form wall temperature, both axially and peripher- 
ally, expressed by Eq. (6) 

ty thermal boundary condition expressed by Eq. (21) 

t temperature of the fluid to a specified arbitrary 
datum, °F or °C 

t       ambient fluid temperature; see Fig. 4 a 
t       bulk average fluid temperature, defined by Eq. (45) 

t       wall or fluid temperature at the duct wall r 

U       wall conductance with suffix w , i or o ; IT 
is defined by Eq. (48) 

u fluid axial velocity, fluid velocity component in 
x direction 

um average axial velocity, defined by Eq. (22) 

v       fluid velocity component in y direction or radial 
direction 

W fluid mass flow rate through the duct 

w fluid velocity component in z direction 

X+ 103x+ 

X* 103x* 

xx iv 
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x      axial coordinate in cartesian and cylindrical 
systems 

x+     dimenslonless axial coordinate for hydrodynamic 
entrance region, x/IVRe 

x*     dimenslonless axial coordinate for thermal entrance 
region, x/D. Pe 

x»      2x* 

y      a spatial coordinate In cartesian coordinate system 

z      a spatial coordinate in cartesian coordinate system 

Greek letter symbols 

a      thermal diffusivity, k/peD 

a      absorptivity of wall material, dimenslonless 

a*     aspect ratio of rectangular, isosceles triangular, 
elliptical and sine duct, ot* « 2b/2a , for a 
symmetrical geometry with symmetrical heating, 
otherwise ot* « 2a/2b , so that it ranges from 0 
to 1 

ß      a function of x alone, defined by Eq. (104) 

T      periphery of the duct 

y radiative wall heat flux boundary condition param- 
eter,    €w

oTeI)j/1" > dimenslonless 

A,6 prefixes denoting a difference 

ö a parameter, iic1 Dhvk(ät/dn)r 

$ heat exchanger effectiveness,  the ratio of actual 
heat transfer rate to the thermodynamically limited, 
maximum possible heat transfer rate as would be 
realized only in a counterflow heat exchanger of 
infinite area,  dimenslonless 

e emissivity of the wall w 
e(x) mean velocity weighing factor;  see Eq.   (106) 

C ratio of thermal to hydrodynamic boundary layer 
thickness 

xxv 



w-m 

0 

e 

•* 

A 

U- 

a parameter to account fluid viscous dissipation, 

M*uir/q,'Dh ' dimensionless 

dimensionless wall to fluid bulk mean temperature 
difference, defined by Eq. (9k) 

angular coordinate in cylindrical coordinate system 

dimensionless fluid temperature when used with sub- 
script 

dimensionless fluid temperature for (T) , defined 
by Eq. (76) 

A(x)     a parameter defined by Eq. (106) 

exponential axial wall heat flux parameter, defined 
by Eq. (10a) 

dynamic fluid viscosity coefficient; see footnote 
on p. 2b 
kinematic fluid viscosity coefficient, p/p 

perpendicular distance from center of duct to side 
of the regular polygon; see Fig. 57 

i2 distance measured from the center to the corner of 
a regular polygon; see Fig. 59 

fluid density 

Stefan-Boltzmann constant 

wall shear stress due to skin friction 

dimensionless wall heat flux for concentric annular 
ducts when used with superscript and subscript, de- 
fined by Eq. (13;0 

dimensionless total wall heat flux for (?) boundary 

condition, q"\A(t^-te) 

dimensionless local wall heat flux fur © boundary 

condition, qJIV^V^' 
half apex angle of isosceles triangular,sinusoidal, 
circular sector, circular segment flat sided cir- 
cular ducts and moon shaped ducts 

i 

p 

a 

T 

0 

xxvi 
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effectiveness coefficient; see Eq. (73) 

denotes gradient, derivative with respect to normal 

direction 

Subscript 

c      curved duct 

e 

fd 

H 

HI 

H2 

H3 

H4 

i 

, ,  i„- -+ * - o (at entrance) or where initial value at x - o v»« 
the heat transfer starts, e.g. xe 

fully developed laminar flow 

referring to ® boundary condition 

referring to © boundary condition 

referring to © boundary condition 

referring to © boundary condition 

referring to @ boundary condition 

inner surface of the concentric annular duct 

In     logarithmic mean 

m      mean 

max     maximum 

min     minimum 
outer surface of the concentric annular duct 

referring to @ boundary condition 

referring to <g> boundary condition 

straight duct 

referring to © boundary, condition 

o 

Rl 

R2 

s 

T 

x 

oo 

wall 
referring to fully developed laminar flow 
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n 

Superscript 

*,+ designates a normalized or dimensionless quantity- It 
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I.  INTRODUCTION 

Interest in heat exchanger surfaces with a high ratio of 

heat transfer area to core volume is increasing at an accel- 

erated pace. The primary reasons for the use of these more 

compact surfaces is that a smaller, lighter weight and lower 

cost exchanger is the result. These gains are brought about 

by both the direct geometric advantage of higher "area den- 

sity" and because forced convection heat transfer in small 

dimension passages generally results in higher heat transfer 

coefficients (heat transfer power per unit area and tempera- 

ture difference) for a specified flow friction power per unit 

area. 

The flow passages for these compact or high area density 

surfaces have a small hydraulic radius. Consequently, with 

gas flows particularly, the heat exchanger design range for 

Reynolds number'usually falls well within the laminar flow 

regime.  It follows then that the theory derived laminar flow 

solutions for friction and heat transfer in ducts of various 

flow cross-section geometries become important and these 

solutions are the subject matter of this report. A direct 

application of these results may be in the development of 

new surfaces with improved characteristics.  A critical exam- 

ination of the theory solutions may prove to be fruitful be- 

cause there is a wide range for the heat transfer coefficient, 

at a given friction power for different cross-section geom- 

etries. 

It has long been realized that laminar flow heat transfer 

is dependent on the duct geometry, flow inlet velocity pro- 

file, and the wall temperature and/or heat flux boundary con- 

ditions.  These conditions are difficult to control in the 

1        laboratory, nevertheless there is a substantial ongoing ex- 

I        perimental research effort devoted to this task. A theory 

J        base is needed in order to interpret the experimental results 



and to extrapolate these results for ;he task of designing 

practical heat exchanger systems. However, it is recognized 

tha,t this theory is founded on idealizations of geometry and 

boundary conditions that are not necessarily well duplicated 

either in application or even in the laboratory. The devel- 

opment of this theory base has been a fertile field of ap- 

plied mathematics since the early days of the science of 

heat transfer. Today, by the application of modern computer 

technology, analysis to some degree has exceeded experimental 

verification. 

Drew [l]1 in 1931 prepared a compilation of existing 

theory results for heat transfer. Dryden et al. [2] in 1932 

compiled the fully developed laminar flow solutions for 

ducts of various geometries. Later several literature surveys 

were made for particular geometries.  In 196l, Rohsenow and 

Choi [3] presented a limited compilation of solutions for 

simple cylindrical ducts. Kays and London [4] published a 

compilation in 1964 pertinent to compact heat exchangers. 

The theoretical development as well as the details of 

analysis are described in depth by Kays [5] in 1966. 

The specific objectives of this report are the following: 

(1) To provide an up-to-date compilation of available 

analytical solutions with results in numerical and 

graphical non-dimensionalized form. 

(2) To present an unified treatment for the nomenclature 

and dimensionless flow friction and heat transfer 

characteristics. 

(3) To fill some of the gaps where solutions are needed 

because of the current state of the art of the gas 

turbine regenerator applications. 

The numbers in brackets denote references at the en^ of 
the report. 



(4) To indicate those areas where applied mathematicians 

may make their contributions. 

Primarily english language literature up to December 

1970 is reviewed. The available analytical solutions for 

the laminar flow friction and heat transfer through twenty 

one straight ducts and four curved ducts are described. When- 

ever possible, the results are summarized in tabular and 

graphical form. 

Emphasis is given to the analytical solutions for heat 

transfer and flow friction for fully developed and developing 

flow thiough axisymmetric and two-dimensional straight and 

curvilinear ducts. Only the forced convection steady laminar 

flow of constant property Newtonian fluid through a stationary 

duct is considered. Magnetohydrodynamic flows, electrically 

conducting flows, the high temperature (heat radiating) flows 

etc. are not considered. Also omitted are the effects of 

natural convection, change of phase, mass transfer, chemical 

reaction, etc. 

The applicable momentum and energy equations with ap- 

propriate boundary conditions are outlined in Chapter II to 

describe the flow characteristics and heat transfer through 

the duct. The definitions and general correlation schemes 

for the laminar duct flow and haat transfer problem are 

described in Chapter III. The general methods used in the 

heat transfer literature to solve the problems formulated in 

Chapter II are presented in Chapter IV. Chapter V describes 

the solutions obtained for various duct geometries. Com- 

parisons and discussion of analytical solutions and thermal 

boundary conditions are presented in Chapter VI. Conclusions 

and summary of these solutions are presented in Chapter VII. 

Recommendations for future studies and presentation of new 

work are made in Chapter VIII. Appendix A lists the tech- 

nical journals from which laminar flow heat transfer litera- 

ture has been located. 



II.  MATHEMATICAL FORMULATION 

The applicable momentum and energy equations with ap- 

propriate boundary conditions are outlined to describe the 

flow characteristics and heat transfer through the duct. 

The solutions to these equations for e  particular geometry 

wHl be described in Chapter V. 

II.1 Fully Developed Flow 

Far downstream from the flow entrance region of the 

1uct, the fluid velocity no longer depends upon the axial 

distance x , and the flow becomes hydrodynamically fully 

developed; i.e. 

u = u(y,z)  or  u(r,0)  only        (l) 

For several of thermal boundary conditions, as described 

below the dimensionless temperature profile also becomes in- 

variant with the axial distance, thereby designated as ther- 

mally developed flow.  In this case, 

o 
3x 

t  -t w,m 
t  -t w,m m 

= 0 (2) 

Note, however, t is a function of x as well as y and 

z , unlike u . 

The terminology "fully developed flow" or "fully de- 

veloped laminar flow" will be used throughout the report when 

the flow is both hydrodynamically and thermally developed. 

II.1.1 Flow Friction 

Onsider a steady state, fully developed laminar 

flew in a two-dimensional stationary cylindrical duct bounded 

by a closed curve  r  (Fig. l).  Also assume that the fluid 

is incompressible and the fluid properties p,c ,k are con- 

stant, independent of fluid temperature, and the body forces, 



Flow 

+ Boundary f 

Pig. 1  A two*dimensional duct 

viz., gravity, centrifugal, Coriollis, electromagnetic etc. 

do not exist. The applicable differential momentum equation 

is [5] 

\i    dx (3) 

where x is the axis of the duct and c-^ is defined as the 

pressure drop parameter. The Sr    is the two-dimensional 

Laplacian operator. Wote that the rtght hand side of Eq, 

(3) is independent of (y,z) or (r,£), so it is designated as 

a constant c-^ . Eq. (3) in cartesian coordinates is 

o2u b2u       ■ 

5?   a?;1 (3a) 

and in cylindrical coordinates is 

1 ä , duv , 1 o2u 
r 3rlr 37' + T 7^2 = C" be' 

(3b) 

The boundary condition for the velocity problem is no slip 

boundary condition, namely, 

u = 0  on r . (*) 



«MrttifeaMMi*«*»*«*. ^^a«-***^-*»^^ 

Bjr the definition of fully developed laminar flow of 

the incompressible fluid, the solution of the continuity- 

equation (conservation of mass) is implicitely given by Eq. 

(l). Moreover, the continuity equation is already built into 

Eq. (3). Consequently, the continuity equation is not re- 
o 

quired ^eparately^ for the solution of fully developed laminar 

flow friction and the heat transfer problem described below. 

II.1.2 Heat Transfer 

In addition to the idealizations made for flow fric- 

tion problem, it is assumed that there is no mass diffusion, 

chemical reaction, electromagnetic effects etc., but there 

may be uniform intensity thermal energy sources (erroneously 

referred to as heat sources) present within the fluid. The 

governing differential energy equation for a perfect gas or 

an incompressible fluid is as follows [5], after the intro- 

duction of the rate equations for the heat conduction and 

shear stress. 

Here again the flow is assumed steady, laminar, fully de- 

veloped with constant \x    and k . When the axial thermal 

conduction is not neglected in the fluid, the v  is a 

three-dimensional Laplacian operator.  On the right hand side 

of the Eq. (?), the second term represents the thermal energy 

sources within the fluid, while the third term represents 

part of the work done by the fluid on adjacent layers due to 

action of shear forces. This third term is usually referred 

to as viscous dissipation or unfortunately as friction heat 

in the literature. Under the assumptions mentioned as above, 

Eq. (5) is exact for incompressible liquids, p = constant. 

The continuity equation, in addition to the momentum equa- 
tion, is required separately for the exact solution of de- 
veloping velocity profile in the duct entrance region. 

6 
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However, for perfect gases, there is an additional assump- 

tion involved that the u(dp/dx)/J term is negligible, so 

it does not appear in Eq. (5). This latter term is conven- 

tionally referred to as the gas compression work. It appears 

in the energy equation when the energy conservation equation 

is manipulated with the momentum equation, cancelling the 

kinetic energy term [5], 

Note that if Eq. (5) is operated by V2 , the right hand 

side of Eq. (5) would contain V2u which equals to ci from 

Eq. (3). The resulting equation will be a fourth order dif- 

ferential equation for the dependent variable t . 

The boundary conditions associated with Eq. (5) will be 

discussed separately in the following section, 

II. 1,3 Heat Transfer Boundary Conditions 

A variety of boundary conditions can be specified 

for the heat transfer problem. These boundary conditions can 

be categorized in two classes. In the first class, the pe- 

ripheral wall temperature or wall heat flux is uniform. In 

the second class, the peripheral wall temperature or wall 

heat flux is arbitrary. The boundary conditions of the first 

class are described by an equation form in the following sub- 

sections. The boundary conditions of the second class are 

analyzed by the superposition methods [6,7,8]. 

For all the boundary conditions of class one and two, 

the fully developed laminar Nusselt number is found to be in- 

dependent of x ,  Pr and Re , but dependent on the duct 

geometry and other relevant parameters. 

II.1.3.1 Specified Wall Temperature Distribution 

The wall temperature is arbitrarily specified along 

the periphery of the duct and is constant in the axial di- 

rection. The case of arbitrary peripheral temperature is 

not investigated in the literature. The case of constant 

and uniform wall temperature for the whole duct is a boundary 
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condition of considerable technical importance. It occurs 

for the heat transfer in condensers and evaporators etc. 

where the temperature of the fluid on one side is approxi- 

mately uniform and constant, and the thermal resistance on 

the constant fluid temperature side is relatively small. In 

this case, 

t|r = tw = a constant, independent of (x,y,z)  (6) 

The uniform and constant wall temperature condition can, 

however, be pictured in two ways:  (a) thermal resistance of 

wall and other side of the fluid is zero and the temperature 

of ambient fluid is constant (Fig. 4). In this case, the 

axial wall thermal conductivity can be arbitrary but the 

radial thermal conductivity is infinite,  (b) infinite wall 

thermal conductivity in axial and peripheral directions as 

well as radial. This boundary condition will be referred to 

as © boundary condition. The Nusselt number or related 

parameters evaluated for this case will have a suffix T . 

II.1.3.2 Specified Wall Heat Flux Distribution 

The wall heat flux distribution is specified in 

axial as well as peripheral direction. The following four 

special cases of this boundary condition have been considered 

in the literature. Arbitrary variations in peripheral wall 

temperature or wall heat flux can be handled by the super- 

position techniques [6,7,8]. For the case of circular tube 

and parallel plates, the (55) , @ and @ boundary con- 

ditions described below are identical and hence will be 

designated as (3) boundary condition. 

(a) Constant axial wall heat flux with uniform peripheral 

wall temperature, 

dt 
i   _ = Wc„ -r-2- = h(t -tj = constant (7a) q     ' ""'p dx     " llx"w   um 

8 



t|p = tw = a constant, independent of (y,z)       (7b) 

For this boundary condition, the wall thermal conductivity 
1^ is implicitely assumed to be zero in the axial di- 
rection and infinite in the peripheral direction. This 
means wall thermal resistance is infinite in the axial 
direction and zero in the peripheral direction. This 
boundary condition will be referred to as (rü) with the 
Nusselt number having HI as a suffix. It may be dif- 
ficult to achieve fin) boundary condition in practice 
for noncircular ducts [9]. However, mathematically it 
is the most amenable, and consequently, most frequently 
investigated boundary condition in the literature for 
noncircular ducts. 

(b) Constant axial wall heat flux with uniform peripheral 
wall heat flux, 

dt 
*' - Wcp d5T - ^VnfV = instant       (8a) 

k inl = a constant> independent of (y,z)       (8b) 

This boundary condition corresponds to having zero 
1^ in axial as well as peripheral direction (infinite 
wall thermal resistance in axial and peripheral direc- 
tion). It will be referred to as @> boundary condition. 
It is a limiting case of the more realistic boundary con- 

dition (H3) described below. 

(c) Constant axial wall heat flux with finite peripheral wall 
heat conduction, (5^) . From the steady state energy 
balance on the wall element ds of unit depth in Fig. 2, 
the temperature distribution in the wall is related to 



the wall heat flux as follows: 

0"-kMlr 
+ kw ds 

n+a' 

/ 
tKdn = 0 

n 

(9a) 

n+a * •      2   1 

n 

3ti 

duct inside periphery V 

ds 

Fig. 2  Energy transfer terms in the duct wall cross section 
for finite peripheral conduction 

It is assumed that the axial k  is zero. The tem- w 
perature across any cross section for a thin wall may be 

taken as uniform.  If the thin wall thickness a1  is 

uniform, then 

n+a1 

/ 
t dn - aft r w       1 

n 

After dividing n and s by the characteristic dimen- 

sion D, , Eq. (9a) reduces to 

10 



,X-^r + s£dr-° (*) 
ds** T 

where K = J-JJ— ~ peripheral heat conduction parameter, 

This boundary condition will be referred to as (ff?) 

The K ■ » and o corresponds to the (55) and (62) 

boundary conditions respectively. 

Electric resistance heating, nuclear heating and 

counterflow heat exchangers with fluid thermal capacity 

rates being equal are some examples that approximate 

13) boundary condition. 

(d) Exponential axial wall heat flux, @ 

qi = <4 e*x* _ (10a) 

t|p = t = a constant, independent of (y,z)      (10b) 

In this case, it is also implicitely assumed that the wall 

thermal conductivity is zero in axial direction and in- 

finite in peripherial direction. This boundary condition 

will be referred to as @ . The (S5) and (f) boundary 

conditions are special cases of the general exponential 

wall heat flux boundary condition as described below. 

For the case of circular tube, with varying values of 

A , the wall and fluid bulk mean temperatures obtained 

are shown in Fig. 3 [10]. For the circular duct, the 

II) and (T) boundary conditions are special cases of 

boundary condition with A=0 and -14.632 respectively. 

The @) boundary condition with an appropriate value of 

A can be used to approximate either the parallel or 

counterflow heat exchangers where the temperature dis- 

tribution varies exponentially along the duct. 

11 
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tt 

X>0 x«o -4NuT<X<0 

J«_ 
m 

<m 

X'-4Nu. X<-4Nu, 

Fig.  3 *9 temperature variations along the tube length 

II.1.3.3 Heat Flux at the Wall Dependent Upon the Wall 

Temperature 

The local wall heat flux is dependent linearly or 

non-linearly on the local wall temperature. Two special 

cases of this boundary condition are technically important 

and have been considered in the literature, namely the finite 

wall thermal resistance and the radiant flux surface con- 

ditions. 

(a) Finite thermal resistance at the wall, (Rl) . The duct 

wall, transferring heat to the fluid, has a finite 

thermal resistance in the normal direction. The wall 

thermal resistance, 1/UW, is composed of two thermal 

resistances (wall and outside wall to fluid) as shown 

in Fig. 4 and is expressed as 

a' + 
w w h 

(11a) 
a 

This boundary condition,  will be  referred to as    (Rl) , 
for the  finite wall thermal resistance,   is expressed as 

T^l     - U  (t -t  ) on'p        wx  a    w' 

t|p = t = a constant, inde- 
pendent of (y,z) 

(lib) 

12 



It is implicitely assumed that the peripheral k  is 

infinite, the axial k  is zero,  and the radial or 

normal k  is finite. The normal k. is used in the *w 
expression for U , Eq. (lla). The ambient fluid tem- 

perature t  is assumed to be uniform and constant. The a 
wall thermal resistance 1/U,. always has been treated 

W 
as a constant in the theoretical analysis. 

flow 

Uw relates to 
these two 
resistances only 

Pig. 4  Thermal circuit representation of the resistances 

Two limiting cases are of interest:  (l) If the wall 

thermal resistance 1/UW is zero, the (ß) boundary con- 

dition reduces to (?) boundary condition.  (2)  If 

1/U » l/h , then q'f is virtually independent of 1/h 

and q" tends to be a constant, if (t -t ) * constant. a    w 
Hence,  if the wall thermal resistance    1/UM    is infinite, 

it reduces to   (Hi)   boundary condition. 
w 

(b) Nonlinear radiant-flux boundary condition, (R2) . When 

the duct wall is radiating the thermal energy to the 

environment at zero degree absolute temperature, this 

boundary condition, referred to as is encountered. 

13 
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w w 
(12a) 

- k 3jj| - e.aT. 

T| p = Tw = a constant, inde- 
pendent of (y,z) 

It is implicitely assumed that the wall thermal conduc- 

tivity is infinite in peripheral direction, while it is 

zero in the axial direction.  Heat transfer to and from 

the surfaces in a vacuum may be an area of application 

of the ^3) boundary condition. 

Non-dimensionalizing the temperature and the normal 

direction with T  and D.  respectively, the boundary 

condition (12a) reduces to 

where the radiation parameter y = e aT^ D*/k .  Similar 

to limiting cases of (Si) boundary condition, for y 

equals infinite and zero, the (R2) boundary condition re- 

duces to (T) and (S3) boundary conditions respectively. 

A more generalized boundary condition, which takes 

into account the peripheral wall heat conduction as well 

as the dependency of local wall heat flux upon the local 

wall temperature [e.g. (R]) and ^2) ], is discussed by 

Liczkowski et al. [11]. 

All the boundary conditions outlined in this section 

are summarized in Table 1. 

II.2 Hydrodynamically Developing Flow 

As the fluid flows through a duct, its velocity profile 

undergoes a change from its initial entrance form to that of 

a fully developed profile at an axial location far downstream 

from the entrance.  The hydrodynamically developing flow 

14 



Table 1. Summary of heat transfer boundary conditions 
for fully developed laminar flow through duets 

Desig- 
nation Description Equations 

© 
Constant and uniform 
wall temperature 
peripherally as 
well as axially  

t|r = tw a constant 

independent of (x,y,z) 

"are 
p dx" © 

Constant axial wall 
heat flux with uni- 
form peripheral 
wall temperature 

i1 = Wc m = constant 

t|p = t , a constant in- 

dependent of (y,z)  

Constant axial wall 
heat flux with uni- 
form peripheral 
wall heat flux 

dt 
qf = Wc g— = constant 

ks^  = constant on1 p 

~St 
Constant axial wall 
heat flux with fin- 
ite peripheral 
wall heat conduction 

qf = Wc ■£-==■ = constant 

q"Dh    at I   . K  a2t  I _ 0 

äs*"1 r 

Exponential axial 
wall heat flux 

qi = ql e 
Ax* 

t|p = t , a constant inde- 

pendent of (y,z)  

Finite thermal re- 
sistance at the 
wall 

r\    - Ü (t -t ) "SE wv a w 

11' a t , a constant inde- 1 i   w 
pendent of (y,z)-  

Nonlinear radiant- 
flux boundary 
condition 

on Ip   w w 

T'lp = T , a constant inde- 11   w 
pendent of (y,z)  

15 
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region is referred to as that region from entrance to where 

the fully developed invariant conditions are achieved. The 

definition of hydrodynamic entrance length will be presented 

in Chapter III. 

The axial pressure gradient is higher in the entrance 

region than that in the fully developed region due to two 

effects:  (a) the increase in momentum oi' fluid as the veloc- 

ity profile becomes less uniform, and (b) the higher wall 

shear caused by higher transverse velocity gradients. 

The determination of velocity profile, wall shear stress 

distribution, pressure drop, and the location to achieve in- 

variant flow conditions etc. is considered as the solution 

to hydrodynamically developing flow problem (also referred to 

as hydrodynamic entry length problem). 

All the idealizations made in the fully developed case 

are stil: applicable here. Additionally, the rate of change 

of shear stress ^(d^u/dx )  (also referred to as the dif- 

fusion of vortlcity) in axial direction is treated as zero. 

Even though the physical concept^ of boundary layer intro- 

duced by Prandtl is not applicable to the developing duct 

flow, the boundary layer idealizations, 

u » VjW (13a) 

(13b) du du .„ du dv dv dv dw dw dw 
37 ' 37 >' 31 ' dx ' 37 ' 37 ' ' 37 ' 3? ' 31 

'A momentum or velocity boundary layer is a thin region very 
close  to the bc.ly surface or wall where the influence of 
flui-i viscosity is predominant.  The remainder of the flow 
fie] i ?an to a good approximation be treated as inviscid 
an- ?nn be nnalyr.od by the potential flow theory. 
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are also a good approximation for laminar flow in ducts. As 

a result, it is found that the fluid pressure is a function 

of x only. The governing boundary layer momentum equation, 

for axially symmetric flow, in cylindrical coordinates is 

[5] 

and in cartesian coordinates, 

„ du   ,  ,   du   ,  ,, du ßc dp   ,     /d u   .  8u\ /^üv^^ n33T + voy+woT   =    " — d£ + V^T + ^TJ («b' 

The no slip boundary condition for this case is 

u,v,w    =0      on    r (15) 

An initial condition is also required, and usually uniform 

velocity profile is assumed at the entrance. 

u = u = u  at x = 0 (lb) 
e   m 

In addition,  the continuity equation needs to be solved 
simultaneously.     In cylindrical coordinates  [5],  it is 

•;x      or      r 

and in cartesian coordinates [5], 

i + ! + s! - 0. (17b) 

17 
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The solution to the hydro-dynamic entry length problem is 

obtained by solving the Eqs. (17) and (lb)  simultaneously 

with the boundary and initial conditions of Eqs. (15) and 

(16). 

II.3 Thermally Developing Flow 

As the fluid (at different temperature than that of the 

duct walls) flows through the duct, its temperature profile 

changes from uniform at the point where heating started to 

an invariant form downstream. The thermal entry length is 

referred to as duct length required to attain fully developed 

invariant temperature profile. The definition of thermal 

entry length will be giver* in Chapter III. 

Thermal entry length problem is classified in three 

categories:  (i) the velocity profile is fully developed and 

remains fixed while the temperature profile develops, (ii) 

the simultaneous development of velocity and temperature 

profile, and (iii) at some point in the hydrodynamic entry 

region, the temperature profile starts developing. The first 

problem is an excellent approximation for high Prandtl number 

fluids for which the velocity profile develops much more 

rapidly than the temperature profile. For fluids with 

Pr - 1 , the second problem approximates the actual situation 

in most cases.  The third problem is important for some 

special cases when eithe'. ri  < 1 or high viscous fluid 

(Pr » l) flow in short dur.a (small values of L/D^). 

The rate of heat transfer and consequently the heat 

transfer coefficient h  (and Nusselt number) are higher in 

the thermal entrance region than that in the fully developed 

region due to higher fluid temperature gradients at the wall. 

The determination of temperature profile, wall heat 

flux distributions, local and mean Nusselt numbers (or h), 

and the location to achieve invariant dimensionless temper- 

ature profile etc. is considered as the solution to the 

thermal entry length problem. 
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All the idealizations made in the fully developed case 

are still applicable except that the axial heat conduction, 

thermal energy sources and viscous dissipation within the 

fluid are neglected. Also, the boundary layer idealizations, 

Eq. (13) and 

I . Ü » M <18> 
are invoked. Refer to footnote 3 on p. 16 and associated 

discussion. The governing boundary layer energy equation 

for the developing laminar temperature profile of a perfect 

gas or an incompressible liquid is [5] 

,1 dt       v 
bt aft2*  4- ]- ät + ä2t\ f1Qfl) u 3x + v 37 Ä a\^T + 7 37 + £2/       (19a) 

in cylindrical coordinates, and 

,2A      N2^      ^2 ä*   v at , w at      a/a*t . a*t , a<v =   aßLi + 24 + m (19b) 

in cartesian coordinates. Eq. (19a) includes the idealization 

that the heating is axially symmetrical. 

In addition to the heat transfer boundary conditions, 

an initial condition is also required and is normally employed 

as the uniform temperature at the point where heating (or 

cooling) started. 

t = t  at x = xa (20) e e 

For the exact solution to the thermal entry length 

problem, the continuity and momentum equations need to be 

solved first. 
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II.3.1 Heat Transfer Boundary Conditions 

Heat transfer boundary conditions for a thermally 

developing flow can be categorized in two classes:  (i) 

Those boundary conditions of Section II.1.3 (Table l), where 

t , q", R  etc. are axially constant.  (Also the axialiy w       w 
constant (t -t ) boundary condition, to be discussed, would 

fall in this class.) (ii) Arbitrarily specified axial dis- 

tribution of t , q", R  etc. 

II.3.1.1 Axially Constant t . q", R . (t -t ) etc. 
w       w    w  in 

All the heat transfer boundary conditions outlined 

in Section II.1.3 and summarized in Table 1 are also applied 

to thermally developing flow.  Additionally, the (At) boundary 

condition, defined in Eq. (2l), will be considered, since 

the counterflow heat exchanger with c
m±x/cmax  = *  (e-S« 

the gas turbine regenerator) has a boundary condition be- 

tween (Ö3) and (St) . 

At = t - t = a constant inde- 
w   m  pendent of x 

(21) 

t|p = t = a constant, inde- 
w  pendent of (y,z) 

In case of the fully developed flow, the constant wall 

heat ^lux boundary condition (Hi) is the same as the constant 

wall to fluid bulk mean temperature difference boundary con- 

dition (St) .  This is because the heat transfer coefficient 

h is found to be independent of x in fully developed 

laminar flow.  However, for the case of thermally developing 

flow, the (Hi) and (St) boundary conditions are different, 

as the heat transfer coefficient is dependent on x along 

the thermal entrance.  In the gas turbine regenerator liter- 

ature, the (Hi) boundary condition, Eq. (7), is exclusively 

employed or implied, except for the case of circular tube 

.: jnsidered by Kays [12] . 
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11.3.1.2 Axially Arbitrarily Specified tw, q", R^ etc. 

The axial distribution of wall surface temperature, 

wall heat flax, wall thermal resistance or wall radiant heat 

flux is specified arbitrarily. The solution of energy equa- 

tion with this class of boundary condition can be obtained 

by the superposition techniques if the energy equation is 

linear and homogeneous. This is the situation when the 

thermal energy sources and viscous dissipation with the 

fluid are neglected. Then a sum of solutions is again a 

solution. Thus by superposing thermal entrance solutions 

f or ^ially constant t , q,? etc., any arbitrary axial var- 

iations in t . q" ecc. can be handled, 
w 

The general thermal entry length problem with arbitrary 

axial variations in wall temperature has been considered by 

[5,13,1*0. The same problem with arbitrary axial variations 

in wall heat flux has been tackled by [5,15,l6]. 

11.3.1.3 Axial Wall Heat Conduction 

Wall heat conduction axially generally lowers the 

heat transfer coefficient for the duct flow. The importance 

of taking axial wall heat conduction into account has been 

realized [k],  and some work has been done in this area. 

Rotem [17] considered the effect of axial wall heat 

conduction in the beginning of thermal entrance region.  He 

presented a method for rapid, approximate calculation of 

both the temperature and film coefficient for two cases of 

almost isothermal wall and constant heat flux wall. 

Davis and Gill [l8] analyzed the laminar Poiseuille- 

Couette flow between parallel plates with finite axial heat 
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conduction in solid. The Poiseuille fxow5 and Couette flow*5 

are special cases of the Poiseuille-Couette flow.  They con- 

sidered the constant axial heat flux at the outside wall 

boundary. They concluded that the axial conduction in the 

solid boundary can significantly affect the temperature field 

in the fluid phase and lower the Nusselt number associated 

with the heat transfer. 

P; 
-"Fully developed, steady state, laminar flow of an incom- 
pressible fluid through a stationary circular or parallel 
plate duct is referred to as Poiseuille or Hagen-Poiseuille 
flow. The viscosity of the fluid is specified as constant, 
and the body forces are absent. The invariant velocity 
profile obtained for the Poiseulle flow is parabolic at any 
cross-section of the duct. 

Fully developed, steady state, laminar flow of an incom- 
pressible fluid between two parallel plates (one of which 
is at rest, the other moving at a constant velocity par- 
allel to itself) is referred to as Couette flow. The vis- 
cosity of the fluid is assumed as constant, and there are 
no body forces. The invariant velocity profile obtained 
for the Couette flow is linear at any cross-section of the 
duct. 

22 



III. DEFINITIONS AND GENERAL CORRELATIONS 

In the previous chapter, appropriate differential equa- 

tions as well as the boundary conditions wers outlined for 

the laminar flow friction and heat transfer problem for 

single and multiply connected cylindrical ducts. The fric- 

tion factor, Nusselt number and other associated dimension- 

less terms, which are used by an engineer in practice, are 

defined in this section. Also presented are the relation- 

ships between these terms and the solution to the problems 

formulated in the previous section. 

III.l Flow Friction 

From in engineering point of view, it is important 

to know how much power will be needed to flow the fluid 

through the heat exchanger. The fluid pumping power is pro- 

portional to the pressure drop in the fluid across the heat 

exchanger. The pressure drop in fully developed flow occurs 

due to the wall shear. While in the developing flow, it 

occurs due to the wall shear and the change in momentum 

(flow acceleration) across the two duct sections of interest. 

Throughout the analysis and result of this report, considera- 

tions of abrupt contraction and expansion losses at the duct 

entrance and exit are omitted as well as form drag and flow 

acceleration pressure effects due to density changes.  In 

design applications, these factors also have to be considered 

[4]. Fortunately, these factors are additive for the evalua- 

tion of total pressure drop. 

The velocity distribution for a given duct geometry is 

determined from the applicable Eq. (3) or (14).  The mean 

velocity um and the local wall shear stress T^ are then 

evaluated. They are defined as 

Um=fc 7UdAc (22) 

Ac 
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For the Newtonian fluid flowing through a circular duct, 

the local wall shear stress is given by [5] 

Tx= iba? *> (23) 
r=a 

The local wall shear stress for other duct geometries can be 

expressed similarly for the cartesian coordinate system. Ex- 

cept where more detailed information is needed, the local 

wall shear stress is consistently defined as average wall 

shear stress with respect to the perimeter of the duct; e.g. 

for the axisymmetric flow in a rectangular duct, Fig. 5> at 

any cross section x , 

y 

T 
2b 

t 1 
iSL- 

■> Z «*-H 

Fig. 5  A cross section of a rectangular duct 

T = Sg^fanPET 

a 

/ 
-a 
Wy=b / 

-b 
(If) dy 

z=a 
(24) 

The  local and average Fanning friction factors  are subsequently 

determined.     They  are  defined as 

'The  dynamic viscosity coefficient    \i    defined here  is the 
g      times the usual fluid dynamics  dynamic viscosity coef- 
ficient.     Hence note that Newton's  second law of motion is 
not  invoked  in Eq.   (23),   even though    gc     appears  in that 
equation. 
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f„ =  ^— (25) 
PUmV2gc 

T dx 
X 

fave  - -^rr- <26> 

For constant density flow in the duct of Fig. 1, pressure 

drop from the section x = 0 to x can be found by applying 

Newton's second law of motion and conservation of matter as 

pum/2gc       h   el» 

where f    is given by Eq. (26), u is the velocity pro- 
avs 

file at the cross section x . However, this representation 

of pressure drop is not useful for engineering calculations 

because first the f    and the velocity profile u are 

needed as a function of x and then the integral must be 

evaluated. Alternative means of evaluating Ap will be 

presented in the following subsections. 

In addition to the pressure drop and velocity distribu- 

tion in the? entrance region of flow, the knowledge of hydro- 

dynamic entrance length is essential. The hydrodynamic en- 

trance length, L^y >   is defined as the duct length required 

to achieve the duct centerline (maximum) velocity as 99$ of 

the corresponding fully developed magnitude when the entering 

flow is uniform. 

III.1.1 Fully Developed Flow 

In case of fully developed flow through a duct, the 

velocity profile is invariant across any flow cross section. 
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Consequently, the wall shear stress does not change axially, 

and the average friction factor is the same as the local 

friction factor for that part of the duct beyond the hydro- 

dynamic entry length.  In this case, the constant density 

flow pressure drop across two flow cross sections separated 

by a distance L takes the following form instead of Eq. 

(27). 

-4E— = f£- (28)8 
pu^/2gc      

rh 

In fully developed region, Eq. (28) may be rearranged, using 

the definitions of Re and c-, , to 

fRe Ä . ^JL. (29) 
m 

Also, based on the solution of differential equation (3), it^ 

can be shown that 

fRe = Kf (30) 

where Kf is a constant dependent on the geometry of the 

duct cross section, and Re  is the Reynolds number based on 

hydraulic diameter, 
In a long duct, in which fluid enters at a uniform 

velocity profile, the effect of the entrance region, as men- 

In the literature, the 1!largeM or Darcy friction factor is 

also used.  It is defined such that 

fD - i* 

and the right hand side of Eq. (28) becomes  iDV
D
h • 
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^ * fnr the fully developed flow. "•« that for the iui.xy defined by 
sure drop, designated as K(<°) , 

+ K(») \    <3l) 

In heat exchanger analysis, only the knowledge of entrance 

length and ff, is sufficient to establish the total pres- 

sure drop; a detailed investigation of velocity and pressure 

distribution in the flow field is not needed. Lundgren et 

al. [19] devised an approximate analytical method for cal- 

culating K(°°) for the ducts of arbitrary cross section. 

They obtained 

C  Ac 
/1 ^ - &h (32) 

Thus the fully developed velocity profile (ufVu ) tT0™  the 
solution of Eq, (3) is needed to evaluate K(°°) . The 
f^Re and K(°°) were determined for circular tube, elliptical 

ducts, rectangular ducts, isosceles triangular due La and the 

concentric annular ducts in [19]. McComas [20] extended this 

analysis to approximately determine the hydrodynamic entry 

length. He assumed Schiller velocity profile [21] but only 

dealt with the inviscid core, i.e., the flow along the center 

line of the tube was assumed to be inviscid up to the axial 

location where the boundary layer had completely filled the 

duct. He also imposed the condition that the center line 
was the line of maximum velocity for the fully developed flow, 

The hydrodynamic entrance length, from his analysis, is 

given by 
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u, 

L+ -äat-- 
(Jffi*) _ i . K(») u m 

DhRe ~?E (33) 

McComas presented In tabular form the L'  , (U  /U ) , 
iiy  N max m 

K(») and K^ = fRe for fully developed laminar flow through 

circular, elliptical, annular, rectangular and isosceles 

triangular ducts» 

111,1.2 Tiydrodynamlcally Developing Flow 

In the fully developed region, the velocity dis- 

tribution is obtained from the solution of Eq. (3) fcith 

boundary condition of Eq. (4). The friction factor and in- 

cremental pressure drop are then determined from Eqs. (25) 

or (29) and (32) respectively. 

In case of hydrodynamically developing flow, the velocity 

distribution is obtained from the solution of Eqs. (14) and 

(17) with the boundary and initial conditions of Eqs. (15) 

and (16). The friction factor and incremental pressure drop 

are then calculated from the following equations. 

As in Eq. (27), the pressure drop from x ■ 0 to x 

is obtained as 

#- = f 
PV2*c 

ave r h ♦t / 

.'U 
^u 

2 
-) dA„ .. 2 
m 

However, as noted before this representation of pressure drop 

is operationally not convenient. Therefore, it is presented 

in the following two ways for engineering calculations: 

4L 
»um/2gc 

-   -f* 
app rh 

(3*0 

42- 
PV2Sc 

•fd rv 
K(x) (35) 
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These equations define the apparent Panning friction iactor 
fat)P an(* ttle Pressure droP increment K(x) due to entrance 
region. The K(x) consists of two additive components: 
(i) the momentum change "between the entrance section x * 0 
and the downstream section x , and (ii) accumulated incre- 
ment j.n wall shear between a developing and a fully developed 
flow. The value of K increase monotomicaiiy from 0 at 
x = 0 to a constant value in the fully developed region. 
The f   , K(x) and L.  , based on the solution of Eq. (14) 
are found to have the functional form as follows. 

fapp Ä W^} (36) 

KW Ä K^Ke> <37> 

^v Ä !T*£ s instant (de-    (33) 
** uhKe  pending on duct 

geometry) 

If the boundary layer assumptions are not invoked, but rather 
complete Navier-Stohes aquations are solved, the functional 
forms are found as 

fa^ * fflnn(re , Re) (39) app   app luRe 

K(x) - K(fag  , Re) (40) 
h 

tJy-I^He) • {*!) 

III.2 Heat Transfer 
For the duct fluid flow problem involving heat transfer, 

wall heat flux q" and fluid and wall temperatures are re- 
quired. If the fluid inlet conditions are g.'ven, the outlet 
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conditions can "be determined, if the wall heat flux dis- 
tribution is known along with the flow path geometry. Al- 
ternatively, If the inlet and outlet conditions are known, 
the length of the duct (oi a heat exchanger) of a given 
cross sectional geometry can be determined from the wall heat 
flux distribution* The formulae for qM and other related 
heat transfer parameters follow. 

The peripheral average heat flux at the wall for a 
fluid flowing through a duc*c Is given by ..Fourier1» law of 
hea« conduction as 

This equation is the rate equation for the conduction heat 
transfer. Considering the general case"of nonuniform periph- 
eral heating, the mean temperature gradient at the wall in 
Eq. (42) is obtained by averaging with respect to the periph- 

ery r of the duct. 
The convection rate equation, defining the heat transfer 

conductance is 

q" = h(t  -tj (43') n    v w,m m 

where t    and t  are the mean temperature of wall and w, m      m 
bulk mean temperature of the fluid respec vely, defined as 

w.m -i/v« ^4) 

= iV fu 
cm J 

Ac 

^=01 /■ UtdAc (il5) 

In a thermal circuit representation such as Fig. 4, 1/h sig- 
nifies a thermal resistance between tw^m and tffl potentials. 
In some of the solutions outlined in Chapter V, the h will 
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be either infinity or negative, This means the temperature 

difference (t^ jj-t ) is either zero or negative even though 

the heat flux is finite and directed into the fluid. 

From Bqs. (42) and (43), the wall heat flux is given by 

q« » - k(VtL m - n(t  -t ) (46) 

Once the temperature field is known, (Vt) ^ can be eval- r '     v   W.m 
uated and   h   can be determined from Eq.   (46), 

In case of   (S3)   boundary condition, the overall heat 
transfer coefficient   U     is of primary practical importance. 
The    U     is defined from 

q\=U0(Vtm) (Ü7) 

öftere from Pig". 4, 

The laminar ^low heat transfer results are generally 

correlated in terms of dimensionless heat transfer modulus, 

the Nusselt number, defined as 

Nu = -j£ (49) 

where D,  is the hydraulic diameter of flow passages based 

on the flow wetted perimeter. In case of @ boundary con- 

dition, the overall Nusselt number, defined as 

NUQ . JOJL   , (49a) 

is operationally convenient,    In absence of thermal energy 
sources, viscous dissipation and axial heat conduction within 
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the fluid, uhö fully developed laminar flow Nusselt number is 
found tc be a constant, independent of x , Fr and Re but 
depending upon the duct cross section and the boundary con- 
ditions cf Table 1. Clearly it is nore convenient to pre- 
sent the Nusselt number rsther than other dimensionless heat 
transfer modulus such as St which does depend on Re and 
Pr . Note that from the definition of individual moduli 

Nu = St Re Pr 

The Nusselt number can also be presented in terms of 
the fluid bulk mean temperature gradient along the flow 
length.  In absence of the thermal energy sources, viscous 
dissipation, and fluid axial heat conduction, an energy bal- 
ance on the duct length 6x will yield 

q"P6x= (pA^Cp^ex (50) 

Combining Eqs. (43), (49) and (50) with the definition of 

hydraulic diameter, 
Dv um   dt »T„     ft m    m /j^ \ 

"u " 4a(t,, -tj 3x~ {51> v w, m m 

This result will be useful later in the discussion of Section 
V.4,1.2.2. 

For fully developed turbulent flow in cylindrical pas- 
sages, the heat transfer data are well correlated by plotting 
a Colburn factor (a counterpart of the friction factor) 
versus Reynolds number for the moderate Prandtl number range 
(0.5 < Pr < 10). This correlation is not strongly dependent 
on passage cross section geometry, provided that the char- 
acteristic dimension used in Re i. the hydraulic diameter. 

The Colburn factor j is defined as 



Fsr^Twlf  ^s5» 

g&3$3q%1(^ipitf 

UV"'.J - St Pr^3 * ^|f~ (52) 

To lye consistent with turbulent flow correlations and because 
St is more closely related to the N^u , a convenient design 
paraiater, the laminar flow heat transfer design data for 
heat exchangers are also presented ii terms of j versus Re 
plot. Wit* Prandtl number as a constant and for fully devel- 

oped laminar f^ow, Eq. (52) becomes 

<Re - JK^ (« NuPr~1//3), a constant       (53) 

The similarity of Eq*. (30) and (53> is of interest. 
For the @ boundary condition, the dimensionless wall 

thermal resistance iu defined as th<$ ratio of wal. chermal 
resistance to the pure conductive fluid thermal resistance 

for a conduct lor. path length D^ , i.e. 

The raciprocal of R  has been called variously the wall 
Nusselt number and the wall Blot number in the literature. 
But as 1/R^ does not have the usual physical significance 
assigned either to Nusselt number or Biot number, this un«* 
fortunate terminology should be replaced. The wall thermal 
resistance parameter It , which does have a simple physical 
significance of its own, is used for this purpose. 

III.2.1 Fully Developed Flow 
As discussed earlier, in fully developed flow, an 

invariant nondimensional axial temperature profile results 
for the previously described wall temperature boundary con- 
ditions. The temperature profile, solution of Eq. (5), can 
be described in a closed form for simple geometries or de- 
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terminal by other methods discusrad in the next chapter. 

Knowing the temperature distribution, the h and hence Nu 

are determined from Eqs* (46) and (49). 

(a) (?) Boundary Confltio:!. The Nusselt number for fully 

developed, laminar flow heat transfer is found to be a func- 

tion of Pe . 

NuT - NuT(Pe) (55) 

Here Pe ,  the Feclet number, is associated with the effect 

of axial heat conduction within the fluid. Hennecke [22] 

shows that for Pe > 50 , the axial fluid heat conduction 

can be neglected, and Nu™ is a constart as a cons3queues. 

The effect ol thermal energy sources and viscous dissipation 

on NUm has not been investigated. 

(b) (ffi) and -®j   Boundary Condition. The fully developed 

laminar flow Nusselt number for these boundary conditions is 

expressed in the following functional forms* 

SD. 
NUH1 » NuH1(^ , n ) (56) 

NuH2 = NV(a7^/ 5 > (57) 

where SD. /q  and i\    (or. 6.) represent respectively the ef- 

fect of uniform intensity thermal energy sources and the 

viscous dissipation in the fluid. For these thermal boundary 

conditions, the axial heat conduction within the fluid is 

constant, and consequently does not"affect the Nusselt number. 

Tyagi [23, "4,25,26] colludes that if  |T)| or |o| > 0.1 , 

the effect of viscous dissipation is significant. Cheng [27] 

concludes that the effect of viscous dissipation is greatest 

for the circular duct, decreases for the regular polygonal 
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duct with decreasing number of sides, and is least for the 

aquilaterax triangular duct. 

(c) (^ Boundary Condition, For finir,* peripheral wall 

heat conduction, the Nusselt number is a function of the 

peripheral conduction parameter K . 

NuH3 * NuH3(I^) (50) 

(d) (fflft Boundary Condition. For exponential wall heat flux 

boundary condition, Eq. (10), the Nusselt number is a func- 

tion of the exponent "h  . 

NUR4=NUH4(X) (59) 

when the effect of fluid axial heat conduction, thermal 

energy sources and viscous dissipation is neglected. 

(e) (S) Boundary Condition. For finite thermal resistance 

at the wall, the fully developed laminar flow Nusselt number 

is found as 

NuRi « Nu^tR^Pe) (60) 

where the effect of axial heat conduction in the fluid is 

represented by the dep .dency on Peclet number,  Pe . The 

effect of thermal energy sources and viscous dissipation is 

not investigated so far. 

(f) ®) Boundary Condition. For the non-linear radiant 

flux boundary condition, the fully developed laminar flow 

Nusselt number is found as a function of 7 . 

NuR2 = NuR2(7) (61) 

where y  ■ S^^e^l/* * 
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111.2.2 Thermall- Develop! vsg Flow 
In developing temperature profile case, the solution 

of Eq. (19), the fluid temperature distribution is obtained 
by one of the methods outlined in the next chapter for a 
given boundary condition* Knowing the temperature distribu- 
tion, the dimensionless heat transfer characteristics for a 
given duct under specified boundary condition is analytically 
correlated by either of the following two methods:  (i) 
generally accepted and well-known Nusselt Lumber correlation, 
and (ii) recently proposed [28] dimensionless temperature 
correlation. It will be shown that the recently proposed 
correlation is an extension of the Nusselt number correlation. 
These correlations, specifically for (T) and ^u) boundary 
conditions, will be described below. 

In addition, the knowledge of thermal entrance length 
is essential. The thermal entrance length; L^h , is de- 
fined as the duct length required to achieve the valu** of 
local Nusselt -number- Nux as 1.0*5 Nufd . The local Nusselt 
number is defined as 

W Nu„ = -4-ä (62) 

where the local heat transfer coefficient Is defined the seine 
way as In Eq.   (4'i) 

v i. m   m        v:, m . m 

In case of uniform peripheral surface temperature, t^ m - 

S, ' and  ^'Vt)w,m - <Vt)w • 
The local Nusselt number depends upon the axial distance 

from the point where heating (or cooling) started. The di- 
mensionless axial distance is defined as 

x* = BTFe " 0IFF (64) 
n    n 
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Witn this choice of x* , the energy-equation i'or the Graetz 

proSlenr becomes parameter free. Throughout the 1 dermal en- 

trance heat transfer literature, the x* or .1/x* iß 

designated as the Graetz number» McAdams [29] defines the 

Graetz number auite differently as Gz « Wa/kL « PePAL . 
P 

To avoid the confusion of the definition of Graetz number, 

the x* will be used aa the dimensionless axial distance. 

The x+ defined by Kays [5] is simply related to x* as 

x-«- = 2x* . 

First the case of fully developed velocity profile and 

developing temperature profile will be considered. Next the 

combined entry length problem will be discussed. 

III.2.2.1 Hydrodynamlcally Developed Flow 

(a)  (?) Boundary Condition 

In this case, fluid bulk mean temperature distribution, 

the local and total wall heat flux are unknown. Knowing one 

of these three unknowns, the required heat transfer surface 

area and remaining unknowns can be determined. For this 

purpose, two different way a of correlation have been pro- 

posed?  (i) Nusselt number correlation, (ii) dimensionless 

temperature correlation. 

(i) Nusselt Number Correlation. Based on the solution of 

Eq. (19), the local and mean Nusselt numbers are presented 

as a function of the dimensionless distance x* . The local 

Nusselt number is defined by Eq. (62). The mean Nusselt 

number is defined as 

Num - -p . (6S) 

X 

Vi'/h. xdx (66} 

%"he Graetz problem Is described in Chapter V, Section 1.3.1. 
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( '< -,- j 

rn '·' 1 
· ( • ~ -- ---·- ------- ·-· t .... L 

·~': 

h Px: 
1 - 0 :-:p (- \I[:?-) - 1 -

p 

-N tu 
(' (6r() 

!:: :n•.:i :l,:y:n;". ll\l:t:•'t":tLor .'Hl·i denoml"'nt-ttor on the left hand 

t·,-n=trl'i•:-•tL :.:l m:-txLrnum possible heat transfer. 'This ratio is 

I • ·, . , 
L. I : • 

1.---r\ 
\,' ••• ~.I 

(6I) . 

t,(' ~1~; tht'· ctf't~('tlvene;ss, ~, of the heat exchanger 

( ·~ f • t. J1 f:' 

i''rorn 

' ."\;_' 

J'luld bulk mear. temperature t at outlet m 
.1\wt. L; known, hrnL can be determined from Eq. 

tr1c i<::nm\'n solution Nu = Nu (x*) , by itcrRtion m m __ _ 
L anc! hence the heat transfer area can be cal-

h 
··m dur~s net to 

lLlr::·., cnJy t1·:o ltcrcttlons 

vary much except 

would suffice in 

very close 

practtce. 

calculated 

If the 

. i j_ r'l c' t 

.'·: ::..; \...: ~' lJ 

A 

L :· 

is knNm_, t m can be 

The total wall heat flux from 

(! -- 1:/c e(t -t ) -- \'Jc (t -t ) p w e p m e (68) 

>: 
p f If clx l: ··- qx (69) 

') 

16··) \ ; _·, , (68) and (69), it can be shown 
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where 

1,1 I"1^  t -t 
v? m 

However, when the axial heat conduction within the fluid 

is considered, a simple relationship of Eq. (67) or (68) does 

not result. The local Nusselt number is defined by Eq. (62) 

as before. The total wall heat transfer rate cannot be cal- 

culated based on the mean Nusselt number defined previously, 

Eq. (65). Instead, the dimensionless total wall heat flux 

$ defined as follows is determined and presented as a func- 

tion of the dimensionless distance x* . 

(72) 

and is evaluated from 

*-W^rri /<<* (^a) 

where q" is given by Eq. (63). Note that inappropriately 
x 

this dimensionless wall heat transfer rate $ nas been termed 

a mean Nusselt number in [22] and [30]. The "mean heat 

transfer coefficient" in $ does not represent a thermal 

conductance in a thermal circuit for a heat exchanger nor 

does it approach to the fully developed value at large x* 

(when x* -> °°). 

If the effect of axial heat conduction in the fluid is 

considered in the energy balance, Eq. (50), it can be shown 

that the Eq. (67) transforms to 

8 = 1 - 0(x*,Pe)e tu (73) 
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»here 0 (x*,Pe) Is designated as the ^effectiveness coef- 
ficient by Stein [30a]. But in Eq. (73)# the »t ' is defined 

based on trie hm rather than the hx as is done by Stein 
[30a]. 

The energy transfer terms and the qualitative fluid bulk 

mean temperature distribution are shown in Fig, 6,  when the 

axial heat conduction within the fluid is present. The dotted 

line in Fig. 6 represents the fluid bulk mean temperature 

distribution when the fluid axial heat conduction 

*- x 

<r* 0 C 

p m>e 

%  * / q"Pdx 
0 

<T 

— L 

*k,LAc 

p mjO 

Fig. 6  Energy transfer terms and temperature distribution 
with the fluid axial heat conduction 

is not present. The fraction energy content of the fluid is 

defined as that fraction of heat transfer that is not con- 

ducted away from the fluid. Algebraically, 

fraction energy coi.tent of the fluid 
Wo'Ve) 

a w 
(7») 

ho 
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To determine the wall heat flux, In addition to the 
knowledge of $  , the fraction energy content of the fluid is 
needed, so that the enerLy conducted away from the fluid can 
be calculated. 

Thus to apply the conventional heat exchanger design 
theory [4], when the effect of fluid axial heat conduction 
is considered, the solution to the (T) heat transfer problem 
should include Nu x,T '  Num,T    or $    and    0    or the energy 
content of the fluid as functions of    x*    and    Pe    for each 
duct geometry.    The thermal entry length for a given duct 
geometry,  in this case, has the functional form 

'th C(*) "th (75) 

According to Hennecke [22], the effect of fluid axial heat 
conduction may be neglected for Pe > 50 and x* > 0.01 . 

(ii) Dimensioning Temperature Correlation. This method is 
recently proposed by Baehr and Hicken [28]. The local di- 
mensionless fluid bulk mean temperature is presented as func- 
tion of x* . 

V**) - 
tm(x*)-t_ .  
m
t _t 

e = 1 - exp[-B1N[3^-B2x*] 
w e 

(76) 

where they have tabulated, the constants B1 md    Bg for 
the circular tube and rectangular duct of ;** ■■ 0, 0.1, 0.2, 
0.5 and 1 .  It can be shown that the dlmensionless local 

wall heat flux is 

A ^x^h    A  /\  1 d* 

dx 
EL 
* (77) 

B, 

.2/1? 
+ B2 ) expC-Bj^/x^-B^*) 
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Introducing approximations, Baehr and Hicken have inverted 

Eq. (76) so that 

x* = x*( #B) (78) 

In design application using this correlation, if the fluid 

exit bulk mean temperature, t , is given, the x* and 

hence the heat transfer surface area can be explicitly cal- 

culated from Eq. (781.  Alternatively, if the heat transfer 

area is specified, then the fluid exit temperature can be 

evaluated from Eq. (76). So it appears that this method is 

operationally useful compared to Nusselt number correlation. 

However, the comparison of Eqs. (67) and (76) reveals that 

t  « V (79) 

Ntu " 4x*%,T - Bl^* + V* f8°) 

So that the conventional    Nuw m(x*)    is approximated by the 
-in, 1 

above best fit curve and the constants B^ and B2 are 

determined. Consequently? ■it appears that the proposed new 
correlation is just an extension of the conventional Nusselt 

number correlation. The Nu T and  *m are related as 

follows. 

- di)    T    BQ    Bn 

x'a  4 dx* l   %       4   8v^ 

The correlation method of Eq.   (J6)   is essentially the 

£"Ntu    aPPr0ach  ti+J  for the heat exchanger with    Cmin/Cmax = 
0   .    Baehr and Hicken compared their scheme with the     (At)^m 
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approach an1 showed that their proposed procedure is opera- 

tionally more convenient than the (At)jjm approach for the 

calculation of heating surfaces from beat transfer area« 

This view is also supported in [4]. 

(b) (ftp   Boundary Condition 
In this case, the axial wall and fluid bulk mean tem- 

perature distribution is unknown. Two quite similar ways of 

correlation have been proposed for this purpose» 

(I) Nuss,elt Number Correlation. Based on the solution of 

energy equation (19), the local Nusselt number is presented 

as a function of x* , 

HT" " iNUx,Hl " l¥Wx,Hl 
h      NuvU1  - HÜ„.W1(.T*) (83) 

viV^Sp local heat flux    q"    and total heat transfer rate    q 
(from x » 0 to x) are given by 

qx - MMx)_tm(x)1 = constant (84) 

q    -    /* q> = q»A (85) 

j q    =   Wcpttm(x)  - te] (86) 

From these four equations (83) through (86), the total heat 

transfer rate, heat transfer area or terminal temperature 

can be calculated, w" n any one is unknown. There is no need 

to evaluate the mean heat transfer coefficient,  It is also 

interesting to note that the dimensionless temperature ratio, 

similar to the effectiveness S   and *m in case of (|) , 

is dependent on hv only as it can be easily shown that 
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where N. 
hxPx 

tU,X 

However, in a heat exchanger having approximately @ bound- 

ary condition (e.g. counterflow heat exchanger, although it 

has close to (H3) boundary condition), an overall conductance 

U0 is need«d. In this case, the mean heat transfer coef- 

ficient on each side of the heat exchanger is needed and it 

can be determined from 

I? 
i 
H 

VHl 

X 

i / hx,Kldx 

o 
(88) 

Alternatively, for operational convenience the    Ni^ K1   can be 
evaluated as a function of   x*    for the given duct cross 
section.    In this case, the total heat transfer rat€ is re- 
lated to    h    un    from    Nu, ul    as m,nl mjHi 

1 - VHlA<At) ave (89) 

where 

(At) ave 

x 

^^ 
dx 

-1 

(90) 

Before proceeding to the second correlation scheme, the 
effect of fluid axial heat conduction may be mentioned. The 
functional relationship is found a& 

N"x,Hl " Nux,*l(**'Pe) (91) 
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Lth,Hl> Lth,Hl(Pe) (*> 

Similar relationship holds for Nu „. . The effect of fluid 
axial heat conduction is smaller for (gu boundary condition 
in comparison to (T) boundary condition. According to 
Hennecke [22], the effect of axial heat conduction may be 
neglected for the fluids with Pe > 10 for x* > 0.01 . 

(ii) Dimensionless Temperature Correlation. This method 
has been recently proposed by Baehr and Hicken [28], The 
dimensionless temperature is presented as a function of x* 
and its fully developed value, i.e., 

where 

Along with this, Eqs. (85) and (86) are used to determine the 
heat transfer rate, heat transfer area or terminal tempera- 
tures,  Baehr and Hicken [28] tabulated the values of 
8w-m^ '  and the constants Bi and B? for the circular 
tube and parallel plates. 

The e, ~ anö Nu „, correlations nethods are es- w-m        X,nl 
sentially the same since fun Eqs. (84) and (9*0 it follows 
that 

•«-w-*ts (95) 

(c)  (^> Boundary Condition 
The local Nusselt number and the thermal entrance length 

are correlated in the following functional form. 
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Nux,H2 " Nux,H2(x*'Pe) 

Lth,H2 - Hh/Hfi^5 

(96) 

(97') 

Similar relationship holds for Num H2 . The Pe number is 

associated with the effect of fluid axial heat conduction, 

which has not been Investigated yet for @ boundary condi- 

tion. 

(d)  (!5} Boundary Condition 

In this case, 

Nux,Rl " Nux,Rl(x ' VPe> (98) 

Lth,Rl Ä tth,Rl(Hw'Pe) (99) 

and similar relationship holds for !6L ^ , where Pecl^t 

number is associated with the influence of fluid axial heat 

conduction. 

(e)  Eg Boundary Condition 
The local Musselt number and thermal entry length are 

presented as 

Nux,R2 " NUX,R2(X*'Y) 

Lth,R2 s: Lth,R2^ 

(100) 

(101) 

•2 

where y    is the radiation parameter, €
w
öT

e j/k # 

III.2.2.2 Simultaneously Developing Flow 

For simultaneously developing velocity and temper- 

ature profile, the Prandtl number becomes an additional 

parameter influencing the Nusselt number» While the velocity 
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development is independent of Prandti number, the temperature 

development is dependent on Prandti number. Hence, when the 

axial heat conduction, thermal energy sources and viscous 

dissipation within the fluid are neglected, the thermal en- 

trance Nusselt number for (f) , (65) and @> boundary con- 

ditions is given by 

Nu ■ Nu (x*,Pr) 
X SV 

(102) 

If the axial thermal conduction within the fluid is considered 

as in the case of liquid metals, 

or 

Nux ■ Nux (x , Pr, PrRe) 

XL 

Nu„ ■ Nuv(x ,Pr,Re) 

(103a) 

(103b) 

For @ and ^  boundary conditions, additional parameters 
R. and y   appear respectively in the above equations. 

The fully developed velocity profile with developing 

temperature profile ease considered in Section III.2.2.1 is 

a special case of simultaneous development of velocity and 

temperature profiles with Pr ■ °° . 
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IV.  GENERAL METHODS 

The governing differential equations and the associated 

boundary conditions for the laminar velocity and temperature 

profiles for the duct flow .are outlined in Chapter II. The 

various definitions and general correlation schemes viewed 

from an engineering point are described in Chapter III. In 

this chapter, the general methods used in the heat transfer 

literature are presented to solve the problems formulated 

in Chapter II and arrive at the diraensionless parameters of 

Chapter III. 

IV,1 Fully Developed Flow 

Hydrodynamically and thermally fully developed laminar 

flow friction and heat transfer solutions are obtained by 

the following eight methods. 

(1) Exact or Approximate Solutions by Analogy Method. 

Marco and Han [31] and Cheng [32] pointed out that the fol- 

lowing four Dirich.let problems are relatet to each other: 

a. Torsion of prismatical bars 

b. Fully developed laminar flow 

c. Uniformly loaded, simply supported polygonal plates 

d. Fully developed tftt) laminar heat transfer 

Considering (a) and (b), the stress function in torsion 

theory [33] has the identical differential equation and 

boundary condition as that of the laminar velocity field 

for the duct flow.  Hence, based on the known solutions of 

torsion of prismatical bars, the velocity distribution and 

fRe can be determined, as is done for the case of rectangular 

and'moon ..shaped ducts in this report. 

Consider (c) and (d), the governing differential equation 

is fourth order for the small deflection of thin polygonal 

plates, under uniform lateral load and simply, supported along 
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all edges [3^]. This differential equation and the associated 
boundary conditions for the thin plate problem are identical 
to the (^laminar temperature field in the duct flow, pro«, 
vided that the axial heat conduction, thermal energy sources 
and viscous dissipation within the fluid are neglected. For 
the plates with curvilinear boundaries the adjustment of 
Poisson's ratio is required so that tha boundary condition of 

nonslip flow may be satisfied f3I,32}. As noted in Section 
II.1.2, the solution to a fourth order differential equation 
for the @ temperature problem will simultaneously provide 
the solution for the velocity problem. Consequently, based 
on the known solutions of the thin plate problem, the $^ 
temperature and velocity distributions, Nu^ and fRe can ~ 

be determined. The NüH1 for rectangular, aquilateral 
triangular, right angled isosceles triangular, semicircular 
[31], and circular sector [6] ducts were evaluated by this 
method. 

As mentioned above, knowing the solution of thin pliatt 
problem, fRe and Nu^ as wall as velocity, stress, and 
temperature distribution etc, can be calculated* Cheng £32, 
35] has shown how to apply the Molri   and point matching 
methods (u3ed to obtain approximate solutions for the thin 
plate problem) for the laminar (&p heat transfer problem, 

(2) Exact Solutions by the Method of Complex Variables. 
This method is limited to the cases where the velocity and 

temperature fields are deduelble directly from the equations 
of the boundary curves such as equilateral triangular and 
elliptical ducts. Only the (S3) boundary condition is con- 
sidered by Tao [36], Sastry [37] applied Taofs method [36] 
to confocal ellipses for the $3) boundary condition. 

(3) Exact or Approximate Solutions by Conformal Mapping, 
Any duct cross section which can be mapped exactly or ap- 
proxlmately, by conformal transformation, onto a unit circle 
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can be analyzed by this method. Tao has considered the 

cardioid duct [38,39}, hexagonal duct [38] and Pascal's 

limacon [39] for (Hi) boundary condition, and cardioid duct 

[4o] for (^   boundary condition. Tao» in his analysis, 

included the effect of thermal energy sources, but neglected 

the effect of viscous dissipation, gas compression work 

and the axial heat conduction within the fluid. Sastry ap- 

plied Tao's method [39] for curvilinear polygonal ducts \   '.] 

for the (Hi) boundary condition. Sastry [42] also considered 

the general power series mapping function; and presented the 

formulae for u, u , t, t , q" and Nu for the (53) boundary 

condition. Examples were worked out for cardioid and ovaloid 

cross sectional ducts. Tyagi extended Tao's work by including 

the effect of viscous dissipation for the (Hi) boundary con- 

dition [23] for equilateral triangular and elliptical ducts 

and (S§) boundary condition [24] for the cardioid duct. 

Tyagi also extended Tao's work by including viscous dissipa- 

tion and gas compression work for the    Qn) [25] and (£2) 

[26] boundary conditions for the cardioid duct. 

Cssarella et al. [43] proposed an approximate conformal 

mapping technique for the thermal entrance Nu „ through 

the duct of arbitrary cross section with (T) boundary con- 

dition. As an asymptote, NuT can be calculated from the 

results for Nu n . Cniy the slug flow solutions and the 
X, x 

Graetr. problem were solved [43], 

(4) Approximate Solutions by Finite Difference Method. 

The differential momentum and energy equations are put inv,o 

tht finite difference form, and the solution is carried out 

by hand or by a digital computer using standard techniques 

such as relaxation, Gaussian elimination etc. Clark and 

Kays t'44] employed the relaxation technique and obtained 

NUm- and Küjn  for rectangular ducts and the equilateral 

triangular duct.  Schmidt and Newell [45] employed th? 
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Gaussian elimination technique with an iterative refinement 

and obtained NuT and NuH1 for rectangular and isosceles 

triangular ducts.  Iyczkowski et al. [11] utilized the ex- 

tended Dufort-Franke1 method and determined NuT for rectan- 

gular ducts and NuR^ for the square duct. Sherony and 

Solbrig [46] also used the Dufort-Franke1 method and evaluated 

fRe and NuT for the sine duct, frvyer and berry [47] em- 

ployed the Gaussian elimination method and determined Nu„p 

for longitudinal laminar flow over a rod bundle r 'rangeu in an 

equilateral triangular array. 

Methods (5) and (6) described below are powerful, com- 

putationally fast, and accurate to any desired degree for the 

(Hi) and ^g) boundary conditions, hence are now preferred 

over numerical finite difference method. 

(b)    Approximate Closed Form Solutions by the Point 

Matching Method. After an appropriate change of 

dependent variables, the momentum and energy equations can be 

represented as two-dimensional Lapiaco equation. The general 

solution to this equation is obtained by a linear combination 

of harmonic functions in form of an infinite series. Thi"3 

series is truncated at finite number of terme n . The n 

points are selected on the periphery V   either equidistance 

or equiangular. The boundary condition is satisfied at these 

n pre-chosen points exactly to determine the n unknown 

coefficients of the truncated series. The velocity of temper- 

ature distribution is then obtained in a closed form series 

with these coefficients. The (ß!) and (££) are the only 

boundary conditions treated to date by the point-matching 

method. The limitations of the point-matching method are 

discussed by Sparrow in Cheng's paper [32]. The well known 

algebraic-trigonometric polynomials, obtained by the general 

solution of Laplace equation b/ the separation of variables 

method, were employed in the following cases: the fRe and 
NuHl for the lon6itudlnal flow over cylinders arranged in 
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arrays by Sparrow et al. [48,49], the fRe for isosceles 

triangular ducts by Sparrow [50], the fRe , NuR1 and NuR2 

for the regular polygonal ducts by Cheng [51,52], the fRe 

for the cusped, regular polygonal, equilateral triangular, 

elliptical and rectangular ducts by Shin [53], the fRe and 

NuH1 for the regular polygonal ducts with a central circular 

core by Cheng and Jamil [54], the NuR1 for eccentric annuli 

by Cheng and Hwang [55] and fRe and NuH1 for cylindrical 

ducts with central regular polygonal cores by Cheng and Jamil 

[56]. The linear combination of polynomial harmonic functions, 

the real and imaginary parts of the analytical function 

(x + iy)n where n is an integer, were used to calculate 

fRe , Nu„, and Nu„2 for the circular segment duct by 

Sparrow and Haji-Sheikh [57] and the fRe and NuH, for 

circular ducts with diametrically opposite flat sided duct 

by Cheng and Jamil [56]. 

(6) Approximate Closed Form Solutions by Least-Square- 

Fitting of Harmonic Functions. This method differs 

from the point-matching method that more than n points 

(usually 2n to 3n points) along the boundary are employed to 

determine n unknown coefficients in the truncated series 

harmonic function solution for the Laplace equation. The 

coefficients of the series are evaluated numerically by the 

least square fit.  Thus, the exact fit to these pre-chosen 

points is sacrificed in favor of a better fit to the boundary 

as a whole.  The fRe were obtained by this method for reg- 

ular polygonal ducts with circular centered core by Ratkowsky 

and Epstein [58] and for the circular ducts with regular 

polygonal centered cores by Hagan and Ratkowsky [59].  Shah 

[60] obtained fRe , K(°°) , IIuH1 and Nu^0 for rectangular, 

isosceles triangular, sine and equilateral triangular ducts 

with rounded corners. The algebraic-trigonometric polynomials 

were employe': for the solution of Laplace equation in [58, 
1     ).(Wr":  . 
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(7) Approximate, Variational Methods. A variational 

method for fully developed laminar flow in non-circular ducts 

was proposed by Sparrow and Siegel [6l] for the (S3) and (f&) 

boundary conditions. Examples were worked out for the square 

duct, rectangular duct with a* « o.l and a circular sector 

duct. Gupta {62] formulated a variational approach for the 

laminar heat transfer with (55) boundary condition with the 

fluid axial heat conduction included.  Stewart [63] determined 

the accuracy of variational flow calculations by applying a 

reciprocal variational principle, with the example of a square 

duct. A variational approach for @ boundary condition was 

presented by Pnueli [6k],  where the upper and lower bounds 

for Nusselt numbers were obtained for the circular and 

square duct. 

Finlayson and Scriven [65] discussed and critically 

reviewed the different variational methods used for the 

transport and transformation processes. They concluded that 

the different methods used in the literature did not possess 

the advantages associated with the genuine variational prin- 

ciples, and no general variational principle can be devised 

for the transport and transformation processes. They showed 

that the variational methods of approximation, used in the 

literrture, were equivalent to the more straight forward 

Galerkin method or another closely related version of weighted 

residuals. 

(8) Approximate Method for Very Small Aspect Ratio 

Ducts. Maclaine-Cross [66] presented an approxi- 

mate method for calculating fully developed laminar flow 

fRe , NuH1 $  and K(») for the ducts with low height-to- 

width ratio and without abrupt variations in height across 

their width. The method is similar to the one used for torsion 

of a narrow rectangular bar by Timoshenko and Goodier [33]. 

In the limit, the fRe , NuH1 and K(«)  approach the cor- 
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responding values for parallel plates. An example was worked 

for hexagonal duct with a low height-to-width ratio. 

James [67] outlined a simple method to determine the 

fully developed Nu,p for the narrow ducts (of low aspect 

ratio). As an example, he calculated Nu™ for an elliptical 

duct of ~(* m C . 

IV*2 Hydrodynamic Developing Flow 

For the hydroaynamic entry length problem, five methods 

have been used to solve Eq. (14) whi^h incorporates the 

boundary layer type idealisations of Eq. (13). Numerical 

methods are used PK-JI/.? ively for thr. complete Navier-Stokes 

equations. The msthoris f r the boundary ^ayer type hydro- 

dynamic entry lengtn ^rublem are described first. 

(1) Integral. !>e flow cross section is treated as 

having twc regions, a boundary layer developing near the wall 

and ar. inviscid fluid core. This approach was first applied 

by Schiller [21] for fV->w in a circular tube and a parallel 

plate channel. He used a parabolic velocity distribution 

in the boundary layer and Bernoulli's equation (potential 

flow dynamical equation) in the inviscid core to determine 

the pressure distribution in the axial direction.. Shapiro 

et al. [68] modified this method by employing cubic and 

quartic velocity profiles in the boundary layer. Campbell 

and Slattery [69] further refined the method by taking viscous 

dissipation into account in the boundary layer. Gubin and 

Levin [70] assumed a logarithmic velocity profile in the 

boundary layer, and presented the velocity distribution for 

the circular tube in tabular and graphical form. 

(2) Axially Patched Solutions. The entrance region is 

divided into two sections. Near the entrance a boundary layer 

approach is used and an approximate solution is obtained in 

terms of a perturbation of Blasius boundary layer solution. 
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Far downstream, where the flow is nearly fully developed, 

the solution is obtained in terms of small perturbations of 

the fully developed solution. These solutions are "patched" 

(joined smoothly) at some appropriate axial location to ob- 

tain a complete entrance region solution. This method was 

first used by Schlichting [71,7^1 for the parallel plate 

channel and by Atkinson-Goldstein [73] for the circular tube. 

Collins and Schowalter [7^] refined Schlichting's method by 

retaining more terms in the series of upstream and downstream 

solutions. 

(3) Linearization of Momentum Equation. The above two 

methods yield the discontinuous solution for the velocity and 

pressure distribution in the hydrodynamic entrance region. 

Langhaar [75] proposed a method which yields continuous sol- 

ution in the entrance region of a circular tube. He linear- 

ized the nonlinear inertia term, left hand side of Eq. (14a) 

as follows. 

u|£ + v|$ = vß2(x)u er (104) 

where ß is a function of x only. Langhaarfs linearization 

is rigorous in the unsheared central core. His solution ap- 

pears satisfactory at the tube centerline, very near the en- 

trance or far from the entrance. Langhaar's approach of 

linearization was used by Han for rectangular ducts [76] and 

for parallel plates [77]9  by Han and Cooper [78] for the 

equilateral triangular duct, and by Sugino [79] and Heaton 

et al. [80] for annular ducts. 

Targ [81] linearized the inertia term of momentum equa- 

tion (14a) for circular tube as follows. 

äu 
u3x- 

äu 
v37 

u äu 

m cSx (105) 
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He also replaced (dp/dx)/p with (2v/a)(äu/är) to obtain 

a solution. Chang and Atabeck [82] used Targ's linearization 

approach for annular ducts , In case of circular tube, 

Targ's solution, which neglects the contribution of momentum 

change to pressure gradient, results in the velocity profile 

developing too slowly near the entrance. 

It may be noted that Langhaar and Targ*s linearization 

is exact (a) at entrance if the uniform velocity is assumed, 

(b) at all points on the wail of the duct, since du/äx and 

v both vanish there, and (c) in the fully developed region 

where du/ox and v become zero. 

Sparrow et al. [83] employed the following linearization 

to the momentum equation 

e(x) m 37 * A(x)+v[i|.(rU)] (106) 

where e (x) is the mean velocity weighting factor and A(x) 

stands for the dp/dx term plus the residual inertia terms. 

This linearization is similar to Targ's but embodies a more 

general linearization of the inertia term than that used by 

Targ. Sparrow et al. [83] matched the pressure gradients 

from the momentum and mechanical energy equation to evaluate 

e (x) . This linearization is restricted to the case where 

the velocity profile depends on only one cross sectional co- 

ordinate, e.g. circular tubes and parallel plates [83], and 

annular ducts [84]. Wiginton and Wendt [85] and Fleming 

and Sparrow [86] independently generalized this linearization 

to the case where velocity profiles depend upon two cross 

sectional coordinatas, e.g., rectangular and isosceles tri- 

angular ducts. The convergence of solution by the method of 

[85] is more rapid than that by [86], 

'Unless specified, the annular duct means a concentric an- 
nular duct. 
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(*) Numerical Finite Difference Method. The continuity 

and momentum equations are reduced to the finite difference 

form and the numerical solution is carried cut on a computer. 

This method is used by Bodoia and Osterle [87] for parallel 

plates, by Hornbeck [88], Christiansen and Lebanon [89] and 

Manohar [90] for a circular tube, by Manohar [91] for an- 

nular ducts, and by Montgomery and Wibulswas [92] for rectang- 

ular ducts. 

(5) Numerical Finite Difference Method with Transforma- 

tion of the Initial Value Problem to a Boundary 

Value Problem.  If the fully developed velocity 

profile, the f-Re . factor, and the hydrodynamic entrance 

length KL are known for a given duct geometry, the initial 

value problem for the hydrodynamic entrance region can be 

transformed into a boundary value problem. The detailed 

velocity distribution, friction factor and pressure distribu- 

tion can then be obtained for a given Reynolds number by 

numerically solving the boundary value problem. Millar [93] 

employed this technique and worked out the hydrodynamic en- 

trance length solution for the square and equilateral tri- 

angular duct at Re ■ icß from the hydrodynamic entrance 

length 1^  given by McComas [20]. 

In all of the above five methods, the boundary layer 

type idealizations, Eq. (13)* are invoked. However, several 

papers deal directly with the numerical solution of complete 

Navier-Stokes equations without invoking the boundary layer 

idealizations. Vrentas et ai. [9*]* Friedmann et al. [95]* 

and Schmidt and Zeldin [96] solved the hydrodynamic entry 

length problem for circular tube, Wang and Longwell [97]* 

and Gillis and Brandt [98] solved it for parallel plates 

using the complete Navier-Stokes equations. 

IV.3 Thermally Developing Flow 



F/.3.1 Hydrodynamically Fully Developed Flow 

The thermal entrance solutions are obtained by the 

following methods. 

(1) Eigen Solution. Most of the soLutions of thermally 

developing and hydrodynamicaliy developed flow are obtained 

by the eigenvalue method; particularly the circular tube, 

parallel plates, rectangular ducts, elliptical ducts and 

annular ducts. The axial heat conduction and thermal energy 

sources within the fluid are also considered for circular 

tubes. 

The infinite series solution, obtained by the above 

method, for the thermal entrance problem converges very 

slowly ..ear x* = 0 . I^veque [99] provided a solution for 

the thermal entrance region near x* « 0 (very close to the 

point of step change in the boundary condition). Newman 

[100] refined I^vique solution by retaining the first three 

terms of the Leveque series. Burghardt and Dubis [101] also 

formulated a simple method f r  the thermal entrance region 

near x* - 0 . 

(2) Variational Methods. Sparrow and Siegel [102] 

developed a variational method for the thermal entrance region 

for @ boundary condition. They neglected the effect of 

axial heat conduction, thermal energy sources and viscous 

dissipation in the fluid. Examples were worked out for a 

circular tube, parallel plates and a square duct. Tao [103] 

proposed a variational approach for the thermal entrance 

region for the prescribed wall temperature and wall tempera- 

ture gradient boundary conditions. He included the effect of 

viscous dissipation and internal thermal energy generation. 

He obtained the thermal entrance temperature distribution 

for the circular and elliptical ducts. 
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(3) Conformal Mapping Method. Casarella et al. [43] 

proposed an approximate, conformal mapping method for the 

thermal entrance Nu T for the ducts of arbitrary cross 

section. Slug flow solutions were carried out for circular, 

cardioid, corrugated, square and hexagonal ducts. Laminar 

flow solution was carried out for the circular tube only,  .. . 

(4) Simplified Energy Equation. In this approximate 

method, the variable coefficients energy equation is reduced 

to the constant coefficient linear equation and then is 

solved. No momentum or continuity equation is needed. 

Sadikov [104] linearized the energy equation (19b) as follows 

after neglecting a(ä t/dx ). 

•».II- "0*^) m) 

where the correction factor c ■ 0.346 Pr" '^ ^a  based 0n 
heat transfer for laminar flow over a flat plate. Based on 

the simplification procedure, this equation is valid in the 

entrance region where the boundary layer on a wall is not 

significantly affected by the opposing wall. With this, he 

solved the thermal entry length problem for parallel plates 

with entering fluid at uniform [105] and non-uniform [106] 

temperature. In both cases, the wall temperature was assumed 

linearly varying with the axial distance. Sadikov [104] also 

studied the thermal entry length problem, based on the simpli- 

fied energy equation, in rectangular ducts with given wall 

heat flux boundary condition. 

(5) Numerical Finite Difference Method. The energy 

equation is expressed in the finite difference form and a 

solution is carried out on a computer. Grlgull and Tratz 

[107] employed this technique for the circular tube and 

Montgomery and Wibulswas [108] employed for the rectangular 

ducts to obtain the © and (m) temperature distribution 

and Nusselt numbers, 
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(6) Monte Carlo Method^1 Chandler et al. [109] showed 

how the Monte Carlo method can be applied to the laminar 

forced convection heat transfer problem, They considered 

the thermal entry problem for parallel plates with (|) 

boundary condition. 

. 3.2 Simultaneously Developing, Flow 

The thermal entrance solutions are obtained by the 

following methods. 

(1) Serai-Numerical Method. The velocity profile is ob- 

tained from the linearization of momentum equation. Con- 

sequently, employing this velocity profile, the temperature 

distribution is obtained by numerical methods. Employing 

Langhaar type velocity profile [75]* the numerical solutions 

were carried out for the circular tube by Kays [12], McMordie 

and Emery [110] and Butterworth and Hazell [111], for the 

parallel plates by Han [77] and for the annular ducts by 

Heaton et al. [80]. Employing Sparrow's velocity profile 

[83], the numerical solution was carried out for the circular 

tube by Kakac and Özgü [112]. 

(2) Complete Numerical Method. Both the velocity and 

temperature distribution is obtained by solving the corres- 

ponding momentum and energy equations numerically. The 

thermal entry solutions were carried out for the circular 

tube [113,11^,90], parallel plates [115], rectangular ducts 

[92], equilateral triangular and isosceles right triangular 

ducts [ll6]. 

11 Monte Carlo method has been defined as the technique of 
solving a problem by putting in random numbers and getting 
out random answers. 

So 
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V.  ANALYTICAL SOLUTIONS 

The governing differential equations and the boundary 
conditions were outlined in Chapter II for the laminar flow 
and heat transfer through a cylindrical duct. This chapter 
describes all the solutions available to the authors from 
the heat transfer literature for two dimensional ducts. In 
reviewing the literature for each geometry, the chronological 
history is not presented. Instead, the material is presents 
in order for each boundary condition and its subdivisions. 
The presentation is divided into two parts:  (l) straight 
ducts and (2) curved ducts. j 

No attempt has been made to present the derailed solu- 
tions for any geometry. Instead, only the final results, 
useful to a heat transfer designer are presented. In 
particular, the maximum available information from the fol- 
lowing list of parameters is presented for each geometry: 
u , Ujg , fRe , K(«) , I^y and Nusselt numbers corresponding 
to the boundary conditions of Table 1. For each geometry, 
the above information is presented both in tabular and ■'% 
graphical form. The original tabular and graphical informa- 
tion is augmented when possible in light of (l) more 
information obtained by corresponding with authors, (11V 
the knowledge of limiting cases of boundary conditions or 
the geometries, and (ill) calculating more detailed and ac- 
curate results on the Stanford computer whenever readily 
feasible. 

For convenient reference, the table number, figure 
number and source for the f Re , Nu,p , Ä^^fc Ni^ and ; 
hydrodynamic and thermal entrance length solutions for each 
geometries are summarized in Chapter VII. 
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Part 1. Straight Ducts 

1.  CIRCULAR DUCT 

Mathematically, the circular tube is the simplest cylin- 

drical geometry after parallel plates. Practically, it is 

the geometry most commonly used for fluid flow and heat 

transfer. Circular tube laminar fully developed ar..d develop- 

ing flow has been analyzed in great detail for various boundary 

conditions, including the effect of thermal energy sources, 

viscous dissipation, fluid axial heat conduction and vorticity 

difusion etc. The results are outlined below. 

1.1 Fully Developed Flow 

The velocity profile and friction factor for the fully 

developed laminar flow through a circular tube of radius, a , 

with co-ordinate axes located at the center of the tube are 

[5] 

^(r2-a2) (108) 

c a2 

u.... - - 4— (109) 

u 

m 

i- 

f 

fRe = 16 (110) 

The heat transfer results are described separately for each 

boundary condition* 

1.1.1 Uniform Surface Temperature, © 

The problem was first handled by Graetz in 1885 [117* 

118], now famous as Graetz problem, and later quite indepen- 

dently by Nusselt in 1910 [119]; where they evaluated the 

first three terms of infinite series solution for hydro- 

dynamiealiy developed and thermally developing flow with (F) 

boundary condition.  Their asymptotic Nusselt number for the 
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fully developed flow was presented as Nu^ * 3.66 . A more 

precise magnitude is 

NuT = 3.6567935 (111) 

for the cast when the fluid axial heat conduction, viscous 

dissipation and thermal energy sources within the fluid are 

neglected. The temperature distribution t«, may be inferred 

from [13], 

Pahor and Strand [120] included the effect of axial heat 

conduction in the fluid and graphically presented the fully 

developed Nusselt number as a function of Peclet number. 

Also they formulated the following asymptotic expressions. 

Nu,. = 3.6570(1 + i^|£ + •••)     Pe » 1     (112a) 
1 Pe* 

NuT «4.1805(1 - 0.0439 Pe + •••) Pe « 1     (112b) 

Labuntsov [121] also considered the same problem, and pre- 

sented the asymptotic NuT as a function of Peclet number 

in a tabular form. Hennecke [22], along with the thermal 

entrance length solution, presented graphically the fully 

developed NuT as a function of P^cl^t number. Ash and 

Heinbockel [122] refined the *ork of Pahor and Strand [120], 

They obtained the temperature listribution in uerms of the 

confluent hypergeometric function. They graphically pre- 

sented the NUm as a function of Pe . Their numerical 

results [123] are listed in Table 2. 

1.1.2 Specified Wall Heat Flux Distribution and (S) 

Glaser [124] provided a solution for the fully developed 

laminar flow with the (9) boundary condition. As mentioned 

ea 

12 

12 
earlier, the circular tube geometry is unique  because 

The parallel plate geometry is also unique for the identical 
reason. 
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Table 2. Circular duct Nu^ as a function of Pe for fully 

developed laminar flow, from Ash [123] 

y 

Pe NuT Pe NuT Pe NuT 

00 3.6*168 6 3.744 %-x 4.098 
60 3.660 I 3.769 4.U8 

S 3.660 3.805 0.3 4.134 
3.661 ■5 3.852 0.2 4.150 

30 3.663 2 3.925 0.1 4.167 

20 3.670 • 4.030 0.04 4.170 
10 3.697 0.9 4.043 0.03 4.175 

9 3.705 
3.714 

0.8 4.059 0.02 4.175 
8 0.7 4.071 0.01 4.175 
7 3.728 0.6 4.086 O.OOi 

0 
4.182 
4.1805 

Table 3.  Circular, Parallel plates, Elliptical and Sine 
ducts flu" arT3 NURX as a function of Rw for 

fully developed laminar flow1^ 

Circular Duct [131" 

\ Nu Nu Kl 

0 3.657 3.657 
0.005 3.603 3.669 
0.025 3.398 

3.167 
3.713 

0.05' 3.763 
0.10 2.777 3.844 

0.15 2.464 3.908 
0.25 2.000 4.000 
0.50 1.347 4.124 
1.00 O.8O85 4.223 

uu 0 4.364 

Parallel Plates  [131] 

Rw Nu, Nu Rl 

0 
0.0125 
0.025 
0.C5 
0.075 

0.125 
0.2R 
O.5Ö 

7.541 
6.940 
6.422 
5.576 
4.918 

3.970 
2.667 
1.6o4 
0 

7.541 
7.599 
7.650 
7.731 
7.793 

7.881 
8.000 
8.095 
8.235 

Elliptical Duct with 
a*=0.8   I238J Sine Duct with a*^a/b=.5 [46] 

Rw               Nuo             NuRl Rw                     Nuo               NuRl 

0.0      3.669         3.669 
0.2       2.?o6           j,948 
1.0       O.8068         4.17£ 

lo.o       0.09775       4.344 
co                     Q                                    5.233 

0                      2.12                  2.12 
0.01236         2.043               2.096 
Ü.I236           I.587               1.974 
1.236             0,5285             1.524 

12.36               0,07678           1.^08 
123.6                 0.008044         1,415 

°Kor circular, parallel plates and elliptical ducts,  NuR, , 

for the limiting case  Rw = 0 and » f correspond to (f) 

and © bcundaty conditions.  Unlike other ducts, the sine 
dUCt 
[46]. 

Uu Rl decreases- with an increasing value of R™ 
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and (fg) boundary conditions yield the same heat transfer 

results for both developed an* developing velocity and temper- 

ature profiles. For this boundary condition, the axial heat 

conduction within the fluid is constant. Consequently, it 

does not affect the Nusselt number. Thus NuH is independent 

of the Pe number. Tao [36] outlined the fully developed 

solution for @ boundary condition using a complex variables 

technique; he included thermal energy sources ln.tl:s fluid. 

Madejski [125] considered the effect of gas work u(dp/dx)/J 

on the temperature distribution when q" * 0 , and observed 

an effect of temperature drop, similar to the Ranque effect. 

tyagi [23] extended Tao's work to include the influence cf 

viscous dissipation on heat trans, r. Hif results for the 

temperature profile and Nusselt number are given by 

54,   2     2\r/   2   „2 2  0.2  0/   2     2< tH - ^(rd -$r)[(rd-3B.d-l6a?c5) + cg { r*-3* -2(r*-a*) \ ]    (113) 

Se5+^cJ (110 um,H 

He 4a'   1 g^ 5 

35T 

Nu H 
48 
IT 

1 + 8 c5 + c6 

"BT\      r 
fcl +ltc5 +TTC6- 

(115) 

where the constants c-, , c2 , c^ , c^ are characterized in 

the nomenclature, and 

c* a 
ci.a 8 1-JEI 

(116) 

lie. 
:6 = W, 

-  32u u Dl 

vs' + !H,a 
(117) 
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In absence of thermal energy sources and viscous dissipation, 

Nu 48 
H ■" XT a 4-3636364 (118) 

Reynolds [126] considered the effect of arbitrary 

peripheral heat flux on fully developed Nusselt numbers with 

constant axial heat flux per unit length. Of the particular 

interest is the cosine heat flux variation as shown in Pig. 

7. 

qJJ(e> 

-iSo* 

1 <L 

+l80c 

Fig. 7  Cosine heat flux variation along circular tube 
periphery 

The peripheral fully developed Nusselt number is obtained as 

NuH(e) = Tr—ir 

Reynolds [7] extended his work by including the effect of 

heat conduction in peripheral direction with arbitrary 

peripheral heat flux, but constant axial wall heat flux. 

(119) 

1.1.3 Exponential Wall Heat Flux, (M) 

Hall et al. [127] first showed that the ax^ally in- 

variant fluid temperature profile, Eq. (2), results for 

exponential wall heat flux distribution in axial direction, 

Eq. (10). H^egawa and Fujita [10] also independently found 
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that the fully developed situation arises when the axial 

wall heat flux is exponential. They solved the energy equa- 

tion numerically, and determined the Nu^ as a function of 

the exponent X as shown in Fig. 8. They demonstrated that 

the (g) and @ boundary conditions are the special cases of 

@ bouridary condition, with X = 0 , and -14.627 respective- 

ly. The wall and fluid bulk mean temperatures for various 

values of X are shown in Fig. 3. 

EXPONENT X 

Fig. 8  Fully developed NuH^ , from [10] 

Graber [128] also studied the axial exponential wall 

heat flux distribution in circular tube, parallel plates and 

annular ducts. He introduced a parameter FQ = ^S/^o 
e 

The FQ is the ratio of the temperature gradients dt^/dx 

along the wall transferring the heat and dt^dx in the 

fluid at the point where the temperature gradient normal to 

wall reduces to zero. The F^ and X are related by 

rsl + NUH4 o 4NuH4 + if1 * 
- 1 (120) 

whe re r* and rit equals zero for the circular tube, 
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The 0 and 1 values of F0 correspond to the boundary 

conditions (3) and (5) respectively. The MuHi|>/
Nu|n ratio 

was presented graphically as a function of PQ (range from 

-2 to 8) with r* (0-1) as a parameter. 

Some experimental verification of the (55) boundary con- 

dition for the turbulent flow has been presented in [10, 129, 

130], 

1.1.4 Finite Wall Thermal Resistance, Uu) 

Based on the Sideman et al. [131] results for the 

thermal entry length solution for the (65) boundary condition, 

the fully developed Nu^  and NuQ are calculated and pre- 

sented in Table 3 for t. ) circular duct along with the similar 

results for parallel plates, elliptical ducts and si^e ducts. 

Hsu [132] included the fluix axial heat conduction with @ 

boundary condition. Based on his results, the fully developed 

NuR, and Nu  were calculated and are presented as a func- 

tion of Peclet number in Table 4. 

::; 

Table 4. Circular duct NuQ and NuR1 as functions of 1^ 

and Pe for fully developed laminar flow, from 
Hsu [132]. 

% 

Pe w 00 

Nu Nu Rl 

Pe - 100 

Nu„ Nu Rl 

Pe - 50 

Nu, NU Rl 

Pe ■ 30 

Nu, NuRl 

0,26 
Ö.O5 
O.065 

2,000 
3.167 
;.602 

4,000 

3.669 

1.999 
3.164 
3.599 

3.995 
5.759 
j.665 

1.995 
3.157 
3.590 

3.96i 
3.748 
3.655 

1.987 
3.138 
3.567 

3.9*7 
3.722 
3.63S 

1 r   -    •    ""- " '   - 
Pe  « 20 Pe  - 10 Pe « 5 Pe - 1              i| 

*w 
Nu0             NuR1 m0        NUR1 1!uo             NuRl Nu0                 NuR1      1 

0.25 
1   0.05 
|   0.00^ 

1.970          i.S&j 
3.104          <.674 
■;.52r          3.5>36 

1.691         3.586 
2.M.         iMl 

1.662           2.0^3 
2,^06           2.865 
2.Ö08          2.848 

0,6580         0.7875   1 
c.9202         0,9645 
1.0113         1.0164 
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Toor [133]  investigated the effect of gas compression work 
u(dp/dx)/J    on heat transfer for the   (Rl)   boundary condition, 
and showed that the gas work can have significant influence 
on temperature profiles. 

i 1.1.5    Radiant Flux Boundary Condition,   yR2 
[j j The fully developed    NuR2    may be inferred from the 

thermal entry length solution of Chen [134]  as a function of 
y .    Kadaner et al.   [135]  also analyzed the radiant wall heat 
flux boundary condition.    They approximated within 0.5 per- 
cent of their    NuR2    values by the following equation 

4.364 + 3.66yra
3 

Nu.p *  « a (121) 
K*      1 + YT J 

a 

where T  is the outside fluid temperature normalized to 
a 

the fluid inlet temperature T . 

1.2 Kydrodynamically Developing Flow 

Hydrodynamic entry length problem was first analyzed by 

Eoussinesq [136*73] by considering perturbation about the 

fully developed Poiseuille profile. His infinite series 

solution was fairly adequate downstream, but poor near the 

entrance. Atkinson-Goldstein [73] represented the stream 

function by a power series to find a solution to Eq. (14) 

for axial position close to the inlet. They then joined 

this solution with the one obtained by Boussinesq method to 

obtain a velocity distribution in the entire entrance region. 

Schiller [21] solved the problem by an integral method as- 

suming developing boundary layer (of parabolic arc) in the 

entrance region with impressed pressure gradient and a 

straight potential core in the remaining central cross 

section. This method is good at the entrance, but poor at 

downstream. Shapiro et al. [68] refined Schiller's solution 

by using cubic and quartic velocity profiles in the boundary 
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Table 5*  Circular duct Umaj/um, Ap/(pu^/2gc), fappRe and 

K(x) as a function of x+ (- x/D. Re) for develop- 

ing laminar flow, from Manohar [137] 

x/(DhRe) umax um Ap/fpu^) 
ftpp K(5C)         j 

0.000075 l.OuOll 0.10695865 350.529 0.1022 
0.000150 1.08271 0.15537634 256.961 0.1458 
0.000275 1.10940 0.21388836 194.444 0.1963 
0.000400 1.13032 0.26073870 162.962 0.4351 
0.000525 1.14800 0.30101158 143.339 0.2674 

|     0.000675 1.16647 0.34376495 127.320 0.3006 
\      0.000925 1.19291 0.40615480 109.772 0.3470 
j     0.001175 1<21577 0.46119542 ii,HI 0.3860 
j      0.001425 1.23615 0.51118190 69.601 0,4200 
j      0.001725 1*25826 0.56633064 62.077 0.4559 

0.002225 1,<9100 0.64978957 73.010 0,5074 
0.002725 1.32006 0.72569772 66.578 0,5513 
0.003225 1.346 »8 0.79610395 61.713 0,5697 
0.00 37*5 1.37085 0.86230301 J>7.673 0,6239 

1      0.O4225 1.39357 0.92513389 54.7*2 0,6547 

0.004725 1.41497 0.96521654 52.129 0.6628 
0.005225 1.43523 1.04297360 49.903 0,7086 
0.00 5825 1.45828 1.10971400 47.^27 0.7369 
0.006825 1.49414 1.2*577760 44.534 0.7790 
0.007025 1.52735 1.31664510 42.065 0.8158 

0.008825 1.55826 1.413)2200 40.037 0.8465 
0.009825 1.58720 1,50656550 38.3i5 0.6776 
0.010825 1.61430 1.59660420 36.860 0,9041 

[      0.011825 1.6 3«? 70 1.68478840 35.619 0,9260 
0.012825 1.66349 1.77051920 34.513 0,9497      | 

j      0.013825 1.68576 1.65440190 33.533 0.9696 
0.014825 i.706i2 1.93662C80 32,658 0,9676 
0.0i5825 1,7*611 2.01739360 31.670 1,0046 
0.01682'; 1.74432 2.09683910 31.157 1.0200 
0.017825 1.76132 2.17512670 30.507 1.0343 

|      0.018825 1.77720 2.252124*0 29.911 1.0475      | 
j      0.01982? 1.79202 2.32859250 «9.364 1.0598      1 

0.02002b 1.80544 2.40395460 23.659 1.0712      | 
0.022025 1.82200 2.49336460 26.302 1.0636 
0.02*025 1.846l<» 2.64C0378Q 27.472 ;.io?<4 

|       0.0*6045 1.66666 2.76426040 46.746 1.1197 
C.028025 1.88447 2,9263 8480 26.105 1.1328      1 
0.030025 i.d9997 3.06670290 25.535 1.1451      | 
0.032025 1.91331 3.20546730 25.023 1.16?9 

J       0.0340*5 1.92533 3.34287760 44.562 1.1653 

0.036025 1.93567 3.479U690 24.14* 1.1735 
0.038025 1.94473 3.61433020 23.763 1.1607 
0.')40025 1.95265 3.74*65090 43.414 1.1871 
0.042023 1.959o0 3.66219600 23.09» 1.1925 
0.0*4025 1.9b570 4.01503720 22.800 1.1974 

0.0«»*02!> 1.^7104 4.14728660 22.527 1.2017 
0.043025 1.97573 4.27900T20 42.275 1.4054 

j      0.050025 1.97986 4.41026680 22.040 1.2087 
0.352025 1.98348 4.341U3O0 21.822 1.2115 
0.053625 1.^8606 4.64553260 21.65 7 1.2135 
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layer. Campbell and Slattery [69] improved Schiller's solu- 

tion by taking viscous dissipation Into account in the 

boundary layer, and the pressure drop was evaluated from the 

mechanical energy balance to all of the fluid in the tube. 
Gubin and Levin [70] employed a logarithmic veLocity profile 

in the boundary layer and solved the hydrodynamic entry length 

problem by the integral method. They presented the velocity 

distribution in tabular and graphical form. 
All of the above solutions exhibit a discontinuity in 

the velocity and pressure distribution in the entrance re- 

gion. Langhaar [751 proposed a linearization of momentum 

equation [see Eq, (104)] and subsequently solved the momentum 

equation by an integral method. The linearization is rigorous 

in the unsheared central core. His solution appears satis- 

factory at the tube centerline, and very near the entrance or 

far from the entrance. 
Targ [8l] introduced another approach of linearization, 

Eq. (105), which is a special case of the linearization [Eq. 

(106)] performed by Sparrow et al. [83].  In Targ's solution, 

which neglects the contribution of momentum change to the 

pressure gradient, velocity profiles develop more slowly near 

the entrance than is predicted by the numericaD solution. 

The velocity profiles by Sparrow et al. [83] are nearly i- 

dentical with the numerical solutions described below. 
Hornbeck [88] introduced a finite difference scheme for 

the hydrodynamic entry length problem of  circular tube. He 

linearized the momentum equation at any cross section x = x^ 

by means of velocity at x = xn - Ax . Christiansen and 

Lemmon [89] and Manohar [90] solved the non-linear .omentum 

equation numerically iteratively, thus avoiding any error 
due to linearization. The umax/um , Ap/(pu^/2gc) , fappRe 

ana K(x) for the hydrodynamic entrance region of a circular 

tube are presented in Table 5.^ The fappRe and K( x) 

15The tabular x+ ,"J^majc/*
uin and AP/(Pun/r-&c^ vjere Proviaed 

by Manohar [137].       71 



Table 6.  Circular duct 

x+ for 
[138] 

app and K(x) as a function of 

Re = 100, 500 and 10,000, from Schmidt 

h 

v(Ve) Re » 10,000 Re - 500 Re « 100 

app 
K(x) apt» K(x) app K(x)       | 

0*0009614 42*.79* 0.1004 0*3.622 0.1566 382.972 0.09003 
i      0.0000946 J48.1H8 O.U57 519.700 0.1906 401.421 0.1466 

0.0001296 297.720 0.1461 434.820 0.2172 386.03* 0.1919 
U.00OU66 262.77^ 0.164* 375.696 0.2399 359.364 0.2219 

0.00020*9 236.495 0.1816 331.809 1.2601 Ml.930 0.2602 
0.0002*75 21».939 0,1979 297.370 0.2785 306.469 9.2675 
0.00029)7 199.OIU 0.2135 269.386 9.2956 263.701 0,312) 
0.0003387 184.733 0.2486 246,071 0.3117 263,638 0.3)55 
0.0001*89 17*.531 0.24*5 226.208 0.3270 245.815 0.3575 

0.0004425 161.916 0.2583 209,029 0.3417 229.967 0.3768      i 
0.900*000 154.503 0.2730 194.000 0.3569 215.850 0.39*7 
0.003*615 144.094 0.2877 160.693 0.3699 203.088 0.4202 
0.00Oo28O 136.422 0.3025 168.747 0.3837 191.*58 0.4405 
0.0097000 129. «,29 0.3176 157.929 0.3974 180.571 0.4606 

i      0.0007760 122.973 0.3329 148.102 0,4111 170.563 0.4810 
0.0008625 117.014 0.348* 139.188 0.4250 161.304 0.5013 
0.00095*5 111.490 0.3646 131*034 0.4392 152.668 0,3216 
0.0010*5» 106.20* 0.3611 123.461 0.4537 144.517 0.6426 

1      0.0011665 101.362 0.3983 116.450 0.4687 136.769 0.»6)6 

0.00U895 96.690 0.4162 109,91* 0.4644 129.416 0.5650 
0.O0U260 92.245 0.4349 103.816 0.9009 122.361 0.6068 
0.001*795 *>7.999 O.**4o 98.103 0.5184 115.630 0.6291 

!      0,004 7500 b;.')U 0.47*4 92.714 0.5370 109.U9 0.631V 
0.0019445 79.*62 0.4975 87. oW 0.5970 102.848 0.6755 

1      ft.P02l665 76.143 0.5212 82.7*7 0.5796 96^752 0.6998 
0.002*230 7*.418 0.5468 78.134 0.6022 90.804 0.7250 
0.0027220 OP.78J 0.57*7 73.687 0.6281 63.012 0.7514 
0.0030760 65.195 0.60*3 69.391 0.6568 79.345 0.7794 
0.0035000 6l.6o4 U.6?93 65.214 0.6890 73.807 0.8093      1 

3.0040195 bt .161 0.6777 61.115 0.7255 66.363 0.6420 
0.00*6665 5*.664 Ü.7217 17.128 0.7677 63.066 0.6769 
0.00**000 51.141 0.7731 53.14* 0.8172 57.909 0.9240 
O.OOoMOC 47.56i 0.6345 49.162 0.8768 52.634 0.9739 
0.00816*0 4'4.84b 0.909* 4**068 0.9500 47,782 1.0380 

!       0.0105000 3<5.tJt»l 1.0030 40.766 1.0410 42.667 1.1200 
0.01*3900 3r.i7i 1.11*0 35.997 1.1510 37.178 1.2190 
9.C22io50 2V.9lU 1.2**0 30.iO* 1.2680 30.945 1.3250 
0.0*5*000 l         2J.220 

i..„.    

1.3140 !          23.396 
1       .   . 

1.3460 IS, 676 1.3970 
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are plotted as a function of x+ in Figs. 9 and 10 respec- 

tively (Re -» » case). 

All of the above hydrodynamic entry length solutions.,, # 

involve the idealisations of Eq. (13) (boundary layer type 

assumptions), i.e., axial diffusion of vorticity and the 

radial pressure gradients are neglected, Vrentas et al. 

[9k]  first solved the complete Navier-Stokes equations without 
invoking the boundary layer assumptions. They assumed a 

stream tube to extend from the entrance of the real tube to 

minus infinity where the axial velocity was considered to be 

uniform. They numerically solved the two coupled elliptical 

equations, and determined the velocity and pressure distribu- 

tion, the pressure drop increment K(x) and the entry length 

for Re ■ 0 , 1 , go , 150 ,250 and » . The momentum 

equation for Re » * corresponds to the boundary layer type 

equation, Eq. (1*0. Friedmann et al. [Sr>] also solved the 

complete Navier-Stokes equations numerically for the Reynolds 

number range 0 to 500 . They reported the velocity distri- 

bution in tabular form as well as graphically as functions of 

Re and x/Dh , and the hydrodynamic entry length as a function 

of Re . Schmidt and Zeldin [96] also solved the complete 

Navier-Stokes equations numerically for tha case of circular 

tube and parallel plates. They U6ed a different technique 

than that in Ref. [9^] in forming the difference equations 

and the method of finding pressure. They reported the non- 

dimensional pressure distribution and the cross sectional 

area average U(x) for Re = 100 , 500 and 10000. Their 

results are presented in Table 6 and Figs. 9 and 10 [138]. 

1.3 Thermally Developing Flow 

1.3.1 Hydrodynamlcally Developed Flow 

I.3.I.I Specified Wall Temperature Distribution 

As previously mentioned, the study of heat transfer 

in laminar flow through a closed conduit was first made by 
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Fig. 9  Circular duct fappRe for developing laminar flow, 
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Fig. 10  Circular duct K(x)  for developing laminar flow. 
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Graetz [117*118] in 1885 and later independently by Nusselt 

[119] in 1910. They considered the incompressible fluid with 

constant physical properties flowing through a circular tube 

and having fully developed laminar velocity profile and 

developing temperature profile. The circular tube was main- 

tained at a constarc and uniform temperature (i.e. © ) 

different from the uniform temperature of fluid at the en- 

trance. The axial heat conduction, viscous dissipation, 

gas compression work  u(dp/dx)/J and the thermal energy 

sources within the fluid were neglected. The resulting 

energy equation is 

aft    1 at   u at (122 x 

with initial and boundary conditions as 

t B. t * constant for x < C (i22b) e — 

t « t ■ constant at  r ■ a (122c) 
w 

and the velocity profile u is given by Eq. (108). The 

above problem is now well known as the Graetz problem, some- 

times also referred to as Graetz-Nusselt problem. If the 

duct in question is not a circular tube, the problem is 

usually referred to as the Graetz type problem. 

Graetz and Nusselt obtained the first two and three 

terms respectively of an infinite series (known as Graetz 

series) solution for the fluid temperature and tb3 local 

Nusselt numbers as a function of dimensionless axial distance 

x* , now sometimes known as the Graetz number.-^ The Graetz 

To avoid the confusion of various definitions used for the 
Graetz number, the dimensionless distance is termed as 
x* . See further discussion on p. 37. 
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series converges uniformly for all non zero x* , but the 

convergence is very slow near the thermal entrance point and 

the three terms are not sufficient. Levfique [99] alleviated 

this difficulty with his flat plate solution as an asymptotic 

approximation near the thermal entrance point. The Lev&que 

solution has been extended by Newman [100] by providing 

three terms of the LevSque series; only the first term was 

provided by L£v&que in his original solution. Thus, the 

temperature distribution and the local Nusselt number can 

accurately be determined from x* = 0 to about 0.01 by the 

extended Levöque solution. 

Abramowitz [139] and Lipkis [140] employed a fairly 

rapidly converging series solution of the Graetz equation, 

and obtained first five eigenvalues and eigenconstants. 

Asymptotic expressions were presented for the higher eigen- 

values and eigenconstants. Sellers et al. [13] independently 

extended the original work of Graetz by determining the first 

ten eigenvalues and eigenconstants for the Graetz problem, 

and presented the asymptotic formulae for the higher eigen- 

values and eigenconstants. Sellers et al. considered the 

® boundary condition, arbitrary wall temperature (special- 

ized to linear variations in wall temperature) and prescribed 

wall heat flux boundary conditions. The (§) heat transfer 

problem was worked out by an inversion method. Brown [l4l] 

outlined a comprehensive literature study of the Graetz 

problem* He evaluated and tabulated more accurately (10 

decimal point accuracy) the first eleven eigenvalues and 

eigenconstants for the Graetz problem. He also presented 

the first six *>igenfunctions. Larkin [142] extended the 

tabulation of  Brown by presenting the sixth through fifteenth 

eigenfunctions. As mentioned above, the higher eigenvalues 

and eigenconstants are estimated by means of asymptotic 

formulae presented by Sellers et al. [13]- 
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Kuga [143] solved the Graetz problem by reducing the 

Sturm-Liouville type governing differential equation to a 

Fredholm integral equation, and obtained numerically the 

first ten eigenvalues and six eigenfunctions and constants. 

Grigull and Tratz [107] solved the Graetz problem 

numerically by the finite difference method. The dimension- 

less temperature distribution, local and mean Nusselt numbers 

were presented graphically as a function of x* . For 

x* > 0.001, they have approximated by the following equations 

Nux T and N^ T within 0.5 percent of their numerical 

solution (with X* « io3x* for numerical convenience). 

Nuv „ = 3.655 + 6.874 x*"0'488 e"°-°572 x* (123) x, i 

>%T - 3.655 ♦ ^TOT^7tia.b4)0.^l <**> 

Hicken [144] investigated the Graetz problem with non- 

uniform inlet temperature. He considered five different 

sinusoidal inlet fluid temperature profiles. He tabulated 

the eigenvalues and eigenconstants and presented the dimen- 

sion^ ss fluid bulk mean temperature dm  T as a function of 

x* . 

Instead of using the parabolic velocity distribution 

lyche and Bird [145] and Whiteman and Drake [146] solved the 

Graetz problem for the general power law velocity distribution 

as 

$--2[l.- (£)*] (125) 
m 

where    n    is an arbitrary number.    Such velocity distribution 
is typical for non-Newtonian fluids. 
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For a fluid having vanishing viscosity with finite 

thermal conductivity and Prandtl number, if the flow is 

radically different from the parabolic profile at inlet, that 

profile will be maintained over a considerable distance from 

the entrance. To investigate the effect of the non-uniform 

inlet profiles, Barrow and Humphreys [147] analyzed the Graetz 

problem with slug, inverted conical and inverted parabolic 

velocity profile instead of the laminar parabolic profile for 

the whole flow length. They graphically presented Nu „ 
x, 1 

as a function of x* for the different velocity profiles. 

Their results show that, for a given flow rate, increase in 

velocities near the wall results in a shortening of the 

thermal entry length and an increase in heat transfer coef- 

ficient, as expected. 

The effect of internal thermal energy generation in the 

solution of Graetr, problem was included by Topper [148] and 

Toor 1149]. 

Singh 1150] extended the work of Sellers et al. [13] by 

including the effect of axial heat conduction, viscous dis- 

sipation and prescribed internal thermal energy generation. 

He assumed that the fluid enterei at uniform temperature at 

x = 0 . He solved the associated Sturm-Liouville problem 

for the fluid temperature by expanding the fluid temperature 

in series of Bessel functions. He tabulated first four 

eigenvalues and the corresponding elgenfunctions for Pe * 

100 and 1000. Also, the fluid bulk mean temperature and 

NuT as a function of xf (= 2x*) were tabulated for Pe « 100 

and 1000, when the internal thermal energy generation and 

viscous dissipation were neglected. 

Petukhov and Tsvetkov [151] included the effect of axial 

heat conduction in the Graetz problem. Uniform inlet temper- 

ature at x = 0 is inconsistent with the inclusion of axial 

heat conduction. The x = 0 is the section along the tube 

length where heat transfer starts and is not the entrance to 

the tube.  Hence, they assumed the fluid to be at uniform 
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temperature te at x ■ -» , the wall region from x ■ -» 
to x■.« 0 to be isothermal at temperature te , a step change 

in wall temperature at x « 0 , and the region from x = 0 

to °° isothermal (at temperature t > t_) and transferring 

heat to fluid. They obtained approximate temperature distri- 

bution numerically, and presented Nuv m for Pe m  1, 10 x, x 
and 45. 

Shapovalov [152] included the effect of the fluid axial 

heat conduction in the Graetz problem, and obtained the fluid 

temperature distribution in terms of degenerate hypergeometric 

functions. 

Bes [153] also solved the same problem as in [151] for 

circular tube and parallel plates for both ® and ® boundary 

conditions. He found that for Pe < 15 >  longitudinal'con- 
duction is significant for the circular tube. Unfortunately, 

the paper utilizes unfamiliar symbols and terminology which 

makes an adequate evaluation difficult. 

Hennecke [?2]  included the fluid axial heat conduction 
in the Graetz problem and analyzed it numerically by the 

finite difference method. He considered the same boundary 

condition of Petukhov and Tsvetkov [151]* i.e., the flow chan- 

nel extending from x = -00 to x ■ °° with the uniform inlet 

temperature at x ■ -00 and a step change in will temperature 

at z m  0 . After solving the problem in two semi-infinite 

regions, the fluid temperature was matched at x m 0 . Tne. 

local Nusselt numbers and dimensionless wall heat fluxes * 

and ($ x/a) were presented graphically as a function of 

x'(« 2x*) for Pe « 1, 2, 5, 10, 20 and 50. The thermal 

entry length was also presented graphically as a function of 

P^clet number. 
Schmidt and Zeldln [30] independently investigated the 

Graetz problem numerically by the finite difference method 

with the effect of axial heat conduction within the fluid 

included. They considered the semi-infinite region 
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Table 7.  Circular duct energy content of the fluid for 
developing temperature profile (developed velocity 
profile) when fluid axial heat conduction is con- 
sidered, from Schmidt [1?8] 

Pe 

x'=2x* 
ener»sy 
content 

Pe - 10 

x' 
energy- 
content 

Pe • 25 

x' 
energy- 
content 

Pe - 300 

energy- 
concent 

.00197 

.00405 

.00624 

.0085^ 

.01099 

.04397 
,06294 
.1151» 
.4077 
.9488 

1.4615 
3.0000 

.000383 

.000^28 

.000786 

.001045 

.001364 

.OO336 

.0057.3 

.00925 

.OIC27 

.OJ024 

.0329 

.0342 

Pe 50 

x' 
energy 
content 

.OOO657 

.00135 

.00452 

.OO855 

.01381 

.02098 

.03134 

.04762 

.07692 

.1026 

.1453 

. 2308 

.3162 

.4872 
1.0000 

.2277 
.2577 
.4167 
.5164 
.5900 

.6498 
• 7019 
.7496 
.7954 
.8180 

.8402 

.8605 

.8688 

.8746 

.8772 

OOO657 
.00135 
.00452 
.008^5 
.01381 

.02098 

.03134 

.04762 

.07692 

.1453 

.3162 

.4872 
1.0000 

.01587 

.02032 

.046 97 

.0728 

.1002 

.1304 

[2002 
.2576 
.3257 

.3865 

.4018 

.4091 

.OOO657 

.00285 

.00641 

.01099 

.01709 

.02564 

.03846 

.05983 

.1026 

.2308 

1.0000 

.0822 

.■"^65 

■Ml 
.3595 

.4201 

.4808 

.5444 

.6141 

.6878 

.7196 

Pe - 100 

x' 

.000657 
.00135 
.00285 
.00452 
.00641 

.00855 

.01099 

.01381 

.01709 
,0209s 

.02564 

.03845 

.05983 

.1026 

.2398 

energy 
content 

.5059 

\lf 
6973 

05 
.69' 
.74< 

.7718 

.7974 

.8185 

.8366 

.8524 

.8665 

.8912 

.9128 

.9324 

.9497 

Pe - 200 

.000693 

.00142 

.00?00 

.00477 

.OO670 

.00901 

.01158 

.01802 

.03303 

.05019 

.C8IC8 

.1532 

.3333 
1.0541 

ene rgy 
content 

.8053 

.8183 

.8704 

.8978 

.9152 

.9275 

.9368 

:§8S 
.9718 

.9780 

:U 
.9875 

.000657 

.00135 

.00208 
,00285 
.OO360 

.00452 

.00544 

.00641 

.00744 

.00855 

.00973 

.01099 

.01381 

.01709 

.02090 

.02564 

.03134 

.03846 

.04762 

.05983 

.07692 

.1026 

.1453 

. 1795 

.2308 

.3162 

.4872 
1.0000 

.8959 

.9032 

.9211 

.9330 

.9415 

.9479 

.9530 

.9572 

.9607 

.9636 

.9662 

.9685 

.9724 

.9755 

.9782 

.9806 

.9826 

.9845 

.9862 

.9878 

.9893 

.9907 

.9920 

.9926 

.9932 

.9936 

.9940 

.9941 

Pe - 100,000 

energy 
content 

.0001)57 

.00452 

.01235 

.04274 

.3162 

.99994 

.99997 

.99998 

.99999 
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(0 < x < °°) and uniform fluid temperature at inlet. The 
Nux T and * obtained by Schmidt and Zeldin [30] are 

generally higher than those obtained by Hennecke [22],  Part 

of the energy transferred from the wall to the fluid shows 

up as enthalpy rise of the fluid, and the rest is conducted 

by the fluid to the end headers. As the effect of axial heat 

conduction is more pronounced with decreasing P£cl£t number, 

the energy content of the fluid ' (measured as enthalpy rise) 

reduces with decreasing Pe'clet number as shown in Fig. 11. 

Corresponding tabular information is presented in Table 7 

r13Ö]. This graph, Fig. 11, may be useful for the design of 

a high effectiveness heat exchanger, as the designer can now 

establish a criterion as to when to neglect the fluid axial 

heat conduction.  If the thermal boundary condition of 

.4   1,0 20 

Fig 11  Circular duct energy content of the fluid for 
developing temperature profile when fluid axial 
heat conduction is considered, from Schmidt [138] 

'See Fig. 6 and associated discussion. 
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Hennecke [22]  would have been employed» the effect of fluid 
axial conduction would not be as pronounced as found by 

Schmidt and Zeldin [30]. 

Jones [154] also included the axial heat conduction in 

the fluid for the Graetz problem for the circular tube ex- 

tending from x * -» to x...» » with a step change in wall 

temperature at x * 0 . Closed form solution was obtained 

by employing the two-sided Laplace transform. The eigen- 

values were presented in the form of an asymptotic expansion 

in Fielet number, unlike Singh's approach [150] where the 

eigenvalues and eigenfunctions are needed for each P^cl^t 

number. Similar to comparison of the Hennecke [22] arid 

Schmidt and ZeldinVs [=30] results, Jones' Nux ^    are lower 
than those by Singh [150]. Jones tabulated dimensionless 

bulk mean fluid temperature and »u T for Pe « 100, 200,. 

1000 and 2000. For x* > 0.075 Wd' Pe > 200 , the Nu. 

was approximated as. 
x,T 

Nu¥ „ » 3.657(1 * 0.6072 e
4(pl'po)x*] 

X, X 

where the values of p0 , px are tabulated below. 

(126) 

'o 

PI 

Pe * 200 Pe « 1000  Pe » 2000 

- 3.65595  - 3.65676. - 3.65678 

-22.2687   -22.3034   -22.3044 

Specified arbitrary variation in wall temperature problem 

can be handled by superposition techniques from the known 

solution (eigenvalues and eigeneonstants) of the Graetz 

problem. Sellers et al. [13] obtained the formulae for local 

Nusselt number, wall heat flux, and fluid bulk mean temper- 

ature when the wall temperature was. varying linearly in axial 

direction.  Kuga .[1*3,1?*] obtained the solution for axially 

0-; 
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varying sinusoidal wall temperature.distribution, Grigull 

and Tratz [107] numerically obtained the solution for linearly 

varying wall temperature, Ihey presented graphically the 

local Nusselt number as a function of x* with a dimension- 

less temperature 0^ 

^  CV^e 
0  3  (dt./dx*) 

as a parameter, where the temperature Jimp at the Kail at 

x « xe is non-dimenslonallzed by the wall temperature gra- 

dient. For small *umps (0 < <9Q <  l), the local -BusseIt 
number asymptotically approached to the value 6f?-k»36fc cor- 

responding to (§) boundary condition. For large Jumps, the 

local Rasselt number passed through a minimum and approached, 

for example, for $Q W 50 , a value of 3.66 corresponding tc 

{§) boundary conditions. Shapovalov [156I considered the 

arbitrary wall temperature distribution with arbitrary 
initial condition, and obtained a solution in terms of hyper- 

geometric functions. Any arbitrary axial wall temperature 

vaviatlon boundary condition can be handled by the Duhamel' s 

superposition theorem, and is outlined in 15,13-1*0. 

'1.3.1.2- Specified Heat Flux Distribution 
Sellers et al. [13] analyzed the thermal entry length 

problem for the circular tube with uniform wall heat flux 

(§) boundary condition by an in%rersion method, knowing the 

solution to the Graets problem. Siegel et al, [Ifl  investi- 

gated the (g) thermally developing flow by the 'method cf 

separation of variables and Sturm-Liouville theory,•and ob- 

tained the eigensolution. 7t.rj  calculated first sever, eigen- 
-»- their 

values and eigen  «*m» tc six =-gtt *£*; 
analysis, they assumed fully develop*- ^-^  - 
uniform fluid tenpereture at entrance, -        » ^ 
axial heat conduction,   .-sec 

- > A ****, * 
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energy sources within the fluid, Hsu [157] extended Siegel 

I       et al. work and reported first twenty eigenvalues and eigen- 

I       constants^ also presented approximate formulae for higher 

eigenvalues and eigenconstants^ Grigull and Tratz [W] 

attacked the same problem numerically by the finite dif- 

ference method. They approximated the Nu „ with 0.5 per- 

1       cent to their numerical solution for x* > 0.001 as follows. 

With    X* -i 103x* , 
f* • ■ ' ■ ■■■.■ .•'■'■•■ 

NaXjH■ - 4.364 +8.68 X*-°-^6e^'^1X* (127) 

■r I 

■%>:■ 

Hicken [144] studied the same <g) thermal entry problem 

as Siegel et al. [15] but with the non-uniform fluid temper- 

ature at inlet. He considered five different sinusoidal tei- 

let fluid temperature profiles. He tabulated the eigenvalues 

and eigenconstants, and presented graphically the fluid bulk 

mean temperature ew_m as a function of x* . 

Sparrow and Siegel [158] extended the analysts of Siegel 

et al. [15] by including the internal thermal energy gtnera- 

tion. The thermal energy generation was allowed to vary in 

an arbitrary manner both longitudinally along the tube and 

radially across the cross section. Inman [159] experimental- 

ly studied the temperature distribution in laminar flow 

through an insulated circular tube with the internal thermal 

energy generation. His results were in excellent agreement 

with the theory prediction by Sparrow and Siegel [158]. 

Hsu [16O] extended his work [157 j by including the ef- 

fect of axiaL heat conduction within the fluid for ® 

boundary condition. He considered the fluid entering at 

x = ) with uniform temperature profile, thus solved the 

problem for semi-infinite region (0 < x < »). He tabulated 

first twelve eigenvalues and eigenconstants for the P^cl^t 

numbers of 5, 10, 20, 30, 50 and 100. 
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Hennecke [22] investigated the same problem as Hsu [l60] 

i.e., (g) thermal entry length problem with inclusion of 

axial fluid heat conduction; but he considered the more con- 

sistent inlet fluid temperature condition, being uniform at 

x = -00 . He solved the problem for the two semi-infinite 

region numerically by the finite difference method, and 

matched the solutions point by point at x - 0 . He showed 

that while the value of Nusselt number at x ■ 0 is infinite 

in the case of (5) boundary condition, it has a finite value 

at-----x = 0 which-decreases with decreasing P^cl^t numbers 

for the (B) boundary condition. The Nux H were presented 

as "a function of xf (■ 2x*) for Pe « 1, 2, 5, 10, 20 and 

50. Unlike Hsu's [160] results, Hennecke's Nu „ has an 
  x,n 
inflection point at x* * 0.0075 . 

Be8 [153] also solved the same problem as Hennecke [22], 

and found that the longitudinal conduction is significant for 

Pe < 30 . 

Hsu [l6l] further considered the same problem as 

Hennecke 122]»  but solved it theoretically in a closed form. 
Hsu determined the first twenty eigenvalues and eigenfunctions 

for the heated and adiabati^ regions. The Nu^-H obtained 

by Hsu are in excellent agreement with the Henneekfs results. 

Siegel et al. [15] also generalized the (B) thermally 

developing flow problem to the case of arbitrary axial varia- 

tions in heat flux by the superposition technique. For an 

arbitrary analytical axial wall heat flux distribution, 

Noyes [16] derived a closed form integrated solution for the 

local Nusselt number. Shapovalov [1Ö2] considered the 

arbitrary wall heat f3ux distribution with arbitrary initial 

condition and obtained the temperature distribution in terms 

of hypergeometrie functions. Hsu [157] and Kuga [163] con- 

sidered the sinusoidal axial wall heat flux.  In the above 

cases, the peripherial wall heat flux distribution was as- 

sumed to be uniform. Bhattacharyya and Roy [l6h]  considered 
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the variable peripheral wall heat flux distribution. They 

reported the eigenvalues and eigenconstants for the temper- 

ature distribution In the thermal entry region; and extended 

the thermal entry region problem to arbitrary wall heat flux 

in peripheral as well as the axial direction by applying 

Duhamel's superposition theorem. 

1.5.1.3. Finite Wall Thermal Resistance i_M 
Schenk and DuMore [165] considered the finite thermal 

resistance at the wall of a circular tube. They tabulated 

the first three eigenvalues, eigenconstants, loc°.l Nusselt 

numbers and bulk mean fluid temperatures for the wall re- 

sistance parameter R^ - 1, ,0.25, 0.025 and 0 . The Rw = 0 

corresponds to the Graetz problem. The infinite series solu- 

tion for the temperature distribution and Nu -- converges 

very slowly near the entrance region. Rosen and Scott [166] 

extended the Lev^que solution for the finite wall resistance 

case. They presented thr fluid bulk mean temperature and 

local Nusselt number in tabular and graphical form for various 

values of R , Sideman et-.al. [131] supplemented and ex- 

tended the work of Schenk and DuMore [165], They presented 

first five eigenvalues ar related constants for the thermal 

resistance parameter Rw - 1, 0.5, 0.2-5, 0.15, 0.10, 0.05, 

0.025 and 0 . Using the finite difference met^'d, McKlllop 

et a±. [167] also analyzed the (Rl) therma" entrance problem 

for Newtonian and non-Newtonian fluids. Ine Nux R1 were 

presented graphically for R = 0, 0.005, 0.025,0.25, 1 and w 

The fluid axial heat conduction has been neglected in 

the above analysis [131*165,167]. Hsu [132] also investi- 

gated the finite wall resistance thermal entry region 

problem with finite fluid axial heat conduction. He con- 

sidered the wall thermal resistance parameter R^ = 0.25, 

.05 and .005. For Pe = °° , the first ten eigenvalues and 

related constants were presented; while for Pe = 100, 50, 



....*^*^^iamBttoMmi^m--MtM^kr*^'*ffr*fffTtrlM.u^.ikmm(m ,. _    .K^---^••^•-*»i*t»*."-««?* ^*>v>**^-^r^-~.- 

30, 20, 10 and 5, first twelve eigenvalues and related con- 

stants were presented. For Pe « 1 , Hsu listed the first 

20 eigenvalues and related constants. 

1.3.1.4- Radiant Flux Boundary Condition ffg) 

Chen [13^] analyzed the thermally developing and 

hydrodynamically fully developed laminar flow through a 

circular tube with the non-linear radiant-flux boundary con- 

dition of Eq. (12). He obtained an approximate solution in 

terms of the Liouville-Neumann series. He also carried out 

an exact iterative numerical solution to the same problem 

for a wide range of radiation parameter y = (€w
cTe^V^ " 

The results of Nux R2 
were presented in tabular and 

graphical forms for y ■0,1, 0.2, 0.5, 1, 2, 5, 10, 2Q and 

90'. In the range of 0.001 <x* < 0.1 and y < 20 , his 

following approximation for Nux R2 agreed better than +2 

percent wi'h his numerical solution. 

Nu 2(0.928 - 0.023 In y) /12gj 
X,R2    n  °° 

n=l 

where C. R ' and ß^ ars the eigenconstants, eigenfunctions 

at r = a, and eigenvalues for the (H) thermal entry region 

problem for the circular tube. They can be found from [157]. 

Benlcio et ai. [168] investigated the same problem 

analytically and experimentally. Analytically, the problem- 

was solved by assuming the linearized radiation and an ex- 

ponential kernel approximation. The wall heat flux q^^e 

is plotted against x'  (= 2x*) with the y   as a parameter. 
The results are in good agreement with Chen's result for 

x* > 0.03 . Their experimental results agree satisfactorily 

with the analysis, except in the region of entrwrao. 
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Sikka and Iqbal [169] considered the steady radiant heat 
flux being incident on one half of the tube circumference, 
while the fluid emanated heat through wall on all sides to 
absolute zero degree environment. This boundary condition 
may be approximated in some nuclear reactors and spacecraft. 
A solution by the finite difference method was obtained in 
the thermal entrance region for fully developed velocity 
profile. The local variations of wall temperature and the 
Nu RP were delineated as a function of x'(« 2x*) with 
y   and it   as parameters, where fm  ot (q"-*e o/k )VJ, 

Kadaner et al. [135] also analyzed the radiant flux 
boundary condition thermal entry problem for the circular 
tube with fully developed laminar flow velocity profile. 
Graphically they presented Nux ^2 as a function of x* 
with y    as a parameter. The (ft) and (f) local Nusselt 
number are shown as limiting cases when 7 = 0 and » 
respectively. Within the range of 0.001 < x* < 0.2 and 
0.1 < y < 50 with ambient (outside fluid) temperature as 
zero, they presented the approximation 

^R2 m    ^,0.0061-O.OOgfcx*^     (129) 
wux,H 1 + 0.0242 in x* 

which is accurate to within L-2 percent of their solution. 

1.3.2 Simultaneously Developing Flow 
The thermal entry length problem for the circular 

tube with simultaneously developing velocity and temperature 
profile was first investigated numerically by Kays [12]. He 
considered the (T), (g) and fit) boundary conditions for the 
fluid with Pr =0.7 . The Langhaar velocity profile was 
employed. The radial velocity component and the fluid axial 
heat conduction [in Eq. (19a)] were neglected. The local 
and mean Nusselt numbers wera tabulated and presented 
graphically. Goldberg [170] extended Kays' solution to 
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cover Prandtl number range of 0.5 to 5. Tien and Pawelek 

[171] analyzed the (?) combined entry length problem for 

fluids with high Prandtl number. A solution was obtained by 

using Leveque approximation and assuming very thin thermal 

boundary layer. The solution is thus valid for small x* . 

They depicted the Nu « and Nu » as 3 function of 

4x* (range 10~^ to ICr1) for Pr = 5, 10, 15J 20, kO  and 100. 

Heaton et al. [80] used a different approach for the 

solution, though employing Langhaar velocity profile, and 

obtained a generalized entry .^egion temperature profiles 

which could be used in the energy integral equation. Tne 

solutions were then obtained for the entire family of cir- 

cular tube annuli for the constant axial heat flux boundary 

condition and Pr ■ 0.01, 0.7 and 10. 
Petukhov et al. [172] also obtained the combined entry 

length solution for the laminar flow in a circular tube 

using Langhaar velocity profile. Other details are not 

known as the reference was not available to the authors. 

Roy [173] considered three regions in the thermal en- 

trance: simultaneous development of velocity and temperature 

profiles, fully developed velocity and developing temperature 

profiles, and both profiles developed. The problem was 

handled by an integral method for the (S) boundary condition 

for Pr = 1, 10, 100, and 1000. 

Kakac and Özgü [112] employed Sparrow [83] velocity 

profile and obtained a numerical solution to the combined 

entry length problem for the (|) and (§) boundary condition 

and Pr ■ 0.7 . The local Nusselt numbers determined were 

in good agreement with those of Ulrichson and Schmitz [17*0 

for large x* . 

Ulrichson and Schmitz [17^] refined Kays' work [12] by 

utilizing the axial velocity component of Langhaar solution 

and subsequently the radial component from the continuity 

equation. They found the effect of radial velocity on the 
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Table 8a. Circular duct «VT'^VT and Nu 
x,H- as func- 

tions of x* ard Pr for simultaneously develop- 
ing flow, from graphical results of Hornbeck [113] 

i 

0.0005 
C.000O 
Ö.C008 
0.0010 
0.001 f? 

0.00c 
0.003 
0.004 
0.005 
0.000 

0.0C8 
0,010 
C.015 
0.020 
0.030 

0.0'JO 
0.050 

Nu 
x,T 

Pr=,Y Pr».-     Pr=5 

.6 
21.0 
18.6 
16.8 
I'M 

12.6 
10,8 
9.6 
3.8 
&.2£j 

7..* 
6.8 
5.8 

4.4 
ii,2 
3.66 

19.3 
18.1 
16.2 
14.8 
12.7 

11.4 
9.8 
8.8 
8.0 
7.5 

6.8 
6,5 
5.4 
5.0 
4.5 

1-.2 
4.1 
3.66 

17.5 
16.1 
14.7 

11.8 

10.6 

8.2 
7.5 
7.1 

6.4 
5.9 
5.2 
4.7 
4.2 

4..06 

3.6b 

Nu. m,T 

Pr=,7 Pr*=2    Pr«5 

40.7 
57.8 
33.5 
30.6 
2p.4 

22.1 
18.7 
16.7 
15.1 
14.1 

12.5 
II.3 

7l5 

^3.4 
31.0 
27.7 
2^.2 
21.3 

19.1 
16.2 
14.4 
13.2 
12.4 

11.1 
10.2 
8.7 
7.8 
6,8 

6.8 6.1 
6.1 5.6 
3.66   3.66 

28.2 
26.6 
24.0 
22.1 
18.8 

l6.8 
14.4 
12.9 
11.8 
11.0 

9.9 
9.2 
8.0 
7.1 
6.1 

5.5 
5.1 
3.66 

Nu x,T 

Par*.7 Pr-2    Pr«5 

32.^ 

26! 3 
23.7 
19.7 

17.5 
14.7 
13.0 
11.8 
11.0 

9.8 
9.0 
7.7 
6.9 
6.0 

5.5 
5.2 
4.36 

28.3 
26.4 
23.4 
21.2 
17.8 

15.8 

11.8 
10.8 
10.1 

9.0 
8.2 

1:1 
5.2 
5.0 
4.36 

25.4 
23.7 
21.1 
19.2 
16.2 

14.4 
12.2 
10.9 
10.0 
9.4 

8'3 
I'.B 
6.1 
5.4 

5.0 
4.9 
4.36 

i 

1        » 1 1 1—1—r T———1——r 

,0006 
—J L 

Fig. 12  Circular duct Num m as functions of x* and Pe 

for simultaneously developing flow, from Hornbeck 
[113 3. 
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Kux was significant only for x* < 0.04 for botn (|) and 

© boundary condition and Pr = 0.7 .  In this region, the 

Nu  obtained were lower than those determined by Kays [12], 

Incidently, the Nuv „ and Nu „ are plotted against 
X,1 X , n 

lox* in present terminology, but the abscissa is misprinted 

consistently, it should have been x*/l«°" in [17*J. 

Hornbeck [113] employed an all numerical finite dif- 

ference method to solve to the combined entry length problem 

for the ® sfcd (g) boundary conditions and Pr =0.7, 2 and 

5. To obtain the velocity and subsequently temperature pro- 

files- in the entrance region, variable mesh sizes were used 

in the finite difference method, with the fine grid size 

near the entrance and near the wall with gradually increasing 

as the fully developed flow was approached. For Pr =.'0.7 , 

Hornbeck1s Nuv m are consistently lower than those of 
x, i 

Ulrichson and Schmitz, while Nu „ are in close agreement, x, n 
except very close to the inlet. As no approximations were 

involved in determining the velocity profile, Hornbeck's 

solution is a refinement over the solution by Ulrichson and 

Schmitz [17^] • Based on the graphical results of [113-]* as 

tabular results were not available, Figs. 12, 13, 14 and Table 

8a were prepared for Nu ^ , Num T and Nux H as functions 

of x* and Pr . 

Hornbeck also investigated the effect of variation in the 

inlet profile and viscous dissipation on the heat transfer. 

Using the modified Wang and Longwell [97] velocity profile 

at inlet,the obtained Num T and Nux H versus x* curves 

were found to be uniformly shifted upward and downward respec- 

tively from those obtained for uniform inlet velocity profile 

for x* < 0.01 . When the viscous dissipation was taken into 

account, the obtained Num T and Nux H were also found 

to be uniformly shifted upward and downward respectively in 

comparison to those with no viscous dissipation. 
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Fig. 13  Circular duct Nu- m as functions of x* and Pe 

for simultaneously developing flow, from Hornbeck 
[1133. 
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Fig. 14  Circular duct Nu H as functions or x* ana Pe 

for simultaneously developing flow, from Hornbeck 
[1131. 
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Bender [114] also numerically solved the combined entry- 

length problem for the circular tube for the ® and (§) 

boundary conditions. Correspondingly, the fluid bulk mean 

temperature d m,T and wall to fluid bulk mean temperature 

difference 29
w_m H were presented graphically as a function 

of x* with Prandtl number as a parameter. The effect of 

temperature dependent fluid properties on the thermal entrance 
et, « u was also considered. 

Manohar [90] independently further refined the work of 

Ulrichson and Schmitz [17*] by solving the non-linear momentum 

and energy equations numerically iteratively. For x* < 0.04 , 

Manohar obtained Nu T lower and Nu H higher than those 

by [17*]. As Horribeck [113] did not find this trend, this 

may be attributed to the possible error associated with the 

numeral values of the derivatives at the wall calculated 

from one sided difference formulae [137]. 

In the above analytical work, the effect of axial heat 

conduction in the fluid was neglected during the simultaneous 

development of the velocity and temperature profiles. This 

is a good approximation for the fluids with Pr > 0.1 , but 

not for liquid metals with Pr < .03 . McMordie and Emery 

[110] studied the simultaneous development of the velocity 

and (g) temperature profile in a circular tube with axial 

conduction effects in the fluid included. They used Langhaar's 

axial velocity profile and the subsequent radial velocity 

profile from the continuity equation. Th<a local 'Nu H were 

presented graphically for Prandtl numbers of 0.005, 0.01, 

0.02, 0.03 and 0.7 as functions of x* and Re numbers. 

Recently, Zeldin and Schmidt [175] employed a velocity 

profile based on the complete Navier-Stokes equations and 

solved the © thermal entry length problem Eq. (19a). They 

presented graphically the Nu - and wall heat flux <J> as 
x, 1 

a function of x1 for Re .■ 500 and Pr * 0.707 . They 

also obtained a thermal entry length solution for the fully 

developed velocity profile. 
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Table 8b.  Circular duct Nu - , * ■ and $ 
X • X     X 

and simultaneously developing flow, 
0.707, from Schmidt [138] 

for fully developed 

Re - 500, Pr ■ 

-■ ** X 10* 
Fully Cavelop-ad *1QW Simultaneously developing flow 

mx,1 ♦x 4> mx,1 ** *     ! 

0.03238 20.65 20.10 23.25 24.38 27*42 33.17 
0.06750 13.30 12.71 19*64 17.47 19.90 59*09 
0.10399 10.89 10.24 16.02 13.62 12*15 27*20 
O.U2*5 9.557 8.855 14.18 11*61 10*17 ?i.67 

!       0,111315 8.466 7.916 12.66 10*32 8.993 19*66 
1      0,22*2* 9*010 7.214 11*99 9.399 7*968 17*67 
1       0*27195 7*496 6.657 11*03 6.693 7.231 15.79        ! 

0.32050 7.076 6*197 10.30 9,123 6c670 i*»H 
0.37*20 t^UA 5.905 9.703 7*633 6,182 13.32 

0.42735 6.420 »•463 9.192 7*250 5*762 12*37 
0,V66I> 6*155 5*160 9.716 6.901 5*393 11.53 
0.5495 5,919 4.967 9*297 6.593 5*066 10*12 
0.6175 5.708 4.636 f«tl4 6*319 4*770 10,18 
0.6905 5.516 4.406 7.661 6*070 4.300 9*594     | 

0.7690 5.341 4.195 7.233 9.645 4*252 9*064 
0.6545 3.179 3.995 6.025 9.639 4,021 8.576 
0.9475 5.030 3.806 6.636 5.449 3*806 6*129 
1.0490 4.892 3.626 6*361 5.274 3*603 7.703 
1.1600 4.762 3.453 6.098 5.111 3.411 7*909 

i        1.2620 4.641 3.287 5*946 4.999 3*227 6*934 
1.4170 4.528 3*127 5*693 4.619 3,052 6.979 

.   1.5670 4.421 2,970 3.366 4.699 2*683 6*240 
1.7345 4.321 2.816 5.130 4.561 2.719 9*915 
1.9230 4.227 2.66» 4,91 5 4.443 it 996 3*601 

2.1370 4.140 2.515 4.687 4.337 2.401 9*297 
!       2.3610 4.059 2.365 4.466 4.236 2*246 4*999 

2.6625 3.984 2.215 4.246 4.143 4*902 4* TOO 
2.9915 i        3.916 2.062 4.023 4.096 1.937 4*420 
3.3800 3.855 1.936 ?.801 3.979 1*761 4*135      | 

3.346 3*802 1.743 3.573 3.910 1.620 3.846 
4.416 -3.158 1.573 3.338 3.849 1.454 3.559 
5.130 J.722 1.392 3.092 3.796 1..280 3.264 
6.045 !        3,695 1.197 2.931 3.754 1.094 2*958      i 
7.266 3.677 0.9847 2.349 3.719 0,8955 2.635 

8.475 3. *6S 0.7547 2.235 3.694 0.6895 2.298 
11.540 3.659 0.5128 1.961 3.t»7ö 0.4634 1*908 

1     15.810 1        3.657 0.2794 1.473 3.665 0.2521 1*483 
24.360 3.656 0.09715 1.008 3.661 0.08760 1*009 
50.00 3.655 0.01.143 0.5026 3.661 0*01032 0*5019 
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They stated that the gas compression work term 

u(dp/dx)/J is not negligible for the gasj moreover, it is 

more appropriate to consider the gas as having a constant 

density along with constant \x    and k . With these ideal- 

izations, the energy Eq. (19a) is of the same form but the 

thermal diffusivity a contains cy instead of c . On / 

this basis, with Pr =0.505 (air) based on cy instead of 

O.707 based ön c , they determined the thermal entrance 

results. These are presented in Table 8b [I38]. The Nu TV 

for simultaneously developing flow from this table are com- 

pared in Fig. 13 with Hornbeck's solution [113] obtained 

using the boundary layer type approximations. 

To assess the order of magnitude of the gas compression 

work term u(dp/dx)/J , it will be compared with the eonvective 

term pc um(dc/dx) for (H) boundary condition (for which 

ät/äx is constant) as a convenience. If it is assumed that 

(dp/dx) is approximately constant, and both terms are inte- 

grated over the flow cross section area, the results will be 

umAc(dp/dx)/J and (pumAc)c (dt/äx) . Dividing these terms 

by the perimeter P , it can be shown that these terms are 

Estd [see Eq. (235)] and q" respectively. For a gas turbine 

regenerator application, the typical values of EGtd ■ O.OO5 
hp/ft2 - 12.5 Btu/hr ft2 and of q,f « 1500 Btu/hr"ft2.  It 

can be concluded that the gas compression work would be 

negligible wider these circumstances. 

The Nuv m for Pr - 0.707 shown in Fig. 13, derived 
x, 1 

for the two different sets of idealizations differ as much 

as 25$. Based on the above example (even though, it is for 

(§) rather than © and some additional idealizations are 

involved), the validity of idealizations and/or the numerical 

method of [175] is in question. 
Recently, Butterworth and Hazell [111] considered the 

@ heating started at different locations in the hydrodynamic 

entry length for Pr « 60 * 550-■-. They used Langhaar's axial 

velocity profile. Their experimental results she»ed a close 

agreement with their theoiy predictions. 
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2. PARALLEL PLATES 

The parallel plate duct Is the simplest geometry amen*«, 

able to mathematical treatment, even more so than the cir- 

cular duct« Consequently laminar flow and heat transfer for 

the parallel plates have been analyzed in great detail. The 

analytical results for laminar flow and heat transfer follow. 

2,1 Fully Developed Flow 

The fully developed laminar velocity profile and fric- 

tion factor for the plate spacing of 2b with coordinate axes 

at the center are [3*176] 

u 
2 J2< 

fir*-*') (130) 

$■■• 

Um « - 5 cxb 

fRe - 24 

(131) 

(132) 

The heat transfer results are described below separately fpr 

each of the boundary conditions. 

2.1.1 Uniform Wall Temperature and Wall Heat Flux, © and 

The (J) boundary condition problem was first studied 

by Nusselt [177] in 1923* and later independently by Levöque 

[99], Norris and Streid [178]j ..and Hahnemann and Ghert [179]. 

Glaser [124] investigated the fully developed laminar heat 

transfer for © boundary conditions. The @ , @ and 

^ß   boundary conditions are the same for parallel plates as 

is the case for the circular tube and is designated as the 

© boundary condition. 
Depending upon the temperature or heat flux specified 

at either wall, there are four fundamental problems for the 
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hea, transfer. These are shown in Fig. 15 and described 

below. 

\uutittiiittuu(tk 

third kind 
fourth kind 

Pig. 15  Pour fundamental problems for parallel plates 

(i) Fundamental problem of the first kind. On one wall a 

"constant1" temperature, different from the entering 

fluid temperature, is specified, while the other wall 

is at a constant temperature of the entering fluid, 

(ii) Fundamental problem of the second kind. On one wall a 
constant heat flux per unit length is specified, while 

the other wall is insulated (zero heat flux), 

(ill) Fundamental problem of the third kind. On one wall a 
constant temperature, different from the entering 

fluid temperature, is specified, while the other wall 

is insulated, 

T5T Constant means c or»taint both in time and space. 
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:*     *'-• v^.h' ^rofclcs of the to^r**    «nd.    On one wall a 
constant to» at flux pir  ml% length is specified, while 
the t^fifsera"^re of the otter «ail is constant at t.*ie 
temperature of M-c entering fluid. 

ncCuer. et al.  [176] obtalt** the four fundamental sel- 
utiORs for the parallel p ates.    The fully     relied temper- 
ature profiles corresponding to these four solutions are 
presented in Fig. 16 along with a thersal entrance profile. 

ÜÜ1 
ill 

I &rv«i-    taw. 

4r "1    o 
first Uiri 

«01 

J       I i** * 

developed 
I Ac*«!-    ;wur 
ucplas       J \*wali 

l*> 

n 

Idevel* 
Wiag 

I teeel- IfttHar 
L -A" 

second klcd 

0     1 

third Sind 

developed 
k devel- 
Wins 

fourth kind 

fully 
[developed 

Pig. 16  Temperature profiles for four fundamental 
nrchlems. 

The dimensionless fluid temperatures and heat fluxes are de- 

fined as 

„CD   e(3)    .   ±!e 
*3    >°A tj-te 

(133a) 

•f > 9P 
t-t. 

(133t>) 

* (i)    _ 
A -\ 

de (i) 

dn (13*) 
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The suffix J stands for the heated surface j . The super 

scripts 1, 2 etc. ctand for ^he fundamental solutions of 

first, second kind etc. Ihe superscript i for the heat 

flux stands for 1, 2, 3 or h  designating the fundamental 

solution. 

The fully developed Nusselt numbers corresponding to 

these four solutions are 

First kind: Nu. = Nu0 = 4 

Second kind: Nux = 0 , Nu2 = 5,385 

Third kind: Nux =* 0 , Nu2 - 4.86l 

Fourth kind: Su1 » Nu2 - 4 

(135) 

(136) 

(137) 

(138) 

where suffix 1 and 2 refer to walls 1 and 2 in Fig. 15. The 

Nusselt numbers are based on the temperature difference be- 

tween t^ulk mean fluid temperature and the wall temperature. 

As mentioned previously, if viscous dissipation and the 

internal thermal energy sources are neglected in energy Eq. (5)> 

the resulting equation is linear and homogeneous; and then, 

any complex problem can be handled by the superposition of 

these four fundamental solutions.  In particular, the fully 

developed Nusselt numbers for three cases of interest, as 

shown in Fig. 17* are as follows. 

wall 1 

wall 2 

Fig.  17 

x: uwl 
l^wg r<& 

T 
2b 

JL 
'S 
£1 

(a) (»> (c) 
Specification of wall temperatures and heat 
fluxes for parallel plates. 
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(i)    Ocnstaiit but different t. nperatures specified at each 
wall, Fig,  17(a). 

IX    *wl * *w2 >     Nul Ä * '  ^2 = h (139ft) 

If    *wl*  *w2 " \ >    mT= 7.5*07159 (139b) 

When the wall temperatures are unequal and I/** = w $ 
Fig. 17a, the heat transfer is into the fluid at cue wall ana 
cut of the other and this assymetry is maintained in the limit 

as twl goes to tw2 • ^ contrast when twl,tw2 = tw , 
a common magnitude, for V*V < °° the heat transfer is sym- 
metrical (either in or ou*;) and this is maintained in the 

limit as I/*V, 6oes to w „ Thus the apparent paradox of 
NuT ~ 1.9 Nu-,  in Eq. (139) is a result of comparing in the 
limit (and different limits) an asymmetrical heat transfer 
problem with a symmetrical one.  In both situations the heat 
transfer flux goes to zero because the temperature difference 
for heat transfer goes to zero. 

(ii) Constant but different heat fluxes specified at each 

wall, Fig. 17(b). 

1   d 1      26-9(q^/qp        26-9(q1/q2) 

if qj - q2" *  NUH = lh°/17 m 8.23529^1  ,      (i4ob) 

If ql* = 0  (the adiabatic wall), 

Nux - C , Nu2 « 5.3846154 (i40c) 

(iii) Constant temperature specified at one wall, uniform 

heat flux s; 
Fig. 17(c). 

heat flux specified at the other wall (tw /  tp), 
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If q" y 0 , fcj - 4 , Ma2 * 4 i4ia) 

If qlf - 0 ,  ft^ « 4.86C«I25, Nu2 - C       (l4lb) 

Pahor and Strand "«.80] included the effect of axial 

heat conduction in the . lid for ® heat transfer problem. 

The © temperature distribution was expressed in terms of 

the confluent hypergeometric functions, Th»y graphically 

presented the fully developed NuT as a function of Pe 

number. They also formulated the following asymptotic 

formulae. 

Nu« = 7.5*0(1 + ^^ + •••)      Pe » 1 
1 Per- 

NuT « 8.118(1 - 0.031 Pe + •••)   Pe « 1 

(142a) 

(l42b) 

Ash [123] also considered the effect of axial heat conduction 

in the fluid. The 

reported in Table 9. 

in the fluid. The NuT as a function of Pe number are 

Table 9. Parallel plates NuT as a function of 

Pe for fully developed laminar flow, 
from Ash [123]. 

Pe Nuip Pe Nu=x 

132.36 
92.2^ 
69.78 
28.86 

9.970 
3.5*8 
2.104 
I.4368 

7.5407 
7.5408 
7.5408 
7.5408 
7.5408 

7.6310 
7.814? 
7.9084 
7.9640 

1.0572 
0.8156 
0.6508 
0.5326 
0.4444 

0.02352 
O.OO616 
0.000706 
0 

7.9998 
8.0242 
8.0416 
8.0546 
8.0644 

8.1144 
8.1166 
8.1176 
8.118 
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Tao h6] included the Internal heat generation for the 

laminar .,ow between parallel plates with (fi) boundary con- 

dition and solved the problem by a complex variables tech- 

nique, tyagi [23] further extended the results of Tao by 

including viscous dissipation. The Nusselt number is given 

by lyagi as 

""l + 3c, 
Tft,     1*0 

+ c< 5 1 y 
1 +I7C5 ^T^öj 

(1*3) 

where c,- = 
c^b 

3 s -1 

W7*] 
(144) 

C£ = 
-48M, u m 

■«[•♦Jj-H 
(1*5) 

For special cases of no viscous dissipation eg ■ 0 , 

and no internal thermal energy generation Cr - 0 . 

2.1.2 Exponential Wall Heat Flux, (ffij) 

Graber [128] studied the axial exponential wall heat 

flux distribution for parallel plates by introducing a 

parameter FQ defined in Section V.l.1.3* The NU
HI/

NU
HI 

is graphically presented as a function of FQ (range from 

-2 to 8) in [128]. 

2.1.3 Finite Wall Thermal Resistance, (En) 

Based on the Sideman et al. [131] results for the 

thermal entry length solution for the @ boundary condi- 

tion, the fully developed 

and presented in Table 3. 

NuR1 and Nu. are calculated 

2.2 Hydrodynamically Developing Flow 

Hydrodynamic entry length problem for parallel plates 
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Table 10 %      Parallel plates    u/u      and flow    Q   as a functiori 
of    x+   for developing laminar flow, fcom Bodoia 
[181] 

M O.O625O.I25    0,250    0.373    0.500    0.625    0.750   j 

1   ° 1.06l'j 1.0751 1.1013 1.1244 1.1443 1.1615 I.1767 
i  .i I.0615 1.0751 i.^013 1.1244 1.1443 I.1615 I.1767 

•2 1.0615 1.0751 1.1013 1.1244 i.1443 I.1615 1.1766 
.3 I.0615 1.0751 1.1013 1.1244 1.1442 1.1613 I.1763! 
.4 I.0615 .1.0751 1.1012 1.1243 1.1436 l.l604 1.1745 1 
•5 I.0615 1.0751 1.1010 1.1234 1.1414 1.1555 I.1665 

1    .6 I.0615 1,0750 1.0993 1*1176 1.1290 1.1351 1.1373 
1     -7 1.06i2 1.0725 I.O863 1.0874 1.0788 I.0655 1.0501 

1.0531 1.0485 1.0132 O.9665 0.9204 0.67^8 0.8455 
0.9587 0.8655 0.7194 0.6204 0.5567 0.5136 0.4832] 

|    ,8 
•9 

1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1 
Q 1.011    1.009    1.005    1.003    1.002    1.002    1.001 

M 1.000    1.250    1.500    1.750    2.000    ?,50C     3.125 

I     ° 1.2031 I.2259 1.2463 1.2648 1.2818 1,3121 1.3441" 
.1 1.2030 1.2258 1.2460 1.2643 1.2811 1.3105 1.34r ! 

♦ 2 1.2028 1.2252 1.2448 I.2623 1.2778 1.3043 1.330t 
,3 1.2017 1.2228 1.2406 I.2556 1.2684 1.2887 I.3067! 
,4 1.1972 1.2144 1.2275 1.2373 1.2447 1.2542 1.2601 1 

1    -5 1.1813 1.1893 1.1928 1.1935 1.1923 I.1871 1.1786 
.6 1.1339 1.1253 1.1144 1.1030 I.0918 1.0715 1.0504 
•I 1.0185 O.9890 0.9644 0.9429 0.9246 0.8950 0.8677 
.8 0.7922 0.7535 0.7241 0.7011 0.6825 0.6541 0.6291 

0.4427 0.4l62 0.3971 0.3825 0.3708 0.3534 0.3383 i    -9 
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Q 1.001    1.001    1.001    1.000    1.000    1;000     1.000 

p*< 3.750    5.000    6.250    9.375    12.5         62.5 

1     ° 1.3707 1.4111 1.4388 1.4758 1.4903 1.499999 1.500 I 
• -1 1.3663 1.4039 1.4292 1.4629 1.4762 1.485000 1.485 

.2 1.3511 1.3803 1.3993 1.4239 1.4336 1.440000 1.440 
1.3195 1.3357 1.3454 1.3573 1.3619 1.364000 I.365 
I.2626 1.2635 I.2628 1.2611 1.2604 1.260000 1.260 

.3 

.4 
i   •§ 1.1703 I.1565 1.1467 1.1336 1.1284 1.124999 1.125 

.6 1.0337 1.0095 0.9938 0.9733 0.9653 0.959999 O.960 
1   .7 0.8475 0.8197 0.8022 0.7796 0.7708 0.765000 0.765 

.8 0.6112 0.5870 0.5720 0.5526 0.5451 0.5400C0 0.540 
•9 0.3275 0.3132 0,^042 0.2926 0.2880 0.250000 0.285 

1,0 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000 0.000 
I    4 1.000    1.000    1.000    1.000    1.000    0.999999 1.000 
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Table 11a. Parallel plates    u      /u    , Ap* ,  faw^Re    aud 
'"* B.»VJV      tu &PP 

K(x}    as a function of    ?;*'•  (« x/D^Re)    for 
developing ljuninar flov,  from Bodola [l8l] 

x/Oyto) «Wu/Si V *««>*• K{x)     | 

'    0.0000*3 >.o*u 0.12*20 t9*.«30 0.1102 
0.09012» 1.0791 0.1992» 30*.9*0 0.1*11 
0.0002 SO 1.1013 0.210 0* 210.0*0 0.1«». 
0.0003?» 1.12*' 0.2*190 17*.332 0.22ft 

1    0.000500 1.1**3 0.30**9 l5*.:*o 0.2509 

0.000*29 1.1*14 0.'4*12 138.44* 0.28*1 
0.000750 1.17*? 0.381** ir..:n 0.309* 
0.001000 1.203; 0.***36 111.090 0.9*» > 
0.001290 1.229« 0.49984 99,9*» 0.379 1 
0.001500 1.2**3 3.990** 41.7*0 o.*o** 

o.ooma 1.2**8 0.997** •9.391 0.4295 
0.002000 1.2*18 0.6*170 «0.212 0.**» ' 
0.0029O 1.3121 0.7k3»* 72.3Ä4 0.*»M 

!    0.0031Zi l.J**l 0.81784 *9.*27 0.917 \ 
0.003790 1. W07 0.90*9» 49.332 ©.«♦TO 

0.009000 1.4111 1.0*91* 93.298 0.i892 
0.00*290 1.4388 1.21262 4».903 0.612 
0.0C9375 1*79» 1.9901* *1.337 O.*50 i 
0.012500 l.*«03 1.8*93» 37.30» 0.0*94 
0.0*2900 1.4*9999 *.*7*03* 2*.70* 0.*7*0 

as a func- Tftble lib.  Parallel plates ?a Re and K(x) 

ticn of x4* for Re = 1000G, 500 and 100, from 
Schmidt [138] 

!$ff 
Re  - 10 000 Re - 500 Re - 100 

r.^R« app *(x) fappRe K(x) app K(x)      1 

0.0000307 618.10«. 0.0739 1016.318 0.1228 
0.0000472 502.6 70 0.0921 804.934 0.1*93 227.989 0.0*011 
0.0000448 425.837 0.10O3 669.619 0.1695 316.489 0.07790 
O.000O«33 372.910 0.1190 ST6.121 0.1867       1 3*7.771 0.1106 

0.0001029 333.636 0.1308 306.6 78 0,2020 353.460 0.1J90 
0.0001217 302.875 C.1420 432.534 0.2161 3*6.99« 0.163» 
0.0001458 277.851 0.1527 408.697 0.2291 334.701 0.1859 
0.0001*"* 250.917 O.loi2 372.178 0.2*13 319.993 0.2099 
0.0  0194«. 2*4.016 0.1715 341.077 Ü.2528 30*.52* 0.22** 

0.0002213 223.437 U.H3o 314.118 0.2639 289.207 0.2*1» 
|       D.0O0<M..C0 209.683 0.1937 290.415 0.27*4 274.455 0.29»» 

0.3002604 197.381 0.2038 269.327 0.2646 260.442 0.27** 
0.0003141 186.270 0.2139 250.381 0.2945 2*7.207 0.2909 
0.0003500 176.139 0.2242 233.220 0.3041 23*.722 0.30*2 

|      0.000 3889 14t.S27 C.2346 217.559 C.3136 422.930 0.3219 
1      0.0004312 158.206 0.2453 203.214 0.3229 211.763 0.3376 

0.0004773 150.171 0.2561 189.983 0.3321 201.193 0.3939 
O.0OO5278 142.639 0.2673 177.741 0.1*15 191.03* 0.3699 
0.0009831 135.539 0.2789 166.377 0.3509 161.3*8 0.3658 

0.0006447 \26.812 0.2909 155.796 0.1405 172.036 0.4024      | 
0.0007t?0 122.406 0.3035 143.926 0.3705 1*3.056 0.419* 
0.0007892 1*6.279 0.3166 136.692 0.3810 154.390 0.4368 
0.0008750 111.390 0.3304 128.033 0.3921 1*5.»80 0.*»** 
0.0009722 10' .706 0.34 50 119.890 0.4040 137.603 0.4729 

0.00108J3 99   194 0.3605 112.2C5 0.4169 129.479 0.*917      i 
0.0012115 93.825 0.3772 104.*i2 0.43C9 121.468 0.9111 
0.0013611 8B.>©8 0.3951 97.983 0.4*f4 i     113.533 0.9910 
0.0015379 83.19? 0.4146 91.329 0,4*34 109.640 0.591* 
0.0017500 78.262 U.4358 04.849 0.4823 47.757 3.9723 

C   (1020093 73.137 0.4592 78.611 0.5034 »9.860 0.9936      [ 
0.0023333 67.966 0.4850 72.452 0.5269 81.9.U 0.619* 
0.0027500 62.681 0.5135 66.280 0.5531 73.966 0.*37* 
0.0033056 57.193 0.5447 60.014 0.5820 |       69.963 0.6606 
0.0040833 51.366 0.5780 93.630 0.6130 57.694 0.6643 

O.00f2500 45.120 0.6115 46.687 0.6444 !       49.704 0.707»      1 
0.0071944 3B.2H6 0.64i3 39.3->7 0.6724 41.410 0.72»^ 
0.0110833 30.921 0.6615 31.596 0.6914 32.7*9 0.7*26 
0.0227500 23.349 0.6688 23.674 0.6963 24.221 0.7481       ; 
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was first investigated by Schiller [21] by considering two 

regions in the flov; crosa section:  (i) a boundary layer 

developing ne*> *-he vail with impressed pressure gradient 

and (iis; a straight potential core in the refining central 

cross section. This method provide-» £ood results at the 

entrance, but p?cr resultr downatrean. 

Schlichting [71,72] upplied a perturbation method to 

solve the hydrodynamie entry length problem. HJ.S method 

consisted of smoothly joining two asymptotic series solutions, 

one based on perturbed Blasius' solution of external boundary 

layer development in the entrance region and second perturbed 

Hagen-Poiseuille solution of parabolic velocity distribution 

at the downstream. Collins and Schowalter [7^] refined the 

solution by retaining more terms in Schlichting's upstream 

and downstream series velocity distribution.  Their results 

approach to the numerical results of Bodoia and Osterle [87] 

described below. 

For parallel plates, Han [77] used the same method of 

linearization of momentum equation as Langhaar [75] used for 

the circular tube. Sparrow et al. [83] used the stretched 

coordinate linearization, Eq. (106). Their results are in 

good agreement with Bodoia and Osterle's [87] numerical re- 

sults . 

Bodoia and Osterle [87] solved the problem numerically 

by linearizing the momentum equation at any cross section 

x = x  by means of velocity at x = x^ - Ax . The dimen- 

sionless velocity and pressure drop were calculated by the 

finite difference method using nine grid points between the 

centerline of the channel and one wall. Their results from 

[\8l] are presented in Tables 10 and 11a. The flow Q was 

first determined by evaluating the velocity profile by finite 

difference method and then numerically integrating the 

velocity profile. Theoretically Q should be 1 . The 

variation of flow was found up to 1.1 percent from X+ = 0 
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to X ■ 1,73 (X+ = lCrxr)9  thus establishing the accuracy 

of the solution. The convergence of solution was checked by- 

considering fourteen instead of nine gric points for X4* 

up to 1. The error incurred was 0.2 percent, well within 

the inherent error of the finite difference formulation. 

In all of the above solutions, the velocity distribution 

at the entrance was assumed to be uniform, and the idealiza- 
2    2 

tions made that the \±{b u/äx ) and äp/dy terms in the 

momentum equations were negligible (same as boundary layer 

idealizations). Wang and Longwell [97] solved the complete 

Navier-Stoke's equations for the parallel plates at Re = 

300. Two cases were studied:  (i) flat velocity distribution 

at the entrance, and (ii) flat velocity distribution far up- 

stream of the entrance. Numerical results were presented for 

the velocity distribution and the pressure drop in the en- 

trance region. The authors concluded that if the velocity 

distribution and the pressure gradients were required near 

the entrance region, the boundary layer type idealizations 

were not appropriate and full differential equations must be 

solved with realistic boundary conditions. Gillis and Brandt 

[98] also solved independently the complete Navier-Stokes 

equations for the parallel plates. Schmidt and Zeldin [96] 

also obtained a solution to complete Navier-Stokes equations. 

They reported non-dimensional pressure distribution and the 

cross sectional area average K(x) for Re * 100, 500 and 

10,000. Their fat)TJte and K(x) values are presented in 

Table lib [138]. 

2.3 Thermally Developing Flow 

2.3.1 Hydrodynamically Developed Flow 

2.3.1.1 Fundamental Solutions of First and Second Kind 

(a) Specified Wall Temperature Distribution 

Thermal entry solutions for flow between paral- 

lel plates obtained up to 1961 are summarized by McCuen et 
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al. [176]. Ar: approach similar to Graetz [117,118] was ap- 

plied by Nusselt [177] for thermal entry length solution 

with (f) boundary condition. As discussed in the circular 

duct section, this problem is known as the Graetz or Graetz- 

Nusselt problem. 

Nusselt!s Infinite series solution was very slowly con- 

verging near the entrance region. Leveque [99,1] alleviated 

this difficulty by an approximate integral-type approach 

near the entrance region, and also obtained a solution for 

non-uniform wall temperature case. 

An independent verification of Nusselt's result was 

done by Norris and Streid [178], Purday [182], Prins et al. 

[183], and Yih and Cermak [184], Thus the determination of 

first three eigenvalues and eigenfunctions of series solu- 

tion for Nu m was completed. For higher eigenvalues and x, 1 
eigenfunctions, Sellers et al. [13] extended the Graetz- 

Nusselt problem for the circular tube and parallel plates 

by employing the WKBJ approximate method. * They derived 

the asymptotic expressions for the eigenvalues and eigen- 

constants. Th3y presented the first ten eigenvalues and re- 

lated constants from 0 to 4 decimal point accuracy. For the 

same problem, Brown [1^1] refined the work of Sellers et al. 

and reported the first ten eigenvalues and eigenconstants to 

ten decimal point accuracy. 

Gupta [62] approached the Graetz-Nusselt problem by a 

variational method.  Krishnamurty and Rao [185] employed 

Lev£que approximation and derived an approximate formula 

for Nu rp with one or both sides heated. Empirically, the 
x, 1 

effect of natural convection and the temperature dependent 

viscosity were included in the approximate formula. Chandler 

%"he WKBJ method reduces a singular perturbation problem 
of an ordinary differential equation to a regular perturba- 
tion problem. The asymptotic solution is then obtained in 
terms of the perturbed parameter (e.g. large eigenvalue). 
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Table 12.  Parallel plates energy content of the fluid for 
developing temperature profile (developed vel- 
ocity profile) when fluid axial heat conduction 
is considered, from Schmidt [1381 
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Fig. 18 Parallel plates energy content of the fluid for 
developing temperature profile when fluid axial 
heat conduction is considered, from Schmidt [138] 
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et &1. [109] applied the Monte Carlo method to solve the 

Graetz-Nusselt problem for the parallel plates. 

Bodnarescu Ll86j solved the Graetz-Nusselt problem and 

also considered the effect of axial heat conduction in fluid. 

Agrawal [167] included the effect of axial heat conduction 

and viscous dissipation in the fluid. He presented the 

eigsnfunctions by infinite Fourier-sine series and derived 

an expression for the local temperature distribution and 

Nu „ ,  and outlined a detailed solution for Pe = 1 . Bes 
Xj A 

[153] also included the effect of axial heat conduction. 

He found that for Pe < 30 , the effect of axial heat con- 

duction within the fluid is significant. Schmidt and Zeldln 

[30] also solved the Graetz-Nusselt problem with fluid axial 

heat conduction included. They employed the finite dif- 

ference method for the semi-infinite region (0 < x < ») with 

uniform temperature at inlet. They presented graphically 

the Nux T and $ as a function of x'(- 2x*) with Pe 

as a parameter. Similar to the circular tube case, they 

also presented the energy content of the fluid as functions 

of x1 and Pe . Their results [138] for the energy con- 

tent of the fluid are presented in Table 12 ?nd Fig. 18. 

Sparrow et al. [188] included the effect of thermal 

energy sources within the fluid and obtained the thermal 

entry solution for both surfaces at equal and uniform temper- 

atures as well as arbitrary temperature distribution. The 

thermal energy sources were assumed to have arbitrary lon- 

gitudinal as well as cross sectionally symmetric transverse 

variations. The solution was obtained by the Graetz method. 

The first ten eigenvalues and eigenconstants for both walls 

at equal and uniform temperatures were presented in tabular 

form [188]. 

In all the following specified wall temperature cases 

considered, the effect of axial heat conduction, viscous 

dissipation and the thermal energy sources within the fluid 
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are neglected. Yih and Cerraak [184] in 1951 used the super- 

position method and arrived at solutions for variable and 

unequal wall temperatures and insulated boundary conditions. 

The Yih and Cermak method was not generally used until it 

was outlined by Klein and Tribus [189] in 1953. Schenk and 

Beckers [190] considered a more general problem including 

wall thennal resistance and arbitrary inlet fluid distribu- 

tion. Cess and Shaffer [191] summarized th* first three 

even [13] and first three odd [184,190] eigenvalues and 

eigeneonstants for the uniform and unequal wall temperatures, 

with asymptotic expressions for higher eigenvalues and eigen- 

constants. McCuen et al. [176] also solved the unequal wall 

temperature problem by superposition method and reported 

first four even and first ^hree odd eigenvalues and eigen- 

constants, with asymptotic formulae for higher values. Hatton 

and Turton [192] independently solved the same problem, uni- 

form and unequal wall temperatures. They reported the odd 

and even first eight (16 total), eigenvalues and eigencon- 

stants with asymptotic formulae for higher values. 

Sadikov used simplified energy Eq. (107) and solved the 

thermal entry length problem for parallel plates with entering 

fluid at uniform temperature [105] and nonuniform temperature 

[106]. In both cases, the wall temperature was assumed 

linearly varying with the axial distance. He presented 

graphically the local temperature distribution and the 

Nusselt numbers as a function of the axial distance. 

(b) Specified Wall Heat Flux Distribution 

The thermal entry length problem for uniform and 

equal wall heat fluxes, ® boundary condition, was first 

solved by Cess and Shaffer [193] using the method suggested 

by Siegel et al. [15]. They reported first tnree eigenvalues 

and constants for this problem with asymptotic expressions 

for higher values.  Sparrow and Siegel [102] applied a 

variational method to the thermal entry length problem with 

equal and uniform wall heat fluxes. 
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Sparrow et al. [188] included the effect of thermal 

energy sources and obtained a thermal entry length solution 

for uniform and equal as v?l. as arbitrary wall heat fluxes. 

They reported the first ten eigenvalues and constants in 

tabular form. 

Hsu [l6l] theoretically investigated the effect of 

axial heat conduction within the fluid for the (3) boundary 

condition. He considered the uniform fluid temperature 

profile at x = -00 , the duct region from x = -00 to x = 0 

isothermal at entering fluid temperature, and the uniform 

and equal wall heat fluxes from x = 0 to x = °° . He 

dete mined the first twenty eigenvalues and eigenconstants 

for the heated and adiabatic regions. The Nu „ were pre- 
„    x,n 

sented graphically as a function of 32x /3 with Pe as a 

parameter. The values of Pe used were 1, 2.5, 5, 10, 20, 

30, ^5 and °°. In this plot, like the circular tube case, 

for finite values of Pe , the Nu „ is finite at x* - 0 
X,n 

and has an inflection point ax    x* - 0.0015. 

Cess and Shaffer [193] also applied the superposition 

theorem and presented the case of uniform and equal wall heat 

fluxes on both walls, but having arbitrary axial distribution. 

Cess and Shaffer [19^] further extended their work by con- 

sidering the uniform as well as arbitrary tut unequal wall 

heat fluxes. For this problem, they reported first four 

odd eigenvalues and eigenconstants. Formulae were presented 

for higher values. The complete solution to this problem 

is obtained by combining these odd quantities with the even 

eigenvalues and constants determined for uniform and equal 

wall heat fluxes case [193]. They then generalized to ar- 

bitrary prescribed wall heat flux case. McCuen et al. [1?6] 

also presented the first three even and four odd eigenvalues 

and constants, and generalized the solution for the pre- 

scribed arbitrary axial wall heat flux distribution. 

Ill 



2.3.1.2 Fundamental Solutions of Third and Fourth Kind 

The above solutions complete the fundamental solu- 

tions of first and second kind (Fig. 15) for the parallel 

plates. McCuen et al. [Yf6]  also obtained the thermal entry 

length solutions for the boundary conditions of the third 

and fourth kind. They summarized the results in tabular and 

graphical form for all four fundamental boundary conditions. 

With these results, the thermal entry length solution for 

any arbitrary combinations of wall heat fluxes and tempera- 

tures can be worked out provided that the axial heat con- 

duction, viscous dissipation and thermal energy sources within 

the fluid are negligible. 

2.3.1.3 Finite Wall Thermal Resistance 

Does de Ejye and Schenk [195] solved the thermal 

entry length problem for finite wall resistance (1^ ■ .025 
and .25) with equal wall temperatures. Berry [196] also 

considered finite wall resistance for circular tube and 

parallel plates, but examples were worked out only for slug 

flow.  Schenk [197] extended Berry's work considering fully 

developed laminar flow.  Schenk and Beckers [198] dealt with 

the case of finite wall resistance and nonuniform inlet 

temperature profile. The calculations were made for a linear 

transverse temperature distribution at inlet with wall re- 

sistance parameter R^ = 0 , 0.125 and °° . Butler and 

Flewes [199] treated the case of one wall at a uniform temper- 

ature (R^ ■ O) and the other wall insulated.  Schenk [200] 
again solved this problem with the case of uninsulated wall 

having a finite thermal resistance,  \ = 0 , 0.05 and O.25. 

Dennis and Poots [201] used the ftayleigh approximate method 

to solve the problem treated by Does De Bye and Schenk as 

discussed above. 

Sideman et al. [131] supplemented and extended the v-ork 

of Schenk et al. [195.198] for the case of finite wall re- 

sistance.  First five eigenvalues and eigenconstants were 
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tabulated for the wall thermal resistance parameter R^ = 0 , 

0.0125, 0.025, 0.05, 0.075, 0.125, O.25 and 0.5. This thermal 

entrance solution is valid for fully developed laminar flow 

between parallel plates when neglecting the axial heat con- 

duction, viscous dissipation and internal thermal energy 

generation. Sideman et al. [331] assumed a known value of 

the constant surface resistance for the thermal entry length 

solution. However, Davis and Gill [18] investigated the wall 

conduction effects on steady-state laminar Poiseuille-Couette 
20 

flow  through parallel plates without a priori knowledge of 

the surface resistance. One wall was specified to be at the 

temperature of the entering fluid while the heat flux from 

outside to the other wall was specified constant. They con- 

cluded that the axial conduction in the wall of a heat transfer 

apparatus could significantly affect the temperature field in 

the fluid phase and lower the Nusselt number associated with 

the heat transfer. 

2.3,2 Simultaneously Developing Flow 

Simultaneous development of velocity and temperature 

profile for parallel plates was first considered by Sparrow 

[202] for the equal and uniform wall temperatures as well as 

one wall at uniform temperature and the other wall being in- 

sulated. Sparrow used Schiller's velocity profile and em- 

ployed Karman-Pohlhausen integral method.  Slezkin [203] and 

Murakawa [204] considered theoretically simultaneous develop- 

ment of velocity and temperature distribution in the entrance 

region of tubes and ducts, but they did not present exact 

solutions of momentum and energy equations specifically. 

Stephan [205] employed approximate series solution for con- 

stant wall temperature case, and the average entrance region 

Nusselt numbers were approximated for Pr range of 0.1 to 

1000 by the empirical relation 

See footnotes on p. 22 
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Hwan and Fan [U5L utilizing the hydrodynamic entry 

length solution of Bodoia and Osterle [37L numerically solved 

the energy equation in the entrance region of parallel plr/tes. 

The uniform and equal wall temperature case was investigated 

in Prandtl number range of 0.01 to 50. Their results agree 

with Eq. (146) within 3 percent. Mercer et al. [206] also 

solved numerically the equal wall temperature problem as 

well as one wall at a uniform temperature, the other being 

insulated. They reported results for a Pr = 0.7 along 

with tne results of an experimental investigation, and pre- 

sented equations summarizing theoretical results. Miller and 

Lundberg [207] extended the work of Kefs. [115*206] foi a 

boundary condition of uniform, but unequal wall temperatures 

employing Bodoia velocity distribution [l8l]. 

Siegel and Sparrow [208] solved the case of equal and 

uniform wall heat fluxes by the same method used by Sparrow 

[202], i.e., employing Schiller's velocity profile. The 

local Nux JJ were presented as functions of x* and Prandtl 

numbers (from 0.01 to 50). Using a velocity profile based 

on Langhaar's approach, Han [77] also solved the equal and 

uniform wall heat flux case for the entrance region. The 

rate of approach of his local Nusselt number to its asymp- 

totic value is quite different from Siegel and Sparrow's 

[208] approximate method. Miller [209] showed that Han's 

solution was in poor agreement with a similar solution em- 

ploying the Schlichtlng velocity profile [71]. Hwan and 

Fan [115] also so?.ved numerically the case of uniform and 

equal wall heat fluxes for the Prandtl number range of 0.1 

to 50.  Heaton et al. [80] used an approximate integral 
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method and Han's [77] hydrodynamic results to solve the 

thermal entry length problem for one wall having uniform 

heat flux with the other wall being insulated. 

For an arbitrary variation in axial wall temperature 

and/or heat flux, the superposition principle can also be 

applied to four fundamental solutions for the simultaneously 

developing flow. However, at each step of axial wall tem- 

perature and/or heat flux, the velocity profile, developing 

in the entrance region, will be different. Hence, a large 

number of thermal entrance solutions, with the heating 

started at different locations in the hydrodynamic entry 

length, would be required for the superposition. As it is 

impractical to carry out such solutions, the basic problem 

of getting four fundamental solutions for the simultaneously 

developing flow has not been investigated. Instead, as 

mentioned above only one fundamental problem (of the second 

kind), having a direct practical application, has been 

solved by Heaton et al. [80]. 

115 



RECTANGULAR DUCTS 

For the rectangular duct fully developed fRe , NuR1 , 

NuH2 , and NuT as well as the Nusselt numbers for different 

wall boundary conditions on each wall have been determined. 

The hydrodynamic entry length problem has also been solved. 

However, there remains a need for the refinement for the 

thermal entry length solutions for the simultaneously devel- 

oping flow, which so far were obtained by neglecting the 

transverse velocity components v and w . The experience 

with the circular duct, discussed in Section V.l.3.2 indicated 

that this neglect is not valid near the thermal entrance. 

3.1 Fully Developed Flow 

3.1.1. Velocity Profile and Friction Factors 

Fully developed velocity profile for the rectangular 

ducts has been determined from the analogy with the stress 

function in theory of elasticity [2,31,33], 

Consider the cross section of rectangular duct as shown 

in Fig. 5 with flow direction in x axis. The velocity pro- 

file, the solution of Eq. (3a) with boundary condition of 

Lq, {k),  from Ref. [33] is 

u = - 
16 c-, ac 

■? 

00 

£ 
n=l,3,. 

n-1 

nJ 

1      cosh(mry/2a) 
cosh(mrb/2a) cos n?rz 

2a 

(1*7) 

ro 

c-, a 
1 - 192 a 

" b 
T' 

n-1,3, 

-j tanh Jr (1*8) 

and 
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f Re = - 
8c .a? 

(1*9) 

The velocity profile of Eq. (1^7) is in excellent agree- 

ment with the experimental results of Holmes and Vermeulen 

[210]. 

The friction factors were calculated from Eq. (1*9) on 

the Stanford IB^ 360/67 computer using double precision and 

taking first 30 terms in the series and were checked against 

25 terms in series. Seven digit accuracy was thus estab- 

lished. The results are presented in Table 13 and Fig. 19. 

Table 13.  Rectangular ducts fRe , K(~) c Nur m lEl 
and    NUjjp    for fully developed laminar flow, when 
all four walls art transferring the heat. 

a* fRe K(«)[20] ^2°1 NuT[211] Nu. HI NUjjgföO] 

1.000 
0.900 
1/1.2 
0.800 
0.750 

1/1.4 
0.700 
2/3 
0.600 
0.500 

0.400 
1/3 
0.300 
0.250 
0.200 

1/6 
1/7 
0.125 
1/9 
0.100 

0.050 
0.000 

14.22708 
14.26098 
14.32808 
14.37780 

14.56482 
14.60538 
14.71184 
14.97996 
15.54806 

16.36810 
17.08967 
17.51209 
18.23278 
19.07050 

19.70220 
20.19310 
20.58464 
20.90385 
21.16888 

22.47701 
24.00000 

1.5515 

1.5203 

1.3829 

I.2815 

1.0759 

0.9451 

0.8788 

0.8392 

0.7613 
O.6857 

0.0324 

0.0310 

2.976 

0.025$ 

O.0217 

0.0147 

0.0110 

0.00938 

0.00855 

0.00709 
0.00588 

3.077 

3.117U1] 

3.391 

3.956 

4.439 

5.137 

5.597 

7.540716 

3.607949 
3.620452 
3.645310 
3.663823 

3.734193 
3.749608 
3.790327 
3.894556 
4.123303 

4.471852 
4.794796 
4.989888 
5.331064 
5.737689 

6.049456 
6.294o4l 
6.490334 
6.651060 
6.784947 

7.450827 
8.235294 

3.091 

>.017 

2.930 

2.904 

8.235 
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Fig. 19  Rectangular ducts fRe , K(«) and l£  for fully 

developed laminar flow. 
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Lundgren et al. [19] also determined fVRe , K(°°) and other 

flow parameters for the rectangular ducts. McComas [20] 

evaluated the hydrodynamic entrance length h!~      for the 

rectangular ducts. The K(°°) and L^  are also pre sent 3d 

in Table 13 and Fig. 19.  Shin [53] determined fRe by the 

point matching method and presented the results graphically. 

3.1.2 Specified Wall Temperature and (T) 

Clark and Kays [44] ir. 1953 were the first investiga- 

tors to analyze the rectangular ducts in detail. They have 

numerically evaluated the fully developed NuT for a* = o, 

0.5 and 1 when all four walls are uniformly and equally 

heated.  Miles and Shih [211] refined the work of Clark and 

Kays by employing a 40 x 4oa* grid instead of a 10 x 10a* 

grid size used for the finite difference method by Ref. [44], 

They reported NuT for a* = 0.125, 1/6, 0.25, 1/3, 0.5, 

1/1.4 and 1. Along with the thermal entrance solution, 

Iyczkowski et al. [11] determined NuT for a* = 0.25, 0-5, 

2/3 and 1 by the finite difference method. The NuT for 

the rectangular duct are presented in Table 13 and Fig. 20. 

Schmidt and Newell [45] considered one or more walls 

being heated at uniform surface temperature, the rest being 

at adiabatic condition. They solved the fully developed 

heat transfer problem by the finite difference method. The 

rectangular duct was divided into a system of 20 x 20 sub- 

divisions when the symmetry was present about both axes and 

20 x 10 subdivisions when the symmetry was present about one 

axis. A system of 10 x 10 subdivisions was used when sym- 

metry was not present about any axis, requiring that the 

complete duct be considered. According to Miles and Shih 

[211], the influence of grid size on calculated Nusselt num- 

bers is eliminated, if the grid fineness of 40 x 4oa* is em- 

ployed. Consequently, the results for nonsymmetric heating 

may not be as accurate as those for the symmetric heating 

case of Table 14. After redefining the Nusselt number with 
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Table 14,  Rectangular ducts NuT for fully developed laminar 

flow, >?hen one or more walls are transferring the 
heat, from Schmidt [138] 

■ t 

NuT tljfej 

ri i 
JfcttMW* Ql 

'   CO 
i   o.i 

t:i 
\ oie 

c.7 
0.8 
0.9 

1.0 
1.45.. 
2.0 

3.33.. 

5.0 
1 10.0 

M 

7,-M 

5.i9l 

2.976 

J.391 

7.5*1 

7.541 
:.858 
4.30 < 
4.114 
v.670 

>.30j 

3I063 
i.014 
2.980 

2.970 
3.083 
3.333 
3.670 
4.114 

4.803 
5.858 
7.5*1 

7.541 
6.09s 
5.195 
4.579 
4.154 

3.842 

3.408 

5.018 
2.734 
2.602 
2.603 
2.703 

2.982 
3.59C 
4.861 

1  

7.541 
6.399 
5.70S 
5.224 
':.884 

4.619 

4.192 

3.7C3 
3.173 
2.657 
2.333 
1.9*6 

1.467 
0.3429 
0 

0 
0.4H71 

1.416 

1.647 

2.023 

2.437 
2.838 
3.185 
3.390 
3.626 

3.909 
4.270 
4.861 

4.861 
3.823 
3.33C 
2.996 
2.768 

2.613 
2.509 
2.442 
2.401 
2.381 

2.375 
2.442 
2.613 
2.768 
2.996 

3.330 
3.823 
4.861 

0.8   1.0   0.8 
ASPECT RATIO a* 

Fig. 21  Rectangular ducts Nu™ for fully developed laminar 

flow, when one or more walls are transferring the 
heat, from Schmidt [138]. 
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the hydraulic diameter based on the wetted perimeter rather 

than the heated perimeter as was done in [45], the NuT 

[138] ere  reported in Table 14 and in Fig. 21. 

Ikryannikov [212] obtained the (J) temperature distribu- 

tion in a rectangular duct by a finite integral Fourier sine 

transformation.  In the energy Eq. (5), he neglected the con- 

vective term u(ät/äx)/u , thermal energy sources and zhe 

fluid axial heat conduction, but did not neglect the viscous 

dissipation. He presented graphically the maximum temperature 

at the mid-point of the channel as a function of the a  of 

the duct. The temperature distribution in the mid-plane of 

a square duct was also presented graphically. 

3.1.3 Specified Wall Heat Flux and (ffl 

Glaser [124] obtained numerically, by the finite dif- 

ference method, the fully developed NuH1 only for the square 

duct, Clark and Kays [44] analyzed this problem for rectangu- 

lar ducts in detail, by numerically evaluating the Nu„^ for 

a* = 0 , 0.25 , 1/3 , 0.5 , 1/1.4 and 1 . Miles and Shih 

[211] refined the calculations by employing a finer grid of 

40 x 4oa* instead of the 10 x 10a* grid. They determined 

the NuH1 for a* = 0.125 , 1/6 , O.25 , 1/3 , 0.5 >  1/1.* 

and 1 . 

Marco and Han [31] derived the @ temperature distri- 

bution for the rectangular ducts based on the existing solu- 

tions for the small deflection of thin plates under uniform 

lateral load with the plate being simply supported along all 

edges. The NuH1 from [31] can be expressed as 

121 



Table 15.  Rectangular ducts Nu^ for fully developed laminar 

flow when one or more walls are transferring the 
heat, from Schmidt [138] 

2t 
7& 

NUH1 

Table 15 

cm 

*uHl U38J 

CZ3 C3 a 
0.0 
0.1 
0.2 
0.4 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

l.O 
l.H. 
2.0 
2.6 
3. $3. 

5.0 
10.0 

S.2J5 

5.738 
-.990 
4.4/2 

4.123 
3.695 
5.750 
3.66U 
3.620 

3.608 
3.750 
4.123 
4.472 
4.990 

5.733 
6.785 
8.235 

S.235 
6.700 
5.704 
4.969 
4.4S7 

4.111 
5.884 
3.7^ 
3.655 
3.612 

3.599 
3.740 
4.111 
4.457 
*.969 

5.704 
6.700 
8.235 

8.-35 
6.939 
6.07? 
5.393 
4.835 

^.5C'5 

3.991 

3.556 

3*.l4c 
3.169 
3.306 

3.636 
4.252 
5.385 

7.248 
6.561 
5.997 
5.555 

5.203 

4.662 

4.094 
3.508 
2.947 
2.598 
2.182 

1.664 
0.9746 
0 

0 
0.5377 
0.9636 
1.312 
1.604 

I.854 

2.263 

2.712 
3.149 
3.539 
3.777 
4.060 

4.411 
4.851 
5.385 

5.385 
4.410 
3.914 
3.538 
3.279 

3.10« 
2.987 
2.911 
2.866 
2.843 

2.836 
2.911 
3.104 
3.279 
3.528 

3.914 
4.410 
5.385 

i—r—1—1—r 

0.0 0.2 0.4 0.6 0.8 1.0 
ASPECT RATIO  a 

0.8 
w 

06 0.4 0.2        0.0 

Fig. 22  Rectangular ducts Nu„, for fully developed laminar 

flow, when one or more walls are transferring the heat, 
from Schmidt [138]. 
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00 

Nu 
6k 

H1 ~ (l+a*)V 

m*n2'(m2+n2a*:) 

»=1,3*..• n~l,3*♦* * 
m¥(^a^)^ 

(150) 

The NuH1 were evaluated on the Stanford IBM 360/6? 

computer from Eq. (150) using a double precision and taking 

100 terms in each series, 3y this way, seven digit accuracy 

was obtained. The results are presented in Table 13 and 

Fig. 20. 

Savino and Siegel [213] investigated the effect of un- 

equal heat fluxes at adjacent walls of the duct on fully de- 

veloped laminar heat transfer. 

Schmidt and Newell [^5] determined the Husselt numbe- 

numerically by finite difference method, when one or more 

walls having @ boundary condition, the other being at 

adiabatic condition. After redefining the Nusselt number 

with the hydraulic diameter based on the wetted perimeter 

rather than the heated perimeter as was done in [>5], the 

Nusselt numbers [138] are listed in Table 15 and depicted 

in Fig. 22. 

3.1.* Specified Wall Heat Flux and @ 

Cheng [214] analysed the @ boundary condition with 

all four walls being heated. He arrived at a closed form 

expressions for the temperature distribution and NuR2 , 

and calculated Nu„Q for a* = 0.1, 0.25, 0.5 and 1. There AH2 
Nu, for the square duct as appears to be an error for «"^ 

pointed out by Sparrow and Siegel [6l] and confirmed by Chen* 

[52]. Sparrow and Siegel [6l] developed a variation approach 

for the (5^ boundary condition. Shah [60] employed the 
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method of least-square-fitting of algebraic-trigonometric 

polynomials to the boundary values and determined the NutT~ 

(in addition to fRe , K(») , IT  and waH1) for tie 

rectangular ducts. The results are presented in "able 13 

and Fig. £0. The NuR^ of Shall and Cheng are in good agreement. 

Ikryannikov L-15] studied the Laminar heat transfer 

through rectangular ducts with uniform and constant axial 

wall heat flux, and arbitrary but the same peripheral heat 

flux distribution on each pair of the opposite walls. Par- 

ticularly, he four.i **nd plotted tat peripheral temperature 

distribution for t.'-,« u o problems:  (i) On one pair of the 

opposite walls, tht ?.,.iiv.;oidal ru.il heat flux distribution 

was specified in the peripheral direction, the other pair 

of opposite walls being adiabatic. He considered a «' 

2a/2t « 7, 5, 2, 1, and 0.2.  (ii) On one pair of the oppo- 

site walls, the parabolic wall heat flux distribution was 

specified in the peripheral direction, the other pair of 

opposite walls being adiabatic. He considered a* = 2a/2b = 

3.3, 2, 1, 0.2 and 0.1. 

3.1.5 Specified Wall Heat Flux and (H3 

Han [216] generalized the results of Marco and Han 

[31] by considering one pair of opposite walls as primary 

surface having @ boundary condition, and the other pair 

of opposite walls as extended surface or fins having @ 

boundary condition. On the extended surfaces, the heat is 

transferred froir the primary surface to the fluid. Thus on 

those fins the temperature is not uniform in the peripheral 

direction like the primary surface, but the axial heat flux 

is uniform and constant. Han obtained the expressions for 

the temperature distribution and the fully developed Nusselt 

numbers. The Nusselt number is expressed functionally as 

fa*K r>      1 Nu = NuH1 FcUrx5§ , £r (151) *H1    cVl+a- 
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i-*l v-.^:-jKt:.d*=M»iS*v«taowS«^*iri?*«iw.'rt» i?^-#^'«v>*P-iCa<^:««***^*'^*v<>"*>c'* 

where the NuHl is given by Eq. (150), and FQ is the cor- 
rection factor dependent upon the fin parameter a*K/(l+a*) 
and the aspect ratio a* = 2a/2b . The width of primary sur- 
face of rectangular channel is 2a and the height of secondary 

surface (fins) of rectangular channel is 2b. Han tabulated 
the correction factor for a* «= l, 0.5, 0.25 and 0.2 with the 

vaiu2s of fin parameter as 0, 1, 2, 4 and 10. The model 
analyzed by Han may be approximated, for example, in a counter- 
flow heat exchanger with equal thermal capacity rates for both 

fluids. 
Siegel and Savino [8] considered the effect of peripheral 

wall heat conduction in broad walls with nonconducting in- 
sulated side walls. They extended their analysis to include 

different boundary conditions at the corners so that the ef- 

fect of conduction in the insulated side walls could be 

studied [217]. 
Iyczkowski et al. [11] analyzed © boundary condition 

for the square duct and determined the 
K^-0 , 0.5, 1.0 and 2.0 as follows. 

Nu H3 
numerically for 

Table 16. j^uare duct 
flow 

Nu. H3 
for fully developed laminar 

Y    -  0 by [Hi has not con- 
It appears that the NuH3 for K - 3>09l21 [52] 

verged to the expected limiting value of NuR2 

Pi Z 11  H 2(c) for the limiting cases of NuR3 . 21See Section II.lo-*\c' 
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However, the convergence may be better as K  is increased. 

3•2 Hydrodynamically Developing Flow 

Hydrodynamic entry length problem for the rectangular 

duct has been solved approximately by the linearization of 

momentum equation. Han [76] used the Langhaar's lineariza- 

tion approach and presented the hydrodynamic entry length 

solution in tabular and graphical form for a* = 0, 0,125, 

O.25, 0.5, 0.75 and 1. The analysis of Han predicted some- 

what more rapid flow development than observed experimentally 

[218,219]. Fleming and Sparrow [86] and Wiginton and Dalton 

[220] linearized the inertia terms in the boundary layer type 

momentum equation in a similar manner to Eq. (106), by intro- 

ducing a stretched coordinate in the flow direction. Ref- 

erences [86] ?nd [220] methods are similar except that the 

convergence of the solution is more rapid for the later. 

Fleming and Sparrow [86] presented the hydrodynamic entry 

length solution for the rectangular ducts of aspect ratios 

0.2 and 0.5, while Wiginton and Dalton [220]  reported the 

results for a* = 0.2, 0.25, 0.5 and 1. For a* = 0.2 , the 

pressure drop predicted by Wiginton and Dalton is about 2 to 

3 percent higher than that by Fleming and Sparrow. For a* = 

0.5 , the pressure drop results of Refs, [86] and [220] are 

in excellent agreement. With the experimental data of 

Beavers et al. [221], the results of Refs. [86] and [220] 

are in good agreement. 

3 .3 Thermally Developing Flr>w 

3 .::. 1 Hydrodynainic ally Developed Flow 

3.3.I.I Specified Wall Temperature and (T) 

Dennis et al. [222] considered the case of uniform 

and constant temperature on all four walls, and solved the 

22The ordinate of Figs. 2, h  and 6 of Ref. [220] is in error, 
it should start from 0 rather than 1. 
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thermal entry length problem for the fully developed laminar 

flow jn rectangular ducts. They presented first three eigen- 

values and eigenconstants for a* --, 0.125 , 0.25 , 0.5 , 2/3 

and 1. Eut these values, except the first term for rectangu- 

lar ducts other than the square duct are in error [5,223]. 

Montgomery and Wibulswas [108] used the explicit finite 

difference method and solved the thermal entry length prob- 

lem for the rectangular ducts with a* ^ 1/6 , 0.2 , 0.25 > 

1/3 ,0.5 and 1. They neglected the effect of axial heat 

conduction, viscous dissipation and the thermal energy sources 

within the fluid. Their Nu m and Nu m are presented 
x, J.       m, x 

in Table 17 [116]. The effect of a* on Nu „ for the x, x 
developed velocity profile case is pictured in Tig. 23. 

Ivczkowski et al. [11] considered a variety of thermal 

boundary conditions, such as, insulation on  no walls, one 

wall, two walls and three walls with various finite wail 

thermal resistances and ® on the remaining walls. They 

used the modified DuFcrt and Frankal explicit finite dif- 

ference method and numerically evaluated the thermal entry 

Nusselt numbers for a* = 0 , 0.125 , 0.25 , 0.5 and 1. The 

Nu m versus x* for a* = 0.25 , 0.5 and 1 , when all 
x, 1 

four walls are heated, are presented in Table 18. The re- 

sults of Tables 17 and 1.8 for a* = .25 and 0.5 are in agree- 

ment within about 2 percent (except a* = 1 ) as can be seen 

from Fig. 23 and reflects the differences obtained due to 

two different finite difference numerical methods. Authors 

believe that the results of Iyczkowski et al. [11] are more 

accurace. 

Krishnamurty and Rao [224] employed the Leveque approxi- 

mation and arrived at an expression for local and mean Nusselt 

numbers for the rectangular ducts when one and all four walls 

transferred the heat. They included the effect of tempera- 

ture dependent viscosity empirically. 

DeWitt and Snyder [225] considered the fluid axial heat 

conduction and viscous dissipation, and solved the ® thermal 
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Table 17.  Rectangular ducts 

of x* 
files. 

Nu. and Nu. as functions x,T "**** 1,vlm,T 
and a* for fully developed velocity pro- 

from Wibulswas [116] 

i 

x 

Nu 

1.0 

X,T 

Aspect Ratio, a* 

0.5   1/3   0.25  C.fc 1/6 

Nu. m,T 

1.0 

Aspect Ratlr;, a* 

0.5        1/3        0.25     0.2 1/6 

0 
10 
20 
30 

So 
80 

100 
120 
1*0 

l6o 
180 
200 

2.65 
2.86 
3.08 
3.24 
3.*3 

3.78 
4.10 
4.35 
4.62 
4.35 

5.03 
5.24 
5.41 

3.39 

3.5* 
3.70 
3.85 

4.16 
4.46 
4.72 
4.93 
5.15 

5.3* 
5,5* 
5.72 

3.96 
4.02 
*.17 
4.29 
4.42 

4.67 
4.94 
5.17 
5.*2 
5.62 

4.51 

4.05 
4.76 
4.87 

5.08 
5.32 
5.55 
5.77 
5.98 

4.92 
4.94 
5.04 
5.31 
5.22 

5.*0 
5.62 

2:8 
6.26 

5.80 6.18 6.45 
5.99 6.37 6.63 
6.13     6,57     6,80 

5.22 
5.24 
5.3* 
5.*1 
5.*8 

5.64 
5.86 
6.07 
6.27 
6.47 

6.66 
6.86 
7.02 

2,65 
3.50 
4.03 
4.47 
4.85 

5.50 

6.85 
7.22 

7.'6 
7.87 
8.15 

3.39 

*'.86 
5.24 

5.85 
6-37 
6.84 
7.2* 
7.62 

3.96 
4.54 
5.00 
5.39 
5.7* 

6.39 
7.33 
7.7* 
8.11 

7.97 8.45 
8.29 b.77 
8.58     9.07 

4.51 
5.00 
5.44 
5.8I 
6.16 

7.24 
7.71 
8.13 
8.50 

8.86 
9.17 
9.*7 

4.92 
5.36 
5.77 
§.13 
6.45 

7.03 
7.53 
7.99 
8.39 
8.77 

9.1* 
9.*6 
9.79 

5.22 
5.66 
6.04 
6.37 
6.70 

7.26 
7.77 
8.17 
8.63 
9.00 

905 
9.67 

1C 01 

Table 18.  Rectangular ducts Nu ^ as functions of x* and 

a* for fully developed velocity profiles, from 
lyczkowski et al. [11] 

I             a* = 1 a* = 0.5 a* « 0.25         1 

1          X* Nux,T 
* 

X Nux,T 
* 

X N*x,T   ! 

.00750 

.01125 

.01500 

.01875 

.02250 

.02625 

.03000 

.03375 

.03750 

.05625 

i   .07500 
.09375 
.1125 
. 1500 

1   .1875 

I   .2625 

4.458 
4.029 
3.782 
3.594 
3.457 

3.353 
3.273 
3.211 
3.162 
3.034 

2.993 
2.981 
2.977 
2.975 
2.975 

2.975 

.004219 

.006328 

.008438 

.01055 

.01266 

.01477 

.01688 

.01898 

.02109 

.04219 

.06328 

.08438 

.12656 

.14766 

.16875 

.17930 

5.869 
5.236 
4.852 
4.587 
4.391 

4.241 
4.123 
4.028 
3.956 
3.604 

3.501 
3.451 
3.409 
3.401 
3.396 

3.395 

.002930 

.004395 

.005859 

.007324 

.008789 

.01025 

.01172 

.01318 

.0±465 

.02930 

.05859 

.10254 

.14648 

.21973 

.25635 

.28125 

7.405 
6.662   1 
6.204 
5.888   | 
5.658 

5.485 
5.351 
5.245 
5.162 
4.813 

4.649 
4.554 
4.508 
4.470 
4.460 

4,455 
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Fig. 23  Rectangular ducts 

velocity profile; the influence of 

Nu m for fully developed 
X, I 

or on Nu 

Similar influence can be expected for Nu, 
x,T 

Nu x,Hl and Nu, to, HI 

lm,T ' 
of Tables 17, 19 and 20. 

entry length problem for rectangular duct? of ex* = 0.1 , 

0.2 , 0.5 and 1. The approximate series solution was obtained 

by the Galerkin method. The fluid bulk mean temperature and 

Nux T were srown as a function of the dimensionless axial 

distance with Peclet number as a parameter. As the definitions 

used for the dimensionless variables and parameters are un- 

conventional in [225], it is difficult to interpret the 
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thermal entry length solution in the present terminology. 

3.3.1.2 Specified Heat Flux Distribution 

Sparrow and Siegel [102] developed a variational 

method and calculated first two eigenvalues and eigenconstants 

for the square duct with @ "boundary condition. 

Sadikov [104] studied the thermal entry length problem, 

based on his simplified energy equation, for rectangular 

ducts with prescribed wall heat flux boundary condition. 

Specifically, he presented graphically the local peripheral 

temperature and Nusselt number distribution with (6ä bound- 

ary condition for a* *= l and 0.2 . These results were 

plotted for Pr =0.7 and Re = 10  with dimensionless 

axial distance as a parameter. Sadikov cited that, in the 

inlet section of a tube, the laminar flow was observed up to 

Re = 105 . 

Introducing the same assumptions as in the case of ®, 

Montgomery and Wibulswas [108] solved the thermal entry length 

problem for rectangular ducts of a* = 0.25, V3> 0.5 and 1 

with @) boundary condition. Their Nux H1 and Nu H1 

are reported in Table 19 [116]. 

Based on the same method employed for the specified wall 

temperature problem, Iyczkowski et al. [11] analyzed the 

thermal entry length problem for a variety of thermal bound- 

ary conditions, namely, insulation on no walls, one wall, 

two walls and three walls with various finite wall thermal 

resistances and @ on the remaining walls. 

Hicken [226] determined the temperature distribution in 

the thermal entrance region of rectangular ducts with arbi- 

trary but uniform and constant axial heat flux specified on 

each wall. Graphically presented were the variation in wall 

to fluid bulk mean temperature difference, (^/^w-m' over 

the periphery for a square duct when one, two, three and 

four walls were equally heated. Also presented were the 

(4lX/P)e    over the periphery for a* =0.1 when all four x h'   w-m 
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Table 19.  Rectangular ducts Nu „, and Nu „,  as func- 

tions of x* and a* for fully developed vel- 
ocity profile, from Wibulswas [116] 

Nu x,  HI 

1 Aspect Ratio,  a 

1.0 0.5 1/3 0.25 

Nu, m,  HI 

1.0 

Aspect Ratio, a 

0.5 1/3 0.25 

0 
10 
20 
30 
40 

60 
80 

100 
120 
3.40 

160 
180 
200 

3.60 
3.71 

4.45 

4.91 
5.33 
5.69 
6.0k; 
6.32 

6.60 
6.86 
7.10 

4.11 
4.22 
4.S8 
4.61 
4.84 

5.28 
5.70 

t| 
6.96 
7.23 
7.46 

4.77 
4.85 
5.00 
5.17 
5.39 

5.82 
6.21 
6.57 
6.92 
7.22 

7,50 
7.76 
8.02 

5.35 

5.62 
5.77 
5.87 

6.26 
6.63 
7.00 
7.32 
7.63 

o.lo 
8.44 

3.6o 
4.48 
5.19 

i-i 
\% 
0.22 
8.6? 
9.09 

I'M 
10 AB 

4.11 
4.94 
5.O0 
6.16 
6.64 

7.45 
e.io 
8.66 
9.13 
9.57 

9.96 
lO.jjl 
10.64 

4.77 
5.45 
6.06 
6.60 
7.09 

i:8 
9.02 
9.52 
9.93 

10.31 
10.67 
10.97 

5.35 
6.03 
6.57 
7.07 
7.51 

8.25 
8.87 
9.39 
9.83 

10.24 

10.61 
10.92 
11.23 

walls were equally heated. The eigenvalues and eigencon- 

stants for a* = 0.1, 0.2, 0.5, 1, 2, 5 and 10 are reported 

in [227]. 

3•3.2 Simultaneously Developing Flow 

Montgomery and Wibulswas [92] also numerically obtained 

a combined hydrodynamic and thermal entry length solution for 

the rectangular ducts of a* = 1, 0.5, 1/3, 0.25 and 1/6.  In 

the analysis, they assumed the transverse velocity components 

v and w as zero as well as neglected the axial momentum 

and thermal diffusion. The Nu, „ are presented in Table 20 
m, j. 

and Nu H1 and Nuffl H1 are presented in Table 21 for 

Pr = 0.72 [116]. They investigated the effect of Prandtl 

number on heat transfer for the duct with a* = 0.5 . The 

thermal entry Nu u,  as a function of Prandtl number [ll6] 

are presented in Table 22 and Fig. 24. 
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Table 20.  Rectangular ducts NuK ^ as functions of x* 

and a* for simultaneously developing profiles, 
Pr -=0.72 , from Wibulswa" [116] 

1 

Nu 'm,T 

1.0 

Aspect Ratio,  a 

0.5 1/3 0.25 1/6 

10 
20 

ko 
50 

6o 
80 

100 
120 
140 

160 
180 
200 
220 

3.75 
4.39 
4.88 
5.27 
5.63 

5.95 
6.57 
7.10 
7.61 
8.06 

8.50 
8.91 
9.30 
9.70 

4.20 
*.79 
5.23 
5.6l 
5.95 

6.27 
6.88 
7.42 
7.91 

8.80 
9.20 
9.60 

10.00 

4.67 
5.17 
5.60 
tö 6.28 

6.60 
7.17 
Z-72 8.18 
8.66 

9.10 
9.50 
9.91 

10.30 

5.11 
5.56 
§.93 
0.27 
6.61 

6.90 
7.47 

8.93 

9.36 
9.77 

10.18 
IO.58 

5.72 
6.13 
6.47 
6.78 
7.07 

7.35 
7.90 
8.38 
8.8S 
9.28 

9.72 
10.12 
10.51 
10.90 

Table 21.       Rectangular ducts    Nu 

functions of    x*    and 
developing profiles, 
[116] 

x,Hl 
# 

and Nu as m,Hl 
or for simultaneously 
Pr =0.72 , from Wibulswas 

Jx, HI 

Asreet Ratio, a* 

1.0 0.5 1/3 O.25 

Nu 'm, HI 

1.0 

Aspect Ratio, a* 

0.5     1/3 0.25 

5 
10 
20 
3C 
4C 

& 
30 
100 
120 

140 
160 
160 
200 
220 

4.l8 
4.66 
5.07 
5.*7 

5.83 
6.14 
6.80 
7.38 
7.90 

8.38 
8.84 
9.28 
9.69 

4.6o 
5.01 
5.JK) 
5.75 

6.09 
6.42 
7.02 
7.59 
8.11 

8.61 
Q.05 
).47 
9.88 

5.18 
5.50 
5.82 
0.13 

6.44 
6.721 

7.32 
7.86 
8.37 

8.84 
9.38 
9.70 

10.06 

5.66 
5.92 
6.17 
6.43 

6.70 
7.00 
7.55 
8.08 
8.58 

9.05 
9.59 
9.87 

10.24 

4.60 

6.60 
.52 
.25 

8.90 
9.^9 

10.53 
II.43 
12.19 

12.87 
13.50 
14.05 
14.55 
15.03 

5.00 

HI 
9.17 
9.77 

10.83 
11.70 
12.48 

13.15 
13.79 
14.35 
14,88 
15.36 

5.57 
6.27 
7.31 

l:e13
5 

9.48 
10.07 
11.13 
12.0 
12.78 

13.47 
14.10 
14.70 
15.21 
15.83 

6.06 
6.65 
7.58 
8.37 
9.07 

9.70 
10.32 
11.35 
12.23 
13.03 

ll'.U 
14.95 
15.4 9 

.02 
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Table 22,      Rectangular ducts  (a* ■ 0.5)    Nuffl H1    as functions 
of    x*    and    Pr    for simultaneously developing 
profiles,  from Wlbulswas [ll6] 

i 

Nu, m,Hl 

Prandtl Number, Pr 

10    0.72    0.1 

20 
40 
6o 
80 
100 

140 
180 
220 
260 
300 

350 
400 

5.6O 
5.64 
7.45 
8.10 
8.66 

9.57 
10.31 
10.95 
11.50 
12.00 

12.55 
13.00 

5.15 

S:S 
9.2c 
9.90 

11.05 
11.95 
12.75 
13.45 
14.05 

14.75 
15.40 

6.94 
8.5* 
9.77 

10.83 
11.70 

13.15 
1^.35 
15.35 
16.25 
17.00 

17.75 
18.50 

7.90 
9.75 

11,10 
12.15 
13.05 

14.50 
15.65 
16.70 
17.60 
18.30 

19.10 
19.90 

8.65 
10.40 
11.65 
12.65 
13.50 

1J.95 
16.15 
17.20 
lb. 10 
18.90 

19.80 
20.65 

Nu 

20.0 

18.0 

16.0 

14.0 

120 

10.0 

8.0 

6.0 h 

4.0 -i I I < L_1_U I    ,    I 
0.002 0.004    0006 0.01 0.02 0.04       0 06 

Fig. 2h      Ractangular ducts (a «=0.5) Nu H1 as functions 

of x* and Pr for simultaneously developing pro- 
files, from Wibuiswas [ll6], 
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4.  ISOSCELES TRIANGULAR DUCTS 

For the isosceles triangular ducts, the fully developed 

fRe , KuH1 , and lln^   have been determined by approximate 

methods as described below. The hydrodynamic entry length 

solution is available for 20 = 30° and 60°. The thermal 

entry length solution is available for 20 « 60° and 90° 

for the case of transverse velocity components v and w 

as zero for the simultaneously developing flow. 

*M Fully Developed Flow 

The fully developed solutions will be described in de- 

tail for the equilateral triangular duct and other isosceles 

triangular ducts separately. The right angled isosceles 

triangular duct (20 = 90°) will be considered in Section 6. 

*». 1.1 Equilateral Triangular Duct 

The fully developed velocity profile for the equi- 

lateral triangular duct has been determined by [2,31,33], 

For the duct of Fig. 25 

20=60 

u 

Fig. 25  An equilateral triangular duct 

= BF[ - y3 + 3^2 + 2b^2 + z2) - ifb3]      (152) 

u = - % b2 (153) 

13* 



^^fniiiüaMii *c'jc^/y--i**" ■*■!*» 

\ - 9- (15,) 

fRe = 40/3 = 13.333 (155) 

References [4,5] report Nu™ for the equilateral tri- 

angular duct as 2.35. Kutateladze [228] report il+m   as 
2.70. Prom Schmidt and Newell1 s graphical results [h5], 
Nu,p * 2.47 . Extrapolating Nux T of [116] to 1/x* equals 

to zero, the average NuT is found as 2.47. Until a re- 

fined magnitude is available, the Nu« , for the equilateral 

triangular duct, may be taken as 2.' , a result 5.1 percent 

higher than given in [4,5]. 
Clark and Kays [44] first evaluated NuH1 numerically 

for an equilateral triangular Juct by the finite difference 

method. Marco and Han [31] provided exact solutions for the 

velocity and temperature distribution for the @) boundary 

condition. ^ complex variable techniques, Tao [36] arrived 

at NuH1 including thermal energy generation within the 

fluid. Tyagi [23] extended Tao's analysis by including the 

viscous dissipation effects. Tyagifs result for the Nusselt 

number is 

28 

ri^c, + c6       1 
NUH1 = 9" 

9c 

.1 +Trc5+;frC6J 

^                -1 
cc - 

5      4ct ?"F^ 

(lr;>6) 

(157) 

" k c2 
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For no internal thermal sources and viscous dissipation ef- 

fects, 

Nuu, = 28/9 =3.111 AH1 
(159) 

a result 3.7 percent higher than first reported by Clark and 

Kays [H] and used in the texts [4,5]. 

^-1 • 2 Other Isosceles Triangular Ducts 

4.1.2.1 Floy; Friction 
An exact solution does not exist for the fully 

developed laminar flow through isosceles triangular ducte 

with arbitrary apex angles. Nuttall [229] analyzed the tor- 

sion of rods of isosceles triangular cross section utilizing 

the Rayleigh-Ritz variational method. Based on Nuttallfs 

results, the approximate friction factors for isosceles tri- 

angular ducts can be calculated. Sparrow [50] developed 

highly accurate approximate solutions by the point matching 

method. Sparrow's results for velocity profile and the 

friction factors, for the duct of Fig. 26, are given by 

u = 

Fig. 26  An isosceles triangular duct. 

00 -- 

h2 [ (T_)2(COB 26  _ x)  + Scn(5c)  "cos V] 
" cIb    [ W   lcos 2<t>      x'      £Tl n 2b n   J 

(160) 
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un> " " cl*2 [ £<cöh* - l> + db Es^t ]  (161) 

f Re = - 
Qc^ 

sin20 
um  (1 + sin 

(162) 

where N .isajüi 
n    2? (163) 

Cn and I  are tabulated in [50]. Lundgren The constants 

et al. [19] also determined fDRe , K(°°) and other flow 

parameters for the isosceles triangular ducts. McComae [20] 

evaluated the hydrodynamic entrance length, L+ . Shah [60] 

employed the method of least-square-fitting of algebraic- 

trigonometric polynomials on the boundary and determined the 

fRe , K(°°) and 1^"  for the isosceles triangular ducts. 

Results of Shah [60] and Sparrow [50] are in excellent agreement, 

The fRe , K(°°) and l£  are reported in Table 23 and Fig. 

27 [60]. 

The hydraulic diameter for the isosceles triangular 

duct of Fig. 26 is 

4b sin <t> 
Dh ~ 1 H  li 

2a cos 0 
1 + sin 0 

(164) 

It would be interesting to consider the two limiting 

cases of the isosceles triangular ducts:  (i) 2<t>  = 180 

when 2b is kept finite, and (ii) 20 = 0°, when 2a is kept 

finite.  In both of these cases, the limiting geometry would 

appear to be parallel plates with 2b and 2a distance separa- 

tion respectively. For these parallel plates, the corres- 

ponding hydraulic diameters are 4b and 4a. Based on these 

fRe parallel plates 24 
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0.066 

0.060 

h 0.050 

0.040 
a*-2o/2& < | > a*- 2b/2a 

 1—i—i—i—i—•—J—i—i—i—i—i—i—i—i—i—J—i—lie Loo34 
0.0     0.2      0.4     0.6      O.e       1.0     0.8      0.6      0.4     0.2      0.0' 

Fig* 21      Isosceles triangular ducts fRe , K(») 

for fully developed laminar flow. 

3.4r 

3.0 

and ■* 

2b/2o 
J—•—'—J—i—L. 

0.0  0.2  0.4  0 6  0.8   1.0  0.8  0.6  0.4  0.2  0.0 
a 

Fig. 28  Isosceles triangular ducts Nu™ ,   NUHI and ^aH2 

for fully developed laminar flow. 
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Table 23.  Isosceles triangular ducts fRe , K(°°) 

Nu„ WuT 

£ 
*T '  "MH1 

laminar flow 

and Nuuo for fully developed 
tic 

Sb 
21 *0 

degrees 
'Snax K(-) 

* 
fRe ■ta NüH2 

* 0 m 3.000 „ 12.000 1.885 2.059 0 
6.00 7.153 2.593 2.521 0.0648 12.352 1.90 2.346 0.03927 
4*00 14.250 2.442 2.271 0.0533 12.636 1.94 2.575 0.1734 
2*00 28.072 2.302 1.991 0.0443 13.026 2.22 2.880 0.7427 
1*50 36.870 2.259 1.899 0.0418 13*181 2.38 2.998 1.213 

1.00 53.130 2.225 1.824 0.0399 13.321 2.46 3.102 1.847 
vT/2 60.000 2.222 1.818 0.0398 13.333 2.47 3.111 1.891 
0.75 67.380 2.225 1.824 0.0399 13.321 2.45 3.102 1.836 
0.50 40.000 2.264 1.909 0.0421 13.153 2.34 2.962 1.345 
0*25 126.870 2.416 2.236 0.0515 12.622 1.99 2.603 0.4902 

0.125 151.928 2.609 2.538 0.0659 12.212 1.91 2.296 0.1376 
0 180.000 •* 3.000 "• 12.000 1.665 2.059 0 

However, for the isosceles triangular duct, the D^ from 

Eq. (164) for 20 <■ l80° and 0° is 2b and 2a respectively, 

one half that of the parallel plate geometry.  Consequently, 

one would expect 

fRe - 12 

for the isosceles triangular ducts when 20 = l80  or 0 

This is the case as mentioned by Sparrow and Haji-Sheikh 

[230]. Clearly, the limiting triangular geometries do not 

go to the parallel plates or even each other, hut the f 

magnitudes are all the same for the same (um,p,M-) conditions. 

4.1.2.2 Heat Transfer 

Sparrow and Haji-Sheikh [230] solved the momentum 

and energy equations numerically by the finite difference 

method and arrived at fully developed NuH1 for the isosceles 

triangular ducts of apex angle 20 varying from 0  to l80 . 
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Table 24.  Igogcelg^trlangular drat,. Nu? for mjy 

developed laminar flow when one or more walls 
are transferring the heat, from Sctoidt [138] 

2b 
7K degrees 

NuT [138] 

/Q\ at 
k2a-H 

A A A 
b.QOO 
2.500 
1.667 
1.250 

1.000 
0.833 
0.714 
0.625 
0.556 

0.5er 
0.450 
0.400 
0.350 
0.300 

0.2^0 
0.200 
0.150 
0.100 
0.050 

0.000 

0.00 
5.71 

11.31 
16.70 
21.80 

26.56 
30.96 
34.99 
38.66 
41.99 

45.00 
48.01 
51.34 
55.01 
59.04 

63.43 
68.20 
73.30 
78.69 
84.29 

90.. J 

1.885 

2,058 
2.227 
2.312 

2,344 

2.311 

2.162 

1.923 

1 . V 1 
1.512 
1.330 
1.126 
0.8954 

(1.215)* 

O.COO 
0.S222 
1. :?6d 
1.52* 
1.675 

1.758 

1.812 

1.765 

1.633 

l.'36l 
1.229 
1.071 
0.8779 

(1.215)* 

1.215 
1.416 
1.849 
2.099 
2.237 

2.301 
2.319 
2.306 
2.274 
2.232 

2.183 
2.127 

1.968 
1.861 

1.733 
1.581 
1.401 
1.182 
0.8930 

1.215 
1.312 
1.573 
1.724 
1.302 

1.831 
1.822 
1.787 
1.735 
1.673 

1.60b 
1.529 
1.433 
1.315 
1.173 

1.004 
0.8052 
0.5779 
0.3319 
0.1058 

"This Nu~ maj^iitude is the expected value for the limiting 
geometry. For furth?r clarification refer to the text. 

Pig- 29  isosceles triangular^ucts ^ f0r fully developed 

s'sjtf'a.is.s Kr waiis are *~ *"*« 
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They reported the results graphically. After changing the 

dependent variables, Shah [60] reduced the momentum and 

energy equation to the Laplace equation. The infinite series 

solution was then obtained in terms of algebraic-trigonometric 

polynomials; the unknown coefficients of each term of series 

were determined by a least-square-fit of known boundary 

values. Totally first 8l unknown coefficients of the series 

were evaluated from 90 points on the boundary. The NIL,, 

and Nujj2 determined by this metnod are presented in Table 

23 and Fig. 28. 

Here, again it would be interesting to investigate the 

two limiting cases for the isosceles triangular ducts. Based 

on the energy balance on the duct length of 6x , from Eq. 

(51), 

,2    um    dtm 
N w,m m 

As the D.  for the limiting case for the isosceles triangular 

duct is one half that of the parallel plate, Nu would be 

one fourth that of the parallel plate, and this is confirmed 

by Sparrow and Haji-Sheikh [230]. 

Schmidt and Newell [4^] considered the more general case 

for fully developed NuH1 and NuT *.r.en one or more walls 

are transferring heat, the rest being adiabatic. They eval- 

uated the results by the finite difference method, and pre- 

sented the NuH1 and NuT graphically as a function of half 

apex angle 0 . The triangular duct was divided into 28 

subdivisions in z direction and 14 in y direction when 

the symmetry was present, and was divided into 20 by 10 sub- 

divisions when the complete duct was considered. Schmidt 

and Newell*s NuT when all three walls are transferring 

heat, based on their graphical results, are presented in 

Table 23 and Fig. 28.  The NuT and NuR1 [138] , when one 

or two walls are transferring heat are provided in Tables 
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Table 25.  Isosceles triangular ducts Nu™, for fully devel- 

oped laminar flow, when one or more walls are 
transferring the hext, from Schmidt [138] 

2b 
51 iegrees 

:<uH1 [138]                               1 

43 A A A K^a*J iwv'jiiai* 

or 0.00 2.059 O.OCO 1.346 '    1.346 
5.000 5.71 2,*o5 1.003 1.824 1.739 

1.9*6 2 „-.00 11.31 2.683 1.515 2.27* 
1.667 16 70 2.796 1.807 

1.978 
2.5*1 2.07* 

2.1*1 1.250 21.80 2.82*5 2.695 
1.000 26.56 2.8*9 2.076 2.773 2.161 

0.833 30.96 «, _ 2.801 2.1*6 
0.71^ Jh.99 £.778 2.146 2.792 2.107 
0.625 38.66 _ . 2.77* 2.053 
0.556 *1.99 . - 2.738 1.969 
0>-j00 *5.0Q a.59* 2.111 2.696 1.921 

O.^-jO «8,01 . . 2.6*6 1.8*3      | 
Q.*Q0 51.3* - - 2.583 1.7*6 
0.3'J0 55.01 2.332 1.991 2.505 I.628 
0.300 59.0* _ 2.*12 l.*86     | 
0.250 &3.*3 2.073 1.8*3 2.301 1.316 

0.200 68.20 1.917 1.7*6 2.174 1.11* 
0.150 73.30 1.7*8 1.635 2.032 0.87*1 
0.100 78.69 1.576 1.515 1.881 0.5866 

1  0.050 84.29 1.418 1.398 1.737 0.2**2 
o.oco 90.00 1.3*6 1.3*6 j 

Fig. 30  Isosceles triangular ducts NuH1 for fully devel- 

oped laminar flow, when one or more walls are 
transferring the heat, from Schmidt [138]. 
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24, 25 end Figs. 29 and 30. These Nu«, and NuH1 are re- 
defined with the hydraulic diameter based on the wetted 
perimeter rather than the heated perimeter as was done in 

1*51. 

4.2 Hydrodynamically Developing Flow 
The hydrodynamic entry length problem for the equi- 

lateral triangular duct was solved by Han and Cooper [78] 
using Langjiaa^s linearization and von Karman's int3gral 
procedure with some modifications. The results were presented 
in tabular and graphical form. Wibulswat, [116], in his solu- 
tion for the combined hydrodynamic and thermal entry length 
problem for the equilateral triangular duct, solved the hydro- 
dynamic entry length problem by the finite difference method; 
however, he did not report any hydrodynamic entrance region 
results.  Fleming and Sparrow [86] devised a general method 
to solve the hydrodynamic entry length problem by introducing 
a stretched coordinate in the flow direction to linearize the 
inertia term. They presented the results graphically for the 
isosceles triangular duct with the apex angle 20 = 30  and 

60°. 

4.3 Thermally Developing Flow 
Kutateladze [228] presented graphically the thermal en- 

trance Nu m for hydrodynamically full developed and 
m, j- 

thermally developing laminar flow through an equilateral tri- 

angular duct. 
Wibulswas [ll6] obtained laminar flow Nux T , Nuffl T , 

Nu T„ and Nu un for an equilateral triangular duct for x,Hl       m,ni 
the slug flow (Pr = 0), fully developed flow (Pr = °°) and the 
simultaneously developing flow for the fluid with Pr = 0.72. 
He used the finite difference method and neglected the effect 

of velocity components v and w , as well as the axial 
2   2 ?   2 \ 

viscous and thermal diffusion, n(ä u/dx ) and k(d"t/&x ) 
respectively. His thermal entrance Nusseit numbers are pre- 

143 



Table 26.  Equilateral triangular duct Nu 

Nu and Nu. x,Hl ""*    "Mm,Hl 
Pr , from Wibulswas 

x,T ' 
as functions of 

[116] 

,T 
and 

1 

. ,_. .. 
***,« ""..»1 

- -:.-- - 
" 

0.7* 0 0.7-* 0 M 3.72 0 

|      «'" 
■. ): 

• ,** 
«   7» 

-i-tri 

*.6' 
5.7? 
6,6«. 

?:3 
i.7* 

«».;6 

J.53 
4.0i 
-.^1 
«.80 
5.13 

5.35 
6.!4 
6.7/ 
7.27 

*.02 
*.76 
5.32 
5.82 
6.25 

6.80 

6.47 
8,0* 
9.08 
9.06 

IO.65 

! £■ 

1* 
*.lc 

*.7* 
*.4 

6.6r> 

?.*7 

S*9 

fcf, 
t>.6l 

6.0« 
Q.66 

8.iS 

9.96 
10.5? 
11.1* 

*.*9 
».85 
5.20 
5.30 
5.77 

5-«3 
6.03 
6.5? 
7.0* 
7.50 

7.66 
8.26 
6,81 
?,30 
9.7-» 

6.63 
7.27 

8.75 

io!6o 
n. 35 
12.05 

li.27 
12.35 
13.15 
13.82 
1*.*6 

las 
! * 

«.6? 
*.85 

;—;  
5,30 

7.90 

8.5* 

6.* 
7.1* 
7.*<? 9.^1 

11.66 
12.10 
12.5Ö 

6.01 
6.22 
6.%5 

7.93 
8.33 
8.71 

10.17 
10.53 
10.87 

9.25 
9.63 

10.02 

12.68 

13.80 

15.02 
15,90 
16.0C 

2.0 L 

0.004    0006 0.01 0 02 0.04       0.06 0.10 

Fig. Nu    m ;   the  influence x, 1 
Nu    rn    from Wibulswas   [lib].     Similar x $ x 

Equilateral triangular duct 
of    Pr    on 
influence  can be  expected for 
Nu, u1     of Table  26, 

Num,T '  Nux,Hl    md 
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sented in Table 26 and Pig. 31. Wibulswas1 Nuffl T are 

consistently higher by 12-20 percent when compared with 

fft^ T of Kutateladze [228]. 
Krishnamurty [231], employing Levfique type approximation, 

derived expressions for (f) local and mean Nusselt numbers 

for an equilateral triangular duct. 
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Table 27. Equilateral triangular duct with no, one, two 
and three rounded corners geometrical, flow and 
heat transfer characteristics, from ?hah [6o] 

no rounded one rounded two rounded three rounded 
corners corner corners corner© 

Perimeter, P/2a 3-0000000 2.7717156 2.5434312 2.3151467       | 

j   Flow area* A/(2a)2 0.4330127 0.4139890 0.3949653 0.3759416       • 

1   Hyd.  dia, V81 C.5773503 0.5974480 0.62U535 0.6495339 

!   Centroid from the 0.2886751 O.2677773 0.3095730 0.2886751    ! 
base, y/2a 

K(«) 1.818 1.697 1.567 1.441          j 

umaj/um 2.22k 2.172 2.114 2.064          j 

% 
0.0398 0.0359 O.O319 0.0284         I 

fRe 13.333 14.056 14.899 15.993 

%1 3.111 3.402 3.756 4.205           | 

mh2 I.892 2.419 2.718 3.780 
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b.    EQUILATERAL TRIAHGULAR DUCT WITH ROUNDED CORKERS 

Only the fully developed lamina? flow through the equi- 

lateral triangular Ouct with rounded corners has been analyzed, 

5.1 Fully Developed Flow 

In a triangular passage heat exchanger matrix, due to 

manufacturing processes, instead of sharp corners, some of 

the passages have one, two or three rounded corners. The 

heat transfer and flow friction characteristics of the 

rounded corner equilateral triangular passage being different 

from that for the sharp corner equilateral triangular passage, 

the overall performance characteristics of the matrix may 

change significantly. Shah [60] has determined the theoret- 

ical heat transfer and flow friction characteristics of the 

idealized passages of Pig. 32. Each rounded corner has a 

radius of a/3 where 2a is the base of the equilateral tri- 

angle. 

Fig. 32  An equilateral triangular duct with rounded corners, 

The flow friction and heat transfer characteristics of 

these passages was obtained by the least-square-fitting of 

72 boundary joints to the 71 unknown coefficients of the 

truncated series solution [60]. These results and the geo- 

metrical information is listed in Table 27. 
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6.  RIGHT TRIANGULAR DUCTS 

For the right triangular ducts, the fully developed 

fRe and Nu„, have been determined numerically as described 

below. No hydrodynamic entry length solution has been ob- 

tained for this geometry. The thermal entry length solution 

for simultaneously developing profiles has been obtained for 

the right-angled isosceles triangular duct (0 « k5°)  for the 
case of transverse velocity components v and w as zero. 

6-1 Fully Developed Flow 

6.1.1 Right-Angled Isosceles Triangular Duct 
The fully developed velocity profile for the right- 

angled isosceles triangular duct of Fig. 33 is given by. 

[2,31]. 

Fig. 33  A right-angled isosceles triangular duct, 

u = |(y + z)2 - a(y + z) 

00 

+ 
n=o 

(-l)n { sinh(Nz)cos(Ny)  + sinh(Ny)cos(Nz)} 

N3  sinh(Na) 

(165) 
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Table 28,  Right triangular and Circular sector du^ts fRe 
K(") , NuH1 and 853" for fully developed *H1 
laminar flow 

*H2 

Right triangular duct Circular sector rtuet 

yVn <<"1 

Degrees 

J-i—Pa—^ 

\J 

§S 
fRe    K(«)    NuH1 

t230J   [230]   [2-0] 
fRe    K(«°)    'fa.-j    KBjj2 

[23.]   [2;.v;    ^..:     [6] 

0 
4 
5 
7.5 

10 

11.430 

5*671 

12.000 2.97    2.059 

12.27    2.65    2.27 

12.49   2.40    2.44 

1?.000 2.971 2.059 0.000 
12.410 2.480 2.3«4 0.051 

12.729 2.23L' 2.619 0.177 

15 
20 
22.5 

8 

3.732 
2.747 

1.732 
1.192 

12.68    2.21    2.57 
12.83    2.10    2.69 

13.034 1.95    2.888 
13.13   1.88   2.97 

13.310 1.855 3.OO5 0.786 

13.782 I.657     -     1.57 
14.171 1.580 3.479 2.309 
14.59;? 1.530 3.671 

45 

80 
90 

1 

1.000 
0*8391 
0.5774 
O.1763 

0 

13.153 1.88   2.982 
13.13   1.88   2.97 
13.034 1.95   2.888 
12.49   2.40   2.44 
12.000 2.97    2.059 

14.928 i*50* 3.8o6 
15.201 1.488 3.906     - 
15.611 1.468     - 
15.767 1.463 4.088     - 

1.6 1  1 -1 1 1  1 _i 1 1 „.. 1 1 «  i 

-I 12.5 

12.0 

0.0   0.1   0,2   0.3   0.4   0.5  0.6   0.7   0.8   0.9   1.0 

a* 

Fig. 3^  Right triangular ducts fRe , K(°°) and NuH1 for 

fully developed laminar flow, from Sparrow and 
Haji-Sheikh [230]. 
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(168) 

Marco and Han [31] determined the velocity and temper- 

ature distribution for the (S5) boundary condition for the 

right-angled isosceles triangular duct. The Nusselt number 

for this case is [232] 

NuHi =2.982 (169) 

6.1.2 Other Right Triangular Ducts 

Sparrow and Haji-Sheikh [230] numerically obtained 

the fully developed fRe , K(°°) and Nu„, for right tri- 

angular ducts of apex angle varying from 0 to 90°. The re- 

sults were presented graphically. Based on these, Table 

28 and Fig. 3 4 are prepared. Aggarwala and Iqbal [232] ob- 

tained the fRe and NuH1 for two right triangular ducts 

(0 = 30° and 45°) based on the membrane analogy. 

6.2 Hydrodynamically Developing Flow 

No hydrodynamic entry length solutions have been found 

by the authors for the right triangular ducts. 

6.3 Thermally Developing Flow 

Wibulswas [116] solved the thermal entry length prob- 

lem for the right-angled isosceles triangular duct (0 = 45 )( 

He obtained the laminar flow Nu T , Num T , Nux H1 and 

15C 
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Table 29.  Right-angled Isosceles triangular duct Nux T , 

%,T ' »"x.Hl md %.H1 for *» - " ' 6'72 
and 0 , from Wibulswas [116] 

1 '■ ■ 

»»x.T ■v 'S. HI ^.51 
1 

SsPr m 0.72 0 m 0.72 0 • 0.72 0 - 0.72 0 

i     M 
20 
30 
40 
90 

2.40 
2.53 
2.70 
2.90 
3.05 

llgß 
3.18 
3.37 

5:15 
4.82 
5.17 
5.*8 

2.87 
i.33 
3.70 
4.01 
4.28 

3.12 
3.73 
4.20 
4.58 
4.90 

4.81 

23 
5:3 4.07 

4,28 

4.00 
4.73 m 
5.97 

5.31 
£.-=7 
6.6- 
7.23 
7.55 

4.22 
2.98 
S-.50 

5.36 
6.51 
7.32 
7.95 
6.50 

6.86 

9.67 

60 
80 

100 
120 
lto 

3.20 
3.50 
3.77 
4.01 
4.21 

3.5* 
3.Ö5 
*.15 
4.43 
4.70 

5.77 
6.30 
6.75 
7.13 
7.51 

4.52 
4.91 
5.23 

5.7C 

5.17 
5.69 
6.10 
6.50 
6.82 

fcB 
3.80 
9.16 
r.47 

4.47 
4.84 
5.17 
5.46 
5.71 

6,30 
6.92 
7.4^ 
7.9? 
B.i9 

7.6-; 
a.37 
8.35 
9.aa 
9.56 

6.57 

7.6c 
8.03 
8.40 

8.99 
9.80 

10.42 
10.90 
11.31 

10 07 
10.75 
H 3? 11 U 
12.1* 

160 
»80 

!    20-1 

4.40 4.96 
5.22 
5."»9 

7.84 
8.10 
8.38 

6.00 
6.17 
6.33 

7.10 
7.33 
7.57 

9.70 
9.94 

10.13 
is 
6.36 

8.80 
9.14 
9.50 

9.90 
io.17 
10.43 

8.73 
9.04 
9.33 

II.67 
12.00 
12.29 

12 «7 
12.75 
13.04 

I 

Nu 

9.0 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 
0.004    0.006 

T—r   1   1 1 ■     i -1 r*—1—1—r 

J I I L-^L J L. J I l—X. 

0.0! 0.02 0.04       0.06 0.1 

Fig.  35      Right-angled isosceles triangular duct    Nu    T 

as functions  of    x*    and    Pr ,  from Wihulswas  [116] 
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Nu H1 for the slug flow (Pr ^ 0), fully developed flow 

(Pr = «»), and the simultaneously developing flow for the 

fluid with Pr =0.72 . In his finite difference numerical 

solution, he used the same idealization as mentioned in the 

isosceles triangular duct section. His results are presented 

in Table 29. The effect of Pr on Nu  " is shown in Fig. 

35. Similar effects of Pr on Nu Nu. *m,T J "wx,Hl 
may be expected from the data of Table 29. 

and "SnfHl 

Table 30,  Sine ducts u^/i^ , K(«) , 1^ , fRe , Nu^, , 

Nu HI and Nu„2 for fully developed laminar 

flow, from Shall [60] 

2b 
25 

"max 
»m 

K(«) 
*' 

fRe NUm 

[46] 
*B1 Mllgg 

2*00 
1*50 

1   1*00 
vT/2 

0*75 
0*50 
0*25 
0*125 

2*288 
2*239 
2*197 
2*191 

2*190 
2*211 
2.291 
2.357 

1*884 
1*806 
1*744 
1*739 

1*744 
1*810 
2*013 
2.173 

0*0403 
0*0394 
0*0400 
0*0408 

0*0419 
0*0464 
0*0553 
0*0612 

14*564 
14*022 
13*023 
12*630 

12*234 
11*207 
10*123 
9.743 

2*60 
2*45 

2*33 
2*12 
1*80 

3*310 
3*268 
3* loan 
3*014 

2*916 
2o617 
2*213 
2*017 

0*9738 
1.353 
1*549 
1*474 

1*337 
0*8973 
0*3288 
0*09435 
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7.  SINE DUCTS 

Only the fully developed laminar flow through sine ducts 

(Fig. 36) has been analyzed. No hydrodynamic and thermal 

entry length solution has been reported for this geometry. 

7.1 Fully Developed Flow 

The fully developed laminar flow and heat or mass 

transfer in a sine duct (Fig. 36) has been investigated by 

Sherony and Selbrig [^6]. They obtained the velocity and 

(?) temperature distribution for the sine duct numerically 

by the finite difference method, and evaluated K(°°) based 

on Eq. (32), l£  based on Eq. (33)> fRe and NuT for 

several aspect ratios a* = 2b/2a . Their results for NuT 

are presented in Table 30 and Figs. 37. They also considered 

the finite wall thermal resistance and determined the fully 

developed Niu,  as presented in Table 3. 

y=b(l.+ cos —) 
a 

#- z 

Fig. 36  A sine duct. 

Recently, Shah [60] employed the method of least- 

square -fit ting of algebraic-trigonometric polynomials to 

the known boundaiy values.  He determined the fRe , K(°°) , 

l£ , NuR1 and NuR2 for the sine ducts.  The results 

are presented in Table 30 arid Figs. 37 and 38.  The results cf 

velocity problems by Refs. [46] and [60] are in good agreement. 
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.+ 
Fig. 37  Sine duots fRe , K(») and 1/  for fully devel- 

oped laminar flow. 
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3.0 

2.0 

Nu 
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00 
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a* 

Fig. 38  Sine ducts NuT , Num  and NuH9 for fully devel- Hl 
oped laminar flow. 
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8. CIRCULAR SECTOR DUCTS 

Eckert et al. [233,6] presented the fully developed 

laminir flow velocity profiles for circular sector ducts 

based on the torsion theory [33]. Eckert et al. [6] derived 

the laminar @ temperature distribution for the circular 

sector ducts. The results were based on the theory of small 

deflection of a thin plate [3^]. Sparrow and Haji-Sheikh 

[230] extended the results to cover a wider range of the 

duct angle. The fRe , K(«) and NuH1 are presented in 

Table 28 as a function of the circular sector duct angle 

0 [234]. Eckert et al. [6] also derived the laminar (H2) 

temperature distribution and the Nusselt number. Based on 

their graphical results, NuR2 are also presented in Table 

28. Figure 39 shows fRe , K(°°) , NuR1 and NuR2 for fully 

developed laminar flow through the circular sector ducts. 
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0       20     40      60      90      KK)     !20     140     160     180 
12.0 

Fig. 39  Circular segment ducts fRe , K(») , HuH1 and 

Nu„0 for fully developed laminar flow. 

0       40      80      I2G     ifeO    200   240    280    320    360 

Fig. ^0  Circular sector ducts fRe , K(°°) , NuR1 and NuR2 

for fully developed laminar flow, from [57]. 
156 



'•?-•*">? ^^Ä*«*rS»i^'-^bM»-^-«"-^ 

?. i^xjuutmtin^ 

9.  CIRCULAR SEGMENT DUCTS 

Sparrow and Haji-Sheikh [573 determined the fully de- 

veloped laminar flow fRe , K(«) , NuH1 and NuH2 for the 

circular segment duct using the 17-point matching method. 

Their results are tabulated in Table 31 and Big. 40. 

mi- 3T  piT-^iiAr seement duett., Circular di^ts with dla- 

ducts fRe , K(») ,  Nu 

developed laminar flow 
m ana NuH2 for fully 

20 
de- 

grees 

circular segment 

fRe  K(°°)  NuH1 

[57]  [57]  [57] 

NuH2 

[57] 

flat sided 

<\2<t> 

fRe  NuR1 

[239] f.239] 

moon 
shaped 

fRe 

0 
10 
20 
40 
60 

80 
100 
120 
140 
160 

170 
176 
180 
240 
300 

36O 

15.555 
I5.558 
I5.56O 
15.575 
15.598 

1.7*0 
1.73? 
1.734 
I.715 
1.686 

15.627   1.650 

15*690   1.571 

3.580 
3.608 
3.616 
3.648 
3.696 

3.756 

3.89* 

0.00 
0.01316 
0.05247 
0.2017 
0.4558 

0.7849 

I.608 

15.766 1.463 
15.84C 1.385 
15.915   1.3*1 

4.089 
4.228 
4.328 

2.923 
3.882 
4.296 

16.000    1.333    *.364    4.364 

24.000 
2I.55I 
19.822 
17.603 
16.475 

I 15.986 
! 15.842 

15.862 
15.933 
15.980 

15.998 

16.000 

8.235 

6.020 
4.991 
4.483 

4.303 
4.269 
4.296 
4.335 
4.359 

4.363 

4.364 

15.552 
15.5^0 
15.%2 
15^13 

15.304 
15.169 
15.027 
14.928 
15.037 

15.221 
15.657 
16.000 
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IC.     CIRCULAR DUCTS WITH DIAMETRICALLY OPPOSITE FLAT SIDES 

The fully developed laminar flow    fRe    and    Nu„,    for 

the circular duet with diametrically opposite flat sides 
are evaluated by Cheng and Jamil  [PA] by the point matching 
method.    The total timber of points matched ranged from 36 

for the angle    0 = 5°    to 73 for <t> = 85°.    The results  [235] 
are listed in Table 31 and Fig.  4l. 

8 51—1—r 

4.0 

iiit 1    1 1     1 

1—£' 
2b   <iZ<p 

JRe 

HI 

T—1—124.0 

23.0 

22.0 

2!.0 

20.0 

fRe 

•   19.0 

18.0 

17.0 

I l I I I L. -I 1 I I I I—_l L. 

20      40       60 

16.0 

80       100      120     140      160      180 
2<f> 

15.0 

Fig. ;+i  Circular ducts with diametrically opposite flat 
sides fRe and Nu„,  for fully developed laminar 

flow. 
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11.  REGULAR POLYGONAL DUCTS 

For the general n-sided regular polygonal duct-, only 

the probiert of fully developed laminar flow and heat transfer 

has been attacked so far. For the special cases, namely, 

the equilateral triangular, square and circular ducts, the 

reader is referred to the previous sections. 

11.1 Fully Developed Flow 

Tao [38] employed the conformal mapping method for the 

fully developed laminar flow through a hexagonal duct with 

linearly varying wall temperature and arbitrary thermal energy- 

generation. He presented the dimensionless heat flux as a 

function of thermal energy generation within the fluid. 

Hsu [236] investigated the fully developed laminar flow 

heat transfer for the hexagonal duct with and without thermal 

energy generation within the fluid. He considered two sets 

of boundary conditions:  (i) heat fluxes from three pairs of 

mutually opposite side walls to be pair-wise the same, but 

for each pair, the heat flux magnitude can differ, and (ii) 

heat flux on all six walls uniform and equal. The velocity 

and temperature fields were determined. The local Nusselt 

numbers along the wall were presented graphically, and the 

average Nu were tabulated for the case of with and without- 

thermal energy generation. The NuH2 for the hexagonal 

duct was reported as 3.795 which is about 1.7 percent lower 

than that listed in Table 32. 

Cheng [51] used 9-point matching method to determine 

fully developed fRe , NuH1 , velocity, shear and temperature 

distribution etc. for the regular polygonal ducts.  Cheng 

[27] extended his work by including the effect of uniform 

thermal energy generation and viscous dissipation within th< 

fluid. The dimensionless heat flux and the Nusselt numbers 

for (S3) boundary condition were det^mined by the 10-pcirt 

matching method and were presented graphically. Shih [53] 
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independently evaluated fRe for the regular polygonal ducts 

using the 1L-point matching method. Cheng also employed the 

12-point matching method to evaluate fully developed Nu„p 

for the regular polygonal ducts [52]. These results are 

presented in Table 32 and Pig. k2. 

Nu 

Nu 

Ht 

H2 

3.0 

2.0 

1.8 

i 1 r—r 

n*oo 

n- sided  regular  polygon 

0 

Fig. k2 

J i Li i 

0.1 0.2 0.3 0.333 

Regular polygonal ducts fRe ,   Nuui  and NU
H? 

for fully developed laminar flow. 

l6o 
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12. CUSFED DUCTS 

A cusped duct, also referred to as a star-shaped duct, 

is made of n concave circular arcs. A bank of circular 

tubes touching each other forms this cusped duct geometry 

on the outside of tubes. Shih [53] employed the 12-point 

matching method and evaluated the fully developed laminar 

flow friction factor and other related flow parameters for 

the cu3ped ducts of sides 3»  ^, b$  6 and 8. The fRe factors 
are^presented in 'fable 32. 

Table 32.  Regular polygonal ducts fRe , NuH1 and Nu^ 
and Cusped ducts fRe for fully developed laminar 
flow 

n 

Regular polygonal ducts 

fRe NuHl 

[51] 

NuH2 

[52] 

Cusped 

fRe 

[53] 

3 
4 

I 
7 

8 
9 

10 
20 

13-333 
14.227 
14.737 
15.054 
15.31 

53 
53 
53 
53 
51 

15. ^[53] 
15.52 [51] 
15.60 [51] 
15.88 [51] 
16.000 

3.111 
3.608 
3.859 
4.002 
4.102 

4.153 
4.196 
4.227 
4.329 
4.364 

1.892 
3.O9I 

3.862 
4.009 

4.100 
4.159 
4.201 
4.328 
4.364 

6.503284 
6.605802 
6.634380 
6,639114 

6.628657 
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13.  ELLIPIiCAL DUCTS 

The fully developed laminar flow fRe , NUTT-,  and NuT 

have been determined for the elliptical ducts. However, no 

hydrodynamic entry length solutions have been reported. 

The thermal entry length solution for the fully developed 

laminar flow case has been investigated to a limited extent. 

13.1 Fully Developed Flow 

13.1.1 Velocity Profile and Friction Factors 
The velocity profile for the elliptical duct of Fig. 

4 3 with 2a and 2b as major and minor axes is given by [2,33, 

36] and the fRe by [19] as follows. 

Fig. ^3  An elliptical duct, 

cl    f 
U =  5- 

2(1 + a**) [ 
a*2z2 + y2 - b2 (170) 

cl  b2 

m    r 
I + a* 

(171) 

fRe -  2(1 + a*2) [ETUJ 

R. = 
itb 

'h ~ ElmT 

(172) 

(173) 
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where in * (1 - a*2)1/2 and E(m) is the complete ellip- 

tical integral cf the second kind, 

Note that one limiting case corresponds to a* « l , 

a circular duct, for which above formulae indeed reduce to 

those of the circular duct. But the other limiting case 

a* = o does not appear to be the parallel plate geometry 

as discussed below. If the distance 2b is kept constant, 

and 2a is increased to infinity, the limiting case has 

a* = o and Dh = ifb  . The D,  for the parallel plates 

separated by the 2b distance is 4b. Similar to the limiting 

case of the isosceles triangular duct, one might expect that 

(fRe ^elliptical     ^ell. ,17M 
TfRei—       rn— (174J 
^x*e;parallel plate  ^Vp.p. 

That is fRe for the elliptical duct with a* = 0 would be 

(H)(2*) = 67r > however> from Eq. (172), (fRe)a#sd0 - 2TT
2
, 

about 5 percent higher. Thus the elliptical duct does not 

resemble the parallel plate geometry in the limit. 

The fRe were calculated from Eq. (172) on the Stan- 

ford IBM 360/67 computer using double precision, and are 

presented in Table 33 and Fig. 44. 

Lundgren et al. [19] determined the dimensionless pres- 

sure drop increment K(°°) resulting from the flow develop- 

ment in the entrance region. McComas [20] extended Ref. 

[15] results, and presented the hydrodynamic entrance length 

LJ" . The K(w) and L+  are presented in Table 33 and 

Fig. 44. 

13.1.2 Fully Developed NuT 

Dunwoody [237] determined laminar flow fully developed 

NuT as an asymptote to his thermal entry length solution for 

the elliptical ducts.  Later Schenk and Han [238] confirmed 

his results for two aspect ratios. James [67] presented the 
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Pig. kk      Elliptical ducts fRe and L£  for fully devel- 

oped laminar flow. 
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Fig. 4(5  Elliptical ducts NuT and NuR1 for fully devel- 

oped laminar flow. 
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Table 33.      Elliptical ducts    fRe ,  K(»)  ,  1^ Nu, HI and 

NuT for fully developed laminar flow 

fRe K(-) * I^T HÜ, HI 

1.00 
0.99 

o!95 
0.90 

0.65 
0.80 
0,75 
0.70 
2/3 

0.65 
0.60 
0.55 
0.5Ö 
O.45 

0.40 
0.35 
V3 
0.30 
0.25 

0.20 
1/6 

\% 
V9 
0.10 
1/16 
Ü.050 
0.000 

16.000 
17.055 
17.443 
18.114 
18.700 

19.020 
19.202 
19.299 
19.340 
19.347 

19.346 
19.329 
19.302 
19.273 
19.250 

19.239 
19.245 
19.252 
19.272 
19.322 

19.39* 
19,453 
19.500 
19.5J6 
19.9B5 

19.662 
19.684 
19.739 

1.333 0.0260 
0.0244 
0.0239 
0.0230 
0.0223 

0.0217 

0.0215 

0.0213 

0.0212 

1.333        0.0211 

3.658 

0.0219        3.669 

3.742 

3.792 

3.725 

3.647 

3.488 

4.364 
4.651 
4.757 
4.940 
5.099 

5.185 
5.233 
5.257 
5.2§5 
5.264 

5.262 
5.252 
5.238 
5.222 
5.206 

5.191 
*.l80 
5.177 
5.172 
5 170 

5.173 
5.178 
5.184 
5.189 
5.193 

5.196 
5.209 
5.214 
5.225 

All chese results are presented in 

Table 33 and Fig. ^5. 

NuT    for    a* = 0 

13.1.3    Fully Developed    Nu m 
The fully developed laminar heat transfer problem 

with internal thermal energy sources was first investigated 

by Tao [36]. de  analyzed the problem by the method of com- 

plex variables. I^agi [23] extended Tao's work by including 

the viscous dissipation. The closed form formulae were 

presented for the velocity and temperature distributions, 

bulk mean velocity and temperature, and NuH1 .  :"n absence 

of viscous dissipation and thermal energy sources, the NuH1 
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are given by lyagi as 

) + 6a»2] (175) 
HUH1"I^TI 17(1 ;V) + 98a*2 

The NuR1 ware evaluated from this equation on the 

Stanford IBM 36O/67 computer using double precision and are 

presented in Table 30 and Fig. 4'5. 

13.1.^ Fully Developed NuR1 
Based on the Schenk and Han's [238] results for the 

thermal entry length solution for the @ boundary condi- 

tion, the fully developed NuQ and NuR1 are calculated 

and presented in Table ? for the elliptical duct with a* « 

0.8 . 

13.2 Hydrodynamically Developing Flow 
To the authors' knowledge, no hydrodynamic entry length 

solution has been obtained for the elliptical ducts. 

13.3 Thermally Developing Flow 
Dunwoody [237] investigated the ©  thermal entry length 

problem for the fully developed laminar flow through ellip- 

tical ducts. Based on his previous work with the free vibra- 

tions of membranes with elliptical boundaries, he arrived 

at the Nu m in a double infinite series form. He eval- 
x, 1 uated numerically and tabulated the necessary coefficients 

and eigenvalues for a* * 0.8, 0.5,'•0.25, 0/125 and O.0625. 

Schenk and Han [238] extended the work of Dunwoody for the 

a* = 0.8 and 0.25 to check the accuracy of the results and 

;^:to obtain more insight into the physical aspects. The re- 
sults of Refs. [237] and [238] are in excellent agreement. 

They then considered the finite wall thermal resistance 

(R m  10, 1, 0.2 and 0) for the elliptical duct with ä* 
-4.U«. ai criairivalues and eigene or stants fc 

10, 1, 0.2 ana u; iw *"*- -"-* .  ,or.+(, >or 
% Älated the eigenvalues and eigeneprstants fo, 
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the thermal entry length problem. Tao [103] applied a 

variational approach to the same problem for elliptical ducts 

and presented an expression for the mixed mean fluid temper- 

ature in the thermal entrance. 

Rao et al. [239] solved the thermal er.try length prob- 

lem for short elliptical ducts with (?) and (&}) boundary 

conditions. They used the Lev&que approximation near the 

entrance region to arrive at the solution. Hence, the solu- 

tion is not applicable to long ducts. The results do not 

approach asymptotically to the fully developed values. Their 

results are in fair agreement near the entrance with the re- 

sults of Schenk and Han [238]• In the Rao et al. empirical 

formulae for the local and average Nusselt numbers, a cor- 

rection factor for the temperature dependent viscosity was 

also included. James [67] also presented the ®  thermal 

entrance solution, based on Leveque theory, for short 

elliptical ducts with a* from 1 to 0 . His tabulated 

values for the local Nux T are in excellent agreement with 

the tabulated values of Rao et al. [239] when ehe effect of 

the temperature dependent viscosity in the Nux T expres- 

sion is eliminated. 
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14.  MOON SHAPED DUCTS 

Only the fully developed laminar flow through the duct 

formed by two circular arcs (as shown in Fig. 46) has been 

analyzed* 

14.1 Fully Developed Laminar Flow 

For the duct formed by two circular arcs, whose cross 

section is shown in Fig. 46, the geometrical properties are 

found as follows. 

> « 

Fig. 46  A moon shaped duct. 

P = 2(2a + t>)0 

Ac = (2a
2-b2)0 + a2sin20 

(176) 

(177) 

IL = h 

COS 0 

0 (2-a*^)0 + sin20 
2a  (2 + ct*)0  

h    «* «*=! 

(178) 

(179) 

Based on the analogy with torsion theory [33],  the 

fully developed laminar velocity profile, solution of Eqs. 

(3b) and (4), for this duct is given by 

cl / 2 . 2\ /,  2a cose 
u =7r(r -b )(1 — (180) 
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f»>u»M.«».i -w»^-»«aerww«-i^-»*^^ ,---^.i-?v:i^^ «;^wb. 

The mean velocity I» calculated as 

8a»3 

™.-"f- 
cxa2 (|o»4+ 2a»2- 1)0 - §2*^Bin* + ;c«2- |)eln20 - ^ein** 

(2-a»*)* + sin20 
(181) 

The friction factor Is then determined from Eq.   (29) 

fRe 

«here   IV    and   «     are substituted from Eqs.   (178) and (l8l). 
Tne fulS developed laminar   fRe    factors for this duct were 
Tterled from the above formula on the Stanford IBM 36 /67 

computer using a double precision.    The results ,re presented 
in Table 31 and Fig. .47. 

16.01    i ■  i "i i i ■ n ' "i ■■   i    ii 

fRe      I- 

II    II    i    i 

15.0 

14.8 J ,L 1 1 i 1 L.I U-l I I L 

0       20     40      60      30      100     120     140     160    180 

Z<t> 

plg. kl     Mogn shaned ducts fRe for fully developed laminar 
flow. 
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15.  CARDIOID DUCTS 

Only the fully developed laminar flow througn the 

eardioid duct (Fig. **n)  has been analyzed. 

15.1 Fully Developed fRe , Nu^ , Nu^ 

Tao [38] considered laminar flow friction and heat 

transfer through a eardioid duct for @ boundary condition 

by t,he method of conformal mapping. He included the effect 

of thermal energy sourcen within the fluid. Later he con- 

sidered the flow and heat transfer through a Pascal!s limacon 

[39]. The circular tube and the eardioid duct are limiting 

cases of the Pascal's limacon. Ke prasented closed form 

formulae for the fluid velocity and temperature distribution, 

mean velocity, average and bulk mean temperature, the wall 

heat flux and NuH1 . lyagi [25] extended Tao1 s work by In- 

cluding the effect of viscous dissipation, gas compression 

work and the uniform thermal energy sources within the fluid 

for @ boundary condition. For the special case of 

eardioid duct of Fig. 48 with no viscous dissipation, the gas 

compression work thermal energy sources within the fluid, 

the fRe and NuR1 are given by 

r - 2a(1 + cosö) 

Fig. ^8  A eardioid duct, 
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2 - (162) fRe « 2g- = 15.675 

NuH1 . ^ "| tr2 ».4.SsOe (183) 

Note that the    fRe    and   :fuH1    are 2.0 and 5.4 percent 
respectively lower than the corresponding circular tube 

result. 
Tao [40] also considered the @ boundary condition 

for the cardioid duct using the conformal mapping method, 

where he included the effecx of uniform thermal energy sources 

within the fluid. Ityagi [24,26] extended the work of Tao 

[40] by including the effect of viscous dissipation within 

the fluid. The formulae were presented for the velocity 

and temperature distribution as well as the flow cross 

section average and bulk mean fluid temperature. In absence 

of internal thermal energy sources and the viscous dissipa- 

tion, the Nujjg is expressed as 

** - ? [MS? - 8 M l"1 - 5.6*   (184) 

Note that this result is 31 percent higher than that for the 

circular tube. Even though, Tyagi [24,26] made corrections 

to the NuH2 expression of Tao [40] there still seems to be 

an error, as one would expect Nu„2 to be closer to and 

lower than the value for the circular tube in view of the 

agreement shown for NuR1 . 
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l6.  CONCENTRIC ANNULAR DUCTS 

The simplest for&  of a two fluid heat exchanger is a 

double pipe heat exchanger made up ci two concentric tubes. 

One fluid flows through the inside tube, while the other 

fluid flows through the annular passage formed in between 

two concentric tubes. Consequently, the heat transfer and 

fluid friction behavior for the developing and developed pro- 

files has been analyzed for a variety of boundary conditions 

for both circular tube and concentric annular duct. 

The two limiting cases of annular ducts, the circular 

duct and parallel plates were considered in detail previously; 

hence only the case of 0 < r* < 1 will be considered here. 

A literature survey on the pertinent subject up to 1962 is 

made by Reynolds et al. [240], 

16.1 Fully Developed Flow 

16.1.1 Fully Developed Hydrodynamlc Problem 

The hydrodynamic problem for the fully developed 

laminar flow was first solved by Lamb [24l]. The velocity 

distribution sind the corresponding friction factors are given 

by [242,243] as follows. 

r-£ 

Fig« 49  A concentric annular duct, 
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Cl r2 
« - - TT ro 

«m- " -5~ 

!.(!_)    -  (1 - r^HRryr-j I»*' 

roL        ^2      i - r*21 (186) 
r[1 + r   +-lT7r] 

fRe = 16(3  - r*)2  (l8;) 

1 + r*2 + f(l - r*d)/fa r*] 

The friction factor Is defined on the basis of the average 
wall shear stress around the perimeter of annulus, i.e., 

[ "  ri + ro  P^ 

Tiri + Vo 2gc (168)  — -r-g 

„. value, of   fRe    hased on *.   (187) are presented in 

Table 3* and »£  *>• rmlned the mVr developed 
Lundgren et al.   liyj aeiei E 

sented in Table 3* and Fig. 50. 
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Fig. 50  Concentric annular ducts fRe , K(°°) and L]" 

for fully developed laminar flow. 

3.0 _i_ i 1_ j i i. 

0,0  0.1   0.2  03  0.4  0.5  0.6  0.7  0.8  0.9   ».0 

Fig. 51  Concentric annular ducts NuT and Nu„ for fully- 

developed laminar flow. 
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Tal>le 34.      Concentric annular ducts    fRe ,  K(«)  , L^. 
and    Nu„    for fully developed laminar flow n 

NU, 

1  i 

1   r* fRe [20] 
4 
[20] 

0.0260 
O.OI38O 
0.01208 
0.00982 

3.657 

5.636 

NuH    ! 

4.364 ! 

5.185 1 
5.497 
6.101 
6.383 

0 
0.0001 
0.001 
0.01 

{   0.02 

16.000 
17.9^5 
18.671 
20.02b 
20.629 

-'.3333 
1 ,1312 
1.0727 
0.9733 

0.04 
0.05 
0.06 
0.08 
0.10 

21.325 
21.567 
21.769 
22.092 
22.343 

0.8644 

0.8087 

0.00800 

0.00725 

6.099 

6.517 

6.725 
6.847 
6.951 
7.122 
7.257 

0.15 
0.20 
0.25 
0.30 
0.40 

22.790 
23.088 
23.302 
23.461 
23.678 

0,7762 
C.75^2 

0.7264 
0.7100 

0.00685 
0.00660 

O.OO63O 
0.00613 

7.084 

7.506 
7.678 
7.80i 
7.900 
8.033 

0.50 
| O.6O 

0.70 
0.80 
0.90 

23.813 
23.897 
23.949 
23.980 
23.996 

0.6935 

0.6872 
O.6860 

0.00596 

0.00589 
0.00588 

7-414 8.117 
8.170 
8.203 
8.222 
8.232 

1 1.00 24.000 0.6857 O.OO588 7.5M 8.235 

16.1.2 Fully Developed Heat Transfer Problem 

1611.2.1 Prescribed Constant Temperature or Heat Flux at 

Walls 

Depending upon the temperature or heat flux speci- 

fied at inner or outer surface of the annulus there are four 

fundamental problems possible as described in PARALLEL PLATES 

Section, Fig. 15. For each fundamental problem, there are 

two solutions, one for each of the two surfaces, thus total- 

ing eight heat transfer solutions. These solutions are 

identified for the ready reference in the following tabula- 

tion. 
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Table 35.  Fundamental solutions for concentric annular 
ducts 

j           Solutions Fundamental 
problems (Pig. 15) 

| (l) t = t = constant, t. = 

(2) t. = t « constant, t ■ 

constant 

constant 
first kind   j 

(3) qJJ = 0 , qj = constant 

1 (k)  q£ = 0 , q£ - constant 
second kind 

1 (5) ^o = °  tj* constant 

| (6) qV = 0  t = constant 
third kind 

1 (7) t = t = constant, q£ = 

(8) ti = te = constant, q£ = 

constant 

constant 
fourth kind 

Jacob and Rees [244] analytically obtained the tempera- 

ture distribution for the fundamental solution of the second 

kind for hydrodynamically and thermally fully developed flow. 

For the boundary condition corresponding to the second kind 

(inner wall heater or cooled, outer wall insulated), several 

early investigators [245, 246] correlated heat transfer data 

empirically considering variable properties of the fluid. 

Murakawa [247,248] presented an integral equation formulation 

for the solution of the first kind and a series solution ap- 

proach to the same problem including arbitrary peripheral 

variations. Murakawa did not carry his solutions to the 

point of numerical computation. 

Lundberg et al. [242,243] systematically approached all 

four fundamental problems and their various combinations. 
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1.1 
Table 36a. Annular ducts fundamental solutions of first k.r 

r* ♦8M.' ♦S'-S' 4» 0(D ■0 LfeßWti "Hi """io 

2.666667 1 
2.779239     ' 
2.023294    | 
2*900341 
2.940399 

1      ° 
1   0.0001 
I   0.001 

0.01 
0.02 

■ 
2171.299242 

290.240129 
<*2 «999154 
29.090077 

0 
0.2171299 
0.2102401 
0.4299919 
0.9010109 

0 
0.0701242 
0.1024470 
0.1470340 
0.1099319 

1 
0.921)790 
0.00.9922 
0.0921660 
0.0900601 

2399.29793« 
922.294940 

90.493962 
30*17942» 

0.04 
0.09 
0.00 
0.01 
0.10 

14*912030 
12.004712 
1*.,197134 
0.10620A 
7.017901 

Q.9904019 
0.0142390 
0.0012201 
0.7209020 
0.7017301 

0.190079C 
0.2100902 
0.2200722 
0.2374902 
0.2929903 

0*0011290 
0.7099090 
Q.7799270 
0.7629000 
0.7474449 

10.619672 
16.090431 
14.279700 
11.942912 
10.^.90704 

2.999279 
3*010072 
3.030404 
3.007906 
3.0*5200 

0.1s 
0.20 
0*2» 
0*90 
0.40 

9.079000 
4.070079 
4.92000S 
3.070097 
i.274070 

0.0900951 
0.9941399 
1.0020219 
1.1020170 
1.3000200 

0.2030370 
0.9003742 
0.3311972 
0.3903397 
0.3020401 

0.7141630 
0.6*06230 
0.6600020 
0.6496603 
0.6171939 

0.341631 
7.191355 
6.471392 
9.966212 
3.309111 

3.19707T 
9.213377 
3.207000 
3.319113 
3.420769 

0**v 
0.00 
0.70 
0.00 
0,90 

2.09S390 
2.010194 
2*409149 
2*240710 
2.109100 

1.4420990 
1.9000022 
1.0022040 
1.7029600 
1*0902443 

0.4090190 
0.4320000 
0.4927909 
0.4703240 
0.4090001 

0.9901044 
0.9671992 
0*9472431 
0.9294792 
0.9.40399 

4.000963 
4.401020 
4.391373 
4.290347 
4.103106 

3.920392 
3.610906 
3.719469 
9.011341 
3.906173 

1.00 2.000000 2.OOOOOOO 0.9000000 0.9000000 4.000000 4.000000 

Table 36b.  Annular ducts fundamental solutions of second kind 

I 
I 

j       r* ■ofiMffi '«•SMS») v 00   "BO ' *#■£»> »If 00       j 
0 

0.0001 
o.ool 
0.01 
0.02 

0 
0.0004107 
0.0029670 
0.«113110 
0.0909763 

0 
-0.00001909 
•0.00O13617 
•0.00130729 
•0.00293090 

0.229167 
0.2209366 
0'2110279 
Ü.2131134 
0.2112270 

-O.I45B33 
•0.1300747 
-0.1341*03 
-0.1307293 
-0.1279432 

m 
2434.900019 

337.04413* 
50.01*094 
32.70911* 

«.363636 
4.92*189 
4.90096* 
4.092340 
4.734244 

0.04 
0.00 
0.06 
0.00 
0,10 

0.0407909 
0.0361442 
0*0027609 
0.074249» 
0.009092« 

-0.00406410 
-0.00612030 
-0.00724061 
-0.00940471 
•9.01.62139 

0.20*2919 
0.2006*20 
0.2001*99 
0.207*300 
O.2O40590 

-0.7241220 
-0.1229675 
-0.1211435 
-0.1101909 
-0.U62U3 

20.90*247 
17.«11277 
15.913494 
1»»46*097 
11.«09704 

4.770029 
4.7*197* 
4.001229 
4.0206*9 
4.014212 

0.19 
0.20 
0.29 
0.30 
0.40 

0.1032309 
0.1174620 
0.1200749 
0.1300999 
0.1910094 

•0.01*64977 
-0.021*7792 
-0.02099101 
-0.02950903 
-0.0909**04 

0.2097902 
0.204*0*9 
0.2030040 
0.202*219 
0.200*3*9 

•0*110*909 
-0*10*3096 
-0.1022072 
-0.0903*36 
-0.0914931 

9.607025 
0.4*0921 
7.799473 
7.241194 
6.903301 

4.0002*2 
4.002907 
4.90*751 
4.929009 
4.97*169 

0.90 
0.60 
^0.70 
9.00 
0.90 

0.1017097 
0*16*1990 
0.1740142 
0.1702600 
0.1320199 

-0.04279661 
-0.04014*12 
-0.092*0902 
-0.0371272* 
-0.0000**91 

0.1909493 
0.1**10*6 
0*1*396*9 
0.1*0**9* 
0.1*09400 

-0.0095142 
-0.0002409 
•0.0799706 
-0.0714091 
•0.067**90 

6.101015 
9.91170* 
9*720359 
9.9704*1 
5.469003 

5.036933    ' 
9.0**219 
9.1*6104 
9.230940 
9.30*946 

1.00 0.119714 •0.0042097 0.109714 •0.0642097 9.304019 9.394615 

Table 36c.  Annular ducts fundamental solutions of third kind 

r* •a'-ee».?' e*sj »u<3)   I 

!      ° 
0.02 
0*03 
0.10 

0.25 
0*90 
1*00 

1 
1 
1 
1 

1 
1 
1 

12«917 
17.4*0 
11« 1*9 

7.1700 
5.7302 
4.00U* 

9.69*0 
3.9*34 
4.0949 
4.1119 

4.2321 
4.42*3 
4.0*00 
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Table j6d*  Concentric annular ducts fundamental solutions 
of the fourth kind 

r« 
*le »£' •£> -ff-s1 s?-& 

0 0 0 • • 0 • • 2.666667 
0*4001 0.33!»4*0* -o.oooi «.*o**io7 -19000.000000 9.90994*) «.2«»919» IS»».237*11 .77*?*» 
o.ooi o.ias«»7i -O.JOi i.*4TJ»*0 -19'9.999090 9.9994942 4.101149* 122.29*9*0 2.829294 
e.oi 0.01 HMO •0.01 2.1299419 -100.009000 0-091*1*4 1.9*299«* 5*.«»»**? 2.9099*1 
0.0/ 0.9»**19* -0.02 1.9*99191 -»0.009490 0,00*7**4 l.***74*9 »9.17*42) ».94O309 

0.0« 0.0*7099* -1.04 1.4744479 •29.00*000 9.01)11*9 I.»«49*41 1S.41M72 2.9992T9 
0.0« o.orooMi -0.A4 1.»1*7012 -20.090909 9.01*9*29 1.2*9*917 1*.«*4»I1 1.910972 
9.Ü» _ j.ooorooT •w.o* i.MM«) -1*.****** 9.9197*92 1.1*715»! 14.27*790 1.09*494 
9.9* 0.10001«! -4. 00 1.»12*700 -17.909990 0.02*979* 1.9«**99* 11.9*2912 9.0*790* 
o.ie a.iifwi* -0.19 1.279211* -10.090090 0.9I2MTI 0.9»*1«1« 10.«9«70* 9.9*9299 

0.1» 0.1*79*2* -«.I* l.HMWI •*.«**»»7 o.wnwi 0.7*920«» ».9*1*31 9.19T0TT 
0.20 b.niifo? 0.20 1.00»***7 -9.000999 9.9*224*9 9.**«**»* 7.1*7*9» 9.219977 
9.29 0.2110**1 -0.2» 0.92«1«»2 -«.009)99 0.07*922* 0.*t*t9»l *.«n**7 1.2*9090 
0.10 9.2»7***2 -O.JO 9.«9«**9* -3. HI ill 9.9*91*9* a.»»**«»2 9.99*292 1.91*119 
o.*o f . «5*4 JOJ -O.*0 9.7*197»* -2.»09990 9.11*9*2* 0,471243* ».199111 3.*20T*9 

0.90 9.1«*9V1* -9. JO 9.*«»i*72 -2.009399 9.1*20112 0.49*9947 *.0009*9 1.929992 
0.40 0.1*111*2 -o.*o 0.*19»»29 •l.*****7 9.1*901*1 9.1*211«* 4.901I2* 9.**«99* 
9.7* 0.   hlMI -0.T9 0.»«44»*2 -|.*20*71 0.1*9*91» 0.1291112 «.MISTS 1.7194** 
0.09 0.44*2*71 -0.00 0.»«7*909 -1.290999 C.29999*9 9.2*9*0*0 «•2S9f*T 9.0111*1 
0.90 0.474122» -o.*o 0.»2**9** •LII1II! 9.240*049 0.4797*7» 4.10910* 9.900ITS 

1.90 0. »000000 -1.00 1». 9009000 -1.999490 0.2900090 0.2399009 «•009000 «.900999 

Their results for the dimensionless temperatures, heat fluxes 

and Nusseit numbers for the laminar flow fully developed vel- 

ocity and temperature profiles are presented in Table 36. 

The dimensionless temperature 9    and heat flux $ are de- 

fined by Eqs. (133) and (132*).  In the double subscripted 

parameters, the first subscript i , o , or m represents 

inner wall, outer wall, and bulk mean values respectively; 

the second subscript i or o refers to -.nner wall and 

outer wall heated (or cooled) respectively. The superscript 

refers to the kind of fundamental problem. For example, 

fcj1' means dimensionless wall heat flux at the inner wall 
io 

when the outer wall is heated (or cooled) as specified by 

the fundamental problem of the first kind.  The results of 

Table 36, based on the equations presented in Ref. [242], 

were recalculated on the Stanford IBM computer using double 

precision. *3 

^JEqs. (II.D.23) and (II.D.24) of Ref. [242] were in error 
and were corrected to get the results of Table 36. 
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When the viscous dissipation and internal thermal energy 

sources are neglected in Eq. (5.), the resulting equation is 

linear and homogeneous. Consequently, a solution can be 

established for boundary conditions synthesized from the four 

fundamental problems by the superposition of the eight solu- 

tions of Table 35. The following three problems with axi- 

symmetric boundary conditions, synthesized from the funda« 

mental problems of first, second and fourth kinds, are of 

engineering interest:  (a) constant but different temperatures 

specified on both walls, (b) constant but different heat 

fluxes specified on both walls, and (c)  constant temperature 
specified on one wall and constant heat flux specified on the 

other wall. The temperature, wall heat flux and the Kusselt 

number relationships for these three problems are presented 

below. For the case of arbitrarily prescribed axisymmetric 

heat flux or temperature on whole or part of either wall, 

the solutions can be determined by the method of superposition. 

For the details, refer to [242,2*3]. The Nusselt number for 

outer and inner wall are defined as 

I! 

N»O - TT*    where ho - r=r <189) 
o m 

It 
h4DL q* 

Nu, - -£-£  where h, « T-^T-        (190) 

In the following formulae, B    and $ are found from Table 

36.  (a) Constant but different temperatures specified on 

both walls: For x > xg , 

t = ti on the inner wall 

t = t  on the outer wall, and 

t = t  for all r at x < x0 .  In this case, e e 
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Table 37.      Concentric annular ducts Nusselt numbers for 
ö^cififtd constant temperatures and axial heat 
fluxes at inii^i n*& outer walls for fully devel- 
oped laminar flow 
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Fig.   52      Concentric annular ducts    NuJL    and    NuQ    for 
constant temperatures on both walls for fully 
developed laminar flow. 
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m 
tj(i) 

o mo + t (191) 

* - Mv^ff ♦ <v*.»ß}l (192) 

Sr|(*i-te>o1i) + «V.^ (193) 

Nu4  - 
$(D 

11 
7&y e mo 

(19*) 

Mu_ = 
«(1) 

00 (195) 

The Nusselt numbers for this case, based on Eqs. (19*0 

and (195) are presented as Case (al) In Table 37 and Pig. 52. 

The above formulae Eqs. (191) through (195) are valid for 

the case t* ^ t .  If both.the wall temperatures are the 

same, the nature of the heat transfer problem is changed as 

discussed in PARALLEL PLATE Section. For this case, Nusselt 

numbers are obtained as the limiting values of the thermal 

entrance solution, and are presented as Case (a2) in Table 

37 and Fig. 52. 

To determine the total heat transfer through or from 

annular duct (both inner and outer walls) when both walls 

are at the same temperature t  a.t a given cross section, w 
the heat transfer coefficient h is defined as follows. 

ii+ io - (hipi+ W (v*£J;- h(Pi+ po) <vV (196) 
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Thus the Nusselt number for the total heat transfer Is re- 

lated to Nu  and Nu^ as 

Nu + Nu,r* 
NuT = —2 ji_ (197) 

1    1 + r* 

With the values of Nui and NuQ of Case (a2) in Table 37, 

the Nusselt numbers calculated from Eq. (197) are presented 

in Table 3^ and Fig. 51. 

(b) Constant but different heat fluxes specified en both 

walls: For x > x , 

q" m q" on the inner wall 

q" = qQ
f on the outer wall, and 

t « tÄ for all r at x < x .  In this case 
e 

+       Dh[   -.e(2) +a»e(2)l +t (198) 
*1 =irlqieii       *<> lo  ]       e 

*o     F" [qi oi        V7 oo   J        e 

*■ = F   j qi mi ° mo   I        e 

 1   (201) 

ii mi «  v mo i0 
qi 

Nu^ - 
1  (202) 

° = 8(2).e^).!i(e(?)-e(2
t)) 
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in terms of 

and 

%s ";v(2> 
A* •s where 

and the influence coefficients 

Nu (2). ii 6 ii 'mi 

(2> 
rnrhgT' Nu°° "oo   mo 

(203) 

©*- 
e(2) 
mo 

cii 
- e I5T ' 

e" = (57 
mi 

9 oo 
- e 

(204) 

mo 

Two special cases of the specified wall heat fluxes are: 

0)1) Constant and equal axial wall heat fluxes specified on 

both walls so that at any axial location the peripheral wall 

temperatures are uniform but different at inner and outer 

wall,  (b2) Constant but different wall heat fluxes specified 

on both walls such that at any axial location, the peripheral 

wall temperatures at inner and outer walls are uniform and 

'i, jt^^MÄSJ JEhe Ifusselt numbers at inner and outer wall are 
pmsinted in Table 37 and Pig. 53 for both of these particular 

cases, Hote that the heat flux is specified as positive, 

if the heat transfer is from wall to the fluid. The negative 

Nusselt number means the heat transfer takes place from the 

fluid to the wall.  Infinite Nusselt number at inner wall 

means t4 « t  and does not mean the infinite heat flux. 
l   m In the above Case (b2), the ratio q^/q^ is unique for a 

given r* and is also listed in Table 37. 
For Case (b2), the heat transfer coefficient can also 

be defined, similar to Case (a2), as based on the total wall 

heat flux and the (tw-tm) temperature difference. The cor- 

responding NuH were calculated from an equation similar to 

Eq. (197) with Nui and NuQ from Case (b2) of Table 37, 

and are presented in Table 3^ and Fig. 51, Note that 
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Fig. 53  Concentric annular ducts Nu.  and Nu  for con- 

stant axial heat fluxes on both walls for fully 
developed laminar flow. 

fortunately the (HJ , Qj^ and Qg) boundary conditions are 

the same for the annular duct, as is the case for circular 

tube and parallel plates, and hence it is designated as (g) 

boundary condition. 

(c) Constant temperature specified on one wall, and constant 
24 

heat flux specified on the other wall: For x > xß 

t - t-j  on wall 1 

q" = cu on wall 2,  and 

2T Note for this situation, no distinction is needed between 
inner and outer walls so the subscripts 1 and 2 replace i 
and o . 
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t = tp for all r at x < xe . In this case, 

*2 " *1 + IT *2 ^ (2°5) 

a. 

qj = qä *g} (SOT) 

m2 

NU2 Ä .(M1 Q(4) (2°9) 
y22 " m2 

The Nu^ and NuQ when the wall 1 Is i and wall 2 is 

o are the same as Nu^ and Nu  when wall 1 is o and wall 

2 is i . They are also the same as those for Case (al) of 

constant but different prescribed wall temperatures and, 

consequently, are already listed in Table 37. 

Dwyer [249] also presented fully developed Nusselt num- 

bers for the boundary condition of the second kind for the 

laminar, slug and turbulent flow. For laminar flow, his re- 

sults agree well with the results of Table 36. Dwyer [250] 

extended his work by considering the bilateral heat transfer 

in annuli for the Cases (bl) and (b2) above. His tabulated 

values for Nusselt number for the Cases (bl), (b2) and © 

boundary condition agree well with the results of Table 37 

and Nu„ of Table 3^ respectively. 

Urbanovich [251,252] included the effect of viscous 

dissipation and obtained a closed form solution to the fol- 

lowing two problems of fully developed laminar flow through 

185 

tmaammgVOtr ■ 



the annulus:  (a) inside wall adiabatic, axial heat flux at 

outer wall constant. He presented formulae for the temper- 

ature distribution, heat flux and heat transfer coefficient 

at the outer wall [251].  (b) axial heat flux at inside wall 

constant, while at outside wall variable as follows. 

1o = ° 5 < 0 < 2TT - 6 

qo = ^ct1 + m cos #)  - 5 < 0 < 6 

(210a) 

(210b) 

where    q" , m and    5    are constants.    The closed form expres- 

sions were presented for the fluid temperature distribution 
and the Nusselt number at the outer wall [252]. 

16.1.2.2    Exponential Wall Heat Flux,   (jfo 
Graber [128]  analyzed the heat transfer problem 

for the annular ducts with axial exponential heat flux dis- 
tribution,    (&S)   ,  on inner or outer wall only.    He introduced 

a parameter    FQ ,  defined in Section V.l.1.3 and related to 
the exponent    A    by Eq.   (120).    The ratio    NuHlv/NuR   was pre- 
sented graphically as functions of    FQ    (range from -2 to 8) 
and    r*     (range from 0 to l) in [128]. 

16.2    Hydrodynamically Developing Flow 
Murakawa [204]  analyzed the laminar flow hydrodynamic 

entry length problem for the annulus.    His final result was 

%      I1      \y> 
+ 

\hy 
4- <t> fd (211) 

m 

This result thus requires a knowledge of hydrodynamic entry 

length L  .  Sugino [79] and Heaton et al. [80] indepen- 

dently linearized the momentum equation by the Langhaar ap- 

proach [75] and solved the hydrodynamic entry length problem. 

Sugino tabulated the dimensionless pressure drop  Ap  as a 
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function of x/iyie for r* = 0,2, 0.5 and 0.833. Heaton 

et al. [80] tabulated Ap* as a function of x/DhRe for 

r* «c o , 0.02 , 0.05 , 0.10 , 0.25 and 1 . They also 

tabulated umax/um and fRe as a function of x/D.Re and 

L^. for r* « 0 , 0,001 , 0.02 , 0.05 ,0.1 , 0.25 , 0.5 

and 1 . The l£  reported by Heaton et al. [80] are ap- 

proximately double the values reported by McComas [20] 
Cheng and Atabek [82] used the linearized momentum equa- 

tion due to Targ [81] and obtained closed form formulae for 

the axial velocity and the pressure gradient in the entrance 

region. Also they have determined and plotted the entrance 

length as a function of r* . Sparrow and Lin [84] linear- 

ized the momentum equation introducing a stretched coordinate 

in the flow direction. They presented first thirty eigen- 

values for r* * 0.001 , 0.01 , 0.05 , 0.1 , 0.2 , 0.4 , and 

0.8 . They also presented graphically u/^ and K(x) as 

a function of 4x/D. Re for the above values of r* . 
Manohar [91] solved the momentum equation (l4a) numer- 

Q      n.S    and   0.7  .    Near the en- 
r* = 0.1 , 0.3 , 0.5    «ri ically for    r* = 0.1 , »o > and was gradually 

trance, the aesh si*e -^^/
profile8, 

mcreased up to l/*>0.    ™e presented in graphical 

tributions and the ^^^ taLxated with two sig- 
fom.    B* entrance length «as als ^ ^^ %% ^ 

nificant digits and agreed with 

[82]. 

l6 3    gh m DeveloPinsJ^g- 
"      ' *    11v Pullv Develonedjlow 

16.3.1   WrodgnanicalljLi^a rToTinteÄral formulation 
—7    „ r?Uft 2^31 presented an integral 

Murakawa l2<tö,«5J  v /„,„*-,„ ■**),  and a series 
for the solution of the '^J^Lai variations 
approach to the -e problem includi ^ ^^ Ra0 

of temperature, but does not£*<* & forinula 

et al.   [«*]  deriVed\rnl : for   L -^ ^^ * for the average Nusselt number 

Is 
I! 

: ■■>• 

I* 
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the third kind. The effect of natural convection and tempera- 

ture dependent viscosity was incluaed in the formula by intro- 

ducing empirical factors. 

.Viskanta [255,256] obtained complete thermal entry length 

solutions of first and third kinds. Hatton and Quarmby [257] 

considered the thermal entry solutions of the second and third 

kinds only for the case of inner wall heated. Lundberg et 

al. [2^2,2^3] independently solved the thermal entry problem 

rigorously [Eq. (19a) after neglecting v(ät/är) and 
P   p 

a(S "t/dx ) terms] and obtained all four kinds of fundamental 

solutions. These extensive results are presented in tabular 

and graphical form. Their solution for large x* was based 

on the method of separation of variables and eigenfunction 

expansion [15]. For small values of x* , the above solution 

converges very slowly, hence Leveque method [1,99] was em- 

ployed near the point where the step change occurred. 

The simplified assumptions in Leveque method are as fol- 

lows,  (i) In the downstream region very close to the point 

of step change in boundary condition, the temperature changes 

are confined to a boundary layer which is thin compared to 

the momentum boundary layer.  In this region, it is assumed 

that the velocity distribution is linear having the same 

slope at the wall. Hence, the axial velocity u in Eq. (19a) 

is replaced by a linear velocity distribution in radial di- 

rection having the same slope of actual laminar flow velocity 

distribution at the wall.  (ii) For the region close to^the 

wall, the effect of curvature is small hence the term - ^ 

is neglected from Eq. (19a). The resulting energy equation 

is 

or   I   w     J 
(212) 

The solution to this equation is found by the method of 

similarity transformation where it is further assumed that 
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(lii) the range of the similarity variable goes to infinity 

and (iv) far away from the wall, the fluid temperature ap- 

proaches the inlet temperature of the fluid. The last as- 

sumption also implies that the temperature gradient approaches 

zero far away from the wall. Consequently, Lev£que type sol- 

ution does not allow a distinction between different kinds of 

boundary conditions at the opposite wall of multiply con- 

nected duct. 

Lev&que approximation is valid only in a very restricted 

thermal entrance region where the depth of heat penetration 

is of the same order of magnitude as the hydrodynamic bound- 

ary layer over which the velocity distribution may be con- 

sidered linear. 

The gap between the limit for Lev§que solution and the 

point where the eigenvalue solution becomes manageable was 

bridged by Wors/6e-Schmidt [258] by considering a perturbation 

of Lev£que solution. He successfully relaxed the first two 

assumptions of Lev£que method, as he considered the fully 

developed velocity profile and the effect of curvature in the 

energy equation and obtained a series solution. His tabu- 

lated results are complementary to the results by Lundberg 

et al. [2^3] for small x* . 

Nunge et al. [259] investigated the limitations of as- 

sumptions common to Levfeque type solution. Lundberg et al. 

[243] considered the linear velocity profile and neglected 

the effect of curvature in the energy equation for the region 

close to the step change in boundary condition; Wors^e-Schmidt 

considered the curvature and the developed velocity profile; 

while Nunge et al. [259] assumed curvature and linear vel- 

ocity profile. They concluded that the improvement brought 

about by including the effect of curvature over the Lev£que 

solution is important. 

The local Nusselt numbers in the thermal entry region 

for annuli depend on both the radius ratio r* and xhe axial 
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distance r*  . However, Nunge et al. found that when the 
Nusselt number is defined in terms of l>^ , where 15. is 

the diameter of heated surface J , the radius ratio r* 
is effectively eliminated as a parameter. This newly de- 
fined Nusselt number is 

h D.  h 1L  r* r* 
s* 1-r        1-r 

It is only a function of the dimensionless axial distance 

for all values of r* in the thermal entrance region.  It 
deviates from a single curve correlation as the asymptotic 
value of the Nusselt number is approached. 

As discussed earlier, once the eight solutions to the 
four fundamental problems (Table 35) are available,the solu- 
tion for any axially arbitrary, but peripherally uniform 
boundary condition, can be obtained by the Duhamel*s super- 

position technique.  Lundberg et al. [2^3] solved the fol- 
lowing t?»c problems by the superposition technique:  (i) heat 
flux specified on one wall, temperature on the other, and 
(ii) heat flux specified on both walls. Hatton and Quarmby 
[257] analyzed the following three problems by the super- 
position technique:  (i) axially linear increase in temper- 
ature on inner wall, (ii) axially linear i~~rease in heat 
flux on inner wall and (iii) half-sine wave heat input varia- 
tion superimposed on a uniform heat input on inner wall.  In 
5,11 three cases, the outer wall was insulated. 

Hsu [260] included the effect of fluid axial heat con- 

duction [Eq. (19a) with v = o ] and obtained the fundamental 
solution of the second kind.  In his analysis, he assumed 
the inlet fluid temperature was uniform at x = -°°  .  Thus 
he solved the eigenvalue problem for each of the two semi- 
infinite regions and matched the temperature and axial tem- 
perature gradient at x = 0 properly.  He presented local 
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Nusselt number Nux x and Nux 2 graphically for r* - 0.1, 
0.3, 0.5, 0.7 and c!9 and Pe «'l, 5, 10, 20, 30, 50 and « 
as a function of x* (10" < x* < l) . The temperature solu- 
tions corresponding to the limiting case of Pe = » are in 
excellent agreement with the results of Lundberg nt  al. 

[243]. 
Hsu and Hwang [26l] considered the finite thermal re 

sistance ((gj) boundary condition) at the inner and outer 
wall and obtained the thermal entry length solution for fully 
developed laminar flow through the annulus. The first ten 
eigenvalues and constants were presented for r* « 0.5 and 
Uiri/k s lf 5'  10 and Uori/k w ? • 0,5> lj 2> 2'5'  5' 10 
and 20. Further, they included uniform internal thermal 
energy generation with @ boundary condition, and obtained 
a solution for the temperature distribution, wall heat fluxes 

and the Nusselt numbers. 

16.3.2 Simultaneously Developing Flow 
Murakawa [253] presented an analysis for the combined 

hydrodynamic and thermal entry length problem when the inner 
surface of annular duct is heated. The analysis is rather 
complicated and the numerical results are quoted for one 

radius ratio only. 
Heaton et al. [80] obtained the fundamental solution of 

second kind for the combined hydrodynamic and thermal entry 
length problem. The problem was solved by an integral method 
using the hydrodynamic solution previously described (Lang- 
haar type), and a temperature profile found by an extension 
of the method used to find the velocity profile. The Nusselt 
numbers, wall temperatures and bulk mean fluid temperatures 
are tabulated as a function of x* for r* =0, 0.02, 0.05, 
0.10, 0.25, 0.50 and 1.00 and Pr = 0.01, 0.70, 10.0 and °° . 

For the same reasons as mentioned in PARALLEL PLATES 
Section V.2.3.2, the three fundamental solutions (exception 
is the second kind) for the simultaneously developing flow 

have not been investigated. 
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17. ECCENTRIC ANNULAR DUCTS 

Only the case of hydrodynamically and thermally fully 

developed flow through eccentric annular duct has been 

analyzed. 

17.1 Fully Developed Flow 

17 -1.- Flew Characteristics 

Several investigators [2,262,263] partially investi- 

gated laminar flow through eccentric annulus. Heyda [264] 

determined the Green's function in bipolar coordinates for 

the potential equation and obtained the velocity distribu- 

tion in the form of an infinite series. Caldwell [262] car- 

ried out the further integration necessary to give the pres- 

sure gradient as a function of the flow rate and duct geometry. 

However, no numerical results were presented. Redberger and 

Charles [265] solved the momentum equation by the finite dif- 

ference method after transforming it into bipolar coordinates. 

They obtained and presented graphically the ratio of mass 

flow rate of eccentric to concentric cylinders of the same 

diameter ratio. Snyder and Goldstein [266] independently 

arrived at the closed form solution for the velocity dis- 

tribution in bipolar coordinates, and determined the local 

wall shear stress, and inner wall, outer wall and average 

friction factors. Jonsson and Sparrow [267] independently 

analyzed the same problem and numerical results were eval- 

uated for a wider range of governing parameters. For r* « 

5/6 and 1/2 at larger eccentricities, the later results 

of Jonsson and Sparrow are claimed to be slightly more ac- 

curate than those of Ref. [266], because slow series con- 

vergence and small integration step-size are characteristic 

at large eccentricities. The wall shear stresses and the 

average friction factors were presented graphically as a 

function of eccentricity with r* as a parameter in Refs. 

[266,267].  As tabulated results were not available, Fig. 
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Table 38.      Eccentric annular ducts    fRe    for fully developed 
laminar flow, from graphical results of Jonsson 
[268] 

fRe 

r*«0.05       r*-0.10       r»-0.25       r*=0.50       r**0.75       r**G.95 

0.0 
0.1 
0.2 
0. 
:! 

°«5 
0.6 

0.9 

1.0 

21.567 
21.37 
20.90 
20.23 
19.43 

18.56 
17.53 
16.60 
15.77 
15.07 

14.63 

22.343 
22.13 
21.57 
20.77 
19.ÖO 

18.63 
17.30 
16.17 
15.13 
14.27 

13.60 

23.302 
23.07 
22.30 
21.13 
1^.67 

18.20 
16.63 
15.17 
13.80 
12.67 

11.77 

23.813 23.967 
23.63 

24.000 
23.48 23.67 
22.61 22.6? 22.75 
21.18 21.27 21.28 
19.50 19.W 19«47 

17.65 17 M 17.47 
15.91 
14.26 

15.60 15.63 
13.81 13.83 

12.70 12.24 12.23 
11.34 10.90 10.80 

10.26 9.84 9.07 

0.0      0.1       0.2      0.3      0.4      0.5      0.6     0.7      0.8     0.9       1.0 

Fig. 54-  Eccentric annular ducts fRe for fully developed 
laminar flow. 
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ok  and Table 38 were prepared based on the graphical fRe 

versus e* of Jonsson [268]. 
At unit eccentricity (inner and outer cylinders Just 

touching), the theoretical results of Caldwell show a min- 

imum at r* r 0.75 in the plot of fRe versus r* with 

fRe = 16, 9.5 and 2k  at r* = 0 , 0.75 and 1 respectively. 

Bourne et al. [269] experimentally verified the general 

shape of this curve. However, their minimum (fRe - 12.0 

at r* r 0.75) is not as small as predicted. It should be 

noted that Jonsson and Sparrow^ [267,268] results do not 

show a minimum for the unit eccentricity for the range of 

r* 0.05 to 0.95 . However, the limiting geometry of the 

eccentric annular duct with unit eccentricity and r* ap- 

proaching one may *ave a minimum fRe Z  9.62 , as evidenced 

by a cross-plot of the e* « 1 results of Fig. 5k.    This 
limiting geometry consists of two circles of the same radius 

touching each other, leaving essentially no gap for the 

laminar flow. Just short of r* = 1 with a flow through 

gap, one would expect a flow approaching the parallel plate 

situation and hence a fRe magnitude of 2k.    This behavior 

may justify the existence of a minimum at an r* close to 

unity. 

17.1.2 Heat Transfer Characteristics 
The only boundary condition analyzed for the eccentric 

annuli is that of uniform and different axial heat fluxes on 

both walls such that uniform and equal peripheral wall 

temperatures result at any axial location. This boundary- 

condition corresponds to Case (b2) of the concentric annular 

ducts (p. 180). Cheng and Hwang [55] used the 20-point 

matching method and determined the fully developed NuH 
with a heat transfer coefficient h defined by Eq. (196). 

The effect of internal thermal energy generation was also 

included in the analysis. Their results for various flow 

characteristics are in excellent agreement with [266,267]. 
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The Nusselt numbers, with zero thermal energy sources, are 

presented In Table 39 and Fig. 55. 

Table 39.  Eccentric annular ducts Nu„ for fully developed 

laminar flow, from Cheng and Hwang [55] 

NUT. 

r*-0.25      r*=0.50      r*=0.75      r*«0.90 

0.00 
0.01 
0.10 
0.20 
0.40 

0.60 
0.80 
0.90 
0.99 

7.804 
7.800 
7.41? 
6.524 
4.761 

3.735 
3.203 
3.038 
2.925 

8.117 
8.111 
7.608 
6.473 
4.393 

3.247 
2.644 
2.446 
2.305 

8.214 
8.208 
7.659 
6.432 
4.227 

3.024 
2.384 
2.171 
2.016 

8.232 
8.226 
7.667 
6.422 
4.192 

2.975 
2.324 
2,106 
1.947 

9.01—1—r—i—1—1—r—T—!—1—r -1—1—1—1—1—1—r 

I   .. I L 1     1      I     I      I I      l      I I I I I L 

0.0     Oil       0.2     0.3     0.4     0.5     0.6     0.7      0.8     0.9      1.0 

Pig. 55  Eccentric annular ducts Nu„ for fully developed 

lamina? flow. 
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18.  ANNULAR SECTOR DUCTS 

18.1 Fully Developed Flow Characteristics 

The fully developed laminar flow characteristics of 

annular sector duct geometry has been studied hy  Sparrow et 

al. [270]. The problem was solved by the method of separa- 

tion of variables and the use of linear superposition. The 

expressions for velocity distributions, flow rate and the 

fRe were presented in an infinite series form. Ttoe fRe 

magnitudes are tabulated in [270] for the sector angle 0 

from 5° to 60° and r* from 0.05 to 0.95 . Also, fRe is 

shown graphically in [270] for 20 from 5° to 3600 and r* 

from 0.05 to O.95. 

Based en the equations presented in [270], the fRe 

factors were determined on the Stanford computer using 

double precision. Up to the first 1200 terms in the infinite 

series were used. The fRe factors are presented in Table 

40 and Fig. 56 for a wide range of r* and  0 . Inciden- 

tally, Eq. (7) of [270] takes a different form for  0 * 90° 

and 270° for n = 1 and 3 respectively and the appropriate 

formula was derived for this case to arrive at the results 

of Table 40. 

Table ho.      Annular sector ducts fRe for fully developed 
laminar flow 

^ 
H 

i-,r.5 

a. i! 

1.31 
0.35 
1.40 

1.64 
<■. 70 

0.75 
1.90 
0.95 
0.99 
0.15 

6o° 150°  100° L«0°  270°  300°  330°  350° 

W.»        IV,?»•    12.4*9   11.12»   11.466   13.765  14.027   14.25»  1*.»LQ   13.190   19.479   15. TO*  IV »IS   16.047   16.141 l*.)24 16.491   16.93* 
>3.47b   1).4)7   11.670   11.74*   14.020   I*.21?   14.376   14.518   14,B49   1'j.lOt   19.114  19.979   li.M«   16.041  16.10» 14.941 14.765  16.404 
14.44,    14.473   14.5*0   14,4*7   14.9T6  14.M6 14.690   14.662   14.63-» 15,907   15.268   19.616 19**60  16.391   14.627 16.4)2 17.21»  17.191 
15.454   19,1(9   15.20T   19.11*  14.44.4  14.851  14.761   '4.704  14.749  14.996   19.174  19.606  16.217  16.66«  17.621 17.164 17.6?« 17.666 
Ih.llS   16,3?J   15.775  15.597   15.201  14.43?  14.746   14.641   14.667  li.166   f9.972  16.049  19.941  17.06)   17.46« 17.011 16.1«  i0.lt« 

17.U'   lf.e'B  14.194  15.64"   19,261   14.695  14.696   14.946  14,7U  l>.24?   19.894  16.499   16.444   17.472  17.0«! 16.2*4 16.961  16.774 
17.77'J   17.''52   16.46?   14.97]   15.216   14.774   14.940   14.467   14.tf.sl   lt..9')9   16.219 16.6»)   17.429   17.417   16.1)0 16.704 14.02)  10.216 
10.316  17.143 16.979 15.961 14.045 14.6?) 14.4)4 14.4)0 19.324 19.649 16.620 17.107 17.06) 10.)71  10.706 10.163 14.492 14.6)9 
I«.754   17.5C4   l«v.'/»4   is.-,£h   14.194   14.VM   I4.j78   14.*b»   15.116   16 251   17.067   17.77«   16.JS0   16.020   10.2)1 14.97« 14.966  26.044 
1=.l!7   iT.sr«   I'.O«,   ii.i'rt   l4.371   14.399  14.144   i4.<,26  1 4,674.   16.713  17.571   16.2e4  16.629  16.2»  14.671 14.«49 20.273  20.437 

15.212    14.-,7   I».«22   14,919   14.37)   16.129   lt.it*   la.Jdd   U.764   14.104   19.742   20.If* 7C.4C6 2C.66 6 20.616 
"    at   t*.)94   14.7t>H   H.^3?   16.55*   17.770   19.626  19.275   19.769   20.149  20.9*0 20.«)C 21.0*7  21.166 

17.)«* l^.i? 
.7. ',77 15.7' 
* l,.^'j-> IS. » ) 
li.l*-; 1* 
:■>, >«.t ii ^1' 

J      * -» -   J   !■<.       14«'   J"       I 7 6 £ J .        IVI^a«      6  r  » J   f o      * ?•«#•, O     A T • «.   I *       I7H9/      «V« «~W     « W**. "     «»   •"■V     #  I •»•"• »      ft * • 6 "" 
*.H:1 14. tHS 14.9W. 15.1)1 15.711 17.747 14.367 14.181 14.74) 20.266 20.641 2C.94« 21.20) N.417 21.942 

1-.372 K.U; 14.H»,2 15.643 16.31? 17.904 is.jd» i*.754 40.J14 40.746 21.089 21,)60 21.«67 21.776 21.407 
14.4*,,   14.7,>3   19,619 le.,1 >1   »7.0)4   14,41»  i>.sj7 2U.335 20.641  21.22) 21.323 21.76' 21.4M3 22.129 22.221 

17.346  1   .929  14.247  14.364 15.266  16.277  17.194   IT.874 19.364 20.112  20.424 ...364 21.699 21.999 22.19« 22.326 22.669 22.345 
16.411   14.41?  U.H4 14.02° 15.141   17.271  14.159  16.647 20.413 21.31?  21.9)) ; 1,400 22.172 22.»2 22.34« 22.606 22.707 22.062 
14.116   14.?51   14.449   15.»I« 37.144   14.514  19.3)0  19.440 21.090 21.7)6 72.149 22.4)6 22.640 22.619 22.«)« 23.343 23.130 23.100 
14.142   14.971   H.3'2   17.496 19.059  ?0-1H  20.694  21.169 42,j)l  22.499  22.745 23.000 23.192 29.264 23.363 23.640 
15.055   17.619   19.179   ?0.153 21,24»   21.9)?   22.151   22.6 

"he     fRe  ■ e«     for all     *    at.     t* «  1   . 
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t2,Q*    i    i    i    i    i    i    i—i—t   i—i—i    i    i    i—ii    i,    i 
O.Q     01      0.2     0.3     04     0.5     0.6     0.7     08     0.9      1.0 

Pig, 56  Annular sector ducts fRe for fully developed 
laminar flow. 

Table 42.  Regular polygonal ducts with central circular 
cores NuTT., for fully developed laminar flow, 

.28 
AH1 

from Cheng and Jsunil  [54]' 

a/*! 

COO 
0.05 
0.1 
1/9 
0.125 

1/7 
1/6 
0.2 
0.25 
1/3 

0.5 

28, 

Nu. 

n«3 

HI 

n»4 n-5 n«6 n=7 n-8 n«9 n=10 

3.111 
4.936 
5.296 
5.354 
5.417 

5.486 
5.560 
5.626 
5.655 
5.511 

3.608 
5.723 
6.104 
6.163 
6.228 

6.297 
6.370 
6.438 
6.474 
6.351 

3.85? 
6.094 
6.467 
6.523 
6.582 

6.644 
6.705 
6.755 
6.760 
6.593 

4.002 
6.303 
6.670 
6.722 
6.778 

6.834 
6.887 
6.924 
6.906 
6.697 

4.102 
6.431 
6.794 
6.84*5 
6.898 

6.9^1 
6.998 
7.027 
6.995 
6.757 

4.153 
6.525 
6.885 
6.935 
6.986 

7.037 
7.080 
7.102 
7.060 
6.801 

4.196 
6.588 
6.946 
6.995 
7.045 

7.094 
7.136 
Y.154 
7.104 
6.831 

4.227 
6.635 
6.9?2 
7.040 
7.090 

7.138 
7.177 
7.192 
7.138 
6.854 

n«20 

4.329 
6.778 
7.142 
7.189 
7.236 

7.280 
7.314 
7.321 
7.251 
6.933 

4.466     5.317     5-488      5.498     5.480     5.465     5.453      5.444      5.419 

The NuH1 for n = * corresponds to Nup of concentric annular ducts, Table 34 aHl 'H 
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Fig. 57  Regular polygonal ducts with central circular cores 
fRe for fully developed laminar flow, from 
Ratkowsky [271]. 

i i i i *  i i i i i i i i i i i i i i t i i i i 

3.0 _I_J—i—i—I—I—I—I l l—I .1-1 l ' ■ ■ ' ' 

0.0      0:1      0.2      0.3      0.4      0Ä 

Fig. 58  Regular polygonal ducts with central circular cores 
HGrn for fully developed laminar flow, from Cheng 

and Jamil [5^]. 
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19.  REGULAR POLYGONAL DUCTS WITH CENTRAL CIRCULAR CORES 

Only the case of hydrodynamically and thermally fully 

developed flow has been analyzed. 
Cheng and Jamil [5k]  studied the fully developed laminar 

flow in regular polygonal ducts with central circular cores. 

They employed a 10-point matching method to evaluate Nusselt 

numbers. For the heat transfer problem, they considered the 

boundary condition corresponding to Case (b2) of concentric 

annular duct, i.e., constant but unequal axial heat fluxes 

specified at inner and outer walls such that it results into 

uniform and equal wall temperatures peripherally. Tu«y also 

presented the results graphically in [56]. For this duct, 

f Re are presented in Table 4la and NuR1 in Table k2  and 

Fig- 58. Independently, Ratkowsky and Epstein [58] studied the 

flow characteristics of the same problem by the least-square 

fitting of harmonic functions to known boundary values. 
Their friction factors are in excellent agreement with Cheng 

and Jamil results. These fRe results are presented in 

Table *tlb [271] and Fig. 57. Tables 4la and ^lb provide the 

comparison of two different numerical methods. 
Two limiting cases of this geometry (see Fig. 57)* a/^ 

equals 0 and 1 are of interest. For a/^ equals zero, the 

corresponding geometry is the n-sided regular polygonal duct, 

which has been discussed in Section V.U. Ratkowsky and 

Epstein [58] have analyzed the other limiting case (a/^ = 

l) in detail. Theoretically, they have shown that when 

n-»oo , fRe-» 56/9 *= 6.222. 
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Table 4la. Regular polygonal ducts with central circular 
cores fRe for" fully developed laminar flow, 
from Cheng and Jamil [5^] 

•/*, 

vi.i 
O.fO 
1/3 
0.25 
0.20 

1/6 
1/7 
0.125 
V9 
0.10 

n-3 n-4 o-5 n-6 n-7 n-6 n-y 

10.72 
19.728 
19.8*1 
19.512 
19.215 

18.965 

18.578 
18.425 
18.?93 

14.304 
22.026 
21.669 
21.255 
20.922 

20.654 
20.4)3 
20.247 
20.086 
19.945 

10.980 
22.793 
22.329 
21.934 
21.624 

21.374 
21.165 
20.937 

20.693 

19.135 
23.11« 
22.658 
22.295 
22.009 

21.775 
21.577 
21.407 
01.259 
21.128 

20.681 
23.289 
22.858 
22.521 
22.252 

22.028 
21.839 
21.675 
21.532 
21.404 

21.730 
23.394 
22.99? 
22.675 
22.418 

22.203 
22.020 
21.860 
21.719 
21.593 

11:511 
23.08E 
22.7K 
22.537 

22.329 
22.149 

im 
21.730 

n-io        n-20       («met) 

22.391 
23.519 
23.160 
22.869 
22.627 

22.423 
*2.246 
22.O92 
21.955 
21.832 

23.427 
23.172 
22.952 

22.761 

S-.2S 
22.314 
22.195 

8:3 
22.901 
22.737 
22.591 
22.461 
22.343 

0.05    I   17.1,14      19.104      19.866      20.310      20.596      20.793      20.935      21.041      21.417      21.567 

Table 4 lb. Regular polygonal ducts with central circular 
cores fRe for fully developed laminar flow, 
from Ratkowsky  [271] 

*"M 
fRe 

n-3 n-4 n-6 n-8 n-18 

1.000 
0.991 
0.987 
O.981 
0.975 

°o:gf5 
0.950 
0.9375 
O.9OO 

0.875 
O.850 
0.800 
O.750 
0.711 

0.700 
0.684 
0.675 
O.650 
0,600 

0.550 
0.5454.. 
0.511 
0.500 
O.55U5.. 

O.45 
0.40 
0.35„ 
0.318 
0.30 

0.250 
0.200 
0.150 
0.125 
0.100 

O.O625 
0.05 
O.O3125 
C.025 
0.020 

0.0125 
0.000Ü 

7.803 

9.179 

10.508 

12.93* 

15.316 
16.579 

18.013 

18.977 

19.689 
19.838 

19.727 

19.'51* 
■19.217 

17.07? 
16.886 
16.713 

13.3*2 

7.:oo       6.618       6.478 

n.ofci 

9.858 

12.316 

16.208 

19.083 
20.254 

21.190 

21.819 

19.436       21.982 

22.022 
21.994 

21.252 
2Ö.92O 

18.579       20,241; 

17.746        19.358 

18.611 
13.400 
18.202 

17.323 
14.225 

10.889 

15.3*6 

19.C10 

21.5fa 
22.478 
22.921 

23.222 
23.234 

23.007 
22.876 
22.715 

22.293 
22.007 
£1.637 

20.308 

19.58} 

18.789 

22.035 

23.011 
23.408 
23. fj*2 

23.140        23.531 

23.573 
23.537 

23.190       23.468 

23.115       23.391 

23.291 
23.178 
23.039 

22.525       22.876 

22.672 
22.416 
22.075 

6.477 
17.822 

21.591* 

23.071 
23.533 

23.890 

23.927 
23.915 

23.872 

23.695 

23.358 

21.127        21.592        22.162 

20.791 

20.071    .       .   * 

15.410        15.8 
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20.  CIRCULAR DUCT WITH CENTRAL REGULAR POLYGONAL CORES 

Only the case cf hydrodynamically and thermally fully 

developed flow has been analyzed. 

Cheng and Jamil [5^,56] studied fully developed laminar 

flow through an annulus with a circle as the outside boundary 

and a concentric regular polygon as the inside boundary. As 

the number of sides of regular polygonal core decreased from 

20 towards 3, the shear stress distributions and normal tem- 

perature gradients along the inner regular polygonal boundary 

exhibited a wavy character, with a very small region having 

negative shear stress distribution. In spite of the dif- 

ficulty with locbl values, Cheng and Jamil stated that the 

integrated overall quantities, such as fRe and Nufll were 

sufficiently accurate for practical purposes [56]. The @ 

boundary condition is the same as the b vidary condition, 

Case (b2) of CONCENTRIC ANNULAR DUCTS.      NuH1 were 

based on the heat transfer coefficient defined in Eq. (196). 

Their fRe and NuR1 were based on 6-point matching method 

(on one side of regular polygon). The fRe are presented 

in Table 43a and NuR1 in Table W and Fig« 60. 

Hagen and Ratkowsky [591 studied the same problem by 

using the method of least-square fitting of harmonic func- 

tions. They did not encounter the negative shear stress 

distribution and its wavy character, however the fitting 

procedure became more difficult as the number of sides of 

the polygon became smaller. A total of 6 to l6 harmonic 

functions were utilized in the solution of momentum equation. 

Their fRe values [271] are reported in Table 43b and Fig. 

59. 
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Table &3a. Circular duct Kith central regular p< 
cores f!?e for fully developed lam 
freie Jamil [235] 

How, 

*,/• 

1/3 
C.2* 

n-5 

15.6:5* 

*■;.!>'" 

0.2C    J ?J.6> 

I  1/7      a 23.191 
i 0.125 I Si.ooc 
j   1/9      a ??.3*0 

=>.«* n~5 »4 n-7 

>-,;6ft 

^3.2* 
J3.J51 

«<2.%«* 

23.*5* 
?j.l79 
22.967 

2~.79* 
22.6*6 
22.516 
22.*G0 

?.-.770 23./*5 
2J.M8 2i>!7 
2^.166 23.177 
22.9*6 2?.990 

■?2.7?7 ^2.3lC 
?2.6*a 22.660 
22.c,17 22.526 

n-6 

23.73; 
?i.*27 
23.1» 
22.995 

?2.§2> 
22.671 
22. M6 
22.41» 

»9 «10 »-» 
23-730 
23-*39 
23.207 
23.008 

SÄ- 
r2.5l8 

22.397 

23.732 
*3.*52 
23.220 
23.019 

g:& 

m 23.a7 
22.973 

22.*)* 
22-6« 
22.916 
22.392 

(• 
23.81} 

23.088 

22.901 
22.737 

g:8J 

Table 43b, Circular duct with central regular polygonal 
cores fRe for fully developed laminar flow, 
from Ratkowsky [271] 

V* n-* n«€ a-18 
1,000 
0.975 
C*3 c.«5 

0.80 
0.7b 
0.70 
0.65 

0.6c 
0.55 
0.50 
0.«5 
Q.*0 

0.35 
0.30 
C.25 
C.2C 
0.15 

0.100 
0.075 
0.0«« 
U.0O0 

15.750 

17.1*8 

1S.*22 

19.*96 

21,921 

22.138 
22.33.7 
22.303 
22.37$ 
22.3*9 

22.308 
22.2J5 
22.111 
21.979 
21.903 

21.6*1 

21.090 
16.000 

15.67* 
16.834 
17,950 
18.900 
19.713 

20.936 
21.796 
22.3*3 
22.722 
22.933 

23.^51 
23.09U 
23.0*9 
23.0J9 
22.96] 

22.914 
2*.826 
22.682 
££.r*Q 
-2.309 

21.953 
21.7** 

16.000 

15.595 

19.7*3 

21.713 

22.708 
23.206 
23.*35 
23.535 
23.575 

23.573 
23.516 
25.*90 
23.411 
23.3*1 

23.250 
23.122 
22.975 
22.800 
22.551 

15.57* 

21.210 

23.*C3 

23.677 
23.76« 
2J.778 
23.7*1 

23.707 
23.700 
23.601 

!!:fS 
23.372 
23.258 
23.11* 
22.917 
22.6*9 

15.518 

23.927 

23.3** 

23.596 

23.837 

23.753 

23.622 

23.* 12 

23.05O 

22.171        22.2*2        22.322 

21.5*°? 
16.000 

21.5*2 
16.000 

21.56c 
16.000 

Table hk.      Circular duct with central regular polygonal 
cores NuTJT for fully developed laminar flow, 

from Jamil [235]29 

f
>,/a 

SuH 

Q=£ n^; R^6 n«7 n-8 n-* 

0.0 
I/) 
0.1."; 

1/7 
IA 

ö. -6h 
7.537 
7.-'« 
7.'-67 
7.' "3 

7.-,-,l 
7.i8«- 
7.W 
7-537 

<<. >6«i 
7. ±19 
7.'?[ 

7.U="? 
7.r:4: 

b,j6* 
?.320 
7.388 
7.*6* 
7.55C 

4.36* 

7.390 
7>67 
7.555 

4.364 
7.325 
7.395 
7.0*7 ! 
7.558 1 

7 tl£ 
7*69J 
7 7 9 

7.6.* 
7.7: > 
7.814 
7.718 

7.C .r 
7.7*'. 
7.858 
7. ?1C 

7.€M* 
7.75) 
7.884 
7.J89 

7.65* 
7.769 
7.8* 
8.027 

7.660 
7.776 
7.909 
8.049 

-The    :*uH1    for   n ■ *    corresponds to    NuH    of con- 
centric annular Jucts, Table   i*. 
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Pig. 59 

t i I r r "i i ■ i "i' 

Circular duct with central regular polygonal cores 
f5e for fully developed laminar flow, f 
Ratkowsky [271]. 

rom 

» ■ i i t i i ■ "!■ 

4 0 I i ii I—i—i—i—I—I—i—I—l—I. t I—t- -X_ 

0.0       0.1        0.2       OS 0.4 0.5 

V« ./• 

Fig. 60  Circular duct with central regular polygonal cores 
NUTT-,  ft>r fully developed laminar flow, from Jsunil 

[235]. 
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21.  LONGITUDINAL FLOW BETWEEN CYLINDERS 

The laminar flow over straight circular cylinders ar- 

ranged in triangular or square array *zz  been analyzed only 

for fully developed flow as described below. 

21.i Flow Friction 

Sparrow and Loeffler [48] obtained an analytical solu- 

tion by the 6-point matching method for the longitudinal flow 

between cylinders arranged in equilateral triangular and 

square array as shown in Fig. 6l. 

f^^J- ^  ^   ^   **r^- j^je j m m m < 

—1 2s k- —4  2s L- 

(a) equilateral triangular       (b) square array 
array 

Fig. 6l  Triangular and square array arrangements for 
longitudinal flow between cylinders. 

They presented a pressure-drop-floy.» parameter 

(-dp/dx) (a^AO/Q and also  (fRe)(2a/Dh) graphically as a 

function of porosity o  (range 0.1 ~ 1.0). The porosity, 

o , is defined as the ratio of free flow area to frontal 

area (= free flow area plus: the cross sectional area of rods) 

The porosity o and pitch-to-diameter ratio (2s/2a) are re- 

lated as 

v^ 
0 = 1 

v-> A  for triangular array    (2l4a) 
6(s/a)2 
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o s= 1 _       f0r square arrcy (2l4b) 
4(8/a)2 

They developed,for the limited range of a > 0.8 (s/a > 2.1) 

for triangular array and o > 0.9 (s/a > 2.8) for a square 
array, the following approximate expression for the friction 

factor 

iäl *, i2 „       (215) 
(fRe)(^ " 2(l-,)-in(l-a)-(1-0)^/2-1.5 

where 

2~ = ~P^ (|) - 1  for triri. gular array     (2l6a) 

^ ■ ~ (^) - 1    for square array        (2l6b) 

Axford [272] refined the Sparrow and Loeffler analysis 

for the triangular array by matching 15 boundary points in- 

stead of six. He tabulated extensively various parameters 

of interest. The following equation for the friction factors 

for the triangular array can be derived from his results. 

fRe ._*    \^ä (H)2.! 
oM (s/a) L 

(217) 

The values of parameter M , a function of (s/a), are 

tabulated by Axford correct to five significant figures. 

Using Eq. (217), the fRe values for the triangular array 

are presented in Table 45 and Fig. 62. For (s/a) > 2.1 , 

fRe can also be evaluated accurately from Eq. (215). 

Sholokhov et al. [273] obtained an electric analog solution 

and a finite difference solution of the same problem. 
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Table **5. SFrÜyT  fRe  ,  «uH1 ,  NuH2    ror iu ±9 array)    ?Re 
laminar flow 

©© ©@.*L 
@ @ @ 

Hash- 

^J 

45.0 

40.0 

35.0 

-1300 
fRe 

25.0 

20.0 

-\ 15.0 

10.0 

5.0 
2.4 

s/o 

Fig.  62 
Longitudinal flow between cylinders    fRe  ,  NuR1 

and NuH2 for 
fully developed laminar flow. 
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Sholokhov presented graphically the pressure-drop-flow 

parameter and velocity distribution for a wide range of 

pitch-to-diameter ratios. The results compare favorably 

with those of Sparrow and Loeffler [48]. 

21.2 Heat Transfer 

Sparrow et al. [49] further solved the (Hi) heat transfer 

problem for the laminar flow between cylinders arranged in an 

equilateral triangular array. They have presented graphically 

the Nu„, for the pitch-to-diameter ratio (2s/2a) of 1.1 to 

4.0. For (s/a) > 2 , they showed that NuH1 can be accurately 

calculated from an equivalent-annulus model described in the 

following paragraph. 

The equivalent-annulus model is defined as follows. The 

hexagonal flow area associated with each rod in Fig. 60(a), 

is approximated by a circle of equal area, and the fluid dy- 

namical and heat transfer behaviors of the system are assumed 

to be the same as those in the area between the inner radius 

and the radius of maximum velocity of an annulus. This model 

implicitly assumes that the transverse flow of heat is en- 

tirely in the radial direction, which means that there is no 

circumferential variation of either the surface temperature 

of the rod or its surface heat flux. 

In tube bundles, neither the inside nor the outside tube 

wall surface temperature is, in fact, uniform peripherally 

The same is also true of the heat fluxes on the inside and 

outside tube wall [272], To predict quantitatively the mag- 

nitude of the circumferential variations of the inside and 

outside tube wall temperatures and heat fluxes, Axford [272] 

set up the energy and momentum balances for the velocity and 

temperature fields in all regions of tube bundle. He then 

solved these equations simultaneously. In this approach, 

the assumption of either a peripherally uniform heat flux 

or temperature on the outside tube wall is removed and re- 

placed by temperature and heat flux continuity at the fluid- 
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,      c      Axford found that the peripheral 
tube «all interfaCeS;ßi

A
d
X

e
f0

t^e wall temperature and heat 
variations of the oat.»   ^^^ to the pitch-to- 
fluxes become quite seriS"1 as this ratio approached 
diameter ratio of the -a»>"***      slngle region analysis 
unity.    Hence, he concluded that th @ 

(e.g. as done by ^/J^f J lnhere»t source of error 
boundary conditions contained an 

for decreasing (s/a) ^°S;vesUgated, by the finite dif- 
fer and Berry 1*7,  mves.ig longl. 

ferenJmethod, the   ©   ^J^Z* in an equilateral 
tudinal laminar flower cyl^er^ ang    ^   ^ 
triangular array.    W (2s/2a) ratio range of 

as a function of ^^^JJ^ in «^ ^ ^ 
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22.  MISCELLANEOUS GEOMETRIES 

For the flow geometries considered in this section, 

only the fully developed laminar flow case has been analyzed; 

no hydrodynamic and thermal entrance solution are available. 

Gunn and Darling [274] determined the fully developed 

laminar fRe  (by the finite difference numerical method) 

for the ducts shown in Fig. 63. 

K- 2?5-n — 

7T 
Sidt section 

fRe=7.06 fR=6.50 

Ctntre SCCtton 

fR=6.50 

)69in^~138m-^069m 

'"1 I— 
4 tub« MCtien 

fRe=l4.50 

Fig. 63  Geometries and results considered by Gunn and 
Darling [27^]. 

They presented analytical velocity profiles for each 

of the above four ducts. They also experimentally determined 

fRe in agreement with the theoretical values within 5 per- 

cent. 

In a series of papers [37^1,^2,275,276,277], Sastry 

employed exact and approximate methods of conformal mapping 

to solve the laminar flow velocity and forced convection 

(jB) heat transfer problem.  In Ref. [37], he analyzed a 

cross-section bounded confocal ellipses, with internal thermal 

energy generation included. An example was worked out for 

the elliptical ducts.  In Ref. [hl]  he investigated the (Hi) 

laminar forced convection problem for curvilinear polygonal 

ducts.  In Ref. [42], he solved the (Hi) heat transfer 

problem for an arbitrary duct which can be conformally trans- 
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formed onto a unit circle *y the mapping function 

« = «(« = Z *n<n (218) 
n=o 

t , t , q" and The formulae were presented for u , u , t , t , q  ana 

NuH1 in terms of the constants a . The method was illus- 

trated by applications to cardioid and ovaloid cross sections. 

Sastry further employed the Schwarz-Neumann alternating 

method (an approximate method of conformal mapping) and 

solved the forced convection (jo) heat transfer problem for 

the ducts:  (i) outer boundary was a circle and inner bound- 

ary was an ellipse [275], and (ii) outer boundary was a 

circle and inner boundary was a square with rounded corners 

[276]. The results of sections bounded by concentric cir- 

cles, confncal ellipses and eccentric circles can be deduced 

by mapping cross sections onto a region bounded by concentric 

circles. This approach was used to evaluate the heat transfer 

of laminar forced convection in a duct oounded by concentric 

circle in [276]. 
Additionally, Sastry [277] analyzed the laminar flow 

velocity problem for doubly connected regions using the 

transformation 

z =  £ an e (219) 

which mapped the section conformally onto an concentric.an- 

centric and confocal elliptical ducts. Using Schwarz 

liptical duct with a central circular core was analyzed. 

through an internally finned tube (as shown in Fig. 6.) by 
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means of Greene function. He presented graphically the 

fully developed NuR1 as a function of fin length i   with 

the angle 0 as a parameter. 

Fig. 64  An internally finned tube. 
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Part 2. Curved Ducts 

The pressure drop and heat transfer characteristics for 

flow through a curved duct is needed for a variety of techni- 

cal applications. The first theoretical analysis was done 

by Dean [279] in 1927 for fully developed laminar flow of 

an incompressible fluid in curved pipe of circular cross 

section. Since then a considerable effort has been made to 

determine analytically and experimentally the flow friction 

and heat transfer behavior of curved ducts. A thorough 

literature survey up to 1968 on the curved duct characteris- 

tics is presented by Cheng and Akiyama [280,281]. 

Due to curvature effects, an additional parameter, 

called Dean number K = Re ^/ä/R  , appears as a nondimensional 

parameter for the curved ducts flow friction and heat transfer 

characteristics. The nondimensional parameters will have 

suffix c for curved ducts, and suffix s for corresponding 

straight duct. 

In the following sections, the theoretical analysis is 

reviewed for curved ducts of circular, rectangular, elliptical 

and annular cross sections. Unless specifically mentioned, 

it is assumed that flow is steady state, laminar and hydro- 

dynamically ar, well as thermally fully developed. The fluid 

is assumed as Newtonian, incompressible fluid with constant 

properties.  Only the centrifugal body force is present due 

to the effect of curvature.  The thermal energy sources, 

viscous dissipation and axial heat conduction as well as 

free convection, mass diffusion, chemical reaction, electro- 

magnetic effects etc. are neglected. 
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23.  CURVED CIRCULAR DUCTS 

For the curved circular duct only the fully developed 

laminar flow and heat transfer have been analyzed. 

23.1 Flow Friction 

Dean [279*282] employed perturbation method and first 

analyzed the fully developed laminar flow of an incompressible 

fluid in a curved circular pipe. His analysis is valid for 

small Dean numbers only (0 < K < 25). Topakoglu [283] re- 

fined Dean's analysis with a different approach. Topakoglu 

obtained an approximate solution based on the power series 

expansion of the stream function and the normal component 

of velocity in terms of the curvature of pipe. The solution 

is valid for small Dean numbers (Topakoglu does not specify 

the range, however). The friction factors are expressed as 

f. >[>-Mt){Mfe ^♦W»'-1}]' (220> 
For high Dean numbers, White [284] in 1929 correlated 

his experimental data and the existing experimental data in 

the literature on helical coils and arrived at 

H-H-^n*5]-1 
(221) 

for 11.6 < K < 2000 and f. = l6/Re . This correlation has s 
been experimentally confirmed by many investigators. 

Adler [285] introduced the important concept of bound- 

ary layer for secondary flow along the wall in his analysis 

for laminar flow with high Reynolds number. Barua [286] em- 

ployed the boundary layer approximation in his analysis for 

the secondary flow. The boundary layer approximations are 
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Table U6.     Curved circular ducts    f /f      and    Nu«,   VNu„ . 
 ■ <r    s IUJC     H,s 
for fuliy developed laninar flow 

K Vfs Q ^y^Pr Hu HI .</"%. 

;ö.O 
40.0 
♦30.0 
60.0 
80.0 

100.0 
200.0 
500.0 
1*00.0 
300.0 

600.0 
800.0 

10)0.0 

1.127 
1.184 
1.241 
1.296 
1.399 

1.4Q4 
1.883 
2.192 
2.^3 
2.689 

2.900 
3.278 
3.611 

3.3 
4 , 
3.0 
6.0 
8.0 

10.0 
20.0 
30.0 
40.0 
30.0 

60.0 
80.0 

100.0 

1.023 
1.017 
1.143 
1.312 
1.660 

2.000 
3.074 
5.^53 
7.226 
9-012 

10.805 
14.403 
18.009 

200 T 1 I    1   I  ■ I T 1 1    I   I I I II I    MINI 

5        10      20A      50      100    200       500   1000 
QorK 

Pig.  65      Curved circular duct    fQ/?8    and    NuH1 ^/NuH t 

for fully developed laminar flow. 
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valid for high Dean nurober region. Ito [287] assumed that 

the flow consisted of a frictionless central core surrounded 

by a boundary layer. He employed the Pohlhausenfs approximate 

method to analyze the flovi and arrived at the following 

formula for the friction factor. 

J* = 0.1008 K?[(i + ^p. f . Ijjp ]"3 (222) 

The above formula agrees well with White!s [284] and Itofs 

own test data for K > 30 . This frt/f_ ratio for the c s 
curved circular duct is presented in Table 46 and Fig. 65. 

Recently, Akiyama and Cheng [288] obtained a finite 

difference solution for the curved pipes using a combination 

of, what is described as, line iterative method and boundary 

vorticity method. Their fully developed laminar flow friction 

factors agrees with the data of White [284] and Itö [287] as 

well as with the empirical equation of Ito [Eq. (222)]. Eq. 

(222) does not fit the experimental data below Dean numbers 

of about 30. Akiyama and Cheng's numerical results fit the 

experimental data very well even in this range. Unfortu- 

nately, these numerical results were not available at the 

time of write-up of this report. 
Ito [289] also experimentally investigated the friction 

factors for laminar and turbulent flow in curved pipes. The 

lower critical Reynolds number where the transition from 

laminar to turbulent flow starts was correlated as 

o  mV^°'32 (223) 
*ecrit = 2 X 10 («J 

This equation gives good agreement with experimental results 

in the range 15 < R/a < 860 . For R/a > 860 , the crit- 

ical Reynolds number for a curved pipe practically coincides 

with that for a straight pipe. 
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•23-.2 Heat Transfer 
Several investigators have studied experimentally the 

heat transfer through curved circular ducts, such as tube 

coils by Seban and McLaughlin [290] and helical and spiral 

coiled tubes by Kubair and Kuloor [291]. 
Mori and Nakayama [292,293] first analysed the laminar 

heat transfer in a curved pipe for Qn) and (J) boundary con- 

ditions based on boundary layer approximationo along the pipe 

wall. The @ and (T) Nusselt numbers for the curved pipe 

were surprisingly found to be the same based on theoretical 

analysis, and are given by 

Nu =24^ K2 (1+2.35K2) 
p-2, (224) 

^IT'1 + I for Pr > 1   (225al 

for Pr<l   (22^) 

for Dean number K > 30 for Pr » 1 and K > 60 for 

Pr:l . For small Dean numbers, where the above results are not 

applicable, Özisik and Topakoglu [29M obtained fully de- 

veloped NuH1 for a curved circular pipe by a method of 

series expansion. They also considered the effect of in- 

ternal thermal energy generation. For no internal thermal 

energy generation the Nusselt number was expressed as 
o ,  4 j ) (226) 

NUH1)C = ii\f;//v1   R2   n> 

where 
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(2 

(227) 

Recently, Akiyama and Cheng [288] analyzed the fully 

developed laminar flow heat transfer through curved pipes 

under the @ boundary condition. The finite difference 

solution mas obtained using a combination of line iterative 

method and boundary vorticity method. Akiyjma and Cheng 

[288] have clarified the effect of Prandtl number on heat 

transfer by showing that all the heat transfer results for 

Pr > 1 can be approximated as follows. 

Nu 
NS 

Hl^c 
H,s 

o.ifliQJi-fi^ + aagi-ssj^l (228) 

where Q - (l^Pr)1/4 > 3.5 for Pr > 1 . For Q < 3.5 , 
the secondary flow effect due to curvature is estimated to 

be less than 1.5 percent in terms of the ratio NuR1 c/NuH gl 

The ratio 

Table 46 and Pig. 65. 

Nuun VNuu e , from Eq. (228), is presented in 
ilX$ C   lit s 
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Table »•?.      Curved rectangular ducts    fRe    and    Nu^ for 

fully developed laminar flow, 
Akiyama [28ll 

Pr =0.73, from 

A/>* - O.^ 

«*     "Sa 
o 

*.8*3 

72.70« 
9. 

2t/2» • 3-5 

*■»        *•» 

19.C*6 5.7*1*. 

»•2S 2'212 19.075 ^-X« 
19.1*8 5.79*8 

19.32« 5.896* 
5-9*3 72.70»    19. *U   5-?>2 

B9 stss t» 

0 15.517 ».»i6* 
12.8J2   15.5*0 ».l^f 
18.075   15.«« *.»*5 
»01*    15-»9 »Ä2* 
25.258   15*9 *.«*» 

38.05«   V>.9£ * W 
».557   15.995 *-3*» 
$.779   ».of* *•?»" ftloo   iS.lg ».JfH 
38.5»«   l6.3*0 ».51K 

52.107   17.0*7 *.8*15 |s a.« m £& §99 ttä 

»/2a- 1 

r»      ■«» 

0 
12.51C 

a*.5** 

1*.20* 
1*.26* 
i*.2# 
1*.512 
15.02O 

W.*70 

IS? 

U:S2 IS 
S8I97* 58*38* 

81.39* 18-2? 

10D.01 19-9W 
117.8» 20.722 

».2578 

5-J901 

6.0II* 

2%/2a - 2 

».0637 

S:K 
«.«9 

30.**0 
3*-5SB 
18.007 
50-28? 
58.81» 

tMl 

*571 
93.220 in.« 

ft»       »^ 

SS S:Ä 
15.7«   *3531 

18.0** 

Mm 
*JS If« 
23.052   7. 

25.**o   8.3«6> 
27.553   9.15*1 

W   -i«k 

Flg. 66  Curved rectangular ducts f^f, for fully developed 

laminar flow, from Cheng and Akiyama [280]. 
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2k.     CURVED RECTANGULAR DUCTS 

24.1 Flow Friction 

Ito [295] first reported the theory on laminar flow 

through curved rectangular ducts using series expansion in 

Dean number and obtained formulae for the velocity components 

as functions of a* and K . The results are applicable 

for K < 600 . dimming [296] also investigated the same 

problem by using a perturbation method. Dean and Hirst 

[297] analyzed the curved square channel by assuming uniform 

stream for secondary flow. 

Mori and Uchida [298] employed the boundary layer ap- 

proximation to analyze the laminar flow and heat transfer 

through a square channel. 

The perturbation method is applicable for low Dean 

number region, the boundary-layer technique is valid for 

high Dean number region. Cheng and Akiyama [280] presented 

the friction factors which are valid from low to a reasonably 

high Dean number. They employed the point successive over- 

relaxation numerical method to arrive at the results of 

Table 47 for the aspect ratio 2b/2a = 0.2, 0.5, 1,  2 and 

5 [28l].  The fVfe for rectangular ducts are shown in Fig. 66. 
c s 

Eichenberger [299] presented a theoretical analysis for 

the entrance region problem in a curved rectangular channel 

with secondary flow for an inviscid f3"id. 

24.2 Heat Transfer 

Ustimenko et al. [300] presented flow and heat transfer 

results for fully developed laminar flow in curved flat chan- 

nels with different heat fluxes at tue inner and outer walls 

with no secondary flow effects. 

Using boundary layer approximations, Mori and Uchida 

analyzed the fully developed laminar flow through a curved 

square channel with axially uniform wall temperature gradient 

[298] and rectangular channels with axially uniform wall heat 
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developed laminar flow, from Cheng and Akiyama 
[280]. 

10" 

NuHl,c/NuHl,s 
as functions Fig. 68  Curved square duct 

of K and Pr for fully developed laminar flow, 
from Cheng and Akiyama [280], 
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flux conditions [301]. Their results are applicable in high 

Dean number region. 

Cheng and Akiyama [280] investigated laminar @) heat 

transfer in rectangular ducts by employing a point successive 

over-relaxation method. The Nur», /Nu„,   from Akiyama 

[281] are presented in Table 48 and Fig. &7 for 2b/2a - 

0.2, 0.5, 1* 2 and b  for Pr = 0.73 . Also, the effect of 

Prandtl number was investigated for the curved square duct, 

and is presented in Table 49 and Fig. 68 [28l]. 

Table 48.  Curved square duct fRe and Nu?H1 for fully 

developed laminar flow; the influence of Pr on 
fRe and Nu HI from Akiyama [28l] 

Pr - 0.1 Pr - 0.71 Pr - 1 Pr - !0 Pr - IOC Pr - !«» 

it           «.item t            f*           m^ K          rto        h^j It             rR»           »j,,. K         r*t        fcH1 I              fit            *„ 

0          i«.20»    3.6099 
19.»*2          »».512      3.6559 

86.670         19.2*3     ».3«97 

123.6*           20.980     «.56» 

0            1*.20«      3.6099 
10.853      1*.239      3.6223 
12.510      I«.26«      3.6313 
13.950     l».3O0     3.6380 
19,*«      1*.512      3- 7208 

26.56*     15.C20      3.8155 
31.58J     15.»70     t.oofc 
35.625     15.839     ».2399 
39.050     1*.15*      ».3715 
51.887      17.190      ».8213 

68.97»    I5286    s-J1?* 
81.389     18.975      5.6227 
91.5OI      19.»81      5.9*68 

100.12       19.9C1     6.0318 
117.6»        20.722      6,38»« 

0             1».20«      3.6099 
6.2795      1*.209      3.6122 
8.873«      M.220     3.6187 

10.853       1*.239     3.6292 
12.500        14.770      5.6*60 

13.953       1*.310      3.675* 
23.401        1».766     3.922: 
29.2*0        15.256      4.189' 

SS \w im 
100.12          19.901      G.6 02 
117.6*          20.722     7..(37 
127.39        21.933     7.7039 

0           1*.20»     3.6099 
1.4045     1».205      3.6105 
2.2*28      1«.205      3.6129 
*.905J     1».206     3.6683 
6.279»     1«.209     J.7581 

7.6883      1».21»     3.9112 
8.8873      1».220      ».08*5 

10.853        1*.239     ».»292 
12.510       14.264     *.729» 
13.996       1».296     ».9770 

15.850       14.J52     5.2669 
17.50»       1».»17     5.4866 
19.»*2        1».512      5.7C97 
23.»01       1*.766     6.0875 
26.56»       15.020     6.3457 

0            1».20«      3.6O99 
0.70227       14.20»       3.6126 
O.983I6     U.20«     i.C.r 
1.1236        I«. 20*      3.626* 
'.26*2        14.20*      3.6363 

1.410«        14.20»      3.6450 
1.8323        14.20*      3.7105 
2.2*56       14. x*     3.8400 
2.(3107        14.20*      ».0812 
3.5II»        1».?05      ».«758 

4.2133       1*.206     4.8679 
4.J055        I,.K6     5.2107 
5.6171        1>.207      5.5022 
6.2795         14.206       5.7256 
8.8569       14.271     6.8296 

0             14. Z04       3.6099 
0.»2136     1*.205     3.6*21 
0.56182      U.205     3.7076 
C.7022        14.205      3.8302 
0.98317      14.205      4.2440 

1.12)6        14.205     4 4366 
1.4045        14.205      ».9871 
1.986»        14.X-4      5.732* Pr « 10.0CO 

K          m       i^u 
0                1».205      3.610» 

0.34405      1».205      ».»'17 
0.«»»l6      1*.205      ».9871 
0.62813     »».205     5.7260 
0.72930      14.205     6.096* 
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25.  CURVED ELLIPTICAL DUCTS 

Ito [295] investigated the laminar flow characteristics 

through the curved elliptical ducts using th3 series expan- 

sion for the velocity in terms of Dean number. He obtained 

the formulae for velocity components as a function of a* 

and K , The results are applicable for K < *K) . 

Cumming [296] also analyzed the laminar flow through 

curved elliptical ducts using the perturbation method. 

26.  CURVED CONCENTRIC ANNULAR DUCTS 

Only the laminar flow through curved concentric annulus 

without any heat transfer has been analyzed, 

Kapur et al. [302] studied laminar flow through curved 

annuli for the large radius of curvature of the annulus in 

comparison to the outer radius of annulus. Analysis was 

based on simplified momentum and continuity equations. Ex- 

pressions were derived for the flow parameters. 

Topakoglu [283] extended his curved circular pipe to 

the curved annular pipe and obtained the secondary flow 

streamlines for the flow between two concentric curved pipes. 

Dean [279], in his analysis, could not get the effect 

of curvature on the relation between rate of flow and pressure 

gradient. Topakcglu and Kapur et al. extended Dean's prob- 

lem to the curved annulus, so they did not bring this curva- 

ture effect in their analysis.  In order to show the effect 

of curvature, Srivastava [303] considered higher approxi- 

mations following Dean [282] and obtained the reduction in 

flow for the curved annulus with r* « 1/2 . 
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VI.  DISCUSSION AND COMPARISONS 

A brief discussion is provided in this chapter of the 

following topics: 

1.  The dependency of Nusselt number on various 

parameters 
2.1 A comparison of different wall flux boundary 

conditions @) , @) and @) 
2.2 A comparison of the (g5) and @  boundary con- 

ditions 
3. A comparison of Nu for various geometries 

4. A comparison of limiting geometries 
5. A suggested correlation for fully developed 

heat transfer results 
6. Application of fully developed heat transfer 

results to gas turbine regenerator design 

VI.1 The Dependency of Nusselt Number on Various Parameters 

Theoretical laminar forced convection heat transfer re- 

sults (Nu) presented in Chapter V are dependent on (i) duct 

geometry, (ii) inlet velocity and temperature profiles and 

(iii) thermal boundary conditions, 

(i) In turbulent flow, the heat transfer results are 

reasonably well correlated by using D.  as a characteristic 

dimension: hence, clearly, the turbulent flow results are 

not a strong function of the duct geometry.  In contrast, 

it is well established that for laminar flow, the dependence 

of heat transfer results on the duct geometry is not removed 

by using D,  as a characteristic dimension.  In light of 

present compilation of analytical results, it is suggested 

that a search be made for another characteristic dimension 

for a given geometry.  This new dimension will allow a Nus- 

selt number definition that result in magnitudes less 

dependent on the duct geometry. 
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(ii) Laminar forced convection heat transfer theory- 

results are dependent on the idealized velocity and/or 

temperature profile at the inlet. Usually, these profiles 

are specified as either uniform or fully developed at the 

entrance. As these idealized profiles are used to approxi- 

mate the real life situation in technical applications, the 

designer should be explicitly aware of both the actually ex- 

pected and idealized profiles associated with the theory 

results. 

(iii) There are a variety of thermal boundary conditions 

of technical interest, as outlined in Sections II.1.3 (Table 

l) and 11,3.1« The theoretical laminar forced convection 

heat transfer rates are quite sensitive to these thermal 

boundary conditions.  It has been the practice to assume 

that the (jn) and (T) boundary conditions are the two usual 

extremes in the heat exchanger designs. However, reviewing 

the material of Chapter V or Table 50 on p. 228 reveals that 

this may not be the case; e.g. NuH2 are lower than Nu™ 
for the rectangular ducts  (a* < 0,75) and isosceles tri- 

angular ducts. Consequently, the question of what boundary 

conditions can be assumed is of major significance to a de- 

signer of laminar flow heat transfer systems. As the (g5) , 

(52) , (£g) and ® boundary conditions are all of considerable 

technical importance, the implicit idealizations used in 

the boundary condition specification and the reasons for 

different Nusselt numbers are discussed in the following 

subsections. 

VI.2.1 A Comparison of Different Wall Flux Boundary Condi- 

tions (jfi) , (£g) and @ 

The thermal boundary condition of approximately con- 

stant axial heat rate per unit of tube length (qf - constant) 

is realized in many cases: for example, electric resistance 

heating, nuclear heating, counterflow heat exchanger with 

equal thermal capacity rates (Wc ) etc.  For this case, there 
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are three idealized boundary conditions, (m) , (gg   and 

that have been analyzed to varying degrees. These three 

boundary conditions are essentially the same for straight 

ducts having constant peripheral curvature and no "corners 

effects"; e.g. circular duct, parallel plates, annular ducts. 

These same boundary conditions for the ducts having corners 

and/or different curvature around the periphery (e.g. rec- 

tangular, triangular, sine, elliptical ducts) are essentially 

different and yield different Nu magnitudes. Before further 

discussion, the implicit idealizations used for the thermal 

conductivity of the material for these boundary conditions 

are summarized in Table 49. 

Table 49.  Idealizations of wall thermal conductivity for 
thermal boundary conditions 

boundary 
condition 

kw in axial 
direction 

kw in peri- 
pheral direction ! 

© zero infinite 

% zero zero 

© zero finite 

© infinite infinite     j 

Since, only the wall temperature at the wall-fluid interface 

is needed as a boundary condition, the radial thermal con- 

ductivity of the material is not involved in the analysis. 

From Table 49, it can be seen that the @ and @) boundary 

conditions are the special cases of the (^) boundary con- 

dition. As indicated above, they become identical for ducts 

such as the straight circular duct because then there is no 

peripheral variation of wall temperature and the magnitude 

of k  is of no significance. 
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r a heat exchanger with highly conductive materials 
f  a pi>er, aluminum), the (Hi) boundary condition mey 

prevail when axial q1  is constant. However, for a neat 

exchanger with low thermal conductivity materials (e.g. glass 

crera^ie, teflon)* the ^u) boundary condition may be realised 

if the wall thickness all i round the periphery iß uniform. 

For a more general problem, with constant axial qf , the 

^ß   boundary condition wculd be most appropriate. 

Hie liusselt number for the (ffi) boundary condition is 

higher than that f >r the (^ boundary condition. The Nu„^ 

falle in between *luH1 and Nu^ . The heat transfer coef- 

ficient for the (Jn) boundary condition based on the defini- 

tion of Eq. (^5), is found as 

hHl^ t -t_ P w m 

qf = constant with x 

t = constant with s w 

(229) 

Similarly the heat transfer coefficient for the 

condition is found as 

boundary 

hK2 
7 I***-** 

21 
P 

r qf = constant with x 

(230) 

q" » q'/P,constant with    s 

For the   (Hd)   boundary condition,     q" = -k(dt  ön)  = constant 
around the periphery.    This thermal energy  is transferred to 

the fluid  in the central section of the duct where the bulk 
oi' the fluid flows.     The fluid mean effective conduction 
path length    5~    for the thermal energy transfer is higher 
from the corners  to the bulk of fluid when compared to the 
wall  regions  away from the corners.     Consequently,   as  in- 
dicated  in the  following expression,   the comer temperature 
(difference)   is higher.    This  increases  the peripheral aver- 
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age tw in Eq. (230) with a reduction of hR2 relative to 

its counterpart hH1 . 

q" = k gj = k \%m    = constant (231) 

The NuH2 can be significantly lower than the NuR1 for 

an acute cornered duct geometry. Consequently judgment must 

be exercised before applying the theoretical data to a de- 

sign. This also suggests that more theoretical information 

is needed for the noncircular duct @ and (^) heat transfer 

problem. Additionally, more experimental measurements of 

actual peripheral wall temperatures would be useful to ap- 

proximate the thermal boundary condition. 

VI.2.2 A Comparison of (£3) and (T) Boundary Conditions 

In the previous section, the examples were mentioned 

where the QÖ) boundary condition may be realized in a prac- 

tical situation. 

The @ boundary condition may be approximated for the 

heat transfer in the condenser, evaporators etc. In this 

case, the temperature of fluid on one side is uniform and 

constant, and the thermal resistance of wall and constant 

fluid temperature side is relatively small and is treated 

as zero. For this situation, it is implicitly assumed that 

k  in axial direction is arbitrary, but that k  in radial 

direction is infinite. The other possible idealized situa- 

tion for the (?) boundary condition is described in Table 

49. For that situation, the thermal conductivity of the 

material is assumed to be infinite both in axial and peripheral 

direction. The radial thermal conductivity or the radial 

wall temperature profile for this case is not involved in 

the analysis. 

The NuH1 is higher than the NuT for all the duct 
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Table 9D.  Solutions for heat transfer and friction for fully 
developed flow 

:.-   "i-.TPY 
riuH2                  m\U Nu? fRe 

»JH1Pr-V3t 
«"HI         ! 

fRe 

.-.01'. l.4?4 3.39* 12.630 0.269 1.26 

b 
.-.Ill 1 891 2.4? 13.333 O.263 1.26     1 

hü»- 3.603 2.0 ?1 2.976 14.227 0.286 1.21 

i   O £J .00? 3.862 3.33* 15.054 0.299 1.20          ] 

4.123 3.017 3.391 15.5*8 0.299 1.22 »O* 
H 

1 o 4. -64 4. 364 3.657 16.000 O.307 1.19       | 

KQ-- 5.099 - 3.66 18.700 0.307 1.39 

i                     --*.     i 

5.331 2.930 4.439 18.233 0.329 1.20 
'a 

-hi 
5.4 :o 2.' X>4 5.597 20.585 0.355 1.16       J .    t:      |                                        |    _L     -,     £ 

a      b 1              'a 

9 . .' ■ '■ 
1 

24.000 O.386 1.09 

    £.    -    00 5.385 - 4.861 

1. 

24.000 0.253 1.11 
-'V     H 

!        Insulate'! 

interr. latei values 
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geometries. The physical reasoning for this behavior can 

be given from the review of dimensionless fluid temperature 

profiles. These dimensionless temperature profiles 

(tw-t)/(tw-tm) are shown in Fig. 69 for the circular tube 

with heat transfer from the wall to the fluid.  It can be 

seen that there is an Inflection point in the fluid tempera- 

flow 

Fig. 69  Fluid temperature profiles for ® and © 
boundary conditions. 

ture profile for @ boundary condition because t  is con- 

stant. For the qf *= constant boundary condition, t  is 

continuously "running away" from 
w 

t  so that an inflection m 
in the profile does not develop. The heat transfer coeffi- 

cient, from Eq. (46), is found as 

*(H>  =h(tw-tj 
r=a w m' 

(232) 

for the circular tube. From Fig. 69, for the same  (t -t ) , 
w  m 

the fluid temperature gradient at the wall is smaller fcr 

the (?) boundary condition because of the inflection. Thus, 

from Eq. (232) the h and consequently Nu is lower for 

(T) boundary condition when compared to (H) boundary condition. 

This result may be generalized to.apply to the noncircular 

ducts. 

VI.3 A Comparison of Nu for Various Geometries 

The flow friction modulus fRe and Nusselt numbers 

Nu for several duct geometries of t^hnical interest are 

summarized in Table 50. From the discussion of previous 
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Fig. 70  Flow area "goodness" factors for some duct geometries 
of Table 50. 
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Fig. 71  Volume "goodness" factors for some duct geometries 
of Table 50. 
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section, as expected, both Nu^ and Ni^ are lower than 

^Hl " For the duc* 6eometries having strong corner effects, 

NuH2 is even lower than the Nt^ , but otherwise Nu„2 Is 

higher than Nu«p . The  ratio of maximum to ninimun: KuH] , 

NuH2 , m^   and fRe is found as 2.7, 5.6, 3.2 and 1.9 

respectively for the geometries considered in Table 50. The 

ratio »uH1/NuT varies from 1.09 to 1.39 for the geometries 

of Table 50. 

From the design point of view, the performance of heat 

exchanger cores made up of these different geometries may- 

be compared in the following two complimentary different 

ways:  (i) comparing the flow area "goodness" factors 

NuPr~ 'vf « j/f and (ii) comparing the core volume "good- 

ness" factors h . . versus E . . . 
std       sta 

(i) It can be shown that tie flow area "goodness" factor 

jm/f is 

,2, 
JH1  1 Pr2/3 Ntuw 

A;r*c 2g„p "sir (233) 

With the bracketed quantities constant, this area goodness 
2 

factor is inversely proportional to A , where A  is the 

core free flow area. The JH1/? is presented in Fig. 70 

for most of the duct geometries of Table 50. This factor 

ranges from O.263 (equilateral triangular duct) to O.386 

(parallel plates). Thus parallel plates relative to the tri- 

angular duct present an improvement of 47$ (= O.386/O.263-1) 

for j/f and consequently a 21$ («\/i^7 - l) smaller free 

flow requirement. The exchanger porosity must be considered 

in order to translate this free flow area advantage into a 

frontal area improvement. Note that in the flow area "good- 

ness" factor comparison, no estimate of total heat transfer 

area or the volume can be inferred. This is the function of 

the volume "goodness" factor to follow. 
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(ii) The core volume "goodness" factor is a plot of 

hstd ver*us Estd ' where 

CM- 
hstd = ^73^JRe = B^Nu (834) 

,0 

-6CP ^ 

The higher the h^ for a given Egtd , the lower is the 

heat transfer area requirement; and it can be shown that 

when the D,  is fixed, t^e lower is the heat exchanger 

volume requirement for a given core porosity. 

A common hydraulic diameter D. = 0.C02 ft is used to 

eliminate the influence of the scale of surface geometries. 

Using the physical properties of air at one atmosphere pres- 

sure and 500°F, the h .. „,  and E ,„ were calculated std,Hl      sta 
from Eqs. (23*0 and (235) at Re = 100, 200 and 500 for most 

of the geometries of Table 50. The results are plotted in 

Fig. 71. From this figure, for a given friction power ex- 

penditure, the heat transfer power per unit area and temper- 

ature difference,, or convection coefficient h . , , can vary 

from 37 to 1C1 Btu/(hr ft2 °P) (a factor of 2.7) from sine 

duct to the parallel plate geometry.  Based on Fig. 71* the 

parallel plate heat exchanger would require 63$ (1 - 1/2.7) 

less heat transfer area compared to ehe sine duct heat ex- 

changer. Moreover, the parallel plate heat exchanger would 

3t 
The Ap formulation applies rigorously to constant density 
flow and approximately for gas flows. 
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have a significantly smaller frontal area. This simple 

argument is possible only because both "goodness" factor 

lines are horizontal. 

Parallel plate heat exchanger may not prove to be prac- 

tical for several reasons. But it is clear from Figs. 70 

and 71 that there are other configurations that possess sig- 

nificant advantages relative to the triangular and sine duct 

geometries. 

VI.4 A Comparison of Limiting Geometries 

Comparisons of limiting cases of several geometries 

of Chapter V are of interest. These differences for fully 

developed fRe and NU
HI 

are qualitatively rationalized 

here as they are revealed by the available tabular informa- 

tion of Chapter V. 

The limiting cases of elliptical, triangular and sine • 

duct geometries are obtained when the aspect ratio 2b/2a 

approaches either 0 or °° , with one dimension remaining 

finite. The geometries under consideration are shown in 

Fig. 7?(a) and 72(b).  Only the corners of geometries are 

depicted. The corner shape has a strong influence on the 

fully developed fRe and Nu„, . The more acute the pas- 

sage is at the corner, the greater is the "corner effect". 

Because, the flow is more stagnant resulting in lower tem- 

perature and velocity gradients and lower fRe and NuH1 

as a consequence. 

parallel plates. 

(a) 

.4^ 
iangular4~-yj   / 

fl/l 
(b) 

sine 

2b n-sided regular 
polygon 

(c) 

Fig. 7&  Corner effects for limiting geometries. 
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In Fig. 72(a) (2b/2a -*0), the height of the channel 

2b is kept finite while the width 2a is approaching infinity. 

Using the "corner effects" argument, the geometries in de- 

creasing order of fRe and NuR1 are: parallel plates (no 

corners), elliptical duct, triangular duct and then the sine 

duct with the most acute corner. 

In Pig. 72(b) (2b/2a -♦ <»), the width of the channel 2a 

is kept finite while the height 2b is approaching infinity. 

Based on the "corner effects" argument, the geometries in 

decreasing order of fRe and NuR1 are: parallel plates, 

elliptical duct, sine duct and triangular duct. Note that 

the order of performance is reversed for the sine and tri- 

angular ducts in Fig. 72(a) and (b).  The trends shown in 

Figs. 73 and 7k  support this conclusion. 

In Fig. 72(c), the number of sides n of the inscribed 

and circumscribed regular polygon is approaching infinity. 

Based on the "corner effects", the geometries in decreasing 

order of fRe and Nu„, are: circular duct with inscribed 

n-sided regular polygon, and n-sided regular polygon duct 

with a circular core touching tangentially. 

VI.5 A Suggested Correlation for Fully Developed Heat Transfer 

Results 

If the cylindrical flow passage of a heat exchanger is 

very long Compared to the thermal entry length for a given 

boundary; condition, the effect of thermal entrance region 

may be very small.  In that case, the fully developed heat 

transfer results may be accurate for design purposes. Other- 

wise, the effect of the thermal entrance regime may be signi- 

ficant, and the de:tgn using fully developed heat transfer 

results may be too conservative. 

In case of the velocity problem, the pressure drop in a 

duct longer than the hydrodynamic entry length was determined 

by defining a pressure drop increment K(°°) . With the 

knowledge of fully developed fRe and K(°°) , the friction 

234 



pressure drop can be determined conveniently from 

-5^~ = ffd 7- + KW • (3D 

An approximate theory was devised by Lvmdgren et al. [19] to 
evaluate K(°°) for any arbitrary duct with the knowledge of 
fully developed velocity profile [see Eq. (32)]. Thus the 
designer can readily assess the hydrodynamic entry length 

effects. 
It is proposed that a similar scheme may also be used 

for the laminar heat transfer in a long duct. An incremental 
thermal entry length heat transfer number,  N(°°) , may be 

defined as 

Num^=Nufd^+N^ • ^ 

As no theory exists in heat transfer literature to evaluate 
N(°°) , and as sufficient information is not available for any 
one duct geometry (except circular tube), it is recommended 
that efforts be directed to obtain this information for other 
geometries. For circular tubes, on the other hand, the in- 
formation provided in Table 8 allows N(°°) to be determined. 

With such information for N(°°), the designer can readily 
assess the thermal as well as the hydrodynamic entry length 

effects. 

VI,6 Application of Fully Developed Laminar Flow Results 

to Gas Turbine Regenerator Design 
A gas turbine regenerator is usually either a recuper- 

ative type counterflow, a multipass cross-counterflow or a 
rotary type (periodic flow) heat exchanger.  In either case, 
on one "side" cold compressed air flows and on the other 
"side" hot turbine exhaust gases pass through to the atmo- 
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sphere* The thermal capacity rate (C - Wc ) of both the air 

and gas are approximately equal, Cmin ? Cmax . A signifi- 

cant portion of thermal energy from the hot gas is transferred 

to the air prior to further heating in the combustion chamber. 

In this way a substantial fuel savings result. The designer 

aims for a compact, low weight, durable and high effective- 

ness heat exchanger. The wall heat flux from the hot gas to 

the air side may be approximated as constant over most of 

the regenerator flow length. The influence of thermal boundary 

conditions and idealized geometries on the gas turbine re- 

generator design is discussed below. 

VI.6.1 Influence of Thermal Boundary Conditions 

The discussion of Section VI.2.1 for constant axial 

wall heat flux case may be summarized as:  (i) for a heat 

exchanger with highly conductive materials, the (53) boundary 

condition way prevail, (ii) with low thermal conductivity 

materials (e.g. glass ceramic), the @ boundary condition 

may be realized, if the wall thickness all around the periphery 

is constant, and (iii) for a more general problem, the (jg) 

boundary condition would be most appropriate. Further, in 

Chapter II, it was mentioned that in additions @ and @ 

thermal boundary conditions, conceptually, may als be ap- 

plicable to the gas turbine regenerator. As Nusselt numoers 

for each of the above boundary conditions are different, and 

substantially so if a strong "corner effect" passage geometry 

is employed, the specification of the most appropriate 

idealized thermal boundary condition becomes important. 

Before examining the question of an appropriate boundary 

condition for the regenerator, the pertinent literature is 

reviewed below specially for @ , @ and @) boundary 

conditions; other boundary conditions are covered in Chapter 

V and Tables 50 and 51. 

The (fi|) boundary condition is analysed only for a square 

duct by Lycskowski et al. [11] for fully developed flow. The 
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(fi|) and Qtt) boundary conditions on each pair of opposite 

sides of a rectangular duct have been considered by Han [2iS] 

again for fully developed flow. The (Aj) boundary condition 

has been investigated only for the circula. tube by Kays 

[12] for thermally developing flow. The Q5J) boundary con- 

dition is analyzed for the circular tube by Kail et al. 

[127] and Hasegawa et al. [10], and for the annular duct 

family by Graber [128] for fully developed flow. This survey 

indicates that insufficient work has been done for the laminar 

heat transfer with (jg) , @ and @) boundary conditions. 

Experimental results for triangular passage glass cer- 

amic matrices L30'I] generally fall in between the theoretical 

prediction for the @ and @ boundary conditions. Even 

though the glass ceramic has low thermal conductivity (0.42 

Btu/hr ft °F), the @ boundary condition which falls below 

(?) for the isosceles triangle (Fig. 28) is not realized. 

This may be due to the fact that the wall is thicker at some- 

what rounded corners. Thus peripheral conduction may reduce 

the peak temperatures and consequently th "corner effects" 

below the prediction for the (5|) boundary condition. 

Current design data for the gas turbine regenerator 

matrix are based on the experimental data rather than the 

theory predictions. The many reasons for this choice will 

not be discussed here. However, the theory results provide 

a valuable base line for comparison with experiments. The 

experimental data is usually obtained by a transient, single- 

blow, technique [4j. An open question remains as to the 

appropriate boundary conditions for the test core in the 

experimental facility. Do they approximate the boundary 

conditions for the prototype application, the regenerator 

in service? Consequently, characterization of the tranrient 

boundary conditions in the test facility in terms of the 

237 
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e$ulval*nt iitrall^*^ ttea^V st*te coodretico is «a U£«rt*n*. 
area cf Jbrce? illation,* 

VI.o«.     i^fl\agc^g of idealised geaggtg 
* ?ari«*iy cf Sofit $e*joetries a** cottiifcretf In 

Chapter V ^r,l these nest Isportaat for <h* regenerator ap- 
rliiati^fi are susotnrUei In Table ?£.    A comparison cf th* 
r.e*t transfer *n£ flew friction behavior of these idealized 
geoaaetries for the gas u^rtUie regenerator design 1» cf 
interest.    Us  *lsc«sed te Section VI.?, these ccasparisaris 
&a>- be staae on the basi» cf-     (i) flow area 'goodness* factor 
anc  (;i) roluae ^goodness* factors, as is done In Flgt. ?€ 
anS 71.    The hig?;*er flo* area 'goodness* factors sake l**r 
the lever frontal arsa requirements  (for the sane through 
flor re rosity).    Also, the hl^er VOXUK 'goodness* factors 

(the line of   hst4 versus   E5*a^ resu^1^ to ^ lower ex- 
changer volia&es as veil as the pressure drop for the sane 
passage    T^  .    Fron these viewpoints, the rectangular due4. 
fanily *Ith   a* < 0.25   appears to be the most praising 
froes F£g&. 70 and 71.    A »ore detailed coaparlscn of circular, 
elliptical,  isosceles triangular, sine,  rounded corner tri- 
angular and cusped Suets aay be »ade as follows, as these 
geometries can be acre readily fabricated relative to the 
a» < C.25    rectangular duct surface. 

(a) Circular duct and elliptical duct with    a»   close 
to 1. 
The current interest of glass ceramic surfaces for 

the regenerator of a vehicular gas turbine engine has in- 
created efforts to produce compact,  low weight and high ef- 
fectiveness circular tube matrix.     If a significant number of 
passages are rqu^shed and become elliptical during core 

*For the single blew transient testing technique, refer to 
[b* 30J:, SObj. For the periodic testing technique, refer 
to [?of»?o3ji 
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fabrication, tbe p*rf®r£m&*t of a *ix of elliptical iasd cir- 
cular pnsaag» gesGfctries &ay 4if*er sab*t«ti«l!y tnm the 
idealized circular passage 52«* try. 

A sllgbt flattening of circular tebes to an elliptical 
shape **sr> nave a 3*«&i.£ic*st effect ä i:*e theoretical   fäe 
and    Jfci^ .    Inspect!« of the ?ellwiog table prepares tres 
the results of Table 35 iUaHiiM this point. 

1 - ' 1 

t Be     **H1   | 
Z5~ • WSIj 

1  1.00 i        i«000      1 
0 99 i        ~"°66 

0.9B i          1.030 
C95 .1 1.138      j 

1 0.90 1.169 

fcte that botfe the ratfcö   fH/l6   and   a^/C^S/ll)    are the 
seat» in the abc?e takle. 

Caparison of thfr circular tube and an elliptical duct 
with   on « 0,9   la nade in Fig. 70 end 71 in tens of area 
^goodness* ax& volume *goodnessa factors.    For these two 
geo«etries, area goodness factors are the same, resulting 
the sane frontal area requirement for equal through flow 
porosities.    However, it is surprising to notice that   hgtd 

for the elliptical duct is 17* higher.    Theoretically, this 
would result in a 15* (1-1/1.17) lower heat transfer area 
requirement and 15* lower pressure drop requirement for the 
elliptical duct core. 

Hie future trend for glass ceramic regenerator surfaces 
is to employ hexagonal and/or circular passages in contrast 
to the present use of triangular passages.    Based on the 
theoretical results,  it appears that the elliptical passage 
matrix offer an improvement in performance over both the 
circular tube and hexagonal passage matrix.    Before applying 
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Fig. 73  Costp&risoti of flow friction behavior — isosceles 
triangular and sine du?ts. 
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Fig.   Jh      Comparison of heat transfer behavior —  isosceles 
triangular and sine ducts. 
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this result iß a prototype s^Ign, however* it is reccsasende;* 

that experimental moric be carried out on appropriate »trices 

to varlfy the suggested ^van'-ages. 

(*) Isosceles trS angular and sine duets- In manufacture 

icg process of a triangular passage matrix, frequently nhe 

passages of a fabricated matrix approximate a sine duct. 

For such a matrix, the flow friction cud heat transfer be- 

havior would differ from the triangular passage behavior, 

these coeparls'vss are ma£e in Figs« 73 and ?-. The following 

observations are made from theee figures: (I.) for 0 < 

2b/2a < 1 *  the fRe , K(m)  , Sa^ , IfUg^ and Su^ *" l°*e*" 

for the cine Ouct, and (ii) for 0 < 2a/2b < 1 , the f He , 

Üü^ , liu^ and Mu^ (for 2a/2b < 0,75) are higher for the 

sine duct, 

To translate this performance in terms of area and 

volume "goodnessn factors, the equilateral triangular duct 

and sine duct of the came aspect ratio are compared in Figs. 

70 and 71. From these figures, the surfaces differ only 

about 5 percent. Consequently, for the same required per- 

formance, the heat exchangers, made from either equilateral 

triangular or sine duct geometry of the same aspect ratio, 

will have approximately the same frontal area and volume. 

(c) Equilateral triangular duct with rounded corners. 

The rounded corners geometries of Section V.g are 

compared in the following table in terms of area and volume 

goodness factors. 

Based on the area and volume "goodness1" factors, the 

three rounded corners geometry appears to be superior to 

the all sharp corner geometries. Note that the flow area of 

the three rounded corners geometry is 13% lower (Table 27); 

and this factor must also be accounted for in the evaluation 

of advantages of this geometry. 
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 r 
tquilavcral \* l*j?jalnx 

*1uct Kith specified f*;e **R si 

no roaaded ccr^ei 
one rounded 7C*r«e A* 

t-.c roundsJ comers 
I I   three rounä^i corners 
i 

I 13.333 3.ill 0.?63 38-2 
1^.056 3.-^02 0.273 **1.8 
1*.899 3.7f6 G.-fSk 46. > 
1&.993 *.2iv7, o.-gS 51-7 

"Fcr    Fr - C.700 

~F0r air properties at on* atmosphere and 500 ? 

(ä) A combined geometry of cusped and circular ducts. 

In a circular tube core, the n-sided cusped geometry 

is formed between the tubes* The heat transfer area assoc- 

iated with the cusped geometry is of the same order of mag- 

nitude as that associated with circular tubes. If there is 

a significant amount of fluid flowing through these cusps 

(for n > k)  the associated heat transfer area becomes ef- 

fective. The overall performance for a matrix with these 

combined geometries may be substantially higher than for a 

circular tubes matrix. The combined geometry question needs 

to be explored further when heat transfer characteristics 

of the n-sided cusped geometry are derived. 

(e) Performance of a combined geometry.  In the pre- 

ceeding sections, several combined geometries were considered, 

e.g., circular and elliptical passages, circular and cusped 

passages, triangular passages with rounded corners. As the 

theoretical heat transfer t-nd flow friction characteristics 

of these individual passages are available (or become avail- 

able in the case of cusped ducts), the combined performance 

of mixed passages can be determined as outlined in [309].  It 

is recommended that the combined performance of the above 

geometries be investigated as these geometries are of current 

interest for the vehicular gas turbine regenerator application, 
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VII.  SUMKAHT AKD CCNCLüSICHS 

i. This report provides an up-to-date compilation, usin*, 

a coomson format, of available analytical solutions for 

Isninar flow through straight and curved ducts, T\<.??. 

analytical solutions for /low friction und forced con- 

vection heat transfer are summarized from over 300 

references for 25 duct geometries. The result- arc pre- 

sented in tabular and graphical nondimensionalized form 

in Chapter V. As a summary, Table 51 is prepared so that 

the reader iray readily locate specific solutions. 

2. The tabular and graphical information available in the 

heat transfer literature has been augmented in this pre- 

sentation by (i) calculating, when readily fusible, 

more detailed and accurate results for some geometries 

using the Stanford computer (e.g. rectangular, elliptical, 

moon shaped, concentric annular and annular sector <*ucts), 

(ii) providing more current and complete information 

obtained by corresponding with authors, and (iii) apply- 

ing knowledge of the limiting cases of boundary conditions 

and of geometries. 

3. The following new results are presented for fully de- 

veloped laminar flow [60]: Nu„2 for rectangular ducts; 

fRe , u/umax , K(») , L^ , NuH1 and NuR2 for isosceles 

triangular ducts, sine ducts and equilateral triangular 

ducts with rounded corners. 

4. All the thermal boundary conditions analyzed for the 

fully developed laminar flow through straight simply 

connected ducts are systematically summarized in Table 1. 

5.  The fan   boundary condition is relatively the most simple 

one for the mathematical analysis.  Consequently, it is 

the boundary condition applied to the greatest number of 

duct geometries.  However, this boundary condition, which 
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Table SI.      Summary index of available laminar flow solutions 
*or straight and curved ducts 

r"~ 

SfcWWfc. V 
T   r 

f&» 

o Stra.gftt circular]      jpg 

Parallel plate* 2* 

^Kl 

%8/U 

1*0/17 

Rectangular ductsiTafcle 13 

C2E1 .t/ja * 0 - 1 
iFig.  19 

Table 13 

Fig. 20 

flu* 
SJydrodyna- 
■ic entry 
length 

3.657 

7.5*1 

Table 13 

Fig.  20 

rial 
entry length 

Tables 5*b 

Flgfl. 9.10 

T.bles 10, 

11a,lib 

[86,220] 

©/© 
löräro.  and 

thermal entry 
length 

?i*l,l4i?,        Table 6 

157.22,161]     "«»•  »*« 

[2U,176, 

161] 

Tables 17, 
18,19 

Fig. 23 

H15,80] 

Tables 20,21 
22 

Fig.  24 

j    Isosceles  tri- 
-9   angular duct*? 

,    ,t * 0 - l3c° 

,; Table 23 

(Fig.  27 

Table 2j 

Fig.  23 

Table 23 

Fig.  28 

Partially 

178,86] 
20*60° only 

Table 26 
Fig. 31 

20-60° only 
Table 26 
Fig.  31 

Hight triangular   Table ^ 
dUCt ,_ | 

^°-!80 'Fig.   34 

Table 28 

Fig.   34 

* = 45° 
only 

0»45° only 
Table 29 
Fig. 35 

0»45° only 
Table 29 
Fig. 35 

n~sided regular 
polygonal ducts 
n - • - oo 

Table ;2 

Fig. 42 

Table 32 

Fig. 42 

n=2,4f. 
only 

see above 

n=3,4," 
only 

see above 

n«3,4,~ 
only 

see above 

n«3,4,» 
only 

see above 

k~- ^a —H 
L^'^STT'  Elliptical ducts 
(^ J~£  iV-?* - 0 - 1 

Table  33 

Fig.   44 

Table 33 

Fig.  45 

Table 33 

Fig.  45 
[237,238] 

rc    Concentric 
annular ducts 
r./r    -0-1 r    o 

T^ble 34 

Fig.  50 

Table 34 

Fig. 51 

Table 34 

Fig. 51 80,07] 
[242,243 
256,257, 
260 J 

[76] 
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Table 51  (cont'd).      Summary index of available laminar flow 
solutions for straight and curved ducts 

fieenetry 

A 
Equilateral 
triangular duct 
with rounded 

A Sine ducts 
O Circular 

sector duets 

•$) 

Circular 
segment ducts 

(3D Plat sioed circvlar duct 

4- n-slded 
cusped ducts 

© Moon shaped 
ducts 

O Cardiold duct 

Eccentric 
annular ducts 

A Annular 
sector ducts 

Regular polyg- 
onal ducts with 
central circu- 
lar cores 
Circular duct 
with central 
regular polyg- 
onal cores 

fRe 

Table 27 

Table 30 

Fig. 37 

Table 28 

Pig.  40 

Table 31 

Pig. 39 

Table 31 

Fig.  Al 

Table 32 

Table 31 

Pig.  47 

15.675 

Table 38 

Pig. 54 

Table 40 

Fig. 56 

Table 41 

Fig. 57 

Table 43 

Fig. 59 

0&0 Longitudinal 
WWfe flow between 

>53»Sk cylinders, tri- 
\@W angular array 

Table 45 

Fig. 62 

Nu HI 

Table 27 

Table 30 

Fig.  38 

Ta'rl«, 28 

Flg.   MO 

Geometry 

Longitudinal 
flow between 
cylinders, 
square array 

0 Pascal's 
limacon 

Table 31 

Fig.  39 

Table 31 

Fig.  h\ 

4.208 

Table 39 

Fig. 55 

Table 42 

Fig.  58 

Table 44 

Fig. 60 

Table 4f> 

Fig. 62 

n Curvilinear 
polygonal 
ducts 

o Ovalold ducts 
Confocal 
elliptical 
ducts 

Circular duct 
with rounded 
corner square 
cores 

Circular duct 
with ellip- 
tical cores 

Elliptical 
ducts with 
circular cores 

Internally 
finned tube 

<? 
O    Curved 

circular 
ducts 

/<P° Curved rectangu- 
/ f lar ducts 

<^ 

C D Curved 
elliptical 
ducts 

<? ® Curved 
concentric 

annular ducts 

Velocity  (Temperature 
problero    j   problem 

[481 

[39] 

(41] 

142] 

(37,277} 

[276] 

[275] 

[277] 

[278} 

Table 46 

Fig.  65 

Table 47 

Fig. 66 

[295,296] 

[302,283, 
303] 

[41] 

[42] 

i37j 

[276] 

[275] 

[278] 

Table 46 

Fig. 65 

Tables  48, 
49 

Fig.  67 
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yields thf ^.urgent convection coefficient, may in fact 

not be the most appropriate one  for the technical ap- 

plications at hand. 

6. The present results do not allow the prediction of 

Reynolds number range over which laminar flow applies. 
rTne designer is interested in knowing the specific range 

of Reynolds number for the laminar, transition and tur- 

bulent flow regimes for a specified duct geometry. Much 

work remains to be done for the transition region. The 

results of this report are only applicable for a "true" 

laminar flow. 

7. The hydrodynamic and thermal entrance lengths are defined 

in different manners as follows in the heat transfer 

literature. The hydrodynamic entrance length L   is 

defined as the duct length required to achieve the duct 

centerline velocity (the maximum) as 99$ of the cor- 

responding fully developed magnitude when the entering 

flow is uniform. The thermal entrance length L-  is 

defined as the duct length required to achieve the value 

of local Nusselt number Nu  as 1,05 Nuf- . The L 

is presented for a majority of geometries. Hence, at 

a given Reynolds number, the required V^ to achieve 

hydraulically fully developed flow may be determined. 

The Lf,  is not determined for most of the duct geome- 

tries. For the geometries for which the thermal entrance 

solutions are available, L*^ can be established, but 

this has not yet been achieved on a systematic basis. 

8. The comparison of a circular tube and an elliptical duct 

(a* = 0.9) revealed that both the ducts have the same 

area "goodness" factor. However, the elliptical duct 

is superior to the circular duct on the basis of the 

volume "goodness" factor.  Thus, an elliptical passages 

glass ceramic matrix may be superic; to a circular tube 
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matrix for the vehicular gas turbine  regenerator of the 

periodic-flow type. 

9.    Other co,nparisons and areas of ^^£"££lm 
gas turolne regenerator design are suggested in Section 

vi.6. 
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VIII.  RECOMMEIJDATICNS 

Recommendations are divided into three categories* 

extension of the present work; 2. new compilations; and 

j. general comments on the presentation of future work. 

1. Extension of the Present Work 

From Chapter V summarizing the analytical solutions 

available for different geometries and T^ble 51, it appears 

that a large number of solutions are not available for many 

of the geometries of current technical interest. These are 

as follows. 

(i) For fully developed flew, no general method exists 

for the (|) and (K^) heat transfer through an 

arbitrary duct. A general method is needed, 

(ii) The thermal entry length l£h for the circular 

tube can be determined from the results of Table 8. 

The I?,  for any other duct geometry has not been 

determined for any boundary condition. Similar to 

hydrodynamic entry length I*L [Eq. (33)]* approxi- 

mate or exact theories are needed to evaluate L.. 

for an arbitrary duct with arbitrary thermal boundary 

conditions, 

(iii) For fully developed heat transfer, a theory is needed 

to determine the incremental thermal entry heat 

transfer number :;(°°) [see Eq. (236)] for an arbitrary 

duct with arbitrary thermal boundary conditions. 

(iv) Very few thermal entry length solutions (exceptions 

are the circular tube and parallel plates) are avail- 

able for ncncircular ducts. Much work is needed for 

the thermal entry length problem for at least (?), 

(Hi) , (^) and @ boundary conditions. 

(v) For the vehicular &as turbine regenerator of the 

periodic flow type, the matrix with rectangular, 

isosceles triangular, sine or hexagonal passages 
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has been considered for the heat transfer from hot 

gas to cold air. The typical material used for such 

a matrix is glass ceramic having low thermal con- 

ductivity. The thermal boundary condition realized 

for this application may approximate the @ . 

Hence, as a minimum, fully developed @) heat transfer 

results are urgently needed for the above geometries, 

(vi) The cusped duct geometry is technically important, 

as it is formed as a combined geometry in a circular 

tube matrix. Only the flow friction results are 

available for the n-sided cusped duct geometry. Heat 

transfer results are urgently needed for the possible 

use in glass ceramic matx*ices [see above (v)]. 

(vii) Other areas of investigations for the regenerator 

design are suggested in Section VI.6. 

2. New Compilations 

(i) Summary of analytical work for laminar duct flow 

forced convection heat transfer with variable fluid 

properties, 

(ii) Summary of analytical work for combined forced and 

i.'ee convection laminar flow heat transfer, 

(iii) Summary of experimental work related to laminar duct 

flow heat transfer, 

(iv) A critical comparison of the experimental results 

with the compilations of the above items (i), (ii), 

(iii) and of the present report, 

(v) Summary of transition flow regime Reynolds number 

range for various duct geometries, as well as, duct 

flow friction and heat transfer characteristics. 

3. General Comments on Future Presentation 

It is evident that research work in laminar duct flow is 

carried out throughout the world by many different branches 

of applied sciences and engineering.  The results obtained 
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directly from all these different sources are in differing 

formats. The designer of laminar flow systems frequently 

cannot interpret the results. With the needs of the designer 

in mind, the following brief comments are appropriate. 

(i) A variety of new methods have been devised for fully 

developed and developing flow heat transfer problem. 

But the examples are generally worked out only for 

known solutions.  It is recommended that after 

qualifying a new method with known results, that new 

solutions be obtained, 

(ii) There is a considerable amount of duplication of 

solutions for the circular tube and parallel plate 

ducts. Once th^ exaot (or more accurate) solutions 

are available, it is recommended that further solu- 

tions to lV:e same problem should not be carried out 

using the obsolete approximate methods. For example, 

for a circular tube, even after the thermal entry 

length problem has been solved employing the accurate 

velocity profiles (from numerical solutions), papers 

have continued to appear for the same problem em- 

ploying the approximate velocity profiles in the 

entrance region, 

(iii) In many cases, a refinement is made to an already 

approximately solved problem: however, the final 

results are compared only by small scale graphs. 

It is recommended for the future that comparisons 

be presented in tabular form or alternatively, the 

tabular results should be forwarded to an agency 

from which the information can be readily aval-able. 

One such agency in the USA is: ASIS National Aux- 

iliary Publications Service, c/o CCM Information 

Sciences, Inc., 909 Third Avenue, New Ycrk, N.¥. 

10022. 
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(iv) There exists a tendency to present the theoretical 

results in törms of a particular set of dimensionless 

parameters deduced from normalizing the differential 

equations and boundary conditions in a special way. 

Many different sets of dimensionless parameters can 

be formulated for a particular duet.  Such results 

may not be useful to a designer, because he cannot 

readily interpret them in terms of the familiar con- 

ventional set.  It is therefore recommended that the 

conventional parameters, as used in this report, 

should be employed in reporting new work. These 

are; Nu , Re , Pr , St , x* , l^ , 1^ , Kp . 

(v) Throughout the thermal entrance heat transfer lit- 

erature, the dimensionless axial distance is defined 

variously as x* , 1/x* , ex* (where c is a con- 

stant) etc. and these dimensionless distances are 

all designated as Graetz number! McAdams [29] de- 

fines the Graetz number Gz as Gz = Wc /kL » 

PeP/4L and this definition is consistently used JC 

chemical engineering literature. To avoid the con- 

fusion of various definitions used for dimension less» 

axial distance, it is suggested that (i) McAdams' 

definition of Graetz number be accepted, (ii) the 

dimensionless axial distance x* • x/DhPe be used 

for the thermal entry length problem and (iii) x* 

should not be designated as the Graetz number. Ac- 

cording to the foregoing recommendations, 

(vi) The dimensionless total wall heat flux * (Eq. 72) 

is inappropriately designated as a mean Nusselt 

number Nu m . The "mean heat transfer coefficient" 
m, x 

In * does not represent a thermal conductance in 
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a thermal circuit for a heat exchanger nor does it 

approach the fully developed value at large x* 

(x* -> °°). Consequently, the diroensionless parameter 

should not be designated as Nu_ « . 

(vii) Reviewing Fig. 4 and Eq. (11a) on p. 12, the wall 

conductance U  consists of two components: wall 

conductance and the other side of wall fluid con- 

ductance. Hence, 1/R [Eq. (5*0] is not a Nusselt 

number or a Blot number and should not be identified 

as such. To avoid confusion, it is recommended that 

the terminology R , the wall thermal resistance, 

be used for the (Sp boundary condition. The    Rw 
has a simple physical significance of its own as 

described before,Eq. (5&) on p. 33. 
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APPENDIX A 

Following is a partial listing of technical journals 

in which laminar flow heat transfer literature has been 

located. 
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30. Journal of Science and Engineering Research (India) 

31. Kältetechnik-Klimatisierung (Germany) 

32. Mathematika (UK) 

33. Memoirs of the Faculty of Engineering, Kyushu University 
(Japan) 

34. Nuclear Science and Design (Netherland) 

35. Nuclear Science and Engineering (USA) 

36. Philosophical Magazine (UK) 

37. Physics of Fluids (USA) 

38. Proceedings of the Cambridge Philosophical Society. 
Mathematical and Physical Sciences (UK) 

39. Proceedings of the Royal Society (UK) 

40. Quarterly of Applied Mathematics (USA) 

41. Quarterly Journal of Mechanics and Applied Mathematics 
(UK) 

42. Soviet Physics: Doklady (English translation of a 
Russian magazine) 

43. Transactions of the American Institute of Chemical 
Engineers (USA) 

44. Transactions of the American Society of Mechanical 
Engineers (USA) 

45. Transactions of the Institution of Chemical Engineers 
(UK) 

46. Transactions of the Japan Society of Mechanical Engineers 
(Japan) 

47. Wärme-und Stoffübertragung (Germany) 

48. Zeitschrift für angewandte Mathematik und Mechanik 
(Germany) 

49. Zeitschrift für angewandte Mathematik und Physik 
(Germany) 

50. Zeitschrift des Vereins deutscher Ingenieure (Germany) 

It is interesting to note the wide spread of published 

sources for this one class of problem which attests to both 

its technical and mathematical interest. 
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