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ABSTRACT 

A theoretical analysis is presented of the heterogeneous opposed 

flow diffusion flame (HOFD).  In such a system a gaseous reactant (G) 

impinges on a solid reactant (S) undergoing sublimation (or vaporiza- 

tion) and a diffusion flame is established at the stagnation point. 

With increasing mass flux of the gaseous reactant (m ) the mass flux of 
G 

solid reactant (m ) grows until the total consumption rate of reactants 
B 

reaches a limiting value due to limitations imposed by the kinetics of 

reaction. The analysis of the axi-symmetrical stagnation point flow with 

chemical reaction allows evaluation of the kinetics of chemical reaction 

at temperatures of interest to combustion processes.  The theoretical 

development is applied to the solid-propellant deflagration of an ammon- 

ium perchlorate-catalyst-fuel system and the pyrolysj s of solid polymers 

in an oxidizing atmosphere. 



Introduction 

'i 

For the study of reaction kinetics of gas mixtures at tempera- 

tures of interest to combustion, the opposed flow diffusion flame (OFD) 

has been particularly valuable.  In experiments employing OFD, one mea- 

sures the highest mass flux rates of opposing gas jets of fuel and oxidizer 

that can be consumed in a diffusion flame located in the stagnation re- 

gion.1 A series of analytical studies2-6 examined the relationship be- 

tween the condition of diffusion flame extinction, the maximum kinetics 

of gas-phase reaction, and the flame propagation velocity of premixed 

gases.  These theoretical developments were concerned with homogsneous 

OFD in which the two reactants were introduced at the same mass flow 

rate per unit area into the reaction region.  To apply this technique 

to solid-propellant combustion kinetics we have treated a theoretical 

model, the heterogeneous opposed flow diffusion flame (HOFD), in which 

a gaseous fuel jet impinges on a solid oxidizer surface, such as ammon- 

ium perchlorate (AP), which undergoes sublimation.  This model considers 

exothermic chemical reaction in the diffusion flame and heat losses to 

the environment. 

The fundamental difference from the homogeneous OFD is the con- 

dition at the solid/gas interface, the source of the oxidizer species 

in the case of a solid propellant based on AP.  Its steady-state surface 

properties are no longer an independent variable; rather the mass flux 

of reactant leaving the solid surface is a function of the heat and mass 

transport, and the thermodynamic properties of the solid. Although 

similar in some respects to the opposed-flow model chosen by Spalding2, 

our analysis of the HOFD postulates a much more realistic velocity field 

which satisfies tne conditions at upstream infinity. 



Mathematical Formulation 

As shown schematically in Figure 1, the analysis concerns the 

opposed jet system and involves a stream of fluid (the gaseous fuel, 

subscript G) moving in the negative z direction toward a perpendicular 

flat surface comprising the solid reactive oxidizer (subscript S) under- 

going sublimation. The axi-symmetrical stagnation-point flow leads to 

the following equation for conservation of energy (with the velocity 

components defined in Figure l): 

C [(puT)  + puT/r + (pvT) ] = \   (T  + T /r + T ) + QR     (l) 
G    r z      rr   r    zz    P 

where C is the specific heat of the gas at constant pressure, p its 
G 

density, X its thermal conductivity, Q the exothermic heat of reaction, 

and R the chemical rate of product generation. Throughout the analysis, 

the Lewis number is set equal to unity.  (X/c pD = 1), and the variable 
G 

subscripts r and z indicate partial differentiation. 

The equation for conservation of total mass is 

(pu) + pu/r + (pv) =  0 , 
r z (2) 

while that for the mass of species K reads 

(PUYK  " ^Vr + <PuYPDV/r 

+   (PvYK-PDYKz)z=RK (3) 

where Y is the mass fraction of species K and R is its rate of forma- 
le K 

tion in the reaction. The species are taken to be oxidizer X, fuel F, 

product P, and inert gas I.  By introducing the constants w = R /QR 
K   K  P 

we can simplify the equation to 

?u(YK-WKT)r + Pv(YK-V)z 

= pD [(Y  - wK T)  + (Y  - »_, T) /r + (Y - « T)  ] 
K    K  rr    K    K  r      K   K zz (4) 



At point G (Fig. l), the gaseous fuel inlet at upstream infinity 

(z  = + -r)  and the dependent variables have the values: 

T = TG, pu . 0, pv - -mG, YK . Y^ 

At point S on the surface of the solid, 

pu = 0, pv= -ms> -PDYKX=ms(6KX-YK), 

AT = m    [L + C  (T - T.)] 
z   S      S      Ay 

where L is the latent heat of vaporization, C the heat capacity of the 
S 

solid, T is the ambient temperature at infinity in the solid, and 
IT. 

5  = 1 if K = X and is zero otherwise. 

At this point the simplifying assumptions are made that (l) spe- 

cific heat, density, and transport coefficients may be replaced üy con- 

stant average values, and (2) radial diffusion may be neglected with re- 

spect to convection and axial diffusion. Thereby the equations for con- 

servation of energy and mass of species K reduce to 

CL (flu T + pv T ) = X T  + QR 
G M  r      z      zz    P 

(5) 

pu (YK-wKT)r * pv (YK-WKT)Z = PD(YK-WKT)ZZ (6) 

Along the axis of symmetry u = 0, so that the equations contain 

only functions of z and derivatives with respect to z.  Let y(z) be 

the solution on r = 0 of the equation 

pvy = pDy . (7) 

Then 

Y -wT = A +By 
K   K    K   K 

(8) 

where A and B are constants of integration, and the energy equation 
K     K 

reads 



X T  (y')2 + Q R = 0 
yy       P 

(9) 

Solution of the Equations 

It is now assumed that (y')2 has a reasonable form as a function 

of z so that the distribution of reaction rate can take that form: 

Rp = (XJ/Q) (y')2 

where J is a constant.  Then 

T = A + By - Jy2/2 

(10) 

(11) 

where A and B are constants.  Thus all dependent variables have explicit 

forms as functions of y on r = 0. 

A reasonable form for y is 

y = tanh az 

with some constant a.  One finds on r = 0 by Eq. (7) 

(12) 

pv = -2apD tanh az (13) 

so ;hat to fit the condition at G 

a = mG/2pD (14) 

An extension of pv to points off the axis of symmetry which gives 

a jet-like flow is 

pv = - m tanh az sech2(br2/2) 

where constant b can be related to the jet width. 

(15) 

The equation for conservation of total mass can \hen be solved 

to give 

pu = (am /bi) sech2 az tanh (br2/2) 
G 

(16) 



This solution satisfies the boundary condition at G, pu = 0 at z = <*>, 

but at the solid surface (z = z ), pu = 0 only on r = 0.  Since the 
s 

solution is needed on r = 0, this error is not likely to affect the re- 

suits seriously. 

The solution for T on r = 0 satisfying the condition at G is 

T = TG + B*(l-y) - J(l-y)2/2 (17) 

where B""r is a convenient form for the remaining constant of integration. 

The conditions at the solid surface determine y -  -m and 

{(1+m)2 J [m C +(l-m)C ] - 2m [L + C (T -T )]} 

B = ~    (1+m) [2m C + (1-m) C ]    '     ~~'    (18) 

where m = m /m .  This ratio is restricted to o < m < 1 by Eq. (15). 
S G 

Boundary conditions at S and G similarly determine the constants 

of integration A and B in the solution forms for the Y . 
K     K K 

The maximum temperature is 

T = T + B-;;-2/2J 
M   G     ' 

(19) 

and it occurs at y = y , where y = 1 - ö"'/j.     It can be readily deter- 

mined from the reaction rate R  at point M: 
PM 

J = 4XQ R /m2 (1 - y2) 
PM7 G v    IT 

(20) 

Application to Heterogeneous Combustion System 

For the special case for which (l) the reaction rate is of first 

order in the fuel and oxidizer concentrations, (2) the conductive heat 

loss into the solid phase [c (T -T )] is negligible relative to the 
S  S A 

heat of sublimation L, and (3) the temperature maximum is located at 

the stagnation point (y = 0), the equations just derived become greatly 
M 



simplified, 

by 

For such a case the rate of product generation is given 

Rp = p2 (Yp) (Yx) Z exp (-E/RT) (21) 

where Y and Y are the weight fractions of fuel and oxidizer, E the 
F     X 

activation energy, R the gas constant, and Z the preexponential term 

in the Arrhenius expression. This equation applies equally at the 

stagnation point where R — R  and T -» T . To simplify the calcula- 
P   FM        M 

tion, we make the additional approximation that at this point Y and 
F 

Y are unity.  Under these conditions Eq. (20) reduces to 
A 

4p2XQZ exp (-E/RTM)/m
2
G (22) 

Finally, in combination with Eqs. (18) and (19), after neglecting mCc 

with respect to (l-m)C , one obtains 
G 

rn! =20
2XQ(C /L) (1-m2) Z exp (-E/RT ) i w (23) 

where T = T + [L/C (l-m2)] 
M   G    '   G 

The function given by Eq. (23) has the properties depicted in 

Figure 2. With increasing mass flux of the fuel component (m), the 
G 

steady-state mass flux of solid oxidizer (m ) grows until it attains a 
S 

maximum value at the limiting ratio m* = m"|;/m^.  Further increase in 
S    G 

m    causes the   nineties of reaction to limit further consumption of  re- 
G 

actants and  leads to extinction.    At the maximum point d m /d m    =0 
S   G 

or d m / d m = -m /m so that 
G G 

E' = 
[2m-"2 - 1 , , „,. 
  (l+l/-m*-2) 
m-"-2(l-m*2) "  1/ 

(24) 

where E' = E/RT and i/ - L/CT  . 
'  G ' GG 

In Table 1 we have computed E' for different values of m and L'. 

/ 



Also for  values of m* 2 near unity Eq.   (24)   reduces  to 

E' - L'/fl-m^2) (25) 

It is apparent that the activation energy for the fuel-oxidant 

gas-phase reaction may be evaluated from the critical mass flux ratio 

m'"'. An interesting application of this theoretical model is to be 

found in the pyrolysis measurements of polymethyl methacrylate (PMM) by 

McAlevy and coworksrs.7 In an experimental study involving a stream of 

oxygen impinging on the solid polymer, the linear regression rate of 

the polymer attained a maximum corresponding to a critical mass flux 

ratio of m""" = m";;Vm";:" = 1.5 x 10 2.  Based on an effective endothermic 
S'   G 

heat of sublimation7 of about 1000 cal/g one calculates by substitution 

into Eq. (25) an activation energy of 8 kcal/mole for the gas-phase 

combustion process of PMM-oxygen. As shown in a subsequent publication8 

we have used the HOFD theory in an evaluation of the reaction kinetics 

of the system ammonium perchlorate-catalyst-hydrocarbon. Further 

theoretical work is in progress to remove the restriction of m';;" < 1 

from the analysis, so that the model may have applicability to a wider 

range of combustion systems. 
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Table 1 

COMPUTATION OF E'   (Eq.   24) 

E' 

0.1 0.3 1 3 10 

0.6 2.08 1.35 1.63 3.23 9.0 

0.8 3.38 3.11 5.40 12.8 39.0 

0.9 3.55 4.71 10.7 29.3 90.5 

0.95 4.26 7.70 20.8 58.8 193.0 

10 
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