AD736217

December 15, 1971

# SOLID PROPELLANT KINETICS

II. THEORETICAL ANALYSIS OF THE HETEROGENEOUS OPPOSED FLOW DIFFUSION FLAME\* \*

> C. M. Ablow and H. Wise Stanford Research Institute Menlo Park, California 94025

പ്പി 8 FEB 1977 404 B

1

STATISTICS IN COLUMN

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

- \* Reproduction in whole or in part is permitted for any purpose of the United States Government.
- + This work was sponsored by the Office of Naval Research, Power Branch, Washington, D.C., under Contract N00014-70-C-0155

DISTRIBUTION STATIMENT Approved for public release; Distribution Unlimited

December 15, 1971

### SOLID PROPELLANT KINETICS

II. THEORETICAL ANALYSIS OF THE HETEROGENEOUS OPPOSED FLOW DIFFUSION FLAME\* +

> C. M. Ablow and H. Wise Stanford Research Institute Menlo Park, California 94025

- \* Reproduction in whole or in part is permitted for any purpose of the United States Government.
- + This work was sponsored by the Office of Naval Research, Power Branch, Washington, D.C., under Contract N00014-70-C-0155

# TABLE OF CONTENTS

|           |     |     |    |    |    |    |    |    |    |     |    |    |     |    |   |    |     |    |   |   |   |   |   | Page |
|-----------|-----|-----|----|----|----|----|----|----|----|-----|----|----|-----|----|---|----|-----|----|---|---|---|---|---|------|
| ABSTRACT  | •   | •   | •  | •  | •  | •  | •  | •  | •  | •   | •  | •  | •   | •  | • | •  | •   | •  | • | • | • | • | • | 1    |
| INTRODUCT | ION |     | •  | •  | •  | •  | •  | •  | •  | •   | •  | •  | •   | •  | • | •  | •   | •  |   |   | • | • |   | 2    |
| MATHEMATI | CAL | F   | OR | MU | LA | TI | ON | ſ  | •  | •   | •  | •  | •   | •  | • | •  | •   | •  | • | • | • | • | • | 3    |
| SOLUTION  | OF  | THI | E  | EQ | UA | TI | ON | IS | •  | •   | •  | •  | •   | •  | • | •  | •   | •  | • | • | • | • | • | 5    |
| APPLICATI | ON  | то  | н  | ET | ER | 00 | EN | ΈC | US | s c | OM | BU | JST | 10 | N | SY | 'S' | EM | I | • | • | • | • | 6    |
| REFERENCE | s   | •   | •  | •  | •  | •  | •  | •  | •  | •   | •  | •  | •   | •  | • | •  | •   | •  | • | • | • | • | • | 9    |
| TABLE 1   | •   | •   | •  | •  | •  | •  | •  | •  | •  | •   | •  |    | •   | •  | • | •  | •   |    | • | • | • | • | • | 10   |
| LIST OF F | IGU | RES | s  |    |    |    |    |    |    |     |    |    |     |    |   |    |     |    |   |   |   |   |   | 11   |

The Viewer

| UNCLASSIFIED                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Security Classification                                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| DOCUMENT                                                                    | CONTROL DATA - R & D                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Security classification of title, budy of abstract and inc                  | lexing annotation must be entered when | the overall report is classified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| UNIGINATING ACTIVITY (Corporate author)                                     |                                        | TASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| STANFORD RESEARCH INSTITUTE                                                 | 28. GROOP                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| BEPORT TITLE                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| SOLID PROPELLANT KINETICS, II.                                              | THEORETICAL ANALYSIS C                 | OF THE HETEROGENEOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| OPPOSED FLOW DIFFUSION FLAME                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 4. DESCRIPTIVE NOTES (Type of report and inclusive dates)                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Interim Report                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 5- AUTHORISI (First name, middle initial, last name)                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| C M Ablow and H Wise                                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| C. M. ADIOW and H. WISE                                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 6 REPORT DATE                                                               | 74. TOTAL NO. OF PAGES                 | 76. NO OF REFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| December 15, 1971                                                           | 16                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Se. CONTRACT OR GRANT NO                                                    | 98. ORIGINATOR'S REPORT N              | UMBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| N00014-70-C-0155                                                            | PYU 8378                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| b. PROJECT NO.                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                             |                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| c 9b. OTHER REPORT NO(5) (Any other numbers that may be assign this report) |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                             | None                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| <i>d.</i>                                                                   |                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| TO. DISTRIBUTION STATEMENT                                                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Distribution of this document i                                             | s unlimited                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 11. SUPPLEMENTARY NOTES                                                     | 12. SPONSORING MILITARY A              | CTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                             | Office of Naval F                      | lesearch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                             | Power Branch                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| None                                                                        | Washington, D.C.                       | 20360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 13. ABSTRACT                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1                                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| A theoretical analysis is present                                           | nted of the heterogeneou               | is opposed flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| diffusion flame (HOFD). In such a s                                         | ystem a gaseous reactant               | t (G) impinges on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| a solid reactant (S) undergoing subl                                        | imation (or vaporization               | and a diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| flame is established at the stagnation                                      | on noint. With increasi                | ng mass flux of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| the mass reactant (m) the mass f                                            | lux of solid reactant (r               | () grows until the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| total consumption note of massing                                           | rux of solid reactant (m               | S distanti di se si d |  |  |  |  |
| total consumption rate of reactants                                         | reaches a limiting value               | aue to limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| imposed by the kinetics of reaction.                                        | The analysis of the ax                 | 1-symmetrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| stagnation point flow with chemical                                         | reaction allows evaluati               | on of the kinetics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| of chemical reaction at temperatures                                        | of interest to combusti                | on processes. $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| The theoretical development is applied                                      | ed to the solid-propells               | ant deflagration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| of an ammonium perchlorate-catalyst-                                        | fuel system and the pyro               | lysis of solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| polymers in an oxidizing atmosphere.                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Fernand and an and a sume photo.                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

DD 1 NOV ... 1473 (PAGE 1) S/N 0101-807-6801

UNCLASSIFIED Security Classification

|           | KEY WORDS  | LINI     | K A   | LIN       | КВ       | LINKC |   |
|-----------|------------|----------|-------|-----------|----------|-------|---|
|           |            | <br>ROLE | WΤ    | ROLE      | ₩T       | ROLE  | w |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          | ł     |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          | 1     |           |          |       |   |
|           |            |          |       |           |          | 1     |   |
|           |            |          |       | 1         |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          | Ì     |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       | 1 |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           | 1        |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
|           |            |          |       |           |          |       |   |
| DD INOV 1 | 4/3 (BACK) |          |       |           |          |       |   |
| 10105 31  |            |          | Secur | ity Class | fication |       |   |

a state and a state

#### ABSTRACT

A theoretical analysis is presented of the heterogeneous opposed flow diffusion flame (HOFD). In such a system a gaseous reactant (G) impinges on a solid reactant (S) undergoing sublimation (or vaporization) and a diffusion flame is established at the stagnation point. With increasing mass flux of the gaseous reactant  $(m_G)$  the mass flux of solid reactant  $(m_S)$  grows until the total consumption rate of reactants reaches a limiting value due to limitations imposed by the kinetics of reaction. The analysis of the axi-symmetrical stagnation point flow with chemical reaction allows evaluation of the kinetics of chemical reaction at temperatures of interest to combustion processes. The theoretical development is applied to the solid-propellant deflagration of an ammonium perchlorate-catalyst-fuel system and the pyrolysis of solid polymers in an oxidizing atmosphere.

#### Introduction

For the study of reaction kinetics of gas mixtures at temperatures of interest to combustion, the opposed flow diffusion flame (OFD) has been particularly valuable. In experiments employing OFD, one measures the highest mass flux rates of opposing gas jets of fuel and oxidizer that can be consumed in a diffusion flame located in the stagnation region.<sup>1</sup> A series of analytical studies<sup>2-6</sup> examined the relationship between the condition of diffusion flame extinction, the maximum kinetics of gas-phase reaction, and the flame propagation velocity of premixed gases. These theoretical developments were concerned with homogeneous OFD in which the two reactants were introduced at the same mass flow rate per unit area into the reaction region. To apply this technique to solid-propellant combustion kinetics we have treated a theoretical model, the heterogeneous opposed flow diffusion flame (HOFD), in which a gaseous fuel jet impinges on a solid oxidizer surface, such as ammonium perchlorate (AP), which undergoes sublimation. This model considers exothermic chemical reaction in the diffusion flame and heat losses to the environment.

The fundamental difference from the homogeneous OFD is the condition at the solid/gas interface, the source of the oxidizer species in the case of a solid propellant based on AP. Its steady-state surface properties are no longer an independent variable; rather the mass flux of reactant leaving the solid surface is a function of the heat and mass transport, and the thermodynamic properties of the solid. Although similar in some respects to the opposed-flow model chosen by Spalding<sup>2</sup>, our analysis of the HOFD postulates a much more realistic velocity field which satisfies the conditions at upstream infinity.

2

#### Mathematical Formulation

As shown schematically in Figure 1, the analysis concerns the opposed jet system and involves a stream of fluid (the gaseous fuel, subscript G) moving in the negative z direction toward a perpendicular flat surface comprising the solid reactive oxidizer (subscript S) undergoing sublimation. The axi-symmetrical stagnation-point flow leads to the following equation for conservation of energy (with the velocity components defined in Figure 1):

$$C_{G}[(\rho uT)_{r} + \rho uT/r + (\rho vT)_{z}] = \lambda (T_{rr} + T_{r}/r + T_{zz}) + QR_{p}$$
(1)

where  $C_{G}$  is the specific heat of the gas at constant pressure,  $\rho$  its density,  $\lambda$  its thermal conductivity, Q the exothermic heat of reaction, and  $R_{p}$  the chemical rate of product generation. Throughout the analysis, the Lewis number is set equal to unity.  $(\lambda/C_{G}\rho D = 1)$ , and the variable subscripts r and z indicate partial differentiation.

The equation for conservation of total mass is

$$(\rho u)_{r} + \rho u/r + (\rho v)_{z} = 0$$
, (2)

while that for the mass of species K reads

$$(\rho u Y_{K} - \rho D Y_{Kr})_{r} + (\rho u Y_{K} - \rho D Y_{Kr})/r$$
$$+ (\rho v Y_{K} - \rho D Y_{Kz})_{z} = R_{K}$$
(3)

where  $Y_{K}$  is the mass fraction of species K and  $R_{K}$  is its rate of formation in the reaction. The species are taken to be oxidizer X, fuel F, product P, and inert gas I. By introducing the constants  $w_{K} = R_{K}/QR_{P}$ we can simplify the equation to

3

$$\rho \mathbf{u} \left( \mathbf{Y}_{K} - \mathbf{w}_{K}^{T} \right)_{\mathbf{r}} + \rho \mathbf{v} \left( \mathbf{Y}_{K} - \mathbf{w}_{K}^{T} \right)_{\mathbf{z}}$$
$$= \rho \mathbf{D} \left[ \left( \mathbf{Y}_{K} - \mathbf{w}_{K}^{T} \right)_{\mathbf{r}\mathbf{r}} + \left( \mathbf{Y}_{K} - \mathbf{w}_{K}^{T} \right)_{\mathbf{r}} / \mathbf{r} + \left( \mathbf{Y}_{K} - \mathbf{w}_{K}^{T} \right)_{\mathbf{z}\mathbf{z}} \right] .$$
(4)

At point G (Fig. 1), the gaseous fuel inlet at upstream infinity  $(z = +\infty)$  and the dependent variables have the values:

$$T = T_G$$
,  $\rho u = 0$ ,  $\rho v = -m_G$ ,  $Y_K = Y_{KG}$ 

At point S on the surface of the solid,

$$\rho \mathbf{u} = \mathbf{0}, \ \rho \mathbf{v} = -\mathbf{m}_{S}, \ -\rho D \mathbf{Y}_{KX} = \mathbf{m}_{S} (\delta_{KX} - \mathbf{Y}_{K}),$$
$$\lambda \mathbf{T}_{z} = \mathbf{m}_{S} [\mathbf{L} + \mathbf{C}_{S} (\mathbf{T} - \mathbf{T}_{A})]$$

where L is the latent heat of vaporization,  $C_{S}$  the heat capacity of the solid,  $T_{A}$  is the ambient temperature at infinity in the solid, and  $\delta_{KY} = 1$  if K = X and is zero otherwise.

At this point the simplifying assumptions are made that (1) specific heat, density, and transport coefficients may be replaced by constant average values, and (2) radial diffusion may be neglected with respect to convection and axial diffusion. Thereby the equations for conservation of energy and mass of species K reduce to

$$C_{G} \left( \rho u T_{r} + \rho v T_{z} \right) = \lambda T_{zz} + QR_{p}$$
(5)

$$\rho u \left( Y_{K} - w_{K} T \right)_{r} + \rho v \left( Y_{K} - w_{K} T \right)_{z} = \rho D \left( Y_{K} - w_{K} T \right)_{zz}$$
(6)

Along the axis of symmetry u = 0, so that the equations contain only functions of z and derivatives with respect to z. Let y(z) be the solution on r = 0 of the equation

$$\rho \mathbf{v} \mathbf{y}' = \rho \mathbf{D} \mathbf{y}''. \tag{7}$$

Then

$$Y_{K} - w_{K}T = A_{K} + B_{K}y$$
(8)

where A and B are constants of integration, and the energy equation reads

$$\lambda T_{yy} (y')^{2} + Q R_{P} = 0$$
 (9)

#### Solution of the Equations

It is now assumed that  $(y')^2$  has a reasonable form as a function of z so that the distribution of reaction rate can take that form:

$$R_{\mathbf{p}} = (\lambda J/Q) (\mathbf{y'})^2$$
(10)

where J is a constant. Then

$$T = A + By - Jy^2/2$$
 (11)

where A and B are constants. Thus all dependent variables have explicit forms as functions of y on r = 0.

A reasonable form for y is

$$y = \tanh az$$
 (12)

with some constant a. One finds on r = 0 by Eq. (7)

$$\rho v = -2a\rho D \tanh az \tag{13}$$

so that to fit the condition at G

$$a = m_{c}/2\rho D \tag{14}$$

An extension of  $\rho v$  to points off the axis of symmetry which gives a jet-like flow is

$$\rho v = - m_{G} \tanh az \operatorname{sech}^{2}(br^{2}/2)$$
(15)

where constant b can be related to the jet width.

The equation for conservation of total mass can then be solved to give

 $\rho u = (a m_G^2/br) \operatorname{sech}^2 \operatorname{az} \tanh(br^2/2)$ (16)

This solution satisfies the boundary condition at G,  $\rho u = 0$  at  $z = \infty$ , but at the solid surface  $(z = z_s)$ ,  $\rho u = 0$  only on r = 0. Since the solution is needed on r = 0, this error is not likely to affect the results seriously.

The solution for T on r = 0 satisfying the condition at G is

$$T = T_{G} + B^{*}(1-y) - J(1-y)^{2}/2 \qquad (17)$$

where  $B^*$  is a convenient form for the remaining constant of integration. The conditions at the solid surface determine y = -m and

$$B^{*} = \frac{\{(1+m)^{2} J [m C_{S}^{+}(1-m)C_{G}] - 2m [L + C_{S}^{-}(T_{G}^{-}-T_{A}^{-})]\}}{(1+m) [2m C_{S}^{+} (1-m) C_{G}^{-}]}$$
(18)

where  $m = \frac{m}{S} / \frac{m}{G}$ . This ratio is restricted to 0 < m < 1 by Eq. (15).

Boundary conditions at S and G similarly determine the constants of integration  $A_{K}$  and  $B_{K}$  in the solution forms for the  $Y_{K}$ .

The maximum temperature is

$$T_{M} = T_{G} + B^{*2}/2J$$
 (19)

and it occurs at  $y = y_M^{-1}$ , where  $y_M^{-1} = 1 - B^*/J$ . It can be readily determined from the reaction rate  $R_{PM}^{-1}$  at point M:

$$J = 4\lambda Q R_{pM} / m_{G}^{2} (1 - y_{M}^{2})^{2}$$
(20)

#### Application to Heterogeneous Combustion System

For the special case for which (1) the reaction rate is of first order in the fuel and oxidizer concentrations, (2) the conductive heat loss into the solid phase  $[C_S(T_S^{-}T_A)]$  is negligible relative to the heat of sublimation L, and (3) the temperature maximum is located at the stagnation point  $(y_M = 0)$ , the equations just derived become greatly simplified. For such a case the rate of product generation is given by

$$R_{p} = \rho^{2} (Y_{F}) (Y_{X}) Z \exp (-E/RT)$$
 (21)

where  $Y_F$  and  $Y_X$  are the weight fractions of fuel and oxidizer, E the activation energy, R the gas constant, and Z the preexponential term in the Arrhenius expression. This equation applies equally at the stagnation point where  $R_P \rightarrow R_{PM}$  and  $T \rightarrow T_M$ . To simplify the calculation, we make the additional approximation that at this point  $Y_F$  and  $Y_v$  are unity. Under these conditions Eq. (20) reduces to

$$J = 4\rho^2 \lambda QZ \exp \left(-E/RT_M\right)/m_G^2$$
(22)

Finally, in combination with Eqs. (18) and (19), after neglecting mC s with respect to  $(1-m)C_{c}$ , one obtains

$$m_{G}^{2} = 2_{\dot{U}}^{2} \lambda Q(C_{G}/L) (1-m^{2}) Z \exp(-E/RT_{M})$$
 (23)

where  $T_M = T_G + [L/C_G (1-m^2)]$ 

The function given by Eq. (23) has the properties depicted in Figure 2. With increasing mass flux of the fuel component  $(m_{\rm G})$ , the steady-state mass flux of solid oxidizer  $(m_{\rm S})$  grows until it attains a maximum value at the limiting ratio  $m^* = m_{\rm S}^*/m_{\rm G}^*$ . Further increase in  $m_{\rm G}$  causes the kinetics of reaction to limit further consumption of reactants and leads to extinction. At the maximum point d  $m_{\rm S}/d$  m  $_{\rm G} = 0$ or d  $m_{\rm G}/d$  m = -m $_{\rm G}/m$  so that

$$\mathbf{E'} = \left[\frac{2m^{\#^2} - 1}{m^{\#^2}(1-m^{\#^2})} \frac{(1+\mathbf{L'}-m^{\#^2})^2}{\mathbf{L'}}\right]$$
(24)

where  $E' \equiv E/RT_{G}$  and  $L' \equiv L/C_{G}T_{G}$ .

In Table 1 we have computed E' for different values of m and L'.

Also for values of  $m^{*2}$  near unity Eq. (24) reduces to

$$\mathbf{E'} \cong \mathbf{L'}/(1-\mathsf{m}^{\div 2}) \tag{25}$$

It is apparent that the activation energy for the fuel-oxidant gas-phase reaction may be evaluated from the critical mass flux ratio m\*. An interesting application of this theoretical model is to be found in the pyrolysis measurements of polymethyl methacrylate (PMM) by McAlevy and coworkers.<sup>7</sup> In an experimental study involving a stream of oxygen impinging on the solid polymer, the linear regression rate of the polymer attained a maximum corresponding to a critical mass flux ratio of  $m^* = \frac{m^*}{S} / \frac{m^*}{G} = 1.5 \times 10^{-2}$ . Based on an effective endothermic heat of sublimation<sup>7</sup> of about 1000 cal/g one calculates by substitution into Eq. (25) an activation energy of 8 kcal/mole for the gas-phase combustion process of PMM-oxygen. As shown in a subsequent publication<sup>8</sup> we have used the HOFD theory in an evaluation of the reaction kinetics of the system ammonium perchlorate-catalyst-hydrocarbon. Further theoretical work is in progress to remove the restriction of  $m^* < 1$ from the analysis, so that the model may have applicability to a wider range of combustion systems.

### REFERENCES

| 1. | A. E. Potter and J. N. Butler, Amer. Rocket Soc. J. 29, 54 (1959).                                                                                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | D. B. Spalding, ibid. <u>31</u> , 763 (1961).                                                                                                                          |
| 3. | D. R. Spalding, Int. J. Heat Mass Transfer 2, 283 (1961).                                                                                                              |
| 4. | P. M. Chung, F. E. Fendell, and J. F. Holt, A.I.A.A. J. <u>4</u> , 1020 (1966).                                                                                        |
| 5. | F. E. Fendell, Astronaut Acta <u>13</u> , 183 (1967).                                                                                                                  |
| 6. | V. K. Jain and H. J. Mukunda, Combust. Sci. Technol. <u>1</u> , 105 (1969);<br>Int. J. Heat Mass Transfer <u>11</u> , 491 (1968).                                      |
| 7. | W. S. Blazowski, R. B. Cole, and R. F. McAlevy, III, Stevens Inst.<br>Technol., Tech. Report ME-RT 71004, June 1971.                                                   |
| 8. | S. H. Inami and H. Wise, "Solid Propellant Kinetics. III. Experi-<br>mental Study of the Opposed Flow Solid Propellant Diffusion Flame,"<br>ONR Report, December 1971. |
|    |                                                                                                                                                                        |

9

# Table 1

| (m*) <sup>2</sup> | E'   |      |      |      |       |  |  |  |  |  |  |
|-------------------|------|------|------|------|-------|--|--|--|--|--|--|
| L                 | 0.1  | 0.3  | 1    | 3    | 10    |  |  |  |  |  |  |
| 0.6               | 2.08 | 1.35 | 1.63 | 3.23 | 9.0   |  |  |  |  |  |  |
| 0.8               | 3.38 | 3.11 | 5.40 | 12.8 | 39.0  |  |  |  |  |  |  |
| 0.9               | 3.55 | 4.71 | 10.7 | 29.3 | 90.5  |  |  |  |  |  |  |
| 0.95              | 4.26 | 7.70 | 20.8 | 58.8 | 193.0 |  |  |  |  |  |  |

COMPUTATION OF E' (Eq. 24)

# LIST OF FIGURES

- 1. Flow Field in Heterogeneous Opposed Flow Diffusion Flame
- 2. Theoretical Relation between Mass Flux of Solid ( $m_S$ ) and Gas ( $m_G$ ) Reactants in the Heterogeneous Opposed Flow Diffusion Flame ( $m_e$  = extinction condition).







FIGURE 2 THEORETICAL RELATION BETWEEN MASS FLUX OF SOLID ( $m_S$ ) AND GAS ( $m_G$ ) REACTANTS IN THE HETEROGENEOUS OPPOSED FLOW DIFFUSION FLAME ( $m_e$  = extinction condition)