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I ABSTRACT

A generalized combat process is structured as a regular finite

;darkov chain with states reflecting the control, maneuver, target

- lacquisition, and target destruction actions of a weapons system. The

mean and variance of the first passage times to certain states and

the limiting distribution of the amount of time that the process remains

in a given state are suggested as being useful measures of the effective-

ness of a weapons system. Some statistical techniques for estimating

'it the one-step transition probabilities are given, and methods for

modeling deterministic and stochastic action times, i. e., the amount

of time that the process remains in a given state are presented. It is

also shown that the re-iprocai o1 ar. ckc.men of the mca. iii&b p; sRage

time matrix of the Markov chain model of the generalized combat

process can be defined af, the Lanchester attrition coefficient for a

square law combat process. The usefulness of this contribution to

the Lanchester theory of combat is discussed.
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L INTRODUCTION

The analysis of a military combat operation can be divided into

two general areas of interei.t, Emphasis can be placed either on the

decision making process or on the physical process. This thesis

describes an application of the mathematical theory of finite Markov

chains to the study of both of these aspects of a military combat opera-

tion. However, the greatest portion of the emphasis of this study will

be placed on the physical aspects of the combat process. Prior to

formulating the mathematical model, the rationale behind the approach

used will be explained and the purpose of the study will be established.

A. A MILITARY COMBAT OPERATION AND ITS GENERAL

ENVIRONMENT

Before beginning a study of the physical and decision making

aspects of a combat operation, it is appropriate to identify and briefly

explain the structure or framework within which a military weapons

system operates. Conceptually, any military weapons system can be

thought of as a man-machine system which operates in a specified

environment or space of operations. The term weapons system as

used in this thesis refers to a friendly weapons system. The term

target system as used in this thesis refers to an enemy weapons

system. This definition of the term target system does not mean to

imply that an enemy weapons system is the only possible type of target

system. Target and weapons systems can be categorized by type ac-

cording to their differing specialized functions or roles and the general

type of activities which they cowiduct. The geographic region where



weapons and target systems operate is called a space of operations.

A space of operations in its most general form is a finite three dimen-

sional, complex combination of weather, terrain, vegetation, and

bodies of water. The modern weapons system can be positioned in a

variety of spaces of operation separated by relatively large distances

within short time spans.

Individual weapons and target systems can be organized into either

larger systems or organizations of essentially homogeneous weapons

and target systems or into larger systems or organizations of pre-

dominately heterogeneous weapons and target systems in order to ac-

complish assigned tasks or missions. Between these two extremes

there can exist a continum of weapons system organizations. The

modern military commander allocates his weapons system organiza-

tions I, s5pciic spaccs cf opcrations baced on a predictLion or lorczat

of the number of target systems anticipated to be located in a given

space at a given time and on the number of weapons systems that he

has available in his weapons systems inventory at a given time. The

commander is continually evaluating the target system forecasts and

reallocating and reorganizing his wea.pons systems from his inventory

of reserves to his spaces of operations.

A weapons system which has been positioned in a given space of

operations requires continual inputs from support systems. A support

system is defined as any type of system which provides input resources

to a -"eapons system organization. Weapons systems use input re-

sources during the execution of a combat operation. Support systems

are external to the weapons system organization and can be in the

form of additional weapons systems which have varying types of control,

7
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maneuver, target acquisition, and target destruction sub-systems, or

they can be in the form of personnel and logistical systems. These

systems provide inputs that are used to augment and to sustain the

activities of the weapons systems. The inputs provided by personnel

and logistical systems consist of people, supplies, and equipment

needed to replace resources which have been expended during the

conduct of a combat operation. Personnel and logistical resources

are obtained from a relatively secure base space. These replace-

ment items then proceed along some route or system of routes and

eventually arrive in the space of operations.

Weapons systems which have been placed in a space of operations

can function in either specialized or generalized roles. For example,

a tank can function in an anti-aircraft role or in an anti-armor role

or in both roles. Thc manner in which a system operates in ary ne

of its roles is established by some type of standard operating pro-

cedures document. The number of roles which a weapons system

can execute is determined by the current state of technology.

However, regardless of the type of roles in which the weapons and

target systems are employed they generally are able to perform four

primary activities. These four primary activities are control, maneu-

ver, target acquisition, and target destruction. The definitions of

these activities will be given in the next chapter. An operation or a

sequence of these activities is not as definable as the activities-which

comprise it. The sequence and number of activities which occur

during an operation will vary depending on the mission statement, the

type of weapons system, and the type of target system. In order to

provide further clarification of the concepts which have been discussed,

8



a graphic depiction of a possible structure or frame work for the

combat process is given in Figure 1.

The preceeding discussion of a combat process and its environ-

ment establishes a basis for a more detailed qualitative and quantita-

tive analysis of the combat process. Prior to continuing the analysis,

the purpose and scope of this thesis will be established.

B. OBJECTIVE AND SCOPE

The purpose of this thesis is to present a mathematical model

which can be used to describe the activities comprising a military

combat operation. The model which will be used to describe a combat

operation should facilitate a clearer understanding of the combat

process and permit the development of measures of the effectiveness
-" "- we-apons system2 involved i this combat process. In the next

chapter the elements of a combat operation will be defined and ex-

plained in detail. The mathematical model of the combat process

will be formulated as a finite Markov chain. The properties of the

Markov chain model will be presented and a method of estimating

the transition probabilities will be given. The properties of the

model will then be used to develop measures of the effectiveness of

the systems involved in the combat process. Having introduced the

idea of a combat process in this chapter, the next chapter will pro-

vide a more definitive discussion of the combat process.
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Figure 1: Scheme of the interactions between weapons and target
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II. THE COMBAT PROCESS AND ITS STATES

The combat process, as previously described, involves weapons

systems, target systems, their assigned mission statements, and a

space of operations. As previously mentioned, the weapons and

target systems conduct four primary activities in the space of opera-

tions. They are control, maneuver, target acquisition, and target

destruction. This chapter will place most of its emphasis on analyz-

ing these four system outputs or activities. These system activities

are being emphasized because they represent the means by which a

system accomplishes its objectives or goals as established by assigned

mission statements. Having an understanding of these system outputs

will provide a rational basis for future studies on system inputs such

as personnel and logistical replacement items.

An important first step is to explicitly define and explain these

four output activities.

A. DEFINITIONS

The four primary activities of a weapons system are def:.ned as

follows:

The control activity consists of the set of all actions which cause

the weapons system to conduct all of its other activities in a purpose-

ful, coordinated, and procedural manner.

The maneuver activity consists of the following controlled actions:

preparation and occupation of a specified position, movement to or

from a specified position, and navigation of the weapons system as it

moves.
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The target acquisition activit, consists of the following controlled

actions: searching for a specified target system, evaluating a detected

target system, and maintaining surveillance of a specified target system.

The targe destruction activity consists of the following controlled

actions: firing at a specified target, adjusting the firing action, and

;. i assessing the amount of target destruction caused by firing at a speci-

fied target.

Each activity of a weapons or target system has a time associated

with it. This activity time is defined as the amount of time that elapses

during the conduct of any one of the four primary activities of a weapons

or target system.

The definitions of a weapons system and a target system are as

follows:

A weapons system ic an orgaruzcd, irierndly rnan-niachinc systcrri

which has sub-systems that conduct the following activities: control,

maneuver, target acquisition, and target destruction.

A target system is defined in this thesis as an enemy weapons

system. As previously mentioned weapons and target systems can be

organized or designed so as to accomplish either generalized or

specialized roles or functions with their sub-systems. The sub-systems

of weapons and target systems can conduct one or more of the four

primary activities.

B. EXPLANATION OF THE COMBAT PROCESS

These definitions and activities of a weapons system and a target

4system require further elaboration. Weapons and target systems con-

duct operations in order to attain objectives. However, the primary

12



objectives of both systems require that each system attempt to destroy

the other system while at the same time attempting to preserve itself.

During the conduct of an operation the activity time or the amount

of time required by a weapons or target system to accomplish an activ-

ity is not fixed. The amount of time required to conduct the activities

of the weapons system and target system will continually vary depend-

ing on the space of operations. The space of operations contains topo-

graphical, geological, hydrographical, botanical, and meteorological

factors which cause the activity times of the weapons systems and

target systems to vary. The actions and counteractions of both systems

also modify the activity times of each system.

As a weapons system conducts operations, it uses logistical and

personnel inputs. Since weapons and target systems often have limited

internal pc.bonnel and iogistical storage capic.ities. t*"'c *-M , Ltv , ,-f-,

inputs are either used immediately upon being issued to the weapons and

target systems or limited amounts are stored by the weapons and target

systems for future use. The amount of personnel and logistical inputs

required will depend on the effects of the missi-n statement, the space

of operations, and the target system.

In summary, the activity times or output times of both the weapons

and target systems depend on the interactions between the two systems,

the interactions between each of the systems and the space of operations,

and the interactions amnng each of the systems and their personnel and

logistical inputs.

In order for a weapons system to survive and to destroy the target

* fsystem in the space of operations, it executes all of its four primary

activities in some sequence. It is assumed that the dfinitions of the

13



four primary activities are such that no two activities can occur simul-

taneously. These definitions of the four primary activities are mutually

exclusive definitions and they also collectively exhaust the set of pos-

sible output actions of a weapons or a target system. The four primary

activities are conducted in accordance with the standard operating pro-

cedures which apply to a particular weapons system and the mission

statement which is in effect. The mission statement specifies the tasks

to be accomplished by the weapons system, the initial positions or ini-

tial space of responsibility in the space of operations, and the objec-

tives of the operation. These documents are flexible enough to permit

the weapons system to adapt to unexpected changes in its own activity

times, in the activity times of the target system, in the space of oper-

ations, and in the assigned missions.

C. ACTIVITIES AND STATES OF THE COMBAT PROCESS

The control activity will be the first activity to be discussed. The

mission statement assigns the weapons system a set of tasks to be

accomplished, a space of operations, initial positions or an initial

space of responsibility in the space of operations, and specifies the

objectives of the operation. The sub-system of the weapons system

that conducts the control activity then requires that the other svb-systems

of the weapons system communicate information concerning the detec-

tion of a target system, the maneuvering of the weapons system, "he

firing activities of the weapons system, an estimate of the amount of

damage to the target system, and an assessment of the status of the

weapons system's personnel and logistical needs. This information

concern:ng the activities of the weapons system is used by the control

14



sub-system in a decision making process. The output from this decision

making process is a set of instructions called a mission statement.

Each sub-system of the weapons system receives a mission statement.

If each sub-system of a weapons system executes its activities in ac-

cordance with its mission statement, then it is considered to be opera-

ting in a controlled and coordinated manner. This information which

is transmitted to the control sub-system is also used as a basis for

the allocation of adequate personnel and logistical inputs to the weapons

system. If the assigned tasks are not being accomplished as scheduled,

then the control sub-system must either ensure that there is a decrease

in the amount of time which elapses during the conduct of the activities

of the committed weapons systems or it mui;t ask for either a change

in its mission statement or for additional xeapons systems.

in other -rds, i. wcapont s , givcn a taz! and it Cor--

mences execution of this task. The control sub-system receives

progress information. This information is compared with stored in-

formation which the control sub-system has previously received con-

cerning what tasks the weapons system is capable of accomplishing

and the approximate amount of time required to complete an assigned

task. The control sub-system also has a knowledge of the procedures

which will be used by the weapons system to accomplish its assigned

tasks. If the weapons system is not operating as desired, then the

control sub-system transmits the appropriate mission statement

changes to the weapons system. These changes should cause the weap-

ons system to operate in the desired manner. Without proper control

the weapons system can not use its other activities to produce an ac-

complished mission.

15



Another important aspect of the control activity is adaptation. As

the weapons system conducts its control actions. it must properly

adapt its control actions to its environment in the space of operations

and to the actions of the target system.

The actions which comprise the maneuver activity will be defined

prior to discussing the target acquisition and destruction activities.

The ultimate purposes of maneuver are to position the weapons systems

so that they can maintain continuous surveillance of the target systems

*and to do so in such a manner that the target systems become relatively

isolated from their support systems. The weapons systems should then

be maneuvered against the target systermsin such a manner that the

weapons systems achieve a decisive advantage over the target systems

in terms of the relative activity times of the opposing systems. This

advantage can be attained either by rmneuvering a large nunber of

weapons systems with high activity times or by maneuvering a small

number of weapons systems with low activity times against the target

systems. The achievement of target acquisition and destruction is

related to the degree of activity time advantage that the weapons sys-

tems have over the target systems and to the length of time that this

advantage can be sustained. Upon completion of the target acquisition

and destruction phases, the weapons systems will normally continue

maneuvering in order to survive and to perform other missions.

Having established the purpose of maneuver, it is now appropriate

to describe the conduct of this activity. If the weapons system is in an

adequate position, then it is able to attempt target acquisition or de-

struction and it also has ensured itself some degree of survivability.

If the weapons system determines that it is in a position that does not

L 16



permit commencement of target acquisition and destruction and which

does not provide some degree of survivability, then it will move from

its current position to another position that does meet these require-

ments. The position that it moves to will be selected by the weapons

system and approved by control. As the weapons system moves, it

either maintains surveillance over the target or it continues to search

for the target as it moves. As the weapons system moves, it also

conducts a navigation action. This action is executed by the weapons

system in order to ensure that its movement actions are being made

in the proper direction. When the system determines that it is in its

selected position, some type of preparation is normally required in

order to ensure that target acquisition or destruction can commence

and that survivability is enhanced. An important aspect of this maneu-

ver activity is the proper adaptation of the manvuvt- actiols C,4 the

weapons system to its environment in the space of ope rations and to

the actions of the target system. This adaptation is essential if the

weapons system is to acquire and destroy the target and preclude its

own destruction. Adaptation and the ability to survive are functions

not only of the design of the system but of the manner in which the

system is employed in relation to the space of ope rations and the

target system.

The next activity to be discussed is target acquisition. If a weap-

ons system is not able to acquire targets, then it will have difficulty

destroying targets. The weapons system is assigned a search space

and is then positioned so that it can search this space. It either de-

termines that it has detected or it determines that it has not detected

a target system in its assigned space. This information is reported

17



to the control sub-system. If it has not detected a target system, it

is then either assigned a new search space or it remains in its present

search space and continues to search for a target. If it has detected

a target, then it should maintain surveillance over the target in order

to evaluate the target system. The information obtained from target

surveillance is also reported to the control sub-system which can

then either direct that the target destruction phase of the operation

begin or direct the weapons system to maintain further surveillance

over the target. An important aspect of target acquisition is also
adaptation. As the weapons system conductsits target acquisition

activity, it must properly adapt its target acquisition actions to its

environment in the space of operations and to the actions of the target

system.

The target destr'xi.ion phasc com.-.e s whie t*.e contrrol sulo-

system has adequate information on the target system and when all

necessary maneuver activities have been completed. A weapons

system which is located in an acceptable firing position is ready to

begin the execution of its target destruction activity. Since the target

has been under surveillance, sufficient information should be avail-

able to commence firing on the target. This firing action includes

such sub-actions as loading and aiming of the weapon and time of

flight of the projectile. The projectile or round may then be assessed

by the weapons system as having either hit or missed the target. If

a target miss is assessed, then some type of adjustment in the impact

point of the projectile may be made and the firing action undertaken

again. It should be realized that once a target is fired upon, it most

probably will either commence evasive actions or begin to fi re at the

.18



weapons system. If a miss occurs, the target can begin to maneuver

and this can result in the weapons system losing surveillance of the

target. This result may require the combat process to return to its

target acquisition phase. If the weapons system fires and assesses

that it has hit the target, then further assessment may be conducted

to determine if a target kill has occurred. The protection afforded

the target by either its design or by available terrain cover can pre-

clude its total destruction. If a target kill is not assessed, then the

firing action may be repeated. Again depending on the extent of the

damage the target may take some additional type of evasive or firing

action and the possibility exists for the loss of surveillance over the

target. If continual surveillance is maintained over the target, then

sufficient time should be available for the weapons system to fire, to

determine if a hit has occurred, and to de.ern . --±±-- j_" "'"e tar, o. "

been destroyed. Upon completing the destruction of the target, the

control sub-system is informed and the process normally will return

to the target acquisition phase. Another important aspect of target

destruction is adaptation. As the weapons system conducts its target

destruction activity, it must properly adapt its target destruction

actions to its environment in the space of operations and to the actions

of the target system. It should also be understood that target destruc-

tion in its most general connotation means that a weapons system has

performed some actions which have resulted in the target system

being unable to perform one or all of its activities.

The activities of the combat process are similar to the activities

which occur during the conduct of a competitive game. In competitive

and conflict processes the players are trying to defeat or destroy

19



their opponents while simultaneously attempting to avoid their own

defeat or destruction. In competitive and conflict processes varying

degrees of information are available to the players concerning the

results of operations.

It should be noted that throughout the previously mentioned opera-

tion the target system was also conducting the same activities with

its objective being to destroy the weapons system. These activities

of both systems can have either a positive or negative effect on all the

activity times t" each system. For example, consider the effect of

suppressive fire. If the target system's suppressive fire is effective,

it may i±crease all the activity times of the weapons system. If it is

.-ot effective, then it may decrease all the activity times of the weap-

ons system. This interaction between the target and weapons systems

is one of the !actors which affect the sta.e6 of Lhe comhat proc-Rs.

A typical combat operation scenario might be described by the

following sequence of activities:

Control

Maneuver

Control

Target Acquisition

Control

Maneuver

Control

Target Destruction

Control

Maneuver

Control

20



The combat operation that was just described is not necessarily

unique in the following sense: The activities could and probably will

occur in a differing sequence the next time an independent operation of

the same type is conducted. These differing sequences of activities are

due to the complexity of the combat process and to the numerous factors

involved. An attempt to attribute the outcome of the combat process to

any one factor or set of factors appears to be questionable with regards

to the validity of the results which follow from this type of snalysis. A

better method of analysis migbt be to carefully define the activities

which comprise an operation and then to observe the sequence of these

activities over the time period of a specified type of operation. This

experiment would be repeated for a spacified number of replications so

that the required data sample sizes can be obtained. The results of

is type ol exprirncsrticn can then be u ,d to I btain .. di t:ibutLcn

of the amount of time required to conduct a given activity and thus the

amount of time required to conduct the operation. This resulting dis-

tribution can be considered as a measure of the effectiveness of a weap-

ons system. A similar distribution could be obtained for the target

system under the same experimental conditions.

The combat operation which has been described has well defined

states with estimable probability distributions associated with the

transition from one state to another state. The transition from one

state to another state depends only on the present or current state of

the system. Also an initial state distribution of the system can be

easily obtained. Thus, this combat operation satisfies the general

urerequisites or assumptions which are required if a finite Markov

chain stochastic model is to be used to describe a combat operation.



Having defined and explained the combat operation qualitatively, it

is now appropriate to begin the development of a mathematical model

which will enable a combat operation to be described in an analytical

manner.

e

)
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III. FINITE MARKOV CHAIN MODEL OF THE COMBAT PROCESS

This chapter will present a finite Markov chain model which can

be used to describe a military combat operation. First, the definition

of a finite Markov chain will be given. The states of the finite Markov

chain model of the combat process will then be defined. A sequence

of activities for a typical combat operation will also be given. Using

this information it will then be possible to construct the one-step

transition probability matrix or the finite Markov chain model of the

combat process. This model which will be called Model I will be

constructed on the basis of the additional assumption that each of the

activities which comprise a combat operation will have equal activity
times. The effect of relaxing this assumption wiii en be invct;z -

ted. A new procedure for constructing the one-step transition prob-

ability matrix will then be presented. This procedure will permit

the construction of a one-step transition probability matrix when the

assumption of equal activity times does not hold. The one-step tran-

sition probability matrix which can be constructed by the use of this

procedure will then be presented. This model will be called Model II.

It will then be shown that some pertinent results from the theory of

finite Markov chains can be used to compute the mean and the variance
of the first passage time from an initial state s. to a state s.. The

specific first passage time which is of interest will be defined as the

first passage time from the control state s o to the damage assess-

ment state sl , This first passage time can be interpreted as being

a measure of the effectiveness of a weapons system. The reason for
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selecting the first passage time from the control state s o to the damage

assessment state SlZ will also be explained. It will then be shown that

some pertinent results from the theory of finite Markov chains can be

used to compute a probability statement concerning the number of

times in the first n steps that a finite Markov chain process is in a

specified state s.. The reason for interpreting this probability state-

ment as being another measure of the effectiveness of a weapons

system will then be explained. This presentation of two measures of

effectiveness for a weapons system will be followed by a short discus-

sion of some ways in which they can be used to aid in an analysis of

the combat process. Having outlined the content of this chapter

which describes the finite Markov chain model of the combat process,

it is appropriate to begin the presentation of this model by stating the

basic concepts upon which this n'u"cl Is based.

A. BASIC CONCEPTS OF MARKOV CHAINS

If a finite Markov chain model is to be used to describe a combat

operation or a combat process, then a combat operation must satisfy

the following definitions: If the stochastic process fn, n=0, 1, 2,.

where fn is a sequence of outcome functions with state space

s ,sit .Is is given, then this stochastic process is defined by

Kemeny and Snell [7] as a finite Markov process if the probability

statement P [n+lSn+l fo=So, •,fn=s = Pfn+l=s+l fn=S

is true for all so , s 1 , ... sn elements of the state space and for all

n=O, 1, 2,... elements of the index space. A Markov process is, there-

fore, a process in which a knowledge of the present outcome fn is all

that is needed in order to probabilistically predict the future outcome

24
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f n.1 All information concerning the past, i. e., the outcomes

to=So ' ' ' .fn - I = Sn-l may be ignored.

The one-step transition probabilities for a Markov process de-

noted by p. 1(n) are defined as pij(n)=P [fn+l=j I fn=S for all s.

and s. elements of the state space [7]. A finite Markov chain will be

defined as a finite Markov process such that the one-step transition

probabilities pij(n) do not depend on n, i.e., p ij(n)-p.. where n is

defined as a general element of the index space for the Markov chain

[7]. A finite Markov chain which satisfies this definition is often

called a homogeneous finite Markov chain with stationary

one-step transition probabilities. The index space for the finite

Markov chain is the set of all non-negative integers. If n=Z, for

example, then the process has taken its second step or second

transition. The amount of time that clape5 -- t' c prces in

any state is called the time unit of the process.

The matrix of transition probabilities pij will be denoted as P.

The special type of Markov chain that is to be used to model the

combat process is a regular finite Markov chain. A regular finite

Markov chain is a finite Markov chain that consists of a set of states

and a set of one-step transition probabilities. However, in a regular

finite Markov chain once the process has moved from state s I , it will

eventually return to state s. with probability one. This statement is1

true for all of the states of the state space. It is also possible for
the process to return to state si in n steps where n can be 1 or 2 or

3 or ... steps [3]. This type of Markov chain was selected because

it was felt that it was the most appropriate type of Markov chain

model which could be used to describe the combat process as it was

described in Chapters I and II of this thesis.
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B. FINITE MARKOV CHAIN MODEL OF THE COMBAT PROCESS

It will be assumed that the combat process, which was described

in the Chapters I and U, satisfies the definitions of a regular finite

Markov chain, i.e., the combat process can be described by a finite

number of states and a set of one-step transitions which connect these

states. Also, a one-step transition probability pij which is not a

function of n, can be associated with each possible transition. The

states of the combat process are defined as follows in terms of a

general weapons or target system:

The system is said to be in

state s o when it is executing a control action.

This single state comprises the complete control

activity of a weapons or target system.

The system is said to be in

state s I when it is executing a maneuver control action.

state s 2 when it is executing any type of movement action

state s3 when it is executing a movement evaluation or

navigation action.

state s4 when it is executing any type of preparation and

occupation of a position action.

These four states comprise the maneuver activity of a weapons or

target system.

The system is said to be in

state s 5 when it is executing a target acquisition control

action.

state when it is executing a target search action.
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state s7 when it is executing a target detection evaluation

action.

state s 8 when it is executing a target surveillance action.

These four states comprise the target acquisition activity of a weapons

or target system.

The system is said to be in

state s 9 when it is executing a fire control action.

state sl0 when it is executing a firing action.

state s11 when it is executing a fire adjustment action.

state slZ when it is executing a damage assessment action.

These four states comprise the target destruction activity of a weapons

or target system.

The combat operaLion which will be described by a finite Markov

chain model will consist of the following sequence of four activities:

control, maneuver, target acquisition, and target destruction. In

order to clarify the discussion that follows, an example of a typical

weapons system which could be conducting this type of combat opera-

tion will be presented. For example, suppose that the weapons system

being modeled is a tank. The control sub-system of the tank might

consist of those components of the tank's radio communications equip-

ment which are capable of communicating with a control headquarters

external to the tank. The mane-.ver sub-system of the tank might con-

sist of the tank commander, the propulsion system, and the tank

commander's compass. The target acquisition sub-system of the

tank might consist of the eyes of the tank commander. The fire control

sub-system might consist of the tank commander and the main tank
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gun. The description of the tank sub-systems which has just been

given is not meant to be a unique description of the tank sub-systems.

It merely represents a possible description of the tank sub-systems.

These tank sub-systems execute tLe set of all actions which

comprise the combat ope ration to be modeled. Figure Z gives a

pictorial representation of the states of the combat operation being

modeled and a typical set of one-step transitions connecting these

states. The arrows in Figure 2 represent tbh directions of possible

one-step transitions connecting the states. A one-step transition

probability is associated with each arrow. A time unit is associated

with each state. This time unit represents the amount of time that

elapses between the transitions of the combat process. The sequence

of transitions between the states given in Figure 2 is not meant to be

a unique drscript!ior. 1,f all ter. S-cc.1ic z-cQuences of trnsitiors. It

merely represents a possible description of the sequence of transitions

between the states of the combat process. The states and sequence of

transitions given in Figure 2 are based on the discussions of the

combat process which are included in Chapters I and IL

Using the information which has just been given concerning a

typical combat operation, it is now possible to construct the one-step

transition probability matrix or the finite Markov chain model of this

combat process. A typical transition matrix for a regular finite

Markov chain model of the combat process is given in Figure 3. The

elements of this matrix are the one-step transition rrobabilities. The

.one-step transition probability pij denotes the probability of passing

from state s. to s. in one time step. One time step or time unit for

the combat process will be assumed to represent the passage of ten
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A

PREPARATION AND OCCUPATION
OF A POSITION

3 NAVIGATION

2 MOVEMENT

1 MANEUVER CONTROL

S CU&N"YOL

TARGET ACQUISITION 5 9 FIRE CONTROL
CONTROL

SEARCHING 6 10 FIRING

DETECTION
EVALUATION 7 11 FIRE ADJUSTMENT

SURVEILLANCE 8 12 DAMAGEASSESSMENT

Figure 2: States of the combat process and typical one-step
transitions between these states.
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STATES

o 1 2 3 s4 5 s6 s7 s8 s9 s10 S11 s12

0 0 0 0 5
0  0 0 9  0 0 0; SO P10509

S1 PlO0P2 0 0 0 0 0 0 0 0 0 0

2 0 0 0 p 2 3
0 0 0000 0 0 0

op 1  Op 00003  0 P31 0 0 P34 0 0 0 0 0 0 0 0

S4 0 p 4 1
0  0 0 0 0 0 0 0 0 0 0

T
A s5 P5 0  0 0 0 0 0P56 0 0 0 0 0 0

T
E s 6  0 0 0 0 00 0 P6 7 

0  0 0 0 0

s 7  00 0 0 0 P7 5  
0  0 P7 8 

0  0 0 0

S8  0 0 0 0 0 P8 5 
0  0 0 0 0 0 0

s 9 P9 0  
0  0 0 0 0 0 0 00 P9 10  0 0

s10 0 0 0 0 0 0 0 0 0 0p 1 0 1 0

811 0 0 0 0 0 0 0 0 p 1 1 9  
0  o P1 1 1 2

s12 0 0 0 0 0 0 0 0 P12 9  0 
0  0

Figure 3: One-step transition probability matrix for a
regular finite Markov chain model of the

combat process
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minutes of actual time. The sum of the one-step transition probabili-

ties in each row of the matrix is one. The one-step transition prob-

ability matrix given in Figure 3 was constructed on the basis of the

information which was given in this chapter concerning finite Markov

chain models. The size of this matrix is thirteen by thirteen. This

size is determined by the number of states which comprise the combat

process. The one-step transition probabilities pij do not depend on n

where n is a general element of the index space of the Markov chain.

This model will be called Model I. One of the assumptions which bad

to be satisfied in order to construct Model I was the assumption that

in the combat process the one-step transition probabilities p.j(n) can

be defined as Pij"

Suppose that the assumption that Pij(n)=Pi j does not hold. For

exampie, an actual military combat upera1t-i) nni.i 'n bc ;-

such a manner that each of the activity times is not of equal duration.

If this is the case, and a Markov chain model is used to describe this

operation, then the one-step transition probabilities given in Model I

will become P.j(n). In other words, the amount of time which elapses

between the nth and the n+l st step is not a constant. The time unit

is, thus, a different size for each state and, therefore, the one-step

transition probabilities will depend on n. If this situation occurs,

then it will not be possible to model the combat process with a regular

finite Markov chain model. The one-step tran.ition probability matrix

given in Figure 3 needs to be modified so that the one-step transition

probabilities pij(n) can again be assumed to be one-step transition

probabilities pij which are not a function of n. A method will now be

given which will permit the coi;ftruction of a one-step transition
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probability matrix such that the one-step transition probabilities are

not a function of n, i. e., so that different states may have different

action times.

It will be assamed that the combat operation which is to be

modeled is identical to the one that was described by Model I. The

only exception to this assumption is that the activity times will no

longer be assumed to be equal. It will also be assumed that each of

the activities has a finite determinate activity time. An algorithm

will now be presented which will permit the construction of a one-step

transition probability matrix such that the one-step transition prob-

abilities are no longer a function of n. In order to provide a clearer

understanding of the algorithm, the one-step transition probability

matrix for only the movement state s? , the navigation state s3 , and

the preparation and occupation of a p.v:i_,ion state s ;iii be conLAr,-

ted. The steps of this algorithm can be repeated for each of the re-

maining states of the combat process and a one-step transition

probability matrix P will result such that the one-step transition

probabilities Pij can be assumed to be independent of n. Figure 4

pictorially represents the one-step transition probability matrix

which can be constructed by the use of this algorithm.

1. The first step in the construction of the transition matrix is

to select an appropriate time unit for the transition matrix. Suppose

that the action time or the amount of time which elapses during the

conduct of the actions that comprise each of the states is as follows:

(a) for state s 2 it is given as ten minutes,

(b) for state s 3 it is given as eight minutes,

(c) for state s4 it is given as two minutes.
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STATES

5 .. S S S TSASTS S S S S S8
so s21 s22 s23 s24 s25 s31 s32 s33 s34 s41 • 12

s
0

s21 0 1 0 0 0 0 0 0 0 0

s22 0 0 1 0 0 0 0 0 0 0
s23 0 0 0 1 0 0 0 0 0 0

s24 0 0 0 0 1 0 0 0 0 0

S. 0 0 0 0 0 0 0 0 0.

A s 0 0 0 0 0 0 0 0 0.

S s32

s33 0 0 0 0 0 0 0 0 1 0
83

s34 0 0 0 0 0 0 0 0 0 P34s s410 0 0 0 0 0 0 0 0 0

s12

Figure 4: Modified one-step transition probability matrix
for a regular finite Markov chain model of the
combat process with determinate action times
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The time unit which should be used is that number which is the greatest

common divisor of all of the given action times. For this example the

time unit is two minutes.

2. The action time for each of the states given in this example

will now be divided by the time unit of two minutes. The quotients

which result represent the number of sub-states that will comprise

one original state of the combat process. In other words, the original

state s z has now been divided into the following set of sub-states:

£521' S22, S2 3 P %2' 525} A similar set of sub-states results

for state s3 and state s 4 . The resulting one-step transition probability

matrix is given in Figure 4.

Another modification of the one-step transition probability matrix

given for Model I can result when the activity times are no longer

assuilied Lo be equal. This mnodiiicato-z assumes thrLaL ea.-, of the

activities has a continuous activity time probability distribution as-

sociated with it. An algorithm will be presented which will permit

the construction of a one-step transition probability matrix. In order

to provide a clearer understanding of the algorithm, the one-step

transition probability matrix for only the navigation state 53 will be

constructed. The steps of this algorithm can be repeated for each of

the remaining states of the combat process and a one-step transition

probability matrix P will result such that the one-step transition

probabilities Pij can be assumed to be independent of n. Figure 5

pictorially represents the one-step transition probability matrix

which can be constructed by the use of this algor'.thm.

1. The first step in the construction of the transition matrix is

to select an appropriate time unit for the transition matrix. Suppose
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STATE S

s0 8 1 s 2 5 s3 1  s32 s33 s34 s3 5  s41 • .Sl1 s 1 2

s

s1

s25 0 P2531 0 0 0 0 0

s31 0 0 P3132 0  0 0 0

S s32  0 0 0 P3233 0 0 P3241
T
A s33 0 0 0 0 P35 34  0 P3341
T
E s 3 4  0 0 0 0 0 P3435P344
S

S 35  0 0 0 0 0 0 P3 54 1

8 41

811

s12

Figure 5: Modified one-step transition probability matrix
for a regular finite Mrkov chain model of the

combat process with stochastic action times
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that the action time or the amount of time which elapses during the

conduct of the actions that comprise state s3 is known to be ten

minutes. A time unit should be selected which gives an adequate

amount of information concerning the amount of time that the process

remains in state s 3 and a time unit which does not cause the transition

matrix to become so large that it exceeds the storage capacity of the

computer being used. Suppose a time unit of two minutes is selected.

This time unit represents the amount of time which elapses between

each iteration or transition of the process. The selection of the time

unit in this algorithm represents an approximation of the continuous

probability distribution of the amount of time that the process remains

in a state by a discrete probability distribution.

2. The action time of ten minutes will now be divided by the time

unit of two minutes. Tht: resulting -,mb,-r is fivc. Tht nwhber

represents the number of sub-states that will comprise one original

state of the combat process. In other words, the original state s 3

has now been divided into the following set of sub-states:

S 3 1  S35}• The resulting one-step transition3 , 32s33' s34' 5

probability matrix is given in Figure 5. These extensions of basic

Markov chain theory have modified the one-step transition probabilities

in such a manner that the one-step transition probabilities are again

independent of n. As previously mentioned, the steps of these

algorithms can be repeated for each of the remaining states of the

combat process and a one-step transition probability matrix P will

result. The matrix P which is given in Figure 5 will be called

Model II. The one-step transition probabilities which could be con-

tained in Model II are not meant to be a unique der'cription of all the
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possible sequences of transitions. They merely represent a possible

description of the sequences of transitions between the states of the

combat process. The states and sequence of transitions which could

be described by Model II are based on the discussions of the combat

process which were given in Chapters I and II.

C. MEASURE OF EFFECTIVENESS

This section will present two useful measures of the effectiveness

of a weapons system. Also, some pertinent results from the theory

of finite Markov chains will be presented. These theoretical results

will permit the computation of the measures of weapons systems'

effectiveness. Prior to presenting the formulas which can be used

to compute these measures of effectiveness, it is appropriate to

,:-'ine i n'.a ra ef cffectiveness. A rneag-ire of

the effectiveness of a weapons system will be defined as a mathemati-

cal function which is a quantitative measure of how effectively a

weapons system operates as it attempts to attain its primary objec-

tive, which is to destroy the target system.

The first measures of effectiveness which can be obtained from

the finite Markov chain models of the combat process are the ma-

trices of the mean and variance of the first passage times. The first

passage time which is of primary interest is the first passage time

from the control state s 0 to the damage assessment state s lZ' If the

combat process begins in the control state s0 and then passes to the

'damage assessment state slZ according to the one-step transition

probabilities given in Model I, it will have conducted a set of actions

that should result in some type of damage being inflicted on the target

37



system. When the weapons system has inflicted this damage, it then

attempts to assess this damagL. The assessment of target damage

can be considered as being the final action which must be accomplished

by a weapons system. The completion of this action implies that the

weapons system has accomplished its objective of destroying the target

system. Therefore, the mean first passage time from the control

state s to the damage assessment state siz is a measure of the aver-

age amount of time that elapses as a weapons system attains its pri-

mary objective. This measure can be interpreted as being a measure

of how effectively a weapons system operates as it attains its primary

objective. Prior to presenting the formulas which will permit com-

putation of the mean and variance of the first passage time from state

s to state sl2, a brief discussion of some pertinent results from the

theory of finitc Markov chi:,,s wil hr- givcn. 'Thc use of .-Liii fheoc'v

can enable the computation of the mean and the variance of the first

passage time matrices.

It may be shown that for a regular finite Markov chain the first

passage time f. is a function whose value is the number of steps before

entering state s. for the first time after departing state s.. This

statement is true for all i, j indexes of the state space. The mean

first passage time matrix denoted by M is the matrix with entries

m.. defined to be equivalent to the expected value of the first passage
-5 13

time function f.. For any i, an index of the state space, the expected
3

value of the function f is finite. If a is the limiting probability vector
for the transition matrix P, then m..=I/a. where a. is an arbitrary

11 1 1

element of the limiting probability vector a. If P is a regular tran-

sition matrix, then Pn will approach a limiting probability matrix A
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as n approaches infinity. Each row of the matrix A is the same limit-

ing probability vector a. In order to compute the mean first passage

matrix M, the fundamental matrix of a regular Markov chain must be

known. If P is the transition matrix for a regular Markov chain and

A is the limiting matrix, then it can be shown that the fundamental

matrix Z for a regular finite Markov chain can be defined as

(I -(P - A)) - '. This fundamental matrix Z can also be defined as

I + E (1:P - A) where I is the identity matrix. These results have

been shown by Kemeny and Snell [7]. These results may be used to

compute the mean first passage matrix M. The matrix M is defined

as being equal to the quantity (I - Z + EZdg) where D is the diagonal

matrix with diagonal elements d.. = i/a i , E is a matrix of unit elements,

and the matrix Z dg results from the matrix Z by setting off-diagonal

entries ,equal iu

In order to compute the variance of the first passage times, the

matrix Z must again be used. It will also be necessary to make use of

the fact that the variance of the first passage time f. for any state s.3 i

where i is an index of the state space is given by the following equation:

Vari(f.) = E.(f )- (Ei(f.))

Since the value of E.(f.) or the expected value of the first passage time
IL3

f. is known, it is only necessary to find Ei(f.) or the expected value of3 13

the first passage time f2 . The matrix of all the expected values of
3

the first passage times f. will be denoted as It can be

shown that the matrix W = M( Z dg D - I) + Z(ZM - E(ZM)dg) where

all of the matrices in this equation are as previously defined. This

statement implies that the variance matrix which will be defined as V
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is equivalent to and is equal toW - M where M results

IVari 3)1 -- - sq -sq

by squaring each entry of M. These results also have been shown by

Kemeny and Snell [7].

By using the results which have just been presented, it is possible

to compute the mean and the variance of the first pas sage time from

the control state s o to the damage assessment state s12 for the one-

step transition probability matrix P.

A second measure of the effectiveness of a weapons systen which

can be computed by using a set of probability statements concerning

the number of times in the first n-steps that the process is in an

arbitrary state sj will be presentud in thi;s section. If a probability

statement is made concerning the number of times in the first n steps

that the combat process is in an arbitrary state s then it can also be

corsfiut-if ior all s--tets. Hf ile ihj~ ute of the nrovsi-a --05 al= w~

then it will be possible to determine the amount of time that the com-

bat process remains in each one of the states. These probability

statements will, therefore, aid in determining which set of the actions

of a weapons system require the greatest amount of time to accom-

plish. If the judgment and experiance of the analyst indicate that the

amount of time which is spent in a state is too long, then a need for

further analysis might be required. Either the weapons system is

improperly organized, i.e., it is the wrong type of weapons system,

or a sufficient number of the right type of weapons systems are not

available to accomplish the assigned tasks. Also, the level of the

intensity of combat might be such that it is physically impossible to

acquire more targets. Since these probability statements provide a

quantitative measure of how effectively a weapons system operates as
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it attempts to attain its primary objective, they can be interpreted as

being a useful measure of the effectiveness of a weapons system. In

order to compute these probability statements, a brief discussion of

some pertinent results from the theory of finite Markov chains will

be given. The use of this theory can enable the computation of these

probability statements.

It rnvy be shown for a regular finite Markov chain model that if

there exists a regular finite Markov chain with limiting probability

vector a, thert for any initial probability vector b the mean fraction

of times in the first n steps that the process mcves to state s. ap-

proaches a. as n approaches infinity. The limiting probability vector
J

a has been previously defined; however, it should be noted that it is

equivalent to the following notation: Ia 2 , a..., a.,n..., a a

wbeore a. :-is an arbitrary ee meni -f the n-dimensional vector. TheJ

initial probability vector b is a probability vector which defines the

probabilities of the process being in each one of the states of the

combat process at the start of the process.

This limiting result and the following limiting results are being

presented so that the analyst will have a better understanding of the

central limit theorem of Markov chains. This central limit theorem

permits the computation of limiting probability statements concerning

the number of times that the combat process is in the state s. in the~J

first n steps.

Let f be a function defined on the states of a regular chain and let

this function be denoted as f(s.) f. Also let f(n) be the value of this

function on the n-th step. Then the lirniting variance of f can be denoted

as the lim 1 Var, Z f(k)C . This variance can be shown to be
n-open - k=l
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defined as being equivalent to c k f.c..f.1 + E ai fi.)

where f is a function that takes on the value I with probability f. in1

state s. and is 0 otherwise. In order to compute the limiting vari-
2

ances, the variance-covariance matrix C must be known. This

matrix can be obtained from previous results and is given by the

following formula:

C =A Z+ Ai-A A-AA
-dg- [-dg-' -dg- -- dg

All of the elements of this matrix have been previously defined with

the following exception: A' denotes the transpose of the matrix A. An

arbitrary element of the matrix C is the element c... The limiting

variances are the diagonal elements cj of this matrix C.

It is now possible to state the central limit theorem of regular

finite Markov chains. Por an crgcdic 'hai.., that is, a chain ill w'-:_i

it is possible to go from every state to every other state, let y(n)

be the number of times that the process is in state s. in the first n

steps. Also, let a = (aj be the fixed limiting probability vector and

let c = Ic3j} be the vector of limiting variances. Then if c j is not

equal to zero for any numbers r < s, the probability statement which

is denoted as P r y ( _ approaches a standard normal

s Z
cumulative distribution function denoted as 1 e- I

as n approaches infinity for any choice of starting state k [7].

By using these results, it is possible to compute a set of prob-

ability statements which state that in the first n steps the occurrence

of a particular state s. will with a certain probability not deviate

4
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from a certain mean number of steps by more than a certain number

of deviation steps. This type of probability statement can be computed

for each of the states of the combat process.

The next section of this chapter will present some examples of

how these two measures of effectiveness can be used to aid in the

analysis of a combat process.

D. APPLICATIONS OF MEASURES OF EFFECTIVENESS

If two weapons systems are to be compared, the analyst normally

desires to know if one weapons system is better than another weapons

system. These weapons systems can be compared by using a measure

of the weapons systems' effectiveness. The specific measures of

weapons systems' effectiveness which can be used to compare two

weapons zjyztcm are t..e =ican and thp ,-, riace of the first passage

times from the control state to the damage assessment state for both

weapons systems. The mean and variance matrices M and V of the

first passage times w~ll probably depend on the following factors for

each of the weapons systems: the type of target system, the weapons

system's mission, the target system's mission, the type of space of

operations, and the initial positions of both weapons in the space of

operation. These reiationships follow from the fact that the trarw~tiol

matrix P was a function of the above factors. If all of the above factors

which determine the mean and variance of the first passage time are

fixed with the exception of the type of weapons systems, then two

weapons systems can be compared in terms of the mean and variance

of the first passage times. This use of the mean and variance of the

first passage time measures of effectiveness is one example of an

43



application of these measures of !ffectiveness. An example of an

application of the liraiting probability statement measure of effective-

ness will be given next.

The limiting probability statements enable the analyst to make a

quantitative statement concerning the number of times in the first n

steps that the combat process is in an arbitrary state s.. A limiting

probability statement can be computed for all of the states of the

combat process. As previously mentioned, if the time unit of the

process is known, then it will be possible to determine the amount of

time that the combat process remains in each one of the states. These

probability statements will, therefore, aid in determining which set

of the actions of a weapons system require the greatest amount of

,' accomplish. For example, it should be expected that a ca.n-

-iderable amount of time will be spent in the conLr ,! state s 0. Thiso

does not necessarily represent an inefficiency on the part of the weap-

ons system. However, if the judgment and experience of the analyst

indicate that the amount of time which is spent in the target acquisition

states as opposed to the target destruction states is too long, then a

need for further analysis might be required. Either the weapons

system is improperly organized, i. e., it is the wrong type of weapons

system or a sufficient number of the 'right type o" weapons systems

are not available, or the level of intensity of combat is such that it is

physically impossible to acqcdre more targets. The probable answer

to a problem such as this lies somewhere between the organization or

design of the weapons system and the number of the correct types of

weapon. systems. This use of the limiting probability statements is

merely one example of their application in the field of weapons systems

analysis.
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These two measures of effectiveness can also be used to aid in the

analysis of target systems. This type of analysis can be quite useful

because it not only indicates the ability of the weapons system to sur-

vive, but it also indicates some possible strengths and weaknesses

that a target system might have in comparison to a givc.i weapons

, system.

The versatility of this regular finite Markov chain model of the

combat process is a direct consequence of the ability of the one-step

transition probabilities to realistically describe the combat process.

These one-step transition probabilities can be obtained from data

which is obtained from a variety of sources. The interpretations and

conclusions which can be inferred from the model follow directly

from the estimated values of the one-step transition probabilities.

Consequenly, the subject of estim, mtic, of ;he one-stcp trancition

probabilities is important for without good estimates of the one-step

I transition probabilities, useful results probably will not be obtained

I from the model.
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IV. DATA SOURCES AND ONE-STEP TRANSITION
PROBABILITY ESTIMATION

The finite Markov chain model as described in Chapter HI con-

sisted of a transition matrix P. This chapter will present some

statistical procedures which could be used to estimate the one-step

transition probabilities for a typical weapons system and some pos-

sible sources from which data may be obtained. This chapter will

also present a method for constructing a transition matrix P.

A. SOURCES OF DATA

In order to estimate the one-step transition probabilities of the

finite Mi rk.ov chain model, the weapons systems analyst would like to

obtain data under controlled experimental conditions; however, this is

not always possible, and data from other types of data sources may

have to be used. It is the purpose of this section to briefly mention

some possible sources of data on a tank weapons system whose actions

can be modeled by the use of a regular finite Markov chain.

Data on tank and armor operations in general can be obtained

from the records of the official history of the United States Army.

Private historical records of armor operations are also available.

The works of Fuller [4], Hart [6], Rommel [11], and Guderian [5]

are some possible sources of data. Another means of obtaining data

,.on armor combat operations is to conduct combat interviews of the

types which have been conducted by S. L.A. Marshall [9]. These in-

terviews can be conducted with individuals or with groups of individuals.

The quality of the data obtained from a combat interview is quite
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variable due to the fact that the individuals being interviewed are or

have been under the stresses of combat. Data which has been collected

from the sources that were just mentioned can be interpreted as being

uncontrolled data. In other words, no experimental controls were in

e fie ct.

The next data sources which will be mentioned represent data

sources which provide data that has been collected under conditions

where some degree of control may possibly have been imposed. Data

can be obtained from military organizations which are not involved in

the actual conduct of combat operations. These organizations are

normally conducting some type of training for possible combat opera-

tions. United States Army armor units in Europe and the continental

United States are typical examples of this type of organization. They

could be the source of extensive amounts of data which can b c!ect..d

during the conduct of training exercises in which these anits participate.

The next two sources of data that will be mentioned can provide

data which has been obtained under experimental conditions. These

two sources can be separated into two broad categories. They are

research and development orgp.nizations and test and evaluation organi-

zations. Typical examples of these types of organizations are the

United States Army Materiel Command and the Human Resources

Research Organization.

Other possible sources of data that has been obtained undo:", experi-

mental conditions are management science, operations research, and

systems analysis organizations. These organizations obtain most of

the data which they use from the data sources that have been previously

mentioned. However, they also generate data by the use of mathematical
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models and computer simulations. Typical examuples of this type of

organization are the United States Army's Combat Developn s

Command and organizations such as the Research Analysis Corporation.

These sources of data are representative of the type of organiza-

tions which can provide information on a tank weapons system. This

list could be made more extensive in nature if a specific problem were

being addressed. These sources of data have been discussed in very

general terms so that the weapons systems analyst with a more specific

problem might benefit from a broad overview of some of the sources of

data for a tank weapons system.

Having briefly discussed data sources, one important use of this

data will be presented in the next section.

B. ESTIMATION OF ONF-STF.P TRANSITION Y AOBABILITIES

The models of the combat process that were presented in Chapter

IH describe the actions of a weapons system which is conducting a

combat operation. The weapons and target systems are both assumed

to operate in such a manner that their actions can be described by the

previously mentioned thirteen states of a regular finite Markov Chain.

The subject of estimation of the one-step transiton probabilities can

be divided into two parts. The first part is concerned with the esti-

mation of the amount of time that the process remains in a given state

once it arrives in the given state. The second part Is concerned with

the estimation of the probability of transitioning from a given state to

another state or set of states.

The amount of time that the actions of a system are in a given

state s. between transitions is a random variable which shall be
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designated as T. A random sample T 1 , T 2 , .. T n can be obtained

from data. The sample mean and the sample variance can be com-

puted. The distribution of the random variable T can be estimated

by the use of standard statistical techniques and available data. The

next task is to develop a method for estimating the one-step transition

probabilities.

The estimation of the one-step transition probabilities for a

regular Markov chain transition matrix can be accomplished by the

use of the statistical procedures which follow and available data. The state

space for the combat process is denoted as S where S is defined as the

set of, s 1, S,..., Sl . The random variable X. will be defined as

a function X. which maps its domain S onto euclidian one-space as

follows: Xi(s) will be defined as 1 if s = s.. It will be defined as 0

s where i .O...r. . . The rarCm vector X will be defined

as a thirteen dimensional random vector x , x 1 , x.... X 2 } . The

probability mass function associated with the random vector X is

defined as

12
where E x. = 1. The random vector X is often called a n-dimen-

i=O 1

sional Bernoulli random vector. A realization of X or a multinomial

trial results ia the process passing from one initial state to one and

only one final state in one time step of the process. The likelihood

function for the random vectors X ... X where X.'s are
-n -1

independent and identically distributed random vectors is

n
Yo yl Y2  Y1 2  y ' .L(ofPlPZ,"",P1 2)=p0  p1  p2  ...p12  ,i.e., ij

i= 1
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where y. is defined as the number of times that the process is in the

state s. in the first n steps and j = 0, 1, ... ,12. Standard techniques of

the calculus are used to maximize this function. The vector of transi-

tion probabilities p which is defined as (po, P 1 9P' ""p1 2 ) will be
A

estimated by the vector p = (yo/n. yl/n, y, lZ/n) where n is the

sample size. If the estimation of p is to be in accordance with the

idea of conditional transition probabilities, then the following sampling

procedure must be used: An independent and identically distributed

observation for a given initial state s. can only be obtained when the1

combat process can be described as being in the initial state s.. This1

statement implies that a family of thirteen probability mass functions

can be obtained. Only thirteen probability mass functions are required

because it will be assumed that the process passes to the same state

or set of states regardless o how long i. remains ix a given iix-it

state. This assumption can be rdlaxed if a more sophisticated samp-

ling plan is used.

The estimation procedures which have been discussed are suf-

ficient to permit the estimation of all of the one-step transition prob-

abilities of the regular finite Markov chain transition matrix. A

method will now be given which can be used to construct the transition

matrix P when stocl-astic activity times are being modeled.

C. CONSTRUCTION OF A TRANSITION MATRIX

In this section a method will be presented for constructing a one-

step transition probability matrix. For illustrative purposes the steps

of this method will only be used to construct the transition matrix for

the navigation state s 3 . The steps of this method can be repeated for
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each of the other states of the combat process in order to construct the

complete transition matrix P. The action time T for the state s3 will

be assumed to be a random variable with an exponential distribution.

The probability density function of the exponential distribution is

given by the equation f(t) = where r is the rate at which transi-

tions occur. The mean of this distribution is l/r. Since the transi..

tions between the states of a finite Markov chain occur at discrete

points in time, this continuous distribution of the action time may be

approximated by a geometric distribution with a probability distribu-

tion given by the equation p(t) = p(l-p) t - 2 for t = Z, 3..... The mean

of this distribution is 1 + - The geometric distribution will be fittedP

to the exponential distribution by equating the means of the two dis-

tributions permitting the value of p to be computed in terms of r.

The value for the paLaieter p of thc ...... .""Z,;

as r/(l-r). The transition matrix for the navigation state s 3 can be

constructed as depicted in Figure 6. Assuming that the mean action

time I/r is known, then this value for p represents the probability of

transitioning from state s31 to state s

This chapter has presented a discussion on some possible sources

from which data can be obtained. Some statistical procedures were

also presented which can be used in conjunction with data in order to

estimate the one-step transition probabilities of the regular finite

Markov chain model. This chapter also presented a method for con-

structing a transition matrix P. The next chapter will compare the

finite Markov chain model to another probability model which can be

used to describe the combat process and it will also discuss some

possible extensions of the finite Markov chain model presented in this

the sis.
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T 31i- p 0
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E

S4 0 0

s 10

s 11

12L

Figure 6: A portion of the transition probability matrix for
the Markov chain model where state s 3 has an
exponentially distributed action time

52



V. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this thesis as outlined in the introductory remarks

was to develop a method for analyzing the combat stochastic process.

The regular Markov chain model which was presented should aid in

the analysis of the combat process and provide measures of effective-

ness of the weapons systems involved in the combat process. In this

chapter the degree to which the original purpose of the thesis was ac-

complished wili be examined. It will also be shown that the reciprocal

of the mean first passage time from the control state s0 to the target

destruction state s12 can be defined as the Lanchester attrition co-

efficient for a square law combat process. The manner in which the

model caii 6e extendekd to ot-.cr sit-uaiions wili 'Ue ,entior.d aza qn-e

possible areas of future work will be suggested.

A. ACCOMPLISHMENTS

This section will briefly review and discuss the two quantitative

measures of effectiveness of a weapons system which were presented

in Chapter III. These two measures of effectiveness can be obtained

( from the mathematical model which was used to describe the combat

process.

From the regular Markov chain model of the combat process, it

is possible to obtain an estimate of the mean and the variance of the

first passage time from the control state s to the damage assess-

ment state s.2. This mean first passage time can be considered to

be a measure of the effectiveness of a weapons system for the following
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reason: Consider a weapons system which was initially in the control

state s o . This weapons system then perforrms a set of actions that

result in some type of damage being inflicted on the target. When the

weapons system has inflicted this damage, it then attempts to assess

this damage. The assessment of target damage can be considered as

being the final action which must be accomplished by a weapons system.

The completion of this action implies that the weapons system has ac-

complished its objective of destroying the target system. In other

words, the mean first passage time is a measure of the average amount

of time that elapses as a weapons system attains its primary objective.

This measure can, therefore, be interpreted as f,' .ig a measure of

how effectively a weapons system operates as it attains its primary

objective.

AnoLher neasure cX the effectiveness of a wcapons -Ysten. .-hiA

qi can be obtained from the model is a set of probability statements con-

cerning the number of times in :.he first n steps hat the process is in

an arbitrary state s.. These probability statements can be obtained

for each one of the states of the combat process by applying the Central

Limit Theorem of Markov chains to the comIaE process. These prob-

ability statements provide a means by which the activity times of a

weapons system can be quantitatively analyzed.

Both of these measures of the effectiveness should not be used

without a clear understanding of the experimental context from which

the transition probabilities of the model were estimated. If the analyst

requires additional measures of the effectiveness in order to adequately

analyze a weapons system, then extensions of the model might be help-

ful. Prior to considering extensions of the finite Markov chain model,
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it will be shown that the reciprocal of the mean first passage time

from the control state to the damage assessment state can be defined

as being the Lanchester attrition coefficient for a square law combat

process. The significance of this contribution to the Lanchester

theory of combat will also he discussed.

] B. CONTRIBUTIONS TO THE LANCHESTER THEORY OF COMBAT

The Lanchester theory of combat proposes that combat between

two homogeneous forces can be modeled using the following set of

ordinary differential equations:
dt -ay(t) (0) and - =- bx(t) (1)

These equations model what is known as a deterministic Lanchester

squtare law process with parameters a and b. These parameters are

often called the Lanchester square law attrition coeffic:ients. Thie

attrition coefficient a is defined as the average rate at which a single

unit of the y force destroys units of the x force where x(t) is often

defined as the expected number of x force units at time t after the

beginning of the engagement. Suppose T, a random variable, is the

amount of time that elapses as one unit of the y force destroys units

of the x force. Barfoot [2] proposed that the Lanchester square law

attrition coefficient may be defined as the reciprocal of the expected

value of the random variable T.

For Markov dependent fire it has been shown by Taylor [12] that

the expected value of the random variable T which will be denoted as

E [T] can be defined as indicated in the following equation:

E[T] = ta + t I - th + (th + if) + (tm+ tf) (l-P(hih) + P(hlh) - Pl(2)
P(K IH) P(h Im) LP(KIH)J
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where t = time to acquire a targeta

t I time to fire the first round after the target is acquired

th = time to fire a round after sensing a hit on the previous

round

tn= time to fire a round after sensing a miss on the previous

round

tf =time of flight of the projectile

P(KIH) the probability of a kill given that the target was hit on

the previous round

P(hlm) = the probability of a hit given that the target was missed

on the previous round

P(hth) the probability of a hit given that the target was hit on

the previous round

p the probability of a hit on the £irs. ,round

The mean of the first passage tine from the control state s0 to

the damage assessment state slZ can be interpreted as being the

average amount o' time that elapses as one weapons system destroys

a target system. Suppose that a weapons system conducts the follow-

ing sequence of activities: control, maneuver, control, target

acquisition, control, maneuver, control, and target destruction. If

a finite Markov chain model of this combat operation is constructed

using the methods developed in Chapter III, it would then be possible

to compute the mean of the first passage time from the control state

s to the damage assessment state slZ. This mean first passage time

can be considered to represent the average amount of time that elapses

as a weapons system accomplishes its objective of destroying the

target system. The reciprocal of the mean first passage time from
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the control state s to the damage assessment state sl2 can be defined

as the Lanchester square law attrition coefficient for a Markov combat

process. The value of the Lanchester square law attrition coefficient

that is obtained by using a finite Markov chain model of a combat

operation should be more realistic than a value obtained by using

equation (2), because the finite Markov chain model contains tran-

sition probabilities which describe not only the target acquisition

and target destruction actions of the weapons system but also the

maneuver and control actions of the weapons system. In contrast,

equation (2) does not contain information on the maneuver and control

actions of a weapons system. If the value of the Lanchester attrition

coefficient that is used in equation (0) is computed by the use of a

finite Markov chain model, then this equation should also model com-

bat "n a me-re realisti.- -n.uner. Since equation (0) is one of the

equations that is used to describe combat in the Lanchester theory

of m, t, an improvement in the Lanchester theory of combat should

also reailt.

C. EXTENSIONS

The regular Markov chain model which was developed in this

Lhesis describes in a single model the control, maneuver, target

acquisition, and target destruction activities of a weapons system.

These activities were defined so that they represent all of the output

actions of a weapons system. This section will cover three possible

extensions of the original model.

The first extension concerns the effects of increasing and de-

creasing the number of weapons systems in a weapons system organi-

zation. In an abstract sense this allocation of additional weapons
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systems merely represents a change in the type of weapons system

which is being analyzed, and the model should reflect the effect of

these allocations by indicating a change in the amount of time needed

to conduct a given activity. This change in the type of weapons system

organization should not necessitate a change in the state space of the

model. It should merely require that the one-step probabilities which

are contained in the transition matrix P be estimated again.

Another extension of the model which would aid in the analysis of

a weapons system would be an explicit treatment of the interactions

between the weapons and target systems. The model developed in this

thesis focuses only on the actions of a weapons system or only on the

actions of a target system. It does not explicitly address the inter-

actions between a weapons and a target system. An extension of the

modc! ta cover explicitly 0he atc.:toi-i b th the target and weapons

system would involve the development of a model which would have a

state space consisting of three hundred and twenty-five different

states. The method for estimating the parameters that was given in

Chapter IV would also have to be modified in order to estimate the

parameters of this interaction model. These extensions and modifica-

tions would greatly increase the complexity of the model.

As a final extension to the model presented in this thesis, it is

recommended that the personnel and logistical activities of a weapons

system also be modeled. Personnel and logistical activities are inputb

activities in contrast to control, maneuver, target acquisition, and

target destruction which are output activities. Since ideally input

activities occur simultaneously with the control, maneuver, target

acquisition, and target destruction activities, it appears that they
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should be modeled separately. A regrlar Markov chain model could

also be used to model these input acti-ities. The estimation of the

one-step transition probabilities contained in such a model would be

conducted in a manner similar to that which was discussed in Chapter

Iv.

D. CONCLUDING COMMENTS

This thesis has attempted to carefully define the activities of a

military weapons system involved in a combat process. A deliberate

effort has been made to explain all of the actions which comprise these

activities. A regular Markov chain model was used to aid in the

analysis of a combat process. It is hoped that the analysis of the

combat process contained in this thesis will be of assistance to weap-

Oy*.,s sy..ai-alyc t and- 'ai addit2 o1

investigations of the combat process.
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