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ABSTRACT

A generalized combat process is structured as a regular finite
Markov chain with states reflecting the control, maneuver, target
acquisition, and target destruction actions of a weapons system. The
mean and variance of the first passage times to certain states and
the limiting distribution of the amount of time that the process remains
in a given state are suggested as being useful measures of the effective-
ness of a weapons system. Some statistical techniques for estimating
the one-step transition probabilities are given, and methods for
modeling deterministic and stochastic action times, i.e., the amount
of time that the process remains in a given state are presented. It is
also shown ihat the reciprocal ot an cloment of ihe mea: fiist passage
time matrix of the Markov chain model of the generalized combat
process can be defined as the Lanchester attrition coefficient for a

square law combat process. The usefulness of this contribution to

the Lanchester theory of combat is discussed.
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I. INTRODUCTION

The analysis of a military combat operation can be divided into
two general areas of interert, Emphasis can be placed either on the
decision making process or oxn the physical process. This thesis
describes an application of the mathematical theory of finite Markov
chains to the study of both of these aspects of a military combat opera-
tion. However, the greatest portion of the emphasis of this study will
be placed cn the physical aspects of the combat process. Prior to
formulating the mathematical model, the rationale behind the approach

used will be explained and the purpose of the study will be established.

A. A MILITARY COMBAT OPERATION AND ITS GENERAL
ENVIRONMENT

Before beginning a study of the physical and decision making
aspects of a combat operation, it is appropriate to identify and briefly
explain the structure or framework within which a military weapons
system operates. Conceptually, any military weaycas system can be
thought of as a man-machine system which operates in a specified
environment or space of operations. The term weapons system as
used in this thesis refers to a friendly weapons system. The term
target system as used in this thesis refers to an enemy weapons
system. This definition of the term target system does not mean to
imply that an enemy weapons system is the only possible type of target
system. Target and weapons systems can be categorized by type ac-
cording to their differing specialized functions or roles and the general

type of activities which they conduct. The geographic region where
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weapons and target systems operate is called a space of operations.

A space of operations in its most general form is a finite three dimen-
sional, complex combination of weather, terrain, vegetation, and
bodies of water. The modern weapons system can be positioned in a
variety of spaces of operation separated by relatively large distances
within short time spans.

Individual weapons and target systems can be organized into either

larger systems or organizations of essentially homogeneous weapons
and target systems or into larger systems or organizations of pre-
dominately heterogeneous weapons and target systems in order to ac-
complish assigned tasks or missions. Between these two extremes
there can exist a continum of weapons system organizations. The
modern military commander allocates his weapons system organiza-
tions & spccific spaces ci cperatione based on 2 prediciion or forecast
of the number of target systems anticipated to be located in a given
space at a given time and on the number of weapons systems that he
has available in his weapons systems inventory at a given time. The
commander is continually evaluating the target system forecasts and
reallocating and reorganizing his weapons systems from his inventory
of reserves to his spaces of operations.

A weapons system which has been positioned in a given space of
operations requires continual inputs from support systems. A support
system is defined as any type of system which provides input resources:
to a wreapons system organization. Weapons systems use input re-
sources during the execution of a combat operation. Support systems

are external to the weapons system organization and can be in the

form of additional weapons systems which have varying types of control,




maneuver, target acquisition, and target destruction sub-systems, or
they can be in the forrn of personnel and logistical systems. These
systems provide inputs that are used to augment and to sustain the
activities of the weapons systems. The inputs provided by personnel
and logistical systems consist of people, supplies, and equipment
needed to replace resources which have been expended during the
conduct of a combat operation. Personnel and logistical resources
are obtained from a relatively secure base space. These replace-

ment items then proceed along some route or system of routes and

eventually arrive in the space of operations.

- e i b b

Weapons systems which have been placed in a space of operations

can function in either specialized or generalized roles. For example,

-k g g

a tank can function in an anti-aircraft role or in an anti-armor role
or in both roles. Thc manner in which 2 sysiein operates in any one
of its roles is established by some type of standard operating pro-
cedures document. The number of roles which a weapons system
can execute is determined by the current state of technology.

However, regardless of the type of roles in which the weapons and
target systems are employed they generally are able to perform four

primary activities. These four primary activities are control, maneu-

2% e deirna i

ver, target acquisition, and target destruction. The definitions of

these activities will be given in the next chapter. An operation or a

sequence of these activities is not as definable as the activities-which

e TN A AN

comprise it., The sequence and number of activities which occur

Xy ao s dR

during an operation will vary depending on the mission statement, the

A,

Y

type of weapons system, and the type of target system. In order to

Bkt

SN v as

provide further clarification of the concepts which have been discussed,
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a graphic depiction of a possible structure or frame work for the

combat process is given in Figure 1.

(Y FOm ARSI

) The preceeding discussion of a combat process and its environ-
ment establishes a basis for a more detailed qualitative and quantita-
tive analysis of the combat process. Prior to continuing the analysis,

the purpose and scope of this thesis will be established.

B. OBJECTIVE AND SCOFPE

oty i .41 g AN g 2,
R R A A U e AN BT St
AT s 3 oot o e 8D LGN > Yt

The purpose of this thesis is to present a mathematical model

which can be used to describe the activities comprising a military
combat operation. The model which will be used to describe a combat
operation should facilitate a clearer understanding of the combat
process and permit the development of measures of the effecctiveness
hie weapons systems involved in this combat process. In the next
chapter the elements of a combat operation will be defined and ex-
plained in detail. The mathematical model of the combat process

will be formulated as a finite Markov chain. The properties of the
Markov chain model will be presented and a method of estimating

the transition probabilities will be given. The properties of the

model will then be used to develop measures of the effectiveness of

2
o Ve

the systems involved in the combat process. Having introduced the
idea of 2 combat process in this chapter, the next chapter will pro-

4‘ vide a more definitive discussion of the combat process.
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Dotted lines represent routes of personnel and logistical inputs.
Solid lines represent control, maneuver, target acquisition and

target destruction outputs,

Arrows represent the direction in which inputs and outputs move. .

Figure 1:
systems.
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Scheme of the interactions between weapons and target
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) I, THE COMBAT PROCESS AND ITS STATES
. . The combat process, as previously described, involves weapons
: systems, target systems, their assigned mission statements, and a
f space of operations. As previously mentioned, the weapons and
target systems conduct four primary activities in the space of opera-
3 tions. They are control, maneuver, target acquisition, and target
destruction. This chapter will place most of its emphasis on analyz-
," ing these four system outputs or activities. These system activities
are being emphasized because they represent the means by which a
system accomplishes its objectives or goals as established by assigned
, - mission statements. Having an understanding of these system outputs
' will provide a rational basis for future studies on system inputs such
f . as personnel and logistical replacement items.
:" An important first step is to explicitly define and explain these
é four output activities.
.gz;
' A, DEFINITIONS
The four primary activities of a weapons system are defined as
follows:
;: The control activity consists of the set of all actions which cause
the weapons system to conduct all of its other activities in a purpose-
) ful, coordinated, and procedural mamner.
' . The maneuver activity consists of the following controlled actions:
preparation and occupation of a specified position, movement to or
from a specified position, and navigation of the weapons system as it
L moves,
3
11

VI R R TR A A e

A




SIS

At R
.

e A E AT

s

The target acquisition activity consists of the following controlled

"
0N

actions: searching for a specified target system, evaluating a detected

&
ookt

) target system, and maintaining surveillance of a specified target system.

The target destruction activity consists of the following controlled

actions: firing at a specified target, adjusting the firing action, and

assessing the amount of target destruction caused by firing at a speci-

L ot pA S SR+ I H AR ISl S A xRS w) e o

fied target.

Y Each activity of a weapons or target system has a time associated

REARTS

with it. This activitv time is defined as the amount of time that elapses

during the conduct of any one of the four primary activities of a weapons

A SRR fny

or target system.

5
TR

The definitions of a weapons system and a target system are as

follows:

Iul iR e
'

A weapons system is an organized, triendly mian-machine sysem

which has sub-systems that conduct the following activities: control,

Rlnanen

maneuver, target acquisition, and target destruction.

RLEDR

A target system is defined in this thesis as an enemy weapons

system. As previously mentioned weapons and target systems can be

o
SN e e e ¢

e
Ay

organized or designed so as to accomplish either generalized or

oA

specialized roles or functions with their sub-systems. The sub-systems

SSROEE S

of weapons and target systems can conduct one or more of the four

primary activities.

it
'
.3
5

B. EXPLANATION OF THE COMBAT PROCESS
These definitions and activities of a weapons system and a target
system require further elaboration. Weapons and target systems con-

duct operations in order to attain objectives. However, the primary

12
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objectives of both systems require that each system attempt to destroy
the other system while at the same time attempting to preserve itself.

During the conduct of an operation the activity time or the amount
of time required by a weapons or target system to accomplish an activ-
ity is not fixed., The amount of time required to conduct the activities
of the weapons system anci target system will continually vary depend-
ing on the space of operations., The space of operations contains topo-
graphical, geological, hydrographical, botanical, and meteorological
factors which cause the activity times of the weapons systems and
target systems to vary. The actions and counteractions of both systems
also modify the activity times of each system.

As a weapons system conductsoperations, it uses logistical and
personnel inputs. Since weapons and target systems often have limited
internal personnel and logistical storage capscities, theoo two iypes of
inputs are either used immediately upon being issued to the weapons and
target systems or limited amounts are stored by the weapons and target
systermns for future use. The amount of personnel and logistical inputs
required will depend on the effects of the missi.n statement, the space
of operations, and the target system.

In summary, the activity times or output times of both the weapons
and target systems depend on the interactions between the two systems,
the interactions between cach of the systems and the space of opcrations,
and the interactions amnng each of the systems and their personnel and
logistical inputs.

X In order for a weapons system to survive and to destroy the target
system in the space of operations, it executes all of its four primary

activities in somc sequence. It is assumecd that the d<finitions of the

13
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four primary activities are such that no two activities can occur simul-
taneously. These definitions of the four primary activities are mutually
exclusive definitions and they also collectively exhaust the set of pos-
sible output actions of a weapons or a target system. The four primary
activities are conducted in accordance with the standard operating pro-
cedures which apply to 2 particular wz2apons system and the mission
statement which is in effect. The mission statement specifies the tasks
to be accomplished by the weapons system, the initial positicns or ini-
tial space of responsibility in the space of operations, and the objec-
tives of the operation. These documents are flexible enough to permit
the weapons system to adapt to unexpected changes in its own activity
times, in the activity times of the target system, in the space of oper-

ations, and in the assigned missions.

C. ACTIVITIES AND STATES OF THE COMBAT PROCESS

The control activity will be the first activity to be discussed. The
mission statement assigns the weapons system a set of tasks to be
accomplished, a space of operations, initial positions or an initial
space of responsibility in the space of operations, and specifies the
objectives of the operation. The sub-system of the weapons system
that conducts the control activity then requires that the other sub-systems
of the weapons systermn communicate information concerning the detec-
tion of a target system, the maneuvering of the weapons system, *he
firing activities of the weapons system, an estimate of the amouat of
damage to the target system, and an assessment of the status of the
weapons system's personnel and logistical needs. This information

concerning the activities of the weapons system is used by the control

14
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sub-system in a decision making process. The outiput from this decision
making process is a set of instructions called a mission statement.

. Each sub-system of the weapons system receives a mission statement.
If each sub-system of a weapons systemn executes its activities in ac-
cordance with its mission statement, then it is considered to be opera-
ting in a controlled and coordinated manner. This information which
is transmitted to the control sub-system is also used as a basis for
the allocation of adequate personnel and logistical inputs to the weapons
system. If the assigned tasks are not being accomplished as scheduled,
then the control sub-system must either ensure that there is a decrease
in the amount of time which elapses during the conduct of the activities
of the committed weapons systems or it must ask for either a change
in its mission statement or for additional weapons systems.

In cther words, ihe weapons sysica. »a given a tack and it com-
mences execution of this task. The contrecl sub-system receives
progress information. This information is compared with stored in-
formation which the control sub-system has previously received con-
cerning what tasks the weapons system is capable of accomplishing
and the approximate amount of time required to complete an assigned
task. The control sub-system also has a knowledge of the procedures
which will be used by the weapons system to accomplish its assigned
tasks. If the weapons system is not opzrating as desired, then the
control sub-system transmits the appropriate mission statement

- changes to the weapons system. These changes should cause the weap-
ons system to operate in the desired manner. Without proper control
the weapons system can not use its other activities to produce an ac-

compliched mission.

15
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“ Another important aspect of the control activity is adaptation. As
g } the weapons system conducts its control actions. it must properly

i ’ adapt its control actions to its environment in the space of operations

: and to the actions of the target system.

3 The actions which comprise the maneuver activity will be defined
: prior to discussing the target acquisition and destruction activities.

The ultimate purposes of maneuver are to position the weapons systems
so that they can maintain continuous surveillance of the target systems

and to do so in such 2 manner that the target systems become relatively

by

TR

isolated from their support systems. The weapons systems should then
be maneuvered against the target systemsin such a manner that the
weapons systems achicve a decisive advantage over the target systems

4
; in terms of the relative activity times of the opposing systems. This

(AT ST R I,

advantage can be attained cither by manevvering a laige numder of

)
e

S weapons systems with high activity times or by maneuvering a small

number of weapons systems with low activity times against the target

-

systems. The achievement of target acquisition and destruction is

related to the degree of activity time advantage that the weapons sys-

2

tems have over the target systems and to the length of time that this
advantage can be sustained. Upon completion of the target acquisition

and destruction phascs, the weapons systems will normally continue

B TAEUTS D g2y 4 3 brei

BN

maneuvering in order to survive and to perform other missions.

\
Having established the purpose of maneuver, it is now appropriate

Part#y)

to describe the conduct of this activity. If the weapons system is in an

a'deqnate position, then it is able to attempt target acquisition or de-

SRR (R i o

struction and it also has ensured itself some degree of survivability.

3

If the weapons system determines that it is in a position that does aot

16
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permit commencement of target acquisition and destruction and which
does not provide some degree of survivability, then it will move from
its current position to another position that does meet these require-
ments. The position that it moves to will be selected by the weapons
system and approved by control. As the weapons system moves, it
either maintains surveillance over the target or it continues to search
for the target as it moves. As the wcapons system moves, it also
conducts a navigatioen action. This action is executed by the weapons
system in order to ensure that its movement actions are being made
in the proper direction. When the system determines that it is in its
selected position, some type of preparation is normally required in
order to ensure that target acquisition or destruction can commence
and that survivability is enhanced. An important aspect of this maneu-
ver activity is the proper adaptation of the mancuver 2¢ctions of the
weapons system to its environment in the space of operations and to
the actions of the target system. This adaptation is essential if the
weapons system is to acquire and destroy the target and preclude its
own destruction. Adaptation and the ability to survive are functions
not only of the design of the system but of the manner in which the
system is employed in relation to the space of operations and the
target system.

The next activity to be discussed is target acquisition. If a weap-
ons system is not able to acquire targets, then it will have difficulty
destroying targets. The weapons system is assigned a search space
and is then positioned so that it can search this space. It cither de-
termines that it has detected or it determines that it has not detected

a target system in its assigned space. This information is reported

17
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to the control sub-system. If it has not detected a target system, it
is then either assigned a new search space or it remains in its present
search space and continues to search for a target. If it has detected
a target, then it should maintain surveillance over the target in order
to evaluate the target system. The information obtained from target
surveillance is also reported to the control sub-system which can
then either direct that the target destruction phase of the operation
begin or direct the weapons system to maintain further surveillance
over the target. An important aspect of target acquisition is also
adaptation. As the weapons system conductsits target acquisition
activity, it must properly adapt its target acquisition actions to its
environment in the space of operations and to the actions of the target

system.

- *

The target destiuiiion phasc commences when the control sub-
system has adequate information on the target system and when all
necessary maneuver activities have been completed. A weapons
system which is located in an acceptable firing position is ready to
begin the execution of its target destruction activity. Since the target
has been under surveillance, sufficient information should be avail-
able to commence firing on the target. This firing action includes
such sub-actions as loading and aiming of the weapon and time of
flight of the projectile. The projectile or round may then be assessed
by the weapons system as having either hit or missed the target. If
a target miss is assessed, then some type of adjustment in the impact
point of the projectile may be made and the firing action undertaken
again. It should be realized that once a target is fired upon, it most

probably will either commence evasive actions or begin to fire at the
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weapons system. If a miss occurs, the target can begin to maneuver
and this can result in the weapons system losing surveillance of the
target. This result may require the combat process to return to its
target acquisition phase. If the weapons system fires and assesses
that it has hit the target, then further assessment may be conducted
to determine if a target kill has occurred. The protection afforded
the target by either its design or by available terrain cover can pre-
clude its total destruction. If a target kill is not assessed, then the
firing action may be repeated. Again depending on the extent of the
damage the target may take some additional type of evasive or firing
action and the possibility exists for the loss of surveillance over the
target. If continual surveillance is maintained over the target, then

sufficient time should be available for the weapons system to fire, to

gt

-~ o~
r-yed

»

determine if a hit has occurred, ancd to deiernsine i the targes
been destroyed. Upon completing the destruction of the target, the
control sub-system is informed and the process normally will return
to the target acquisition phase. Another important aspect of target
destructicn is adaptation. As the weapons system conducts its target
destruction activity, it must properly adapt its target destruction
actions to its environment in the space of operations and to the actions
of the target system. It should also be understood that target destruc-
tion in its most general connotation means that 2 wecapons system has
performed some actions which have resulted in the target system '
being unable to perform one or all of its activities.

The activities of the combat process are similar to the activities

which occur during the conduct of a competitive game. In competitive

and conflict processes the players are trying to defeat or destroy
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their opponents while simultaneously attempting to avoid their own
defeat or destruction. In competitive and conflict processes varying
degrees of information are available to the players concerning the

results of operations.

It should be noted that throughout the previously mentioned opera-
tion the target system was also conducting the same activities with
its objective being to destroy the weapons system. These activities
of both systems can have either a positive or negative effect on all the
activity times <2 each system. For example, consider the effect of
suppressive fire. If the target system's suppressive fire is effective,
it may iucrease all the activity times of the weapons system. If it is
aot effective, then it may decrease all the activity times of the weap-
ons system. This interaction between the target and weapons systems
is one of the iactors which aifect the states uf the combat process.
A typical combat operation scenario might bz described by the

following sequence of activities:

Control

Maneuver

Control

Target Acquisition

Control

Maneuver

Control

Target Destruction

Control

Maneuver

Control

20
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The combat operation that was just described is not recessarily

EETly

unique in the following sense: The activities could and probably will

occur in a differing sequence the next time an independent operation of

IS L AL E SRS S vt

the same type is conducted., These differing sequences of activities are

due to the complexity of the combat process and to the numerous factors

RSN A

involved, An attempt to attribute the outcome of the combat process to

any one factor or set of factors appears to be questionable with regards

AT En A A

to the validity of the results which follow from this type of analysis. A

F AP AR LT vEr

better method of analysis might be to carefully define the activities

-
Ry
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which comprise an operation and then to observe the sequence of these
activities over the time period of a specified type of operation. This
experiment would be repeated for a spacified number of replications so

that the required data sample sizes can be obtained. The results of

o

Fiy .

AT

iltis type of experimcntaricn can then be used {o obtain the distributicn
i . of the amount of time required to conduct a given activity and thus the
amount of time required to conduct the operation. This resulting dis-
tribution can be considered as a measure of the effectiveness of a weap-

ons system. A similar distribution could be obtained for the target

system under the same experimental conditions.

', The combat operation which has been described has well defined
states with estimabhle probability distributions associated with the
transition from one state to another state. The transition from one
state to another state depends only on the present or current state of
: the system. Also an initial state distribution of the system can be
easily obtained. Thus, this combat operation satisfies the general

] vrerequisites or assumptions which are required if a finite Markov

E chain stochastic model is to be used to describe a combat operation.
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i ; Having defined and explained the combat operation qualitatively, it

f { is now appropriate to begin the development of a mathematical model
i , which will enable a combat operation to be described in an analytical

I

. manner.
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III, FINITE MARKOV CHAIN MODEL OF THE COMBAT PROCESS

This chapter will present a finite Markov chain model which can
be used to describe a military combat operation. First, the definition
of a finite Markov chain will be given. The states of the finite Markov
chain model of the combat process will then be defined. A sequence
of activities for a typical combat operation will also be given. Using
this information it will then be possible to construct the one-step
transition probability matrix or the finite Markov chain model of the
combat process. This model which will be called Model I will be
constructed on the basis of the additional assumption that each of the
activities which comprise a combat operation will have equal activity
times., The efiect of relaxing this assumption wiil then be invectige-
ted. A new procedure for constructing the one-step transition prob-
ability matrix will then be presented. This procedure will permit
the construction of a one-step transition probability matrix when the
assumption of equal activity times does not hold. The one-step tran-
sition probability matrix which can be constructed by the use of this
procedure will then be presented. This model will be called Model II.
It will then be shown that some pertinent results from the theory of
finite Markov chains can be used to compute the mean and the variance
of the first passage time from an initial state s to a state sj. The
specific first passage time which is of interest will be defined as the
first passage time from the control state s, to the damage assess-
ment state s;,. This first passage time can be interpreted as being

2
[+

a measure of the effectiveness of a weapons system. The reason for

23
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1' selecting the first passage time from the control state s o to the damage
assessment state s, will also be explained, It will then be shown that
:5 some pertinent results from the theory of finite Markov chains can be
‘: . used to compute a probability statement concerning the number of
times in the first n steps that a finite Markov chain process is in a
specified state Sj' The reason for interpreting this probability state-
ment as being another measure of the effectiveness of a weapons
% system will then be explained. This presentation of two measures of
i effectiveness for a weapons system will be followed by a short discus-
i‘ sion of some ways in which they can be used to aid in an analysis of
: the combat process. Having outlined the content of this chapter
='! which describes the finite Markov chain model of the combat process, ‘
i . it is appropriate to begin the presentation of this model by stating the i
: basic concepts upon which ihis mudel is based.
§ A. BASIC CONCEPTS OF MARKOV CHAINS
If a finite Markov chain model is to be used to describe a combat
‘ operation or a combat process, then a combat operation must satisfy
the following definitions: If the stochastic process '{fn’ n=0,1,2,. }
§ where fn is a sequence of outcome functions with state space

{so, Syreces sé is given, then this stochastic process is defined by
Kemeny and Snell {7] as a finite Markov process if the probability
statement P En+1=sn+1 l fo=s°, N fn=sa = P[fn+1=sn+ll fn=le

4 is true for all S, Spreeer8y elements of the state space and for all
n=0,1,2,...elements of the index space. A Markov process is, there-
fore, a process in which a knowledge of the present outcome fn is all

that is needed in order to probabilistically predict the future outcome

o i AR A o AR o bl o, sl A b A e Y S o s
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fn+1' All information concerning the past, i.e., the outcomes
£o=s°, veey fn-l =8 _1» may be ignored.

The one-step transition probabilities for a Markov process de-
noted by pij(n) are defined as pij(n)=P En+1=sj l fn=si] for all s;
and sj elements of the state space [7]. A finite Markov chain will be
defined as a finite Markov process such that the one-step transition
probabilities pij(n) do not depend on n, i.e., Pij(n)=pij where n is
defined as a general element of the index space for the Markov chain
[7]. A finite Markov chain which satisfies this definition is often

called 2 homogeneous finite Markov chain with stationary

one-step transition probabilities. The index space for the finite
Markov chain is the set of all non-negative integers. If n=2, for
example, then the process has taken its second step or second
transition. '.l‘he amount of time thal clapses whon the proces
any state is called the time unit of the process.

The matrix of transition probabilities pij will be denoted as P.
The special type of Markov chain that is to be used to model the
combat process is a regular finite Markov chain. A regular finite
Markov chain is a finite Markov chain that consists of a set of states
and a set of one-step transition probabilities. However, in a regular
finite Markov chain once the process has moved from state §;» it will
eventually return to state s with probability one. This statement is
true for all of the states of the state space. It is also possible for
the process to return to state S; in n steps where n can be 1 or 2 or
“3 or ... steps [3]. This type of Markov chain was selected because

it was felt that it was the most appropriate type of Markov chain

model which could be used to describe the combat process as it was

described in Chapters I and II of this thesis.
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b. TFINITE MARKOV CHAIN MODEL OF THE COMBAT PROCESS

It will be assumed that the combat process, which was described
in the Chapters I and II, satisfies the definitions of a regular finite
Markov chain, i.e., the combat process can be described by a finite
number of states and a set of one-step transitions which connect these
states. Also, a one-step transition probability pij’ which is not a
function of n, can be associated with each possible transition. The
states of the combat process are defined as follows in terms of a
general weapons or target system:

The system is said to be in

state 5, when it is executing a control action.

This single state comprises the complete control
activity of a weapons or target system.

The system is said to be in

state s, when it is executing a maneuver control action.

state 5, when it is executing any type of movement action

state 3 when it is executing 2 movement evaluation or

navigation action,

state s, when it is executing any type of preparation and

occupation of a position action.
These four states comprise the maneuver activity of a weapons or
target system.

The system is said io be in

state s 5 when it is executing a target acquisition control

action.

state s, when it is executing a target search action.

26
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state S, when it is executing a target detection evaluation

action.

state g when it is executing a target surveillance action.

These four states comprise the target acquisition activity of a weapons
or target system.
The system is said to be in

state Sq when it is executing a fire control action.

state 510 when it is executing a firing action.

state 8 11 when it is executing a fire adjustment action.

state 512 when it is executing a damage assessment action.

These four states comprise ithe target destruction activity of a weapons
or target system.

The combat operaiion which will be described by a finite Markov
chain model will consist of the following sequence of four activities:
control, maneuver, target acquisition, and target destruction. In
order to clarify the discussion that follows, an exaraple of a typical
weapons system which could be conducting this type of combat opera-
tion will be presented. For example, suppose that the weapons system
being modeled is a tank. The control sub-system of the tank might
consist of those components of the tank's radio communications equip-
ment which are capable of communicating with a control headquarters
external to the tank. The manenver sub-system of the tank might con-
sist of the tank commander, the propulsion system, and the tank
commander's compass. The target acquisition sub-system of the
tank might consist of the eyes of the tank commander. The fire control

sub-system might consist of the tank commander and the main tank

27




F
P>

'l'».

AR AT T Ry
pAR o

W Pty B gt

Y ¥ T

R 2T e S AL T RV

S an

A

RULESRED 4

gun. The description of the tank sub-systems which has just been

given is not meant to be a unique description of the tank sub-systems.
It merely represents a possible description of the tank sub-systems.
These tank sub-systems execute tl.e set of all actions which
comprise the combat operation to be modeled. Figure 2 gives a
pictorial representation of the states of the combat operation being
modeled and a typical set of one-step transitions connecting these
states. The arrows in Figure 2 represent the directions of possible
one-step transitions connecting the states. A one-step transition
probability is associated with each arrow. A time unit is associated
with each state. This time unit represents the amount of time that
elapses between the transitions of the combat process. The seGuence
of transitions between the states given in Figure 2 is not meant to be
a unique descriptiop of all the pecsikle zcquences of transitions. It
merely represents a possible description of the sequence of transitions
between the states of the combat process. The states and sequence of
transitions given in Figure 2 are based on the discussions of the
combat process which are included in Chapters I and IL
Using the information which has just been given concerning a
typical combat operation, it is now possible to construct the one-step
transition probability matrix or the finite Markov chain model of this
combat process. A typical transition matrix for a regular finite
Markov chain model of the combat process is given in Figure 3. The*
elements of this matrix are the one-step transition rrobabilities. The
“one -step transition probability pij denotes the probability of passing
from state s to sj in one time step. One time step or time unit for

the combat process will be assumed to represent the passage of ten
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PREPARATION AND OCCUPATION
OF A POSITION

NAVIGATION

TARGET ACQUISITION

CONTROL
SEARCHING
DETECTION
EVALUATTON FIRE ADJUSTMENT
DAMAGE
SURVEILLANCE ASSESSMENT

Figure 2: States of the combat process and typical one-step
transitions between these states.
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3 regular finite Markov chain model of the

: combat process
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- § minutes of actual time. The sum of the one-step transition probabili-

: ties in each row of the matrix is one. The one-step transition prob-

ability matrix given in Figure 3 was constructed on the basis of the

information which was given in this chapter concerning finite Markov

AN S IO
FITRTERY

4 chain models. The size of this matrix is thirteen by thirteen. This
size is determined by the number of states which comprise the combat
process. The one-step transition probabilities pij do not depend on n

where n is a general element of the index space of the Markov chain.

b

This model will be called Model I. One of the assumptions which had

hiNy ety

to be satisfied in order to construct Model I was the assurnption that
in the combat process the one-step transition probabilities pij(n) can

be defined as pij‘
Suppose that the assumption that pij(n)=pij does not hold. For

cnducied in

exampie, an actual mlitary combat vperation might be ¢
: ) such 2 manner that each of the activity times is not of equal duration.
- | H this is the case, and a2 Markov chain model is used to describe this
operation, then the one-step transition probabilities given in Model I

will become pij(n). In other words, the amount of time which elapses

: betwecen the nth and the ntlst step is not a constant. The time unit

is, thus, a different size for each state and, therefore, the one-step

5 transition probabilities will depend on n. If this situation occurs,

then it will not be possible to model the combat process with a regular
' finite Markov chain model. The one-step tran.ition probability matrix
) given in Figure 3 needs to be modified so that the one-step transition
..probabilities pij(n) can again be assumed to be one-step transition
probabilities pij which are not a function of n. A method will now be

given which will permit the coystruction of a one-step transition

31

PR,




%

-

Gt

iy

RoiA 5 S 2

S A RSB e S S

e

o < o rmmseongrmet SR ARSI ot 0

L3

Dty

C b ) e o gk t—— s

probability matrix such that the one-step transition probabilities are
not a function of n, i.e., so that different states may have different
action times.

It will be assumed that the combat operation which is to be
modeled is identical to the one that was described by Model I. The
only exception to this assumption is that the activity times will no
longer be assumed to be equal. It will also be assumed that each of
the activities has a finite determinate activity time. An algorithm
will now be presented which will permit the construction of a one-step
transition probability matrix such that ilie one-step transition prob-
abilities are no longer a function of n, In order to provide a clearer
understanding of the algorithm, the one-step transition probability
matrix for only the movement state Sy the navigation state 535 and
the preparation and occupation of a pusiiion state 5, will be construc-
ted. The steps of this algorithm can be repeated for each of the re-
raaining states of the combat process and a one-step transition
probability matrix P will result such that the one-step transition
probabilities pij can be assumed to be independent of n. Figure 4
pictorially represents the one-step transition probability matrix
which can be constructed by the use of this algorithm.

1. The first step in the construction of the transition matrix is
to select an appropriate time unit for the transition matrix. Suppose
that the action time or the amount of time which elapses during the
conduct of the actions that comprise each of the states is as follows:

(a) for state s, it is given as ten minutes,
(b) for state 54 it is given as eight minutes,

(c) for state s4 it is given as two minutes.
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STATES
So * * 521 522 823 S4 S25 531 S33 533 S34 541 ¢ ¢ 512
- -
s
[o}
551 01 0 0 0 0 0 0 0 O
550 O 0 1L 0 0 O O 0 0 O
593 0 0 0 1 0 0 0 0 0 0
504 . 0O 0 0 0 1 0 0 0 0 ©
S's,. . 0 0 0 0 0 1L 0 0 0 0
iy ZJ
A
2 531 ) 0o 0 0 0 0 0 1 0 0 O .
E
e 53 . 0 0 0 0 0 0 0 1 0 0 .

w
(=]
o
[=]
(=]
o
(=]
o
(=]
-
(=]

sS4 © 0 0 0 0 0 0 0 0 p,
541 0 0 0 0 0 0 0 0 0 O
512

Figure 4: Modified one-step transition probability matrix
for a regular finite Markov ci.ain model of the
combat process with determinate action times
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The time unit which should be used is that number which is the greatest
common divisor of all of the given action times. For this example the
time unit is two minutes.

2. The action time for each of the states given in this example
will now be divided by the time unit of two minutes. The quotients
which result represent the number of sub-states that will comprise
one original state of the combat process. In other words, the original
state s, has now been divided into the following set of sub-states:
{821, S500 Sp30 Sp4s 825} . A similar set of sub-states results
for state S4 and state s 4 The resulting one-step transition probability
matrix is given in Figure 4,

Another modification of the one-step transition probability matrix
given for Model I can result when the activity times are no longer
asswned 10 be equal. This modification assumes that «ach of the
activities has a continuous activity time probability distribation as-
sociated with it. An algorithm will be presented which will permit
the construction of a one-step transition probability matrix. In order
to provide a clearer understanding of the algorithm, the one-step
transition probability matrix for only the navigation state &3 will be
constructed. The steps of this 2lgorithm can be repeated for each of
the remaining states of the combat process and a one-step traasition
probability matrix P will result such that the one-step transition
probabilities pij can be assumed to be independent of n. Figure 5
pictorially represents the one-step transition probability matrix

“"which can be constructed by the use of this algorithm.
1. The first step in the construction of the transition matrix is

to select an appropriate time unit for the transition matrix, Suppose
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o5 ¢ ¢ %255%1 %32 533 S3 S35 %4 ¢ ¢ - S %12
0 Ppeyy 0 O O 0 0
. 0 0 pyy O O O 0 .
. 0 0 0 pyy33 0 0 pyyy
. 6 0 0 0 pysq O P3zy -
X 0 0 0 0 0O py3sP3
0 0 0 0 0 0 py,
b il
Figure 5: Modified one-step transition probability matrix
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for a regular finite Murkov chain model of the
combat process with stochastic action times
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that the action time or the amount of time which elapses during the
conduct of the acticns that comprise state Sq is known to be ten
minutes. A time unit should be selected which gives an adequate
amount of information concerning the amount of time that the process
remains in state S, and a time unit which does not cause the transition
matrix to become so large that it exceeds the storage capacity of the
computer being used. Suppose a time unit of two minutes is selected.
This time unit represents the amount of time which elapses between
each itevation or transition of the process. The selection of the time
unit in this algorithm represents an approximation of the continuous
probability distribution of the amount of time that the process remains
in a state by a discrete probability distribution.

2. The action time of ten minutes will now be divided by the time
unit of two minutes, The resuliing nvmbesr is five, This nuruber
represents the number of sub-states that will comprise one original
state of the combat process. In other words, the original state Sg
has now been divided into the following set of sub-states:
{531, S3p0 S330 S3gp 535} . The resulting one-step transition
probability matrix is given in Figure 5. These extensions of basic
Markov chain theory have modified the one-step transition probabilities
in such a manner that the one-step transition probabilities are again
independent of n. As previously mentioned, the steps of these
algorithms can be repeated for each of the remaining states of the
combat process and a one-step transition probability matrix P will
result. The matrix P which is given in Figure 5 will be called

Model II. The one-step transition probabilities which could be con-

tained in Model II are not meant to be a unique description of all the
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possible sequences of transitions. They merely represent a possible

description of the sequences of transitions between the states of the

combat process. The states and sequence of transitions which could

be described by Model II are based on the discussions of the combat

process which were given in Chapters I and II.

C. MEASURE OF EFFECTIVENESS
This section will present two useful measures of the effectiveness

of a weapons system. Also, some pertinent results from the theory

of finite Markov chains will be presented. These theoretical results
will permit the computation of the measures of weapons systems'

effectiveness, Prior to presenting the formulas which can be used

to compute these measures of effectiveness, it is appropriate to

cffcetiveness, A measure of

Las)

briafiy discuss and d=fine a measure ¢
the effectiveness of a weapons system will be defined as a mathemati-
cal function which is a quantitative measure of how effectively a
weapons system operates as it attempts to attain its primary objec-
tive, which is to destroy the target system.

The first measures of effectiveness which can be obtained from
the finite Markov chain models of the combat process are the ma-
trices of the mean and variance of the first passage times. The {first
passage time which is of primary interest is the first passage time
from the control state s, to the damage assessment state s 12° If the *
combat process begins in the control state So and then passes to the

“damage assessment state $12 according to the one-step transition

probabilities given in Model I, it will have conducted a set of actions

that should result in some type of damage being inflicted on the target
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system. When the weapons system has inflicted this damage, it then
attempts to assess this damagc. The assessment of target damage
can be considered as being the final action which must be accomplished
by a weapons system. The completion of this action implies that the
weapons system has accomplished its objective of destroying the target
system. Therefore, the mean first passage time from the control
state So to the damage assessment state $12 is a measure of the aver-
age amount of time that elapses as a weapons system attains its pri-
mary objective. This measure can be interpreted as being a measure
of how effectively a weapons system operates as it attains its primary
objective. Prior to presenting the formulas which will permit com-
putation of the mean and variance of the first passage time from state
S, to state s,,, a brief discussion of some pertinent results from the
theory of finitc Markov clhizius wili be given. The use of Lhis theosy

' can enable the computation of the mean and the variance of the first
passage time matrices.

It may be shown that for a regular finite Markov chain the first
passage time fj is a function whose value is the number of steps before
entering state sj for the first time after departing state s, This
statement is true for all i, j indexes of the state space. The mean

first passage time matrix denoted by M is the matrix with entries

"
i

m,. defined to be equivalent to the expected value of the first passage

LY e

time function fj. For any i, an index of the state space, the expected
value of the function fk is finite. If a is the limiting probability vector
for the transition matrix P, then mii=l/e>,i where a; is an arbitrary
element of the limiting probability vector a. If P is a regular tran-

sition matrix, then fn will approach a limiting probability matrix A

PHYIN 50 ¢ s WA N NN A o as g
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as n approaches infinity. Each row of the matrix A is the same limit-
ing probability vector a. In order to compute the mean first passage
matrix M, the fundamental matrix of a regular Markov chain must be
known. If P is the transition matrix for a regular Markov chain and
A is the limiting matrix, then it can be shown that the fundamental
matrix Z for a regular finite Markov chain can be defined as
(L ’('.-P.- é))'l. This fundamental matrix Z can also be defined as
I+ :él (_13n - A) where Iis the identity matrix. These results have
been shown by Kemeny and Snell [7]. These results may be used to
compute the mean first passage matrix M. The matrix M is defined
as being equal to the quantity (I - Z + }—E-gdg)g where D is the diagonal
matrix with diagonal elements dii =1/ a,, E is a matrix of unit elements,
and the matrix ng results from the matrix Z by setting off-diagonal
entries equal tu ze:o.

In order to compute the variance of the first passage times, the
matrix Z must again be used. It will also be necessary to make use of
the fact that the variance of the first passage time f. for any state s

where i is an index of the state space is given by the following equation:

Vary(f) = Ei(fzj) - (Ei(fj))z .
Since the value of Ei(fj) or the expected value of the first passage time
fj is known, it is only necessary to find Ei(fﬁ) or the expected value of
the first passage time sz . The matrix of all the expected values of
the first passage times f? will be denoted as {Ei(%)} = W. Itcanbe
shown that the matrix W = M(2 Z’dg D-I)+2(ZM - g(_?:’y[_)dg) where
all of the matrices in this ecuation are as previously dafined. This

statement implies that the variance matrix which will be defined as V
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is equivalent to {Vari(fj)} and is equal to W - qu where qu results
by squaring each entry of M. These results also have been shown by
Kemeny and Sneli [7].

By using the results which have just been presented, it is possible
to compute the mean and the variance of the first passage time from
the control state s, to the damage assessment state s 12 for the one-
step transition probability matrix P.

A sccond measure of the effectiveness of a weapons system which
can be computed by using a set of probability statements concerning
the number of times in the first n-steps that the process is in an
arbitrary state sj will be present.d in this section. If a probability
statement is made concerning the number of times in the first n steps
that the combat process is in an arbitrary state sj, then it can also be
comzputed for all states, X the timne weil of the procass is alze knowsn,
then it will be possible to determine the amount of time that the com-
bat process remains in each one of the states. These probability
statements will, therefore, aid in determining which set of the actions
of a2 weapons system require the greatest amount of time to accom-
plish. 1If the judgment and experience of the analyst indicate that the
amount of time which is spent in a state is too long, then a need for
further analysis might be required. Either the weapons system is
improperly organized, i.e., it is the wrong type of weapons system,
or a sufficient number of the right type of weapons systems are not
available to accomplish the assigned tasks. Also, the level of the
intensity of combat might be such that it is physically impossible to
acquire more targets. Since these probability statements provide a

quantitative measure of how effectively a weapons system operates as
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it attempts to attain its primary objective, they can be interpreted as
being a useful measure of the effectiveness of a weapons system. In
order to compute these probability statements, a brief discussion of
some pertinent results from the theory of finite Markov chains will
be given. The use of this theory can enable the computation of these
probability statements.

It m>y be shown for a regular finite Markov chain model that if
there exists a regular finite Markov chain with limiting probability
vector a, ther for any initial prebability vector b the mean fraction
of times in the first n steps that the process mcves to state s. ap-
proaches aj as n approaches infinity. The limiting probability vector
a has been previously defined; however, it should be noted that it is
equivalent to the following notation: {al, 2y 0-0s aj, RRTL R an}
where aj ic an arbitrary elementi of the n-dimensional vector. The
initial probability vector b is a probability vector which defines the
probabilities of the process being in each one of the states of the
combat process at the start of the process.

This limiting result and the following limiting results arz being
presented so that the analyst will have a better understanding of the
central limit theorem of Markov chains. This central limit theorem
permits the computation of limiting probability statements concerning
the number of times that the combat process is in the state s. in the
first n steps.

Let f be a function defined on the states of a regular chain and let
this function be denoted as f(si) = fi. Also let f(n) be the value of this

function on the n-th step. Then the limiting variance of f can be denoted

as the lim _}_ Var

n
2 f(k) . This variance can be shown to be
n->e0 n = | k=1
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defined as being equivalent to 2_ g f.c..f. + i:' a.t.(1-1)
i=l 1=l ivijj i=l1 i i

where f is a function that takes on the value 1 with probability fi in
state 8 and is 0 otherwise. In order to compute the limiting vari-
ances, the variance-covariance matrix C must be known. This
matrix can be obtained from previous results and is given by the

following formula:
]
= - - Al
G =hgp2+ [Ba,2] - 8l 218y,

All of the elements cof this matrix have been previously defined with
the following exception: A' denotes the transpose of the matrix A. An
arbitrary element of the matrix C is the element cij' The limiting
variances are the diagonal elements cjj of this matrix C.

It is now possible to state the central limit theorem of regular

finite Markov chains. I'oi an ergcodic chain, that is, a chain in wiich

(n)

it is possible to go from every state to every other state, let y j

be the number of times that the process is in state s. in the first n

steps. Also, leta = {aj} be the fixed limiting probability vector and
letc = {cjj be the vector of limiting variances. Then if cjj is not
equal to zero for any numbers r { s, the probability statement which

(n)

is denoted as Pk r{ y'.” - na. {s]| approaches a standard normal
‘\Inc..
J)
5 12
cumulative distribution function denoted as 1 S e dx .

4 29

as n approaches infinity for any choice of starting state k [7].

Wity n b

By using these results, it is possible to compute a set of prob-

ability statements which state that in the first n steps the occurrence

hy R e AP TN T IR P

of a particular state sj will with a certain probability not deviate
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b from a certain mean number of steps by more than a certain number
of deviation steps. This type of probability statement can be computed
: for each of the states of the combat process.
The next section of this chapter will present some examples of
how these two measures of effectivenass can be used to aid in the

E analysis of a combat process.
&

D. APPLICATIONS OF MEASURES OF EFFECTIVENESS

If two weapons systems are to be compared, the analyst normally
desires to know if one weapons system is better than another weapons
system. These weapons systems can be compared by using a measure

of the weapons systems' effectiveness. The specific measures of

AR S

weapons systems' effectiveness which can be used to compare two

SR 3

e

wezpons systems are the mcean and the variance of the first passage

times from the control state to the damage assessment state for both

T AN WA

weapons systems. The mean and variance matrices M and V of the
first passage times will probably depend on the following factors for

5 each of the weapons systems: the type of target system, the weapons
system's mission, the target system's mission, the type of space of
operations, and the initial positions of both weapons in the space of

9 operation. These reiationships follow from the fact that the trarsition

. matrix P was a function of the above factors. If all of the above factors
which determine the mean and variance of the first passage time are
fixed with the exception of the type of weapons systems, then two

weapons systems can be compared in terms of the mean and variance

RRIBLE A Lt

of the first passage times. This use of the mean and variance of the

i
2

first passage time measures of effectiveness is one example of an
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application of these measures of »ffectiveness. An example of an
application of the limiting probability statement measure of effective-
ness will be given next.

The limiting probability statements enable the analyst to make a
quantitative statement concerning the number of times in the first n
steps that the combat process is in an arbitrary state sj. A limiting
probability statement can be computed for all of the states of the
combat process., As previously mentioned, if the time unit of the
process is known, then it will be possible to determine the amount of
time that the combat process remains in each one of the states. These
probability statements will, therefore, aid in determining which set
of the actions of a weapons system require the greatest amount of
v . ¢ accomplish., For example, it should be expected that a ¢oan-
siderable amount of time will be speat in the conice! state Sy This
does not necessarily represent an inefficiency on the part of the weap-
ons system. However, if the judgment and experience of the analyst
indicate that the amount of time which is spent in the target acquisition
states as opposed to the target destruction states is too long, then a
need for further analysis might be required. Either the weapons
system is improperly organized, i.e., it is the wrong type of weapons
system or a sufficient number of the right type o weapons systems
are not available, or the level of intensity of combat is such that it is
physically impossible to acquire more targets, The probable answer
to a problem such as this lies somewhere between the organization or
design of the weapons system and the number of the correct types of
weapon: systems. This use of the limiting probability statements is

merely one example of their application in the field of weapons systems

analysis.
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These two measures of effectiveness can also be used to aid .in the
analysis of target systems. This type of analysis can be quite useful
because it not only indicates the ability of the weapons system to sur-
vive, but it also indicates some possible strengths and weaknesses
that a target system might have in comparison to a givca weapons
system.

The versatility of this regular finite Markov chain model of the
combat process is a direct consequence of the ability of the one-step

transition probabilities to realistically describe the combat process.

These one-step transition probabilities can be obtained from data
which is obtained from a variety of sources. The interpretations and
conclusions which can be inferred from the model follow directly
from the estimated values of the one-step transition probabilities.

o -
0e One-5iCp tranciion

Consequenily, the subject of estimaticn of
probabilities is important for without good estimates of the one-step
transition probabilities, useful results probably will not be obtained

from the model,
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IV. DATA SOURCES AND ONE-STEP TRANSITION
PROBABILITY ESTIMATION

The finite Markov chain model as described in Chapter III con-
sisted of a transition matrix P, This chapter will present some
statistical procedures which could be used to estimate the one-step
transition probabilities for a typical weapons system and some pos-
sible sources from which data may be obtained. This chapter will

also present a method for constructing a transition matrix P.

A, SOURCES OF DATA

In order to estimate the one-step transition probabilities of the
finite Markov chain model, the weapons systems analyst would like to
obtain data under controlled experimental conditions; however, this is
not always possible, and data from other types of data sources may
have to be used. It is the purpose of this section to briefly mention
some possible sources of data on a tank weapons system whose actions
can be modeled by the use of a regular finite Markov chain.

Data on tank and armor operations in general can be obtained
from the records of the official history of the Unijted States Army.
Private historical records of armor operations are also available.
The works of Fuller {4], Hart [6], Rommel [11], and Guderian [5] X
are some possible sources of data. Another means of obtaining data

«~on armor combat operations is to conduct combat interviews of the

types which have been conducted by S, L.A. Marchall [9]. These in-

terviews can be conducted with individuals or with groups of individuals.

The quality of the data obtained from a combat interview is quite
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variable due to the fact that the individuals being interviewed are or
have been under the stresses of combat. Data which has been collected
from the sources that were just mentioned can be interpreted as being
uncontrolled data. In other words, no experimental controls were in
effect.

The next data sources which will be mentioned represent data
sources which provide data that has been collected under conditions
where some degree of control may possibly have been imposed. Data
can be obtained from military organizations which are not involved in
the actual conduct of combat operations. These organizations are
normally conducting some type of training for possible combat opera-
tions. United States Army armor units in Europe and the continental
United States are typical examples of this type of organization. They
could be the source of extensive amounts of data which can be collectad
during the conduct of training exercises in which these units participate.

The next two sources of data that will be mentioned can provide
data which has been obtained under experimental conditions. These
two sources can be separated into two broad categories. They are
research and development organizations and test and evaluation organi-
zations. Typical examples of these types of organizations are the
United States Army Materiel Command and the Human Resources
Research Organization.

Other possible sources of data that has been obtained und«:+ experi-
mental conditions are management science, operations research, and
systems analysis organizations. These organizations obtain most of
the data which they use from the data sources that have been previously

mentioned. However, they also generate data by the use of mathematical
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models and computer simulations. Typical exainples of this type. of
organization are the United States Army's Combat Developn 5
Command and organizations such as the Research Analysis Corporation.

These sources of data are representative of the type of organiza-
tions which can provide information on a tank weapons system. This
list could be made more extensive in nature if a specific problem were
being addressed. These sources of data have been discussed in very
general terms so that the weapons systems analyst with a more specific
problem might benefit from a broad overview of some of the sources of
data for a tank weapons system.

Having briefly discussed data sources, one important use of this

data will be presented in the next section.

ESTIMATION OF ONE-STFP TRANSITION T ROBABILITIES

o

The models of the combat process that were presented in Chapter
III describe the actions of a weapons system which is conducting a
combat operation. The weapons and target systems are both assumed
to operate in such a manner that their actions can be described by the
previously mentioned thirteen states of a regular finite Markov Chain.
The subject of estimation of the one-step transiton probabilities can
be divided into two parts. The first part is concerned with the esti-
mation of the amount of time that the process remains in a given state
once it arrives in the given state. The second part is concerned with
the estimation of the probability of transitioning from a given state to
another state or set of states.

The amount of time that the actions of a system are in a given

state sj between transitions is a random variable which shall be
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designated as T. A random sample Tl’ Toreees Tn can be obtained
from data. The sample mean and the sample variance can be com-
puted. The distribution of the random variable T can be estimated

by the use of standard statistical techniques and available data. The
next task is to develop a method for estimating the one-step transition
: probabilities.

The estimation of the one-step transition probabilities for a
regular Markov chain transition matrix can be accomplished by the
use of the statistical procedures which follow and available data. The state
space for the combat process is denoted as S where S is defined as the
set {so, 8128050045 512} . The random variable Xi will be defined as
a function Xi which maps its domain S onto euclidian one-space as
follows: Xi(s) will be defined as 1 if s = 55 It will be defined as 0
ifs # 5, wherci=8,1,.,.,12. The random vector X will be defined
as a thirteen dimensional random vector e REST Xoypeoes le} . The

probability mass function associated with the random vector X is

defined as
o x % y=p oo ¥l %2 *12
P_)ﬁ o’ 71?712 Pob P3 P ---P12
12
where 2 x5 =1, The random vector X is often czlled a n-dimen-
i=0

sional Bernoulli random vector. A realization of X or a multinomial
trial results ia the process passing from one initial state to one and
only one final state in one time step of the process. The likelihood
function for the random vectors 1(1,2_(2, .. .}_{n where _}_(i's are

[

independent and identically distributed random vectors is

n
1( )= Yo Y1 Y2 Yiz . _
Po: PI:PZ:.... P12 “po pl p2 ...plz s 1. e.,yj— le

i=1
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where yj is defined as the number of times that the process is in the

state sj in the first n steps and j = 0,1,...,12, Standard techniques of

.

the calculus are used to maximize this function. The vector of transi-

tion probabilities p which is defined as (po, PysPpscee plZ) will be

Zy'wasivivaiitog

3 estimated by the vector ﬁ = (yoln. Y1 /n,..., ylz/n) where n is the
sample size. If the estimation of p is to be in accordance with the
idea of conditional transition probabilities, then the following sampling

procedure must be used: An independent and identically distributed

. .
i Fos 4
ALLAARLS

observation for a given initial state s; can only be obtained when the

combat process can be described as being in the initial state S5 This

statement implies that a family of thirteen probability mass functions

*; can be obtained. Only thirteen probability mass functions are required
because it will be assumed that the process passes to the same state
or set of staies regardless ot how long it remains i 2 given initial

.‘ ) state. This assumption can be relaxed if a more sophisticated samp-

g ling plan is used.

The estimation procedures which have been discussed are suf-

g ficient to permit the estimation of all of the one-step transition prob-

abilities of the regular finite Markov chain transition matrix. A

method will now be given which can be used to construct the transition

S RO AR 10

matrix P when stoclastic activity times are being modeled.

R

C. CONSTRUCTION OF A TRANSITION MATRIX

CVOALTEe k)

In this section a method will be presented for constructing a one-
step transition probability matrix. For illustrative purposes the steps
of this method will only be used to construct the transition matrix for

the navigation state s The steps of this method can be repeated for

3
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each of the other states of the combat process in order to construct the

complete transition matrix P. The action time T for the state S, will

be assumed to be a random variable with an exponential distribution.

: The probability density function of the exponential distribution is

given by the equation f(t) = re'rt where r is the rate at which transi-

tions occur. The mean of this distribution is 1/r. Since the transi-

tions between the states of a finite Markov chain occur at discrete

points in time, this continuous distribution of the action time may be
approximated by a geometric distribution with a probability distribuv-
tion given by the equation p(t) = p(l--p)t'2 fort=2,3,.... The mean
4 of this distribution is 1 + % . The geometric distribution will be fitted

to the exponential distribution by equating the means of the two dis-

tributions permitting the value of p to be computed in terms of r.

SO
.
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The value for the paraiueter p of the gocome

, ) as r/(1-r). The transition matrix for the navigation state s5 can be

. ; constructed as depicted in Figure 6. Assuming that the mean action
time 1/r is known, then this value for p represents the probability of

t : transitioning from state s4) to state S35

This chapter has presented a discussion on some possible sources
- from which data can be obtained. Some statistical procedures were

also presented which can be used in conjunction with data in order to

A L st

=
2

estimate the one-step transition probabilities of the regular finite

Markov chain model. This chapter also presented a method for con-

structing a transition matrix P. The next chapter will compare the
fini*e Markov chain model to another probability model which can be
used to describe the combat process and it will also discuss some

possible extensions of the finite Markov chain model presented in tnis

thesis.
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V. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this thesis as outlined in the introductory remarks
was to develop a method for analyzing the combat stochastic process.
The regular Markov chain model which was presented should aid in
the analysis of the combat process and provide measures of effective-
ness of the weapons systems involved in the combat process. In this
chapter the degree to which the original purpose of the thesis was ac-
complished will be examined. It will also be shown that the reciprocal
of the mean first passage time from the contiol state s, to the target
destruction state s 12 €an be defined as the Lanchester attrition co-
efficient for a square law combat process. The manner in which the
model can be extendced to othcer situaiions will be mentioned and some

possible areas of future work will be suggested.

A, ACCOMPLISHMENTS

This section will briefly review and discuss the two quantitative
measures of effectiveness of a weapons system which were presented
in Chapter III. These two measures of effectiveness can be obtained
from the mathematical model which was used to describe the combat
process.

From the regular Markov chain model of the combat process, it
is possible to obtain an estimate of the mean and the variance of the
first passage time from the control state s, to the damage assess-
ment state s,,. This mean first passage time can be considered to

be a measure of the effectiveness of a weapons system for the following
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reason: Consider a weapons system which was initially in the control
state s . This weapons system then perforras a set of actions that
result in some type of damage being inflicted on the target. When the
weapons system has inflicted this damage, it then attempts to assess
this damage. The assessment of target damage can be considered as
being the final action which must be accomplished by a weapons system.
The completion of this action implies that the weapons system has ac-
complished its objective of destroying the target system. In other
words, the mean first passage time is a measure of the average amount
of time that elapses as a weapons system attains its primary objective.
This measure can, therefore, be interpreted as ¢, ‘ing a measure of
how effectively a weapons system operates as it attains its primary
objective.

Anoiheir measure of the eifectiveness of a3 woapons cysten. which
can be obtained from the model is a set of probability statements con-
cerning the number of times in (he first n steps ihat the process is in
an arbitrary state sj. These probability statements can be obtained
for each one of the states of the combat process by applying the Central
Limit Theorem of Markov chains to the comtat process. These prob-
ability statements provide a means by which the activity times of a
weapons system can be quantitatively analyzed.

Both of these measures of the effectiveness should not be used
without a clear understanding of the experimental context from which
the transition probabilities of the model were estimated. If the analyst
requires additional measures of the effectiveness in order to adequately
analyze a weapons system, then extensions of the model might be help-

ful. Prior to considering extensions of the finite Markov chain model,
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it will be shown that the reciprocal of the mean first passage time
from the control state to the damage assessment state can be defined
as being the Lanchester attrition coefficient for a square law combat
process. The significance of this contribution to the Lanchester

theory of combat will also bhe discussed.

B. CONTRIBUTIONS TO THE LANCHESTER THEORY OF COMBAT
The Lanchester theory of combat proposes that combat between
two homogeneous forces can be modeled using the following set of

ordinary differential equations:

d:l(t(t) = -ay(t) (o) and g(zﬁ(:t_) = - bx(t) (1)

These equations model what is known as a deterministic Lanchester
square law process with parameters a and b. These parameters are
often called the Lanchester square law attrition coefiicienis. The
attrition coefficient a is defined as the average rate at which a single
unit of the y force destroys units of the x force where x(t) is often
defined as the expected number of x force units at time t after the
beginning of the engagement. Suppose T, a random variable, is the
amount of time that elapses as one unit of the y force destroys units
of the x force. Barfoot [2] proposed that the Lanchester square law
attrition coefficient may be defined as the reciprocal of the expected
value of the random variable T.

For Markov dependent fire it has been shown by Taylor [12] that

the expected value of the random varizble T which will be denoted as

E [T] can be defined as indicated in the following equation:

E[T] = t oty -t + (th + tf) + (tm+ te
P(KtH) P(him)

) | (1-P(hih)
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time to acquire a target

where t
a

t time tco fire the first round after the target is acquired

1

‘ t, = time to fire a round after sensing a hit on the previous
round

L time to fire a round after sensing a miss on the previous

round
te = time of flight of the projectile

P(KIH) = the probability of a kill given that the target was hit on

the previous round

P(him) = the probability of a hit given that the target was missed
on the previous round

P(hth) = the probability of a hit given that the target was hit on
the previous round

p = the probability of a hit on ihe firsi round

The mean of the first passage tinie from the control state S to
the damage assessment state s 12 can be interpreted as being the
average amount o time that elapses as one weapons system destroys
a target system. Suppose that a weapons system conducts the follow-
ing sequence of activities: control, maneuver, control, target
acquisition, control, maneuver, control, and target destruction. If
a finite Markov chain model of this combat operation is constructed
using the methods developed in Chapter III, it would then be possible

to compute the mear of the first passage time from the control state

o behan vt ey

s, to the damage assessment state S12° This mean first passage time
. can be considered to represent the average amount of time that elapses
as a weapons system accomplishes its objective of destroying the

target system. The reciprocal of the mean first passage time from .
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the control state s, tc the démage assessment state 5, can be d_efined
as the Lanchester square law attrition coefficient for a Markov combat
process. The value of the Lanchester square law attrition coefficient
that is obtained by using a finite Markov chain model of a combat
operation should be more realistic than a value obtained by using
equation (2), because the finite Markov chain model contains tran-
sition probabilities which describe not only the target acquisition

and target destruction actions of the weapons system but also the
maneuver and control actions of the weapons system. In contrast,
equation (2) does not contain information on the maneuver and control
actions of a weapons system. If the value of the Lanchester attrition
coefficient that is used in equation (0) is computed by the use of a
finite Markov chain model, then this equation should also model com-
bat in a2 more realistic manner. Since equation (0) is one of the
equations that is usec_i to describe combat in the Lanchester theory

of ¢m: .t, an improvement in the Lanchester theory of combat should

also re.alt.

C. EXTENSIONS

The regular Markov chain model which was developed in this
ihesis describes in a single model the control, maneuver, target
acquisition, and target destruction activitics of a weapons system.
These activities were defined so that they represent all of the output
actions of a weapons system. This section will cover three possible
extensions of the original model.

The first extension concerns the effects of increasing and de-
creasing the number of weapons systems in a weapons system organi-

zation. In an abstract sense this allocation of additional weapons
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systerns merely represents a change in the type of weapons system
which is being analyzed, and the model should reflect the effect of
these allocations by indicating a change in the amount of time needed
to conduct a given activity. This change in the type of weapons system
organization should not necessitate a change in the state space of the

model. It should merely require that the one-step probabilities which

are contained in the transition matrix P be estimated again.

Another extension of the model which would aid in the analysis of

a weapons system would be an explicit treatment of the interactions

between the weapons and target systems. The model developed in this

thesis focuses only on the actions of a weapons system or only on the
actions of a target system. It does not explicitly address the inter-
actions between a weapons and a target system. An extension of the

modcl o cover explicitly the aciions ol Loth the target and weapons
system would involve the development of a model which would have a
state space consisting of three hundred and twenty-five different

states. The method for estimating the parameters that was given in

Chapter IV would also have to be modified in order to estimate the

parameters of this interaction model. These extensions and modifica-

tions would greatly increase the complexity of the model.

As a final extension to the model presented in this thesis, it is
recommended that the personnel and logistical activities of a weapons
system also be modeled. Personnel and logistical activities are input
activities in contrast to control, maneuver, target acquisition, and
“target destruction which are output activities. Since ideally input

activities occur simultaneously with the controi, maneuver, target

acquisition, and target destruction activities, it appears that they
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should be modeled separateiy. A regular Markov chain model could

also be used to model these input activities. The estimation of the
one-step transition probabilities contained in such a model would be
< conducted in a manner similar to that which was discassed in Chapter
: Iv,
D. CONCLUDING COMMENTS
. This thesis has attempted to carefully define the activities of a
i military weapons system involved in a combat process. A deliberate
E effort has been made to explain all of the actions which comprise these
—Il activities. A regular Markov chain model was used to aid in the
A analysis of a combat process. It is hoped that the analysis of the
combat process contained in this thesis will be of assistance to weap-
‘ ‘ ons systems analycts and that i will genarate an interczt in additioral
; investigations of the combat process.
,
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