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Abstract 

The optimized   random phase approximation (OPPA)   Is applied   to the 

calculation of the thermodynamlc properties and pair correlation function 

of slmole  liquids.     General  formulas are  presented,   together with results 

tor the Lennard-Jones  fluid,  which are compared with Monte Carlo and 

molecular dynamic results.    Excellent agreement  Is obtained  for  the 

entire single phase fluid  region of the phase diagram,  except for the 

critical   region and the very  low temperature vapor.     The theory con- 

verges especially rapidly at high densities or at high  temperatures. 

The  Importance of separating the  intc-molecular potential   In the proper 

way  to obtain most  rapid  convergence of perturbation theories  Is dis- 

cussed.     It  is concluded  that  the structure of simple  liquids  Is deter- 

mined mostly by the  rapidly varying parts of  the potential.     Further, 

the ORPA provides an accurate theory for calculating the contributions 

from different forces  to the structure and   thermodynamics of liquids. 



I.     Introduction 

In a  recent discussion of  the equilibrium structure  of simple 

liquids',  we  i'itroduced a method   for separating  the   intermolecular 

potential   into two parts,   an attractive part and  a   repulsive part,  and 

discussed  the conceptual advantages of this  separation.     In particular 

we concluded  that the structure of the Lennard-Jones   liquid   is deter- 

mined   largely by  the  repulsive part of th3 potential  at high density. 

To test this conclusion,   subsequent Monte Carlo calculations2*3 

were performed  for hypothetical   fluid whose potentifil   is just  the re- 

pulsive part of the Lennard-Jon3S potential.     The differences between 

the structure of this  fluid and  the structure of the Lennard-Jones 

liquid (at  the same  temperature and density)   clearly are due  to the 

attractive forces.    At high densities,   these differences were  indeed 

found  if. je small,  but not  negligible. 

Any theory which neglects the effect of attractive forces on the 

structure of a  liquid may be called a "high-temperature approximation 

(HTA)11,   since  It  Is reasonable to expect such an approximation to be 

valid at high temperatures.    This type of approximation may also be 

applied   In thermodynamlc perturbation theory.     For the Lennard-Jones 

fluid,   the HTA gives remarkably accurate  thermodynamlc properties not 

only at high temperatures but also at high densities for all  temperatures, 

down to and  Including the triple point  temperature*»2. 

Thus for the Lennard-Jones  liquid,   the HTA  Is useful   for all  high 

temperature strtes and  for all  high density states.     Over this  range 

It provides a qualitatively correct theory of structure and a quanti- 

tatively accurate theory of thermodynamlc properties. 



To obtain a more general  theory of liquid  structure and  thermo- 

dynamics,  one which  is applicable to lower densities or temperature and 

to other types of fluids,   it  is necessary to have an accurate method 

for going beyond  the HTA,   i.e.   for calculating the effect of attrac- 

tive  forces on the  liquid  structure.     In this paper we apply the re- 

cently developed5 "optimized  random phase approximation (ORPA)" to 

this problem.     For the Lennard-Jones  liquid,   the method   is very accurate 

for the entire single-phase fluid  region of the phase diagram (except 

for the critical  region and the vapor far below the critical  tempera- 

ture).     The thermodynamlc results agree with those of Monte Carlo and 

molecular dynamics calculations to within the estimated uncertainty 

of the  latter,  and  the pair correlation functions and structure fac- 

tors also agree well with  those obtained  from the computer calculations. 

The theory Is very rapidly convergent for the Lennard-Jones  liquid (much 

more so than the Barker-Henderson perturbation theory6), and so we 

expect that  It will be applicable to a wide variety of liquids,   in- 

cluding those  In which the effect of attractions  is great.    Fur exam- 

ple, ORPA (in suitably generalized  form7)  can be applied  to reasonable 

potential models'  for liquid water.     In addition,  the ORPA provides a 

way of understanding why the effect of attractions  Is so small  for 

simple  liquids. 

In the next section, we present some preliminary definitions 

and  review the basic ideas of the HTA and the ORPA.    Section III dis- 

cusses the calculational  procedures  involved  In applying the theory. 

The results for the Lennard-Jones fluid are presented  in Section IV, 

and conclusions are discussed  In Section V. 



II.     Definitions and General  Theory 

A.     Definitions 

The general  system under consideration here  is a classical  fluid 

of N molecules  in a volume V (the average number density  Is p = N/V). 

We shall assume that  the  total  potential energy,  W,   can be written as 

r  sum of spherically symmetric pair potentials,  w: 

N 

W=      £       wCrjj)   , (1) 
i<J = l 

where r.,   is  the distance between molecules   i  and J. 
'J J 

The Helmholtz free energy for  the system is given by 

-^-^.V-|tnV-HJdr,,.-liw. (2) 

where AA denotes the excess free energy with  respect to the  ideal gas 

at the same  temperature, density and volume,  and  ß"'   is Boltzmann's 

constant times the temperature.    The thermodynamic properties are obtained 

by differentiating ^ with respect to ß and p.     The correlation func- 

tions can be obtained by functional differentiation.     In particular, 

g(r)  =-(2/p?)    [6^6ßw(r)]   -h(r)+l  , (3) 

where g(r)   Is the radial distribution function,  and h(r)   Is called the 

two-particle correlation function.     The dlmenslonless Fourier transform 

of h(r)   Is 

fi(k)  = p r dr h(r)  exp(-lk-r)  = x(k) - 1  , (4) 

where x(k)   Is called  the structure factor. 



. — 

The methods we describe in this paper are applicable to classi- 

cal fluids for which the pair interaction contains a harshly repulsive 

part that is short ranged (in addition to some attractive parts and/or 

long ranged repulsions) : 

w(r) - uo(r) + u(r) , (5) 

where uo(r)   is  the harsh  repulsion.     We call  uo(r)   the  reference poten- 

tial ;  it  is  the pair potential  for the reference  fluid     in which the 

forces between the molecules are short ranged and harshly repulsive, 

'"he remainder,  'i(r),   is called  the perturbation potential. 

In saying  that the potential  UQ   IS "short ranged and  harshly repul- 

sive" we mean that the Boltzmann factor for u0,  exp[-ßUo(r)],  closely 

resembles  the Boltzmann factor for a hard sphere  Interaction (which is 

a step function rising from 0 to 1 at a distance corresponding to the 

hard  sphere diameter d).     In particular,  exp[-ßuo(r)]   must be zero for 

small  r,  unity for large r,  and   It must rise from essentially zero to 

essentially unity over a range of r values which Is small compared 

with the r at which  It has the value of-. 

Whenw(r)   contains short ranged,   strongly repulsive forces for 

0< r<ro only, we want to choose uo(r)   to have the same forces,  and so 

uo and u can be defined by Eq.  (5)  and the following: 

duo(r)/dr = dw(r)/dr,     r<ro 

uo(r) =0 r> ro . (6) 

For this separation It follows that 

u(r) = constant = u(ro), r < ro . 

Also u(r) Is continuous and more slowly varying than If we had not 

Included all the short ranged repulsive forces In Uo(r). An example 
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of this kfnd of potential separation is depicted in Fig. 1 for the case 

in which w{r) fs the Lennard-Jones potential and ro is chosen f1 be the 

minimum of the potential.  For this separation of the Lennard-Jones 

potential, the perturbation contains all the attractive forces and no 

repulsive forces and is more slowly varying than 'Jü-  In tf,e most gen- 

eral situation u( r) may also contain some slowly varying and/or long 

ranged repulsive, interactions. 

There are two major reasons for separating w( r) into a harshly 

repulsive reference potential plus a slowly varying perturbation.  First, 

a fluid in which the interactions are short ranged and harshly repul- 

sive is obviously similar to a hard sphere fluid.9 It is thus possible 

to exploit this similarity and define a new fluid, called the trial 

system, in which the pair interaction Is given by 

*j(r)  " UjCr) + ^(r) 

where 

Uj-fr) = u(r), r>d , 

",(0 ■". r<d 
= 0, r>d 

and d<ro. We call this the trial system because it is necessary to 

•'try" (see below) various different values of d to find the one which 

Is most closely related to  the fluid with the pair potential w( r). 

For distances smaller than d, the perturbation In the trial system, 

uT(r), can take on any finite value. The trial system differs from 

the fluid of Interest only In that UQ has been replaced by the hard 

sphere potential u.. This difference makes the trial system more 

amenable to statistical mechanical analysis than the actual fluid of 

Interest. In particular, the short ranged repulsions of the trial 

(7a) 

(7b) 

(8) 
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system are hard  sphere repulsions,   and a gredt deal of   Information 

about the hard  sphere fluid  is available from the results of computer 

experiments.     Further,  our technique  ior describing the effects of 

the perturbation on the structure  relias on the physical  constraint 

that g( r) =0 for r<d when the pair  interactions contain a hard core 

repulsion.     Once  the thermodynamic and  structural  properties of the 

trial  system are obtained (in some degree of approximation).   It  Is 

then quite easy to relate these results  to the corresponding proper- 

tlet  of the fluid  in which the pair potential  Is w( r)   rather than 

w (r).     This  Is the program we adopt  in the present work. 

A second  reason for separating w(r)   Into a harshly repulsive 

reference potential  plus ■ slcvly varying perturbation has to do with 

the convergence of perturbation theories.    While the effects of a quickly 

varying perturbation on the structure of a  fluid can be very  large,6 

the effects of a slowly varying perturbatlcn are small by comparison.1 

As « result,  when It Is possible to separate w(r)   In such a way that 

u(r)   Is slowly varying, a perturbation theory for describing the effects 

produced by u(r)   can be rapidly convergent.   It  Is for this reason that 

the potential  separation exhibited  In Fig.   1  leads to a first order per- 

turbation theory4  that  Is significantly more accurate than that of Barker 

and Henderson6 who used the negative part of the Lennard-Jones potential 

(rather than the attractive part)   for their perturbation. 

The notation we use to distinguish the properties of vr.rlous systems 

Is the flowing:    Properties of the hard sphere fluid are denoted by 

a subscript "d" which stands for the diameter of the spheres.    The 

properties of the trial system are  Identified with a subscript "T". 

Those of the reference system are denoted with a "0". Properties of 
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the fluid of  interest have no subscripts.     Thus,   for example, y,(k) 

denotes the structure  factor for the system with pair potential w( r), 

while Xj(k)f  XT(k)  and Xo(k)  denote  the structure factors for the 

hard sphere,   trial and  reference systems,   respectively. 

In the next part of this -ection, we establish the fundamental 

relationship between the trial system and the actual system under 

consideration. In Part C, the high temperatu.-c approximation (HTA) 

will be applied to the trial system, and the relationship wi11 be 

used to obtain the corresponding approximation for the fluid of In- 

terest. In Part D, the optimiivd random phase approximation (ORPA) 

will be used In the same way to obtain more accurate results. Some 

limitations of HTA and ORPA are discussed  In Part E. 



B.     Relationship between Trial  System and Actual  System 

The  properties of a system with realistic repulsive  forces can 

be  related  to a system with hard  core repulsions by a cluster expan- 

sion.     The expansion developed below Is a generalization of one re- 

cently presented by the authors'. 

Note that ^ Is a  functional  of the Mayer function f(r)  = exp(-ßw)-l. 

The corresponding quantity for the trial system,  u-, depends In the 

same way on fT(r;d)  = exp(-ßwT)-l.    These cluster functions are drawn 

in Fig.   2a.    The difference betweer them, Af-f-fTj   Is depicted  In 

Fig.   2b.     If the trial  system diameter d  Is chosen well,   the distance 

over which Af(r)   Is non-zero,  §d.   Is small.    This  Immediately suggests 

that OC Bnd  Cl~ can be related by the following functional  Taylor series: 

^=^T + l5^)Vf(r)<,~+- ■ 
The subsequent terms are higher order functionals of Af(r).    The effec- 

tive expansion parameter  In this  series  Is §, which can be regarded to 

be approximately equal  to 

d"'   1    Mr) |  dr . 
Jo 

By performing the Indicated functional differentiation, we obtain 

A  = ^T + 2 P1 J V1") Af^ ^+--- ' W 
where yT(r)   Is related to the radial distribution function in rite 

trial system by 

yT(r) =exp[+ßwT(r)l  g^r)   . (10) 
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From Eq. (9) Jt is apparent that a good choice of d is that value for 

which the first correction to 0( ~ C(T  vanishes. Thus, d Is chosen to 

satisfy 

JyT(r;d) Af(r;d) dr = 0 . (11) 

It can be shown9  that when d   Is determined by Eq.  (11), 

ä=äj(d)  +<)(?*)  . (12) 

That  Is,  Eq.  (11)   not only makes the term of order §  In Eq.  (9)  equal 

to zero,   ft also forces further corrections to be of order 5* (and not 

52).     From the usual vlrlal expansion for w.   It  Is also evident  that 

CC '' Uri^)   's exact  In the  limit of small p when d  Is chosen by Eq.   (11). 

A similar functional  Taylor series can be generated to relate 

h(r)  to the trial  system correlation function.     In particular, when d 

Is chosen by Eq.  (11),   It  Is found' that 

y(r) H exp[+ßw(r)]   g( r)  = yT(r;d)  [1 + 0(§2)]   . (13) 

As a result,  the structure factor Is given by 

X(k)  = xT(k;d)  + P J dr yT(r;d) Af(r)  exp(-lkM;)  + 0(?2)        ( U) 

The second term makes appreciable contributions (In the form of a 

damping) at Intermediate and large wave-vectors.,0 

Equations (ll)-(U) provide the desired relationship between the 

trial system and the system In which the pair potential Is w(r). We 

now consider two approximate solutions to the problem of calculating 

properties of the tr'al system. 
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C. High Temperature Approximation for the Trial System 

The simplest theory for the trial system Is obtained by neglect- 

ing entirely the effects of the perturbation on the structure. This 

approximation, which becomes exact In the limit of small ß, Is called 

the high temperature approximation (HTA). For the trial system, It 

Is 

tV^HTA^) ' (15) 

and 

^TW   4->2j9d<r)  MOdr. (16) 

With  the aid of Eqs.   (11)-(13)  we obtain from (15)   and (16)   the 

HTA for  the actual system with the pair potential w(r) : 

gHTA(r)  = exp[-ßu0(r)]   ydjr)  = go( r)  [ 1 + 0(§2)] (17) 

and 

^HTA^d„-|*'1 JWr) "Wl- (18) 
The quantity do is the solution to Eq. (11) when the HTA is used for 

yT(r;d) ; that Is 

Jydo(rMfodr = 0 (19) 

where 

Afo = exp(-ßuo) - exp(-ßu. )  . □ o 

Equations (17)-(19)  are the principal equations employed by the 

authors in their recent discussions on the perturbation theory and 

structure of simple liquids.1'4    At high densities they afford an ex- 

ceptionally accurate (as well as simple)  theory of Lennard-Jones liquids. 
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At low densities, however, the structure Is no longer dominated entire- 

ly by the repulsive forces, and the attractions must be accounted for. 

Further, It is probable that important classes of systems exist (e.g., 

those in which the attractive forces vary rapidly in space) for whicl 

the attractions play an Important role in forming the liquid structure 

even at high densities. Thus, we now turn to the problem of describ- 

ing the effects of the perturbation on the structure. 
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Dj Optimized  Random Phase Approximatfon for the Trtal System 

Discussions of the  random phase approximation (RPA)  and  the op- 

timized  random phase approximation (ORPA)   for classical  fluids have 

already been publ ished, ^ M"1 3    Thus, we present below only a brief 

outline of the basic  ideas,   together with the formulas necessary for 

the present work. 

The RPA for the trial  system describes the effects of the per- 

turbation on the structure of that system by the equation 

[XT(k)] RPA      1 +p(k)X.(k)   • 
(20) 

where 

p(k) = ßp ÄT(k) = p J dr ßuT(r) exp('\k'r) (21) 

This approximation can be expressed  In terms of the direct correlation 

function, c(r) ; 

[cT(r)]RRA =Cd^  " 0Mr)   ' ^2) 

Thus,   It  Is the first order approximation In the perturbation expan- 

sion for cT(r) about Cj(r)  (where the ordering parameter Is the strength 

of the perturbation potential).    In terms of the radial distribution 

function,  the approximation  Is 

[^r^RPA = 9d(r)  + 

sum of all singly connected chains In 
the cluster expansion for g^r)  Involv- 

ing one or more -ßuT( r)  bonds, and zero 

or more h.(r) bonds. 

■ gd(r) - (2TT)-3 J dk x/W ßO(k) expi\k-r)  , (23) 

I 
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where 

0(k)  =öT(k)/[l + p(k)  xd(k)]   . (24) 

The cluster diagrams described  In Eq.  (23)  are depicted   In Fig.  3a. 

The RPA for the Helmholtz free energy  Is 

^ApA=^d->2Jd^d(
rWr) 

■f|(2TTr3 Jdk{p(k)xd(k)  - lry[] + p{k)xd(k)]] .  (25) 

Equations (20),  (22)  or (23)  are obtained by taking the appropriate func- 

tional derivatives of (25)  [see Eq.   (3)].    The first two terms on the 

right hand side of Eq.  (25)   form the HTA for Uj.    The  last term  Is 

the sum over all  ring graphs  in the cluster expansion for M-  In- 

volving hj(r)  bonds and two or more -ßu_(r)  bonds.    These diagrans are 

depicted  In Fig.  3b.     It  is seen that  the RPA can also be appropriately 

called the "ring picture approximation". 

Since  the RPA represents  the sum of a class of graphs In the 

cluster series,  systematic corrections tc the approximation can be ob- 

tained b/ accounting for subsequent terms  In the cluster expansion. 

At  least two such  theories have been presented:    the Y"Ordered expansion" 

and the mode expansion.5',,, ,z    The former utilizes diagrammatic methods 

explicitly, while the  latter uses a collective coordinate formalism. 

Both  theories give corrections to the RPA  In the form of an  Infinite 

series expressed entirely In terms of reference (i.e.   hard sphere) 

fluid correlation functions and a screened potential v(r), which  Is the 

Inverse Fourier transform of v(k) defined   In Eq.  (24). 

The ORPA  Is a method for enhancing the convergence of such  In- 

finite series.    To Introduce the ORPA we note that the short ranged 

repulsive Interaction In the trial  system Is the hard  core potential 

u.(r).    Thus  Intermolecular separations smaller than d are physically 
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Jnaccesslble.    As a  result,   the exact evaluation of gT(r)  would  yield 

gT( r)  = 0 for r<d.     However,  the RPA does not necessarily obey  this 

condition since the second  term on the  right  side of Eq.  (23)   may be 

non-zero for  r<d.     This  improper description of excluded volume effects 

is related  to the  fact that the predictions of the RPA depend on the 

perturbation in this physically  inaccessible region12.    By changing uT(r) 

for r<d we can change uT( k)  (and v(k))   for any value of k.     Such 

changes obviously alter the value and hence the accuracy of [WT]pp. 

and  the form of[gT( r)] _„..     In recent work on model electrolytes5»12 

It was found  that by choosing u (r)   for r<d such that t gT(r)] DDA =0 

for r<d,   the RPA can be made very accurate.    Thus we are motivated 

to extend  the  Ideas  used   In the electrolyte calculations  to the prob- 

lem under consideration here.    In particular,  we shall  pick u( r)   for 

r<d so that 

'Mr»i>m--<v»') .M?)       0'   r<d• t26) 

From Eq.  (25)   It  Is seen that the addition of this physical  constraint 

to the RPA  Is equivalent to demanding that 

[6 aRpA/6u(r)]    =0 ,    r<d , (27) 

where a...   Is the random phase  Integral 

aRPA = 2 ^TT)"3 Jd,!<{p(k)Vk)  " ^n + P(k)Xd(k)]) (28) 

which corrects the HTA  to Uj In the RPA. 

In summary, the ORPA Is any one of Eqs. (20), (22), (23) or (25) 

supplemented with Eq. (27). Further discussion of this approximation 

Is contained   in Reference 5. 
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E.     Limitation';  of HTA and ORPA 

Published calculations show that at high densities  the HTA gives 

a very accurate  theory of  thermodynamic properties   if  the appropriate 

potential   separation  is  used.1»2»* Further,   the calculations  presented 

In Section IV of this paper show that  the ORPA  is very accurate at high 

and moderate densities  for both thermodynamic and  structural  proper- 

ties.     This  state of affairs does not,  however,   persist  in  the region 

of low densities.     In particular,   the HTA and ORPA do not give the 

exact second vlrial  coefficient.     The correct second virlal  coefficient 

for ^? Is 

B2 =2 I dZ [e*P(-ßuo-ßu) - 'I   • 

The HTA gives 

[B2]HTA =-|J dr [(1-ßu)  exp(-ßuo)-l]   , 

and  the ORPA gives 

[B2l0RPA =11^ [(1-ßu +|ß2 u2)  exp(-ßUo)-l]   . 

The error  In the ORPA result  is small at high temperatures but can be 

large at  low temperatures.    (The corresponding errors   in the  low density 

g(r)  are similar.)    Away from the critical  region,   the errors  In ORFA 

at  low density make relatively  little difference  In the measurable 

thermodynamic properties,   since  for temperatures  sufficiently below the 

critical  temperature the maximum density of the gas  is very small. 

The HTA and HRPA are not acceptable theories of critical  phenomena. 

Neither gives a frue energy which satisfies thermodynamic stability 

criteria.    Even if one supplements  the  theoretical   free energy with a 

Maxwell  construction, a purely classical  coexistence curve  is obtained 

from both theories.14    Also the ORPA (like the HTA)   is   inconsistent 
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in the sense  that at  the critical  point (as determined by the free 

energy)   the compressibility as determined by the correlation function 

Is finite. 

One pleasant  feature of ORPA as opposed  to the RPA  Is  that the 

ORPA does not contain the catastrophic singularities which are found 

In the RPA and  frequently (and   Incorrectly)   associated with phase 

transitions.,5 



-17- 

III.     Calculational   Procedure and Summarizing Equations 

The first  step when applying the ORPA   is  the determination of the 

optimized form of u (r)   for r<d.    This optimized  potential   is the 

solution to the variational  problem stated  by Eq.   (27).    We find  this 

solution numerically.     The perturbation  in the unphysical   region, 

r<d,   is expanded   in a  series of basis functions.     In particular, 

u_(r)   is expressed as 

-ßuT(r)  = -ßu{r)  + q H(d-r)  - (s/d)   G( r-d) 

in 

H(d-r)   (l-r/d)2^    cnfn* (r/d) (29) 

m 

+ H(d-r)   (1-r/d)2 

n=0 

where q,  s,  and   c   are constants,  H(x)   is  the step function 
n 

H(x)  = 1,  x>0 

= 0,  x<0 , 

G(x)   Is the function whose derivative Is the step function 

G(x)  = x,  x>0 

= 0,  x<0  , 

and  P    (x)  = P (2x-l),  where P (y)   is a Legendre polynomial.    The Fourier 

transform of uT( r)   thus depends on the values of q,   s,   CQ,  ...   .    As a 

result,  aRpA also depends on these coefficients.    The optimized u_( r) 

Is obtained by findl*ig the set of coefficients for which a.-.   Is station- 

ary with respect to small   changes  In the coefficients.    [We note that 

aRPA  's a P05'1^6 definite  functional  of uT( k).     One solution of Eq. 

(27)   corresponds  co an absolute minimum,  and   It  Is apparently this 

solution that we find.    We do not know If other solutions o* (27) 

exist.] 
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Wlth the coefficients q, s, c0, C|, ... determined by the varlatlonal 

procedure, the RPA, Eqs. (20)-(25), Is applied directly to yield the 

equilibrium properties of the trial system.  In particular, Eq. (23) Is 

applied to obtain qT(r).  In order to relate the trial system proper- 

ties to the actual systems properties, we also need yT = exp(+ßw )9 . 

For r>d, there is no problem. However, the ORPA does not directly 

yield information about yT( r) for r<d.  Fortunately, we need yT( r) 

for values of r close to d only. Thus, we simply extrapolate into the 

hard core using the fact that yT(r) and Its first derivative are con- 

tinuous functions of r. The yT function and its derivative can be 

evaluated at r-d accurately since «^.(r) -C-fr) and Its first three 

derivatives are continuous at thc-t point. Thus, for example, 

9^+) = cd(d+) - cd(d-) ♦ puT(d-) . 

The direct correlation function for hard spheres,  c.(r),   is known 

analytically,2 and ßu (d-)  can be evaluated from Eq.  (29). 

With the yT(r;d) calculated for a range of d values, we then cal- 

culate the d which satisfies Eq. (11). It Is found that when the per- 

turbation u(r) Is very much more slowly varying than uo(r), the value 

of d obtained from Eq. (11) Is essentially the same as do which Is the 

solution to Eq. (19). With the value of d determined, Eqs, (12), (13) 

and (U) are used to produce the final ORPA results for the system !n 

which the pair potential  Is w(r).    In particular,  the free energy Is 

^ORPA " ^HTA + A8HTA + «RPA ^ 

where ^L.-   is defined by Eqs.  (17)  and (18)  (It  Is a function of the 

diameter do),  a        Is the random phase  Integral, Eq.  (28), evaluated 
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wlth hard  sphere diameter d and the optimized uT(r),  and 

In deriving Eq. (31), we make use of Eq. (19). Since for many systems, 

d fs very close in value to do, the AaHTA Is frequently negligible, and 

aRpA(d)   can be replaced by aRpA(do). 
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IV.    Application to Lennard-Jones Fluid 

We have applied   the procedure described  in  the previous section 

to the Lennard-Jones fluid, which  is a hypothetical  fluid of spherical 

particles which  interact with each other through a distance dependent 

potential  of the following form: 

w(r)  =4c [(a/r)12 - (a/r)6]   . (32) 

The total  potential  energy of the  fluid   Is assumed  to be equal   to the 

sum of all  the pair  Interactions. 

This simple model   Is known to be  Inadequate as an exact descrip- 

tion of even the noble gases,  because of the restricted  form of the 

potential and the neglect of three-body forces.16    For our purposes 

Its major virtue  Is that Monte Carlo and molecular dynamics calculations 

have been performed  for this model,  giving Information about the thermo- 

dynamlc and structural properties.    Thus for checking the accuracy of 

the ORPA,   the Lennard-Jones fluid  Is more Ideal than a  real  fluid such 

as argon,  for which we do not know the  Intermolecular  Interactions so 

accurately. 

The potential  separation enployed  In our calculations  Is the one 

depicted  In Fig.   1.    That Is, 

uo( r) = wf r) + c ,    r < ro 

= 0 .    r>ro (33a) 

u(r)    = -e ,    r<ro 

= w( r) ,     r> ro , (33b) 
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where ro ■ 2        a  is the position of the minimum in w(r),  This separation 

of w( r) satisfies all the conditions desirable for reference and pertur- 

bation interactions (see Section II A).  In particular, Uo(r) is a harsh 

repulsion, and u( r) ?s slowly varying. 

The Lennard-Jones parameters e and a can be used as the units of 

energy and length, respectively; all the thermodynamic properties can 

be expressed In terms of the dimenslonless density, p =po , and the 

dimensionless temperature, TeOe)"'. In these units t'ie critical point 

# * # 
occurs for T  =1.26 and p  = .30, and the triple ..»oint is at T  =.70 

and p  =.84.  The accuracy of the critical point parameters is uncer- 

tain.17 

The calculations were performed for a wide variety of states for 

reduced densities f om about .1 to 1 and reduced temperatures from about 

.6 to 2.74.  For each state the hard sphere diameter, do, associated 

with the repulsive part of the potential was evaluated [Eq. (19)], 

followed by the HTA free energy, structure factor, and pair correlation 

function. For the optimization procedure on the trial system we used 

the series In Eq. (29) truncated after the P| term. [This trial function 

with only four basis functfDns was found to be accurate enough. Ex- 

tending the series up to ths P5 term had no appreciable effect.] 

The trial system hard sphere diameter, d, associated with the repul- 

sive part of the potential In the presence of attractions was evaluated 

according to Eq. (11). For each state the difference between do and d 

was found tobe negligible (approximately 1-2x10"* a).  The optimized 

RPA Integral provides the ORPA contribution to the free energy, and the 

optimized coefficients were used to calculate the ORPA corrections to 

the structure factor and pair correlation functions.18 

These calculations require a knowledge of the excess free energy CCJ 

and the pair correlation function gd( r) for the hard sphere fluid for 
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range of densities.    We used  the  results of Verlet and Wels2,  who per- 

formed Monte Carlo calculations  for hard  spheres and  presented very 

convenient analytic forms  for the functions. 

The thermodynamlc results are presented In Tables I-III. The 

free energy was obtained from Eqs. (18) and (30), and the pressure 

and energy were obtained by numerical differentiations of the free 

energy with respect to density and  temperature,   respectively: 

*,, - -, (^ , 

and 

where AE stands for the excess (with respect to the Ideal gas) Internal 

energy.  These results are compared with the molecular dynamics re'sults 

of Verlet" and the Monte Carlo calculations of Levesque and Verlet, 

and Hansen.20 A convenient summary of much of the available computer 

data Is found In Ref. 2. 

Excellent agreement between ORPA and computer results are obtained 

for most of the states investigated.  For example, Verlet estimated 

that for the high density, low temperature states, the error In the 

molecular dynamics results for ßp/p may reach .05.  Table II shows 

that fcr most of the high density states the differences between the ORPA 

and molecular dynamics results are equal to or less than this amount. 

The only serious discrepancies between ORPA and Monte Carlo occur for 

the low temperature lav density gas, i.e. the vjpor well below the 

critical temperature. 

The HTA and ORPA structure factors and pair correlation functions 

are compared with molecular dynamics results2' In Figs. 4-7. Figure 

4  shows the structure factor for p =.844, T =.723, a state near 

the triple point.  The major discrepancy between the HTA and molecular 
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dynamlcs results occur only in the height of the first peak.  The ORPA 

raises the peak, eliminating much of the discrepancy, and makes other 

changes which are not visible on the scale of this graph.  Fig. 3 

shows the pair correlation function for a nearby state.  The HTA is 

remarkably accurate but peaks slightly too high and for too small an 

Intermolecular distance. The ORPA improves the agreement with computer 

experiments. 

These two figures illustrate the accuracy of the hypothesis that 

at high density repulsive forces dominate the structure of a simple 

liquid.1 The HTA result is not accurate enough to give good pressures 

via the vlrlal equation.2 This, however, Is an extremely sensitive 

test of a correlation function. When directly compared with the re- 

sults of the computer experiment,  the HTA can be seen to account 

quite well for the important features of g(r). 

Figures 6 and 7 show the corresponding results for states at 

about critical temperature but at a density somewhat higher than criti- 

cal. For g(r) the HTA Is only qualitatively correct.  For the struc- 

ture factor, the HTA Is again remarkably g(5od except for small k. The 

ORPA to a large extent corrects these discrepancies.  For the structure 

factor, the ORPA results essentially coincide with the molecular dynamics 

results, except at small k. (The small k errors In the ORPA are a re- 

flection of the fact that the ORPA does not properly account for the 

long range correlations in the critical region.) These results con- 

firm the conclusions of our previous work1 about the density and k 

dependence of the effect of repulsive forces on the structure of liquids 2i 

The ORPA results also agree quite closely with the second order 

perturbation theory of Barker and Henderson.* For example, along 
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the  Isotherm T   =1.15,   the free energies (-u/p)  of the two theories 

differ by at most .02 and the compressibility factors ßp/p by at most 

.06. 

A major difference between the two theories  Is that at high 

densities the  free energy series whose first two terms are the (ITA 

and ORPA,  converge much more rapidly than the BH perturbation theory. 

The HTA  Is already essentially correct at high densities,  and  the ORPA 

makes a very small  correction (see for example Table III).    By com- 

parison tiie BH first order theory Is not nearly so accurate* and  the 

BH second order correction is about 20 times  larger  than the RPA correc- 

tion.    A similar difference  In the convergence of g( r)  and \{V)  exists 

for the two theories.     The origin of these differences  Is  the methods 

used  to separate the potential   Into reference and perturbation parts. 

Barker and Henderson choose the positive p?rt of the Lennard-Jones po- 

tential as their reference  Interaction.    The negative part  Is taken to 

be the perturbation.     However,   the negative part of the Lennard-Jones 

potential  Is not slowly varying,  and thus  It makes larg« rontributlons 

to the structure at all densities.    The separation Into purely repul- 

sive and purely attractive parts which we use  Is more useful,  sirsce at 

high densities the purely attractive part (which  Is slowly varying) 

has only a very small effect on the structure. 

A second major difference  Is that  In the BH theory.   It  is necessary 

to have Information about the   three- and  four-particle correlation func- 

tions  In the hard  sphere fluid  in order to calculate the effect of the 

perturbation potential on the structure.    On the other hand,  the ORPA 

requires only  the more easily obtained two-particle g(r)  for hard spheres.23 
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V.  Discussion 

In this section, we summarize the principal conclusions of this work 

and discuss the advantages associated with using the ORPA to study 

classical fluids. 

Principal conclusions.  The structure of dense simple classical 

fluids is determined mostly by the rapidly varying parts of the inter- 

molecular potential.  If all the rapidly varying parts are short ranged and 

purely repulsive, a quickly convergent theory of the equilibrium proper- 

ties of the dense fluid can be constructed.  In this theory the effect of 

the harshly varying repulsions is related to the properties of the hard 

sphere fluid, and the effect of the remaining perturbation on the structure 

is calculated from the optimized random phase approximation.  The resulting 

theory, in addition to being rapidly convergent at high densities is ac- 

curate and useful for the entire single-phase fluid region of the phase 

diagram, excepting the critical region and the very low temperature vapor. 

At high density the effect of the perturbation on the structure can be 

neglected completely, giving a very accurate thermodynamic theory and a 

fairly accurate and extremely simple .-^proximation for the pair correla- 

tion function, g( r) - go(r). 

If the attiactlve part of the potential has spatial variations much 

greater than those of the attractive part of the Lennard-Jones potential 

(or if there are some long ranged rapidly varying repulsive forces or oscil- 

lations in the potential such as are postulated for liquid metals), then 

these parts of the potential can influence the structure significantly. 

In particular, according to the ORPA Eq. (20) for X( k), if the perturbation 

has appreciable negative Fourier components near k = 2^/0, where Xo( k) ic 

large, then the perturbation wi11 affect the structure at high density.24 
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Advantfiqes of the optimized random phase approximation.  Computations 

involving the optimized random phase approximat 'n  requires detailed but 

avaiI able2 information about the free energy and pair correlation function 

of the hard sphere fluid.  The accuracy obtained with just this informa- 

tion is comparable to that obtained when one carries the Barker-Henderson 

perturbation series for CC t*  second order in the perturbation,6 However, 

the second order term in the perturbation series requires knowledge about 

of three- and four-particle correlations as well as the two-particle cor- 

relation In the hard sphere fluid. With the same Information needed to 

carry the straightforward perturbation series to second order, one can 

use either the mode expansion5' ll, l2 or Y-ordered expansion" to calculate 

corrections to the ORPA.  For some fluids the corrections may he  necessary 

to obtain quantitative results when the perturbation Is significantly 

different from the Lennard-Jones perturbation. 

Another advantage of the ORPA Is that it, unlike the weak interaction 

perturbation expansion,25 Is particularly well suited for describing long 

ranged Interactions, such as the Coulomb potential.5, ll, l2 Finally, the 

ring and chain summations which give the random phase approximation can 

also be performed for a certain class of highly anisotropic molecular po- 

tentials.7'26 Th'3 generalized RPA formula for these angular dependent 

forces are only slightly more complicated than those for spherically sym- 

metric forces.  Thus, techniques similar to those discussed In this paper 

can be applied to many types of fluids which are more Interesting and com- 

plex than single liquids. 
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Table I. 
Excess free energy for Lennard-Jones fluid.  Column 3 gives the 

value for p"' ^Z = -ßAA/N obtained from the high temperature approxi- 
mation (HTA).  Column U  gives the optimized random phase approxima- 
tion (ORPA) contribution to P"'a. The total ORPA result (i.e., the 
sum of the previous two columns) is given in Column 5.  The values 
obtained from Monte Carlo computer experiments are given in Column 6. 
A Is the difference p"' d m'  p'' ^QRPA • 

.75 

1.15 

1.35 

2.74 

% TA RPA 

.1 .55 .20 

.6 3.66 .07 

.7 4.15 .04 

.8 4.46 .02 

.84 4.51 .02 

.1 .29 .08 

.2 .60 .11 

.3 .92 .11 

.4 1.24 .08 

.5 1.52 .05 

.6 1.74 .03 

.65 1.83 .02 

.75 1.89 .01 

.85 1.78 .01 

.92 1.57 .01 

.1 .22 .06 

.2 .45 .08 

.3 .69 .08 

.4 .91 .06 

.5 1.10 .04 

.55 1.17 .03 

.7 1.27 .01 

.8 I.18 .01 

.9 .90 .01 
,95a .66 .01 

.1 .02 .01 

.2 .03 .02 

.3 .03 .02 

.4 .00 .01 

.35 -.12 .01 

.70 -.37 .00 

.80 -.64 .00 

.90 -1.04 .00 
1.00 -1.59 .00 
1.08a -2.18 .00 

p- A RPA MC 

.75 .80 .05 
3.73 3.73 .00 
4.19 4.17 -.02 
4.48 4.47 -.01 
4.53 4.53 ,00 

.37 .38 .01 

.71 .73 .02 
1.03 1.05 .02 
1.32 1.34 .02 
1.57 1.59 .02 
1.77 1.78 .01 
1.85 1.84 -.01 
1.90 1.89 -.01 
1.79 1.78 .01 
1.58 1.56 -.02 

.28 .29 .01 

.53 .56 ,03 

.77 .80 .03 

.97 1,00 ,03 
1.14 1.16 .02 
1.20 1.22 .02 
1.28 1.29 .01 
1.19 1.19 .00 
.91 .91 .00 
.67 .67 .00 

.03 .03 .00 

.05 .05 .00 

.05 .05 .00 

.01 .01 .00 
-.11 -.06 .05 
-.37 -.37 .00 
-.64 -.65 -.01 
1,04 -1.04 .00 
1.59 -1.58 .01 
2.18 -2.16 .02 

a. For this thermodynamic state, pd3>.93. The analytic gj{r) 

and CC, used in the theoretical calculations presented here 
are reliable only for pd3<.93. 
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ßp/P — -AE/N € 

^            P*          HTAa        oRPAb        „cc HTAa 0RpAb ^ 

•8          -.53        .45          I'M f*?I 5-06 5.07 
.*          .38            45               57 J'o? 5-77 5.78 

•37 6-01 6.03 6 04 

'•,5 ^ -70 64 61 

•3            .04            09             'f,          'I,7 ,*7 '.55 

•5 -.30        -',7 :•?!        ;•"        2-77 2-85 
•6 -.'2        -02 'w        f'^P        5-43 3.47 • 65 .,3 :22

2 :3
0;        J;" 4.1, 4.,4 02 .07 4 04 

22 .31 4:41 
12 J.I7 5.09 

.«  4.5  ::2 f:'' -•--   5-68   5:67 
75 1.07 1*12 1   17        Vrl        ^^ 4-*5 

•85        2.85        2.88 {[{I        !?!        5-12 5.13 

1.35 .1 
5-95 5.97 5.96 

77 .73 .72 

•3 .31 34 M Mf ,-39 '-5' 
•* -17 U « J-f2 ^^ 2.09 
•5 .18 '27 M ^'L2 2-69 2-75 •55 .27 Is •?? 3'2t 3.35 3.37 
.70 ,:I2 ,;?? ,•*» 3.61 3.68 3.70 

•80 2.40 243 Al \'t 4'67 4-68 

•90
d ^.59 461 458 J'fJ 5-26 5-25 

•95d 6.M 6. l-35
2

8 5
5-7

6
9

7 ?'?? 5.66 

2'74 '1 * '^ -^ « •■ .99 .99 oo ,  Ä_ 

5.81 5.71 

•3 1.04 1.05 
.4 1.18 1   19 
.55 1.63 1.65 
•7 2.58 2.59 
•8 3.65 3.66 

.'L 5-22 5-23 
LOO 7.48 7.48          7 ™        /   „ 
'■^ 9.96 9:96           LI        M 

!9             .99 1.08 
1.04 1.67 
1.20 2,28 
1.65 3.17 
2.64 3,92 
3.60 4.26 
5.14 4.39 

9.58        3.75 

.60 .61 
1.19 1.21 
1.77 1.78 
2,36 2.37 
3.21 3.21 
3.94 3.90 
4.28 4,28 
4.40 4.41 
4.22 4,18 
3.76 3,80 

a. Obtained from numerical  differentration of^.-.. 

b. Obtained from numerical  differentiation of ^? 

c. Monte Carlo computer experiment  results (see Ref.   2), 

d. For  this  thermodynamic state,  pd3>.93.    The analytic gj(r) 

and  /?,  used   in the theoretical calculations presented here d 
are  reliable only  for pd3<.93. 
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Table II.     Pressure and   internal energy for Lennard-Jones fluid along 
several   isotherms. 

.75 

1.15 

1.35 

2.74 

-AE/Ns 

P^ HTA3 0RPAb MCC HTA3 0RPAb MCC 

.1 .42 .25 .23 .56 .85 1.15 

.7 -1.87 -1.69 -1.71 5.01 5.06 5.07 

.8 -.53 -.45 -.53 5.75 5.77 5.78 

.84 .38 .45 .37 6.01 6.03 6.04 

.1 .70 .64 .61 .55 .74 .86 

.2 .36 .33 .35 I.17 1.47 1.55 

.3 .04 .09 .12 1.84 2.14 2.24 
,4 -.20 -.09 -.09 2.55 2.77 2.85 
.5 -.30 -.17 -.13 3.30 3.43 3.47 
.6 -.12 -.02 .07 4.04 4.11 4.14 
.65 .13 .22 .31 4.41 4.46 4.45 
.75 1.07 I.12 1.17 5.09 5.12 5,13 
.85 2.85 2.88 2.86 5.66 5.68 5,67 
.92 4.82 4.84 4.72 5.95 5.97 5.96 

.1 .77 .73 .72 .55 .71 .78 
,2 .53 .51 .50 1.16 1.39 1.51 
,3 .31 .34 .35 1.82 2.04 2.09 
,4 .17 .24 .27 2.52 2.69 2.75 
.5 .18 .27 .30 3.24 3.35 3.37 
.55 .27 .35 .41 3.61 3.68 3.70 
.10 1.12 1.17 1.17 4.64 4.67 4.68 
.80 2.40 2.43 2.42 5.24 5.26 5.25 

•90,, 4.59 4.61 4.58 5.67 5.68 5.66 
.95d 6.14 6,15 6.32 5.79 5.81 5.71 

.1 .98 .97 .97 .52 .60 .61 

.2 .99 .99 .99 1.08 1.19 1.21 

.3 1.04 1.05 1.04 1.67 1.77 1.78 

.4 1.18 1.19 1.20 2.28 2.36 2.37 

.55 1.63 1.65 1.65 3.17 3.21 3.21 

.7 2.58 2.59 2.64 3.92 3.94 3.90 

.8 3.65 3.66 3,60 4.26 4.28 4.28 

.9 5.22 5.23 5.14 4.39 4.40 4.41 
1.00 7.48 7.48 7.39 4.21 4.22 4.18 
\.0Q6 9.96 9.96 9.58 3.75 3.76 3.80 

a. Obtained from numerical differentiation ofCLj^. 

b. Obtained from numerical differentiation of a0RpA. 

c. Monte Carlo computer experiment results (see Ref. 2), 

d. For this thermodynamic state, pd3>.93. The analytic g^ r) 

and ß used in the theoretical calculations presented here 

are reliable only for pd3<.93. 
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Table  III.     Pressure and   internal energy for Lennard-Jones fluid along 
several high .ensity isochores. 

ßp/P         -AE/Ne 

p* T* HTAa 0RPAb MDC HTAa 0RPAb MDC 

.88 1.095 3,44 3.47 3.48 5.86 5.87 5.85 

.88 .940 2,82 2.85 2.77 6.03 6.04 6.04 

.88 .591 -.32 -.26 -.18 6.44 6.46 6.53 

.85 2.889 4.38 4.39 4.36 4.25 4.26 4.25 

.85 2.202 4.22 4.23 4.20 4,77 4.78 4.76 

.85 1.214 3.04 3.07 3.06 5,60 5.62 5.60 

.85 1.128 2.78 2.81 2.78 5.69 5.70 5.69 

.85 .88 1.64 1.69 1.64 5.93 5.95 5.94 

.85 .782 .93 ,98 .98 6.04 6.05 6.04 

.85 .76 .74 .79 .82 6.06 6.08 6.07 

.85 .658 -.35 -.29 -.20 6.17 6.19 6.39 

.85 .591 -1.32 -1.24 -1.20 6.25 6.27 6.46 

.75 2.849 3.10 3.11 3.10 4.05 4.07 4.07 

.75 1.304 1.55 1,59 1.61 4.99 5.01 5,02 
,75 1.069 .75 .81 .90 5.15 5.18 5,19 
.75 1.071 .76 .82 .89 5.15 5.17 5.17 
.75 .881 -.27 -.18 -.12 5.29 5.32 5.31 
.75 .827 -.67 -.57 -.54 5.33 5.36 5.38 

.65 2.557 2.11 2.12 2.14 3.77 3.80 3.78 

.65 1.585 1.19 1.24 1,25 4.20 4,24 4.23 

.65 1.036 -.32 -.21 -,11 4.47 4.52 4.52 

.65 .90 -1.04 -.89 -,74 4.54 4.60 4.61 

a. Obtained from numerical differentiation of ^?L|T.. 

b. Obtained from numerical differentiation of  ^«pp«. 

c. Molecular Dynamics computer experiment results (see Ref.  2). 
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Figure Captions 

Fig,   I.     Intermol ecular  interactions.     The Lennard-Jones  potential   is 

w( r)  = uo(r)  +u(r).     The trial   system interaction  is  the hard 

core potential,   uJ 0 ,   plus u( r). 

Fig.   2,     Mayer cluster functions,     a.     f and f- are the cluster functions 

for the actual  system and trial   system,   respectively,     b.     The 

difference Af =  f'f-r-     The distance ro  is the  range of the re- 

pulsive potential  uo(r),  while d   is the hard sphere diameter   in 

the trial   system. 

Fig.   3.     Cluster diagrams   in the random phase approximation,     a.     The 

radial  distribution function,     b.     The free energy.     Solid  lines 

denote -ßuT( r)  bonds,  dashed  lines are h ,( r)  = g.(r)-l   bonds, 

root points are open circles,  and density  field points are filled 

circles.     [#._],._,.   is the high temperature approximation  for CC- 

(l.e,,   the first two terms on the right hand side of Eq.   (25)). 

Fig,  4.     High density structure factor for the Lennard-Jones  fluid.     The 

circles denote the molecular dynamics  results (Ref,   21);  the 

dashed  line represents  the high temperature approximation (i.e,, 

X( k) "- Xo(k));  the solid  line  is  the optimized random phase 

approximation. 

Fig.  5.    High density pair correlation function for the Lennard-Jones 

fluid.     The circles denote the molecular dynamics  results (Ref. 

21);  the dashed  line represents  the high temperature approximation 

( i.e.,  g( r) ~ go( r));  the sol id  1 ine   is the optimized  random 

phase approximation. 
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Fig.  6.    Moderate density structure factor for the Lennard-Jones  fluid. 

The circles denote the molecular dynamics  results (Ref.   21);  the 

dashed line represents the high temperature approximation (i.e., 

X( k) "- Xo(k)};  the solid  line  Is the optimized random phase 

approximat ion. 

Fig.   7.     Moderate density pair correlatior  function  for the Lennard-Jones 

fluid.     The circles denote the molecular dynamics  results (Ref. 

21);  the dashed line represents the high temperature approximation 

(i.e., g( r) ^ go( •')) I  the sol id I ine  is the optimized random 

phase approximation. 
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