A COMPUTER PROGRAM FOR CO2-N2-H2O
GASDYNAMIC LASER GAIN AND MAXIMUM
AVAILABLE POWER

By Waiter J. Glowacki John D. Anderson, Jr.

30 OCTOBER 1971

NOI

NAVAL CRUNANCE LABORATORY, WHITE OAK, SILVER SPRING, MARYLAND

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

JOLTR 71-210

UNCLASSIFIED

は 100mm 10

Security Classification			
OCCUMENT ((Security classification of title, body of abstract	CONTROL DATA - R	R & D	
(Security classification of title, body of abstract and ind	lexing annotation must be	c entered when i	the overall report is classified)
Naval Ordnance Laboratory		ZW. NEFORT	SECURITY CLASSIFICATION
White Oak, Maryland 20910		Unc	classified
REPORT TILLE		≥b. GROUP	
A Computer Program For Co. N.			
A Computer Program For CO ₂ -N ₂ -H ₂ C	,0 Gasdynamic	Laser G	ain and Maximum
Available Power			THE PROPERTY OF
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)			
			
5 AUTHOR(S) (First name, middle initial, last name)			
Walter T of	· · · · · · · · · · · · · · · · · · ·		
walter J. Glowacki John D. A	Anderson, Jr.	•	
6 REPORT DATE	78. TOTAL NO. OI		
30 October 1971	30	FPAGES	7b. NO. OF REFS
88. CONTRACT OR GRANT NO	94. ORIGINATOR'S	- 252257 AUA	8
b. PROJECT NO. OFF. THE L.	1	S NEPURINUM	IBER(\$)
b. PROJECT NO. ORD 551/020/128/1 U-1754	NOL 17	R 71-210	
c.		(/1-510	
	96. OTHER REPOR	RT NO(S) (Any a	other numbers that may be assigned
d.	inis report)	•	ther numbers that may be assigned
10. DISTRIBUTION STATEMENT			
Approved for public release; distr		· • . •	
	ribution unij	imited.	
1 SUPPLEMENTARY NOTES	12. 25.21.22		
	12. SPONSORING MI		
	Naval Ord	dnance Sys	stems Command
	Washingto	on, D.C.	
ABSTRACT			
A Fortran IV computer program is p small-signal gain and maximum avai			
small-signal gain and maximum availasers. In comparison to an earlie	resented for	the cal	Lculation of
lasers. In comparison to an earlice	lable energy	for CO2	-No-HoO gasdynami
contains several service to an earlie	er version.	the pres	

contains several computational improvements which result in a dramatic, are discussed in detail.

DD FORM 1473 (PAGE 1)

S/N 0101-807-6801

UNCLASSIFIED
Security Classification

Unclassified
Security Classification

Security Classification	**************************************	LIN		1 121	K B		× C	
•	KEY WORDS	ROLE WT			ROLE WT		LINK C ROLE WT	
		1	 			1	''' -	
gasdynamic laser						1	1	
gasuyhamic taser					İ	1		
computer program						1	!	
2					Ì	1	İ	
		ŀ			1	ł		
			ŀ		ł	ł	1	
			ŀ	1	}			
					1		1	
]			}	1	1	
						1	ŀ	
			ļ		l	İ		
			1					
			1	!]	
							}	
					·		1	
			ļ					
		-					ŀ	
		j						
			į				1	
		1						
		İ						
		ł						
						[!	
		1						
]			i			
						ļ ļ		
						j l		
						ļ		
		1						
		[
						L		

DD FORM .. 1473 (BACK)
(PAGE 2)

Unclassified
Security Classification

A COMPUTER PROGRAM FOR CO₂-N₂-H₂O GASDYNAMIC LASER GAIN AND MAXIMUM AVAILABLE POWER

Prepared by

Walter J. Glowacki and John D. Anderson, Jr.

ABSTRACT: A Fortran IV computer program is presented for the calculation of small-signal gain and maximum available energy for $\rm CO_2-N_2-H_2O$ gasdynamic lasers. In comparison to an earlier version, the present program contains several computational improvements which result in a dramatic, order-of-magnitude reduction in computation time. These improvements are discussed in detail.

Naval Ordnance Laboratory Silver Spring, Maryland NOLTR 71-210 30 October 1971.

A COMPUTER PROGRAM FOR $CO_2-N_2-H_2O$ GASDYNAMIC LASER GAIN AND MAXIMUM AVAILABLE POWER

This report presents a computer program for the calculation of small-signal gain and maximum available energy for $\rm CO_2-N_2-H_2O$ gasdynamic lasers. A complete statement listing and discussion of the program is given.

This work is based on a time-dependent nonequilibrium nozzle analysis for population inversions originally jointly sponsored by the NOL Independent Research Funds and the Office of Naval Research. The improvements made in the computer program, as discussed in the present report, were supported by the Naval Ordnance Systems Command, under ORD Task 551/020/128/1 U-1754.

ROBERT WILLIAMSON II Captain, USN

L. H. SCHINDEL

By direction

CONTENTS

Page

The state of the s

I.	INTRODUCTION	1
II.	IMPROVED RUNNING TIME	1
III.	MAXIMUM AVAILABLE LASER ENERGY	3
IV.	EQUILIBRIUM H20 IN THE ENERGY EQUATION	5
REFERE	NCES	6
APPEND	ıx	
A	FORTRAN IV COMPUTER PROGRAM AND USER INSTRUCTIONS	
	INTRODUCTORY REMARKS	A-1
	PROGRAM INPUT	A-2
	PROGRAM OUTPUT	A-5
	SAMPLE CASE	A-6
	PROGRAM LISTING	A-14
	ILLUSTRATIONS	
Figure	<u>Title</u>	
1	Calculated small-signal gain as a function of H ₂ O content at a location 1.27 cm downstream of a contoured, minimum length nozzle. A comparison is made between results from the old version of the computer program where e _{vibH2O} is not included in	
	the energy equation, and the new version which does include equilibrium $e_{vib_{H=0}}$ in the energy equation	

(see text for details).

NOMENCLATURE

a _O	frozen speed of sound in reservoir
c _i	mass fraction of species i
e _{vib}	vibrational energy per unit mass of mixture
$^{e}\mathtt{vib}_{\mathtt{I}}$	vibrational energy per unit mass of mode I (see references 1-3)
$e_{\mathtt{vib}_{\mathtt{II}}}$	vibrational energy per unit mass of mode II (see references 1-3)
e _{max}	maximum available laser energy
k	Boltzmann constant
L	length of nozzle or duct
N ₀₀₁	particles per unit volume in upper laser level
N100	particles per unit volume in lower laser level
Po	reservoir pressure
Q	partition function for CO ₂
R	specific gas constant of mixture
ТО	reservoir temperature
$^{\mathtt{T}}\mathtt{vib}_{\mathtt{I}}$	vibrational temperature of mode I (see references 1-3)
$^{\mathtt{T}}\mathtt{vib}_{\mathtt{II}}$	vibrational temperature of mode II (see references 1-3)
$^{\mathtt{T}}\mathtt{vib}_{\mathtt{II}}^{\mathtt{O}}$	vibrational temperature of mode II when population inversion is zero

K _i	mole fr	actio	on of speci	ies	i.			
² 001	energy	(per	particle)	of	the	upper	laser	level
	energy	(per	particle)	of	the	lower	laser	level

BLANK PAGE

I. INTRODUCTION

A time-dependent analysis for the vibrational nonequilibrium nozzle flows associated with ${\rm CO_2-N_2}$ gasdynamic lasers is described in references 1-3. Results obtained from this analysis for small-signal laser gain are in reasonable agreement with experimental data (references 4-7).

In 1969, a computer program based upon the above analysis was written at NOL for internal use as a research tool. However, in light of numerous requests for this program, and because of several recent improvements in its computational efficiency, the publication of this program now seems to be appropriate. Therefore, in Appendix A of this report, a complete statement listing (in Fortran IV) and user instructions for the time-dependent gasdynamic laser gain computer program are given.

In comparison to the original 1969 version, the present program contains several recent improvements and additions. They are: (a) a striking, order-of-magnitude reduction in running time, (b) the addition of a short calculation of maximum available laser energy, (c) the inclusion of equilibrium II_2O energy terms in the energy equation. Details of these improvements are described in the following sections. Throughout the remainder of this report, familiarity with the analysis of references 1-3 will be assumed.

II. IMPROVED RUNNING TIME

In the original version, a typical running time for the computation of gain for a given nozzle flow (for a prescribed p_0 , T_0 , X_i , nozzle shape, size and area ratio) ranged from 300 to 600 seconds

on a CDC 6400 digital computer, depending on the particular case. However, several changes have recently been made to the program, resulting in an order-of-magnitude reduction in the computation time. These time-saving changes resulted from the observation that the flow in the subsonic and throat regions reached a steady-state in far fewer time steps than did the flow near the nozzle exit. typical example was a high area ratio nozzle flow calculated using 38 grid points, 22 of which were finely spaced through the subsonic and throat regions. The other 16 grid points were more coarsely spaced through the remainder of the nozzle. The results showed that, although about 6000 time steps were necessary to reach steady state near the nozzle exit, the subsonic and throat regions reached the final values after only 600 time steps. From these results, it was clear that approximately one-half the computing time could be saved by dropping calculations at the finely spaced grid points as soon as they reach their steady state values.

In order to be able to drop these grid points in an efficient manner, it was necessary to devise a test to determine when the steady state was reached. Examination of existing results showed that the time derivatives of the vibrational energies of modes I and II at the next to last fine-spaced grid point (NB-1) are the best indicators. Because these derivatives oscillate in sign as they damp to zero, their absolute values are required to be less than some given value (.005 was found to be a good value) in three consecutive tests spaced ten time steps apart. When these tests are satisfied, the first NB-1 grid points are dropped from further calculations. The same test procedure is then applied to the next to last grid point (NN-1) and the calculation is terminated when the tests are satisfied.

When the NB-l fine-spaced grid points are dropped from a nozzle calculation, an even greater time saving can be obtained because the time step can be increased by as much as an order of magnitude, speeding the approach to the steady state. The Courant-Friedrichs-Lewy stability criterion can then be based on the relatively large

interval between the more coarsely spaced grid points in the downstream portion of the nozzle rather than on the smaller interval used in the upstream portion. The second stability criterion, based on the characteristic relaxation time for the fastest finite-rate molecular relaxation process occurring within the mixture, also allows a greater time step once the fine-spaced grid points are dropped because the lower temperatures prevailing in the downstream region lead to much longer relaxation times.

The changes described above resulted in about an order of magnitude decrease in computing time and made it feasible to stack multiple cases into a single computer run. The solution for each case could then be used as a starting guess for the next case. Since multiple cases are frequently run to trace out variations with supply conditions, mole fractions, etc., the solutions for successive cases are usually closer to each other than to those for an equilibrium flow. Thus, starting from a previous solution can again cut the computing time. Stacked cases have run in as little as one third the time required for separate runs.

III. MAXIMUM AVAILABLE LASER ENERGY

The present program includes a simple calculation of maximum available energy, as follows. Consider a point in the nozzle of a gasdynamic laser. Using the notation of references 1-3, the translational and rotational temperature at this point is T, the sum of the vibrational energy contained in the excited N₂ and CO₂ (v₃) is $e_{vib_{II}}$ with an attendent vibrational temperature $T_{vib_{II}}$, the sum of the vibrational energy in the CO₂ (v₁) and CO₂ (v₂) modes is $e_{vib_{I}}$ with an attendent $T_{vib_{I}}$, and the population densities of the upper and lower laser levels are N₀₀₁ and N₁₀₀, respectively. In general, $T_{vib_{II}} > T_{vib_{I}} > T$. When an inversion exists, then by definition N₀₀₁ - N₁₀₀ > 0. The population densities are given by

$$N_{001} = (N_{CO_2}/Q) e^{-\epsilon_{001}/kT_{vib}}$$

and

$$N_{100} = N_{CO_2}/Q) e^{-\epsilon_{100}/kT_{vib_1}}$$

where Q is the partition function. We ask the following question: If energy is drained from $e_{\text{Vib}_{II}}$, and $e_{\text{Vib}_{I}}$ is held constant, at what value of $T_{\text{Vib}_{II}}$ will the population inversion go to zero. Denote this value of $T_{\text{Vib}_{II}}$ by $(T_{\text{Vib}_{II}})$. Then,

$$N_{001} - N_{100} = 0 = (N_{CO_2}/Q) (e^{-\epsilon_{001}/k(T_{vib_{II}})} - e^{-\epsilon_{100}/kT_{vib_{I}}})$$

Hence,

$$\epsilon_{001}/k(T_{vib_{II}}^{\circ}) = \epsilon_{100}/kT_{vib_{I}}$$

Thus,

$$(T_{vib_{II}}^{\circ}) = T_{vib_{I}} (\epsilon_{001}/\epsilon_{100})$$

When $T_{vib_{II}} > (T_{vib_{II}})$, an inversion exists and laser power can in principle be extracted. When $T_{vib_{II}} \le (T_{vib_{II}})$, no inversion is present, and no power can be extracted.

In order to consider the maximum laser energy available, we assume that $T_{\text{Vib}_{\mathsf{T}}}$ = T.

Then,

$$(T_{vib}^{O}) = T (\epsilon_{001}/\epsilon_{100})$$

Using this value of $(T_{\mbox{vib}}^{\mbox{ o}})$, we define a maximum available laser energy as

$$e_{\text{max}} = [e_{\text{vib}_{\text{II}}} (T_{\text{vib}_{\text{II}}}) - e_{\text{vib}_{\text{II}}} (T_{\text{vib}_{\text{II}}}^{0})] \times 0.409$$

where the factor 0.409 is the quantum efficiency for the CO $_2$ laser transition at 10.6 μ . In the present computer program, the symbol EVMAX represents e_{max}/RT_O .

The quantity e_{max} is a convenient index to gage the amount of power that might be extracted from a gasdynamic laser. However, in reality the actual power extraction is usually less than e_{max} due to losses in the laser cavity.

IV. EQUILIBRIUM H20 IN THE ENERGY EQUATION

The presence of small amounts of ${\rm H_2O}$ in the ${\rm CO_2-N_2}$ gasdynamic laser expedites the lasing action (references 1-3). In previous versions of the computer program, H₂O was fully included in the vibrational kinetics, i.e., in the computation of the relaxation times. However, because the amount of H₂O in typical gasdynamic lasers was on the order of one percent, the vibrational energy of H2O was intentionally neglected in the gasdynamic energy equation in order to conserve running time. That is, $e_{vib} = c_{CO_2} e_{vib_{CO_2}} + c_{CO_2} e_{vib_{CO_2}}$ $c_{
m N_2}$ e_{vibN2} in the energy equation. Hence, the thermodynamics of the flow did not explicitly see the presence of H20. However, for amounts of ${\rm H_2O}$ on the order of ten percent, ${\rm e_{vib}}_{\rm H_2O}$ should be explicitly included in the energy equation. Therefore, for completeness in the present computer program, the mixture vibrational energy is precisely written as $e_{vib} = c_{CO_2} = v_{ibCO_2} + c_{N_2} = e_{vib} + c_{H_2O} = v_{ib}$. The $e_{vib} = c_{CO_2} = v_{ib} = c_{O_2} = v_{ib} = c_{O_2}$. The $e_{vib} = c_{O_2} =$ This appears to be justifiable in light of the extremely fast T-V relaxation of H20 shown in reference 8.

The effect of the above change on gain is shown in Figure 1 as a function of $\rm H_2O$ content. The upper curve was obtained with the older version of the program where $\rm e_{vib}_{\rm H_2O}$ is neglected (this is almost the same effect as saying $\rm e_{vib}_{\rm H_2O}$ is frozen), and the lower curve was obtained with the present program where equilibrium $\rm e_{vib}_{\rm H_2O}$ is included in the energy equation. Note that, for $\rm H_2O$ content from zero to two percent, the differences are small, as expected.

REFERENCES

- Anderson, J.D., Jr., "Time-Dependent Analysis of Population Inversions in an Expanding Gas," <u>The Physics of Fluids</u>, Vol. 13, No. 8, August 1970, pp 1983-1989
- Anderson, J.D., Jr., "A Time-Dependent Quasi-One-Dimensional Analysis of Population Inversions in an Expanding Gas," NOLTR 69-200, December 1969
- 3. Anderson, J.D., Jr., "Numerical Experiments Associated with Gas Dynamic Lasers," NOLTR 70-198, September 1970
- 4. Anderson, J.D., Jr., Humphrey, R.L., Vamos, John S., Plummer, M.J., and Jensen, R.E., "Population Inversions in an Expanding Gas: Theory and Experiment", to be published in The Physics of Fluids
- 5. Anderson, J.D., Jr., Humphrey, R.L., Vamos, John S., Plummer, M.J., and Jensen, R.E., "Population Inversions in an Expanding Gas: Theory and Experiment", NOLTR 71-116, 28 June 1971
- 6. Anderson, J.D., Jr. and Winkler, E.M., "High Temperature Aerodynamics with Electromagnetic Radiation," Proceedings of the IEEE, Vol. 59, No. 4, April 1971, pp 651-658
- 7. Lee, G. and Gowen, F.E., "Gain of CO₂ Gasdynamic Lasers,"

 Applied Physics Letters, Vol. 18, No. 6, 15 March 1971,

 pp 237-239
- 8. Taylor, R.L. and Bitterman, S., "Survey of Vibrational Relaxation Data for Processes Important in the CO₂-N₂ Laser System," Reviews of Modern Physics, Vol. 14, No. 1, January 1969, pp 26-47

FIG. 1 Calculated small-signal gain as a function of H₂O content at a location 1.27 cm. downstream of a contoured, minimum length nozzle. A comparison is made between results from the old version of the computer program where e_{vib} is not included in the energy equation, and the new version the computer program where evib

in the energy equation (see text for details).

which does include equilibrium evib_{H2}O

BLANK PAGE

APPENDIX A

FORTRAN IV COMPUTER PROGRAM AND USER INSTRUCTIONS

INTRODUCTORY REMARKS

This appendix contains a listing of the Fortran IV computer program* and other information necessary for its use. Brief descriptions of the program input and output are given. Input data and selected results for a sample case are presented in order to illustrate input/output and to provide a test case for program users.

As mentioned previously, the program can be used to compute the flow in supersonic nozzles and ducts (e.g. a laser cavity). Nozzle flow is defined as having a sonic point and being in equilibrium at the first grid point. Duct flow has no sonic point and can be in or out of equilibrium at the first grid point according to the values assigned to the first grid point (see card group 5 under PROGRAM INPUT).

Stacking data sets for cases, each of which is not too different from the preceding, can result in computer time savings ranging from negligible to substantial. The not-too-different requirement is vague at the present time but derives from the use of the steady-state solution for each case as the first trial solution for the

^{*}The program utilizes a CDC 6400 library function SECOND(A) to monitor the elapsed CP (central processor) time. The CP time is returned both via the argument and via the normal function return.

If such a function is not available, the statement SECOND(CPTIM) = 0. Should be entered on the line numbered GDL00140.

succeeding case. This requirement would seem to preclude intermixing nozzle and duct cases and increasing the number of grid points (NN). The use of non-dimensionalized variables through most of the computational procedure contributes greatly to the success of the stacked data approach, permitting larger changes in the input data between successive cases. Although only stacked cases in which the reservoir temperature and pressure and the gas composition were changed systematically have been run, all stacked cases have run successfully and, as far as is known, at least as quickly as the same case run individually.

It should be pointed out that in a parametric variation of the input data over some given range, the required computing time for stacked cases increases rather slowly as the number of cases increases. For example, if the number of cases covering the desired range of data is increased by 100 percent (doubled), the computing time may increase by less than 50 percent. The reason for this is that successive cases (and consequently their solutions) are nearer to each other, reducing the computing time per case. Since additional cases are more costly to run at a later date, one should attempt to include all of the necessary cases in the first run.

PROGRAM INPUT

The data for this program is input from punched cards in up to five card groups, each consisting of one or more cards.

Group 1 Required for each case. This group consists of one card giving the distribution of grid points along the centerline. Since this program is set up to calculate multiple cases (if desired), it will automatically return to this READ after completing each case. Therefore, a blank card is used after the last data set to stop the program normally.

Card Columns	Format Used	Variable Name	Definition
1-5	15	NN	Total number of grid points to be used is /NN/. If NN<0, card group 3 is omitted. If NN=0, program will stop.
6-10	15	NB	Number of grid points with first spacing (DXONE in program)
11-15	15	NT	Grid point at which throat occurs. If no throat (i.e. duct flow), use NT=0.

- Required for each case. This group consists of one card Group 2 giving the length in inches of the subsonic (XSUB) and supersonic (XSUP) portions of the flow. The format used is 2F10.5. For duct flow (NT=0), set XSUB equal to zero and XSUP equal to the desired duct length.
- Required only when NN>0 in card group 1. This group Group 3 consists of up to 14 cards giving the area ratios A/A_{\star} (where A_{\star} is the area of the throat) at each of the NN meshpoints. The format used is 7F10.5 (seven per card). If NN<0, the area ratios from the preceeding case are used. This eliminates the need for re-reading the same area ratio values a number of times during a multiple case run.
- Required for each case. This group consists of one card Group 4 giving the gas mixture and reservoir conditions as indicated below.

Card Columns	Format Used	Variable Name	Definition
1-10	F10.5	FMC	Mole fraction of CO ₂
11-20	F10.5	FMH	Mole fraction of H ₂ O
		A-3	

NOLTR 71-210

Card Columns	Format Used	Variable Name	Definition
21-30	F10.5	ST	Reservoir temperature (°K)
31-40	F10.5	SP	Reservoir pressure (atm.)
41-45	15	JFIN	Upper limit to number of time steps. If zero is read, program sets JFIN=501 for duct flow (NT=0), otherwise sets JFIN=2001. These default values may not be large enough for all cases.
46-50	15	JTEM	Upper limit to number of iterations in determining vibrational temperatures. If zero is read, program sets JTEM=1000.

Group 5 Required only for duct flow (NT=0). This group consists of one card giving the conditions at the first grid point. If the duct flow calculation is a continuation (e.g. after a nozzle flow calculation), the required values are given in the output of the upstream calculation.

Card Columns	Format Used	Variable Name	Definition
1-10	F10.5	A(1)	Area ratio (must match first value of last group 3 used).
11-20	F10.5	RHO (1)	Density ratioed to reservoir density
21-30	F10.5	U(1)	Flow velocity ratioed to reservoir frozen speed of sound
31-40	F10.5	Т(1)	Temperature ratioed to reservoir temperature
41-50	F10.5	EVC (1)	$e_{vib_{1}}^{/RT}$ (see references 1-3)

NOLTR 71-210

Card	Format	Variable	Definition
Columns	Used	Name	
51-60	F10.5	EVN (1)	e _{vib} II o (see references

PROGRAM OUTPUT

In addition to the input data and the initial conditions, values of the more significant variables are printed every 50 time steps for nozzle calculations or every 10 time steps for duct calculations (which typically converge more quickly). This output is also printed upon convergence of both the fine- and coarse-spaced grid points. Vibrational temperatures and populations and small-signal gain calculated from the steady state results are also printed. The output variables and their identification are given below. For fuller explanations, see references 1-3.

TIME	non-dimensional time ta _O /L
DELTIM	smaller of FLUID DELTIM and KINETIC DELTIM
J	index for time step
CPTIME	elapsed CP (central processor) time
DELCPTIME	CP time since last output step
FLUID DELTIM	increment of TIME allowed by Courant-Friedrichs- Lewy stability criterion
KINETIC DELTIM	increment of TIME allowed by fastest relaxation process
I	index for grid point
DTRHO	time derivative of RHO
DTU	time derivative of U
DTT	time derivative of T
DTEVN	time derivative of EVN
EQEVC	equilibrium value of EVC at translational temperature
EQEVN	equilibrium value of EVN at translational temperature

A	area ratioed to throat area
RHO	density ratioed to reservoir density
U	flow velocity ratioed to reservoir frozen speed of sound
T	temperature ratioed to reservoir temperature
P	pressure ratioed to reservoir pressure
EV	non-dimensional vibrational energy $\frac{e_{vib}}{RT_o}$
EVC	non-dimensional vibrational energy of mode I, $e_{\mbox{vib}_{m{I}}}^{\mbox{\ensuremath{\mbox{RT}}}}$
EVN	non-dimensional vibrational energy of mode II, $e_{vib_{II}}/^{RT}$ o
TAUC	non-dimensional vibrational relaxation time for mode I,
	τ _I a _o /L
TAUN	non-dimensional vibrational relaxation time for mode II,
	τ _{II} a _o /L
T1 (K)	vibrational temperature of mode I (°K)
T2 (K)	vibrational temperature of mode II (°K)
T(K)	translational temperature (°K)
N	number of CO ₂ particles per unit volume (cm ⁻³)
N001	<pre>particles per unit volume in upper laser level (mode II), (cm-3)</pre>
N100	particles per unit volume in lower laser level (mode I), (cm^{-3})
X (CM)	distance from first grid point (cm)
EVMAX	maximum available laser energy, e_{max}/RT_{O}
GO	small-signal gain (m ⁻¹)

SAMPLE CASE

Selected results from a sample nozzle calculation are presented on the following pages to illustrate the program output and to provide a test case for program users. On a CDC 6400 computer, the calculation required 680 time steps and 64 seconds of CP (central processor) time to reach the steady state solution at the nozzle exit. The NB-1 fine-spaced grid points reached the steady state in

440 time steps and 55 seconds of CP time. The tabulated values of TIME indicate that <u>if</u> the fine-spaced grid points had not been dropped, allowing the time step to increase, then approximately (3.4100/.2996)x440 or 5000 time steps would have been required to reach the same degree of convergence (same value of TIME). The required computing time would be about 630 seconds, thus, for this case, the current procedure reduces the required computing time by a factor of ten.

The input data for this sample case is tabulated below.

NN 21	_	NT L1				
XSUB .0904	XSUE 6 2.26					
A(1)-2 4.20 1.30 2.40	A(21) 3.20 1.20 2.75	2.50 1.10 12.25	2.10 1.00 16.50	1.70 1.35 18.50	1.50 1.70 19.50	1.40 2.05 19.75
FMC	FMH .01	ST 2400.	SP 20.			

INPUT DATA

AZERO# 3.2191E+	1.21916+03	XF= 2.9020E+01	RC= 6.5955E-01		RN= 1.0364E.00 C	CC# 1.0613E=01	Chm R.87A6E=n1
INITIAL CONDITI	NO ×	FOR NONEQUILIBRIUM	VAŘÍABLES Ev	XEV	ĒVC	z V	
-	0,000	.4200€+01	.6224E+00	4742E+00	.1587E+0n	.44715.00	
~	*00*	3200E+01	.6193E+00	4792E+00	.15816+00	.44476+00	
•	.000	-2500E+01	.6144E+0A	-,4872E+00	.15716.00	.4409E+00	
•	.012	.2100E+01	.6088E+00	-,4962E+00	15616+00	. 4365F+00	
S	.015	.1700E+01	.59816+00	5140E+00	.1540€+00	.42825.00	
•	.019	. 1900E+01	.5883E+00	5305E+00	.15225 • 00	.420SF+0n	
~	.023	.1400E+01	.5811€+00	542AE+60	.1508E+0n	.4150F+00	
•	.027	.1300E+01	.5713E+00	559AE+00	.1489E+00	.4073F-00	
•	.031	.1200E+01	.5571E+00	5850E+00	.1462E+00	.3962F+00	
10	.035	.1100E+01	.5336E+00	6261E+00	.14165.00	.3779F+00	
=	.03	.10005-01	.5151E+00	6635E+n0	.1255£ + On	.3778F+00	
12	-045	.1350E+01	.4691E-00	7570E+00	.8496E=01	.3777E+00	
	.046	.1700E+01	.4523E+00	7934E+00	. 7000E-01	37765+00	
*	.050	.2050E+01	.4415E+00	8177E+00	.60268-01	.37765+00	
15	*90*	.24002+01	.4336E+00	6355E+00	.53206-01	•	
9.	0.09	.2750E+01	.4276E+00	-, 8495E+00	.47776-01	•	
1.7	.246	.1225E+02	.3864E+00	9509E+00	.13016-01	•	
91	.435	.1650E+02	.3786E+0A	9712E+00	.9590E-02	•	
6.	.623	.1850E+02	.3732E+00	9855E+00	.84835-02	.3647E+00	
50	.812	. 1950E+02	.3685E+00	9983E+00	. A009E-02	•	
21	1.000	.1975€+02	.36421.00	1010E +01	.78976-02	•	

## 01 # 0 930	
######################################	7240474 5534746 553
######################################	### ### ### ### #### #### ############
	56.05 56.05 56.05 56.05 56.05 56.05 56.05 56.05 19.05 19.05 10
00 00 00 00 00 00 00 00	113506 00 00 00 00 00 00 00 00 00 00 00 00 0
0	

.1000E-01 .1389E-00 .3640E+00 .1612E-02 .7583E-02 .1700E-01 .1285E-00 .3477E-00 .7204E-02 .2163E-01 .2260E-01 .106E-00 .3477E-00 .7204E-02 .4298E-01 .2306E-01 .3304E-00 .1636E-01 .17377E-01 .3204E-00 .1651E-01 .17377E-01 .3204E-00 .3563E-01 .173E-01 .173E-02 .1951E-02 .1951E-01 .3204E-01 .3204E-01 .173E-01 .3204E-01 | 1 ME . | IME = 3.4100 | DELTIF0130 | .0130 | B 440 | | | CPTIME . | . 63.394 | | DELCETIME = 1.012 | |
|--------------------|---|------------|---|--|-----------|--|---|------------------------------------|--|--|--|
| | | FLUIG | FLUID DELTIM= .5169E-01 | .51696-01 | | KINETI | C DELTIM | KINETIC DELTIM a . 1296E-01 | | | |
| ~ ~ ~ N | 1 DTRHO
17 1.18349E=03
19 1.95821E=04
19 -7.75415E=04
20 -1.90545E=03 | | 07U
-2.00990E-04
5.13930E-04
6.89806E-04 | 0.464596E+04
1.08309E+04
1.00786E+03 | | 07EVC
1.20492E-09
-6.93637E-04
-1.71471E-03 | 07EVN
-7.58472F-04
-1.44972F-03
2.16749E-03
1.32250F-04 | | FOFV:
2-25270F-02
1-87175F-02
1-75047F-02 | FGEVN
1.07515E-02
6.88529E-03
5.74456E-03 | |
| | - | • | Q
CH | • | = | • | | a | ž | | |
| 16 | • | 2750E+01 | .15725+00 | E+00 | 16245.01 | • | 52738+00 | B200F+0 | 42055+40 | | |
| 17 | | 12255+02 | .2964E-01 | E-01 | .18615+01 | • | 2896E+00 | STASE-02 | | | |
| | | .1650F+02 | .2177E-01 | E-01 | .1901F+01 | • | 26492+00 | .5747E-02 | | | |
| _ | • | 18505+02 | .18995-01 | E-01 | .19186+01 | • | 2568F+00 | .4A77E-0 | | 00 | |
| ~ | • | 1950F+02 | .1831E-01 | E-01 | .1921F+01 | • | 2571E+00 | 4707E-02 | • | 00 | |
| ~ | - | 1975€+02 | .1765E-01 | E-01 | .19245+01 | • | 2574E+00 | .45426-02 | • | 00 | |
| | | ⋖ | EVC | Ų | EVN | 44 | TAUC | TAUN | | | |
| Ĩ | 2. | .2750E+n1 | .9532E-0 | E-01 | .3304E+00 | 9. | E-01 | .1127F+0 | • | | |
| _ | • | 1225E+02 | .5694E-01 | E-01 | .31230+00 | • | 14796+00 | .2313E+0 |) | | |
| <u>-</u> | • | 1650E+02 | .4176E-01 | E-01 | .3032E+00 | • | 20298+00 | SAPAE+0 | 14 | | |
| 2 | • | 1850E + 02 | .3291E-01 | E-01 | .2967E+00 | • | 2322E+00 | .46796.0 | · · | | |
| Ñ | • | 19508+02 | .2815E-01 | E-01 | .2908E+00 | • | 2409E+00 | .4A42E+01 | ı. — | | |
| ~ | 1. | ,1975E+02 | .2408E-01 | E-01 | .2850F+00 | • | E+00 | .5010E+0 | 1) grad | | |

	4	71(K)	12 (K)	T (K)	2	N001	N100	(N001-100)	K C.	EVEAX	00
	4.2000	2390.7	2390.7	2390.7	4,242	4.730E+16	0.6762-16	-9.301E-03	0.0000	-2.79146-01	-1.2292E-02
	3.2000	2389.6	2394.3	2389.3	4.231E.IA	4.7236-16	8,661[*16	-9,307E-03	0220	-2.78796-01	-1,23105-02
	2.5000	2377.4	2379.0	2376.0	4.158E-18	4.674E-16	8.5936-16	-9.426E-03	90540	-2.7690E-01	-1.25596-02
	2.1000	2369.7	2372.1	2368.8	4.106E-18	4.637E+16	8.538E+16	-9.500E-03	06893	-2.75635-01	-1.27186-02
	1.7000	2350.7	2356.1	2348.9	3.994E	4.5626.16	8.4268.16	-9.676E-03	10100	-2.) 232E-01	-1.31085-02
	1.5000	2329.1	2334,5	2327.2	3,8616-18	4,464E+16	8.2675+16	-9.9026-03	11484	-2.6916E-01	-1.35906-02
	1.4000	2316.0	2322.4	2314.0	3.7885+18	4.41iE+16	8.2176-16	-1.0056-02	13786	13786 -2.4732E-01	-1.3699E-12
•	1.3090	2296.4	2304.7	2293.3	3.667E-	4.3196.16	A.079E-16	-1,0256-02	16084	16-84 -2.6401E-01	-1.43616.32
o	1.2000	2273.0	2287.2	2266.5	81-29E5"E	4.224E+16	7.9286.14	-1.047E-02	.14141	-2.590nE-01	-1.4403E-02
13	1.1000	2722.6	2251.7	2209.0	3,248	4.016E+16	4.0166-16 7.5626-14	-1.0926-02	.20679	-2.4794E-01	-1.61145-02
=	1.0000	2158.3	7.1055	2108.5	2,6296-18	3,6541.16	6.9088-15	-1.15nE-02	.23977	-2.2613E-01	-1.41135-02
12	1.3500		2142.4	1739.3	1,655€	2.5366-16	4.5986.4	-1.2445-07	.25275	.25575 -1.3430E-01	-2.55798-02
13	1.7000		2100.1	1520.0	1,1316.18	1.943£+16	3,4396+16	-1.286E-37	57575.	.27472 -A.2097E-02	-3.17ndF-n2
*	2.0500	1738.9	2074.4	1418.6	9.2726-17	1.763€+16	2,9656+14	-1.296E-02	.29870	-6.54525-02	-1.502AE-n2
15	2.4000		2.0405	1281.1	9.96.E	1.4501.16	2,3446.16	-1.283E-02	.32164	-2.8326E-02	-3.9702E-n2
16	2.7500	1638.3	2048.0	1265.6	6.7345.17	1.4225+16	2.2005.16	-1.275E-02	.34465	-2.46458-02	-4.008AE-02
11	12.7500	1163.6	1992.9	6.55.0	1.270	4.8576+15	5.0446.15	-1.469E-03	47052	8.5426E-02	-4.7ER0E-N3
8	16.5000	966.2	1964.6	635.7	9.3256	4.697E-15	3.5616-15	1.2196-02	2,59439	9.4914E-02	A.9649E-02
51	18,5000	845.6	1944.6	616.2	8,135€-16	4.87AE+15	2,6296-15	2,5165-02	.72226	9.50495-02	1.91726-01
20	19.5000	178.1	1924.3	617.0	7.842	5.1648.15	2.4996+15	3.39AE-02	.84413	9.254NE-02	2.58546-01

PROGRAM LISTING

```
PROGRAM GDL (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
                                                                          GDL00010
    DIMENSION RHO(95), T(95), U(95), P(95), XI(95), D(95), RHON(95), UN(95), GDL00020
   1TN(95) + XRHO(95) + XU(95) + XT(95) + XA(95) + EV(95) + XEV(95) + EVN(95) +
                                                                          GDL00030
                                                                          GDL00040
   2XEVC(95),XEVN(95),TAUN(95),EVC(95),TAUNH(95),TAUCH(95),EVCN(95),
   3EVNN(95),TAUC(95),ZDTRHO(95),ZDTU(95),ZDTT(95),RHONN(95),UNN(95), GDL00050
   4TNN(95),ZDTEVC(95),ZDTEVN(95),EVCNN(95),EVNNN(95),E1(95),E2(95),
                                                                          GDL00060
   5DTTSTR(95) .ROS(95) .ADD(95) .A(95)
                                                                          GDL00070
    DATA GAMMA/1.4/, UR/49721.7/, NCASE/0/
                                                                          GDL00080
    DATA CVT.VTC.VTCC.VTCCC/6100..3474..1728..6084./
                                                                          GDL00090
    DATA VTH. VTHH. VTHHH/9900., 4290., 10200./
                                                                          GDL00100
    DATA XMN.XMC.XMH/28..44..18./
                                                                          GDL00110
    DATA EV, EVC, EVN, XEV, XEVC, XEVN/285*(1.), 285*(0.)/
                                                                          GDL00120
    DATA TAUC+TAUN/190*(0.)/+ J00/100/+ JMOD0/50/
                                                                          GDL00130
                                                                          GDL00140
                                                                          GDL00150
100 READ (5,500) NN.NB.NT
                                                                          GDL00160
    IF (NN .EQ. O) STOP
                                                                          GDL00170
    READ (5,510) XSUB, XSUP
                                                                          GDL00180
    IF (NN .GT. 0) READ (5.510) (A(I).I=1.NN)
                                                                          GDL00190
    NN=TABS(NN)
                                                                          GDL00200
    READ (5.520) FMC.FMH.ST.SP.JFIN.JTEM
                                                                          GDL00210
                                                                          GDI 00220
    STITK=ST
                                                                          GDL00230
    JFIN0=2001
    IF (NT .EQ. 0) JFIN0=501
                                                                          GDL00240
    IF (JFIN .EQ. O) JFIN=JFINO
                                                                          GDL00250
    IF (JTEM .EQ. 0) JTEM=1000
                                                                          GDL00260
                                                                          GDL00270
105 CPTIMP=SECOND(CPTIM)
                                                                          GDL00280
    WRITE (6,610) CPTIM
                                                                          GDL00290
    EV1=EV(1)
                                                                          GDL00300
    EVC1=EVC(1)
                                                                          GDL00310
                                                                          GDL00320
    EVN1=EVN(1)
    FMN=1.-FMC-FMH
                                                                          GDL00330
    ST=STTTK#1.8
                                                                          GDL00340
                                                                          GDL00350
    WRITE(6,611) STTTK, SP, FMC, FMN, FMH, NN, NB, NT, XSUB, XSUP
    IF (NT .NE. 0) GO TO 110
                                                                          GDL00360
                                                                          GDI 00370
    .100 = 1
    JMOD0=10
                                                                          GDL00380
    XL=XSUP
                                                                          GDL00390
    DXONE=1./FLOAT(NN-1)
                                                                          GDL00400
                                                                          GDL00410
    DXTWO=DXONE
    READ (5.510) A(1).RHO(1).U(1).T(1).EVC(1).EVN(1)
                                                                          GDL00420
    GO TO 115
                                                                          GDL00430
110 XL=XSUB+XSUP
                                                                          GDL00440
     DXONE=XSUB/XL/FLOAT(NT-1)
                                                                          GDL00450
     DXTWO=(XSUP-XSUB+FLOAT(NB-NT)/FLOAT(NT-1))/XL/FLOAT(NN-NB)
                                                                          GDL00460
                                                                          GDL00470
115 XL=XL/12.
    DELTX=DXONE
                                                                          GDL00480
    AZZ=DXONE/(DXONE+DXTWO)
                                                                          GDL00490
    ND=NN-1
                                                                          GDL00500
    ZBLLL=-20.4*(600.0)**(-1.0/3.0)+0.642
                                                                          GDL00510
    NCASE=NCASE+1
                                                                          GDL00520
    IF (NCASE .GT. 1) GO TO 140
                                                                          GDL00530
                                                                          GDL00540
                                                                          GDL00550
    INITIAL CONDITIONS
                                                                          GDL00560
                                                                          GDL00570
    X = -DXONF
    DO 130 I=1.NN
                                                                          GDL00580
                                                                          GDL00590
    IF(I.LE.NB) X=X+DXONE
                                                                          GDI 00600
    TF(I.GT.NB) X=X+DXTWO
    X1(1)=X
                                                                          GDL00610
```

C

```
DTTSTR(I)=0.0
                                                                           GDL00620
    IF (NT .NE. 0) GO TO 120
                                                                           GDL00630
    RHO(1)=RHO(1)
                                                                           GDL00640
    U(I)=U(1)
                                                                           GDL00650
    T(1)=T(1)
                                                                           GDL00660
    EVC(I)=EVC(1)
                                                                           GDL00670
    EVN(I)=EVN(1)
                                                                           GDL00680
    GO TO 130
                                                                           GDL00690
120 IF(I.EQ.1) V=.1
                                                                          GDL00700
    IF(I.EQ.NT) V=1.
                                                                           GDL00710
    IF(1.EQ.NT+1) V=1.5
                                                                          GDL00720
     IF (I.EQ.NB+1) V=3.5
                                                                          GDL00730
    C1=1.728*A(I)
                                                                          GDL00740
125 C2=(1.+0.2*\**2)
                                                                          GDL00750
    C3=(C1*V-C2**3)/(C1-1.2*V*C2**2)
                                                                          GDL00760
    V=V-C3
                                                                          GDL00770
    IF(.000001.LT.ABS(C3)) GO TO 125
                                                                          GDL00780
    U(I)=V/SQRT(C2)
                                                                          GDL00790
    T(I)=1./C2
                                                                          GDL00800
    RHO(1)=T(1)**2.5
                                                                          GDL00810
130 CONTINUE
                                                                          GDL00820
140 DO 150 I=1,NN
                                                                          GDL00830
    P(I) = T(I) + RHO(I)
                                                                          GDL00840
    XRHO([)=ALOG(RHO([))
                                                                          GDL00850
    XU(I)=ALOG(U(I))
                                                                          GDL00860
    XT(I) = ALOG(T(I))
                                                                          GDI 00870
    XA(I)=ALOG(A(I))
                                                                          GDL00880
150 CONTINUE
                                                                          GDL00890
    RHON(1)=XRHO(1)
                                                                          GDL00900
    TN(1)=XT(1)
                                                                          GDL00910
    IF (NT .EQ. 0) UN(1)=XU(1)
                                                                          GDL00920
    WRITE(6.612)
                                                                          GDL00930
    WRITE(6+613) (I+XI(I)+A(I)+RHO(I)+T(I)+U(I)+P(I)+I=1+NN)
                                                                          GDL00940
   WRITE(6,614)
                                                                          GDL00950
   WRITE(6,615) (I,XA(I),XRHO(I),XU(I),XT(I),I=1,NN)
                                                                          GDL00960
                                                                          GDL00970
   XM=FMC*XMC+FMN*XMN+FMH*XMH
                                                                          GDLC UY80
   RC=XM/XMC
                                                                          GDL00990
   RN=XM/XMN
                                                                          GDL01000
   RH=XM/XMH
                                                                          GDL01010
   CC=FMC/RC
                                                                          GDL01020
   CN=FMN/RN
                                                                          GDL01030
   CH=FMH/RH
                                                                          GDL01040
   AZERO=SQRT(GAMMA*UR*ST/XN)
                                                                          GDL01050
   TRES=XL/AZERO
                                                                          GDL01060
   SR=UR/XM
                                                                          GDL01070
   SRST=SR*ST
                                                                          GDL01080
   WRITE(6,616) AZERO, XM, RC, RN, CC, CN
                                                                          GDL01090
   J=1
                                                                          GDL01100
   J02=50
                                                                          GDL01110
   IF (JOO .NE. 1) J02=200
                                                                          GDL01120
   JMOD=JMODO
                                                                          GDL01130
   NWG1=1
                                                                         GDL01140
   NWG2=2
                                                                          GDL01150
   NWG3=NB-1
                                                                         GDL01160
   NWG4=0
                                                                         GDL01170
   NWG5=1
                                                                          GDL01180
   IF (NT .EQ. 0) NWG3=NN/2
                                                                          GDL01190
   TIME=0.0
                                                                          GDL01200
   CPTIMP=SECOND(CPTIM)
                                                                          GDL01210
   IF (J00 .EQ. 1) GO TO 160
                                                                          GDL01220
   NWG5=NN
                                                                          GDL01230
```

```
GDL01240
160 WRITE(6,617)
                                                                           GDL01250
                                                                           GDL01260
    DO 170 1=1.NWG5
                                                                           GDL01270
    X = XI(I)
                                                                           GDL01280
    TD=ST+T(I)
    IF (NT .EQ. 0) GO TO 165
                                                                           GDL01290
    YA=CVT/TD
                                                                           GDL01300
                                                                           GDL01310
    YB=EXP(YA)
    YC=YB-1.0
                                                                           GDL01320
    YACCC=VTCCC/TD
                                                                            GDL01330
    YBCCC=EXP(YACCC)
                                                                            GDL01340
                                                                            GDL01350
    YCCCC=YBCCC-1.0
    EVN(I)=(YACCC+CC+RC/YCCCC+YA+CN+RN/YC)+T(I)
                                                                            GDL01360
    IF (I.GT.NT-1) EVN(I)=EVN(NT-1)-0.0225*(X-0.03253)
                                                                            GDL01370
    YAC=VTC/TD
                                                                            GDL01380
                                                                            GDL01390
    YBC=EXP(YAC)
     YCC=YBC-1.0
                                                                            GDL01400
     YACC=VTCC/TD
                                                                            GDL01410
                                                                            GDL01420
     YBCC=EXP(YACC)
     YCCC=YBCC+1.0
                                                                            GDL01430
     EVC(1)=CC*RC*(YAC/YCC+2.0*YACC/YCCC)*T(1)
                                                                            GDL01440
                                                                            GDL01450
 165 EV(1)=EVC(1)+EVN(1)
                                                                            GDL01460
     YAH=VTH/TD
                                                                            GDL01470
     YBH=EXP(YAH)
                                                                            GDL01480
     YCH=YBH-1.0
                                                                            GDL01490
     YAHH=VTHH/TD
                                                                            GDL01500
     YBHH=EXP(YAHH)
     YCHH=YBHH-1.0
                                                                            GDL01510
                                                                            GDL01520
     YAHHH=VTHHH/TD
                                                                            GDL01530
     YBHHH=EXP(YAHHH)
                                                                            GDL01540
     YCHHH=YBHHH-1.0
     EVH=(YAH/YCH+2.0*YAHH/YCHH+YAHHH/YCHHH)*RH*T(I)*CH
                                                                            GDL01550
     EV(I) #EV(I) +EVH
                                                                             GDL01560
     XEV(1)=ALOG(EV(1))
                                                                             GDL01570
                                                                             GDL01580
     XEVC(1) = ALOG(EVC(1))
     XEVN(I) = ALOG(EVN(I))
                                                                             GDL01590
     WRITE(6,613) I,X,A(I),EV(I),XEV(I),EVC(I),EVN(I)
                                                                             GDL01600
                                                                             GDL01610
 170 CONTINUE
      EVCN(1)=XEVC(1)
                                                                             GDL01620
                                                                             GDL01630
      EVNN(1) = XEVN(1)
      IF (J00 .GT. 1) GO TO 200
                                                                             GDL01640
                                                                             GDL01650
      EVR=EV(1)/EV1
                                                                             GDL01660
      EVCR=EVC(1)/EVC1
                                                                             GDL01670
      EVNR=EVN(1)/EVN1
                                                                             GDL01680
                                                                             GDL01690
      XEVR=ALOG(EVR)
                                                                             GDL01700
      XEVCR=ALOG(EVCR)
      XEVNR=ALOG(EVNR)
                                                                             GDL01710
                                                                             GDL01720
      DO 180 I=2,NN
      EV(I)=EV(I)+EVR
                                                                             GDL01730
      1F (NCASE .GT. 1) EVC(1) = EVC(1) *EVCR
IF (NCASE .GT. 1) EVN(1) = EVN(1) *EVNR
                                                                             GDL01740
                                                                             GDL01750
      XEV(1)=XEV(1)+XEVR
                                                                             GDL01760
      XEVC(1)=XEVC(1)+XEVCR
                                                                             GDL01770
      XEVN(I)=XEVN(I)+XEVNR
                                                                             GDL01780
                                                                              GDL01790
      WRITE(6,613) I,X,A(I),EV(I),XEV(I),EVC(I),EVN(I)
                                                                              GDL01800
  180 CONTINUE
                                                                              GDL01810
```

```
GDL01820
C*****CALCULATION OF DELTIM
                                                                            GDL01830
  200 DO 205 I=NWG1.NN
                                                                            GDL01840
      BA=SQRT(T(1))
                                                                            GDL01850
      D(I)=DELTX/(U(I)+BA)
                                                                            GDL01860
      IF (I .EQ. NWG1) DELTXX=D(I)
                                                                            GDL01870
      IF(D(I).LT.DELTXX) DELTXX=D(I)
                                                                            GDL01880
  205 CONTINUE
                                                                            GDL01890
      DELTYY=AMIN1(TAUC(NWG1), TAUN(NWG1))
                                                                            GDL01900
      DELTXX=DELTXX/1.5
                                                                            GDL01910
      DELTYY=0.8*DELTYY
                                                                            GDL01920
      DELTIM=AMIN1(DELTXX,DELTYY)
                                                                            GDL01930
      TIME=TIME+DELTIM
                                                                            GDL01940
      TEST=MOD(J,JMOD)
                                                                            GDL01950
      IF (TEST .GT. 0.01) GO TO 210
                                                                            GDL01960
      CPTIMP=CPTIM
                                                                            GDL01970
      DCPTIM=SECOND(CPTIM)-CPTIMP
                                                                            GDL01980
      WRITE (6,620) TIME, DELTIM, J, CPTIM, DCPTIM
                                                                            GDL01990
      WRITE(6,621) DELTXX, DELTYY
                                                                            GDL02000
      WRITE (6,622)
                                                                            GDL02010
                                                                            GDI 02020
                                                                            GDL02030
                                                                            GDL02040
C*****CALCULATION OF RELAXATION TIMES
                                                                            GDL02050
  210 DO 220 I=NWG1+NN
                                                                            GDL02060
      TAUCH(I)=TAUC(I)
                                                                            GDL02070
      TAUNH(I)=TAUN(I)
                                                                            GDL02080
      TD=T(1) #STTTK
                                                                            GDL02090
      ZTD=TD**(-1.0/3.0)
                                                                            GDL02100
      PD=P(1)*SP
                                                                            GDL02110
      PDC=PD/1.0E-6
                                                                            GDL02120
      ZAL=17.8*ZTD-1.808
                                                                            GDL02130
      ZBL=-20.4*ZTD+0.642
                                                                            GDL02140
      IF(TD.LT.600.0) ZBL=ZBLLL
                                                                            GDL02150
      7.AP=10.0**ZAL
                                                                            GDL02160
      ZBP=10.0**ZBL
                                                                            GDL02170
      ZCP=4.0*ZAP
                                                                            GDL02180
      ZA=ZAP/PDC
                                                                            GDL02190
      ZB=ZBP/PDC
                                                                            GDL02200
      ZC=ZCP/PDC
                                                                            GDL02210
      ZD=FMC/ZA+FMN/ZC+FMH/ZB
                                                                            GDL02220
      TAUC(I)=1.0/(ZD*TRES)
                                                                            GDL02230
      ZAP=(1.3E5)*ZTD**4.9
                                                                            GDL02240
      ZBP=0.27*ZAP
                                                                            GDL02250
      ZCP=5.5E-2
                                                                            GDL02260
      ZA=ZAP/PDC
                                                                            GDL02270
      ZB=ZBP/PDC
                                                                            GDL02280
      ZC=ZCP/PDC
                                                                            GDI 02290
      ZD=FMC/ZB+FMN/ZA+FMH/ZC
                                                                            GDL02300
      ZEL=93.0*ZTD-4.61
                                                                            GDL02310
      ZGL=15.4*ZTD+0.722
                                                                            GDL02320
      ZEP=10.0**ZEL
                                                                            GDL02330
      ZGP=10.0*#ZGL
                                                                            GDL02340
      7F=7FP/PDC
                                                                            GDL02350
      ZG=ZGP/PDC
                                                                           GDL02360
      ZH=(FMC+FMN)/ZE+FMH/ZG
                                                                            GDL02370
      ZI=FMC*ZD+FMN*ZH
                                                                           GDL02380
      TAUN(I) = (FMC+FMN)/(ZI*TRES)
                                                                           GDL02390
 220 CONTINUE
                                                                           GDL02400
                                                                           GDL02410
```

```
DO 230 I=NWG2.ND
                                                                           GDL02420
      IF(I.EQ.NB) GO TO 230
                                                                           GDL02430
                                                                           GDL02440
      DELX*DXTWO
      IF (I .LT. NB) DELX=DXONE
                                                                           GDL02450
C####CALCULATION OF X DERIVATIVES (FIRST STAGE IN MACCORMACKS METHOD)
                                                                           GDL02460
                                                                           GDL02470
      DRHO=(XRHO([+])-XRHO([))/DELX
                                                                           GDL02480
      DU=(XU(1+1)-XU(1))/DELX
                                                                           GDL02490
      DT = (X1(1+1)-XT(1))/DELX
                                                                           GDL02500
      DA=(XA(I+1)-XA(I))/DELX
                                                                           GDL02510
      IF(I.EQ.NT) DA=0.0
                                                                           GDL02520
      DEVC=(XEVC([+1)-XEVC([))/DELX
      DEVN=(XEVN(I+1)-XEVN(I))/DELX
                                                                           GDL02530
      DEV=(XEV([+])-XEV([))/DELX
                                                                           GDL02540
C*****CALCULATION OF TIME DERIVATIVES (FIRST STAGE)
                                                                           GDL02550
      DTRHO=-U(1)*(DA+DU+DRHO)
                                                                           GDL02560
      DTU=-(DT+DRHO) *T(1)/(GAMMA*U(1))-U(1)*DU
                                                                           GDL02570
                                                                           GDL02580
      TD=ST*T(1)
      PD=SP#P(I)
                                                                           GDL02590
      YA=CVT/TD
                                                                           GDL02600
                                                                           GDL 02610
      YB=EXP(YA)
                                                                           GDL02620
      YC=YB-1.0
                                                                           GDL02630
      EQEV=YA+T(I)/YC
                                                                           GDL02640
      YACCC=VTCCC/TD
                                                                           GDL02650
      YBCCC=EXP(YACCC)
                                                                           GDL02660
      YCCCC=YBCCC-1.0
      E1(I)=CC*RC*YACCC/YCCCC*T(I)+EQEV*CN*RN
                                                                           GDL02670
                                                                           GDL02680
      YAC=VTC/TD
                                                                           GDL02690
      YBC=EXP(YAC)
                                                                           GDL02700
      YCC=YBC-1.0
                                                                           GDL02710
      YACC=VTCC/TD
                                                                           GDL02720
      YBCC=EXP(YACC)
                                                                           GDL02730
      YCCC=YBCC-1.0
                                                                           GDL02740
      E2(1)=CC+RC+(YAC/YCC+2+0+YACC/YCCC)+T(1)
      EQEVN=E1(I)
                                                                           GDL02750
                                                                           GDL02760
      EQEVC=E2(1)
                                                                           GDL02770
      DTEVC=(EQEVC/EVC(I)-1.0)/TAUC(I)-U(I)*DEVC
      DTEVN=(EQEVN/EVN(I)-1.0)/TAUN(I)-U(I)+DEVN
                                                                           GDL02780
      DTEV=(EVC(I)*DTEVC+EVN(I)*DTEVN)/EV(I)
                                                                           GDL02790
                                                                           GDL 02800
      YAH=VTH/TD
      YBH=EXP(YAH)
                                                                           GDL02810
                                                                           GDL02820
      YCH=YBH-1.0
      YAHH=\'THH/TD
                                                                           GDL02830
                                                                           GDL02840
      YBHH=EXP(YAHH)
                                                                           GDL02850
      YCHH=YBHH-1.0
                                                                           GDL02860
      YAHHH=VTHHH/TD
                                                                           GDL02870
      YBHHH=EXP(YAHHH)
      YCHHH=YBKHH-1.0
                                                                           GDL02880
      ADD(I)=RH*(YAH*YAH*YBH/YCH/YCH+2.0*YAHH*YAHH*YBHH/YCHH/YCHH
                                                                           GDL02890
                                                                           GDL02900
     * +YAHHH*YAHHH*YBHHH/YCHHH/YCHHH)*CH*DTTSTR(I)
      ROS(1)=0.4/(CC*RC+CN*RN+1.2*CH*RH)
                                                                           GDL02910
      DTT=-ROS(1)*(U(1)*DU+U(1)*DA+EV(1)*DTEV/T(1)+U(1)*EV(1)*DEV/T(1)+ GDL02920
                                                                           GDL02930
     1ADD([])-U([)*DT
C*****CALCULATION OF VARIABLES AT NEW TIME (FIRST STAGE)
                                                                           GDL02940
                                                                           GDL02950
      RHON(I) = XRHO(I) + DTRHO*DELTIM
                                                                           GDL02960
      UN(1)=XU(1)+DTU*DELTIM
                                                                           GDL02970
      EVCN(I) = XEVC(I) + DTEVC + DELTIM
                                                                           GDL02980
      EVNN(I) = XEVN(I) + DTEVN + DELTIM
                                                                           GDL02990
      TN(I)=XT(I)+DTT+DELTIM
                                                                           GDL03000
      ZDTRHO(1)=DTRHO
                                                                           GDL03010
      ZDTU([]=DTU
                                                                           GDL03020
      ZDTT(I) *DTT
```

```
ZDTEVC(1) = DTEVC
                                                                             GDL03030
        ZDTEVN(I)=DTEVN
                                                                             GDL03040
    230 CONTINUE
                                                                             GDL03050
        UN(1)=XU(1)
                                                                             GDL03060
        IF (NT .EQ. 0) GO TO 240
                                                                             GDL03070
        UN(1)=2.0*UN(2)-UN(3)
                                                                            GDL03080
        TENR
                                                                            GDL03090
        RHON(I)=RHON(I-1)-(RHON(I-1)-RHON(I+1))*AZZ
                                                                            GDL03100
        UN(I)=UN(I-1)-(UN(I-1)-UN(I+1))*AZZ
                                                                            GDL03110
        TN(I) = TN(I-1) - (TN(I-1) - TN(I+1)) + A27
                                                                            GDL03120
       EVCN(I)=EVCN(I-1)-(EVCN(I-1)-EVCN(I+1))*AZZ
                                                                            GDL03130
       EVNN(I)=EVNN(I-1)-(EVNN(I-1)-EVNN(I+1))*AZZ
                                                                            GDL03140
                                                                            GDL03150
   240 DO 250 I=NWG2.ND
                                                                            GDL03160
       IF(I.EQ.NB) GO TO 250
                                                                            GDL03170
       DELX=DXTWO
                                                                            GDL03180
       IF (I .LT. NB) DELX=DXONE
                                                                            GDL03190
 C#####CALCULATION OF X DERIVATIVES (SECOND STAGE)
                                                                            GDL03200
       DRHO=(RHON(I)-RHON(I-1))/DELX
                                                                            GDL03210
       DU=(UN(I)-UN(I-1))/DELX
                                                                            GDLU3220
       DT=(TN(I)-TN(I-1))/DELX
                                                                            GDL03230
       DA=(XA(I)-XA(I-1))/DELX
                                                                            GDL03240
       IF(I.EQ.NT) DA=0.0
                                                                            GDL03250
       DEVC=(EVCN(I)-EVCN(I-1))/DELX
                                                                            GDL03260
       DEVN=(EVNN(I)-EVNN(I-1))/DELX
                                                                            GDL03270
       DEV=(EVC(I)*DEVC+EVN(I)*DEVN)/EV(I)
                                                                            GDL03280
       TD=ST+T(I)
                                                                            GDL03290
       YAH=VTH/TD
                                                                            GDL03300
       YBH=EXP (YAH)
                                                                            GDL03310
       YCH=YBH-1.0
                                                                            GDL03320
       YAHH=VTHH/TD
                                                                            GDL03330
       YBHH=EXP(YAHH)
                                                                            GDL03340
       YCHH=YBHH-1.0
                                                                            GDL03350
       YAHHH=VTHHH/TD
                                                                            GDL03360
       YBHHH=EXP(YAHHH)
                                                                            GDL03370
       YCHHH=YBHHH-1.0
                                                                            GDL03380
       ADDEV =RH*(YAH*YAH*YBH/YCH/YCH+2.0*YAHH*YAHH&YBHH/YCHH/YCHH
                                                                            GDL03390
      * +YAHHH*YAHHH*YBHHH/YCHHH/YCHHH)*CH*DT*T(1)/EV(1)
                                                                            GDL03400
      DEV=DEV+ADDEV
                                                                           GDL03410
C*****CALCULATION OF NEW TIME DERIVATIVES (SECOND STAGE)
                                                                           GDL03420
      EQEVN=E1(I)
                                                                           GDL03430
      EQEVC=E2(1)
                                                                           GDL03440
      DTRHO=-U(I)*(DA+DU+DRHO)
                                                                           GDL03450
      DTU=-(DT+DRHO)*T(I)/(GAMMA*U(I))-U(I)*DU
                                                                           GDL03460
      DTEVC=(EQEVC/EVC(I)-1.0)/TAUC(I)-U(I)*DEVC
                                                                           GDL03470
      DTEVN=(EQEVN/EVN(I)-1.0)/TAUN(I)-U(I)*DEVN
                                                                           GDL03480
      DTEV=(EVC(1)*DTEVC+EVN(1)*DTEVN)/EV(1)
                                                                           GDL03490
      DTT=-ROS(1)*(U(1)*DU+U(1)*DA+EV(1)*DTEV/T(1)+U(1)*EV(1)*DEV/T(1)+ GDL03500
     1ADD(1))-U(1)*DT
                                                                           GDL03510
C*****CALCULATION OF AVERAGE TIME DERIVATIVES
                                                                           GDL03520
      DTRHO=0.5*(DTRHO+ZDTRHO(I))
                                                                           GDL03530
      DTU=0.5*(DTU+ZDTU(I))
                                                                           GDL03540
      DTEVC=0.5*(DTEVC+ZDTEVC(I))
                                                                           GDL03550
      DTEVN=0.5*(DTEVN+ZDTEVN(I))
                                                                           GDL03560
      DTT=0.5*(DTT+ZDTT(1))
                                                                           GDL03570
      DTTSTR(1)=DTT
                                                                           GDL03580
      IF (I .NE. NWG3) GO TO 245
                                                                           GDL03590
      ABSDTC=ABS(DTEVC)
                                                                           GDL03600
      ABSDTN=ABS(DTEVN)
                                                                           GDL03610
      ABSDT=AMAX1 (ABSDTC, ABSDTN)
                                                                           GDL03620
C*****CALCULATION OF FINAL VALUES AT NEW TIME
                                                                           GDL03630
```

```
245 RHONN(1) = XRHO(1) + DTRHO*DELTIM
                                                                             GDL03640
      UNN(I)=XU(I)+DTU*DELTIM
                                                                             GDL03650
      EVCNN(1) = XEVC(1) + DTEVC * DELTIM
                                                                             GDL03660
      EVNNN(I) = XEVN(I) + DTEVN * DELTIM
                                                                             GDL03670
      TNN(1)=XT(1)+DTT*DELTIM
                                                                             GDL03680
      IF(TEST.GT.0.01) GO TO 250
                                                                            GDL03690
      WRITE(6,623) I, DTRHO, DTU, DTT, DTEVC, DTEVN, EQEVC, EQEVN
                                                                             GDL03700
  250 CONTINUE
                                                                            GDL03710
                                                                             GDL03720
C####EXTRAPOLATION TO END POINTS
                                                                            GDL03730
      I = NN
                                                                            GDL03740
      RHONN(I)=2.0*RHONN(I-1)-RHONN(I-2)
                                                                            GDL03750
      UNN(I)=2.0*UNN(I-1)-UNN(I-2)
                                                                            GDL03760
      TNN(I) = 2.0 + TNN(I-1) - TNN(I-2)
                                                                            GDL03770
      EVCNN(I)=2.0+EVCNN(I-1)-EVCNN(I-2)
                                                                            GDL03780
      EVNNN(I)=2.0*EVNNN(I-1)-EVNNN(I-2)
                                                                            GDL03790
      IF (NT .EQ. 0) GO TO 255
                                                                            GDL03800
      1=1
                                                                            GDL03810
      UNN(I) = 2.0 + UNN(I+1) - UNN(I+2)
                                                                            GDL03820
      XU(I)=UNN(I)
                                                                            GDL03830
      U(I) = EXP(XU(I))
                                                                            GDL03840
      I=NB
                                                                            GDL03850
      RHONN(I)=RHONN(I-1)-(RHONN(I-1)-RHONN(I+1))*AZZ
                                                                            GDL03860
      UNN(I)=UNN(I-1)-(UNN(I-1)-UNN(I+1))*AZZ
                                                                            GDL03870
      TNN(I) = TNN(I-1) - (TNN(I-1) - TNN(I+1)) *AZZ
                                                                            GDL03880
      EVCNN(I)=EVCNN(I-1)-(EVCNN(I-1)-EVCNN(I+1))*AZZ
                                                                            GDL03890
      EVNNN(I)=EVNNN(I-1)-(EVNNN(I-1)-EVNNN(I+1))*AZZ
                                                                            GDL03900
                                                                            GDL03910
  255 DO 260 I=NWG2.NN
                                                                            GDL03920
      XRHO(I)=RHONN(I)
                                                                            GDL03930
      XU(I) = UNN(I)
                                                                            GDL03940
      XT(I) = TNN(I)
                                                                            GDL03950
      XEVC(I)=EVCNN(I)
                                                                            GDL03960
      XEVN(I)=EVNNN(I)
                                                                            GDL03970
      RHO(I)=EXP(XRHO(I))
                                                                            GDL03980
      U(I)=EXP(XU(I))
                                                                            GDL03990
      EVC(1)=EXP(XEVC(1))
                                                                            GDL04000
      EVN(I) = EXP(XEVN(I))
                                                                            GDL04010
      EV(I)=EVC(I)+EVN(I)
                                                                            GDL04020
      T(I) = EXP(XT(I))
                                                                            GDL04030
                                                                            GDL04040
      P(I) = RHO(I) *T(I)
      TD=ST+T(1)
                                                                            GDL04050
      YAH=VTH/TD
                                                                            GDL04060
      YBH=EXP(YAH)
                                                                            GDL04070
      YCH=YBH-1.0
                                                                            GDL04080
      YAHH=VTHH/TD
                                                                            GDL04090
      YBHH=EXP(YAHH)
                                                                            GDL04100
      YCHH=YBHH-1.0
                                                                            GDL04110
      YAHHH=VTHHH/TD
                                                                            GDL04120
      YBHHH=EXP(YAHHH)
                                                                            GDL04130
                                                                            GDL04140
      YCHHH=YBHHH-1.0
                                                                            GDL04150
      EVH=(YAH/YCH+2.0*YAHH/YCHH+YAHHH/YCHHH)*RH*T(I)*CH
      EV(I)=EV(I)+EVH
                                                                            GDL04160
      XEV(1)=ALOG(EV(1))
                                                                            GDL04170
 260 CONTINUE
                                                                            GDL04180
                                                                            GDL04190
                                                                            GDL04200
      IF(TEST.GT.0.01) GO TO 270
                                                                            GDL04210
      WRITE(6,624)
     WRITE(6,625)(I,A(I),RHO(I),U(I),T(I),P(I),EV(I),I=NWG1,NN)
                                                                            GDL04220
      WRITE(6,626)
                                                                            GDL04230
      WRITE(6,627) (1,A(1),EVC(1),EVN(1),TAUC(1),TAUN(1),I=NWG1,NN)
                                                                            GDL04240
```

GDL04250

```
GDL04260
                                                                            GDL04270
 270 J=J+1
                                                                            GDL04280
      IF (J .LT. J02) GO TO 200
                                                                            GDL04290
C****TEST FOR CONVERGENCE OF SOLUTION
                                                                            GDL04300
      IF (NWG4 .EQ. 3) GO TO 280
IF (MOD(J.10) .NE. 0) GO TO 295
                                                                            GDL04310
                                                                            GDI 04320
      IF (ABSDT .GT. .005) GO TO 290
                                                                            GDL04330
      NWG4=NWG4+1
                                                                            GDL04340
      IF (NWG4 .EQ. 3) JMOD=J
                                                                            GDL04350
      GO TO 200
                                                                            GDL04360
C****DROP UPSTREAM POINTS NOW AT STEADY STATE
                                                                            GDL04370
  280 IF (NWG1 .EQ. NWG2) J=JFIN
                                                                            GDL04380
      JMOD=JMODO
                                                                            GDL04390
      NWG1=NWG3+1
                                                                            GDL04400
      NWG2=NWG1
                                                                            GDL04410
      NWG3=NN-1
                                                                            GDL04420
      NWG4=1
                                                                            GDL04430
      DELTX=DXTWO
                                                                            GDL04440
      IF (ABSDT .LE. .005) GO TO 295
                                                                            GDL04450
  290 NWG4=0
                                                                            GDL04460
  295 IF(J.LT.JFIN) GO TO 200
                                                                            GDL04470
                                                                            GDL04480
C*****CALCULATION OF VIBRATIONAL TEMPERATURES AND POPULATIONS
                                                                            GDL04490
                                                                            GDL04500
  300 WRITE(6,630)
                                                                            GDL04510
      TT=T(1)*ST
                                                                            GDL04520
      TTN=TT
                                                                            GDL04530
      DO 340 I=1.NN
                                                                            GDL04540
      TEVC=EVC(I)/CC*ST/RC
                                                                            GDL04550
      JXX = 1
                                                                            GDL04560
  310 JXX=JXX+1
                                                                            GDL04570
      IF (JXX.GT.JTEM)GO TO 350
                                                                            GDL04580
      YAC=VTC/TT
                                                                            GDL04590
      YBC=EXP(YAC)
                                                                            GDL04600
      YCC=YBC-1.0
                                                                            GDL04610
      YACC=VTCC/TT
                                                                            GDL04620
      YBCC=EXP(YACC)
                                                                            GDL04630
      YCCC=YBCC-1.0
                                                                            GDL04640
      YCC=VTC/YCC
                                                                            GDL04650
      YCCC=VTCC/YCCC
      ZTEST=TT*(TEVC-YCC-2.*YCCC)/(YBC*YCC**2+2.*YBCC*YCCC**2)
                                                                            GDL04660
                                                                             GDL04670
      TT=TT+(1.+2TEST)
                                                                             GDL04680
      AZTEST=ABS(ZTEST)
                                                                             GDL04690
      IF(AZTEST.GT.1.0E-8) GO TO 310
                                                                             GDL04700
      TEVN=CN*RN
                                                                             GDL04710
      TEVC=CC*RC
                                                                             GDL04720
      JYY=1
                                                                             GDL04730
      EVN111=EVN(I)*ST
                                                                             GDL04740
  320 JYY=JYY+1
                                                                             GDL04750
      IF(JYY.GT.JTEM) GO TO 350
                                                                             GDL04760
      YACCC=VTCCC/TTN
                                                                             GDL04770
      YBCCC=EXP(YACCC)
                                                                             GDL04780
      YCCCC=YBCCC-1.0
                                                                             GDL04790
       YA=CVT/TTN
                                                                             GDL04800
       YB=EXP(YA)
                                                                             GDL04810
      YC=YB-1..0
                                                                             GDL04820
       YCCCC*VTCCC/YCCCC
                                                                             GDL04830
       YC=CVT/YC
                                                                             GDL04840
      ZTEST=TTN*(EVN111-TEVC*YCCCC-TEVN*YC)
                                                                             GDL04850
       ZTEST*ZTEST/(TEVC*YBCCC*YCCCC**2+TEVN*YB*YC**2)
                                                                             GDL04860
       TTN=TTN*(1.+ZTEST)
                                                                             GDL04870
       AZTEST=ABS(ZTEST)
                                                                             GDL04880
       IF(AZTEST.GT.1.0E-8) GO TO 320
```

```
GDL04890
                                                                           GDL04900
 330 TK=T(1)*STTTK
                                                                           GDL04910
     PK =P(1) #SP#1.01325E6
                                                                           GDL04920
     ZNK=PK#FMC/(TK#1.38E-16)
                                                                           GDL 04930
     YAC=VTC/TT
                                                                           GDL04940
     YACC=VTCC/TT
                                                                           GDL04950
     YACCC=VTCCC/TTN
                                                                           GDL04960
     ZA=EXP(-YAC)
                                                                           GDL04970
     ZAA=1.0-ZA
                                                                           GDL04980
     ZB=EXP(-YACC)
                                                                           GDL04990
     ZBB=(1.0-ZB)##2
                                                                           GDL05000
     ZC=EXP(-YACCC)
                                                                           GDL05010
     ZCC=1.0-ZC
                                                                           GDL05020
     ZLL=ZNK#ZA#ZAA#ZBB#ZCC
                                                                           GDL05030
     ZUL=ZNK+ZC+ZAA+ZBB+ZCC
                                                                           GDL05040
      ZIN=(ZUL-ZLL)/ZNK
                                                                           GDL05050
     W=10.6E-6
                                                                           GDL 05060
     WT = 5 . 38
                                                                           GDL05070
     WC=W##2/(4.0#3.1415#WT)
                                                                           GDL05080
     WC1=8.0*8.317E3/3.1415
                                                                           GDL05090
     WCO2=SQRT(WC1+TK+(XMC+XMC)/(XMC+XMC))
                                                                           GDL05100
      WN2=SQRT(WC1*TK*(XMC+XMN)/(XMC*XMN))
                                                                           GDL05110
      WH=SQRT(WC1*TK*(XMC+XMH)/(XMC*XMH))
      WV=FMC*(1.3E+18)*WCO2+FMN*(0.87E-18)*WN2+FMH*(0.38E-18)*WH
                                                                           GDL05120
                                                                           GDL05130
      WJ=45.6/TK*EXP(-234.0/TK)
                                                                           GDL05140
      WG=WC+ZIN+FMC+WJ/WV
                                                                           GDL05150
      X = XI(I)
                                                                           GDL05160
      Z=X+XL+12.0+2.54
                                                                           GDL05170
      TTKEL=TT/1.8
                                                                           GDL05180
      TTNKEL=TTN/1.8
                                                                           GDL05190
C#####MAX AVAILABLE ENERGY
                                                                           GDL05200
      TTZ=1.76+TK+1.8
                                                                           GDL05210
      YACCC=VTCCC/TTZ
                                                                           GDL05220
      YBCCC=EXP(YACCC)
                                                                           GDL05230
      YCCCC=YBCCC-1.0
                                                                           GDL05240
      YA-CVT/TTZ
                                                                           GDL05250
      YB=EXP(YA)
                                                                           GDL05260
      YC=YB-1.0
                                                                           GDL05270
      ZEVN=(CC*RC*YACCC/YCCCC+CN*RN*YA/YC)*TTZ/ST
                                                                           GDL05280
      EVMAX=(EVN(1)-ZEVN)+0.409
      WRITE(6,631) I,A(I),TTKEL,TTNKEL,TK,ZNK,ZUL,ZLL,ZIN,Z,EVMAX,WG
                                                                           GDL05290
                                                                           GDL05300
  340 CONTINUE
                                                                           GDL05310
                                                                           GDL05320
                                                                           GDL05330
      J00=1
                                                                           GDL05340
      GO TO 100
                                                                           GDL05350
  350 WRITE(6,632)
                                                                           GDL05360
      STOP
                                                                           GDL05370
                                                                           GDL05380
                                                                           GDL05390
  500 FORMAT(415)
                                                                           GDL05400
  510 FORMAT(7F10.5)
                                                                           GDL05410
  520 FORMAT (4F10.5.215)
                                                                           GDL05420
                                                                            GDL05430
                                                                            GDL05440
  610 FORMAT (1H1 74X.8HCPTIME = F8.3)
                    INPUT DATA //2X+16H TEMPERATURE(K)=+E14+8+4X+
                                                                            GDL05450
  611 FORMAT(14H0
     # 15H PRESSURE(ATM)=,E14.8//2X,5H CO2=,E14.8,4X,4H N2=,E14.8,4X,
                                                                            GDL05460
     * 5H H20=,E14.8//3X,3HNN=I3,5X,3HNB=I3,5X,3HNT=I3,5X,5HXSUB=E14.8
                                                                            GDI 05470
                                                                            GC .05480
     #,5X,5HXSUP=E14.8//)
                                                                            GDL05490
  612 FORMAT(1H0.18HINITIAL CONDITIONS/4X.1HI.12X.1HX.12X.1HA.13X.
                                                                            GDL05500
     *3HRHO.13X.1HT.14X.1HU.14X.1HP/)
```

(CONTINUED)

	GDL05510
613 FORMAT(2X,13,5X,F10.3,5E15.4)	GDL05520
614 FORMAT(1HO/2X, 30HL)G FORM OF INITIAL CONDITIONS/4X, 1HI, 9X, 2HXA,	GDL05530
*12X,4HXRHO,12X,2HXU,13X,2HXT/)	
415 FORMAT(2Y,13,4F15,4)	GDL05540
616 FORMAT (1H0,6HAZERO= 1PE11.4,5X,3HXM= E11.4,5X,3HRC= E11.4,5X,	GDL05550
#3UDN- E11.4.5Y.3HCC= F11.4.5X.3HCN= E11.4)	GDL05560
617 FORMAT(1HO, 47HIN) TIAL CONDITIONS FOR NONEQUILIBRIUM VARIABLES/4X,	GDL05570
*1HI,12X,1HX,12X,1HA,13X,2HEV,12X,3HXEV,12X,3HEVC,12X,3HEVN/)	GDL05580
#1HI,12X,1HX,12X,1HA,13X,2HE,12X,3HLEV,12X,3HLEV,12X,3HJ =14,23X,	GDL05590
620 FORMAT (9H1 TIME # F/-44 /A) ORDELETTM = 1004 /A	GDL05600
* 8HCPTIME = F8.3, 6X, 11HDELCPTIME = F6.3//)	GDL05610
621 FORMAT(27X, 13HFLUID DELTIM=, E10.4, 15X, 15HKINETIC DELTIM=, E10.4)	GDL05620
622 FORMAT (1H0/9X+1H1 7X+5HDTRHO+11X+3HDTU+12X+3HDTT+11X+5HDTEVC+	GDL05630
* 10X,5HDTEVN,10X,5HEQEVC,10X,5HEQEVN)	GDL05640
422 FORMAT (110.1P7F15.5)	
624 FORMAT(1H0/9X+1HI+15X+1HA+13X+ 3HRHO+13X+1HU+14X+1HT+14X+1HP+	GDL05650
* 13X,2HEV)	GDL05660
425 FOOMAT/77-13-51-6F15-4)	GDL05670
626 FORMAT(1H0/9X+1HI+15X+1HA+13X+3HEVC+12X+3HEVN+12X+4HTAUC+11X+	GDL05680
* 4HTAUN)	GDL05690
627 FORMAT(7X,13,5X,5E15.4)	GDL05700
630 FORMAT (43H1 VIBRATIONAL TEMPERATURES AND POPULATIONS	GDL05710
	GDL05720
#//120HO 1 A 11(K) 12(K) 1(K)	GDL05730
2 NIOO (NOU)-NIOO)/N A(CO)	GDL05740
631 FORMAT (1HO 13,F9,4,3F8,1,2X,1P3E11,3,E12,3,0PF11,5,1P2E13,4)	GDL05750
632 FORMAT (45H ITERATION FOR VIBRATIONAL TEMPERATURES FAILS)	GDL05760
END	GDE 03 100