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ray theory.   The results indicate that a reduction in peak pressure occurs due to 
increased wave-overtaking along refracted ray paths to first caustics. 
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Finite Amplitude Propagation of an Underwater Explosion Shock Wave Along a Strongly 
Refracted Ray Tube 

Present understanding of the refraction of underwater explosion shock waves has 
been achieved largely through the use of acoustic theory, I.e., theory of low 
amplitude pressure waves, with an overall modification to account for explosion 
pulse propagation.    The work reported here la the first part of a study 
undertaken to determine whether It Is necessary to modify the present methods so 
as to intrinsically Incorporate the non-linear effects due to the finite amplitude 
of explosion pulses.    The work was supported by Defense Atonic Support Agency 
(now Defense Nuclear Agency) Subtask NA 002/20, Underwater Shock Theory/Energy 
Focusing and Refraction Effects. 

The author is Indebted to Robert M. Barash for many valuable suggestions during 
the course cf this vork. 

ROBERT  J*bLlAK>0N, II 
Captain, USN 
Commander 
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1. DWRODPCflOlt 

A gßmrml wmXhmmtiml tolutlan—«ItlMr analytic or nmurleal—to the problm 
of rtfractioo of an undtmatar explosion shock vara by a itroag velocity gradient 
done not yet exist.    Today's solutions consist of Judicious patching together of 
▼arlous aayaptatic solutions sad expariaantal results.   For easpla« Broekhureti 
Bruce» and Areas (1961)* deaonstrated the usefulness of acoustic ray theory la 
describing refractad uare pressures vbera strong focusing has not occurred.    Resr 
regions of strong focusing in the ocean (eontrargeaee tone caustics), Blatstein 
(1971) has deaonstrated the usefulness of a aodifiad vare-langth-dependent ray 
theory to deeeribe the experlaentally aeasurad pressure signatures.    Howrrer, 
neither siaple ray theory nor the aodif led ray theory take into account the uave 
overtaking effects inherent to shock uare propegstion.w The above aeatlonad 
authors in applying their respsetire treataents Incorporated the Judicious 
assuaption that the affects of uare overtaking are the seas as for a non-refracted 
undenwter exploelon shock uave that has traralsd the sans dietaaee.    the purpose 
of this note 1^ to check this assvsvtion by calculating the propacatirm of an 
underuater explosion shock nave along typical acoustically refracted ray tubes. 
To do this as uae a ■ethod-of-eharacterietics nuasrieal Integration of the fluid 
dynaaical equatioaa expressing conservation of aase and of aoasntus in the 
direction of the ray tube. 

This paper consists of three sections.    The first describee the apfroociaate 
theory and lists the pertinent equations.    The second gives a brief account of 
the essential features of the nwsrieal calculations.   And, the third swuariies 
the results calculated for a ■sapling of refracted ray tubes for a source depth 
and velocity profile yielding a theruoeline-ralated caustic. 

2. THKItT 

The problsa considered is the iaviscid unstsady co^pressibla flow along ths 
axis of a rigid tube of arbitrarily changing area. 

Constitutive Equations.   The equations used to describe the notion era the 
uonentua ani continuity equations and a pressure-density relation for ths unter. 

«Refer to list of references on Page 2^ '" 

**Far discussion of uave-overtaking in underuater explosion shock uave propagation 
see Susy, 1966, Section I? or Cole, 19M), Sections 2.1-2.6 
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AloBf the axis of th« ray tub« th« «oasntUB «quatioD r«due«t to 

St * u S; + " äf " 0 (1) 

and tha eootlnulty aquation bacooae 

t  • tlM 
x • diatanea along tha axi» 
u ■ partlcla Taloeity 
p • prattur« (ralatlTa to the aabioot value) 
t ■ vater denaity 
A ■ A(x), area of the ray tube eroat-aaotlon 

Per the pretaiare-draaity relation ue uaed tha nodlfled Talt equation 
(Cole, 19^8, page Uk). 

n (a - 
L 

(3) 

«here c   • aahlaot sound apeed 
(tUbaerlpt "o" ladlontea ■riblant state) 

a   • eomtant 

with B-6.0 equation (3) describes the Msehanleal bsharlor of the wter behind both 
shocks and isentropas to «Ithln about * O.'yf for jressuras In the rente, 0<p<10,000 
pal; I.e., flow pnranetars such aa the density, sound speed, particle velocity, 
Aock velocity, and Riaaann function are aatinsctad to be within about *0.94 of 
their true values.« 

laaentlally, by introducing equation (3) to describe the entire flow, m are 
neglecting the effects of the snail but variable entropy inereaaes which occur aa 
tha water la traversed by the outwardly propagating ihock front.   In this report 
we will consistently aaki use of the siapllfications ^dilch follow fron this 
assunption of unifora entropy throughout the entire flow.   Ae pointed out above, 
this leads to astlnated errors of the order of to. 5i in the eonputed flow 

(M 

Characteristic Equations.    Introducing ths Rienann function 
P/ - f h* 

«Hiase accuraqr Units were estiaated fron Tables 3<3 and ST5 of NOLTO 70-31 (H. 0. Snay 
and A. R. Kriebel, 1970) By making use of "Zeta equation" as an intermediate standard. 
Using n«6.0, equation (3) is essentially equivalent to the Zeta equation; and, over the 
pressure range, zero to 10,000 pel, the calculated values behind shocks and 
isantropes for all the aachanical flow pereneters are the eene to within *0.2£. 
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and noting that 

equations 1 and 2 can be transformed to 

%2i + (u+c) ^si 
ot ox 

uc ^A 
A to 

(5) 

(6) 

Stoi + (u.c) MH3Ü. , + us M (7) at      vu c>    ax A ax VN 

In deriving equations (6) and (7) ve have itaplicity used the uniform entropy 
assumption.* 

Equations (6) and (7) are the so-called "characteristic equations." They give 
the time rates of change of the quantities (u+o) and (u-o) to observers traveling 
in the x-t plane at velocities (u+c) and (u-c), respectively. Given suitable 
boundary conditions they can be integrated numerically throughout the region in the 
x-t plane between the outvard*propagating shock front and some starting point 
(value of x) along the ray tube. 

To solve equations (6) and (7) and also to calculate the pressure we need 
several additional relations. The following are derived from equations (3), CO» 
and (5): 

',ound speed 

Freesure 

Riemann function 

Shock front boundary condition 

Shock front velocity 

c 

co2      /jß\    n^l 
n     1A

C
OJ 

H 
u -rr ■ o s s 

c_     <+ c_ 

-1 

(8) 

(9) 

(10) 

(U) 

(12) 

WS elucidation of the role of entropy and the significance of the Riemann 
function, the reader is referred to NOLTR 65-52, H. G. Snay, 1966, pages lt.6-50. 
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Equation (ll) follows fro« (7) neglecting the entropy change across the shock. 
Equation (12) is derived fro« the mechanical shock relation, p=^ us, (conservation 

of nass and momentum) using equations (9) and (ll) and expanding the term 
2n 
n-1 /c-c \ 

in (9) as a function of (-~M and dropping terms of 3rd and higher 

3- HUMERICAL CALCUIATIOKS 

For numerical integration equations (6) and (7) were approximated by the 
following difference equations: 

A (U+CT) 

ä" (U-O) - + 

uc 

uc 

dlnA At 

ave 

At 

(13) 

(HO 

ave 

tfeere 

A > change between mesh points along i positive (u+a) 
characteristic. 

A' « change between mesh points along a negative (u-a) 
characteristic. 

"Average" refers to the end (or mesh) point values. The characteristic mesh la 
approximated by line segments of slope (u+c)  and (u-c) w . 

For a more complete description of the method of computation, the reader is 
referred to Goertner, 1965, Appendix B. In this section we will discuss details 
vAiich are unique to these computations. 

Initial and Boundary Conditions. To start the computation (initial condition) 
and for the boundary condition at the starting ray tube section we used the shock 
wave similitude equations derived from experimental data for TWT and Pentollte 
(Cole, 19k8,  pages 238-2U2): 

k (W^/RV*13 (15) 'max 

e/w 1/3 0.06 0 .w^/R 
-O.lß 

(16) 

vhere p  « initial shock pressure in pounds per square inch 

W   = weight of T1?P in pounds 
R  « range in feet 
6  a time constant of the exponential pressure pulse in 

milliseconds. 
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k - 2.16 x l(f for TUT 
- 2.25 x tf for FMtollt* 

Plfur« 1 illustrat«« hov this \m» don«.    Using «qurtlon (15), the range 
eorrtspnndlQg to pilMV

aIO>000 pel Is c«lcul«t«d.    In the figure, xo Is ths starting 
point for the covputetlon; this Is set «qual to the range corresponding to p 
10,000 psi.   At x-x   the pressure, and fro« this, the Rleaann function. Is 
calculated using the tlas constant, A, giren by equation (l6).   This is the 
boundary condition used at x-x . o 

To start the eoapitation, I suitably spaced nssb points are placed along the 
shock path through the point (x , 0) corresponding to the sinilnrlty equation (15). 

Par these caaputatlans, the II initial assh points were inserted along the shock in 
the interral fros» x ■ x to 1.1 x . For slaplicity, ths sksteh Illustrates only 

k initial assh points; generally a greater maaber - 32, 6Uf or 128 - were required. 
Using equations (9) through (12) we can calculate the shock path and all pertinent 
flow variables along the starting shock." Starting at the first inserted nesh 
point, the warieal integration then proceeds froa shock front to x"x along 
sueeessiTs nagatire diaraeterlstics. 

Coarerasnce of the Ifaasrlcal Coaputationa. In the course of derelofoent and 
dieck*out, three rersions of the coaputer progran were used. The essential 
diffsrenoe aaong these was in how the tern r     1  ^ equations (13) and (iM 

-^ 
"ave 

was coaputed (approxlnsted) and in the degree of control over this approximation. 

[■ 

Version 1 was specifically written to calculate the shock «ave propagation 
along a sphsrieally diverging ray (i.e., a cone).   For this ease din A/dxB2/x so 
that in solving equations (13) and (1U) the tern In brackets could be evaluated at 
the appropriate assh points and then averaged. 

Version 2 waa written for the ray tube of arbitrarily changing area; A(x) 
being oalculated by 3-polnt lagrangian interpolation of tabulated values.   This led 
to a slightly different approxiaation, naaely. 

■live   '*" 

uc-5rr"rs HD 

Aere the "bar" indicates avenge and "A" the difference of the appropriate nesh 
point values. 

The result of these different representations of uc^M in equations (13) 
ave 

and (U) on the shock front pressure calculated for a spherically spreading shock 
is ahovn in Figure 2.   We see that as W increases the pressure-vs-distance curves 
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1000 

SPHERICAL SYMMETRY 
8.38 LBS PENTOLITE 

to 
Q. 

LU 

00 

NO. OF CHARACTERISTICS = 32 

—i 
< 

Z 

100 

D VERSION 1 

o VERSION 2 

• VERSION 3, A in A < 0.2 
SYMBOLS LOCATE LAST FEW 
CONSECUTIVE MESH POINTS 

10 
20 100 1000 2000 

DISTANCE, x (FT) 

FIG.2 VARIATION OF CALCULATED PRESSURE-DISTANCE WITH MESH SIZE 
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calculated using these different approximations coorerfe froe opposite sides to 
vhat is apparently the true solution to equations (6) and (?)•   Thus, bj good 
fortune, ws obtained a valuable check on the conputations. 

Control of the Divergence Term.   As the computation proceeds the shock front 
moves outward and the separation of adjacent mesh points increases (Figure l). 
As a result, the approximation to       a.   .    computed from parameters at the adjacent 

uc- 3A 
mesh points becomes poorer and the nunerical solution degenerates as can be seen 
in Figure 2.   Our initial solution to this problem was simply to increase—double, 
re-double, etc.—H, the number of initial negative characteristics, until the 
nunerical solution had apparently comrerged.   This worked—except for some ray tubes 
«hlefa diverged rapidly upon entering a partial shadow zone.   For these the rate of 
convergence with increasing H was too slow and computer cost became excessive. 

To compute along these rays we designed Version 3 vhlch subdivided the 
characteristic net—introduced additional characteristics and discarded others—as 
the computation proceeded.    The modifications which constitute Version 3 stem from 
the followlog observations: 
(1) That the computation time is roughly proportional to the ntmber of mesh points 

calculated. 
(2) That in both Versions 1 and 2 the major source of systematic computational 

error appears to be the finite difference approximation to din A^ x (Equations 
13 and Ik). 

Thus, in Version 3 we attempted to calculate the minimum number of mesh points 
consistent with some preaosigned level of overall computation error.   We did this 
by monitoring Aln A from point to point along the shock trajectory.    In the event 

AlnA   > l&lnAl (Iß) 

liiere LAlnA]_ i> «one preset value, the computation switched to a subroutine 
tfcich introduced N/2 intermediate nesh points along the half of the previous 
negative characteristic adjacent to the shock, discarded the N/2 mesh points from 
the other half, did the necessary bookkeeping, and then returned to re-calculate 
the next point on the shock trajectory.    If necessary, this procedure was repeated 
until 

AIM AlnA (19) 
max 

Figure 2 Includes a segment of a pressure-vs-dlstance curve calculated using 
Version 3 with   CfilnAJ^   set equal to 0.2; it falls between the curves calculated 
using Versions 1 and ^"with Version 3 the shock trajectory is essentially 
independent of N, the number of initial characteristics.    (Using this program, the 
value specified for N essentially determines the area of integration in the x-t 
plane, and is generally specified in accordance with the required p-t signature 
duration at some value of x.) 

The value. AlnA max "0.2, was selected for the ray tube computations 

summarized in Part k.   This value was selected by inspection of the calculated 
pressure-vs-distonce data such as shown in Figure 3 and Table 1. 

8 
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TABUS I 

CRA1DE IH CALCUIATED SHOCK TROm HUESSURE, p      , AS A fUWCTION Of f^lnA 1 

x - 200 ft (pM„ « 216 psl) 

8.38 lb« ptntollU 
32 Initial chATacterlstlc« 
sfharleal tymmtry 

fAlllAl«x ItolatlT» Error 
In p^ 

(i) 
O.l» 

0.2 *).3 

O.U n.5 
0.8 ♦V.6 

(Hot Connroll»d) ♦13.6 

"Tar this CftM & Initial charactaristies war« raquirad in ordar to coaputa out 
to x - 200 faat. 

10 
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k.    RISUUTS FOR REFRACTED RAY TUBES 

We started this study by looking at refracted rays corresponding to the 
flooded quarry experiment of Brockhurst, Bruce, and Arons (1961).    Figure k shows 
the measured average sound velocity profile and the corresponding ray diagram 
computed by ray theory.    The locations of the rays used are indicated by the symbols, 
"A" throurfx "E." 

For each of these chosen rays we also calculated the trajectories of two 
adjacent rays vhlch defined the ray tube for our calculations.    Figures 3 through 9 
show the ray tube areas for these rays as a function of distance along the central 
ray; and, compares thla with the corresponding area for a non-refracted ray tube. 
Note that in Figures 5 through 9 it io the logarithms of the ray tube areas and 
path lengths vhlch are plotted.   This is appropriate since it is the rate of change 
of InA (equations 13 and iM vhlch governs the wave propagation along the tube; 
and, It is the ratio, B/w '', which enters into the boundary and initial conditions 
of the calculation (equations 15 and l6).   This is also in accordance with the 
principle of similarity for underwater explosion shock waves (Cole, 19h3t page 110) 
v*ilch holds for spherical waves but not for waves propagating along refracted ray 
tubes (sines each refracted ray tube has a characteristic length of its own which 
is independent of the charge size). 

We nov make use of the shock wave similarity principle for spherical waves to 
compere the ray tube area functions of Figures 5 through 9«   We do this by 
superposing the plots. Figures S through 9, and sliding then along the straight 
line representing the spherical wave until we have aligned the points of departure 
from spherical spreading.    (Note, if two area functions can be made to coincide in 
this manner, then they are similar in the sense .that a calculation for one can be 
scaled to the other—corresponding values of wVS^ p^th lengths, and times will be 
In the ratio of the path ler^ths for corresponding points of the area functions). 
The result of such a superposition of the area functions is shown in Figure 10, 
which,  for the purpose of this report,  shows the essential differences among these 
functions. 

>ir selection of area functions (Figure 10) is characterized by two extremes, 
case  "B" where the tube cross-section goes rapidly to zero as the ray approaches 
the caustic, and ray "C" where the tube cross-section undergoes rapid expansion as 
it enters the shadow zone behind the caustic. 

RAY TUBE AITOOACHITC CAUSTIC 

Results for wave front pressures, p     , calculated along a ray tube approaching max 
the caustic are shown in Figure U.    These results are presented in terms of the 
amplitude factor. 

F H (20) 

tftiare A(x) * ray tube cross-sectional area at distance, x, along the 
central ray 

A (x) » ray tube cross-sectional area of an equivalent non- 
refracted ray tube (identical initial boundary rays) at 
distance, x, from the charge, i.e., in this case the area 
of the zone of a sphere of radius, x, cut by the boundary 
rays. 

(Text continued on page 20) n 
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The product 

Is then the amplified pressure which would occur along the ray tube If there were 
no wav« 
ratio, 
no wave overtaking, I.e., In the acoustic approximation—c = c s constant. The 

p 
max 

F x ^max^SO 

therefore, expresses the reduction In p       due to wave overtaking caused by 

convergence of the ray tube as It approaches the caustic. 

Since we are Interested In Isolating the effects due to wave-overtaking, both 
the refracted and Isoveloclty signatures were taken frnm calculations which are 
Identical except for the cross-sectional area functions.    Thus,  In the c rim pari son, 
small errors Introduced through the approximate pressure-density relation 
(equation 3) and the shock wave similtude equations (13) and (l6) are essentially 
cancelled. 

The curves shown in Figure 11 were calculated for the ray, 7,      -Üj.l    (case 

B), but \txnn presented in this manner are Identical to those for the ray, 

>.   » -9.7    (case A).    The three curves presented In Figure 11 were calculated for 

three different TOT charge welght8--36, 0.113, and 2.6x10"    lbs—which yield 
spherical wave pressures (no refraction), p      =175»  19i and 0.146 psi, at 2S6 ft max 
from the charge, the path length along this particular ray to the caustic.    The 

0.115 and 2.6x10*    lb TOT charge weights were chosen to scale the caustic location 
(x«256 ft for this quarry profile) to x=l80,000 ft for 20 klloton and 900 lb TOT 
charges, respectively.    The scaled caustic location and the 900-lb charge weight 
correspond to the Sargasso 3ea experiment (Blatstein, 1971). 

In the ocean experiment,  the caustic was a convergence zone caustic.    When 
we did these calculations we had hoped that the results would be approximately 
correct for rays en route to convergence zone caustics in the ocean as well as 
to theraocllne-related caustics.    But, subsequent calculations using ray tubes to 
convergence zone caustics show that the results presented in Figure 11 are not 
even approximately correct for convergence zone ray tubes—for these, the 
reduction in p       due to wave-overtaking as the shock wave travels to the caustic 

is generally much greater,  sometimes amounting to a reduction p__    of 23 or 30£. max 
We also point out that the results presented in this section are based on a single 
experimentally measured sound velocity profile.      ISius, the results 
presented in Figure 11 may,  or may not, be typical of explosion geometries which 
form theraocllne-related caustics. 

Note that to use Figure 11 we must have additional knowledge as to the 
refractive effects at the caustic.    In practice the amplitude factor, F, computed 
from the ray tube area of a ray theory computation Is of no use In estimating the 
effects of wave-overtaking using Figure 11, since in the area of interest wave 
diffraction has already negated such a computation.    Consequently, to use Figure 11 
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one must resort to experimental data or & modified ray theory computation to 
obtain a value for F, using the equation 

where p'        is some value of p        from which one can estimate an effective ray r max max 
tube area and (p     )_„.  is the pressure of a spherical wave \Aiich has traveled the max lou 
same path length. 

In the quarry and ocean experiments to date increases in peak pressure of, 
say, U,  6, or 10—but no greater than a factor of 10—have been observed at 
caustics.    This Is also true of the results of modified ray theory computations 
based on sound velocity profiles taken from these experiments.   Thus, according to 
the curves shown in Figure 11 reductions in p       due to wave-overtaking of up to max 
k at 5i> occur as the shock wave approaches this particular caustic. 

RAY TUBE EXPAHDIMS IN SHADOW ZONE 

Figure 12 shows the calculated pressure as a function of distance along the 

ray, 7 = -15.7 (case C), and compares it with the pressure calculated for a 

spherically expanding shock wave. For this case the deviation in p   from max 
spherical wave pressure can be predicted quite well by 

pmax a F x ^max^O <22) 

which is also shown in Figure 12 (dashed line).    Out to 350 ft equation 22 gives 
p       to approximately ±l£--at x=600 ft equation 22 predicts a value of p       about max max 
k% lover than computed by the finite amplitude calculation. 

5.    DISCUSSIOW AHD COWCLUSIOWS 

As pointed out in the introduction, existing solutions to the refraction 
problem (ray theory and modified ray theory) do not take into account wave- 
overtaking and molecular absorption.   However, the computed pressures are 
generally corrected afterwards in the same ratio as the correction for wave- 
overtaking and absorption estimated for a spherically diverging wave which has 
traveled the same distance.    The purpose of this paper was to cheek this 
approximate method of accounting for wave-overtaking.   To do this we made an 
essentially exact calculation including the effects of wave-overtaking (but not 
absorption) for an approximate problem:    namely, the propagation of an underwater 
explosion shock wave along a duct formed by two adjacent rays calculated by ray 
theory. 

The computational results (Section k) are for two extreme cases—a convergin«; 
ray tube approaching a caustic and one undergoing rapid expansion as it enters 
the shadow region behind the caustic.   These were selected from a particular 
sound velocity profile forming a thermocline-related caustic.    For these cases 
the approximate procedure (estimating the wave-overtaking effects from the 
spherical wave) introduced a maximum error of ±5$.    But, as pointed out in 
Section U, this   result may or may not be typical of ray tubes to thermocline-related 
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caustics. Also, subsequent calculAtlons covering a range of sound velocity 
profiles yielding convergence zone caustics resulted in considerably greater 
reductions in p   due to wave-overtaking. For these cases most of the 

max 
attenuation ocurred along the portion of the ray path In the deep ocean velocity 
gradient. 

Figure 11 shows that for ray tubes approaching this particular thermocline- 
related caustic there is increased attenuation of p       due to vave«overtaking as max 
the pressure builds up.    This additional attenuation is dependent on the size of 
the charge—or the pressure level of the wave approaching the caustic—in 
addition to the variations in ray-tube cross-sectional area between the charge 
and the caustic.    The moderate magnitude of the wave-overtaking corrections to 
p       would appear to Justify the current practice of predicting explosion max 
pressures at and near caustics with modified ray theory computations.    Cueh 
results can then be adjusted,  if necessary,  for attenuation due to wave-overtaking 
occurring along the path to the caustic by the method presented in this report. 

Several results from subsequent calculations of wave propagation along ray 
tubes to convergence zone caustics in the ocean have been mentioned above* 
Further results and details of these calculations will be given in a subsequent 
report. 
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