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FINITE AMPLITUDE PROPAGATION
OF AN
UNDERWATER EXPLOSION SHCCK WAVE

ALONG A STRONGLY REFRACTED RAY TUBE

Prepared by:
John F. Goertner

ABSTRACT: The effect of wave overtaking on the peak pressure of refracted
undervater explosion shock waves is estimated by means of a finite amplitude
calculation for the wvave propagation along refracted ray tubdes given by simple
ray theory. The results indicate that a reduction in peak pressure occurs due to
increased wave-overtaking along refracted ray psths to first caustics.

Reductions in the peak pressure no greater than 5% occurred ‘or the particular
refractive conditions treated, dbut preliminary work with other conditions
indicates much grester reductions can sccur.
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Finite Amplitude Propagation of an Underwmter Explosion Shock Wave Along a Strongly
Refracted Ray Tube

Present understanding of the refraction of underwater explosion shock waves has
been achieved largely through the use of acoustic theory, i.e., *heory of low
amplitude pressure waves, with an overall modification to account for explosion
pulse propagation. The work reported here is the first part of a study
undertaken to determine vhether it is necessary to modify the present methods so
as to intrinsically incorporate the non-linear effects due to the finite amplitude
of explosion pulses. The work was supported by Defense Atomic Support Agency
(nov Defense Nuclear Agency) Subtask NA 002/20, Underwater Shock Theory/Energy
Focusing and Refraction Effects.

The author is indebted to Robert M. Barash for many valusble suggestions during
the course cf this work,

ROBERT 4.uLIAMSON, II
Captain, USN
Commander

., .. .

C. J. /AROKSON
By dIrection
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1. INTRODUCTION

A general mathpmatical solution--either analytic or mmerical--to the probles
of refraction of an underwvater explosion shock wave by a strong velocity gradient
does not yet exist. Today's solutions consist of judicious patching together of
various asymptotic solutions and experimental results. Por example, Brockhurst,
Bruce, and Arons (1961)* demonstrated the usefulness of acoustic ray theory in
describing refracted wve pressures vhere strong focusing bas not occurred. Near
regions of strong focusing in the oceen (comvergence sane caustics), Blatstein
(1971) has demonstrated the usefulness of & wodified wave-length-dependent ray
theory to descride the experimentally measured pressure signatures. Rowver,
seither simple rey theory nor the modified ray theory take into account the wave
overtaking effects inherent to shock wve propagation.™ The adbove mentioned
authors in applying their respective treatmsnts incorporsted the Judicious
assumption that the effects of wave overtaking are the same a3 for a non-refracted
undervater explosion shock wave that has traveled the same distance. The purpose
of this note iz to check this assumption by calculating the propagaticm of an
uwderwvater explosion shock wave along typical acoustically refracted ray tubes.
To do this we use a method-of-characteristics numerical integration of the fluid
dynamical equations exgressing conservation of mass and of momentum in the
direction of the ray tube.

This paper consists of three sections. The first describes the approximate
theory and lists the pertinent equations. The second gives a brief accommt of
the essential features of the numerical calculations. And, the third summarises
the results calculated for a sampling of refracted ray tubes for a source depth
and velocity profile yielding a thermocline-related caustic.

2. THEORY

The problem considered is the inviscid unsteady compressidle flow along the
axis of a rigid tube of arditrarily changing area.

C itutive tions. The equations used to descridbe the motiom are the
womentum co y equations and a pressure-density relation for the water.

“#Refer to list of references on Page 24

#*For discussion of wave-overtaking in underwater explosion shock wmve mropagation
see Spay, 1966, Section IV or Cols, 1948, Sections 2.1-2.6

1l
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Along the axis of the ray tube the momsntum equation reduces to

I RS @

and the continuity equation becomes

At ot -1 I - AW
at"“SE**(ax‘Aax) 0 (2)

vhere

t = time

x = distance along the axis

u = particle velocity

p = pressure (relative to the ambient valus)
¢ = water density

A = A(x), srea of the ray tudbe cross-section

For the pressure-density relation we used the modified Tait equation

(Cole, 1948, page Lk). . 3
o %o e
p = ——— - - 1 (3)
n Qo
ere c_ = ambient sound speed
(subseript "o" indicates ambient state)
o = coanstant

Vith n=6.0 equation (3) descrides the mechanical behavior of the water behind both
shocks and isentropes to vithin sbout t 0.5% for pressures in the range, Osp<10,000
pei; 1.e., flov paremsters such as the density, sound speed, particle velocity,
shock velocity, and Riemann function are estimsted to be within about 10.5% of
their true values.*

Essentislly, by introducing equation (3) to descride the entire flov, we are
peglecting the effects of the smll but variable entropy increases vhich ocour as
the water is traversed by the outwardly propagating shock fromt. In this report
ve vill consistently maks use of the simplifications vhich follov from this
sssumption of uniform entropy throughout the entire flov. As pointed out abdbove,
this leads to estimated errors of the order of 0.5% in the computed flov

parameters.
Charscteristic Equations. Introducing the Rismann functiom

P
ne f "% ap (&)
°

*These accuracy limits vere estimated from Tables 3.3 and 3.b of NOLIR 70-31 (H. G. Snay
and A. R. Kriebel, 1970) By making use of 'Zeta equation"” as an intermediate standard.

Using n=6.0, equation (3) is essentially equivalent to the Zeta equation; and, over the
pressure range, zero to 10,000 psi, the ted values behind shocks and

isentropes for all the mschanical flov paremsters are the same to vithin 10,2%.

2
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and noting that

y _d
g =E,‘% (5)
equations 1 and 2 can be transformed to
3(utg) d(uty) _ _uc A
e+ (u+e) = ey (6)
3(u-0) oy Au=0) _ . uc3A
3 e St R (7)

In deriving equations (6) end (7) we have implicity used the uniform entropy
asgumption. *

Equations (6) and (7) are the so-called "characteristic equations." They give
the time rates of change of the quantities (uts) and (u-o) to observers traveling
in the x-t plane at velocities (utc) and (u-c), respectively. Given suitable
boundary conditions they can be integrated numerically throughout the region in the
x-t plane between the outward-propagating shock front and some starting point
(value of x) along the ray tube.

To solve equations (6) and (7) and also to calculate the pressure we need
aevex('a]). additional relations. The following are derived from equatioms (3), (4),
and (5):

sl
¢ Y2
Sound speed —-—= (»—») (8)
o %
2n
0,c42 =1
Pressure P = -°n° {(f—) n-l -1 (9)
()
2 | (10)
Riemann function n === (c-co)
Shock front boundary condition u-n =0 (11)
loeit s 4028 (12)
Shock fromt velocity e = T e

Wor elucidation of the role of entropy and the significance of the Riemann
function, the reader is referred to NOLTR 65-52, H. G. Snay, 1966, pages 46-50.
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Equation 211 follows from (7) neglecting the entropy change across the shock.
Equation (12) is derived from the mechanical shock relation, p=0,us, (conservation

of mass and momentum) using equations (9) and (11) and expanding the term
an
n-1 c-c

- in (9) as & function of ( = 2

) and dropping terms of 3rd and higher
o

3. NUMERICAL CALCULIATIONS

For mmerical integration, equations (6) and (7) were approximated by the
following difference equations:
dlnA

= At (13)

at (utg) = = [ ue
ave

- -

8" (u-g) = + uc’—a-a—hxl—A- | At (14)

- Jave

vhere

+
A = change betveen mesh points along i positive (uta)

. Ccharacteristic.
4" = change between mesh points along a negative (u-a)
characteristic.

“Aversge' refers to the end (or mesh) point values. The characteristic mesh is
approximated by line segments of slope (“+°)uve and (u-c)a ve"

For a more complete description of the method of computation, the reader is
referred to Goertner, 1965, Appendix B. In this section we will discuss details
vhich are unique to these computations.

Initial and Boundary Conditions. To start the computation (initial condition)
and for the boundary condition at the starting ray tube section we used the shock
wave similitude equations derived from experimental data for TNT and Pentolite
(Cole, 1948, pages 238-242):

p k[ 3/‘3)1'13 (15)

\
>-o.18

o /3 = 0.060 <w1/ 3R (16)

vhere Prax = initial shock pressure in pounds per square inch
W = weight of TRT in pounds
R = range in feet
8 = time constant of the exponential pressure pulse in
milliseconds.
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k = 2.16 x 10* for TM'
= 2,25 x 10° for Pentolite

Figure 1 illustrates hov this was done. Using equation (15), the range
corresponding to p_“-m,ooo psi 1is calculated. In the figwre, X, is the starting

point for the computation; this is set equal to the range corresponding to Pk’
10,000 psi. At X=X, the pressure, and from this, the Riemann function, is

calculated using the time constant, /, given by equation (16). This is the
boundary condition used at =X .

To start the computation, § suitably spaced mesd points are placed along the
shock path through the point (xo, 0) corresponding to the similarity equation (15).

For these computations, the N initial wesh points were inserted along the shock in
the interval from x = X, to 1.1 X, For simplicity, the sketch illustrates only

b initial wesh poimts; mnl.u; a greater number - 32, 64, or 128 - were required.
Using equations (9) through (12) wve can calculate the shock path and all pertinent
flov variables along the starting shock.” Starting at the first inserted mesh
point, the numerical integration then proceeds from shock front to X=X along
successive negative characteristics.

nce of the i C tions. In the course of development and
check-out, three versions the computer progras were used. The essential
difference among these was in how the term [ in equations (13) and (14)
am]

uc —_——
ax

ave
wvas computed (approximeted) and in the degree of comtrol over this approximation.

Version 1 was specifically written to calculate the shock wave pr?a@t:lon
dx=2

along a spherically diverging ray (i.e., a cone). PFor this case 31n A x 80
that in solving equations (13) and (14) the term in brackets could be evaluated at

the appropriate mesh points and then averaged.

Version 2 was written for the ray tube of arbitrarily changing ares; A(x)
being calculated by 3-point Legrangian interpolation of tadulated values. This led
to a slightly different approximation, namely,

oA | (uc) M
[“ £ l - ()
ve

vhere the "bar” indicates average and "A" the difference of the appropriate mesh
point values.

The result of these different representations of [uc 9-3—1:‘:-& ] in equations (13)

ave

and (14) on the shock fromt pressure calculated for a spherically spreading shock
is showm in Figure 2. Ve see that as N increases the pressure-vs-distance curves

5
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20 100 1000 2000
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FIG.2 VARIATION OF CALCULATED PRESSURE-DISTANCE WITH MESH SIZE
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calculated using these different approximations converge from opposite sides to
vhat is apparently the true solution to equations (6) and (7). Thus, by good
fortune, we obtained a valuable check on the computations.

Control of the Divergence Term. As the computation proceeds the shock fronmt
moves outward and the separation of sdjacent mesh points increases (Figure 1).
As a result, the approximation to aln computed from parameters at the adjacent

A

mesh points becomes poorer and the numerical solution degenerates as can be seen

in Pigure 2. Our initial solution to this problem was simply to increase--dovble,
re-double, etc.--N, the number of initial negative characteristics, until the
numerical solution had appearently converged. This worked--except for some ray tubes
vhich diverged rapidly upon entering a partial shadow zone. For these the rate of
convergence vith increasing N was too slov and computer cost became excessive.

u

To compute along these rays we designed Version 3 which subdivided the
characteristic net--introduced additional characteristics and discarded others--as
the computation proceeded. The modifications which constitute Version 3 stem from
the followving observations:

(1) That the computation time is roughly proportional to the mumber of mesh points
calculated.

(2) That in both Versions 1 and 2 the major source of systematic computational
error apsnr- to be the finite difference approximation to dln AAx (Equations

13 and 14).

Thus, in Version 3 we attempted to calculate the minimm number of mesh points
consistent vith some preassigned level of overall computation error. We did this
by monitoring Aln A from point to point along the shock trajectory. In the event

> [m] (18)
nax
vhere EAlnA].x is sowe preset value, the computation switched to a subroutine

shich introduced N/2 intermediate mesh points along the half of the previous
negative characteristic adjacent to the shock, discarded the N/2 mesh points from
the other half, did the necessary bookkeeping, and then returned to re-calculate
the next point on the shock trajectory. If necessary, this procedure was repeated

i < [mm]m (19)

AlnA

AlnA

Figure 2 includes a segment of a pressure-vs-distance curve calculated using
Version 3 with [AlnA] set equal to 0.2; it falls between the curves calculated
using Versions 1 and 2. With Version 3 the shock trajectory is essentially
independent of N, the number of initial characteristics. (Using this program, the
value specified for K essentially determines the area of integration in the x-t
plane, and is generally specified in accordance with the required p-t signature
duration at some value of x.)

The value, |:A].nA:| m-o.a, vas selected for the ray tube computations

surmarized in Part 4., This value was selected by inspection of the calculated
pressure-vs-distance data such as shown in Figure 3 and Table 1.
8
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300 i ] T T I T 1
I 128 CHARACTERISTICS
VERSIONS 1 AND 2
AlnA
100 — NOT CONTROLLED 7
B <0.8 1

& B <0.2 *
= i
&
2 60—
(V2]
w
g N
-
<
= L
Z

30—

SPHERICAL SYMMETRY
32 INITIAL CHARACTERISTICS
- 8.38 LBS PENTOLITE 3
10_ 1 l I\ 1 L | 1 |
100 300 600 1000
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FIG. 3 VARIATION OF CALCULATED PRESSURE-DISTANCE WITH REZONING
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TAKLE 1

CRANGE IN CALCULATED SHOCK FRONT PRESSURE, Poax’ AS A FUKCTION OF [AI.M]
WX

x = 200 ft (’-x = 216 psi)

8.38 1bs pentclite
32 initial characteristics
stherical symetry

[Am] a Rol::i;t Error
.4
(%)
0.1+ —
0.2 +0.3
0.4 +1.5
0.8 +4.6
(Not Confrolled) +13.6

*For this case 64 initial characteristics were required in order to compute out
to x = 200 feet.
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4. RESULTS FOR REFRACTED RAY TUBES

Ve started this study by looking at refracted rays corresponding to the
flooded quarry experiment of Brockhurst, Bruce, and Arons (1961). FPFigure 4 shows
the neasured average sound velocity profile and the corresponding ray diagram
computed by ray theory. The locations of the rays used are indicated by the symbols,

"A" mm "E. ”

For each of these chosen rays we also calculated the trajectories of two
adjacent rays which defined the ray tube for our calculations. Figures 5 through 9
shov the ray tube areas for these rays as a function of distance along the central
ray; and, compares this with the corresponding area for a non-refracted ray tube.
Note that in Figures 5 through 9 it is the logarithms of the ray tube areas and
path lengths vhich are plotted. This is appropriate since it is the rate of change
of 1InA (equations 13 and }H vhich governs the wave propagation along the tube;
and, it 1is the ratio, R/ , vhich enters into the boundary and initial conditions
of the calculation (equations 15 and 16). This is also in accordance with the
principle of similarity for underwater explosion shock waves (Cole, 1948, page 110)
vhich holds for spherical waves but not for waves propagating along refracted ray
tubes (since each refracted ray tube has a characteristic length of its own vhich
is independent of the charge size).

We now make use of the shock wave similarity principle for spherical waves to
compare the ray tube area functions of Figures 5 through 9. We do this by
superposing the plots, Figures 5 through 9, and sliding them along the straight
line representing the spherical wave until we have aligned the points of departure
from spherical spreading. (Note, if tvwo area functions can be made to coincide in
this manner, then they are similar in the sensi §Mt a calculation for one can be
scaled to the other--corresponding values of W / , path lengths, and times will be
in the ratio of the path le~gths for corresponding points of the area functions).
The result of such a superposition of the area functions is shown in Figure 10,
which, for the purpose of this report, shows the essential differences among these
functions.

Jur selection of area functions (Figure 10) is characterized by two extremes,
case 'B" vhere the tube cross-section goes rapidly to zero as the ray approaches
the caustic, and ray "C" where the tube cross-section undergoes rapid expansion as
it enters the shadow zone behind the caustic.

RAY TUBE APPROACHING CAUSTIC

Results far wave front pressures, pm, calculated along a ray tube approaching
the caugstic are shown in Figure 11. These results are presented in terms of the

amplitude factor,
A(xh &
Fr= [m{l (20)

vhere A(x) = ray tube cross-sectional area at distance, x, along the
central ray

c’(x) = ray tube cross-sectional area of an equivalent non-
refracted ray tube (identical initial boundary rays) at
distance, x, from the charge, 1i.2., in this case the area
ggy :.he zone of a sphere of radius, x, cut by the boundary

(Text continued on page 20) 11

>
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RAY TUBE AREA, A(x) (FT2)
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FIG. 5 RAY TUBE AREA AS A FUNCTION OF PATH LENGTH -- 7; =-9.7°
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The product

Fx (pmax)ISO

is then the amplified pressure which would occur along the ray tube if there were
no wave overtaking, i.e., in the acoustic approximation--c = <, = constant. The

ratio,

pma.x

F x (Pua 150

therefore, expresses the reduction in pmax due to wave overtaking caused by

convergence of the ray tube as it approaches the caustic.

Since we ere interested in {solating the effects due to wave-overtaking, both
the refracted and isovelocity signatures were taken from calculations which are
identical except for the cross-sectional area functions. Thus, in the c¢rmpearison,
small errors introduced through the approximate pressure-density relation
(equation 3) and the shock wave similtude equations (15) and (16) are essentially

cancelled.

The curves shown in Figure ll vere calculated for the ray, 71 : -1‘).10 (case
B), but vhen presented in this manner are identical to those for the ray,

71 = -9.7° (case A). The three curves presented in Figure 11 were calculated for

three different TNT charge weights--56, 0.11%, and 2.6x10-b lbs--vhich yield
spherical vave pressures (no refraction), pmx=l75. 19, and C.46 psi, at 256 ft

from the charge, the path length along this particular ray to the caustic. The

0.11% and 2.6x10'6 1b TNT charge weights were chosen to scale the caustic location
(x=256 ft for this quarry profile) to x=180,000 ft for 20 kiloton and 900 lb TNT
charges, respectively. The scaled caustic location and the 900-1b charge weight
correspond to the Sargassn Sea experiment (Blatstein, 1971).

In the ocean experiment, the caustic was & convergence zone caustic. When
ve did these calculations we had hoped that the results would be approximately
correct for rays en route to convergence zone caustics in the ocean as well as
to thermocline-related caustics. But, subsequent calculations using ray tubes to
convergence zone caustics shov that the results presented in Figure 1l are not
even approximately correct for convergence zone ray tubes--for these, the
reduction in p-x due to wave-overtaking as the shock wave travels to the caustic

is generally much greater, sometimves amounting to a reduction pmx of 25 or 30%.

We also point out that the results presented in this section are based on a single
experimentally measured sound velocity profile. Thus, the results

presented in Figure 11 may, or may not, be typical of explosion geometries which
foru thermocline-related caustics.

Note that to use Figure 11 ve must have additional knowledge as to the
refractive effects at the caustic. In practice the amplitude factor, F, computed
from the ray tube area of a ray theory computation is of no use in estimating the
effects of wave-overtaking using Figure 11, since in the area of interest wave
di{ffraction has already negated such a computation. Consequently, to use Figure 11
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one wust resort to experimental data or a modified ray theory computation to
obtain a value for F, using the equation

F = p'mx/(pux)lso (21)

vhere p.mx is some value of pmax from which one can estimate an effective ray
tube area and (pmax)ISO is the pressure of a spherical wave which has traveled the

same path length.

In the quarry and ocean experiments to date increases in peak pressure of,
say, 4, 6, or 10--but no greater than a factor of 10--have been observed at
caustica. This 18 also true of the results of modified ray theory computations
based on sound velocity profiles taken from these experiments. Thus, according to
the curves shown in Figure 1l reductions in pmax due to wave-overtaking of up to

4 or 5% occur as the shock wave approaches this particular caustic.
RAY TUBE EXPANDING IN SHADOW ZONE

Figure 12 shows the calculated pressure as a function of distance along the
ray, ‘Yi= -15.7° (case C), and compares it with the pressure calculated for a
spherically expanding shock wave. For this case the deviation in pmax from

spherical wave pressure can be predicted quite well by
pmx FLEZ (pmx)tso (22)

vhich is also shown in Pigure 12 (dashed line). Out to 350 ft equation 22 gives

Ppay t° approximately :1%--at x=600 ft equation 22 predicts a value of Prax about

4% lower than computed by the finite amplitude calculation.

5. DISCUSSION AND CONCIUSIONS

As pointed out in the introduction, existing solutions to the refraction
problem (ray theory and modified ray theory) do not take into account wave-
overtaking and molecular absorption. However, the computed pressures are
generally corrected aftervards in the same ratio as the correction for wvave-
overtaking and absorption estimated for a spherically diverging wave vhich has
traveled the same distance. The purpose of this paper was to check this
approximate method of accounting for wave-overtaking. To do this we made an
essentially exact calculation including the effects of wave-overtaking (but not
absorption) for an approximate problem: namely, the propagation of an underwater
explosion shock wvave along a duct formed by two adjacent rays calculated by ray
theory.

The computational results (Section 4) are for two extreme cases--a converging
ray tube approaching a caustic and one undergoing rapid expansion as it enters
the shadow region behind the caustic. These were selected from a particular
sound velocity profile forming a thermocline-related caustic. For these cases
the approximate procedure (estimating the wave-overtaking effects from the
spherical wave) introduced a maximum error of t5%. But, as pointed out in
Section U, this result may or may not be typical of ray tubes to thermocline-related
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caustics. Also, subsequent calculations covering a range of sound velocity
profiles yielding convergence zone caustics resulted in considerably greater
reductions in 1:““x due to wave-overtaking. For these cases most of the

attenmuation ocurred along the portion of the ray path in the deep ocean velocity
gradient.

Figure 11 shows that for ray tubes approaching this particular thermocline-
related caustic there is increasged attenuation of pm.x due to wave-overtaking as

the pressure builds up. This additional attenuation is dependent on the size of
the charge--or the pressure level of the wave approaching the caustic--in
addition to the variations in ray-tube cross-sectional ares between the charge
and the caustic. The moderate magnitude of the wave-overtaking corrections to

pmx would appear tc justify the current practice of predicting explosion

pressures at and near caustics with modified ray theory computations. OSuch
results can then be adjusted, if necessary, for attenuation due to wave-overtaking
occurring along the path to the caustic by the method presented in this report.

Several results from subsequent calculations of wave propagation along ray
tubeg to convergence zone caustics in the ocean have been mentioned above.
Further results and details of these calculations will be given in a subsequent
report.
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