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ABSTRACT

Several methods for finding eigenvalues of sym-
metric five-diagonal matrices are compared experi-
mentally. The results indicate that if relatively few
eigenvalues are desired a modified Sturm sequence and
interpolation scheme is fastest.
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1. INTRODUCTION

We are concerned here with finding the lower (or
higher) eigenvalues of symmetric, five-diagonasi matrices.
Several numerical techniques are experimentally com-
pared, including one that uses a Sturm sequence-type ap~
proach directly on the five-diagonal matrix. The results
indicate that if relatively few eigenvalues are desired a
modified Sturm sequence and interpolation scheme is
fastest,



THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
BILVER SPRING MARYLAND

2. LR TRANSFORMATION OF RUTISHAUSER (LR)

This method uses Cholesky decomposition with
appropriate origin shift (Refs, 1 and 2, and Ref. 3, pp.
544-556), Each iteration requires 6n additions, 9n multi-
plications, 2n divisions, and n square roots, The method
also requires a judicious choice of origin shift to be effec-
tive. A poor choice could invalidate the technigee. The
implementation used here was that of Ref. 2, which pro-
duces a cubically convergent technique. Since only a few
eigenvalues are needed, we have O(n) operations. Although
the Cholesky decomposition is used, the origin shift allows
one to find eigenvalues of matrices that are not necessarily
positive definite.
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3. STURM SEQUENCE AND BISECTION (SS)

By the separation theorem, it is known that the
eigenvalues of the (k-1)th leading principal minor, say
Ay .1, of a symmetric matrix separate the eigenvalues of
the kth leading principal minor, A,, for eachk < n (see,
e.g., Ref. 3, p. 103). Thus, if we evaluate the leading
principal minors of (A-)I), the number of variations in
sign is the number of eigenvalues of A greater than .

Let

1 Py 3
2 23 by 0

c3 by a4

A=

n
0 b
n
c b a
n n n

In Ref. 4, Kuttler presented the following recurrence re-
lation, whe~e m; is the ith principal minor:

=0, ks0
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A count of the number of operations shows that we have
roughly 10n multiplications and 5n additions, or 15n opera-
tions per iteration., It is necessary, however, to con-
stantly scale the process to prevent underflow or overflow
(see also comments at end of Section 6).

In Ref. 5 Sweet presents another set of recurrence
relations to evaluate successive minor, However, sim-
plifying his equations for a symmetric matrix, it turns out
that one needs roughly 14n multiplications, 8n additions,
and n divisions, or 23n operations per iteration, which is
not competitive with the above,
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4. STURM SEQUENCE AND INTERPOLA TION (SSI)

In Ref, 6, a scheme is described whereby the num-
ber of bisections (and functional evaluations) may be re-
duced. Once bisection has isclated a single eigenvalue in
some interval, an interpolation procedure is initiated.

The procedure is attributed to Wyngaarden, Zonneveld,
Dykstra, and Dekker, and its implementation is described
in Ref, 6. Since the scheme requires a single eigenvalue
to be isolated, one cannot find multiple eigenvalues by this
method,
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5. BAND DECOMPOSITION AND INTERPOLATION (BD)

In Ref. 7, a scheme is given whereby a band matrix
is decomposed into its LU product with pivoting. If the
matrix is symmetric and if (A-AI) is decomposed, one can
determine the variations in the signs of the principal
minors and thus use the approach of Section 4. Since the
decomposition requires 7n additions, 7n multiplications,
and 2n divisions or 16 n operations for a five-diagonal
ratrix, the method appears to be competitive with that of
Section 3, We have not, however, taken into account the
bookkeeping necessary for pivot determination, interchang-
ing, etc,
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6. MODIFIED STURM SEQUENCE (MSS)

In an effort to avoid the constant scaling of the
Sturm sequence relation, we consider the approach used
in Ref. 8. Let

My UY-2
My =4 , U2 m y
k-1 k-1
Then Eq. (1) becomes
M1 = a1
Mp =22 "1
1
Q, - °2
17 MM,
bg Cg 3y
M3=33-M—+M1M2+2b3 c3 Q) (2)
@ e G
k-2 "M, M, k-1 M__
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However, it was pointed out to the author that this could be
greatly simplified as follows:

M, =2,

P,=b,

M, =a —PZ/M (3)
2 %2 2"

=
p';

where we identify

.y RS MM )

This is equivalent to decomposing the matrix into its LU
product, without pivoting, We need only count the num-
ber of Mj <0. A count of the number of operations in-
volved leads to 2n multiplications, 3n additions, and 3n
divisions, or about 8n operations with no scaling. Un-
questionably, this is the fastest method, but the lack of
pivoting introduces a question of accuracy.

If the interpolation method of Section 4 is to be
n
used (SSI), we must compute 7 Mi for the functional
i=1
values. It is somewhat simpler to scale this running
produc- than to scale the recurrence process (Eq. (1)),

I'te implementation of Eq. (3) was done in a man-
ner simila)r to that described in Ref, 8. A test was made
to determine if M; vanished and, if so, to replace the
zero with a relatively small number, This never occurred
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in any of the matrices tested. Also, unlike the Sturm
sequence technique for tridiagonal matrices, it is not
easy to see the conditions under which two successive M;
(or m; in Eq. (1)) vanish. A check was made to deter-
mine if this happened and, if so, to perturb )\ and try
again. However, the situation never arose,
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7. JACOBI ROTATIONS TO TRIDIAGONAIL MATRIX (RJ)

If all eigenvalues are desired, we can, of course,
use any of the above methods. However, there is an ap-
proach available in this case that is not competitive if
only a few eigenvalues are desired. This is the method
of Jacobi rotations to reduce the bandwidth of a matrix but
preserve the band nature of the matrix, as suggested by
Rutishauser (Ref. 9) (see al:o Ref. 10), followed by find-
ing the eigenvalues of the resulting tridiagonal matrix by
the QR method (Ref., 11),

-10 -
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8. RESULTS

For test matrices we consider the following:

p-r 2q r
2q P 29 r

r 2q p 2q r

The eigenvalues of this matrix are

A

K (p-2r) -%(qz-(q-Zr cos k6)2)

2 m
- 2r - - T —
p r - 4(q cos k8 - r cos k), e )

p-~4gcoskf +2rcos 2k, k=1,2,...,n

(see, e.g., Ref, 12). In particular we chose four matrices,

as follows:

Matrix 1: p=T, q=1.75, r=04
Matrix 2: p=6, q=1.75, r=
Matrix 3: p =11, q= 1071, r=5
Matrix 4: b= 10, q=10"13, r=5.

For matrices 1 and 2, the eigenvalues are distinct
but of the smaller ones, many are near 1 for matrix 1, and

_11-
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near 0 for matrix 2, For matrices 3 and 4 each root is
at least a double root (for even n) to within the precision
of the arithmetic used, with distributions similar to
matrices 1 and 2, respectively.

For computing only a few eigenvalues we used the
methods of Sections 2, 5, and 6. For computing all
eigenvalues, we compare the best of the above inethods
with the method of Section 7.

Each of these methods was applied in doubLle pre-
cision in Fortran IV (H compiler) on the IBM 360/91 at
The Johns Hopkins University Applied Physics Laboratory.
Tables 1 and 2 contain the central processing unit (C°U)
time in seconds for each run. Because of the time-si1ring
capabilities of the machine, it is possible that two identi-
cal runs could show slightly different times, However,
the relative magnitudes of the numbers are consistent,
and it is these in which we are interested,

In Table 1, the time is given in which the ten
smallest eigenvalues were found. As noted above, methods
BD and MSSI are identical except that the Sturm sequence
process is determined by LU decomposition with pivoting
in one case (BD), and without pivoting in the other (MSSI).
Operation count indicates that BD should take about twice
as long as MSSI, but the actual figure was between six
and seven times as long. This was probably because of
the work needed to determine and execute the pivoting.
Also examination of the eigenvalues of the matrices up to
order 2000 showed no difference in the accuracy of the
two methods,

In Table 2, we have the time in seconds to compute
all eigenvalues, For a given tridiagonal matrix, the QR
method is fastest, We have included the QD method (Ref.
13) for comparison. It would seem that the QR method
could be used even when only a few eigenvalues arc needed,
Unfortunately, '"the order in which the cigenvalues are

-12 -
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Table 1

CPU Time in Secondsg to Compute Ten

Smallest Eigenvalues

b= - o
‘ Matrix 1 2 3 4
BD 6.772 6.823 9. 325 9,595
N - 500 1.R 2,877 2,337 1.986 1. 469
1 MSS 2.502 2. 590 1.374 1.384
' ! MSS] 1.134 1.195 1.364 1.383
« BD 13.655 13. 760 17,955 18. 402
| N 21000 LR 5. 887 4,629 4.196 3.013
i MSS 4. 851 4.913 2. 610 2. 760
! MSSI 2. 230 2,252 2,675 2. 750
| LK | 12,458 9.673 8. 491 5. 785
| N = 2000 MSS l Y. 223 9.51% 5.139 5. 298
[ MSST | 4,380 4,412 4.937 5. 071
L N = 5000 MSSI L 10. 751 10,817 11. 773 12. 087

-13 -
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Table 2
CPU Time in Seconds to Compute all Eigenvalues
Matrix 1 Matrix 4

N 100 200 500 100 200 500
LR 1,969 7.278 S B ! 4,933
MSSI 1.835 7.277 ! 2.818 11,108
RJ only 0.136 0. 627 3, 969 I 0,136 0.4536 1, 081
RJ + QD 0.629 2.673 17.097 | 1.253 5,086 31,8603
RJ + QR 0. 445 1.693 10, 2.4 0. 381 1.523 2,348

- 14 -
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found is to some extent arbitrary'' (Ref. 11). The QD
method, however, has the advantage of producing the
eigenvalues in strictly ascending order. A comparison

of Tables 1 and 2 shows that the QD method might be com-

petitive if more than a few, but not all, eigenvalues are
desired.

- 15 -
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9. CONCLUSIONS

If only a few eigenvalues of a large five-diagonal
symmetric matrix are wanted, the modified Sturm sequence
and interpolation technique (MSSI) appears optimal, If all
eigenvalues are desired, Jacobi rotations, followed by the
QR method, appear difficult to beat. Between these ex-
tremes on: might consider the LR or QD methods.

-16 -
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