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ABSTRACT

I

I Several methods for finding eigenvalues of sym-
metric five-diagonal matrices are compared experi-
mentally. The results indicate that if relatively few
eigenvalues are desired a modified Sturm sequence and
interpolation scheme is fastest.I
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1. INTRODUCTION

We are concerned here with finding the lower (or
higher) eigenvslues of symmetric, five-diagonai matrices.
Several numerical techniques are experimentally com-
pared, including one that uses a Sturm sequence-type ap-
proach directly on the five-diagonal matrix. The results
indicate that if relatively few eigenvalues are desired a
modified Sturm sequence and interpolation scheme is
fastest.
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2. LR TRANSFORMATION OF RUTISHAUSER (LR)

This method uses Cholesky decomposition with
appropriate origin shift (Refs. 1 and 2, and Ref. 3, pp.
544-556). Each iteration requires 6n additions, 9n multi-
plications, 2n divisions, and n square roots. The method
also requires a judicious choice of origin shift to be effec-
tive. A poor choice could invalidate the techniqcc. The
implementation used here was that of Ref. 2, which pro-

duces a cubically convergent technique. Since only a few
eigenvalues are needed, we have O(n) operations. Although
the Cholesky decomposition is used, the origin shift allows
one to find eigenvalues of matrices that are not necessarily
positive definite.

-2-
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3. STURM SEQUENCE AND BISECTION (SS)

By the separation theorem, it is known that the
eigenvalues of the (k-l)th leading principal min,)r, say
Ak-1, of a symmetric matrix separate the eigenvalues of

I the kth leading principal minor, Ak, for each k • n (see,
e.g., Ref. 3, p. 103). Thus, if we evaluate the leading
principal minors of (A-XI), the number of variations in

sign is the number of eigenvalues of A greater than X.

Let

a1 b 2 c 3
b2 a2 b3 0

c 3  b 3  a3

A= c
n

0 b

c b a
n n n

In Ref. 4, Kuttler presented the following recurrence re-
lation, wh -e mi is the ith principal minor:

Smk-1 qk = 0' k !9 0

m

qk-2 b bk-i mk-3-Ck-1 qk-3

2 2 2 ink_2) + (c)mk a am1-bink_-ck(ak mk_-Ck_ in ~ kk
k k k-l k k-2 k k-1 k-3 k-1 k-4 kb c k- 2  ()

k ,3..-., n
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A count of the number ot operations shows that we have

roughly l On multiplications and 5n additions, or 15n opera-
tions per iteration. It is necessary, however, to con-
stantly scale the process to prevent underflow or overflow
(see also comments at end of Section 6).

In Ref. 5 Sweet presents another set of recurrence
relations to evaluate successive minor. However, sim-
plifying his equations for a symmetric matrix, it turns out
that one needs roughly 14n multiplications, 8n additions,
and n divisions, or 23r. operations per iteration, which is
not competitive with the above.

-4-
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4. STURM SEQUENCE AND INTERPOLATION (SSI)

In Ref. 6, a scheme is described whereby the num-
ber of bisections (and functional evaluations) may be re-
duced. Once bisection has isolated a single eigenvalue in
some interval, an interpolation procedure is initiated.
The procedure is attributed to Wyngaarden, Zonneveld,
Dykstra, and Dekker, and its implementation is described
in Ref. 6. Since the scheme requires a single eigenvalue
to be isolated, one cannot find multiple eigenvalues by this
method.

-5-
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5. BAND DECOMPOSITION AND INTERPOLATION (BD)

In Ref. 7, a scheme is given whereby a band matrix
is decomposed into its LU product with pivoting. If the
matrix is symmetric and if (A-XI) is decomposed, one can
determine the variations in the signs of the principal
minors and thus use the approach of Section 4. Since the
decomposition requires 7n additions, 7n multiplications,
and 2n divisions or 1 6 n operations for a five-diagonal
matrix, the method appears to be competitive with that of
Section 3. We have not, however, taken into account the
bookkeeping necessary for pivot determination, interchang-
ing, etc.

-6-
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6. MODIFIED STURM SEQUENCE (MSS)

I

J In an effort to avoid the constant scaling of the
Sturm sequence relation, we consider the approach used
in Ref. 8. Let

M mk Q qk-2
k m k-=k2k- m kk_

Then Eq. (1) becomes

M, =a a1

2
b2

M 2a
2 - M 1

Q b 2
Q1 1

1 M IM2M12

b2 c2a
M a3  + + 2b c Q (2)

3 3 M2 M1 M 2 3 c 3 1

bk-l k-3

k-2 Mk-1 M k-i Mk-1

Mk a k bM Ok.Ikl -Mkk~-k-il k-l k2 k- -2/

k = 4,5,.....n

-7-



THE JO.N MOPKIkS UNIVCRSITV

APPLIED PHYSICS LABORATORY

SSILVE* *IN .RVLANO

However, it was pointed out to the author that this could be
greatly simplified as follows:

M,

P 2 b 2

M =a P 2I/M (3)
2 2 2 1

P =b-cP /
*k k Ck Pk-i k-2

Mk ak -c2/M 2P/
k k-2 k/Mk1 k 3, n

where we identify

Qk- 1 = Pk/(M k Mk-1

This is equivalent to decomposing the matrix into its LU
product, without pivoting. We need only count the num-
ber of Mi < 0. A count of the number of operations in-
volved leads to 2n multiplications, 3n additions, and 3n
divisions, or about Bn operations with no scaling. Un-
questionably, this is the fastest method, but the lack of
pivoting introduces a question of accuracy.

If the interpolation method of Section 4 is to be
n

used (SSI), we must compute ff M. for the functional
i=i I

values. It is somewhat simpler to scale this running
produc than to scale the recurrence process (Eq. (1)).

"P'±e implementation of Eq. (3) was done in a man-
ner similar to that described in Ref. 8. A test was made
to determin! if Mi vanished and, if so, to replace the
zero with a relatively small number. This never occurred

8-
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I
in any of the matrices tested. Also, unlike the Sturm
sequence technique for tridiagonal matrices, it is not
easy to see the conditions under which two successive Mi
(or mi in Eq. (1)) vanish. A check was made to deter-
mine if this happened and, if so, to perturb X and try
again. However, the situation never arose.

i
I
ii

4
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7. JACOBI ROTATIONS TO TRIDIAGONAL MATRIX (0J)

A

& If all eigenvalues are desired, we can, of course,
use any of the above methods. However, there is an ap-
proach available in this case that is not competitive if

t only a few eigenvalues are desired. This is the method
of Jacobi rotations to reduce the bandwidth of a matrix but
preserve the band nature of the matrix, as suggested by
Rutishauser (Ref. 9) (see alho Ref. 10), followed by find-
ing the eigenvalues of the resulting tridiagonal matrix by
the QR method (Ref. 11).

a
I

- 10 -
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8. RESULTS

j For test matrices we consider the following:

p-r 2q r

2q p 2q r

r 2q p 2q rJ
r

p 2q

r 2q p n-r

nx n

The eigenvalues of this matrix are
1 22

Xk = (p-2r) - (q 2-(q-2r cos k) 2)

2 rT

= p - 2r - 4(q cos k - r cos2A), e =

= p - 4q cos ke + 2r cos 2 k, k=1,2,..... n

(see, e. g., Ref. 12). In particular we chose four matrices,
as follows:

Matrix 1: p = 7 , q = 1.75 , r = 0.4

Matrix 2: p = 6 , q = 1.75 , r = 0.5
-15

Matrix 3: p = 11, q = 10 , r = 5

Matrix 4: p = 10, q = 10"15, r = 5.

For matrices 1 and 2, the eigenvalues are distinct

but of the smaller ones, many are near I for matrix 1, and

- 11 -
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near 0 for matrix 2. For matrices 3 and 4 each root is
at least a double root (for even n) to within the precision
of the arithmetic used, with distributions similar to
matrices 1 and 2, respectively.

For computing only a few eigenvalues we used the
methods of Sections 2, 5, and 6. For computing all
eigenvalues, we compare the best of the above methods
with the method of Section 7.

Each of these methods was applied in double pre-
cision in Fortran IV (H compiler) on the IBM 360/91 at
The Johns Hopkins University Applied Physics Laboratory.
Tables 1 and 2 contain the central processing unit (CDU)
time in seconds for each run. Because of the time-si.iring
capabilities of the machine, it is possible that two identi-
cal runs could show slightly different times. However,
the relative magnitudes of the numbers are consistent,
and it is these in which we are interested.

In Table 1, the time is given iin which the ten
smallest eigenvalues were found. As noted above, methods
BD and MSSI are identical except that the Sturm sequence
process is determined by LU decomposition with pivoting
in one case (BD), and without pivoting in the other (MSSI).
Operation count indicates that BD should take about twice

I as long as MSSI, but the actual figure was between six
and seven times as long. This was probably because of
the work needed to determine and execute the pivoting.
Also examination of the eigenvalues of the matrices up to
order 2000 showed no difference in the accuracy of the
two methods.

In Table 2, we have the time in seconds to compute
all eigenvalues. For a given tridiagonal matrix, the QR
method is fastest. We have included the QD method (Ref.
13) for comparison. It would seem that the Ql method
could be used even when only a few eigenvalues arc needed.

* Unfortunately, "the order in which the eigenvalues are

-12 -
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$* Time in Seconds to Compute Ten

K Smallest Eigenvalues

Mu-irix I1 2 3 4

IV) 6. 772 6. 823 3~ 25 9j. 5f95
N 50 2. 877 2. 337 1. 94c 1. 469

%ISS 2.502 2. 590 1. 374 1. 3B4
I Mssf 1.134 1. 195 1. 364 1. 383

141) 1 3. 655 13. 760 17.11155 18. 402
ýN -10(00 1.H 5. 887 4. 6211 4. 196 3. 013

MSS 4.851 4.113 2. 61l0 2. 760
MSSI 2. 230 2. 252 2. 675 2. 750

1H 112. 458 9. 673 8. 491 5. 78,,
N '2000 MSS !).223 J 9. 519 5. 139 5. 29 8

M1SSt 4.380O 4.412 4. 131 5. 071

N 50 SI(10. 751 10. 81< 11. 773 12. 087_
1

-i3
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Table 2

CPU Time in Seconds to Compute all ELgenvalues

Matrix 1 Matrix 4

N i00 200 500 I 00 200 500

LR 1.969 7.278 1.311 4.935

MSSI 1.835 7. 277 .81 11.108

RJ only 0.156 I 0.627 3.969 0.156 0. 636 4.081

RJ + QD 0. 629 2. 673 1.7. 097 i.259 5.086 31. 603

RJ +Q 0.445 1.693 10.2.4 0.381 1.523 9.348

-14
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found is to some extent arbitrary" (Ref. 11). The QD
method, however, has the advantage of producing the
eigenvalues in strictly ascending order. A comparison
of Tables 1 and 2 shows that the QD method might be com-
petitive if more than a few, but not all, eigenvalues are
desired.

-15-
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9. CONCLUSIONS

I

If only a few eigenvalues of a large five-diagonal
symmetric matrix are wanted, the modified Sturm sequence
and interpolation technique (MSSI) appears optimal. If all
eigenvalues are desired, Jacobi rotations, followed by the
QR method, appear difficult to beat. Between these ex-
tremes on•• might consider the LR or QD methods.

01

I

i
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