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ABSTRACT

We show that several well-known results about continuous

linear operators on Banach spaces can be generalized to the wider

class of convex processes, as defined by Rockafellar. In particular,

the open mapping theorem and the standard bound for the norm of

the inverse of a perturbed linear operator can be extended to convex

processes. In the last part of the paper, these theorems are exploited

to prove results about the stability of solution sets of certain

operator inequalities and equations in Banach spaces. These results

yield quantitative bounds for the displacement of the solution sets

under perturbations in the operators and/or in the right-hand sides.

They generalize the standard results on stability of unique solutions

of linear operator equations.



NORMED CONVEX PROCESSES

Stephen M. Robinson

1. Introduction. The idea of a convex process was introduced

by Rockafellar [ 9, 101 in connection with general studies in convexity.

If X and Y are real linear spaces, a convex process from X into Y

is a mapping of points in X into subsets of Y, whose graph is a

convex cone in X xY containing the origin. If the graph is also

closed, then we refer to a closed convex process. Here we are

using the definition of graph as given in [10]: for a mapping T,

graph T:= {(x,y) y E Tx}.

An equivalent way of stating the above definition is to say that a

mapping T is a convex process if It satisfies the following three

requirements:

a. T(x + z) D Tx + Tz for all x, z E X.

b. T(Kx) = KTX for every K > 0 and every x e X.

c. 0 TO.

It is clear that any linear transformation (considered as a point-to-set

mapping) is a convex process, but not vice versa. Just as with linear trans-

formations, we can define the concepts of domain, range and inverse: for a

convex process T, don T is the set of points x for which Tx * 9, range T

Sponsored by the United States Army under Contract No.:
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is U{Txix E dom TJ, and T- is a mapping from range T onto

dom T with T-y: {xly E Tx}. Note that dom T and range T are

both convex cones containing 0, since ti ey are the projections of

graph T into X and Y respectively. Finally, if X and Y are normed,

we can define the norm of T by

lITil := sup{inf {(lyJ Jy E Tx)I lixii <_1, XE dom T}.

The above definitions are taken from [9] and [10], except that

the definition of Ii T II is changed slightly from that given in [ 9 1;

the change affects only the class of convex processes with domain

{0}.

Note that there are some changes from the theory of linear

operators: for one thing, every convex process has an inverse,

and it is easy to see that the inverse Is Itself a convex process. On

the other hanc., any linear operator between finite-dimensional

normed linear spaces has a finite norm, but this is no longer true

for convex processes; an example of a closed convex process from

AR into IR with infinite norm is given in Section 2.

We shall call a convex process norme.d if its norm is finite.

In view of the example just cited, the question naturally arises:

when is a convex process normed ? Also, if a convex process is

normed, when can we be sure that its inverse is also normed?

Finally, if T and T"1 are normed, and if we perturb T slightly by

adding to it another convex process of small norm, can anything be
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said about tha norm of the inverse of the perturbed process; specifically,

can that norm be bounded? These are questions that often arise in

applications, and in the case of linear operators on Banach spaces

they can be answered in a very satisfactory manner.

In this paper we show how these and other questions can be answered

for convex processes; in fact, several of the well-known results

from the theory of linear operators can be extended to convex

processes in very nearly the same form.

We conclude this section by explaining some notational

conventions that we shall use in what follows. All linear spaces

from this point on will be assumed to be over the real field. If

two convex processes, say S and T, are defined from a linear space

X into another linear space Y, then their sum, S + T, is the mapping

defined by (S + T)(x) := Sx + Tx. If X is a real number, then the

mapping XT is defined by (XT)(x) :- =(Tx). Both of these mappings

are convex processes, and if S and T are normed, we have

Us + T11 < Ils11 + I1Tl and IiXTIl = IxI 11TH. One can also define

the composition of two convex processes in the obvious way, and

show that Ii UT II < I1 U II lIT Ii. The proofs of these results are

omitted; they follow from the important fact that if T is any convex

process and if x c dom T, then for any e > 0 there is (by the

definition of 1IT II) some y E Tx with

Ily 1 < 11T 1 Ix il + •

#1135 -3-



Here and in what follows we are using the convention (+oo).0 = 0 = 0,(+oo).

2. Characterization of normed convex processes. In this

section we first give an example, mentioned in the introduction, of

a closed convex process with infinite norm; we then show that the

class of convex processes having finite norms can be characterized

in terms of two other equivalent topological properties.

The example is as follows: let T be the convex process from

JR (the non-negative real numbers) into R 2 given by+

{(y,z) I yZ < zx and 0< z} forx>O

for x < 0.

For each x > 0, the image Tx is the area in the yz-plane on or
2

above the parabola y = zx; TO is the non-negative z-axis. It is

readily verified that this is a closed convex process with norm 0.

However, the inverse process is given by

{x I x > yV2 /z} for z >0 and any y

T- (y,z) = IR+ for z = 0, y = 0

(# otherwise,

and since for the pair (I, I/n) we have T (1, I/n) = {x I x > n), it

is clear that the norm of T-1 must be + oo.

Before stating the characterization theorem, we mention some

topological preliminaries. If X and Y are topological vector spaces

with X0 C X, and if T is a mapping from X into Y, we say that T
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is lower semicontinuous at x0 E X0 as a mappinQ from X0 to Y if

for each open set Q C Y with Q nl Tx 0 * 0, there is an open

neighborhood U ofx0 inX0 such that for every x E U, Q nl Tx JW

(see, e.g., [2]). We say that T is open at 0 if the image under T

of any open neighborhood of 0 in X contains an open neighborhood

of 0 in range T. When we speak of a neighborhood In a set we

are, as usual, referring to the relative topology on that set.

THEOREM I: Let X and Y be normed linear spaces, and let T be a

convex process from X into Y. Then the following three properties are

equivalent:

a. T has a finite norm.

b. T is lower semicontinuous at 0 as a mapping from dom T into Y.

c. T-1 is open at 0.

PROOF (a => c): Denote the open ball of radius e > 0 about x F X

by B(x, E), and let C(y, E) be a similar ball about y E Y. Let D(x, e)

:= B(x, n) l dom T and R(y, F) := C(y, n) l range T. Let V(O) be any open

neighborhood of 0 in Y; then T'1[ V(O)J T- [v(o) n range T1. Pick

some ii > 0 such that Q(0, I) C V(O); then R(O, -n) C V(O) n range T. Let

( > 0 be so small that 1IT II < 1/2. Pick any x E D(O, f); then there is

some YE Tx with IyUl < 11TII - + n,/Z <-, SO YE R(O,ri). Since x was

arbitrary, it follows that D(0,) C T- [R(O,n)I C T-I [V(o)], so T-1

is open at 0.

#1135 -5-



(c => b): Suppose T-I is open at 0; let Q C Y be open with

Q n TO * O. We have to find an c > 0 such that for eachx E D(O, E),

we have Q n Tx * 0. Let q E Q f TO and suppose C(q, 6) C Qwith 6 > 0.

By the assumption, there is an F > 0 such that T-I[ R(O, 8)] D D(O, E).

But then for any x E D(O, () there is a y E Tx nR(O, 6); then Tx =

T(O + x) D TO + Tx 3q + y, and q +y E C(q, 8) C Q. Hence q +yE Q nfTx•j,

and so T is lower semicontinuous at 0 as a mapping from dom T into Y.

(b => a): Suppose T does not have a finite norm. Then we can find

some sequence {x } C dom T with 1ix nI 1<1_ and Iyll > n for all y E Txn

and for n = 1, 2, .... None of the xn can be zero (since 0 F TO), so we

can define a new sequence {z n} C dom T by setting z := x/(nllx n1) for

each n. It is clear that ixz n 11 I/n and Ilyil >1 for all y E Tz and all n.

Since 0 E TO, we have C(O, 1) n TO # 0; however, c(o, 1) n Tz =n

for each n. Since {z } converges to zero, it follows that T is not lower

semicontinuous at 0 as a mapping from dom T into Y. This completes

the proof.

3. Sufficient conditions for a finite norm. In Section 2 we found

necessary and sufficient conditions for a convex process to have a finite

norm. However, these conditions were stated in terms of topological

properties of T which will frequently be just as hard to verify as will be

the existence of a norm. In this section we deve'.op some sufficient

conditions of a simpler kind, which involve various properties of dom T.
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THEOREM 2* (Generalized Open Mapping Principle): Let X and Y

be Banach spaces. and let T be a closed convex process from X onto Y.

Then the imaqe under T of any open set in X is an open set in Y.

PROOF: Let the neighborhoods B, C, and D be defined as in the

proof of Theorem 1. We shall first show that T is open at 0; the

conclusion of the theorem then follows easily.

We have, since T is onto Y,
00 00

Y = T(dom T)= T[ U D(O, n)] U T[D(O, n)J,
n=l n=l

so by the Baire category theorem [ 5 1 there is some N such that

T[ D(0, N)] contains an open ball in Y, say C(p, i). By assumption there

is somexe dom Twith-pE Tx. For anyy E C(0, n) and any c > 0, we

can find some x' E D(0, N) and z E Tx' such that f1(p + y) -zil < ; then

z - p E Tx' + Tx C T(x' + x) L T[D(0, N + 1ix1l)] and 1ly-(z-p) l1 =

11(p + y) -zl < t. Thus 0(0, n) C T[ D(0, N + f1x1l)], and if we define

6 : = 1/(N + ix 11) it follows from the homogeneity of T that C(0, 6)

C T[ID(O, 1)], and in fact that C(O, 2-k 6) c T[D(0, 2- k)]fork = 0, 1,

Choose an arbitrary Y E C(O, 6/2); then by the last observation we can

find some xI E D(O, 1) and y I TXI such that lY - y ii < b/4. Suppose

that for some k>Iwe have x,, ... , xk andyl, ... , k with xE • D(O, 2-)

and y E Tx1 for each J, and with L1s- ,y 11< 2 -(k + )6. Then we can
J=l

#1135 -7-



find an xk+I E D(O, z (k+l)) and yk+1 e TXk+I with

k k+lk k~l -(k+Z)

II ~ yj)- Yk l - y I < 6.

Hence, by induction we can construct sequences {x. } and {y.) having
k

the stated properties for each j. Let wk V, x. andzk :: yj for
k j =I jIl

k 1, 2, -. It is easily seen that {wk I is a Cauchy sequence

and therefore must converge to some x (since X is complete).

Also, by construction IJz} converges to R. We have for each k,

k k k
kW T( x) VTx.- ~~.z

= jl J :l=l

so the pair (wk, zk) belongs to the graph of T. Since T was assumed to

be a closed mapping, it follows that (R, j) also belongs to graph T,

or in other words, that ? E TR. Thus x E dom T, and since for each j,
00

lix. 11 < 2-J, we must have l1x N Z-j 7' 1. Hence R E D(O, 1), and
3 jzl&.

since y was an arbitrary element of C(O, 6/2) we have shown that

T[ D(O, 1) 1 J C(O, 6/2); therefore T is open at 0.

Now let Q be any open set in X. Let y be any point of T(Q), and

let x E Q be such that yE Tx. Choose c > 0 so that B(x, ) C Q. Then

T(Q) T[B(x, t)I T[ x + B(O, E)I -,Tx + T[B( 1, t)I

= Tx + T[D(O, ()] ; y + C(0, 6E/2) C(y, 6t/2),

so T(Q) must be open. This completes the proof.
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COROLLARY (Generalized Closed Graph Theorem): Let X and Y

be Banach spaces. and let T be a closed convex Process from X

into Y. If dom T = X, then T has a finite norm.

PROOF: The convex process T- takes Y onto X, and is closed

since its graph is a reorientation of that of T. Applying Theorem 2

to T-1 we conclude that T-1 is open at 0; it follows from Theorem I

that T must then have a finite norm.

It is not true that if dom T = X and T has a finite norm, then

graph T is closed. For example, the convex process from R into

S2 given by Tx := {(yz) ly >0, z >0} U {0,0} for each x, has

domain F and norm equal to zero, but its graph is not closed.

The following theorem is often useful in dealing with systems

of linear equations and inequalities in finite-dimensional spaces.

THEOREM 3: Let X and Y be normed linear spaces, and let T be

a convex process from X into Y. If dom T is the sum of a finite number

of half-lines, then T has a finite norm.

PROOF: Let dom T be the sum of n half-lines. If n = 0, then

dom T = {0} and it is easily seen that ijT [ = 0. Suppose then that

n> 0, that there 'xist vectors xl, ... , xn with 1lx n= - I for each I, and

that any x E dom 'I Is representable in the form x = xx with each X

non-negative. Then dom T lies in the subspace V generated by xt, P., xn,

#1135 -9-



and this subspace has dimension no higher than n. The restriction of

the norm I1 II of X to V is a norm on V. Define a function f(x) on dom T by

f(x) i: = nf {llyl 1 y e Tx).

It is clear that f(x) has a finite value at each point of dom T; in fact, as

we shall see in the following argument, it is even convex there. Let

xI and x2 be any two points of dom T; let F > 0 be arbitrary, and pick
SE TxI and y2 E Tx2 with 11Y < f(xI) + E and y 2  < f(x ) + t. For any

X E [0, 1] we have Xyl + (l-X)y 2 E XTx 1 + (l-X) Tx 2 C T[kxI + (l-x)x2 ],

so f[xXI + (l-x) x 2 ] _ Il y1 + (l-x) y2Il <s IXy11l + (l-X) IlY 2l

< X[f(xI) + t I + (l-X) [f(x2 ) + ( ] = X O(xI) + (l-X) f(x 2 ) + ,. Since E was

arbitrary, it follows thdt f(x) is convex on dom T.

Let p ip be any polyhedral norm on V (that is, any norm whose

closed unit ball B is a polyhedron). Since dom T, being the sum of a finiteP

number of half-lines, is a polyhedral convex cone [ 3 ], the intersection

sf n dom T will be a polyhedron (nonempty, since 0 E B0 n dom T).p p

Therefore f(x), being convex, must attain its maximum at one of the

extreme points of B n dom T, so the quantity
p

sup {i.If ( Ily 11 y E Tx) lixil1 < I, x E dom T)
=sup if(x) xEB fl dom T)

I p

is finite. However, since V is of finite dimension the norms it U and

p are equivalent on V [2], and thus

'TIT"I sup {irnf{ lyl" yE Tx) 1 ixi1 <I, X E dom T}

is also finite. This completes the proof.
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The next theorem is a partial converse to Theorem 3. In the

theorem, we shall speak of an extreme half-line in a cone; this

term 4s to be understood to mean a half-line (from 0) in the cone which is

not the sum of any two distinct half-lines in the cone.

THEOREM 4: Let X be a normed linear %space and let K be a

convex cone containing the origin in X. If. K contains an infinite

number of extreme half-lines, then there Is a convex process having

domain K whose norm is +o0.

PROOF: Let {Ln} be a sequence of extreme half-lines in K.

Define a function g(x) on K as follows: if for some n, x E Lno

then g(x) := n [x 10; otherwise g(x) := 0. Let p1 and p2 be any

two distinct points in K. If pi, P2 and 0 are not collinear, then

the "open" line segment (p,, P.) cannot contain any point lying on

an extreme half-line, so g(x) is zero on the entire segment and

hence convex on the closed segment [ pl' P2]. If pl, p2 and 0

are collinear, then by enumeration of cases g(x) is easily seen to

be convex on [p 1, P 2I P Thus g(x) is a convex function on the cone K.

Now for x E K define Tx := iX E IR I X > g(x)1, or in the notation

of 19 1, Tx := g(x) V. Since g is positively homogeneous and convex,

with g(0) = 0, the epigraph [10] of g is a convex cone coataining the origin;

but this is also the graph of T, so T is a convex process with dom T = K.

Consider the points xn defined by xn E Ln and 1ix n 1= I. For each n

we have inf {f 1yl 1 y E Tx } n n, so it follows that T11T = +0-, asn

was to have been shown.
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4. Perturbation of a convex Rrocess. In this section we shall

obtain bounds for the norm of the inverse of a perturbed convex process

in terms of the norm of the inverse of the unperturbed process and the

norm of the perturbing process, the latter being assumed to be small.

These bounds will be applied in the following section to develop a

stability theory for certain operator inequalities and equations. The

results we shall obtain here generalize the well-known norm bounds for

perturbations of a non-singular linear operator mapping a Banach space

into itself.

If T is a convex process and K is a convex cone containing

the origin, then we shall denote by TK the restriction of T to K;

that is, the convex process defined by

Tx, XE K
TKX : or. , x K .

THEOREM 5: Let X be a Banach space and Y be a normed linear

sDace. Let T and A be convex processes from X into Y; denote

dom T by K A range T by R. Assume thatT,T- , and A are

normed, and that lIT-1 II h1 II < I • Suppose further that K C dom A,

A(K) C R, K is closed, and (T-A)(x) is closed for each x E K.

Then the convex process T - A has the following properties:

a. range TC range (T-A).

b. (T - A)- Is a normed convex orocess, and
R

11(T - A)R' IL < LIT-iLL/(l - LIT-'lii All).
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PROOF: Let T := IIT-1I and 6 s= 1Ai. Let YE range T

and E > 0 be chosen arbitrarily, and let 0 be any positive real number

with T6 < ( < I. We shall construct a Cauchy sequence {xk} converging

to a vector x c K with the property that 7 E (T - A) R, showing that

range TC range (T - A), and with [[RII < T(1 - e)- hIII + (I - )-l

It will follow, upon letting F 4 0 and 0 e Tb, that i(T - A) 1 U < T/(l - T6).
R =

The number 0 is introduced in order to deal with the exceptional case

in which T6 = 0.

To construct the sequence {xk ) we proceed inductively, beginning

with the choice x0 = 0. Next, using the fact that j E range T and the

definition of T, we choose x E K such that y C Tx and 1x 11i< T Ily i1 + /2.

Then the following three statements hold:

. xI - x0 E K.

1 02. lixI - xo _<_ II <O Iyf+ E(1- 2-)e°.

3. (Tx1 - y) fl Ax0  0 0 (it contains 0).

Now let k > I, and suppose that x and x are given with Xkl and xk
k-I k k1 x

in K and the following conditions satisfied:

I. - k- Xk- I K.

2. IIxk - l <- k- 11< 11 + (l - 2 -k) ok-1.

3. (Tx k -y) rn ax k -l 0.i

Let r1 and in be positive real numbers with the property that T71 , + 12=

ek /Z k+l. Since xk - XkI E K, the set A(xk - Xkl1) is nonempty; let

#1135 -13-



z be a member of this set with iz U < 6 xi - x -ii + Next select

weKsuchthatzETwandlwl=<T ilZI+r, Letx :=x +w.

Clearly Xk+l - xk E K, and we have, using the second induction hypothesis

and the definition of q and n2,

lix - 1 IIST _ IZi +11 n<__ T6 lix xk11 + I T + z
k+l - xk 2- k -/k- + 1+ 2

11 +i oxk-I" k+I
k k -

< Te lTo ll + 2(1- 2-k) ek + 2 -(k+l) 0k

=Te k 111+ ?( -(k+l)) ek.

Finally, let p be any member of the set (Txk - k)-A which was

assumed to be nonempty. Then

p + Z E AXk_ + A(xk - xk-l) C AXk,

and since w = xk+I - xk,

P + Z k (Txk + T(Xk+I- xk) C TXk+I- y,

so that the set (Txk+l - ý) n Axk is nonempty. Thus, by Induction the

properties (1), (2), and (3) must hold for k = 0, 1, 2, We therefore

have for m > 1,

rn-I

ýXk+m - xk 11 < O Xk+j+l - xk+j 1
j=O

rn-1 [T 11911 + (I - 2-(k+j +1))] k+j

j=e

m-IT __ 11 1+ E) e +j

j=O

ek (T I1 I + C) (I - o )/(I - 8), (1)
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and the latter quantity converges to zero as k -oo, regardless of m. Thus
k-I

{x I is a Cauchy sequcnce. For each k, xk ': x + ý, (Xj+1- xj),
J=O

a finite sum of terms in K; hence {x k} C K. Since X is a Banach space

and K was assumed to be closed, the sequence {x k} converges to some

E K.

Now choose an arbitrary 6 > 0, and let k be so large that we have

max [(II TlII + II All) Ilk - xkll, UAII lxk - xk-I 111 < 6/4. Since R - xk

is the limit of the sequence (Xk+j - xk} as j - oo, and since for each J,

j -l

S- k = (Xk+i+1 - Xk+i) E K, the point R - xk lies in K. Therefore
i=O

(T - A)(R) - y- D (T - A(R- xk) + (T - A)(Xk) -

D) (T - A)(R - xk) + {[ Txk - - AXk - a(xk - xk-l)

D (T - A)(i - xk) - A(xk - Xkl),

the last inclusion following since 0 c (Txk -) - AXk_1 by property (3)

of the induction. As noted in Section 1, we have lIT - Al < T 11 + II All,

so we can select Z1E (T - A)(x- - xk) with l1z1ll < (T11T + hAll) ix- Xk 1 +

6/4 < 6/2, and z 2 E - A(xk - xk-l) with 11zz < II All llxk - XkIIl +

6/4 < 6/2. Therefore zI + zz E (T - A)(R) - j with lzI + z 2 < 6, but

since 6 was arbitrary and (T - A) x was assumed to be closed, we must

have y E (T - A) i . Since y was an arbitrary element of range T, we

have range T C range (T - A).
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Taking k 0 and letting m -- a in (1), we obtain

IhxI = lx - x0ii_< (TIIylI + ,)/(I - 0). Since c was arbitrary, we have
0

inf {'xli E6 (T - A) x} < [T/(I - 0)] ll9lI, and since y was any element

of rav'ye T, we see that Il(T - A)R10 < T/(I- ).

Letting e I t6, we obtain 1I(T - A)R-Il < T/11 - T6), as was to have been

shown.

It is not difficult to see that the conclusion of this theorem fails

if the process (T - A)-I is not restricted to range T. For example, if

X = Y = JR with the i norm, and if we set

Tx:={ x}
0 0

and [ 0.
10 -. 11

forevryx ] 2, the 11h=hTl , 11II Al=j-, but ll(T -A)_ 111 =10.

for every X E IR then i] TI JI lT- 2JI i

However, hi(T - A)-, II = 2, as stated in the theorem.
R

For the case in wnich T and A are continuous linear operators

from a Banach space into itself with T and T - A invertible, we can

obtain also a lower bound for 11(T - A)-' 11, namely:

li(T - A")-' 11 > IIT-'IlI/(l + lIT-Il 1 l1 A 11). (21)

However, this inequality is generally false for convex processes. For

example, let X= Y= IR., and let T be the identity mapping on IR. Let

A be defined by Ax := JR for each x E JR. Then 11 Th =IT-l = i,
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but 1I(T - A)-,Il 0, so the inequality (2) does not hold. In order

to be able to prove that (2) is valid, we require additional conditions.

We have followed Rockafellar [ 101 in denoting by 0 + S the recession

cone of a convex set S: that is, the cone made up of all points x

with the property that x + S C S. Intuitively, this is the "set of

directions in which S is unbounded. "

To establish (2), we first note that if 11(T - A)-,l = + o

there Is nothing to prove, and that if 11(T - A)- 11 II All > I the

inequality follows from

lJ(T - A)-II1 > lIT (1 - II All I(T - A)-1 II), (3)

which is equivalent to (2). We need therefore be concerned only

with the case in which II(T - A)-' 11 11 A l! < 1. If we now assume

that for each x E dom T n dom A, we have

'1- A) x 0+ Tx, (4)

it follows that for each such x, (T - A)•i - (- A)x C Tx; but since

0 E (A- A)x, the reverse inclý;iop is trivial. Therefore we have

(T - A) - (- A) = T,

and now by making the assumptions necessary to apply Theorem 5

to T - A and - A, and by assuming that T - A is onto, we can

establish (3), from which (2) follows.

We remark that (4) is always satisfied when A is a single-

valued function.
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5. Action of a convex process on sets. In this section we

examine the following question: if two sets P and Q are "close"

to each other (in a sense to be made precise), and if these sets

are mapped by a convex process T into sets TP and TQ, then

how "close" to each other are TP and TQ?

We first consider a measure of the distance between two sets.

If Z is a normed linear space, we define for any z E Z and any

nonempty subset A C Z

d(z, A) := inf{ liz-a a E A)

For any nonempty set B C Z, define

d(B,A) sup{d(b,A) b E B}.

If we now let

p(AB) := max{d(A,B), d(B,A)},

then p is a generalized pseudo-metric on the family of nonempty

subsets of Z; that is, a pseudo-metric [ 6] which may assume the

value + oc. If A and B are required to be closed, then p is the

Hausdorff metric [ 2].

THEOREM 6: Let X and Y be normed linear spaces. Let P

and Q be nonempty subsets of X, and let T be a normed convex

process from X into Y, with TP and TQ nonempty.

a. If Q-Pc dom T, then

d(TP, TQ) < 0T 1 d(P, Q).
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b. If (Q-P)U(P-Q) C dom T, then

p(TP, TQ) < 11{T1 p(P, Q).

PROOF: We shall prove (a.); (b.) then follows by symmetry.

Choose E >0, and let y be any point in TP. Let p E P be such

that y E Tp, and find some q E Q with 11 T{ 11p-qi1 < 11 T d(P,Q) + /2.

Since Q-P C dom T, there is some y' E T(q-p) with

Ily' [I < 1ITII [Iq-pl1 + E/2.

Then

Tq - y D T(q-p) + Tp - y

3 y' + y - y =y

and

fly' 11 < 11iTl 1 lq-pl1 + /2 < 11T d(P, Q) +

Therefore

d(y, TQ) :: inf{ 11z-yhI 1 Z E TQ}

inf{ 1w 11 1 w E TQ - y}

< 11{T1 d(P,Q) + ,

and since y was any element of TP, we have d(TP, TQ) < 11T 11 d(P, Q) + £.

But e was arbitrary, so the result follows. This completes the proof.

If the conditions on the difference of Q and P are not

satisfied, then the conclusions of Theorem 6 can fail to hold. This

can be seen by considering the following example: define a convex

process T from JR (with the 1*0 norm) into R by:
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({z z >0) for y > 0

T(x,y) 1ziz x 1 '1 for y = 0

Pr for y <0

It is easy to verify that lIT II 1. However, for any > 0 we have

d[T(l, c), T(1,O)] = 1, although d[(l, E), (1,0)] = IE I, so that the

conclusions of Theorem 6 do not hold. In this case, the difficulty

arises from the fact that (0, -E) is not in dom T for E > 0.

6. Stability of solution sets of certain systems. Suppose that

we are given three Banach spaces X, Y, and Z, and that Y contains

a nonempty closed convex cone K which induces on Y a partial ordering

denoted by <. Let A be a function from X into Y which is convex with respect

to K on all of X and is closed and positively homogeneous of degree 1;

that is, epi A is closed in XXY and for each real X > 0 and each

x E X we have A(\ x) = X Ax. In particular, A could be a continuous

linear operator. Let AA' C, and AC be continuous linear operators

from X into Y, Z, and Z respectively. Suppose b and Ab are

points in Y, and d and A d are points in Z. We shall consider

the following two questions:

a. Suppose x is a solution of the system

Aw < b

Cw - d. (5)

Is there any x E X such that x solves the system
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(A+ A )w < b + A

A = b

(C+Ac)w =d+Ad , (6)

and if so how small can 1lx-xii be made; i.e., how close to x

is there a solution of (6)?

b. Suppose x solves (6). If (5) is known to be solvable, how

close is x to the set of solutions of (5)?

Question (a.) is one that frequently arises in such areas as the

analysis of convergence for iterative processes (see, e.g., [8]).

Question (b.) formulates the fundamental problem of determining

error bounds for the approximate solution of certain systems (including

linear systems). We shall see that both questions can be answered

in a convenient way by applying Theorem 6 and some of our previous

results.

THEOREM 7: Let X, Y and Z be Banach spaces, and let K be

a nonempt" closed convex cone in Y. Let the partial ordering

induced on Y by K be denoted by <. -Let A, AA' C, 4 ' b, Ab, d

and Ad be as previously stated. Define a multivalued mapping

from X into Y x Z by

Tx:= {(y,z) I Ax < y, Cx= z}

and a linear operator from X into Yx Z by

Ax := {(AAx, Acx)}

Let YxZ be normed by defining i1(y,z)II := max(iy, lz 11), where
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the norms on the right are those of the spaces Y r-nd Z respectively.

Suppose the mapping T carries X onto YX Z. Then T, T, and 4 are

normed convex processes. and we have:

a. If x solves (6). then

inf fR-x~t (x solves (5)) < lIT-Ill (II(Ab, Ad)JI + lail lxie ).

b. If R solves 15) and il% 1IT-1lj1 <1, tnen (6) is solvable

and we have

inf{ h-xll 1 x solves (6)1 < liT-1ll ( bl(ab b d ll + IA ll 1 l)/M 1- ll ll lIT-i).

PROOF: It is a fairly ruutine matter to show that Yx Z is a

Banach space under the given norm, and that its topology is in fact

the product topology on Yx Z. The assertion that T, T- , and A

are convex processes is easily proved by referring to the definition

of a convex process, and the fact that A is normed follows from the

continuity (thus boundedness) of AA and AC ; indeed, we have

h)•z = max (11AAU, l1' II). The assumption that epi A was closed,

and the continuity of C, imply that graph T Is closed in Xx YX Z;

hence T and TI are closed convex processes. Since dom T = X

and dom T-I = range T = Yx Z, it follows from the corollary to

Theorem 2 that T and T-I are normed.

For part (a.), we rewrite (6) with w = to obtain

Ax < b + A --Ax

Cx= d+Ad- ••x.
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Thus

X E T[(b, d) + (Ab, Ad) - A•]

and since the set of points x solving (5) is T-1[(b,d)J, we may

apply Theorem 6 to obtain

inf{ IIx-xII x solves (5)} d(A, T- [(b,d)J)

SdCT-(T.(b, d) + (AbAd - AxýI, T- (b,d)]}

I b o d<=IT-10 I( bAb, d) - A• tl

< iT-1 t (U(Ab, Ad) A + 1lA• VI II).

This proves part (a.).

To prove part (b.), we shall apply Theorem 5 to the convex

process T + A = T-(-A). We observe that dom (-A) = dom T = X,

which is closed; also -A(X) C Yx Z = range T. We showed earlier

in the proof that T- 1 was normed, and we had by hypothesis that

lIT-II1 II-Al1 = lIT-'!! AII < 1. Finally, for each x E X the set

(T + A)x is {Ax + AAX + K} Y {Cx + Acx), which is a closed set in

Yx Z.

We now apply Theorem 5, and conclude that range (T + A) = YX Z,

so that (6) is solvable for any right-hand side. Also, we have

U1(T + A)- 11 5 TIr-1ll/(l - liT- 1 A IIA 1);

no restriction of (T + A)-1 is necessary, since T was onto YX Z.

Rewriting (5) with w=R, we obtain

(A+ AA)R < b + Ax

(C + AC)R = d + Ac C;
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that is,

X (T + A) ((b,d) + AI.

Reasoning as we did in part (a.), we find that

inf{Ilk-x I x solves (6)} = d(i, (T + 4)-l [(b,d) + (Ab,Aod)])

<1 I(T + A)-1II II(Ab, Ad) - Ax11
< 11 T-, l (ll(,ab d)ll + 11A 11Ilk II ll)/(l - 11iT-1 11 11A II),

as was to have been shown.

If the space X is reflexive, then the infima in the conclusions

of Theorem 7 are actually attained, since the norm is weakly lower

semicontinuous. If all spaces involved are finite-dimensional,

and if A is taken to be linear, then a result similar to part (a.) can

be proved with no assumptions at all about the ranges of A and C.

This type of result was apparently first proved by Hoffman [ 41;

see [ 7] for a treatment using the methods of the present paper, with

applications to linear programming, and [ 8] for an application to

Newton's method. A theorem similar to part (b.) of Theorem 7

(again with A assumed to be linear) was proved for finite-dimensional

spaces in [8]; also, Ben-Israel proved analogous perturbation

results for generalized inverses in finite-dimensional spaces in [I ].

The results of Theorem 7 are expressed In terms of the quantity

IIT-l 11, defined in this case to be

sup-inf-{IIxI5 Ax < y, Cx z (7)
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Even in the finite-dimensional case, this quantity can be rather

difficult to compute. It would be very desirable to have efficient

computational methods for evaluating (7), both in the finite-

dimensional and infinite-dimensional cases.
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