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ABSTRACT

We show that several well-known results about continuous
linear operators on Banach spaces can be generalized to the wider
class of convex processes, as defined by Rockafellar. In particular,
the open mapping theorem and the standard bound for the norm of
the inverse of a perturbed linear operator can be extended to convex
processes. In the last part of the paper, these theorems are exploited
to prove results about the stability of solution sets of certain
operator inequalities and equations in Banach spaces. These results
yield quantitative bounds for the displacement of the solution sets
under perturbations in the operators and/or in the right-hand sides.
They generalize the standard results on stability of unique solutions

of linear operator equations.




NORMED CONVEX PROCESSES

Stephen M. Robinson

1. Introduction. The idea of a convex process was introduced
by Rockafellar [ 9,10] in connection with general studies in convexity.
If X and Y are real linear spaces, a convex process from X into Y
is a mapping of points in X into subsets of Y, whose graph is a
convex cone in X XY containing the origin. 1If the graph is also

closed, then we refer to a closed convex process. Here we are

using the definition of graph as given in [10]: for a mapping T,
graph T:= {(x,y)ly € Tx}.

An equivalent way of stating the above definition is to say that a

mapping T is a convex process if it satisfies the following three

requirements:

a. T(x +z) D Tx + Tz for all x, z € X.

b. T(Ax) = A\Tx for every A >0 and every x € X.

c. 0¢ TO.

It is clear that any linear transformation {(considered as a point-to-set
mapping) is a convex process, but not vice versa. Just as with linear trans-
formations, we can define the concepts of domain, range and inverse: for a

convex process T, dom T is the set of points x for which Tx # @, range T

Sponsored by the United States Army under Contract No.:
DA-31-124-ARO-D-462.




is U{Tx|x € dom T}, and T-'l is a mapping from range T onto
dom T with T-x} = {x|y ¢ Tx}. Note that dom T and range T are
both convex cones containing 0, since ti.ey are the projections of
graph T into X and Y respectively. Finally, if X and Y are normed,
we can define the norm of T by
Tl := sup{inf {llyll |y e Tx}] lx] <1, x ¢ dom T}.

The above definitions are taken from [9] and [10], except that
the definition of ||Tll is changed slightly from that given in [9];
the change affects only the class of convex processes with domain
{o}.

Note that there are some changes from the theory of linear
operators: for one thing, every convex process has an inverse,
and it is easy to see that the inverse is itself a convex process. On
the other hand, any linear operator between finite-dimensional
normed linear spaces has a finite norm, but this is no longer true
for convex processes; an example of a closed convex process from

2

R~ into R with infinite norm is given in Section 2.

We shall call a convex process normed if its norm is finite.

In view of the example just cited, the question naturally arises:
when is a convex process normed ? Also, if a convex process is
normed, when can we be sure that its inverse is also normed ?
Finally, if T and T-1 are normed, and if we perturb T slightly by

adding to it another convex process of small norm, can anything be
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said about the norm of the inverse of the perturbed process; specifically,
can that norm be bounded? These are questions that often arise in
applications, and in the case of linear operators on Banach spaces

they can be answered in a very satisfactory manner.

In this paper we show how these and other questions can be answered
for convex processes; in fact, several of the well-known results
from the theory of linear operators can be extended to convex
processes in very nearly the same form.

We conclude this section by explaining some notational
conventions that we shall use in what follows. All linear spaces
from this point on will be assumed to be over the real field. If
two convex processes, say S and T, are defined from a linear space
X into another linear space Y, then their sum, S + T, is the mapping
defined by (S + T)(x) := Sx + Tx. If \ is a real number, then the
mapping AT is defined by (AT)(x) := MTx). Both of these mappings
are convex processes, and if S and T are normed, we have
s + Tl < sl + Tl ana IaTll = Ixl ITll. One can also define
the composition of two convex processes in the obvious way, and
show that lUTl < IUll lITll. The proofs of these results are
omitted; they follow from the important fact that if T is any convex
process and if x ¢ dom T, then for any ¢ >0 there is (by the
definition of ||Tll) some y e Tx with

Iyl <zl fxl + <.

#1135 -3




Here and in what follows we are using the convention (+%).:0 = 0 = 0-(+9).
2. Characterization of pormed convex processes. In this
section we first give an example, mentioned in the introduction, of
a closed convex process with infinite norm; we then show that the
class of convex processes having finite norms can be characterized
in terms of two other equivalent topological properﬁes.
The example is as follows: let T be the convex process from
R + {the non-negative real numbers) into ]R2 given by
{(v,2) | y2 < zx and 0 < z} forx >0
Tx =
@ for x <0.
For each x > 0, the image Tx is the area in the yz-plane on or
above the parabola yz = zx; TO is the non-negative z-axis. Itis
readily verified that this is a closed convex process with norm 0.
However, the inverse process is given by
{x | x> Yz/z} for z>0 and any vy
T‘l(y,z) = ]R+ forz =0, y=20
¥ otherwise,
and since for the pair (1, 1/n) we have '1’-1(1, I/n) = {x | x > n}, it
is clear that the norm of T © must be + .
Before stating the characterization theorem, we mention some
topological preliminaries. If X and Y are topological vector spaces

with XO C X, and if T is a mapping from X into Y, we say that T
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is lower semicontinuous at Xy € Xo as a mapping from Xo to Y if

for each open set QC Y with Q N Txo + g, there is an open

neighborhood U of Xy in X0 such that forevery xe U, QN Tx = @
(see, e.g., [2)). We say that T is open at 0 if the image under T
of any open neighborhood of 0 in X contains an open neighborhood

of 0 in range T. When we speak of a neighborhood in a set we

are, as usual, referring to the relative topology on that set.

THEOREM l: Let X and Y be normed linear spaces, and let T be a

convex process from X into Y. Then the following three properties are

equivalent:

a. T has a finite norm.

b. Tis lower semicontinuous at 0 as a mapping from dom T into Y.

T-l 1s open at 0.

9]

PROOF (a => c): Denote the open ball of radius ¢ > 0 about x ¢ X
by B(x, ¢), and let C(y, ¢) be a similar ball abouty € Y. Let D(x, ¢)
:= B(x, ¢) N dom T and R(y, ¢) := C(y, €) l range T. Let V(0) be any open
neighborhood of 0 in Y; then T-l[ V()] = T-I[V(O) N range T]. Pick
some n >0 such that C(0,n) C V(0); then R(0,n) C V(0) N range T. Let
¢ > 0 be so small that [Tl ¢ < n/2. Pick any x € D(0, ¢); then there is
some y e Tx with [lyll < [Tl « + n/2 <m, s0 Yy € R(0O,n). Since x was
arbitrary, it follows that D(0,¢) C T"[R(o,n)] (- T'I[V(O)], so T}

is open at 0.

#1135 -5-




(c => b): Suppose T_l is open at 0; let Q C Y be open with
QN TO # @. We have to find an ¢ > 0 such that for each x € D(0, «),
we have Q N Tx # ¥. Let q € Q N TO and suppose C(q, §) C Q with &6 > 0.
By the assumption, there is an ¢ > 0 such that T-l[ R(0, 8)] D D(0, e).
But then for any x ¢ D(0, ¢) there is ay € Tx NR(0, &); then Tx =
TO +x) DTO+Tx g +y, andq+ye C(q, 6)C Q. Henceq+ye QN Tx# 4,
and so T is lower semicontinuous at 0 as a mapping from dom T into Y.

(b => a): Suppose T does not have a finite norm. Then we can find

some sequence {xn} C dom T with | X I <1land ”y” 2n for all y € Txn
and forn =1, 2, -... None of the x can be zero (since 9 € T0), so we
can define a new sequence {zn} C dom T by setting z := xn/(n"xrl ") for
each n. It is clear that ”zn ” z 1/n and ||y|| >lforallye Tzrl and all n.
Since 0 ¢ TO, we have C(0, 1) N TO # @; however, C(0, 1) N Tzn =g

for each n. Since {zn} converges to zero, it follows that T is not lower
semicontinuous at 0 as a mapping from dom T into Y. This completes

the proof.

3. Sufficient conditions for a finite norm. In Section 2 we found

necessary and sufficient conditions for a convex process to have a finite

norm. However, these conditions were stated in terms of topological
properties of T which will frequently be just as hard to verify as will be
the existence of a norm. In this section we develop some sufficient

conditions of a simpler kind, which involve various properties of dom T.

-6- #1135
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THEOREM 2: (Generalized Open Mapping Principle): Let X and Y

be Banach spaces, and let T be a closed convex process from X onto Y.

Then the image under T of any open set in X is an open set in Y.
PROOF: Let the neighborhoods B, C, and D be defined as in the

proof of Theorem 1. We shall first show that T is open at 0; the

conclusion of the theorem then follows easily.

We have, since T is onto Y,
o

Y= T(domT) = T[ U D(0, n)] = olti) T{ D(0, n)],
n=1 n=1

so by the Baire category theorem [ 5 ]| there is some N such that

T[ D(0, N)] contains an open ball in Y, say C(p, n). By assumption there

is some x € dom T with -p e Tx. For anyy ¢ C(0, n) and any ¢ > 0, we

can find some x' € D(0, N) and z ¢ Tx' such that “(p +y) -z|l < ¢; then

z-peTx' +Tx C T(x* +x) < T[D(O, N + IIxIl)] and ly-(z-p) || =

l(p +y) -zll <«. Thus C(0, n) € T[D(0, N + [[x][)], and if we define

6 := n/(N + lx1l) it follows from the homogeneity of T that C(0, §)

¢ T[D(0, 1)], and in fact that C(0, 2 X 8) ¢ T[D(0, 2 ¥)] for k = 0, 1, -
Choose an arbitrary ;' € C(0, 6/2); then by the last observation we can
find some x, € D(0, %) and y, € Tx

1

that for some k > 1 we have Ky =0ty xkand Yo crce Yy with x

) such that ||y - Y, [l < 6/4. Suppose

, € DO, 27h

|< 27+ D,

k
and yj € ij for each j, and with ”?- Z le Then we can

j=1

#1135 -7-
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find an x, , ¢ D(0, 2~(k+D)

K ) and ¥y € Txk+1 with

k k+l
be- 2 y)-y  H:-lg-3y <2
ST e S0

-(k+2) 5

Hence, by induction we can construct sequences {x_} and {yj} having

k
the stated properties for each j. Let wk H ,\_, xj and ::k := i yj for
j:l j=1

k =1, 2, ---. Itis easily seen that {wk} is a Cauchy sequence
and therefore must converge to some X (since X is complete).

Also, by construction {zk} converges to ¥. We have for each k,

(1} D/w

k
Tw = N0 x) 0L T §1§1 Y %

so the pair (wk, zk) belongs to the graph of T. Since T was assumed to
be a closed mapping, it follows that (X, y) also belongs to graph T,

or in other words, that ¥ ¢ Tk. Thus x € dom T, and since for each ),
], we must have lIx|l < L Z-j = 1.

=1

lej h <2 Hence % € D(0, 1), and

since y was an arbitrary element of C(0, 6/2) we have shown that
T[ D(0, 1)} - C(0, 6/2); therefore T is open at 0.
Now let Q be any open set in X. Let y be any point of T(Q), and
let x ¢ Q be such that y ¢ Tx. Choose ¢ > 0 so that B(x, ¢) C Q. Then
T(Q) T[B(x, ¢)] = T[x + B(0, ¢)] = Tx + T[RLJ, «)]
= Tx + T[D(O, ¢)] 'y + C(0, 6¢/2) = Cly, 6¢,2),

so T(Q) must be open. This completes the proof.
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COROLLARY (Generalized Closed Graph Theorem): Let X and Y

be Banach spaces, and let T be a closed convex process from X

into Y. If dom T = X, then T has a finite norm.
PROOF: The convex process T-1 takes Y onto X, and is closed
since its graph is a reorientation of that of T. Applying Theorem 2
to T-l, we conclude that T“1 is open at 0; it follows from Theorem 1
that T must then have a finite norm.
It is not true that if dom T = X and T has a finite norm, then
graph T is closed. For example, the convex process from R into
]R2 given by Tx := {(y,z)ly >0, z>0} U {0,0} for each x, has
domain R and norm equal to zero, but its graph is not closed.

The following theorem is often useful in dealing with systems

of linear equations and inequalities in finite-dimensional spaces.

THEOREM 3: Let X and Y be normed linear spaces, and let T be

a convex process from X into Y. If dom T is the sum of a finite number

of half-lines, then T has a finite norm.

PROOF: Let dom T be the sum of n half-lines. If n = 0, then
dom T = {0} and it is easily seen that "T" = 0. Suppose then that
| = 1for each i, and

n> 0, that there 2xist vectors x X with [|x

S j
n
that any x € dom T is representable in the form x = Z )‘jxj with each \j
j=1
non-negative. Then dom T lies in the subspace V generated by Xpp ottty Xy
#1135 -9-




and this subspace has dimension no higher than n. The restriction of
the norm || || of X to Vis a norm on V. Define a function f(x) on dom T by
f(x) := inf {"Y" I y € Tx}.

It is clear that f(x) has a finite value at each point of dom T; in fact, as

we shall see in the following argument, it is even convex there. Let
X, and X, be any two points of dom T; let ¢ > 0 be arbitrary, and pick
Y, € Txl and Y, € sz with || Y, Il < f(xl) + ¢ and Y, < f(xz) + €. For any
x € [0, 1] we have IS (l-x)yz €N Tx1 + (1-)) sz c '1‘[)\x1 + (l-x)le,

so flxx) + (1) x,] < Iy + n) v, <y I+ a0y, |

< x[f(xl) +e] + (1-n) [f(xz) +e] =\ f(xl) + (1-\) f(xz) + ¢. Since ¢ was
arbitrary, it follows that f(x) is convex on dom T.

Let || ||p be any polyhedral norm on V (that is, any norm whose
closed unit ball gp is a polyhedron). Since dom T, being the sum of a finite
number of half-lines, is a polyhedral convex cone [ 3 ], the intersection
Bp N dom T will be a polyhedron (nonempty, since 0 € Bp Nl dom T).

Therefore f(x), being convex, must attain its maximum at one of the

extreme points of B 11 dom T, so the quantity

sup {iaf{llyll ( y € Tx) ||x||p§l, x € dom T}

= sup {f(x) | x¢ ép N dom T}
is finite. However, since V is of finite dimension the norms I Il and

I ||p are equivalent on V [ 2], and thus

BTl := sup {inf{liyll | ye Tx) | lxd <1, x e dom T}

is also finite. This completes the proof.

~10- #1135




The next theorem is a partial converse to Theorem 3. In the
theorem, we shall speak of an extreme half-line in a cone; this
t2rm is to be understood to mean a half-line (from 0) in the cone which is
not the sum of any two distinct half-lines in the cone.

THEOREM 4: Let X be a normed linear .pace and let K be a

convex cone containing the origin in X. If K contains an infinite

number of extreme hali-lines, then there is a convex process having

domain K whose norm is +.

PROOF: Let {Ln} be a sequence of extreme half-lines in K.
Define a function g(x) on K as follows: if for some n, x ¢ Ln’
then g(x) := n [[x]l; otherwise g(x) := 0. Let P and P, be any
two distinct points in K. If pl, p.2 and 0 are not collinear, then
the ""open' line segment (pl, pz) cannot contain any point lying on
an extreme half-line, so g(x) is zero on the entire segment and
hence convex on the closed segment [pl, pz]. If pl, p2 and 0
are collinear, then by enumeration of cases g(x) is easily seen to
be convex on [pl, pz]. Thus g{x) is a convex function on the cone K.
Now for x ¢ K define Tx := {\ ¢ R BN > g(x)}, or in the notation
of [ 9], Tx:= g(x)v. Since g is positively homogeneous and convex,
with g(0) = 0, the epigraph [10] of g is a convex cone coataining the origin;
but this is also the graph of T, so T is a convex process with dom T = K.
Consider the points X defined by X € Ln and "xn | = 1. Foreachn
we have inf {lyll |y e Tx_} = n, so it follows that Tl = +x, as

was to have been shown.

#1135 -1-




4. Perturbation of a convex process. In this section we shall
obtain bounds for the norm of the inverse of a perturbed convex process
in terms of the norm of the inverse of the unperturbed process and the
norm of the perturbing process, the latter being assumed to be small.
These bounds will be applied in the following section to develop a
stability theory for certain operator inequalities and equations. The
results we shall obtain here generalize the well-known norm bounds for
perturbations of a non-singular linear operator mapping a Banach space
into itself.

If T is a convex process and K is a convex cone containing
the origin, then we shall denote by TK the restriction of T to K;
that 15, the convex process defined by

Tx, xe€ K
T x :=
K g9, x4¢K.

THEOREM 5: Let X be a Banach space and Y be a normed linear

space. Let T and A be convex processes from X into Y; denote
dom T by K and range T by R. Assume that T, T-l, and A are

normed, and that || T‘1 I a | <1. Suppose further that K € dom A,

A(K) C R, K is closed, and (T-A)(x) is closed for each x € K.

Then the convex process T - A has the following properties:

[[v3)

. range T C range (T - A).

o

-1
(T - A)R is a normed convex process, and

e - a < i ta- it a .

~-12~
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PROOF: Let v := |IT | and 6 8= llall. Let ¥ range T
and ¢ > 0 be chosen arbitrarily, and let 6 be any positive real number
with 76 < 8 < 1. We shall construct a Cauchy sequence {xk} converging
to a vector X € K with the property that ¢ € (T - A) X, showing that
range T C range (T - A), and with ":‘(" < (- 9)-1 ||§l| + €l - 9)-1.
It will follow, upon letting € 40 and 8 76, that ||(T - A)l;l I < T/l - T8).
The number 6 is introduced in order to deal with the exceptional case
in which 76 = 0.
To construct the sequence {xk} we proceed inductively, beginning

with the choice xo = 0. Next, using the fact that ¥ ¢ range T and the

definition of ¥, we choose x. € K such that y ¢ Txl and Hx1 " < ";'il +e/2.

1
Then the following three statements hold:

1. xl-xoeK.

2. Nl - xg Il < ve® 170 + «1 - 27,

3. (Tx, -9 N Ax0 # @ (it contains 0).

1

Now let k > 1, and suppose that x and x, are given with X -1 and X

k-1

in K and the following conditions satisfied:

1. xk-xk_lel(.

k-1 - -k
2. lx -x Were™ Iyl +ea-2

) ek-l.

3. (Txk -y N Axk_1 + 0.
Let n and n, be positive real numbers with the property that ™ + n, =

k+
ekf /2 l. Since x, - x € K, the set A(

K k-1 xk—l) is nonempty; let

Xk‘

#1135 -13-




z be a member of this set with [zl <8 lek - xk-l“ +n,. Next select

=X tW.

w € K such that z ¢ Tw and ||w|| <7 ||z|| +'q2. Let xk+l K

Clearly x
and the definition of n and My

||xk+l - xk" L Izl + UPR ||xk - xk-l" t T tn,
k+l

1A

k
o llx -x _ Il +e es2

- - -(k+) _k
S_Tek "y“ +e(l-2 k) 6k+e 2 (k 1)6
- ~{k+1 k
= 1ok gl + e - 275 oK,
Finally, let p be any member of the set (Txk -9 N Axk—l’ which was

assumed to be nonempty. Then

p+ze Axk_1 + A(xk - xk—l) C Axk,
and since w = X4l " X
p+tze (Txk -y) + T(xk+1 - xk) - Tka -y,

so that the set (Tx, . - ¥) N Ax_is nonempty. Thus, by induction the

k+l k
properties (1), (2), and (3) must hold fork =0, 1, 2, --- . We therefore

have form > 1,

m-1
ka+m % I < j;o "xk+j+l T k4 I

m :
D, Ir gl + - 27Uy gk
j=0

A

m-1
(r 15l ) Y oY
j=0

A

kel " % € K, and we have, using the second induction hypothesis

= 6% (v 5l + &) - 6™/ - o), (1)

-14-
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and the latter quantity converges to zero as k -, regardless of m. Thus
k-1

k
{x"} is a Cauchy sequcnce. Foreachk, x = x, + Z, (%,

a finite sum of terms in K; hence {xk} C K. Since X is a Banach space

and K was assumed to be closed, the sequence {xk} converges to some

X € K.
Now choose an arbitrary 6 > 0, and let k be so large that we have

max (DT + I al) 0% - x b, Al e, - x_ 11 < /4. Since % - x,

is the limit of the sequence {xk - xk} as j -, and since for each j,

tj
-1

xk+j - X = i%o (xk+i+l - ka) € K, the point X - X lies in K. Therefore

(T- ANR) - ¥ 2 (T - &)X -x)+(T-A)x)-7
D(T - A)}X - xk) + {[Txk -y] - Axk-l} - £~.(xk - xk-l)
> (T - A)(X - xk) - A(’Ck - xk'l)’
the last inclusion following since 0 ¢ (T:»ck -y) - ax, by property (3)
of the induction. As noted in Section 1, we have T - all < fitl+ Il a ",

so we can select z.¢ (T - A}X - x, ) with “zl“ <(lith + lal) Ix - xk” +

1 k

5/4 < 6 - - -
/4<8/2, and z,¢ - A(x, X, _y) with ”22" < lhall ||xk xk-l" +
5/4 < 6/2. Therefore z +z,€(T- A)(%) - y with "zl * Z2" < &, but

since & was arbitrary and (T - A) x was assumed to be closed, we must
have y € (T - A) X . Since y was an arbitrary element of range T, we

have range T C range (T - A).

#1135 -15-




Taking k = 0 and letting m - in (1), we obtain

Ixll = lIx - Xq f < (v l|)7|| +¢)/(1 - 8). Since ¢ was arbitrary, we have

inf { 'x | i Yye(T-a)x} <[v/(1-90)] llgll, and since ¥ was any element
of rarye T, we see that [|(T - A)I;l i < 1/(1-9).
Letting 6 4 t&, we obtain (T - A)};1 fl < TAl - 78), as was to have been
shown.

It is not difficult to see that the conclusion of this theorem fails
if the process (T - A)_1 is not restricted to range T. For example, if

X=Y-= ]R2 with the ¢ norm, and if we set

10
Tx :={ x}
00
and
.5 0
Ax := | ‘x}
0 -.1
2 -1 1 -1” _
for every x ¢ R, then lITll = 77 =1, lall =4, but (T -a)" I = 10.
However, (T - A)I-il I = 2, as stated in the theorem.

For the case in which T and A are continuous linear operators
from a Banach space into itself with T and T - A invertible, we can
obtain also a lower bound for [|(T - A)-1 l, namely:
ler - 2> Btz « It lad. (2)
However, this inequality is generally false for convex processes. For
example, let X=Y=IR, and let T be the identity mapping on R. Let

A be defined by Ax := R for each x ¢ R. Then Il = ||T-l I = 1,
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but (T - A)n1 | = 0, so the inequality (2) does not hold. In order
to be able to prove that (2) is valid, we require additional conditions.
We have followed Rockafellar [10] in denoting by 0+ S the recession

cone of a convex set S: that is, the cone made up of all points x

with the property that x + S C S. Intuitively, this is the "set of
directions in which 8 is unbounded."
To establish (2), we first note that if ll(T - A)—l” =+
there is nothing to prove, and that if fl(T - A)-l” al > 1 the
inequality follows from
- o™ > I - lall le- a7, (3)
which is equivalent to (2). We need therefore be concerned only
with the case in which ||(T - A)_l I Iall <1. If we now assume
that for each x € dom T 1 dom A, we have
‘a-a)xcot Tx, (4)
it follows that for each such x, (T - A)x - (- A)x C Tx; but since
0 ¢ (A- A)x, the reverse inclucicn is trivial. Therefore we have
(T-4)-(-4)=T,
and now by making the assumptions necessary to apply Theorem 5
to T- A and - A, and by assuming that T - A is onto, we can
establish (3), from which (2) follows.
We remark that (4) is always satisfied when A is a single-

valued function.
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5. Action of a convex process on sets. In this section we

examine the following question: if two sets P and Q are ''close"
to each other (in a sense to be made precise), and if these sets
are mapped by a convex process T into sets TP and TQ, then
how ''close'' to each other are TP and TQ?

We first consider a measure of the distance between two sets.
If Z is a normed linear space, we define for any z € Z and any

nonempty subset A C Z,

d(z,A) := tnf{flz-all {ac A} .
For any nonempty set B C 2, define
d(B, A) := sup{d(b,A) | b € B}.
If we now let
o(A, B) := max{d(A,B), d(B,A)},
then p is a generalized pseudo-metric on the family of nonempty
subsets of Z; that is, a pseudo-metric [ 6] which may assume the

value +o. If A and B are required to be closed, then p is the

Hausdorff metric [ 2].

THEOREM 6: Let X and Y be normed linear spaces. Let P

and Q be nonempty subsets of X, and let T be a normed convex

process from X into Y, with TP and TQ nonempty.

a. If Q-PC dom T, then

d(tp, Q) < ITll 4a(p, Q).
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b. If (Q-P)P-Q) C dom T, then
o(TP, TQ) < liTll o(P, Q).
PROOF: We shall prove (a.); (b.) then follows by symmetry.
Choose ¢ >0, and let y be any point in TP. Let p € P be such
that y ¢ Tp, and find some q € Q with il ||p—q|| < it d(P, Q) + ¢/2.
Since Q-P C dom T, there is some y' e T(q-p) with

fy' Il < BTl Ha-pll + < /2.

Then
Tq-y>2 T(q-p) +Tp - y
dy'+ty-y=Yy
and
ly'll < Tl lla-pll + /2 < lITll a(P, Q) + «.
Therefore

z € TQ}

d(y, TQ) := inf{ z-y |l
= tnf{ [|wll ' we TQ - y}
<l a(p, Q) + ¢,
and since y was any element of TP, we have d(TP, TQ) < il d(P, Q) + €.
But ¢ was arbitrary, so the result follows. This completes the proof.
If the conditions on the difference of Q and P are not
satisfied, then the conclusions of Theorem 6 can fail to hold. This
can be seen by considering the following example: define a convex

process T from ]RZ (with the £ norm) into R by:
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{zlz§0} for y> 0
T(x,y) :={ {zlz 2 ix!) fory = 0
] for y<0.
It is easy to verify that ||T|| = 1. However, for any ¢ > 0 we have
d[ T(1, €), T(1,0)} = 1, although d[(l,¢), (1,0)] = lel, so that the
conclusions of Theorem 6 do not hold. In this case, the difficulty

arises from the fact that (0, -¢) is not in dom T for ¢ > 0.

6. Stability of solution sets of certain systems. Suppose that

we are given three Banach spaces X, Y, and Z, and that Y contains

a nonempty closed convex cone K which induces on Y a partial ordering
denoted by <. Let A be a function from X into Y which is convex with respect
to K on all of X and is closed and positively homogeneous of degree 1;

that is, epi A is closed in XXY and for each real > 0 and each

x € X we have A(\x) = N\Ax. In particular, A could be a continuous

linear operator. Let A,, C, and A_, be continuous linear operators

A’ C

from X into Y, Z, and 2 respectively. Suppose b and A, are

b

points in Y, and d and A, are points in Z. We shall consider

d
the following two questions:

a. Suppose x is a solution of the system
Aw < b

Cw =d, (5)

Is there any x € X such that x solves the system
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(A+AJw<b+ay

(C+Ac)w=d+A (6)

d?
and if so how small can |[x-xIl be made; 1.e., how close to x
is there a solution of (6)?

b. Suppose x solves (6). If (5) 1s known to be solvable, how
close is X to the set of solutions of (5)?

Question (a.) is one that frequently arises in such areas as the
analysis of convergence for iterative processes (see, e.g., [8]).
Question (b.) formulates the fundamental problem of determining
error bounds for the approximate solution of certain systems (including
linear systems). We shall see that both questions can be answered

in a convenient way by applying Theorem 6 and some of our previous

results.

THEOREM 7: let X, Y and Z be Banach spaces, and let K be

a nonemptv closed convex cone in Y. Let the partial ordering

induced on Y by K be denoted by <. Let A, AA’ C, AC, b, Ab’ d

and A d be as previously stated. Define a multivalued mapping

from X into YX Z by
Tx 3= {(Y,Z) I Axg Yy, Cx = z}
and a linear operator from X into YX Z by
Ax 3= {(AAx, Acx)} .

Let Yx Z be normed by defining ll(y,z) Il := max (llyll, lzll), where
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the norms on the right are those of the spaces Y and Z respectively.

Suppose the mapping T carries X onto YXZ. Then T, T-I, and A are

normed convex processes, and we have:

a. If x solves (6), then

inf{ %-x|l

x solves (5}} < "T-l" ("(Ab,Ad)” + hall IxI.
b. If % solves (5)and Nal Tt <1, tnen (6) is solvable
and we have

tnt(Ix-x ] | x sotves (6)) 5 171 (e, a1+ hall Izl - Iad 7D,

PROOF: It is a fairly rcutine matter to show that YX Z is a

Banach space under the given norm, and that its topology is in fact

the product topology on ¥YX Z. The assertion that T, T-l, and A

are convex processes is easily proved by referring to the definition
of a convex process, and the fact that A& is normed follows from the

continuity (thus boundedness) of A_ and AC; indeed, we have

A
hall = max { ”AAH, I AC ). The assumption that epi A was closed,

and the continuity of C, imply that graph T is closed in XX YX Z;

hence T and T-1

are closed convex processes. Since dom T = X
and dom T} = range T = Yx Z, it follows from the corollary to
Theorem 2 that T and T are normed.

For part (a.), we rewrite (6) with w=X to obtain
Ax < b+ Ab - A Ax

d+Ad-Acx.

~

Cx
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Thus

ReTlb,a) + (8,8, - a%]

d
and since the set of points x solving (5) is 'I‘-l[ (b,d)], we may
apply Theorem 6 to obtain

inf{ [x-xl[ | x solves (5)} = d(g&, T-I[(b,d)])

u-A

AT (b, d) + (8,,4,) - A1, T (b, 0)])

nA

oMW s, a ) - a3

Bl (Bea,, a )l + Hall Bz,

(1LY

This proves part (a.).

To prove part (b.), we shall apply Theorem 5 to the convex
process T + A = T-(-A). We observe that dom (-A) = dom T = X,
which is closed; also ~A(X) C YX Z = range T. We showed earlier
in the proof that T“1 was normed, and we had by hypothesis that
It U-all = I8 Ha) <1 Finally, for each x € X the set

(T+A)xis {Ax + A x +K} ¥ {Cx + Acx}, which is a closed set in

A
YX Z.

We now apply Theorem 5, and conclude that range (T + A) = YX Z,
so that (6) is solvable for any right-hand side. Also, we have
e+ o)™ < It - 07t Hally;
no restriction of (T + A)"1 is necessary, since T was onto YXx 2.

Rewriting (5) with w=®%, we obtain

(A+AA)x < b+AAx
(C+Ac)x = d+Acx;
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that is,
Xe(T+a)} [(b,q) + AR].

Reasoning as we did in part (a.), we find that

inf{ 1z -x |l | x solves (6)} = d(x, (T + &)™ [(b,d) + (B, 8)1)

A

-1 -
et + a)™ | ”(Ab,Ad) - axll

WA

B0 (lleag, ap+ Hall Dzl - Il laly,
as was to have been shown.

If the space X is reflexive, then the infima in the conclusions
of Theorem 7 are actually attained, since the norm is weakly lower
semicontinuous. If all spaces involved are finite-dimensional,
and if A is taken to be linear, then a result similar to part (a.) can
be proved with no assumptions at all about the ranges of A and C.
This type of result was apparently first proved by Hoffman [ 4];
see [7] for a treatment using the methods of the present paper, with
applications to linear programming, and [8] for an application to
Newton's method. A theorem similar to part (b.) of Theorem 7
(again with A assumed to be linear) was proved for finite-dimensional
spaces in [8]; also, Ben-Israel proved analogous perturbation
results for generalized inverses in finite-dimensional spaces in {1}.

The results of Theorem 7 are expressed in terms of the quantity
"T-l ", defined in this case to be

sup{inf {Ixll | Ax <y, Cx = z} | lty,2)ll < 1}. (7)

-24- #1135




10.

-26-

REFERENCES

A. Ben-Israel: On Error Bounds for Generalized Inverses.

SIAM J. Numer. Anal. 3, 585-592 (1966).

C. Berge: Topological Spaces. New York: Macmillan, 1965.
D. Gale: The Theory of Linear Economic Models. New York:
McGraw-Hill, 1960.

A. ]J. Hoffman: On Approximate Solutions of Linear Inequalities.
J. Res. Nat. Bur. Standards 49, 263-265 (1952).

L. V. Kantorovich and G. P. Akilov: Functional Analysis in
Normed Spaces. New York: Macmillan, 1964.

J. L. Kelley: General Topology. Princeton: Van Nostrand, 1955.
S. M. Robinson: Bounds for Error in the Solution Set of a

Perturbed Linear Program. To appear in Lin. Alg. Appl. (1972).

An earlier version appeared as Technical Summary Report No. 1134,
Mathematics Research Center, University of Wisconsin, 1971.

: Extension of Newton's Method to Mixed Systems

of Nonlinear Equations and inequalities. Technical Summary Report No.
1161, Mathematics Research Center, University of Wisconsin, 1971.

R. T. Rockafellar: Monotone Processes of Convex and Concave Type.
Providence: American Mathematical Society (AMS Memoir No. 77), 1967.

¢+ Convex Analysis. Princeton: Princeton

University Press, 1970.

#1135




Even in the finite-dimensional case, this quantity can be rather
difficult to compute. It would be very desirable to have efficient
computational methods for evaluating (7), both in the finite-
dimensional and infinite-dimensional cases.
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