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ABSTRACT

Least squares solutions of Fredholm and Volterra equations of the first
and second kinds are studied using generalized inverses, The method of
successive approximations, the steepest descent and the conjugate gradient methods
are shown to converge to a least squares solution or to the least squares solution
of minimal norm, both for integral equations of the first and second kinds.

An jterative method for matrices due to Cimmino is generalized to integral
equations of the first kind and its convergence to the least squares solution

of minimal norm is established.



ITERATIVE METHODS FOR BEST APPROXIMATE SOLUTIONS OF LINEAR
INTEGRAL EQUATIONS OF THE FIRST AND SECOND KINDS

WwW. I. l(arnmerer1 and M. Z. Nashed

1. Introduction,

Linear integral equations of the first and second kinds that have non-
unique solutions or that have no solution at all arise in many settings, Physical
problems may lead to such situations directly as in the case of the integral
equation formulation of the interior Neumann problem for the Laplacian on a simply
connected region with a smooth boundary (see, for instance, [13; pp. 341-344]).
On the other hand, one is led to such situations via eigenvalue problems, as in
the case of a nonhomogeneous integral equation of the second kind when the
associated homogeneous equation has a nontrivial solution. In this case, if the
prescribed function appearing in the integral equation satisfies the compatability
condition of the Fredholm alternative, then we have an infinite number of solutions;
otherwise we have no solution.

There are a number of cases in which one would like to find the solution of
minimal norm to a non-uniquely solvable Fredholm or Volterra integral equation, or

to seek least squares solutions when the integral equation in question does not have

a solution in the classical sense.
The bulk of the work on iterative methods for solution of linear integral equations
13 devoted to equations which have unique solutions (see [48], [36], [34], [ 28], [31]; these

references also contain relevant bibliographies). The main purpose of the present paperis

to investigate best approximate solutions, i. e. solutions in the sense of least

squares, and to establish the convergence of the method of successive approxi -

mations, the steepest descent and the conjugate gradient methods to best approxi-
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mate solutions of integral equations of the first and second kinds. We also generalize
to integral equations of the first kind an iterative method for matrices due to

Cimmino [5] and establish its convergence to a best approximate solution of minimal
norm.

It is well known that the numerical solution of integral equations of the
first kind leads to difficulties both for the Fredholm and the Volterra equations, since
the solution does not depend continuously on the data., This instability of the
integral equation of the first kind also carries over to the solutions of the algebraic
system arising from discretization of the integral equation. Continuous dependence
of solutions on the data can be brought about by taking the notion of a "solution" to
mean a "least squares solution" and by restricting the class of admissible solutions
in a suitable way, for instance by constraining the solution to have an apriori
bound. Thus the notion of a least squares solution is part of a natural setting
for ill-posed problems and lends itself more readily to mathematical programming,
(see [8]). Moment discretizations and related aspects of smoothness and regular-
ization in least squares solutions will be examined using generalized inverses
in a subsequent note,

A numerical approach to obtain an approximate solution to a non-uniquely
solvable Fredholm integral equation of the second kind has been studied recently by
Atkinson [1]. First the equation is recast as a new uniquely solvable equation and
then the integral operator is approximated using numerical integration, Our approach,
in contrast, is iterative, and we do not stipulate that the equation is solvable since
we seek solutions in the least squares sense., We carry parallel developments for
the integral equations of the first and second kinds, using generalized inverses as a

basic tool throughout,
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2. _Generalized Inverses and Linear Operator Equations of the First and Second

Kinds.

Let X and Y be two Hilbert spaces over the same (real or complex) scalars,
and let T be a bounded linear operator on X into Y, whose range is not neces-~
sarily closed. We denote the range of T by R(T), the null space of T by N(T)
and the adjoint of T by T*. For any subspace S of X or Y, we denote by SL'
the orthogonal complement of S and by S the closure of S. Then the following

relations hold (see, for instance, Yosida [50))

(2.1) X = MDD @ N,
(2.2) ¥ = N @,
(2.3) RO = NeTH™, R(T) = N(DE,

and the restriction of T to N(T)l, denoted by TIN(T)L, has an inverse which is
necessarily i
not,continuous. Let P denote the orthogonal projection of X onto N(T) and let

Q denote the orthogonal projection of Y onto N(T*)l. Then
(2.4) Tx = TPx for all x ¢ X,
and
* *
(2.5) Ty=TQy for all y ¢ Y,

We associate with the linear operator equation

(2.6) Tx = y for y € Y,

the projectional equation
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2.7) _ T™x = Qy for y ¢ Y.

Obviously, (2.7) is different from (2.6) only if R(T) is not dense in Y, in
vhich case the solvability of (2.7) does not necessarily imply the solvability
of (2.6). For any y € R(T)(:)R(T)l, (2.7) 1s solvable and the set S of all
solutions is a closed convex subset of X; hence it contains a unique element of
minimal norm. In this manner, we get a mapping which assigns to each y ¢ R(T)()
R(T)l, the unique solution of minimal norm of (2.7). We call this mapping the
generalized inverse of T and denote it by TT. We formalize this in the follow-

ing definition.

Definition 2.1. Let T : X = Y be a bounded linear operator. The generalized
inverse Tf of T is the mapping whose domain is D(TT) = R(T)(:)R(T)l, and TTy =

veX,vhereveS={xeX: Tx=Qy} and ”v" < “u" for all ue S, u # v.

—d
Note that N(Tf) = N(Q) = R(T) and that T1 is linear but not necessarily

bounded.
A natural question that arises is: What is the significance of a solution
of (2.7) as far as (2.6) is concerned? To this end, we state the following

proposition,

Proposition 2.1. For a fixed y e Y, let S = {x ¢ X : Tx = Qy} und N = {x € X :

% *
TTx=Ty}. Then S = N.

* * *
Proof, Let u € S, then T Tu= TQy = Ty by (2.5). Conversely, if v ¢ N, then
* * *
TTv = T'y = T Qy, which means that Tv - Qy ¢ N(T'). But Tv - Qy is also in

R(T). Therefore, Tv - Qy € N(T') N R(T) = {0].

Definition 2.2. An element u € X is called a least squares solution of the

linear operator equation (2.6) 1if
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It - y|| = tnf (™ - || : x ¢ x}.

An element X is called a least squares solution of minimal norm of (2.6) if X
is a least squares solution of (2.6) and Hi” s “u” for all least squares solutions

u of (2.6).

For a given y € Y, the set of all least squares solutions of (2.6) coincides
*
with the set N of all solutions of the "normal® equation T Tx = T*y.
Combining this observation with Proposition 2.1 and Definition 2.1, we arrive

at the following proposition.

Proposition 2.2, Let T be a bounded linear operator on X into Y, whose range
is not necessarily closed. The least squares solution X of minimal norm of the

linear operator equation

% = y y e 0

is given by X = Tfy. The set of all least squares solutions for each y ¢ D(T?)

is given by T*y@ N(T).

1t follows easily from the definitions of P, Q, and Tf that P = TfT, Q is

the continuous linear extension of TTT to Y, and T? [R(T)-L] = {0}.

1f the range of T is closed, then by the closed range theorem (sce Yosida
[50]), the range of T* is also closed and one obtains from (2.3) and (2.2),
R(T) = N(T*)‘L, R(T*) e N(T)'L, and Y = R(T) @R(T)l. The generalized inverse
in this case is defined on all of Y and is also bounded, and Q = TTf. The

following proposition sheds more light on the generalized inverse of a bounded

linear operator with closed range; see also [33].
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Proposition 2.3. For a bounded linear operator T : X = Y, the following

statements are equivalent:

(a)
(b)
(c)
(d)

(e)
(£)

(g)

(h)

(1)

6 )]

(k)

T has a bounded generalized inverse.

T has a bounded right inverse.

The restriction of T to N(T)L has a bounded inverse.

The operator {T|N(T)*}™® has a tounded linear extension to all of Y
so that its null space is N(T*).

The quotient space X/N(T) is isomorphic with R(T).

The number Y(T) defined by y(T) = sup {inf {[|x| : T™x = y} : y-¢ R(T),
llyll = 1} is finite.

R(TY is closed,

T is normaily solvable in the sense of Hausdorff, i.e. for a given
y € Y, the necessary and sufficient condition for the equation Tx =y
to be solvable is that y ¢ N(T*)l.

inf {[|T:: - y|| : x ¢ X} 1s attained for each y ¢ Y.

All pseudoinverses of T are bounded. (A linear operator M with the
property that TMT = T is called a pscudoinverse of T.)

+
There exists a unique operator T* : Y — X such that TTTTT =T, TfT =P,

and T’rf = Q.

Remark 2.1. The concept of the generalized inverse of a linear operator

plays a decisive role in the study of convergence of iterative methods for

integral equations that arc considered in the present paper. It is appropriate

here to point out that historically notions of generalized or pseudo inverses

appeared first in the context of analysis, rather than in the setting of matrices

and algebraic problems. More specifically, the germ of these notions may be

found in the celebrated paper of Fredholm {10], in the work of Hurwitz [20] on
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pseudo-resolvents, the work of Hilbert (18], Elliott [9]), Reid [37), and others
on generalized Green's functions (see [39] for other references and a detailed
discussion of this aspect of the history of generalized inverses).

The classical development of integral equations during the first half of
this century is rich with instances of implicit ideas and concepts which led to
fundamental abstractions in the setting of functional analysis. Many aspects
of linear and nonlinear operator theory (for example, compact operators, spectral
theory of Riesz-Schauder, gradient mappings, monotone operators, collectively
compact operators, etc,) owe their origin or motivation to considerations of
integral equations. In turn, when the various aspects of the theory of integral
equations are re~examined in the light of such results of operator theory,
usually new insight and results are obtained

The operator-theoretic framework in terms of generalized inverses is a
natural setting for integral equations which have no solutions in the classical
sense, or which have non-unique solutions. Generalized inverses have been
recently used in connection with Green's functions and boundary value problems
and other aspects of ordinary and partial differential equations by Reid [38],
[39), Loud [29]), [30], Wyler [49], Landesman [27], Kallina [21), Halany and
Moro [14] and others.

Remark 2.2. The earliest work explicitly devoted to the study of
generalized inverses of linear operators is that of Tseng [44], [45), [46)

(see also [2] for a summary of some of Tseng's results and a comprehensive
development »f some aspects of generalized inverses, together with an extensive
bibliography). Pseudoinverses of linear operators were also defined and used
by Friedrichs [12], Hamburger [15), and Sheffield [40]. The generalized inverse

of a continuous linear transformation with closed range has been studied by
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Desoer and Whalen [7], Beutler [3], Petryshyn [35), Sheffield [40], Votruba [47]
and others. Various (not necessarily equivalent) definitions of generalized
inverses for the case when the range of the continuous operator is not closed
as well as for unbounded closed operators have been proposed by Tseng [45], [46],
Hestenes [16], Beutler [3], and others. Pseudoinverses for closed operators
with closed range have been briefly considered also by Wyler [49) and Reid [39).

The definition of a generalized inﬁerse that was introduced in this section
is equivalent in the case when R(T) is closed to the definitions in [7], [3],
(35]. It has the advantages of facusing on the problem of solvability of the
operator equation and of treating the cases when R(T) is closed and when R(T) is
not closed in the same framework, thereby exhibiting the distinctive features
of these two cases as far as least squares solutions are concerned.

In Proposition 2.3 we stated several characterizations of a bounded linear
operator with closed range. The following proposition exhibits specific classes
of such operators, which will be used in the analysis of integral operators in f‘
the following sections, »

For any linear operator T : X — X,

{0} c () © N(T') © oo CN(Tk) C veo
and

X D R(T) DR(T®) D *~° DR(Tk) S oeee,

We recall that T is said to have a finite ascent if for some nonnegative integer
r, N(Tr) = N(Tr+k) for k = 1,2, ... . In this case, the smallest such integer
is calléd the ascent of T. The descent of T is similarly defined as the smallest

integer r for which R(Tr) - R(Tr+k) for k =~ 1,2, ... , assuming T is of finite
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ascent. If T has a finite descent & and a finite ascent &, then o = 6 and X =
R(Ta)(:)N(Tg) (see [43)). In connection with in;egral operators, we note that
for every compact linear operator A on a normed linear space X into X, the
operator AI - A has a finite ascent and descent if A # 0. Also, if T is a
normal operator, i.e. T'T = TT*, the ascent is either 0 or 1 (see [43],

Theorem 6.2 F).

Proposition 2.4. The set of all bounded linear operators with closed range
includes the following classes of operators:
(a) all operators which are bounded below, i.e., ||Tx|| 2 m lix]] » m > 0, for all

x € X;

(b) all operators of the form T = T, + T,, where R(T,) is closed and R(&%)

is finite dimensional;

(¢) all operators of the form T = A - AL, A # 0 where A is completely
continuous (i.e., maps each bounded set into a compact set) and L has
a bounded inverse;

(d) all continuous normal operators of finite descent.

Proof. Parts (a) and (b) are obvious. To prove (c) we recall [51] that for any
€ > 0, a completely continuous operator A can be decomposed in the form A = A, +

A, where ||A || < € and R(A)) is finite dimensional. Take ¢ = "Léln. Then T =

” < 1. This implies that A, - AL is invertible on all

L4
A

of Y and hence has a closed range. Thus T has a closed range by part (b).

(A, - \L)+A, end I

(d) Since T is assumed to be normal and of finite descent, its descent must be
either zero or one. I1f the descent is zero, then R(T) = X and hence closed.
Suppose now that the descent of T is one, then X = R(T)(:)N(T). But we also

have X = N(T)@N(T)l since T is continuous. Thus R(T) is closed if and only if
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R(T) = N(T)*. Let x ¢ N(T)t, then x = Tu + z, u € X, z ¢ N(T), and (x, v) = 0
for all v ¢ N(T). But (Tu, v) = (u, T*v) = 0 for v € N(T), since N(T) = N(T*)
for any normal operator. This implies that (z, v) = 0 for all v e¢ N(T). Setting
ve=2z, we get z =0, Hence x=Tu+ z = Tu,i.e. ue R(T). This proves that

N(T)* € R(T). The inclusion R(T) < N(T)* is obvious.

Proposition 2.5. A completely continuous linear operator T : X — Y does not

have a closed range unless R(T) is finite dimensional.

Proof. Suppose T is completely continuous and R(T) is closed. Then T has a
bounded generalized inverse '1‘.r defined on all of Y. Thus TTT being the compo-
sition of a completely continuous operator and a bounded operator is completely
continuous. On the other hand, we have TTT = Q. Thus Q|R(T) = I|R(T) is

completely continuous, which implies that R(T) is finite dimensional.

We recall also that the range of a completely continuous linear operator T
is always separable and that op(T), the point spectrum of T, contains at most a
countable set of points with zero the only possible accumulation point.

We now consider the linear operator equations
(2.8) Ax - Ax = y
(2.9) Ax = y

vhere y is a given element in a Hilbert space H and A is a completely continuous
linear operator on H into H. (2.9) and (2.8) are usually referred to as equations
of the first and second kinds, respectively, by analogy with integral equations.

For any A # 0, R(A - AI) is closed and we have from (2.1) - (2.3),
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* -
(2.10) H=RA - AI) ®N@A ™ - AD)
-
= R(A - AI) N - A1), A # 0.
The criterion for solvability of (2.8) can be completely analyzed using the
well known theorems of Fredholm - Riesz, which are based on (2.10), and the

fcllowing relations for A # O (see, for instance, [50], [51]):

dim N(A - A\I) = dim N(A" - 3I) < ®

* -
dim R(A - AI) dim R(A -~ AI)

It then follows that for a given A # 0, (2.8) has a solution for agll y € H if
and only if N(A - AI) = {0}. On the other hand, (2.8) has a solution for a
given y € H and A # 0 if and only if y is orthogonal to N(Af -AD). LEXFO
is not an eigenvalue of the operator A, then (A - 7\1)-1 is bounded and R(A - AI) =
H. If )» # 0 is an eigenvalue of A, then R(A - AI) is a closed proper subspace
of H.

For the solvability of (2.9) for a given y ¢ H, the condition y ¢ N(A*)-L
is necessary but not sufficient, since the range of A is not closed unless it
is finite dimensional (Proposition 2.5). The alternative theorem does not hold,
and one does not get a decomposition theorem of H in terms of R(A) and N(Af).
On the other hand, onc can determine the additional requirement that y € N(Af)*
must satisfy in order for (2.9) to be solvable, in terms of the eigenvalues

*
{pn} and the orthonormal eigenvectors {¢n] of the operator AA , namely,
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.1 Z;;L [<y, 8 )I? <.
n

(See, for instance, [6], [42].)

In the present paper, we are primarily interested in the case when the above
solvability criteria are not satisfied, so that (2.8) and (2.9) do not have
solutions, and also in the case when these equations have an infinite number of
solutions. We are interested in "best approximate solutions” of these equations
or, more precisely, least squares solutions of minimal norm in the sense of
Definition 2.2, The following theorem follows easily from the preceding propo-

sitions.

Theorem 2.1. Let A be a compietely continuous linerr operator on a Hilbert
space H into H.

(a) For each A # 0, the operator A - AI has a bounded generalized inverse
(A - kI)f defined on all of H and ; = (A - Al)fy is the unique best approximate

solution of minimal norm of (2.8) for each y ¢ H, i.e.,
inf {l(A - ADx - yf| : x e B} = [|(A - AD% - y]|
and "Q" < |lu]l for all u such that
la - A0z - gl = la - ADu - 5], w# =
In particular if A # 0 and y € R(A - AI), then ; = (A - XI)’y is the unique

solution of (2.8) of minimal norm. If A # 0 is in the resolvent of A, then

(A - kl)? = (A - AI)-‘ and (2.8) has a unique solution for each y ¢ H.
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(b) The operator A h;s a generalized inverse A‘r defined on R(A)(:)R(A)*.
A* is unbounded unless R(A) is finite dimensional. The linear operator equation
(2.9) has a unique least squares solution for each y € D(Af). If also y € N(l\*)-L
and (2.11) holds, then ; = A*y is the unique solution of (2.9) of minimal norm.
(c) The set of all least squares solutions of (2.8) for A # 0 is given by
A - M)‘ry @N(A - AI) for each y € H. The set of all least squares solutions

of (2.9) for each y € R(A) @ R(A)* is given by A*y ®N@).

Remark 2.3. The operators P and Q played a crucial role in the definition and
development of a generalized inverse of a bounded linear operator between two
Hilbert spaces. The definition can be extended easily to Banach spaces., We
consider for instance the case of a continuous linear operator T : X - Y, where
X and Y are Banach spaces over thereal or complex numbers, and T has a closed
range. Let P1 and P2 be given projectors onto N(T) and R(T) respectively. (By
a projector P we mean as usual a continuous linear and idempotent & = P)
operator.) The unique bounded linear operator '1‘f (which depends on P1
t+ ..t L |

of Y into X satisfying TIT =T , TT=1 - Pl, and TT+ = P2 is called the

generalized inverse of T relative to the projectors Pl and P2. In the case of

Hilbert spaces we have chosen P1 and P2 to be the orthogonal (equivalently self-

and P2)

adjoint) projectors. Although other choices are possible, they do not lead to

the desirable connection with least squares solutions stated in Proposition 2.2,
Finally, we remark that in the case of a generalized inverse on a Banach

space (whose norm is not induced by an inner product), TTy is not necessarily

8 best approximate solution of Tx = y for y € D(Tf).

#1117 13-
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3. Best Approximate Solutions of Fredholm and Volterra Linear Integral Equations
of the First and Second Kinds.

Throughout this section, the kernel K(s, t) is a function in Lz{[a, b) X

[a, bl}, 1.e.,

j:_]t [R(s, t)[® ds dt <=,

and y is a given element in L2[a, b] with the usual inner product. For simplicity
of notation, we take K(s, t) to be real; all the results hold for complex kernels
as well with obvious modifications. Let @ and B denmote respectively the Fredholm

and Volterra linesr integral operators

(3.1) fX = JJ; K(-, t) x(t) dt

and

(3.2) Bx = L K(-, t) x(t) dt .

! and B map Lz[a, b] into itself and are completely continuous. We consider the

Fredholm equations of the first and second kinds
(3.3) fx =y,
(3.4) x - AfXa Yy »

end the Volterra equations of the first and second kinds
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(3.5) B =y ,
(3.6) x - AMRx=y.

A function u € Lz[a, b) is called a best approximate solution of (3.3) if

it minimizes the functional |[@x - y|| in the L,-norm. An element is a best

approximate solution if and only if
* *
3.7) Reu=Qy

where

& x = j: K(t,*) x(t) dt .
Equation (3.7) can be put in the form
b
(3.8) L M(s, t) x(t) dt = Y]

b
vhere M(s, t) = jﬁ K(r, 8) X(r, t) dr, end yl(t) = j; K(t, s) y(t) dt. As pointed
out in a more general setting in Section 2, (3.8) need not have solutions for all

y € H.

Similarly the problem of finding best approximate solutions of (3.4) is

equivalent to solving the normal equation

(3.9) (I - Mg +8% + 2 a*)x = (I - Af)y,
or equivalently,

b
x(s) - A J“ k(s, t) x(t) dt = g(s8), where

(3.10)

k(s, t) = K(s, t) +K(t, 8) - AM(s, t), and g(s) = y(s) - lyl(-) .

#1117 -15-




Note that the kernel k(s, t) is always symmetric and that A appears quadratically

is (3.10). Equation (3.10) always has solutions.

It is easy tn show that the adjoint of the Volterra operator B is given by

m*xa ﬁ K(t,*) x(t) dt .

* *
Thus the normal equation % 8ix = R y takes the form

b ot
(3.11) fs _L K(t, 8) K(t, ) x(x) dr dt - _[: R(t, &) y(t) dt = 0.

Interchanging the order of integration in the double integral in (3.11) leads to

I: f: K(t, 8) K(t, r) x(r) dr dt +J.Z J-: K(t, 8) K(t, r) x(r) dt dr

- J: K(t, 8) y(t) dt = 0 .

Define
b
N(s, t) = L K(r, 8) K(r, t) dr ,
and
z(8) = Jt K(t, 8) y(t) dt . Then (3.11) takes

the fom

8

L N(s, t) x(t) du & f: N(t, 8) x(%) dt = z(s),
or

_ b
(3.12) [, W, o) xt) dt = 2(s),

-16- #1117




wvhere

- N(s, t) ast<gsg
N(s, t) =
N(t, 8) g8 s<t<b.

Thus the problem of finding the best approximate solution of the Volterra
integral equation (3.5) is tantamount to finding the solution of minimal norm
of the Fredholm integral equation (3.12),
Finally the problem of solving (3.6) in the least squares sense 1is 'equivalent

to solving an equation of the form (3.9) with @& replaced by B, or

b
(3.13) x(s) - A_[: K(s, t) x(t) dt - Ajs R(t, s) x(t) dt

t b
+ )@J‘zj‘a K{(t, 8) K(t, r) x(r) dr dt = y(8) - )\J‘s K(t, 8) y(t) dt.

This is equivalent to the Fredholm equation of the second kind

(3.14) x(8) - lj: K(s, t) x(r) dt = g(s)

where

®(s, t) = R(s, t) - AN(s, t),

~ K(s, t) ast<g
K(s, t) = {
K(t) 3) 8<tsb

and 'ﬁ'(a, t) as before.
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As corollaries to Theorem 2.1, we obtain existence and uniqueness theorems
for the best approximate solution of minimal norm of the integral equations (3.4)
and (3.6) for any y ¢ LZ[a, b), and of the integral equations (3.3) and (3.5) for

any y € R(R) @R(R) *and y ¢ R(B) @R(m)‘t respectively.

Theorem 3.1. Let K(s, t) ¢ Lz{[a b]) X [a, b))} and A be a characteristic value
of the Fredholm integral operator (3.1), i.e., for some ¢ #£0, Aj K(s, t) @(t)dt
= @(s). Then the generalized inverse of (I ~ Af) exists and is bounded.
Furthermore, .

(a) 1f for a giveny ¢ Lz[a, b]), (3.4) is solvable, i.e., y € N(I - -)\-R*)'L,
then x* = (1 - M?)Ty is the unique solution with minimal Lz-nom;

(b) if for a given y ¢ Lz[a, b), (3.4) does not have a solution, i.e.,
y # N({T - 7\.8*)1', then x* = (I - M!)Ty is the best approximate solution of (3.4)
of minimal norm, i.e., it minimizes ” (I -29x - Y“ and has a smaller L2-norm
than any other u that minimizes ” (I - ArAfHx - y||

Equivalently, the normal operator equation (3.9) is always solvable and
x* = (1 - Aﬂ)fy is the unique solution of minimal norm,

Similar results hold for the Volterra equation of the second kind (3.6),

and the corresponding normal equation (3.14).

Theorem 3.2. Let K(s, t) € Lz{[a, b) X [a, bl].

(a) The generalized inverse of f exists on the domain D(ﬁ*) =R®R) + R(!)l.
R1r is unbounded unless R(R) is finite dimensional.

(b) 1If for a given y ¢ Lz[a, b]), (3.3) is solvable in L2[a, b], f.e., if
y e N(R*)J' and Zun [ ¢y, ¢:pn)|2 < o, where {ph} are the characteristic values and
{cpn] are the orthonormal eigenvectors of the operator RR*, then afy is the unique
solution with minimal L,-norm.

2
(c) 1If for a given element y ¢ Lz[a, t], (3.3) does not have a solution,
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then x* = Rfy is the unique best approximate solution of (3.3) for each y ¢ R(R) +
R(R)L. The best approximare solution does not depend continuously on y unless
R(R) is finite dimensional.

Similar statements hold for the operator ¢ and (3.5).

As stated in Remark 2.3, the generalized inverse of a bounded linear operator
T on a Banach space X to a Banach space Y, which can be defined relative to two
projectors P and Q, does not possess the least squares property stated in
Proposition 2,2. Thus Theorems 3.1 and 3.2 do not extend to integral equations
on the Banach space CLa, b) with the best approximate solution taken in the
sense of the maximum norm! However, we can still study integral equations on
cla, b) with the best approximate solution taken in the sense of the Lz-norm.
The generalized inverse in the setting of L2[a, b) still gives a best approximate
colution. Furthermore, the following theorem shows that for each y € cfa, b],
(1 - kﬂb*y is a continuous function, i.e., whereas (I - ls&fz L2[a, b) - L2[a, bl,

the restriction of (I - AR)T to C[a, b) has its range in C[a, bJl.

Theorem 3.3. (I - Asbfy ¢ c[a, b] for any y ¢ c[a, b] and K(s, t) € c{[a, b] X

[a, b]]}.

Proof. For K(s, t) ¢ C{[a, b] X [a, b))}, consider I - AR Clearly @ : L2[a, b) ~

cfa, b) and R(I - AR) is closed in Lz[a, b). Hence

Lla, b] = R(I - A @ {R(1 - Aq}L.

- %
s R(I - A ONA - AR ).

The given continuous function y can be written as y = Y1 + Yoo where Y = (I - Af0x
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— % -
for some x € L2[a, b) and (I - )\R)yz =0, 1.e., Yy = )\Ryz which implies that
yzil a continuous function. Thus Y=Y -y," (I - »)x 48 also continuous.
Now (I - Mb* (I - Af) = P, where P is the orthogonal projection on N(I - AR)%,

and
Lz[a, b) = N(I - AQ) @ NI - ).

Thus we have x = x, + X5 where (I - kk)xl = 0 and x, eN(1 - AL, This shows
that Xy is also continuous and hence so is Xye On the other hand Xy = (1 - }\ﬁ‘)‘ry

since (I - AR)x = y and

(1 - AR)* (-2 x=Px= (I- M!).ryn -

This completes the proof.

Remark. 1In view of Proposition 2,4d, the theory presented here also applies
to integrel equations with normal operators. For simplicity we limit our
presentation to the integral operators described in Theorems 3.1 and 3.2. The
modifications are simple in view of the excellent exposition on normal operators

in the context of integral equations given in Zaanen [s1].
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4. A Generalization to Integral Equations of a Method of Cimmino and Related

Aspects of the Successive Iterative Method for Best Approximate Solutions.

Cimmino [5) devised an iterative scheme for the solution of a linear system
of equations Ax = y, where A = (aij) is a square matrix, which converges even if
the system of equations is inconsistent, provided that the rank of the matrix A
is greater than one. (See Problem 16, p. 119 in Householder (19]); Cimmino's
method for matrices was examined in the setting of generalized inverses by
Votruba [47].) 1In this section we generalize Cimmino's method to integral
equations of the first kind and prove its convergence to the best approximate
solution gfy, for any y € D(RT), provided R(Q) is of dimension greater than one.
We also show that the generalization of Cimmino's method can be recast as a
successive approximation method with a specifically chosen averaging psrameter,
and establish convergence theorems for best approximate solutions of integral
equations of the first and second kinds.

To motivate the generalization and to place the method in proper perspective,

we first discuss briefly Cimmino's method for matrices. Let r cees T denote

1’
the rows of the matrix A; these rows determine n hyperplanes in Rn given by

Hi = {x: (ri, x) = yil, i=1, ..., n.

Let x(°) be an initial approximation. We place a mass mj > 0 at the reflection

(o)

of the point x with respect to the hyperplane H,, j =1, ..., n. For the

j’

next iteration we take the centroid of the system of n masses, and continue the

iterations in this fashion using the same respective masses m,. Algebraically

3
thies algorithm can be written in the form
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n -1 n (k-1)
- - {r,, x )
x) _ ) Z (k-1) Yy 1’
x = m m, {Xx + 2 r
(21 ’ 3 T

i=1

n (k-1)
o KD 2 z o ((’1' x > - 5'1)
' i Ir ”a Ty o

n
8
where p = z m Setting B = (ﬁ)ﬂxn’ We (61Jm1 nXn’ where 61_1 is the
i
k=1

Kronecker delta, we have

x(k) = x(k-l). - *:-A* wB(a x(k'l) -y)

2

= [1 -;A*WBA] D 4 2

+2,%us
m ye

Votruba [47] has shown that if rank A > 1 and mi = ”ri"': 1<1i<n, then the

()

sequence {x(k)} converges to (I - P) x + A y, where P is the orthogonal

projection on N(A)L.

One can extend Cimmino's method to Fredholm equations of the first kind

(4.1) Rx = _L R(, €) x(t) dt =y,  yeL,la, b],

when K(s, t) ¢ Lz{[a, b) X [a, b]}, by defining the family of hyperplanes

H. e {xe¢ Lz[a, b] J—:K(s, t) x(t) dt = y(s))
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for almost every s ¢ [a, b]. Then the orthogonal projection of a function

x, € Lz[a, b) into the hyperplane Hs is given by the function

(4.2) z, = X, + A(8) K(s, ) ,

where

y(s) - Jﬁ K(s, r) x (r) dr

A(8) =
j: |k¢s, o) |® ar

’

and the reflection of X, through Hs is given by X, + 2A(8) K(s, *).
We first note that z, € Hs' Indeed,
b b
JK(s, 8) 2 (8) dt = [ K(s, ©) x (0 dat + A(s) [, K(s, ©) K(s, t) dt

b
y(s) - j; K(s, 1) x (r) dr b .
Jb [k(s, r)|%ar L [x(s, & Fae
a »

b
fax(s, £) x () de+

y(e).

Thus for almost all s ¢ [a, b], z, € Hs' Now we show that L is orthogonal

toz -z forallze#H
8 8

(x, -z, z, z) = (-A(8) K(s,*), x, + A(s) K(s,*) - z)

b
;- K(s, r) x (r)dr b
JJ;: | Tz L IK(s, r) Isdr
K(s, r)|“dr
a

= -A(s) {(K(s, ), xo>+

-j: K(s, ) 2(r) dr} = 0 for z ¢ H .
s
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The next iterate x, in the Cimmino iteration would be the centroid of the

family of points with the appropriate weight functions. That {is, letting m(s)
J: [K(s, t)|* dt be the mass density and B = j:j: [K(s, £)]? dt ds be the total

mass, we get

b
x, (t) = %L n(s) [x (t) + 2 A(s) K(s, ©)] s
= xo(t) - % I: K(s, t) Jt K(s, 1) xo(r) dr ds

+§j:- K(e, t) y(s) ds,
that is,
x® = a-Ea' xw+ 2 @,

and in general,

(4.3) X 4 (8) = (T - % a*so xn(t) +g‘ (a*y)(t) .

We note that (4.3) is a particular realization of the succeasive approximation

scheme with an averaging parameter,

(4.4) x

* *
nﬂaxn-aasxn-raay

* g
for a solution of the normal equation R fx = R y, or equivalently, a least

squares solution of (4.1) 1if such a solution exists. The parameter o i8 a
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prescribed number in this case. It should be pointed out, however, that one
cannot apply the convergence theorems for iterative methods for singular linear
operator equations developed by Keller [26), Petryshyn [35], and Votruba [47]
since the range of ® is not closed unless R is degenerate. For the same reason,
(4.1) need not have a best approximate solution for each y € L2[a, b). We shall
show that for each y ¢ p(ﬁf), the sequence (4.3) converges to the best approximate
solution of (4.1), provided dim R(®) > 1. The proof relies on a series representa-
tion for the generalized inverse of a bounded linear operator with arbitrary range
and on the norm inequality given in Proposition 4.3. We now digress to discuss
such representations and convergence of the successive approximation method to
best approximate solutions of linear integral equatioms.

Let T : X~ Y be a bounded linear operator and X, Y be two Hilbert spaces.
Assume that N(T) # {0} and let o be any positive real number. Then (I - « T*'r)n
converges to I - P, (P is the projection on N(T)') in the operator norm if and

only if R(T) is closed and 0 < a < “%%; (see Petryshyn [35)).

2
The optimal value of o is @ = IR where

1
y = g.1.b {Jﬁ%ﬂl:xe N(T)*,x#o}=m

with the error estimate

e 2 2 n
* n HTh -y n -
I-¢ TD"-@a-ps - (&=L
I -e, T = {gme) - (&)

vhere ¢ = "T" Hrﬂl is the pseudo-conditional number of T.

Furthermore, if T is closed, one easily obtains a Neumann-type series expansion

for T',
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(4.5) T'=z T-aTn T, °<°’<]]?2]F"

n=0

(see [34), (47], (2]).

We consider the successive approximations

' * *
(4.6) X = (I-aTT X +aTy.

1

* * *
Using the relation T TT*y = TQy=Ty, it follows by recursion that

* *
(I-aTT x +aT TTfy - Tfy

]
t
-3
“
]

-1

-a-atTD =, -1y

[]

@-arn® (x, - Tly).

Hence,

1lim (xn - Tfy) =1im (I - « T*T)n (xo - Tfy)

n—-‘o n—seo

= @D, - T - a-Px,

since Tfy € R(T*). Thus we have

Proposition 4.1. For 0 < & <~ﬁ£ﬁ5 , the sequence {xn] defined by (4.6) converges,
for any initial approximation X, to T*y + (I - P) X which is a best approximate

solution of Tx = y, In particular the optimal choice « = @ yields
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2 2. n
T -
ey + - &y = - x i = { ::1‘::24-\(2} I, - Tl

Corollary 4.1. Let & be acompletely continuous operatoron a Hilbert space H into H,
and A # 0 be a eigenvalue of & Then the sequence (4.6) with T = & - AI and
0<ac< "%hg converges to a best approximate solution of the linear equation

of the second kind (3.4).

Since convergence of (I - « T*T)n in the operator norm to I - P is equivalent
to the range of T being closed, and since pointwise convergence of (I -~ & T*'l')n
would be adequate to establish the convergence of {xn], it is natural to seek
conditions under which (I - o 'l‘*’l‘)n converges pointwise when R(T) is not closed.

For each x € X, we have

*_.n 2
%%:L(I -aTT)x= (I - P)x, for 0 <a < "EH? ,

vhere R(T) is not necessarily closed. (See Showalter and Ben-Israel [41).) The

series
m
* k. _* 2
X(I-aTT)dTy for O<a<'";n'5
k=0

converges in norm monotonically to T*y for any y € D(T‘r) = R(T) + g(r*). (Compare

*
with (4.5) for the case of a closed range.) Moreover, if Qy ¢ R(TT ), then

+ - * Kk _* el lerr™ Tyli?
||Ty-z A-aTDeTyf < :
0 ITTH) 'y 1% natz-a T %) IT7y |
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Rephrased in the setting of the iterative process (4.6), the above expansions

yield easily the following proposition.

Proposition 4.2. Let X and Y be two Hilbert spaces over the same field and T

be a bounded linear operator on X into Y, with the range of T not necessarily
closed. The sequence (4.6) starting with X, = 0, converges in norm monotonically
to Tfy whenever y € D(T\r) = R(T) + R(’l‘)'L and o i8 any fixed number in the range

*
0<a< -ﬂ%"-z. Moreover, if Qy ¢ R(TT ), then

Izl 1l exr®) PR
Nt yP + 0« @ - ofltlPll TP

T
I, - T'ylP <

We now return to the consideration of convergence of the generalization

of Cimmino's method for integral equations of the first kind.

Tcoposition 4.3. Let ® be the integral operator defined by (4.1), where K(s, t)
¢ Lz{[a, b) X [a, b]}. If the dimension of the range of ® is greater than one,

then

flal? < j: j: Ik(s, )| ds at.

%*
Proof. We will first show that dim R(R) > 1 implies dim R(R® @) > 1. For if dim

R(®'®) < 1, then

re*)t = nE') = Hw.
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Thus the deficiency of N(R) is not greater than one and dim R(R) < 1.

It is well known that

4.7) p® Ry = |8 = |I2P =,

% *
where p(R R) denotes the spectral radius of & R, (See, for instance, [43].)
*
Let ?\1 2 )‘2 Z ... 2 0 be the eigenvalues of ® & with a corresponding orthonormal
b
set of eigenfunctions ¢1, ¢2, .+1e, and let M(s, t) = Ia K(u, 8) K(u, t) du. Then

by Bessel's inequality,

1: ¢f(s) =‘f: M(s, :_) ¢, (t) dt <f: (M(s, t)XPde.

*
Note that the strict inequality in Bessel's inequality holds here since R(R®) >

1. Iantegrating both sides of the preceding inequality, we get

2 < J-: J.:[M(s, et ds = J.:J.: [I: K(u, 8) K(u, t) du]a dt ds
* J-:.ﬁ {I: (k(u, )] au I: (R(u, t)]? dut dat ds
2
-{f:ﬁ [K(u, 8)F du d}c 52 .

Thus A <B. Thus from (4.7) ve have |IR|> <8 since A = pIR'R).

Theorem 4.1. If dim R(R) > 1, then the generalized method of Cimmino converges
wmonotonically to a best approximate solution of minimal norm of the integral

equation of the first kind, starting from the initial approximation X, = 0, for
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any y € D(®) = R®) + R(®* and

9%
Ieyl2 oy ty)e

T
lx - R'y|P < *
" ey ™SI + 28 8 - [P lie'yle

b b
where B = fa Ja [(K(u, 8))® du ds.

Proof. The theorem is a consequence of Propositions 4.2 and 4.3,

Let K(s, t) be a symmetric positive definite kernel and assume that the
integral equation (3.1) is solvable. Fridman [11] has shown that for any o in
the interval 0 < o < 20;, where a; is the smallest characteristic value of the

kernel K(s, t), then the sequence
X4q(8) = x (8) + aly(s) - Rxn(t)]

converges in the normm of Lz[a, b) to the solution starting from any initial
spproximation x € L2[a, b). (See also Mikhlin and Smolitskiy [31].) Bialy [4]
generalized Fridman's result and proved the following theorem. Let A be a
bounded linear operator on a Hilbert space H into H, and shppose also that A
is nonnegative: {Ax, x) =2 0 for all x ¢ H. For y ¢ H, X, ¢ H, consider the

iterative process

X

w1 = %g + a(y - Axn

By

where 0 < 0 < 2 "All-l. Then Axn = Qy, where Q is the orthogonal projection on
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R(A). [xn] converges if and only if the equation Ax = y has a solution, in
which case x = (1 - P)xo + :A:, where ; is the solution of minimal norm. Related
results on iterative methods for the solutions of nonnegative operators were
obtained by Keller [26). Proposition 4.2 generalizes the results of Fridman
and Bialy to the setting of best approximate solutions and expresses the results

and error bounds in terms of generalized inverses.
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5. Steepest Descent and Conjugate Gradient Methods for Best Approximate

Solutions of Linear Integral Equations.

We consider first the integral equation of the second kind (3.4).
Kantorovich [24]) has shown that if K(s, t) is symmetric and A < Ak’ k=1, 2, ...,
wvhere Ak are the characteristic values of the kernel K(s, t), then the method

of steepest descent for the solution of (3. 4), i.e., the sequence

xn+1(s) = xn(s) + anzn(e)

where
zn(s) = an(s) = xn(s) - kji K(s, t) xn(t) dt - y(s),
o [Tix 0T as
n QL))
and

b b b
Q@) = [, v?(s) ds - A[_ [ R(s, ©) u(s) u(r) ds at

*
converges to the unique solution x of (3.4). The speed of convergence is

determined by

m -m n
llx_ - < = /l_c_ —2a 1
n Y 2-ma-n;

max A = min A and ¢ is a constant., This result foliows from

where m1 = Xk, m3 X Kk
a direct application of the well known theorem of Kantorovich [24, 25] on the
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convergence of the method of steepest descent for positive definite bounded
linear operators on a Hilbert space. See also Hayes [52] for related results.

When m1 = 1, (3.4) of course may not have a solution. However, if a
solution exists, then the sequence of steepest descent converges to it.
Kantorovich's theorem does not apply to> integral equations of the first kind
with nondegenerate kernel.

In this section we extend the applicability of the method of steepest
descent and the conjugate gradient methods to integral equations with nonunique
solutions and to integral equations of the first kind. Convergence of these
methods in the mentioned settings will be asserted using recent results of
the authors [22], [23], [32] on singular linear operator equations.

Let T be a bounded lineatr operator on a Hilbert space X into a Hilbert

space Y. The method of steepest descent for minimizing the functional J(x)
”Tx - y”a for y € Y is defined by the following sequence starting with an

initial approximation X,

(5.1) X1 = % " an L n=0, 1, ...
where
5.2 * (1x
(5.2) r,=T(Tx -v)
and
eI
(5.3)

dn =
lITe II°

The following theorem is an immediate consequence of [32) using (3.9) - (3.10)

and Theorem 3.1.
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Theorem 5.1. Let T = I - AR, where ® is as in Section 3. Then the sequence

{xn] of steepest descent defined by (5.1) - (5.3) with any initial approximation
x, € sza, b) converges in Lz[a, b] to the best approximate solution (I - Aﬂ)*y +

(1 - P)x0 of the integral equation of the second kind (3.4) for each y ¢ L2[a, b],

and

n

t M-
lax - ® y+(I-P)x°-xn“Sc[-ﬁ—_;-E ,

where C i8 a constant and

oflxl® s (T - AR (T - X®*)x,x) < M|x||?, x ¢ R(T - A8%).
The sequence of steepest descent can be written in this case in the form
b
x (@) = (1-a) x o) -a [\ ks, &) x(0) dt - &),

where k(s, t) and g(s) are defined in (3.10).
The sequence {xn} in the above theorem converges in the mean. However, a

sequence may be constructed using [xn} that converges uniformly to (I - kﬁ)fy +

(1 - P) X, Indeed, if we define
b
zn(s) = g(s) + AI; k(s, t) xn(t) dt,

then [zn(s)} converges uniformly to a best approximate solution of (3.4).
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For integral equations of the first kind (3.3) we have the following

theorem as a consequence of Theorem 3.2 and Theorem 3.2 in [22].

%*
Theorem 5.2. Let T = R as defined in Section 3. If Qy € R®R® ), then the

sequence {xn} of steepest descent defined by (5.1) - (5.3) with initial approximation
f

x, = 0 converges monotonically to ® y, the best approximate solution of minimal

norm of the integral equation of the first kind (3.3), and

el lia'yl? l@e™ iR

% +
gl 1€ TSI + n 2"y

*

k-]
llx, - &'9° =

forn=1, 2,°*°-,

We now consider the conjugate gradient method of Hestenes and Stiefel [17), [52]
for minimizing the functional J(x) = HTx - y"a. We let T,= P, = T* (Txo -y)

2
and if P, # 0, then compute Xy = x, - ao P, where a, = ”ro|| « Forn=1, 2, ...

2
lITp, I
compute
* *
5. = - = -
6.5 =T x -y =1, n-1 T Tppog
{r P )
(5.5) a ~n-1’ n-1"
R P
Ph1
*
(¢ , TT__,)
= - - n n-1
(5.6) P, = T, + Bn-l S Bn-l =

e _, I
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(5.7) X1~ %5 " % Pne

The following theorem is a consequence of Theorem 3.1, and Theorem 4.1 in [23].

Theorem 5.3, Let T = I - AR where & is as in Section 3, Then the sequence
[xn} generated by the conjugate gradient method (5.4) - (5.7) converges
monotonically starting from any initial approximation xo € Lz[a, b] to the best
approximate solution u = (I - AR)Ty + (I - P)xo of the integral equation of the

second kind (3.4) for each y ¢ Lz[a, b]), and

(r, + )

2n
M-m
m M"‘m} ,n=1,2’ LX)

- 2 <
lix, - ulf
where m and M are the spectral bounds of the restriction of the operator

(I - M¥)(I - A8 to R(I - Ag).

As a consecuence of Theorem 3.2, and Theorem 5. 1in{23]we have the following

theorem for integral equations of the first kind.

*
Theorem 5.4. Let T = f as defined in Section 3. If Qy ¢ R(RRR), then the
*
conjugate gradient method (5.4) - (5.7) with initial approximation X, € R@ ®),
converges monotonically to the best approximate solution of minimal norm of the

integral equation of the first kind (3.3) and

*_+ L
Il - 2'IE 1@ % - @Dy

el ey Tx, - @Dyl + allx, - Tyl

*
lIx, - &'yl° <
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The theorems on the convergence of the successive approximation method,
the steepest descent and the conjugate gradient methods also apply to pest
approximate solutions of Volterra linear integral equations of the first and

second kinds.

6. Bibliographical Comments.

There is an extensive literature on the steepest descent and the conjugate
gradient methods for linear operator equations, going back to the papers of
L. V. Kantorovich [24] and R. M, Hayes [52], respectively, and to the recent
work of the authors [32], [22], [23] on singular operator equations, For various
contributions to these methods for linear operator equations, we refer the reader
to the bibliographical comments made in [22], [23]; the latter reference also
contains an extensive bibliography on the conjugate gradient method and related
variants for linear and nonlinear operator equations and minimization problems
in various settings. In the present paper we have confined our bibliography
to relevant references dealing with integral equations and related aspects of
generalized inverses and iterative methods. For other contributions to generalized

inverses oftlinear operators and related topics not considered here, see Nashed [53].
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