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ABSTRACT

Least squares solutions of Fredholm and Volterra equations of the first

and second kinds are studied using generalized inverses. The method of

successive approximations, the steepest descent and the conjugate gradient methods

are shown to converge to a least squares solution or to the least squares solution

of minimal norm, both for integral equations of the first and second kinds.

An iterative method for matrices due to Cimmino is generalized to integral

equations of the first kind and its convergence to the least squares solution

of minimal norm is established.



ITERATIVE METHODS FOR BEST APPROXIMATE SOLUTIONS OF LINEAR

INTEGRAL EQUATIONS OF THE FIRST AND SECOND KINDS
1

W. J. Karnmerer and M. Z. Nashed

I. Introduction.

Linear integral equations of the first and second kinds that have non-

unique solutions or that have no solution at all arise in many settings. Physical

problems may lead to such situations directly as in the case of the integral

equation formulation of the interior Neumann problem for the Laplacian on a simply

connected region with a smooth boundary (see, for instance, [13; pp. 341-3441).

On the other hand, one is led to such situations via eigenvalue problems, as in

the case of a nonhomogeneous integral equation of the second kind when the

associated homogeneous equation has a nontrivial solution. In this case, if the

prescribed function appearing in the integral equation satisfies the compatability

condition of the Fredholm alternative, then we have an infinite number of solutions;

otherwise we have no solution.

There are a number of cases in which one would like to find the solution of

minimal norm to a non-uniquely solvable Fredholm or Volterra integral equation, or

to seek least squares solutions when the integral equation in question does not have

a solution in the classical sense.

The bulk of the work on iterative methods for solution of linear integral equations

is devoted to equations which have unique solutions (see [48], [36], [34], [28], [31]; these

references also contain relevant bibliographies). The main purpose of the present paper is

to investigate best approximate solutions, I. e. solutions in the sense of least

squares, and to establish the convergence of the method of successive approxi -

mations, the steepest descent and the conjugate gradient methods to best approxi-
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mate solutions of integral equations of the first and second kinds. We also generalize

to integral equations of the first kind an iterative method for matrices due to

Cimmino [51 and establish its convergence to a best approximate solution of minimal

norm.

It is well known that the numerical solution of integral equations of the

first kind leads to difficulties both for the Fredholm and the Volterra equations, since

the solution does not depend continuously on the data. This instability of the

integral equation of the first kind also carries over to the solutions of the algebraic

system arising from discretization of the integral equation. Continuous dependence

of solutions on the data can be brought about by taking the notion of a "solution" to

mean a "least squares solution" and by restricting the class of admissible solutions

in a suitable way, for instance by constraining the solution to have an apriori

bound. Thus the notion of a least squares solution is part of a natural setting

for ill-posed problems and lends itself more readily to mathematical programming,

(see [8]). Moment discretizations and related aspects of smoothness and regular-

ization in least squares solutions will be examined using generalized inverses

in a subsequent note.

A numerical approach to obtain an approximate solution to a non-uniquely

solvable Fredholm integral equation of the second kind has been studied recently by

Atkinson [1]. First the equation is recast as a new uniquely solvable equation and

then the integral operator is approximated using numerical integration. Our approach,

in contrast, is iterative, and we do not stipulate that the equation is solvable since

we seek solutions in the least squares sense. We carry parallel developments for

the integral equations of the first and second kinds, using generalized inverses as a

basic tool throughout.
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2. Generalized Inverses and Linear Operator Equations of the First and Second

Kinds.

Let X and Y be two Hilbert spaces over the same (real or complex) scalars,

and let T be a bounded linear operator on X into Y, whose range is not neces-

sarily closed. We denote the range of T by R(T), the null space of T by M(T)

and the adjoint of T by T* . For any subspace S of X or Y, we denote by S

the orthogonal complement of S and by S the closure of S. Then the following

relations hold (see, for instance, Yosida [503)

(2.1) X - N(T) N(T)',

(2.2) Y - N(T*) N(T*)',

(2.3) R(T) - N( T) , R(T*) - N(T)

and the restriction of T to N(T) denoted by TlI(T)', has an inverse which is
necessarily

noticontinuous. Let P denote the orthogonal projection of X onto N(T) and let

Q denote the orthogonal projection of Y onto N(T ) . Then

(2.4) Tx - •Px for all x c X,

and

(2.5) T y - T Qy for all y c Y.

We associate with the linear operator equation

(2.6) Tx M y for y c Y,

the projectional equation
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(2.7) Tx - Qy for y e Y.

Obviously, (2.7) is different from (2.6) only if R(T) is not dense in Y, in

which case the solvability of (2.7) does not necessarily imply the solvability

of (2.6). For any y e R(T)®R(T) , (2.7) is solvable and the set S of all

solutions is a closed convex subset of X; hence it contains a unique element of

minimal norm. In this manner, we get a mapping which assigns to each y C R(T)

R(T)', the unique solution of minimal norm of (2.7). We call this mapping the

generalized inverse of T and denote it by T t. We formalize this in the follow-

ing definition.

Definition 2.1. Let T : X Y be a bounded linear operator. The generalized

tt I tinverse T of T is the mapping whose domain is V(T ) R(T) DR(T) , and T y =

v e X, where v e S = [x e X : Tx - Qy) and ilvil < 1jull for all u e s, u / v.

Note that N(Tt) -L(Q) - R(T) and that T is linear but not necessarily

bounded.

A natural question that arises is: What is the significance of a solution

of (2.7) as far as (2.6) is concerned? To this end, we state the following

proposition.

Proposition 2.1. For a fixed y e Y, let S - [x e X : Tx = Qy) dnd N = (x C X
* T

T Tx - yT . Then S = N.

Proof. Let u e S, then T Tu - T Qy a T y by (2.5). Conversely, if v e N, then
* * * (*)

T Tv M T y = T Qy, which means that Tv - Qy 'c N(T. But Tv - Qy is also in

R(T). Therefore, Tv - Qy e N(T *) n1 R(T) - [0).

Definition 2.2. An element u e X is called a least squares solution of the

linear operator equation (2.6) if
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IIJT - yll = inf [(II - Yll : x 0 X).

An element 3 is called a least squares solution of minimal norm of (2.6) if 3E

is a least squares solution of (2.6) and 11lJl ljull for all least squares solutions

u of (2.6).

For a given y c Y, the set of all least squares solutions of (2.6) coincides

with the set N of all solutions of the "normal" equation T* Tx = T*y.

Combining this observation with Proposition 2.1 and Definition 2.1, we arrive

at the following proposition.

Proposition 2.2. Let T be a bounded linear operator on X into Y, whose range

is not necessarily closed. The least squares solution 3 of minimal norm of the

linear operator equation

Tx = y y c D(T

is given by x = T y. The set of all least squares solutions for each y 6 D(T )

is given by Tt yEN(T).

It follows easily from the definitions of P, Q, and Tt that P - T T, Q is

the continuous linear extension of TTt to Y, and Tt [R(T)] f- (0].

If the range of T is closed, then by the closed range theorem (see Yosida

(50)), the range of T is also closed and one obtains from (2.3) and (2.2),

R(T) - N(T), R(T*) N-(T) 1 , and Y - R(T) E(T) . The generalized inverse

in this case is defined on all of Y and is also bounded, and Q = TT . The

following proposition sheds more light on the generalized inverse of a bounded

linear operator with closed range; see also [33].
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Proposition 2.3. For a bounded linear operator T : X - Y, the following

statements are equivalent:

(a) T has a bounded generalized inverse.

(b) T has a bounded right inverse.

(c) The restriction of T to N(T)I has a bounded inverse.

(d) The operator (TIN(T)±]" 1 has a Lounded linear extension to all of Y

so that its null space is N(T *).

(e) The quotient space X/N(T) is isomorphic with R(T).

(f) The number y(T) defined by y(T) = sup (inf [tixil : Tx = y] : y'c R(T),

Ilyll = 1) is finite.

(g) R(T) is closed.

(h) T is normally solvable in the sense of Hausdorff, i.e. for a given

y e Y, the necessary and sufficient condition for the equation Tx = y

to be solvable is that y e N(T )

(i) inf [lIT: - yjj : x e X) is attained for each y e Y.

(J) All pseudoinverses of T are bounded. (A linear operator M with the

property that THT = T is called a pseudoinverse of T.)

t ft t.+ t(k' There exists a unique operator T : Y - X such that T TT T, T T = P,

tand Trt = Q.

Remark 2.1. The concept of the generalized inverse of a linear operator

plays a decisive role in the study of convergence of iterative methods for

integral equations that are considered in the present paper, It is appropriate

here to point out that historically notions o" generalized or pseudo inverses

appeared first in the context of analysis, rather than in the setting of matrices

and algebraic problems. More specifically, the germ of these notions may be

found in the celebrated paper of Fredholm (10], in the work of Hurwitz [20] on
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pseudo-resolvents, the work of Hilbert [183, Elliott [9), Reid [37), and others

on generalized Green's functions (see [39] for other references and a detailed

discussion of this aspect of the history of generalized inverses).

The classical development of integral equations during the first half of

this century is rich with instances of implicit ideas and concepts which led to

fundamental abstractions in the setting of functional analysis. Many aspects

of linear and nonlinear operator theory (for example, compact operators, spectral

theory of Riesz-Schauder, gradient mappings, monotone operators, collectively

compact operators, etc.) owe their oAigir or motivation to considerations of

integral equations. In turn, when the various aspects of the theory of integral

equations are re-examined in the light of such results of operator theory,

usually new insight and results are obtained

The operator-theoretic framework in terms of generalized inverses is a

natural setting for integral equations which have no solutions in the classical

sense, or which have non-unique solutions. Generalized inverses have been

recently used in connection with Green's functions and boundary value problems

and other aspects of ordinary and partial differential equations by Reid [38),

[39], Loud [29), [30), Wyler [49], Landesman [27), Kallina [21), Halany and

Moro [14] and others.

Remark 2.2. The earlIest work explicitly devoted to the study of

generalized inverses of linear operators is that of Tseng [44), [45), [46)

(see also [2) for a summary of some of Tseng's results and a comprehensive

development of some aspects of generalized inverses, together with an extensive

bibliography). Pseudoinverses of linear operators were also defined and used

by Friedrichs [12), Hamburger [15), and Sheffield [40). The generalized inverse

of a continuous linear transformation with closed range has been studied by
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Desoer and Whalen [7), Beutler [3), Petryshyn [35), Sheffield [40), Votruba [47)

and others. Various (not necessarily equivalent) definitions of generalized

inverses for the case when the range of the continuous operator is not closed

as well as for unbounded closed operators have been proposed by Tseng [45), [46),

Hestenes [16), Beutler [3), and others. Pseudoinverses for closed operators

with closed range have been briefly considered also by Wyler [49) and Reid [39).

The definition of a generalized inverse that was introduced in this section

is equivalent in the case when R(T) is closed to the definitions in [7), [3),

[35). It has the advantages of focusing on the problem of solvability of the

operator equation and of treating the cases when R(T) is closed and when R(T) is

not closed in the same framework, thereby exhibiting the distinctive features

of these two cases as far as least squares solutions are concerned.

In Proposition 2.3 we stated several characterizations of a bounded linear

operator with closed range. The following proposition exhibits specific classes

of such operators, which will be used in the analysis of integral operators in ¶
the following sections.

For any linear operator T : X - X,

[0) C N(T) c N(T') C ... C N(1) C ...

and

x =)R(T) D R(TO) D.. R( Tk) D..

We recall that T is said to have a finite ascent if for some nonnegative integer

r, N(Tr) = N(T r+k) for k - 1,2, ..... In this case, the smallest such integer

is calldd the ascent of T. The descent of T is similarly defined as the smallest

integer r for which R(Tr) - R(T r+k) for k - 1,2, ... , assuming T is of finite
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ascent. If T has a finite descent 6 and a finite ascent O, then t = 6 and X

R(OO) HN(O) (see [43)). In connection with integral operators, we note that

for every compact linear operator A on a normed linear space X into X, the

operator XI - A has a finite ascent and descent if X / 0. Also, if T is a

normal operator, i.e. T T = TT , the ascent is either 0 or I (see [43],

Theorem 6.2 F).

Proposition 2.4. The set of all bounded linear operators with closed range

includes the following classes of operators:

(a) all operators which are bounded below, i.e., IITxII k m lixil , m > 0, for all

x C X;

(b) all oper.ators of the form T = T, + T2 , where R(T,) is closed and R(T.)

is finite dimensional;

(c) all operatora of the form T = A - XL, X / 0 where A is completely

continuous (i.e., maps each bounded set into a compact set) and L has

a bounded inverse;

(d) all continuous normal operators of finite descent.

Proof. Parts (a) and (b) are obvious. To prove (c) we recall [51] that for any

C > 0, a completely continuous operator A can be decomposed in the form A = A, +

A., where j1A,1 < c and R(A.) is finite dimensional. Take c = JIL X '11.. Then T
Il-illIlL 1 II

(A X - L) +A 2 andIIL'Al 1 I. This implies that A, - XL is invertible on all

of Y and hence has a closed range. Thus T has a closed range by part (b).

(d) Since T is assumed to be normal and of finite descent, its descent must be

either zero or one. If the descent is zero, then R(T) = X and hence closed.

Suppose now that the descent of T is one, then X = R(T)ON(T). But we also

have X - N(T) EN(T) since T is continuous. Thus R(T) is closed if and only if
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R(T) = N(T)I. Let x 6 N(T)I, then x - Tu + z, u c X, z e N(T), and (x, v) - 0

for all v c N(T). But (Tu, v) = (u, T*v) - 0 for v e N(T), since N(T) - N(T* )

for any normal operator. This implies that (z, v> - 0 for all v e N(T). Setting

v - z, we get z = 0. Hence x = Tu + z - Tu. i.e. u e R(T). This proves that

N(T)I C R(T). The inclusion R(T) C I(T)I is obvious.

Proposition 2.5. A completely continuous linear operator T : X - Y does not

have a closed range unless R(T) is finite dimensional.

Proof. Suppose T is completely continuous and R(T) is closed. Then T has a

bounded generalized inverse Tt defined on all of Y. Thus TTt being the compo-

sition of a completely continuous operator and a bounded operator is completely

continuous. On the other hand, we have TT . Q. Thus QIR(T) = IIR(T) is

completely continuous, which implies that R(T) is finite dimensional.

We recall also that the range of a completely continuous linear operator T

is always separable and that p(T), the point spectrum of T, contains at most a

countable set of points with zero the only possible accumulation point.

We now consider the linear operator equations

(2.8) Ax - Xx = y

(2.9) Ax = y

where y is a given element in a Hilbert space H and A is a completely continuous

linear operator on H into H. (2.9) and (2.8) are usually referred to as equations

of the first and second kinds, respectively, by analogy with integral equations.

For any X / 0, R(A - XI) is closed and we have from (2.1) - (2.3),
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(2.10) H - R(A - XI) N(A* - I)

- R(A*- TI) N(A - XI), X / 0.

The criterion for solvability of (2.8) can be completely analyzed using the

well known theorems of Fredholm-Riesz, which are based on (2.10), and the

fcllowing relations for X / 0 (see, for instance, [50), [51)):

dim (A - XI) = dim N(A - TI) < -

dlm R(A - XI) = dim R(A - XI)

It then follows that for a given X X 0, (2.8) has a solution for all y C H if

and only if N(A - XI) = [0]. On the other hand, (2.8) has a solution for a

9iven y e H and X / 0 if and only if y is orthogonal to N(A* - XI). If X / 0

is not an eigenvalue of the operator A, then (A - XI)" 1 is bounded and R(A - XI)

H. If ) / 0 is an eigenvalue of A, then R(A - XI) is a closed proper subspace

of H.

For the solvability of (2.9) for a given y C H, the condition y e N(A )-

is necessary but not sufficient, since the range of A is not closed unless it

is finite dimensional (Proposition 2.5). The alternative theorem does not hold,

and one does not get a decomposition theorem of H in terms of R(A) and N(A *).

On the other hand, one can determine the additional requirement that y e N(A*)±

must satisfy in order for (2.9) to be solvable, in terms of the eigenvalues

[Pn) and the orthonormal eigenvectors (on] of the operator AA *, namely,
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(2.u) ..u (y, 0.) 1' <-
Pn

(See, for instance, [63, £423.)

In the present paper, we are primarily interested in the case when the above

solvability criteria are not satisfied, so that (2.8) and (2.9) do not have

solutions, and also in the case when these equations have an infinite number of

solutions. We are interested in "best approximate solutions" of these equations

or, more precisely, least squares solutions of minimal norm in the sense of

Definition 2.2. The following theorem follows easily from the preceding propo-

sitions.

Theorem 2.1. Let A be a completely continuous linesr operator on a Hilbert

space H into H.

(a) For each X # 0, the operator A - XI has a bounded generalized inverse

f* A vt
(A - XI) defined on all of H and x = (A - XI) y is the unique best approximate

solution of minimal norm of (2.8) for each y e H, i.e.,

inf (II(A - XI)x - yll : x e H) lI(A - XI)A - yll

and lIxl < ]lull for all u such that

II(A - x),IX - yll" -II(A - XI)u yli, u f Z".I

AA

In particular if X ý 0 and y 6 R(A - XI), then x a (A - XI)ty is the unique

solution' of (2.8) of minimal norm. If X # 0 is in the resolvent of A, then

(A - XI)t = (A - XI)"1 and (2.8) has a unique solution for each y c Ha
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tt
(b) The operator A has a generalized inverse At defined on R(A)G )R(A)'.

At Is unbounded unless R(A) is finite dimensional. The linear operator equation

(2.9) has a unique least squares solution for each y 6 V(At). If also y 6 N(A*)l

A At
and (2.11) holds, then x A y is the unique solution of (2.9) of minimal norm.

(c) The set of all least squares solutions of (2.8) for X / 0 is given by

(A - XI) y N(A - XI) for each y C H. The set of all least squares solutions

of (2.9) for each y c R(A)@R(A)A is given by At y N(A).

Remark 2.3. The operators P and Q played a crucial role in the definition and

development of a generalized inverse of a bounded linear operator between two

Hilbert spaces. The definition can be extended easily to Banach spaces. We

consider for instance the case of a continuous linear operator T : X - Y, where

X and Y are Banach spaces over the real or complex numbers, and T has a closed

range. Let P and F2 be given projectors onto N(T) and R(T) respectively. (By

a projector P we mean as usual a continuous linear and idempotent (PO = P)

operator.) The unique bounded linear operator Tt (which depends on P 1 and P 2 )

of Y into X satisfying T tTTt = T , TtT= I - PV and TTt = P2 is called the

generalized inverse of T relative to the projectors P1 and P In the case of

Hilbert spaces we have chosen P1 and P 2 to be the orthogonal (equivalently self-

adjoint) projectors. Although other choices are possible, they do not lead to

the desirable connection with least squares solutions stated in Proposition 2.2.

Finally, we remark that in the case of a generalized inverse on a Banach

space (whose norm is not induced by an inner product), T y is not necessarily

a best approximate solution of Tx = y for y 1E (T t).
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3. Best Approximate Solutions of Fredholm and Volterra Linear Intearal Eguations

of the First end Second Kinds.

Throughout this section, the kernel K(s, t) is a function in L2 [[a, b] X

[a, b3), i.e.,

a a IK(s, t)l' do dt < .

and y is a given element in L 2[a, b with the usual inner product. For simplicity

of notation, we take K(s, t) to be real; all the results hold for complex kernels

as well with obvious modifications. Let R and S3 denote respectively the Fredholm

and Volterra linear integral operators

(3.1) Rx M fa K(., t) x(t) dt

and

(3.2) Sx = fa K(-, t) x(t) dt

R and 0i map L2 [a, b) into itself and are completely continuous. We consider the

Fredholm equations of the first and second kinds

(3.3) Rx - y ,

(3.4) X - XRxy ,

and the Volterra equations of the first and second kinds
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(3.5) 9x - y

(3.6) x - 'Px= y.

A function u L 2[a, b] is called a best approximate solution of (3.3) if

it minimizes the functional IIx - yIi in the L2 -norm. An element is a best

approximate solution if and only if

(3.7) I Ru= 9 y

where

i x = K(t,-) x(t) dt

Equation (3.7) can be put in the form

(3.8) Je M(s, t) x(t) dt = yI.

where M(s, t) = ýa K(r, a) K(r, t) dr, and y,(t) = fa K(t, s) y(t) dt. As pointed

out in a more general setting in Section 2, (3.8) need not have solutions for all

y C H.

Similarly the problem of finding best approximate solutions of (3.4) is

equivalent to solving the normal equation

(3.9) (I - t( + l*) + X2 f*R)x " (I - XVfy,

or equivalently,

b{.) x() - a J k(s, t) x(t) dt - g(s), where

(3.10)

k(s, t)=K(s, t)+K(t, s)-XM(s, t), and g(s) - y(a) - Xyl(a) .

#1117 -15-



Note that the kernel k(s, t) is always symmetric and that X appears quadratically

is (3.10). Equation (3.10) always has solutions.

It is easy to show that the adjoint of the Volterra operator 9 is given by

Sx= K(t,') x(t) dt.

Thus the normal equation T Mx T13 y takes the form

(3.11) J J K(t, a) K(t, r) x(r) dr dt - K(t, a) y(t) dt = 0.

Interchanging the order of integration in the double integral in (3.11) leads to

J fe K(t, a) K(t, r) x(r) dr dt + ýJ r K(t, a) K(t, r) x(r) dt dr

- K(t, a) y(t) dt = 0

Define

b
N(s, t) - t K(r, s) K(r, t) dr

and

z(s) u K(t, a) y(t) dt . Then (3.11) takes

the form

f: N(s, t) x(t) dt 6 fs N(t, a) x(t) dt =z(s),

or

(3.12) fa ii(s, t) x(t) dt = z(s),

-16- 
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where

{ IN(s, t) a : t < a
N(a, t)=

.N(t, a) a r t < b

Thus the problem of finding the best approximate solution of the Volterra

integral equation (3.5) is tantamount to finding the solution of minimal norm

of the Fredholm integral equation (3.12).

Finally the problem of solving (3.6) in the least squares sense is equivalent

to solving an equation of the form (3.9) with p replaced by %, or

(3.13) x(s) - A K(s, t) x(t) dt - X K(t, a) x(t) dt

+ X)2f K(t, s) K(t, r) x(r) dr dt = y(s) - Xf K(t, a) y(t) dt.

This is equivalent to the Fredholm equation of the second kind

(3.14) x(s) - •a k(s, t) x(t) dt = g(s)

where

Z(s, t) = Z(s, t) - XIN(s, t),

K(a, t) = K�(s, t) a s t < a

K(t, a) a < t 9 b

and N(s, t) as before.
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As corollaries to Theorem 2.1, we obtain existence and uniqueness theorems

for the best approximate solution of minimal norm of the integral equations (3.4)

and (3.6) for any y e L2 [a, bQ, and of the integral equations (3.3) and (3.5) for

any y s R(R) @ R(R)'and y C R('B)( R(M) respectively.

Theorem 3.1. Let K(s, t) C L2 [a, b] X [a, bJ] and X be a characteristic valueb

of the Fredholm integral operator (3.1), i.e., for some p X 0, X a K(s, t) cp(t)dt

= (P(s). Then the generalized inverse of (I - XP) exists and is bounded.

Furthermore,
-- * J.

(a) if for a given y e L2 [a, b], (3.4) is solvable, i.e., y C N(I - TR)

then x = (I - XP) y is the unique solution with minimal L2 -norm;

(b) if for a given y e L2 1a, b], (3.4) does not have a solution, i.e.,
-- * " X

Y j N(I - Tt ) , then x = (I - XP)ty is the best approximate solution of (3.4)

of minimal norm, i.e., it minimizes 11(I - XR)x - yil and has a smaller L2-norm

than any other u that minimizes 11(i - xR)x - Y11.

Equivalently, the normal operator equation (3.9) is always solvable and

x = (I - AR) y is the unique solution of minimal norm.

Similar results hold for the Volterra equation of the second kind (3. 6),

and the corresponding normal equation (3.14).

Theorem 3.2. Let K(s, t) a L2 [a, b] X[a, b]l.

(a) The generalized inverse of A exists on the domain V(R t) R •) + R(I-

P is unbounded unless R MR) is finite dimensional.

(b) If for a given y c L2 [a, b], (3.3) is solvable in L2 [a, b], i.e., if

Y c NO *) and I% 1(y, pn)ln < -, where [lý1I are the characteristic values and

*t
['Pn) are the orthonormal eigenvectors of the operator RR , then P y is the unique

solution with minimal L2 -norm.

(c) If for a given element y a L2 [a, b], (3.3) does not have a solution,
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then x * W'y is the unique best approximate solution of (3.3) for each y e R(R) +

R(R)I. The best approximate solution does not depend continuously on y unless

R(R) is finite dimensional.

Similar statements hold for the operator T and (3.5).

As stated in Remark 2.3, the generalized inverse of a bounded linear operator

T on a Banach space X to a Banach space Y, which can be defined relative to two

projectors P and Q, does not possess the least squares property stated in

Proposition 2.2. Thus Theorems 3.1 and 3.2 do not extend to integral equations

on the Banach space CLa, b] with the best approximate solution taken in the

sense of the maximum norm! However, we can still study integral equations on

C[a, b] with the best approximate solution taken in the sense of the L2 -norm.

The generalized inverse in the setting of L2 [a, b] still gives a best approximate

colution. Furthermore, the following theorem shows that for each y c C[a, b],

(I - XR)ty is a continuous function, i.e., whereas (I - L)t: L2[a, b - L 2[a, b,

the restriction of (I - X )t to C[a, b3 has its range in C[a, b).

Theorem 3.3. (I - X)ty e C[a, b] for any y e C[a, b3 and K(s, t) e C[[a, b) X

[a, b)].

Proof. For K(s, t) e Cf[a, b3 X [a, b]l, consider I - A. Clearly : L2 [a, b]

era, b] and R(I - XR) is closed in L [a, b]. Hence

L2 [a, b) = R(I - XI)® (R(I - L.

-R(I - AV) (N(I - *.

The given continuous function y can be written as y = y 1 + y2 where y1 . (I - X
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for some x C L (a, b) and (I - y 0, i.e., Y2 - XAY 2 which implies that

yia a continuous function. Thus y, u y - y 2 - (I - )E) is also continuous.

Now (I - XM t (I - XS) a P, where P is the orthogonal projection on N(I - X)),

and

L2[a, b] (3 -N (IN(I - Xf)

Thus we have x = x1 + x 2 , where (I -A)x 1 0 and x 2 eN(I - XRNL. This shows

that x1 is also continuous and hence so is x2 . On the other hand x2 = (I - XR)ty

since (I - =)x y and

(I AR) t (I - tR) x. Px -( ty 2

This completes the proof.

Remark. In view of Proposition 2.4d, the theory presented here also applies

to integral equations with normal operators. For simplicity we limit our

presentation to the integral operators described in Theorems 3.1 and 3.2. The

modifications are simple in view of the excellent exposition on normal operators

in the context of integral equations given in Zaanen (513.
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4. A Ceneralization to Integral Equations of a Method of Cimmino and Related

Aspects of the Successive Iterative Method for Best Approximuate Solutions.

Cimmino [5) devised an iterative scheme for the solution of a linear system

of equations Ax = y, where A = (aij) is a square matrix, which converges even if

the system of equations is inconsistent, provided that the rank of the matrix A

is greater than one. (See Problem 16, p. 119 in Householder [191; Ciimmino's

method for matrices was examined in the setting of generalized inverses by

Votruba [473.) In this section we generalize Ciumino's method to integral

equations of the first kind and prove its convergence to the best approximate

solution Rty, for any y e V(Rt), provided R(R) is of dimension greater than one.

We also show that the generalization of Cimmino's method can be recast as a

successive approximation method with a specifically chosen averaging parameter,

and establish convergence theorems for best approximate solutions of integral

equations of the first and second kinds.

To motivate the generalization and to place the method in proper perspective,

we first discuss briefly Cimmino's method for matrices. Let r 1 , ... , rn denote

the rows of the matrix A; these rows determine n hyperplanes in Rn given by

HI= [x : (ri, x). y], i = I, ... , n.

Let x(0) be an initial approximation. We place a mass m > 0 at the reflection

of the point x(0) with respect to the hyperplane Hi, J = 1, ... , n. For the

next iteration we take the centroid of the system of n masses, and continue the

iterations in this fashion using the same respective masses miJ. Algebraically

this algorithm can be written in the form
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()n (-i) y-(Vxk1

xk = mj m i { + 2 r

1=1~ lliril"x (k-1) n m. "i(ri' x (k-1) -y

nn

where p = mk. Setting B (ir) n~n' W ( 6 ijmi)nn, where 6ij is the

Kronecker delta, we have

x (k) xf x(k-t) _ A* W B [A x(k-1) -Ay

[I -A W B A] x(kl) + A* W B y.

Votruba [47) has shown that if rank A > 1 and m, = Ir,1jl, 1 : i : n, then the

sequence [x(k)x converges to (I - P) x(o) + A y, where P is the orthogonal

projection on N(A) 1 .

One can extend Ciumino's method to Fredholm equations of the first kind

b
(4.1) Rx = Ia K(', t) x(t) dt = y , y e L2 [a, bQ,

when K(s, t) e L2 [:a, b] X [a, b]), by defining the family of hyperplanes

H- - [x C L2[a, b] : fa K(s, t) x(t) dt = y(s)#
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for almost every a c [a, b]. Then the orthogonal projection of a function

x 0 L2 [a, b] into the hyperplane H is given by the function

(4.2) z = x0 +•X(s) K(s, .)

where

y(s) -fa K(s, r) x (r) dr
X(s)= ?2 9

a IK(s, r)12 dr

and the reflection of x0 through Hs is given by x0 + 2X(s) K(s, ).

We first note that z e H . Indeed,

b b

fa K(s, t) z s(t) dt = fa K(s, t) x0 (t) dt + X(s) fa K(s, t) K(s, t) dt

b
b dt+ y(s)- f: K(s, r) xo(r) dr b

= fK(s, t) Xo(t) dt + ( (s, r)I adr fa K(s, t)f'dt

- y(s).

Thus for almost all s e [a, b], z e Ho. Now we show that x - z is orthogonal

to z -z for all z C H

(x 0 z' a t = (-X(s) K(s,'), x0 + X(s) K(s,-) - z)

fjaK(s, r) xor, dr
-A(s) [(1(a, *), x ) + 0 f Ja Ks, r)I12dr

0 J I1sr)j2dr

-fa K(s, r) z(r) dr) - 0 for z C H a
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The next iterate xI in the Ciunino iteration would be the centroid of the

family of points with the appropriate weight functions. That is, letting mr(s) =P IKK(9, t) 1 dt be the mass density and r. -bJ IK(,. t)12 dt do be the total
mass, we get

that is,

x()= -m•s) Exo(t) + 2 %(ay) (st)]d

x =(t) (I 2 f x +( *

0 M (fa 0(t

and in general, 2 *(.) x M I RR 9 y)(t)

(4.3) x (t) -= (I - t) X t) n(t)+ (*y(t.

We note that (4.3) is a particular realization of the successive approximation

scheme with an averaging parameter,

(4.4) Xn+l = xn - tXn + 0fy

for a solution of the normal equation fR x - t y, or equivalently, a least

squares solution of (4.1) if such a solution exists. The parameter o in a
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prescribed number in this case. It should be pointed out, however, that one

cannot apply the convergence theorems for iterative methods for singular linear

operator equations developed by Keller [26], Petryshyn [35], and Votruba (47)

since the range of R is not closed unless R is degenerate. For the same reason,

(4.1) need not have a best approximate solution for each y e L2 [a, b]. We shall

show that for each y C p(St ), the sequence (4.3) converges to the best approximate

solution of (4.1), provided dim RO) > 1. The proof relies on a series representa-

tion for the generalized inverse of a bounded linear operator with arbitrary range

and on the norm inequality given in Proposition 4.3. We now digress to discuss

such representations and convergence of the successive approximation method to

best approximate solutions of linear integral equations.

Let T : X - Y be a bounded linear operator and X, Y be two Hilbert spaces.

Assume that N(T) / [0] and let cy be any positive real number. Then (I - 1 T'T)n

converges to I - P, (P is the projection on N(T) ) in the operator norm if and

only if R(T) is closed and 0 < c < i (see Petryshyn [35)).

2
The optimal value of o is rb = ______ where

with the error estimate

i * n . (c 2Z )n
DI(I - b T*T)' - (I - P)1 e- IT112+-2C11h yc + l

where c - 1ITh JJTJJ is the pseudo-conditional numbtr of T.

Furthermore, if T is closed, one easily obtains a Neumann-type series expansion

for Tt
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CO

(4.5) Tt ( I of T*T) n o T" 0 <a < 2.

rl=0

(see [34), [473, [2)).

We consider the successive approximations

* *

(4.6) xn - (I - aTT) xr +aTy .

T*T y * .
Using the relation T TT y T Qy = T y, it follows by recursion that

Xn " Tty = (I - aT'T) xn_1 + a T*TTty - Tty

- (I -O T T) (xn.1 Ty)

= U• of T T)" (x° T •y).

Hence,

lim (x- T y) =lm (I - t T T)n (x T y)

(I - P) (x - Tty) = (I - P) xo0

since T y e R(T*). Thus we hove

Proposition 4.1. For 0 < < <-,2 , the sequence [xn defined by (4.6) converges,

for any initial approximation xo, to T y + (I - P) x%, which is a best approximate

solution of Tx = y. In particular the optimal choice Ct = %b yields
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JIT ty Y (I " P) xO - Xnl J IT117+•? lixO - Ttyll.

0 nI 1I11. +-y 1 0

Corollary 4.1. Let P be a completely continuous operator on a Hilbert space H into H,

and X / 0 be a eigenvalue of St. Then the sequence (4.6) with T = R - XI and

of < 2 converges to a best approximate solution of the linear equation

of the second kind (3.4).

Since convergence of (I - o T*T)n in the operator norm to I - P is equivalent

to the range of T being closed, and since pointwise convergence of (I - o T T)n

would be adequate to establish the convergence of [xn], it is natural to seek

conditions under which (I - a T T)n converges pointwise when R(T) is not closed.

For each x e X, we have

lim (I - c T*T)nx . (I - P)x, for 0 < c < 2

where R(T) is not necessarily closed. (See Showalter and Ben-Israel [41).) The

series

m

(I - ,yT T).k T for o < or <

10=0

converges in norm monotonically to T y for any y s V(T ) = R(T) + R(T ). (Compare

with (4.5) for the case of a closed range.) Moreover, if Qy € R(TT*), then

t n IIT tVilla II(TT*)YII11
IITty - I (I - O T*T)k T*y118  S -lI( Ity1 !+na(ZvllT 1Z iiTtyll .Z

k1O
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Rephrased in the setting of the iterative process (4.6), the above expansions

yield easily the following proposition.

Proposition 4.2. Let X and Y be two Hilbert spaces over the same field and T

be a bounded linear operator on X into Y, with the range of T not necessarily

closed. The sequence (4.6) starting with x = 0, converges in norm monotonically

to T y whenever y € D(T ) = R(T) + R(T)± and a is any fixed number in the range

2 *o< C1 < TTT2. Moreover, if Qy e R(TT ), then

Ix - TtY112 !rIITty112 II (TT*)tyY11
n1 (T*) 'ylla + n ct (2 - uIITIr)II Tty11"

We now return to the consideration of convergence of the generalization

of Cimmino's method for integral equations of the first kind.

rcoposition 4.3. Let R be the integral operator defined by (4.1), where K(s, t)

c L2 [[a, bQ X [a, b)]. If the dimension of the range of R is greater than one,

then

Proof. We will first show that dim R(R) > 1 implies dim R(R P) > 1. For if dim

R(* R) r 1, then

R(R* R)J - N(jt*P)- p)
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Thus the deficiency of N(P) is not greater than one and dim R(I) ' 1.

It is well known that

where p(eft) denotes the spectral radius of R* . (See, for instance, [43).)

Let X I z .. 0 be the eigenvalues of I R with a corresponding orthonormal

set of elgenfunctions oil 029 .... and let M(s, t) = fa K(u, s) K(u, t) du. Then

by Bessel's inequality,

0 Oa (s) AC F M(s, Q) 0(t) dt < W"L4s, t))3 dt.I I fa 1

Note that the strict inequality in Bessel's inequality holds here since R(P*f) >

1. Integrating both sides of the preceding inequality, we get

Ter< 41 fIdM(B, t))dt ds 1 the [ K(u, s) K(u, t) du] dt do

fa~ fa {f a cu, (U ))8 du fa K(u, t)]2 du} dt ds

a K(u, )rdu dýi ~

Thus X I< 0. Thus from (4.7) we have III 2 <~since '.Rp( R).

Theorem 4.1. If dim ROO) > 1, then the generalized method of Cimmino converges

monotonically to a best approximate solution of minimal norm of the integral

equation of the first kind, starting from the initial approximation x0 - 0, for
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any y e ( = ( (R) + R(S)WL and

IIn 11 ty1 +y 4n

where a Ja f8 [K(u, s)]2 du ds.

Proof. The theorem is a consequence of Propositions 4.2 and 4.3.

Let K(s, t) be a symmetric positive definite kernel and assume that the

integral equation (3.1) is solvable. Fridman £11] has shown that f)r any t in

the interval 0 < i < 2r , where cr is the smallest characteristic value of the
1 1

kernel K(s, t), then the sequence

xn+1 (S) = Xn(a) + crty(s) - RXn(t))

converges in the norm of L 2[a, b] to the solution starting from any initial

approximation x0 C L 2[a, b). (See also Mikhlin and Smolttskiy [31].) Bialy [4]

generalized Fridman's result and proved the following theorem. Let A be a

bounded linear operator on a Hilbert space H into H, and suppose also that A

is nonnegative: (Ax, x) > 0 for all x e H. For y e H, x° 0 H, consider the

iterative process

xn+1  x +c(y - Axn- 1 )

where 0 < C < 2 IIA I1"'. Then Ax -n Qy, where Q is the orthogonal projection on
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R(A). [xn] converges if and only if the equation Ax - y has a solution, in

A A
which case xn - (I - P)x + x, where x is the solution of minimal norm. Related

results on iterative methods for the solutions of.nonnegative operators were

obtained by Keller [26). Proposition 4.2 generalizes the results of Fridman

and Bialy to the setting of best approximate solutions and expresses the results

and error bounds in terms of generalized inverses.
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5. Steepest Descent and Conjugate Gradient Methods for Best Approximate

Solutions of Linear Integral Equations.

We consider first the integral equation of the second kind (3.4).

Kantorovich [24) has shown that if K(s, t) is symmetric and X < Xk, k 1 1, 2,

where X k are the characteristic values of the kernel K(s, t), then the method

of steepest descent for the solution of (3.4), i.e., the sequence

xnrl(S) = xn(S) + CVn z (s)

where

Zn(S) = Lx (s) Xn (s) - X K(s, t) xn(t) dt - y(s),

J0fE[Lx:(S)3 Jds

n Q(L(x n))

and

Q(u) = u2(s) ds - fa K(s, t) u(s) u(t) ds dt

converges to the unique solution x of (3.4). The speed of convergence is

determined by

n

* /-* -mjIX n - x*j11
2 -"1 -2

where m a X m and c is a constant. This result follows from
I k = k k

a direct application of the well known theorem of Kantorovich [24, 25) on the
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convergence of the method of steepest descent for positive definite bounded

linear operators on a Hilbert space. See also Hayes [52) for related results.

When m = 1, (3.4) of course may not have a solution. However, if a1

solution exists, then the sequence of steepest descent converges to it.

Kantorovich's theorem does not apply t-3 integral equations of the first kind

with nondegenerate kernel.

In this section we extend the applicability of the method of steepest

descent and the conjugate gradient methods to integral equations with nonunique

solutions and to integral equations of the first kind. Convergence of these

methods in the mentioned settings will be asserted using recent results of

the authors [22), [23), [32) on singular linear operator equations.

Let T be a bounded linear operator on a Hilbert space X into a Hilbert

space Y. The method of steepest descent for minimizing the functional J(x) =

IiTx - y112 for y e Y is defined by the following sequence starting with an

initial approximation x0

(5.1) xn+l= xn a n r n = 0, 1,

where

(5.2) rn= T (Txn - y)

and

n IITrrn 12

The following theorem is an immediate consequence of [32) using (3.9) -(3.10)

and Theorem 3.1.
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Theorem 5.1. Let T = I - Aft, where R is as in Section 3. Then the sequence

{xn] of steepest descent defined by (5.1) - (5.3) with any initial approximation

x 0 L 2[a, b] converges in L 2[a, b] to the best approximate solution (I - A) ty +

(I - P)x of the integral equation of the second kind (3.4) for each y e L2 [a, b),

and

n
I(I - A)t y + (I - P)x - xl C [M-' ]

where C is a constant and

MII•12 g ((I - At(i - j*)xx) MIJIX1', x C R(I - Xv).

The sequence of steepest descent can be written in this case in the form

b!
xn+l(s) = (I - n) xn(s) - an [AJa k(s, t) x(t) dt - g(s)],

where k(s, t) and g(s) are defined in (3.10).

The sequence x nI in the above theorem converges in the mean. However, a

sequence may be constructed using [x n that converges uniformly to (I - XA)ty +

(I - P) x 0 . Indeed, if we define

b

Zn(S) = g(s) + XJa k(s, t) xin (t) dt,

then (zn(a)) converges uniformly to a best approximate solution of (3.4).
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For integral equations of the first kind (3.3) we have the following

theorem as a consequence of Theorem 3.2 and Theorem 3.2 in [22].

Theorem 5.2. Let T = R as defined in Section 3. If Qy C RORR ), then the

sequence (xn) of steepest descent defined by (5.1)- (5.3) with initial approximation

x0 = 0 converges monotonically to Rt y, the best approximate solution of minimal

norm of the integral equation of the first kind (3.3), and

lix R t11ýII J • tl i ty112 11 (R *) t Y11,

I1n - 9yl l• IIRII2 II (•a)tyjl + n 115t y12

for n = 1, 2, ".

We now consider the conjugate gradient method of Hestenes and Stiefel [17], [52]

for minimizing the functional J(x) = IITx - y112 . we let r° = po = T* (Tx - y)

and if Po / 0, then compute x, = x. - p., where o " 0 "iro0II For n 2,

compute

(5.4) r = T (Tx - y) = r T * TPn

nn n-= 1  -n 1 Tn p 1

(5.5) an- = ll~ n.1112

(5.6) pn r + = - r TTp 1 )
n +11-1 Pn-* 1n-7 iipn-111
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(5.7) xn+l = 'n % Pn.

The following theorem is a consequence of Theorem 3.1, and Theorem 4.1 in [23).

Theorem 5.3. Let T = I - X9 where R is as in Section 3. Then the sequence

[ Xn generated by the conjugate gradient method (5.4)- (5.7) converges

monotonically starting from any initial approximation x L 2[a, b3 to the besto 2

approximate solution u = (I - XR) ty + (I - P)x of the integral equation of the

second kind (3.4) for each y e L2 1a, bQ, and

mx U112- r M] 2 n = 1, 2,...

where m and M are the spectral bounds of the restriction of the operator

(I - X*)(I - xP) to R(I - X*).

As a consecuence of Theorem 3.2 , and Theorem 5. 1 in [23] we have the following

theorem for integral equations of the first kind.

Theorem 5.4. Let T = 0 as defined in Section 3. If Qy £ R(R*R), then the

conjugate gradient method (5.4)- (5.7) with initial approximation x0 e R(9 P),

converges monotonically to the best approximate solution of minimal norm of the

integral equation of the first kind (3.3) and

JIpJJ2 JJXo " RtyI12 11( *)to (R* ty112

IIxn - it II1II2  R * ItX 0 - (tyti jInISt2 1(P ) o - (RR )ty1 1 2 + nIlx - RY
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The theorems on the convergence of the successive approximation method,

the steepest descent and the conjugate gradient methods also apply to oest

approximate solutions of Volterra linear integral equations of the first and

second kinds.

6. Bibliographical Comments.

There is an extensive literature on the steepest descent and the conjugate

gradient methods for linear operator equations, going back to the papers of

L. V. Kantorovich [24] and R. M. Hayes [52], respectively, and to the recent

work of the authors [32], [22], [23] on singular operator equations. For various

contributions to these methods for linear operator equations, we refer the reader

to the bibliographical comments made in [22], [23]; the latter reference also

contains an extensive bibliography on the conjugate gradient method and related

variants for linear and nonlinear operator equations and minimization problems

in various settings. In the present paper we have confined our bibliography

to relevant references dealing with integral equations and related aspects of

generalized inverses and iterative methods. For other contributions to generalized

inverses of'linear operators and related topics not considered here, see Nashed [531.
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