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ABSTRACT

Some fixed point theorems for a sum of two operators are proved,

generalizing to locally convex spaces a fixed point theorem of M. A.

Krasnoselskil, for a sum of a completely continuous and a contraction

mapping, as well as some of its recent variants.

A notion of stability of solutions of nonlinear operator equations

in linear topological spaces is formulated in terms of specific topologies

on the set of nonlinear operators, and a theorem on the stability of fixed

points of a sum of two operators is given. As a byproduct, sufficient

conditions for a mapping to be open or to be onto are obtained.



FIXED POINTS AND STABILITY FOR A SUM OF TWO OPERATORS IN

LOCALLY CONVEX SPACES

G. L. Cain, Jr. and M. Z. Nashed

1. Introduction

Several algebraic and topological settings in the theory and applica-

tions of nonlinear operator equations lead naturally to the investigation of

fixed points of a sum of two nonlinear operators, or more generally, fixed

points of a mapping on the Cartesian product X X X into X, where X is

some appropriate space.

Fixed point theorems in topology and nonlinear functional analysis

are usually basedon certain properties (such as complete continuity, mono-

tonicity, contractiveness, etc. ) that the operator, considered as a single

entity must satisfy. We recall for instance the Banach fixed point theorem,

which asserts that a strict contraction on a complete metric space into

itself has a unique fixed point, and the Schauder principle, which asserts that

a continuous mapping F on a closed convex set K in a Hausdorff locally

convex topological vector space X into K such that F(K) is contained In a

compact set, has a fixed point. In many problems of analysis, one encounters

operators which may be split in the form T = A + B, where A is a contraction

in some sense, and B is completely continuous, and T itself has neither

of these properties. Thus neither the Schauder fixed point theorem nor the

Banach fixed point theorem applies directly In this case, and it becomes

Sponsored by the United States Army under Contract No. : DA-31-124-ARO-D-46Z.



desirable to develop fixed point theorems for such situations. An early

theorem of this type was given by Krasnoselskii [ 12]: Let X be a Banach

space, S be a bounded closed convex subset of X, and A, B be operators

on S .nto X such that Ax + Byq S for every pair x, ye S. If A is a strict

contraction and B is continuous and compact, then the equation Ax + Bx = x

has a solution in S. The proof of this theorem is quite simple, given the

Schauder principle.

Krasnoselskii's theorem is an example of an algebraic setting which

leads to the consideration of fixed points of a sum of two operators. In

this setting, a complicated operator is split into the sum of two simpler

operators which have been well investigated and for which fixed point

theorems abound. For recent contributions to fixed points of this type, see

Remark 3. 1.

There is another setting which also leads naturally to the investigation

of fixed points of a sum of two operators. This setting arises from perturbation

theory. Here the operator equation Ax + Bx = x is considered as a perturbation

of Ax = x (or of Bx = x), and one would like to assert the existence of a

solution of the perturbed equation, given that the original unperturbed equation

has a solution. In such a setting, there Is, in general, no continuous depen-

dence of solutions on the perturbations. If, however, one requires such

continuous dependence, then we have a general problem of stability of

solutions, where stability is defined in ternui cf certain topologies on the class

of operators under consideration.

The purpose of this paper is to prove some fixed point theorems in the

two settings mentioned above.

-2- #1115



2. Definitions and preliminaries

Throughout this paper, X will denote a Hausdorff locally convex

topological vector space, and P a family of seminorms which generates the

topology of X. For pEP and r> 0, the set {x I p(x- x0) < r} is

denoted by Sp(X0 , r). The closure of this t;et is denoted by Sp(X0 , r),

and its bounda:y by aSp(x0 , r). We shall also sometimes use V(p) to stand

for 3p (, 1). A continuous mapping F : X - X is said to be p-completely con-

tinuous for pc P if the closure of F[Sp (, n)] is compact for each positive

integer n.

Several generalizations of Schauder' s fixed point theorem to locally

convex topological vector spaces have been made by Tychonoff [ 26],

Hukuhara [9], Yamamuro [ 28], Singbal [ 25], Nguyen-Xuan-Loc [17], and

others. In the present paper, we shall be interested in the following variants

of Schauder' s fixed point theorem, which are listed in order of increasing

generality.

Theoremn 2. . Let X be a Hausdorff locally convex topological

vector space.

(a) Let K be a non-empty compact convex subset of X and let

F be a continuous mapping of K into K. Then F has a fixed point in K.

(b) Let K be a non-empty closed convex set in X and let F

be a continuous mapping of K into K such that F(K) is contained in a

compact set. Then F has a fixed point in K.

#1115 -3-



(c) Let F be a p-completely continuous mapping of X into X.

If F maps 8Sp(x 0 , r) into Sp(x0 , r), then F has a fixed point in

"•lXr).

Part (a) is simply Tychonoff' s generalization of Schauder' s theorem

(for a proof, see Dunford and Schwartz [ 4] or Bonsall [ 1]. ). A simple and

interesting proof of (b) is given by Singbal [ 25]. Part (c) is a generalization

of Rothe's version of Schauder's theorem [ 221.

Let DCX and peP. Amapping A: D-. D is said to bea

p-contraction if there is a y p, 0 < y p < , such that for all x, y in D,

p(Ax - Ay) <_ -ypp(x - y).

Let U be the neighborhood system of the origin obtained from p.

Then for any given Ue U, there exist a finite number of sei•tnorms in P, say
n

pl) ... • pn) and ri >0, iY , = 1 ., n, such that U = flriV(Pi), where1

V(p) ={x I p(x) <1).

Theorem 2. 2. Suppose D is a sequentially complete subset of X

and the mapping A : D-- D is a p-contraction for every pe P. Then A has

a unique fixed point 3 in D, and Anx-x -x for every xE D.

n
Proof. Let xe D and let U = f r V(pi) be given. For ye D

l I

and k>l, wehave

Pi(Aky - y) < (I - -Yi) -Pi(Ay - y).

-4-1115



Choose N so that for m > N,

S( - P (Ax - x) <ri, i = 1, . n.

Thus

Pi(A m+kx- Amx)< (I -,y.) pi(Am+x - A mx)

<Y .m(lG - pi)-pi(Ax - x) < r.

Hence {A kx} is a Cauchy sequence in D and therefore converges to a

point R in D. Clearly Ax = x, and the uniqueness of the fixed point

follows as usual since X is Hausdorff.

3. Fixed points of a sum of two operators in locally convex spaces

We begin with a simple theorem which generalizes Krasnoselskii's

fixed point theorem [ 12] to locally convex spaces.

Theorem 3. 1. Let D be a convex and complete subset of X, and

A, B be operators on D into X such that Ax + ByE D for every pair

x, y e D. Suppose A is a p-contraction for every pE P, and B is continuous

and B(D) is contained in a compact set. Then there is a point K in D

such that Ax + Bx = x.

Proof. For each ye D, the mapping A defined by Ax Ax + By

is a p-contraction for each pe P and maps D into D, so by Theorem 2. 2,

it has a fixed point, Ly. In other words, Ly = A(Ly) = A(Ly) + By. Thus

for all u, v in D,

Lu - Lv = A(Lu) - A(Lv) + Bu - Bv.
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So for each pe P, we have

p(Lu - Lv) <_ ypp(Lu - Lv) + p(Bu - By), or

(3.1) p(Lu - Lv) <_ (I - Vp)-Ip(Bu - Bv)

It is clear from (3. 1) that the operator L is continuous. To see

that L(D) is contained in a compact set, let Lx a} be a net In L(D).

Then {Bx a} has a convergent subnet {Bxa}, since B(D) is contained

in a compact set. Thus {Bxa'} is a Cauchy net, and by (3. 1), so also is

{Lx' }. Hence L(D) is contained in a compact set, so L has a fixed point
a

x in D, and

x = Lx = A(LR) + BR =Ax + BE.

This completes the proof.

The various forms of the Schauder-Tychonoff theorem stated in

Theorem 2. 1 require a priori that a certain closed ball (or its boundary) be

mapped into itself by the operator. In his work on integral equations,

Dubrovskii [ 3] used an alternative approach of finding conditions on a

completely continuous operator which guarantee the existence of some closed

ball which is mapped into itself by the operator. In the next theorem, we

use this technique in the setting of a sum of two operators to prove a fixed

point theorem which contains as a sp cial case a new variant of the

Schauder-Tychonoff theorem in locally convex spaces. Before proceeding to

the theorem, we shall give some needed definitions.
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For an operator T, a point x0 c X, and a real number r > O,

define for each pE P,

Rp(Xo, T, r) = r- sup{p(Tx - Tx) p(x-xO)<r} and

Qp(x0 , T, a) = {r I Rp(X0, T, r)< a}.

Now consider Q p(X0 T, a) as a subset (possibly empty) of [0, ,o], the

one-point compactification of [ 0, 0o), and let cl(Q p(xo, T, a)) denote the

closure of Qp(X0, T, a) relative to [0, 0o].. Define

Pp (x 0 , T) =Inf{a a o0 cl(Qp(X0 , T, a))}

We shall say that T is p-quasibounded at x 0 if p(X 0 , T) exists. T is

called quasibounded at x0 if it is p-quasibounded at x0 for each pe P.

Note that this notion of quasiboundedness generalizes that of Granas [ 81.

The following theorem generalizes Theorem 3 of Nashed aud Wong [ 161.

Theorem 3. 2. Suppose the mapping S is a p-contraction for every

p in P, with contraction constants yp, and suppose the mapping T is

continuous and T(XO is compact. If X is complete and if there is an x0

in X and a pe P such that T is p-quasibounded at x0 and

yp + Pp < I,

then (I - S - T)x = z always has a solution.

#1115 -7-



Proof. Choose a so that p+ a <l and ow ecl(Q p(X0 T, a)).

Let u0 =(I - S - T)xo, and choose c so that c >p(z- uo0 )[ (p+ a)]-

and ct Qp(xO, T, a). Then RP(xo, T, c) < a. Now define the set

D = {xX X p(x - x 0 ) <c}

It follows that for x and y in D, Sx + Ty+ ze D:

p(Sx + Ty + z - x)= p(Sx+ Ty + z - u0 - Sx0 - Tx0)

<p(Sx - Sx 0 ) + p(Ty - Tx 0 ) + p(z - u 0 )

<y + ac + 1 - -+ a)]c_< c.

It now follows from Theorem 3.1 that there is an R in D such that

SX + TiX + z ='x.

Remark 3. 1. For various fixed point theorems for a sum of two

operators In Banach and Hilbert spaces, see Krasnoselskli et al. [13], [14],

Browder [21, Edmunds [5], Fucik [6], [71, Kirk [11], Nashed and Wong [161,

Petryshyn [18], [19], Sadovskii [231, and Webb [ 27]. In some of this

previous work, the theorems are formulated for a mapping F(x, y), not

necessarily of the form Ax + By. Nadler [15] considered mappings defined

on the Cartesian product of two metric spaces which are contractions in one

variable or in each variable separately and proved that under certain conditions,

such mappings have fixed points.

-8--
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Essentially the same proof as that of Theorem 3. 1 yields the

following result.

Theorem 3. 1'. Let D be a convex and complete subset of X and

suppose F: DX D-- D is such that for each p P, there is a constant y p

0_< Yp< 1, so that

p(F(x, y) - F(x, z)) <_ ypp(y - z)

for all y, z in D. Suppose further that B : D - D is continuous, B(D) is

contained in a compact set, and

p(F(x, y) - F(z, y)) : p(Bx - Bz)

Then there is a point xc D for which F(x, x) =x.

Remark 3. 2. Examining the proof of Theorem 3. 1, one sees that if

D = S( r)( and X is complete, then we need only require that B be

p-completely continuous. (We invoke 2. lc to obtain a fixed point of the

operator L)

For the operators considered in this section, the equation

(3.2) Ax + Bx = x

has a solution in particular when A or B is the zero operator. Thus equation

(3. Z) may be considered as a perturbed equation associated with

(3.3) Ax =x, or Bx =x.
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Theorems 3. 1 and 3. 2 state sufficient conditions under which the existence

of a solution of either of the operator equations (3. 3) is preserved under a

perturbation of the operator in a certain class. We do not, however, have

any information on how much of a change results in the solution. In particular,

a slight perturbation of the operator A by an operator of type B need not

necessarily produce only a slight change in the solution. In other words,

in the algebraic setting of Theorems 3. 1 and 3. 2, one does not necessarily

have continuous dependence of solutions of Ax = x on perturbations of A by

operators of the type B (or vice versa). We shall turn our attention in the

next section to this question of continuous dependence of the solutions.

4. Stability of fixed points and solutions of nonlinear operator equations

In [ 10 1, Kasriel and Nashed formulated and investigated a notion of

stability of solutions of some classes of nonlinear operator equations in

Banach spaces in terrs of specific topologies on the set of nonlinear operators,

and obtained sot.e results on the openness of certain mappings as a byproduct.

In this section, we extend these formulations in several directions and prove

a theorem on the stability of fixed points for the sum of two operators.

Let X be a collection of continuous maps on X whose domains are

such that if A0 • e6, x0 E aomain of AO, then Sp (xo, r) C domain of A0

for r sufficiently small. Let I be a topology on X. Suppose AOE 0

YOeX and A0X0 = yO.
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Deflnition 4. 1. The solution x0 of A0u = Y0 is called p-stable

with respect to (Xt, -7) if for each r > 0 there exist d > 0 and a neighbor-

hood Q of A0 such that for all VE Sp(y 0 , d) and Ae E , there exists an

xE Sp(x 0 , r) such that Ax = y. The solution x0 is said to be a stable solu-

tion with respect to (K, a) if it is p-stable solution for every pE P.

For AE X , (x 0 , A, r) will be called a p-admissible triple if

Sp(x0 , r) is contained in the domain of A.

Let xp be the class of all continuous maps B from open subsets

of X into X which are such that I - B is p-completely continuous. If

(x0 , B0, r) is a p-admissible triple and b > 0, then % (x0 , B0 , r, p, b)

will denote the collection of all bE X p such that (Xo, B, r) is a p-admissible

triple and p(Bx - B0x) < b for all xe Sp(Xo, r). Let p be the topology on

X p generated by taking the collection of all such % as a subbase.

Now define

(xo, T, r) = r-sup{p(Tx-TxO) I p(x- =0

and

p (Xo, T) = inffr I Rp(xNo T, r) < 1}

Note that stability for the class H can be reduced to consideration

of equations of the form Ao0 x e.

Theorem 4.1. Let B0 E X and suppose B0 x0 =0. If np(x0 , I - B0 ) =

0, then x0 Is a p-stable solution of B0 x = 9 with respect to (• p , Np

#1115 -11-



Proof. Let e >0 be given. There is an r, 0< r < e, such that

R = Rp(x(, I - B., r) < 1. Let a and d be positive numbers such that

a +d<( - R)r. Let BE %(xo, BO, r, p, a) and ye Sp (0, d). Consider

the mapping F on Sp(xo, r) defined by Fx = x - Bx + y.

Clearly F is p-completely continuous since Be X . If F maps

asp(Xo, r) into Sp(xO, r), it has a fixed point xe Sp(xo, r). Then

Bx = y, with XE Sp(xo, r) C Sp(Xo, e), which proves the theorem. Now

we show that F indeed maps 8Sp(xO, r) into Sp(xo, r):

p(Fx- FxO).S p(x - B 0 xO) + p(Bx - BoX) + p(y)

and

p(x - B0x - xO) :S Rp(XO, I - Bo, r)r = Rr.

Hence

p(Fx - x0 ) <Rr + a + d < Rr + r - Rr =r.

If X C is the class of all continuous operators B from open

subsets of X into X which are such that I - B is completely continuous,

and if ;rC is the topology on jC generated by taking as a subbase the sets

%u(Xo, Bo, r, p, b) for all pE P, then we have the following

Corollary. If B0 e C and Box0 = 0 , and if np (xoV I - B0) =0

for every pe P, then x0 Is a stable solution of B x = 0 with respect

to ()(C , 'T .

-12- 1115



We next turn our attention to the question of stability of sums of

operators.

If x0 eX, A0 is a '.ontinuous operator, and Ue U, then we shall

say (x0 , A0 , U) is an admissible triple if x0 + U C domain A0 . (Recall

that U is the neighborhood system of the origin obtained from P.) Let

1 be the collection of all continuous operators A which are such that

I - A is a p-contraction for every pc P. (Hereafter called simply a contraction.)

For A0 in Cl, pc P, a and b real numbers, and (x0, A0, U) an admissible

triple, we define [ý(x 0 , A0 , U, p, a, b) to be the collection of all A in

C1 such that

i) (x 0, A, U) is an admissible triple,

Ui) p((A - A0 )x - (A - A0 )x 0 ) < bp(x - x0 ) for all xe x 0 + U,

iii) p(Ax0 - A0 x0 ) < a.

We define 'rI to be the topology on C1 obtained by taking all such Q

as a subbase.

Let C 2 be the collection of all continuous operators B which are

such that I - B has its range contained in a compact set. For B0 e C,

pc P, r a real number, (x 0 , B0 , U) an admissible triple, we define

f2,(x 0 , B.0, p, r) to be the collection of all Be C 2 such that

kx0, 8, U) is an admissible triple, and

1) p(Bx- BxO) cr forall xcx 0 +U.

We define :2 to be the topology on 02 with all such 22 as a subbase.

#1115 -13-



Next let C =CI X C 2 be the Cartesian product of CI and C2

endowed with the product topology 3 = X1 x z2 Suppose K0 is an operator

such that 1-K0 = SO + T for (I-SO, I-T in C.

Definition 4. 2. The solution x 0 of K 0u = Y0 is called stable with

respect to (C, 7") if for each UE 1A, there is a neighborhood Q of

(I- S0 , I- T0 ) anda WtU suohthatforall yEy 0 +W and (I-S, I -T)ES,

there exists an xex 0 +U sothat Kx =y, where I-K =S+T.

Recall the definition of Rp(x 0 , To, r) and Qp(x 0 , To, a). For p

In p define

ap(x0 , T) = inf{a J 0 c cl(Qp(X0 , TO, a))}.

Theorem 4. 2. Let X be complete. Suppose K0x0 = Y0 , where

I- X0 = S0 +T 0 for (I-So, I-T 0 ) in C. If yp + ap <I for every p in

P, then x0 is a stable solution with respect tc (C, ;). (Vp is p-

contraction constant of S and ap a (X0 , T0 ).)

Proof. Once again we shall, without loss of generality, take y0 = 0.
n

Let U = nr4V(P)E 1A be given. For each I =1, 2, ... , n, there is a

Ci > 0 such that + I, < I and 0e cl(Qi(x0 , To, %)), where yi denotes

YP I etc. Choose s _S ri so that R (x0, Top s ) < g Now choose positive

constants ap, bi, ci, di, for each I =1, 2,..., n, so that

bisi + aI + 2ci + <(1- d- <

-14- #1115



Let

n
3 =I -Tf f 2NO, I - TO, U, pi, c )'

and

n
A = I-Ss n 1I(20, I-Sop Up pi' a,, bi)

n

Also, let W = fl d V(pi).

Suppose yE W and consider Sx + Tz + y for all x and z in

x U , where U =cl(n siV(pi)). We shall show that Sx + Tz + yc x +U

Sx + Tz + y- x0 = Sx + Tz + y- Soxa - Tx0

= (Sx - S0 x 0) + (Tz - T0 x 0) + y

= (A - A0 )x - (A - A0 )x 0 + S 0 - S0x0 + (A-A0)x0

+ (Tz - T0 z) + (T0 x0 - Tx0 ) + (T0 z - T0 x 0 ) + y,

where A0 =I-S 0. Now for each i =1, 2, ... , n, we have

Pi(Sx + Tz + y - x0 ) < pi((A - A0 )x - (A - A0 )x 0 ) + PI(S 0 x - S0 x0

+ Pi((A - A0 )x 0 ) + P1(Tz - T0 z) + Pi(T0 x0 - Tx 0 ) + p1(T0 z - T0x0 ) + pi(y)

-- bpi (X -x 0) + y¥p 1(x - x0 ) + a, + c, + c, + R,(x 0, T0 , si) s, + p,(y)

_ (1 - - yi)si + (yi + 9P)s, = si"

#1115 -15-



So for every x, zf x0 + U , we have Sx + Tz + yE x0 + U; thus by

Theorem 3. 1, there is a point XE X 0 + U so that S9 + Tx + y =x, or

Kx =y, where I- K = S +T.

Remark. If we take To = 0 in Theorem 4. 2, we get a stability

theorem for the fixed point of a contraction mapping on a complete locally

convex Hausdorff topological vector space X. We note, however, that it

is possible to formulate other notions of "contraction" for which the fixed

point is not necessarily stable. Let W( be an open neighborhood of

eCX, x 0 eX, and W=x0 +W0. Let F:W--X. We say that F isa weak

contraction if ther3 exists a convex, closed and bounded VC W0 such that

x, yeW and y-xekV imply F(y) - F(x)tkaV forsome 0 <a<l. Let F

be a weak contraction on W into X, and F(x0) - x0 E (I - a)V. Then therem0

exists a unique fixed point x of F, x E x0 + V. However, this fixed point

is obviously not necessarily stable.

5. Applications

The fixed point theorems of section 3 can be applied to obtain

existence theorems for mixed nonlinear integral equations of Urysohn-Volterra

and Hammerstein-Volterra types in locally convex spaces in the same manner

as the fixed point theorem for a sum of two operators in Banach spaces were

used in [161.

We now obtain as an application of Theorem 3. 1, a sufficient

condition for a mapping to be open, which generalizes conditions given in

[10], [201, and [21]. Recall that a mapping F : X- Y is open at a point

-16- #1115



YO F(XO if y0 is an Interior point of F(X); that is, if there is a neighbor-

hood N cf y0 such that N C F(X). It follows easily from Definition 4. 2

that if Ku = y0 has a stable solution with resuect to (C, 3), then K is

open at y0 ' We can, however, find much weaker conditions which insure

that K is open at y0 * To this end, define

p((xo, T) zinf{a I Qp(x,, T, a)* 0,

and suppose K is as in section 4; that is, I- K = S + T for (I - S, I- T)

in C.

Theorem 5. 1. Assume X is complete. If Kx0 = y0 and for some

p in P it is true that yp +(p< 1, then K is open at y0 *

Proof. We may without loss of generality take y0 = 0. Choose

g so that Qp(xo, T, a)4 $ and ,• p +9<1. Let sEQp(x0 , T, g) and

choose d < (1 - - yp )s. We shall now show that Sp(0, d) is contained

in the range of K.

Let ue Sp(0, d) and consider p(Sx + Ty + u -x0) for x and y

in S p(X0 s);

p(Sx + Ty + u - x) 0 p(Sx + Ty + u - Sx - Tx0

p(Sx - Sx 0) + p(Ty - Tx 0 ) + p(u)

<i y s + ts 4 d< syp

Thus by Theorem 3. 1, there is an R, Sp(x 0, s) such that Sx + Tx + u = ,

which proves the theorem.
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An immediate application of this result is the following theorem

giving sufficient conditions for certain operators to be onto maps.

Theorem 5. 2. Let B : X -- X be a continuous operator such that

T(X) is contained in a compact set, where T = I - B. Suppose for each xE Y,

there is a pe P such that cp (x, T) < 1. Then the range of B is X.
p

Proof. B is open at each point of B(YX from the previous theorem,

so B(OO is an open subset of X. We shall show that BOO is also a closed

subset of X, and hence B(X) must be all of the connected space X.

To show B(X) is closed, let x be an accumulation point of B(X)

and let {ya I be a net in B(YX such that y a- x. Let xa be such that

BXa = Y a Then {Tx a} has a convergent subnet say fTxa }. Since

Bx' = x' - Tx, and {Bxý } and {Tx' } converge, we then know that fx' }
a a a'aa a

converges. But Bx' so X xe B(O). Thus B(X) is closed, and the
a

theorem is proved.

- 18- # 1115



REFERENCES

1. F. E. Bonsall, Lectures on some fixed point theorems of functional

analysis, Tata Institute of Fundamental Research, Bombay, India,

1962.

2. F. E. Browder, Fixed point theorems for nonlinear semicontractive

mappings in Banach spaces. Arch. Rat. Mech. Anal. 21 (1966),

259-269.
. /

3. W. Dubrovskii, Sur certalnes &quatlons integrales nonlineaires, Uc.

Zap. Moskov Gos. Univ. 30 (1939), 49-60.

4. N. Dunford and J. T. Schwartz, Linear operators. Vol. 1, Interscience

Publishers Inc., New York, 1958.

5. D. E. Edmunds, Remarks on non-linear functional equations, Math.

Ann. 174 (1967), 233-239.

6. S. Fucik, Fixed point theorems for a sum of nonlinear mappings,

Comment. Math. Univ. Carollnae 9 (1968), 133-143.

7. _ Solving of nonlinear operator equations in Banach space,

Comment. Math. Univ. Carollnae 10 (1969), 177-186.

8. A. Granas, The theory of compact vector fields and some of its

applications to topology of functional spaces I. Rozpr. Matematyczne

')OO (1962), 1-93.

9. M. Hukuhara, Sur l'existence des Points Invariants d'une tvans-

formation dans l'espace fonctionnel Japanese Journal Math. 20

(1950), 1-4.

#1115 -19-



10. R. H. Kasriel and M. Z. Nashed, Stability of solutions of some

classes of nonlinear operator equations, Proc. Amer. Math. Soc. 17

(1966), 1036-1042.

11. W. A. Kirk, On nonlinear mappings of strongly semicontractive type,

J. Math. Anal. Appl. 27 (1969), 409-412.

12. M. A. Krasnoselskii, Two remarks on the method of successive

approximations Uspehi Mat. Nauk 10 (1955), 123-127. (Russian)

13. , and P. P. Zabreiko, Construction of a new fixed point

theorem Dokl. Akad. Nauk SSSR 176 (1967) 1223. (Russian)

14. , _ , and R. I. Kachurovskii, On a fixed point

theorem for operators in Hilbert space, Functional analiz I prilozen 1,

(1967), 93-94. (Russian)

15. S. Nadler, Sequences of contractions and fixed points Pacific J.

Math. 27 (1968), 579-585.

16. M. Z. Nashed, and J. S. W. Wong, Some variants of a fixed point

theorem of Krasnoselskii and applications to nonlinear integral

equations. I. Math. Mech. 18 (1969), 767-778.

17. Nguyen-Xuan-Loc, Fixed Points and openness in a locally convex

space Proc. Amer. Math. Soc. 18 (1967), 987-991.

18. W. V. Petryshyn, Remarks on fixed point theorems and their extensions,

Trans. Amer. Math. Soc. 126 (1967), 43-53.

19. , Fixed point theorems involving P-compact. semi-

contractive, and accretive operators not defined on all of a Banach

space J. Math. Anal. Appl. 23 (1968), 335-354.

-20- #1115



Z0. Mi. Reichback, Fixed points and openness, Proc. Amer. Math. Soc.

12 (1961), 734-736.

21. , Some theorems on mappings onto, Pacific 1. Math.

10 (1960), 1397-1407.

22. E. H. Rothe, Zur Theorie der Topologischen Ordunung und der

Vektorfelder in Banachschen Rauiaen Compositio Math. 5 (1937),

177-197.

23. B. N. Sadovskii, On a fixed point theorem, Functional analiz i prilozen

L (1976), 74-76. (Russian)

24. J. Schauder, Der Fixpunktsatz in Funktionalraumen. Studia Math. 2

(1930) 171-180.

25. B. V. Singbal, Generalized form of Schauder-Tychonoff's fixed point

principle, in F. E. Bonsall [1].

26. A. Tychonoff, Ein Fixpunktsatz, Math. Ann. 111 (1935), 767-776.

27. J. R. L. Webb, Fixed point theorems for nonlinear senihxntractive

operators in Banach spaces. J. London Math. Soc. (2) L (1969),

683-688.

28. S. Yamamuro, Some fixed point theorems in locally convex linear

spaces, Proc. Japan Acad. 40 (1964), 1-12.

#1115 -21-



* Li

a'~ ~ CC>. - " (

o 0 0 0 ' i

"V N~ -

0 *0 Q) 0~u4''~ a C
crO C 4 0 0I l

E 0 0l w~ 00I0~ -
I-6 -a 0

.4 ) En >4 U) U
44 4. U

t- j ~ ' 0- 04. 0 ~ 0-
LO 0 1a W 0

0 to 1 Q0
~w '.~ N 0 0 (a O0~C-

4- 00 m ' 0-
>4 "1( U) 0

0)1ý 0. 0a~-
C( 0 a

l4(5 ~ CO 00 4.

fu0~ 0. U 0f. 0~

a.0 z IL04

co 0 _ *n
E- 0 .0

Z U) Z 00

0 o 0a.1 z- -
Ea. 00 o 4

19 --- _ _L- L ---- - -. - -

M~ 4~C ) -- 41
En L, )'. 4-' )U

II .0 > $-. (a

51,: - 0i~ >)
0.0 1-4 ~ ~ 0

(fl ~ ~ 4' 0 4'

Z rE w r-0 l)
04 0 04

iD~ ci) .2 En> U )
41 N1 ( * *.. a E-

cE 0. Oi.. t) 0 0
a)4 20 c

a) 04"
04-' 0 0 ~ cN n

v 0 E -a)

tn ':0.3~ 0 0 41
0 4- L

0
C2

ae NQ ~ I 4ý* f

ILL. 0 0

of 4)al - 0 Q) (a (a

F- 0. r~



- -- ------------------------------------------------ ----------------------------------------------------- ------ - - ---- -- -- -- -----

0 U

(D 4-' 0V ~ .00

- 0 C fl 0ýC _
U) (t 0 U) Q)

0~' 0j 00 Z * 0
fu a) c (V

0~ o 0CI 0

.2 0
>4 Un W >4-l U

0- 4ý (o -4 tcI I'd) oo o4j 0 04
< 0 C4 Q0

0V~ '- 0 0 0 '
LWU -. () rn 0 0

0 (a~ .E f4 E

W C.4 0) M (7

0 C0 0..

i- ) *o 4.0~

C,) a, 0 -'-

~~4 -4 .4- -4 4-

a). < . L
i. 0) -0 0 C a >

Q) Q) 0
0 0. <ID0 x (-' o(D~ 0

Cl) z~ 0 0 0'-

o0. . 4. L).

a. U 0 0. Q00 0 0
E Q0 >~ to 0 E

.4( 0- 220EC 0

0) V (u

40 U) - 0 IJJLJ~U)

-4 41
0 -

s.' 0 ) rn 0 c ,C))

4-1 1 M-'
(VUQ) 0 -0

0 G

a) 0'E0 0 2 0

>4~ 0 1:
_ _ _ _ _ _ _ _ _ _ _ - - - -M U)--


