AFRPL-TR-71-109 MDC G2529

PLUME CONTAMINATION EFFECTS PREDICTION

The CONTAM Computer Program

setta 3	a. isfi			1
:		1951	area a	
,		жi-	13. / C	ģ.
	و مردد اور دو			1.1.4
				i.
i≓ (∢17,	ie i i i i i i i	954-81.	Pen Cool	1
$(1, 1) = \frac{1}{N_{\rm e}}$	ie en e		5,63	1
		ł	į	ii H
i.		i	ţ	15
1		1		.1

R.J. Hoffman, W.D. English, R.G. Oeding, and W.T. Webber McDonnell Douglas Astronautics Company

FINAL REPORT AND PROGRAM USER'S MANUAL

December 1971

Approved for public release; distribution unlimited.

Air Force Rocket Propulsion Laboratory United States Air Force Edwards, California

> NATIONAL TECHNICAL INFORMATION SERVICE Springfueld, Va 22151

AD-735-722

1

Security Classification D0	CUMENT CONTROL DATA - R & D
(Security classification of title, body of ab ¹ ORIGINATING ACTIVITY (Comporate author) McDonnell Douglas Astronautics 5301 Bolsa Ave. Huntington Beach, California 9	District and indexing annotation must be entered when the overall report is classified) 20. REPORT SECURITY CLASSIFICATION Unclassified/Distribution Unline 02647
BEPORT TITLE PLUME CONTAMINATION EFFECTS PR	REDICTION
4 DESCRIPTIVE NOTES (Type of report and inclusi Final Report	ive dates)
R. J. Hoffman, W. D. English,	R. G. Oeding, W. T. Webber
6 REPORT DATE December 1971	74. TOTAL NO. OF PAGES 76. NO OF REFS 521 82
BU. CONTRACT OF GRANT NO F04611-70-C-0076 b. project no	94. ORIGINATOR'S REPORT NUMBER(S)
с.	9b. OTHER REPORT NOIS) (Any other numbers that may be assigned this report)
d.	MDC G2529
Distribution of this document	is unlimited
11. SUPPLEMENTARY NOTES	Air Force Rocket Propulsion Laboratory Air Force Systems Command Edwards, California 92523
The effect of rocket exhau an area of continuing concern is vehicle systems. Specifically, tional surfaces, such as solar view ports, and highly reflective effectiveness. The objective of capable of predicting the produc contaminants, and the change is missivity of a functional space optical view ports and lenses, mechanical abrasion (sand blass plume contaminant layer was reflected by the second	est plume impingement on sensitive vehicle surfaces is in the design of spacecraft, missiles, and reentry the contamination and subsequent degradation of func- cells, thermal control coatings, optical lenses, optical ive surfaces, have resulted in compromises of mission of this study was to develop a single computer code action, transport, and deposition of engine and plume in absorptivity, emissivity, reflectivity, and trans- ceraft surface, such as thermal control coatings and resulting from plume contaminant deposition or sting). Surface chemical reaction with a deposited not treated. Analytical models and computer subpro- d integrated to form the <u>CONTAM</u> computer program.
grams have been developed and Complete User's manuals for <u>CONTAM</u> program are include numerical methods. A sample to predict contaminant product R-6C 5-1b thrust MMH/NTO ex tamination experiment, was ch <u>SURFACE</u> , was not run becaus obtained for this engine with th for this thrustor, pulsed for 5 nant is formed and transported	each of the computer subprograms as well as the ed in this report, along with details of the analysis and e case illustrating the <u>CONTAM</u> program's capability tion and transport is presented. The Marquardt ngine, currently used at NASA/LeRC for their con- hosen. The deposition and surface effects subprogram se it was felt that meaningful results could not be he current version of the <u>SURFACE</u> program. Results 0 ms, indicate that a considerable amount of contami- d into the plume when the motor is pulsed periodically.

FOREWORD

This report was prepared for the Air Force Rocket Propulsion Laboratory (AFRPL), United States Air Force, Edwards, California, under Contract FO4611-70-C-0076, by the McDonnell Douglas Astronautics Company (MDAC), Huntington Beach, California. The Air Force program monitors for this study were Dr. L. P. Quinn (RTSP) and James R. Nunn, Capt., USAF (RTSP). The study was performed during the period August 1970 to August 1971, and the final report submitted to AFRPL for approval on October 4, 1971.

The MDAC study manager for this project was Mr. R. J. Hoffman, Aero/thermodynamics and Nuclear Effects Department, Research and Development. Mr. W. T. Webber, Propulsion Department, was principal investigator for the contaminant production task. Mr. R. G. Oeding, Aero/ thermodynamics and Nuclear Effects Department, was principal investigator for the contaminant transport and kinetics tasks. Dr. D. W. English, Propulsion Department, was principal investigator for the surface effects task.

In addition to the authors, many persons contributed significantly to the study effort for which we are grateful. Dr. L. P. Quinn (RTSP), in addition to his duties as contract monitor, helped to guide the technical effort by his continued keen interest in the study and his constructive criticism. Mr. A. D. Warren, principal investigator for the laboratory experiment task, provided the necessary experimental background to interface with the NASA/LeRC contamination experiment. Mr. T. J. Nelson and Mr. G. A. Gaitatzes assisted greatly in the integration and checkout of the computer subprograms. Dr. W. A. Gaubatz provided considerable technical guidance during the development of the contaminant production model and in the parametric study. Mr. T. Ward performed the actual contaminant production parametric study.

We also wish to express our thanks to Dr. H. Mark and his group at NASA/LeRC for allowing MDAC to use his experimental engine data in our computer model development and for providing us with encouragement and needed information concerning his experiment.

This technical report has been reviewed and is approved.

A. D. Brown, Jr., Lt Colonel, USAF Chief, Technology Division UNCLASSIFIED

9

Contamination Plume Rocket Exhaust	ROLE	wτ	ROLE	wт	ROLE	WT
Contamination Plume Rocket Exhaust						
Rocket Plume Plume Contamination Contamination Effects Contaminant Production Deposition Surface Effects Surface Contamination						

Security Classification

and the second

Y

ABSTRACT

The effect of rocket exhaust plume impingement on sensitive vehicle surfaces is an area of continuing concern in the design of spacecraft, missiles, and reentry vehicle systems. Specifically, the contamination and subsequent degradation of functional surfaces, such as solar cells, thermal control coatings, optical lenses, optical view ports, and highly reflective surfaces, have resulted in compromises of mission effectiveness. The objective of this study was to develop a single computer code capable of predicting the production, transport, and deposition of engine and plume contaminants, and the change in absorptivity, emissivity, reflectivity, and transmissivity of a functional spacecraft surface, such as thermal control coatings and optical view ports and lenses, resulting from plume contaminant deposition or mechanical abrasion (sand blasting). Surface chemical reaction with a deposited plume contaminant layer was not treated. Analytical models and computer subprograms have been developed and integrated to form the CONTAM computer program. Complete User's manuals for each of the computer subprograms as well as the CONTAM program are included in this report, along with details of the analysis and numerical methods. A sample case illustrating the CONTAM program's capability to predict contaminant production and transport is presented. The Marquardt R-6C 5-lb thrust MMH/NTO engine, currently used at NASA/LeRC for their contamination experiment, was chosen. The deposition and surface effects subprogram, SURFACE, was not run because it was felt that meaningful results could not be obtained for this engine with the current version of the SURFACE program. Results for this thrustor, pulsed for 50 ms, indicate that a considerable amount of contaminant is formed and transported into the plume when the motor is pulsed periodically.

1

CONTENTS

Section		Page
I	INTRODUCTION	1
II	OBJECTIVES AND SCOPE	9
	1. Objectives	9
	2. Scope	9
III	MODEL DESCRIPTION	11
	1. Combustion Chamber Contaminant Productio	n 11
	a. Feed Systems	13
	b. Atomization	13
	c. Chamber Calculations	14
	d. Wall Calculations	14
	e. Comparison with Experimental Results	14
	2. Contaminant Transport	16
	3. Chemical Kinetics and Condensation in the	1 7
	Nozzle and Plume Flow Field	11
	a. Chemical Kinetics Model	10
	b. Condensation Model	10
	4. Deposition, Abrasion, and Surface Effects	19
	h. Humianhorical Emissivity	19
	c. Surface Abrasion	21
	d. Material Deposition	21
IV	THE <u>CONTAM</u> COMPUTER PROGRAM	23
	1. General Description	23
	a. Combustion Chamber Contaminant	
	Production	25
	b. Contaminant Transport	25
	c. Chemical Kinetics and Condensation	25
	d. Deposition and Surface Property Effects	27
	2. Program Description	27
	3. Program Overlay Structure	27
	4. Program Data Interfaces	29
	a. $\frac{TCC}{TCC}$ Data	29
	b. $\frac{TD2}{TD2}$ Data	29
	c. <u>TD2P</u> Data	29
	d. <u>SLINES</u> Data	29
		24

v

Page

4

		-	<u>></u>
IV	5.	Program User's Manual a. Input to CONTAM b. Program NAMELISTS c. CONTAM NAMELISTS d. Nonstandard Format Inputs e. Input Card Stack	30 30 31 31 32 32
v	SAN	APLE CASE RESULTS	35
	1. 2. 3.	Definition of Sample Case Contaminant Production - The TCC Program a. TCC Input - Sample Case (R-6C Engine) b. TCC Output - Sample Case (R-6C Engine) Contaminant Transport - The MULTRAN. Program a. Interpretation of TCC Results	35 35 36 51 78 78
		b. MULTRAN Input - Sample Case (R-6C Engine	79
VI	4.	 MULTRAN Output - Sample Case (R-6C Engine Kinetics and Condensation - The KINCON Program a. Description of Input b. Description of Output c. Discussion of Results 	79 102 103 103 107
VI	CO	NCLUSIONS AND RECOMMENDATIONS	127
	1. 2.	Conclusions Recommendations	127 127
VII	REFERENCES		129
Appendix			
А	TCC—Transient Combustion Chamber Dynamics Computer Program		131
В	MU Tra	MULTRAN—Multiphase Nozzle and Plume Transport Computer Program	
С	KIN and	ICON—Nonequilibrium Chemical Kinetics Condensation Computer Program	357
D	SUI Cor	RFACE-Deposition and Surface Effects	45¢

vi

<u>Section</u>

ILLUSTRATIONS

Figure		Fage
1.	Liquid Bipropellant Plume Impingement Effects (22-1b Thrustor MMH-NTO, O/F = 1.65)	2
2.	Deposition Efforts of Rocket Exhaust Impingement After Continuous Long- Duration Firing	. 4
3.	Effects of Thrustor Exhaust Continuous Long-Duration Firing	5
4.	Effect of Thrustor Exhaust Continuous Long-Duration Firing - Aluminum and Glass Samples	6
5.	Schematic Diagram of Analytical Model Elements and Related Computer Programs	12
6.	Comparison of Experimental and Calculated Wall-Film Contaminant Production as a Function of Propellant/Hardware Temperature	15
7.	Comparison of Calculated and Experimental High Altitude Start	16
8.	Static Pressure and Temperature Profiles for Condensing Nozzle Flow	20
9.	Contaminant Effects Physical Model-Heat Rejection Radiators	20
10.	Schematic of the Plume Contamination Effects Prediction Computer Program, CONTAM	24
11.	Schematic of Contamination Processes and Related Subprogram	26
12.	CONTAM Computer Program Overlay Structure	28

Figure		Page
13.	CONTAM Input Card Stack	33
14.	TCC Graphic Output - Chamber Pressure Versus Time	74
15.	TCC Graphic Output - Oxidizer Valve Trace Versus Time	74
16.	TCC Graphic Output – Oxidizer Voided Versus Time	74
17.	TCC Graphic Output - Oxidizer Injection Rate Versus Time	74
18.	TCC Graphic Output - Stream Beta Angle Versus Time	75
19.	TCC Graphic Output - Oxidizer Droplet Mass Versus Time	75
20.	TCC Graphic Output - Oxidizer on Wall Versus Time	75
21.	TCC Graphic Output - Chamber Oxidizer D32 Versus Time	75
22.	TCC Graphic Output - Gas Outflow Rate Versus Time	76
23.	TCC Graphic Output – Oxidizer Droplet Outflow Versus Time	77
24.	TCC Graphic Output – Oxidizer Film Outflow Versus Time	77
25.	TCC Graphic Output – Film Thickness on Wall Versus Percent Chamber Length at Time = 9 Milliseconds	77
26.	TCC Graphic Output - Film Thickenss on Wall Versus Percent Chamber 1 Length at Time = 18 Milliseconds	77
27.	Marquardt R-6C Engine - Sample Case - Contaminant Transport (MULTRAN Program)	100
28.	Static Temperature Distribution for	100
	99% Streamline	123

Figure		Page
29.	Gas Velocity Distribution for 99% Streamline	124
30.	H ₂ O, H and O Composition for 99% Streamline	125

BLANK PAGE

-

TABLES

<u>Table</u>		Page
I	Namelist and Subprogram	31
II	Input Data for Marquardt R-6C Engine TCC	38
III	TCC Output	53
IV	Sample MULTRAN Output-Input Data	80
v	Sample MULTRAN Output-Representative Printout	84
VI	KINCON Sample Case – Data Listing	104
VII	KINCON Sample Case – 0% Streamline	105
VIII	KINCON Sample Case-90% Streamline	106
IX	KINCON Sample Case – Identification (0% Streamline)	108
x	KINCON Sample Case—Pressure Table (0% Streamline)	109
XI	KINCON Sample Case—Initial Conditions (0% Streamline)	111
XII	KINCON Sample Case—Representative Printout (Axial Position = 0.9767, 0% Streamline)	112
XIII	KINCON Sample Case-Representative Printout (Axial Position = 10.0839, 0% Streamline)	113
XIV	KINCON Sample Case – Representative Printout (Axial Position = 19 8159, 0% Streamline)	114
XV	KINCON Sample Case—Maximum and Minimum for Reaction Production Rates (0% Streamline)	115

Tables		Page
XVI	KINCON Sample Output-Identification (90% Streamline)	116
XVII	KINCON Sample Case-Pressure Table (90% Streamline)	117
XVIII	<u>KINCON</u> Sample Case—Initial Conditions (90% Streamline)	119
XIX	KINCON Sample Case-Representative Printout (Axial Position = 0.974875, 90% Streamline)	120
XX	KINCON Sample Case-Representative Printout (Axial Position = 24. 4058, 90% Streamline)	121
XXI	KINCON Sample Case-Maximum and Minimum For Reaction Production Rates (90% Streamline)	122

SECTION I

INTRODUCTION

The effect of rocket exhaust plume impingement on sensitive vehicle surfaces is an area of continuing concern in the engineering design of spacecraft, missiles, boosters, and RV systems. Specifically, the contamination and subsequent degradation of functional surfaces, such as solar cells, thermal control coatings, optical lenses, optical view ports, highly reflective (mirrored) surfaces, and sealants, have resulted in compromises of mission effectiveness.

To illustrate the deposition of contaminants problem, several photographic examples of contamination occurring as the result of actual bipropellant engine firings will be presented. These examples were taken from a series of contamination experiments conducted by MDAC under the MOL program.

Figure 1 compares a control surface (no impingement) with a surface which has been exposed to normal impingement by the exhaust plume of a liquid bipropellant engine (MMH-NTO). Evidence of surface damage is apparent, and was postulated to be caused by condensed droplets in the core of the plume flow.

During a vacuum chamber subscale thrustor test by MDAC at AEDC, a 1-lb thrust Marquardt MMH-NTO rocket engine was fired horizontally so that the exhaust products would impinge upon a vertically oriented test panel containing several surface specimens. Surface specimens included thermal control coatings, polished metal, and specialized glass lenses.

During pulse-mode operation of the motor, copious quantities of brownish, viscous liquid were observed about the nozzle lip and upon the lower external surface of the motor. This liquid exhibited considerable activity, bubbling while suspended from the motor lower external surface apparently due to some boiling and/or decomposition phenomenon. An impingement pattern of sorts was visible upon the test panel that appeared symmetrical but did not agree well (qualitatively) with theoretical predictions of the gas-phase impingement region. The region within the symmetric impingement pattern was coated with viscous liquid and/or solid material that increased in quantity with the number of pulses to which the panel was exposed; the coloration of this material was difficult to identify, but was definitely darker than the panel. Above and below the symmetric impingement region liquids were splattered in very large quantities, particularly near and below the rocket motor where semisolid formations of brownish color were noted; deposition of this variety seemed randomly distributed and was observed fore and aft of the nozzle exit plane. The amount of liquid generated by the rocket motor varied inversely with pulse duration, with

R202

۱۴-۱۳۰

ł

do-

a. CONTROL SAMPLE SHIELDED FROM DIRECT IMPINGEMENT

b. SAMPLE EXPOSED TO NORMAL EXHAUST IMPINGEMENT

maximum amount generated during the 16-msec "minimum impulse" pulses, Thermal control coatings exposed to these exhaust products were visibly coated and suffered losses in reflectance. Similarly, transparent samples suffered transmittance losses. After certain periods of liquid buildup upon the panel, brownish liquids ran down the panel surface. During long-duration firings in excess of several hundred seconds, a well defined symmetric impingement pattern was noted upon the panel. It was difficult to discriminate between liquid and solid formations at this point. The symmetric impingement region gained further definition by virtue of a continuous ridge of solid and/or viscous liquid deposits at the symmetric impingement region boundaries. Posttest microphotography revealed that glass surfaces were coated with micron-sized droplets, even though the incidence angle of exhaust products was (theoretically) very small or nonexistent. Deposits upon the panel and surface samples displayed phase instability at STP conditions, changing from solid to liquid to solid when disturbed physically or environmentally. When the chamber was repressurized to facility ambient conditions, much of the material deposited upon the panel became less viscous and ran off the panel.

Figures 2 through 4 show some of the deposits observed after various duty cycles.

This report will present the results of a 12-month study for the Air Force Rocket Propulsion Laboratory to develop an analytical model and computer program for the prediction of spacecraft functional surface contamination effects caused by interactions with liquid bipropellant rocket exhaust plumes. Emphasis has been placed on development of computer codes to describe the complex two-phase combustion gas-dynamic processes occurring in a bipropellant combustor and the thermodynamic and kinetic nonequilibrium processes occurring during a two-phase nozzle and plume expansion. Less attention has been given to the detailed modeling of the deposition processes and the subsequent changes in surface properties. Verification of the integrated Plume Contamination Effects Prediction Computer Program will be attempted by comparison with high-altitude bipropellant contaminant tests. It is anticipated that an independent on-going NASA Lewis Research Center experiment, conducted by Dr. Herman Mark and Mr. Jack Cassidy, will provide the necessary engine operating details and contamination effects data to achieve a meaningful correlation.

This report is divided into five discrete parts: the main body of the report and four appendixes. In the main body, emphasis is placed on describing the operating characteristics of the integrated Plume Contamination Effects Prediction Computer Program, <u>CONTAM</u>. A description of the program, User's Manual, and sample case run illustrating the ability of <u>CONTAM</u> to predict contaminant production, transport, and condensation are presented. Deposition and surface effects prediction has not been included in the sample case run for <u>CONTAM</u> (main text) but has been discussed in Appendix D. <u>CONTAM</u> consists of four discrete subprogram links, each capable of operating as a separate computer program or as a link to

4

Ap

1 537

THE PARTY OF

CONTAM. Each of the subprograms is described in detail in a separate appendix as follows:

Appendix A <u>TCC</u>	Transient Combustion Chamber Dynamics Computer Program (a bipropellant contam- inant production model)
App endix B <u>MULTRAN</u>	Multiphase Nozzle and Plume Transport Computer Program (a multiphase nozzle and plume flow field characterization model)
Appendix C <u>KINCON</u>	Nonequilibrium Chemical Kinetics and Condensation Computer Program (a multi- phase reacting gas streamtube model)
Appendix D <u>SURFACE</u>	Deposition and Surface Effects Computer Program (a plume impingement, deposition, abrasion, and surface contamination effects model)

In addition to the sample case in the main body of the report, each appendix contains a sample case illustrating additional capabilities of the particular subprogram. Detailed operating information for each subprogram is contained in the User Manual section of each appendix.

This report has been loose-leaf bound to facilitate updating of the various User's Manuals, either by MDAC or other Government and industry users. The author's would greatly appreciate comments, corrections, additions, and suggestions for inclusion in future updates to be distributed to all users. Please send comments to:

7

R. J. Hoffman A3-BBBO-20 McDonnell Douglas Astronautics Company 5301 Bolsa Avenue Huntington Beach, California 92647

The second

SECTION II

OBJECTIVES AND SCOPE

1. OBJECTIVES

The objective of the study is to develop a single computer code capable of predicting the production, transport, and deposition of engine and plum contaminants and the change in absorptivity, emissivity, reflectivity, and transmissivity of a functional spacecraft surface, such as thermal control coatings and optical view ports and lenses, resulting from plume contaminant deposition or mechanical abrasion (sand blasting). Surface chemical reaction with a deposited plume contaminant layer is not treated.

The study has been divided into five main areas:

- (1) Improvement of predictive technology for the characterization of reactive, multiphase rocket nozzle and exhaust plume flows containing propellant contaminants and nonequilibrium combustion products, including condensables.
- (2) Continued development of an analytical model to predict the production of contaminants in bipropellant rocket-engine combustion chambers.
- (3) Development of a semiempirical model to predict changes in surface properties of functional spacecraft surfaces (resulting from deposition or abrasion).
- (4) Integration and coupling of existing computer programs and newly developed computer programs to achieve a systems engineering design tool for the prediction of contaminant effects on spacecraft surfaces.
- (5) Verification of the contamination prediction model by comparison with experimental data.

2. SCOPE

This initial study has been restricted to the development of predictive methods for the production, transport, and deposition of contaminants from hydrazine-family fuels in combination with nitrogen tetroxide and to changes in thermal and optical surface properties of common thermal-control paints and optical lenses. The model development has considered RCS engines in the 5- to 100-lb thrust range; the validity of the model for much larger engines has not been assessed.

Preceding page blank

SECTION III

MODEL DESCRIPTION

Section 4 describes the <u>CONTAM</u> plume contamination effects prediction computer program developed during this study. The analytical models associated with each link of the <u>CONTAM</u> program are discussed in detail in the appropriate appendix. In this section, a summary description of the analytical models employed in the <u>CONTAM</u> program is given.

The general objectives of the study were to construct a single analytical model capable of predicting the effects of bipropellant plume impingement contamination on optical and thermal spacecraft surfaces based only on a knowledge of available engine operating conditions, engine/spacecraft configuration geometries, and spacecraft orbital parameters. To this end, it was necessary to construct a model for the production of contaminants in a bipropellant combustion chamber (unburned propellants ejected through nozzle throat); transport of these contaminants by the expanding gases in the nozzle and exhaust plume; chemical nonequilibrium composition of plume species; condensation of plume species in the expanding plume; abrasion damage and deposition resulting from plume impingement; and, finally, the changes in thermal and optical surface properties, absorptivity, emissivity, transmissivity, and reflectivity resulting from contaminant deposition and/or abrasion damage. In addition, the model considers the effect of engine duty cycle and spacecraft radiant energy transfer on the rate of contaminant deposition over an entire mission profile.

The feasibility of constructing a valid model, considering all of the above aspects, relied heavily upon the existence of several models and computer codes which could be used as a basis for construction of the overall contamination effects prediction model. Several new portions of the model and computer subprograms were developed. Figure 5 schematically illustrates the computation flow logic and the related computer codes. Details of each computer code can be found in the appropriate appendix.

1. COMBUSTION CHAMBER CONTAMINANT PRODUCTION (See Appendix A for further details)

Unburned propellant and intermediate products of combustion (liquid phase) ejected from the combustion chamber are considered first as a source of contaminants. Referring to Figure 5, the Transient Combustion Chamber (TCC) Dynamics Program, developed by Webber and Gaubatz (1) and extensively modified for prediction of contaminant production (2), was used to generate parametric contaminant production data over a range of typical RCS operating conditions. Based on this parametric study, modifications were made to the program to allow its inclusion as part of the overall contamination effects prediction model.

Preceding page blank

Figure 5. Schematic Diagram of Analytical Model Elements and Related Computer Programs

Contaminant material is produced by the combustor of a bipropellant rocket engine when partially burned propellant droplets pass through the throat or when they strike a cold chamber wall to form a liquid film, which is moved downstream by chamber gas shear forces. When the unburned propellant or intermediate reaction products are ejected from a rocket engine, they may be transported in the plume and deposited on nearby sensitive spacecraft surfaces, changing their thermal or optical properties.

The sequence of combustion related events, in the rocket engine combustion chamber is calculated by numerically integrating the differential and algebraic equations which describe the basic processes of the feed system, injector, and combustion chamber. Figure A-1 in Appendix A is a drawing of the rocket system.

a. Feed Systems

The feed systems are approximated with single lumped parameters representing the inertial and resistive aspects of the feed system, the rate of acceleration of flow being proportional to the amount that the instantaneous pressure drop exceeds the instantaneous pressure losses in the system. The opening and closing of the valves are modeled by varying the feed system resistance as a function of time. Flow reversals or initial start conditions, which result in partially or fully gas-filled feed lines, are simulated by varying both the resistance and inertia of the feed system as functions of time.

b. Atomization

The atomization process is calculated for one of several modes, depending on the chamber pressure. If the injected propellant is sufficiently supersaturated, the stream is presumed to flash-atomize. The flashatomization process resembles the gas-atomization process, with the gas being supplied by the explosive growth of bubbles in the supersaturated stream. The flash atomization process gives relatively fine droplets, on the order of 40 microns in diameter.

When the chamber pressure is sufficiently high that the injected propellant streams do not flash, the atomization occurs by the impingement of the fuel and oxidizer streams. The median droplet diameter is obtained from an equation based on the orifice diameters, injection velocities, relative momentum of the streams, and physical properties of the propellants.

When only one stream is being injected during a start transient, there can be no impingement and atomization is calculated based on singlestream breakup.

The injected propellant moves from the injection point to the impingement point along the direction of injection. After impingement, the stream moves in the direction of the resultant angle. The stream moves in this new direction until its atomization is complete, after which its twodimensional trajectory is determined by the aerodynamic drag forces

13

「「「「「「「「」」」」

c. Chamber Calculations

The vapors or gases that fill the combustion chamber are derived from several sources: vapor from flashing propellant streams; material evaporated from propellant droplets; evaporation of material deposited on the combustion chamber walls and from the ignitor if one is used. Fuel and oxidizer vapor from these sources are axially cumulated in the chamber at each time interval, while the amounts calculated to flow through the nozzle are subtracted. This gives current values for the chamber-gas mass and stoichiometry, and the axial addition rate of mass. These are used to calculate the pressure, temperature, molecular weight, and velocity distribution in the chamber. The simplifying assumption is made that at any instant the pressure is constant throughout the chamber, and the gas is well mixed.

d. Wall Calculations

When a computed propellant droplet moves radially to the location of the combustion chamber wall, its fuel or oxidizer mass is added to the axial distribution of fuel or oxidizer previously deposited on the chamber wall. The material on the wall experiences axial viscous flow under the influence of shear forces exerted by the chamber gas and is subject to boiloff from heat transferred from the chamber gas.

The boiloff from each axial segment of the wall is calculated from a heat-transfer coefficient, calculated from the Colburn equation corrected for counter-current mass transfer. Both the gas shear stress and heat transfer coefficients are correlated with the Reynolds number based on chamber diameter evaluated at each axial segment of the chamber.

e. Comparison with Experimental Results

The objective of the computer calculations to predict the amounts and properties of contaminant material formed during the pulse-mode operation of small rocket engines. Since the quantitative experimental data on contaminant production is still rather scanty, the experimental confirmation of the model must be based, in part, on other experimental data, such as chamber pressure traces, which are more generally available. Two recent papers (3 and 4) have been published describing contaminant production from pulse-mode firings of the 22-pound Marquardt R1-E engine, which is very similar in design, but larger than the 5-pound Marquardt R6-C engine used for the parametric analysis at Appendix A. Many aspects of the experimental firings of the R1-E engine agree with the trends calculated for the R6-C engine, for example, see Figure 6.

Two modes of contaminant production were found experimentally (3). Large drops of MMHI-Nitrate were blown from the lip of the nozzle, being directed approximately in the radial direction, i.e., at right angles to the engine centerline ± 45 degrees. Much smaller particles of MMH-Nitrate are carried downstream in the plume, being concentrated along the engine centerline. with the particles being directed a maximum of ± 10 degrees from the centerline. These findings are in agreement with the model, which

calculates contaminant production from material which flow down the chamber as wall-film and from propellant droplets which pass through the throat incompletely burned. According to the paper of Stechman and Thonet (4) contaminant production from a series of 17 ms. pulses is strongly dependent upon hardware temperature and upon the down-time between pulses, maximizing at about 80 milliseconds for the R1-E engine at an injector temperature of 60°F. The existence of a maximum is in agreement with the computer model, which calculates that the emptying of the dribble volumes is sequential at low temperatures, with the oxidizer side emptying completely before the fuel side starts to empty because of vapor pressure effects. According to the model calculations, the worst case for contaminant production is a down-time just sufficient to empty the oxidizer dribble volume, but not the fuel dribble volume.

The ''worst down time'' for the R6-C engine at 70°F is calculated to be 6 milliseconds, while the value for the larger R1-E engine at 60°F was experimentally found to be 80 milliseconds. The difference between the two values is probably a reflection of the steep vapor pressure vs temperature curve for NTO.

Martinkovic (3) found that contaminant production was a function of injector temperature. His measurements for the R1-F engine show fairly good agreement with our calculations for the R6-C engine as shown in Figure 6.

The absolute values for contaminant expelled as wall-film were also of the same order of magnitude. The Martinkovic 22-pound R1-E engine experimentally produced 0.772 milligrams of wall-film per 17 millisecond pulse at 75° F (about 1/1000 of total injected propellant). Our calculations for the 5-pound R6-C engine indicated that 0.161 milligrams of wall-film would be produced per 50-millisecond pulse at 70° F, excluding post-firing dribble (see Appendix A, Parametric Study).

Figure 7 compares a suitably documented experimental chamber pressure trace with a corresponding computed value. The two curves show surprisingly good agreement, especially in the prediction of events.

2. CONTAMINANT TRANSPORT (See Appendix B for further details).

Having defined the average amount of liquid phase contaminant ejected from the combustor for each pulse segment (see subsection III. 1) the twophase nozzle and plume flow is then computed for transient and steady state pulse segments, using method-of-characteristics computer programs described by Nickerson and Kliegel in (5) and modified by Gabbert and Hoffman (6). In Figure 5, these programs are identified as TD2 and TD2P. Variations in chamber pressure, chamber temperature, droplet velocity, and droplet-size distribution produce considerably different two-phase flow fields for each of the pulse segments (preignition, ignition, steady state, and tailoff) and therefore require a unique analysis for each pulse segment. Because several contaminant sources originate upstream of the nozzle exit plane (for example, unburned propellant and nonequilibrium condensed fuel nitrate species), it is necessary to obtain a complete characterization of the multiphase flow at the nozzle exit, including droplet/particle distributions (size, velocity, temperature, and species) as well as an axisymmetic distribution of the gas-phase flow. The extreme radial compression of droplet/particle laden regions indicates the need for accurate information concerning the combustor and nozzle transport of condensables as input to the plume analysis.

Starting at the convergent nozzle sections, up to 10 droplet groups are considered as an approximation to the distribution of condensed phase material produced in the combustion chamber. The concentrations, distribution, and trajectories of each droplet/particle group are considered at each mesh point in the axisymmetric method-of-characteristics flow analysis throughout the entire nozzle and plume. Fully coupled momentum exchange (drag) between the gas and droplet/particle phase is considered, including rarefication effects. The results (output) of this program set provide the initial conditions (input) for the impingement model and subsequently, the surface effects analysis.

While the transport model will provide information about the dynamic condition and flux of species arriving in the vicinity of a functional surface submerged in an exhaust plume, the kinetic/condensation model and the deposition model are required to provide information regarding the chemical composition and amount of plume exhaust material actually deposited on the submerged surface.

3. CHEMICAL KINETICS AND CONDENSATION IN THE NOZZLE AND PLUM FLOW FIELD (See Appendix C for further details)

In addition to unburned propellant droplets, many liquid-bipropellant exhausts contain condensed phases as an important contaminant source. The primary condensables in bipropellant plumes are thought to be 11₂O and nitrate salts of the fuel. One of the major study objectives was to review existing data on plume condensables and to model the mechanism of condensation analytically in rocket nozzles and exhaust plumes. A thermodynamic nonequilibrium nucleation and condensation model has been developed and is discussed in detail in Appendix C. The MDAC Streamtube Chemical Kinetics and Condensation Computer Program, identified in Figure 5 as KINCON, has provided the framework for development of this portion of the model. A preliminary study, using the combined chemical kinetics and condensation model, was performed to size condensation characteristics in the nozzle and plume, corresponding to typical engine operating regimes (both transient and steady state). The relative effect of condensation as a contaminant source, relative to combustion chamber sources, is yet to be determined, although it is thought to be an important factor in contamination of surfaces beyond the central core of the plume where heavy, unburned propellant droplets seem to dominate.

The modeling of this phase of the contaminant-production problem requires (1) the chemical kinetic analysis of the expanding exhaust gases and (2) a realistic analysis of the condensation process.

a. Chemical Kinetics Model

The chemical kinetic processes in the nozzle and plume are calculated along streamlines utilizing the MDAC KINCON computer program. The KINCON program possesses several unique features which make it well suited for anlyzing the nozzle/plume chemical kinetics. These features include (1) a fully implicit numerical integration scheme that permits the rapid integration of the full set of kinetic equations (up to 40 species and 150 reactions) with complete numerical stability; (2) capability to treat the addition (or subtraction) of mass, momentum, and energy to the streamtube by specifying the specific rate as a function of streamtube distance; (3) reaction-rate screening capability, which identifies reactions and species that are unimportant and need not be considered in the calculation of a specific species concentration or fluid property in any particular application.

Principal assumptions inherent in the use of the streamtube kinetics model include the following: (1) the flow is one-dimensional, steady, and inviscid; (2) each component of the gas mixture is a perfect gas; and (3) internal degrees of freedom of each component are in equilibrium.

b. Condensation Model.

It is well known that condensation of a rapidly expanding supersonic flow does not occur at the point in the flow where the gas equilibrium temperature reaches the saturated vapor temperature of the particular species in question. Instead, condensation is delayed and eventually occurs as a "condensation shock" or condensation zone downstream of the equilibrium condensation point. Although this phenomenon is not thoroughly understood, it may be caused by a number of factors, including (1) lack of nuclear material on which condensables may form and (2) inability of the surrounding gas phase to readily remove heat from the condensing material.

To treat condensation effects in rapidly expanding gases, a kinetic model of the condensation process utilizing the classical liquid drop theory was adopted. The condensation phenomenon, as described by this model, occurs as a result of two distinct processes: (1) nucleation and (2) droplet growth.

As saturated vapor conditions are reached in a rapid expansion, sufficient surface area will not usually exist for the condensation required to maintain equilibrium $(P_v - P_{vs})$, and a supersaturated condition results $(P_v > P_{vs})$. The nucleation process (spontaneous self-nucleation) occurs in the expanding supersaturated vapor and involves the clustering of vapor molecules to give rise to very small nuclei (radius of 10 to 100 Å). Cnly nuclei reaching the critical drop radius $r^{1/2}$ can exist and grow. The critical drop size is determined from thermodynamic equilibrium considerations and represents the size at which the drop has an equal probability of either evaporating or growing.

Figure 8 illustrates the effects of condensation on the flow static pressure and temperature. Following the saturation point, the vapor continues to expand along the frozen gas isentrope until a suitable number of nuclei are formed and the droplet growth process begins. At this point, the effects of condensation are observed. Both the static pressure and temperature increase rapdily with the temperature approaching the saturated-vapor temperature. The expansion then continues along a different isentrope corresponding to a new gas mixture.

4. DEPOSITION, ABRASIC N, AND SURFACE EFFECTS (See Appendix D for further details)

A simplified analytical model for the prediction of plume contaminant deposition, surface abrasion due to liquid and solid particle impingement, and changes in thermal and optical surface properties due to deposition or abrasion has been completed. Additional work is required to couple the resulting computer program, SURFACE (See Figure 5), to the total contamination prediction analysis and to extend the model to a general class of contaminants and surfaces. A brief outline of the model will be given.

Development of a surface effects model depends heavily upon experimental data relating plume species deposition and mechanical abrasion characteristics to changes in a and ϵ , in the case of thermal surfaces; and changes in transmissivity and reflectivity, in the case of optical surfaces. Such data are scarce for realistic plume-deposition products, such as MMH-Nitrate, although recent experiments have provided some data.

The first step in developing a model to predict surface property changes, based on a computed amount of abrasion or deposition, is to examine the possible interactions of plume material with spacecraft surfaces. The preliminary model developed accounts for plume-induced changes in a and ϵ on thermal control surfaces, such as heat-rejection radiators. This model will be extended to include optical surfaces in future studies.

Figure 9 is a sketch of the possible interactions with both coated and uncoated portions of a radiator surface.

a. Solar Absorptivity

The absorptivity of the system is primarily determined by the characteristics of the external surface upon which the external radiation falls. The average or net absorptivity a_{net} of the radiator can be taken as the mean of the absorptivity of each type of absorptive surface a_i times the area of each type A_i . Generally, a_i is a simple term, easily determined or calculated, but in some instances, such as a transparent deposit, terms related to the thickness and internal parameters of the deposit become important.

b. Hemispherical Emissivity

When contaminant deposits are thin, it is assumed that they offer little resistance to heat flux through the layer. The emissivity of the surface is assumed to be that of the contaminant layer. For thick layers of deposits, the impedance to heat flow through the layer is also modeled.

c. Surface Abrasion

Abrasion can occur on either or both of the coated or uncoated portions of the radiator surface. Abrasion of the radiator coating affects the heat flux in a step-function fashion. If only the thermal-control coating is abraded, the effect is simply that of decreasing the original coating thickness without affecting the absorptivity or the emissivity. If the abrasion proceeds far enough, it will penetrate through the coating and expose an area of the metal plate substrate. The abrasion of the metal surface, both that originally present and that exposed by removal of the coating, will alter its a_p and ϵ_p significantly. The abraded area of the metal will consist of two parts, the part that was originally bare and now abraded, plus all that was exposed when the coating is abraded away. It is assumed that in any area where the abrasion is sufficient to remove the coating, the flow field will attack the metal at once.

d. Material Deposition

A deposit of material from the plume, randomly located on the exterior of the spacecraft radiator, acts simply like an additional coating through which the heat must be transferred. The deposit may be transparent (crystalline, glassy, or liquid), or it may be opaque due to either its basic nature or to particle sizes.

Opaque deposits affect the heat flux in a manner identical to the thermal-control coating. The situation can become more complex if the deposit forms a transparent film. Such films are not completely transparent at all wavelengths, and therefore a complex interaction occurs.

Radiant energy impinging from the environment is partly reflected, partly absorbed, and partly transmitted into the film at the outer surface in accordance with the usual ρ , σ , and τ coefficients. As the energy passes through the thickness of the film, more of it is absorbed. At the bottom surface with the opaque paint or metal, the energy is either absorbed or reflected. That portion of the radiation that is reflected from the substrate then passes outward through the film, and again, part is absorbed. When the energy again reaches the outer surface, the part that strikes the surface at less than the critical angle is radiated away; but the portion that strikes the surface at an angle equal to, or greater than, the critical angle cannot escape and is eventually absorbed. A similar process also occurs for the emission of energy from and through the transparent layer.

SECTION IV

THE CONTAM COMPUTER PROGRAM

1. GENERAL DESCRIPTION

This section describes the integrated computer program, <u>CONTAM</u>, which has been developed to provide an engineering design too! for the prediction of plume contaminant effects on sensitive spacecraft surfaces arising from direct plume impingment. Figure 10 illustrates the component subprograms of the <u>CONTAM</u> program. The <u>CONTAM</u> program is capable of independently running any of the subprograms or of running the entire analysis sequentially and automatically, subject to the restriction below. When run independently, the capabilities of each of the subprograms may be extended to solve problems associated with: combustion dynamics; nozzle and plume multiphase flow field characterization; nonequilibrium streamtube chemical kinetics and condensation; and impingement, deposition, abrasion, and surface property changes—not necessarily associated with plume contamination.

During the study effort, a bipropellant contaminant production model, containinant transport model, nonequilibrium condensation model, and surface effects model were developed and coded. The surface effects mode/ development was deemphasized due to funding constraints, and therefore has not been completed to the level of sophistication of the other subprograms. At present, automatic interfacing of the contaminant production subprogram, <u>TCC</u>, with the contaminant transport subprogram, <u>MULTRAN</u>: and the kinetics and condensation subprogram, <u>KINCON</u>, with the surface effects subprogram, <u>SURFACE</u>, has not been provided. Provisions have been made, however, for easily interfacing these subprograms in the future.

Each of the major subprograms of <u>CONTAM</u> are described in detail in separate appendixes as follows:

Appendix A <u>TCC</u>	Transient Combustion Chamber Dynamics Computer Program (a bipropellant con- taminant production model)
Appendix B <u>MULTRAN</u>	Multiphase Nozzle and Plume Transport Computer Program (a multiphase nozzle and plume flow field characterization model)
Appendix C <u>KINCON</u>	Nonequilibrium Chemical Kinetics and Condensation Computer Program (a multi- phase reacting gas streamtube model)

Preceding page blank

1

-

4202

and the second state of th
Appendix D SURFACE

Deposition and Surface Effects Computer Program (a plume impingement, deposition, abrasion, and surface contamination effects model)

This section concentrates on describing the operation of the integrated program <u>CONTAM</u>, and the interfacing of the various subprograms. The reader is referred to the appropriate appendis for detailed information concerning the operation of the individual subprogram.

The <u>CONTAM</u> program is written in FORTRAN IV and requires 220,000₈ core locations to load and execute in the automatic mode. The program contains 111 subroutines and is currently operational on the CDC 6500 and CDC 6600 computers.

a. Combustion Chamber Contaminant Production

Unburned propellant and intermediate products of combustion (gas and liquid phase) ejected from the combustion chamber are considered first as a source of contaminants. Referring to Figure 11, the Transient Combustion Chamber Dynamics (TCC) subprogram, is used to generate contaminant production data. The results of the <u>TCC</u> subprogram are time dependent and require interface manipulation for subsequent modeling and analyses since the transport model treats the flow as steady state. After examination of the production of contaminants during the entire transient pulse, representative "time slices" are chosen so that gas and liquid properties may be averaged over the time intervals for use as input to the <u>MULTRAN</u> subprogram. The required output from <u>TCC</u> includes: chamber pressure, chamber temperature, droplet size distribution, droplet velocity, and mass flux of gas and droplets.

b. Contaminant Transport

Having defined the average amount of gas and liquid phase ejected from the combustor for each pulse segment, the two-phase nozzle and plume flow is then computed for each steady state pulse segment, using method-ofcharacteristics computer subprogram <u>MULTRAN</u> (subprograms TD2, TD2P, and SLINES are included in <u>MULTRAN</u>).

Computer subprogram <u>SLINES</u> was developed to provide the necessary interface between the <u>TD2</u>, <u>TD2P</u> and the <u>KINCON</u> subprograms. Basically, <u>SLINES</u> interpolates between points on each characteristic line to provide exhaust gas properties for points on a streamline. A streamline is defined as that line which runs through the throat, nozzle, and plume, bounding a given constant percentage of the mass flow between it and the nozzle axis.

c. Chemical Kinetics and Condensation

In addition to unburned propellant droplets, many liquid-bipropellant exhausts contain condensed phase products of combustion as an important contaminant source. The formation of condensables in liquid propellant exhausts has been analytically modeled. The KINCON subprogram predicts

States of the West of the States

and the second se

1

the nozzle and plume condensation effects utilizing a classical nucleation and droplet growth model. It also provides the gas-phase chemical kinetics analysis along streamlines.

d. Deposition and Surface Property Effects

The flux of contaminants approaching a surface submerged in a bipropellant plume, as determined above, provides the starting point for the analysis of liquid and solid deposition on impinged surfaces. A model has been developed to account for the accommodation of momentum and energy upon impact of liquid and solid particles and to predict the amount and state (thin film, thick film, droplets, crystals, etc.) of the deposited materials. Damage and changes in surface properties due to mechanical abrasion and/or deposition are also treated in this subprogram, <u>SURFACE</u>. The surface property changes considered are absorptivity, emissivity, reflectivity, and transmissivity. Development of this subprogram is not complete and, therefore, is discussed only briefly in Appendix D.

2. PROGRAM DESCRIPTION

This section describes the structure and logic of the Plume Contaminant Effects Prediction Computer Program, <u>CONTAM</u>. Particular emphasis is placed on the description of the main program, the overlay structure, and the data interface between the various subprograms. Detailed descriptions of the subprograms may be found in the appropriate appendix.

The <u>CONTAM</u> program is structured so that any one subprogram may be run independently or any number of the subprograms may be run sequentially and automatically. Only the main program and the required subprogram reside in computer core during operation. In the sequential and automatic mode of operation, upon completion of operation by a particular subprogram, that subprogram is removed from the computer core and is replaced by the sequentially required subprogram.

The program runs on the CDC 6500 computer system. It is coded in FORTRAN IV and requires a field length of 220,0008. If <u>TCC</u> is not run on a particular submittal, the field length may be reduced to 135,0008. The conversion of the program to another third generation computer should be straight-forward.

The main program (EXEC) was coded to perform the required selection of the various subprograms. It initializes certain logical control variables, accepts control variables through input, and provides overall logic control for the program. It also provides overlay communication.

3. PROGRAM OVERLAY STRUCTURE

The program overlay structure is depicted in Figure 12. The program contains seven second-level overlays, each corresponding to a particular subprogram. The overlay structure extends to three levels.

Figure 12. CONTAM Computer Program Overlay Structure

-

4. PROGRAM DATA INTERFACES

The resultant data from the various subprograms reside on magnetic tape or disc file for use by subsequent subprograms.

The data interface has been designed so that the input and output data to a particular subprogram are preserved subsequent to the running of that subprogram, while at the same time, the number of logical file units used are minimized by reusing logical files. This means that while the user may run each program independently but sequentially, if the data output from a particular subprogram is not acceptable for some reason, the input data file to that subprogram has been preserved so that the user has a "restart" capability without having to restart from the initial subprogram of the sequence.

a. TCC Data

Data output from <u>TCC</u> is written onto logical file 12 for use by the <u>MULTRAN</u> subprogram as input to <u>TD2</u> subprogram. In addition, logical files 1, 16, and 48 are used internally by <u>TCC</u>. File 1 contains the variable data used by the plotting routine of <u>TCC</u>. Files 16 and 48 are required files for the system plotting package.

b. TD2 Data

The input logical file number for the <u>TD2</u> program is 10. The <u>TD2</u> subprogram provides data output on two logical files; 8 and 12. Logical file 8 contains data required to be input to the <u>TD2P</u> subprogram. Logical file 12 provides input data for the <u>SLINES</u> subprogram and the deposition and surface effects subprogram, <u>SURFACE</u>.

c. TD2P Data

Subprogram <u>TD2P</u> receives its input data from logical file 8. <u>TD2P</u> provides output data on logical files 9 and 12. File 9 contains radiation and force field data. File 12 contains the contaminant properties data. The sub-routine which writes on file 12 is common to both <u>TD2</u> and <u>TD2P</u>. It is located in the main overlay level so that it is accessible to both subprogram overlay levels.

d. <u>SLINES</u> Data

The <u>SLINES</u> subprogram reads data from logical file 12 which has been generated by subprograms <u>TD2</u> and <u>TD2P</u>. It generates the streamline data and writes this data on logical file 8 for use by the KINCON subprogram.

e. <u>KINCON</u>

The KINCON subprogram uses six logical file units The file unit numbers are 1, 4, 8, 10, 11, and 12. Files 1, 10, and 11 are scratch files used internally by the subprogram. File 1 contains the initial conditions and

area ratio table to be used in the condensation calculation. File 10 contains thermal data, only for the specific species being considered in the run, which has been packed in a data block. File 11 contains reaction tables. Files 4 and 8 are input files. File 4 is an optional input which contains a list of thermal properties in JANAF format. Since logical file 4 is an optional input, if it is not used as such, it will default to an internally used file by the subprogram. If the logical file 4 input is not exercised, the thermal properties data must be input by punched cards (see Appendix C). The subprogram will then write JANAF thermal properties on logical file 4 from the punched card input. Obviously, with the appropriate control cards, file 4 may then be saved for subsequent use. File 8 contains the streamline properties required by the KINCON subprogram. Logical file 12 is the output tape of the subprogram and contains the multiphase and kinetic results to be used by the deposition and surface effects subprogram, <u>SURFACE</u>. Since the surface effects subprogram has not been completely developed and amalgamated, the logical file 12 output from the KINCON subprogram has not been implemented yet.

5. PROGRAM USERS MANUAL

a. Input to CONTAM

Punched card input is required. Logical file 4 input is optional, but the option must be specified in the card input. The discussion pursued in this section pertains only to the sequential automatic mode of operation.

The punched card inputs required are of two types; <u>NAMELISTS</u> and other nonstandard format. Subsection 5.b describes the general nature of the data input through the various <u>NAMELISTS</u> and indicates the subprograms to which they apply. For a detailed description of the contents of the various <u>NAMELISTS</u>, the user should refer to the appropriate Appendix for each subprogram as listed in subsection of this section.

A detailed description of the nonstandard inputs will be found in Appendix C since they apply to the <u>KINCON</u> subprogram. Subsection 5.d describes the required stacking (organization) of the punched cards.

Section 5 presents a sample case which includes a data listing, the resulting output, and a "day file" from the CDC 6500 computer system. The "day file" is included to illustrate the required system control cards and their proper sequence.

In addition to the aforementioned inputs, there are the data interfaces which are required by the various subprograms and discussed in subsection 4 of this section. These interface data should be considered as inputs when running the subprograms independently.

b. Program NAMELISTS

Table 1 presents a list of the names of each <u>NAMELIST</u> and the subprograms to which they correspond. To determine the details and parameters contained in each <u>NAMELIST</u>, the user should refer to the appropriate Appendix as listed in subsection 1 of this section. <u>NAMELISTS</u> required by <u>CONTAM</u> (the main program) are described in the subsection 5.c.

TADIC 1. TAMETER THE PODI ROCHTER	Table I.	NAMELIST	AND SUB	PROGRAM
-----------------------------------	----------	----------	---------	---------

NAMELIST Name	Subprogram .
NCASE	CONTAM (EXEC)
IPATH	CONTAN (EXEC)
INPUTI	TCC
DATA	T D2
DATAP	T D2 P
SID	SLINES
THERMO	KINCON
PROPEL	KINCON
IMPING	SURFACE

c. CONTAM NAMELISTS

Two NAMELISTS are required by the main program, <u>CONTAM</u>, to provide control of the overall program. They are:

- (I) NAMELIST/NCASE/
- (2) NAMELIST/IPATH/

There is only one parameter in the <u>NAMELIST</u>/NCASE/. It is ICASE. ICASE is an integer variable which tells the program how many pulse segments are to result from the transient pulse output of the TCC subprogram. Each pulse segment is considered a "case." Each subsequent subprogram in the sequence must operate on each pulse segment (case), one segment at a time.

NAMELIST/IPATH/ contains nine variables. However, only two of the variables are required per run (sequential-automatic mode). The variable list for NAMELIST/IPATH is:

TCC
SSCP
TD2
TD2P
SLINES
MGKS
DUM7
KMODE
NSL

Each variable except KMODE and NSL is logical. For example:

TCC = T, TD2P = T,

The above example indicates that the first subprogram to be run will be <u>TCC</u> and the last will be <u>TD2P</u>. It is only necessary to input the first and last subprograms to be run. If only one subprogram is to be run, only that one variable need be input, unless the <u>KINCON</u> subprogram is to be run; then KMODE and NSL may also be required.

The variable KMODE is used only when the <u>KINCON</u> subprogram is run independently. If used, it is input as the integer variable "one." It indicates that certain options will be exercised in the operation of the <u>KINCON</u> subprogram. These options are described in Appendix C.

The variable NSL is required only when the <u>KINCON</u> subprogram is run independently. NSL indicates the number of streamlines that will be analyzed by the <u>KINCON</u> subprogram. If subprogram <u>SLINES</u> is run in conjunction with the <u>KINCON</u> subprogram, any NSL value input here will be overridden by the value of NSL input for the <u>SLINES</u> subprogram.

d. Nonstandard Format Inputs

All of the nonstandard format punched card inputs are used by the KINCON subprogram. The names of these inputs are:

- Thermodynamic Data (Optional)
- Title Card
- Species Cards
- Reaction Cards

The format for the data on these cards is detailed in Appendix C.

e. Input Card Stack

Figure 13 depicts the organization of the punched card deck required for automatic sequential operation of the entire program. For independent operation of subprogram(s), only the input data required for operation of the desired subprogram(s), in addition to the <u>CONTAM</u> input data, should be included in the data deck. For example: If only subprograms <u>TD2</u> and <u>TD2P</u> are desired to be run, the data required for <u>TCC</u>, <u>SLINES</u>, and <u>KINCON</u> should be removed from the deck illustrated in Figure 13.

,

÷

للو

Figure 13. CØNTAM Input Card Stack

SECTION V

SAMPLE CASE

This section presents a data listing and printed output for a sample case run in the automatic sequential mode on the CDC 6500 computer system.

1. DEFINITION OF SAMPLE CASE

The sample case is chosen to illustrate the application of the successive subprograms of <u>CONTAM</u> for the prediction of the contamination effects resulting from a typical firing of a real rocket engine. The engine chosen for these computations is the Marquardt R-6C. The R-6C is a commercially available NTO-MMH rocket engine having a nominal thrust of five pounds and designed for pulse-mode operation. It is an excellent choice for experimental vacuum-chamber studies of contaminant production because of its small size, which makes it easier to maintain vacuum in the test chamber, and its short pulse capability which can be used to aggravate the production of contaminants. The effect of the small engine size, however, must be considered in designing the experiment. The R-6C is being used in an experimental contaminant effects study currently underway at NASA Lewis Research Center under the direction of Dr. Herman Mark. It is hoped that the computed values for contaminant production, transport, deposition, and surface effects can be experimentally verified by comparison with experiments such as those being run at NASA Lewis Research Center.

A pulse width of 50 milliseconds was chosen for our computations. This is short enough to show appreciable transient effects without being so short as to be unrealistic compared to actual duty cycles used with an engine of this type. In our calculations, the engine is fired with its walls initially clean and with its dribble volumes both initially empty, but with the lines full of propellant behind the valves. This initial condition would be easier to match experimentally than any prescribed axial accumulation of fuel and oxidizer on the wall or partially filled dribble volumes. The chamber, injector, and tankage were initially set to room temperature values, again for ease of experimental comparison. The line lengths, line diameters, tank pressures, and other installation and operational variables were chosen to agree with the NASA Lewis vacuum chamber installation, and the base case run parameters.

2. CONTAMINANT PRODUCTION - THE TCC PROGRAM

The <u>TCC</u> (transient combustion chamber) program calculates contaminant production by digital integration of the time-dependent engine processes, i.e., propellant flow, atomization, and combustion of the injected droplets. The calculated two-dimensional trajectories for the burning droplets determine how much propellant is deposited on the wall, and how much

Preceding page blank

passes through the throat unburned. The trajectories for the ejected unburned droplets are calculated up to the throat by the <u>TCC</u> subprogram, and in the nozzle and plume by the <u>MULTRAN</u> subprogram. The unburned propellant which is deposited on the combustion chamber wall is subjected to burnoff and axial flow from the action of the hot, fast-moving chamber gases. The amount of this wall film material which survives and passes through the throat is calculated by the <u>TCC</u> subprogram. Experimental firings of small pulsing engines show that much of this material accumulates on the nozzle lip during each firing, and is blown off during the succeeding start transient. The droplet size, initial direction of flight, and subsequent trajectory of this material may be defined statistically from experimental firings, but is outside of the present scope of the <u>CONTAM</u> program.

a. <u>TCC</u> Input-Sample Case (R-6C Engine)

Input data for the <u>TCC</u> program is broken down into several large blocks of related data. The block headings are: Chamber description, operating conditions, valve timing, ignition description, fuel feed system, oxidizer feed system, atomization parameters, fuel properties, oxidizer properties, combustion gas properties, contaminant properties, general instructions, flow rate overrides, and a thrust coefficient table. Obviously the values typifying each propellant constituent remain fixed for that constituent; consequently, the sub-decks of data for any given material such as UDMH or MMH or NTO can be retained for reuse whenever that particular propellant is to be used. In a similar way, the combustion gas properties remain constant for each particular propellant combination, such as WFNA and UDMH or LOX and RP-1. Again these sub-decks may be retained and reused whenever that particular propellant combination is called for. Having sub-decks on hand for the common propellants and propellant combinations greatly facilitates loading the input for the TCC subprogram. The engine hardware is described in the chamber description, fuel feed system, and oxidizer feed system sub-decks. When sub -decks are created for particular engines they may be incorporated into the input data with only such modifications as are required for feed system variables; i.e., line lengths and diameters, restrictor areas, etc. Again, retaining such data sub-decks for reuse greatly facilitates the loading of the program input.

(1) Origin of Engine and Propellant Data

The known physical properties of nitrogen tetroxide and monomethylhydrazine were taken from the Battelle "Liquid Propellant Handbook" (7) and the Aerojet publication "Performance and Properties of Liquid Propellants" (8). The burning-rate coefficient for monomethyl hydrazine was estimated to be halfway between the experimental values given for hydrazine and UDMH by Dykema and Greene (9). The burning-rate coefficient for NTO was calculated using Godsaves' equation. The equilibrium combustion gas properties of chamber temperature, mean molecular weight, gamma, and vacuum thrust coefficient for an expansion area ratio of 40 were calculated, using the MDAC thermochemistry program H099 and the JANNAF (10) values for heats of formation. The chamber dimensions, injector parameters, and valve ramp durations come from the manufacturer, while the feed system values were supplied by NASA Lewis Research Center. The ignition parameters, activation energy, and frequency factor multiplied by heat of reaction are the experimental values measured for NTO and UDMH by Seamans, Vanpee, and Agosta (11). The fuel and oxidizer fan lengths are unknown and were set equal to zero. These values could be inferred by operating the engine at low tank pressures to obtain the chugging frequency and amplitude. The flash cone angle was taken from photographs of flashing streams in the thesis of Brown. The drop size distribution is from NACA TN 4222. The decomposition temperature for the MMH nitrate was taken from the paper of Perlee, Christos, Miron, and James (12). The values used for the density, vapor specific heat, latent heat and viscosity of the MMH nitrate and its solutions, and the accommodation coefficients for MMH and NTO are estimated values since no experimental values have ever been published. At the time that the first calculations were performed for the Marquardt R-6C engine, the calculated combustion efficiencies and calculated steady state chamber pressure were considerably lower than the experimental values. We felt that this might indicate that the correlations we were using for initial droplet diameter were in error when applied to the very small injector orifices of the Marquardt engine. In order to achieve agreement with experiment, we arbitrarily reduced the computational droplet diameter by a factor of two. This was done by entering one half the actual injector hole diameters in the input data. The actual fuel and oxidizer hole diameters are 0.0158 and 0.0186 inches, while 0.0079 and 0.0093 are the values used in the input data. Since this time, Rocketdyne has published droplet sizes obtained from small orifices (13). Below a threshold value for Reynolds number, laminar flow is obtained in long injector orifices, and the droplet sizes produced are about one-half the size predicted by the usual correlations for jets in turbulent flow. The orifices of the R-6C engine operate very close to the threshold value for Reynolds number quoted by Rocketdyne, therefore it is quite likely that they are in laminar flow and are actually producing droplets similar in size to those calculated using our biased orifice diameters.

(2) Input Data for TCC Subprogram (Marquardt R-6C Engine)

Input data for the Marquardt R-6C Engine are listed in Table II.

Item Number	Variable	Value	Comments/Source
1	Chamber length	1.07 in.	Manufacturer
2	Injector end area (A)	0.1368 in. ²	Manufacturer
3	Linear taper of chamber (B)	0.1427 in. ² /in.	Chamber area fitted by a parabola: Area = A + BX + CX ²
4	Parabolic taper of chamber (C)	-0.2268 in. ² /in. ²	
5	Thro a t area	0.0298 in. ²	Manufacturer
9	External pressure	1 x 10 ⁻⁶ psi a	Estimated vacuum environment
10	Chamber wall temperature	294 °K	Approximately room temperature
13	Fuel tank pressure	180 psia	NASA Lewis
14	Fuel Tank temperature	294 °K	Approximately room temperature
15	Fuel injector temperature	294 °K	Approximately room temperature
18	Fuel valve opening ramp duration	0.001 sec	Manufacturer
20	Fuel valve closing ramp duration	0.001 sec	Manufacturer
21	Oxidizer t a nk pressure	165 psia	NASA Lewis
22	Oxidizer tank temperature	294 °K	Approximately room temperature
2 3	Oxidizer injector temperature	294 °K	Approximately room temperature
26	Oxidizer valve opening ramp duration	0.001 sec	Manufacturer

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC

1

ł

Item Number	Variable	Value	Comments/Source
28	Oxidizer valve closing ramp duration	0.001 sec	Manufacturer
29	Fuel valve opening time	0.0 sec	Time of first motion opening
30	Oxidizer valve opening time	0.0 sec	Time of first motion opening
31	Fuel valve closing time	0.050 sec	Time of first motion closing
32	Oxidizer valve closing time	0.050 sec	Time of first motion closing
33	Assigned ignition delay	0.0 sec	Not used when chemical kinetic values are specified
34	Igniter port location	0.0 in. from injector	No igniter used
35	gniter fuel flow rate	0.0 lb/sec	No igniter used
36	Igniter oxidizer flow rate	0.0 lb/sec	No igniter used
37	Activation energy	5200 cal/mole	Seamans, Vanpee, and Agosta
38	Frequency factor x heat of reaction	3.4×10^{14} (cc/mole sec) x (cal/mole)	Seamans, Vanpee, and Agosta
39	Perfect mixing flag	0.0	Use normal ignition calculations
40	No axial mixing flag	0.0	Use normal ignition calculations
41	Fuel line length	480 in.	NASA Lewis Research Center

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

39

Item Number	Variable	Value	Comments/Source
42	Fuel line area	0.0281 in. ²	NASA Lewis Research Center
43	Fuel restrictor area	0.00454 in. ²	NASA Lewis Research Center
44	Fuel venturi area	0.0281 in. ²	No venturi, use line area
45	Fuel valve port area	0.0281 in. ²	No valve restriction when open
46	Fuel injection area	0.000196 in. ²	Manufacturer
49	Fuel hole diameter	0.0079 in.	One half true diameter of 0.0158 in. to bias droplet size
50	Fuel hole length	0.0625 in.	Estimated from engine drawing
51	Axial location of fuel hole	0.0 in.	Approximately flush with injector face
52	Radial location of fuel hole	0.045 in.	Estimated from engine drawing
53	Fuel injection angle	-45 deg	Manufacturer
57	Fuel initial void volume	0.00113 in. ³	Set cqual to dribble volume for initially empty condition
59	Fuel transition volume	0.0 in. ³	No hot fuel in injector
60	Fuel dribble volume	0.00113 in. ³	Manufacturer
61	Fuel check valve flag	0.0	Reverse flow in feed system is possible
65	Oxidizer line length	480 in.	NASA Lewis Research Center

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

ψĺ. ľ

9 Br

Item Number	Variable	Value	Comments/Source
66	Oxidizer line area	0.0281 in. ²	NASA Lewis Research Center
67	Oxidizer restrictor area	0.00636 in. ²	NASA Lewis Research Center
68	Oxidizer venturi area	0.0281 in. ²	No venturi, use line area
69	Oxidizer valve port area	0.0281 in. ²	No valve restriction when open
70	Oxidizer injection area	0.000272 in. ²	Manufacturer
7 3	Oxidizer hole diameter	0.0093 in.	One-half true diameter of 0.0186 in. to bias droplet size
74	Oxidizer hole length	0.0625 in.	Estimated from engine drawing
75	Axial location of oxidizer hole	0.0 in.	Approximately flush with injector face
76	Radial location of oxidizer hole	-0.045 in.	Estimated from engine drawing
77	Oxidizer injection angle	45 deg	Manufacturer
81	Oxidizer initial void volume	0.000580 in. ³	Set equal to dribble volume for initially empty condition
83	Oxidizer transition volume	0.0 in. ³	No hot oxidizer in injector
84	Oxidizer dribble volume	0.000580 in. ³	Manufacturer
85	Oxidizer check valve flag	0.0	Reverse flow in oxidizer feed system is possible
89	Fuel fan length	0.0 in.	Strawman value, no data available

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

Item Number	Variable	Value	Comments/Source
90	Oxidizer fan length	0.0 in.	Strawman value, no data available
91	Single stream break- up distance given in stream diameters	10	Estimated from photo- graphs of single-stream breakup. See NACA TN3835
93	Hold at triple point flag	0.0	Assume flashing propellant equilibrates with chamber pressure even though freezing occurs
94	No initial dribble flag	1.0	The quill-type Marquardt injector is not likely to dribble during start before the dribble volume fills completely
95	Flash cone angle	30 deg	Apex angle of flashing liquid spray taken from photographs of R. Brown
97-101	Drop size distri- bution table	0.198, 0.759, 1.0, 1.23, 2.3045	Taken from experimental values of NACA TN 4222
102	No wall breakup flag	0.0	Droplets and streams are assumed to atomize on wall impact
103	Drop rebound velocity ratio	1.0	Droplets which bounce off wall are assumed perfectly elastic
104	Fraction sticking	0.5	One-half the droplets impacting with the wall are assumed to bounce and the remainder stick. This is a "straw man" value. No data available

the second se

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

42

1.)\$\$P

Item Number	Variable	Value	Comments/Source
105	No fuel flash flag	0.0	The fuel stream is permitted to flash atom- ize when the correlations indicate that it should
106	No oxidizer flash flag	0.0	The oxidizer stream is permitted to flash atom- ize when the correlations indicate that it should
107	No wall flow flag	0.0	The material on the wall is allowed to flow as the calculations say it should
108	No wall burnoff flag	0.0	The material on the wall is allowed to burn off as the calculations say it should
109	Fuel normal boiling point	360 ° K	Aerojet compilation
110	Fuel freezing point	222 °K	Aerojet compilation
111	Fuel critical temperature	594 ° K	Aerojet compilation
112	Fuel critical pressure	1195 psi a	Aerojet compilation
113	Fuel vapor specific heat at film temp- erature	0.995 cal/ gram °K	Value for propylene specific heat at 1500 °K extrapolated from NBS C461. Structure similar to MMH. No data for MMH
114	Fuel liquid specific heat at 300°K	0.69 cal/ gram °K	Aerojet compilation
116	Fuel vapor molecular weight	46.074 grams/ gram mole	Aerojet compilation

The state of the s

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

Item Number	Variable	Value	Comments/Source
117	Fuel latent heat of vaporization (at normal boiling point)	210 cal/gram	Aerojet compilation
118	Fuel latent heat of fu s ion	67.5 cal/gram	Battelle handbook
119	Fuel liquid thermal conductivity	0.000545 cal/ cm °K	Aerojet compilation
120	Fuel accommodation coefficient	1.0	Strawman value, no data available
121	Reference tempera- ture for fuel properties	300 °K	Experimental values available at this temperature
122	Fuel density at reference tempera- ture	0.88 gra m/cc	Aerojet compilation
123	Fuel viscosity at reference tempera- ture	0.0104 poise	Aerojet compilation
124	Fuel surface tension at reference temperature	47 dynes/cm	Battelle handbook
125	Fuel burning rate coefficient	0.0325 cm ² /sec	Dykema and Greene
126	Fuel monopropell- ant intercept (A)	0.0 cm/sec	Strand burning tests fitted r = A + B P ⁿ _c with r in cm/sec;P _c in psia
127	Fuel monopropell- ant coefficient (B)	0.0 cm/sec psi ⁿ	MMH does not burn in liquid strand tests
128	Fuel monopropell- ant exponent (n)	0.0	
129	Oxidizer normal boiling point	294 °K	Aerojet compilation

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

Ŷ

Item Number	Variable	Value	Comments/Source
130	Oxidizer freezing point	262 °K	Aerojet compilation
131	Oxidizer critical temperature	431 °K	Aerojet compilation
132	Oxidizer critical pressure	l,470 psia	Aerojet compilation
133	Oxidizer vapor specific heat at film temperature	0.298 cal/gram °K	JANNAF tables for NO ₂
134	Oxidizer liquid specific heat at 300°K	0.36 cal/gram °K	Aerojet compilation
136	Oxidizer vapor molecular weight	46.008 gram/ gram-mole	Vapor mostly NO ₂ at high temperature or low pressure
137	Oxidizer latent heat of vaporiza- tion (at normal boiling point)	99.0 cal/gram	Aerojet compilation
138	Oxidizer latent heat of fusion	39 .2 cal/gram	Battelle handbook
139	Oxidizer liquid thermal conductivity	0.000306 cal/ cm °K	Aerojet compilation
140	Oxidizer accommo- dation coefficient	1.0	Strawman value, no data available
141	Reference tempera- ture for oxidizer properties	300°K	Experimental values available at this temperature
142	Oxidizer density at reference tempera- ture	l.45 gram/cc	Aerojet compilation
143	Oxidizer viscosity	0.00446 poise	Aerojet compilation

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

Item Number	Variable	Value	Comments/Source
144	Oxidizer surface tension	28 dyne/cm	Battelle handbook
145	Oxidizer burning rate coefficient	0.027 cm ² /sec	Calculated from Godsaves equation
146	Oxidizer mono- propellant intercept (A)	0.0 cm/sec	Strand burning rate fitted to: $r = A + B p_c^n$ with r in cm/sec and P_c in psia
147	Oxidizer mono- propellant coefficient (B)	0.0 cm/sec psia	NTO does not burn in liquid strand tests
148	Oxidizer mono- propellant exponent (n)	0.0	NTO does not burn in liquid s trand t ests
149-159	Equilibrium com- bustion gas temperature at fuel fractions 0.0, 0.1, 0.2, 1.0	300, 2,103, 3,084, 3,397, 3,061, 2,368, 1,705, 1,433, 1,344, 1,266, 1,190, in °K	From standard equili- brium thermochemistry calculations
161-171	Equilibrium com- bustion gas mean molecular weight at fuel fractions 0.0, 0.1, 0.2, 1.0	46.008, 28.79, 26.41, 23.39, 19.88, 16.75, 14.41, 13.91, 14.00, 14.10, 14.29	From standard equili- brium thermochemistry calculations
173-183	Equilibrium combus- tion gas gamma at fuel fractions 0.0, 0.1, 0.2, 1.0	1.120, 1.252, 1.220, 1.217, 1.235, 1.268, 1.309, 1.299, 1.270, 1.247, 1.228	From standard equili- brium thermochemistry calculations
185	Contaminant mixture density	l gram/cc	Strawman value, no experimental data
186	Contamin a nt vapor specific heat	l cal/gram °K	Strawman value, no experimental data

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

0

			•••••••••••••••••••••••••••••••••••••••
Item Number	Variable	Value	Comments/Source
187	Contaminant latent heat of vaporization	100 cal/gram	Strawman value, no experimental data
188	Contaminant decom- position temperature	500°K	Perlee, Christos, Miron, and James
189-199	Contaminant mixture viscosity at fuel fractions 0.0, 0.1, 0.2 - 1.0	0.00446, 0.024, 0.043, 0.068, 0.081, 0.100, 0.082, 0.064, 0.046, 0.029, 0.0104 poise	Experimental values for pure fuel and pure oxidizer. Strawman values for MMH nitrate mixtures
201	Model time at which computations are finished	0.060 sec	50 millisec for pulse and 10 millisec to drain oxidizer dribble volume
202	Integrating time interval	0.0001 sec	Chosen from experience running the program
203	Print one out of	10	A propellant disposition summary is printed for every tenth time interval
204	Plot one out of	30	A wall-film thickness profile is plotted for every thirtieth time interval
205	Delete graphics flag	0.0	The computer graphics will be produced
206	Delete droplet means flag	0.0	The D ₃₀ , D ₃₁ and D ₃₂ will be calculated for the chamber droplet popula- tion at each time interval
207	Delete summaries flag	0.0	The summaries will be printed for the intervals: preignition, start tran- sient, steady-stare, and tailoff

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

Item Number	Variable	Value	Comments/Source
208	Data review only flag	0.0	The program will com- pute the chamber pro- cesses instead of stopping after printing out the input data set for examination
209	Fuel trajectory group	3.0	A trajectory will be plotted for the third fuel size group
210	Oxidizer trajectory group	0.0	Only one droplet can be plotted per run. Either fuel or oxygen depending upon whether 209 or 210 is given a non-zero value (1, 2, 3, 4 or 5)
211	Trajectory start time	0.006/sec	The fuel droplet tra- jectory will be plotted for the fuel droplet injected when the model time is 6 milliseconds
212	Steady-state time	0.0125	The interval summary of item number 207 will be written assuming that steady-state conditions are attained 12.5 millisec after start. This is based upon previous experience with this motor
213	Fuel flow-rate override	0.0 lb/sec	If the restrictor or valve port area are not known, but experimental flow rate vs. Δp curves are available, the line resis- tances are calculated from a consistent set of values for flow rate, Δp and injector orifice dis- charge coefficient. A non- zero value for discharge coefficient signals the program that this sig- nal is being used

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

14

Item Number	Variable	Value	Comments/Source
214	Fuel pressure override drop	0.0 psi	This option is not being used
215	Fuel discharge coefficient	0.0	This signals the - program that this option is not being used
216	No injector friction flag	1.0	No frictional pressure drop through the injector ports will be calculated because the correlation is for turbulent flow and these ports are in laminar flow. Set this flag 0.0 for large holes, 1.0 for small holes. If undecided, use 1.0
217	Oxidizer flow rate override	0.0 lb/sec	Oxidizer flow override not being used
218	Oxidizer pressure override drop	0.0 psi	Oxidizer flow override not being used
219	Oxidizer discharge coefficient	0.0	This signals program that oxidizer flow over- ride is not being used
221-231	Vacuum thrust coefficients for the correct nozzle expansion area ratio of the motor, and fuel fractions of 0.0, 0.1, 0.2, 1.0	1.9240, 1.8028, 1.9082, 1.9617, 1.8470, 1.8122, 1.8680, 1.9331, 1.9294, 1.9224, 1.8959	These values were obtained from thermo- chemical calculations assuming equilibrium expansion. Values could be used from kinetics calculations or from steady-state experiments if they were available

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC(Continued)

Item Number	Variable	Value	Comments/Source
232	Nozzle expansion area ratio	40	Manufacturer .
233	Second-pulse, fuel-valve opening time	0.0 sec	No second-pulse calculations
234	Second-pulse, oxidizer-valve opening time	0.0 sec	No second-pulse calculations
235	Second-pulse, fuel valve closing time	0.0 sec	No second-pulse calculations
236	Second-pulse, oxidizer-valve closing time	0.0 sec	No second-pulse calculations
237-264	Valve timing for 3rd, 4th, 5th, 6th, 7th, 8th, and 9th pulses		Not being used

Table II. INPUT DATA FOR MARQUARDT R-6C ENGINE TCC (Continued)

Ľ,

Ň

الله الم المناج الم الم من المراج الم الم

b. <u>TCC</u> Output-Sample Case (R-6C Engine)

The computer output is in the form of printout and computer graphics done on a Stromberg SD-4060 microfilm recorder operating in a SD-4020 emulation mode. Many of the output values are presented both in the form of printout and in the form of plots of variables versus time. It is generally easier to use the plots to follow the course of events in the chamber, but is is easier to use the printout to obtain exact numerical values, exact timing relationships, etc.

The computer printout includes a recapitulation of the input values and the derived fuel and oxidizer properties versus temperature, followed by the values of the major-system variables computed at each computing time interval. At each tenth-time interval, there is a summary print which gives the disposition of the total mass of each propellant constituent injected up till that time, i.e., how much has been ejected in the gas phase, as droplets, or as wall film and how much is being retained as gas, as droplets, or as wall film. Summary prints are also produced for the four major intervals of engine operation, i.e., the preignition interval, the start transient, the steady-state portion, and the tailoff including the post-firing dribble. These interval summaries also give mean values for ejected droplet diameter and axial velocity.

A more detailed summary is given at the end of the computation period, including mean values for the entire pulse. In the final summary, entire pulse values are also given for mixture ratio, C-Star, and specific impulse for three possible mass bases: propellant mass out of the tank, propellant mass through the injector, and propellant mass through the nozzle. The final summary also gives the propellant droplet size distribution for injected and ejected fuel and oxidizer.

(1) Computer Printout

The sequence of events in the chamber can be followed from the printout shown in Table III. The first action which can be detected in the time-interval printout is the increase in flow rates for the fuel and oxidizer after the valves start to open at time = 0. As time progresses, the fuel and oxidizer void volumes decrease (i.e., the dribble volumes fill up), but no propellant is injected into the chamber until the fuel dribble volume fills completely at time = 4.2 milliseconds. The first portion of injected fuel flashes, pressurizing the combustion chamber to 0.21 psia and producing some flash-atomized 55-micron fuel droplets. The oxidizer dribble volume fills in the succeeding time interval, flashing and increasing the chamber pressure to 0.90 psia. This is high enough to prevent any further flashing of the fuel, which now goes into a single-stream breakup mode, with a computed eventual drop size of 395 microns (unless wall impact occurs first). The chamber temperature is quite low at this time as a result of the lowpressure flashing, but slowly increases as the chamber pressure rises. Ignition occurs at 4.6 ms, increasing the chamber temperature from 230°K to 2,803°K and decreasing mean molecular weight from 46 to 27. The first fuel droplets impact upon the wall at 4.4 mis. While the first oxidizer deposit arrives at 4.6 ms, the first ejection of unburned fuel and oxidizer droplets occurs at 4.8 amd 4.9 ms. While the first expulsion of fuel and

oxidizer derived wall film does not occur until 6.5 ms, the last wall-film to be ejected during the firing leaves at 16.7 ms., (however, much later, during the dribble period, oxidizer wall film begins to be ejected again at 57.2 ms.) The chamber walls dry up condictely at 34 ms. The other values for the various mass accumulations and flow rates can be followed from the time interval prints. The interval summary for the entire ignition transient interval gives the amounts of fuel and oxidizer which have been ejected in the forms of unburned droplets and as wall-film in the interval 4.6 to 12.4 ms. Also given are the mean droplet diameters and mean axial velocity for the material ejected during this interval. Values from the interval summaries can be used to derive input values for the succeeding nozzle and plume programs.

The final summary print gives mean values for mixture ratio, C-star, specific impulse and amounts of propellant flow for the entire pulse. The mass of propellants out of tank differs from the mass through the injector by the filling or depletion of the dribble volumes. The mass of propellant through the nozzle differs from the mass through the injector by the amount of accumulation or depletion of propellant held in the chamber in the forms of gas, streams and droplets, or wall-film. For short pulse-widths, the accumulations in the dribble volumes and in the chamber can be an appreciable fraction of the total flow from the tank, and are important in reducing the apparent C-star and specific impulse, which are usually reported on a mass out-of-tank basis.

The second page of the final summary print indicates that for this pulse, 62 percent of injected propellant left the chamber as combustion gas or propellant vapors, 37 percent left as unburned droplets, and 0.2 percent left as wall film. At the 60 ms conclusion of these computations, 1.8 percent of injected oxidizer was on the motor wall, with no fuel being held on the wall. This is because of the short 10 ms dribble period which empties the oxidizer dribble volume, but barely starts to empty the fuel dribble volume. Only a small amount of material is ejected as wall film in this run because the engine started with clean walls, and because the pulse width was long enough to burn the walls clean again before cutoff. A subsequent start of this engine, with much of the material from the first pulse dribble still on the walls, would eject a larger amount of wall film. Pulse widths shorter than about 30 ms will not burn the walls clean before cutoff. Thus, the material will build up continuously over a series of pulses to form a thick film, which flows faster and leads to more wall film ejection.

The mean diameter, mean axial velocity, and droplet size distribution of ejected droplets are given as input to the nozzle and plume programs. In this case, the ejected fuel droplets have a D32 of 122 microns and an axial velocity of 270 ft/sec. The drop size distribution still shows major influence from the 5-size group approximation, but can show some real changes from flash atomization and preferential chamber burnoff of small droplets.

Table III. TCC OUTPUT

•

REFERENCE RUN NO.	U CASE VO.	1		
THP	10PUT DXTX P-4 T41	STASE ARE AS FOLD		
with to	CHAMPER DE	CCPIPT10		~
CHAMBER LENGTH 1,070000	INJECTOR AREA ,136900	LINEAN TAPER 1427 Jr	PARAPULIC TAPER -1226800	
THROAT AREA , J29800	0 .0 ^000	0.00000	a on o nan	
	SPERATING C	ONDITIONS		
- SATERNAL PRESSURE		0,200000	01010001	
FUEL TANK PRESS 180,000000	FHEL TANK TEMP 294,00000	14JECTOR TEMP 294,00000	0101000	
0.00000	UEL VALVE OPEN DT		EL VALVE CHOSE DT	
	0%10 TANK TEMP 294,01000	INJECTOR TEMP 294.00000	0 00000	
0,00000	<mark>0%10-V4LVP-0P=N-27-</mark> ,Jn1n00	0.00000 0X	10 V*LVE C'OSE DT 1001000	
	- FIRST BURN VA	LVE TIMING		-a- #* #*
FUEL VALVE OPEN	CXID VALVE OPEN	FUEL VALVE CLOSE	OXIN VALVE CLOSE	
	ISVITION DE	SCRIPTION		
ASSIGNED OELAY 0.000000	IGNITER PORT LOC. 0.000000	FUEL FLOW RATE 0.000000	OXID FLUM RATE 0 000000	
ACTIVATION ENERGY 5200.000000	FREQ, FACT, X 0 3,400001E+14	PERFECT MIXING 0,000000	NO AVIAL MIXING D.DODDDD	

	FI121FEED	-3+3TE+		
LINE LENGTH 	LINË AREA ,078500	RESTRICTOR AREA	VESTU ^R I AREA 1028100	
VALVE APEA	INJECTION AREA			
HOLE DIAMETER	HOLE LENGTH	AXIAL LOCATION	RADIAL LOCATION	
INJECTION ANGLE				•
	0,000,000	0100000	0:00000	
INIT, VOID VOLUME	0,00000	TRANSITION VOLUME 0.000000	DRIBULE VOLUME For1130	
CHECK VALVES				
0,000000	0,010000	0.0.0000	0.04000	
AT THE AND INTERNAL	OXIDIZER FE	EU SYSTEM		н.
LINE LENGTH 400,000000	LINE APEA ,C20100	RESTRICTOR AREA	VENTURI AREA 1028100	
VALVE AREA .028100	19JECTION AREA	0,00000	0100000	
HOLE DIAMETER	HOLE LENGTH	AXIAL LOCATION J.00000	PADIAL L ^U CATION ++045000	
INJECTION A'GLE 45,003000	0,00000	0,000100	0100000	
INIT, VOID VOLUME	0.00000	THANSITION VOLUME	DRIBBLE VOLUME 2000 58 0	
CHECK VALVES	0,01000	0,00000	0,00000	
	ATOMIZATIO	PARAMETERS		
	- OXID FAN LENGTH			
0,000000	0,010100	10,000705	0,00000	
	NO INIT, DRIBBLE 1,00000	FLASH CONE ANGLE 30,000000	0 00000	
DRCP 512E 1	0819 312F 2 ,75900r	0R0P-\$126-5 1,000000	11230000	
DROP SIZE 9 2,304500	NC WALL RREAKUP 0,000000	JAOP RESTITUTION 1,00000	FRACTION STICKING	
NO FUEL FLISH		10 HALL FLOW 0.00000	NO WILL BURNAFF	

1

ľ

the subscript of the subscript of the Market of the of the subscript

「「ない」というで、「ないない」であるという

.

	F#*{#3		
1105.0 PHESS,	CR171CAL TEMP,	FREEZING POINT	BDILING POINT
1105.00000	594,00000	222.00000	360,000000
**************************************		LIQUIT OP,	VAPOR CP.
CC.'", COEFF.	L10, THERM, 40.0,	LATENT HEAT FUS.	LATENT HEAT VAP.
1:00000	1060545	67.500000	R10.000000
FAUE TE-SION	VISCSITY	DE'SITY .680001	REFERENCE TEMP: 500.000000
NOL E'PONENT	0000, COEFFICIENT	HONO, INTERCEFT	BURNING RATE K
Albodoo	0.000000	0,00000	
	ROPHRTIES	OXICI7EP P	
TICAL PRESS,	CRITICAL TEMP,	FREEZING POINT	801LING PUINT
1470100000	431,00000	262,00000	294,000000
	0. 010000	L1001- CP. .34000C	VAPOR CP. 298000
CCUP. COEFF.	LIC: THERM: COND:	LATENT HEAT FUS.	LATENT HEAT VAP.
1.00000	+070306	39.200000	99.00000
FACE TENSION 28 00000	VISCOSITY	DE'SITY	REFERENCE TEMP.
	, 004460	1,450000	300.000000
ND. EPPNENT	MONO, COEFFICIENT	40%0, 1%TEPCEPT	BURNING RATE K
D DODOC	U,OCCHOO	6,00000	

		*OPE#T1E3		
TEMP, 1 300,00000	TE4P, 2 2103,00000	TEMP, 3 3084,00000	EMP: 4	
TEMP, 5	TE4P. 6	TEMP, 7	TEMP, A 14331000000	·····
TEMP, 9 	1266,010000	TENP, 11 1190,000000	0,00000	
HOL: WT: 1	MOL: WT. 2	HOL: NT: 3	MOLI WT. 4	
MCL. WT. 5 19.80000	MOL, WT, A 18,7500000	HOL: WT: 7 14,410000	MOLI WT, 8 13,910000	
MOL. WT. 9 14,000000	MOL, **, 10	MOL, WT, 11	<u> </u>	
GAMMA 1 11120000	GAMMA 2 1,25200	GAMMA 3 1,220000	6AMM4 4 11217000	
GAPMA 5	GAMMA 6	GAMMA 7	GAMMA 9	· · · · · · · · · · · · · · · · · · ·
GAMMA 9 	GAMMA 10 17247007	GAMMA 11 1,228000	01070000	
	CONTAMINANT PR	OPERTIES		
DENS1TY 1,000000	VAPOR CP. 1.000000	LATE"T HEAT 100.000000	DECOMPL TEMP. 5nd.0n0000	
VISCOSITY 1 .004460	VISCOSITY 2 .024n0n	V15C051TV 3 .043000	V15C-SITV 4 1068000	
VISCOSITY 5 ,081000	VISCOSITY A .100000	VISCOSITY 7 .082000	VISC SITY R 1064000	
VISCOSITY 9 ,046000	VISCOSITY 10 .029000	VISCOSITY 11 ,010400	0101000	

55

	GPNP91L 193	THUSTICNS	a la service a service a service particular de la service and	
STOP TIME	TIME INTERVAL .000100	PRINT ONE DUT OF 10,000000	PLOT C'E O'T OF Joloodoo	
DELETE GRAPHICS	DELETE UPOP VEANS	DELETE SUMMARIES	DATA PEVITA ONLY	
FUEL TRAJ, GROUP	0X10 TRAJ, 0ROUP 0,00000	TRAJ, START TIME .07600	STEARY=5"A!E TIME 1012500	
	FLOW PATE D	VERRIDES		
FUEL FLOW RATE 0.000000	FUEL PRESS, DP0P 0,000000	OISCHARGE COEFF, 0.000000	NO INJ, F'ICTION 1 00000	•
0×10 FLON RATE 0.000000	OXID PRESS. DRCP C.Chonor	DISCHARGE COEFF. 0.000000	C 00000	
	THRUST COEFF	ICIENT TABLE		
CF VAC 1 1,924000	CF VAC 2 1,812800	CF VAC 3 1.908200	C: VAC 4 11961700	
CF VAC 9 1,847000	CF VAC 0 1,812201	CF VAC7- 1,868000	C* VAC 8	
	CF V4C-10 1,922400	CF VAC 11 1,895900	EXP, AREA RATIO 401070000	

. .

	SECOND PUL	SE TIMING		
FUEL VALVE OPE	N 0X10 VALVE OPEN 0 0100000	FUEL VALVE CLOSE 0,000000	OXID VALVE CLOSE C:000000	
	THIRD PUL	SE TIMING		
FUEL VALVE OPE 0,00000	N CXIO VALVE OPEN 0 0,0^0000	FUEL VALVE CLOSE 0.000000	OXID VALVE CLOSE 01000000	
	FOURTH PUL	SE TIMING		
FUEL VALVE OPE 0,00000	N OXID VALVE OPEN 0 0,000000	PUEL VALVE CLOSE	OXID VALVE CLOSE 0100000	·····
	~ F1FTH PU	SE TIMING		
FUEL VALVE OPE	N OXID VALVE OPEN D D.000000	FUEL VALVE CLOSE	OXID VALVE CLOSE	
	SIXTH PU	SE TIMING		
FUEL VALVE OPE	N 0XIO VALVE OPEN 0 0:00000	FUEL VALVE CLOSE 0,000000	OXID VALVE CLOSE	-
	SEVENTH PU	SE TIMING		
FUEL VALVE OP1 0,00000	N: CXID VALVE OPEN C 0.000000	FUEL VALVE CLOSE 0,000000	DXID VALVE CLOSE 0:000000	over w to ωr where there was submitted as w if r ,
	EIGHTH PU	BE TIMING	· · · · · · · · · · · · · · · · · · ·	······································
FUEL VALVE OP	N OXIO VALVE OPEN 0 0.000000	FUEL VALVE CLOSE 0,000000	OXID VALVE CLOSE 0.000000	
	NINTH PU	LSE TIMING		
FUEL VALVE OPE	N CXID VALVE GPEN 0 0.000000	FUEL VALVE CLOSE 0,000000	OXIC VALVE CLOSE	

ų

-

A series of the series of

1

RIVED FUEL P	ROPERTIES						
DUCED TEMP.	TEMPERATURE	LIG. ENTHALPY	-VRP, EVTHALPY	TAPRESERVE RESSURE	ISVBC -01	VISCOSTT.	NOTENEL SOLANE
3000£	178,20000	122,958000	345,009000	,000013	,994678	200413	76.718089
.40000	237.60000	231,444000	404,11200n	.021783	,938751	.039109	60,86 528 5
	200001-242	272-43000		1-120119	630300	110101	47,606846
.60000	356.400000	313,41600	522 ,318 000	13,047633	.826698	603909	36,641994
700000	415.80000	354,402000	581,42103C	69 ,2 52066	170071.	.02402	27,689749
	475,20000	000000 ¹ 665	640 . 524000	235¹37324 0		101227	
960006.	534.600000	434.374030	699 62730 ⁿ	3 81,695073	. 624088	901064	10.011933
1,00000	564.040700	477.360300	758,7300gr	1 395. 00000	,292811	.00390	50005C'
RIVED OXIO							
CUCED TEMP.	15496441	LID, ENTHALPY	VAP. ELTHALPY	v Pra PaESSURE	13, DENSITY	VISCOSITY	SURFACE TENSION
. 30001	129,30000	46.548300	194,959401	000000.	1,465399	,365550	76,695121
	1-2-1-00-CU		-217 ₋ 84320	046000*	<u> 2,760525</u>	+22 ² 4	60,047856
19000	215.500ngC	77.580uco	220 . 64703f	, C38852	1,655631	.023084	47,592715
. ¢urazt	258.630000	93.C96JCO	233 . 495830	1,726303	1,550747	. 07133	36,631132
	2010255020	000878 ² 697	- 543 -334804	21 - 64 ⁹ 987	<u></u>	- 129+22	23'9676 8
. 8003CC	344,850555	164,328000	259,17346-	137,531787	1.340079	, 562e77	20.48207-
- 2002c	387 ,9 00nCC	178,844020	272,C2220F	212,146110	1,170403	, CD1985	10,309866

•

10,309866 -00000

12,146110

259,17340-272, C2220F 294-966-66

164,328000 178,844000 00000-067

344,80000 3e7,900rcc 10000-16+

.8003c2 -20036 210000

2253091

-12:0131

*** CALCULTET OUN DADAVETERS ADE POINTED FOR EACH INTERVAL OF TIME FOLLOWING START

	0×10 1×0 1849	CAID HALL EVAP	OXID CV WALL	2	7 7074L 1470LSE 0.	MALLETAINED 0.0000000 0.00000000 0.00000000 0.000000		CF VAC 1.91829	0XI0 144 TEMP	DXID HALL EVAP	DXID ON HALL	THRUST + LBF 5,7184908408	701AL [#PULSE 5,7184908418	CF VAC
1,16944	F CEL 120 1619	- Puel Wall Evip 0,	PVEL 0- #ALL 0.	643 7440704	K 183604AL PC+01 0.	08095' 464A1ME0 0.00000000 0.00000000 0.00000000 0.000000		банна 1,10044	FUEL 144 TEMP 2041050	FUEL MALL EVAP	FUEL ON WALL	GAS FRACTION 1.00000	K INTEGRAL PC=DT 1,000000E=10	САННА
46,0020	0x10 v010 v0L 5,8000016+04	OATD WELL BURN 0.	OXIU STREAMS 0.	0×10 *15* ***	MASS UUT OF TAM 7.	GAS RETAINED . 0000000 . 0000000 . 0000000 . 0000000	0 	46,008U	0×10 v010 v01	OXID -ALL BURN - 01	OXID STREAMS	OXID FILM FATE Di	MASS UUT OF TAN 7.4437635406	HOL HT.
3-00	FUEL VOIS VOL 1,13COFOE-03	ם <mark>י</mark> אפר אזרר שחעות	FUFL STREAMS	0. • UFL #11:• #1 ¹ E	PETA ANGLE D.		5 	CHAMBED TEMP X 300,000	FUEL VOID VOL 1,12070355-03	FUEL WALL BURN	FUEL STREAMS	FUEL FILM RATE D,	BETA ANGLE 0.	
	cx13 fick sAle C,	0x10 FLAST 947F	0x+th CeOPLA+U	LAD DaOP TLE	ABA TOT CIXC	08095 EXERC 0.000000 0.0000000 0.0000000 0.0000000	6 1	FUEL FAACT13% C.	PXID FLOL RATE	0XID FLASH AATE -0;	OXID DFOPLETS	0XID D90# 44.6	OXID INJ. VEL.	FUEL FRACTION
	Fyrl Flûx Aff	<mark>- 19 - 19 - 19 - 19</mark> 	ruch Beyeress F	. ا د ادال ۲۵۵۵ ملایق	Fuel Put res.	л.к. с бхобог 1. 20400031 1. 20400031 1. 20400031 1. 20400031 1. 20400031	n Do 7 D O	16417104 P.	FUEL FLOW AATE	FUEL FLASH RATE	FUEL DODLETS	FUEL JROP AATE	FUEL INJ. VEL.	10N
	L 		· = : : : : : : : : : : : : : : : : : :	بر مرتبع کیو در بر	anan - X	V S	で い い い い い い い い い い い い い	1	TXID :- HATE	2x10 JCCP alas.	SSAP 245 CIXC 222909363510	DXID WAS EFFLUX	HALT YOUD UND	CHALBER PRESS
	- - - - -	• • •	95:. Etc. 1.1.		و مدار			11-6-414115EC 1.000095-71	FUEL INU HATE	FUEL 240P 10P1	FUEL GAS -ASS	FUEL GAS EFFLUX	FUEL DROF DIAM	TIME WILLISEC

1000

				T aute III	nanimin				
) L	ан 1		FUEL FLO- 74TE 8.0931305-04	0X13 FLOW PATE 5.7943745-04	FUEL VOIF VOL 1,126206E=03	5,746739E=04	FUEL 11J TEMP 294,000	0XID [v. TEMP 294,000	
.) P	ני 	יורי פרורי יואי י	FUEL FLASH 2075	AKIJ FLASA 24TF	FUEL HALL RURN 9.	OXID HALL BURN 0:	FUEL WALL EVAP 0,	OXID MALL EVAP n.	
	un , , , , , , , , , , , , , , , , , , ,	51-1292154,4	FJEL DageLefs	AND DEOPLETS	FUEL STREAKS	DALU STREAMS De	FUEL ON WALL	OXID ON HALL	
3 14	,	ייאט זיב נוגיי י	r rugL Jag¤ a≜TE r₁	rxIS 3⊍0P ≏≜ ^t E ℃,	FUEL FILM AATE 3.	OXIU FILH RATE n.	6AS FHACTION 1,00000	THRUST - LPF 5,716490E=08	
•		1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• 	יאדים די.ט. יפרי. ר	нета A'.GLE Г.	MASS UUT OF TAN 21231276-07	(IVTEGRAL PC+DT 2,000000E+10	T3T4L MPULSE 1.143298E=11	
11					010.010 010.010	*0 <u>, *1</u> ; 46, 1080	01444 1,15944	CF 14C 1,91829	
	ат. 1. а. т.Т.Р. -	General Press	FUEL FLOR 4418	AX10 FLON 44TE 1+0101545 3	FUFL VOL 1,1224125=03	0x10 v015 v0L 5,701478E=rA	FUEL 184 TERP \$94,000	ÓK!D 1∿J TEMP 294,000	
*	a. 				PUFL Mall Buch	- 0*10 *==================================	FUEL MALL EVR⁰ G.	9×19 ×421 €¥#9	
	5 S S S S S S S S S S S S S S S S S S S	2011 575 714 J	fut departs) ⊨u 460a2 	γuel StatAt9	Ω3 4 4 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10	FVEL 0% #ALL 9.	ATTO TH WALL	
i					- 	- 24] u f 16 m = 16 	625 F48716V 1,60300	₹#0 <u>45* = tof</u> 5.716Å90F=00	
		1 6 03 73 7 7 1 6	ы н		867A A'Gtt 1	KASO UUT UF TANK 4.4562448817	1216484 FC+01 3.700006+10	1014L 494466 1,714947641	
; :1		00000000000000000000000000000000000000	.* L •• • • • •	2.	C4≜4888 1648 1 300,000	46.00 46.00 46.00	54~~4 1=28944	CF VAC 1,91879	
			Fur FLG - 112	CXID FLOH PATE 1.2568685443	FLE VIE VCU -1,117355003	3×15 vit vat	FUEL 120 TRUD 	0x10 \J TEMP 204,000	
		ι Π Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ		a b TS TS T L TS T L TS T L TS T C	ר שור אין	1911 - 115 - 116 19	яще маць £∨ д я 0.	CXIC ANL EVAN	
	ت ت ت ت ا ا		5.1205C 140	11, JEOPLETS	FUEL STREAUS	CALL STREAVS	FUEL C: MALL	DXID DV FALL	
**	د. بر الم بر الم بر الم	x 7x12 +5 25514X	к в с в 2 в 2 в 2 в 2 в 2 в 2 в 2 в 2 в 2 в 4 в 4 в 4 в 4 в 4 в 4 в 4 в 4 в 4 в 4	D ▼n alson Cixi	ע טיור איר איר איר איר איר איר איר איר איר איר איר איר	0×13 €1° = 4°E	1.0000 1.00000	112051 + LEF 5,716498€=8€	
-	194 - 197 - 1 4 -	>▼IL adad Cixu	r.e. 144. E	ax:: :	2674 4'30E	*ASS UHT OF TA'K	1\\TEGRAL PC+3T 4 <u>10000005+10</u>	TCTAL]+PULSE 212855966411	
,	LE LISEC		NU 1. 17. 51	Ciroker Jour		2 در ۱۰		CF VAC	
1	50005	1.700000=-6			330,002	- 46 - 10 B C	1,16944	1.91829	
-) L	JEL INJ 4418	8448 777 0180	FUEL FLOW SATE 2.0232365-03	CX15 FLC+ PA1E 1.6985785-04	FUEL VOIT VOL 1.1110308-03	axiy vatr vat 5,7336948€04	FUEL 124 TELO 294.000	CXID 1-4 - 4649 294.000	
2	IEL DADE HURN	re∪e ageC Cixo °1	רשבר אאדב יי	0X10 F.ASA 1410	FJEL #ALL 8081 01	1408 114- 31×0	FUEL MALL EVAP 01	DXID HALL EVAP	
•									

59

7146 MILLISEC	СНАНЯЕВ РЯЕSS 1.000000000	1641710N 0.	FUEL FACTION 0.	СНАМВЕЯ ТЕМР К 300,000	MOL MT. 48 r080	Бамма 2,20944	CF VAC 1,91829
FUEL INU RATE	DXID INU AATE	FUEL FLON AATE	0XID FLOH 9A.E 2 .3577107402	FUEL VOID VOL	DXID VOID VOL	FUEL INJ TEMP	DXID INT TENP
FUEL JAOP RURA 0.	CX10 DP0F 3URV	FUEL FLASH RATE 0.	OXID FLASH RATE 01	FUEL WALL BURN 0.	DXID HALL SURN 5.	FUEL MALL EVAP 0,	DXID WALL EVAP D.
FUEL GAS MASS	CX10 GAS MASS	FUEL DROPLETS	0x1D DROPLETS	FUEL STRFANS	DX10 STREAMS	FUEL ON WALL	DXID ON WALL
FUEL GAS EFFLUX	CAID GAS EFFLUX	: 7UEL DAOP PATE	0x12 2P0P a≜ ^t € 3.	FUEL FILM AATE 9.	DXIQ FIL ^u AATE 3:	GAS FRACTION 1.00000	THRUST = L0F 5,7104906=0\$
FUEL DAJP 21A ⁴	TAID URCP TIAN	FUEL 1-1. VEL.		RETA ANGLE C:	MASS UUT OF TAA 8,0990792=09	N INTEGRAL PCOUT	TJTAL [MPULBE 2,2889985410
FUEL GRAMS Oxic GRAMS	1*JECTED #155 0.00000000 0.10000000 0.10000000	AS EAPELLED 9,0000001 0,0000001 9,00000001	58095 EXPELED 6.00000000 0.00000000 0.00000000	KALL EXPELLED 0.03000000 0.00000000 0.00000000000000	GAS' RETAINED 0.00000000 0.00000000 0.0000000000000	PROPS RETAI∿ED U.00000000 0.0000000 0.00000000	▲▲LL RET#1~ED c. 07000c0c 0, 07000c0c 0, 07000c0c
яны ви Койц тяр Ской тяр Сколо Сколо Сколо Сколо	995 1% LEGTEU 395 1% LEGTEU 395 1% LEGTEU 395 1% LEGTEU 396 1% LEG		0 0	20000	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 14 10 10 10 10	
717E 411415EC	004=000000"; SS344 4345810	13417154 1	FUEL FAACTION ".	С1 № 4466 ТЕТО А Иго. Спо	451 - 11	Барма 1,109аа	CF VAC 1.91879
FUEL INU GATE	7x13 141 2415	FUEL FLON RATE 146553645402	0.13 FLC. 4 E 1,3915916. 2	FUEL VC15 VOL 4,2333365+05	0x18 V715 V0L 2,745556E+n5	rufi 100 teap 294,000	CA10 114 7FMP 294.010
гиЕц САДР жUR\ 0.	110 240₽5 2115 1.	FUEL FLASH 44TE C.	ס×ום גיא⊐יד חן	FUFL WALL BURN 01	0x10 mell quPr 0.	FUEL MALL EVAP 0.	CAID ALL EVAN
FUEL GAS MASS	<pre>_#1J G45 ~455 6.2232945413</pre>	ruel Dagalets a,	CHID DROPLETS	FUEL STRFAMS	0×1,0 5746445	я с П. С. – А L L. С. – С. – А L L.	
FUEL GAS EFFLUX	C 2XIO 345 EFFLUX 3.	' FJFL BAGP ¤ATE 7₁	ОХІД ОРСР ≍А.Е С.	רעד אאדב ין	OXID FILM HATE 9+	6AS FHECT: 31 1.0000	*±2.51 € Lef 5.7164906€08
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TTL ADEC CIXC	10. INJ. 261.	axto t∘4, 254.	PETA A.GLE P	4455 3'T 3F 744 5 4037758435	A 1/16445 A 10000 A 10000 A 10000 A 10000 A 10000	TCTAL
-1-6 -1-1-1960 4,20003	00000000000000000000000000000000000000	1 u	5056 542713. ,999997	- Cmrm9Eq TEMP 4 165,230	м0, ыт 46, î 7 a ()	санаа 1.04529	.55 445 - 2,09238
FUEL 140 447E- 3,410364E+03	CK10-1+2 A1TE	FUEL FLOW 94TE 1,695547FeC2	ΟΧΙΩ FLOH RA ^I E 1.425465Fe ^L 2	FUEL VOIP VOL	0x10 Y01P V0L 5,12A064E+07	FUEL 1-0 TEMP 294,000	0x10 144 FAP 298,010
			- <u>3410-95838-4475</u> 5	- FUEL WALL BURN 7.		505	0×10 ××LL fva

60

*FV*FL @AS-M<mark>135 0X10-UX5-MISS---FUEL DADP</mark>LETS OXID DPOPLETS FUEL GTREAMS OXID 5TREAMS FVEL OM WALL 2.444067E=07 6.2232905=13 9.654971E=08 0. 0. 0. 0. ד בינו סיב בכביים אלא מים בפביחה שובי מסמס הידם שלט שים ב בחבר בזוא הידם שוא איזה בזוא מידה. ראל לעורדווא ţ

5x10 04 kALL 2. Thenet _ 1 of

1012L 14PULSE 1.347454E-06 111441 - LC 3110 AAC 6449 . *##UST + "EF 9,2222425+62 72141 14PU195 2.8503716=05 OXID HALL EVAP тнаUST = ⊾ег 5,4046798=08 4455 001 0F 44.4 148644L PC+DT 1074L 148465 ₹858 C.1 CF ₹878 [1716]48 PC+CF 10142 [174]56 7 [0424536603 26933426614 11,49743426403 0X10 1VU TEME 7813, 144 TEMP 294,010 CX10 C1 1410 ***UST * 1.** OXID DV -ALL CF VAC 2.01018 CF VAC 1,979F1 MASS UUT OF TAYK [YTEGPAL PC+C" 7.6527475=05 4.8390315=34 MASS OUT OF TAME INTEGRAL PC=DT 617158765=05 214010525=05 ראנט טפטף הנהי, הנהן לנשטא פעות העוט הנמי פעור אנון פניא. נייט טפטף הנהי, הנהן לנשטא פעות הגוע הגוע הגוע מיש אנייט אנון פנשט 1975 נייט מין 1975 - 1975 - 1975 - 1975 - 19 CX10 5"48445 FOEL C1 4401 01 1.6548586+36 FUEL 32 FALL 9,3397155=77 FUEL INJ TEMP 294,000 rutt, ¦>u Tt≪P 294,000 fuEt 1%, fewa 294,270 OXID FILM 4ATE GAS FMACTION 0. 1.00000 FUEL DN HALL 1.13257 1,17322 1,09532 GAMMA 8×18 יידע עמי ניאר ארוג עמי DAID VOID VOL DXIU STREAMS 3X12 4314 401 1 Сидиана теха к моц жг. 219,084 к 46,3179 46,-147 CHAMPER TEMP K NOL HT. 200.000 48:0234 8451 313 51164 - 31<mark>10 313 51164 1400 - 9115 - 0110 0400 - 1155 - 116 </mark> FUEL FLOW FATE OXID FLOW PATE FUEL VOID VOL 1,7152554 5 51 1,7152554 5 51 FLEL FLOH GATE INTO FLOH GATE FUEL VII VOL 1.6423675412 1.4611225412 0. Table III-Continued rucu FLOM PATE DXID FLOM PATE FUEL VNID VOU 1,618631F=12 1,5UN3046402 1, 04748**0**87480 FUEL STRANS FUEL DROPLETS OXIJ DROPLETS FUEL STREAMS 1.704495Ferd BileCordEed7 0, 230,617 PUEL DROP DIAM OXID DROP MIAM FUEL ING, VEL, OXID ING, VEL, RETA AMOLÉ Joa, 446 - 34,4386 - 215,085 - 86,6774 -28,4766 Fufu Dege niki dikida hiki Fufu 170, Auto 170, ani, Hafik kaduf Gasisas dasisas 2x10 D909LEY3 2,655392F+06 FUEL FPACT131. 1144565 FUEL FRACTIO^N ,264213 -101-101-6-150-6 1101014 rust 3p3ptF*5 9_5728#86+16 1000 0409001070 7,370366010 10111101 Î GLITION NUT - 1 - 0 -5 Fuft 615 4155 CX10 615 4155 1,9925366407 1,1379457416 FUEL GAS 4155 CX:0 GAS 4155 1,7753336407 1,5695996476 FUEL INJ RATE CXID INJ RATE Abos and dixis hand abad han 5×10 145 4145 D×10 1°0 HATE 2.4801225=r2 FUEL GAS MASS CAID GAS MASS CHAMPEC PRESS 1,54297 CHAMBER PRESS Save against 34.4380 2,15772 וטבן בהסף עשי FUEL INU RATE 1.642367E-02 FUEL 144 4478 1.6186316-72 4.50000 TIME MILLISEC TIME MILLISEC 4.40302

ľ

TANTE AT A AN UNITEDANCE

5

ŵ
Table III-Continued

021 0 000000 0 000000 0 0000000 **020** 0,000000 0,000000 FUEL EJECTED THIS INTERVAL OXID EJECTED THIS INTERVAL PROP EJECTED THIS INTERVAL

R.

1

The second

Table III-Continued

-

	1125 HILLISEC • 70005		15,171°A 1,90000	FJEL FRACTION 1227755	СНАМЯЕР ТЕЧР К 3173,088	MOL WT, 29,5714	64444 212227	CF VAC 1.92305	
	דיש אבער 1 	31.4 0.1 01x.	FUEL FLOW EATE 155654875492	0×13 FLUH AA ^T E 2 15203115-2	rugu val	Ton dian nixe	FUEL 140 TEMP 2041000	DXID 145 TEMP 284,000	
	ν. 	# 1,	5.56 FLASH 4.75 7.	CXID FLASH RATE 0.	FUEL WALL BURV 3,4643376405	0X:0 HALL 9URV 4.1418416=05	FUEL #4LL EV≜P 0;	DXTD MALL EVAP 0.	
	-5-, 010 - 1 - 4-4-4-5-5-	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	rust Jaoplets 	0X13 200PLFTS 317950002408	FUEL STREAMS	OXID STREAMS	FUEL D' HALL J <mark>72653495466</mark>	CXID ON HALL	
		とうにはいい クロコー ひがん しつりょうしいかくしょう	rurt Cour Afr	₩ ¥u ucrn niko v	FUEL F1LM AAFE A.	u	645 FRACTICN 1,00000	111031 - LPF 4-63444	
	• ۲۰ تو ۲۰ تا ۲۰		Fum 1. J EU. 200.:30	13 10 1 C1X	96°A Angle 	4455 001 05 541	<pre>< 1\TEGRAL PC+DT L=3102795+C2</pre>	727AL #40465E	
		05114 811511. 1491 - 45	() 	FLE, FELGY:11 1254954		401 ×1. 24,306¥	сдика 21,22.795	CF → AC 1 - 74454	
•			7 1 1 1 1 1 1 1 1 1 1 1 1 1	5112 - 112 - 114 - 115 -	н 		т ст 294.000 294.000	CA:C : "EN"	
	. P3 Let e 3 B - 1 2 E - 1 2 E - 1 2 E - 1 2 E - 1 3 E - 1 4 - 1 5	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ין ין יבעי קראיייי	11 + = 17 T U = 1 =	. 8 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1111	б чЕ́ы такы б∨ая С.,	CXID ALL EVAR C.	
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 	P. H. C.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	() 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		015 55 7455 5,9436735407	
	100 0 10 0 10 10 10 10 10 10 10 10 10 10	1311 345 855 47	FUEL CPOP 1475 3,510110-114	∃_VE dost tixu	1) 	111 • • • • • • • • • • • • • • • • • •	GAS F×ACT;C: .949905		
	F UFL COCP 214 U 125 65 214 U	*:: 3505 1:4"	/ such 1\	111111 VE-	76*A 4.6Lt •21.4505	**55 CL4 CF ****	<pre>c : LTEucal PCeC* 2:2785936+02</pre>	101 101 101 101 101 101 101 101 101 101	
		UNBURI	VED FUEL OUT	OF ENGINE					
	1000	entrele Preso 91,27	1,25050	- 464 - 502,054 - 104 - 1 1346073	- ************************************	40, 41	54M44	5+5-5-1 5+5-5-1 5+5-5-1	
	5081 140 4198 14944355472	215286425425	1011 FLOX 01110 114944301110	1112 FLCk #4 E	Fuel voit vol	10× 51× 51 5 5	FUEL : 14 TEMO 294:020	294.015 294.015	
	Futt 2808 Bufy 5,3034685+23	7,41010564-1 7,41010564-1	المتقدر الإيكام المعالمة أ		° UFL ×220 ×201 : 7]4756F=24	AX 10 441 1000	FUE HILL EVIA	Brad HILL BY25	
	FUEL G+S 1+98 9,573936E=0-	2x3C 8x8 ~455 1+620060=≠∩6	FCEL DROPLEFG 5.200665Ff76	Ax10 0005 014		0.10 0.1484.5	моще од жире опараонето опараонето	CX10 CV XALL 1,213334F407	
			7-12- 0400 01 42 1.6112225=03	0x10 0400 4418 8.2183425-45	- 	- 2870 - 21 70 - 21 - 2	845 F9407124 916281	5127555	
	<i>⊊</i> ⊎€Ļ 0¤0≥ <u>9</u> ;≰⊬ 1 25 ,099	AXID 3409 -114 82,7025	1051 1401 4EL	[akib tru, set. 88,5112 012/252 αμ7 α	86°A 446LE -20,4909	KAG5 0∵T OF FA∿ 8,8824410=05	(14786846 8040* 3.1877196402	10141 [¥90686	
	•			ト・トン ビトコンニ	」 こうこう こう しい				

NOT REPRODUCIBLE

121,100	CTATELS	1.00000	- 400 - 114 - 101 - 100	1192.99	9962712	1.82793	
PUEL- INJ RATE 9, 2689288+03	0X1D-1NJ RATE 1,4807458=02	FUEL FLOW RATE 912689286=03	0X10 FLOW RATE 1.4807496442	PUEL VOID VOL 0.	OXTE VOID VOL Di	FUEL	-0x10 144 7849
FUEL DROP BURN 9,2456446+03	0x10 0400 8084 9,819244E=03	- FUEL FLABH RATE 0.	-0410 FLABH 4172		0+374074612		0110 HALL BVAP
FUEL- 048 MA88 5,987461E+07	0x10 0x5 Hz55 1,5928062+06	FUEL DROFLETS 5,7807616+06	0×10 0×0PLE78 8.494005E=00	FUEL 87864H8 0.	0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FUEL ON MALL 4:539809E+06	0410-0N-MALL 3,910036+00
PUEL 845 EFFLUX 5,692131E=03	<u>1,0056625+02</u> 1,0066625+02		0x10 0x09 =₄12 4,979602E ₆ 03	7UEL 71L ^{M-RA7E 4,270740E+05}	<u>0#10 F12H A476</u> 2,9694105=09	883 7840710N .634876	5,21193
fu t , gage glam 120,578	0x19 080P 01AH 92,2606	FUEL [~J. VEL. 123.166	oxid [>J. vek. 69,7379	8674 Avglé 3,03731	MAS § 0UT DP TA M 2 <mark>1726608E=34</mark>	K INTEGRAL PC=DT 1703544	TOTAL !₩₽UL®E 3 .944630E=02
7146 MILLISEC	СЧАМВЕР РАР55 92.1611	1.00000 1.00000	FUEL FRACTION .36-559	CIANDER TEID X 61946 382	MOL WT. 21,2044	дамма 1.22790	CF YAC 1,69824
FUEL INJ RATE	51000000000000000000000000000000000000	FUEL FLOH PATE 	0XID FLOW RA1E 1:4806952#02	TUEL VOID VOL	OXID VDID VOL	FUEL INJ TEMP	DXID INU TEMP E94.000
FUEL DROP RUM. 5.2390636+03	0x10 0R0P RUR 9.817506FE03	FUEL FLASH RATE 01	OXID FLASH AATE ".	FUEL RALL BURN 4,40393956404	0XID WALL BURN 2,5921675=04	FUEL MALL EVAP 0.	OXID AALL EVAP D.
FUEL GAS MASS	5XID GAS MASS 21923912400	FUEL OROPLETS 5,770400E-00	0x13 0R0PLET ⁵ 0.19302324 ⁶⁰	FUEL STREAMS	OXID STREAMS	FUEL DN MALL	0x10 04 4ALL
FUEL GAS EFFLU ¹ 5.688395Ee03	(OXID GAS EFFLUX 1.008128€€02	: FUEL JRDP RATE 4.0119026463	CXIJ DRDP RALE 4.984585Ee65	FUEL FILM RATE 4,9377615405	OXID FILM RATE 2,8230455=05	GAS FRACTION .434462	Тн#UST = LEF 5,20915
FUEL CROP OLA"	4040 CIX0 5+82-36	FUEL 144. VEL. 183.074	oxiD INJ, VEL. 89,7390	RETA ANGLE 3.07000	4455 0UT DF 744 217506775+04	K INTEG4AL PC•DT 1722760	TOTAL 1×PULSE
17-5500	CHAM9ER PRESS 92,1214	1641710N 1.00000	FUEL FRACTION ,360412	СНАМЧЕР ТЕМР К 3194,01	401 HT, 2112695	Gанма 1,22787	CF VAC 1,09241
FUEL INJ RATE 9.2554036-03	CXID 124 RATE 1.4806595+02	FUFL FLOW PATE 9,2554936+03	0XID FLDW 44.E 1.480657E=02	FUEL VOIO VOL	Lo void vol	FUEL INU TEMP 294,000	0×10 1~4 TEMP 294.000
FUEL LPOP BURN 5,235312E=03	0XID DRDF RURV 9.8167285-03	FUEL FLASH RATE 7.	OXID FLASH RATE P.	FUEL HALL BURN 4,4051346-04	OXID HALL PURN 2,5930145-04	FUEL HALL EVAP 0.	DXID AAL EVAP 0.
FUEL GA& MASS 8,9720016=07	0XID 645 M455 1,592170F=00	FUEL DRDPLETS 5,772035E+06	0XID DRDPLETS 8,4916876. 6	FUEL STREAMS	OXID STREAMS	FUEL DN HALL 6.4438476+06	0x10 0v 44LL 3.462279E=00
FUEL GAS EFFLUX 5,682549E+03	(0X1D GAS EFFLUX 1.007784E=02	: FUEL DADP AATE 4,024900E+03	0XID DPDP A.E 4,939244E=03	FUEL FILM RATE 3,813704E=05	0X1D F1LM RATE 2,681101E=05	6AS FRACTION 634131	TMRUST - LBF 5,20093
FUEL DROP 31AM 123,587	0X10 DPDP 11AH 92,3066	FUEL 14J. VEL. 122.968	0XID 1NJ. VEL. 89.7329	861A A46L6 3,41661	MASS DUT OF TAN 2,7747396=04	K INTEGRAL PC4DT ,721973	TOTAL 1*PULSE 4.050811E=02
-1-6 +141366 12,4000	снанве рарз. 92,0580	1441410N 1,00000	- 	сиживея теир к- 3194,39		ална 1,22785	65 Vac 1,89254
PUEL 14J-RETE- 9,249301E=03	0x10 1vJ Ax75 1,4806325=02	- FUEL FLOW RATE 9,249361E=03	0X1D FLOW #A ¹ E 1,480632E=02	FUEL VOID VOL	DA GIO AGE	FUEL [4J TEMP 294.000	0x10 [44 TEMP 294,000
	AKID DEND DIEN	FIIEL FI 484 8470	AVTS 51 181 3145		10113 I 114 CIXU	FIIC: 44:1 CV.0	8773 111 LIAU

•

Table III-Continued

64

.

Table III-Continued

,

		ļ		
VALUE HINGE STR.	0X10 0N NALL 3.4338048=00	5,20398	10111 1474555	
	FUEL ON MALL 6,396215E=06	013 FRACTION , 433929	<pre>c INTEGRAL PC=DT ,731176</pre>	
21200000000000000000000000000000000000	OXID STREAMS	0x10 F16H FATE 2,545173E=05	HA SE OUT OF TAN 2 <mark>1</mark> 7987 956= 04	
- CFE TARE DCT	FUEL STREAHS 0.	3,6007095=05	8614 A4666 3,15333	
01	0XID DRDPLETS 8,4914926=56	0X10 0000 PA:E 4,091556E=03	0X10 1VJ, VEL. 85,7314	
1 466 1 467 1 1 1 1 0 1	5,767915E=06 5,767915E=06	FUEL DROF RATE 4.0339856.03	FUEL [NJ, VEL, 122,906	the second s
9.8097879405	0X10 GAS MASS 1,591461E=06	0x10 0x8 EFFLUX 1,0076175+02	CXID DROP DIAH 92,3277	
5,2293146=03	FUEL-1048 M455 8,963623E=07	PUEL 0x8 EFFLUX 5,678001E=03	FUEL 0707 0144 120,590	

-		
	D32 MEAN DROP DIAMETER (M)	250,79189102 252,450192 256,071747
ENT /	1014L 4455 1014527 1014657 1024365	123,515542 87,281631 107,072866
IGNITION TRANSI	N 0000 0000 0000 0000 0000 0000 0000 0	109,714026 73,989991 91,272920
12,40 MILLISEC	DROPLET 4AS 013915 013981 023981 027496	99,939018 63,951049 731606
SUMMARY FOR TIME INTERVAL ENDING AT	FUEL EVECTEC THIS INTERVAL Oxid Evected this interval Prop Euected this interval	FUEL RUBGTED THIS LITERVAL Defut evented this literval Prope evented this literval

ontinued
Ŷ
-111
Table

of Basilo

.	FUEL DRGP DIAM 119.642	₩,10 080 01×0 92,2010	FUEL 1NJ. VEL. 123.758	0XID INJ. VEL. 87,9046	BETA ANGLE 4.19260	MASS 0UT 0F TAN	(LNTEGRAL PG=DT 4,13295	TOTAL [MPULSE , 239977
· 0 .	-1 46 0111560 -50,8000	Снан веа Риязз 88.2462	14,17100 1,40000	- 2015, Fraction ,938751	- CHANBER 76MP K- 3206,80	NOL HTT 2210298	84877 1,22396	07 VA0 1,91728
5 KO V	FUEL 44 4476 9,3117136403	6×10 1~J A±TE 1,518129⊏≞n2	₽₩₽₽ ₽₽₩ ₽₽₹ 9,3117135=03	OX13 FLOW AATE 1.518129E=02	PUEL VOID VOL	DA GIO AOL	F <u>vel inj tenp</u> 294,000	0x19 1vJ 7EHP 294,000
Z1		<u>0410 000 000</u> 2,903084502	- Puel - Flash Rate 1.	0x10 Flash Rafe 0.	- FUEL ++LL BURN 0.	01 446 5084		010 HALL EVAP
100	FUEL GAS MASS 3,180330E=07	A×10 G≥5 4±59 1,594829=r6	Fuel BROPLETS 5,5097296=06	0XID DPOPLET ^E 8,724021E= ⁰ 6	FUEL STREAMS D.	0x10 5788ArS 0.	FUEL ON WALL 0.	010 04 4464
- 24	5,138715F=03 5,138715F=03	× 0×10 0×5 EPPLUX 1,0∪30Ab¤=n2	- PUEL BROP RATE 4,1734576=93	0x10 0*0* 4x1E 5±150919F=03	9. 9.	- 8×10 F16× ***E		тичет - сег 5,05561
•	Fuft 840P 81a4 119-043	€¥ID D4∪P ~IA 92,2617	FUEL [24, VEL. 123,735	0×13 1≈J, vel. 87,9025	8614 AVGLE 4,19267	MAS6 0UT OF TAN 1.212372E=03	(INTEGRAL PC+DT 4,16137	1074∟ - <u>14₽∪68</u> ,236483
	17 E MILISEC 50,000	СНАМВЕЕ РАЕSS 88,2451	13,1712N 1,40000	FUEL FRACTIO .338751	СНАМРЕР ТЕМР К 3266,80	40L HT. 22.0249	GАММА 5 1 22394	CF VAC 1,91725
	FUEL IVU RATE	0X1D 1%J R4TE	FUEL FLOW FATE 9 <mark>13207525-03</mark>	9X10 FLON PATE 21517915842	PUEL VOID VOL	OXIO VOID VOL	FUEL INJ TEMP 201,000	0X10 141 7648
	FUEL 230P AURN 5,1305765-03	110 0P0P 20P0 1.0030645=72	FUEL FLASH RATE A	nxio Flasm Rate ".	EVEL MALL BURN 0.	0X10 MALL BUPN	FUEL MALL EVAP 01	OXID MALL EVAP 0,
	דעלב GAS MASS 2,2002742-07	rx1D GaS ⊻±SS 2,590€10⊕460	FUEL DROPLETS 515098885608	0x12	FUEL STREAMS	DXID STREAMS	FUEL ON HALL	DXID OV FALL
	FUEL 3AS EFFLU 5,1380535003	x :x1D GAS EFFLUX 1,903003f=r2	. FUEL DROP FATE 4,1734525403	0x13 D#UP PA.E 5,1509285403	FUEL FILM RATE 9.	0x1D +1LM AAFE 8,	GAS FRAÇT 0~ 619320	ТыяUST - цеб 5,05575

HEAN VELOCIT 273,777077 243,501240 254,978994 TOTAL MASS .071657 .089300 .160957 121,829297 92,046640 106,956335 MALL FILM 000022 000016 000016 108,728864 79,209225 92,555387 STEADV-STATE 040PLET 4455 071636 059244 160920 **030** 99,363977 70,021651 91,715055 50,90 MILLISEC SUMMARY FOR TIME INTERVAL ENDING AT FUEL EJEGTED TAIS 1'TERVAL OKID EJEGTED THIS 1'TERVAL PROP EJEGTED THIS 1YTERVAL FUEL EJECTED THIS INTERVAL DXID EJECTED THIS INTERVAL PAGE EJECTED THIS INTERVAL

MASS UUT DF 7144 INTEGRAL PC+DT TCTAL IMPULSE

FUEL DRUP VIAM MAID DROP MIAM FUEL INU, VEL, OXID INU, VE^L, PETA ANGLE 119,047 - 92,7047 - 124,722 - 87,2936 - 4,19275

66

¥

I

-

Table III-Continued

ř

TLM RATE ONLE MALE
INGLE ***** OUT OF 1, 24 0 24 1, 24 0 24 1, 44 L 0, 24 0 2 1, 45 M 0, 24 0 2 1, 44 L 0, 21 0 1 1, 44 0 L 0, 21 0 1 1, 44 L 0, 21 0 2 1, 44 L 0, 22, 51 7 23, 07 0, 22, 51 7 23, 07 0, 21 0 2 23, 07 0, 21 0 2 23, 07 0, 21 0 2 23, 07 0, 21 0 2 23, 07 0, 0, 21 23, 07 0, 0, 21 23, 07 0, 0, 21 23, 07 0, 0, 21 23, 07 0, 0, 21 23, 07 0, 0, 21 23, 07 0, 0, 21 24 LL 0, 10 27, 03, 37 01
In TEMP K MOL WT, 22,6006 21,45 22,6006 1010 VOL 010 VOLD V 1011 VOL 010 VOLD V 1012 VOL 010 STHEAR 57REAMS 010 STHEAR 57REAMS 010 STHEAR 11.4 010 VOL 11.4 010 VOL 11.5 010 VOL 11.6 01 12.5 010 VOL 13.5 010 VOL 14.5 010 VOL 14.5 010 VOL 15.5 010 VOL
1010 VOL VID VID
44LL BURN OXID MALL B 71LM RATE OXID STHEAF 71LM RATE OXID FILM R 71LM RATE OXID FILM R 71LM RATE OXID FILM R 71LM RATE OXID VOID V 723,07 22,5177 71L BURN OXID VOID V 71L BURN OXID VOID V 71L BURN OXID ALL R 71 71 71 71 71 71 71 71 71 71
TILM RATE OXID FILM R TILM RATE OXID FILM R G, G, MASS QUT OF AGLE MASS QUT OF 1.214021E 23,07 VILC VOL OXID VOID V AALL BURN OXID AALL E AALL BURN OXID AALL E STREAMS OXID STREAM
TILM RATE OXID FILM P C, C, C
INGLE MASS OUT OF 1,21021E 23,07 22,5177 Voit vol void v 41L BURN OXID valL E 51REAMS OXID STREAM STREAMS OXID STREAM
IP TEMP K MOL WI. 23,07 Z2,6177 MIE VOL OXID VOID V ALL BURN OXID ALL E 4ALL BURN OXID ALL E 51REANS OXID 51REAN
rnit vol oxiu void v 0, 4all Bu ^r n oxiu aall B 5treat oxig Streat
JALL BURN OXID AALL B D1 Streams oxid Stream 3
STREAMS OXIQ STREAP 0.
FILM RATE OXID FILM F C.
ANGLE MASS UUT DF 1,214821E
<mark>ее темр к моц ит,</mark> 52,18 22,7129
volo vol oxid volo v
**LL BURN 8*10 **LL 8 0.
STREAMS OXID'STREAF 01

.

MASS 0.1 CF 44/K 1/1104AL PO401 1014L 140LUSE 1421489114403 4.20194 12336974 סאוט אבון פטפיג דטפע האבון פעשי סי סי סי 4455 007 05 444 1476644, P0404 7074, 14P04**8**5 1,2148215463 4,20262 MASS U: T OF TAIN INTEGRAL PC+OF TOTAL INPULSE 1214475543 4120053 HASS OUT OF TANK INTEGRAL PC+OT TOTAL IMPULGE 1,214821E+03 4,19926 .238666 0XID 144 764P CA10 110 TEMP 294.000 0x15 1v3 TEM\$ 294,000 1,23479 CXID D1 ALL ₩₩EUST = μ₽F |921456 0AIC CV -4LL *=3US1 = 105 =654810 0X10 04 44LL 2: 55 445 1,95006 9 <u>6</u> 0 7 6 7 1 CF VAC 1,95121 CF 44C 1.95772 ł FLEL 1.4 TEMP 294,303 FUEL 1-9 TEMP fv€, 1%, TEMP 294,000 FUEL 01 HALL rUEL 01 -ALL 3. FUEL ON WALL aria fice arte - arte rate attra 64444 1,21865 самма 1,21752 1,21765 -BHHBD 0×10 ×010 ×01 1+1497895=00 0116 5776445 6.27851555568 DX10 STAFACS DALL VOL 10 JON GION GINC S14915 CIRC 462 - 71 2349465 ГU-1 FDACTION РИАНАЕР 164Р К МGL МТ. |300144 3300144 3366.26 23.0089 FULL FERTION CLAMBER "EVP A MUL MT. 1333446 <u>euthofe stud a</u> Table III-Continued PXIC FLON RATE FUEL VOID VOL TXII F.DA 41 E FUEL VII VOL FUEL STREAUS 7.5 S=35440 X1, URCP 144 FUTL 144, 461, AXID 114, 484, PETA 416LE a8™≜ ≜∿6_6 7: 3734,54 AXID 174, 724, PETA A494E 3,51957 45,000 sust bode siam skie gode nim fimilikel, okis iku, vels beta ANGLE . . 5. 5. 0:=1=46±7==4 0 == 40±0 == 4 714140400 01×0 4010404040 713 25252515 275915 DRIBBLE ... FJEL FLON SATE r Jan Daŭelan 9,2425689477 TAIR JAUR TILE THUE THUE FUEL 0409LET5 5,5656840473 445, 3±3 29962×-3×13 3±3 29522× 7462 3400 - 2±2 5,8233768±64 1,3366606≠13 3,6778045±03 FUEL DROF DIAM OXID DROF TIAM FUEL INU. VEL. C. 245.289 C. FLFL FLJH -11E ғың 090ғата 1<mark>11461845-00</mark> OXIDIZER 13.1112/ 14072 (1000-11) 13-1710 1.99889 7×10 5±8 ~±55 1,4313348=7 1×10 0×00 0×1 5×14×15×14+1 14:205 -- 35 24:552255-7 71,335 -56 7,724243547 2x12 1-1 21x0 · .: 57722=--+ -42492 P455 THE LEXT 6.a-627 FUEL 645 ~159 5,965929E=25 11.0 101 110 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 11.0 11.0 1 uer soge aud: 2.5126345+54 د من من ۲۰۵۶ ۲۰۰۰ مردمه 1 * E * 1 * E * E * E FUT 140 3275 11"E -11113EC 31,439° JPH 1-1 -FIE 5.51 Jina

A state of the state of the state of the

and the second second

ئو

69

NOT REPRODUCIBLE

	CF VAC 1.91829	0x10 144 TEMP 294,000	0X10 MALL EVAP 5,203 329 6=04	0X10 04 MALL 1.303843E=05	THRUBT = LE ⁻ 4.0123056=02	T074L]#PULBE .239399	HALL RETAINED	00616629	
4 L F F F F F F F F F F F F F F F F F F	банта 1.10944	FUEL [NJ TEMP 294,000	FUEL MALL EVAP 0.	FUEL ON WALL	GAS FRACTION ,365555	VK [NTEGRAL PC=DT 4.21465	DROPS RETAINED	00019107	074L MOMENTUM 5,608531E+02 -1,191805+02 6,042792E+02 6,042792E+02 7,901519E+02
	46,0080	3X10 V015 V0L 5,800000E=04	DXID MALL BURN D1	CKID STREAMS	0x10 F1LH RATE 212764965=04	MASS OUT OF TAI 1_214821E=03	GAS RETAINED . Doggoodd	00023212	SUM D CUBED TI 4,3679725=01 1,093445401 4,2973755=01 4,2973755=01 1,4096915=01
3 3 3 1 1 1 8	СМАМЯЕР ТЕМР К 255,286	FUEL VOID VDL 7,733734E=00	FUEL WALL BURN 5.	FUEL STREAMS 1.926413E=07	FUEL FILM RATE	BETA AMGLE .45.0000	HALL EXPELLED	00070349	UM D SQUARED . 6.2082596-01 1.3412356-01 7.9831046-01 1.9660866-01
Ţ	FUEL FFACTION 3.1112105-07	oxID FLO∺ AAIE °	0X10 FLASH RATE 3.	0X1J DROPLETS	0x12 2#0# 4A ⁷ E 9,5921015+ 4	OXID 144. VEL.	DANPS EXPELLED	.108n9654	JH ⁻ 1,739172E+04 1,900277E+04 2,900277E+04 3,392210E+03
3 • • •	16-1710N 0.	בטה יאד ה	FUEL FLASH RATE	FUEL JROPLETS 7.	5 JAL DADP 2475 3.2471525-13	FUEL [NJ. VEL. 3.97905	GAS EXPELLED	21679201	0. 5940186.06 5.9940186.06 1.454996607 1.434996607
	CH148ED P4655 ,699720	DAID INU AATE	ляца 90е0 01X1 га	CX10 GAS MASS 5,117265507	0x10 345 EFFLux 5,2432286694	7×10 050P -1.44	INJECTED MASS	5047494	S INJECTED SI SEJECTED SI INJECTED IS
	645 11-E -11-1555 61,9333	FUEL 114 HATE 2.094444E-24	1905 4050 1903	FUFL (15 ~155 1,592369E+13	FUEL 215 EFFLUX 2,102203E+13	€ UEL DAOP DIA 394,840		2410 GRAKS	Fuel DHOF 2x10 DHOF 2x10 DHOF

Table III-Continued

		HAN VELOCITY 199,539415 149,239410 149,239410
_	TOTAL MASS 001798 007809 1007803	1271249763 69.691876 68.691876
CUTOFF TRANSIENT	S WALL FILK 0.000000 1000225 1000225	031 113.444054 96.370300 96.170010
0.00 MILLISEC	0404LET MAS. - 001798 - 005192	030 429801 103,429801 90,04459 54,94159
UMMARY FOR TIME INTERVAL ENDING AT 61	FUEL GJEGTEO THIS INTERVAL Oxid Cjeged This Interva l Prop Ejegted This Interval	FUEL EJECTED THIS INTERVAL Orid Ejected This interval Prof Ejected This interval

Table III-Continued

	3-8+913	FUEL-FLOW		HINTURE RATIO		FIC INPUL
MASS OUT OF TH	NK . POUNOS	.000483	.000739	1.516897	3326.345964	197.1966
MASS TUBOUCH		.000403	1000732	1,518647		201 2010
MASS THRUUGH I	AJECTOR 4 POUNDS	.000447	.000732	1,030818	3427,002731	203,2030
			.000718	1,007807		
PHESSURE INTEG	RAL # PSIA+SEC.	4,2146				
TOTAL IMPULSE	• POUND•SEC.	, 2396			•	
EB. CTIOL C		FU+L	7810	TOTAL		
PRACIADE E	APELLED AS GAS	, 200203	.672071	.619926		
FRACTION E	XPELLED AS DROPS	.431043	, 325374	1365418		
FRACTION-E	*PELLED *** PILH ·····	.001140	,002124	1072130		
FRACTION R	ETAINED AS GAS	.000000	.000699	1000434		
FRACTION R	ETAINED AS PROPS	.000431	.000575	+000521		
PHACT10+-P	ETAINED AS FILM	<u> </u>	.018028	<u>1011589</u>		<u></u>
				INVECTED ONID	E ISCTED ONTO	
HEAN DROP		INDECTED FOEL		THEFTED DATE		
550		40,4804	VV, 548V	31-0393	07,3004	
031		50,1125	108,9756	3814416	70,7485	
U32		70,3510	122,2178	5348354	89,9753	
	TY PEETVSFCOND	\$0.81	270.18		237.71	<u>.</u>
h kteb			75 01040101.4101			
1	1,0001	0,0000	0.0000	0:0000	0.0000	
3	0 1.3010 1.4771	.1976	. 2000	11919	,0008	
41	1 1.6021	1976	.0000	2042	.1018	
5	1,7782	19/9	.0002	12099	1147	
71	1,8451	,1979	,1450	13093	,3002	
	1,4031	.2002	.1466	4176	5537	
9 t	7 1,9542					
91 101		. 3978	3572	15936	19997	
9; 10 11 12	0 1,9542 D 2,0000 5 2,0414) 2,0792	.3978 .3978 .4787	3572 3607 3607	15936 6070 17855	,5557 ,5557 ,5557	
9 10 11 12 12 13	0 1,9542 0 2,0000 0 2,0414 0 2,0792 0 2,1139	, 3978 , 3978 , 4787 , 5954	3572 3607 3607 6228	15936 16078 17855 17855	5557 5557 5557 5557	
9 10 12 12 13 13	0 1,9542 0 2,0000 0 2,0414 0 2,0792 0 2,1139 0 2,11401 0 2,1741	, 3978 , 3978 , 4787 , 5954 , 5954 , 7866	, 3572 , 3607 , 3607 , 6228 , 6277	15936 6078 7855 7855 7855 7855	, 5557 , 5557 , 5557 , 5557 , 5557	
9 10 12 12 12 13 	0 1,9542 0 2,0000 8 2,0414 0 2,0792 0 2,1139 0 2,1401 0 2,1761 0 2,1761	. 3078 .3978 .4787 .5954 .7866 .7866 .7931	, 3572 , 3607 , 3607 , 6228 , 6271 , 6277 , 6277	15936 16076 17855 17855 17855 17855 17855 17855	, 5557 , 5557 , 5557 , 5557 , 5557 , 5557 , 5557 , 5557	
9 10 12 12 13 	0 1,9542 0 2,000 b 2,0414 0 2,1139 0 2,1461 0 2,1761 0 2,2741 0 2,2504	. 3078 .3978 .4787 .5954 .7866 .7931 .7931 .7031	, 3572 , 3607 , 3607 , 6228 , 6277 , 6277 , 6277 , 6277	15936 6076 7855 7855 17855 17855 17855 17855 27855 27855 27855	, 5557 , 5557 , 5557 , 5557 , 5557 , 5557 , 5557 , 5557 , 5557 , 5557	
9 10 12 12 13 	0 1,9542 0 2,000 0 2,0792 0 2,1139 0 2,1761 0 2,2766	. 3078 .3978 .4787 .5954 .7866 .7931 .7931 .7931 .7931 .7931	, 3572 , 3607 , 3607 , 6228 , 6277 , 6277 , 6277 , 6277 , 6277 , 6277	15936 6076 7855 7855 17855 17855 17855 7855 7955 7920	,5557 ,5557 ,5557 ,5557 ,5557 ,5557 ,5557 ,5557 ,5557 ,5557 ,5557 ,5557 ,5557 ,5557 ,5557	
9 10 12 13 13 14 15 16 17 18 17 18	0 1,9542 0 2,0000 0 2,0414 0 2,1139 0 2,1140 0 2,1761 0 2,2041 0 2,2504 0 2,2788 0 2,3740	. 3078 .3978 .4787 .5954 .7866 .7931 .7931 .7931 .7931 .7931 .7931	, 3572 , 3607 , 3607 , 6228 , 6277 , 6277 , 6277 , 6277 , 6277 , 6277	15936 16076 7855 7855 17855 17855 17855 17855 7855 7955 7920 18000	, 5557 , 5577 , 5777 , 57777 , 57777 , 57777 , 57777 , 57777 , 57777 , 57777 , 577777 , 57777777777	
9 10 12 13 13 14 15 16 17 16 17 18 20 21	0 1,9942 0 2,0000 0 2,0414 0 2,1139 0 2,1140 0 2,1761 0 2,2764 0 2,2768 0 2,3222 0 2,3222 0 2,3222	. 3078 .3978 .4787 .5954 .7866 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931	. 3572 .3607 .3607 .6228 .9271 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277	15936 16070 17855 17855 17855 17855 17855 17855 17855 17955 17920 1600 18115 0810	,5557 ,5577 ,5557 ,5577 ,5772	
9 10 12 13 14 15 16 17 18 19 20 21 22 21 22 23	0 1,9542 0 2,0000 0 2,0414 0 2,1139 0 2,1140 0 2,1761 0 2,2761 0 2,2768 0 2,3768 0 2,3222 0 2,3424 0 2,3424 0 2,3617	. 3078 .3978 .4787 .5954 .7866 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931	. 3572 .3607 .3607 .6228 .9271 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277	15936 6076 7855 7855 17855 17855 17855 7855 7955 7920 6000 48115 9830	,5557 ,5577 ,5557 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,5577 ,57777 ,57777 ,57777 ,57777 ,577777 ,577777 ,577777777	
9 10 11: 12: 13: 14: 15: 16: 17: 18: 20: 21: 22: 23: 24: 24: 24: 24: 24: 24: 24: 24	0 1,9542 0 2,0000 0 2,0414 0 2,1139 0 2,1149 0 2,1761 0 2,2761 0 2,2768 0 2,3222 0 2,3222 0 2,3244 0 2,3244 0 2,3222 0 2,3246 0 2,3246 0 2,3617 0 2,3807	. 3078 .3978 .4787 .5954 .7866 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931	. 3572 .3607 .3607 .6228 	15936 6076 7855 7855 17855 17855 17855 7855 7955 7920 8000 48115 9830 19830 19830 19830	, 5557 , 5577 , 5705 , 905 , 9038 , 9038	
9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 25 25	0 1,9542 0 2,0000 0 2,0792 0 2,1139 0 2,1161 0 2,2761 0 2,2768 0 2,3222 0 2,3222 0 2,3617 0 2,3807 0 2,3807 0 2,3979 0 2,3979	. 3078 .3978 .4787 .5954 .7866 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931	. 3572 .3607 .3607 .6228 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277 .6277	15936 6076 7855 7855 17855 17855 17855 7855 7955 7920 6000 48115 9830 19830 19867 987	5557 5557 5557 5557 5557 5557 5557 555	
9 10 11 12 13 14 15 16 17 18 21 22 23 24 25 27 27	$\begin{array}{c} 0 & 1, 9542 \\ 0 & 2,0000 \\ 0 & 2,0414 \\ 0 & 2,0792 \\ 0 & 2,1139 \\ \hline 0 & 2,1149 \\ 0 & 2,1761 \\ 0 & 2,2761 \\ 0 & 2,2761 \\ 0 & 2,2768 \\ \hline 0 & 2,2768 \\ 0 & 2,3222 \\ 0 & 2,3424 \\ 0 & 2,3617 \\ 0 & 2,$. 3078 .3978 .4787 .5954 .7866 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931 .7931	. 3572 . 3607 . 3607 . 6228 . 6277 . 6277	15936 6076 7855 7855 17855 17855 17855 7855 7955 7920 6000 48115 9830 19830 19867 987	, 5557 , 5577 , 5705 , 9026 , 9038 , 9038 , 9038 , 9059 , 9059 , 9056 ,	
9 10 11 12 13 14 15 16 17 16 17 16 17 18 21 22 23 24 25 27 27 28	$\begin{array}{c} 0 & 1, 9542 \\ 0 & 2,0000 \\ 0 & 2,0792 \\ 0 & 2,1139 \\ \hline 0 & 2,1139 \\ \hline 0 & 2,1161 \\ 0 & 2,21761 \\ 0 & 2,2761 \\ 0 & 2,2753 \\ 0 & 2,2753 \\ 0 & 2,2768 \\ \hline 0 & 2,2768 \\ \hline 0 & 2,3222 \\ \hline 0 & 2,3617 \\ \hline 0 & 2,3617 \\ \hline 0 & 2,3627 \\ \hline 0 & 2,3617 \\ $. 3078 .3978 .4787 .5954 .5959 .7866 .7931	. 3572 .3607 .3607 .6228 .6277	15936 16076 7855 7855 17855 17855 17855 17855 7855 7955 7920 18000 18155 19830 19887 19887 19887 19887 19887	, 5557 , 5577 ,	

71

and the second second

いたいのいいになったいろうないのであるのであ

. Table III-Concluded

~ ~ •				17/40	* *** **	
330	2.5185	9930	9963	19943	.9980	
340	2.5315	9930	.9963		.9980	
556	2.5441	9938		10045	9984	
360	2.5543	9930	0043	10843	9940	
370	2 5482	9930	0043		0980	
	2,3002					
300	E13794			19945		
340	2,3411	. 4430	,9967	9943	.9980	
•00	2,0021	,9924	.9975	19943	.9980	
410	2,0120	19924	, 9975	• 9 9 4 3	,9786	
420	2.6232	,9954	9975	19943	.9980	
430	2,6335	,9954	.9975	9943	,9980	
	216435				0000	
450	2,6532	,9954	,9975	19943	,9960	
460	2.6628	,9954	,9975	19943	,9980	
470	2,6721	9954	9975	19943	9988	
480	2.6812	9954	9975	19943	.9980	
490	2.6902	9977	9987	.0945	9980	
510	2.7076	9977	9987	10043	.9980	
520	2 71 60	9977	0087	0043	9980	
520	2.7643	0077	0087			
500	2 9124	0077	0047	10045	99.40	
540	3 3404	0077	0083	19993	9940	
	£1/=U=			19943		
500	2 7860	0077		10003	1,0000	
570	21/77V			110000	1.0000	
560	2,7534	.9977	,9987	1,0000	1.0000	
790	x,7707	. 9977	.9967	110006	1.0000	
000	2.7762	.9977	.9967	110000	1,0000	
610	2,7853	9977	.9987	1.0000	1.0000	
	<u>*:</u> ***	;++++				
630	2,7993	,9977	,9987	1,0000	1.0000	
640	2,8052	,9977	,9987	1,0000	1,0000	
658	2,6129	,9977	,9967	110906	1,0800	
660	2,8195	.9977	,9987	110000	1,0000	
670	2.8261	9977	9987	1.0000	1.0000	
	2.6329			- 110000	1,0000	
690	2.8368	9977	9987	1-0000	1,0000	
700	2.8451	9977	.9987	1.0000	1.0000	
910	2.6915	9977	9987	110800	1.0000	
720	2.4573	9977	9987	1 0000	1.0000	
730	2.8433	9977	. 9987	1.0000	1.0000	
750	2.8751	9977	9987	110000	1.0000	
7.20	2.8808	0077	0087	1.0000	1.0000	
930	2.4845	0077		110000	1.0000	
770	2 4024	00.99	0087	110000	1.0000	
700	2,0761	0077		10000	1 0000	
/ • •	6107/0		1990/	110000		
	2 0001	0.99		1:0000	1 0000	
610	2,9005		, 9907	110000	1 0000	
620	2,9135	,9977		1:0000	1,0000	
830	Z, 9191	, , , , , , , , , , , , , , , , , , , ,	, 9707	1:0000	1,0000	
840	2,9243	.9977	.9967	1,0000	1,0000	
850	2,9294	.9977	,9987	1.0000	1,0000	
	8,9345		,9907	110000		
870	2,9395	,9977	,9987	1,0000	1,0000	
	2,9445	,9977	,9987	1.0000	1,0000	
	*****	, ****	, 9987	1,0800	1,0808	
900	2,9542	,9977	,9987	110000	1,0000	
910	2,9390	1,0000	1,0000	1-0000	1,0000	
1						

(2) Computer Graphics

Only 13 of the 69 computer plots produced for this run are illustrated here for the sake of brevity. Plots for fuel behavior are produced which are completely analogous to the oxidizer plots shown here. The oxidizer plots have been presented for this particular firing because the entire oxidizer dribble period was included while the longer fuel dribble period was not. Figure 14 is the calculated chamber pressure trace for a 50 ms pulse on the Marquardt R-6C motor. It illustrates the broad features of the pulse, which is smooth, with only modest overshoot, but has some subtle features which will be discussed later.

Figure 15 shows the ozidizer valve trace. Opening starts at T = 0.0 ms and is full open at 1.0 ms. It starts to close at 50 ms and is full closed at 51 ms. The fuel valve trace is identical to the oxidizer. Figure 16 shows the volume of vapor in the oxidizer dribble volume. Flow starts at T = 0.0 ms accelerates rapidly and the oxidizer side of the injector primes at slightly after 4 ms. Dribbling can be seen to occur between 51, 8 and 51.9 ms after the conclusion of the firing. The oxidizer injection rate is illustrated in Figure 17. The injection rate of oxidizer shows a slight initial overshoot, a slight depression between T = 7.0 and T = 30 and then a steady value until cutoff. The dribble injection rate is illustrated following value closure. The fuel is much less dense than the oxidizer and consequently the fuel flow rate increases much faster than the oxidizer flow rate. This results in a very large initial overshoot in the fuel flow rate and injection rate. For this reason the impinged stream resultant angle is initially directed in the fuel-stream direction as shown on Figure 18. The angle of injection during the dribble periods are also illustrated. Obviously the periods when the stre stream is mal-directed can result in deposition of propellant on the chamber wall. The next two figures illustrate this. Figure 19 illustrates the mass of oxidizer contained in the chamber in the form of streams and droplets, while Figure 20 illustrates the mass of oxidizer deposited on the wall. The mass of propellant deposited on the chamber walls from the initial mismatch of stream momentum rate can be a significant source of contaminant production, but is not often considered in calculations on engine design or operation. The oxidizer on the wall is eventually removed by the flow of wall-tilm through the throat and by burnoff. The walls are dry within 35 ms after start. If the pulse width had been appreciably shorter than 30 ms, the wall deposit could build up continuously over a series of pulses and the flow of wall-film would be much larger under these conditions. The rate of burnoff of fuel and oxidizer from the wall is a significant fraction of the total combustion rate for the first 35 ms of the run and is the reason for higher-thansteady-state chamber pressure before 7 = 35 ms. (Figure 14) This elevated chamber pressure is the reason for the lower than steady value for oxidizer flow rate seen on Figure 17. The volume-area mean diameter (D32) of the entire chamber population of oxidizer droplets is shown in Figure 21. The effect of flash atomization at the start of the run is obvious. The preferential burning of small drops immediately after cutoff is

-

another prominent feature. The mean drop size in the dribble period is more complex, being composed of a mixture of small flash-atomized droplets and large single-stream-atomized droplets. The bimodal distribution of drops produced during the dribble periods can have important consequences for the ultimate droplet trajectories in the nozzle and plume for droplets which are ejected at this time. Figure 22 shows the mass flow rate for combustion gas and unburned propellant vapor leaving the motor. The chamber extinguishes at about 52 ms, so the vapor flow after this time is unburned propellant vapors. Figure 23 shows the mass flow rate for incompletely burned oxidizer droplets ejected through the throat. The ejection of incompletely burned droplets is one of the major sources of contaminant. Figure 24 shows the rate of outflow of unburned oxidizer-derived propellant in the form of wall tilm. It is instructive to compare this figure with the two following figures, which represent the axial distribution of wall-film material on the inside of the combustion chamber wall. When T = 9.9 ms, the wall-film flow is appreciable (Figure 25), and there is a coating of wall film about 1.4 thousandths of an inch thick which extends all the way through the throat. At T 18 ms (Figure 26), there is no flow of wall film out of the engine although there is still an appreciable amount of unburned propellant on the wall. This is because the wall burnoff is so fast in the throat region, that uo further flow of wall film through the throat is possible.

Figure 22. TCC Graphic Output - Gas Outflow Rate versus Time

3. CONTAMINANT TRANSPORT-THE MULTRAN PROGRAM

The <u>MULTRAN</u> (multiphase nozzle and plume flow transport program) computes the steady-state transonic and supersonic flow field within the rocket nozzle and exhaust plume. Momentum and convective energy exchange between the gas-phase and unburned liquid droplets are completely coupled. Input to the <u>MULTRAN</u> analysis is derived from the <u>TCC</u> output by dividing the transient pulse into appropriate time "slives" and computing average values of contaminant production (droplets exiting the combustion chamber), and gas-phase properties for each time slice.

For the sample case (Marquardt R-6C engine used at NASA/LeRC), the 50 ms pulse (start of valves open to start of valves close) was divided into the following time slices:

Ignition transient	4.6 < t	< 12.4 ms
Steady state	12. 5 < t	< 50,9 ms
Cutoff transient	51.0 < t	< 60.0 ms
Post-pulse	60.1 < t	100 nns

To demonstrate the computational procedure and results of the <u>MULTRAN</u> analysis, the ignition transient time segment was analyzed. The same procedure would be used to analyze the remaining three time segments, based on appropriate data from the <u>TCC</u> results.

a. Interpretation of TCC Results

Average properties during the ignition transient portion of the engine pulse were interpreted as follows, to be used as input to the transport analysis, MULTRAN:

Variable	Definition	Value
PC	Chamber pressure	90 (psia)
TGO	Chamber temperature	5750 (°R)
WPWGT	Weight fraction of unburned droplets in gas ejection from combustor	0.45
R(I)	Radius of the ith droplet group (fuel and oxidizer)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Variable	Definition	Value
WPWT(I)	Weight fraction of ith droplet group in total droplet flow	0.01, 0.05, 0.10, 0.45, 0.35
GAMMA	Cp/Cv gas	1.23
PR	Prandtl number	0.7
RCAP	Gas constant	2, 320 (ft ² / sec ² °R)
CPG	Specific heat of gas at constant pressure	11, 350 (ft ² / sec ² °R)

The droplet groups are a composite of oxidizer drops ranging from 3 to 60μ radius and fuel drops ranging from 15 to 80μ radius. These values were inferred by examining the D₃₂ droplets for fuel and oxidizer over the 4.6 to 12.4 ms time increment (ignition transient).

b. MULTRAN Input-Sample Case (R-6C Engine)

Values for <u>MULTRAN</u> input are entered via <u>Namelists</u> DATA, and DATAP. Input data is printed immediately after being read in. The complete data for this case is shown in Table IV as it appeared as part of the program output. Asterisk (*) values indicate nominal data set internally. Refer to Appendix B for description of input data.

c. <u>MULTRAN</u> Output-Sample Case (R-6C Engine)

(1) Computer Output

A detailed description of the <u>MULTRAN</u> printout may be found in Appendix B. The extent of the printed output (several hundred pages) precludes presenting the entire output. Representative portions of the output are shown in Table V for the purpose of program checkout on other computer systems. The output is summarized in Figure 27.

The coordinates of the output are nondimensionalized by the nozzle throat radius which is 0.0973 inches. The nozzle has an area ratio of 40:1. The downstream limit for computations was set at 40.

SDATA		
CAPN		0,6E+NU,
CPL		0,115E+05,
CPS		0,110E+(5,
PR		0,7E+00,
	8	0,1E+71,
DR		Ú,1E+C1,
# DTHI	E	u,3E+01,
🔺 हम	8	J,1E+C2,
# FA		0.0, 0.0, 0.1E+01, 0.125E+01, 0.1E+01, 0.1255E+01, 0.1E+01, 0.126E+01, 0.101E+01, 0.1265E+01, 0.1002E+01, 0.1582E+01, 0.1003E+01, 0.1315E+01, 0.1141E+01, 0.251E+01, 0.1224E+01, 0.310E+01, 0.1315E+01, 0.398E+01, 0.1412E+01, 0.501E+01, 0.1517E+01, 0.631E+01, 0.1625E+01, 0.795E+01, 0.1582E+01, 0.1517E+01, 0.631E+01, 0.265E+01, 0.795E+01, 0.1582E+02, 0.2107E+01, 0.1955E+02, 0.2765E+01, 0.755E+02, 0.2555E+01, 0.310E+02, 0.276E+01, 0.306E+02, 0.3E+01, 0.795E+02, 0.3825E+01, 0.3257E+01, 0.631E+02, 0.3534E+01, 0.795E+02, 0.3825E+01, 0.4155E+01, 0.4155E+01, 0.795E+02, 0.3825E+01, 0.4155E+01, 0.4155E+01, 0.795E+01, 0.1E+04, 0.2E+02,
		-0,1%01E+L4, %20M2F+*2, 1,14+%6, 0,24+*4, 0,04 0,0, 0,0, 0,0, 0,1% 0,1, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
34647	3	1,123-+,1
3 M G J	3	J , ⊃ ° o F = ' J ,
≓₽ţ	I	3,∠24≒+73,
HPS .	3	S. 2E. S.
THAX		S, NOT REFRICE
1	3	700,
	=	1,
₩ PS	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table IV. SAMPLE MULTRAN OUTPUT-INPUT DATA

Table IV. -- CONTINUED

,

1

			0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
			0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0
			0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
			0,0, 0,0, 0,0, 0,0, 0,0, [*] ,0, 0,0, 0,0, 0,0, 0,0, 0,0,
			0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
			0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
			U.O. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0.
			0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0
			0,0, 0,0, 0.0,
P	70	8	C,9E+C2,
₫. =	° w		0,0, 0,0, 0.0, 0,0, 0,0, 0,0, 0,0, 0,0,
			0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0
			0.0, J.U. J.O. U.J. C.J. C.D. 0.0, J.O. 0.0, 0.0, 0.0, 0.0, 0.0,
			C. D. J. J. D. D. D. D. D. D. D. D. D. J. J. D. C. D. J. D.
			U,Ú, J,D, D,D, J,G, D,J, U,D, D,D, D,D, J,J, D,D, D,D, D,D, J,D, D,D, J,D, J
			0,J, J,J, D,O, J,O, D,O, D,U, J,J, D,O, J,C, D.O, U,O,
			u,u, C,C, O,O, U,U, J,C, G,D, U,O, D,D, J,S, C,O, U,C,
			<u>0,0, 5,6, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, </u>
	9	8	u,1F=C4, U,3F=O4, U,5E=C4, G,1F=^3, U,21E=O3, 4,0, ^,0, 0,^,
	RCAP	=	0, & 32L+"4,
*	RHCPO	z	G . U .
	SMP	3	0,6243E+L2,
	₹66	2	u.575E+14.
	TPP	8	U,43E+(:<,
	CPG	:	L,1135E+L5,
	NIĻP	ź	17,
			12F + L2
	WPat	2	0,18=01, 0,5F=01, 0,18+00, 0,45E+01, 1,35E+00, 0.0, 0,0, 0,0, 0.0, 0.0,
	нŢ	8	U,81E=62,
	RRT	.8	U,1E+02,
	WPNGT	E	U,49E~J2,
*	uZh Ivi		J,2E+0Z,
*	IFG		υ.
*	THP		0.15404
	. ML		

Table IV. --CONTINUED

. 5			V********
	1		0,38+01,
	NJ -	۹	0,25+01,
	11		0,20=02,
	ORDER	•	3,
# 1	BOWGON	•	0.0,
* 1	2M1	•	Ο,
K 1	ISH2	•	0,
# 1	1843	•	0.
	VAN		0,3E+00, C,O, 0,0, J,1E+00, 0,1E+00, 0,0,
* !	LAG	•	0.0,
* 1	THJD		0,9E+01,
4	AUR	•	•0,13E+CO, C,1E+O1, 0,3E+CO, 0,3E+UA, =0,1E+O1, 0.0,
*	THFD		0,5E+01.
e	EPS	•	U,4E+02,
R	NWPAX .	•	0,0,
*	ZHMAX	8	٥, ٥,
1	IHALL	=	1,
	THIN	•	0,12E+02,
	ТНум		0,15E+02,
	NTAPE		з,
	SEND		

Table IV. -CONCLUDED

	SDATAP	
	ZMAX	= 0,4E+72,
	PHA	■ 0,45E+U2,
		= -1 ,
	NPLOT	■ Q,
#	NCASES	 18031133649550850,
	PCUT	= 0,1E-05,
	EMIS	■ 0,3E+00,
	<u>C1</u>	■ 0,1E+01,
	C2	= 0,1E+01,
	AREA	■ 0.V,
	זפ	• 0,2E+01,
	DR	= 0.2E+01,
	N1	• 2,
<u></u>	NZ	= 1,
	GAMMA	= 0,123E+01,
	SEND	

and a second of the second second

فالمعافظتهما بمنامد مألسين الأفقاع تناك سيكانهما مراجعة مرسلا فاللعطية بالرامي فراك

Iable V. SAMPLE MULIRAN OUTPUI-KEPRESERIATIVE PRINTOUT

South States and the second

							- 1
1.200000000	н Э У		* 5 • • • • • • • • • • • • • • • • • • •				
1 17 17 17 17 17 17 17 17 17 17 17 17 17		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1991 - 1992 - 1993 - 1994 - 19	₹24°5°45° = :.	" • r	,	
				► N (* * L (* * L) (* C) (* C	€ •2 \$ • •2 •. •5 •. •. •. •. •. •. •. •. •. •. •. •. •.		
							1
1							
							1
the second second							1
11 11 11		и станиции и станици	<pre>************************************</pre>				

NOT REPRODUCIBLE

					Tab	le V—Cont	inued	:	•
+	•	Га-н	â	10-0-E 0+		Г <u>а+П</u> Л	Feen	E	1
-	6,977437 <u>0</u> E	40+	7,304	29946-03	5,9	346858E+93	1,26541046+05	1,21852406+00	2,0791170E+00
2.4	7,0845391E	* 5+1	7,395;	3435E=U3	5,9	510754E+G3	1,1219500E+03	1,09667146+00	2,1590847E+00
باب:	7,16042455		1.4591	5973E-J3	5.9	<u>595769E+53</u>	9,4518682E+07	9,74819206+01	2,2306349E+00
	7.19376155	E+14 E87359E	7 447	92716-03 5 /14157E-	5.0	751947E+13 4.35336*E+03	9.r662037E+02 7.a15445E+02	9.02512265-71	2,2691101E+00
z	7,2540231F <u>Je 1</u> 7, Je 2 e,	1474 1453594E 1463594E	7.539(65646-53 8,7053265 1,2053265	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	92n4856+~3 4,3818995+63 2,7052376+63	4,8664415E+02 7,208512E+02 44,649932F+01	6,9247024E- <u>1</u> 1	2,364 <u>07626+0</u> 9
n n-1	7, 23, 677, 54 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	662541 662541 175337 77547 77547 77547 77547 77547 77547 7757	7 5 4 4 + 7 7 + 7 7 + 7 7 + 7 7	7926-C1 6,225295- 1,21229965- 1,21229965-	5	775166+63 4,3874846+67 2,7081456+67 2,6577745+63	6.70067256402 7.0127346402 -4.1105196401 -4.1105196401	Tu=j1/221/2*9	Z,38R5186E⇔0C
2 3	7.275363uE	2-+	7.555	92575-13	و د	-2261uf+r3	r,≤725329£+52	5,54547566-1	2,4127534E+0F
-	и и	<u>ен1693</u> Е 1.4155Е 1.71375Е 1.71375Е		1 2232475 1 223275 1 212175 1 212175		4,392~69E+L ² 2,712,617E+C ² 2,27705E+L ² 1,342641E+L ²	12+39+2275315 +2+39+265 12+39+265 12+39+265 12+39-2255 14+14		
	7, 63-5-25	*	7.563	6152Ê-, T	יי שי	-778366+-3	4. <u>6322347</u> E+12	4,77654492-,1	2.4371474E+3F
	Ч (Ч Э № Л н II I I II II н II I II II II - , , , , , , , , (4.5927616407 4.7166716407 6.16541784.4 1.364413564.4 1.364441564.4	21+27,207,20,4 IL+22,224,24 IL+22,224,24 IL+22,234,4 IL+22,24,4 IL+22,24,4 IL+22,24 IL+22		
			1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ц <u>тра</u> чу 1	4 9 9 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	••••••••••••••••••••••••••••••••••••••	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					6 K N N N	• • • • • • • • • • • • • • • • • • •	2 + +	2, 487 4-51 - 5	
	с. 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2		* * * * - 7 * - 7 * - 7 * - 7		n eren	2+01775+ 2+0995+			е 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	е и м. н. Э. Э. Э.	=185555. 				1,3×45335251 0,01,71,32+47	1.+-5-5-5-1.+ 1.+-5-5-1.421.5+		
	7,29541475 JE 1 7, JE 2 9,	5-14 075275 1765455	7,573.	55145-51 8.9619471 1.2790915	5 L 10	0313906+-3 4+4137_36+-3 2+7245156+01		.:	- 1 - 4 - 4 - 4 - 4 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7
	0 T 0 0 T 0 0 T 0 0 T 0		~ ~ ^ 	6.21-140 6.21-140 6.21-140	277	2, r = 7272 = 1, 455 - 2 = 5 = 4, 523 - 45 =			

T

Table V-Continued

			F	с. 04	Ę.	ы 0	•	i	:	-	с) 3	•			E.	2	4
			a a a a	231.51	dS1 Yda		235.6		0 	n n n n	- -	239.81			15P R P K	0	242.3
			5	1.2740	F.	1) L] L] E	1.3422		L	5	0.000	1,3244			13	0000	1,3381
			100 100 100 100 100 100 100 100 100 100	1011019	030/×3 ⁴		(···)		 	ייייעיעי בייעיעיני בייעיעיני	u.6300				04C/240	0,0000	30000.0
4 6 4 5 3 2	11 P (C 4)	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	151×151	, 2335ē	10/35	23655	-2-11	9129 5977 1504			23865	.17122 5508	7469 9558 7565		967960	23956	16136
15 15 15			27 420 27 420 27 420	15175	537946 354754	15995	139-6	NKIN INTRN HTTH		39K/35	.17172	11417		s,	004/9d	17252	*19C1*
۵ ۲. ۵						21814	. 5317è	575 575 201			.71955	а 66543 392	549	INTS =	16/160 54	12315	.65779
بر ان ان ان بر ان بر				1:4:1.	5 A-4	5-9°-;		6000 			9.371	12-0-0 22- 25-0-0	10 100	64 °.	ruera-G	8.628	15.000
, ,				5. ja " 4		7, رَعْرِعُ	٩. ٩. ٩	5 N N		45 4 - K	6456.3	6641,3 12	0 4 40 0		VG HETA-K	6043.5	6738,2
				q */		2"6277	15-7.0		567E=C2		4137.4	3034,2 7	1, 1041 1, 1041 1, 2267 1, 2267	3675-07	9	0.1416	3782,3
						. 747.	U 7 15 1		1.2745	1 N 1 N 1 V 1 V	1.76-0	2, -379		1,2746	HDY HDY H	1,7551	2,0510
			t .	· · · ·		1.5.5.7	2-212	11111111111111111111111111111111111111		7	. 23:53	. 01197 Z 2,23363	2,29515 2,36427 2,49112 2,49112 2,61187	S FLJH	1	21932.	.78095
			•	•					512, 25 2	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91407 2	347.C		OTAL MAS	n L L L L L L L L L L L L L L L L L L L	05206	39239 2
						•	••• ••			× .!	-	-		-	Ę	•	5 1,
• •1 t			1 1 1		r #					ט ד ל	۲V	IN.	I	1	LRC	n	5

-

NOT REPRODUCIBLE

	Т0ТАL МА КС 10 К М МЕК	2.80912	0000	. 57404	11, 50203	
Note Note <th< th=""><th>1014L MA</th><th></th><th></th><th></th><th></th><th></th></th<>	1014L MA					
1014L 1000000 1000000 100000	1074L HA	2.4494	1.07489	65345 71070	14,00 67 1 13,02810	
Tytel Lie No. Policie No. Policie Policie <thpolicie< th=""> Policie Policie</thpolicie<>	TOTAL HA	2,90052 2,70053 2478095	1, 32146	. 62079 . 93365 1. 0000	14145 0,9474 1,9474 1,9474	
NGC NGC <th></th> <th>SS FLOM . 1.27</th> <th>463676-02</th> <th>NO. POINTS .</th> <th>•</th> <th></th>		SS FLOM . 1.27	463676-02	NO. POINTS .	•	
1 1.00000 1.00000 1.00000 1.000000 1.000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.00000000000 1.00000000000 1.00000000000 1.00000000000 1.00000000000 1.00000000000 1.00000000000 1.00000000000 1.000000000000 1.0000000000000 1.0000000000000 1.000000000000000000000000000000000000		HOVH 2	74 7467A54	HETA=6. 16/100 TPK	040/340 00/000 004/00 Dak/00 00/304/00	CP ISP 1
1 5 472437 1,99246 0 5,1304965 1,99347 1,0000 1	4 14 69247 1 6,05289	2,36408 1,7931 16=01 4,387452	4147,6 6031,3 E+03 2,889318E+03	6.537 .72132 5,3374776+03	.17399 .24121 .00012 1.1670728=04 6.2557936=	0*0000 0*00 03 1*0000008=03
1 1.3317 1.3317 0.0000 1.3347 0.0000 1.3347 0.0000 1.3347 0.0000 1.3347 0.13767 249.45 2 4 4 4 1.1	4 4 92815 1 5,64768	2.63216 1.8982	5968,1 8387,6 E+03 6,388169E+00	9.616 .69011 5.316385E+03	.13726 .19890 .00013 1.2697356-04 5.0121456+	0,0000 0,00 03 1,000008=05
Z R P PC P Z 2,44400 .97833 .41045 14,12134 Z,44400 .19482 .41045 14,12134 Z,44400 1,117334 .41045 11,7334 Z,49401 1,117334 .41045 11,7334 Z,49401 1,11733 .55635 11,7334 Z,09921 1,23739 1,0010 7,5653 J,29432 1,32738 1,0010 7,5633 J,29432 1,32738 1,0010 7,5633 J,29432 1,32732 1,32739 1,0000 J,29432 1,32732 1,32738 1,0000 J,29432 1,32732 1,32738 1,0000 J,29432 1,274336 1,0010 7,5633 J,29432 1,12733 1,1264 1,1204 J,29432 1,12733 1,12943 1,0000 J 1,57146 1,274366 1,1274 1,12012 J 1,11414 1,1274 1,12944 1,1200 1,1200 J 1,11414 1,1214 1,12314 1,12012 1,1200 J 1,11414 1,1214 1,1214 1,12012 1,10000 J 1,1214 1,1214	4 5 1,5312E	3,29935 2,1864	3621,7 7028.9	15,000 .62986	.05407 .13347 0.0000D	1.3767 249.53
2,4000 1000 1,1000 14,1237 2,0001 1,0001 12,000 12,000 2,0001 1,0000 12,000 12,000 2,0001 1,0000 10,000 12,000 1,0001 1,0000 1,0000 1,0000 1,0001 1,0000 1,0000 1,0000 1,0001 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,00000 1,0100 1,00000 1,00000 1,000000 1,0100 1,000000 1,000000 1,0000000 1,01000 1,0000000 1,0000000 1,0000000 1,01000 1,0000000 1,0000000 1,0000000 1,01000 1,0000000 1,0000000 1,0000000 1,01000 1,0000000 1,0000000 1,0000000 1,00000000 1,01000 1,0000000 1,0000000 1,0000000 1,0000000 1,00000000 1,01000 1,0000000 1,0000000 1,00000000 1,0000000 1,0000000 1,01000 1,000000000 1,000000000 1,00000000 1		2	a a	۵		
R E 2:03:0 5:00:0 5:00:0		2,36478	69247	3454	15.65904 14.12137	
Ref 1,1,284 50.24 1,1,284 50.24 1,1,284 2,0002 1,2002 1,2002 0,0002 0,0004 0,000 3,2953 1,2000 1,2000 7,5012 0,0005 0,0006 1,5012 1,2955 1,2000 1,3318 1,0000 7,5065 0,0006 1,9000 1,2953 1,700 1,700 1,722 1,0000 1,9000 1,0000 1,0123 1,0223 1,723 1,722 1,0000 1,0000 1,0000 2 1,0123 1,0223 1,722 1,0000 1,0000 1,0000 1,0000 2 1,0123 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 3 1,0123 1,0001 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 3 1,0173 1,0001 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000		2.63216	92815	49985	12,35341	
RC ID N		2,65574 2,84081 2,00012	97824 1.11383	55647 64072 75012	11,72334 10,17480 8.80404	
RC ID a Z MLCH T3 VG THETALK VG TG		2,29532 3,29530 3,29530	1.53128 1.53128	1,0000		
RC ID Z MACH TG VG THETAAK THETAAK TACK TG VGK TG VGC VGC <th< td=""><td>ry Trius</td><td>SS FLOR . 1.27</td><td>46367E=07</td><td>= SIGING *CN</td><td></td><td></td></th<>	ry Trius	SS FLOR . 1.27	46367E=07	= SIGING *CN		
14 62713 2,98632 1,7252 4148,8 6.029,5 5,973 .7255 .1726 2,900065 .000065 1 5,172355571 5,774355571 5,7743355773 1,569045573 1,590045573 1,59000557 3,00000657 2 3,648,095570 2,70355645 5,774315573 1,50000657 3,00000657 3,00000657 2 3,648,095570 2,703496571 5,7359054573 1,6000445673 4,0000570 5,00000657 2 3,59405570 2,748315570 5,71347 156914 2,00000657 3,00000657 2 5,9742755540 2,493405571 5,137616573 1,943115543 3,00000657 3,00000657 2 5,9742755540 2,493405571 5,30421553 1,0550186573 3,00000657 1,0730 2 5,9737355547 5,3042155473 1,20505 1,9745 1,0700 1,0700 3 1,57040 1,94305674 5,437012543 1,0710 1,0700 1,0700 2 1,57040 1,94050 1,2705 1,2705 1,0710 1,0700 2 1,57040	RC 1D a RFX	A MACI	TG VG T	HETA=G 162196	PG/PGC DG/DGC SD//DF0 DPK/D3 DPK/DF0	CF ISP 1
3 4 -59947 1,0494 2,46274 1,0494 0,00 0,00 1 5,971275=61 4,4334095+13 5,0007195+13 5,9766116=03 1,0721215=03 5,000005-01 2 3,594676571 4,4334095+13 5,0007195+11 5,5246915+13 1,065116=03 3,000005-01 5 3,594676571 2,73699459513 8,2350005555403 5,30000555613 1,07013 3,000005-01 5 4 ,93734 2,74903 1,9421 9,889 ,68136 12763 1,1763 3,00005-01 4,00005-01 5 4 ,93734 2,74903 1,9425 0,4912 9,889 68136 1,2763 1,0703 1,0700 1,0700 1,00005-01 5 1 5,707 1,49045 1,2763 1,2763 1,0703 1,0700 1,0700 1,00005-01 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700 1,00005-01 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700 1,0700	5 14 62713 5 14 62713 2 3,64829	2,38852 1,7522 15-71 2,792172 15+20 2,7984561	4148,8 6329,0 6413 2,626568667 6413 8,4958906411	5,9n3 ,72152 5,3366445+33 5,5283795+13	.17426 ,24151 ,J ^r 172 1.1890475-34 6,7742 <u>13</u> 5- 1.6066945-33 8,5229875-	0,0000 2,00 73 1,00000000 12 3,000000000
5 4 .93734 2.74933 1.9421 3915 0 6491.2 9.889 .68.36 .12765 .13745 .00013 1.0013 1.0010 1 5.707,744-1 4.5924334.4.6012534.99 5.9091214.3 1.30533964-4 5.4576124-3500006-01 5 9 1.57664 J.44465 2.2238 3578.4 7105.6 15.300 .62226 .07878 .12651 J.4000 1.7982 251.41 2.33852 7 15.66311 2.33852 7 15.66311 2.42598 .65737 .65931 15.2137 2.42598 .65931 .07174 11.48645 2.42598 .65934 .47774 11.48645 2.42598 .69839 .37470 11.48645 2.42598 .69839 .47774 11.48645 2.74973 .08829 .47074 11.48645 2.74973 .27534 .00839 .47074 11.48645 2.74973 .27534 .00839 .47074 11.33734 2.7514 .108839 .57864 .47774 11.33734 2.75345 .08839 .578640 .128649 .47774 2.75345 .08839 .578640 .13975 2.75345 .08839 .578640 .13774 11.37734 2.75345 .08839 .578640 .128749 .11.37734 2.75347 .108839 .578640 .128449 .57865 3.15750 .12848 .57869 .128499 .59846 .11.3774 2.75349 .128649 .57869 .128649 .57869 .128749 .11.37749 .11.37749 .11.57749 .11.57749 .10.57869 .578749 .578690 .57874 .578690 .57874 .578	5 4 59191 1 5,97127 2 3,5546 ^R	2,46274 1,7898 "36401 4,433409 .46401 2,736098	4172,4 6124,6 6+13 3,0007196+10 6+03 +A,2735096+11	6,685 ,71347 5,13r611E+03 5,52469JE+03	.16404 .27992 .3A178 1.194316-64 6.1071216- 1.6050186433 9.5071106-	0,0000 0,00 0,000006-15 0,2 3,000006-15
<pre>5 1.570en J.4465 2.2238 3578.U 7105.0 15.3nc 16220 10786 112651 J.UTUCE 1.1982 251.41 2.33852</pre>	5 4 ,93734 1 5,707 ₄ 7	2,74933 1,9421 4E-11 4,5924331	3915,0 6491,2 E+n3 4.601253E+93	9,889 ,68,36 5,3091215+73	12765 18745 100015 1.3053906-14 5.4376126-	3.2274 C.20 33 :.^20000E-05
Z 35852 H UD# U Z 35952 62713 58427 15.548311 Z 42598 65933 37170 15.2173 Z 45945 37467 15.21737 15.21737 Z 55114 70682 35467 15.21737 Z 75942 35467 13.76337 Z 75945 45094 11.95269 Z 75345 47774 11.48645 Z 75145 1.08329 8.47942 Z 75145 1.08329 8.47942 Z 751545 1.28656 11.33734 Z 75145 1.28656 9.81991 Z 75345 9.89345 9.81991 Z 75345 1.28659 9.81992 Z 75345 9.99452 9.49792 Z 3.15752 939452 7.32459	5 5 1.5760A	3,44865 2,2238	3578,4 7105.¢	15.jrc .62220	.C7878 .12651 J.v^vC	1.3082 251.41
Z.42598 .65935 .3'170 15.21737 Z.42594 .66931 .3'1455 14.76351 Z.755114 .66022 .31455 14.76351 Z.76467 .76327 .3'734 11.95267 Z.74973 .98876 .45094 11.95267 Z.74973 .99876 .45094 11.95267 Z.74973 .99876 .45094 11.3374 Z.74973 .90829 .45094 11.3374 Z.7574 1.08829 .696840 9.81991 J.1770 1.22617 .69762 8.1991 J.17750 1.22617 .93945 7.32459 J.39474 1.22612 .93945 7.32459		2,33852	чр62713 чр	* ,28427 D	15,58311	
2.5514 70682 50467 13.70337 2.70442 79687 45074 11.96269 2.74773 148645 148645 2.75345 94034 47074 2.75345 1.08329 47042 2.92184 1.08329 57646 2.97793 1.2864 9.81991 3.97793 1.2865 99945 3.15754 1.2865 93945 3.3747 1.2865 93945		2,42598 7.46274	, 45935 14774	.37170	15.21737 14.76361	
Z,749A5 (43734 1,48645 2,7535 (40846 11,3734 2,92184 1,08829 598246 9,81991 3,07700 1,22619 59820 8,19372 3,15750 1,29642 ,518492 8,19372 3,39474 1,5105 ,93945 7,32459		2.55114	76682	36467	13,70337 11,95269	
2,92164 1,08819 5,846 9,81991 3,07793 1,22819 50620 8,47892 3,15750 1,29842 ,74892 8,19372 3,39474 1,51056 ,93945 7,32459		2,74945	63734 84084	47774	11.48645 11.73774	•
5,07700 1,22619 ,69620 6,47492 3,15750 1,29842 ,75492 8,19372 3,39474 1,5106 ,93945 7,32459		2.92184	1.08515	54846	1112222 9.81991	
5,39474 1,51n68 ,93945 7,32459		3,07793 3,15750	1.22619	. 5962U	8.47892 8.19372	
		5.39474	1,51068	93945	7.32459	

	10 50K/76 CF 15P 11 0PK/090 RPK	TE 1,79159 0.0000 0.00 5 2,5524176=03 1.000006=05 6,2041535=02 5.0000006=05 3,5374755=00 1.0000004=05 3,5374755=01 2.000001=04 1,7574365=01 2.1000001=04	65 2,79768 0,0000 0,00 5 2,5078646+03 1,000008+05 5,3201745+02 3,0000008+05 2,5570315+01 5,0000006+05 3,7069145+01 1,000006+05 2,4362175+01 2,1000006+04	34 44562 0,000 4 2,7337446-03 1,000066-05 5,3332446-02 3,2000046-05 2,3762736-01 5,000046-05 2,3762736-01 5,000046-05 3,8466986400 1,000046-05	74 .LT17 0.000 0.00 3 1.9417966-03 1.00066-05 4.8543736-02 1.00006-05 2.7320026-01 5.00006-05	37 LESEL U.C.C. 0,00 3 1,60:2276+03 1.000066+05 4,3960476+02 700066+15	19 .LEEE C.U 7,00 4 9.#775321=04 1.0000E=15	.27 J.CAEE 1.5635 341.54 2														
61	PG/PG0 06/0 DPK/00	.02776 .053 2.1528935-04 5.1722398-03 5.1722398-03 7.1949928-02 2.0324678-02 3.0324678-01 1.4610048-00	.02263 .045 2.274815E-045 5.736828E=03 2.550706=02 3.653829E=03 7.401330E=03	.01999 .041 2.2136685-04 5.8054975-03 2.5857595-03 2.5857595-03	.01842 .038 2.09275 .038 5.6389576-03 2.592496-03	.01645 .035 2.136862E-04 5.595955E-03	.C3926 .C22 2.402044E-04	•21196 •E36	2,43565	2 36941		2.13573	2,3655	1,96789	1,98974	1,53964	1.70041	1,79274	1,75945	1,72706	1.45777	1.4459
-Continued No. Points -	HETA-6 TG/TG0 TPK	6,000 ,51437 5,1991396-03 5,4484456-03 5,4256456-03 5,4256456-03 5,4602316-03 5,4600286-53	1,626 ,49975 5,16:0036+33 5,4429486+33 5,5947536+23 5,5997536+23 5,6574156+23	2. 52 . 48355 5.1717866.53 5.4373086.53 5.4373086.53 5.5155496.53 5.5155496.53 5.5953495.53	<pre>% 397 47542 \$ 1624926 3 5 4317616 3 5 4512828 3 5 512228 3 5 512228 3</pre>	3,251 ,465°1 5,1532546613 6,4246656073	7.750 41753	17, JrC , 31255	C.0.033	50023 20045		[r176	, UT 237	- C1074 - C1634	.Cr671 .07726	C7861 .01010	C1176	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5161C°	. C2185 . C2477	52796	
Table V	TG VG T	2057,6 8119.2 603 01 603 01 603 01 603 01 603 01 6013 01	2856,5 8277,3 24.03 1,34285445-10 24.03 4,7486445-12 24.03 4,7486465-12 24.03 1,272355-12 24.13 66,1473355-12 24.13 66,1473355-12	7781,C #346,1 7.13 2,659538+16 1.1556664+10 7.13 1,155664+10 7.13 1,267476+11 7.13 1,2917554+10	2733,7 8450,7 8+r3 3,118640640 8+53 1,4030446400 8+r3 5,474464401	2673,8 8538,4 2+13 4,1219066.00 2+13 7,1219066.00	2406,5 8427,9 5+ 13 7,5012626+6 5	1797,6 97.75,5 a	1.0000 1.0000			13463	12655	,19923 ,2243F	25329	33192	35031		46325	- 49412 - 5297F	, 56434 40544	
0146 PASS FLON # 2,79	D Z HACH	00000 5.86852 2.7948 2.5195566-01 5.573779 1.3812626-00 3.467755 2.7935856-00 1.265464 2.2983586-01 1.7563763 1.4005556-01 1.792933	17656 6.31994 2.9422 2.2364875-31 5.46571 1.22319427405 3.526430 2.3051949405 3.726430 5.2560385400 2.7154430 1.2273566315400 2.715443 1.257356641 1.427344	36413 0,83721 2,9740 2,66232541 5,766572 1,100,096640 3,566176 2,212066640 2,755914 5,12717664 0 2,755914	5×5×c 7,365×c 7,257 1,53×1,377-1, 5,85599 1,7771×c+1, 1,640295 1,17371×c+1, 2,644390 2,1435946+1, 2,5044390	82019 7,929:7 8,94672 1,705599:1 8,9467 9,7551515 1,929 9,75515151 1,725572	808152 3 1,239 3 5 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1727 14, v t 51 4, 2965	5,82359 5,92359	0,90464	6,12170 6,12170	6,21435	640X2°C 40512°G	6.37434 5.44477	6,51(⁸ 5 6,57560	6,64C43 6,7°638	6,77492 5,5375+		7.03654	7,11943 7,20434	7,25123	7.43460
۰ ب	LAC 10	а чор т и г к С Ф Ю С С	- N	- 2 U	4 3: 4 . 2 2 3	51 4 5 2 4	32 4 28	ς τ 5.														Þ

NOT REPRODUCIBLE

continued	,ur750 1.41127		- CF276		• v + 29 , 1 • 4 = 37 :	1 7441 1 . ///4 	125211 24211	- 110057 1.10091 - 1200 - 1.1304	1451. 1.526.	 1.4.5 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74	. 2-423 . 332aT	- 24 24	24222	. 24455	1.111111111111111111111111111111111111	4+121 40° 55		13012		, 755 G	, F 7 6 S 7 3 3 5 °	- 4 4 2 4 5 - 5 2 4 7 - 5 2 - 5 2 4 7 - 5 2 - 5 2 4 7 - 5 2 - 5 2 - 5 2 4 7 - 5 2 - 5	. 47:74	K. O	■6 16/11 0.00/400 16/100 €1/2/10 01 150 15 14. 004/10 01/100 092	гс "Бонка "среяд "ТР.75 д.«Улид. "Полинии. «Виделье 3 2. цаардарния "Асикновенси "посилобенов Акауларски 3 5. Збардадния "Каикновского "посолобенов Акауларски 3 5. Збардадния "Какиканский "посолобенов Акауларски и Уларандения "Какиканский "посолобенов Акауларски и Уларандения "Какиканский посолобенов	A CHARLONG AND A CONTRACT	19 、ようしん 、してきん 、しんねち らいでできっ でして 。 「し 3 までも195日・3 で、360とできまー・4 かってきゃん目を回る こいてんべつきモイラ 44.922ビッ 3 ちょうできちなら 5 ・1 4 407日から れいわりこの音ーでう てょい349い 3 で、577675日、2 からではなどもり1 下いこのこの日中でつ	\$U-1000001100000000000000000000000000000	28 44112 11942 13435 44453 11.11 1.90 3 1638435+13 2.2096155-24 1.7014955-34 1.101235-15 43422255+3 5.86275555555 4.20555-32 1.1010555-15	5126976+13 2,5318546+12 7,3616196+11 5,12000006+05 5947121+13 4,2793226+01 1,8346026+01 1,100006+14	<pre>43 *4727 01786 03176 .03226 0.000 0.000 16-4855-03 2.0978046-047020855-031000035-05 4305895-14 5.6918575-13 4.774135-02 3.0000056-05 4305895-14 5.6918575-13 4.774135-02 3.0000056-05</pre>
Table V-C	7,54,51 151,67	7,551:77		6T-124" A-51/F" A														· ·	Phy+Pot "Marine" 「「Phy+Pot "And "And "And "And "And "And "And "And		504.52 B	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	[c, c) 21 4 5 - 41 F	1.1 - 1.5 - 1.5 - 1 1 1 1 1.		32 3 -<		32 4 12745 24205 24226 2625 6 53757 12 7.77442855 56375757 3 12205757 5 2.117949557 3 553374573 4 625135715 5 3.214594557 2 715216755 4 62565671 5	5	32 4 36149 6,95474 2,9972 276614 84115 1,8 1 2,1195726-01 5,7804445+03 2,1252875+1 5, 2 4,1144015+01 3,6119725+03 4,1476985+1 5,	3 2.1713746+00 2.76664746+03 3.3312946-11 5. 4 5.0014056+00 1.8355346+03 41.2745846+12 5.	32 4 5675 7,55477 3,6425 57.6 0 8473.5 2 <th2< th=""> 2 <th2< th=""> 2</th2<></th2<>

			ŧ	in.	a,	٤,	¥١.	5	4,	ſ	a)	đ																						
			SD4/DG RPK	0.02000	00000.3	00000 ,	3. 30000			2010217	2.1-1-2																		•					
:			06/060 DPK/0PC	5.711C26E=03	7,849543E-05	2 324244F=0 \$	2.1947735-03	1.5201256-05	1.102216-05	: 5312265-34	· 57%r2F - 34	\$(-3576flc,:																						
		11 10 11	094/84	1.488553F-73	1.75271E-03	7,5746516-34	5.392154E-04	3.7238035-04	2,534972E= '4	1.0713595- 4	1.1069-75- 4	Č3062301.7		1.42921	1.42936		1,435; 1	1,4420	1.45762	14413	1,441.57	1,43132	1.42755 24762	1,12727	1.30141	1.5734~	1.5565-	1.3511	1.3247	101001	1.27.94	1,25241	1 22435	rd11/1
ntinued ar	53,692	iS=P≜RTICLE F	101101101	274 ,23756	49, 27958	7-5 ,25245	921 .24553	154521 771.	353 ,21334	540 .: 3731	784 18272	11-41- J.J.	د.			· · · · · · · · · · · · · · · · · · ·		* 4 * - 1 *			175	0-2-7	6-375 1.435	2 D C C C C C C C C C C C C C C C C C C	, , , , , , , , , , , , , , , , , , ,	• L - 7' 4		. (* 41). . : 610			12510	. C . B 1 3	07125	. 07211
Table V-Co	AG PPTIME = 1	G	10 10 10 10 10 10 10 10 10 10 10 10 10 1	17"6.1 9545.5 29,	15-7.6 9472.5 22.	-2c 2.26101 1.4-ci	1412.7 INZ12.1 76.	1310.5 17327.3 32.	1226.7 1:43.0	137.4 1 541.2 75.	195,011042,0 41,	d: ","27 c, c, e,	*		6975-		57:54 · · · · · · · · · · · · · · · · · · ·	0 1 1	- 4335	.12477	14779	13925	40150°	20.42	49.00	2468		. 1425. 14066	37160	16/45	. 44974	.474L° 23523		
T SEGINING CE T-	CP 114E . 296.7	JET SPAFAEl~G	т. 2	5,"7339 18,75349 4,46°C	5, 7334 10, 75349 4, 5051	5,-7337 to,75549 4,9644	5,27339 13,75349 5,7352	5, 733 4 14, 15344 5, 1233	51.23, 10, 75349 5.517. 3	5.~7339 !3.75349 5.a511	- 	-122, 2223155265 5.457.		<pre>/ * * * * * * * * * * * * * * * * * * *</pre>	10190°11	946 0 1			7,72,840	2 4 3 5 3 5	7-59555		3, 1743		2.276×3	c. 32249		1,27,7,21 1,27,52	C 6 9 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6	0,01014 0,01014	5/5/5 15/25	1. 000 400		
4 -D	A	S S S S S S S S S S S S S S S S S S S	N 146 12	ہ ا س	5 1 2	- I - I	2	1 5	1	in +1	•	c 1									•							1						

																								4																							•		DG/DG0 SDK/DG 11	X Q A C X A A A A A A A A A A A A A A A A A	911455-92 8,64137 2 515235-93 1,000006-05 115925-92 3,000006-05
	1.19965	1.13909	1.1/107	15767	1,13609	1.11614	1.0675	1.07754	1.76135		1, 10421	1.11462	10101	69263	-9540°	- 562dL	77475. 77678		1001	77644	.74465	7147 4847	. 6094 .	, 54351	-5250°	570y.	, 5755 c	5612	5471	. 352	.52653	1447 TC . 1447 TC .	10110	44792	46114	126851		40059	. 30624 77855	.36932	28533	.26285	TEATC .	22003	.21561	20212	18289	6	P67P60	DPK/DG UP	2,589001E=02 3,7 2,324246E=04 1,7 2,550309E=03 5,0
/Continued	.02434	-2252°	.CZ/10 		20220	03614	62935	04269	.04569	.04/4/ 05045	0.2.14	5253	647.54	, 595 J	.04167	و لا 14 م	07915 	221-1-	11355	.1764 /	1,95F	15325		1:15	171.2.	21241	0/5278	245-7	25355	24407	74175.	27852	20195	20756	5-245 -	.3-632	22×15.	41271	44643	57853	63723	69384 7***7	20000 2022	87894	.86321	59116 ¹	1.00000	9 = SINIU UN	Tuera. 67750	TPK	0,000 45857 5,162060E+03 5,432460E+03
Table V	,55315	500°°°	,56457 60053		72727	57a23	71916	24-62	- 78684 	·/42/.	1010-1	64759	0	. 45. RT	** 6 * 5 *	59e55°		5 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25455	113113	4 40742	1,405.5		1.53497	74207	19645	1.47.54	2 T E G D	2 10025	2,753,3	2,25489	2,11115 2,444 2,4447	2 4 4 7 4 7	2,20444	2,23-90	2.25405	2 49475 C	2,71027	2.94415	5.1050Y 3.4J723	3,64345	3,46959	77205 T	4.40446	4,53885	4,72813	4,80333 5,07339	14177E-02	94 <u>v</u> e	THETANK	2694.3 8510.4 2403 8: 2403 8:
						1771-5	7 4"E 7			••0 / E					1	21:5					.: (2 2 , 1 ; 1		1 4 4 C 1 4	£7_26"T-	21. α. ⁶ Χ.	14.290 3			- 2 475-4	5267 4 -	: 4, 1, 1, 2, 2	12.4525		51.2216	: 3 7057	15,2322	13.2/094	14.23750	14.71455	15.6443/ 15.64490	16.113.5	10.54065	121/0°C1	17.54911	17,794RB	18.13876	18.75349	TOTAL MASS FLOW = 2,33"			2 3 0,00000 7,55052 3,0692 1 1,7406468-01 5,9636636 2 9,5751536-01 3,6972626

<pre>/1926-01 5.100006-02 /4326-00 1.000006-04 /59606-01 2.1000006-04</pre>	9493E=02 9.11925 5 19745E-03 1.90000E=05 79488E=02 3.00000E=05 13348E=01 3.00000E=05 13348E=01 3.00000E=05 1738E=01 1.00000E=04	r2755-02 9.44649 5 273305-03 1.0000005-05 15565-02 3.7000005-05 52645-01 5.0000005-05 144775+00 1.0000005-05 144775+00 2.000005-04	77962€-02 9.79627 4 5356€-03 1.700006€-05 51476-02 3.000006€-05 51129€-01 5.000006€-05 51276€-01 1.000006€-04 51338€+91 2.1000006€-04	<pre>%3994E-0210.16626 5 %215E-03 1.00000E-05 %1914E-02 3.00000E-05 %5782E-01 5.00000E-05 %5782E-01 1.00000E-04</pre>	.737=591 2,100000595 1486650210,59635 4 32235503 1,000006605 2269592 3,000006605 2269591 5,000006605	34945+00 1,000006-04 047026+01 2,1000006-04 25586-03 1,000006-05 226846-03 1,0000006-05 226846-03 3,0000006-05	40955-01 5.3000005-05 11325+00 1.9000005-04 121825+01 2.1090005-04 121875-0211.93622 4 14195-03 1.0000005-05	7255-42 3000006-09 101176-01 5,000006-09 107186-00 1,000006-09 143608-01 2,1000006-04 143608-0212,78181 4 4	22315-03 1.000000-09 42345-02 3.0000000-09 536105-01 5.0000005-09 1.7345-30 1.000005-04 1.7345-40 2.1000005-04	04385-02 ,59393 4 \$9455-93 ,000006-05 \$1215-02 3,000006-05 \$23375-01 5,000006-05 \$2285+00 1,000006-05
LUEd 5 5.1251/6E+32 7.17 33 5.544717E+71 4.17 33 8.2484385+93 4.21	72 1.589726E-C2 3.30 J3 2.309741E-14 1.73 .3 6.624136E-03 4.99 3 3.149298E-02 7.37 3 5.559616E-01 4.14 J3 8.524930E+01 4.42 J3 8.524930E+01 4.42	77 1.5395966.62 1.79 25 7.5927776-64 1.72 23 0.5990146-03 4.97 13 3.1403636-02 2.36 23 5.5726626-01 4.19 14 3.9 14 3599706+00 6.56	20 1.5917276-72 3.39 3.2 2.2744165-74 1.71 3.6 5716795-13 4.95 3.3 6.5716795-13 2.35 3.59336755-11 4.20 13 9.1997705401 4.34	56 1.59346665-02 3.39 3 2.2595705-04 1.70 3 6.5395745-03 4.93 3 5.5894955-03 4.93 3 3.1234645-02 2.35 3 5.5894955501 4.21	. *,20%210E+CU /.21 2. 1.598360E+C2 3.40 3.2.240651E+04 1.55 3.0.493692E+C3 4.91 3.3.0950E+C2 2.35	.3	.3 3,592114E-C2 2,34 3 5,574101E-C1 4,23 5 1,055215E+01 6,0U °d 1,614779E-C2 3,42 °d 2,193825E+04 1,67	.3 0.3949955553 2.337 .4 3.3694955553 2.337 .5 559535551 2.23 13 1.1342965401 4.23 54 1.5137495502 3.42	.4 2.181530E-94 1.46 .3 6.371745E-03 4.85 .3 3.76265E-02 2.33 .3 5.566397E-01 9.23 .3 1.218791E+01 9.28	21 1.5135555-22 3.62 2 2.1731465-14 1.55 3 2.053555-14 4.85 3 3.16525355-12 5.33 13 7.16525355-12 5.23 5 5.56743555-12 5.28
able V-Contin +,51195+ =,5929465+7 5,533465+7	-5, 9 B1E-n2 5:001055 0 12E-n2 12E-n2 5:052020 5:0520250 5:0520250 16-n1 5:05216250 16-n1 16-12	0.,0 495-71 51011445 916-72 5,4318875-7 916-72 5,5126366 191-72 5,5126366 1820-72 5,55566 1920-12 5,6530765 1920-12 5,5530765 1920-12 5,5500765 1920-12 5,5500765 1920-1200-1200765 1920-120076 1920-1200765 1920-120076 1920-12007	93,7	06.3(") 4695 836-1 5,10-1876 -28-1 5,4313186 -28-1 5,4313186 496-2 5,121626+ 296-1 5,4229565	45F+5, 5,657002E*: 76,5 - 132 ,444 965-1 - 55725E* 135- 1 5,43193u5* 145-2 5,43193u5*		386-12 - 5110946- 796-11 - 5910166- 036-11 - 54573196- 61.4 - 128 447 1 306-11 - 1587783-	445-11		C. / 7
T: 	éª 1,002 1,005 1,000 		.65.63 3.612 2007,0 44 6-1 5.978'/6+15 1.7927 5-1 5.0072466 5 9 437437 5-1 2.0072466 5 9 703 5-1 2.815715413 3.7055 5-1 2.107345413 -1.1275 5412 1.107345413 -1.1275							
2011 2011 2011 2011 2011 2011 2011 2011	2	2 2 - 22.0 2 - 1.72233 2 - 55233 2 - 52233 3 - 1.52233 5 - 1.5225 5 - 1.5225 5 - 1.5225 5 - 1.5225 5 - 1.5225 5 - 1.5255 5 - 1.5255 5 - 1.5255 5 - 1.5255 5 - 1.5255 5 - 1.5555 5 - 1.	2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4,345,74 4 4,345,74 4 1,745,74 5 2 ,5757 7 1,745,74 2 9,409,733	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

.

NOT REPRODUCIBLE

		112289 - 7,8775 1,733966-21 9,5222426-01 1,5522426-01	5,910603E003 5,910603E003 3,690260E003 2,837387E003	L a DLe 5,5674905-01 2,9653355-01 1,0377505-01	V	C.1597096-04 6.3349806-05 6.3349806-05	3.41 1.40372546 4.91.578546 2.32010540 2.3207356400	1.0000 001 +00 3.00000 001 +00 3.0000000000000000000000000000000000
	e	4,308490E+03 <u>13379 7,9373</u> 1,707455E+01 9,549420E+01 <u>-,47497E+60</u>	1,88/1446403 6 3,0626 269 5,9195926+03 3,696480≅+03 7,642460≅+03		7,771041640 019 ,40835 5,1504266403 5,420126403 5,5102626403	1.6030422=02 2.1314812=02 6.2752862=03 3.0338296=03	3.422784E=U2 3.422784E=U2 1.621216E=03 4.773001E=02 2.307547E=U1	
	* CH (A 1 + C	4,401,014 4,401,014 1,1,0,00,000 4,500,000,000 4,377,000 4,341,000 4,441,0000 4,441,0000 4,		-4,4016176-41 7,4016176-41 7,401506-41 4,4155206-51 1,4155206-51 -5,6840316-51	5,590,6826,03 -024 5,1555,060,03 5,12546296,03 5,52866,03 5,508096,03 5,590,3206,04 5,590,3206,04	5,5966236=01 1,659666=02 2,1049616=04 5,2193626=03 3,61433626=03 5,51976796=01	4,2568226+00 3,425738=02 1,6024738=03 1,6024738=03 2,2348428=01 4,2613488+00	1,000006-04 59653 1,59653 3,000006-05 5,000006-05 5,000006-05 1,000006-05
		1,752 1,755 1,755 1,755 1,557 1,255 1,255 1,255 1,255 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,5777 1,577 1,577 1,5777 1,5777 1,5777 1,5777 1,5777 1,5777 1,577	5.5275222565 5.52765515 3.736726515 7.857515513 1.899225553	3.4 8559.7 8.432930E-11 4.542691E-11 1.413152E-11 -5.774653E-11	.150 .40007 5.154022E+03 5.4279075+03 5.569356E-33 5.589967E+03	1,5900/4E-02 2,091634E-04 6,201474E-03 3,0126175-03 5,632301E-01	3.4072446-02 1.5957436-03 4.6955426-03 2.2610396-01 4.2045836-01	.59977 1.0000006-5 3.0000006-55 5.0000066-55 5.0000066-73
1	*******	и и и и и и и и и и и и и и		7.3 8521.4 9.2713155-1 5.7729776-1 1.5141716-1 1.5141716-11	-231 -45562 -1537189-03 -1537189-03 -14273598-03 -14073598-03 -1405948-03 -1400128-03	1.577675F-02 2.379420E-04 6.195875E-03 3.311024F-12 3.69572F-11	3,4876645-02 1,5661395-03 4,6559865-02 2,7669415=01 4,267005-00	. 6-342
	401W 4		1	1. 4 - 7532 5 1. 4265 7 1. 1. 1. 1. 200 20 4 2. 513 2 20 4 2. 514 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.3.7 .4546[1.503788-72 2.75037887-74 0.1710996-74 3.3111765-62 5.70a1446-62	4, 765724502 4, 5455736603 6, 4167816603 7, 757176602 7, 2014176602 8, 2004516602	6-735
	14 M P3 - 1	233777 5.2344 + 64447 55 47 + 6450 771 47 + 60575247 - 7575247 - 80151 5647	6 1. 1465 764 6. 2537661 3 7. 72491724 13 7. 8673 121 14 1. 9. 104570 13 1. 9. 104570 13	6.5 8541.5 1.1266691.5 1.1266691.5 1.1266691.1 2.216761.1 2.21125611.1 2.21125611.1	476 452 452 452 452 452 452 452 452	1,5571,851,2 2,1575495-1,4 5,1577435-1,4 3,1577435-2 3,15175-2 5,7417157-2 5,7417157-2	4 + 44 - 64 / F - J 2 4 + 74 - 131 6 F - J 2 4 + 7 / 165 2 F - J 2 4 - 14 / 165 2 F - J 2 4 - 14 - 14 - 14 4 - 14 - 14 - 14 4 - 14 - 14 4 - 14 - 14 4 - 14 - 14 4 - 1	
1			6, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	2.9	44.3 + 44.3 - 24.3 - 2 - + + + + + + + + + + + + + + + + + + +	1,5434741-2 2,7511019-4 6,1477656-3 3,7903317-4 5,7713246-1	 4. 3. 4. 4. 0. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	
	14 V 195 12	P		9.2 H5H4.4 1.7445776+7 5.8437695-1 2.5111475-1		1.122125112 2.142125515 5.1344315 5.1344315 5.1344315 7.13031551 7.3039965131	20101111111111111111111111111111111111	0 0 0 0 0 0 1 1 1 1 1 1
L	.101-014	N 1 1 1 1 1 1 1 1 1 1	9 11.43 265 5.4825465 3 3.74123543 2.3735543 2.3735543 2.91725543 2.91725543	5.5 8546.5 1.712673.5 1.712673.5 1.722646.5 1.2254665-1 2.5774695-1 2.5774695-1 1.22595175-1		1.5255705+62 2.1341146-04 0.1251526+04 3.0065576+03 5.38283546	4	
			1.1.1.1.1.20 1.1.1.1.1.20 1.1.20511+1.1.3 1.1.2511+1.3 2.1.2511+1.3	2.3 #565.7 1.3080915.7 7.4739675-11 2.4175075-11	.629 .45126 F.149565665 F.24799665 F.56774655	1.516955E-02 2.0275195E-04 5.115729E-03 3.0055256E-03 5.055220E-02	1.2586858665 1.4817425603 4.4694518603 2.1942716601 2.1942716601	

.

NOT REPRODUCIBLE

	.653354 1.0000006-05 3.0000006-05 5.000006-05 1.000006-05 1.000006-05	.64168 1.1000006-05 1.1000006-05 5.0000006-05 1.2000006-05	•••₩₩ ••₩₩ •••₩₩ ••₩ ••₩ ••₩ ••₩ ••₩ ••	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			- 14699 - 14699 - 146 - 147 - 14	6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				441
	3.2577996=02 1.4607256=03 4.4199906=02 2.1761726=01 4.3232796=01 4.3232796=00	3,2410995-42 1,45~278E-03 4,393745E-02 2,166362E-41 4,359575E+9L	3.225568812 1.4412515-13 1.37160803 2.1376085-02 2.3417925+03 4.3417925+03	1.11.46426-12 1.42.24565-13 4.4517946972 2.1513916-11	a,1741146402 1,4144275403 4,154275403 4,1554275403 7,13,0275401	T[=-1+2K_[1+5] 51175-4K_[51175-175-175-175-175-175-175-175-175-	1 - 74995-52 • 17:295-52 • 17:205-52 • 17	NO 11 10 NO 11 10 NO 11 10 NO 00 11 10 NO 00 NO 00 NO NO 00 NO NO 00 NO NO NO NO NO NO NO NO NO NO NO NO NO	・ 、 、 、 、 、 、 、 、 、 、 、 、 、	10-365-10 11-365-10 21-50 21-50 21-50 20-3		
1 2.0210646-02 2.0210646-04 6.1081096-03 3.0042316-02 5.9154456-01	1.498995E=02 2.017700E=04 6.103953E=03 3.059948E=02 5.971747E=01	1,488651E-02 2,713619E-04 6,100436E-03 3,307884E-02 7,352993E-31	1.479576E-F2 2.512445E-64 6.2512445E-04 5.205712E-03 5.205712E-02 6.126542E-01	1.472250F-02 2.037765-04 5.1940565-04 3.r1-5165-2	1.4514575-12 2.9921186-14 6.942446-3 3.1158746-12	1, 4372755-22 1, 9977765-14 1, 795665-15 1, 7295665-15	1.4.744687.2 1.9934667.4 0.1964667.4 0.196451.4 1.7241467.7	1, 3550541-16 1, 99750541-16 6, 09450541-14 6, 09474441-14 3, 369775-12	1,370028414 1,5478345414 6,10084547414 6,10084547413 4,14444123	1.3572115-72 1.9860406-64 6.10277416-73 3.^51375F-72	1.3429216-72 1.9842466-74 6.1651616-73 3.7599716-72	1.3226956+02 1.3226956+02
-Continued 56% 48066 5,1490999999 5,149099999 5,1490999 5,1490999 5,149099 5,14909 5,14909 5,14909 5,1497977 5,149797 5,149797 5,149797 5,149797 5,149797 5,149797 5,149797 5,149797 5,149797 5,149797 5,149797 5,1497975 5,149775 5,1497755 5,1497755 5,1497555 5,1497555555555555555555555555555555555555	-748 +40000 5.148472603 4.4241260-03 5.5552440-03 5.565244003 5.567534603	.613 .45930 5.1479265+03 5.4237906+03 5.5659718+03 5.5659718+03 5.5659718+03	-873 •45855 -824915+33 5.424935433 5.5657335+33 5.5657335+33 -55672105+33		1.553 .45636 5. <u>1450165 -3</u> 5.22914e - 3 5.565120F - 3 5.565120F - 3	1.150 .255 4 5.1449564 3 42158364 3 42158364 3 5143254 3	1,323 ,45357 5,1479256 5 5,215505 5 5,55555 5 5,55555 5	1.454 .45212 6.4479865413 6.4277595413 6.4277595413 8.603534543	1.249 45 77 1.14712054 3 8.42723554 3 8.42723554 3 5.55312454 3	1,654 ,12994 5,1414926-13 5,419826-13 5,419826-13 5,419826-13 5,419826-13	3,744 4435 5,1476172+03 5,419446+03 5,419446+03 5,5025016+03	1. E35 . 44797 5,14-1485-13
Table V- 6.8 6571.1 1.4259975-00 7.9139925-01 2.954155-01	5-0 8576.5 5-0 8576.5 8-24416E-91 3-093395E-91 4. 7543675+00	1.0.45#2.4 1.537#156+n0 8.5611786+n0 8.2370286+11 3.2370286+11 1.197556+10	7.5 8284.5 1.5604545 1.5604545 1.5604545 1.1.355557 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.35555 1.1.3555555 1.1.355555 1.1.355555555 1.1.3555555 1.1.3555555 1.1.3555555 1.1.3555555 1.1.3555555 1.1.3555555 1.1.3555555 1.1.35555555 1.1.35555555 1.1.35555555555	4,57 8593,4 2,6263545+7 2,626515-1 3,471315-1 1,471315-1	5.2 Pcr6.4 1.735540647 9.7752325 - 1 7.7612225-1	0, 7 5015.c 1.sc94558+r 1.st25475+r 1.st25475+r 4.s56422++st	3.3 8631.5 1.0436695+" 1.1.74416+C 1.1.74416+C 4.3559375+1	9,7 3043.0 2,-477666+0 1,123726+0 4,4556926-02	2.5 3654.1 2.53233864.1 2.33358864.1 4.23358864.1 4.9247865114	7.2 8061.6 2.75256540 1.2/3291640 5.128477841	1.5 5670.0 2.7768985-n2 1.3192155-n2 5.3489575-51	5,6 8076.1 2.3482985+1J
5,1176 204 5,9937216033 3,747857603 2,884134603 1,921507903	5 11214 264 51999073543 3175555453 218515153 2185131543 2185131543 1, 424124543	202 - 1202 - 202 0 1202 - 20 0 1202 - 20 0 1203 - 20 0 1203 - 12 0 1203 - 12 0 1203 - 12 0 - 1203 -	2.4.1.1.1.2.4.1.1.2.4.1.4.1.4.1.4.1.4.1.	5	4 3.1474 262 +.725555743 +.764545 7.90-7495+5 7.90-7495+5	3.1944 701 4.13375144 50 7.7757144 613 7.9544124 613	0 3.1647 267 4.74377414-15 3.7476747414-15 3.74767674-15	- 3.1745 259 - 5537224-3 3.73963774-3 2.9173472-3	2 3.1=:/ 259 5.062572=-3 7.795523=+3 7.9216925=+3 7.9219925=+3	7 3.1679 759 6.1680312473 3.80003415403 7.925417543	2.3,1944 255 2.1753/35435 3.6047302433 2.9296425433	• 3.2065 257 • 082059=+13
50751 - 8,4417/ 1,6541546 - 01 9,2618266 - 01 1,8246035+00 1,82240035+00	52275 8440 1.44764160 1.24781860 3.24781860 1.31746650 1.31746650 1.323004660 1.223004660		1 ************************************	64464 6.2447644444 1.66149664114 0.4467564114 1.467564114	.304.9 4.0527 <u>1.51744/F-1</u> 9.101655-1 1.700614-1	4175 - 1760 1.04665 1.14665 1.172275+1	43571 E.7995 1.005476-1 1.004476-1 1.004496-1 1.004496-1	. 463.6 n. 472 1. 578794 - 1 1. 907.725 - 1 1. 7420125 + 5u	466,7 6,3457 1,564,67,2 1 1,7291,57 1 1,7293,57 1 1,7293,57 1 1,7293,57 1			54647 ¥.01968
			* (N 10) 12 4			- 1929 20 20	2 4 8 F N N	4 C 19 4 C 19 7	-+ IN M V			2 5 5

3. 201

Ŋ

NOT REPRODUCIBLE

	2	 4.125 4.125 4.105 4.105 5.105 4.105 			 	6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 4 4	2	2000 2000 2000 2000 2000 200 200 200 20	6	<pre>c .cr637 3 2 .rr6cgr06-c5 c *.rccgcgter5</pre>	2	2	
		2+2/1/2+2 2+2/1/2+2 1-2-605+1 1-2-605+1 2+2-2+2 2+2-2+1 2+0-2+1 2+0-2+1	1, 27245 1, 277445 1, 277445 1, 247545 1, 247545 1, 24754 1, 24754 1, 24754 1, 24754 1, 24754 1, 2455 1, 24555 1, 24555 1, 245555 1, 2455555 1, 24555555555555555555555555555555555555	11477777777777777777777777777777777777	2 - - - - - - - - - - - - -	0.34 0408-0 - 745 3367-0 - 449554			7,72,2755-1 1,295,445-0 1,295,445-0	на сселение 1911 - 1920 - 1920 1911 - 1920 - 1920 1911 - 1920 - 1920 1911 - 1920 - 19		0.4344765-0. 1.15+2755-0. 1.115-2755-0.	2.417440841 1.1477591 3.9671415 3.9671416	3,75757500 1,137960550 3,501257560	2.57.5575+7.
2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 - 2 2 2 - 2 -	2 + 42 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.154×157+12 1.664×154-12 1.121×1474 1.121×1474 1.121×1474 1.121×14	2 - 252 254 - 5 1 - 254 25	и 	5	1.7375448412 1.9775148474	2 (1479) - (1479) - (1470) - (1	5,-324638F-12 1,976,5 6,24,55474 6,24,5545	1.19127442 1.97574464 6.14463473		1 1 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2	1.1481228-12 1.9754745+12 5.116485+13		1,1223198-12 1,9767919 1,1223198-14 1,1223198-12	1,575,516-72
	5.645 5.745 5.7455 5.7455 5.7455 5.7455 5.7455 5.74555 5.74555 5.74555	, 2,425,052,4 2,425,052,4 2,425,052,4 2,425,052,4 2,425,052,4 2,425,052,4 2,425,4 2,425,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	к. 1 42 	27272 - 2717 2 - 27972 - 2 2 - 27972 - 3 2 - 17272 - 3 2 - 17272 - 1 2 - 17272	2, 193 , 444 0 7, 133 , 444 0 7, 137475 7, 17475 7, 144 3 1, 1945 1, 1945	7 222 225 252 5 5 22566252 5 2 22556625 5	с туруст - тур	5 + 255 - 255 - 2 5 + 255 - 255 - 2 5 + 255 - 255 - 2 5 + 255 - 25	2.11	1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	2+3+3-144 -+3+3-3-5+13 -+145-2+13 -+145	1102 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.4144 14144 10.41688 10.41688 10.41774 14.41774 14.41774 14.41774 14.41744 14.417444 14.417444 14.417444444 14.4174444444444	12257 - 1227 - 1 19 - 42277 - 1227 - 1 19 - 42277 - 1227 - 12	13 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	71.1 405.1 2.4 42331 - 1 3.44 45241 - 1 5.75452 - 1	рости 1	61.9 61.9 61.6	57,3 =7.5=,7 2,5537,5=, 1,515175=, 4,727485=-1	53, 4 F7. 4 2, 5372735 - + - 55-249- - + - 55-249- - +	47,7 8714,0 7,703376+1		74,7 ×724,5 7,0234735+	29 8755.5 3413525+1.	13.57735+ 1 1.53.5735+ 1 1.537355+ 1	7, 17, 1770, 19 1, 1, 17, 17, 19 1, 1, 1, 17, 10, 10 1, 1, 1, 10, 10, 10 1, 1, 10, 10, 10 1, 1, 10, 10, 10 1, 10, 10, 10 1, 10, 10, 10 1, 10, 10	14.9 P233.4	69. 7 0792. 4 3. 1505765+ 4 2 47141 0 + 1	2 - 5 - 6/44 - 5 3 - 4 2 1 - 5 4 5 + 7 2 - 4 2 1 5 6 5 + 7	
0 +-/-9+1	6 3,2,44 75 5,007326474 3,51326443 2,9355456443	3.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9	42 3,7269 35 <u>5,1343495 3</u> <u>3,92</u> 96 614 2 2,9459 614 5 2,9459 614 5	در 3×5×1×2 ۲+25=25+1×2 ۲+25=25+1×2	0.	22 2222 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5. 1.263. 25 1.424-721-13		C	00 00000000000000000000000000000000000	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	10, 11, 12, 14 10, 10, 14 10, 10, 14 10, 14	· · · · · · · · · · · · · · · · · · ·
11111111111111111111111111111111111111	55640 9.1291 1.3254455-01 8.5045627-01		.58599 9.213 1.5093415-01 8.4935395-11 1.6711475+00			.634a9 9.543. 1.4435425-1		114.87777 1-30.94064.1 1-2014114	12743 4.595 1.4640556-1 1.464056-1		11-326712. 1-2576712. 1-2576712.		- 11/29 9.134 1. 1889 9.134 2. 1889 1.10 2. 180 1.01 2. 180 1.01 2. 180 1.01		1
<u>ריי</u> אר	-1 (N P)	N 10 10		10 m	4 0 10	н И	101 H- 10 N	2		2 HN 2	4 N N	v +	40 H4 - 14	N 17	 (N
		(4	N	~	(N	2	rv.	N	~	1	N	t v	~	~	٤٧ 🕨

2 2 2.1127 14.4112 4.4413 2194.4 9405.5 0.054 35163 5.726993E-03 1.54065E-02 .30021 2
1 7.1175555 6.447055433 7.157432E+53 5.05003E-05 .01021 2 1.20000E-05 .37021 2 1.707000E-C5 ?,697. 0162,0 0226,2 c.266 .37956 5.559046Ef3 1,4646n1E-02 .00021 2 *,694105+13 7,415372++1, 4,15425E+13 2,115795E-54 5,584172E-04 1,700000E-05 1.70)ucutenc . JOU21 2 1. r65000E-05 .J0021 2 1.700008-35 .27421 2 1.30000F-05 5.3u33175+-13 1.4091A55+02 .u0021 2 7.454075F-14 4.430184514 2.4000405+45 ۲, • 'n ŝ 3.4675725-23 7.9374542-13 2.1070 4,4573156+03 +.31r6198+02 0,17620 1.71°535°-02 ..)303C 3,7757115-03 1,467144F-02 0,21070 147315 9513.0 12.946 .34319 1.201209F=13 9.1275572-03 0.0000 .33417 2.9573525-13 4.745,93E-J3 1.0107 2,797546F-²3 0,3476495-63 ...1010 <u>-33214 2,5914855-03 3,10*5446-03 0,3n0^0</u> .32748 2.497711E-13 7.6271P1E-03 J.JSC10 J.497829E-U3 2.JTC32 .31545 ?.285835E-13 E.59439LE-0. J.UCCAC 5,916297E-03 C.UND30 2 2 5,08734 18,86954 4,9440 1520,8 10091,1 25,976 ,26449 7,8495245-04 2,9677535-03 0.31000 1331.0 10327.5 32.386 .23147 3.798672E-24 1.541099E-03 C.00000 <u>2543 9 9594 5 12 916 35543 4 747285-73 1135244-72 113690</u> 4.92-9175-03 J.J.20C 19.57U .29365 1.546866E-33 5.1091922-US 8.3000 5,04383 18,61799 5,0641 1424,9 10211,4 29,140 ,24781 5,5350166-04 2,2215106-03 3,00000 ,21552 2,575741E+04 1,195137E+03 0,30000 1.4213535-32 4.5622225-32 1.52707CE-62 9.123932E463 1,40-1695-02 5,9592285-04 1.444060E=02 5.4127.5E-34 1,435052E-12 4,72-951E-34 5,817557E+93 2,109052E=č4 5.487836E-03 2.114754E-n4 =.472 .37749 5.4251535=63 =.104991=+3 2.106558E=64 2,44676E-13 2.2161295-03 1,102500E+C3 5.631435E-93 2.115740E-04 5.3596736-23 2.-73298E--4 4,44679F-<u>1</u>3 Table V-Continued 1+2+2. c.343 .37379 5.1051965+73 ±+210 +377 5 ±+534795±+*3 0.5rc .3754 J. 2.4 7475,0 12.274 34274 .33449 2 < 2,1/53 14,5 3,515 2233,7 9200,6 7,546 33273 1 5,1552,54 2 6,446575513 7,72254555 6,1063305433 a.1×8 .33~46 5.1056695+73 9.3×c .37 25 1.545 ,35352 .325-5 .32:21 .28152 2 2 5,11290 18,83775 5,5514 1239,2 10439,4 35,594 ·44.5 9250.0 -3.6*7 :+23,3 9277.2 :4.291 846.2. 14.348 1819.7 97ⁿ5.4 15.369 1614,7 9966,7 22,773 :5.1-1 :5.877 / f.efc 71a7, b 9216, y
/ f.eft 71a 7, contact f.eft 7
/ f.eft 71a 7, contact f.eft 7 2 2.1.7 2172, 9 9235, 9 ס, העור ונט, בונעט ווייזס סואם, בו 9246,5 ניוניזט פור ב' ה, 4544,5 ליויז **7, ב.3377**≠יוי 1541.2 9679.5 5.422 7076,8 9354,5 5,2245 2;32,4 9472,5 1433.1 9026.7 7.3.45 43-1.7 1.5620 5.97.1 1074,5 9635.7 1718.4 9838.2 1,00.5 3:4= 3 4.5374 5,2992 4 . 544 4,3757 15,329 8 4,28°U 2 2 4.1.53? 17.2¹⁴⁵ 4,1579 4,107c 4.223 2 2 5, £7517 14, 79174 4, 2591 2 5,27829 18,79628 4,4426 2 c 3, 359c" 10, 2 4 C. 5, 52, 51, 52, 73, 5 1.2...... 2 2 4.8040° 10.45076 2 2 5,10216 18,82687 [.. = 1 / * P ... 2,53301 17,54474 2 2 5,38226 19,87280 7 2 3. 4674 14. 44. 44. 27. 7 1 1 1 1 2 2 7 7 4 2 2 2 1.512.1 , **'** - ' , ' . ., J **v** м 15 V 74 e N 4 . ĸ 1 i vi

NOT REPRODUCIBLE
		2	~	·	
		7,55052	1,93-31	C 20 - 7	
		7,58198	. 31.02	1.0.,	1.42965
		7.61692	.12265	2.0.C.	1.45.041
		7.85063	, 13456 , 15456		
		1/200.1			1.43.652
		7.74671	16761	5-0-37	1. 14462
		7.77952	.27914	04000	1.45337
		7,83913	. 58936	- 30064	1.45237
		7.51643		19813.	1.45217
0.1000 1.000 1.000 0.1000 2.000 1.000 0.1000 2.000 1.000 0.1000 2.000 1.000 0.1000 2.000 1.000 0.1000 2.000 1.000 0.1000 2.000 1.000 0.1000 2.000 1.000 0.1000 2.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 0.1000 1.000 1.000 <td></td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>20277.</td> <td></td> <td>1. 44274</td>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20277.		1. 44274
8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 8 1000 1000 1000 1000 <t< td=""><td>A DATE OF A DATE OF A</td><td>0.400 4</td><td></td><td></td><td>1.44227</td></t<>	A DATE OF A	0.400 4			1.44227
0.11037 1.0010 1.0010 1.0010 0.1001 0.0010 1.0010 1.0010 0.1001 0.0010 1.0010 1.0010 0.1001 0.0010 1.0010 1.0010 0.1001 0.0010 1.0010 1.0010 0.1001 0.0010 1.0010 1.0010 0.1001 0.0010 1.0010 1.0010 0.1001 0.0010 1.0010 1.0010 0.1001 0.0010 1.0010 1.0010 0.1001 0.0010 0.0010 1.0010 0.1001 0.0010 0.0010 1.0010 0.1001 0.0010 0.0010 1.0010 0.1001 0.0010 0.0010 1.0010 0.1001 0.0010 0.0010 1.0010 0.1001 0.0010 0.0010 1.0010 0.1001 0.0010 0.0010 1.0010 0.1001 0.0010 0.0010 1.0010 0.10010 0.0010 0.0010		- C5765		1.247	1.43267
		8.11431	19539	01310	1,41537
2.354.8 2.354.8 <t< td=""><td></td><td>1491.8</td><td>21762</td><td>24342</td><td>1.42734</td></t<>		1491.8	21762	24342	1.42734
8 27329 55311 1.5571 1.5571 8 2.5729 2.5511 1.5573 1.5573 8 5.5176 1.5773 1.5573 1.5573 8 5.5176 1.5773 1.5573 1.5573 8 5.5176 1.5773 1.7725 1.5773 8 5.5176 1.5774 1.7725 1.7725 8 5.5176 1.5774 1.7725 1.7725 8 5.5176 1.4774 1.7725 1.7725 8 5.5176 1.4774 1.7226 1.72262 8 5.5176 1.4774 1.72261 1.72262 8 5.5176 1.4774 1.72261 1.72262 8 5.5176 1.4774 1.72261 1.72612 8 5.5576 1.4752 1.12642 1.72612 9 1.12642 1.12642 1.12642 1.12642 1.12643 1.12643 1.12644 1.126442 1.12644		0.23428	23678	14+13	I. 35597
131792 286/3 10051 10555 14103 13225 10054 10555 14103 13225 10054 10555 14103 13225 13225 10555 14103 13225 14917 15555 14103 13225 14925 15955 14103 11225 11225 11325 14103 11225 11225 11325 14103 112325 11233 11233 14113 11233 11233 11233 14113 11233 11233 11233 14113 11233 11233 11233 14113 11234 11234 11234 14113 11234 11234 11234 14113 11234 11234 11234 14113 11234 11234 11234 14113 11234 11234 11234 14113 11234 11234 11234 14113		8.27529	, 25111	. J7578	1.36905
9.0379 9.0310 9993 9.0414 1.0723 9.4110 1.0414 1.0414 1.0475 1.0475 9.4110 1.0414 1.0475 1.0475 1.0475 9.4110 1.0475 1.0475 1.0475 1.0475 9.4710 1.0475 1.0475 1.0475 1.0475 9.4726 1.0426 1.0475 1.0475 1.0475 9.4726 1.0426 1.0475 1.0475 1.0475 9.4726 1.0426 1.0475 1.0475 1.0475 9.4942 1.0426 1.0475 1.0475 1.0475 9.4942 1.0447 1.0475 1.0475 1.0475 9.4942 1.0446 1.1464 1.1464 1.1464 9.1254 1.0475 1.1464 1.1464 1.1464 9.1254 1.0475 1.1464 1.1464 1.1464 9.1254 1.0475 1.1464 1.1464 1.1464 9.1254 1.0475 1.1464 1.1464<		54415.8	.26673	.03573	1.36771
4.4103 2.700 2.700 2.700 2.700 8.573.2 5.573.2 5.170 1.700 1.400 8.573.2 5.573.2 5.573.2 1.200 1.400 8.573.2 5.573.2 5.573.2 1.200 1.400 8.573.2 5.573.2 5.573.2 1.200 1.400 8.573.2 5.573.2 5.573.2 1.400 1.400 8.573.2 5.573.2 5.573.2 1.400 1.400 8.573.4 5.574 5.574 1.2524 5.574 8.573.4 5.574 5.514 1.2524 5.514 8.575.4 5.514 5.514 1.5244 1.5244 9.1259.4 5.514 5.514 1.5244 1.5244 9.1259.4 5.514 5.514 1.1257 1.5244 9.1259.4 5.514 5.514 1.1272 1.1272 9.1259.4 5.514 5.514 1.1272 1.1272 9.1259.4 5.514 5.514 1.1272 <td></td> <td>9.36379</td> <td>.28211</td> <td>14903.</td> <td>1.37253</td>		9.36379	.28211	14903.	1.37253
1000000000000000000000000000000000000		8.47303	,29589	902ú0°	1.56526
8 53757 53757 5375757 5375757 537577 537577 537577 537577 537577 537577 537577		8.44174	15605'	1/20	1.15736
1 1		6.47933	. 32275		
0.579456 53748 01100 1.2050 0.579456 5457 01100 1.2050 0.579456 5457 01110 1.2050 0.57955 4550 1.1254 1.1255 0.57956 5457 50157 1.1255 0.57956 55186 01110 1.22495 0.57956 55186 01121 1.1255 0.12754 55186 1.1255 1.22495 0.12754 55186 01234 1.1225 0.12754 55186 1.1225 1.22495 0.12754 55186 1.1225 1.24495 0.12754 55186 1.1255 1.1225 0.12754 55186 1.1225 1.1225 0.12754 51057 1.1255 1.1225 0.12754 1.1255 1.1225 1.1225 0.12754 1.1255 1.1225 1.1225 0.12754 1.1255 1.1225 1.1225 0.1217 1.1255 1.1225 1.1225 0.1217 1.1225 1.1225 1.1225 0.1217 1.1225 1.1225 1.1225 0.1217 1.1225 1.1225 1.1225 0.1217 1.1225		46/TC . R		22001	1 1 2 2 4 X 5
0.0700 13070 13070 13070 0.7265 1475 12051 12051 0.7265 1475 12051 12051 0.7265 14510 12051 12051 0.7265 1452 12051 12051 0.7257 11259 12051 12051 0.7259 1452 12051 12051 0.7259 1452 12052 12051 0.7259 12051 12052 12053 0.7259 12050 12050 12052 0.7259 12050 12050 12050 0.7259 12050 12050 12050 0.7259 12050 12050 12050 0.7259 12050 12050 12050 0.7259 12050 12050 12050 0.7259 12050 12050 12050 1.7250 12050 12050 12050 1.7250 12050 12050 <th12050< th=""> 1.72510</th12050<>		22144.0			
17886 17895 17895 12895 17899 1155 12895 12895 19937 19351 12895 12895 19937 19351 12896 12895 19937 19937 12896 12896 19937 19931 12896 12896 12959 12896 12896 12896 12993 12896 12896 12896 12993 12896 12896 12896 12994 12896 12896 12896 12996 12896 12896 12896 12996 12896 12896 12896 12996 12896 12896 12896 12996 12896 12896 12896 12996 12896 12896 12896 12996 12896 12896 12896 12996 12896 12896 12896 12996 12896 12896 12996 12996 129		6.0/6.0	90/60.		1.30631
0,77950 0,77950 1,758 1,20050 0,77950 1,0528 1,20050 1,20050 0,10534 521035 1,0528 1,20050 0,17254 521035 1,1263 1,12635 0,17254 57100 1,12635 1,12635 0,17254 57100 1,12635 1,14436 0,17254 57100 1,16436 1,14436 0,17254 0,1505 1,14436 1,14436 0,17254 0,1505 1,14536 1,14536 0,2505 0,1725 0,1505 1,14536 0,2505 0,1725 1,14536 1,14536 0,2505 0,1725 1,14536 1,14536 0,2505 0,1725 1,14536 1,14536 0,2505 0,1725 1,14536 1,14536 0,2505 0,1725 1,14536 1,15736 0,2505 0,1726 0,1739 1,17577 0,1709 0,1739 0,1739 1,17577 0,1709 0,1739 0,1739 1,17577 0,1709 0,1739 0,1739 1,17577 0,1709 0,1739 0,1739 1,17577 10,1709 0,1729 0,1739 0,1739		H 77665	23.00	25232	1.28725
6.07285 46.00 0.1715 1.24079 0.0351 57246 0.0726 1.2245 0.0351 57246 0.0726 1.2324 0.0351 57246 0.0726 1.2456 0.0351 57246 0.0226 1.18499 0.1724 5566 0.0227 1.18499 0.1724 5566 0.0237 1.17824 0.1724 5566 0.0237 1.17824 0.1725 5566 0.0237 1.17824 0.1729 0.0234 0.0234 1.14648 0.1729 0.0234 0.0234 1.14648 0.1227 0.0234 0.1237 1.14544 0.1234 0.1412 1.1127 1.1127 0.1411 0.1412 0.1425 1.1127 0.1412 0.1412 0.1412 1.1127 0.1412 0.1412 0.1412 1.1127 0.1412 0.1412 0.1412 1.1127 0.1412 0.1412 0.1412 <td< td=""><td></td><td>8.79959</td><td>43671</td><td>01528</td><td>1.26850</td></td<>		8.79959	43671	01528	1.26850
8 9.0572 5335 0.1286 1.2235 9 0.0531 55487 0.026 1.2342 9 1255 55487 0.22149 9 1255 55487 0.22149 9 1255 55487 0.22149 9 1255 55487 0.22149 9 1255 55487 0.22149 9 1255 55487 0.2235 9 1255 55487 0.2785 9 1255 55487 0.2785 9 1255 55487 0.2785 9 1255 55487 0.2785 9 1255 55487 0.3795 9 1255 1.15419 1.1577 9 1255 0.3795 1.1577 9 1255 0.3795 1.1577 9 12725 0.3795 1.1577 10 11127 0.3795 1.1079 9 11127 0.3795 1.1127 9 11127 0.3795 1.1127 9 11127 0.3795 1.1127 9 11127 0.3795 1.1127 9 11128 0.449 <t< td=""><td></td><td>d. 07285</td><td>90294</td><td>.01715</td><td>1,24979</td></t<>		d. 07285	90294	.01715	1,24979
9 1 <td></td> <td>8,93672</td> <td>48612</td> <td>. C1876</td> <td>1,23354</td>		8,93672	48612	. C1876	1,23354
V U23951 V2450 U2455 L114955 V 12599 U2372 111495 1114955 V 12599 U2357 111455 111455 V 12597 U2357 111455 111455 V 125975 U2357 U2557 111454 V 14545 U2375 U2557 111454 V 14545 U2375 U2375 111454 V 14545 U2375 U2375 111454 V 14545 U14418 111267 11454 V 14729 U2459 U14545 111267 V 125493 U14418 111267 11257 V 125493 U14543 1117267 112742 V 125493 U14543 1117267 112742 V 125494 112677 112742 112742 V 125494 112779 112729 112742 V 125494		8,98427	50335	02020	1.22149
y.17254 57199 57199 1.1254 y.25374 57199 1.1254 1.11442 y.25340 501459 1.1267 1.11442 y.25340 501459 1.1267 1.11267 y.25340 501459 1.1267 1.11267 y.25340 505413 1.27342 1.11267 y.27340 505413 1.27342 1.11267 y.27340 505413 1.23742 1.11267 y.27370 72793 1.41277 1.11267 y.27370 72793 1.41277 1.11267 y.27429 1.4573 1.4574 1.1267 y.7427 1.4729 1.4574 1.1267 y.7427 1.1279 1.1267 1.1267 y.7428 1.4574 1.4574 1.1267 y.7429 1.4574 1.4574 1.1267 y.7429 1.1279 1.1279 9.11297 y.7429 1.1279 1.1279 9.1149 y.74729 1.1279 1.1772 9.1779 y.74729 1.11017 9.7172 9.4094 y.7470 1.12709 1.1772 9.4094 y.9404 1.12679 1.12709 9.4094 y.9404<		9.0351	0017C'	101770 ·	1.64003
9.279.4 9.1794 1.1742 9.279.4 57499 1.16445 9.279.4 6.5489 1.1645 9.279.4 6.5489 1.1645 9.279.4 6.5489 1.1645 9.279.4 6.5489 1.1655 9.279.4 6.5489 1.1655 9.279.4 6.5489 1.1267 9.279.4 1.1267 1.1267 9.51051 1.2453 1.1267 9.51051 1.2453 1.1267 9.51051 1.2545 1.1267 9.51051 1.7546 1.7749 9.51051 1.7546 1.7546 9.77793 1.4413 1.7749 9.77793 1.4413 1.7746 9.77793 1.4413 1.7746 9.77793 1.7772 1.7772 9.9905 9.99072 1.7999 9.9907 1.7772 9.9072 10.7725 9.9072 9.9072 11.109 1.7772 9.9072 11.109 1.7772 9.9072 11.109 1.7772 9.9072 11.109 1.7772 9.9072 11.109 1.7772 1.7772 11.111 1.7772 1.7772		×000 - 7		1045P	1.18499
9,2334 94269 1,0725 1,16438 9,2334 6489 1,317 1,1372 9,2334 6489 1,317 1,1372 9,2334 6583 61489 1,3172 9,2334 6583 61483 1,3172 9,2334 6583 61483 1,3172 9,2334 6583 61349 1,3172 9,2334 6583 1,3173 1,3272 9,2334 1,3195 1,3392 1,1327 9,2334 1,3418 1,3518 1,3518 9,1399 1,3518 1,3518 1,3528 9,1199 1,3532 1,3518 1,3528 10,1931 1,3532 1,3519 1,3228 10,1931 1,3518 1,3578 1,3281 10,1931 1,3578 1,3578 1,3281 10,1932 1,3578 1,3281 1,3281 10,1933 1,11383 1,3282 1,3282 10,1934 1,3283 1,3275 1,3281 <td></td> <td>9.17254</td> <td>57199</td> <td>02592</td> <td>1.17442</td>		9.17254	57199	02592	1.17442
9.25579 601567 1.15416 9.279142 601567 1.13654 9.279142 60157 1.13654 9.279142 60157 1.13654 9.27914 60197 1.13654 9.27914 60197 1.13654 9.27914 1.13795 1.13654 9.27914 1.13654 1.13654 9.27914 1.13654 1.13554 9.27914 1.13552 1.13555 9.27479 1.14654 1.13552 9.27479 1.13552 1.13552 9.27479 1.14654 1.13552 9.27479 1.14654 1.13552 9.27479 1.14654 1.13552 9.2749 1.13552 1.13555 10.15779 1.13555 1.13555 10.15779 1.15555 1.17119 11.11111 1.15555 1.1711 11.1111 1.15555 1.1711 11.1111 1.15555 1.1711 11.1111 1.15555 1.1711 11.1111 1.15555 1.1711 11.1111 1.15555 1.1711 11.1111 1.15555 1.1711 11.1111 1.155516 1.1771 11.11111		9,21344	58699	.07725	1,16438
9.29142 61569 0.7989 1.1257 9.37340 659497 0.3449 1.1277 9.51051 69997 0.3449 1.1277 9.51051 69997 0.3495 1.1277 9.51793 1.5453 0.3795 1.1277 9.51793 1.5453 0.4453 1.1277 9.51793 1.5463 0.4433 1.1277 9.51793 1.5463 0.4433 1.75463 9.51709 1.75463 0.4433 1.75769 9.51709 1.75463 0.4643 1.7032 9.51709 1.75463 1.7109 1.1201 9.5162 1.55463 1.5546 1.7109 9.5162 1.5556 1.5556 1.7109 9.5162 1.5556 1.7729 1.7109 10.01414 10.0124 0.5556 1.7729 10.10414 1.05799 0.5572 1.7729 10.10414 1.1709 0.5572 1.7729 10.01414 1.7729 0.5572 1.7729 10.10414 1.7729 0.5769 0.5699 11.4776 1.1776 1.1776 11.4751 1.55406 1.1776 11.4751 1.55406 1.1		9,25519	.64230	. 02865	1.15418
9.3434 65389 1.1227 9.3434 1.1267 1.1267 9.5179 72793 03795 1.15789 9.5179 72793 03795 1.15789 9.7179 72793 03795 1.75789 9.7179 72545 04418 1.75789 9.7179 72545 04448 1.75789 9.7179 72545 1.4668 1.75789 9.7179 72542 1.75799 1.75789 9.8700 87542 1.7779 1.7779 9.8701 87542 1.7779 1.7779 9.8702 87542 1.7779 1.7779 9.8701 87542 1.7779 1.7779 9.8702 87542 1.7779 1.7779 10.0174 88738 05790 95917 10.01744 88738 05790 97837 10.0175 8740 05511 97857 10.7259 1.7755 91722 97857 10.7259 1.7764 1.7765 11.9709 1.7765 91726 11.9709 1.7709 7.4121 11.9575 1.7709 7.4121 11.9576 1.7709 7.4121 <		9.29142	,61569	.02989	1.14534
9,5101 0,510 0,9597 0,1793 1,7793 9,71730 77478 1,77478 1,75765 1,77575 9,71730 77478 1,75765 1,75765 1,75765 9,71730 77478 1,4418 1,75765 1,75765 9,71791 1,06413 1,75765 1,05565 1,05565 9,8571 81779 1,04643 1,07045 9,8571 81779 1,04643 1,07045 9,8571 81779 1,04643 1,07045 9,9572 81779 1,04643 1,07045 9,95731 1,04643 1,07047 1,01047 9,95731 1,04643 1,01047 9,9072 10,0144 1,01435 1,0147 95791 10,0144 1,01435 1,0147 95791 10,0144 1,01435 1,0147 95791 10,0144 1,01435 1,0147 95791 10,0145 1,01455 1,0147 95791 10,0145 1,01455 1,1595 95913 10,0145 1,0575 1,1595 95914 10,0145 1,1595 1,1595 95916 11,1595 1,1595 1,1595 11,1595 <t< td=""><td></td><td>9,34346</td><td>63489</td><td>.03172</td><td>1.14271</td></t<>		9,34346	63489	.03172	1.14271
7 7 <td></td> <td>00/7**A</td> <td></td> <td></td> <td>1 10303</td>		00/7**A			1 10303
9.0000 77478 1.7565 9.01790 77478 1.0556 9.01490 77478 1.05481 9.01490 81779 1.05481 9.01490 81779 1.0109 9.01490 81779 1.0109 9.0141 87505 83562 1.0109 9.0141 87505 83562 1.0109 9.92517 87595 1.0109 1.0109 9.92528 83738 1.0559 99113 10.01414 8733 10572 10772 10.01414 97243 10576 95913 10.01414 97269 95913 10.01414 1.0555 9596 10.01414 1.0555 9592 10.01414 1.0555 9592 10.01414 1.0555 9592 10.0224 1.0555 9404 11.4555 1.1565 1.1565 11.4555 1.1565 1.1565 11.4555 1.1565 1.1565 11.4516 1.5740 1.1570 11.4516 1.5740 1.1570 11.4516 1.5740 1.1510 11.4516 1.5740 1.15706 11.4516 1.5740		TCDTC'4	20424	N I VO	1.07395
9.71790 77478 .046643 1.74506 9.67450 77479 .046643 1.015522 9.65760 85562 85562 85562 9.87966 85562 85562 85562 9.87966 85562 85562 1.01793 9.87976 10.017 95772 1.01793 9.87976 10.05592 85758 1.01793 10.05114 86738 05596 99113 10.05124 88738 05596 95783 10.05124 88738 05596 95783 10.05124 88738 05596 97283 10.05258 1.0553 05566 97283 10.92259 1.0553 05566 97283 10.92259 1.0553 10512 94757 11.93050 1.3269 1.1750 7725 11.4305 1.3266 1.1750 74123 11.4305 1.32769 1.37769 74123 11.4305 1.47518 1.1750 74123 11.4305 1.47518 1.57405 55765 11.4305 1.47518 1.57405 55765 11.4533 1.57405 1.4775 11.4534 1.57405 1.		9.66494 9	75463	04418	1, 75769
9.1442 1.03322 9.63160 81779 05142 1.03322 9.8706 83573 05572 1.01017 9.96921 57338 05572 1.0117 9.96921 57338 05572 1.01017 9.96921 57338 05572 1.02049 9.96921 5779 05572 1.0017 9.96921 5779 05511 9702 10.0333 05511 97591 97591 10.05758 1.05575 9172 10.72699 1.7569 1.0572 10.92359 1.0572 9409 10.92359 1.35409 1.35409 11.30459 1.35409 1.3709 11.30459 1.32450 1.3709 11.43056 1.47518 1.5965 11.4516 1.55406 1.5740 11.4516 1.55406 1.55406 11.4516 1.55406 1.55406 11.4516 1.55406 1.55406 11.6536 1.55406 1.55406 11.6536 1.55406 1.55406 11.6536 1.55406 1.55406 11.6536 1.55406 1.55406 11.55406 1.55406 1.55406 <		9.71790	7.478	. 4643	1, 94581
9,85450 835730 83547 1,01019 9,8521 83548 1,01019 1,01019 9,9621 83548 1,05590 99072 9,9621 83749 05590 9913 10,0244 9072 9590 9913 10,0244 9072 9590 9913 10,0244 9072 9590 9913 10,0244 9072 9729 9729 10,02579 1,0170 0511 95901 10,02549 1,0170 0512 9494 10,02549 1,0533 09906 94094 11,1100 1,5533 11138 94094 11,1110 1,5533 11130 94094 11,1110 1,5533 11130 7412 11,00,92364 1,5740 7412 7412 11,00,92364 1,5740 7412 7412 11,00,92364 1,5740 5613 5613 11,00,92364 1,5740 5676 5676 11,00,92364 1,5740 5676 11,00,92364 1,5740 5676		621116	. 79608	04888	1,03322
y y <td></td> <td>9.63160 0 0300 0</td> <td>A//18.</td> <td></td> <td></td>		9.63160 0 0300 0	A//18.		
9,96921 97019 05790 99072 10,01414 98736 05590 98113 10,01414 9740 05590 9813 10,01414 97140 05590 9591 10,01414 9723 0559 9513 10,01414 101706 10559 9591 10,72756 1,01706 1,0572 94767 10,92349 1,0572 94767 9782 10,92349 1,1553 09978 94767 11,1506 1,5740 113401 7727 11,4514 1,57406 13709 7412 11,6536 1,57406 1,5740 7412 11,6536 1,57406 1,5740 7411 11,6536 1,5740 1,5740 55766 11,6536 1,5740 1,5740 55766		9.8/900	ALTS .	5253	1.10617
10.01414 08738 05596 98113 10.01414 98738 05596 9813 10.0145 92740 05511 95901 10.1259 1.01705 05122 95925 10.7259 1.0722 94094 10.92349 1.24559 1.7722 94094 10.92349 1.24559 1.1722 94094 10.92349 1.24559 1.13138 80604 11.4304 1.32769 1.13709 74123 11.4304 1.55406 1.5709 74123 11.4305 1.55406 1.57069 74123 11.65356 1.55406 1.5709 74123 11.65356 1.55406 1.5709 74123 11.65356 1.55406 1.5709 56131 11.65356 1.5709 56131 55765		0.96071	01076	05790	99072
10.05314 90233 06515 97285 10.11835 91270 05511 95901 10.52758 1.05559 0.0722 91257 10.52758 1.05533 09905 91257 10.52759 1.05533 09905 94094 10.92459 1.15459 1.12401 77275 11.30459 1.32459 1.32459 1.24401 11.30459 1.32693 1.2401 77275 11.30459 1.32695 1.2401 77275 11.4014 77275 1.2401 77275 11.5056 1.32705 1.2401 77275 11.64315 1.57405 1.57405 58131 11.64315 1.55405 1.7774 58705		10.01414	88738	05596	. 98113
10.11835 92.740 0.0511 95901 10.52798 1.07659 0.0725 91.257 10.72699 1.06539 0.0722 94.657 10.72699 1.06539 0.0722 94.657 10.72699 1.06539 0.0722 94.657 10.72699 1.15653 0.09006 94.657 11.12006 1.257061 1.12401 74275 11.4012 1.37403 1.12401 74275 11.4012 1.37009 74111 74123 11.65364 1.55406 1.3776 58131 11.65364 1.55406 1.7774 58131 11.65364 1.55406 1.7774 58131		10,05314	e233	09190	.97283
10.92369 1.0559 0.9722 97827 10.92369 1.1653 09906 94094 10.92369 1.25761 1.1552 97622 11.11566 1.25761 1.25761 77275 11.12566 1.39783 .12309 74123 11.49244 1.55405 .127401 74123 11.65564 1.55405 .127401 74123 11.65564 1.55405 .17471 .65764 11.65564 1.55405 .17774 .65764		10.11835	. 92740	06911	10646.
10.7269 1.0533 00905 94094 10.92369 1.25436 1.15533 00906 94094 11.1596 1.24569 1.24501 7475 11.1596 1.39769 1.3707 7422 11.4924 1.47518 1.39769 7412 11.65364 1.55405 1.39769 7412 11.65364 1.55405 1.5976 .58131 11.65364 1.55405 .17774 .68131		10. 64464		06720	47457 47457
10.92349 1.22081 11138 80604 11.1506 1.32681 1.3209 77275 11.3049 1.32709 74120 11.30454 1.47518 1.5066 11.65364 1.55405 1.5769 11.65364 1.55405 1.7774 11.65364 1.55405 1.7774				10906	94094
11,11506 1,32581 12401 77275 1,30459 1,39459 1,30429 74123 1,4924 1,47518 15060 7111 11,65364 1,55406 1,5471 66131 1,65740 1,55740 65764 65764		10.92349	1.24369	11138	80604
11.30459 1.39783 1.3709 .74120 11.49314 1.47518 .15066 .71111 11.65364 1.55306 .1.474 .68131 1.64901 1.65328 .1.774 .65764		11,11506	1,52981	10121	. 17275
11.47314 1.47518 1.5006 7.1111 11.65334 1.55405 1.7447 .68131 1.44931 1.65328 .17774 .65764 27552 .7754		11,30459	1,39783	.13709	.74120
11.65364 1.55406 1.4441		11,49314	1.47518	.15066	.71111
50/C01 5///T1 02/2011 TCAAD311 5//C01 5//C11 5//C11 5//C11 5//C111 5//C111 5//C1111 5//C1111 5//C11111 5//C11111 5//C1111111111		11.65364	1.55406	*****	. 581.51
			1.02320	1///	10×10.

•

. In

ded	, 62172	, 60395 12112			5 1 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	04040	31301			. 50,031		.48826	48232	. 47730	.43713	. 40002	,36673	.339990		- CODIS	5716/°	22470	.22.02	.2.675	19945	18732	.13748	2265-	- 2J965	• 2 4 9 5 5 •	3 4 1 9			C Č	1 90/YD3 20/D63 20/YD2 11	Add Date Date Carac	<u>, 1,5851536=r2 3,5870496=02 9,427=0 2</u>	3 2.296954F-04 1.728866E-03 1.302000E-"5	3 6,507669E+73 4,973444E+02 3,209900E+f5	3 3.144979Er.C2 9.367155E-01 5.00000000	3 9.580367F+01 4.201199F+03 1.103000F+ 4 3 8.836645+03 4.6466666401 2.103003E+74	7 1.61297652 3.4247845-0213.56488 4 	0 /**20191919 * 2**24017100 2* 00000101 * 5 * 6.7379666*1 * 8.8745936=02 *.^^00036+85	3 3,0567466-32 2,3263766-01 5,00006-05	3 5,599964E-11 4,261927E+00 1,0000E+C4	3. 1.2007776=+31 7.945395=+01 2. [23020=+24	2 1.471127E-02 3.217525E-02 .5554 3	5 1,9992078-04 1,4263348-03 1.00000E-05	3 6.0886468-03 4.3439458-02 3.300008-05	5 0.0144/16=52 2.2760/95941 9.400006=64 5 6.1860666=61 4.4134506+00 1.5000006=64		0 1.2621415-02 2.9445615-02 .03754 3 	3 6.122881E=03 3.873145E=02 3.00000E=05	3 3,121670E-02 1,974672E-01 5,00000E-05
V-Conclu	.19850	21993	220/1	.23138	04142. 1404c	83.25	100707°	27528	UBC BA	0.888.0	29414	12602	3-465	Jr 953	35758	. 4-907	. 46297	.51615			6165/ . 81475	A 2015		01400	9545L	1.6-419	1.00492	1,C ¹⁵⁶⁵	1.1-637	1.4777	1.5774	07070.1	0 - D - T	= 21/1-4 'r.	1214-0 TG/153		3.0/0 .46353	5.1612765+33	5.431971E+C3	512727E+13	5,592551E+12 6,4531326+13			5.51-9116-13	5,5912136+03	2-2217945+53	929 45822	5.14×727E+03	5.4230856-03	5,9054100+04		2.246 44339	5.417084E+03	5 500656E+03
Table	2,11049 5,7362 54 64 55 55 55 55 55 55 55 55 55 55 55 55 55	2,24472 1,79n58			C.D.4441 1.94473							1 2 1 2 1 2 2 2 2 4 4 1 2 2 2 2 4 4 1 2 2 2 2		0,11,10,00 0,000	7,6155	3 .74 2.1769	•• / *a* . 2,04+57									- 7 - 74	5,72,25 5,72,29 5,772,9		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•• c[734 5. 24 283	r.826F7 5.10215			tun = 2. ⁵ 310177£+32	- L US UN ENTERNO E		1.1.22 2.000 210.3 22572		- 1	2.815567E+13 C.		akēši 3. akak 27ab.1 8463.0			+-1 1.9858935+33 =2.437691E=31		A-456 3 4115 2634.8 8592.0		-01 3,7538326+73 8,829588E-1	.+20 2.8969355+03 3.3023195=91 -20	TONUTORION TO TONO TONI TO TONI	35272 3,2314 2549 5 8715 9	-01 0.1174006+95 Z.041746740 -01 3.217935+03 1.9503636+00	+00 2,950471E+02 6,924273E+01
					· · ·			*	, , , , , , , , , , , , , , , , , , ,				,	•					,	•							*		·	•	•	**		T'T'S, 43.	E E F					3 4 , HÉP712F.	4 4 3976766	3 4 ,Tatil 2			A A 3050465	5911111 S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 9.1402425	3 1.7969656		3 4 61639 91	1 1,4042025	A 3 1.6453046

NOT REPRODUCIBLE

R202

Î

3

(2) Interpretation of MULTRAN Output

Figure 27 shows the limiting droplet streamlines for the five droplet groups (3, 9, 15, 30, 63μ radius) representing the unburned fuel and oxidizer droplets. The limiting droplet streamlines for each group are defined as the furthest radial position from the axis at which droplets of that particle size are found. Larger droplets are closer to the axis since they resist turning during the gas expansion due to their large mass. The gasphase streamlines are also shown (dotted lines) representing the boundary of a streamtube containing a specified percent mass of the flow between the streamline and the axis.

The small size of this engine (5-lb thrust) and relatively large unburned droplets exiting the combustor tested the ability of the <u>MULTRAN</u> program in many unexpected ways. An assumption had to be made as to the initial flow angle of unburned droplets exiting the combustor—that is, in the convergent section of the nozzle throat.

The current program is set up to distribute the droplets uniformly across a radial section upstream of the throat and to assign uniformly increasing negative flc." angles between the axis and the convergent wall point. The convergent inlet angle was set to a minimum value of 12 degrees presenting a very shallow inlet. The implication of this assumption is that droplets cannot turn to a greater angle than 12 degrees in the inlet due to their large mass. The 12-degree value represents a limitation of the current program, not an engineering judgement.

The results of the sample case show the difficulty with this assumption. It has originally been expected that the droplets would quickly turn and assume positive flow angles shortly downstream of the throat. The 3, 9, and 15μ droplets did turn, although further downstream than expected. The heavier droplets, 30 and 63μ , also turned, but only slightly, retaining a slightly negative flow angle.

The effect of this assumption (negative inlet angles for the droplets nearest the wall) on the results is very minor. Had the droplets been parallel to the axis (0 degree) at the throat, the droplet expansion "cones" would have been slightly larger. Numerical difficulty, however, had to be overcome, due to the extremely high droplet/gas weight flow ratios near the axis of the plume-sometimes exceeding 100:1-due to the negative initial angle of the heaviest particles. Future work will eliminate the necessity for this assumption.

(3) Summary of Results

The small size of the test engine, coupled with the relatively large unburned drop sizes and large area ratio of the nozzle, severely limits

the ability of the droplets to run away from the axial direction and expand into the plume. Residence times during which the droplets experience high radial drag forces in the nozzle and plume are extremely short, limited to approximately 0.2 ms (based on an average droplet velocity of approximately 2,000 ft/sec).

The droplet density profiles at any axial plane (z = constant) is practically uniform between the axis and limiting particle streamline for each each particle group. This is due to the negligible influence that the ambient pressure has on the droplets in the plume. After exiting the nozzle, the droplets travel in almost radial paths.

Considering the initial droplet loadings and the total weight flow ratio of droplets to gas $(\Sigma \omega_p / \omega_g = 0.45)$ approximately 51 percent of the total flow (gas + particles) is contained within the 3µ limiting particle streamline at the nozzle exit plane. Of this, 31 percent is liquid droplets and 20 percent is gas-phase. Further downstream, the gas expands radially while the particles are contained within a shallow cone. At 20 inches downstream of the nozzle throat (not shown in Figure 27) 42 percent of the flow is contained within the 3µ limiting droplet streamline, consisting of 31percent liquid and 11-percent gas-phase.

Since the 3μ droplet group comprises only 1 percent of total droplet flow, a more significant result can be seen by examining the 15μ droplet limiting streamline which bounds 96 percent of the droplet flow (15μ , 30μ , and 63μ groups total). At the nozzle exit plane, 35 percent of the flow is bound by the 15μ limiting droplet streamline of which 30 percent is liquid droplets 15μ or greater and 5 percent is gas-phase. At 20-inches downstream of the nozzle throat, the flow composition bounded by the 15μ streamline is 30-percent liquid and 2-percent gas.

The impact of this result on any analysis or experiment involving direct impingement of the plume from this engine is obvious. Impingement of the shallow central cone of the plume will involve primarily liquid droplets while impingement by other portions of the plume will be practically entirely gaseous (aside from possible condensation of plume species).

4. KINETICS AND CONDENSATION-THE KINCON PROGRAM

The <u>KINCON</u> subprogram performs the chemical-kinetic and single-species condensation calculations along gas-phase streamlines as defined by the Multiphase Nozzle and Plume Transport program, <u>MULTRAN</u>. When operated in the automatic mode, <u>KINCON</u> accepts card input data describing the initial gas-phase composition, chemical reactions with rate coefficients, and pertinent integration control parameters. The streamline definition including initial streamline conditions (pressure, temperature, and velocity) and the streamline pressure distribution are obtained from the <u>MULTRAN</u> program via TAPE 8.

a. Description of Input

Six streamlines (the axis, 25, 50, 80, 90, and 99 percent mass flow streamlines) were selected for analysis. The chemical system (12 species and 24 reactions) describing the kinetics of MMH/NTO combustion products is a commonly used set and was obtained from the <u>ODK</u> (the ICRPG One-Dimensional Kinetic Nozzle Analysis Computer Program) kinetics library (Reference C-1 and C-2 in Appendix C). The rate constants were updated whenever possible with the latest values from the literature. The initial gas-phase chemical composition was obtained from thermochemical equilibrium results corresponding to a chamber pressure of 67 psia and an oxidizer-to-fuel ratio (O/F) of 1.5. The chamber conditions represent averaged values over the segment of the engine pulse as calculated by the <u>TCC</u> subprogram.

A listing of the <u>KINCON</u> card input data for this sample case is presented in Table VI. Nothing is entered in the namelist \$ THERMO since a master tape of thermodynamic data (in JANAF format) was attached to TAPE 4. The 12 chemical species with initial mass fractions follow the title card. The chemical reactions are specified in two groups; the three body dissociation and recombination react ons appearing before card <u>END TBR</u> <u>REAX</u>, and the binary exchange reactions following the <u>END TBR REAX</u> card. The rate constants for the reverse reaction are input on the same card as reaction, which is input in symbolic form. Integration control parameters and miscellaneous data follow the reaction cards in namelist \$PROPEL.

The normalizing factor for the streamline coordinate was taken as the throat radius, RSTAR = 0.0972 in. Initial step size (<u>HI</u>), minimum step size (<u>HMIN</u>), and maximum step size (<u>HMAX</u>) are input in values of the normalized streamline coordinate. <u>DEL</u> is the relative error criterion and represents a measure of the truncation error in the finite difference scheme. With JF = 0 all variables are considered for step size control. Every tenth integration step is output as specified by <u>ND3</u>. Inputs required for the condensation pass include: <u>ICOND</u>, the location of water vapor in the species list; AREPS, the relative convergence criterion for area ratio iteration.

b. Description of Output

Chemical kinetics calculation passes were performed for six streamlines corresponding to total mass flow percentages of 0 (axis streamline), 25., 50., 80., 90., and 99. Output samples from two of the streamlines (axis and 90-percent streamlines) are included here to illustrate the KINCON capabilities. Table VII and VIII present the properties for the two streamlines as computed by the SLINES portion of the MULTRAN subprogram.

Table VI. KINCON SAMPLE CASE-	DATA	LISTING
-------------------------------	------	---------

STHERNO S AUTOMATED KINCON				
005 Ahariê Myse Laveli	,0652			
H20	,2738			
60	,2017			•
HZ NO	42509744			
	14500/01		<u></u>	
0H	.00967			
02	000764			
	1,89E+11		······	·······.
н	,00115			
N	1,39E=6			
0	,000817			
REACTIONS		_	•	
02 = 2 = 0,	A=3,3E17,	N=1.0,	8=0.0,	REACTION 1
N2 1 2+N,	AHY, DEI/;	N=1.0.	U=0.0;	REACTION 2
	A#/ 2510;	N=0,2,	8=0.0	REACTION 3
	ABD UELO			PEACITUN 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A=2.3616.		8=0,0; 8=0,0;	REACTION 6
$CO_{2} = CO_{2} + O_{2}$	A=5.1E15.	N=0.0.	8=3.58	REACTION 7
$CU = C + O_A$	A#6.0E8	NEG.O.	8=50	REACTION B
END THR REAX				• • • • • •
$NC + 0 = 02 + N_{1}$	A=3.0E11,	N=+0,5,	8=7.13.	REACTION 9
NÜ + N 3 NZ + U;	A#3, 0E13,	N=(1, U,	8=75,5,	REACTION 10
N2 + D2 = 2 + N0	A=1,0E13,	NIC.D.	8=79,489,	REACTION 11
$CO + O2 = CO2 + O_{2}$	A=1,9E13,	N≖C,O,	8=54,15,	REACTION 12
CC + N = C + NU,	ANI, SELU,	N==0.57	8=0,5,	REACTION 13
	AEC,4613,	N=U,U,	0=1,99; D=05 0;	REACTION 14
	A=1,2514,	N=0,0,	8=27,83,	REACTION 15
0 + 4 = 0 + 4 + 02	A = 2 + 2E + 1 + 1		B=14 8.	PCACTION 10
0 + + +2 + +20 + +.	A=8,41F13,	N=0,0,	H=20.1.	REACTION 18
2404 8 420 4 0.	A=5.75E13.	N=0.0.	B\$18.1.	REACTION 19
H2 + D = 0H + H.	4=7.33E12.	N=0, 0,	B=0.0.	REACTION 20
$H2 + 02 = 2 + 0H_{2}$	A=4,98E23.	N=2.5	B=85.7.	REACTION 21
NC + CO # CO2 + N,	A=1, "E13,	N=3.0.	8=9.93.	REACTION 22
NO + H = OH + N.	A=3,4E13,	N=0,0,	8=1,38,	REACTION 23
CC + CO = CO2 + C,	A11,0E13,	v≖ü,0,	6=9,93,	REACTION 24
LAST CAND				
SPROPEL				
RSTAR#0,0972, JPFLA	G=1, DEL=,01,	MD3=10, H	1=+0001+ HMIN:	1,001, HMAX#1,0,
			n=2	
AREPSELUUI: ETAEV.	T1 (COMB(1)=15	THE PERION	U=< (
9E(4U				

Table VII. KINCON SAMPLE CASE-0% STREAMLINE

	INE: 1)+ 0,00000		THE POTAL MASS	\$ L L =
PINIT #	79,663129	(PS1A)	STORE STATE	
		12201 41		
ZFINAL	19,615868	(NCNDTHENS	1014L + 22903	
	£4	the of P	STAF TABLE PC	1778)
	1711L			
×C.	(Z/RC)	(#/RC)	(5/40)	(F2]A)
1	-2 0791176460			7 CARTITLA 4
2	=1,871205E+01	J .	2,07411/6+01	7 7956586+61
	#1,003294E+00			7 3520606411
5	=1,24747 E+00	, ,	d,316468±+C1	7.059497E+C1
· · · 6	■1:039559€=01	D	1,0395506400	6,8213326+01 6,5153465414
8	+6,237351E+C1	5	1,4553526+00	0,215614E+U1
11	++,1582342+01 ++		1.#712056400	5-8774846+01
11	0,	5,	2.079117=+00	5,17CC37E+C1
12	2,079117E+01 4,1582346=01	ð, D.	2,2470292+00	4 8154446+01 4.4406326411
14	6,237351E+01		2.7124526+00	4,0829558+01
16	0,010+07E+01 1.039558E+00	J .	2.118675+00	3.3547876+01
17	1,24747 E+00	0,	3,326587⊨+0∩	3,09Ch93E+61
18	1.6632945+00	0. n.	3,534499c+00 1,742411c+00	2,700066E+01 2.500373E+01
20	1,871205E+00	0	3,9563222+00	2,237113E+L1
22	2.679392E+CC	0, ····	4,7791171+00 4,7555695+00	1,9748558+01
23	2,869°49E•00	5	4,9461002+00	1,2636866+01
~ 24	3,070924E+00 3,287814E+00	0. 0.	5,1509456+00 5,3869356+00	1,120913E+01 9.851113E+00
26	3,559576E+01	Ő,	5.6366926+00	8,397269E+Ch
28	4,060574E+00	0.	6.139591E+00	6,27345FE+L1
29	4,30123rE+0r	0.	6,386347±+00	5 47244EE+Ch
30	4,8035346+00	0.	c,827210c+00 c,882451c+00	4,17E716E+CC
32	5,067012E+00	0	7,1461356+00	3,6406506+01
34	5,628553E+00	0.	7,707970±+00	2,80036FE+L*
35	5,93960^E+00	0.	£.u16717±+00 2.4059846600	2,39716*E+C*
37	6,698349E+0*	0,	c,777460±+00	1,74453CE+60
38	7,032384E+00	0.	\$.111*01±+00	1,5035838+00
40	7.624A37E+0C	0	9,703954±+00	1,5729356+01
41	7,912974E+00 87204#195+00	0. G.	9,992091±+00 1.028364±+01	1,2401316+01
43	8,544F17E+00	0	1,0423936+01	1,22/3708+61
44	8,843704E+00 9,294113E+00	0.	1,092262E+01 1,137323E+01	1,0504252+07
46	9,801663E+00	0,	1,198778=+01	1,235634E+0^
47	1.0773442+01	0.	1,2411300+01 1,2452606+01	9,870140E=01
49	1.12172°E+01	0.	1,3295402+01	8,126216E+C1
	1,1429598+01 	0	1,3704/16*01	7:1234146-01
52	1,212-626+01	9	1,419973±+01	7,45402PE+C1
54	1,277476+01	0	1,4949596+01	0,5599136+01
55	1,35541-2+01	2, 2	1,5633300+01	5,071056E+01
		<u>.</u>	1,0911236+01	
5 č	1,529P6=E+01	0.	1,737779±+01	3,947790E=01 3,289161E=04
ég	1.0091396+01	0	1,617051=+01	4,16x754E=01
51 62	1,668993E+01 1,690767E+01	0. C.	1, #76°65±+61	2,836233E=C*
	-1.755*4*2=01-	÷	1.9032012+01	£.2r+2012-01
64	1,773e75E+C1	5	1,99150/6+01	3,9866336-01

- STREAM	LINE(4) . 90,000	D5 PERCENT OF	THE TOTAL HASS	FLON
21N17	e,00na0	C INONDIMENSI	ONAL = S/RC)	-
PINIT	× 79,55181	0 (PS1A)		
TINIT	5619,02909	7 (DEG, R)		
VINIT	1724,19380	2 (FT/SEC)		
ZFINAL	= _24,40577	S INGNDIMENSI	ONAL = Z/RC)	
MOKSA	= 50	CVO, OF PRE	SSURE TABLE PO	INTS)
PEINT	AXIAL	RACTAL	STREAMLINE	PRESSURE
· .	DISTANCE	CISTANCE	CISTANCE	(PSIA)
	(2/90)	(P/RC)	(5/90)	
1	=2,079117E+00	1,155289E+00	C.	7,955181E+01
2	-1,8712055+00	1.1157888+00	2.116307E=01	7,763028E+01
3	-1,683294E+00	1,0875385+00	4.2250945-01	7,545083E+01
	-1,4003H2E+F0	1,7495915000	e,32/11/E=01	7,2952886491
, , , , , , , , , , , , , , , , , , ,	-1 2395585474	1 9201765400	0142341VE#01 0 053464E+00	/
,	=8.316468E+C1	9.8166675001	1.2602156+00	6.401010Ee01
4	+0.237351E+C1	9.672626F=01	1.468625E+00	6.051401F+01
	-4.155234E-F1	3,5684405-01	1.676793F+00	5.6814356+01
1	-2,7791175-r1	9,5069635+01	1.854798E+00	5,304743F+01
11	•	9,485 <u>110</u> F=01	2,192722E+CU	4,9123456+01
12	2,779117E=01	9,5037836-01	2.300642F+00	4,5158938+01
17	4,15#274E+C1	9,563(135-01	2,5696385+46	4,125753E+01
14	A.2373511#01	2,462676F=01	2.715788E+rc	3,737657E+01
1.4	* ************************************	0.0433045-01	7 1338405401	5.3039090900 <u>1</u> 1 1619745464
	26747 F + 1	1.0205346+0	1.742956F+**	2.6794295+01
	1.4553928+77	44763=+10	3.552518F+11	7.360464F+01
	661204F + 10	1 77 : A9F+10	1,7626295+11	2, 667295+01
د	1,871215F+R.	1,1115395+00	3,9733766+10	1,0009375+01
2:	2,1251335+*;	1.1483995+76	4.229970F+PU	1,214220++41
22	2,2343415+1	1,1745175+1	4.144218F+*G	1,405105F+01
<u>د</u> ،	2,31,44446412 9.70677925.55	-1,241)A8F#CG	4.5454596470	1,1010726401 3,58777664Au
2.5	2 1003/0F+ 1	1 305578E+0.		+ 4372335+00
د بر د نر	5.342670E+1	1.466.775+00	5.4483416+00	7.5518805+00
			5.7675438+13	- 478776F+00
د	4,0523641+1	1, 154578F4 1.	A.223151F+-0	5,533329F+Au
¢ *	4,4154198+11	1,749,145+14	6,5979946+n1	4, 1758915+11
3-	4,9527438+75	1,951739=472	6,777232F+/)	4,194147E+00
31	2.514343E*U3	259 J86E+	7,4252776+1	3,7342356+00
37	2,5744472.051	2,7/5294440	7 4944405*"0	3 23827- +30
14	A.744114F.1	2.3486265490	G. 1424376+1	2. 41982Fafn
35	7.38%773E+C	2.510970F+1	9.65947uE+11	1.4519745+05
7.5	5.212965E . 11	5.7225A2E+12	1,1518125+11	1.7455395+0.
37	9,197910E+11	7, 044942F+NU	1.1431195+11	9 45A255F=01
3 °	P.8853n4E∙ru	3,147145=+00	1.2240405+11	7,927100E=01
3;	1,708456471		4, 11476541	2.411330H=41
4٠	1,167296F+^1	7,598711E+06	1+4097446+51	4,199110F=01
	1,269617E+01	4,456785E+C(1+514259E+C1	3,1048245+31 3 1404645-A+
42	1 47901 96 - 1	4 # # # # # # # # # # # # # # # # # # #	1 7303605401	0, 199100011 0, 1991000011
	1.45540964-1	4,5901246400	1, P12%r2F401	2.1347076=01
	1.7443778 • 1	5.151362F+00	2.1018205+01	1.46 2025-01
• 6	1.843674F+ 1	5,3011466+10	2.104210F+C1	1,257496=01
47	1,9648666+11	5,516246E+0.	2,231431F+11	1,0269586=01
1 a	7,117420E+01	5,7322445+80	21385643E+01	P,210254F+52
49	2,140851E+01	5,935384F+FU	2,4142486+01	5,3169975=02
5:	2,1297578+11	5,434C24E+00	2,441577F+C1	8.547665E=12

Table IX identifies the first streamline (axis) and the calculation pass (kinetics). The pressure distribution as a function of the streamline coordinate is presented in Table X. Several pages listing input variables, species, and reactions have been omitted since all the input data have been presented in Tables VI, VII, and VIII.

Initial streamline conditions are shown in Table XI. The chemical composition corresponds to the input equilibrium chamber composition. The pressure, velocity, and temperature are the values obtained from TAPE 8 (<u>MULTRAN</u> analysis). Station output at several downstream positions is shown in Tables XII, XIII, and XIV. Output from all other stations has been omitted since it is of the same format. A summary of the maximum and minimum net production rates for each reaction is illustrated in Table XV.

A similar sampling of output for the 90-percent mass-flow streamline is included in Tables XVI through XXI. Over the region analyzed in the present sample case, water vapor did not reach saturation conditions and the condensation calculation pass was not performed. The characteristics of condensation calculation pass, including sample output, are illustrated by a sample case in Appendix C, subsection C. 7.

c. Discussion of Results

Results of the <u>KINCON</u> analysis are illustrated for the 99-percent mass-flow streamline and are typical of the other streamlines. Figures 28 through 30 present the static pressure, velocity, and mass fractions of several species as a function of the streamline coordinate which is zero at the upstream boundary of the transcnic zone (nozzle throat). The streamline presented here extends just past the nozzle exit plane. Figure 29 presents the streamline static temperature as computed by the <u>KINCON</u> subprogram along with the gas-phase temperature predicted by the <u>MULTRAN</u> analysis (constant specific heat ratio). The error in static temperature, ignoring detailed kinetic effects, may be sizeable.

As can be seen by the distribution of species H_2O , H, and O in Figure 30, the chemistry is essentially frozen downstream of a streamline coordinate of 10. As would be expected, the constant specific heat ratio, which is an equilibrium value, results in a <u>MULTRAN</u> temperature prediction that is higher than the values predicted by <u>KINCON</u> which is essentially frozen.

Figure 29 presents the gas velocity along the streamline. The higher velocity predicted by the <u>KINCON</u> analysis is in keeping with the differences noted in the static temperature distributions. Again, ignoring the details of the streamline expansion could result in a significantly error in gas-phase properties. The analysis procedure utilizes the <u>MULTRAN</u> analysis to define only the coordinates and static pressure for the gas-phase streamlines.

Species compositions presented in Figure 30 are shown to indicate the region and extent of the chemistry. Some water vapor is formed from H, O, and OH; however, the changes in composition in general were small with the composition essentially frozen downstream of a coordinate of 10. Table IX. KINCON SAMPLE CASE-IDENTIFICATION (0", STREAMLINE)

Table X. KINCON SAMPLE CASE-PRESSURE TABLE (0% STREAMLINE)

•

1	¥	P	DP/Cx
1	0.	7,96631295E+01	-8,68903898£+00
	2,07911494E=01	7,7#565766±+Q1	•9;32417296E+00
3	4,15823393E=01	7,57859202E+01	=1,04274585E+01
4	6,23735189E=01	7,35205955E+01	=1,15217098E+01
· \$	8,316467866-01	7,04949238E+01	-1,276325536+01
6	1,0395584PE+00	6,821331716+01	=1,35690406E+01
7	1,247475198+00	6,93525958E+01	-1,456665966+01
Ą	1,45538188E+00	6,215617936+01	-1,541962966+01
9	1,663293576+03	5,677484226+01	-1,651683146+01
11	1,87120527E+00	5,52880744E+01	=1,711315t9t+01
11	2,07911494E+00	5,170637276+65	-1,739593086+01
12	2,2702866E+00	4,855447+12+01	=1,753641C0E+01
13	2,494947366+00	4,440FJ232±+01	-1,73748P23E+01
14	2,742852056+00	4,082495368+01	=1,702670476+01
15	2,91070375E+CC	3,732622206+61	=1,65495445L+01
16	3,118675456+60	3,394784586+01	-1,54547#256+01
17	3,376587146+00	3,040493428+01	=1,46629711E+01
18	3,53449784E+CO	2,7=5=6=941+01	-1,418195106+01
19	3,74241-546+07	2,5rc373-8E+u1	=1,31775515E+01
20	3,950322236+00	2,237112532+01	-1,106144752+01
21	4,57911696E+00	1,574854666+01	-1,015994526+01
55	4,758502576+00	1,415494444401	=8,431A474Cc+0C
23	4,948165736+00	1,203485766+41	=7,5%6546ü5E+00
24	5,15004452E+00	1,120517=56+01	-0,65221310E+00
25	5,36693532E+00	9,84111308±+00	-5,75432583E+CO
-26	5,6386924AE+00	8,347288v26+00	•4,97834342E+00
27	5,91420114E+01	7,176424192+00	-4,23919753E+00
28	6,1396914^E+00	6,27349754±+00	-3,57868~97±+00
20		5,47244P19E+00	-3,04377410E+00
31	6,62721758E+00	4,77978746E+30	=2,61541003E+00

r

a the way and the ends of the

NOT REPRODUCIBLE

Table X.-Concluded

31	6,88265075E+00	4,158/16386+00	=2,19522027E+00
32	7,14613471E+00	3,6404988666+08	+1,834785216+00
33	7,422141572+00	3,168806616+00	+1,49560336E+00
34	7,7-7969876+00	2,800367516+00	+1,29356041E+00
35	8,018717046+00	2,347164256+00	-1,112097216+00
3 e	8,4~5984396+00	2,02410751E+UA	-8,61140158E=01
37	8,77746596E+00	1,744529+06+00	+7,37791928E+01
3 e	9:111501206+00	1,503582908+00	-6,520R2369±-01
39	9,45681705E+00	1 , 3r153693E+0r	1,170596986+01
4	9,71395445E+00	1,57293#30E+30	=1,05377273E=C1
41	\$,\$9289894E+08	1,245131236+00	-2,453586346=01
42	1,02836363E+01	1:47070936E+00	-2,811C0105E=02
43	1:042393476+01	1,227369718+00	3,43856714c=G1
44	1.092262046+01	1,690424516+00	=1,83890°07E=01
45	1,177323016+01	1.089581242+90	=4,329638J7E=C1
46	1,198079976+01	1,235633482+00	=1,51333665E=01
47	1,24113572E+01	9,324774r26=61	-2,552106176-01
4.2	1,2-526-376+01	9,870147552-01	=1,35423F11E=C1
4 9	1,32964*116+01	8,176216446=01	=1,91554949E=01
20	1,350471116+01	8,626997-90-01	-1,534995682-01
51	1,39493716±+01	7,125414226+01	-1,647676526-01
52	1:41997344E+C1	7,4=4027546=01	=1,215293536=01
5,2	1,464131146+01	6,29U24770±-#1	=1,37682e/te=01
54	1,4=495=598+61	6,559F13,9=J1	+1,22903488E=01
55	1,54332984E+C1	5,071C5976c=01	-1,1210625CE-01
5 e	1:010H1764E+01	5,14784770=+01	-8,634194J4E-02
57	1,6911235'E+01	3,947660586+01	-9,45213436E=02
5 *	1,737779218+01	3,947789+6E=01	-6,234435J1E=02
59	1,799954476+01	3,289161022+01	2,711748926-02
6.7	1,81705:7"E+01	4,162754256=01	=5,6P597157E=02
61	1,87693487E+31	2,836233USE=01	-2,74240r37E+03
65	1,898479936+91	4,140344506-01	-6,617132512-02
63	1,963260528+01	2,244804366+01	=1,85188078E=02
64	1,951586856+01	3,9#6#3310E=01	9,396467%1E=01

Table XI. KINCON SAMPLE CASE-INITIAL CONDITIONS (0^{σ_0} STREAMLINE)

FLOW PR	OPERTIES		K I N	ETIC	SOUPLING	TERMS		
PRESSUR VELOCIT	11828 E (PSIA) Y (FT/8EC)	4,04856342 7,04631299 1,714506421	E = 01 E + 01 E + 03 E + 03	PL ING	TERN B	•	110170639500 446 493 876+00	
	FURE (DEGen)	217200000		FORAT	ION PARA	LETERS		
DENSITY Enthalp	(LB/FT3) Y+HQ (BTU/LB) Four yB LF1045	2,43513556		RENT	STEP SIZI	E CHANGE	, n000000E-94	
HEAT CA FROZEN	растат же че н расту (вти/св+се бамма	GR) 5,26614687 1,237579141		INUM I	HATION SELATIVE	ERECR -1	68540737E•11	
010 MUS	1+(1) (FT2/5EC2)	x) 2,5244534	E+03 00V E+66			4	Þ	
and the second			CHENJCAL OC	15044	·			
AC, SPECI	ES MASS FRACTICN	MOLE FRACTICN	FCLEC/CC	• 2	SPECIES	MASS FRACTI	CN MCLE FRACTICA	MCLEC/CC
1 CC2	6,520000E=02	2,915522E-02	3.63126+17	. SM	H R S	2,7380nu=-r;	1 2,950922F=C1	3,7251F+18
3 Cr	2,017009E+01	<u>1,4171255-01</u>	1,7650E+18	4	CH CH	2.000000Fen	2 1 552403FeA1	2,4316F41E
5 N2	4,250976E-01	2,986157E-01	3,7191E+1A	Ð	U Z	2,0000005-2	3 1,311665E=03	1,6336F•16
7 04	9,67000FE=03	1,1189316-02	1,3536E+17	D	02	7,6400nge-1	4 4 658654F=04	5,8520F+15
3	1 40000E=11	2,7690935011	3,4488E+68	10	II	1 150006E+u	3 2 12452646 =02	2,75645417
11 N	1,39000nE=06	1,952849E=06	2.4322E+13	.v ₩	C	6,1700n0E+r	a 7,5691866-04	9,4526E+15

KINCON SAMPLE CASE-REPRESENTATIVE PRINTOUT (AXIAL POSITION 0. 9767, 0°, STREAMLINE) Table NII.

	ALNES	4 3ACAOARD	04 FAL	PLING	Heat Heat	1.5. 5.14	+ + + + - + - + + + + - + -	5440365a12	
	SSLRE (PS1A)			PLING	HERM P	•	1.050	1592286er2	
		5646468 G	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EGRAT	ION PARA	PETERS			
	5177 (LB/F73) 41 PV-LA (BTI/1 C)	2,32356349		TNT	STEP SIZ	ш	2.560)00000E+r2	
040		1.94933558		CENT	ENTHALPY	CHANGE -	1-007	734896E=F1	n N N
HEA	T CAPACITY (BTU/LB-DE	EGR) 5,22505438	E-01 1.0	• SU	NOITAMM.	• (1))	1,540	145665E-11	
FR02	ZEN GAMMA	1,24241015	E+CO MAX	NU-1	RELATIVE	ERACR	1 2 2 2 1	1986935=n3	
MUS	C(1)+H(1) (FT2/SEC		E+06 604			C S			
			CHEPICAL CO	1904H	10w				
40, SF	PECIES MASS FRACTIC	V MOLE FRACTICN	PCLEC/CC	• 22	SPECIES	MASS FRACT	ICA F	CLE FRACTIC'	KCLEC/CC
0 7	02 6,539699E=02	2.894792E=02	3,32996+17	N	H20	2,670061E=	11 V	2,889013F=01	3,323E+18
3 6	<u>. 2,016001E=01</u>	1-402971E=01	1,6139E+18	•	21	1,993428E*	- 2 j	1 <mark>,9275105+01</mark>	2,2172E+18
5	2 4.2509056=01	2,9577536-01	3,40246+18	•	02	2,014667E=	1 1 1	L,30A738F=03	1,5055E+16
0 •	4 1.4209376=02	1.6285766-02	1.87346+17	3 0	02	1,692076E-	P P U	1,030757E-03	1,1857E+16
0 0		-4,735141E=11	-5,4469£+08-	10	Ŧ	1,706524Ee	6 3 - 3	1 <mark>,3099595+02</mark>	21 <u>7572E+1</u> 7
Z T	1.6329626=06	2,2718526-06	2,6134E+13	12	C	1,3873426.	ر ع 1	659247F=03	1,9443E+16

1912

KINCON SAMPLE CASE-REPRESENTATIVE PRINTOUT (AXIAL POSITION = 10.0839, 0% STREAMLINE) Table XIII.

نہ

FLOW PROPERTIES		KINETIC COUPLING TERPS		
MACH NUMBER	3.205294835+00	COUPLING TERM .	2 <mark>906466275-04</mark>	1
PRESSLAF (PS1A)	1,27873262E+CO	COUPLING TERM F	+ü+302828284 2+	
VELOCITY (FT/SEC)	9 216469356+03			
	2,996201905000 0 539335915-54			
ERAGETY (EGVI)4/	6.36292354E+C2	CURRENT STEP SIZE	; 5600000E+r2	
	-1-97212260E+C1	PERCENT ENTHALPY CHANGE	6,811214395mn1	
HEAT CAPACITY (BTU/L9-LEGR)	4.61063763E-C1	1.C - SUMMATION C(I)	•• 45305589E •11	
FROZEN GAVYA	1,27968684E+CO	PAXIPUP RELATIVE ERECR	6 28938666E=04	
	-2,521192709603 -3,132070296+07	COVERNING EQUALICK		
	6+E+10	AL COMPUSITION		

02	SPECIES	MASS FRACTION	MOLE FRACTION	יין כעככ אנרן כעככ	- 02 -	SFFCIES	HASS FRACTICS	MCLE FRACTIC'	MCLEC/CC
-1	C 3 Z	7,2850306+02	3,264405E-02	1.46256+15	N	ЧŞЛ	2.8617575=11	3,0669455-01	1,37926+17
с і л	: • •	1; 9683895= 81	1,3857946-01	·6,2%186+16	4	CN H	1.5435055=52	1,961293Fef1	₽ , 5500€+1¢
ال	2 2	4,2508886-01	2,9923166 - 61	1,34566+17	o	NC	2.C21532E=: 3	1,322549c=03	5,97446+14
•	1 0	1.314295E-03	1,52396cE+53	6,65326+14	υ	N C	5 5 44177 E - r 4	3 , 663327E+r4	1,64746914
4	9	1,975182E=12	3 <mark>,2496795=1</mark> 2	<u>1.46145+06</u>	2 4	I	1,4958395-55	2 <mark>,</mark> 9245275+02	1,31667416
11	2	1.681934EeJ7	2,367918E=C7	1,0648E+11	12	c	1,921197E+r4	2,3600225+C4	4.40401.1

STEP SIZE HALVED AT Z . 1. "2631000F+C1

KINCON SAMPLE CASE—REPRESENTATIVE PRINTOUT (AXIAL POSITION - 19, 8159, 0°., STREAMLINE) Table XIV.

FLOA PROPERTIES		KINETIC COUPLING TERMS		
<u> </u>	-3.93740277E+CO	COUPLING TERM A	e ,299808846en5	
PRESSLEE (PSIA)	3,98683310F=C1	COUPLING TERM E	ef,34816406Een5	
VELOCITY (FT/SEC)	9,96228505F+C3			
TEMPERATURE (DEGue)	1.95040311E+F3			
DENSITY (LB/FT3)	3.730689235-04			
ENTHALPY-HC (BTU/LB)	5.64690807E+C2	CURPENT STEP SIZE	6 4000000E+13	
		PERCENT ENTHALPY CHANGE	a <mark>532691386+n0</mark>	
		I D SUMMATION C(I)	•1.35642608E•11	
FROZEN GAMMA	1.30175711E+CO	FAX FUT RELATIVE ENFOR		
0=8-CCKST(FT2/3EC2/2E0=8)	- 2-2-1-2-2-9-2-0-2-	BOVERNING COUNTICK	C	
SUM C(1)+H(1) (FT2/SEC2)	•6,81167871FeC/			
	E HER I	CAL COMPOSITION		
		TO S USA USACIDO DA LOS .	ATTERNE RECARDANCE	

-	.0.	SPEC LES	MASS FRACTION	MOLE FRACTICN	r CL E C/CC	DZ Z	SPECIES	MASS FRACTICA	PCLE FRAFTIC'	*CLEC/CC
		662	7,322452E=02	3,281224E+D2	6.02×8±+15	:N	H20	2,809c15E+^1	3,075813F+C1	5,6514E+1¢
	en en	C 0	1 <mark>,945928E=U1</mark>	- <u>1,3841385=01</u>	-2 <mark>-54325+1</mark> 4	+	1 N T	1 <mark>,533555</mark> 54n2	1 ,851505F+61	3,47546+16
	ŝ	2 N	4,25088RE=01	2,992362E=01	5,45f15+15	0	U Z	2.021559E+r3	1,328581F=03	2,44116+14
	•	п	5.115695E=04	5,931P7F6-C4	1,0895+14	o.	02	5,879731E+^4	3,6236655=F4	£,658CE+13
	•	9	1,901369E=12	3,121964E=12	- 5,73625+05	++ ++	, , ,	.1 <mark>.5535¤3E=</mark> =3	3 <mark>1035586F+6</mark> £	5,5649F415
•	Ŧ	z	1.442689E=07	2,031127E-07	3,73196+10	51 17	0	1,12033£er4	1,257656F•ŕ4	2,31665+13

KINCON SAMPLE CASE-MAXIMUM AND MINIMUM FOR REACTION PRODUCTION RATES (0% STREAMLINE) Table XV.

	5'87932464Eu01	••	\$0+2+5528+02	2,02300006=01
~	2,73413081E=05	• 0	•3,98131497E•10	1,96647000E+01
m	1,469448796-03	•0	•5,93811283E+08	1.96647000E+01
+	3,10683699E+03		-1-19974564E=02	-2 .119888888
ŝ	1,39780543E+05	• С	-1,59415316E+CC	2,11500000E-01
•	1,64323358E+n3	3,1000000E+r3	7 54782804E+r2	2,123000006-01
	<u>1,519433896+03</u>		=2,70416262E=02	2,1230000 05 +01
60	1,71708455E=16	•	•4 ₈ 73928434E=29	1 56647000E+31
0	1,38115166Eef1	1, ⁵ 100000546	+5,75311574E+r4	2300303-52"0
e	0 0~36926865 eeu	1 -22309060Fef1	2 13705462E+0 0	8++388808444
1	3,34265564E=73	1.5470000E-11	■ A g 5 3 5 6 E • 1 5	1 96447C00E+51
12	-1,22071772E+FU	2,55100Jf0E+f2	2,3U467552E+C7	1 66647C00E+1
rb I	<u>1-</u> 3 1508623E=0 7	c	ef,57164665E•12	5, <mark>75+00096+</mark> 71
•	5 ,14359542E en 5	۲	=6,0529744E-1L	1,355JF000E-"1
2	1,74120971E-P4		=2,76983643E=11	1,96647200E+°1
•	-5 <mark>-62957658E+03</mark>	- C.	-2 41489145F-F1	2 <u>~~</u> 710°600E-21
-	3,652214166+73	3 . 230000005-02	•1 <mark>.191</mark> 22009E=rk	1,98~55ra0E+r1
8	•1.43758471E+n5	•0	+7,17103980E+C1	2 85 C C C C G E - 1
•		1 4	2,12n522356+f1	2,3270069UE-~1
0	-7,10799026E+73	4.8000000F+93	•1 °07637433E+[1	2,2510ff00E-ul
	-2,69604019E+r0	2,1100000E+r2	• 8 4 7 6 7 1 6 2 0 4 E • 1 5	1-975436015
54	5'20802339926+ ü0	. . .	4,58768013E=03	5 <mark>°95°09096°15</mark>
Ð	1,960811396+01	•0	2 .365349 n7f=62	2 - 95r0vCv0E-35
	3.78390189E=^4	" C	a " 6460P949E= ņë	1,1630000E-r1

Table NVI. KINCON SAMPLE OUTPUT-IDENTIFICATION (90° STREAMLINE)

1		(1		1	
			4	1	ł	
					h	-
Ľ		i		_	Π.	
		2	. 1	•••	F	
		U		1	Ē	~
	•			-	E.	
-{	•			C)	Ē.	
	•			7	F	4
				1	L.	ш
		0		ŝ	h	r
				S		⊢
	•	4		A	9	ິ
	•	0		٩	2	
	•				-	
		2		•	ш	ш '
		ō		0	a	ž
				⊢ ,		
		⊢		-		L
		A		4	þ	ш
		S		ب ا		5
		2.		5	-	
		:11		U	◄	ш
		C			ц	œ
		Ē,			þ	Г
		n	I		μ	S
	•	U			-•	S
	•	~	1		4	ເມ ,
		S	•		р	ar -
	•	U	I			۵.
	•	⊷	•	u.	S	
	•	+	•			œ
	•	ш				0
	•	7.		•	-	لد
	•		•	0	ш	
	1	¥	•			00 10
			•		C	01
		<u> </u>	•			~
		m				
		ر			L.	:0
		5	÷	, , , , , , , , , , , , , , , , , , ,		
		4		4		'n
				l u		.
		UT .		α	ш	
		+		F	I	z
		S	I	S	þ	0
			ı	1		
			ł		- 1	
	·			•	-	

116

1	с.	7,05=1+098:+1	-9,07962(11F+h0
2	2,1143 7051 - 1	7,763028346+01	-0,76623951E+00
3	4,225094075-11	7,545083228+11	-1,11/40606E+01
	6,32711699E="1	7,295288165+1	-1,255115198+11
5	8,42341025F-01	7,019136838+01	-1,389104546+1
6	1,75145118E+70	6,713573591+11	-1,47677737F+01
7	1,26721517E+00	r.40100975F+01	-1,58739539F+C1
8	1,46862523E+01	A, 05140092F+01	-1,72734937E+11
9	1,57679282E+0u	5,681434615+01	-1,7941:4985+01
10	1,88479£37E+00	5,304742635+1	-1,84905916E+01
11	2,19272155F+0u	4,912345315+01	-1,89693732E+11
12	2,30064143E+10	4,515893238+11	-1,89122760E+01
13	2,507637635+00	4,125753255+01	-1,87010098E+01
14	2,716788115+0.	3,73765728F+11	-1,83352942E+11
15	2, 25172045+00	3,3019835bF+"1	-1,76°77797E+01
16	3,13386848E+70	3,00327101F+01	-1,63374111E+51
17	3,34295021E+00	2,67942915F+^1	-1,53543131E+r1
18	3,552517935+13	2,361464148+11	-1,459999219E+11
19	3,762629505+00	2.00K15813E+JT	-1,33162964E+11
20	3,97337509E+1)	1,800036405+11	-1,17933633E+11
21	4,229969855+60	1.519550065+11	-1,064yb393F+01
22	4,344218-86+1)	1,405105205+1	-9,16475177E+00
23	4,621439005+1	1,161694786+ 1	-7,858638-2E+00
24	4,912146965+10	°,58777483£+`,	-5,32891537E+00
25	5,217131/0E+10	P,43723254F+*J	-3,53336018E+00
26	5,48534132F+00	7,501879661+10	-3,0018-650 <u>F</u> +00

Table XVII. KINCON SAMPLE CASE-PRESSURE TABLE (90% STREAMLINE)

NOT REPRODUCIBLE

27	5.069539768+00	6.47877551F+00	-7,61095081E+00
28	6.22315053F+05	5,63332896F+MJ	-5'5003A589E MU
29	6,59799345E+00	4.87559U92E+n;	-1,85669501E+00
30	6,99528178F+^(4,19414663F+00	-1,55563209E+h0
31	7,428276528+00	5,56423472F+00	-1,29790457E+00
32	7,49843995E+nu	3,02582723E+00	-1,08813711E+00
33	5,42533234E+AU	2,49930128E+00	-8,91167045E-01
34	9,10243664E+00	2.04198177E+00	-6,97108415E-01
35	9.65946952E+Cu	1,63P973R7E+00	-5,23437055F-01
36	1,05101247E+01	1,248538658+00	-3,91364943E=01
37	1.14310855E+C1	9,45625460F-01	-2,86883430E-01
36	1,22464524F+01	7,527100265-01	-2,05638094E-01
39	1.315475685+01	5,911729918=01	-1,53620618E-0 <u>1</u>
40	1,40873446E+01	4,499110245-01	-1,13254262E-01
41	1,51425932F+01	3,65982366F=01	-8,35529436E-12
42	1,6J976799F+61	3,019415926-01	-6, ⁰ 0551747E-02
43	1,730259125+11	2,362633145-01	-4,37313845F-02
44	: • 123 ¹¹ 95 ² • 1	2.133700815-11	-7,29956234E-02
45	2,10391997F+11	1.400002065-01	-2,90124043E-02
40	2,134210715+01	1.257496225-1	-1,912561205-02
47	2,231431135+01	1.02695787=-11	-1,55641547E-02
40	2,336643348+11	8,210254406-02	-1,04510200F-02
49	2,419243495+01	9,31599734E-12	5,25601242E-03

Table XVII.-Concluded

NOT REPRODUCIBLE

Table XVIII. KINCON SAMPLE CASE-INITIAL CONDITIONS (90% STREAMLINE)

~

• INITIAL CONDITIONS KINETIC STREANTUBE CALCULATION AXIAL POSITION .

14PUT NORMALIZING AXIAL SCALE FACTOR (FT) 8,10000E=03

Mach		FLC. PAOPERTIES		KINETIC COUPLING TERMS		
VELOCITY (FT/SFC) 1.79419366E+63 TEVPERATURE (JEG=R) 5.62402910E+J3 1.VTEGRATION PARAVETEGS LENSITY (LD/FT3) 5.62402910E+J3 1.VTEGRATION PARAVETEGS LENSITY (LD/FT3) 2.559624950E+62 GAS MULEGULAR FIGH 2.35532855E+63 7JAAG T STEP 5125 GAS MULEGULAR FIGH 1.955722835E+01 1.1 ALAVATT31 CT1) 1.63540737E+02 FROZEN GAMMA 0.1 2.53555E+01 1.2343577E+01 1.1 ALAVATT31 CT1) 1.53540737E+01 FROZEN GAMMA 0.1 2.5566535E+01 1.2343577E+01 1.1 ALAVATT31 CT1) 1.53540737E+01 1.23435577E+01 1.2345536E+013 1.2345537E+01 2.55644554E+013 1.2345577E+013 1.23455562) 7.645554E+013 1.2345577E+013 1.23455562) 7.645554E+013 1.23455566203 GAS CUIST(FT2/FECT2/DEG=R) 2.55664554E+013 1.2 ALAVATT32 ERRAM 0.130		FACH NUMSER PRESSUBE (FSTA)	4.11223034E=U1 7.75358959E+U1	COUPLING TERM A COUPLING TERM 3	■6.843(41b3E=u1 8.83718544E=ů1	
LENSITY (LAFF3) 2.59484950E+U2 Lakeit step size 1.0000006+03 EithALPY+HS (HTU/La) 2.334355E+03 Clareit step size 1.0000006+03 GAS MULEGULAR (HTU/La) 2.334355E+03 DERUEIt structure 1.955728455E+03 GAS MULEGULAR (HTU/La) 2.334355E+01 1.955728401 1.95571225E-02 HEAT CAPAGITY(ATT 7LE+EFGR) 5.284526735E=01 1.1.1 1.2.52455E=01 HEAT CAPAGITY(ATT 7LE+EFGR) 5.284526735E=01 1.1.1 1.2.53435E=01 RADZEN SAMA 3.2000000000000000000000000000000000000		VELOCITY (FI/SFC) Tevperature (deg-r)	1,724193666+63 5,619n29106+J3	INTEGRATION PARAVETERS		
E:THALPYHHR (HTUVLR) 2,355328555403 TURRENTEP 5125 1.000000000000000000000000000000000000		EENSITY (LAJETS)	2.596249505-62			
GAS MÜLEGULAR FRIGHT 1,965-22436+U1 PERCENT FATHALPY CHANGE -1,924711224-U2 HEAT CAPACTTV(RT ZLE+DEGR) 5,246262346+U1 1,1.4.4.4.4T100 0(T) -1.64540737E+11 FROZEN GAMMA 1,23435777E+U0 MAYLUM RELATIVE ERROM 0. GAS CUNST(FIZ/FECZ/DEGHM) 2,59644534E+U3 RUMANLUM RELATIVE ERROM 0. SJA C(1)+HT11 (FTZ/SEC2) 7,644534E+U3 RUMANLUM EQMATIVE ERROM 0.		ELTHALPYHHS (RTU/L ^a)	2,3~532955E+03	PLANT STEP SIZE	1.6700000-6+03	
₩ЕЁТ СТРАСТТҮ?ПТ /ГЕ+СЕСЯ! 5,24626338E+01 1,° + \$U^^ATTO' ^(T) -1.6454J737E+11 FRAZEN GAMMA 1,23435777E+00 4×1 U^ PELATTVE ÈRANA 0. GAS CU/ST(FTZ/PEG+N) 2,52644534E+U3 30 кактоб EQ.ATTO' 0. SJ/ C(1)+AT[1 (FT2/SEC2) 7,644534E+U3 30 кактоб EQ.ATTO' C		GAS POLECULAR ARIGHT	1.963-22436+01	REAL AND	-T.\$247112?È+ů?	
FRRZEN GAMMA 1.234357776+00 4AYI UV PELATIVE ERANA 0. GAS CUNST(FIZ/PEGHM) 2,526645386+03 30 HANING EQNATION Sun C(1)+AT[1 (FT2/SEC2) 7,544538 76+05		CERT CAPACTTY / B-LFGP)	5.2462623 3 E-01	1, - SUVVATION C(T)	-1.6954J737E-11	
GAS CUNST(FIZ/FERZ/DEGHM) Zubse4534E+U3 RU HHNN HQNATION Sunc(1)+HT11 (FT2/SEC2) Zubse4534E+U5		FRDZEN GAMMA	1.234357776+00	イスイン しょ ロビレムエリノビ 旧はならな		
SJ/ C(1)++/]) (FT2/SEC2) 7,6#2234 7±+L6		GAS CU-5T(F12/ "= r2/2Ed=n)	2,50644534E+U3		C	
	1	SJ (()++() (FT2/SEC2)	7,02234 76+L5			

CULTISCOND DECINEMU

E C I E	Land Land Control of the second secon		·) [F U/ C	<mark>ر ا</mark>	о П С		· . E EMAÚTI'.	n i EC∕CC
	23-23:1224	20-38295T6-6	71-101-12	0	0.51	2,7355.É=.1	T1-4225-65-2	5.0 65E+14
		1.4171985-	• • £ • \$0[+; "	•7	іх Т		1.7924.50412	8 1 +389,917
	1 -25-5154E- 1	2.956167E-51	а, я с (25 + 1 a	¥	¢;		1.0.110.1	1.54945+10
	9 - 072 C - 3E = 1 3	2	1		25	7.6453255-24	4,6954546-04	5.1-00-15
	さまもって、リングメ・	2,765: 325-11	5-+32525-5 12	с г1	1	1.15. こうたまに	21-32000272	2,05.16E+17
	040.JU52.	1 057F24Fe	7,40545+*3	13	ډ	6.1700556+6¢	サントシント・チンク・ト	ý,c ^c ∺RÉ+13

NOT REPRODUCIBLE

Table NIX.KINCON SAMPLE CASE-REPRESENTATIVE PRINTOUT(AXIAL POSITION0.974875, 90% STREAMLINE)

	1.128167896.22 •1.365414996-12			5.23000000	-5,5595470:0-02	-1,5674572°E-11	2.35931-37=12	7	
LI ETT TOUPLITE TRANS		1. TERKATIUN FAKAVETERS		LINE TEP SICE		(I)	オイト・ション オイドキー コン・シャ	TOTER PLACED ATIT	
	6.51642986-41 6.824931526+41	∠ = ∈ 3 5 4 4 4 . 5 E + v 3 5 = 5 1 7 9 0 5 , 6 E + v 3	2.334191.55-02	<pre><!--<:</pre--></pre>	104345245501	5.2.1453515-11	C1+⊐L 6T6∑;?*T	2+342321956+33	5+777355E+6A
Sulland tol		ショーロロード、イデーンション・ファーン・アーン・ション・ション・ション・ション・ション・ション・ション・ション・ション・ショ		E. THALPYHII (rJ/L·)	ALS ROLF ALL ALS ALS	CIPALARY CAPACITY (CAPACITY) YTT (CAPACITY)	マレーマロー たきアレナチ	245 CO1ST(FT2/ 2022/002-4)	C(1)++(1) (FT2/5-C2)

、(11130で、、2、コ・21とヨーレ

	37EC1E5		VULLEY PLANE	11/11/11/11/11/11/11/11/11/11/11/11/11/	л с	Si Lumai	ASS FAACTIC.	VICE FAACTION	
-1	201	2:-35552-5-5	2	7,3085+17	ſ	D d	2,6925135-31	2,322°54E-01	3,34046+14
ŝ		1 - 12:5	"u===?r=?"r•";	· • • 1 7 1 - • 1 5	1	ſ,	1.9362435-42	1. 325-145-01	<,2°,76+19
n	(\1	1 - 611-4212	2、257~545~2	м — Б. С.	: L	S.	50-361 2HJC=5	1.379 258-25	1.9 7PE+16
r	ŗ	; + <mark>2</mark> 4444 JF + 2	22515.20*T	1++22+59++	2	C	1-349542E+03	<u>9 - 157572 - 64</u>	
. ۲	t	11-4487071-0	11-12:12:25	4	1 +1	_	1.516275-15	2,371n .11-uz	5.425.6+17
- 1 #ł			30 - 12 M 7 C 9 1 - 1	, 1+ 3020Σ, c	0 5. F1		143456-33	2.337 012-03	₹•34,45 • 7€

NOT REPRODUCIBLE

Table XX. KINCON SAMPLE CASE-REPRESENTATIVE PRINTOUT (AXIAL POSITION - 24.4058, 90% STREAMLINE)

in the second second

PLOH PROPERTIES		KINELIC COOLING LENKS		
TACH NUTBER	5.06634318E+00	COUPLING TERM A	1,954744086=05	,
PRESSURE (PSIA)	B. 54766529E-UZ	COUPLING TERM B	#1,96918325E#05	
VELOCITY (FT/SEC)	1.05264249E+04			
TEMPERATURE (DEG-R)	1,28360469E+03	INTEGRATION PARAMETERS		
CENSITY (LU/FTS)	1,099054436=04			
ENTHALPY=HD (BTU/LB)	2,86031494E+D2	CURRENT STEP SIZE	1,28000000E=01	
GAS MOLECULAR WEIGHT	1.974944815+01	PERCENT ENTHALPY CHANGE	5,91663000E+00	
HEAT CAPACITY (BTUZLB-DEGR)	4,002439956-01	1.3 - SUPMATIOV C(1)	•1,46229695E•11	
FROZEN GAMMA	1.335845656+00	MAXIVUN RELATIVE ERROR	5,69247817E=01	
GAS CONST (FT2/SEC2/DEG-R)	2.51758989E+03	GOVERNING EQUATION	.	
SUP C(1) H(1) (FT2/SEC2)	-4,54758120E+07		•	

CHEMICAL COMPOSITION

EC/C	44E+16	4148+16	2716+13	7136+13	5466+15	1986+12
Ċ,	1.8	1.1	7.9	1.1	1.6	7.4
MOLE FRACTION	3,0911426-01	1.976644E-Ú1	1.324217E-03	2,959290E-04	2.780717E-02	1.23947RE-04
MASS FRACTION	2,8109046-01	1,9462795+02	2,0120626-03	4 <mark>,794933E=04</mark>	1,419261E=03	1,034162E=04
SPECIES	0ZH	۲ ۲	02	02	I	0
- 207	~	4	Ŷ	æ	L H	12
MOLEC/CC	1,9730E+15	8,2915E+15	1,7939E+16	3,22396+13	1,6379E+05	1,07866+10
HOLE FRACTION	5,295881E+02	1,385097E-01	2,9966295*01	<mark>∍,385497E=04</mark>	2,7360376-12	1,801870E•07
MASS FRACTION	7,544764E#02	1,9645085.01	4,250932E=01	4,637928E=U4	1,6639736#12	1,278041E=07
SPECIES	C 0 2	0	N 2	НО	υ	2
.0,	-	ю	n	\mathbf{F}	0	11

	I ACTA			0 48408404
••	1.727200295-01	0.		TC-=06/8700+*7
N	1,16803868E=05	.0	<pre>-1,59510406E-10</pre>	2,40628750E+01
r	7,87084322E=04	- -	=2,19112225E=08	Z,40628750E=01
4	1,93923472E+03	•	-1.20726840E=01	2,22375000E=01
m	8.13979729E+04	• 0	-1,76838735E+00	2,22375000E-01
9	9,9ñ253322E+02	2,62503000E=U3	6.82117375E=03	2,22875000E=01
•	8.05115913E+62	•	<pre>-2.53048149E-02</pre>	2.40628750E+01
60	5.37645590£-17	• 7	-3.26730671E-34	2,40628750E+01
0	8,24836049E+02	1,48750000E=02	9.15174570E=05	1.0987500nE=01
10	■1,89393873E+0 ¹	1.43875n0nE=01	-4 75045631E-03	1.96687500E+00
11	1,03317535E-03	1.0987500nE=01	-2,8n038967E •22	2.40628750E+01
12	-6.68065127E-01	2,93750006-07	8,75744250E=12	2.4062875nE+01
13	7,558699246-08	•	2,784722146=11	1.7387500FE-01
4	2,691234505405	•	-2.71040189E-09	1,4387500nE=01
15	7,965753866=05	•2	=8,52443760E=14	2.40628750E+01
16	•3,53422055E+03	4,992875006+00	3.82129984E+00	5.6250000AE=U3
17	2,17701528E+03	3,58750006-02	9.44846181E-02	2,5437500nE=01
18	-9.22810310E+04	.0	=3,49746947E+00	2,0637500nE=01
19	-2,65271384E+03	0.	1.85052812E=01	2,3487500nE=01
20	•4,20455118E+03	4.3750000nE=03	-2.33498159E-01	2.12468750E+U1
21	-1,39438197E+00	2,4975000nE=02	-2,10023032E-21	2,4062875nE+01
22	1,692918466+09	0,	<pre>=1.35021951E=03</pre>	2.4148750nE+0n
23	1,244121636+01	• 0	2,94273258E=02	3 .16750000E- 02
24	1,95464349E=04	· •	-3,30507698E-08	2,40626750E+01

Table NNL – KINCON SAMPLE, CASE-MANIMUM AND MINIMUM FOR REACTION PRODUCTION RATES (90°) STREAMLINE)

Figure 28. Static Temperature Distribution for 99% Streamline

123

R202

R202

Figure 29. Gas Velocity Distribution for 99% Streamline

SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

A computer program has been developed to predict the sensitivity to engine operating parameters and impingement geometry for the production and transport of bipropellant engine contaminants. A subprogram to analyze the effect of plume impingement on sensitive thermal and optical surfaces in terms of changes in surface properties has been initiated but not completed. The contaminant production and contaminant transport models and subprograms have been checked out and seem to be working correctly, although verification with experimental data has not been attempted due to a lack of detailed experimental data relating engine operation to contaminant effects on surfaces.

Based on the analysis of a single engine, the Marquardt R-6C MMH/NTO 5-lb thrustor, it appears that significant amounts of unburned fuel and oxidizer will be ejected from the engine during the transient portion of the pulse and that this contaminant may cause damage to sensitive thermal and optical surfaces if they are impinged upon by the central core of the plume.

2. **RECOMMENDATIONS**

The contaminant effects model is incomplete. It is recommended that the additional effort be undertaken to improve this portion of the analysis by: (1) experimentally determining the rate of deposition of plume material on thermal and optical surfaces as a function of surface temperature, impingement flux, and type of material, and (2) extending the analytical model to include a sufficient number of surface materials and contaminant species.

Additional programming work is required to complete the development of the Transient Combustion Chamber Dynamics Program (\underline{TCC}) as an operational program.

It is further recommended that the <u>CONTAM</u> analysis be extended to include contamination resulting from hydrazine monopropellant thrustors.

Preceding page blank

SECTION VII

REFERENCES

1. W. T. Webber and W. A. Gaubatz. <u>Calculation of the Ignition and</u> <u>Start Transient of Liquid Propellant Rocket Engines</u>. MDAC Paper 1439, presented at the 1970 Fall Meeting, Western States Section, The Combustion Institute, Pasadena, California, October 26-27, 1970 (WSS/CI Paper 70-23).

2. W. T. Webber, W. A. Gaubatz, and R. J. Hoffman. <u>Calculation of</u> <u>Contaminant Production in Liquid Bipropellant Rocket Engines. MDAC</u> Paper WD 1513, presented at the JANNAF Sixth Plume Technology Meeting, March 9, 1971.

3. P. J. Martinkovic. Bipropellant Attitude Control engine exhaust contamination and its effect on Space borne equipment. 12th JANNAF Liquid Propulsion Meeting, Nov. 17-19, 1970, Las Vegas, Nevada. CPIA publication No. 201, Vol. 2, page 315.

4. R.C. Stechman and T.A. Thonet. The Effect of Rocket Exhaust Impingement on Spacecraft Surfaces During Pulsing Engine Duty Cycles. 12th JANNAF Liquid Propulsion Meeting, Nov. 17-19, 1970, Las Vegas, Nevada. CPIA publication No. 201, Vol. I, page 869.

5. J.R. Kliegel and G.R. Nickerson. <u>Axisymmetric Two-Phase</u> <u>Perfect Gas Performance Program</u>. TRW 02874-6006-R000, April 3, 1967.

6. C. Gabbert and R. J. Hoffman. Reacting, Multiphase Plume Characterization and Plume Effects: Including Gas-Particle Impingement Heating. AIAA Paper No. 70-845, AIAA Fifth Thermophysics Conference, Los Angeles, California, June 29 to July 1, 1970.

7. A.W. Lemman, et al., Eds. Liquid Propellants Handbook. Battelle Memorial Institute, Columbus, Ohio, October 1955.

8. C.M. Beighley and W.R. Fish Ed., <u>Performance and Properties</u> of Liquid Propellants, Aerojet General Corporation.

9. O.W. Dykema and S.A. Greene. <u>An Experimental Study of RP-1</u>, <u>UDMH and N2H4 Single-Droplet Burning in Air and in Oxygen.</u> Research <u>Report No. 59-41</u>, Rocketdyne, Canoga Park, Calif., 1960.

10. D.R. Stull, et al., Eds. JANAF Thermochemical Tables. Thermal Research Laboratory, Dow Chemical Company, Midland, Michigan, August 1965.

Preceding page blank

11. T.F. Seamans, M. Vanpee, and V.D. Agosta. Development of a Fundamental Model of Hypergolic Ignition in Space-ambient Engines, AIAA Journal, Vol. 5, No. 9, September 1967.

12. H.E. Perlee, T. Christos, Y. Miron, and H.K. James. Preignition Phenomena in Small A-50/NTO Pulsed Rocket Engines, Journal of Spacecraft and Rockets, Vol. 5, No. 2, February 1968.

13. J. Zajac and W.H. Nurick. Correlation of Spray Dropsize Distribution and Injector Variables, 8th JANNAF Liquid Propellant Combustion Instability Meeting, Los Angeles, Calif., October 1971.

Appendix A

TCC

TRANSIENT COMBUSTION CHAMBER DYNAMICS COMPUTER PROGRAM

A Bipropellant Contaminant Production Model

Program Number H607

TABLE OF CONTENTS

Section

in the second

A. 1	INT RODUCTION	141
	 a. The <u>TCC</u> Program b. Previous Combustion Dynamics Models c. The MDAC Transient Combustion Chamber 	141 142
·	Program	146
A. 2	ANALYSIS	148
	 a. Scope b. Limitations and Assumptions c. Modeling of System Processes d. Contaminant Production in the Combustion 	148 151 155
	e. Contaminant Production Parametric Study	191 194
A . 3	NUMERICAL INTEGRATION METHOD	222
	 a. Computational Methods for Droplet Arrays b. Integrating Time Interval 	224 226
A. 4	PROGRAM OVERLAY STRUCTURE	228
A.5	SUBROUTINES	228
	 a. Subroutine REDRHO (TRED) b. Subroutine REDROD (TRED) c. Subroutine HCONDF (TEMP) d. Subroutine HCONDO (TEMP) e. Subroutine REDVIS (TRED) f. Subroutine FANFAC (RENCH) 	228 229 229 229 230 230
A.6	PROGRAM USERS MANUAL	231
	a. Input b. Program Output	231 244
A.7	SAMPLE CASE	250
A. 8	REFERENCES	280

Preceding page blank

ILLUSTRATIONS

ł	Figure		Page
	A-1.	Rocket System Schematic	149
	A-2.	Feed System Schematic	157
	A-3.	Injection Temperature Profile vs Flow from Tank	159
	A-4.	Approximate Enthalpy of Monomethyl Hydrazine	161
	A-5.	Preimpingement Trajectory of Propellant	172
	A-6.	Droplet Circulation Criterion	177
	A-7.	Burning Rate vs Reynolds Number	178
	A-8.	Temperature vs Stoichiometry	180
	A-9.	Molecular Weight vs Stoichiometry	185
	A-10.	Gamma vs Stoichiometry	185
	A-11.	The Effect of Throat Area on Material Ejected from the Motor	198
	A-12.	The Effect of Chamber Length on Material Ejected from Motor	201
	A-13.	The Effect of Chamber Diameter on Material Ejected from Motor	202
	A-14.	Disposition of Material on Chamber Wall as a Function of Chamber Diameter	203
	A-15.	The Effect of Chamber Wall Temperature on Material Ejected from the Motor	204
	A-16.	Material Ejected with One Valve Open	206
	A-17.	The Effect of Valve Opening on Material Ejected from Motor	207
	A-18.	The Effect of Valve Operation on Propellant Ejected Before Ignition	208

Figure		Page
A- 19.	The Effect of Valve Opening on Exhaust Composition	205
A-20.	Disposition of Material on Chamber Wall as a Function of Valve Operation	210
A-21.	The Effect of Valve Closing on Material Ejected from Motor	211
A-22.	The Effect of Fuel Tank Pressure on Material Ejected from Motor	213
A-23.	The Effect of Fuel Tank Pressure on Material Deposited on Wall	214
A- 24.	The Effect of Oxidizer Tank Pressure on Material Ejected from Motor	215
A- 25.	The Effect of Oxidizer Tank Pressure on Material Deposited on Chamber Wall	216
A-26.	The Effect of Bulk Fuel Temperature on Material Ejected from Motor	218
A-27.	The Effect of Draining Dribble Volume Between Pulses	220
A-28.	The Effect of Heat Transfer to Propellant Remaining in Dribble Volumes Between Pulses on Material Ejected from the Motor	221

TABLES

1

Table		Page
A - I	Droplet Diameter Distributions Mid-Quintile Diameter/Median Diameter	171
A-II	Droplet Parameters	173
A-III	Disposition of Propellant Injected Into Chamber	19 9
A-IV	The Effect of Tank Pressure on Chamber Conditions	212
A-V	Sample Case For TCC Program	251
LIST OF ABBREVIATIONS AND SYMBOLS

А	Area, Acceleration, Molecular collision frequency					
a	Acoustic velocity					
В	Coefficient in vapor pressure equation					
С	Specific heat, Coefficient					
D	Diameter					
E	Activation Energy, Accommodation Coefficient					
F	Stoichiometry (mass fraction which is fuel)					
f	Fanning fraction factor					
н	Enthalpy					
K	Drop size distribution coefficient, Thermal conductivity					
L	Length					
М	Mass					
N	Dimensionless modulus, Number of droplets					
P	Pressure					
Q	Heat of reaction					
q	Volumetric flow rate, Heat flow rate, Quenching distance					
R	Axial location where impingement occurs, Universal gas constant					
	Coefficient for resistance to flow					
S	Axial location where atomization is complete					
т	Temperature					
t	Time					
U	Chamber volume, Gas velocity					
v	Velocity, Any time-dependent variable, Chamber volume					
Wm	Molecular weight					
x	Mass fraction which flashes, Axial location					
Y	Radial location					
β	Resultant stream angle					
γ	Ratio of specific heats					
Δ	Difference					
6	Expansion area ratio					

ч	Viscosity
---	-----------

ρ Density

σ Surface tension

SUBSCRIPTS

с	Chamber		
cond.	Condensed phase		
d	Drag, Difference		
е	External, Effusion correction		
F	Fuel, Thrust coefficient		
flash	Flash threshold		
fuel	Fuel		
g	Gas		
gas	Gas		
i	Droplet group identifier, Chamber axial segment identifier		
inj	Injection conditions		
j	Jet conditions		
L	At axial location L		
1	Liquid		
m	Wall film material 1		
mn	Droplet mean $D_{mn} = \left[\frac{\Sigma \operatorname{Ni} \operatorname{Di}^{n}}{\Sigma \operatorname{Ni} \operatorname{Di}^{m}}\right]^{m-n}$		
n	Injection group identifier		
Nu	Nusselt number		
0	Oxidizer, Orifice, Stagnant		
Oxid	Oxidizer		
Ρ	Propellant p, At constant pressure		
R	Resultant after impingement		
r	Reduced variable (ratio to critical value)		
rel.	Relative		
Re	Reynolds number		
S	Surface		
Sat	Saturation conditions		
Stream	Stream conditions		

Т	Throat, Total of fuel plus oxidized
t	Tank
Vap.	Vapor
We	Weber number
x	Component in the x direction
у	Component in the y direction

Appendix A

TCC

TRANSIENT COMBUSTION CHAMBER DYNAMICS COMPUTER PROGRAM

A Bipropellant Contaminant Production Model

A.1 INTRODUCTION

a. The <u>TCC</u> Program

The computer program described in this appendix is a subprogram to the Plume Contamination Effects Prediction Computer Program, <u>CONTAM</u>, and performs the time-varying analysis of the chemical and physical processes occurring in the feed system, injector, combustion chamber, and nozzle-throat inlet of a bipropellant rocket-engine system operating under unsteady conditions. As a subprogram to <u>CONTAM</u>, the <u>TCC</u> program is the first link in the analysis of contamination effects, providing information about production of contaminants in the combustion chamber and the dynamic and thermodynamic state of combustion gases entering the nozzle throat. Unburned propellant droplet distributions and liquid wall film flow are computed for the entire transient pulse as well as gas-phase properties. <u>TCC</u> may also be used as an independent computer program on any thirdgeneration computer with a core exceeding 135,000 words and a Fortran IV processor.

Development of the <u>TCC</u> program has been supported by MDAC Independent Research and Development over a period of approximately five years with additional modification supported by the current Air Force Rocket Propulsion Laboratory study. References A-1 through A-3 discuss the detailed modeling of the combustion processes included in the basic <u>TCC</u> program. Reference A-4 discusses extensions of the <u>TCC</u> program to predict contaminant production. As far as is practical, this appendix will cover all aspects of the modeling and computer program. If detailed information is desired, see References A-1 through A-4.

The program is based upon a finite-difference computer solution for the large set of differential and algebraic equations describing the physical and chemical processes which occur during the preignition, start transient, steady operation, cutoff transient, and between-firing intervals

Preceding page blank

of rocket engine operation. The intent has been to use the simplest acceptable mathematical approximation for each process, but to model all of the processes which are known to be important. Thus the program is sufficiently general to calculate steady and unsteady combustion efficiency; vacuum-hypergolic starts, sea-level ignited starts, low-frequency combustion instability, pulse-mode impulse, and contaminant production, without requiring any special assumptions for any of the special cases.

b. Previous Combustion Dynamics Models

The earliest calculations of rocket-engine behavior treated the rocket engine system as a simple thermodynamic device. In 1949, Sutton described methods adequate to calculate steady flow rates (Reference A-5), pressures, and performance, assuming isenthalpic combustion followed by an isentropic expansion.

Unfortunately, the major problems encountered in the actual operation of rocket engines were not described by nor amenable to solution using the assumption of steady equilibrium processes. The most important operational problems included destructive hard starts, both at sea level and high altitude, and for both hypergolic and ignited propellants. Oscillatory cutoffs contributed large but irreproducible impulse increments after the engine cutoff command. Incomplete combustion led to lower than ideal specific impulse and the existence of nonequilibrium contaminant products in the engine exhaust. System instabilities were damaging to engine hardware, propulsion-system performance, and vehicle effectiveness. Transient operations, such as pulse-mode operation with short pulse widths were not described adequately by idealized steady-state assumptions; therefore, actual realized specific impulse, mixture ratio, response times, chamber pressure peak values, and rate of pressure rise had to be obtained experimentally.

The analysis of steady rocket-engine combustion and the analysis of rocket system transients were sufficiently complex to require two decades of study and contributions from a large number of investigators in order to arrive at the present degree of understanding. Unfortunately, the studies of the steady processes and the studies of transients took quite divergent paths, and it is only in the most recent work that the droplet evaporation approach to combustion and the time-dependent system simulation by digital integration have been combined. The <u>TCC</u> program described here is based upon both of these classic approaches to rocket-engine analysis. Although the digital system model with droplet combustion has not yet incorporated all of the refinements from either of its antecedent lines, it has shown a considerable capability to explain rocket engine phenomena which were previously beyond analysis.

(1) Steady State Engine Analysis

The mathematical analysis of the rocket combustion chamber operating under steady conditions was developed over an extended period of time. In 1953 Penner approximated the lifetime of droplets in a rocket combustion chamber assuming simultaneous Knudsen-Langmuir evaporation and nonconvective heat transfer with no effusion correction (Reference A-6).

In 1954 Meisse calculated one-dimensional trajectories and combustion rates for monodisperse droplets in a chamber (Reference A-7). One case arbitrarily assumed axial gas velocity to be constant, while another assumed gas velocity to be proportional to the distance from the injector. Stokes Law was used for drag and Frossling's correlation of heat transfer rate with droplet Reynolds number, but no correction was made for effusion.

The droplet approach to combustion chamber analysis was greatly advanced between 1957 and 1960 by Priem and his associates (Reference A-8 and A-9) who developed methods for the numerical integration of the equations determining heat transfer, evaporation rate, and aerodynamic drag of propellant droplets; and who tied the combustion gas velocity at each axial point to the total droplet evaporation upstream of that point. Priem's method handles ensembles of droplets having arbitrary droplet size distributions and uses accurate empirical correlations for the simultaneous transport processes and for temperature-dependent physical properties.

The droplet approach to combustion chamber analysis received detailed experimental confirmation through the combined experimental and theoretical studies of Lambiris, Combs, and Levine in the period 1961 to 1962 (Reference A-10). Experimental droplet and gas trajectories were obtained from streak photographs using a windowed rocket combustion chamber. These experimental trajectories were compared with trajectories calculated using a wide variety of conflicting correlations for the transport processes, size distributions, and physical properties. The variation study determined the correlations most appropriate for the rocket-engine environment.

In 1965 and 1966, the Dynamic Science Corporation further refined the droplet method by simultaneously computing the combustion of fuel and oxidizer droplets, instead of assuming—as previously—that oxidizer vaporization was "fast" (Reference A-11). This leads to an axial composition and temperature profile for the combustion gas. The overlapping bipropellant-monopropellant behavior of the hydrazine fuels was also considered.

The most recent advance in the droplet approach has been to break down the thrust chamber into separate streamtubes or zones to reflect the uneven transverse distribution of fuel and oxidizer from the injection elements. Each zone is separately analyzed, using a droplet analysis upstream of the chamber throat and an equilibrium or chemical kinetic expansion downstream of the throat. Overall specific impulse is obtained by summing the mass flow rate and thrust over the ensemble of zones (References A-12 and A-13).

(2) Unsteady System Behavior

The problems related to transient behavior of rocket engine systems have been attacked in a very fragmented way. The approaches to low-frequency instability, vacuum hypergolic ignition and spiking, pulsemode operation, and cutoff impulse have been quite independent of each other, and generally totally unrelated to the analyses of steady combustion.

(a) Stability Boundary Analyses

Low-frequency combustion instability was first analyzed in the period 1949 to 1951 by a variety of investigators (References A-14, A-15, and A-16). Generally, however, they all considered the equations of flow through a single feed system having lumped resistance and inertia terms, and considered the accumulation and efflux of combustion gas from the chamber. In all cases, the combustion process was approximated as a fixed time delay. The equations were not integrated to give the chamber pressure history, but were attacked with control system theory to give criteria for stability or instability of the system as a function of frequency.

In 1951 Crocco performed a similar analysis in which the combustion time delay was elaborated by being regarded as a variable function of chamber pressure (Reference A-17).

In 1956 Barrere and Bernard extended this approach to make the combustion time delay a function of both chamber pressure and time-varying primary atomization droplet size (dependent upon injection pressure drop) (Reference A-18).

Calculations of combustion instability boundaries with a combustion time delay dependent upon both chamber pressure and primary atomization droplet size, were pursued further by Hurrell in 1959 (Reference A-19).

"Elystron effect," or bunching of the injected propellant streams in the preimpingement region as the result of injection velocity modulation, was observed in experimental chugging motor firings and was described by Lawhead, Levine, and Webber in 1956 (Reference A-20). Theoretical and experimental investigations of this phenomena were reported by McCormack in 1964 (Reference A-21) and Fenwick and Bugler in 1966 (Reference A-22).

(b) Time-Dependent Solutions

There were several early attempts to integrate the equations describing the system processes, so as to obtain a calculated transient combustion chamber history; however, close agreement with experiment was not obtained.

In 1956, Lawhead, Levine, and Webber (Reference A-20) digitally integrated the system equations for a square-law resistive feed

system, accumulation and efflux of gas from the chamber, and a pressure-dependent Vielle's law combustion rate assuming a fixed mean droplet diameter. The computed starts and low-frequency combustion instability agreed with experiment only in general trends.

In 1957 Gore and Carroll obtained time-dependent solutions for a complicated rocket-engine system, using an analogue computer (Reference A-23). The system model included turbopumps, controllers, inertial-resistive feed systems, and a fixed time-delay approximation for combustion. This analysis was basically intended to calculate start and cutoff transients and throttle control response, but one of the published calculations included what was apparently chugging instability. Scales were omitted from the plotted results, and no comparison with experiment was made.

In 1958, Kluger and Farrell described a very detailed transient system analysis which was solved on a digital computer (Reference A-24). It included resistive-inertial-compressible feed systems calculated by the method of characteristics and the effects of value opening, injector priming, a bootstrap gas generator, and turbopumps. The combustion was approximated as a pressure-dependent time delay. The calculated and experimental chamber pressure histories agreed within 10 percent during a smooth-start transient and most of a cutoff transient. However, the calculations did not model the low-frequency combustion instability which occurred on cutoff.

(c) Closed Form Mathematical Solutions

There have been a number of efforts to obtain mathematical closed form solutions to steady and transient combustion-chamber phenomena. In several cases these have followed after more general solutions had been obtained by numerical methods. The approximate solutions to the steady combustion chamber by Mayer (Reference A-25) and Spalding (Reference A-26) are in this category. Rodean (Reference A-27) has offered an analytic solution for the cutoff transient and Peterson (Reference A-28) for the start transient. All of these methods are so over-simplified for mathematical convenience that the results are of very restricted utility.

(d) Hypergosic Ignition

The vacuum hypergolic ignition process was analyzed by Seamans, Vanpee, and Agosta in the period 1964 to 1967 (Reference A-29). Their approach was a droplet analysis of the chamber transient during the preignition interval. The propellant droplets were presumed to vaporize by a Knudsen-Langmuir evaporation, with adiabatic cooling of the droplet-vapor system. A portion of the propellant vapor flows through the nozzle, with the remainder accumulating to pressurize the chamber. Although droplet trajectories were not calculated, the evaporation from each droplet could be terminated after a prescribed droplet residence time. The walls could be presumed to be wetted. Evaporation from the walls and condensation on the walls were both modeled. The size distribution of the injected droplets was simulated by three discrete initial size groups; however, the mean size and distribution used were typical of impinging-stream atomization rather than vacuum-flashing atomization, which would be the expected mode for the earliest propellant injected. The injection flow rate and initial droplet size were not varied with time. The global chemical kinetics of the vapor phase ignition reactions were experimentally investigated. They did not calculate any of the combustion events subsequent to ignition.

Spiking-or explosive hard starts in hypergolic vacuum ignition-was examined experimentally and theoretically by Martens in 1966 (Reference A-30). Based upon his experimental studies, he ascribed great importance to the propellant deposited on the chamber walls during the preignition interval.

The postfiring vacuum evaporation from the wetted chamber walls and the postfiring deposit of new propellant on the walls by injector dribble were described by Juran and Stechman in 1968 (Reference A-31). They cmphasized the possibility of continued buildup of combustible material on the wall over a series of closely spaced short pulses.

In addition to the above chamber and system studies, there has been a large volume of experimental and theoretical work describing the individual processes occurring in the chamber, such as flash atomization, impinging stream atomization, aerodynamic droplet drag, droplet combustion rates, etc.

c. The MDAC Transient Combustion Chamber Program

The present transient combustion chamber program, <u>TCC</u>, is based upon and extended from these previous studies (Reference A-1 through A-4). The <u>TCC</u> program was started at MDAC in 1967 under IRAD funding as a general method for solving transient problems in liquid rocket engines, and in particular as a basis for aiding in the development of very fast response control engines. It very quickly became evident that the program had the capability to model low-frequency combustion instability with great precision, that it had a considerable potential for assisting in the analysis of hard starts in both hypergolic and externally ignited engines, and that it offered a feasible approach to the study of contaminant production in pulse-mode rocket engines. Since 1970 the AFRPL has supported the extension of the program to model contaminant production in liquid bipropellant rocket engines.

The <u>TCC</u> program differs from any earlier combustion chamber analysis by having a greater scope and generality. The analysis attempts to model all of the relevant system processes starting with the propellant in the tank and following it until it eventually passes through the throat. As a result, the program has the capability to calculate a wide variety of engine problems without the introduction of any special assumptions for particular cases. To obtain information on chugging instability, vacuum hypergolic starts, or pulse-mode performance, it is only necessary to specify low tank pressures, low ambient pressure, or short valve durations. It is just as simple to obtain steady state combustion efficiency by specifying a stable operating point.

This program is presently capable of calculating all the sequential events in a nine-pulse series of vacuum hypergolically ignited firings. This is done in one continuous calculation, with the buildup of wall material and the extent of injector dribbling being carried over continuously from one pulse to the next.

The transient combustion chamber program resembles carlier transient systems analysis programs in that the time-varying flows through the lines and valves, the injector prinning, accumulation of vapors or gas in the chamber, and efflux through the nozzle are solved through digital integration. In contrast with previous systems analyses, the combustion process has been calculated using the droplet approach. To adequately model wall deposition, two-dimentional droplet trajectories are calculated. The primary atomization calculations give droplets which are time varying in initial diameter, initial velocity vector and point of primary breakup. Vacuum-flashing atomization is calculated instead of impinging-stream atomization when the conditions warrant it. The "Elystron effect" is modeled using the normal droplet trajectory calculations. The times of ignition and extinguishment are calculated using global vapor phase kinetics and a quenching distance correlation. The combustion rates of the droplets, the combustion rate of the material on the walls, the droplet aerodynamic drag, and viscous axial flow of the unaterial on the wall are all calculated using empirical correlations with the appropriate time-varying local Reynolds number. The stoichiometry-dependent properties for equilibrium combustion product gases or for unreacted propellant vapors are used at the appropriate times. After cutoff, the "dribbling" of the injector is simulated by inertial-resistive flow through the injector orifices, driven by the

difference between vapor pressure and chamber pressure. Between pulses, the material on the walls simultaneously undergoes vacuum evaporation and heat transfer from the chamber wall.

The present program, however, is still incomplete, in that there are some important processes which are not yet represented, i.e., axial and radial variation in gas stoichiometry, secondary atomization of droplets, wave formation and stripping of liquid from the wetted wall, pressure waves in the propellant feed systems, heat transfer to and through the walls, etc. It is also obvious that the present experimental correlations for stream breakup distance and primary atomization droplet size which were all obtained with large orifice sizes, are not sufficiently accurate to form a good basis for design or prediction when extrapolated to the very small injection orifice sizes found in pulse-mode engines. The complexities of very reactive impingement or stream blow-apart have not been modelled. No attempt has been made to model either gas-phase or mixed-phase detonations in the combustion chamber.

Although the current program has not yet been developed to its ultimate limit, it is already of great value in offering theoretical guidance for correcting hard starts, improving inefficient operation, avoiding contaminant production, improving response time, eliminating system instabilities, etc.

A. 2 ANALYSIS

a. Scope

The transient combustion chamber program uses numerical integration of the detailed system processes to calculate the events in a rocket engine system operating under unsteady conditions. The system which is modeled consists of a pressure-fed bipropellant feed system, an injector, a combustion chamber, and a nozzle (Figure A-1).

The initial flow of propellant is calculated as the valves open, the fluids accelerate through the resistive-inertial feed lines, and the injector primes.

If the vapor pressure of the first injected propellant is sufficiently above the initial chamber pressure, the atomization will commence by vacuum-flashing of the stream. If one stream is injected before the other and does not flash, it will undergo single stream breakup if there is sufficient distance for it to do so: alternatively, it will impinge upon the chamber wall, where part of it will stick as wall film and the rest will be atomized by the wall impact. Later in the firing, atomization occurs by the impingement of the two unlike streams. The time-varying initial mean droplet size, the droplet size distribution, the initial droplet velocity vector, initial velocity distribution, and the distance traveled before the breakup process is completed—all depend upon the details of the atomization process.

R202

The two-dimensional trajectories of the injected droplets are followed until the droplets either burn completely, pass through the nozzle incompletely burned, or impact upon the wall.

The hypergolic vacuum ignition is calculated in the vapor phase, based upon global chemical kinetics. Various locations are examined to determine where ignition will occur first; the well-mixed vapors in the chamber, the most-recently formed vapor mixture from the flashing streams, the boundary layer around the fuel droplets, or the boundary layer around the oxidizer droplets. Once ignition occurs anywhere, the entire chamber contents are presumed to ignite and will continue to burn until the criterion for extinguishment is met. Before ignition, the values for the temperature, molecular weight, and specific heat of the chamber gas are calculated assuming well-mixed but unreacted fuel and oxidizer vapors. After ignition, properties appropriate for equilibrium combustion products are used. After extinguishment, a distinction is drawn between quenched combustion gas and newly formed propellant vapors, so as to properly calculate reignition, if it occurs.

The film of material which builds up on the wall is partially burned off by the heat transfer from the hot combustion gases flowing past it and undergoes viscous flow under the influence of the shear forces from the combustion gas.

The axial variation in thickness of the wall-deposited material is approximated by dividing the chamber wall into one hundred discrete axial slices. The deposition, flow, burnoff, and vacuum evaporation from each slice is treated separately, so as to give an approximate wall thickness profile and to correctly reflect the influence of unevenly distributed propellant. If the amount and rate of flow of the material on the wall are sufficiently high, some of the wall film material will be carried through the throat and ejected.

After the values have closed, the pressure in the chamber decays, most of the droplets leave the chamber, and the combustion in the chamber is estinguished if the calculated quenching distance exceeds the chamber diameter.

If the chamber pressure falls below the vapor pressure of the propellant in the injector dribble volumes, this material will flow out of the injector. The same technique is used to compute flow rate, atomization, and droplet trajectory as was used during the rest of the firing, with the exception that injector vapor pressure is now used instead of tank pressure to produce flow, and the flow impedances of the injector orifices are used instead of the whole system flow impedances. This dribbled material will burn, be expelled through the throat unburned, or be deposited upon the chamber walls, depending upon the injector and chamber conditions.

When the chamber pressure falls below the vapor pressure of the material on the walls, it will start to evaporate, absorbing heat from the chamber walls (presently assumed to be isothermal).

At any time, the propellant values may be reopened to initiate a second pulse of firing. The propellant dribbled from the injector following the first pulse will constitute the injector void volume which must be filled to prime the injector for the second pulse; the propellant buildup on the walls will continue from the values attained during the vacuum evaporation following the first pulse, etc. Up to nine sequential pulses of varied interval, pulse width, and propellant lead may be made in a single, continuous calculation.

The information obtained from the calculation includes a chamber pressure history, flow rate histories, the thrust history, and plots of some fifty other variables which could be of value in interpreting operational problems or motor performance. The specific impulse, C-Star, total impulse, pressure-time integral, and eventual disposition of all the propeltant that flowed from the tanks is given to define the engine performance. The amounts and stoichiometry of the wall film material that was ejected unburned is given, and the amounts, stoichiometry, mean axial velocity, mean droplet size, and droplet size distribution of the droplets that were ejected unburned is given to define the contamination-production characteristics of the engine.

Details of the ignition, start, and cutoff transients are given, as well as any low-frequency combustion instability which might occur either during the run or during the transients.

The weight, distribution, and stoichiometry of the material left on the wall are given as an indication of possible future explosion hazards.

b. Limitations and Assumptions

The particular processes which have been emphasized in the current program have been dependent upon the immediate interests or problems of the users. Thus many aspects of the start transient and contaminant production are well represented, while pressure wave action in the propellant feed lines, heat transfer in the chamber walls, and sophistication in the dynamics of the combustion gas are conspicuously absent. There are several obvious places where the precision or generality of the present program could be extended if there was a sufficient requirement for the added capability to justify the expense of programming and the longer computing time which goes with greater sophistication.

(1) Feed System

Compressibility of the propellant and the resulting wave action in the lines could be modeled using the method of characteristics. The pressure waves in the lines are important in determining the response of attitude control engines which have very fast valves and extended lines. The two-phase flow in the injector may be important during injector priming and during postrun dribbling under vacuum ambient conditions. Neither wave action nor two-phase flow is modeled at present.

(2) Chamber Gas Dynamics

The gas flow in the chamber is presently assumed to be purely in the axial direction, even where this is not reasonable, as in the converging portion of the nozzle. The gas flow could easily be computed to follow a path at a fixed fraction of the local chamber radius. This would yield a more nearly correct value for the number of small droplets impinging upon the chamber wall in the vicinity of the converging portion of the nozzle. This modification is already complete in an advanced version of the program.

The axial and transverse variation in gas stoichiometry could be modeled to replace the current assumption of well-mixed gas. This

could be done by following discrete "slugs" of chamber gas along streamtubes and summing the additions of fuel and oxidant vapor from the passage of the "slug" of gas through the droplet array. Doing this would permit calculation of performance losses due to composition striations and would also permit calculation of system instabilities of the entropy wave variety.

At present the combustion chamber gas state is imperfectly modeled. It is assumed that the chamber gas pressure, temperature, and density at the nozzle throat and at the injector end of the chamber are equal. No consideration is made of the fall in gas temperature associated with the large gas expansions at cutoff or during chugging. To model the expansion or compression of hot thermochemically equilibrated gas with concurrent arbitrary additions of fuel or oxidizer will probably require that equilibrium thermochemistry calculations be performed at each time step. There are current thermochemistry programs which possess sufficient speed and realiability to make this feasible, but it is not warranted for the present uses of the program.

(3) Droplet Evaporation

There are two conflicting assumptions which are commonly made regarding droplet evaporation rate. The droplet calculations of Priem et al, assume temperature equilibration between the surface and interior of the droplet. The evaporation and heat-transfer equations are linked together through the time-varying temperature of the liquid droplet interior, and thus the warmup transient of the droplet is described.

The other conflicting assumption which is commonly used is that heat from the droplet surface does not penetrate into the interior of the droplet, and that evaporation from the surface proceeds at a rate proportional to the instantaneous heat transfer into the surface. This assumption was used in the droplet calculations of Lambiris et al. To physically justify the first assumption, there must be considerable internal circulation of the droplet, since conduction alone is insufficient to heat the interior of the droplet appreciably. Droplet circulation, in turn, depends upon exceeding a threshold value for droplet surface stress sufficient to develop new liquid surface while working against the effects of surface tension hysteresis. Thus, circulation is probably present in large droplets with large relative velocity and absent in small droplets with small relative velocity. The present program treats all droplets as noncirculating instead of properly treating droplet circulation as a time-varying function for each droplet. Since the combustion efficiency of an engine depends markedly upon the evaporation of the large droplets, an extension of the program to handle circulating droplets would be advantageous.

When the temperature of the liquid droplet is such that the vapor pressure of the liquid is below the total pressure of the chamber, then

it is correct to use the equations for molecular diffusion to calculate the evaporation rate of the droplet. When the vapor pressure of the droplet is above the total pressure of the chamber, as would be the case when warm propellant is injected into an initially evacuated chamber or when large heated droplets remain in the chamber during the cutoff transient or during the pressure-decay phase of a cycle of low-frequency combustion instability, then it is appropriate to use the Langmuir-Knudsen evaporation Law. The program at present does not provide for Langmuir-Knudsen evaporation from the propellant droplets, but adding this capability would give a more accurate description of the vacuum hypergolic ignition process, the cutoff transient, and low-frequency combustion instability.

The present program treats droplet trajectories as being only two-dimensional (axisymmetric). This means that the lateral spreading of the propellant fans is not modeled. Instead, all the propellant droplets are regarded as being initially directed down the centerline of the fan. This leads to predictions of wall deposition more localized than would be the case with a correct description of the fan. Changing the droplet trajectories to be fully three-dimensional would require only minor program changes but would give more precise results, at the expense of longer computing time.

It is well known that when droplets are subjected to sufficiently high relative gas velocities, they undergo secondary atomization, and that this can have an important effect in increasing the combustion efficiency of the chamber. This phenomenon is not presently modeled, but it should be considered if it ever became desirable to better approximate the actual delivered impulse of the engine.

(4) Wall Effects

When droplets of propellant are impinged upon the chamber wall, a layer of liquid is built up which is then subjected to axial flow, to burnoff by heat transferred from the combustion gas, and to vacuum evaporation by heat transfer from the wall. All of these processes are oversimplified in the present program.

Propellant deposited on the wall is presumed to lose its axial velocity upon impact, but the loss of axial momentum of the droplets, which should produce an axial force on the wall film, is at present not accounted for. The wall film is treated as being in steady motion, following Poiselle's Law. This is an adequate approximation for very thin layers; however, there are situations where thick layers are formed and where inertial effects become important. In this case, each axial element of liquid must be treated with an unsteady analysis which conserves axial momentum. A modification to do this is already complete on an advanced version of the program. When gas moves rapidly over the surface of a sufficiently thick layer of fluid, ripples are formed due to Rayleigh instability (i.e., the diminution of static pressure where the peaks are highest). This can affect the drag and heat transfer rate. If sufficient ripple amplitudes are reached they can lead to stripping of the crests, i.e., secondary atomization from the liquid wall film. These phenomena could be modeled if they prove to be important.

The heat transfer to the nonwetted portions of the chamber walls is not presently calculated. This is a very interesting possibility, since the axial gas velocity profile, temperature, density, heat capacity, Reynolds number, and even heat transfer coefficients are already calculated for other uses. A simple two-dimensional mesh for unsteady heat transfer into the chamber wall, would permit rather ophisticated calculations to be made, such as internal-regenerative cooling, and the effects of thermal soakback on the evaporation of deposited propellant and on subsequent hypergolic thermal interies or multiple-pulse times could be calculated, including effects of quenching from propellant leads, from injector dribbling, etc.

The thermochemical effects of the bipropellant impingement on the wall could be treated in greater detail. At present, the viscosity of the wall layer is specified in the program input as a function of stoichiometry. The least volatile wall film constituent is hydrazinium nitrate, him is generally could mixed with full and water to form a viscout colution. The heat of neutralization which is evolved when hydrazinium nitrate is formed is well known, and the associated adiabatic temperature rise for the newly formed mixture can be calculated. This temperature rise, along with dilution effects are used to estimate the viscosity values currently used as program input. Since heat losses to the wall, or cooling by evaporation of excess fuel, would change the temperature and composition of the wall film, these viscosity effects should be modeled in a time-dependent way.

During the vacuum evaporation of the wall material, the evaporation is treated as though the propellants were two immiscible phases. This is an adequate approximation for small asymetric engines having a single injection element, or for the case where pure fuel or oxidizer is deposited on the wall unmixed during a propellant lead. For situations in which the propellants are actually mixed and reacted, it would be preferable to calculate vapor pressures based upon a physical system containing hydrazinium nitrate and the excess propellant, whose vapor pressure is appropriately depressed by solution effects.

(5) Experimental Uncertainties

In addition to the computational limitations of the program, there are some important processes and physical properties which are inadequately known. The droplet sizes resulting from primary atomization of reactive unlike streams have never been investigated. There have been no experimental determinations of droplet size for the small orifice sizes and extremes of momentum imbalance which can be found in pulse-mode engines. Comparison of calculated and experimental firings of small engines indicates that the actual droplet sizes must be smaller than the value predicted using the current correlations, that a different drop size distribution must be used, or that the fuel burning rate is in error. This uncertainty as to correct droplet size is one of the greatest restrictions on the present use of the program. Very little is known about the droplet sizes produced when either an unatomized stream or large droplets impact upon the wall.

The breakup distances for impinging-stream and single-stream atomization have been determined for only a very limited range of liquid velocities, gas densities, and orifice diameters. Further investigations are badly needed for smaller orifice diameters. Along with the inadequate knowledge of droplet sizes, this is one of the most severe restrictions on the utility of the program.

Very little is known about the impingement of droplets against the chamber wall. The fraction of impinging droplets which will stick to either a cold chamber wall or to a hot chamber wall is not known.

The effects of droplet size or velocity of approach is not known. The velocity of rebound from the wall and the amount of heat transfer between a bouncing droplet and a hot wall are unknown.

The physical properties of the hydrazinium nitrates and their solutions are completely unknown. Accommodation coefficients for the hydrazines, for nitrogen tetroxide, and for the hydrazinium nitrates are unknown, but because of the highly polar, highly associated nature of the molecules, they are certainly very far from unity.

c. Modeling of System Processes

(1) Feed System

The feed systems are approximated with single lumped parameters representing the inertial and resistive aspects of the feed systems:

$$\frac{\mathrm{dq}}{\mathrm{dt}} = \frac{\mathrm{P}_{\mathrm{t}} - \mathrm{P}_{\mathrm{c}} - \frac{1}{2} \rho \mathrm{R} \mathrm{q} \mathrm{q}}{\rho \Sigma \mathrm{L}/\mathrm{A}}$$

(A - 1)

where

- q = volumetric flow rate through the line
- $P_t = tank pressure$
- P_{c} = chamber pressure
- R = a coefficient representing the steady-flow pressure drop through the feed system
- $\Sigma L/A$ = the summation of segment length divided by crosssectional area for the series of segments which make up the feed system

Opening and closing of the valves are modeled by varying the value of R as a function of time. Flow reversals or initial start conditions which result in partially or fully gas-filled feed lines are simulated by varying both R and $\Sigma L/A$ as functions of time, so as to delete the resistive and inertial contribution of components which are not liquid filled at any particular instant. Equation A-1 does not model the compressibility of the propellant or the pressure waves in the lines. For cases in which wave action is important, a method of characteristics solution for a distributed parameter resistive-inertial-compressible feed system would be more accurate; however, the present approximation is quite adequate to model flow events which take longer than five or six acoustic periods of the feed system (see Reference A-32).

After the values close at the end of a firing, the chamber pressure decays, approaching the external pressure. When the chamber pressure falls below the vapor pressure of either propellant, it will start to flow from the dribble volume (the liquid-filled volume between the value and the injector face). The flow rate out of the dribble volume is calculated using Equation A-1, but with R and $\Sigma L/A$ now restricted to the injector orifice values and with P_t replaced with the propellant vapor pressure evaluated at the injector temperature. As soon as the dribble volume is emptied, the dribble flow rate is set to zero.

There are two optional assumptions which may be used to describe the injector priming process (Figure A-2). If a ring-type injector is being filled in a vacuum environment, some of the orifices will be wetted

ø

even before the ring volume is filled, and flow will be expected through these wetted orifices under the influence of the propellant vapor pressure. The initial dribble option is for this situation, and the initial dribble flowrate is calculated the same as a postfiring dribble. The flow from the propellant tank into the dribble volume is calculated according to Equation A-1 but with R and $\Sigma L/A$ restricted to the values for the upstream hardware and with P_c replaced with the vapor pressure evaluated at the injector temperature. As soon as the injector is primed, the flow follows Equation A-1 as written.

The other injector priming option which may be used is appropriate for a smooth unbranched injector passage which would be expected to fill progressively from the valve out to the injector orifices without any dribbling of propellant before the passages are completely filled.

If high-amplitude combustion instability or high-amplitude pressure spikes temporarily reverse the flow in the propellant feed lines, the reverse flow is time-integrated to give the time-varying gas volume behind the injector. So long as there is gas behind the injector, the injection rate is set equal to zero, and the inertial and resistive contributions of the injector orifices are deleted from Equation A-1.

The static pressure in the throat of the cavitating venturi is monitored, and if it fails below the vapor pressure of the propellant, Equation A-1 is evaluated for the impedance of the upstream hardware only, with the venturi throat pressure set to the vapor pressure.

The heating of the portions of propellant held in the dribble volumes by thermal soakback has been modeled. The propellant injection temperature is taken as the prescribed injector temperature until an amount has flowed from the tank equal to the dribble volume. Following this the injection temperature varies linearly with flowed volume from the injector temperature to the tank temperature, where it remains for the remainder of the firing. (Figure A-3). The density, viscosity, surface tension, vapor pressure, and liquid enthalpy are evaluated at the injection temperature, and are important in determining the dribble flowrates, the onset and extent of stream flashing, the flashing or impinging stream atomization droplet size, and the ignition delay time. The propellant in the injector is presumed to warm up to injector temperature whenever the valves are closed, so repeated firings will all start with propellant initially at injector temperature.

CUMULATIVE VOLUME OF FLOW FROM TANK - DRIBBLE VOLUME 1 I 1 INJECTOR TEMP TANK TEMP аяотаявамат ионтовции

Figure A-3. Injection Temperature Profile vs Flow from Tank

159

R202

There are several complex modes that flow from the injector could take which have not been programmed in the current model. The propellant in the dribble volume could boil in a vacuum environment, with the well-mixed foam flowing through the orifice. Chugging or popping during the dribble periods could force noncondensible combustion gases into the dribble volumes to form foam at a pressure higher than the vapor pressure. If these modes of flow were found to be important they could be modeled.

(2) Physical Properties

The densities of the liquid propellants are obtained from a mathematical approximation to a general correlation of reduced density versus reduced temperature along the saturation line (Reference A-33). The critical density is obtained from the propellant density given at a reference temperature.

The viscosity is approximated from a mathematical approximation to a generalized correlation of reduced viscosity versus reduced temperature. The critical viscosity is obtained from the propellant viscosity given at a reference temperature.

The surface tension is approximated using the parachor and a mathematical approximation to a generalized correlation of reduced density difference (liquid density-vapor density) versus reduced temperature along the saturation line. The parachor is a parameter which is closely related to the critical properties of a fluid. It is defined as the molecular weight multiplied by the surface tension raised to the one-quarter power and divided by the difference between liquid density and vapor density. The parachor may be regarded as a measurement of the molar volume of the liquid at a standard value for surface tension. For most materials it varies by no more than a few percent over the entire liquid range. The parachor for each propellant constituent is calculated from the propellant surface tension at a reference temperature, and is used to calculate surface tension at other temperatures.

The vapor pressures of the propellants are obtained from the equation of Calingaert and Davis (Reference A-34):

$$(n P = A - \frac{B}{T - 43})$$
 (A-2)

where A and B are evaluated for the fuel and oxidizer using the pressures and temperatures corresponding to the normal boiling point and the critical point. Because of the scarcity of thermodynamic data for many propellants, the specific heats of vapor, liquid, and the solid form of each propellant are assumed to be constants which are neither temperature- nor pressure-dependent. When these values are supplemented by the melting point, heat of fusion, normal boiling point, latent heat of vaporization at the boiling point, and critical temperature, the straight-line relationship of FigureA-4 is obtained. This relationship is used to approximate the enthalpy of the vapor or condensed phases as a function of temperature.

(3) Atomization

The atomization process is calculated for one of several modes, depending upon the chamber pressure, the propellant injection temperature. and the propellant injection rates. If the chamber pressure is sufficiently below the vapor pressure of the propellant at its injection temperature, the stream is presumed to flash atomize. If streams of both propellants are being injected and are not flashing, then impinging stream atomization is calculated. If only one stream is being injected, and it does not flash, the stream breaks up in a single-stream mode unless it hits the wall first, in which case it is calculated to break up by wall impact. If both streams are being injected, and only one of them flashes, the other stream is presumed to be unaffected by passing through the spray of small flashed droplets and behaves as though the other stream were absent.

R 202

(a) Flash Atomization Threshold

Bushnell and Gooderum (Reference A-35) investigated the flashing of streams of water over a range of subatmospheric pressures, and found that the ratio of stream temperature to saturation temperature was almost a constant at the onset of flashing (with temperature measured on an absolute scale). Brown (Reference A-36) investigated the flashing of streams of superheated water at atmospheric pressure, varying temperature, orifice diameter, and stream velocity, and found that the temperature at the onset of flashing was a function of the stream Weber number. If these findings may be combined, the supersaturation temperature ratio at the onset of flashing may be represented as a function of stream Weber number. The following correlation is taken from the experimental data of Brown, but does not disagree with the data of Bushnell and Gooderum.

$$0 < N_{we} < 12.5 \frac{T_{flash}}{T_{sat}} = 1.138 - 0.005 N_{we}$$

$$12.5 < N_{we} < 24 \frac{T_{flash}}{T_{sat}} = 1.085 - 0.00353 N_{we}$$
(A-3)

$$24 < N_{we} \frac{1 \text{ flash}}{T_{sat}} = 1.0$$

Where the Weber Number is

$$N_{we} = \frac{\rho_g V_j D_o}{2\sigma}$$

There is a discontinuity in the function at a Weber number of 12.5 corresponding to some unknown change in the mechanism. The supersaturation temperature ratio is known to depend upon the surface roughness of the orifice; however, this effect has not been modeled in the TCC Computer Program, and the above relationship is for ordinary drilled holes.

(b) Flash Atomization Droplet Size

Brown has investigated the mean droplet diameter and droplet size distribution obtained when superheated water is flash-atomized at atmospheric pressure. The experimental data obtained for flow through ordinary drilled holes shows that the mean drop size depends strongly upon nozzle pressure drop (stream velocity) and the degree of superheat of the liquid, but not upon the nozzle orifice diameter. The correlation for his data is:

 $D_{32} = \frac{18.9}{V^{1.28} \left(\frac{T_{stream} - T_{sat}}{T_{sat}}\right)}$ (A-4)

where

 D_{32} = Sauter mean diameter in centimeters

- V = stream velocity in cm/sec, based upon the orifice pressure drop and the upstream liquid density
- T = temperature measured on an absolute temperature scale.

Gooderum and Bushnell (Reference A-37) flashed water through drilled holes into a vacuum (~2 mm Hg) under otherwise comparable conditions and found mean droplet diameter was proportional to orifice diameter, did not depend upon stream velocity, but did depend upon the temperature of the stream. Their data can be correlated:

$$ln\left(\frac{D_{32}}{D_0}\right) = 6.4 - 0.0244 \text{ T}$$
 (A-5)

where

 D_{32} = Sauter mean diameter

 $D_{o} = orifice diameter$

T = stream temperature in degrees K

The large disagreement between the two relationships is probably due to the large differences in Weber number. Until the relationships are better understood, we will take 40 microns as a typical mean droplet diameter for the flash atomization of water, with reasonable values for orifice diameter, stream velocity, and degree of superheat. Brown described the flash atomization process as resembling the gas atomization process, with the gas being supplied by the explosive growth of bubbles in the superheated stream. For this reason we have applied a physical properties correction which would be suitable for the gas atomization process. The equation used in the program to describe flash atomization droplet size is:

(A - 6)

$$\overline{D}_{p} = 0.0065 \left(\frac{\sigma_{p} \mu_{p}}{\rho_{p}}\right)^{0.25}$$

where

- \overline{D}_{p} = median droplet diameter of propellant P, in centimeters
- σ = surface tension of propellant, P
- μ = viscosity of propellant, P
- ρ = density of propellant, P

The drop size distribution obtained by flash atomization is much narrower than that obtained by impinging stream atomization.

(c) Vacuum Vaporization of Propellant

When a stream of propellant is injected into a combustion chamber having a total pressure lower than the vapor pressure of the propellant, and if the Weber number is sufficiently high, then flash atomization will take place from explosive growth of vapor bubbles at nucleation sites in the stream. A certain amount of evaporation of propellant will occur during the flash atomization process. Following this, evaporation from the droplets will proceed, initially following the Langmuir-Knudsen Law. If the chamber pressure increases to a value above the vapor pressure of one or both of the constituents, the evaporation can continue by molecular diffusion. Moleculardiffusion-evaporation can continue until the droplets have either equilibrated with the chamber vapors, are expelled through the throat, or impact upon the chamber wall. There are large areas of uncertainty in this complex

process. One unknown is the amount of evaporation which takes place during the atomization process, before the droplets are completely formed. Another is the chemical processes which could occur on the surface of a cold droplet of nitrogen tetroxide which is cryopumping vapors of hydrazine onto its surface.

Seamans, Vanpee and Agosta (Reference A-29) have calculated the preignition chamber pressure history for the injection of one propellant component, based upon Langmuir-Knudsen evaporation of droplets having a mean diameter of 100 microns in a chamber one-in. long. They found that the droplets had nearly equilibrated by the end of a time period (1.5 to 5.5 msec) corresponding to a nominal droplet residence time. Since their droplets were quite large for flash-atomized propellant, and since their chamber was quite small, it is not unreasonable to assume that phase equilibrium is generally attained, and to use this asymptotic value to describe the preignition evaporation.

The <u>TCC</u> program tests each portion of injected propellant by Equations (A-3) to determine whether flashing occurs. If it does, the program calculates the fraction of the propellant which will vaporize to obtain local phase equilibrium at the instantaneous chamber pressure. The vapor formed is added to the vapors already in the chamber, the addition being made at the propellant injection point. The liquid which is unvaporized is assigned droplet properties, and the droplets are entered into the chamber droplet array. No further evaporation from or condensation on the droplets is calculated until they either impact upon the wall or until the ignition of the chamber contents occurs.

When liquid propellant is injected at a prescribed injection temperature, the relationships shown in Figure A-4 fix the injection enthalpy. The value of the chamber pressure at the time of injection is used in Equation (A-2) to determine the equilibrium temperature of the flashing propellant. When the enthalpies of the vapor and condensed-phase propellant are evaluated at the equilibrium flashing temperature, the fraction of the propellant which evaporates may be obtained:

$$H_{inj} = X \cdot H_{vap} + (1-X)H_{cond}$$
(A-7)

or

$$X = \frac{\frac{H_{inj} - H_{cond}}{H_{vap} - H_{cond}}$$

165

(A-8)

Since internal boiling and convective heat transfer inside the droplet both cease after freezing, the program has the option of terminating the evaporation process once the droplets have frozen.

(d) Impinging Stream Atomization

When the chamber pressure is sufficiently high that the injected propellant streams do not flash, atomization occurs by either the impinging stream or single stream mode of breakup. The expression for droplet diameter used in our program is based upon the work of Ingebo (Reference A-38), who examined the atomization of two identical streams of heptane, impinging at 90-degree included angle in air streams having velocities typical of rocket-engine thrust chambers. Ingebo correlated his data:

$$D_{30} = \frac{D_j}{0.30\sqrt{D_j V_j} + 0.0125 D_j \Delta V}$$
(A-9)

where

- D₃₀ = volume-number-mean droplet diameter
 - D_i = injector orifice diameter
 - V_i = injection velocity
- ΔV = velocity difference between the injected streams and the gas flow at the atomization point.

Preim et al. reported (Reference A-5) that for rocket-engine conditions, where ΔV varies with axial distance from the injector, that 4,560 cm/sec (150 ft/sec) is an appropriate average value to use for ΔV .

Preim also offers a correction for liquid physical

properties:

D _A	$/\rho_{B}\sigma_{A}\mu_{A}$	•	
$\overline{D_B}$ =	$\left(\overline{\rho_{A} \sigma_{B^{\mu} B}} \right)$		(A-10)

where

 D_{Λ} = mean diameter obtained with fluid A

 $\rho = density$

 σ = surface tension

 μ = viscosity

Equations (A-9) and (A-10) are combined, along with the above value for ΔV , the physical properties of heptane and the multiplier need to convert from volume-number-mean diameter to mass median diameter. This yields a more general expression for initial median droplet diameter expected from a symmetrical self-impinging doublet injecting a fluid of specified properties.

$$\overline{D} = \left[\frac{D_{j}}{0.20\sqrt{D_{j}V_{j}} + 39 D_{j}}\right] \left[1.725\left(\frac{\sigma\mu}{\rho}\right)^{1/4}\right]$$
(A-11)

This expression is still insufficiently general for the analysis of unlike impinging streams during transients, where the momenta of the two streams may be very different, or where one stream may be missing completely. In the absence of experimental data, a simplifying assumption is used to estimate the effects of relative stream momenta. The simplifying assumption is that a small element of liquid in the stream approaching the impingement point is not affected by the condition of the other stream except through the formation of a quasi-stationary planar stagnation surface which acts to redirect the stream into the initial planar flow pattern leading to the formation of the fan. This leads to the conclusion that stream velocity is not the variable controlling fan formation in Equation A-11, but rather the component of stream velocity relative to the resultant direction of the combined stream. This leads to the generalization:

$$\overline{D}_{p} = \left[\frac{D_{p}}{0.24 \sqrt{D_{p} V_{p} \sin |\beta_{p} - \beta_{R}|} + 39 D_{p}}\right] \left[1.725 \left(\frac{\sigma_{p} \mu_{p}}{\rho_{p}}\right)^{0.25}\right]$$
(A-12)

where

 \overline{D}_{p} = median droplet diameter for propellant p

 D_p = orifice diameter of the injector for propellant p

 V_p = velocity of the jet of propellant p along its own centerline

 β_p = angle of the stream of propellant p relative to the engine centerline

 $\beta_{\mathbf{R}}$ = angle of the resultant stream relative to the engine centerline

The resultant angle of the combined fuel plus oxidizer stream is calculated assuming conservation of momentum in the axial and radial directions. When a stream which has not flashed intersects a stream which has flash atomized, it is assumed that there is no momentum interaction; i.e., each stream continues in its original direction instead of being redirected to the "resultant" direction.

If a single stream impacts against the wall before it has travelled a sufficient distance to atomize in the single stream mode, then atomization is presumed to take place by wall impact. Atomization by wall impact is based upon equation A-12, however the value used for relative velocity is simply the absolute value of the radial velocity of the stream, $\begin{vmatrix} V_y \end{vmatrix}$ which is substituted for the term $V_p Sin \begin{vmatrix} \beta_p - \beta_R \end{vmatrix}$.

Experimental verification of equation (A-12) is still rather sketchy. It is obviously as correct as Ingebo's expression for the special case (symmetrical 90-degree impingement of heptane) from which it was derived. When only one stream is being injected, the stream angle and resultant angle are identical, and the following special case is obtained:

$$\overline{D}_{p} = \frac{1}{39} \left[1.725 \left(\frac{\sigma_{p}^{\mu} p}{\rho_{p}} \right)^{0.25} \right]$$
(A-13)

This is an expression for single-stream breakup (with an assumed value for mean gas velocity) and was compared with the findings of Weiss and Worsham (Reference A-39) for this special case. The functional relationships appear to be in approximate agreement and the values predicted for mean droplet diameter under typical rocket conditions were in adequate agreement. Since Equation (A-12) should account for stream impingement angle, it was compared with the findings of Heidmann and Foster (Reference A-40), who measured mean drop size as a function of impingement angle for symmetrical impinging streams. Again the predictions were in reasonable accord with the data. The droplet sizes obtained from the unlike impingement of streams of water and molten wax have been reported by Rocketdyne. Unfortunately, their three published expressions for median droplet diameter from an unlike doublet disagree with each other. It was presumed that the latest published value (Reference A-41) is correct. Evaluated at several points, the Rocketdyne droplet diameter values differed from the values of Equation (A-12) by no more than 5 percent.

This droplet size correlation and the Ingebo experimental drop size distribution have been adequate to accurately predict the chugging frequencies and amplitudes of a small research motor and the start transients of several motors having quite different characteristics; however, it does not give correct predictions for the combustion efficiency of the Marquardt 5-pound R-6C rocket engine which was used for the parametric studies of this report. To force the calculations to agree with experiment, it was necessary to reduce the computational droplet sizes to one half the values given by Equation (A-12). We do not yet know whether the problem of droplet size prediction is associated with the extremely small injection orifices of the R-6C engine, with the very reactive nature of the propellants. or with some other cause, such as the drop size distribution. The Rocketdyne experiments with unlike doublets show a significantly narrower size distribution than the Ingebo experiments and should give a higher combustion efficiency, but calculations have not yet been performed using the Rocketdyne distribution (Table A-I). It is also possible that the droplet size prediction is accurate, but that the combustion rate of NTO-MMH is higher in the rocket engine than would be expected from droplet burning rate experiments. Further experimental testing will be required to clear up this uncertainty. (Reference A-56, presented as this report goes to press, indicates that the low orifice Reynolds numbers of the Marquardt Engine could result in anomalously small droplets.)

(e) Distributed Parameters

The droplets injected into a real combustion chamber are distributed in droplet size, initial direction, initial speed, in point of origin as newly formed drops, and possibly in composition, if the fuel and oxidizer are miscible and not excessively reactive. It is possible to model these distributed parameters by adding more than two droplet groups (one fuel, one oxidizer) to the droplet array during each computational time interval; however, the more droplet groups that are added, the more time-consuming the calculations become. If M values are used to approximate the distribution of each parameter and if N properties are treated as distributed, then the number of droplet groups per propellant is M^N. If M and N were each

taken equal to five, then 6,250 droplet groups would have to be added to the computational array during each time interval, instead of the ten which are presently added. The storage location requirement for the droplet array would increase from 15,000 to 9,375,000 and the computing time on a high-speed computer would increase from about two minutes to about 20 hours. Obviously great restraint must be exercised in "improving" the calculations by this particular approach.

In the present computer program, the initial droplet diameter is the only parameter which is treated as distributed during "normal" operation; five values are used to approximate the experimental size distribution. For impinging stream atomization, the fifth mass quintile of the propellant has a droplet diameter approximately nine times that of the first quintile. This distribution is so wide that the distribution must be modeled if meaningful results are to be obtained.

During the periods that flash atomization is occurring, the droplet size distribution is much narrower, the fifth quintile diameter being only about twice the first quintile value (Reference A-36). However, at this time the initial directions of the droplets from the flashing stream are distributed over a cone having an apex angle of about 30 degrees. This distributed initial direction must be modeled in order to adequately describe the thickness profile of the propellant which is deposited on the chamber wall during the pre-ignition period.

For these reasons, only the droplet size distribution is modeled for impinging stream atomization, while only the initial direction distribution is modeled for flash atomization.

(f) Droplet Size Distribution for Impinging Stream Atomization

The droplet size distribution about the median value is approximated by dividing the injected mass of each propellant into five equal portions. Each of these portions is converted to a group of droplets having a diameter which is a prescribed multiple of the mean droplet diameter. The droplet group size ratios come from a table of coefficients chosen to approximate the experimental droplet size distribution. The droplet diameter of the nth group is:

 $D_n = \overline{D} K_n \tag{A-14}$

The coefficients used to represent Ingebo's experimental distribution, a Rocketdyne experimental distribution and a widely used analytical approximation are given in Table A-I.

	Ingebo Experimental (like doublets)	Log-Probability $\sigma = 2.4$	Rocketdyne Experimental (unlike doublets)
к ₁	0,198	0,333	0.60
к ₂	0.759	0.645	0.81
K ₃	1,00	1.00	1.00
K ₄	1,23	1,55	1.22
к ₅	2,30	3.00	1.55

Table A-I.DROPLET DIAMETER DISTRIBUTIONSMID-QUINTILE DIAMETER/MEDIAN DIAMETER

After the droplet diameters of the fuel or oxidizer size groups are calculated, the mass per droplet and number of droplets in the group can be computed. The mass of each droplet in the nth group is:

$$M_n = \frac{\pi}{6} D_n^3 \tag{A-15}$$

The number of droplets in the nth group is:

$$N_n = \frac{0.2\rho q \Delta t}{M_n}$$
(A-16)

(g) Atomization Distance

The distance which the impinged streams travel before the atomization is complete is calculated based upon investigations performed at NASA (References A-40 and A-42). The calculations used in this study presume that the distance to breakup is a prescribed number of orifice diameters in the absence of impingement (i.e., when $\beta_p - \beta_R = 0$ degrees), is as specified in Reference A-42 for impingement when $\beta_p - \beta_R = 45$ degrees, and is linearly interpolated with sin $(\beta_p - \beta_R)$ for intermediate values.

$$L_{p} = L_{45p} + \left(L_{op} - L_{45p}\right) \left(1 - \frac{\sin\left|\beta_{p} - \beta_{R}\right|}{\sin 45^{\circ}}\right)$$
(A-17)

L_p = fan length for complete atomization of propel lant p
L45p = experimental fan length for symmetrical 90° impingement
L_{op} = distance for single stream breakup of propellant p

 β_p = injection angle of propellant p

 $\beta_{\rm R}$ = resultant angle of the fuel plus oxidizer fan

When $\beta_p - \beta_R$ is greater than 45 degrees, L_p is taken equal to L_{45} degrees. When the injected streams are flash-atomized, the droplets are presumed to be formed immediately at the injection point.

(h) Pre-Atomization Trajectory

The atomization is completed at an axial location in the chamber equal to the impingement distance plus the breakup distance multiplied by the cosine of the resultant angle. This axial location is a droplet group property called S_i in the TCC program.

To approximate the relatively inert condition of the propellants prior to breakup, we assume that there are no combustion, aerodynamic drag, or momentum interaction between particles of injected propellant in the interval between the injection point and the point of droplet formation, i.e., when $X_i < S_i$. Since the injection velocity is time-varying, this implies propellant bunching in this region. This behavior may be visualized from a plot of particle location versus time (Figure A-5). When the first propellant is injected, it is moving quite slowly due to the restriction of the partly opened valve and the inertia of the fluid in the lines. The propellant, which is injected a few milliseconds later, is moving much faster and overtakes the previously injected material.

Figure A-5. Preimpingement Trajectory of Propellant

Where the world-lines are close together, the bunching is most extreme, and the effects of velocity modulation produce the maximum effect in varying the arrival rate of propellant. In many rocket engines, this point of least-stable propellant flow is close to the location where droplets are formed and become available for combustion, i.e., S_i . The injected propellant moves from the injection point to the impingement point along the direction of injection. After impingement, the stream moves in the direction of the resultant angle. It moves in this new direction until its atomization is complete, after which its two-dimensional trajectory is determined by the aerodynamic drag forces exerted by the chamber combustion gases. At the present time, the spreading of the fan is not modeled. When droplets are formed by flash-atomization, they are presumed to be formed at the injection point, and they are presumed to be immediately subject to aerodynamic forces and available for combustion.

(i) Droplet Array Calculations

The feed system and atomization calculations provide values for the mass, mean droplet diameter, initial velocity, etc., for the propellant which is injected into the combustion chamber at each time interval. The group of droplets injected at each time interval is described by fifteen variables, shown in Table A-II.

М	Mass per d rople t
Ν	Number of droplets in the group
^V x	Axial velocity
VY	Radial velocity
Х	Axial position of the group
Y	Radial position of the group
F	Fraction of the droplet mass which is fuel
ρ	Droplet liquid density
$\left(\frac{\pi K}{cp}\right)$	Burning rate parameter A
$\left(\frac{cp}{\Delta H}\right)$	Burning rate parameter B
S	Axial location where atomization is complete
R	Axial location where impingement occurs
VXR	Axial velocity immediately after impingement
V _{YR}	Radial velocity immediately after impingement
М	Calculated evaporation rate per droplet this time interval

Table A-II. DROPLET PARAMETERS
This data array has ten new droplet groups added to it each integrating time interval, and has droplet groups deleted when the mass of the droplet falls to zero, the axial location exceeds the chamber length, or the radial distance exceeds the chamber radius. This data array grows to represent the entire droplet population of the combustion chamber.

Each droplet group has the mathematical character of a vector in that fifteen independent values are required for its description. The total droplet population of the chamber is then an array of droplet vectors or a matrix. The droplet population of the chamber can usually be adequately described using no more than 1,000 droplet groups or 15,000 computer storage locations. (The number is determined by the size of the integrating time interval.) The combustion chamber calculations consist of working on the array of droplet groups at each computational time interval to obtain the succeeding new value for droplet mass, droplet axial velocity, droplet radial velocity, droplet axial position, droplet radial position, and droplet evaporation rate.

(4) Droplet Drag and Motion Equations

The aerodynamic drag, heat transfer, and diffusion rates associated with the droplets depend upon a number of dimensionless groups which characterize the regime of flow; thus, the Reynolds number, Mach number, and Knudsen number must be considered. The Reynolds number is of great importance to all of the transport processes. Drag coefficients and heat transfer coefficients are correlated with droplet Reynolds number. The Mach number of the flow about the droplets is generally less than 0.1 and its effects are ignored. The Knudsen numbers associated with the chamber processes have been calculated for a large number of conditions. The Knudsen numbers may be large for the first computational time interval, when the chamber pressure is taken equal to space ambient pressure; however, the Knudsen numbers have always been well into the continuum flow regime as soon as the first portion of either propellant is injected. Thus, free molecular flow effects should be negligible and are not considered in the correlations for vaporization rate, aerodynamic drag, and nozzle flow.

The velocity of the chamber gas relative to each droplet group must be calculated at each time interval in order to obtain the droplet aerodynamic drag and droplet combustion rate. The simplifying assumption is made that the chamber gas moves in the axial direction only. Hence:

$$V_{rel} = \sqrt{(V_{gas} - V_X)^2 + V_Y^2}$$
 (A-18)

 V_X and V_Y are the axial and radial components of the droplet velocity. The direction cosines of the relative wind are calculated:

$$C_{X} = \frac{V_{gas} - V_{X}}{V_{rel}}$$
(A-19)

$$C_{Y} = \frac{-V_{Y}}{V_{rel}}$$
(A-20)

The Reynolds number is calculated for each droplet group at each time interval based upon the droplet diameter (obtained from the droplet mass, presuming spherical geometry) and the velocity difference between the droplet and the gas.

$$D = \left(\frac{6M_i}{\pi\rho_i}\right)^{1/3}$$
(A-21)

$$N_{Re} = \frac{\rho_{gas} D_{drop} V_{rel}}{\mu_{gas}}$$
(A-22)

If the Reynolds number is less than 0.5, Stokes-law acceleration is calculated:

$$A = \frac{\frac{18\mu_{gas} V_{rel}}{\rho_{drop} D^2}}$$
 (A-23)

If the Reynolds number is greater than 0.5, the acceleration is calculated from the Newtonian drag law:

$$A = \frac{0.75 C_d \rho_{gas} V_{rel}^2}{\rho_{drop}}$$
(A-24)

The drag coefficient data of Rabin (Reference A-43) is approximated by the functions:

0.
$$5 < N_{Re} < 70$$
 $C_{d} = 27 N_{Re}^{-0.84}$
 $70 < N_{Re} < 59,200$ $C_{d} = 0.414 N_{Re}^{0.1433}$ (A-25)
 $59,200 < N_{Re}$ $C_{d} = 2.0$

After the droplet acceleration has been calculated, the new velocity and location of the droplet group are calculated

$$V_{X(t+\Delta t)} = V_{X(t)} + A C_X \Delta t$$
 (A-26)

$$V_{Y(t+\Delta t)} = V_{Y(t)} + A C_{Y} \Delta t \qquad (A-27)$$

$$X_{(t+\Delta t)} = X_{(t)} + V_{x(t)} \Delta t + 0.5 A C_{x} \Delta t^{2}$$
(A-28)

$$Y_{(t+\Delta t)} = Y_{(t)} + V_{Y(t)} - \Delta t + 0.5 \text{ A } C_{Y} - \Delta t^{2}$$
(A-29)

When the axial position of a droplet group exceeds the length of the chamber the droplet group is removed from the array and its mass is added to the summation of unburned droplets that escape from the chamber. When the radial position of a droplet group exceeds the radial dimensions of the chamber—and certain other conditions are satisfied—the droplet group is removed from the array and its mass is added to the summation of propellant mass which is coating the chamber wall at that particular axial location.

(5) Droplet Evaporation Rate Calculations

The evaporation rate (combustion rate) of a stable fuel or oxidizer droplet is determined by the heat transport to the droplet surface and diffusional mass transport away from it. In the regime encountered in a rocket combustion chamber, the vapor effusion from the droplet has a very large effect on the heat transport process, and the effect of the forced convective flow about the droplet is also of great importance. An additional, important factor in determining the droplet life history is the transport of heat from the surface of the droplet to its interior.

(a) Droplet Circulation

If the droplet has appreciable internal circulation, the convective transport of heat to the interior of the droplet will be large, and there will be a considerable unsteady period when the droplet is warming from its initial injection temperature to the final steady temperature at which it evaporates. The unsteady droplet evaporation problem may be solved by simultaneous calculation of the heat and mass transport about the droplet together with the droplet state (Reference A-44).

If the droplet lacks internal circulation, then heat transport into the interior of the droplet is negligible (Reference A-45), and all the heat which reaches the droplet surface is used in vaporizing the outermost layer of fluid. When this is the case, the droplet state and vapor diffusion equations need not be solved.

According to Bond and Newton (Reference A-46) as cited by Hughes and Gilliland (Reference A-47), droplets will only circulate when the surface shear forces are sufficient to overcome the surface tension forces. An approximate criterion for the onset of circulation is

$$\Delta V = \sqrt{\frac{\sigma^2}{\mu_{gas} \rho_{gas} D}}$$

(A-30)

Where ΔV is the difference in velocity between droplet and combustion gas at which circulation will start. This threshold is illustrated in Figure A-6. According to this figure, circulation is expected in large droplets even at low relative velocity, but is not expected during most of the lifetime of the smallest droplets found in a rocket combustion chamber. In order to accurately model the evaporation of both large and small droplets in a timevarying environment, the presence or absence of circulation should be determined for each droplet group at each integration time interval, with heat transport into the droplet permitted only when circulation is present.

For the present calculations, the simplifying assumption is made that there is no heat transfer into the interior of any of the droplets. This permits accurate calculations for the small droplets responsible for much of rocket transient behavior, at the expense of accuracy in modeling the large droplets which largely determine combustion efficiency.

(b) Heat Transfer Calculations

Heat transfer is correlated in terms of a Nusselt number. For a sphere

$$q = N_{NU} \pi K D \Delta T$$

where q is heat transfer rate and K is thermal conductivity of the vapor film.

(A-31)

R202

From the assumption that all heat reaching the surface of the droplet goes to evaporate liquid

$$\mathring{M} = \frac{q}{\Delta H} = \frac{N_{NU} \pi K D \Delta T}{\Delta H}$$
(A-32)

Where M is the rate of evaporation and ΔH is the sum of the latent heat of the liquid and the sensible heat required to raise it from the injection temperature.

A noneffusing sphere in a nonconvecting environment has a Nusselt number of 2.0, but the value for a droplet evaporating into a hightemperature environment is much lower. Godsave (Reference A-48) gives a simple but adequate estimate for the heat transfer to a burning droplet, assuming that thermal conductivity and specific heat of the vapor film are constant. His equation may be rearranged

$$N_{NU} = 2.0 \left[\frac{\Delta H}{C_p \Delta T} \ln \left(1 + \frac{C_p \Delta T}{\Delta H} \right) \right]$$
(A-33)

The rate of fuel consumption from burning fuel-wetted spheres has been determined experimentally under forced convective conditions by several investigators (References A-49, A-50, and A-51). These experimental values are correlated (Figure A-7) by the equation

$$\frac{\dot{M} - \dot{M}_{0}}{\dot{M}_{0}} = 0.25 N_{Re}^{0.50}$$
(A-34)

R202

Figure A-7. Burning Rate vs Reynolds Number

where M_0 and M are nonconvective and convective consumption rates. This is rearranged and combined with Equations (A-32) and (A-33) to give

$$N_{NU} = \left[2.0 + 0.5 N_{Re}^{0.5} \right] \times \left[\frac{\Delta H}{C_{p} \Delta T} \ln \left(1 + \frac{C_{p} \Delta T}{\Delta H} \right) \right]$$
(A-35)

The term containing Reynolds number represents the effect of forced convection on a burning sphere. It is very similar in value to the correlation of Ranz and Marshall (Reference A-52) for the rate of evaporation from wetted spheres, but is preferred for this application because it was obtained in the presence of combustion and with temperature differences up to 3,000°K and Reynolds numbers up to 6,000. The Ranz and Marshall experiments were limited to temperature differences of 100°K and Reynolds numbers up to 5,000°K and Reynolds numbers up to 6,000.

Equations (A-32) and (A-35) may be combined to give

$$\mathring{M} = \left(\frac{\pi K}{C_{p}}\right) D\left[2.0 + 0.5 N_{Re}^{0.5}\right] \times \ln\left[1 + \left(\frac{C_{p}}{\Delta H}\right) \Delta T\right]$$
(A-36)

which is the expression used to calculate the burning rate of a single droplet. In the computer calculations, $(\pi K/C_p)$ and $(C_p/\Delta H)$ are two of the subscripted variables characterizing the combustion properties of the material in each droplet group. These values are not treated as time-varying in the analysis in order to simplify the calculations. To obtain agreement with experimental burning rate values, C_p and K are evaluated at the arithmetic mean of the expected droplet surface and hot gas temperatures.

The temperature difference used in the burning-rate equation is the difference between the instantaneous droplet boiling temperature obtained from equation A-2, and the flame temperature or gas temperature surrounding the droplet.

The flame or gas temperature used in the burning-rate equation is obtained from the curve of chamber temperature vs composition (Figure A-8), the calculated composition of the chamber gas, and the known composition of the droplet which is carried as a subscripted variable. It is presumed that when a droplet of a given stoichiometry is evaporating into chamber gas having a different stoichiometry, every intermediate stoichiometry will be found in the diffusion zone surrounding the droplet and that the local temperature in the diffusion zone will correspond to the local stoichiometry. Thus the flame temperature used in the burning-rate equation is the highest temperature found on the temperature vs composition curve in the interval between the chamber gas stoichiometry and the droplet stoichiometry.

Figure A-8. Temperature vs Stoichiometry

Each time that the burning rate of a droplet is calculated from Equation (A-36), the value is stored temporarily as a subscripted variable until it can be used in the summations which give the velocity profile in the chamber and the total burning rate for the chamber.

(6) Use of Experimental Burning Rate Data

There are many common propellant materials for which the vapor thermal conductivity is unknown in the 1,500 to 2,000°K temperature range. Nitric acid and UDMH are good examples. Experimental droplet burning rates have been obtained for these materials, and these burning rates may be used to infer this necessary information. Normally experimental burning rate data are given in terms of a burning rate constant, K'

 $\frac{dD^2}{dt} = -K' \tag{A-37}$

in terms of our droplet burning rate expression

$$K' = \frac{8K\Delta T}{\rho\Delta H} \left[\frac{\Delta H}{Cp \Delta T} \ln \left(1 + \frac{Cp \Delta T}{\Delta H} \right) \right]$$
(A-38)

R202

This expression is solved for K using the experimental value for K'. When the mean value for thermal conductivity is obtained this way, the droplet combustion equations are no longer being used to derive the burning rates from basic principles, but merely become functions for extending a burning rate measurement to a different flame temperature.

Some propellant materials have the capability of burning as a monopropellant. Examples are hydrazine, propyl nitrate, and hydrogen peroxide. When the monopropellant burning rate is known as a function of chamber pressure from liquid strand tests, the burning rate may be entered, correlated in the form $r = A + BP^n$, where r is the burning rate in cm/sec and P is pressure in psia. The corresponding mass burning rate of a droplet is $M = r\pi\rho D^2$. When propellant droplets can burn as either a bipropellant or as a monopropellant, the computer program calculates the burning rate for each droplet group in both ways at each time interval, and the larger of the two values is used.

(7) Ignition and Extinguishment

Several types of ignition are modeled by the computer program. Calculations may be performed for sea-level or high-altitude ambient conditions, and for hypergolic or nonhypergolic propellants.

When a motor is being started at atmospheric pressure, using a liquid propellant igniter, it is assumed that droplets of the main propellants ignite instantaneously. When the fuel and oxidizer flow rates to the igniter and the axial location of the igniter port are specified, the initial composition, temperature, and axial velocity profile of the chamber gas are established. Although droplet ignition is presumed to be instantaneous, it would be erroneous to presume that the calculated start transient will necessarily be either smooth or simple, as experience has frequently shown it to be otherwise.

When nonvolatile hypergols are injected at atmospheric pressure, the ignition results from complex liquid and vapor phase processes and it is necessary to obtain ignition delay values from the published literature based on experimental tests. When such an ignition delay time is prescribed, the droplet burning rates are set to zero during the preignition period. The delay time is counted as starting only after both fuel and oxidizer streams have reached the impingement point in the chamber.

When volatile hypergolic pairs are injected under near-vacuum conditions, the ignition depends upon the physical processes which contribute to the production of reactive vapors in the chamber. The calculation of the ignition delay time in the vapor phase is based on an equation given by Seamans, Vanpee, and Agosta (Reference A-29):

 $\tau_{\text{ignition}} = \frac{RT^2 \rho_{\text{gas}} C_p}{EAQ C_{\text{fuel}} C_{\text{oxidizer}}} Exp\left(\frac{E}{RT}\right)$ (A-39)

where E, A and Q are the activation energy, frequency factor, and heat of reaction for the vapor phase reaction responsible for ignition. C_p is the specific heat of the vapor mixture in the combustion chamber and C_{fuel} or $C_{oxidizer}$ are the concentrations of fuel and oxidizer vapor in the chamber gases.

This function may be evaluated in either of three ways. One option is to assume that there is no axial mixing of vapors. In this mode, the relative concentrations of fuel vapor and oxidizer vapor come from the relative amounts flashed at each instant. A second option is to assume that all the vapors in the chamber are well-mixed. In this mode, the values for fuel and oxidizer vapor concentration used in Equation (A-39) are derived from a mass balance on the chamber considering the entire previous history of vapor generation and outflow. The third option presumes that at any instant there will be some location in the chamber which has the optimum stoichiometry for the quickest possible ignition. This optimum stoichiometry is found by examining the well-mixed vapor composition in the chamber, as well as the most advantageous composition in the boundary layers surrounding fuel droplets and oxidizer droplets (where they are present), the composition having the greatest value for $(C_{fuel} \times C_{oxidizer})$ is the one used in the ignition calculations. Any ignition delay time longer than the gas residence time is discarded, as external ignition is ineffective. Because of the necessity of calculating repeated ignitions and extinguishments, unreacted fuel and oxidizer vapors are distinguished from residual quenched combustion product gases in calculating the concentrations used in Equation (A-39).

The vapor-phase ignition delay time is recalculated at each time interval, and the chemical delay time is added to the model time at which the calculation is made to obtain a projected time of ignition. The smallest value for the projected time of ignition is retained. Ignition is presumed to occur when the model time exceeds the smallest value for projected ignition time.

Since the droplet population of the chamber declines very rapidly after the propellant values are closed, the vacuum evaporation of fuel and oxidizer film on the wall becomes the major source of fuel and oxidizer vapors very shortly after value closure. For this reason the criterion for extinguishment is based upon the combustion chamber gas state rather than upon the conditions in the droplet boundary layers. Extinguishment in the gas is predicted from experimental quenching distance values taken from data on the combustion of premixed gases (Reference A-53). Quenching distance of premixed gases is a function of the pressure, and of the initial temperature and stoichiometry of the combustible mixture. For the present purposes, the effects of stoichiometry and initial temperature can be lumped together in terms of the corresponding final gas temperature. The data on propane-air quenching distance are correlated adequately by:

$$q = 3.6 \times 10^{17} t^{-1.0} T^{-4.0}$$
 (A-40)

Where q is quenching distance in cm, P is pressure in dyne/cm², and T is equilibrium final gas temperature in K. When the calculated value of q becomes larger than the chamber diameter, extinguishment is presumed to occur.

(8) Chamber Calculations

The vapors or gases which fill the combustion chamber are derived from the following five sources: vapor from flashing propellant streams; material evaporated from propellant droplets; burnoff of material on the chamber walls; vacuum evaporation of material on the chamber walls; and igniter combustion products, if any. Fuel and oxidizer vapors from these five sources are axially cumulated in the chamber each time interval, while the amounts calculated to flow through the nozzle are subtracted. This gives current values for the chamber gas mass and stoichiometry and for axial addition rate of mass. These are used to calculate the pressure, temperature, molecular weight, and the velocity distribution in the chamber. The simplifying assumption is made that at any instant the pressure is constant throughout the chamber and the gas is well mixed. Since the computation time interval is typically of the order of 1 to 10 times the longitudinal acoustic period of the engine, the uniform chamber pressure assumption seems justified for engines with large contraction ratios. If ignition has occurred, the temperature and molecular weight are interpolated from tables of these variables versus stoichiometry. The table values are calculated assuming isenthalphic combustion to give reaction products in thermochemical equilibrium. If ignition has not occurred, the gas properties are calculated for the unreacted fuel and oxidizer vapors, assuming ideal gas behavior.

(a) Gas State

At each integration time interval, the expressions for flashing of the propellant streams, evaporation of droplets, burnoff of propellant on the walls, vacuum evaporation of propellant on the walls, and the assigned igniter flows are used to calculate the amounts of fuel-derived mass and oxidizer-derived mass which have been added to the chamber. Nozzle flow equations are used to calculate the amount of gas leaving the chamber, with the assumption being made that the material flowing through the nozzle has the same composition as the well-mixed material in the chamber. The new amounts of fuel-derived gas mass and oxidizer-derived gas mass contained in the chamber are then calculated:

$$M_{F(t+Nt)} = M_{f(t)} + fuel evaporated - fuel exhausted$$
 (A-41)

 $M_{O(t+\Delta t)} = M_{O(t)}$ = oxidizer evaporated - oxidizer exhausted (A-42)

The total mass of gas in the chamber is the sum of the fuel-derived and oxidizer-derived mass

$$M_{T} = M_{F} + M_{O} \qquad (A-43)$$

The stoichiometry of the chamber gas is expressed in terms of the fraction of the total gas mass which is fuel-derived

$$\mathbf{F} = \frac{\mathbf{M}_{\mathbf{F}}}{\mathbf{M}_{\mathbf{F}} + \mathbf{M}_{\mathbf{O}}}$$
(A-44)

When combustion is taking place in the chamber, the temperature, molecular weight, and thermal properties of the chamber gas are functions of the elemental compositions and heats of formation of the fuel and oxidizer, the stoichiometry and the chamber pressure. Since the composition and heat of formation of the fuel and oxidizer are fixed for a given set of propellants, and since the product composition is only a weak function of pressure, the temperature, molecular weight and thermal properties of the chamber gas are approximated as a function of F alone with only small error. Temperature, molecular weight and gamma are stored as 11-point tables with linear interpolation being used to obtain values for intermediate values of F. Figures A-8, A-9, and A-10 illustrate the values used for the white fuming nitric acid - UDMH propellant combination.

After chamber temperature and molecular weight are estimated as functions of the gas stoichiometry, the chamber pressure is calculated

 $P_{c} = \frac{\rho R T}{W_{m}}$ (A-45)

The density is obtained from the known total gas mass and total chamber volume, where U_c is chamber volume

$$\rho = \frac{M_T}{U_c}$$
(A-46)

(b) Nozzle Throat Flow

Conventional steady flow, compressible gas, nozzle flow equations are used to calculate the instantaneous mass flow rate through the nozzle throat. The use of these equations together with the assumption of constant pressure throughout the chamber restricts the validity of these calculations to cases where the rate of change of pressure is sufficiently slow that only a small change in pressure occurs during a single acoustic time period of the chamber or nozzle.

Figure A-9. Molecular Weight vs Stoichiometry

and the second

and internal of the party of the party of the second

Figure A-10. Gamma vs Stoichiometry

R202

R202

The nozzle is sonic when

$$\frac{P_{e}}{P_{c}} \leq \left(\frac{2.0}{\gamma+1}\right)^{\gamma/(\gamma-1)}$$
(A-47)

Subsonic mass flow rate is calculated

$$\mathring{M}_{T} = A_{T} P_{C} \sqrt{\frac{2.0 \ \gamma W m}{(\gamma-1) \ RTc}} \sqrt{\left[\left(\frac{P_{e}}{P_{c}}\right)^{2/\gamma} - \left(\frac{P_{e}}{P_{c}}\right)^{(\gamma+1)/\gamma}\right]}$$
(A-48)

Sonic flow rate is calculated

$$\mathring{M}_{T} = A_{T} P_{C} \sqrt{\frac{\gamma W m}{RTc} \left(\frac{2.0}{\gamma+1}\right)^{(\gamma+1)/(\gamma-1)}}$$
(A-49)

The rates at which fuel- and oxidizer-derived mass leave the chamber are

$$\mathring{M}_{F} = \mathring{M}_{T} \times F \tag{A-50}$$

$$\mathring{M}_{O} = \mathring{M}_{T} \times (1 - F)$$
 (A-51)

(c) Axial Gas Velocity

The axial gas velocity is calculated at 100 equally spaced axial locations at each integrating time interval to give the gas velocities used in the droplet drag and evaporation rate calculations, the wall burnoff calculations and the wall-film viscous flow calculations during the next time interval. When velocities are required at intermediate locations, linear interpolation is used.

The axial gas velocity at any axial location L may be obtained through the continuity equation, a mass balance on the chamber

volume upstream of location L, and the assumption of uniform density throughout the chamber. The axial velocity at L is

$$V_{\rm L} = \frac{\dot{M}_{\rm L}}{\rho_{\rm gas} A_{\rm L}}$$
(A-52)

where M_L is the rate at which gas mass is flowing past the section at L and A_L is the cross-sectional area at L. The value for M_L is obtained from a mass balance on the chamber volume upstream of L.

 \mathring{M}_{I} = Evaporation rate upstream of L - accumulation rate upstream of L

$$\mathring{M}_{L} = \sum \mathring{M}_{i} N_{i} - \frac{U_{L}}{U_{C}} \begin{bmatrix} \sum \mathring{M}_{i} N_{i} & - \mathring{M}_{T} \\ All droplet groups \\ in chamber \\ upstream of L \end{bmatrix}$$
(A-53)

where M_i and N_i are the mass evaporation rates per drop in the ith group and the number of droplets in the ith group. U_L is the chamber volume upstream of L, and M_T is the mass flow rate through the nozzle. U_C is total chamber volume.

(9) Wall Calculations

When a droplet group moves radially to the location of the combustion chamber wall, its fuel or oxidizer mass is deleted from the droplet array and is added to the appropriate location in a 100-member array which represents the axial distribution of fuel or oxidizer deposited on the chamber wall. The material on the wall experiences axial viscous flow under the influence of shear forces exerted by the chamber gas and is subjected to burnoff from heat transferred from the chamber gas. When the chamber pressure falls below the vapor pressure of the fuel and oxidizer deposited on the wall, they undergo Knudsen-Langmuir evaporation, with heat simultaneously being transferred from the chamber wall.

(a) Viscous Flow Rate

The viscous flow rate for each axial portion of the wall is calculated.

$$\mathring{M}_{i} = \frac{M_{i}^{2} f_{i} \rho_{gas} V_{igas} | V_{i} gas}{4\pi \mu_{mi} \rho_{m_{i}} D_{i} \Delta X^{2}}$$
(A-54)

Where \dot{M}_i is the mass flow rate at the ith segment of the chamber wall; M_i is the mass of deposited propellant on this segment of wall; f is the Fanning friction factor, a function of chamber Reynolds number, evaluated at the ith segment, μ_{mi} is the viscosity of the contaminant mixture on the ith segment of wall, interpolated from a table of viscosity vs stoichiometry; ρ_{mi} is the density of the contaminant mixture; and ΔX is the length of the wall segment. The Fanning friction factor is calculated (Reference A-54):

$$N_{Re_{i}} < 16.0 \quad f_{i} = 1.0$$

$$16 < N_{Re_{i}} < 2,000 \quad f_{i} = 16. N_{Re_{i}}^{-1.0} \quad (A-55)$$

$$2,000 \le N_{Re_{i}} \quad f_{i} = 0.06028 N_{Re_{i}}^{-0.2113}$$

 $N_{Re_{i}}$ is the Reynolds number, based on chamber diameter evaluated at the ith wall segment.

(b) Wall Burnoff Rate

The burnoff from each axial segment of the wall is calculated from a heat transfer coefficient calculated from the Colburn Equation (Reference A-55) corrected for Counter-Current mass transfer:

		H. A. C ΔT	
М _і	=	$-\frac{1}{\Delta H}$	(A-56)

 \dot{M}_i is the rate of burnoff of propellant from the ith wall segment. H_i and A_i are the heat transfer coefficient evaluated for the conditions at i and the chamber wall surface area of the ith segment. The value for H_i is calculated:

$$0. < N_{Re_{i}} < 500,000 \qquad H_{i} = 2.23 C_{p_{gas}} \rho_{gas} V_{i, gas} N_{Re_{i}}^{-0.66} (D_{i}/L_{i})^{0.33}$$

$$(A-57)$$

$$500,000 \le N_{Re_{i}} \qquad H_{i} = 0.027 C_{p_{gas}} \rho_{gas} V_{i, gas} N_{Re_{i}}^{-0.2}$$

 $N_{Re_{i}}$ is the Reynolds number based on chamber diameter evaluated at the ith segment.

The correction for simultaneous heat and mass transfer is calculated:

$$C_{e} = \left(\frac{\Delta H_{m}}{C_{p_{m}}\Delta T}\right) \ell_{n} \left(1.0 + \frac{C_{p_{m}}\Delta T}{\Delta H_{m}}\right)$$
(A-58)

Where ΔH_m is the heat required to evaporate or pyrolyze unit mass of the propellant mixture, C_{pm} is the specific heat of the vapor produced and ΔT is the difference between the chamber gas temperature and the surface temperature of the evaporating propellant.

(10) Vacuum Evaporation Rate

The evaporating wall film is treated as being locally thermally quasi-steady (Reference A-27) and the local vacuum evaporation rate from

each of the 100 axial segments of wall is presumed to balance the local heat transfer rate from the chamber wall to the evaporating surface. The expression for Knudsen-Langmuir evaporation is:

$$\dot{M}_{pi} = A_{pi} E_{p} \left(P_{vap p}(T_{si}) - P_{c} \right) \left(\frac{Mw_{p}}{2 \pi R T_{si}} \right)$$
(A-59)

Where M_{pi} is the evaporation rate of constituent p from the ith axial segment of the chamber wall, A_{pi} is the exposed surface area of constituent p on the ith segment. E_p is the accommodation coefficient of constituent p. $P_{vap \ p} (T_{si})$ is the vapor pressure of constituent p at the local surface temperature T_s . P_c is the chamber pressure. Mwp is the vapor molecular weight of constituent p, and R is the gas constant. The effects of the neutralization removing fuel or oxidizer from the mixed layer with the consequent formation of hydrazinium nitrate, and the vapor pressure reduction from solution effects are not considered. This expression is correct only when the fuel and oxidizer on the wall are unmixed. The expression for heat transfer through the wall film is:

 $\dot{M}_{pi} = \frac{A_{pi} K_{p} (T_{wi} - T_{si})}{S_{i} \Delta H_{p}}$ (A-60)

Where K_p is thermal conductivity of constituent p, T_{wi} is the chamber wall temperature at segment i, S_i is the thickness of coating on segment i, ΔH_p is the latent heat of evaporation of constituent p.

Equations (A-59) and (A-60) must be simultaneously solved to obtain the values of M_{pi} and T_{si} . This is done by Newton iteration. The solutions are obtained separately for the fuel and for oxidizer on each segment, as though they occupied separate patches of the total wall surface area. The exposed surface area of each propellant constituent is presumed to be proportional to its volume fraction on the particular segment.

(11) Thrust Calculation

The vacuum thrust is calculated as the sum of the momentum rate of the ejected droplets and the theoretical vacuum thrust of the gas:

$$F = P_{c} A_{t} C_{F} + \frac{1}{\Delta t} \sum V_{i} M_{i}$$
(A-61)
droplets ejected

When the chamber contents are ignited, the C_F is interpolated from a table of C_F vs stoichiometry of the chamber gas. When the chamber products are not ignited, C_F is calculated for the mixture of unburned vapors. In calculating the C_F for the vapors, first the ratio of exit pressure to throat pressure must be obtained from the exit area ratio:

$$\frac{1}{\epsilon} = \left(\frac{\gamma+1}{2}\right)^{\frac{1}{\gamma-1}} \left(\frac{P_e}{P_t}\right)^{\frac{1}{\gamma}} \sqrt{\frac{\gamma+1}{\gamma-1}} \left[1 - \left(\frac{P_e}{P_c}\right)^{\frac{\gamma-1}{\gamma}}\right]$$
(A-62)

This is solved for the time-varying γ using a Newton iteration. After the pressure ratio is obtained, the thrust coefficient is obtained:

$$C_{F} = \sqrt{\frac{2\gamma^{2}}{\frac{2\gamma^{2}}{\gamma-1}} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}} \left[1 - \left(\frac{P_{e}}{P_{t}}\right)^{\frac{\gamma-1}{\gamma}}\right]} + \frac{P_{e}}{P_{t}} \epsilon \qquad (A-63)$$

- d. Contaminant Production in the Combustion Chamber
 - (1) Definition of Contaminant Production

In the present context a contaminant is any material ejected from the rocket engine which can degrade any part of the vehicle surface. Abrasive, corrosive or otherwise physically damaging materials or persistent materials which cause significant optical changes to impinged surfaces are all included in the class of contaminants. The theoretical equilibrium combustion products, such as gaseous CO_2 , H_2O , N_2 , etc. are not normally regarded as contaminants, although condensed phases are potential contaminants. The most undesirable materials are raw unreacted fuel or oxidizer, or the mixtures of cold-reaction intermediate products containing hydrazinum nitrates, water, fuel, polymeric materials, etc. The latter materials can be produced whenever local conditions are inadequate to initiate or

carry the combustion reactions to completion. For transport limited processes, such as droplet evaporation, incomplete combustion arises from excessive drop sizes, inadequate chamber dimensions, low pressure or low temperature (which, in turn can result from incorrect stoichiometry or lack of ignition). For chemical rate limited processes, such as in a film of wellmixed fuel and oxidizer on the wall, incomplete combustion arises from chilling by the wall or from the vacuum evaporation of excess reactants or by quenching in a large excess of one or the other of the reactants.

> (2) Application of the <u>TCC</u> Computer Program to the Prediction of Contaminant Production

The transient combustion chamber program can predict the amounts and characteristics (film stoichiometry, droplet size, droplet velocity) of contaminant produced during an engine firing by mathematically modelling the injection rates, combustion and trajectory of droplets and the rates of accretion, evaporation, and axial flow of propellant deposited on the chamber wall. These processes depend in very complex ways upon the details of chamber geometry, injector geometry, tank pressures, valve timing, propellant properties, etc.

The contaminant production from a single pulse of a clean engine may be calculated by inputting the necessary data and performing the system calculations for the single pulse. The contamination from one pulse in a series of successive firings, however, will depend upon the accumulation of material on the walls from previous firings, the extent of injector dribbling between firings, the vacuum evaporation of material from the walls between firings, and the cumulative heating or cooling of chamber and injector over the series of firings. Thus it may be necessary to model an entire duty cycle to obtain representative values for contaminant production. Such calculations may be of value in assisting in the design, development, or modification of an engine, in optimizing the engine size and duty cycle for a particular vehicle mission, in modifying the duty cycle of an existing vehicle, or in choosing between alternate engine choices for a particular vehicle, where contamination is an important consideration.

(3) Assumptions, Limitations and Validity

The production of contaminants can be in any of several modes even for a single firing of a particular engine. If fuel injection commences before oxidizer injection, and if the trajectory of the streams or droplets takes them directly through the engine throat, very few simplifying assumptions or approximations are involved. If the same fuel impinges on the chamber wall and later is dragged downstream by shear forces developed by the relative velocity of the hot combustion chamber gases, the fluid flow and heat transfer processes are so complex as to defy analysis without the most drastic simplification. In our analysis the liquid flow on the wall is essentially quasi-steady, one-dimensional, and viscous. Instabilities leading to ripple formation or secondary atomization of wave crests are ignored and the effects of such instabilities upon heat transfer and drag are ignored. The gas shear stress correlations are for fully developed pipe flow, and ignore the boundary layer growth process in the short combustion chamber. The evolution of gas from the liquid surface by evaporation or pyrolysis is considered in the heat transfer calculation, but ignored in the shear stress calculation. The shear stress produced from stagnation of the axial momentum of the impinging propellant droplets is ignored. It is obvious that experimental examination of the wall-film flow process is necessary if reliable approximations to this process are required. On the other hand, the axial mass flow rate down the wall increases rapidly with the film thickness, so the process is strongly self-regulating, with increased deposition rates leading to increased axial flow rates; hence, after a certain period of accumulation, the axial flow rates should be nearly correct even though the value calculated for the mass held on the wall is in error.

The values for the physical properties of wall-film material containing both fuel and oxidizer have a high order of uncertainty. Combustion intermediate mixtures from motors using NTO-MMH propellant have been observed by eye and described as honey-like. This would imply a viscosity in the range of 1,000 to 100,000 centipoise; however, the temperature and gross composition (i.e., mass fraction of fuel in the mixture) were not reported, so the uncertainty in the value to use for viscosity must be at least a factor of 100. The viscosity of mixtures of this sort would be expected to vary strongly with temperature and with dilution by fuel, but no measurements have yet been made. The axial mass flow rate of wall-film material is, unfortunately, inversely proportional to viscosity. The viscosity function used for our calculation is a linear interpretation with composition, from the viscosities of pure fuel and oxidizer to a value of 10 centipoise at the composition of pure monomethyl hydrazinium nitrate. The low value used comes from the assumption that freshly produced MMH nitrate will still retain most of its heat of neutralization, which will heat it about 240°C above the reactant temperature.

The vacuum evaporation rates of NTO, MMH and monomethyl hydrazinium nitrate should be proportional to the accommodation coefficients of these materials; however none of these has even been measured. Accommodation coefficients for nonassociated materials such as hydrocarbons or perhalocarbons are approximately 1.0; however, materials which undergo dissociation or bonding changes during evaporation generally have values far less than 1.0. The accommodation coefficient for water, which is hydrogen bonded in the liquid phase, has been reported as low as 0.02, and the accommodation coefficient for ammonium chloride which dissociates upon evaporation has been reported as low as 4×10^{-4} . Liquid monomethyl hydrazine is certainly hydrogen bonded. Liquid NTO exists largely as the dimer N O_4 , which dissociates to the monomer NO2-littler evaporation. Monomethyl hydrazinium nitrate probably dissociates into nitric acid and monomethyl hydrazine upon evaporation. Hence the values for the accommodation coefficients might be expected to differ from unity by a factor of 50 to 5000; however, the values are not known, and a value of 1.0 is used in our calculations. Because of the absence of experimental values for the physical

properties, there has been no attempt to treat the vacuum evaporation from the wall in a sophisticated manner; instead, the fuel and oxidizer are treated as though they were immiscible phases. The sposed area of each phase on a particular segment of chamber wall is taken to be proportional to the volume fraction of the material on that segment of wall. Vacuum evaporation rates are then calculated based upon the exposed area of each phase and the estimated physical properties of the pure material. When properties of the materials are well known enough to warrant, it will be feasible to calculate reaction stoichiometry in the film, vapor pressure depression from dilution, and a heat balance considering the neutralization reaction, dilution, evaporation of excess reactants, and heat transfer to the wall or from the gas.

The injector hole diameters of the Marquardt R-6C engine are 0.0158 inch for the fuel and 0.0186 inch for the oxidizer. These are much smaller than have been employed in experimental investigations of primary atomization. In order to force agreement between calculated and experimental combustion efficiencies and steady-state chamber pressures, the computational initial mean droplet sizes were arbitrarily reduced by a factor of two from the value obtained using equation A-12. This probably indicates the inadequacy of the present mean drop size correlation and drop size distribution to describe the droplet sizes produced by the impingement of unlike hypergolic streams from very small orifices.

In the absence of any reliable data for breakup distances of fans produced by small streams of unlike materials, the fan lengths were arbitrarily set to zero for the calculations for the Marquardt R-6C engine. If the chugging frequencies and amplitudes had been known for this engine, the correct values for fan breakup distance could have been deduced from these values.

In the absence of any experimental data on the behavior of droplets or streams impinging on the chamber wall, it was assumed that half the impinging droplets stuck to the chamber wall and half rebounded back into the chamber. It was assumed that the bouncing drops rebounded from the wall with 100 percent of their speed of approach.

At present, the inadequate knowledge of propellant and coldreaction-product physical properties must rank in importance with uncertainty of primary atomization droplet size, stream or fan breakup distance, in the major unknowns limiting the confidence in the calculated predictions. It should be obvious that the above values are important to the calculations, and that some experimental work would be desirable to eliminate the necessity for guess-work in these values.

e. Contaminant Production Parametric Study

(1) Reasons for Parametric Study

The original reason for doing the parametric study was to develop a simplified mathematical correlation to characterize the behavior

of a rocket engine in terms of its response to variation of its most important variables, including hardware dimensions, operating conditions and duty cycle, Preim (Reference A-9) has correlated droplet combustion efficiency as a function of engine parameters for steady operation, and it was hoped that pulse-mode operation could be correlated in a similar manner. Such a mathematical correlation would be desirable in that it would eliminate the need for further computer calculations and would permit easy multivariate optimizations. A second reason for the parametric study was to publish theoretical predictions for engine behavior in the hope that this might encourage corresponding experimental tests, which could serve to verify the calculations or point out errors in the method. A third obvious reason for the study was to further our general understanding of the processes by identifying the most important variables, by establishing the general shapes of the functional relationships, by obtaining a more detailed understanding of the sequence of events which take place during transients, and by pointing up where necessary input values or correlations are inadequate or missing entirely.

It soon became obvious that no simple, general mathematical correlation of our calculations would be possible, because of the complex time-dependent character of the solutions. If each pulse of given duration in an extended duty cycle were identical to every other similar pulse, then simple correlations would be possible; however the accumulation of wall-film mass takes place on a time-scale which can extend over a considerable number of short pulses, making the average rate of wall-film efflux different for each otherwise-identical pulse in the series. The injector temperature and chamber wall temperature also show variations which can extend over a considerable number of pulses. The postcutoff and preignition behavior turned out to be more complex than had been supposed, with important changes in behavior occurring at threshold values of the variables, as the following example will illustrate.

According to our calculations, the fuel and oxidizer passages of the 5-pound thrust Marquardt engine will dribble sequentially after propellant cutoff, for a 300°K injector temperature. This is because the chamber pressure generated by the flash-vaporization of the dribbling oxidizer stream is higher than the vapor pressure of the fuel in the injector. Thus the fuel does not begin to dribble until the oxidizer has dribbled to exhaustion. When the dribbling is sequential, our calculations show that there are one or two brief periods of reignition during the oxidizer dribble period, which consume any fuel in the chamber available for combustion, and are followed by extinguishment.

When the fuel injector temperature is higher, however, the higher fuel vapor pressure can result in simultaneous dribbling of the oxidizer and fuel. This leads to reignition with enough of each propellant present to produce a rise in chamber pressure to a value above the vapor pressure of one or both propellants, which in turn cuts off the dribbling flow, which leads to a decay in chamber pressure. The decay in chamber pressure leads to the reestablishment of dribbling flow of the propellants and another rise in chamber pressure. This vapor-pressure driven chugging cycle can continue until one of the dribble volumes is drained.

در عد

The injector temperature follows a slow temperature rise extending over a series of pulses; hence, the early pulses in the series will show smooth cutoffs with little postcutoff impulse. When the injector temperature gets high enough, the subsequent pulses will show chugging cutoffs with greater postcutoff impulse, better combustion of the propellant in the dribble volumes, different amounts and axial distributions of the dribbled propellant deposited on the chamber wall, and a higher degree of voiding of the dribble volumes before the initiation of the next pulse.

This is a good example of the complex threshold-sensitive behavior which makes a simple mathematical correlation of the calculations impractical.

(2) Scope of the Parametric Study

The parametric study was based on the dimensions and operating values of the Marquardt 5-pound thrust R-6C rocket engine using NTO and MMH as propellants. The variables were chamber length, chamber diameter, throat area, leads and lags in opening and closing the propellant valves, fuel and oxidizer tank pressure, bulk propellant temperature, chamber wall temperature, and pulse length. Several arbitrary assumptions were made for the initial condition of the dribble volumes. Calculations were made with both dribble volumes initially full, both initially empty, and with the fuel volume full but the oxidizer volume empty. The temperatures of the dribble volume contents were normally set equal to the propellant tank temperature; but for one series, they were set to a much higher temperature.

The postfiring and prefiring dribbling of the injector and the between pulse evaporation from the chamber walls were not calculated in this parametric study, because these portions of the program were not completely checked out at the time the parametric series was performed. A further reason for not including these phenomena in the parametric study is the great expense of calculating the extended pulse trains necessary to categorize the dribble, wall accumulation, and wall evaporation behavior, and the almost endless number of possible variations to a duty cycle. The calculations of the present parametric study are all terminated very shortly after engine cutoff (three milliseconds after the last valve closed), and do not include any postfiring dribble effects.

(3) Results

The \underline{TCC} computer program parametric study yielded a substantial amount of information about the motor selected as a basis for the investigation.

The basis for this part of the study is a 5-pound-thrust rocket engine using NTO and MMH as propellants. This engine was developed by Marquardt and presently is being used by NASA-Lewis for contamination

et (\$2)

studies. The engine has a chamber 0.4 inches in diameter by 1.07 inches long; i.e., a volume of 1/8 cubic inch. It is operated with fuel and oxidizer tank pressures of 180 and 165 psia, respectively, producing a chamber pressure of approximately 100 psia. The engine can be operated from pulses of a few milliseconds to durations of many seconds. A 50 millisecond pulse was selected as the base for the investigation. The following sections contain the results of the parametric study in the form of graphs and tables, as well as discussion of these results.

(a) The Effects of Geometry

Throat area, chamber diameter, and chamber length were investigated with the <u>TCC</u> program. The importance of these variables will vary greatly with motor size. With very small thrusters of the type used as a basis for these calculations, the duration that droplets remain in the combustion chamber is a critical parameter. This droplet residence time is an inverse function of droplet velocity, a direct function of chamber length and droplet trajectory, as well as a more complex function of the result of propellant hitting the inner surface of the chamber. Droplet velocities are dependent upon the momentum of the injected streams of propellant and the drag forces of the chamber gases upon individual droplets. Therefore, any change in geometry which causes a change in gas velocity within the chamber, causes a change in the fraction of droplets hitting the wall, or a change in the distance traveled by the average droplet before leaving the chamber and thus will affect the amount of contamination produced by the motor. For the thrustor being investigated, the following results were observed.

Variation in Throat Area

When the throat size is changed with no other changes made to the system, several system variables are affected. Chamber pressure and propellant flow rates are two of the major variables that change. In investigating the effect of throat area, two runs were made with one 50-percent larger and one 50-percent smaller than the base case. The his-tory of the cumulative propellant ejected is shown in Figure A-11. The results are somewhat deceptive in that direct comparisons between the cases must consider the difference in the amount of propellant injected. For the large throat, 19 percent of the injected propellant is ejected unburned, compared with 18 percent in the base case, and 15 percent for the small throat (Table A-III). Therefore, the greater amount of propellant ejected from the motor with the larger throat is almost entirely due to the greater amount of propellant injected into the chamber. Two factors contribute to the remaining differences between throat sizes when compared for the same amount injected. First, when the throat is enlarged, the velocity of gas in the chamber is increased significantly. This, in turn, increases the velocity of the droplets traveling toward the throat. Second, when the throat area is larger, there is a greater area through which droplets may escape. Third, the momentum of the stream of propellant into the lower pressure chamber is greater, and the droplets have a greater resultant velocity after impingement of the propellant streams.

Figure A-11. The Effect of Throat Area on Material Ejected from the Motor

Variation from Base Case	Fraction Ejected Unburned	Fraction Remaining in Motor at 60 ms			
None Larger throat (1.5x) Smaller Throat (0.5x) Longer chamber (2x) Larger chamber (3.6x)	0. 182 0. 191 0. 152 0. 081 0. 168	0.0 0.0 0.0 0.0 0.0			
Smaller chamber (0.75x)	0.187	0.0			
Fuel Valve					
Lag in opening (4ms)	0.184	0.0			
Lag in opening (9ms)	0.217	0.009			
Lag in closing (4ms)	0.181	0.044			
Oxidizer Valve					
Lag in opening (4ms)	0.180	0.004			
Lag in opening (9ms)	0.181	0.023			
Lag in closing (4ms)	0.181	0.050			
Tank Pressure					
Higher fuel (+35 psi)	0.191	0.0			
Lower fuel (-35 psi)	0.148	0.001			
Higher oxidizer (+30 psi)	0.158	0.002			
Lower oxidizer (-30 psi)	0.197	0.001			
Bulk Propellant Temperature					
Higher (+20°K)	0.151	0.0			
Lower (-20°K)	0.191	0.0			
Chamber Wall					
Hotter than decom- position Temperature	0.187	0.0			
Pulse Length					
20 ms (0.4x)	0.177	0.001			
100 ms (2x)	0.184	υ. Ο			

Table A-III. DISPOSITION OF PROPELLANT INJECTED INTO CHAMBER

10月11日

Variation in Chamber Length

A change in chamber length directly affects the droplet residence time, both in the distance droplets have to travel to leave the chamber, and in the amount of the spray that hits the wall. One run was made with a chamber twice as long as with the base case (Figure A-12). Only 8 percent of the propellant was ejected unburned, which is the lowest amount of any of the situations investigated. Less than 1 percent of the total propellant flow is retained by the chamber wall in either case, with all of the deposition occurring in the first 8 milliseconds of the start transient. Slightly less was retained with the longer chamber.

Variation in Chamber Diameter

A change in chamber inside diameter affects gas velocity in the chamber, and the resultant Reynolds Numbers and heat transfer coefficients along the surface. The change in gas velocity will influence droplet velocity and the resultant droplet residence time. Two runs were made in which chamber diameter was varied, using values of 0.3 and 0.76 inches compared with 0.4 inches for the base case. Figure A-13 shows that contamination is relatively insensitive to variations in chamber diameter. An increase of 75 percent in gas velocity in the chamber causes an additional 3 percent of the injected propellant to be ejected unburned. These runs are computed for the conditions of a first pulse. In Figure A-14, the disposition of material on the chamber wall is shown as a function of chamber diameter. Of particular interest, this figure shows that the time at which the wall is clear of propellant is a strong function of chamber diameter, with the wall clear of propellant at 26 milliseconds with the small diameter chamber, and 60 milliseconds with the large diameter chamber. Furthermore, the amount of film expelled is considerably less with the smaller chamber indicating that propellant on the wall is being removed as it flows towards the throat.

1 5

1. B.

(b) Chamber Wall Temperature

One effect of chamber wall temperature on material ejected from the motor is shown in Figure A-15. This figure shows the variation anticipated from the motor when surface temperature of the chamber walls is greater than decomposition temperature of the propellant. For this condition, the program assumes that all droplets hitting the walls of the chamber bounce unbroken and unvaporized back into the chamber. The difference between the material ejected for hot wall and cold wall (base case) is not appreciable with this small motor because very small amounts of propellant hit the wall in relation to the amounts of propellant injected at base case conditions.

(c) The Effect of Valve Operation

Value operation was examined in more detail than any other variable with 4 runs made with variations in opening the values, and two runs made to investigate variations in closing the values. When one propellant, but not the other, is flowing through the injector; the stream of

R202

やいいのなんで、「「ないいな

Figure A-12. The Effect of Chamber Length on Material Ejected from Motor

160 Ŀ 140 120 MATERIAL FLECTED (MILLIGRAMS) 12 (14) 4 (1455) . 0 Ø J. 1. 160 .74 0 -0 1. DR PLE FILM 80 1 1.11 60 .1 đ - C- O--.... : 11. 111 11 11 20 + ł 7 20 3 40 50 60 0 10 ٤ . TIME (MULISECONDS

R202

State a

1

1.

202

1 1 : 111

Figure A-15. The Effect of Chamber Wall Temperature on Material Ejected from the Motor

204

R202

propellant impinges directly upon the wall. A fraction of this propellant remains on the surface, with the remainder rebounding. One of the weaknesses of the present model is in the detailed description of the disposition of propellant hitting the chamber wall, but the results should be qualitatively correct.

With one value is opened in advance of the other, liquid propellant is ejected from the motor at a rate corresponding to the rate into the chamber less the amount that flash vaporizes or sticks to the chamber walls (Figure A-16). At ignition, the amount of droplets expelled from the motor changes (approximately) to the amount of propellant unburned during the combustion process (Figure A-17). The rate of expulsion of droplets after ignition is approximately the same for all cases; therefore, the contamination before ignition is of prime importance. Figure A-18 shows the amount of contamination before ignition. The best case is obviously a simultaneous operation of the valves. A fuel lead produces a lower mass of contaminant than the corresponding oxidizer lead because of the lower injection rate. In Figure A-19, the percentage of droplets in the exhaust is shown for different value operating conditions. This figure shows that, before ignition, a substantial amount of the propellant vaporizes in the chamber; and after ignition, approximately 18 percent of the propellant is ejected unburned.

The disposition of material on the chamber wall is shown in Figure A-20. With a lead in opening either valve, a substantial quantity of propellant is deposited on the walls of the chamber. Even with the relatively long (9 millisecond) lead, the chamber walls are nearly clear by the end of the pulse, but significant amounts of the propellant sprayed on the wall is removed by flowing out the nozzle. (With the 9 millisecond oxidizer lead, nearly 50 percent of the propellant on the wall at the end of the ignition period is ejected through the nozzle.)

The effect of valve closing sequence is shown in Figure A-21. The amount of contaminant produced is identical until the first valve is closed, and then an additional amount of propellant is ejected according to the injection rate and lag time.

(d) The Effect of Tank Pressure

A variation in either fuel or oxidizer tank pressure causes a shift in the relative injection rates. This affects the system in two major ways. First, the change in the momentum of one of the injected propellant streams occurs, causing a shift in the beta angle. A change in tank pressure can, therefore, cause a significant change in the fraction of propellant hitting the chamber walls. The second major change is in the oxidizer-fuel ratio and the resultant chamber temperature. Four runs were made in which tank pressure was varied.

Figure A-16. Material Ejected with One Valve Open

and the second

Figure A-19. The Effect of Valve Opening on Exhaust Composition

R202

R202

Figure A-22 shows the effect of fuel tank pressure. The expulsion mechanism changes at low fuel tank pressure where a substantial fraction of the material ejected from the nozzle is material that flows along the chamber walls to the throat. This is shown more clearly in Figure A-23. In the low pressure case, the propellant on the walls of the chamber builds up to an equilibrium value after 30 milliseconds. In both the overpressurized and under pressurized case, propellant is sprayed on the chamber walls at the end of the pulse.

Figure A-24 shows the effect of oxidizer tank pressure on material ejected from the motor. Either a higher or lower pressure causes a smaller amount of propellant to be ejected from the motor, but the reason differs. With the smaller tank pressure, less propellant is injected into the chamber, and although a higher fraction of the injected propellant is ejected unburned, (Table A-III), the absolute amount decreases. With higher oxidizer tank pressure, more propellant is injected into the chamber but, (1) combustion is improved and (2) less fuel is injected. These two factors apparently produce the observed result. Inside the motor, material is deposited upon the chamber walls at a greater rate with the higher or lower tank pressure as compared to the base case. Figure A-25 shows that propellant is sprayed on the wall at the beginning and end of a pulse for both the higher and lower oxidizer tank pressure. The propellant on the chamber wall appears to approach an equilibrium thickness after a period of several milliseconds, with propellant spraying on the wall at the same rate as material burns off and dribbles out the throat.

The oxidizer-fuel ratio is a strong function of tank pressure. Table A-IV shows O/F ratio for the various tank pressure conditions. This table also illustrates the variation between the O/F ratio based on injected propellant and one based on propellant vaporized in the chamber.

	·				
Fuel Tank Pressu	Oxidizer k Tank ire Pressure	Maximum Chamber Pressure	Equilibrium Chamber Pressure	Mixture Ratio Based on Injected Propellant	Mixture Ratio Based on Vaporized Propellant
145	165	148	96	2.10	3.02
180	165	134	103	1.59	2.45
215	165	139	107	1.30	2.00
180	135	123	94	1.23	1.88
180	195	160	111	1.96	2.87

Table A-IV. THE EFFECT OF TANK PRESSURE ON CHAMBER CONDITIONS

R202

Figure A-22. The Effect of Fuel Tank Pressure on Material Ejected from Motor

- Br

NOT REPRODUCIBLE

R202

R202

Figure A-24. The Effect of Oxidizer Tank Pressure on Material Ejected from Motor

1

Sal

: 1 -14 :12 Ο (8 E tth. Frous. ._____. H. CAL 10 24 MATERIAL (MILLIGRAMS.) UEL 8 C 6 91% FUEL FUE ioiz E A 2 FUEL 4 2 007. FUEL 30 70 20 60 80 Φ 40 50 10 ÷ TIME (MILLISECONDS.) ; 1 į

NOT REPRODUCIBLE

R202

An O/F ratio determined experimentally is based on injected propellant rates, but the O/F ratio based on the amount of propellant vaporized in the chamber is the value of importance in performance calculations. The variation between the two bases is quite substantial in this motor. For the base case, the experimental O/F ratio is 1.6, but the O/F ratio of the vapor in the chamber is 2.45, almost exactly the theoretical O/F ratio for maximum ISP. Peak pressures are also indicated in Table A-IV. Higher oxidizer tank pressure in relation to fuel tank pressure produces a higher spike at ignition. Tables A-III and A-IV show that the same conditions that produce a higher peak pressure, cause a smaller fraction of injected propellant to be ejected unburned.

(e) The Effect of Propellant Temperature

The propellant temperature effects the steady operation of the engine by changing the propellant density, viscosity, and surface tension, which are all important in determining impinging-stream atomization droplet size. Propellant temperature also strongly affects the pre-ignition conditions in the chamber. The flashing-atomization threshold of the injected streams, the amount flashed when stream flashing does occur, and the combustion chamber vapor temperature and pressure are strongly sensitive to propellant temperature. The most important effects illustrated in Figure A-26 are those of impinging stream droplet size. A 20°C increase in propellant temperature decreases ejected droplet mass by 21 percent, while a 20° C decrease in propellant temperature increases the ejected droplet mass by 7 percent compared to the base case. The masses of wall film expelled are decreased 33 percent or increased 40 percent, respectively, by the same changes. Although postfiring dribble calculations are not shown here, propellant temperature is quite important in determining dribble rates through the effect on vapor pressure.

(f) The Effect of Pulsing

From the single pulse runs made in this study, some information concerning multiple pulses have been obtained. Major differences of a second pulse following the first include (1) propellant left on the chamber wall from the first pulse, and (2) the condition of dribble volumes. The dribble volumes can drain during the time between pulses so that the second pulse can start with (1) both dribble volumes full of propellant for very short down times, (2) the fuel dribble volume full and the oxidizer dribble volume empty for some longer down time, or (3) both dribble volumes empty at some still longer down time. Furthermore, the engine hardware may be hot and the propellant in the dribble volumes for the second pulse can be at a temperature substantially greater than bulk propellant temperature.

R202

(g) The Effect of Dribble Volume

The effect of propellant in the dribble volume is illustrated in Figure A-27. When both dribble volumes are full, propellant enters the chamber immediately after the valves open and ignition occurs in less than one millisecond, compared with ignition times of 4.4 and 4.6 milliseconds in the other cases. Comparison of contamination (droplets ejected) should be made as a function of time after ignition rather than on the absolute time scale used in Figure A-27. On this basis, both dribble volumes full or both empty produce lower contamination than fuel full and oxidizer empty. The differences, however, are not substantial for this particular engine, because of its very small dribble volumes. In Figure A-28, the effect of heating the propellant in the dribble volumes has been illustrated. Although previous work has found this parameter to be important in motors with substantial dribble volumes, very little effect is found for this engine design.

The amount of material left on the chamber wall at the end of a pulse is a function of many variables, and this condition is discussed at other locations in this section. Generally, the propellant sprayed on the wall during the start transient burns off within 40 milliseconds with this motor. Variations from this norm occur when tank pressures are varied from normal (Figures A-23 and A-25 or geometry is changed (Figure A-14). Furthermore, a lag in closing either oxidizer or fuel valve leaves propellant on the chamber wall at the end of the pulse (Figure A-20). If the heat transfer to the chamber wall is sufficient to heat the surface to temperature greater than decomposition temperatures of the propellant, the surface remains clear of propellant (Figure A-15).

(4) Conclusions

The conclusions are drawn from the results discussed in the last section which are based on a relatively small engine. Careful interpretation of the results has been emphasized in the discussion of the results presented in Subsection A. 2e(3). The following conclusions are noted:

1. Geometry-Contamination resulting from propellant ejected unburned from an engine is affected by chamber geometry. This is particularly true for chamber length where an increase significantly reduces the amount of propellant ejected unburned. This is attributed to the longer residence time of droplets in the chamber. An increase in chamber diameter causes some reduction in propellant ejected due to lower gas velocities in the chamber, but the velocity of droplets large enough to be ejected is apparently a stronger function of initial momentum

Figure A-27. The Effect of Draining Dribble Volume Between Pulses

NOT REPRODUCIBLE

Same de la contra

R202

Figure A-28. The Effect of Heat Transfer to Propellant Remaining in Dribble Volumes Between Pulses on Material Ejected from the Motor

than gas drag. A reduction in throat area results in less propellant being ejected unburned from the motor, but not significantly less, and in view of the other changes on the system, a variation of this parameter for contamination control is unlikely.

- 2. Valve Operations To expel a minimum mass of droplets during delivery of a specified total impulse, both valves should operate as nearly simultaneously as possible. Less droplet mass is expelled when valves open with a fuel lead than with an oxidizer lead of the same duration, mainly due to the lower injection rate. With an oxidizer lead, significant amounts of the propellant flow out of the nozzle. With a fuel lead less flows out the nozzle and more burns off the chamber wall. The effect of a non-simultaneous valve closing is to leave substantial amounts of propellant on the wall at the end of the pulse, as well as ejecting propellant as long as the valve is open.
- 3. Tank Pressure A variation in either oxidizer or fuel pressure from the norm causes an increased amount of propellant to be sprayed on the chamber walls. If the shift in beta angle is sufficiently great, propellant is sprayed on the chamber walls throughout the pulse and the amount on the wall establishes an equilibrium value where the amount of propellant sprayed on the wall equals the amount vaporizing or burning off plus the amount flowing out the nozzle. Tank pressure variation also causes a shift in oxidizer-fuel ratio and the resultant temperature of the gas in the chamber which affects the vaporization rate of the propellant. The maximum or peak pressure at ignition is also a function of tank pressure. Propellant is sprayed on the wall at the end of the pulse when tank pressure is varied from the norm.
- 4. Pulsing-Major differences between the start of a second pulse and the start of the first pulse are (1) propellant may be left on the chamber walls from the first pulse, and (2) the dribble volumes may be full or partially full of propellant. Furthermore, the propellant left in the dribble volumes may absorb some of the heat from the system between pulses. For the conditions investigated, for this engine, very little effect was observed for the variation of initial conditions of the dribble volumes.

A. 3 NUMERICAL INTEGRATION METHOD

The numerical solution of sets of differential equations can be accomplished using a number of different techniques. The simplest technique is Euler's method. In this method, the next value for each dependent variable

is obtained by linear extrapolation of the present value using the first derivative calculated at the present value. For a time-dependent function:

$$V_{(t+\Delta t)} = V_{(t)} + \frac{dv}{dt}_{(t)} \Delta t \qquad (A-64)$$

where V may be any variable value defined by a differential equation.

Other methods of numerical integration are available in which higher order derivatives are calculated and used:

$$\mathbf{V}_{(t+\Delta t)} = \mathbf{V}_{(t)} + \frac{d\mathbf{V}}{dt} \Delta t + \frac{1}{2} \frac{d^2 \mathbf{V}}{dt^2} \Delta t^2 + \cdots + \frac{1}{n!} \frac{d^n \mathbf{V}}{dt^n} \Delta t^n \qquad (A-65)$$

The use of higher order derivatives often allows larger values for Δt to be used without introducing excessive error or instability. A penalty must be paid for the use of the higher order derivatives. In the present calculations, any higher order derivatives would have to be estimated numerically by taking differences between previous values for the variables. Since 15,000 computer storage locations are required to contain the current values for the droplet array, the requirement that previous values be kept also would drastically increase the already large computer storage requirement. A further argument against the use of a higher-order integrating scheme is that many of the physical processes which are modeled do not have continuous derivatives. The feed system flow rates vary discontinuously when the dribble volumes fill up. The chamber gas properties and droplet burning rates vary discontinuously when the chamber contents ignite. The propellant primary atomization droplet size varies discontinuously when a decrease in chamber pressure or an increase in Weber number causes flashing to commence. When even the first derivative is not continuous, it is pointless to think of approximating higher order derivatives.

One way that the Euler method can be improved in the solution of certain physical problems is by limiting variables to their physically defined asymtotic values. The time interval chosen for the calculations is based mostly upon the response time of the chamber pressure. If a fuel droplet is injected which is so small that it would burn up completely in less than one computing time interval, then Equation A-64 would predict that it would burn to a negative diameter in one time interval and contribute more than one hundred percent of its mass to the gas phase. Obviously a real burning droplet has an asymtotic value of zero for its diameter and mass. Hence it is appropriate to limit the derivative to a value which will just consume the droplet completely in one computational time interval. Doing this will obviously assign an incorrect value to the droplet burning rate, but will yield a value for chamber pressure at the end of the interval which is correct. Several other derivatives are limited to known asymtotic values. Droplets being accelerated by aerodynamic drag forces will not exceed the local velocity of the gas which is accelerating them, feed system flow rates will not accelerate past the steady-state flow rate corresponding to the current pressure

and the second second

drop. The instructions for limiting the value of the derivatives are all written so as to properly consider flow rates and velocities approaching from either side of the asymptotic value. It should be emphasized that this derivative-limiting procedure is to stabilize the calculations for exceptional conditions, and that most of the calculations are made according to Equation A-64.

a. Computational Methods for Droplet Arrays

The methods used for the calculation of droplet combustion and trajectories differ according to the generality or restriction of the particular case. Three methods will be described to illustrate the similarities and differences. The first two methods illustrate the historical development of droplet analysis of rocket engine combustion chambers.

(1) Steady-State Chamber with Monodisperse Droplets

The simplest case is that of axially directed monodisperse droplets in a steady chamber. All of the droplets injected as a group at any particular time will behave alike, and the droplet group injected at any particular time will behave the same as any other group introduced at any other time. Thus, knowing the mass, velocity and position history for any one droplet yields a general solution for the entire combustion chamber. The aerodynamic drag force and evaporation rate for a droplet may be computed, and the successive values for mass, velocity and location may be calculated for a sequence of time steps in a very straightforward manner:

$$M_{(t + \Delta t)} = M_{(t)} - \dot{M}_{(t)} \Delta t \qquad (A-66)$$

$$V_{(t + \Delta t)} = V_{(t)} + \frac{F(t)}{M(t)} \Delta t \qquad (A-67)$$

$$X_{(t + \Delta t)} = X_{(t)} + V_{(t)} \Delta t \qquad (A-68)$$

$$U(t + \Delta t) = U(t) + \frac{1}{\rho A} N \mathring{M}(t) \Delta t \qquad (A-69)$$

Where M is the mass of a droplet, \dot{M} is the evaporation rate of the droplet, V is the velocity of the droplet, F is the aerodynamic drag force acting on the droplet, X is the axial location of the droplet, U is the combustion gas velocity, N is the number of droplets in the group, ρ is the density of the combustion gas, and A is the cross-sectional area of the chamber. Since U and X are both functions of t, U(X) is defined. This was the method used by Priem to evaluate chamber conditions with uniform droplets (Reference 8).

(2) Steady-State Chamber with Distributed Droplet Sizes

When the droplets produced by the injector are distributed in initial diameter, the calculations are less straightforward. The small droplets are accelerated by aerodynamic forces much more rapidly than the large droplets, hence, if the droplets are initially together at some particular place and time, they will be separated a short interval of time later. For this reason, the same time interval cannot be used by all the different sized droplet groups to progress from one axial location to the next. In the steady-stage chamber, no generality is lost by summing up combustion gas contributions from large, medium and small droplet groups which originated at different times, but which happen to be at the desired axial location in the chamber at the time the gas velocity summation is made. In marching down the chamber to develop the gas velocity profile, an axial distance interval is chosen, and then the time interval required for each different droplet size group to traverse the distance is calculated. The evaporation and acceleration effects for each droplet size group must be evaluated using its own correct time interval.

$$\Delta t_i = \frac{\Delta x}{V_i(x)} \tag{A-70}$$

$$M_{i(x + \Delta x)} = M_{i(x)} - \mathring{M}_{i(x)} \Delta t_{i} \qquad (A-71)$$

$$V_{i(x + \Delta x)} = V_{i(x)} + \frac{F_{i(x)}}{M_{i(x)}} \Delta t_{i}$$
 (A-72)

$$U_{(x + \Delta x)} = U_{(x)} + \frac{1}{\rho A} \sum N_i \dot{M}_{i(x)} \Delta t_i$$
 (A-73)

The subscript i is used to distinguish between the various groups of different sized droplets. This is the method used by Priem⁹ and later by Lambiris¹⁰ to calculate chamber profiles with distributed droplet sizes. The Dynamic Science approach¹¹ differed only in having groups of oxidizer droplets as well as fuel droplets.

It is apparent that the previous methods depend very strongly upon the assumption of steady conditions in the chamber and cannot be used to calculate the unsteady state. There are other more subtle restrictions, the methods cannot be used for droplets injected in the reverse direction, etc.

(3) Unsteady-State Chamber with Distributed Droplets

The method used in the present program differs from the carlier methods. Instead of following one or a few droplet groups progressively down the length of the chamber, the entire chamber population of droplets is represented simultaneously and reexamined at each time interval. When this method is used, a larger computer memory is required in order to store the description of the entire droplet population of the chamber, and more

computing time is required since all of the droplet groups constituting the entire population are examined at each time interval, however it is now possible to calculate time-varying behavior and it is simple to calculate droplet motion in one, two or three dimensions with no arbitrary restrictions. The mass, velocity and location for each droplet group in the chamber is recalculated at each time interval:

$$M_{i}(t + \Delta t) = M_{i}(t) - M_{i}(t) \Delta t \qquad (A-74)$$

$$V_{i(t + \Delta t)} = V_{i(t)} + \frac{F_{i(t)}}{M_{i(t)}} \Delta t \qquad (A-75)$$

$$X_{i(t + \Delta t)} = X_{i(t)} + V_{i(t)} \Delta t$$
(A-76)

The forces, velocities and locations may be treated as being one, two or three dimensional with no difficulty.

The axial gas velocity may be calculated at any axial chamber location, based upon a mass balance on the upstream region. In its present form, this calculation depends upon the assumption that the gas in the chamber is well mixed and has a constant density (i. e., no gradients in composition, temperature or pressure).

$$U_{\rm X} = \frac{\dot{M}_{\rm X}}{\rho A} \tag{A-77}$$

 \dot{M}_{x} = Evaporation rate upstream of X-Accumulation Rate Upstream of x

$$\dot{M}_{x} = \sum_{All \text{ groups upstream of } x} N_{i} \dot{M}_{i} - \frac{V_{x}}{V_{c}} \left[\sum_{All \text{ groups in chamber}} N_{OZZIC} All \text{ groups in chamber} \right] (A-78)$$

Where V_x is volume upstream of x and V_c is total chamber volume. In the present program the axial gas velocity is calculated at each of one hundred equally spaced intervals and interpolated between these points.

b. Integrating Time Interval

When gas is flowing from a chamber through a sonic throat, the mass flow rate is:

$$\mathring{M}_{t} = A_{t} P_{c} \sqrt{\frac{\gamma W m}{RT} \left(\frac{2}{\gamma+1}\right)^{(\gamma+1)/(\gamma-1)}}$$
(A-79)

The mass stored in the chamber is:

$$M = \frac{P_c V_c W_m}{RT}$$
(A-80)

The ratio of M/\dot{M} is often referred to as "gas residence time" and is a rough measure of how fast the chamber pressure can fall by flow through the nozzle. When equations A-79 and A-80 are combined and simplified:

gas residence time =
$$\frac{\frac{Ac}{At}}{a_c \sqrt{\left(\frac{2}{\gamma+1}\right)^{(\gamma+1)/(\gamma-1)}}}$$
(A-81)

When this is evaluated using the values Y = 1.25, $(A_c/A_t) = 4$, $a_c = 3600$ feet/second and $L_c = 1.0$ inch, a value of 0.17 millisecond is obtained for gas residence time. It is obvious that if normal pressure changes are to be modeled with sufficient accuracy, the integrating time interval must be considerably less than the gas residence time of the particular chamber.

Fuel and oxidizer droplets are introduced at the injector end of the chamber and move downstream with a velocity which depends upon the axial injection velocity and the subsequent aerodynamic drag. To maintain sufficient accuracy in the calculation of the droplet trajectory and mass history, a sufficient number of calculations must be made during the stay time of a droplet in the chamber. Droplet staytime may be estimated as chamber length divided by average droplet axial velocity. A reasonable estimate for axial velocity is 100 feet/second. Hence, for a chamber one inch long the droplet stay time is on the order of 0.8 millisecond.

In addition to the obvious restraints on maximum integrating time interval, there is a more subtle restraint on minimum time interval. At each time interval the axial gas velocity profile in the chamber is calculated based upon the mass of newly formed combustion gas which must be moved to restore the chamber to a uniform density and pressure. If an extremely short time interval is taken, it is possible that in some unusual cases, gas velocities will be calculated which are higher than are physically possible. This would introduce error in the velocity-sensitive functions such as droplet burning rate, drag, wall film flow and wall film burnoff. If the chamber is viewed as a closed-closed organ pipe a pressure relaxation physically requires one quarter of an acoustic period, i. e.,

$$\Delta t = \frac{Lc}{2 ac}$$
(A-82)

This sets 0.012 millisecond as a minimum time interval for a combustion chamber one-inch long.

Since the maximum and minimum permissible time intervals often differ considerably, there is leeway to trade off computer expense against precision of calculation. Most of the computations reported here were done near the maximum acceptable value for time interval to reduce the computation expense.

A. 4 PROGRAM OVERLAY STRUCTURE

A. 5 SUBROUTINES

There are six subroutines used in COMPUT to calculate physical properties of the propellants and to calculate chamber wall shear stresses associated with the combustion chamber gas flow.

a. Subroutine REDRHO (TRED)

Approximates the reduced density of a liquid as a function of reduced temperature along the saturation line, based upon the curves of Hougen and Watson:

$$0.8 > T_{r} \qquad \rho_{r(l)} = 3.97 - 1.91T_{r}$$

$$1.0 > T_{r} > 0.8 \qquad \rho_{r(l)} = 1 + \sqrt{34.7T_{r} - 25T_{r}^{2} - 9.7}$$

$$T_{r} > 1.0 \qquad \rho_{r(l)} = 1$$

b. Subroutine REDROD (TRED)

Approximates the reduced density difference (reduced density of the liquid minus reduced density of the vapor) as a function of reduced temperature, along the saturation line. Based upon the curves of Hougen and Watson, the law of rectilinear diameters, and some supplementary physical property data:

$$0.8 > T_{n}$$
 $P_{1} = 3.97 - 1.91 T_{n}$

$$1.0 > T_r > 0.8$$
 $\rho_d = -2.21 + 2.21 T_r + 2 \sqrt{34.7 T_r - 25.T_r^2 - 9.7}$

 $1.0 > T_r$ $\rho_d = 0.0$

c. Subroutine HCONDF (TEMP)

Approximates the enthalpy of the condensed phase fuel as a function of temperature:

$$T_{freeze} > T$$
 $H_F = C_{P_F} T$

$$T \ge T_{freeze}$$
 $H_F = C_{P_F} T + \Delta H_{fusion}$

d. Subroutine HCONDO (TEMP)

Approximates the enthalpy of the condensed phase oxidizer as a function of temperature. Same as HCONDF except with correct C_P and heat of fusion for the oxidizer.

e. Subroutine REDVIS (TRED)

Approximates the reduced viscosity of the liquid as a function of reduced temperature along the saturation line up to the critical temperature, and the reduced viscosity of the gas along the P = 0 line above the critical temperature.

$$0.6 > T_{\mu} = 0.55 T_{\mu}^{-5.68}$$

$$1.0 > T_{\mu} \ge 0.6 \quad \mu_{\mu} = 2.0 T_{\mu}^{-3.15}$$

$$T_{\mu} = 1.0 \quad \mu_{\mu} = 1.0$$

 $2.0 > T_r > 1.0 \quad \mu_r = 0.45 T_r$

$$T_r > 2.0 \quad \mu_r = 0.572 T_r^{0.655}$$

f. Subroutine FANFAC (RENCH)

Approximates the Fanning Friction Factor as a function of Reynolds number based upon chamber diameter:

$$16 > Re$$
 $f = 1.0$

2,000 > Re > 16 f = $16 \text{Re}^{-1.0}$

$$Re > 2000$$
 f = 0.06028 $Re^{-0.2113}$

A.6 PROGRAM USERS MANUAL

The <u>TCC</u> program is the first link of the <u>CONTAM</u> computer program. It may be run as a subprogram to CONTAM under control of subroutine EXEC (Link 0, 0) or as an independent program. The TCC program requires 150,000 words of core and is written in Fortran IV.

a. Input

A data set consists of 264 data values. These are normally punched four to a card on 64 cards. These numbers describe the engine, propellants, operating conditions and a number of general instructions or choices of program options.

The data is loaded using the INPUT 1 input editor (included as a subroutine in Link 0, 0). The Input 1 data cards are each punched with the values of four items of data and with the item numbers which identify what the particular data entries are, i.e., Data Item number 1 is the chamber length, data item number 2 is the chamber cross-sectional area at the injector end, etc. In punching cards to be read by INPUT 1, Card Column 1 is punched with a 1 to indicate that Input 1 is being used. Card columns 2 through 6 are punched with a data item number, card columns 7 through 15 and 16 through 17 are punched with a data value in scientific notation, i.e., a decimal value less than one and the exponent of 10 required to give the correct magnitude. If a minus sign is required for either the decimal fraction or the exponent it is overpunched over the number in columns 7 or 16. The other three data fields on the card are each treated the same way as the first, with 5 columns used for the data item number and 11 columns used for the fraction and exponent representing the data value. The case number should be punched in card columns 71 through 73 and card columns 66 through 70 should be punched with zeros unless the data editor capabilities are to be used. The use of the data editor will not be described here. The program is written to run only one case at a time.

The first step in the program reads the data and then prints it along with descriptive headings. This makes it easy to review the data to insure that all the values have been written, punched and entered correctly. The first program option is to terminate the run at this point, to permit a new set of data to be examined thoroughly before time is spent on calculations. The input data to this program is sufficiently complicated that occasional mistakes in entering the data may be expected and careful periodic examination of the contents of the data deck is highly recommended.

Certain of the data entries are not required for particular calculations and may be omitted (set to zero by the data editor). For a chamber of constant cross-section items, 3 and 4 may be omitted. For a computed vacuum hypergolic ignition, items 33, 34, 35, and 36 are omitted. When an igniter is used, items 33, 37, 38, 39 and 40 are omitted. When sea-level hypergolic ignition is being simulated by assigning a value for ignition delay, items 34, 35, 36, 37, 38, 39, and 40 are omitted. If injector heating of propellant and post-firing dribble are unimportant, the transition volumes (59 and 83) and the dribble volumes (60 and 84) may be omitted. The mono propellant, burning-rate constants (126, 127, 128, 146, 147, 148) are omitted for materials which do not burn in a mono propellant mode. When droplet trajectories are not desired, items 209, 210, and 211 are omitted. When flow r e overrides are not desired, 213, 214, 215, 217, 218, and 219 are omitted. When multiple pulses are not desired, 233 to 264 are omitted. The option flags are all set to zero for "normal" calculations, so they may all be omitted unless an option is specifically desired.

The data is printed out four numbers to a line, so that each line printed represents one card of input (Table A-29). Occasional unused data entries have been retained so as to separate the data deck into discrete sections which can be replaced or exchanged as a unit. The sections have the descriptive headings: CHAMBER DESCRIPTION, OPERATING CONDITIONS, FIRST BURN VALVE TIMING, IGNITION DESCRIPTION, etc.

The data entries are as follows:

Item Number		Description	Units
1.	Chamber Length		Inches
2.	А		Square Inches
3.	В		Square Inches/ Inch
4.	С		Square Inches/ Inch Squared

[The Chamber Cross-Sectional Area is Curvefitted as a polynomial, $S = A + BX + CX^2$]

Item Number	Description	Units
5.	Throat Area	Square Inches
6.	Blank	
7.	Blank	,
8.	Blank	
9.	External Pressure	psia
10.	Chamber Wall Temperature	°K
	(Used for Vacuum Evaporation of Propellant deposited on walls)	
11.	Blank	
12.	Blank	
13.	Fuel Tank Pressure	psia
14.	Fuel Tank Temperature	Degrees K
15.	Injector Temperature (Fuel Side)	Degrees K
16.	Blank	
17.	Blank	
18.	Fuel Valve Opening Time	Seconds
	(Mechanical Ramp Duration, not Electrical Time)	
19.	Blank	
20.	Fuel Valve Closing Time	Seconds
	(Mechanical Ramp Duration, not Electrical Time)	
21.	Oxidizer Tank Pressure	psia
22.	Oxidizer Tank Temperature	Degrees K
23.	Injector Temperature (Oxidizer Side)	Degrees K

Item Number	Description	Units
24.	Blank	
25.	Blank	
26.	Oxidizer Valve Opening Time	Seconds
	(Mechanical Ramp Duration, not Electrical Time)	
27.	Blank	
28.	Oxidizer Valve Closing Time	Seconds
	(Mechanical Ramp Duration, not Electrical Time)	
29.	Fuel Valve Opening Time	Seconds
	(Time First Valve Motion Occurs Opening for First Firing)	
30.	Oxidizer Valve Opening Time	Seconds
	(Time First Valve Motion Occurs Opening for First Firing)	
31.	Fuel Valve Closing Time	Seconds
	(Time First Valve Motion Occurs Closing for First Firing)	
32.	Oxidizer Valve Closing Time	Seconds
	(Time First Valve Motion Occurs Closing for First Firing)	
33.	Assigned Ignition Delay	Seconds
	(For Sea-Level Hypergolic Starts an Experi- mental Value for Ignition Delay Time is Entered)	
34.	Igniter Port Location	Inches
	(lf an External Igniter is being Used, the Loca- tion, Downstream of the Injector, Where the Hot Gases enter the Chamber)	
35.	Igniter Fuel Flow Rate	Pounds/Second
	(Flow Rate of Fuel Through the Igniter)	

Item Number	Description	Units
36.	Igniter Oxidizer Flow Rate	Pounds/Second
	(Flow Rate of Oxidizer Through the Igniter)	
37.	Activation Energy	(Calories/Mole)
	(Activation Energy of the Global Gas-Phase Ignition Reaction)	`
38.	Frequency Factor X Q	(Cubic cm/Mole/ Sec) X (Calories/Mole)
	(Molar Collision Frequency Multiplied by the Heat of Reaction of the Initiating Reaction)	
39.	Perfect Mixing Option	(0.0 or 1.0)
	(If This Flag is Set to 1.0, Ignition will Be calculated Only for the Well-mixed Free- stream gases, Ignoring the Possibility of Ignition in the Boundary Layers Around Drop- lets or on the Wetted Chamber Walls)	
40.	No Axial Mixing Option	(0.0 or 1.0)
	(If This is Marked with a 1.0, Ignition will be Calculated Only for the New Flashed Fuel and Oxidizer Vapors Presuming no Axial Mixing of Vapor and Ignoring Ignition in the Boundary Layer)	
41.	Fuel Line Length	Inches
	(Fuel Feed System Line Length)	
42.	Fuel Line Area	Square Inches
	(Fuel Feed Line Inside Cross-Sectional Area)	
43.	Fuel Restrictor Area	Square Inches
	(Area X Discharge Coefficient)	
44.	Fuel Venturi Area	Square Inches
	(Cavitating Venturi Throat Arca)	

Item Nurnber	Description	Units
45,	Fuel Valve Area	S q uare Inches
	(Port Area X Discharge Coefficient)	
46.	Fuel Injection Area	Square Inches
	(Summation of (Port Area X Discharge Coefficient) of Injector Holes)	
47.	Blank	
48.	Blank	
49.	Fuel Hole Diameter	Inches
	(Injector Hole Size)	
50.	Fuel Hole Length	Inches
	(Injector Hole Length)	
51.	Axial Location	Inches
	(Axial Location of Fuel Injection Point)	
52.	Radial Location	Inches
	(Radial Location of Fuel Injection Point)	
53.	Injection Angle	Degrees
	(Outward Angles Counted as Positive)	
54.	Blank	
55.	Blank	
56.	Blank	
57.	Initial Void Volume	Cubic Inches
	(Initial Empty Volume in the Fuel Feed System)	
58.	Blank	

Item Number	Description	Units
59.	Transition Volume	Cubic Inches
	(Volume of fuel that flows while the injection temperature decreases from the injector temperature to the tank temperature. (See Figure A-3.))	
60.	Dribble Volume	Cubic Inches
	(Volume between the closed valve and the injector face)	
61.	Check Valve Option	(0.0 or 1.0)
	(If this is marked 1.0 no reverse flow will be permitted in the fuel feed line)	
62.	Blank	
63.	Blank	
64.	Blank	
	(Entries $65-88$ are identical to $41-64$ except	

that they describe the oxidizer feed system instead of the fuel feed system.)

•

Charles and Article Providence

Item Number	Description	Units
89.	Fuel Fan Length	Inches
	(Distance between the impingement point and the point at which the fuel is atomized when the stream turns 45 degrees at impingement)	
90.	Oxidizer Fan Length	Inches
91.	Showerhead length/orifice diameter ratio	
	(The distance, in orifice diameters, that an unimpinged stream travels from the injection point to atomize completely.)	
92.	Blank	
93.	Hold at triple point option	(0.0 or 1.0)
	(When this flag is set to 1.0 a propellant stream flashing in a low pressure environ- ment will not freeze, but will stop as triple- point liquid)	
94.	No initial dribble option	(0.0 or 1.0)
	(When this flag is set to 1.0, no liquid will be injected until the void volume is filled, even when the injector-temperature vapor pressure is higher than the chamber pressure)	
95.	Flash cone angle	Degrees
	(This is the included apex angle of the cone of spray formed by a flashing stream)	
96.	Blank	
97-101.	Drop Size 1-Drop Size 5	
	(These are the diameter ratios of the droplet groups to the mass-median droplet)	
102.	No wall breakup option	(0,0 or 1.0)
	(When this flag is set to 1.0 an unatomized stream hitting the wall is not atomized by the impact)	

Item Number	Description	Units
103.	Drop Restitution Coefficient	
	(The normal-velocity ratio for a droplet which hits the wall and bounces off)	
104.	Fraction sticking	
	(The fraction of the droplets hitting the wall which stick to the wall instead of bouncing)	1
105.	No Fuel Flash Option	(0.0 or 1.0)
	(When this flag is set to 1. the injected fuel stream will not flash even when it is highly superheated)	
106.	No Oxidizer Flash Option	(0.0 or 1.0)
	(When this flag is set to 1.0 the injected oxidizer stream will not flash even when it is highly superheated)	
107.	No Wall Flow Option	(0.0or 1.0)
	(When this flag is set to 1.0 the propellant film on the wall will not flow axially under the influ- ence of chamber gas shear forces)	
108.	No Wall Burnoff Option	(0.0 or 1.0)
	(When this flag is set to 1.0 the propellant film on the wall will not burn off by heat transfer from the hot chamber gas)	
109.	Fuel Boiling Point	Deg r ees K
	(The normal boiling point of the fuel)	
110.	Fuel Freezing Point	Degrees K
111.	Fuel Critical Temperature	Degrees K
112.	Fuel Critical Pressure	psia
113.	Fuel Vapor specific heat	Calories/
	(Fuel vapor specific heat at a temperature midway between the combustion gas and the droplet surface)	Gram/ K

and the second

Ÿ.

Item Number	Description	Units
114.	Fuel Liquid Specific Heat	Calories/
	(Liquid Fuel specific heat at the injection temperature)	Gram/°K
115.	Blank	
116.	Fuel Molecular Weight	Grams/Gram
	(Molecular weight of fuel in the vapor phase)	Mole
117.	Fuel Latent Heat of Vaporization	Calories/Gram
	(Latent heat of vaporization of fuel at the normal boiling point)	
118.	Fuel Latent Heat of Fusion	Calories/Gram
	(Latent heat of fusion of the fuel at the freezing point)	
119.	Fuel Liquid Thermal Conductivity	Calories/Sec/ Gm/°K
120.	Fuel Accommodation Coefficient	
	(Coefficient for Langmuir-Knudsen vacuum evaporation rate)	
121.	Fuel Reference Temperature	Degrees K
	(Temperature at which values for density, viscosity and surface tension are given)	
122.	Fuel Density	Grams/Cm ³
	(Density of liquid fuel at the reference temperature)	
123.	Fuel Viscosity	Poises
	(Viscosity of liquid fuel at the reference temperature)	
124	Fuel Surface Tension	dynes/cm
	(Surface tension of fuel at the reference temperature)	

Item Number	Description	Units
125.	Fuel Burning Rate Coefficient from droplet burning experiments	cm ² /sec
	(-dD ² /dt for a burning fuel droplet in pure oxidizer vapor)	
126.	Fuel Monopropellant Burning Rate Intercept	cm/sec
127.	Fuel Monopropellant Burning Rate Coefficient	cm/sec/(psia) ⁿ
128.	Fuel Monopropellant Burning Rate Exponent	
	(Monopropellant burning rate values from liquid-strand experiments correlated by $r = A + BP^n$ where r is in centimeters per second and P is in psia)	
129-148	are identical to 109-128 except that they describe the oxidizer instead of the fuel	
149-159	Are the thermochemical equilibrium combus- tion product temperatures corresponding to fuel fractions of 0, 0.1, 0.2, 1.0	°K
160.	Blank	
161-171	Are the mean molecular weights of the combus- tion products in thermochemical equilibrium at fuel fractions 0, 0.1, 0.2, 1.0	
172.	Blank	
173-183	Are the values for frozen Gamma of the equilibrium combustion products at fuel frac- tions 0, 0.1, 0.2, 1.0	
184.	Blank	
185.	Density of the contaminant material produced on the chamber wall	gm/cm ³
186.	Specific heat of the gases produced by the evaporation or pyrolysis of the wall-film material	Cal/gnı/°k
187.	Latent heat of evaporation or heat of ablation of the wall-film material	Cal/gm
188.	Surface temperature of the wall-film material during evaporation or pyrolysis	Degrees K

Item Number	Description	Units
189-199	Viscosity of the wall-film material at the temperature to be expected on the wall at fuel fractions 0, 0.1, 0.2, 1.0	
200.	Blank	
201.	Model time at which the calculations should be terminated	Seconds
202.	Integrating Time Interval	Seconds
203.	Number of time intervals between printing of a propellant mass disposition print	
204.	Number at time intervals between plotting of contaminant thickness profiles	
205.	Delcte Graphics Option	(0.0 or 1.0)
	When this flag is set to 1.0 no graphics will be produced	
206	Delete Droplet Means Option	(0.0 or 1.0)
	(When this flag is set to 1.0 the mean diameters (D30, D31, D32) of the fuel and oxidizer droplets in the chamber are not calculated at each time interval.)	
207.	Delete Summaries Option	(0.0 or 1.0)
	(When this flag is set to 1.0 summaries are not printed to show the amounts, drop sizes and velocities of contaminant expelled during the four time intervals making up the pulse, i.e., the pre-ignition interval, the post- ignition start transient, the steady portion of the firing and the cutoff and dribbling after the valves close.)	
208.	Data Review Option	(0.0 or 1.0)
	(When this flag is set to 1.0 the data is read, certain checks and initializing steps are made and the raw data and some derived information is printed out with headings, however the chamber calculations are not performed. This makes it possible to check a new data deck for errors before proceeding with expensive calculations.)	

. /

Item Number	Description	Units
209.	Fuel Trajectory Group	(1.0 through 5.0)
	(The chamber trajectory of one selected fuel or droplet group may be plotted each run. The chosen fuel size group is entered.)	
210.	Oxid Trajectory Group	(1.0
	(If a trajectory plot is wanted for an oxidizer droplet instead of a fuel droplet, the size group desired should be entered.)	through 5.0)
211.	Trajectory Start Time	Seconds
	(The trajectory is plotted for a fuel or oxidizer droplet which is injected at some chosen time. The time chosen should be entered.)	
212.	Steady State Time	Seconds
	(The time points needed to print the interval summaries mentioned in item 207 are the ignition time, the time steady operation is attained, and the time the last valve closes. It is difficult to define the time steady opera- tion is first attained, so the desired time is entered as an input value, based upon previous experience.)	
	Flow rate overrides are provided for pro- pellant feed systems where the internal dimensions are inadequately known, but where experimental values are available for flow rate versus pressure drop. To define the feed system resistances, it is necessary to specify a propellant flow rate, the associated pressure drop, and the discharge coefficient of the injector orifices.	
213.	Fuel Flow Rate	Pounds/Sec
214.	Fuel pressure drop	psi
215.	Fuel Injector Discharge Coefficient	
217-219	are corresponding values for the oxidizer feed system	

Item Number	Description	Units
216.	No Injector Friction Option	(0.0 or 1.0)
	(When this flag is set to 1.0 no frictional losses are calculated for the flow through the injector passages. The frictional loss corre- lation is correct only for the turbulent flow regime and gives excessively large values for small orifices which are in the laminar flow regime. This flag should be set to 1.0 for very small injector holes.)	
221-231	Vacuum thrust coefficients are entered for combustion product gases having fuel fractions of 0., 0.1, 0.2, 1.0	
232.	Nozzle expansion area ratio	
233-264	Valve timing for the second through ninth pulses of engine operation	
233	Fuel valve, time of first motion opening on second pulse	(seconds)
234.	Oxidizer valve, time of first motion opening on second pulse	(seconds)
235.	Fuel Valve, time of first motion closing on second pulse	(seconds)
236.	Oxidizer valve, time of first motion closing on second pulse	(seconds)
b.	Program Output	

(1) Input Print

The first print which is produced by the program is a recapitulation of the program input.

(2) Propellant Property Print

The second print produced is a table of calculated propellant properties versus temperature. These values can be compared with known experimental values to assure that the program physical properties subroutines are giving an adequate representation of the true values. The values printed are liquid enthalpy, vapor enthalpy, vapor pressure, liquid density, liquid viscosity, and surface tension. These are given for evenly spaced

intervals of reduced temperature, with the corresponding absolute temperature also given. The units are calories/gram, psia, grams/cc, poise, dyne/cm and degrees K.

(3) Print of Time-Varying Rocket System Parameters

At each integrating time interval, values are printed for 48 of the more important system variables. This print consists of six lines containing eight values per line.

The first line contains the model time in milliseconds, the chamber pressure in psia, the ignition state of the chamber (1.0 for ignited, 0.0 for unignited), the mass fraction of the gas or vapor in the chamber which is fuel-derived, the chamber temperature in degrees K, the mean molecular weight of the gases or vapors in the chamber, the specific heat ratio for the gases or vapors in the chamber and the vacuum thrust coefficient for the gas or vapor phase flowing from the chamber.

The second line contains the fuel and oxidizer injection rates in pounds per second, and the fuel and oxidizer feed line flow rates in pounds per second. The injection flowrate and feed-line flowrate will differ when the injector is dribbling into a vacuum after the propellant valves close, or when a partially empty dribble volume is being filled before the injector primes. The void volumes on fuel and oxidizer sides of the injector are given in cubic inches. The dribble injection rate will decrease to zero when the dribble volume is emptied. The fuel and oxidizer injection temperatures are given in degrees Kelvin. The injection temperatures are equal to the injector temperature, until a volume of propellant has flowed out of the tank equal to the dribble volume, then the temperature linearly decreases to the tank temperature, with the decrease spread out over the prescribed transition volume.

The third line contains the evaporation rates of the fuel drop ensemble and the oxidizer drop ensemble in pounds per second. The fuel flash rate and oxidizer flash rate are given in pounds per second of vapor produced by the vacuum flashing of the injected streams. The rates of propellant burnoff from the wall is given for fuel and oxidizer in pounds per second. The heat for wall burnoff comes from heat transferred from the chamber gases. The rates of vacuum evaporation from the wall are given for fuel and oxidizer in pounds per second. The heat for vacuum evaporation is transferred from the chamber wall through the propellant film to the evaporating surface.

The fourth line contains the mass of fuel-derived combustion gas or vapor in the chamber in pounds. The mass of oxidizer-derived gas or vapor is given similarly. The masses of fuel droplets and oxidizer droplets in the chamber are given in pounds. The masses of injected, but not yet atomized fuel and oxidizer are given under the headings Fuel Streams and Oxidizer Streams. The mass of fuel and oxidizer deposited on the walls are the final entries of the fourth line.

The first and second entries of the fifth line give the mass rate of efflux for fuel and oxidizer-derived vapors or combustion-product gases
in pounds per second, the third and fourth entries are the mass rate of ejection through the throat for incompletely burned fuel drops and oxidizer drops in pounds per second. The rate at which propellant film on the wall is being flowed through the throat is given next in pounds per second. "Gas Fraction" is the instantaneous value for the fraction of the total mass efflux which is in the gas phase. The final entry on this line is thrust, in pounds force. The thrust includes the axial momentum rate of the expelled droplets, and the thrust from the gas phase products.

The sixth line starts with the mass-median droplet diameter for the fuel and oxidizer spray being produced this time interval. The next two entries give fuel and oxidizer stream injection velocities. The Beta angle is the resultant angle after the fuel and oxidizer streams have impinged. It is measured in degrees, with positive values being taken outward from the centerline. The mass out of tank is total mass of propellant flowed from the propellant tanks from the start of the run, in pounds. The integral PC x DT is the area under the curve of chamber-pressure-versus time, in psia x seconds. Total impulse is the time integral of thrust in pound-force x seconds.

(4) Summary Prints and Special Messages

Other prints which may occur interspersed with the normal six line prints are summary prints and special messages. The most frequent special messages specify when ignition or extinguishment occurs in the combustion chamber. Other special messages indicate minor errors, such as failure to converge to within 2 percent of the correct surface temperature during vacuum evaporation, or catastrophic errors such as calculation of a negative chamber pressure.

The propellant disposition summary, whose frequency is specified in data item 203 consists of seven lines of numbers. The first four lines give a mass balance for all fuel and oxidizer injected up to the present time. The masses, in grams, are given for total injected fuel, oxidizer and sum of fuel plus oxidizer, and the amounts expelled as gas, as droplets and as wall-film. Also given are the masses currently retained as gas, as droplets and as wall film. The last five lines gives the numbers of fuel drops and oxidizer drops injected and ejected up to the present time. The summation of droplet diameters, diameters squared, diameters cubed and axial momentum is also given, which makes it possible to calculate the mean diameters and mean axial velocities of expelled droplets for the interval between any two summary prints.

Another type of summary which may be printed gives values for four time intervals of motor operation, i.e., the pre-ignition interval, the ignition transient, the steady operation interval and the cutoff interval. The time and description of the interval is given, and the masses are given in grams of fuel, oxidizer and sum of fuel plus oxidizer expelled during the time interval in the form of droplets and in the form of wall film. The droplet diameter means, D₃₀, D₃₁, and D₃₂ as well as mean axial velocity are given for the droplets expelled during the interval. Droplet diameters are given in microns, axial velocity in feet per second.

(5) Final Performance Summary

13,

with p

After the last of the time-steps is printed, a performance summary is printed. The mass flowed out of tank is given, the mass flowed through the injector is given and the mass flowed through the nozzle is given. These values are not generally the same, because of filling or voiding of the injector dribble volumes, and because of increase or depletion of propellant mass stored in the combustion chamber in the forms of gas, droplets or streams, and wall-film. The mixture ratio, C-Star and specific impulse are calculated on each of these propellant mass bases. The pressure time integral for the entire pulse and the total impulse are also printed. The final print also gives the disposition of injected propellant for the entire firing. The fractions of injected fuel, oxidizer and total propellant expelled in the form of gas, droplets and as wall-film are given, and the fraction retained in the chamber as gas, droplets and wall film are given. The mean diameters for injected and ejected fuel and oxidizer are given, in microns. The mean axial velocity for injected and ejected fuel and oxidizer droplets are given in feet per second. The calculated size distribution for injected and ejected fuel and oxidizer is given. When this is plotted, it very strongly shows the five-group approximation for injected droplet size, which is a computational artifact, however, also apparent are the real effects of flashing versus impinging stream atomization, the preferential burning of small droplets, the segregation by drag versus momentum effects, etc.

(6) Computer Graphics

The computer graphics include the trajectory of the specified fuel or oxidizer droplet, forty-four time-varying system parameters plotted versus time, and a specified number of instantaneous profile plots of wall deposit thickness versus chamber length. The wall deposit plots may be eliminated by making input item 204 a large number. All graphics may be eliminated by setting input item 205 equal to 1. The plots are as follows: (all variables are plotted versus time in milliseconds except where specifically stated otherwise).

- 1. Droplet Trajectory-Axial position in inches.
- 2. Droplet Trajectory-Radial position in inches.
- Droplet Trajectory-Axial position in inches versus radial position in inches.
- 4. Chamber pressure in psia.
- 5. Fuel Valve Trace-Fraction of full-open port area.
- 6. Oxidizer Valve Trace-Same as for fuel.
- 7. Fuel Flow Rate from the Tank in Pounds per Second.
- 8. Oxidizer Flowrate-Same as for fuel.
- 9. Flowrate of Fuel Plus Oxidizer-Same as for fuel.
- 10. Fuel Injection Rate in Pounds per Second.
- 11. Oxidizer Injection Rate-Same as for fuel.

- 12. Fuel Droplet Mass-Pounds (total mass of fuel in-flight in the chamber, sum of streams and droplets).
- 13. Oxidizer Droplet Mass-Same as for fuel.
- 14. Total Droplet Mass-Fuel plus oxidizer.
- 15. Fuel on the Wall-Pounds.
- 16. Oxidizer on the Wall-Pounds.
- 17. Propellant on the Wall-Fuel Plus Oxidizer, in pounds.
- Gas Mass-Pounds (mass of vapors or gas-phase combustion products in the chamber).
- 19. Gas Fuel Fraction-Fraction of the chamber gas which is derived from fuel.
- 20. Chamber Temperature-Degrees Kelvin (temperature of the gaseous combustion products).
- 21. Fuel Evaporation Rate-Pounds per second (rate at which fuel vapors are entering the chamber from all sources, vacuum flashing of streams, droplet evaporation, wall film burnoff and wall film vacuum evaporation).
- 22. Oxidizer Evaporation Rate-Same as for fuel.
- 23. Total Evaporation Rate-Fuel plus oxidizer.
- 24. Gas Outflow Rate-Pounds per second (sonic or subsonic throat flow of gas or vapor).
- 25. Fuel Droplet Outflow Rate-Pounds per second. (Mass of unburned droplets ejected each interval divided by length of the time interval. To reduce random fluctuation, this value is time-averaged over four time intervals and has some lag.)
- 26. Oxidizer Droplet Outflow Rate-Same as fuel.
- 27. Total Droplet Outflow Rate-Fuel plus oxidizer.
- 28. Fuel Film Outflow Rate-Pounds per second (rate of flow of fuelderived wall-film through the throat).
- 29. Oxidizer Film Outflow Rate-Same as fuel.
- 30. Total Film Outflow-Fuel plus oxidizer.
- 31. Fraction Vaporized-The fraction of the total material expelled each time interval which is in the gas phase. The total material expelled is gas plus unburned droplets plus wall film. To reduce random fluctuation, this value is time-averaged over four time intervals, and has some lag.

- 32. Stream Beta Angle-Degrees outward from the chamber centerline. Angle of the resultant stream from the impingement of fuel and oxidizer.
- 33. Fuel Fan length-Inches. (Axial distance from the injector face where atomization is complete. Longest when other stream is absent or is flash atomized; depends upon momentum ratio when both streams are present; zero when the stream is flash atomizing.)
- 34. Oxidizer Fan Length-Same as fuel.
- 35. Fuel Droplet Diameter-Microns (mass-median atomization droplet diameter for fuel being injected this time interval).
- 36. Oxidizer Droplet Diameter-Microns (same as fuel).
- 37. Fuel Flash Quality-Mass fraction of the fuel injected this time interval which flashes to vapor.
- 38. Oxidizer Flash Quality-Same as fuel.
- Chamber Fuel D30 (Mass-Number Mean Diameter for Entire Chamber Population of Fuel Droplets).
- 40. Chamber Fuel D31 (Mass-Diameter Mean diameter for Entire Chamber Population of Fuel Droplets).
- 41. Chamber Fuel D32 (Mass-Surface Mean diameter for Entire Chamber Population of Fuel Droplets).
- 42. Chamber Oxidizer D30 (Same as Fuel).
- 43. Chamber Oxidizer D31 (Same as Fuel).
- 44. Chamber Oxidizer D32 (Same as Fuel).
- 45. Fuel Voided-Cubic inches (volume of injector fuel passages unfilled with liquid).
- 46. Oxidizer Voided-Cubic inches (same as fuel).
- 47. Thrust-Pounds (Calculated Engine Thrust).
- 48. To End-Thickness on wall versus percent of chamber length.

The number of prints depends upon the value specified for data item 204. The thickness of the deposit of fuel plus oxidizer on the chamber wall is plotted for each of the one hundred axial segments into which the chamber is divided. The thickness profile is plotted for every nth computational time interval, where n is input as data item 204.

A.7 SAMPLE CASE

Table A-V consists of a sample case for the <u>TCC</u> program. Illustrated in the following order are (1) the load sheets used to punch the data, (2) a listing of the control cards, (3) the data deck used, and (4) a representative sample of the prints and graphics produced.

Only 150,000 storage locations are called for (compared to 220,000 to run the complete <u>CONTAM</u> program) because of the overlay structure and the LIBLIST system routine which avoids calling subroutines which are not required by the particular portion of the program being run.

The printer output consists of the input data print, the derived property print, the print of time-varying system parameters (abbreviated), summary prints, ignition and extinguishment prints, the performance summary, and the disposition of propellant print.

A sampling of computer graphics includes a valve trace, chamber pressure, flow rate of oxidizer in the feedline and injector (illustrating the injector priming and the large dribble flowrate of oxidizer). The droplet mass plot shows that there is a large mass of oxidizer droplets in the chamber during the dribble period. The wall-mass plot shows accumulation of propellant on the wall during the start transient and dribble period, and its removal by burnoff and by vacuum evaporation.

Table A-V. SAMPLE CASE FOR TCC PROGRAM

60-1+15 F9 611

 7090 DATA LOAD SHEET
 PROBLEM H-607 PAGE 1 OF 4

 DATA INPUT 1
 PREPARED BY W.T. WEBBER DATE

				MUST BE FILLED PROPER PROCE	IN FOR SSING	00000000001	/
QUAN	LOC	- VALUE	tε	QUAN	LOC	T VALUE	tε
		[1.0.7.	1.1		33	0	0
	2	1368	0		34	0	0
		1427	0		35	0	0
	4	-12,2,6,8	0		3,6	0	0
	5	0298	10		37	5200	114
	6	o	110		3,8	34	1.5
	7	0	0			0	0
	8	0	0		. 4.0	0	1.0
	. 9	000001	0		4.1	4,8,0	3
	1.0	294	3		42	0,2,81	0
	1,1	0	1.0		43	00,45,4	0
		0	, ,0		44	0281	0
		1.8.0	3		45	0281	l¦ d
		294	;]3		4.6	0,0,0,1,9,6	10
	15	29.4	; 3		47	0	0
	1.6	0	¦ ,0		48		10
					. 49	10079	0
		001	¦ _0		50	0,6:25	10
			0	_	5.1	0	<u> </u> 0
	20	001	0		5,2	045	L' o
	2.1	1.6.5	; 3		53	-145 	2
	. 22	29.4	3		54		10
	. 23	294	3		55		0
	2.4		0		5.6		1 o
 	. 25	10	0		5.7	0,0,1,1,3	10
	2.6	001	0		5.8		l 1a
	. 27	0	0		59	4	<u> </u>
	28	001	0		1.60	00113	فسنا
	29	<u>0</u>	0		6,1	0 	0
	50		<u> </u>		62		
	31				63		+
	32		0		6,4		H-H
		<u>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ </u>	<u> </u>		- 		┼┼╌┥
		ليتصب ومستعد والمستعد والمستعد	يسنا				11.
				CI FUNCT: 31	MINDAKU UA		

60 9.61 7(

7090	DATA	LOAD	SHEE1	PROBLEM H-607 PAGE 2 OF 4
DATA	INPUT	1		PREPARED BY W.T. WEBBER DATE

.

MUST IN FILLED IN FOR PROFER PROCESSING

66 6969 7071 7; 0.00000001 BD RR CACE \precsim

. .

QUAN	LOC	T VALUE	L E	QUAN	LOC	+ VALUE	tε
	65	480	, ; 3			1198	0
	. 66	0281	.		.98	7.5.9	<u>,</u>
	67	00636			9.9		
	68	028	0		1.0,0	1.2.3.	
	69	0281	0		1.01	23,0,4,5	
	. 70	0,0,0,2,7,2	0		, 102	0	0
	7.1	0	0		. 1.0.3		
		0	0		1.0.4	5,	0
	73	0,0,9,3	0		1.0,5	0	1.0
		0625	0		1,0,6	0	0, 1
		0	0		1.0.7	0	l d
	. 7.6	-045	0		1.0,8	19	1.0
		45	2		1.10.9	13,6,0	3
		0	, ,0		0,1,1,0	2,22	3
		0			1,1,1,1	15.94	3
	80	10	, ,O		1,1,1,2	1.1.9.5	4
	8,1	00058	0		11,3	19.9.5	0
	82	0	0]1.4	16.9	0
	83	10	0		5	0	<u> </u> o
·	84	00,0,5,8	. 0		6	4.6.0.7.4	1 2
	85		0		11.7	21.0	3
·	86	le la			1.1.8	67.5	2
	. 87	C	o		11.9	0.0.0.5.4.5	
	. 88	10	0		1.20		111
	81	10:24	0		1.21	3,0,0	<u> 3</u>
	. 9.0	027	, jo	-	1.1.22	8.8.	10
	. 9.1	1.0.	. 2			01.04	1-1-0
		49	0		1.1.2.4	4.7.	12
	. 93	<u></u>			112.5	0325	م ا
		Liller			1,1,2,6	9	4-19
		30	<u>2</u>		127		444
					<u>l,2,8</u>		뉴러
		<u></u>					╉┽┹┥
		<u> </u>				<u>Li. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</u>	إحدنك
			KEY	PUNCH: STA	ANDARD DA	TA INPUT T	

7090 DATA LOAD SHEET

PROFILEM H-607 PAGE 3 OF 4 PREPARED BY W.T. WEBBER __ DATE ____

DATA INPUT 1

.

80 115 (9 61)

60 - 6862 2071 - 7374 76 0.0.0.0.0.0.0.0.1 BD RR CASE MUST BE FILLED IN FOR PROPER PROCESSING

QUAN	LOC	E	VALUE	[±] ε]	QUAN LOC T VALUE	ŧ	ε
	1.2.9		2.94	3	161 46008	Ì	2
	1.3.0	LĽ	262	3	1.62 2879		2
	. 131	Ľ	431	3	163 2641	Î	,2
	132		14.7.0	1.4	164 2339	Î	2
	133		29.8.	10	1,65 19,3,8	Î I	2
	134		3,6,0,	0	1.6.6 1.6.7.5	1	,2
	135		ر) ۱۰۰۰ - ۲۰۰۱ - ۲۰۰۱ - ۲۰۰۱ - ۲۰۰۱	0	1.671 1441	Ĩ	2
	1.3.6	Ľ	4.6.0.0.8	2	1.68 139.1	Ì	,2
	. 1.3:1	Ľ	99,	12	. 1.69 14,0.0	Г 	2
	1.3.8		392	12	1.70 141.0	Ĩ	,2
			000306	0	1.7.1 14,29		,2
	140	l	line a constant of the	1, 1	1.72 0	 -	0
	.141		300	3	1.73 11.1.2	ן ב	
			145		1.7.4 1.25.2	1	1
	. 1.43		00,44,6	0, 1	, 1.7.5 11.2.2.0	ا ا	1
	. 144	L	28	2	1,7,6 1,2,1,7	ן 1	1
	.145		0,2,7	0	1.7.7 1123.5	-1	1
L	146	L.	<u>0</u>	¦ _0	1.7.8 1.26.8.	 	1
			0 	0	1.79 1.3.0.9	ا ا	_1
	.1.4.8	Ľ	0 	0	1.80 1.29.9	 	
	. 1.4.9	Ļľ	300	3	1.2.1.2.1.1.27.0	_	1
	. 1.5.0	Li	2103	.	1.82 1.2.4.7.	1	
	.1.5.1	L	3,0,8,4	. 4	1.2.2.8.	_	
	1,5,2		3397	1.1.4	1.84 0	-	0
	1.5.3	Ļ	30,6,1		1.85	4	
	.1.5,4	Ļ	23.6.8	- 4	<u> </u>	4	<u></u>
	. 1.5.5	┨_┽	17.0.5	4	1.87 1.0.0	4	<u>3</u>
	1.5.6	┞┼	1.4.3.3	. <u>4</u>	1.8.8 5.0.0		<u>'3</u>
	1.5.7	ŀ∔	1.3.4.4		1,9,9 0,0,4,4,6	4	0
	1.5.8	Ļį	1,2,6,6	<u> </u>		4	0
	. 1,5,9	H	11.9.9.	4		4	0_
	1.6.0	<u></u> ⊢i					0
		H			┟╴╻╌╌┥┥┙┙┙┊┼╴┥╴┥╴┥	-	
		Li		لبنا		j	
				K	ET PUNER: SIANDAKO DATA INPULT		

15 (9 61)

7090	DATA	LOAD	SHEET	PROBLEM H-607 PAGE HOF H
DATA	INPUT	1		PHI PARED BY W.T. WEBBER DATE

MUST BE FILLED IN FOR PROPER PROCESSING

60 00 00 00 00 1 1374 76 BD RR CASE

QUAN	LOC	Ľ	VALUE	Ľ	E	QUAN	LOC	+	VALUE	ŧ	E
	1.93		0,8,1,].	٥,		1, 2,2,5		11.8.4.7.		1
	194		1.0.0.		,0		, 226		1.81,2,2		1
	.195		082		_0		, 227		1,8,6,8		1
	. 1.9.6		0.6.4]	_0		, 22.8		19331		1
	. 1.9.7		046		0		, 2,29		19,29,4		
	. 19.8		029	<u>ן</u>	0		,230		19,22,4		
	1.9.9		01.04		0		231		1,8,9,5,9		
	200		0		0		232		40,		2
	2.0.1	Ľ	020		0		. 233		0		0
	. 20.2	Ľ	0,0,0,1		,0		2,3,4	L	0		<u>0</u>
	203	Ľ	1,0,		12		235		0		<u>ہ ا</u>
	20,4	<u> </u> _	30		,2		236	L	0		_c
	205		0		¦ ,0				 		
	20.6	Ľ			¦ ,0				 	L	
	207		land and a state of a state of the state of	Ι.	1, 1		مساسسة معة مسامس	I.,	 		
	20.8		0 In marine dana di salamiti di salamiti		¦ ,0			L	۱ ۵.: استان استان استان استان استان ا		
	209	Ľ	1.3 International and a star of the star	ļ	1.1			L	l dan kasalan kasalan kasalan kasalan kasala		
	, 210		0 		0		المراجعة المراجع	Į.,	 		<u> </u>
	211	Ľ	006	ļ	0			L	−1 af andar de art a altar dan dan dan dan d		 <u> </u>
	. 212	Į	0 		¦ .0			L	 	1	ļ
	213	Į_,	0 	ł	0			L	 	4	
	21.4		0 	ļ	0			Ļ	╷ ┇╴┠╴┇╶╻┇╶╻┇╶╻┇╺╸┇╸╸┇	1	Ļ
	215		0 		0		 	Ļ		╇	Ļ.
	21.6		·····		1.1					╇	<u> </u> _
	217	Ľ	9	 	0				4-1-4-1-4-1-4-1-4-1-	╀	<u> </u>
	. 21.8	Ľ	0	 	0			┞	╵ ┨╌┫╌┫╴┇╴┇╶╻┫╴┢╺┷╍┖╴	╞	ĻĻ
	219	Ŀ		 	C		<u></u>	┢		╀	<u> </u>
	220	Ľ			0			╀	<u></u>	╉	Ļ
		Ŀ	1.9.2.4				<u>╶</u> ┹╾┹╼┸┷┷	┞	·	╀	<u>i</u>
	222	H	18.0.28	<u> </u>	<u>Ļ</u>			┞		╉	
	223		1.4.08.2					-		╉	<u>i</u>
	<u></u> 2,2,4	H	1,4,6,1,7, , , ,	-				┢	<u></u>	+	
		H	<u></u>		I 			┢	<u></u>	╉	- 1 -
			· · · · · · · · · · · · · · · · · · ·	L	Ĺ.			L	<u></u>	1	L

NOT REPRODUCIBLE

Table A-V-Continued

Sir

	TU HOFFMAN A	03833PBH047612 404612 9650600010	
	REQUEST CONTAMANY	(14640)	
	NEWIND (CONTAM)		
	CUPTHP (CONTAM, HEL)		
	ACATONICONATIN		
	RETURN(CONTAM)		
	FFLICEUUUU.		
	SETURKET LOADADELL		
	LOAD(REL)		
	SNCASE 10456345		
	STPATH TCC=T.6		
-	100001107000000001000021	368000000000031427000000000000482680000000	ñunn1
	100005029800000000000000	000000000000000000000000000000000000000	0.0 0.0 1
	100009000001000000000000000000000000000	940000000000000000000000000000000000000	00001
-	100013180000000003000142	940000000000000000000000000000000000000	00001
	16061706060000000000000000	010000000000000000000000000000000000000	00001
	400021165000000003000222	294000000032002329400000000000020002000000000	00001
-	1000250000000000000000220	101000000 0 1000027000000000000000000000	30001
	10002900000000000000000200		00001
		.000000000000025000000000000000248888888888	00001
-	1000330000000000000000000		00001
	10003/52000000000000000000000000000000000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00001
		251000000000020000000000000000000000000	00001
-	1000400281000000000480		00001
	10004900/90000000000000000	002000000000000000000000000000000000000	00001
		000000000000000000000000000000000000000	00001
_	10005700113000000000000580		00001
		\U4U4U4U4U4U4U4U4U4U6U8U8U4U4U4U4U4U4U4U4	00001
		22220000000000000000000000000000000000	00001
-			00001
		/02200000000000000000000000000000000000	00001
	1000774500000002000780	00000000000000000000000000000000000000	0001
	10008100058000000000820	000000000000000000000000000000000000000	00001
	100085000000000000000000	000000000000000000000000000000000000000	10001
	100089024000000000000000	127000000000001100000000000000000000000	10001
_	1000930000000000000000941	000000001000000000000000000000000000000	<u>0001</u>
	10009719800000000000987	759000000000000991000000000010110012300000000	00001
	100101230450000001001020	10000000000011031000000001011145000000000	0001
	100105000000000000000000000000000000000	000000000000000000000000000000000000000	10101
	100109360000000000001102	22200000005091115940000000050911211950090004	10101
	100113995000000000001146	yyyyyynynynynynynynynynynynynynynynyny	10101
_	100117210000000003001186	12010000000000000000000000000000000000	0001
	10012130000000003001228	<pre>suppopopopopopopopopopopopopopopopopopop</pre>	0001
	10012503250000000001260	000000000001270000000000012800000000	0001
	10012929400000003001302	2620000000300131434000000030013214700000004	50001
	1001332990000000001343	5600000000000135000000000000013646008000002	0001
	100137990000000002001383	192000000000001350000000000000000000000000	00001
_	1001413000000000003001421	145000000010014300446000000001442600000002	00001
	100145027000000000001460	000000000000147000000000000000000000000	00001
	10014930000000003001502	21030000040015130+400000040015233970000004	0001
	10015330610000004011542	236800000040015517r500000040015614330000004	10001
	10015713440000004001581	12660000004001591190000004001400000000000	30001
	10016146008000002201622	2879000000200163264100000020116423390000002	0001
	10015519880000002001661	1675000000201167144100000020r1681391000002	00001
	10016914000000002001701	141000000020117114290000002011720000000000	00001
	100173110000040010000141	125203000000005751200000000000005252120000003	0.0000
	10017712350000001001781	124800000010017913090000001001001-012990000001	0001
	anna in in the second		

by the same of the state of the share the

and the second second as second as a second sec

REFERENCE NUM TO, 1 CASE NO, 300

THE INFUT DATA FOR THIS CASE ARE AS FOLLOWS

CHARGER DESCRIPTION

CHAMHEH LE'STH 1.07000	INJECTOR AREA +136000	LINEAR TAPER 142700	PAPAGOLIC TAPES -,226800
THROAT AREA .029500	~	Ც	0.0.0000
•	OPPHATING COM	H 1110KS	••••
EXTERNAL FRESSURE	NALL TEMPERATURE 294.000000	- (, - (; 0 0 i+ 0 i)	0.6+600-
FUEL TALK PRESS	FUEL TANK TEMP 294.01000	INJECTOR TEMP	<u>A</u>

0 294,00000 294,000000 0,00000 Fuel valve open dt - Fuel valve close dt 0 ,001000 0,000000 ,001000

--------OXID TAPK PRESS UX1. TANK TEMP INJECTOR TEMP 165,000000 294,000000 294,00000

0,01000-UXID VALVE CLOSE DT 0.940101

001000

OXIL VALVE UPEN OF .001000

FIRST BURD VALVE TIMING

FUEL VALVE OPEN	CXID VALVE OPEN FLEL	VALVE CLOSE	OXIT VALVE HLOSE
Regoouod	0:000000	2010-00	Digoon
	IGNITION DESCHIP	TION	

ASSIGNED DELAY	IGNITER PORT LOC.	FUEL FLOW RATE	OXID FLOW HATE
	D.CODUUD	U.ucouun	0,00000
ACTIVATIO: PRESGY	FнЕG, FACT, X с	PERFECT MIXING	O AXIAL MIXIUS
5201.00000	3,40000004+14	0.000000	0,00000

NOT REPRODUCIBLE

FUEL FEED SYSTEM

LINE LEFGTH 407.000000	LINE AMEA .028100	RESTRICTOR AREA .004540	VENTUPI AREA ,026100
MALVE AREA .024100	1ºJECTION AFEA ,000196	0 •000900	0,000001.
HOLE 71406 TER ,007400	40LF LFNGTA ,042500	AXIAL LOCATION 0.00000	RAFIAL LOCATION ,045000
INJECTICE ANGLE +45,000000	€,00000	0.CUC000	0,00000
INIT, VOID VOLUME .901130	0,00000	TRANSITION VOLUME 0,000000	DRISHLE VOLUMP ,061130
CHECK MALVES S.POCODO	0,00000	0.000000	0,000666
	CX151788 FE	FRU SYSTEM	
LINE LEFATH 480,normon	LINE ARFA ,028100	RESTRICTOR AREA .006360	VENTURI AREA ,020100
VALVE ∧SEA ,º2`100	11JHCT10N AHEA 1000272	0,000000	0,00000
HOLE DIAMFTER 109300	₩012 LANGIM 1052500	AXIAL LOCATION AXIAL LOCATION	RADIAL LOCATION -,045000
1NJECTION ANGLE 45,000000	6.6.0000	0,000000	0,000000
INIT, VO17 NOLH4E .000380	n, Di 0000	TRADSITION VOLUME 0.000000	DRIGRLE VOLUMA , 060580
CHECK VALVES D.DOBROD	0,00000	0,000000	6, 000000
	ATOMIZATION	PAHAMETERS	

FUEL FA: LE GTH	GXID FALLENGTH	SHOWERHEAD L/D	
, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(*610/00)	10,000/00	0,00000

NOT REPRODUCIBLE

J.

0,000000	FLASH CONE ANGLE 30,000000	ND INIT, DRIBBLE 1.CHOUOD	HOLD AT THIRLE PT
DRGP SIZE 4	DROP SIZE 3	0RCP \$1ZE 2	DROF SIZE 1
1,230000	1.000000	759000	198000
FRACTION STICKING	DROP RESTITUTION	NO MALL BREAKUP	DROF SIZE 5
	1,000000	D.CCOCOC	2,304500
NO WALL HURNOFF	NO WALL FLOW	NG OXID FLASH	NO FUEL FLASH
0.00000	0,000000	U,000000	0,000000

FUEL PROPERTIES

COILING POINT	FREEZING POINT	CRITICAL TEMP,	CRITICAL PRESS,
360,000000	222,00000	594,000000	1195,000000
VAPCR CP,	LIQUIN CP.	0.000000	POL: WF1GHT
,995000	169000		46,074000
LATENT HEAT VAP,	LATENT HEAT FUS,	L10, THERM, COND,	4000M. COEFF.
210,00000	67,500000	1000545	1,00000
REFERENCE THUP,	NE SITY	VISCOSITY	SURFACE TENSION
300,000000	• 80000	,010400	47,000000
BURNING HATE K	"690, INTERCEPT	1000, COEFFICIENT	MANO, EXPONENT
	0,010000	0,000000	0,000000
	GXIDIZER PR	TOPERTIES	
FOILI: 6 POINT	FREFZING POINT	CRITICAL TE#P+	CRITICAL PPESS.
294,00000	262±00000	431+000000	1470,00000
VAPOR CP.	LIGOIN CP.	0,000000	MOL: WEIGHT
298000	.360000		46.006000
LATENT HEAT VAF.	LATENT REAT FUS.	LIC, THERM, CGND,	ACCON, CREFF,
99.00000	39,200000	+000306	1,000000
REFERENCE THOP,	DE*SITY	VISCOSITY	SURFACE TENSION
300, roouou	1,450000	.004460	28,00000
BURNING HATE K	MONO, 1MTERCEPT	HOND, COEFFICIENT	MONO, EXPONENT
.627000	0,000000	0,00000	0.000000

NOT REPRODUCIBLE

.

CONDUSTION GAS PROPERTIES

TEMP, 4	TEMP, 3	TEDP, 2	TEMP, 1
3397,000000	3094.000000	2103,000000	300.000000
TEMP, 8	TEMP, 7	TEMP+ 6	TEMP, 5
1433,000000	1705,000000	2368,000000	3061,000000
0,000000	TEMP, 11	TEMP, 10	TENP, 9
	1190,000000	1266,00000	1344,000000
40L, 1, 4	MOL. WT. 3	MOL, MT, 2	MOL, WT, 1
23,39000a	26,410000	28,790000	46,008000
MOL, NT, 8	MOL: WT: 7	MOL: ST. 5	40L, WT, 5
13,910000	14.410000	16:750000	19,860000
0,000001	MOL, WT, 11	MOL, WT, 10	MOL. UT. 9
	14,290000	14,100000	14.000000
GAMMA 4	GAMMA 3	GANMA 2	CAMMA 1
1,217000	1.220000	1,252000	1,120000
GАММА н	GAMMA 7	GANMA 5	GAMMA 5
1,299000	1+309000	1,268000	1.235000
0,00000	GAMMA 11	GAM*A 10	GAMMA 9
	1,228000	1,247000	1,270000
	PROPERTIES	CONTAMINANT	
DECOMP, TEMP,	LATENT HEAT	VAPOR CP,	DENSITY
500,000000	100,000000	1,000000	1,000000
VISCOSITY 4	VISCOSITY 3	VISCOSITY 2	VISCOSITY 1
,062000	.056000	.050000	.044000
VISCOSITY 0	VISCOSITY 7	VISCOSITY 6	VISCOSITY 5
086000	+080000	+074000	,r68000
0.00000	VISCOSITY 11	VISCOSITY 10	VISCOSITY 9
	,104000	,098000	.092000

J

14.11

- 1

GENERAL INSTRUCTIONS

STOP TIME	TIME INTERVAL	PRINT ONE OUT OF	PLAT ONE OLT OF
.C20000	1000100	10,000000	30,000000
DELETE DRAPHICS	DELETE DRCP HEANS	DELETE SUMMARIES	DATA REVIEW DOLLY
C.CODDCD	0:000000	1,000000	0.00000
FUEL TRAJ. GROUP	OXIC THAJ, HROUP	TRAJ, START TIME	STEADY-STATE TIME
3,000000	0.00000	,006000	0.000000
	FLOW WATE D	VEPRIJES	
FUEL FLOR HATE	FUEL PRESS, DROP	DISCHARGE COEFF.	NO INJ, FRICTION
F.000000	D.GROGOC	0.000000	1,00000
OXID FLOW WATE	0X10 PRESS, DROP	UISCHARGE CUEFF,	0,00000
0.000000	0,00000	U,UGODOU	
	THRUST COLFF	ICIENT TABLE	
CF VAC 1	CF VAC 2	CF VAC 3	CF VAC 4
1,924000	1,8%2500	1,908200	1,941700
GF V4C 5	GF VAC 6	CF VAC 7	CF VAC %
1,647000	1.812200	1,868000	1,933100
CF VAR 9	CF VAC 10	CF VAC 11	EXP, AREA PATIO
1,929400	1,922400	1,895900	40,000000

NOT REPRODUCIBLE

a demonstration

.

SECOND PULSE TIMING

FUEL	VALVE OPEN	OXID VALVE OPEN	FUEL VALVE CLOSE	OXID VALVE CLOSE
	.020000	020006	.030000	+030000
		THIRD PUL	SE TIMING	
FUEL	VALVE OPEN	OXID VALVE OPEN	FUEL VALVE CLOSE	OXID VALVE CLOSE
	C.OCODOG	0.000006	0.000000	0,000000
		FOURTH PUL	SE TIMING	
FUEL	VALVE OPEN	OXID VALVE OPEN	FUEL VALVE CLOSE	OXID VALVE CLOSE
	U,000000	0:0000000	0,000000	0,000000
		FIFTH PUL	SE TIMING	
FUEL	VALVE OPEN	OXID VALVE OPEN	FUEL VALVE CLOSE	OKID VALVE CLOSE
	0,000000	0.UCOUDO	D.000000	0,000000

SIXTH PULSE TIMING

FUEL VALVE OPEN OXID VALVE OPEN FUEL VALVE CLOSE OXID VALVE CLOSE 0.007000 0.000000 0.000000 0.000000

SEVENTH PULSE TIMING

FUEL VALVE OPEN OXID VALVE OPEN FUEL VALVE CLOSE OXID VALVE CLOSE C.ngonou 0.000000 0.000000 0.000000

5. P

in a massiant

FIGHTH PULSE TIMING

FUEL VALVE OPEN UXID VALVE OPEN FUEL VALVE GLOSE OXID VALVE CLOSE 7,500000 0,000000 0,000000 0,000000

NINTH PULSE TIMING

FUEL VALVE OPEN ONID VALVE OPEN FUEL VALVE CLOSE OXID VALVE CLOSE 7.000000 0.0000000 0.000000 0.000000

INPUT UNITS ARE INCHES, PSIA, SECOND'S AND DEGREES KELVIN, PROPELLANT PROPERTIES ARE IN GRAMS/CC, POISE, DYNE/CM,

NOT REPRODUCIBLE

and the stand of the stand of the stand

Деніче, гоєс РасреттірS

		•						
	REDUCES TE P.	TEMPERATURE	LIG, EFTHALPY	VAF. ENTHALPY	VAPOH PRESSURE LI	3. DENSITY	VISCOSITY	SURFACE TENSION
	יטיטינ"	17c,20000	0ur£5,52T	345,049785	.347013	.994673	.206413	76,718089
	-0-0-**	237 , 619PhJ	231,444,00	-02211°447	.321743	1426791	.139109	£0,855285
	1800 .5 ,	297,030900	272,43020	463,215000	1.126119	.582545	.01101	47 _* 6n6346
	-0-0-0-9 °	356.4°C7r0	313,416000	522 . 31ā0n	13 447653	, 825543	, C 0 3 9 n 9	76,641594
	,7°050'	QnGy''4,212	354,492070	5,1,421000	69,252n66	179677,	°402442	27,649749
	-01018 [•]	475,270000	395,582900	640 . 524385	232,315246	,715044	.01577	20.487937
	-O-U-G.	534 . 5:00	436,374ar0	699 , 627.nnr	581 , 595073	, 524 085	. 01028	19,011953
	000000°T	594, caser 0	477,369586	753,730°Gr	1195,03001	,292811	, roo39n	, 00000
	DERIVE: TALLE	98.2 PE-TI ES						
	atoucer term.	ゴヒト タセイムていぶら	נוז. בעדאבנףץ	VAD, E'T-ALPY	VAPA+ PRESSURE L1	1. LENSITY	411200SIV	SURFACE TENSION
	.3 Grat	6375, 8 , 431	よた。ちょうりょう	154,95940-	-00-55-	1,465399	.365550	76,696121
	• • • • • •	172.400000	62,164300	207.813260	. 1U-673	1,767515	.21334	60.847856
	,5-0rC,	3952,5°412	77,52000	226.647091	, r3-852	1,655631	-20094	47 , 592715
	" Q. Q.b.	0	93.596UnG	233,496900	1.724363	1,550747	. c07130	36,631162
	2000-1 7 ,	30 1.7 nan	147,012000	246,334603	21.667587	1,445303	, çn4381	27 ,6 4182n
,	-0-0.8°	364,37,1766	155,523-100	259 .1 784n	132,r3±7a7	1,345979	, C02877	20.442070
0/10	د C د ن . ۵ *	387,97,775	174,44400	272 , "2236	517,146113	1.176403	, r01945	10,019-84
i R ^r	1.000	451,077060	194,390003	2u4,6A6De	147, 639863	,549151	,ç00712	00000
PR								
00								
, <i>UC</i>								
IBI								
,t								

15

THÉ GALEVLATED RUM PARAVETERS ARE PRINTED FOR EACH INTERVAL OF TIME ÉOLLO-ING START

CF VAC 7.	DXIO INJ TEMP 5+	DXID HALL EVAP 3.	סאוס מא אמר רי	тма UST – L BF С.	r TGTAL I∺PULSE 2.	44LL RETAINED 0.00000000 0.00000000 0.00000000		CF VAC 1.91829	DXIO 14J TEMP 294.000	DXIC -ALL EVAP 0.	10 0 47L 00 47L
GAMMA 1,16944	FUEL INJ TEMP P.	FUEL WALL FVAP 9.	FUEL ON WALL	GAS FRACTION 1.00006	K INTEGRAL PC-01 n.	LR2PS RETAINEO 0.00000000 0.00000000 0.00000000	1AL MOMENTUM 5. 0. 0.	Бачна 1,15944	FUEL INJ TEMP 294.000	FUEL 44LL EVAP 9.	FUEL ON WALL A.
46,00.0 46,00.0	ATID VCIC VOL Strage∩£-94	2XIV ⊨≜LL dUR: 0+	OKIU STRËAFS 0±	ΩΧΙŬ FIL~ FATE 0±	YASŞ OUT QF TA: 0±	GAS RETAINED 0.00000000 10000000 10000000	50 61 61 61 61 61 61 61	₩0L 4T. 46,0050	DXIV VGIC VOL 5 <u>1</u> 793580E-04	טאזמ א⊿רר הּטאא ט≞	NXIV STREAKS Ul
C-144868 164P x 300,000	FLEL VOIO VOL 1,13000PE-53	ני הנר אזרך פהעני	FUEL STREAMS	FUEL FILM RATE	HETA ANGLE 5.	XALL EXPELLEU 0,0000000 0,0000000 0,0000000 0,0000000	5 6 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	CHAMPER TE4P 4 303,000	FUFL VOID VOL 1,128735F-03	FUEL AALL AUR' f	FUEL STREAMS
FUEL FRACTION	OXID FLOR PATE	UAID FLASH RATE "	UXIN DPOPLETS ".	JXID 043P RATE 34	OXID IVJ, VEL. P.	046PS ExPELLED 0,000000 0,000000 0,0000000		FUEL FRACTION R.	OXIO FLOW PATE 3,397193E-04	DXID FLASH RATF "1	oxid Groplets
16,1710\ ?.	FUEL FLOA PATE 64	FUEL FLASH MATE 1	Fuel DAOPLETS	FUEL 040P MATE	Fuel InJ. VEL.	GAS EXPELLEU C, JGJGGGDD D, DDJGGDDC D, DDJGCQQG		IGNITIC2 C.	FUSL FLOW RATE 4,346573E-04	FUEL FLASH RATE	FUEL DROPLETS C.
C-4M4EP PRESS 5,1030005-50	OXID INJ RATE 0,	.40~ dbd2 di⊀0 10	0×10 545 MisS Å _{\$} 111645 ⁶ -14	UT GAS EFFLUX	н÷1~ дово отко Р.	18-16-149 4455 6.400000-1 0.00000-1 0.000000-0	PS IVJECTED S' EJECTED S' PS EJECTED S EJECTED S S'EJECTED S	СмдччЕа РАЕSS 5,000006-08	C×IO I≻J R≜TÉ 01	0×10 הספר בעאמ 1×0	CX10 GAS MASS 3,111645E-14
TIME "ILLISEC 0.	FUEL 1ºJ HATE 0.	FUEL CACP EURA. 0.	FUEL CAS ~2SS 0.	FUEL GAS EFFLUX P.	FUEL CROP LIAM 0.	FUEL 64445 DX1U 64445 1074L 6445	FUEL DRO FUEL DRO FUEL DRO TXIT DRO TXIT DFO	TIME VILLISEC 1, OCDAGOREUL	FUEL INJ -ATE 0.	FUEL TROP # URN 3.	FUEL FAS ⊹ASS U.

THRUST - LBF 2,358245E+09

FUEL FILM AATE DXID FIL⁴ PATE GAS FRACTION D, 1,00000

FUEL GAS FFFLUX OXID GAS EFFLUX FUEL UROP RATE OXID 040P RATE 0. ". ".

MASS OUT DE TANK INTEGRAL PC=OT TOTAL IMPULSE 7,443763E=68 5,000000E=12 2,858245E=13

BETA ANGLE P.

oxid I∿J, VEL. P.

FLEL TROP MIAM DAIC DROP BIAM FUEL IVU, VEL. 0, 0,

CF VAC 1,9182⁵

бдчмд 1,16944

CHAMPER TEMP K MOL MT. 300,000 \$5.0030

FUEL FAACTION P.

TIME VILLISEC CHAMSER PRESS IGMITION 22.0407 5,40000000-08 5.

11111

CF VAC 1.91829	DXID INJ TEMP 294,000	DXIO WALL EVAP 0,	0×10 0% 44LL 0.	THRUST = LBF 2,8582456+09	. 101≜L 14PULSE 1,1432986=11	WALL RETAINED 0.00000000 0.00000000 0.00000000		CF VAC 1,91829	0XID 114 TEMP 294,000	JXIO HALL EVAP J.	9×10 0% #ALL 2.	тир <mark>ист = L</mark> 3F 2,8582456-09	1014L [~PULSE 1.171880E-11
бачма 1,16944	FUEL INJ TEMS 294,000	FUEL WALL EVAP 0.	FUEL ON WALL	GAS FRACTION 1.00000	K 1.TEGRAL PC+DT 2.00000000=10	DRGPS RETAINED 0.00000000 0.00000000 0.0000000000000	14L HOMENTUL 0. 0. 0.	GAMMA 1,16944	FUEL 1'.J T€40 294,000	FUEL WALL EVAP	FUEL ON WALL D.	6AS FRACTICY 1.0000	K [\TEGRAL #C+DT 2,9503000-10
HOL -T.	0x1v vo10 v0L 5 <u>1</u> 375549E=05	OXIV ₩≜LL PURN 0±	GXIU STREA⊬S 0±	CXIU FILY FATE U⊥	MAS2 0UT DF TA 6_099079E+05	GAS RETAINED 0.60000000 0.00000000 0.00000000 0.00000000	10 10 10 10 10 10	₩₽∟ ₩1. \$5.3350	0x10 v010 v0L 2 <u>1</u> 745556E-05	CXIU 44LL 504N 31	ΩXIU STREA⊬S D±	CXIU FIL4 RATE 62	HASS OUT OF TA. 6:4037758=05
CH≜4968 TE 40 < 370,000	FUEL VOIO VOL 9,4069472-05	FUFL WALL BUPN P.	FUEL STREAKS C.	FUEL FILM AATE 3.	BETA ANGLE n.	4ALL EXPELLED 9.0000000 9.00000000 9.00000000	04	Снамяея Теч? « 300,000	FUEL VOIO VOL 4,2333365-75	FUEL - ALL - JRV 	FUEL STREAMS 7.	רטקן דוןא סגדם י	∃ET≜ ANGLE °.
FUEL FRACTION 0.	0x10 FLOX RATE 1,357716E-02	JXID FLASH RATE 3.	OXID OPOPLETS 0.+	0XIO D438 RATE 7.	arin "'' vet.	DROPS = XPELLEO 0,00000000 0,0000000 0,00000000		FUEL FRACTION 	0X10 FLJ4 RATE 1,591591E-02	ОХІӨ FLASH RATE ⁰ .	יי מ+ט ס+טרבע גט	0XID 020P AATE "+	OXID I'J, VEL. C,
154.171 UN 5	FUEL FLOW RATE 1:6151676+02	FUEL FLASH HATE 3+	FUEL UROPLETS	FUEL 090P RATE 34	FUSL 133, VEL. 2.	GAS EXPELLED C.00022000 C.00010000 0.00010000		16111. 1	FUEL FLG~ 4ATE 1,655354E-U2	FUPL FLASH RATE 2+	FVEL DROPLETS	FUEL DAOP 4ATE "+	Fut I'J, VEL.
CIAMSER PRESS 5,00000E-08	OXIO INJ RATE 0.	0x10 0¤0P ±UHN €,	0×10 5≜S MASS 3,111645E-14	OXID GAS EFFLUX D.	UXID 030P SI≜M C.	18JECTEG MASS U.00096009 C.0006009 C.0000000 C.00000000	S 1 NJECTEC 25 EJECTEC 1 NJECTEC 25 EJECTEC 25 EJECTEC 25 EJECTEC	Снденея Р46SS 5,000006-04	DXIE IPJ FATE 9.	∿eU- d0a5 d1x0	0X10 5AS 4155 3.1116455-14	DXII GAS EFFLUX C.	CXID TPGP DIAN C
TIME MILLISEC 4,folog	FUEL INU GATE 0.	FUEL JRAP PURN 0,	FUEL TAS MASS Ut	FUEL FAS FFFLUX 0,	FUEL TARP 21AM 0.	FUEL GVAMS OXID GMAMS TOTAL GMAMS	FUFL 050 FUFL 050 7x15 040 040	1145 - 1141560 4,10-01	FUEL INJ PATE 0,	אשט∸ מראר LEL. מ	FUEL GAS MASS 9,	FUEL 'AS EFFLUX 3,	FUEL "POP DIA" 0.

265

FUEL MALL EVAP -OXID MALL EVAF 1. 01 0XI3 IVJ TEMP 294,000 THOUST - LEF 0×19 0% #ALL 0. CF V≜C 2,09238 FUEL [4J TEMP 294,000 FUEL CAS FFELVX GXID GAS FFELUX FUEL VAFP GATE OXIT DODO BATE FUEL FILM RATE DAID FILM RATE GAS FRAGTION FU≘L 0+ ≓≜LL 0, 6444 1,04529 אבורי הוזאט מיידי הוזעט 0XID V015 V04 5±1540546-07 OxIU STAEAHS D: ₩0**L -**T. 45.0740 FUEL FAACTION CHAMBER TEND A FUEL <u>FLASM</u> MATE UNID <u>FLASM</u> RATE FUEL MALL GURN 2.6221335-03 0. FUEL VOID VUL FUPL STRE⊾us 7, UXID FLN= AATE 1,4254585=02 FUFL UFORLEIS 0XID 3-0PLEIS 7,8419145-34 r. FUSL FLOW RATE 1.695547E=02 16-1710N FUEL REPEAURY OXIO FERE -URG 0. 1. 0x10 3A5 4455 3,111+45-444 TIME VILITSEC CMAMMER PRESS 4,20000 +214537 דטבן ייט באדב טאומוןיט אמד 3.4103645-03 *וינו*יי FUEL GAC "ASS 2,5721738-07

4459 OUT OF TAIN INTEGRAL PC+OT TOTAL IMPULSE 427158765-05 2,1453385-05 1,3376775-06 1,337665E-02 OXIO WALL EVAP THRUST - LBF 5,286336E+02 T0TAL IMPULSE 5,624013E-06 THRUST - LEF 9,098755E-02 TOTAL 14PULSE 1,572277E-05 MASS OUT OF TALK LYTEGRAL PC+DT TOTAL IMPULSE 7_6527506-05 4.7704226-04 2.8233266-05 OXID WALL EVAP DXID WALL EVAP 0XID INJ TEHP 294,000 0XID INJ TEMP 294,000 0XID INJ TEMP 294.000 OXID DN MALL OXID DN WALL DXID DN WALL тивUST - LBF 125105 CF VAC 2,01334 CF VAC 1,98301 CF VAC 1,96629 • • • MAS2 OUT OF TATK INTEGRAL PC+DT 7:0285046-35 1.095628E-04 MASS DUT OF TANK INTEGRAL PC=DT 7_3408548-35 2.6353518-94 OXIU WALL BURN FUEL WALL EVAP U______0, FUEL WALL EVAP FUEL 0'4 MALL 8,3397175-07 FUEL DV WALL 1.653671E-96 FUEL INJ TEMP 294,000 FUEL INJ TEMP 294,000 FUEL INJ TEMP 294.000 0XIU FIL4 AATE GAS FRACTION U± 1.00000 FUEL 02 KALL 24 GAS FRACTION 1.0000 OXIU FILM RATE GAS FRACTION 0_ БАММА 1,11784 Бажна 1,13045 1,00000 БАМНА 1.09610 OXIV WALL BURN Ot 0x10 F1L4 PATE 01 104 JICA DIXO JON CICA DIXO OXIN VOID VOL OXIU STREAMS OXIU STREAMS OXIU STREAMS 46L 4**T.** 46,0145 MOL -T. 45.0254 НОL ⊣T. 45.6152 -S • -• • CHANRER TEME A 191.962 FUEL FLASH RATE OXID FLASH RATE FUFL 4ALL 4094 2. 5.103305E-03 5. CHAMBER TEMP 4 OXIO DAOP #URN FUEL FLASH HATE OXID FLASH RATE FUEL HALL HURN C. 5,799893E=63 7, <u>Снанвея тенр</u> к 225,523 OXID DAOP RATE FUELFILM AATE D. 2. FUEL FLASM RATE OXID FLASM RATE FUEL MALL AURIX C. 5,609956E-03 C. OXID DADP PATE FUEL FILM PATE 3. Table A-V-Continued FUEL VOID VOL ?. FUEL FLOW RATE DXIO FLOW RATE FUEL VOID VOL 1,6423725-02 1,4871276-62 0, FUFL VOIE VOL FUFL STREA"S FUCL STREAVS FUEL STREAMS 7. FUEL PARP DIAM OXIN DROP DIAM FUEL INJ, VEL, UXIN INJ, VEL, HETA ANGLE 394,443 34,43860 216,240 85,7021 -25,5110 FUEL DROP DIAM DXID DROP DIAM FUEL INJ. VEL. OXIJ INJ. VEL, 867A ANGLE 392.44A 34.4386 215.087 86.9710 -24.4760 DXID INJ, VEL. BETA ANGLE 9, -45,0000 FUEL "AMP DIAM DYID DROP")IAM FUEL IVJ. VEL. DXID IVJ. VEL. AETA ANGLE 394,844 34,4386 221,638 42,9194 -27,1923 • • г. c.= FUFL FLOW RATE OXID FLOW RATE 1.6579435-02 1.4593405-02 0XIO FLOW MATE 1.5003146-62 0×10 DR0PLETS 2,553293F-96 FUEL FRAGTIO* •278729 FUEL FRACTION 159949 FUEL FRACTION .109200 0XID DFOPLETS 1,713875E-06 0XID DF0PLFTS 4.137377E-07 ċ FUEL FLOW RATE 1,615641E+02 7450 EIAM 0XID DACP JIAM FUEL :VJ. VEL. 5.4367 0. 45.3173 FUEL GAS EFFLUX OXID GAS FFFLUX FUEL DROP RATE 2,3266945-04 2,7612355-11 C. FUEL 3AS EFFLUX OXID GAS EFFLUX FUEL DROP RATE 2,4185975-04 6,2546395-04 0. TUEL GAS FFFLUX OXID GAS EFFLUX FUEL DROP RATE 2,3207266-04 1,218940E-03 0, FLEL DROPLETS 3,352618E-06 FUEL DROPLETS 1,746763E=36 FUEL DROPLETS 2.555162E=06 1GAITION 16717104 C. 1641710N 0. **ٿ** CLE PROP SURV OXID DROP WHA 0×10 185 8416 1.4329686-92 OXID FAS MASS 5,1833066-07 0XID IVJ R4TÊ 1,4561275-02 1,1357336-06 OXIO UROP BURN 0XID GAS MASS 1.5747456-06 0XIN INU RATE 1,5003145-02 CHAMPER PRESS CHAMBER PRESS 2,13507 CHANNER PRESS OXID GAS MASS 4.60 MILLISECTNDS . 5 FUEL 6AS ×ASS 1,930415E-07 FUEL GAS MASS 2,359485E=07 FUEL TROP BURN 0. FUEL 14J 4ATE 1,057943E-02 FUEL 14J 94TE 1.642377E+02 2,1±248AE-07 FUEL INJ RATE 1.618641E=02 VEL DROP BURN TIME VILLISEC 4,30009 THE MILLISEC 4.40000 TIME MILLISEC 4.50000 FUEL CAS "ASS FUEL 784 •

いの語言

IGNITE AT

p.

	16 X P	EVAP 5e-04	ALL 56-07	LBF 2	PULSE 86-04	0	TENP	EVAP	4LL 5E-07	2	9ULSE 4E=04		TEMP	EVAP	16-07	.8F	01LSE 03
CF VAC 1.8818	DXI0 INJ 294.00	DXID 44LL 1,38116	0X10 0N W 1.62747	THRUST - 2,6352	TOTAL IM 2,91754	CF VAC 1,9241	UNI 01X0	0×10 44LL	0X10 0N W	THRUST - 4.7285	TOTAL IM 7,64605	CF VAC 1.9461	0XID INJ 294.001	יי סאוס אאור	22410 74 4	THRUST - 1 5,82539	TC 14L 141
бднма	FUEL INJ TEMP	FUEL WALL EVAP	FUEL DV WALL	GAS FRACTION	K IJTEGRAL PC+D*	бамма	FUEL INU TEMP	FUEL MALL FVAP	FUEL 02 4ALL	GAS FRACTION	K INTEGRAL PC=0T	644M4	FUEL INJ TEMP	FUEL WALL RVAP	FUEL D∷ 44LL	GAS FRACTION	K [4TEGRAL PC+DT
1,22800	294,000	C.	2,8799785-06	1.00000	5,176124E-03	1,21910	294,000	0,	3,2645585-06	1.00000	1,342248f=02	1,21787	294,000	0.	3,575658ç⇒ņé	,950618	2,3459675-02
HOL .T.	₹9	OXIU ∺ALL FURN	OXIU STREA⊬S	OXIU FIL° PATE	HASS OUT OF TA.	MOL ≁T.	ד0	nx10 ⊬∆LL 40RN	ņxļ⊌ STRēA⊬S	CXIU FILM RATE	HASS OUT DF TA.	нбL лТ,	÷0	ŋx10 ≓all 5026	OXIU STHEARS	0×נט דוןי געדם	MAS9 001 0F TAV
27,0945	חסא מוסא מו×0	6_	D±	G±	7 <u>1</u> 9644R1E-05	∠5,5∪73	סאוק אסוש אסר	3 <u>-</u> 3275a4E-35	0±	D_	8 <u>1</u> 273936E-05	24,2663	Dan cica aixo	1±3326646−04	U <u>t</u>	ליב	8:5799495-95
CHAMBER TE4P K	:	ר אויר אער איא.	FU=L STREA4S	FUFL FILM AATS	₽₽ТА &MGLE	Сміжнаєк течр x	FUEL VOID VOL	FUEL 44LL 2072	FU _t l Streaks	FUSL FILM RATE	₩ÊT≜ &∿GLE	снамдея Течр к		Fuel 44L 40RV	FUSL STREA'S	FUEL FILM PATE	⊐ET≜ AVGL5
2818,90	Fuel voto vel	י	".	"4	-23,4512	3177,56		2,8429315-05			-22,4468	Ззаб,18	₽vēl void vol	0,335505c-05	6.	".	-21,4601
FUEL FRACTION	0X10 FLOW RATE	OXID FLASH RATG	0x10 080PLETS	UxID'D90P AATF	Ω×ΙΟ Ι'J, VEL.	FJFL FRAGTION	0×10 FLU≻ RATE	CAID FLASH RATE	UXIN D969LETS	ахти №0Р ААТЕ	OxID I°J, VEL,	FUGL FPARTIOY	0×10 FL7+ RATE	CXID FLASH RATE	UXID DEOPLETS	ŬХПР Д¤д¤ ⊐4ТЕ	האות ויט. עבר.
175015	1.5199215-92	7.	3,9274465-36	↑.	94,062	,229893	2,5293845+02	7.	5,7574375-55	°.	B¢,5363	,275954	1,5341296-92		3,7694138-96	Р.	אא, העד3
1 <u>6%1710%</u>	FL-#LO* RATE 1,594595E-02	FUEL FLASH RATE	FUFL 1140PLETS 3,5/7069F-36	FUFL 1140P 24TE	FUEL I.J. VEL. 212,157	1671710% 1. F2000	FUSL FLOW HATE 1,565261E-02	FUEL FLASH RATE	FUil D20PLETS <.2945696-06	FUEL U≓OP RATE '.	Fuft 1:3, vEL. 2nd,126	16+1719* 1.J0200	FUSL FLO# RATE 1+5503086=32	FLEL FLASH MATE.	FU-L 7-0PLE15 4,542599F-Ab	Fuit DRGP RATE 9.5035355-04	FU-L 1.J. VEL. 293,349
CHANNER PRESS	(x11) 11) 4275 1.5193215-02	UXTO 1140P (16N 4,257172=14	CXID 6.45 M455 1.444429-96	UXII 545 EFFLUX 1.7474865-03	92,4087 72,4062 72,4062	CMANGER PRUSS 22.4536	0x10 14J KATE 2,5297645-02	0x10	0×10 5×5 ××55 2.*****55	0X1P GAS EFFLUX 7.9239835-63	0×10 240F 1AH 72,4341	Смдчкен рир г 5 104 ,374	0x1P 1vJ 21TE 1.53P129P-U2	1,2447759-02	2x1P 4x5 M255 2,177424-86	0x10 665 EFFLUX 1,1-0355-62	111 72488 7248848
TIME TILLISEC	FUEL INU 44TE	Fuel 2000 1920	FUEL 045 : 255	FUFL CAC SFFLUX	FUEL "HAP "IAM	TIME + 11.L15EC	FUEL 14J 12TE	FUEL 190P :UHV	FUEL CAS 1255	FUEL MAS FFFLUX	FUEL 1440 0148	TI4€ ~1LL•5EC	FUEL 18J 5116	FUEL TAPP 40%2	FUEL 445 2455	FUEL %A5 #FFLUX	FUEL " 424 (144
d.Frnur	1,5945955-02	1,4533736-03	3,174555-07	2.1421745-04	117,244	4,7976∹	1,546761E-02	4,6°33756-03	5.175/57:-97	1.6-1-176-03	111-279	4,,000	1,5303046-02	5,3726955-63	4.111945-07	3,55nd145-03	

NOT REPRODUCIBLE

СF VAC 1,92758

GAЧНА 1,22549

FUCL FRACTION CHAMBER TEMP = MOL =T. .347193 3238.47 21.7339

TIME "ILLISEC CMARGED PRESS 15"ITIO" 4,27702 05,3512 1,00000

HAS' OUT OF TACK INTEGRAL PC+OT TOTAL IMPULSE 244052556-04 677448 3,5030066-02 V455 0UT DF T4°K INTEGRAL PC+DT TOTAL IMPULSE 2±4002555=64 .679719 3,304515€=02 2XID 0% -ALL 2,3410346-06 0×13 →▲LL EVAP 4,9842436-04 0XI3 IVJ TEHP 294,000 THRUST - LSF 131005 тыйUST - LBF ,165268 CF VAC 1,85648 FUEL HALL EVAP FUEL 0'4 #ALL 6,0316125-06 FUEL 14J TE4P 294,000 ΩXIU FIL~ FATE GAS FRACTION 24852706-06 .600694 GAS FRACTION .698336 1,23267 GAHHA J ^×IU FIL~ #ATE 2±9237995+96 nxIJ ≓≜LL 909N 6±2246126−35 1,4610^2E-66 0x1b V010 V0L 4±3957216-35 OXIU STREALS 40L ∴T. 27,3521 FUEL SAC EFFLUX VXID GAS EFFLUX FUEL D40P RATE OX10 050P RATE FUEL FILM PATE 1.356557F=04 4.469664E-U4 1.255864E-03 1.707491E+93 3.559164E-UA FUEL FRACTION <u>CHAVRER TEM</u>P 4 .160417 <u>2695.69</u> FUEL FLASH HATE DXID FLASH RATE FUEL AALL HUND , 8626595-15 FUEL FAS EFFLUX DAID 545 EFFLUX FUEL DAOP HATE DAID DACP RATE FUEL FILM RATE 1,1:7412Fera a,0145095-04 9,417930E-04 1,281369E-03 3,02092092006 FUEL FLOW RATE CXID FLOM RATE FUEL VOID VOL FUEL STREAMS FUEL DRAP DIAM DAID DPDP DIAM FUEL 1.J. VEL. 0XIO 1791, VEL. 9574 ANGLE 0. 31.7573 45,285 (. FUEL PPOP PIAN DAID TROP MAN FUEL 144, VEL, DAID 144, VEL, RETA ANGLE 0, 33,5492 45,289 5, 2 CXID 0=DPLETS 6,5376765-97 FUEL DROFLETS 16-1110N 1,09000 CHARGER PRESS CXID 11 42 4216 5,7725996-43 CXID NaCo - NHN 0×10 GAS MASS 9,3852106-08 EXTINGUISH AT 12,50 "ILLISECONDS 2 FUEL 445 -455 1,7037145+08 FUEL PROP BUR. TIME "ILLISEC 12,400n FUEL INJ 41TE .

0×10 0% 44LL 2,285759E+06
 MASP OUT OF TA'K INTEGRAL PC+OT TOTAL IMPULSE

 224002556-04
 6779899
 3,8055696-02
 0x1D %ALL EVAP 5,300539E=04 THRUST - LBF 105298 0×IJ I∿J TEHP 29€,300 CF VAC 1,95598 FUEL MALL EVAP ". FUEL 0% WALL 6.0234535406 FUEL INJ TEMP 294.000 GAS FRACTION ,772023 1,13069 GA 1PA 0XIU FIL4 RATE 1±5623576-36 0×1∪ STREA⊬S 1±269980€=66 0x10 VO1⊂ VOL 5±51€455E+05 9XIU 44LL PURN 522501206-35 ⊬OL ∺T. 46,9151 CHANRER TENP K 2184,67 FUSL FLASH RATE OXID FLASH RATE FUSL AALL SJRV Us 7,9154195-05 Us FUEL FILM 4ATE 2,4327525-06 FUFL FLOW MATE DXID FLOW HATE FUEL VOID VOL FUEL STREA⊻S J, FUEL EPOP DIAM DXID EADP BIAM FUEL INJ, VEL, DXID I'J, VEL, AETA ANGLE 0, 34,3991 C. 245,289 C. • • FUEL CAS FFFLUX NAID GAS EFFLUX FUEL DAOP RATE 0X10 0°0° RATE 9,2764656-05 4,4124235-04 7,004235E-64 9,617255E-04 FUEL FRACTIS' 11 1325 • NCITION ... _ 0X15 525P - URW 3,3656875-04 C+444E2 PHESS 1,79734 CXIC 1%J KATE 5,9467586-U3 0XID GAS 4ASS 1,3696026-07 FUEL CROP HURL FUEL FAS + ASS 1,664109E-08 TIME · ILLISEC 12,5600 FUEL INJ WATE . .

0XID HALL EVAP 4,368746E-04 0XID 0N HALL 2,2326705-06 THRUST - LBF 7,2334496-02 0XI0 1NJ TEMP 294,000 CF VAC 1,95350 OXIU HALL BURN FUEL HALL EVAP O1 0 FUEL ON -ALL 5,0232675-06 FUEL INJ TEMP 294.000 GAS FRACTION , 327610 1,14042 GA-HAA FUEL GAS FFFLUX DXIG GAS EFFLUX FUEL GPOP RATE OXIO 0POP RATE FUEL FILM RATE OXID FILM RATE 5,7479944-05 4,7314323-04 5,2991765-04 7,2076955-04 1,8621885-0A 1±1421565-06 OX1⊔ STREAMS 1±305357E-96 CXID VJI2 VOL 61689986E-05 45,0130 € FUEL FRACTION CHARGER TEVP K 7,551722E-92 1741.84 OXIG DEGP HURN FUEL FLASH RATE OXIO FLASH RATE FUEL HALL BURN 0. 2. 2. 2. FUFL STREAMS FUEL FLOW RATE DXID FLOW HATE FUEL VOID VOL FUEL DROPLETS 0x1D 040PLETS 6. 2,195258E-06 1641710N 5, Сманиек РябSS 1,34563 ₩10 GAS MASS 1,3335345-07 UXIF INJ RATE 6.1444696-03 FUEL ¢AS ∷≜SS 1,0ª93896=38 FUEL (ROP PURK TIM5 "ΙLLISEC 12,6000 FUEL INJ JATE ŀ

1

"▲S\$ 0UT OF TA\K]\TEGRAL PC+DT TOTAL IMPULSE 2±4002556±04 ,680033 3.8363526=02 CF VAC 1,92840 0x1D 1^{.1}, VEL, AETA ANGLE 35,5892 45,0000 FUEL 1610 21≜4 J.

16-11101

0XI0 HALL EVAP 4.820974E-04 0X10 0% #ALL 2.186896E-96 THRUST = LBF 3,461929E=D2 TCTAL 1MPULSE 3,8071996-02 0X1D HALL EVAP 4,693594E-04 0×10 0% WALL 2.140675Ee06 тнаUST - LBF 9,125245E-02 TOTAL 1HPULSE 3,808111E=02 THRUST - LBF 9,559306E-02 0XI0 WALL EVAP 4,5938175-04 CXID ON WALL 2,093760E-06 TCTAL 1MPULSE 3,809097E-02 0X10 1VJ TEHP 294.000 0×10 1\J TEHP 294.000 0XID IVJ TE4P 294,000 CF VAC 1,92366 CF VAC 1.92174 *AS2 0JT OF TAYK IVTEGRAL PC+OT 2±4032556+54 .680340 4452 0UT OF TA1K INTEGRAL PC=0T 24400235E=34 .680181 ∾≜52 OUT DF TANK INTEGFAL PC+OT 2±493255€+34 .683512 CXID WALL BURN FUEL WALL EVAP CXID WALL BURN FUEL WALL EVAP FUEL CN #ALL 6.023119E-96 מאוט אור בּטאא דעבר געור פי FUEL DN 24LL 6.0230977=06 FUEL ON 44LL 6.023079E-36 FUEL INJ TEMP 294,030 FUEL INJ TEWP 294,000 FUEL 14J TE4P 294,000 GAS FRACTION ,869403 645 FRACTION .901942 GAS FRACTION 926388 1.16486 GAMMA 1,16036 1,16649 GAVMA GAMMA 0x1J STREAPS 95644235068 0X1U F1L* RATE 5_587410E-67 0×10 V010 V0L 7±968621E-35 0x1µ STREAMS 7±1129116-07 0×10 V010 V0L 9±061875E-35 0×10 STREAMS 9±564423E-08 0XIU FIL" RATE 9:1553175-08 2XIJ V012 V0L 1_0252485-04 CHAVBER TEMP < MOL AT. 712.623 46.0093 46,0957 ⊬0∟ ∡1, 46,0094 • • FUEL FLASH RATE OXIO FLASH RATE FLFL #ALL FURN 0. 2,3796326+03 0. FUFL FRACTION <u>CHANER TENP</u> 4 1+014251E-42 501.34R FUEL FILM AATE 1,4321226-06 FUEL FLASH KATE DXIO FLASH RATE FUEL ALL AURN CHAMBER TEVE A 414,905 FUEL FILM 4ATE 1,4212605437 FUEL FILM PATE 2,232200E-37 FUEL FLASH MATE DXIO FLASH MATE FUEL MALL MUDY יט דעבר 1010 יטר FUEL FLOW MATE DXID FLOW DATE FUEL VOID VOL OXID FLC4 PATE FLEL VOID VJL 7. ". FUEL STREAMS FUEL STREAMS FUEL STREAMS CAIG GAUP GIAN FULLINU, VEL, OXIO I'U, VEL, BETA ANGLE Ta,4366 5, 5, 5, 5, 0000 TXI: PPCP DIAM FUEL 144, VEL, DXIO 144, VEL, HETA AVGLE 34,43560 C, 45,000 5574 AVGLE 45,0000 FUEL FRACTION 1,9400A1E-02 OXID FLO~ RATE ". 3×12 1 J. VEL. 36,4752 FUEL SAR FFFLUX DATH GAS EFFLUX FUEL DHOP PATE OXIO D90P HATE 14,3705511-05 4,1254655444 3,93136325464 5,4057735444 רטבע איב בררעא נאןט טאט אידע מאס אידע מאוד מאוס אידע ע,פעטנערייסס 7,⊳טפאמזב-טי 2,9ארינע אידע מאודע מאוד ע,פעטנערייסס 7,⊳טפאמזב-טי FUEL FEACTION 5.4792375-03 0XID 0F0PLETS 3,18r349E-06 0x17 5P0PLETS 4.139351E-06 CX10 07CP AATE 3.2477475-04 JX10 D-2PLETS 4.5845846-06 FUTL FLOA PATH 7 FUEL FLOW RATE FUEL DEOPLEIS FUEL 145 GFFLUX (1410 645 EFFLUA FUEL UGD9 44TE 1,0177311-05 9,4154861-04 2,2351695-024 ראוף הקרף נואי דטיין זיט, עבן. 34,4386 רי FUFL NACALETS FUEL SPOPLETS 10 I I I 07 1611105 7. CXID 250P JURV J. 0×10 1''J 4276 6,2492775-03 5×15 2532 -UMV 7. 0×10 645 4455 6215 6A5 4A55 3,7524774-67 C-44.65 PRESS 1,99165 のメIC 1・1 ペィアミ ちょう1アさくいてーロス PRIN 1990 - URV 0×1r 545 2455 5,3677755-37 3×12 1∿J 42TE 6,290667E+33 C-4422 PRESS 1.77792 Cra4.5 P4555 FUEL THIP EIAM FUEL ∴▲⊆ × ≥55 6,0244135-09 FUEL CACH JURE 0. FUEL 191P =04√ ∂. FUEL "Are []AM N. FUEL VERP 11AM FUEL TAN 255 5,0164625-07 TIME MILLISEC 12.mili FUEL "Erp (UK) 8, FUEL :VU HATE D. TIME - ILLIGEC 12.9701 TIME 'ILLISEC 12,7090 FUEL TNU HLF THE ING STE • 0

CF VAC

Thr TS

, דב שרש א ששרש א ששרש אין

Fist FtatTJJ√

VOILISI SSand Birythu

TIME - NLTSEC

269

 $\leq 2^{\circ}$ 80

.

		Ц	ible A-V-Co	ontinued			
13,000-	1,52289	• ບ	5 . 361824F-r3	405,141	45,6534	1.16658	1.92152
FUEL I∿J ≏ATE	0XI0 IVJ RATE	FUFL FLOA RATE	OXIO FLOX HATE	FUEL VOID VOL	0XIU VOIJ VOL	FUEL 12J TE4P	3XIQ 1VJ TEMP
0.	5,2740405-03	I.	".		1 <u>1</u> 438726-64	294,000	294,000
FUEL GROP SURX U.	tr ∂t <u>n</u> page ≃UPA	FUEL FLASH RATE	OXID FLASH HAT≦ n.	FUEL .ALL 2.772	CXIV MALL FURN D.	FUEL WALL EVAP ".	0XI0 -ALL EVAP 4,5305206-04
FUEL 545 4455 4,2528645=09	UXIP &45 #455 6,4753725-07	FUFL BROPLETS	0xIJ 0 ² 0 ² LETS 4 , 564538E-96	FUEL STREAUS	DXIU STREAMS. 7:2404-36-07	FUEL 0% MALL 6.3230485-96	3xI0 04 4ALL 2,^478076-06
FUEL GAS EFFLux	0A12 5A5 EFFLUX	FUEL DFOP RATE	0xID B°C° 4ATE	FUEL FILM AATE	3×IU FILY RATE	GAS FRACTION	THRUST - LÚF
7,6379436-06	1,1713845-03	1.6/6376E-64	2,285541E-04	3,0145595-07	1≟434042E-37	944697	2,723220E-02
FUEL 'ROP DIAM	ŋ⊀IU D¤@P D IA M	FUEL INJ, VEL.	0×10 I∿J. VEL.	367A 4%GLE	HASS OUT OF TAN	K 1'.TEGRAL PC+OT	101AL 14PULSE
C.	245₅289	3.	35,3279	45,0000	2 <u>1</u> 4992556=0'4	,680634	3.809969E-02
FUEL GRAMS DXID GFAMS DTAL GMAMS	IAJECTER MASS 03395671 04724189 04129853	.3AS EXPELLED . 0144421 . 03339937 . 05364856	0ADPS FXPELLEO .01114147 .00996317 .72114964	-ALL EXPELLED .0339209 .30334139 .00073339	5AS 48TATA60 .0000193 .15031546 .00031546	CROPS RETAINED 0,0000000 00240792 00240792	4ALL RETAINED 109273201 1092847 10036847
FUSL 076 FUSL 076 505 0710 040 1711 1711 040	25 17-00 25	U4. 1.4538926+06 3.8299216+06 3.1138226+06 3.1138226+06 8.3706616+04	UM 0 3,45796rE+03 2,6507896+02 5,456996E+03 2,949743E+03 2,949743E+02	UM 7.52UARE 1.119946-71 2.1210496-71 2.1210496-71 1.50679166-01 1.5067936+03	UH D CU4E: TC 7,2509515-02 2,4112625-02 6,0244126402 1,2945815-02 1,2945815-02	Tal MOMENTUV 1,1186976667 8,8132856601 8,187485601 8,147184691	
TIME ~ ILL ISEC	C1447ER PRESS	15\1710N	FUEL FAACTION	снамвея Техо х	НОL .Т.	ба∺ча	CF VAC
13,1000	1.69881	6.	4,102873E-03	358,052	46.0С83	1,16756	1,92049
FUEL INJ RATE	0XI0 IVJ RATE	FUSL FLOF RATE	OXIO FLOA RATE	ם.	0XIU VOI€ VOL	FUEL 12J TEMP	9XI0 INJ TEMP
D.	6,2995982-03	C.	C.	נהבך מסוס מסך	1±262879E+04	294.000	294.000
FVEL (AAP EURN	OXIO DAOP AURA	FUEL FLASH RATE	0XI0 FLASH RATE	FUEL WALL BURN	0x1J WALL BURN	FUEL MALL EVAP	0XI0 44LL EVAP
3.	0.	"	2,357439E=03	C.	0.0		4,865554E-04
FUEL GAS ~ASS	0X10 4AS MASS	FUEL UROPLETS	OXIN DPOPLETS	FUSL STREAMS	DXIU STREAMS	FUEL 04 #ALL	0×ID 0N HALL
3.612983E-D9	4,7698592-07	C.	4,978724E-U6	0.	7≜24∩4á3€⇔C7	6,023075=#06	2,0024526≈06
FUEL 645 FFFLUX	0XI5 GAS EFFLUX	FUEL 080F RATE	UXIO 080P RATE	FUEL FILM RATE	0XIU FIL" RATE	GAS FRACTION	THRUST = LaF
6,398315E-06	1.049507E=03	1,257282E=04	1,719420E=04	4,3765005=07	1 <u>5</u> 946308E=07	,958373	9,665086€=02
FUEL CRCP [1]AY	DAIO DROP JIAM	FUFL 1%J, VEL.	0XID I\J, VEL.	AETA AMGLE	*ASS OUT OF TA'	K IYTEGRAL PC+OT	TOTAL 14PULSE
0.	34,4386	0.	36,4758	45,0000	2 <u>4002</u> 556-04	,683833	3,810935E-02
TIME "ILLISEC	CHANGER PRESS	IGALTICN	FUEL FEACTION 2 Obsittent	CTATRE TELE A 344.045	46, 41. 46, 0042	6А~НА 1.16807	CF VAC 1.01989
FUEL INJ PATE D.	5,279416E-03	FUEL FLOW RATE P.	OXIO FLOW RATE	FUEL VOID VOL	0XIU V0I0 V0L 1±381555E-04	FUEL INJ TEMP 294,000	0XI0 IVJ TEMP 294,000
FUEL DROP BURN	NAUS 4040 OIXO	CI	0XIE FLASH RATE	רטרן אנועיי	ס ^ד	FUEL WALL EVAP	OXIO 44LL EVAP
0.	10	Flet flash rate	2,327934E-03	י	כאות מעור פחשא		5,055581E-04
FUEL GAS VASS 3,1018036-09	OXIO GAS MASS 1,0%6261E+06	FUEL DROPLETS	0x10 0PgPLETS 6,001271E-46	FUEL STREAMS	0x1⊍ STREA∺S 9 <u>±</u> 564423E=08	FUEL ON WALL 6.0229776-06	0XID 0N WALL 1,953816E-D6
FUEL GAS FFFLUX	0X10 GAS EFFLUX	FUEL DROP RATE	0X10 DADP AATE	FUEL FILM RATE	OXIU FIL° RATE	GAS FRACTING	ТНRUST - LBF
5,111793F+06	1,240795E-U3	9,429615E+05	1.262815E-04	2,7153706-07	1±125557E-07	,968703	,105516

FREFERMANCE SUMMARY Propellat Fass Pasis Mass out of Tark = Pourus Mass Thruth Invectof = Pourus Mass Twruth 190.Ectof = Pourus	PRÉSSURE INTEGRAL - PSIA-SFC. Total tedin el - d'unitecte
---	--

		.6930
.619648 3678,296479 214,818605	.000112	.000069
.721204 3757,440170 19r.242236	621001	, ° 0 0 0 7 5
.162050 2769,022741 161.657111		•000111
RE RATIO C STAR SPECIFIC IMPULSE	OXIE FLOW MIXT	FUEL FLOM

risposition of injected phopellant Fufl cxid

				FUFL	CXID	TGTAL
PACTION	EXPELLED	A S	S∎S	,579169	.638936	. 61 6972
FRACTION	EXPFLLED	A S	Secad	328649	.219171	259491
FRACTION	ExPELLED	AS.	۶16∗	, J11869	.007542	.009132
FRACTION	RETAINED	۸S	GAS	,000¢7	.021587	62CTJ0.
PACTION	RETAINED	A S	µR QPS	, GN6925	.001733	,011456
FRACTION	RETAINED	۶V	۴16۳	078749	131377	112956

MEAN DROP "LAMETER	INJECTED FUEL	EJECTED FUEL	INJECTED OYID	EJECTED DAID
D30	36,8171	85,7081	28,3380	50,5210
D31	45,9424	95.7369	35,4348	1545,9d
D32	65 , 5011	110.0495	50,0263	74,5905
MEAN VELOCITY FEET/SECOND	107,95	267.94	50,13	221,e1

HASS 1001 1223 12239 2673 2673 2673 2673 2673 2673 2673 2673	2	144 144 144 144 144 144 144 144 144 144	90018 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 9000000
- CU:ULATIVE 000005 1522 1522 2564 25264 25264 25264 3292	4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	NNN 0000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
E DISTRIBUTION 0.0001 0.0001 0.0001 0.0001 0.0001 1.0081 1.0081	1233 2225 3225 5913 5913 5919 5919 5919	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4444 4444 4444 4444 4444 4444 4444 4444 4444
. DPCP SIZ 0.0000 0.0000 1.163 1.653 1.653	1174 1472 1472 1557 15575 1559 1559 1559 1559 1559 155	75599 77599 777999 777999 77777 77777 77777 77777 77777 77777 7777	9194 9182 9468 9468 9468 9468 9468 9468 9497 9497 9597
L 36 7 1.3010 1.3010 1.4775 1.6921 1.6921 1.7775	1.6451 6451 2.00542 2.0070 2.1155 2.11749 2.11	220 220 220 20 20 20 20 20 20 20 20 20 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0000000000 8400000000000000000000000000

Ą
6
q
່ກ່
H

2 5 5 5 5 5 2 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 2 5 5 5 <th>2,5315 2,5315 2,544</th> <th>9597 9597 9597</th> <th>9737 9737 7379</th> <th>7220°</th> <th>9827 9827 9827</th>	2,5315 2,5315 2,544	9597 9597 9597	9737 9737 7379	7220°	9827 9827 9827
Free Free <th< td=""><td></td><td>2659</td><td>9707</td><td>9520</td><td>685</td></th<>		2659	9707	9520	685
6125 9731 9910 9747 9741 9747 6125 9731 9731 9910 977 6126 9731 9914 977 977 6126 9731 9914 977 9731 6126 9731 9914 977 9731 6126 9731 9914 977 9731 6126 9731 9914 977 9731 9731 9731 9914 977 9731 9741 9731 9914 977 9731 9743 9731 9914 977 972 9744 9744 977 972 9745 9731 9914 977 9744 974 973 972 9744 974 974 972 9744 974 974 972 9744 974 972 972 974 974 974 972 974 974 974 972 974 974 974 972 974 974 974 972 974 974 974 972 974 974 974 <td< td=""><td>5002</td><td>, 9597 9697</td><td>9707</td><td>,9570 9470</td><td>9827</td></td<>	5002	, 9597 9697	9707	,9570 9470	9827
9121 921 9404 9470 9427 9122 9731 9404 9470 9427 9123 9731 9404 9470 9427 9124 9470 9427 9427 9427 9125 9731 9404 9470 9427 9127 9424 9470 9427 9427 9127 9424 9470 9427 9427 9127 9424 9470 9427 9427 9127 9424 9477 9427 9427 9127 9424 9477 9427 9427 9127 9424 9477 9427 9427 9127 9426 9921 9427 9427 9127 9426 9921 9427 9427 9127 9426 9926 9927 9427 9127 9427 9427 9427 9427 9127 9427 9427 9427 9	5411	666	1226	9570	9827
8124 9731 9904 947 947 9627 8455 9731 9404 947 947 9627 8455 9731 9404 947 947 9627 8455 9731 9404 947 947 9627 8455 9731 9404 947 947 9827 8455 9731 9404 947 947 9827 9404 947 947 9427 9827 9404 9731 9901 977 9827 9404 9701 9927 9827 9756 9901 9901 977 9827 9756 9701 9927 9927 9827 9756 9901 9701 9701 9721 9756 9901 9701 9701 9720 9757 9701 997 9927 9927 9757 9701 9701 9701 9701 9757 9701 9701 9701 9701 9757 9701 9701 9701 9701 9757 9701 9701 9701 9701 9757 9701 9701 9701	6121	,9731	9614	.967D	, 9327
7475 9475 9475 9475 9475 7475 9475 9475 9475 9475 7475 9475 9475 9475 7475 9475 9475 9475 7475 9475 9475 9475 7475 9475 9475 9475 7475 9475 9475 9475 7475 9476 9475 9475 9475 9475 9475 9475 9475 9476 9475 9477 9475 9476 9476 9477 9476 9476 9477 9477 9476 9476 9477 9477 9476 9476 9477 9477 9476 9476 9477 9477 9476 9477 9477 9477 9476 9477 9477 9477 9476 9477 9477 9477 9476 9477 9477 9477 9476 9477 9477 9477 9476 9477 9477 9477 9476 9477 9477 9477 9476 9476 94777 94777 <tr< td=""><td>.612⁴</td><td>15/31</td><td>, 9504 0204</td><td>9673 9473</td><td>.9827 0837</td></tr<>	.612 ⁴	15/31	, 9504 0204	9673 9473	.9827 0837
64/35 94/3 94/3 94/3 94/3 64/37 97/3 94/3 94/3 94/3 64/37 97/3 94/3 94/3 94/3 7/35 97/3 94/3 94/3 94/3 7/35 97/3 94/3 94/3 94/3 7/35 97/3 94/3 94/3 94/3 7/35 97/3 94/3 94/3 94/3 7/35 97/3 94/3 94/3 94/3 7/35 97/3 94/3 94/3 94/3 7/35 97/4 94/3 94/3 94/3 7/35 97/4 94/3 94/3 94/3 7/35 97/4 94/3 94/3 94/3 7/35 97/4 94/3 94/3 94/3 7/35 97/4 94/3 94/3 94/3 7/35 97/4 94/3 94/3 10/3 7/35 97/4 94/3 10/3 10/3 7/35 97/4 94/3 10/3 10/3 7/35 97/4 94/3 10/3 10/3 7/35 97/4 94/3 10/3 10/3 7/35 97/4	1000	1014	9904	9670	9827
6545 9731 9667 9675 9675 6575 9731 9567 9575 9575 77745 9756 9756 9577 9577 77745 9756 9756 9757 9577 77745 9756 9766 9971 9775 77545 9756 9766 9971 9777 77545 9756 9971 9777 9477 77545 9756 9971 9777 9477 77545 9756 9971 9777 9477 77545 9756 9971 9777 9477 77545 9756 9971 9777 9477 77547 9766 9971 9777 9427 77547 9766 9971 1000 9777 7757 9766 9971 1000 1000 7757 9766 9971 1000 1000 7757 9766 9971 1000 1000 7757 9766 9971 1000 1000 7757 9756 9771 1000 1000 7757 9756 9771 1000 7757 9756 9771<	6435	9731	,9304	.9475	. 5827
2 2 <td>2,6532</td> <td>, 9731</td> <td>1980 ·</td> <td>.9570</td> <td>,9827</td>	2,6532	, 9731	1980 ·	.9570	,9827
2 2 <td>2.5523</td> <td>9731 67 6</td> <td></td> <td>.9675 0676</td> <td>1206</td>	2.5523	9731 67 6		.9675 0676	1206
2 2 <td></td> <td>12.40</td> <td></td> <td>0249</td> <td>280</td>		12.40		0249	280
2 3 3 3 3 3 2 7 3 3 3 3 3 2 7 3 3 3 3 3 3 2 7 3 3 3 3 3 3 3 2 7 3 3 3 3 3 3 3 3 2 7 3 3 3 3 3 3 3 3 3 2 7 3 <td></td> <td>9496</td> <td>1066</td> <td>5670</td> <td>9927</td>		9496	1066	5670	9927
2 7/17 9/10 9/10 9/10 2 7/17 9/10 9/10 9/10 2 7/17 9/10 9/10 9/10 2 7/17 9/10 9/10 9/10 2 7/17 9/10 9/10 9/10 2 7/17 9/10 9/10 9/10 2 7/17 9/10 9/10 9/10 2 9/10 9/10 9/10 9/10 2 9/10 9/10 9/10 9/10 2 9/10 9/10 9/10 9/10 2 9/10 9/10 1/100 1/100 2 9/10 9/10 1/100 1/100 2 9/10 9/10 1/100 1/100 2 9/10 1/100 1/1000 1/1000 2 9/10 1/1000 1/1000 1/1000 2 9/10 1/1000 1/1000 1/1000 2 9/10 1/1000 1/1000 1/1000 2 9/10 1/1000 1/1000 1/1000 2 9/10 1/1000 1/1000 1/1000 2 9/10 1/1000 <	2,5596	,9t-56	1066.	,9573	,9827
2 7714 9 9 9 9 2 7554 9 9 9 9 9 2 7554 9 9 9 9 9 2 7714 9 9 9 9 9 2 7714 9 9 9 9 9 2 7714 9 9 9 9 9 2 7753 9 9 9 9 9 2 7753 9 9 9 9 9 2 7753 9 9 9 9 9 2 7553 9 9 9 9 9 2 5 9 9 9 1 1 0 2 5 9 9 9 1 1 0 2 5 9 9 9 1 1 0 2 5 9 9 9 9 1 1 0 2 5 9 9 9 9 1 1 0 2 5 9 9 9 9 1 1 <td>2.7476</td> <td>9466</td> <td>1066.</td> <td>9470</td> <td>9927</td>	2.7476	9466	1066.	9470	9927
2 7324 9756 9995 9975 9975 2 7559 9756 9961 1,000 2 7559 9756 9961 1,000 2 7559 9756 9961 1,000 2 7597 9756 9901 1,000 2 7557 9756 9901 1,000 2 7557 9756 9901 1,000 2 7557 9756 9901 1,000 2 7557 9756 9901 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901	2.716	95.55	1066	3748.	1244
2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 7 7 7 2 7 7 <td>2.7743</td> <td>9566</td> <td>1366.</td> <td>. 9670</td> <td>1256</td>	2.7743	9566	1366.	. 9670	1256
2 7550 9765 9765 2 7744 9766 9905 1.0000 2 7745 9766 9905 1.0000 2 7745 9766 9905 1.0000 2 7745 9766 9905 1.0000 2 9766 9905 1.0000 1.0000 2 9766 9901 1.0000 1.0000 2 9766 9901 1.0000 1.0000 2 9766 9901 1.0000 1.0000 2 9766 9901 1.0000 1.0000 2 9766 9901 1.0000 1.0000 2 9766 9901 1.0000 1.0000 2 9766 9901 1.0000 1.0000 2 9756 9901 1.0000 1.0000 2 9756 9901 1.0000 1.0000 2 9756 9901 1.0000 1.0000 2 9756 9901 1.0000 1.0000 2 9756 9901 1.0000 1.0000 2 9756 9901 1.0000 1.0000 2 9756 9901	2.7324	0017. 1410		0747	1764.
2 7559 9766 9901 1,000 2 7753 9766 9901 1,000 2 7753 9766 9901 1,000 2 7503 9766 9901 1,000 2 9766 9901 1,000 1,000 2 9766 9901 1,000 1,000 2 9766 9901 1,000 1,000 2 9766 9901 1,000 1,000 2 9766 9901 1,000 1,000 2 9766 9901 1,000 1,000 2 9766 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2 9756 9901 1,000 1,000 2		00.44		0.77	7080
2 7553 9766 9903 1,0000 2 7553 9766 9903 1,0000 2 7553 9766 9903 1,0000 2 7553 9766 9903 1,0000 2 7553 9766 9903 1,0000 2 7553 9766 9903 1,0000 2 7556 9903 1,0000 1,0000 2 7556 9903 1,0000 1,0000 2 7556 9903 1,0000 1,0000 2 7557 9766 9903 1,0000 1,0000 2 7557 9766 9903 1,0000 1,0000 2 7573 9766 9903 1,0000 1,0000 2 7573 9766 9903 1,0000 1,0000 2 7573 9766 9903 1,0000 1,0000 2 7573 9766 9903 1,0000 1,0000 2 7573 9766 9903 1,0000 1,0000 </td <td>7350</td> <td>9946.</td> <td>1000</td> <td>1.0000</td> <td>1.6907</td>	7350	9946.	1000	1.0000	1.6907
2 7700 9765 9900 1,000 2 7455 9765 9901 1,000 2 7455 9766 9901 1,000 2 7455 9766 9901 1,000 2 7455 9766 9901 1,000 2 7455 9766 9901 1,000 2 7455 9766 9901 1,000 2 7455 9766 9901 1,000 2 7455 9766 9901 1,000 2 7455 9756 9901 1,000 2 7455 9756 9901 1,000 2 7455 9756 9901 1,000 2 7455 9756 9901 1,000 2 7455 9756 9901 1,000 2 7455 9756 9901 1,000 2 7455 9756 9901 1,000 2 7455 9756 9901 1,000 2 7455 9756 9901 1,000 2 7455 9756 9701 1,000 2 7455 9756 9701 1,0	2.75.4	97.95	996	C000 T	1.5300
2 7747 9166 9901 1,000 2 7453 9166 9901 1,000 1,000 2 7423 9166 9901 1,000 1,000 2 7457 9166 9901 1,000 1,000 2 7457 9166 9901 1,000 1,000 2 7457 9166 9901 1,000 1,000 2 7457 9166 9901 1,000 1,000 2 7457 9166 9901 1,000 1,000 2 7457 9166 9901 1,000 1,000 1,000 2 7457 9166 9901 1,000 1,000 1,000 1,000 2 7457 9166 9901 1,000 1,000 1,000 1,000 2 7455 9166 9901 1,000 1,000 1,000 1,000 2 7457 9166 9901 1,000 1,000 1,000 1,000 2 7455 9166	2.7743	9566	:066	1,60.33	1,0040
2 7453 9406 9401 1,0000 1,0000 2 7454 9406 9901 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 9901 1,0000 1,0000 1,0000 2 7456 </td <td>2.77+2</td> <td>91:66</td> <td>10.66</td> <td>1,000</td> <td>1,000</td>	2.77+2	91:66	10.66	1,000	1,000
2 7724 9766 9943 1,0000 1,0000 2 4755 9766 9941 1,0000 1,0000 2 4755 9766 9941 1,0000 1,0000 2 4756 9941 1,0000 1,0000 1,0000 2 4756 9941 1,0000 1,0000 1,0000 2 4756 9941 1,0000 1,0000 1,0000 2 4751 9756 9941 1,0000 1,0000 2 4751 9756 9941 1,0000 1,0000 2 4751 9756 9941 1,0000 1,0000 2 4751 9756 9941 1,0000 1,0000 2 4751 9756 9941 1,0000 1,0000 2 4751 9756 9941 1,0000 1,0000 2 4751 9756 9941 1,0000 1,0000 2 9756	2,7453	9+4Q	1346.	1.000	1,0333
Z # 1444 Z # 14	2.7924	9¢46	, 9403 2022	1,0003	1,0001
X X <td>2.474</td> <td>00.44</td> <td></td> <td></td> <td>1,0000</td>	2.474	00.44			1,0000
2 8 9 1 1 0 0 2 6 9 9 1 1 0 0 2 6 9 9 1 1 0 1 0 0 2 6 9 9 1 1 0 1 0 0 2 6 9 9 9 1 1 0 1 0 0 2 6 9 9 9 9 1 1 0 1 0 0 2 6 9 9 9 1 1 0 1 1 0 0 2 6 9 9 9 1 1 0 1 1 0 2 6 9 9 9 1 1 0 1 1 0 2 6 9 9 1 1 1 0 1 1 0 2 6 9 9 1 1 1 1 0 1 0 2 6 9 9 1 1 1 1 1 0 1 <td>2. 1.23</td> <td>9165</td> <td>1066.</td> <td>1.000</td> <td>1,000</td>	2. 1.23	9165	1066.	1.000	1,000
2 9901 1 0000 2 9456 9901 1 0000 2 9456 9901 1 0000 1 2 6455 9466 9901 1 0000 1 2 6455 9466 9901 1 0000 1 0000 2 6455 9466 9901 1 0000 1 0000 2 6455 9466 9901 1 0000 1 0000 2 6455 9466 9901 1 0000 1 0000 2 6455 9466 9901 1 0000 1 0000 2 6475 9466 9901 1 0000 1 0000 2 6475 9466 9901 1 0000 1 0000 2 6475 9466 9901 1 1 0000 1 0000 <tr< td=""><td>2,4145</td><td>51 66</td><td>1066</td><td>1,0000</td><td>1.0000</td></tr<>	2,4145	51 66	1066	1,0000	1.0000
2 5/55 9756 9901 1,0000 2 5/51 9756 9901 1,0000 1,0000 2 5/51 9756 9901 1,0000 1,0000 1,0000 2 5/51 9756 9901 1,0000 1,0000 1,0000 2 5/51 9756 9901 1,0000 1,0000 1,0000 2 5/51 9756 9901 1,0000 1,0000 1,0000 2 6/56 9901 1,0000 1,0000 1,0000 1,0000 2 6/56 9901 1,0000 1,0000 1,0000 1,0000 2 6/56 9901 1,0000 1,0000 1,0000 1,0000 2 6/56 9901 1,0000 1,0000 1,0000 1,0000 2 6/56 9901 1,0000 1,0000 1,0000 1,0000 2 6/56 9901 1,0000 1,0000 1,0000 1,0000 2 6/56 9901 1,0000 1,0000 1,0000 1,	2,4261	9-66	1066.	1,000	1.0000
2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 5 5 5 2 5 5 <td>2,8325</td> <td>9156</td> <td>1066</td> <td></td> <td>1.0000</td>	2,8325	9156	1066		1.0000
2 5533 9456 9931 1,0000 1,0000 2 6053 9466 9931 1,0000 1,0000 2 6053 9466 9931 1,0000 1,0000 2 4513 9466 9931 1,0000 1,0000 2 4517 9466 9951 1,0000 1,0000 2 4751 9466 9951 1,0000 1,0000 2 4755 9766 9951 1,0000 1,0000 2 6731 9766 9951 1,0000 1,0000 2 6731 1,0000 1,0000 1,0000 1,0000 2 9756 9971 1,0000 1,0000 1,0000 2 9756 9971 1,0000 1,0000 1,0000 2 9756 9971 1,0000 1,0000 1,0000 2 9756 9971 1,0000 1,0000 1,0000 2 9756 9971 1,0000 1,0000 1,0000 2 9756 9901		99.40	996.	1.0000	1000
2 5903 1,0000 1,0000 2 4/55 9466 9903 1,0000 1,0000 2 4/55 9466 9901 1,0000 1,0000 2 4/55 9466 9901 1,0000 1,0000 2 4/55 9466 9901 1,0000 1,0000 2 4/55 9466 9901 1,0000 1,0000 2 4/55 9466 9901 1,0000 1,0000 2 4/55 9466 9901 1,0000 1,0000 2 8776 9766 9901 1,0000 1,0000 2 875 9766 9901 1,0000 1,0000 2 975 9766 9901 1,0000 1,0000 2 975 9766 9901 1,0000 1,0000 2 975 9766 9901 1,0000 1,0000 2 9755 9766 9901 1,0000 1,0000 2 9755 9766 9901 1,0000 1,0000 2 9755 9766 9901 1,0000 1,0000 2 9755 9766 9901 1,0000 </td <td>2 513</td> <td>9446</td> <td>1066</td> <td>1,000</td> <td>1,0060</td>	2 513	9446	1066	1,000	1,0060
2 8053 9000 1,0000 1,0000 1,0000 2,00	2, 6573	9946	6066	1,0000	1.5005
2 6607 9905 9903 1,000 1,000 2 6757 9166 9901 1,000 1,000 1,000 2 6757 9766 9901 1,000 1,000 1,000 2 6757 9766 9901 1,000 1,000 1,000 2 6757 9766 9901 1,000 1,000 1,000 2 9756 9901 1,000 1,000 1,000 1,000 2 9756 9901 1,000 1,000 1,000 1,000 2 9756 9901 1,000 1,000 1,000 1,000 2 9756 9901 1,000 1,000 1,000 1,000 2 9756 9901 1,000 1,000 1,000 1,000 2 9756 9901 1,000 1,000 1,000 1,000 2 9756 9901 1,000 1,000 1,000 1,000 2 9756 9901 1,000 1,000 1,000 1	2,8533	9466	1066	1,0000	1.0001
2 2 <td>2,6642</td> <td>9556</td> <td>1266</td> <td>1,0200</td> <td>1.0000</td>	2,6642	9556	1266	1,0200	1.0000
2 5 9 1 <td>2.0/21</td> <td>00.54</td> <td></td> <td></td> <td></td>	2.0/21	00.54			
2 2	2 8 4 F E	0-10	1000	1.6000	0000
7.97 9466 9971 1,670 1,670 7.931 9766 9971 1,000 1,000 2.9131 9766 9971 1,000 1,000 2.9131 9766 9971 1,000 1,000 2.9131 1,000 1,000 1,000 1,000 2.9141 1,000 1,000 1,000 1,000 2.9245 9466 9901 1,000 1,000 1,000 2.9245 9466 9901 1,000 1,000 1,000 1,000 2.9245 9466 9901 1,000 1,000 1,000 1,000 2.9245 9466 9901 1,000 1,000 1,000 1,000 2.9245 9466 9901 1,000 1,000 1,000 1,000 2.9245 9466 9901 1,000 1,000 1,000 1,000 2.9245 9466 9901 1,000 1,000 1,000 1,000	2.697.6	. 9166	666	1.000	1000
2 9766 5971 1,0001 1,0001 1,0001 1,0001 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 1	2.6976	96.65	1046.	1,0103	1.6000
2 9:55 2 9:10 2 9:10 2 9:10 2 9:10 2 9:20 2 9:20 9 0:0 2 9:20 9 0:0 2 9:20 9 0:0 1 0:00 1	2.9.31	9766	1065*	1,000	1,000
2,5134 9756 9991 1,0000 1,0000 2,924 9766 9901 1,0000 1,000 2,924 9766 9901 1,000 1,000 2,924 9766 9941 1,000 1,000 2,9245 9766 9941 1,000 1,000 2,9245 9766 9941 1,000 1,000 2,9245 9766 9911 1,000 1,000 2,9245 9766 9911 1,000 1,000	2,9055	,9°66	1065	1,0003	1,000
2,919) 9766 9901 1,000 1,000 2,9224 9766 9901 1,000 1,000 2,9294 9766 9901 1,000 1,000 2,925 9755 9766 9911 1,000 1,000 2,925 9766 9911 1,000 1,000 2,925 9766 991 1,000 1,000 2,922 9766 991 1,000 1,000 2,922 9766 991 1,000 1,000	2.5134	,9F5E	1066.	1,0000	1,000
2,0227 9166 99401 1,000 1,000 2,9234 9466 9941 1,000 1,000 2,545 9666 9941 1,000 1,000 2,7355 9766 9941 1,000 1,000 2,9445 9766 9941 1,000 1,000 2,9445 9766 991 1,000 1,000 2,9549 9766 991 1,000 1,000	2,9193	, 9 č 6 6	1066	1,000	1.000
2,2594 ,9700 ,9901 1,000 1,000 1,000 2,2555 ,9766 ,9901 1,000 1,000 2,2545 ,9766 ,9911 1,000 1,000 2,549 ,9766 ,991 1,000 1,000 2,549 ,9766 ,991 1,000 1,000	2,9247	9556	1940,	1,0000	
2,7335 9766 9901 1,000 1,000 2,7335 9766 9901 1,000 1,000 2,9245 9866 9901 1,000 1,000 2,524 9866 9901 1,000 1,000 2,554 966 9901 1,000 1,000	2,9294	00 . A .			
2,9242 9946 9941 1,0000 1,0000 1,0000 2,9248 9946 9941 1,0000 1,0000 1,0000 2,9248 9954 2,9340 2,934	1471 1471 1471 1471	• YF00	1.44	5050 F	
5594 9566 991 1.030 1.030 2.9557 9866 9931 1.030 1.030	2 2 2 2 2	0440	1000		
2,9542 . 9000 1 . 9000 1 . 9000	5 4 4	91.66	6901	1.6360	1.0001
	2 9542	4 = 5 6	1046	6010°1	1.133

-

- mil

S

A. 8 REFERENCES

- A-1. W.T. Webber. "Calculation of Low-Frequency Unsteady Behavior of Liquid Rockets from Droplet Combustion Parameters." AIAA 6th Propulsion Joint Specialist Conference, San Diego, Calif, June 15, 1970, AIAA Paper No. 70-620.
- A-2. W. T. Webber, and W. A. Gaubatz. "Calculation of the Ignition and Start Transient of Liquid Propellant Rocket Engines." Western States Section, The Combustion Institute, Pasadena, Calif., Oct. 26, 1970, Paper No. 70-23, also published as McDonnell Douglas Astronautics Company Paper, MDAC WD-1439.
- A-3. W.T. Webber and W.A. Gaubatz. "Calculation of Low-Frequency Combustion Instability in Liquid-Propellant Rocket Engines."
 7th JANNAF Liquid Propellant Combustion Instability Meeting, Pasadena, Calif., Oct. 27, 1970.
- A-4. W.T. Webber, W.A. Gaubatz, and R.J. Hoffman. "Calculation of Contaminant Production in Liquid Bipropellant Rocket Engines." JANNAF Sixth Plume Technology Meeting. March 1971. Also published as McDonnell Douglas Astronautics Company Paper, MDAC WD1513, April 1971.
- A-5. G. P. Sutton. <u>Rocket Propulsion Elements</u>. John Wiley & Sons, Inc., 1949.
- A-6. S. S. Penner. On Maximum Evaporation Rates of Liquid Droplets in Rocket Motors. American Rocket Society Journal, Vol. 23, No. 2 March 1953.
- A-7. C. C. Miesse. "Ballistics of an Evaporating Droplet." Jet Propulsion, Vol. 24, No. 4, July 1954.
- A-8. R. J. Priem. <u>Propellant Vaporization as a Criterion for Rocket</u> Engine Design; Calculations of Chamber Length to Vaporize a Single n-Heptane Drop, NACA TN3985 July 1957.
- A-9. R.J. Priem and M.F. Heidmann. <u>Propellant Vaperization as a</u> <u>Design Consideration for Rocket Engine Combustion Chambers</u>. NASA TR R-67, 1970.
- A-10. S. Lambiris, L. P. Combs, and R. S. Levine. "Stable Combustion Processes in Liquid Propellant Rocket Engines." Combustion and Propulsion. Fifth AGARD Colloquium: High Temperature Phenomena, the MacMillan Co., 1962.

- A-11. M. R. Beltran, B.P. Breen, T.C. Kosvic, C.F. Sanders,
 R.J. Hoffman, and R.O. Wright. <u>Analysis of Liquid Rocket Engine</u> Combustion Instability. AFRPL-TR-65-254, January 1966.
- A-12. D. L. Kors, L. B. Bassham, and R. E. Walker. "A Liquid Rocket Performance Model Based on Vaporization Interactions." Journal of Spacecraft and Rockets, Vol. 6, No. 10, October 1969.
- A-13. L. P. Combs, W. D. Chadwick, and D. T. Campbell. Liquid Rocket Performance Analysis with Distributed Energy Release. CPIA Publication No. 204, February 1971.
- A-14. M. Yachter and H. V. Waldinger. <u>Dynamic Analysis of a Rocket</u> <u>Motor.</u> Rep. SPD-241, M. W. Kellogg Co., October 1949.
- A-15. D. F. Gunder and D. R. Friant. "Stability of Flow in a Rocket Motor." Journal of Applied Mechanics, Vol. 17, 1950.
- A-16. M. Summerfield. "A Theory of Unstable Combustion in Liquid Propellant Rocket Systems. "Journal of the American Rocket Society, Vol. 21, No. 5, September 1951.
- A-17. L. Crocco and S. Cheng. <u>Theory of Combustion Instability in Liquid</u> Propellant Rocket Motors. AGARDograph No. 8, Butterworths, 1956.
- A-18. M. Barrere and J. J. Bernard. "Influence of the Injector pressure
 Drop on Low Frequency Instability in Liquid Propellant Rockets."
 Sixth Symposium on Combustion, Reinhold Publishing Corp, 1956.
- A-19. H. G. Hurrell. <u>Analysis of Injection-Velocity Effects on Rocket</u> Motor Dynamics and Stability. NACA TR R-43, September 1959.

- A-20. R. B. Lawhead, R. S. Levine, and W. T. Webber. <u>Liquid-propellant</u> <u>Rocket Combustion Instability Studies-Final Summary Report Cover-</u> <u>ing the Period 1 June 1954 to 30 November 1955</u>. Rocketdyne Report R-122, 1956.
- A-21. P. McCormack. "A Driving Mechanism for High Frequency Combustion Instability in Liquid Fuel Rocket Engines." Journal of the Royal Aeronautical Society, September 1964.
- A-22. J. R. Fenwick and G. J. Bugler. "Oscillatory Flame Front Flowrate Amplification through Propellant Injection Ballistics (The Klystron Effect)." CPIA Publication No. 138, Vol. 1, February 1967.
- A-23. M. R. Gore and J. L. Carroll. "Dynamics of a Variable Thrust, Pump Fed, Bipropellant, Liquid Rocket Engine System." Jet Propulsion, Vol. 27, No. 1, January 1957.
- A-24. P. Kluger and E.C. Farrell. "Digital Computer Analysis of Transients in Liquid Rocket Engines." Jet Propulsion, Vol. 28, No. 12, December 1958.
- A-25. E. Mayer. "Vaporization Limited Combustion in Bipropellant Rocket Chambers." Journal of the American Rocket Society, Vol. 29, No. 7, July 1959.
- A-26. D. B. Spalding. "A One-Dimensional Theory of Liquid-Fuel Rocket Combustion," A. R. C. 20, 175, May 1958.
- A-27. H. C. Rodean. "Rocket Thrust Termination Transients." Journal of the American Rocket Society, Vol. 29, No. 6, June 1959.
- A-28. J. A. Peterson. "Starting Transients of Hypergolic Bipropellant Rockets." Liquid Rockets and Propellants (Progress in Astronautics and Rocketry Vol. 2) Academic Press, 1960.
- A-29. T. F. Seamans, M. Vanpee, and V. D. Agosta. "Development of a Fundamental Model of Hypergolic Ignition in Space-Ambient Engines." AIAA Journal, Vol. 5, No. 9, September 1967.
- A-30. R. E. Martens. "Investigation of Hypergolic Ignition Spike Phenomena." 8th Liquid Propulsion Symposium, CPIA Publication No. 121, Vol. 1, October 1966.
- A-31. W. Juran and R. C. Stechman. "Ignition Transients in Small Hypergolic Rockets." Journal of Spacecraft and Rockets, Vol. 5, No. 3, March 1968.
- A-32. H. M. Paynter. "Fluid Transients in Engineering Systems." Handbook of Fluid Dynamics, McGraw-Hill Book Company, 1961.
- A-33. O. A. Hougen and K. M. Watson. <u>Chemical Process Principles</u> John Wiley & Sons, 1950.
- A.34. Calingaert and Davis. Industrial and Engineering Chemistry, Vol. 17, page 1287, 1925.
- A-35. D. M. Bushnell and P. B. Gooderum. "Atomization of Superheated Water Jets at Low Ambient Pressures." Journal of Spacecraft and Rockets, Vol. 5, No. 2, February 1968.
- A-36. R. Brown. Sprays Formed by Flashing Liquid Jets. Ph. D. Thesis, University of Michigan, 1961.
- A-37. P. B. Gooderum and D. M. Bushnell. "Measurement of Mean Drop Sizes for Sprays from Superheated Water Jets." Journal of Spacecraft and Rockets, Vol. 6, No. 2, February 1969.

- A-38. R. D. Ingebo. <u>Drop-Size Distributions for Impinging-Jet Breakup in</u> <u>Airstreams Simulating the Velocity Conditions in Rocket Combustors</u>. NACA TN 4222, 1950.
- A-39. M.A. Weiss and C.H. Worsham. "Atomization in High Velocity Airstreams." Journal of the American Rocket Society, Vol. 29, No. 4, April 1959.
- A-40. M. F. Heidmann and H. H. Foster. Effect of Impingement Angle on Drop-Size Distribution and Spray Pattern of Two Impinging Water Jets. NASA TN D-872, 1961.
- A-41. R. A. Dickerson. "Like and Unlike Impinging Injection Element Droplet Sizes." Journal of Spacecraft and Rockets, Vol. 6, No. 11, November 1969.
- A-42. M. E. Heidmann, R. J. Priem, and J. C. Humphrey. <u>A Study of</u> Sprays Formed by Two Impinging Jets. NACA TN 3835, 1957.
- A-43. E. Rabin, A. R. Schallenmueller, and R. B. Lawhead. <u>Displace</u>ment and Shattering of Propellant Droplets. AFOSR TR 60-75, 1960.
- A-44. M. M. El Wakil, et al. Experimental and Calculated Temperature and Mass Histories of Vaporizing Fuel Drops. NACA TN 3490, 1956.
- A-45. J. G. Sotter. <u>Nonsteady Evaporation of Liquid Propellant Drops</u>. The Grossman Model JPL TR 32-1061, 1968.
- A-46. W. N. Bond and D. A. Newton. Phil. Mag. (7), 5, 794, 1928.
- A-47. R. R. Hughes and E. R. Gilliland. "The Mechanics of Drops." Chem. Eng. Prog., Vol. 28, No. 10, 1952.
- A-48. G. A. E. Godsave. "Studies of the Combustion of Drops in a Fuel Spray - The Burning of Single Drops of Fuel." Fourth Symposium on Combustion, Williams and Wilkins, 1953.
- A-49. D. B. Spalding. "The Combustion of Liquid Fuels." Fourth Symposium on Combustion, Williams and Wilkins, 1953.
- A-50. G. A. Agoston, H. Wise, and W. A. Rosser. "Dynamic Factors Affecting the Combustion of Liquid Spheres." Sixth Symposium on Combustion, Reinhold, 1956.
- A-51. W. T. Webber. Effects of Gas Motion on Heterogeneous Combustion etc. WADC TR 59-50, 1959.
- A-52. W. E. Ranz and W. R. Marshall. "Evaporation from Drops." Chem. Eng. Prog., Vol. 48, No. 4, 1952.

- A-53. H. C. Barnett and R. B. Hibbard, Ed. <u>Basic Considerations in the</u> <u>Combustion of Hydro Carbon Fuels with Air</u>. NACA Report 1300, 1957.
- A-54. W. H. Walker, W. K. Lewis, W. H. McAdams, and E. R. Gilliland, <u>Principles of Chemical Engineering</u>. McGraw-Hill Book Company, 1937.
- A-55. G. G. Brown, Unit Operations. John Wiley & Sons, New York, 1950.
- A-56. L. J. Zajac and W. H. Nurick. "Correlation of Spray Dropsize Distribution and Injector Variables." 8th JANNAF Liquid Propellant Combustion Instability Meeting, Oct. 1971.

Appendix B

MULTRAN

.

a for

5 .1

110 Mar 10

100

MULTIPHASE NOZZLE AND PLUME TRANSPORT COMPUTER PROGRAM

A Multiphase Nozzle and Plume Flow Field Characterization Model

Program Number H612

TABLE OF CONTENTS

l'ar

2 mg

Section		
B. 1	INTRODUCTION	2 89
В. 2	ANALYSIS, INTEGRATION METHOD, AND SUBROUTINE STRUCTURE	290
В.3	PROGRAM OVERLAY STRUCTURE	290
B.4	PROGRAM USER'S MANUAL	291
	a. TD2 Program Input b. TD2P Program Input c. TD2/TD2P Output Description d. SLINES Subprogram	291 296 298 303
B. 5	SAMPLE CASE	309

1

Preceding page blank

Appendix B

MULTRAN

MULTIPHASE NOZZLE AND PLUME TRANSPORT COMPUTER PROGRAM

A Multiphase Nozzle and Plume Flow Field Characterization Model

B. 1 INTRODUCTION

The computer program described in this appendix is a subprogram to the Plume Contamination Effects Prediction Computer Program, <u>CONTAM</u>, and performs the subsonic, transonic, and supersonic computations required to define the steady-state multiphase flow field within a rocket nozzle and exhaust plume. The <u>TCC</u> program (Appendix A) provides the input to <u>MULTRAN</u> in terms of quasi-steady values of dropiet distributions, and gas properties, averaged over specified portions of a transient engine pulse. The nozzle and plume flow field defined by <u>MULTRAN</u> provides the input data for the kinetics and condensation computation, <u>KINCON</u> (Appendix C), and subsequently for the deposition and surface efforts computations, <u>SURFACE</u> (Appendix D). <u>MULTRAN</u> may also be used as an independent computer program on any third generation computer with a core exceeding 135,000₈ words and a Fortran IV processor.

The MULTRAN program combines three previously independent programs:

a. <u>TD2</u>, Axisymmetric Two-Phase Perfect Gas Performance Computer Program (developed by TRW for NASA/MSFC, reference B-1)

b. <u>TD2P</u>, Axisymmetric Two-Phase Perfect Cas Plume Analysis Computer Program (developed by Dynamic Science and MDAC)

c. <u>SLINES</u>, Streamline Generation Computer Program (developed by MDAC)

(B-1) G. R. Nickerson and J. R. Kliegel. <u>Axisymmetric Two-Phase Perfect</u> <u>Gas Performance Program</u>, TRW Systems Report No. 02874-6006-R000, Vol. I and II, April 1967.

B.2 ANALYSIS, INTEGRATION METHOD, AND SUBROUTINE STRUCTURE

The axisymmetric two-phase analysis, numerical methods, and subroutine structure used in TD2, which also forms the basis for TD2P, is discussed in detail in Reference B-1 and will not be repeated here.

B.3 PROGRAM OVERLAY STRUCTURE

OVERLAY	OVERLAY	OVERLAY
OVERLAY (DFILE, 3, 0) TD2 FIND ZERØ ABCALC CCALC DCALC FCALC JAMES LEGS NEWT ØNED PARTIL PCALC PRØP TRACE WDGI NZMAIN CØNSTS N3MAIN WALL ACØMP ADJK AXIS PT CHECK CNTRL CRIT EFN ERRØR	OVERLAY (EFILE, 4, 0) TD2P ACØMP ADJK AXISPT CHECK CNTRL3 CRIT EFN ERRØR FIND KPBPTP NEXT PMEYER PRINT PTINT SUMPI SUMP2 TAFN	OVERLAY (XMGKS, 5, 0) XMGKS
FCALC JAMES LEGS NEWT ØNED	CRIT EFN ERRØR FIND KPBPTP	
PARTIL PCALC PRØP TRACE W DGI	NEXT PMEYER PRINT PTINT SUMPI	
NZMAIN CØNSTS N3MAIN WALL ACØMP	SUMP2 TAFN	
ADJK AXISPT CHECK CNTRL CRIT EFN		
ERRØR KPBPT PRINT PTINT SUMPI SUMP2 TAFN WLPT		

B.4 PROGRAM USER'S MANUAL

This program was developed on the CDC 6500 computer using the FORTRAN IV language. Conversion to another computer system should be straight forward provided sufficient core storage (135,000 words) is available. Program overlay extends two levels deep including the executive level, when used as a subprogram to <u>CONTAM</u>:

The description of the input to and output from the computer program is divided into the following four subsections:

B.4.a TD2 INPUT

B. 4. b TD2P INPUT

B. 4. c TD2/TD2P OUTPUT DESCRIPTION

B. 4. d SLINES Subprogram

A card listing for the complete input for the sample case is given in Subsection B. 5.

a. TD2 Program Input

The prcgram input for the Axisymmetric Two-Phase Perfect Gas Performance Subprogram <u>TD2</u> conforms to the I. B. M. NAMELIST format. All input items are read under control of the name \$DATA. The input items are divided into five types 1) Propellant Data, 2) Particle Data, 3) Inlet and Throat Parameters, 4) Characteristics mesh control data, 5) Nozzle Wall Contour Data.

For some input items, values are assumed by the program. These items need not be input to the program.

\$ DATA

(1) Propellant Data

Item Name	Input Quantity	Units
CAPN =	N, Viscosity temperature exponent.	none
CPG =	C _{gp} , specific heat of gas at constant pressure.	ft ² /sec ² °R
CPL =	$C_{P_{\theta}}$, particle heat capacity $(T_{p} > T_{p_{m}})$.	ft ² /sec ² °R
CPS =	C_{P_s} , particle heat capacity ($T_p < T_p$).	ft ² /sec ² °R
GAMMA =	γ , specific heat ratio, C_{g_p} / C_{V_v} .	none
GMG0 =	μ_{g_o} , chamber gas viscosity coefficient.	lb/ft sec
HPL =	$h_{p_{a}}$, liquid particle enthalpy ($T_{p} = T_{p_{m}}$).	ft^2sec^2
HPS =	h, solid particle enthalpy $(T_p = T_p)$.	ft^2/sec^2

Item Name	Input Quantity	Units
PC =	P, chamber pressure.	PSIA
PR =	P _r , Prandtl number.	none
RCAP =	R, gas constant.	ft ² /sec ² °R
SMP =	m _p , particle density.	lb/ft ³
TG0 =	T _g , chamber temperature	°R
TPM =	$T_{p_{m}}$, particle solidification temperature.	°R

(2) Particle Data

Item	Input Quantity	Units
R(1) =	r, the radius of each of n particles is to be input so that $r_{p_1} < r_{p_2} \dots < r_{p_n}$ set $r_{p_{n+1}} = 0$. n < 10 is required.	ft
WPWGT =	$\Sigma \dot{w}_{p_j} / \dot{w}_{g}$, ratio of particle to gas weight flow.	none
W PWT(1) =	$\dot{w}_{p_j}/\Sigma \dot{w}_{p_j}$, particle weight flow fractions corresponding to each of the above particle radii, r_{p_j} .	none

(3) Inlet and Throat Parameters (Figure B-1)

Item Name	Input Quantity	Units	Assumed Value
DZI =	Δz , particle trajectory integration step size.	none	0.002
DZMIN =	Δz_{\min} , inlet step size parameter.	none	0.002
NILP =	N _i , number of initial line points.	none	15
RRT =	R _c , throat radius of curvature. A value R _c >l is required.	none	

Item Name	Input Quantity	Units	Assumed Value
RT =	r*, throat radius.	ft	
SAUR(1) =	First estimates of x_0 , u_0 , α , β , and γ for the special throat expansion. Required only if $\theta_i > \theta_f$.	none	-0.15,1, 0.5,0.3, -1
THFD =	θ_{f} , faring angle ($\theta_{f} > \theta_{i} => \text{ no faring}$).	degrees	5.0
THID =	θ_i , inlet angle.	degrees	
THIW =	$\theta_{i_{uv}}$, intersection of initial line and wall.	degrees	12.0
THJD =	θ_{j} , angle defining the zone farthest downstream	degrees	9.0
VAR(1) =	First estimates of $x_0^{}$, $u_0^{}$, α , β , and γ for the zone farthest upstream	none	0.3,0,0, 0.1,0.1
ZAX =	^z axis, intersection of initial line and axis.	none	
ZI =	n, number of upstream zones.	none	3.0
ZJ =	n, number of downstream zones.	none	2.0
(4)	Characteristics Mesh Control Data		
Item Name	Input Quantity	Units	Assumed Value
DL =	Δl , maximum LRC mesh width.	none	0.2
DTWI =	$\Delta heta_{ m w}$, maximum flow angle change along the wall.	degrees	3.0
DR =	Δr , maximum RRC mesh width.	none	0.2
EW =	$\epsilon_{ m w}^{}$, end of nozzle wall criterion.	none	0.001
IMAX =	i _{max} , maximum number of iterations per mesh point.	none	5.0
N1 =	n_1 , select each n_1^{th} LRC for print.	none	1,000
N2 =	n ₂ , print each n ₂ th point on selected characteristics.	none	1.0

(5) No	zzle	Wall	Contour	Data
--------	------	------	---------	------

Item Name	Input Quantity	Units
IWALL =	Option flag.	none
	0=> tabular input	
	l=> cone	
	2=> circular arc	
	3=> parabola	
If the wall is	to be input in tabular form (IWALL = 0):	
PW(1) =	(r_i, z_i) , wall coordinates $i = 1, 2,, n$ points. viz.: $PW(1) = r_1, z_1, r_2, z_2,, r_n, z_n, 0, 0.$	none
	Note:	
	(a) always mark the end of the table with two zeros.	
	(b) $n \leq 79$ is required.	
If a cone, pa	rabola, or circular arc contour is to be specified then:	
THJW =	$\theta_{j_{w}}$, attachment angle for the contour; e.g., for a j_{w} cone, the conical half angle.	degrees
EPS =	ϵ , nozzle expansion ratio (cone only).	none
RWMAX =	r _{max} , nozzle exit radius (parabola or arc only.	none
ZWMAX =	z _{max} , nozzle length from throat to exit (parabola or arc only).	none
\$	END OF CASE.	

NOTE:

s p

A case is defined as the data included or implied between the \$DATA card and the \$ signifying the end of case. Whenever a value is input as data for a case, that value will remain set for succeeding cases until a new value is input. The values indicated as assumed by the program hold only until a different value is input. If more than one value is input for a given quantity within a case, the last value given will be used.

b. TD2P Program Input

The program input for the Axisymmetric Two-Phase Perfect Gas Plume Analysis computer subprogram is an extension of the input to the <u>TD2</u> computer subprogram. Input to the <u>TD2P</u> computer subprogram consists of a binary start tape ((TAPE 8) or an extend disc storage file (TAPE 8) generated by the <u>TD2</u> computer subprogram. The same NAMELIST data deck used for the <u>TD2</u> calculation must be used for the <u>TD2P</u> calculation and is read from TAPE 8 automatically. The following input items must be inserted into the data deck following the <u>TD2</u> data. Additional data for the TD2P subprogram is read under control of the name DATAP.

\$ DATAP

Item Na	me	Input Quantity	Units
РМА	=	θ_{PM} , The Prandtl-Meyer expansion angle to be used at the nozzle lip.	degrees
NPM	=	The number of Prandtl-Meyer points to be generated.	none
		NPM < 0 The maximum number (98-IP) of points will be generated,	
		NPM = 0 Points will be generated one degree apart unless less than 5 points would result.	
		NPM > 0 This number of points will be generated unless the maxi- mum would be exceeded. If the maximum would be exceeded, points are placed one degree apart unless this would again exceed the maxi- mum or would result in less than 5 points.	
ZMAX	Ξ	This item defines a cutoff plane for the calculations. The run will be terminated when an axis point is calculated located downstream of $Z = ZMAX$.	none
PCUT	Ξ	If a Pressure, Pg, is calculated such that the ratio P_g/P_{go} drops below this value, no more points will be calculated on the characteristic.	none

Item Name	Input Quantity	Units
NPLOT =	Flag for auxiliary radiation output on tape unit 9, (see Description of Program Output).	none
	NPLOT = 0 deletes this output.	
	NPLOT = 1 requests this output.	
AREA =	Flag for auxiliary force field output on tape unit 9. This item is also used to represent the frontal surface area of a body in the plume, (see Description of Program Output).	in. ²
	AREA = 0 deletes this output.	
	AREA > 0 requests this output e.g., AREA = 1.	
EMIS =	٤p, particle emissivity used for the radiation printout.	none
C1 =	C ₁ , force coefficient used for the force printout.	none
C2 =	C ₂ , force coefficient used for the force printout.	none

REMARKS

If the mesh width control items DL and DR have been input as part of the NAMELIST DATA deck, these items should be deleted for the plume calculation. The <u>TD2P</u> computer program will then assume large values for these variables and avoid the generation of many mesh points.

The last item printed at the end of a complete $\underline{TD2}$ calculation is the item IP = nm, where nm is number of points used along the last running characteristic. Reference should be made to this number to determine if sufficient space is available (98-IP) for the Prandtl-Meyer expansion.

The <u>TD2P</u> computer subprogram is not suitable for running consecutive cases.

c. <u>TD2/TD2P</u> Output Description

Program output may be viewed in detail by examining the sample case in Section B.5. The program output follows the sequence listed below:

For the one-dimensional inlet and the axisymmetric transonic throat calculations

(1) The values k and \dot{m}_{g} for gas-particle equilibrium.

(2) Initial and final conditions for the one-dimensional inlet integration.

(3) Converged values for x_0 , u_0 , α , β , γ and f_1 , f_2 , f_3 , f_4 , f_5 for each transonic flow zone.

(4) The corrected estimate for k, corrected values for x_0 , u_0 , α , β , and γ in the transonic zone containing the initial supersonic data line, corrected values for \dot{m}_g and \dot{m}_{p_i} .

(5) Items 2, 3, and 4 are iterated twice.

(6) The gas-particle flow properties P_g , ρ_g , u_g , v_g , r, z, h_{p_j} , ρ_{p_j} , u_{p_j} and v_{p_j} along the initial supersonic data line.

For the supersonic method of characteristics calculations for the nozzle and plume, printout may occur after the completion of each mesh point calculation. Points for print are selected as follows:

The following points are always printed:

axis points.

Kth particle boundary points.

initial line points.

wall points.

Interior points are selected for print only along every n_1^{th} left running characteristic and only at every n_2^{th} position along these characteristics.

Inserted points are printed if all points are to be printed $(n_1 = n_2 = 1)$.

The items printed are listed below in the order they appear, left to right, on the output sheet. A header is printed for identification purposes above each characteristic.

Row	/ O	n	e	:	
			_		

Item	Header	Meaning	Units
LRC number	LRC	Left running characteristic number.	none
Ident. number	ID	Type of point (see below).	none
r	R	r position coordinate.	none
Z	Z	z position coordinate.	none
М	MACH	Mach number,	none
Τg	TG	Gas temperature.	° R
Vg	VG	Gas velocity (scalar).	ft/sec
θg	THETA-G	Streamline angle	degrees
Tg/Tgo	TG/TG0	Ratio of gas temperature to chamber temperature.	none
Pg/Pgo	PG/PG0	Ratio of gas pressure to chamber pressure.	none
ρ _g /ρ _{gο}	DG/DG0	Ratio of gas density to chamber density.	none
^k ρ _{pj} /ρg	SDK/DG	Ratio of total particle density to gas density.	none
C _F	CF	Thrust coefficient.	none
Isp	ISP	Specific impulse.	sec,
interaction no.	IT	Number of interactions required.	none

Rows Two through K+1

A row is printed for each particle size, $k=1, \ldots, K$.

Item	Header	Meaning	Units
k	К	Particle size number.	none
Rek	REK	Particle Reynolds number	none
V _{pk}	VPK	Particle velocity (scalar).	ft/sec

Item	Header	Meaning	Units
θ_{p_k}	THETA-K	Particle streamline angle,	degrees
Τ _{pk}	ТРК	Particle temperature,	° R
ρ _{pk} /ρ _g	DPK/DG	Ratio of particle density to gas density.	none
° _{₽k} ′° _{₽o}	DPK/DP0	Ratio of particle density to chamber particle density.	none
r _{pk}	RPK	Particle radius	ft

d. Additional Output

Table B-1 illustrates additional output options as discussed below.

(1) Force Field Print

If the force field auxiliary output is requested (AREA > 0) the following items will be computed and written on tape unit 9.

	Item	Units
F _g =	$\frac{C_1 A}{144g} \frac{\gamma}{2} P_g M^2$	^{1b}f
F _{pk} =	$\frac{C_2 A}{144g} \rho_{p_k} V_{p_k}^2$	^{1b}f

$$F_{p} = \sum_{k=1}^{k} F_{p_{k}} \qquad lb_{f}$$

The quantities C_1 and C_2 (which are nondimensional force coefficients) and A (which is surface area in square inches) are input as C_1 , C_2 , and AREA.

(2) Radiation Print

If the radiation auxiliary output is requested (NPLO(T = 1) the following items will be computed and written on tape unit 9.

Table B-I, OPTIONAL OUTPUT-RADIATION AND FORCEFIELD PROPERTIES

1.7

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	20000000000000000000000000000000000000	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
11 10 10 10 10 10 10 10 10 10	80.376 976.9376 976.9376 976.9376 97.184 97.	200 370 971 972 9737 972 972 972 972 972 972 972 972 972 97	14.97] 29.37(29.37(29.37(29.37(29.37(29.37(29.37(29.37(29.37(29.37(29.37(20
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4844 4944 4944 4944 4944 4944 4944 4944	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
11111111111111111111111111111111111111	255.45 555.45 57.42 53.60 54.60 53.60 54.60 54.60 54.60 54.60 54.60 54.60 54.60 54.60 54.60 54.60 54.60 54.60 54.70 54.60 54.60 54.60 54.60 54.60 54.7	225 25 25 25 25 25 25 25 25 25 25 25 25	19.13 50.39 52.43 94.37 12.10 12.10
() PK () PK(17826 111205 106855 106855 106855 106855 106855 106855 106855 10085 100555 100	29315 06459 06455 6009 9257 1600 1600 1911	51056 06459 06459 005459 002571 092571 12537
95 - 42 - 42 - 42 - 42 - 42 - 42 - 42 - 4	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34.51 24.51 60.14 10.14 16.52
	10 K ト ト ト ト ユ 0 C C C C C C C C C C C C C C C C C C C	日本 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NP 16736 15426 11152 11152 11152 11152 11152 11155 11786 51356 51356	0 0 0 0 0 0 0 0 0 0 0 0 0 0	31599 131599 131539 133512 505 13352 32782 32782	07795 32293 17995 17995 12560 504 504
011111 011111 01111 01111 01111 01111 0111 0111 0111 01111 01111 01111 011111 011111 011	1015 1015 1015 1015 1015 1015 1015 1015	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	N 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1	N 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FP FP FP FP FP FP FP FP FP FP	17008 13306 13306 140336 140333 140333 14034 12335 125 125 125	4 4 4 4 4 4 4 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 5 6 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	20583 72745 72745 75745 75172 75172 70120 70120
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2010-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
インロックシーヌ 「			
- 	- 1 - - 	с П П	- 11 rd
	. 1674	• • 7 2	
ົ້າ	- - -	-0 [-	,
~		1 1	
•	5. 75 ·	4 5 1 1 1	
	*	4 12	4
	7	7	3

NOT REPRODUCIBLE

Item	Header	Meaning	Units
Row 1:			
LRC number	LRC	Left characteristic number.	none
Ident, number	ID	Identification code.	none
r	R	r, radial çoordinate	none
z	Z	z, axial coordinate	none
Rows 1 through k	max (i.e., for	each particle size k = 1,	k _{max}):
N _{Pk}	NPK	Particle number density	number of particles/ft ³
9 1	RAD PK		BTU/sec
q ₂	RAD BAR PK		BTU-number of particles/sec
$\bar{\mathtt{T}}^4_{\mathtt{p}_k}$	TPK 4		°R ⁴
Row $k_{max} + 1$: \overline{T}_{p}^{4} where:	TBAR 4	Effective particle temperature	°R ⁴

$$N_{p_{k}} = \frac{\rho_{p_{k}}}{\frac{4}{3} \pi r_{p_{k}}^{3} m_{p}}$$

$$q_{1} = \epsilon_{p} \sigma T_{p_{k}}^{4} r_{p_{k}}^{2}$$

$$q_{2} = \epsilon_{p} \sigma T_{p_{k}}^{4} r_{p_{k}}^{2} N_{p_{k}}$$

$$\sigma = 0.475834 \times 10^{-12} BTU/ft^{2} - sec - R^{4}$$

$$\overline{T}_{p}^{4} = \frac{\sum_{k=1}^{n} T_{p_{k}}^{4} N_{p_{k}} r_{p_{k}}^{2}}{\sum_{k=1}^{k} N_{p_{k}} r_{p_{k}}^{2}}$$

d. <u>SLINES</u> Subprogram

Þ

This computer subprogram, <u>SLINES</u>, was developed to provide the necessary interface between the <u>TD2</u> and <u>TD2P</u> subprograms and the <u>KINCON</u> subprogram. Basically, the program interpolates from data points on the characteristic lines (<u>TD2</u> and <u>TD2P</u> results) to determine points of constant percentage of mass flow running through the throat, nozzle, and plume.

Subsection (1) lists the program variables FORTRAN names, symbols, and definitions. Subsection (2) discusses the program logic interpolation equations and editing technique. Subsection (3) provides the user with the necessary operating information. Subsection B.5 provides input and output for a sample case of the MULTRAN program, which includes the output from SLINES (last portion).

(1) FORTRAN Variables

The FORTRAN names given are the names used throughout the program. The symbols are used in the text of this document.

FORTRAN NAME	SYMBOL	DEFINITION
Z	Z	The axial distance of a point on a stream- line.
R	R	The radial distance of a point on a streamline.
P	Р	The pressure at a point on a streamline.
S ·	S	The distance from the initial point on a streamline to a given point on a stream- line.
Т	Т	The temperature at a point on a stream- line.
V	V	The velocity of the gas at a point on a streamline.
KD	i	The i th point along a streamline. (l≤i≤n)
JD	n	The total number of points along a stream- line before editing.
ID	j	The streamline identification number. $(1 \le j \le m)$
NSL	m	The total number of streamlines.
K	k	A given point on a characteristic line. $(1 \le k \le NPTS)$

FORTRAN NAME	SYMBOL	DEFINITION
NPTS	-	Total number of points on a given characteristic line.
N	N	The number of points on a streamline in the throat only.
PCM	η	The percentage of normalized integrated total mass pertaining to the point on a characteristic line.
PCS	£	The percentage of normalized integrated total mass criteria for a streamline.
Z, R, P, S, T, V ZMGKS, RMGKS, PMGKS, TMGKS, VMGKS	Х	The class of parameters pertaining to the properties of a point on a streamline or characteristic line. Each parameter is defined elsewhere in this glossary.
DSK	ΔS	The streamline distance criteria used in editing.
SX	s ^{np}	The distance of the streamline from the supersonic start line through the nozzle and plume.
SID	-	The name of the namelist through which the user input data is provided.
ΤΦΤΜ	-	The integrated total mass along a characteristic line.
ZMGKS	-	The axial distance at a point on a characteristic line.
RMGKS	-	The radial distance at a point on a characteristic line.
PMGKS	-	The pressure at a point on a characteristic line.
TMGKS	-	The temperature at a point on a characteristic line.
ZINIT	-	The distance of the initial point on a streamline (ZINIT = S (j, 1) = 0).
PINIT	-	The pressure at the initial point of a streamline.

FORTRAN NAME	SYMBOL	DEFINITION
TINIT	-	The temperature at the initial point of a streamline.
VINIT	-	The gas velocity at the initial point of a streamline.
MGKSK	-	The total number of points on a stream- line after editing,
EXIT	-	The streamline distance of the last point on a streamline [EXIT = S(j, MGKSK)].

(2) Program Description

The program runs on the CDC 6500 computer system. It is written in FORTRAN IV and requires a field length less than 40,000g. A nominal case providing ten streamlines will require less than 7 central processor seconds and less than 20 peripheral processor seconds to execute.

The program includes five distinct functions:

- 1. Input
- 2. Streamline Location
- 3. Data Interpolation
- 4. Data Editing
- 5. Output

Each function is discussed in the subsequent paragraphs.

(a) Data Input

Two sources are required for data input: cards via NAME-LIST which is user data allowing the program to know how many streamlines are desired and the percent mass flowing within a torroid bounded by each streamline; and logical file TAPE 12 (tape or disc) which provides the program with data from the <u>TD2</u> and <u>TD2P</u> subprograms on which to operate.

The data from the TD2 and TD2P subprograms consists of two records for each characteristic line. The first record tells how many points are on the characteristic line and the total integrated mass associated with the characteristic line. The second record contains the data designating the location, pressure and percentage of the normalized integrated total mass for each point on the characteristic line. The first requirements of the program is to provide initial temperature and velocity properties of each streamline. Therefore, the initial characteristic line has an additional record of data associated with it which gives the temperature and velocity properties associated with each point on the initial characteristic line. This record follows the first two records, in order. The last record of both the TD2 and the TD2P subprograms contain a one word, negative number, record. This permits the program to know when there are no more characteristic lines provided by the respective programs.

(b) Streamline Location

The definition of a streamline is that line which runs through the throat, nozzle, and plume bounding a given constant percentage of the mass flow between it and the nozzle axis.

There are a discrete number of points on a characteristic line. The properties at any point usually will not meet the criteria for a point on the desired streamline, therefore, interpolation must be performed between the two input data points which bound the desired point on the streamline in order to obtain the necessary properties (location and pressure) on the streamline.

The initial point, with regard to distance along a streamline, is designated as the interpolated point on the initial TD2 subsonic start line. Each subsequent streamline point has a distance corresponding to:

$$S_{i} = S_{i-1} + \left[(Z_{i} - Z_{i-1})^{2} + (R_{i} - R_{i-1})^{2} \right]^{1/2}$$

where

S = the distance along the streamline

Z = axial distance along the streamline

R = radial distance along the streamline

 $i = the i^{th}$ point along the streamline $(1 \le i \le n)$

n = the total number of points along the streamline

As previously stated, $S_1 = 0$.

(c) Data Interpolation

Linear interpolation is used to locate a streamline point as follows:

$$X_{ji} = X_{k-1} + \left[\frac{\epsilon_{j} - \eta_{k-1}}{\eta_{k} - \eta_{k-1}}\right] \left[X_{k} - X_{k-1}\right]$$

where:

Y

- X = the required streamline property (location, pressure, mass, etc.)
- the percentage of normalized integrated total mass criteria for
 the streamline
- k = the point on the characteristic line having the greater value and bounding the streamline value
- k-1 = the point on the characteristic line having the lesser value and bounding the streamline value
 - $i = the i^{th}$ point along the streamline $(l \le i \le n)$
 - n = the total number of points along the streamline
 - j = the streamline identification number $(1 \le j \le m)$
 - m = the total number of streamlines
 - (d) Data Editing

There exists two reasons for editing the streamline data

before output:

- 1. Due to the change in the nature of the characteristic lines at the supersonic start line in conjunction with the logic used previously in the program, there exists a redundant point along the axis streamline at the supersonic start line. This redundant point must be removed.
- 2. The <u>KINCON</u> program will accept a maximum of 101 data points for each streamline.

To locate the redundant point along the axial streamline, the points along that streamline are searched until two points are found which have no separation distance. The redundant point and its associated properties are removed from that streamline. In addition, the location of that point provides information as to the location of the supersonic start line and the number of points in the throat, along the streamline, which will be required for use in subsequent editing.

It is desirable that each point and its relevant properties along each streamline in the throat be provided as input to the <u>KINCON</u> program. Therefore these data are not edited. The remaining points along the streamline, in the nozzle and plume, must be edited by some criteria which will limit the total number of points along the streamline to not more than 101. The criteria chosen is such that each point (exclusive of the last two points) in the nozzle and plume shall be separated by at least some distance determined by:

$$\Delta S_{j} = \frac{S_{j}^{np}}{100 - N_{j}}$$

where

 ΔS = the distance criteria for editing

- S^{np} = the distance of the streamline from the supersonic start line through the nozzle and plume
 - N = the number of points along the streamline through the throat to the supersonic start line
 - j = the streamline identification number

The last point along the streamline is always made available for output regardless of its distance from the previous point.

(e) Output

The output of this program is both printed and written onto a logical file (TAPE 8). The printed output is provided for the scrutiny of the user. The TAPE 8 file output is for use as input to the <u>KINCON</u> program. The written data contains only that information which is necessary for the operation of the <u>KINCON</u> program. The printed output provides the same data as the TAPE 8 file output but also contains other pertinent data which allows the user to determine the validity of the data. A sample of the printed output may be found in Subsection B. 5.

(3) Program User's Manual

Input to the computer program is divided into two subsections:

(a) NAMELIST/SID

(b) Logical File

Written output from the computer program is on logical file unit number 8. The sample case provided in Subsection B. 5 details the loadsheet for the NAMELIST card, and computer output.

(a) NAMELIST/SID

The NAMELIST feature permits the input of parameters without a format specification. The NAMELIST/SID contains two parameters:

- 1. NSL; the number of streamlines for which the program is to provide data.
- 2. PCS; an array of up to ten mass % values which provide the criteria for the streamline definition. The variable NSL determines the number of values which must be input.

The two permissible formats for PCS are:

- 1. PCS(1) = a, b, c,, j where a through j are the quantities corresponding to the PCS criteria.
- 2. PCS(2) = b, PCS(1) = a, PCS(4) = d, PCS(5) = e, PCS(7) = g, PCS(3) = c, and so on.
 - (b) Logical Files

The logical file input may be either tape or disc file. The unit number for the logical file is 12. This means that the logical file name used on the REQUEST or ATTACH card must be TAPE 12. The data on the logical file is provided from the <u>TD2</u> and <u>TD2P</u> programs. The data is binary (unformatted).

B. 5 SAMPLE CASE

Included in the section are the computer input and output for a sample case using the <u>MULTRAN</u> program as an independent program. The subprograms to <u>MULTRAN</u>, which are called sequentially are <u>TD2</u>, <u>TD2P</u> and <u>SLINES</u>. The use of MULTRAN as a subprogram to <u>CONTAM</u> for the analysis of contaminant transport is illustrated in Section 4 at the main text. To illustrated the use of <u>MULTRAN</u> as an independent program for other than bipropellant contaminant transport analysis, the sample case in this section is for a solid rocket motor nozzle and plume.

(B-2) H. H. Radke, L. J. Delaney, and Lt. P. Smith. <u>Exhaust Particle</u> <u>Size Data from Small and Large Solid Rocket Motors</u>. San Bernardino Operations, Aerospace Corporation, Report No. TOR-1001 (S2951-18)-3, July, 1967. The calculation is performed for a typical solid propellant engine operating at a chamber pressure of 2, 250 psia whose exhaust contains 13.6% Al_2O_3 by weight. The particle size distribution was obtained from experimental data of Radke, Delaney and Smith (Reference B-2). Six particle sizes are assumed with radius yielding weight flows as follows:

Particle Size (ft x 10^6)	Weight Fraction of Total Particles
4, 92	0.0214
9.84	0. 1180
16, 32	0, 2390
22,90	0.3260
29.40	0.2344
36.20	0.0612
	1,0000

A complete set of Control Cards and Data Cards for the sample case are listed proceeding the sample case. The use of the LIBLIST system routine is illustrated in Table B-II, showing the control cards which allows the user to select the appropriate overlay structure for a particular case, thereby reducing core requirements (in this case from 220,000 for the complete <u>CONTAM</u> program, to 135,000 for <u>MULTRAN</u>)

Table B-II. MULTRAN SAMPLE CASE OUTPUT

Ì

いっていたいたいで、 いっていたいの

1. Store

CATALOG OF . ILE LG1

RECORD	ND.	LEVEL N OCTAL	0, LE <u>DECIMAL</u>	NGTH OCTAL(B)	PACKAGE	CHKSUM
	1	< CARD	TMAGE><0V	ERLAY	LE.0.0) >	
	2	0	348	534	H612	5203
	5	<card.< th=""><th>1MAGE>COV</th><th>FRLAYICFI</th><th>LE.2.0) ></th><th></th></card.<>	1MAGE>COV	FRLAYICFI	LE.2.0) >	
	Ă	0	46	56	DUH2	4404
	, R	CARD.	THACESCOV	ERIAVEDETI	E.3.01)	
	ź	10460	044	1704	tn2	1730
			4.425	2621		5026
	6	0	4074	2892		7452
		0	47	607E 74		1944
		U	86	1021	NEMAIN	4200
	10	U	227	1021	UNED	55
	11	0	311	40/	JAWE2	2102
	12				PHOP	9412
	13	n	128	200	FIND	2045
	14	α	100	243	MDG1	9423
	15	Q	482	745	STRMLN	4042
	16	0	326	206	TRACE	2610
	17	0	41	51	NJMAIN	4126
_	18		840	1510	GNTRL	5066
	19	0	292	444	NEWT	6600
	20	0	424	650	FCALC	1425
	21	0	246	366	CONSTS	2663
	22	ŋ	263	407	WALL	3162
	23	0	448	700	PRINT	3772
	24	ŋ	1307	2433	PTINT	5115
	25	0	242	362	ERROR	2410
	26	n	640	1200	AXISPT	1063
	27	n	422	646	WLPT	1776
•	28	ň	1434	2632	KPBPT	4263
	20	ñ	673	1241	LEGS	3540
	30	ñ	219	333	ABCALC	1711
	34	ň	489	751	CCALC	1305
	32	ň	36	44	DCALC	752
	33	n	1292	2414	PCALC	5746
	74	0	181	245	ACOMP	1200
	35	.,	107	153	SUMPA	4267
	74	.,	50	73	TAEN	1476
	10	.0	00	143	EEN	3303
	7.0		70	417	PUECK	6143
	30	0	55	<u> </u>		6446
	39	',		477		7744
	40	1	12/	1//	AUJN BUNGB	2421
	41	0.00	144	1/6	30772	2=23
	92	KUARD	IMAGESCU	VERGATIEFI	LE14107 2	
	43	0	829	14/5	1029	6221
	44	0	624	1160	CNIKLS	/300
	45	n	323	>03	PMEYER	6/6

• 4	•	4 4 8	900	BD T N T	2972
10 	u .	440	700		4842
47	n	402		21KUTU	4042
98	ņ	540	1.0	AXISPT	1003
9	n	242	302	ERRUR	2410
ספ	D	1388	2004	KPBPTP	2922
51	0	1307	2433	PTINT	2112
52	Ô	38	46	NEXT	5473
53	0	55	67	CRIT	6146
54	0	181	265	ACOMP	1200
5 5	0	107	153	SUMP1	4267
56	n	59	73	TAFN	1476
57	0	99	143	EFN	3303
58	Ō	79	117	CHECK	6143
59	ò	127	177	ADJK	7316
61	ō	122	172	SUMP2	2423
61	0	128	200	FIND	2045
62	∠CĂRD	TMAGESCOVE	RLAVEXMGK	5.5.0)	
47		407	1271	YMGKS	5713
60 6 A	ACADD.	THICENCOVE		E A AL	
4 H 4 H	NOARD	IMAGE/SUVE		CODEEN	4305
0 J	U O	41/	455	JUNCEN CPE	7705
00	1	104	122		27305
07	0	293	442	511	2012
08	a	129	201	APPRUX	04/
59	ŋ	120	200	FIND	2042
70	Q	73	111	STOICC	430/
71	0	93	135	SPLN	6613
72	ŋ	119	167	DRIVER	2407
73	0	72	110	AF073C	2034
74	< CARD	IMAGE> <ov6< th=""><th>ERLAY(FFIL</th><th>E1611) ></th><th></th></ov6<>	ERLAY(FFIL	E1611) >	
75	0	48	60	LINK10	3673
76	0	573	1075	TTAPE	2507
77	n	142	216	COLOUT	4242
78	<card.< th=""><th>IMAGE><0V</th><th>ERLAY(FFIL</th><th>E,6,2) ></th><th></th></card.<>	IMAGE><0V	ERLAY(FFIL	E,6,2) >	
79	0	48	60	LINK20	4316
80	Ó	1322	2452	INPUT	7270
81	0	1085	2075	SPRXIN	2545
82	n	274	422	ECNV	4014
83	ō	84	124	NUMBER	6521
84	<card.< th=""><th>TMAGESCOV</th><th>ERLAY</th><th>E.6.3) ></th><th></th></card.<>	TMAGESCOV	ERLAY	E.6.3) >	
AK	0	48	60	LINK30	7777
86	ň	474	732	STESET	757
87	ZCARD.	THAGESCOV	ERI AV (FETI	F.6.41 >	
88		48	A0	I INKA1	4625
80	0	488	750	PACK1P	6516
96	0	200	453	CONVET	6407
0.4	0	455	707	DDCC	1213
	U O	474	1242	ADDETT	5561
0.7	0	×07	1126	SIP	2727
¥3	0	57/	43		1022
74	40 A D D	24	COLAVIET		# V 6 6
70	CUARD	IMAGERCUV	526414FF11		
	п	40			וערים

37

....

CONTROL CARD AND DATA LISTING

			· · · · · · · · · · · · · · · · · · ·
HA12.2.1500.800 600.120	00.435000		
TO UNFEMAN A	011102000	3 0615780010	
PERUEST CONTAMANY	/144403	<u> </u>	
REQUESITIONTAMINTT REQUEST TARES, MY	100000000 1140403		
REQUESTING STATES	(HEDERAC)		194
			-
COPYDE (CUNTAMITACEN)			
CUPTER (CONTAMAUCONT)			
	······································		
768198(18869) Relindate			
MERIND(ULUMI)			
NF 1 4000			
HPDATE/Paucosts			
BUNKE, 1004 COMPLIEN			·····
ADV/211001100001761			
REN 400			
		1 0 mm Am	· · · · · · · · · · · · · · · · · · ·
PORVLIRA LCO.RELN			
PELIND/ICIN			
9670096			
REL .115000			
AFTLE.			
REWINDITAPERN		· · · · · · · · · · · · · · · · · · ·	······································
COPYCE (TAPES, OUTPUT)			
RETURN(TAPE9)			
EXIT.			
REWIND(TAPE9)			
COPYCE (TAPE9, OUTPUT)			
RETURN(TAPE9)			· · · · · · · · · · · · · · · · · · ·
•			
IDENT, SEPT14			
+DELETE, TD2, 134	delenses on her her providence in the second sec		
CALL MAXTPINPG, N	PPS, NCPS, N4, N5)		
DELETE, TD2, 164			
CALL MAXTP (NPG, N	PPS, NCPS, N4, N5)		
<pre>DELETE, TD2P, 91</pre>			
CALL HAXTPINPG.N	PPS, NCPS, N4, N5)	constants and an distribution of the distribut	
DELETE, TD2P, 127			
CALL MAXTPINPG,N	PPSINCPSIN4,N5)		
ADELETE, XMGKS, 10	-		
CALL MAXTPINPG,N	PPS, NCPS, N4, N5)		
•DELETE, XMGKS, 134			
CALL MAXTPENPGIN	PPS, NCPS, N4, N5)		

•DELE	TESC	REEN. 67			
•	CALL	MAAIPANP	GINFPSI	~UP31041021	
OVERL	AYCAF	1LF,0,0)			

 $(\hat{a}_i)_i$

n pi

NOR

10 m

AC UP WITH TPL TO
612
VERLAY(CFILE,2,0)
UM2
VERLAY(DFILE,3,0)
D2
LKDATA
VERLAY(EFILF,4,0)
D2P
VERLAY(XMGKS,5,0)

XMGKS
DVERLAY(FFILE,6,0)
SCREEN
SICIU
SPLN
OVERLAY (FFILE, 6, 1)
LINK10
OVERLAY(FFILE,6,2)
LINK20
OVERLAY(FFILE,6,3)
LINKSO
OVERLAY(FF1LF,6,4)
OVERIAY(FEILE.6.5)
11842
DIERCHITTEICEICE
SNUASE [LASTEI]
SIPATH NUZZLETT/PLUMETT/SGINESTS
SDATA CAPNED,6, CPG=15750,0, CPL=8500,0, CPS=6700,0, GAMMA#1,210,
QMG0=5,08E=5, HPL=4,03606E7, HPS=2,78606E7, PR=0,822, RCAP=1917,0,
 PC=2250.0, TGD=6250.0,
SMP=250.0, TPM=4170.0,
R(1)#4,92E-6,9,84E+6,16,32E+6,22,9E-6,29,4E+6,36,2E+6, C,N,
WPWGT=0,136,
WPwT(1)=0.0214.0.1180.0.2390.0.3260.0.2344.0.0612.
RRT=2,5,
RT#0.697.

and the shift call

ないのであるというのでいたのです

. .

ZAX=0,8, N1=5, IWALL=1, THJW=21,0, EPS=7,44, THID=30,0, NTAPE=8 % SDATAP PMA=50,0, NPM==1, ZMAX=80,0, PCUT=0,00653, NPLOT=1. N1=5, AREA=1.0, EMIS=0.3, C1=1.0, C2=1.0, DL=5.0,DR=5.0 % SSID NSL=5,PCS(1)=0.0,PCS(2)=0,2,PCS(3)=0.4,PCS(4)=0,6,PCS(5)=0.8 %

316

and a construction of a factor of the second of the

		TD2 (NOZZLE - NANELIST/DATA PRINTOUT
DĂPN		0,66+00,
CPL		0,85E+04,
CPS	-8	D.67E+04,
PR		0,622E+00,
DL		0,2E+00,
DB	Ē	0,2E+00,
DTWI	•	0,3E+01,
EW	E	0,1=02,
FA	ŗ	D,0; 0,0; 0,1E+01; 0,125E+01; 0,1E+01; 0,1255E+01; 0,1E+01; 0,126E+01; 0,1001E+01; 0,1265E+01; 0,1002E+01; 0,1582E+01; 0.1063E+01; 0,1995E+01; 0,1141E+01; 0,251E+01; 0,1224E+01;
		0,316E+01, 0,1315E+01, 0,398E+01, 0,1412E+01, 0,501E+01, 0,1517E+01, 0,631E+01, 0,1625E+01, 0,795E+01, 0,1745E+01, 0,1E+02, 0,1874E+01, 0,126E+02, 0,2026E+01, 0,1582E+02, 0,2186E+01, 0,1995E+02, 0,2364E+01, 0,251E+02, 0,2555E+01, 0,316E+02, 0,276E+01, 0,398E+02, 0,3E+01, 0,501E+02, 0,3252E+01, 0,631E+02, 0,3534E+01, 0,795E+02, 0,3825E+01, 0,18+03, 0,4155E+01, 0,316E+02, 0,795E+01, 0,15+04, 0,2E+02,
•		0,1001E+04, 0,2002E+02, 0,1E+06, 0,2E+04; 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0
GAMMA		0,121E+01,
GMGQ	۹	0,\$08E=04,
HPL	•	Q,403606E+08,
HPS		0,278606E+08,
_IMAX	Ņ	5,
N1	4	5,
N2	•	1.

317

A CONTRACTOR OF A CONTRACTOR O

```
PC.

    0,225E+04,

                             0,0,
0.0,
9,0,
0,0,
0,0,
                                       0.0,
0.0,
0.0,
0.0,
0.0,
                                                 0.0,
0.0,
0.0,
0.0,
                                                                     0.U,
0.U,
0.U,
0.0,
0.0,
0.0,
                   u.0.
                                                                                0.0,
0.0,
0.0.
                                                                                         L,0;
0,0;
0,0;
0,0;
                                                                                                             0.0.
0.0.
0.0.
0.0.
                                                                                                                       0.0,
0.0,
0.0,
0.0,
_.!! \
                                                           0,0,
0,0,
0,0,
              0.0,
                                                                                0.0,
                   0.0.
                                                                                                   0,0,
                   0,0,
                                                                                                   0.0,
                                                 0,0,
0,0,
0,0,
0,0,
                                                                                0.0,
0.0,
0.0,
0.0,
0.0,
                                       0.0,
0.0,
0.0,
                   0,0,
                             0,0,
                                                                                          0,0,
                                                                                                   0,0,
                                                                                                             0.0.
                                                                                                                        0.0.
                                                                     0.0,
0,0,
0,0,
0.0,
0.0,
0.0,
0.0,
0,0,
                             0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
                                                                                         0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
                   0.0,
0.0,
0.0,
                                                                                                   0.0,
                                                                                                             0.0,
                                                                                                                        0,0,
                                                                                                             0.0.
                                                                                                   0.0,
0.0,
0.0,
0.0,
                                                                                                                        0.0,
                                       Ů.0,
0.0,
                                                                                                                        0.0,
                   0.0,
                                                                                                                        0.0,
                                                 0,0,
                                                 0.0,
                                                                                0.0,
                                        0.0.
                   0.0,
0.0,
0.0,
                                       0.0.
                                                                                                   0,0,
                                                                                                                        0.0,
                              0,0,
                                       0.0,
                                                 0.0,
                                                           0.0,
                                                                                0.0.
                                                                                          0,0,
                                                                                                   0.0,
                                                                                                             0.0.
                                                                                                                        0.0.
. .
       .....
                                                           0,0,
                                                                                0.0.
                   0,4928=05,
0,3628=04,
                                       0,984E=05,
0,0, 0,0,
                                                           0,1632E=04,
0,0, 0,0,
 R
                                                                                 0,2296-04, 0,2946-04,
              RCAP
               E 0,1917E+04,
 RHOPO
              . 0.0,
SMP
                   0,256+03,
               .190
                   0,025E+04,
              .
 TPH
                   0,417E+04,
               CPG
               0,1575E+05;
               s .15,
_NILP
 THID
               = 0,3E+02,
                   U.214E=01,
0.612E=01,
 WPWT
                                       0,118E+00, 0,239E+00,
0,0, 0,0, 0,0, 0,0,
               0,326F+00, 0,2344E+00,
 RT.
                   0.697E+00.
               RRT
                   0.25E+01,
               .
                   0,136E+00,
 WPWGT
               •
DZMIN
                   0,2E=02,
               _1FQ
                   Ο,
               TMD
T
               .
                   0,10+04,
```

.

•

24

ZAX ∎ 0,8E+00, Z 1 ZJ = 0,2E+01, ■ 0,2E+02, DZI IORDER = 3. SOHCON = 0,0, 15¥1 = 0, 1542 . 0, ISW3 = Q, VAR # 0,3E+00, 0,0, 0,0, 0,1E+00, 0,1E+00, 0,0, ELAG = 0.0, THJD = 0,9E+01, SAUR = =0,15E+00, 0,1E+01, 0,5E+00, 0,3E+00, =0,1E+01, 0,0, EPS = 0,744E+01, RWMAX = 0,0, 1WALL = 1, THIN = 0,12E+02, THUN # 0,21E+02, NTAPE # 8, SEND
BEGINING OF THO PHASE NOZZLE PROGILAM

PP TIME = 200.557 CP TIME = 33.945

ł

GAS-PARTICLE FLOW (THROAT)

EQUILIBRIUM CONDITIONS. WDG= 3332,513 K BARF1,1928711 •

,

ONE DIMENSIONAL FLOM

.0= =4,715	•	MAX= =2.6	6987	STEP	s]26=	00200	=0n	423,346	TP10=	6243,979	= D =	9,0928	
	000	A/AT= 1. 186,164 192,766 198,249	91000 973 897		UG# 141	61 44 455	UP(1) 330,710 219,674	TP(1) 6189,122 6195,915 6200,179		K(1) 93913 86077 80965	L(1) 92071 81797 75349	1=1,	•
TERATJON NI	M H H H H H H H H H H H H H H H H H H H	ю	ee et (V 10 4 K)	>40009 	AR(1) 296234E 000006E 352446E 0992446E 3840756		8,15(1) 8,15(1) 1,195(3095) 1,195(3020 2,197(395) 5,1295(2) 5,1205(2) 5,1205	0000 00000 00000 00000 00000	NEXT	2 PAGES OM	II TTED		
TERATION N	UMBER	ю		200400 90000	4 R (1) 4 1 3 4 4 5 1 9 4 4 2 1 8 5 4 4 5 1 3 6 5 4 2 5 5 6 1 1 6 2 5 5 9 6 2 6 1 1 6 2 5 5 9 1 1 6 2 5 5 9 1 1 7 1 1 1 7 1 1 1 7 1 1 1 1		F(1) 41,313870 41,3020870 91,943216 91,943216						
JERATION N	UMÞER	ы		- แต่งง -	48(1) 9924866 30924906 3692476 17963476 1423966		4 4 576321 4 4576321 7 103555321 1 1 1 70335533 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 9660 1660 100 100 100 100 100 100 100 100					
TERATION N	UMBER	ю.	⊷ 41 08 M 4 10	>40044	AR(1) 1812566 8927066 85144946 8510396 0984456	NATAA	F(1) 2,623580 4,523580 4,387565 0	06=07 26=07 36=08					

1918 1

·

E

	3	4 95394445-01	-1 3017406E-00	5
	5	=5,8361681F=01	610,30125E+00	5
ITERATION NUMBER	4 1	VAR(]) =4,6130382E=D1 1,3437841E+D1	F(1) 2,1752895E+08 =1,4953303E+07	3 7
	4	=3,7311429E=02	=2_3196490E+07	7
< BAR#1,1924398	ĕ	-4,4051143E=01	+4 7520581E = 07	7
ITERATION NUMBER	n t	VARITY	6713	
fimmelan naummu	1	-4,6130382Ee01	=9_8154769E=08	3
	2	1,3437841E+DU	=9 P016217E=09	
	3	4,81150018001	3 6394933E=07	,
	5	=4.40511429F#02	2.39366016=00	5
110- 1744 op 4				.
1008 3348,204 WI	ZUMES +++++++	- \$3,69988108,7650 •••	10148,35728106,67	162 27,95112
	2	R	4PC F	5
	-1,25000	0,00000	0,00000	1992,76431
	1,25000	04603	06137	1992,84691
	=1,25000	04506	00549	1993,09643
	=1,27000 =1,25000	13810	01235	1993,51797
	=1,25000	120410	102174	1994,11993
	-1.25000	.27519	.03428	1995.91420
	1.25000	32223	.06699	1997.13837
	-1,25000	36826	UP736	1998.60564
	#1,25000	41429	11037	2000 33755
	=1,250nU	46n32	13599	2002,35708
	=1,250ND	50636	16417	2004,68812
	-1,25000	55239	19487	2007,35491
	-1,22000	,59942	,22803	2010,38133
	■1,22000	164445	26358	2013,79013
	#1,22000 =1 35000	107(140	130147	2017,60202
	=1,25000	140624	104109	2021 034/3
	-1.25000	82058	42815	2020 30100
•	-1.25000	87461	47435	2031 011/2
	1.25000	92065	. 522.54	2043.15769
	-1,25000	96668	57192	2049.57048
	1.250n0	1.01271	62293	2056.37582
	-1,25000	1,05874	67516	2063,53136
-	-1,25000	1,10478	72840	2070 97852
	1,25000	1,15001	78240	2078,64002
	-1,25000	1,19654	83687	2086,41717
	1.250n0	1,24267	.69152	2094 18695

.

	=1,25000 =1,25000	1,28890 1,33494	94602 1,1°000	2101,79895 2109,07218
TOTAL	MASS FLOW =	3,5544769E+03	NO. POINTS .	30
	VEL	Ť		
	1918,29121	6128,73483		
	191/ 90091	6128.89967		
	1915.33069	6129.10864		
	1912,96348	6129,40749		
	1909.83775	6129,80125		
	1905,89329	6130,29724		
	1901.02812	6130,90383		
	1888.37457	6132.48771		
	1880.33268	6133.48646		
	1871,01586	6134 63A23		
	1860,31110	6135,95450		
	1848,10221	6137,44651		
	1034,27212	6139,12477		
	1801,29216	6143.07597		
	1781.93018	6145.36226		
	1760,53096	6147 86036		
	1737,02428	6150,56970		
	1711, 36497	6153,48557		
	1683,24102	6156,59835		
	1673,70309	0124107203 6163.34496		
	1587.68906	6166.93121		
	1552,16054	6170,60736		
	1515,36013	6174,32739		
	1477,79873	6178,03231		
	1440,16790	6181,65083		
	1403-34050	6195 ¹ 04902		
	Z	R	MPC	ρ
	-1,16151	0,00000	0.00000	1968,19768
	=1,16151	04435	01133	1968,27290
	=1,10151	.08870	01532	1968,49977
	e1,10151	,13300	01190	1900,08190
	#1,16151	+1//+1 -22176	03318	1970,13792
	=1.10151	.26611	04773	1971.03020
*	=1,10151	31046	,06490	1972,11416
	=1,10151	35481	08466	1973,40350
	=1,10151	39917	10698	1974,91323
	#1,10151	44322	13100	1970,03932 1078 48874
	#1:10171 #1.16151	63022	17769 .18010	1980.92483
	. TAIAYA/A		er annere andere ander	···· #1384119848

Ч.)»

i V

)

<pre>-1.10151 -1.10151 -1.10151 -1.10151 -1.10151 -1.10151 -1.10151 -1.10151 -1.10151 -1.10151 -1.10151 -1.10151 -1.10151 -1.10151</pre>	57657 62093 66528 70963 75398 79833 84269 84269 84269 84704 93139 97574 1,02009 1,02009 1,06444 1,10880 1,15315	22140 - 607 308 33235 37381 41738 46297 51048 55978 61075 66324 71709 77213 82817	1983,48108 1986,33626 1989,50589 1993,00110 1996,82982 2000,99583 2005,49784 2010,32831 2015,47229 2020,90604 2026,59563 2032,49532 2038,54585 2044,67263
=1,16151	1,19750	.88498	2050,78378
# <u>1</u> ,16151	1,24187	1 00000	2020,70000
#1+10101	1120020	1100000	Profil () cor
OTAL MASS FLOW #	3,5393880E+U3	NO, POINTS #	30
7		MPC	p
#1.07302	0.00000	0,00000	1939,71774
=1.07302	04203	00129	1939,78092
=1,07302	08565	00517	1739,97127
=1,07302	.12548	.01163	1940,29126
=1 ,07302	17131	02067	1940,74492
=1,07302	,21414	03227	1941,337/0
	122070	104044	1942,96995
	84262	.08240	1944.02655
	. 38544	.10416	1945,25651
=1.07302	42827	12842	1946,67034
=1.07302	47110	15516	1948,27875
=1.07302	51393	18433	1950,09236
=1.07302	55475	21592	1952,12127
-1,07302	59958	.24989	1954.37463
=1,07302	64241	28620	1956,86012
=1,07302	68523	,32479	1959,58345
=1,07302	172806	.36502	1902 547/5
=1.07302	77089	48602	1907,75200
=1,07302	1013/4	1973/9 50089	1072 86423
P1.07302	102024 896.7	54999	1976.74703
■1,U/3UZ	109937	60096	1980.82192
=1 U7302	.08502	65369	1985.06015
=1.07302	1.02785	.70807	1989,42426
#1.073N2	1.07068	76397	1993,86693
-1.07302	1,11351	.82127	1998,32971
-1.07302	1,15633	87982	2002,74175
-1,07302	1,19916	93945	2007,01840
=1,07302	1.24199	1.0000	2011,05985

SEVERL PAGES OMITTED

ACC.

	۵.		α τ	Г 4-0 нн ини	n n n	د ۲۰۹۷	x	2
	2.4827	20\$E+0\$	196°2	16847E-61 5	; 83U522DE+C3	1,2393285E+03	1,0546310E+90	5 .1977924E=01
	2,9643 Je 1	0686+06 4,891017	3,030 16+U7	179636-01 5 1,0594945-03	5,7862526E+n3 5 5,552314E+U3	1.1658050E+03 9.296124E+02	1.0167727E+0U	5,3953641E=01
1	5.0480 J= 1 J= 2	6745+06 4.508613 4.970401	3,162 56+07 16+07	245296=U1 5 1,0808376=03 1,9658465=03	5,74122706+03 5,5092946+03 5,2453896+07	1.n842898E+03 8.664181E+02 6.579170E+02	9,7428587E=01	5 , 6084909E=01
	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4976+06 4,924124 4,981526 5,040200	3.16 ⁸ 5.16 ⁸ 5.407 5.407	28594-01 1.0953334-03 7.0576304-63 1.6730036403	5,70001176+n3 5,4711066+U3 5,2186836+U3 4,9479936+03	1,0087309E+03 8,073476E+02 6,195405E+02 4,4494075+02	9.3112202E=01	5,8156992E=01
	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	410E+06 4.93737 4.99657 5.045592 5.045592	3 20 26 407 36 407 26 407 26 407	37804E=U1 5 1.101647E=03 7.093915E=03 1.687066E=02 2.570332E=02	6747130E+03 5 5.46210E+03 5 241269E+03 4.934P01E+03 4.934P01E+03	9,60832876402 7,7024626402 5,9399626402 4,2857546402 3,2093996402	9,0220892E=01	5 . 9492464 E= 01
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6555 4.9396 4.9396 5.04926 5.018886 5.1168864 1168443	3 236 3 4 0 7 3 6 4 0 7 3 6 4 0 7 2 6 4 0 7 2 6 4 0 7 3 6 4 0 7 4 6 4 0 7 5 6 4 7 5 7 6 7 7 8 7 7 9 7 7 9 7 9 7 9 7 7 7 9 7 7 7 7 7 7	50865E=01 7.105241E=03 7.109652F=03 1.693070E=02 2.585455F=02 2.585455F=02 2.013121F=02	6576702E+n3 5 5.433011E+03 5.433011E+03 5.189111E+03 4.925149E+03 4.735327E+03 4.595521E+03	9,27829886+02 7,4478586+02 5,7591736+02 4,1665406+02 3,1301966+02 2,4013326+02	8.8153400F=01	6,0421597E=01
	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88 97 97 97 97 97 97 97 97 97 97 97 97 97	3 255 5 4 0 7 7 4 0 7 7 4 6 0 7 7 4 6 0 7 7 6 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4285601 1.107556603 1.1173116633 1.6955316603 2.5948316602 2.594831602 2.025651602 2.65496702 3.65496702 3.65496702	6443569F+03 54212556403 511753526+03 417188E+03 417188E+03 417188E+03 41728759E+03 41728759E+03 41587309E+03 41587309E+03	9, n1 997176+02 7, 2458856+02 5, 6129666+02 4, 0684526+02 3, 0635016+02 2, 3482796+02 2, 3482796+02 2, 3482796+02 1, 7678006+02	8,6464039E=01	6.1164799E=01
	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2000 2000 2000 2000 2000 2000 2000 200	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	005706-01 7.1117876-03 7.1035596-03 1.6902436-02 2.5897196-02 2.0344626-02 2.0344626-02 5.7074476-03	554099396403 54093396403 5413051366403 460108966403 460108966403 46010896603 4601086603 4601086603	7,70235846+02 6,2335876+02 4,8536576+02 3,5409016+02 2,6891246+02 2,0689866+02 2,0689866+02 1,6002516+02	7.7339607Feul	6.4930359E=01
	3,4280 J= 1 J= 2	784E+06 4,979345 5,029109	3,423 56+07 36+07	570716-01 5 1.1112706-03 7.0629416-03	5 5 4 6 6 6 2 5 E + 0 3 5 5 4 6 6 6 2 5 E + 0 3 5 5 5 5 9 5 E + 0 3 5 5 4 9 7 5 9 9 E + 4 3	6,7927510E+02 5,530829E+02 4,3U8420F+02	7.0306733Fen1	6,7545744E=01

:

1912 1

1 P CI	5_080464E+07 *.116593E+07 *144958E+07	1,6726806002 2,5553826002 2,004876602	4,843750E+03 4,662252E+03 4,520220E+03	3 .150167E+02 2 .401440F+02 1.859611E+02		
0	5.164094E+U7	5,6204235=03	4,4151056+03	1,451019E+D2		
0 4 0 10 4 J 0	1738906 5,0398429 5,0398429 5,0905678407 5,1261878407 5,1261878407 5,15645886407 5,15645886407 5,15545886407 5,17500386407	843146-01 1 1106316-03 1 126316-03 1 0232486-03 1 6548506-03 2 5170196-02 1 9674946-02 1 9674946-03 5 5032776-03	5n647165403 5.3039586403 5.3039586403 5.4090346403 4.50564614 4.6356464603 4.4970686403 4.4970686403	5,9557316E+02 3,797711E+02 2,779630E+02 2,779630E+02 7,124428E+02 1,657134E+02 1,657134E+02 1,657134E+02 1,297843E+02	6.3277d60E=01	6,9912053E=01
8 10 0 0	481E+06 5,999395+07 5,0988695+07 5,099211E+07 5,150991E+07 5,16091E+07 5,1809195+07	46570E=01 1,11558E=03 6,998640F=03 1,644636E=03 2,486786E=02 1,935964E=02 1,935964E=02 5,401895E=03	47753715+03 5.2795995+03 5.2795995+03 5.1447005+03 4.67920676+03 4.677228676+03 4.4772536+03 4.47725356+03	5.17795126402 3.2586756472 3.3177026402 2.4296676402 1.8605876402 1.4612316402 1.1462046472 1.1462046472	5,6246967E=01	7,2029276E-01
り う る の ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ	503E+06 3.56 5.007746+07 5.055394+07 5.10563394+07 5.106432E+07 5.14451E+07 5.1667786+07 5.1667786+07	35131E=01 61915269E=03 6995269E=03 1.6356838F=02 2.635683F=02 2.917618F=02 5.339590E=03	45316956403 5.25956403 5.1244586403 5.1244586403 4.244586403 4.244586403 4.4594526403 4.3495796403	4,477700E+02 3,672141E+02 2,652091E+02 2,95641E+02 1,6091365402 1,2703636+02 1,2703635+02 0,979370E+02	4,921¢113E=01	7.3897415E-01
8 4 10 10 10 10 10 10 0	1968 + 06 3,59 5,052 + 136 - 67 5,112307 + 67 5,112307 + 67 5,1713035 + 67 5,171829 + 67 5,171829 + 67 5,171829 + 67 5,193051 + 67	58731E-U1 5 1 120136E-03 7 013058E-03 7 013058E-03 7 013058E-03 7 013567-02 1 013567-02 5 3234277=03	4328414F6n5 5.241058F613 5.207960E613 4.755388F613 4.5766596603 4.466596603 4.3342376403 4.3342376403	3,75518636+02 3,1096486+02 2,4282526+62 1,7799546+02 1,3677296+02 1,3677296+02 1,0847206+02 1,0847206+02 8,5292196+01	4,2185240Een1	7 . 5516468E=01
0 0 0 0	107E+06 3.62 5.U19948E+07 5.U1545E+07 5.116958E+07 5.116958E+07 5.175939E+07 5.175939E+07 5.175939E+07	239666 = 01 1 127136 = 03 1 127136 = 03 1 127136 = 03 1 127136 = 03 1 2 2 2 2 3 2 5 = 03 2 4 8 0 3 5 = 03 2 3 3 5 = 0	4161564€+03 5226154€+03 5226154€+03 4 26415486 4 5541746+03 4 4549786+03 4 3349786+03 4 3349786+03 4 3343786+03 4 3343786+03 4 3343786+03 4 3343786+03 4 3223416+03 4 323416+03 4 323416+03 4 323416+03 4 323416+03 4 323416+03 4 323416+03 4 4 324516+03 4 323416+03 4 323416+03 4 4 324516+03 4 4 324516+03 4 4 324516+03 4 4 324516+03 4 4 324516+03 4 4 324516+03 4 4 325416+03 4 4 325416+03 4 4 325516+03 4 5 5 5 55516+03 4 5 5 555516+03 4 5 5 555516+03 4 5 5 555516+03 4 5 5 55556556+03 4 5 5 5555656565656565656565656565656565	3 , n9172376+02 2 , 9659526+02 2 , 0079906+02 1 , 4727866+02 1 , 1335576+02 1 , 1335576+02 9 , 0150736+01 7, 1017766+01	3,5154367E=01	7_6886436E=01
0 - 0 - 10 - 10 - 10 - 10 - 10 - 10 - 10	797E-06 3,64 5,024431E+07 5,07982E+07 5,1205222407 5,179190E+07 5,179190E+07	35688E-01 5,134845 7,0915945605 1,0915945605 2,501745602 2,50177360202 1,939296602	43282366403 5,213656403 5,2139526403 4,223906403 4,538906403 4,4258816603	2,45028116+02 2,957926+02 1,5977196+02 1,127206+02 9,0399926+01 7,2011606+02	2,8123493E=01	7,8007319E=01

,

325

7.887911 . =01	7 . 9501830E=01	7 ₈ 9875457Ee01	A . 0000000E=01
2,1092620E=01	1.4061747E=01	7,03087336=02	•
5,6854556+01 82495216+02 1.5185766+02 1.1940326+02 1.1940326+02 5.39702886+01 5.3970456+01 5.3970456+01	1,21081726+02 1,0081926+02 7,9428826+01 5,8375816+01 3,5971756+01 3,5971716+01 2,8520546+01	6,0371529E+01 5,028583E+01 3,966851E+01 2,916568E+01 2,255164E+01 1,798529E+01 1,798529E+01 1,427858E+01	
4,3135396+03 39263496+03 5,2744206+03 4,9772586+03 4,5251356+03 4,5481006+03 4,5489006+03 4,5489006+03	30544735+03 511975735+03 4.9721555+03 4.721255603 4.721235603 4.5436555+03 4.4141455+03 4.4141455+03	38110886 03 5.193455 03 5.193455 03 4.27174135 03 4.2411355 03 4.4112855 03 4.3111315 03	.37974815+03 551920665+03 4.9682145+03 4.7164925+03 4.54103185+03 4.4103345+03 4.4103345+03
5.4008n36.03 1472366.05 71.1472366.05 71.1472366.03 71.1472366.03 2.5251046.02 2.5251046.02 5.4052397.02 5.4052397.02	113536=01 148338=03 71761056=03 1681579=03 2662315=02 1960279=02 1960279=02 55254176=02	791906-01 1.152346-05 1.152346-05 1.6894446-05 2.5606106-02 1.9937706-02 5.5574706-02 5.5574706-02	501712E=U1 7.1153742E=03 7.211545E=03 5.655999E=02 2.565999E=02 1.998591E=02 5.582493E=02
-5,2004586+07 23,445496 5,0279156+07 5,12731954-07 5,1572536+07 5,1816506+07 5,1816506+07 5,2027136+07	13396+06 5-0304035 -1 5-0756496+07 5-1249056+07 5-1568696+07 5-1568696+07 5-1568696+07 5-1568696+07 5-2863716+07 5-2006+07	243E+06 3.63 5.031898E+07 5.031898E+07 5.176759E+07 5.125931E+07 5.159793E+07 5.184388E+07 5.2050476407	5096+06 3,66 5,0323966+07 5,071236+07 5,1267664-07 5,14600946+07 5,1847256+07 5,2053116+07
0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0

CHARACTERISTIC CALCULATION

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

327

ISP IT RPK 0 00 ° .58921 1,7986 4992,0 6120,3 13,707 ,79873 ,25029 ,31336 0,0000 1,6752 217,92 53954 1,7157 5102,0 5902,1 11,372 ,81633 ,28436 ,34534 0,06000 0,000 C L VG THETA-G TG/TGO PG/PGO DG/DGO SDK/DG THETA-K TPK DPK/DG DF/DFO 639,81674 615,91232 963,15344 ۵ 1 1 1 1 1 16 α N A C H V P K V P K 2 л Т 1 14 1,01677 1 5 1,07043 a × LÀC IL

51978 1.7366 5079,1 5960,8 12,000 ,81266 ,27654 ,34029 0.00000 1.6665 216,77 0

THETA=G TG/TG0 PG/PG0 DG/DGU SUK/DG : TPK DPK/DG DG/DGU SUK/DG

VG 1 THETA-K

9

MACH VPX

7

a

LRC IU

REK

0 15 1,05463

-

I SP RPX

Ŀ,

93848 93262 1,0000 1.01677 1.03785 1.07043 53954 55915 58921

TOTAL MASS FLOW = 3,02379586+03

р

NO, POINTS .

G.S-PAHTICLE FLOW(NOZZLE)

PP TIME = 211,937

CP TIME = 127,427

Table B-II-Continued

•																		
11	6 9	6 5	4			-	~ ~~	<u>ہ</u> ہو ''	" •	4							►	o
1 SP RPK	0,00 20006-0	0,00 2000E-0	219,30			LSP RPK	0,00 20000E-0 40000E-0	0,0C 20006+0 40006+0	0,00 20006+0	220,79						ı	1 SP RPK	0,09
CF	0,0000 -03 4,9	0,0000 •03 4,9	1.6858			CF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0000	0,000 03 4,9	1,6972							¢,	0000 0
SDK/DF0	.00348 134260E	, U0277 592978E	00000.0			SUK/DG UPK/UPO	, U2573 , 256769E	01622 497030E	01205 4419795	000000							SUK/DG DPK/UPU	.07814
090/90	.35658 4E=03 9	,32354 6E=03 6	28442	9566 2628 4707 6911 6451		DG/DGD	-36415 96=03 9 96=02 5	.33431 5603 8 6602 3	,29485 9E=03 4	,25671		7629 8767	7466	7357	4339		D6/D60	.368 <u>8</u> 0
PG/PG0 DPK/DG	,29240 3,48381	,26011 2,77135	.22261	000000 00000 00000 00000 00000 00000 0000	ŝ	PG/PG0 DPK/DG	29981 3.45717 2.22764	27052 3.45662 1.47639	23252 2.04886	19664		674.5 649.6	9 009	523.1	0 4 0 0 4 7 0 4 7		90/X40 094/94	. 30439
-Continued TA-6 TG/TGU TPK	.695 .82001 5,1965336+03	,750 ,80395 5,n94579E+n3	,569 ,78266	87030 87606 97606 95858 10000	0, POINTS =	TA-6 16/160 TPK	.036 ,82333 5,214781E+n3 5,282306E+03	.821 .60919 5,1233806+03 5,207525E+03	.497 .78861 5,013775E+03	431 ,76601	٩	.80229 .82656	66467	23252	,95836 1,0000	POINTS .	.TA-G 16/760 TPK	45528T 016T
Table B-II vg T4E 14ETA=K	5842.7 10 037410E+00	6047,U 12 1005456+01	6299 , 3 15	429 429 1301 1181	2	VG THE THETAOR	5788.6 10 394312E+00 770233F+00	5970,5 11 0274876+01 4v4v426+00	6221,7 14 249938E+01	6479,5 17	Uda.	112	- C. I	265	673 593	· Z 	VG 746 THETA•K	5755.5
9 1	5125 U +03 8.	5024,7 +0.5 1.	4691,6	а 4444 99000 99000 99000	795AE+0	16	+ 23 + 55 + 5 + 0 3 + 5 + 6 + 0 3 + 5 + 6	5057 4 + 0.3 1 + 0.	4928.8 +D3 1.	4787,5	œ	00	80		1.11	7958E.	10	5158.4
M A C H V P K	1.6946 5770065	1,7715 824357E	1,8771	0 4 4 H P	≡ 3,023	MACH VPK	1.6755 530353E 255329F	1,7432 ,756699E ,458343E	1,6401 9950795	1,9444		~ 4	001	0	413	3 023	HAGH VPK	1.6639
z	.560ð5 19€+01 5	61624 556401 5	. 66899	N 2000 2000 2000 2000 2000 2000 2000 20	ASS FLOW	7	426+01 5 996+01 5	\$6E+01 5 56E+01 5 56E+01 5	,69616 D2E+01 5	,75243	2	, 5815 , 6032	6367	6961	7172	ASS FLOW	N 	.59492
 22 02	97429 2,1541	1,03361 1,7424	1,09118		TOTAL M	a T	93112 21125 8 5375	98980 1.7013 7.8075(1,05365 1,7819	1,11593						TOTAL M	EK .	,90221
×		ੁੰਜ				_×	10 H									i	_×	-
10	-	4	'n				4 +1	•	•	-						1	H	-
LHC	[]	(1)	N			LRC	CM.	دە :	1	6			í I				LRC	

•										
.311819E=03 4,920000E=00 995137E=02 9 40000E=06 426263E=01 1,32000E=05	.05579 0.0000 0.00 5 .8567176=03 4.9200006=06 .7270776=02 9.8400006=06 .7742426=02 1.6320006=05	.01221 0.0000 0.00 5 .1109135=03 4.920006=06 .0493495=02 9.8400005=06	,00141 0,0000 0,00 5 ,862432E=03 4,920000E=06	0,00000 1,7052 221,82 S			SDK/DG CF ISP IT DPK/DP0 RPK	.15765 0,0000 0,00 0 .3405006=03 4,9200006=06 .008445E=02 9,840000E=06 .431337F=01 1.632000E=05 .45636E=01 2.29000E=05	.11944 0.000 0.00 5 033221E=03 4.920000E=06 831240E=02 9.840000E=06 .388199E=01 1.632000E=05 .09A785E=01 2.29000E=05	.03922 0.0000 0.00 5 .5967595=03 4.9200005=06 .5517005=02 9.8400005=06
3,433850E+03 9 2,210782E+02 5 5,259526E+02 1	.28658 .35072 3.2207965-02 5 2.2207965-02 5 3.0146285-02 7	25540 31872 3,4609465=03 8 8,7446205=03 2	,21540 ,27676 1,406578E=03 2	178 03 23645	688 688 644 644 644 644 644 644 644 642 642 642	11	PG/PG0 DG/DG0 DPK/DG	.30748 .37194 3.415363F=03 9 2.196994F=02 6 5.233697E=02 1 7.992539F=02 2	.29564 .35987 3.413782E=03 9 2.203784E=02 9 5.246201E=02 1 4.152464E=02 1	27681 34070 3.4316685+03 8 2.21613659-02 5
B-II-Continued 10 5.225661E+03 10 5.390669E+03 10 5.457685E+03	10,666 ,81712 20 <u>51690456403</u> 30 5,2399136403 10 5,2399136403	12,663 ,80131 31 5,0773656+03 30 541591066+03.	15 .646 ,77829 3 1 4,954019E+0 3	19,983 ,75292	1 1 1 1 1 1 1 1 1 1 1 1 1 1	• STNING ON	THETA=G TG/TG0 TPK	9.313 .82669 10 5.2378576403 10 5.2964366403 10 5.3622386403 10 5.4085936703	10,016 ,82152 10 5,1943475+03 10 5,2570165+03 10 5,3310735+63 10 5,3810855+03	11,168 ,81248 10 5,1395776+03 10 5,2111796+03
Table 56+03 8,0469196+ 56+03 6,5150776+ 56+03 4,9635446+	5107,0 5461,3 5642,9,2101686 76403 7,5582736 76403 5,8579976	5 5008,2 6061,1 55403 1,107661,1 55403 2,10766164	2 4864,3 6335,7 56+03 1,355415E+	L 4705,7 6617,8	A 000000000000000000000000000000000000	37958E+O3	TG VG THETA-K	5166.8 5733.2 59.03 7.80575569 59.03 7.80575569 59.03 4.83557469 28.03 4.83557469	5 5134,5 5799,4 26033 8,59928160 16033 7,n4043360 5603 5,4734866 5603 4,34125060	- 5078.0 5915.7 56-33 9.7311456 56-33 8.0640896
,0644746401 5,50238 3540756401 5,235076 ,1085616402 4,953370	1028 63093 1,7031 1302716+01 5,647071 7417106+01 5,36724 10254826+02 5,068446	1117 .68825 1.778. 6114546-01 5.85666 12284516-01 5.8561579	5861 ,75061 1,886; ,749479E+01 6,106456	3473 , 80962 2,003;	N 599999 600999 600999 600999 750499 750499 750549 7505557 750549 75055000000000000000000000000000000000	TAL MASS FLOW = 3,01	Z MACH VPK	3153 60422 1,656 1,6623UE+N1 5,48382 2,55127E+N1 5,2297 2,55127E+N1 5,2297 1,051958E+N2 4,94274 625279E+N2 4,745651	UR26 62958 1,680 7554558-01 5,58399 7263348-01 5,31207 0006948-02 5,02594 5279258-02 4,819628	4721 66644 1,723 6093216401 5,71578 3020666401 5,439098
NA .J HOM	4 4 9 4 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4	4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 5 1,1	· · · · · · · · · · · · · · · · · · ·	TO	Lac IU K	า พ มี มี มี มี มี มี มี มี มี มี มี มี มี	0 40104 4	4 4 4 4 4 4 4 4 5

1	n	<u>ا</u> ۱	ю			►	0	۰. ۱۹	н. 1
		00	22			88			
3 0 u 0	-000	000	52			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
632	9 2 0 9 4 0	920	ñ			a	00000 0000 0000 0000 0000 0000 0000 0000	9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0	8800 8400 8400
1	340	004	109				040400	0 * 0 H N N	
05	0.00	0.0	1.7			C F	000000 000000	-M01440	
-956	10 10 10 10 10 10	36 29E	00			9 3	10000 10000 10000 10000	000 000 000 000 000 000 000 000 000 00	333 11 73 0 11 70 0 10 10 10 10 0 10 10 10 10 10 10 10 10 10 10 10 10 10
147	172	000 1321	000				10000 1000 1000 1000 1000 1000 1000 10	110004 20004 20004 20004 20004	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 - 10	7 8 9 1	1.7	0			S DP	-M 0 4 HN	0 10 4 10	00 A B -
2	33652	450	.462			, DG U	430003	500000	2228
7E=0	- - - -	9E=0	- 53	00000000000000000000000000000000000000		DG/			-mmmm 23111
308	67 580 580	95 895	31			60 / DG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000 000000 000000	6407 6400 6400 6400 6400 6400 6400 6400
36	24 C 1 C 1 C	203 • 80	167	のののへのちちちちん 4 4 3 4 9 8 8 9 4 1 9 5 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	5	67 P 0 P K	201100 201100 201100	00 8 N N O 00 4 N O O 00 4 N O O	2 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0 4 0 0 0 0 4 0
ה	-104	- 60	•	٥	4	<u>م</u>	•000000	-10100	- 0 0 0 -
nue F•03	0-0-C	710	4 H 4		N 10	/160			
230	684 516	7 . 0		00000000000000000000000000000000000000		⊢ ¥ d	4 0 0 4 5 0 4 0 0 5 0 4 0 0 0 7 0 4 0 0 0	6 4 5 8 4 7 8 6 4 7 8 6 4 7 8 6 4 7 8 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9	24 06 8 24 06 8 24 06 8 29 06 8 20 00 8 20 000 8 20 00
Se C	47 147 127	62 911	4	ファファウ 10 10 10 00 00 00 00 00 00 00 00 00 00		5 ■	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	607400 607400 607400	30770 30770 30770 30770 3070 3070 3070
¦	ູ່ພິຍີ	, ,	5 6 1	.	ר בי איני בי	4ETA	ວ -ທະະະ	ຈະມີມູນ ທີ່ມີ ອີ	- 6 6 6 6 6
а <u>с</u>		بر +01	J.	Σ.		بة ×			
able 7uf	304 496-	15. 79E	01.			G ₹A	100400 200404 1000404	е о о о о о о о о о о о о о о о о о о о	37 51 73 75 75 75 75 75 75 75 75 75 75 75 75 75
T 2 543.5	1691 1994 1994	64 131	6			THE	5000 500 500 500 500 500 500 500 500 50	2002 2002 2002 2003 2003 2003 2003 2003	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•	0		5,3	8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r 0 + +	ى	- - - -	-a. 4 m 4 m	4 •0 / N 4
5 U	496 030 03	481 73	465	ल लो जो जो जो जो जो जो ग	1 846,	b	140 200 200 200 200 200 200 200 200 200 2	850000 880000 8	511 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 2 2 2 2
ц. Ц.	11 IL 10 4 10 11 IL	17 01E+	40		1237				20220 20200
3543	2 2 2 2 C	8 6 7 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• <u>-</u> 3			A PC	- 00 00 00 00 00 00 00 00 00 00 00 00 00	-48005 	- 20 4 6 7 0 4 7 0 7 0 6 4 4
5.1	0-01 0-01	6 . H	2	(N)			RE444 44 NOVE	, , , , , , , , , , , , , , , , , , ,	0004 10000
N	5236	1949	102	00000000000000000000000000000000000000				8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
te + C	а 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15+1 15+0	1 8 1	N	- ss	7	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	аласку мала мала маласт
846	14 0 14 0 14 0	1 5 1 1 5 1	2		A.T	ג דו א	0 4 0 8 0 0 4 0 8 0 0 4 0 8 0	0000 0000 0000 0000 0000 0000 0000 0000 0000	11 80 8 11 80 8 14 80 8 14 80 8 14 8 14 8 14 8 14 8 14 8 14 8 14 8 14
- 95	410 410	80U •72	493		T.A.L	~	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 - 1 M M M
*		- - -	1.1		10	α			
-,	*	*	л			a.	4 	4	*
	¥n	6	2	. F		ы С	40	۰. ۲	÷
				OUCIBLE			I	•	
			- 4	REPRUS					
			NOI	N N					

9 J

,26902 ,33269 ,U2768 0,000 ⁰ 0,00 5 3,431019E=03 8,393224E=03 4, 20000E=06 2,211970E=02 5,411092E=02 9,840000E=06 2,130733E=03 5,212363E=03 1,6 3 2000E=05	,23420 ,29659 ,00406 0,000C 0,00 5 3,4729206=03 7,5738866=03 4,9200006=06 5,8540196=04 1,2766686=03 9,8400006=06	,19495 ,25481 ,00046 0,0000 0,000 5 4,563659E=04 8,550399E=04 4,920000E=06	.15740 ,21357 0,00000 1,7157 223,18 3	697,26940 689,60509 677,03476 662,54424 662,54424 648,56098 71000GH 25 711ROUGH 25	619 84508 605 30445 596 39580 567 86075 545 15611	972 972 973 974 974 9789 9789 9789 9789 9489 9489 9	373,77052 - 354,14719 20	PG/PG0 DG/DG0 SDK/DG CF ISP I¶ DPK/DG DPK/DP0 RPK RPK	32146 38607 22944 0.0000 0.00 0 3,3098206=03 9,3958246=03 4,920000E=06 2,114746E=02 6,007288E=02 9,840000E=06 5,031897E=02 1,428441E=01 1,632000E=05 7,709662E=02 2,168597E=01 2,2940000E=05 6,057938F=02 1,719682E=01 2,940000E=05 6,057938F=02 1,719682E=01 2,940000E=05	,30136 ,36551 ,22587 0,0000 0,00 5
Je B-II-Continued 960,1 11. 7 ,80862 6476-01 5,1162426-03 8776-00 5,1881876-03 7286+00 5,2674386-03	194,5 13,994 ,78962 480E+01 5,013182E+03 143F+11 5,100889E+03	479,5 17,122 ,76510 1875+01 4,9759296+03	781,9 20,845 ,73700	мрс 70070 72177 73566 73566 73566 73566	77520 77520 77720 87246 87246	884470 884479 94478 94478 92864 93665 95065	96447 	VG THETA-G TG/TGO Eta-k tPK	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	751,5 9,432 ,82449
Tal 5 1.7408 5053.9 5 5.767736E.03 1.013 5.495032Ee.03 8.497 5.187786£e03 6.728	J 1,8309 4935,1 6 5,983610€+∩3 1,220 5,689872E+03 1,022	<pre>5 1,9455 4781,9 6 6,246802≝+03 1,493</pre>	5 2,0748 4606,2 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1	2014 2014 2014 2014 2014 2014 2014 2014	758 759 759 105 105 105 105 105 105 105 105 105 105	150 1.14592 523 1.16198 × = 3,02379586403		0 1.6216 5204 0 3 5.40255603 5.40 3 6.153255603 5.4023 4.8873635603 5.402 4.551525503 5.402 4.5515255603 3.230 4.4515255603 3.2305 4.4430515603 2.064	9 1,6636 5153,1 5
4 (``12 69555 1 1:5434886401 2 7:1019746401 3 1:9104446402	4 1.01740 75588 1 1.6357106+01 2 7.3532286+01	4 1,06944 ,8222. 1 1,6970536+01	5 1,16198 ,8 ⁸ 727	10 10 10 10 10 10 10 10 10 10 10 10 10 1		6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		ID R REK Z	1 77340 6493. 1 77340 6493. 2 7.7414846.01 01 2 7.7414846.01 02 3 1.9751736.02 02 4 3.402356.02 02 5 5.41312356.02 02	4 <u>87075</u> 64879
чŨ	v	ا	40		:	1		U L	6	•

	ю	in l	•	10	1	10	10	0.	01	• •	
	 	ູ້ຈຸດທີ່ພາບບ		 	<u>. 6 6 0</u>	ີ <u>9</u> 9					
0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>			92	22	29	
I SI		0000000	000000	0000	0000	200	٥Ğ	6.6	59	69	
ac	N413040	000000 040040		0000	340	4 0	20	2	CN.	2	
	040 H M M M	040 HNNN	04040V	240-40 0	0494 0	0 • •	34	72	96	1	
لبر		8	э о	3	5 C	2	0	9 U	90	0.7	
9	00000222			33363	000 000	0.00	C D	N	2	2	
د ی	ann	E A C A K C C		4 (N O > 4 10 10 10 10 10 10 10 10	ມີພື້ພື້	10 C 4	0 4	J	3	0	
23	0 10 10 10 10 10 10 10 10 10 10 10 10 10	00000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 J A 6 7	2012	04 0 04 0	200	00	000	000	
PK.	2 4 0 10 0 4 4 M	- 4 0 0 3 N 0 • 4 0 0 N 0 N 0	-4 4 V 4 4	94944 94944	- M M -	234	0 0 0	3	5.	3	
				HEND	2 H 4 K	,	<u>α</u> ,	0	() N	э С	
D01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 m N m n	5003	6 6 M M	505	44	573	36[
190				00000	0000	400	21	9.4	64	04	
ت ت	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400400	2366	004004 00404	4 6 4 4 0 0	36 7.56	- <u>-</u>	•	•	-	
00)	1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2000 2000 2000 2000 2000 2000 2000 200	4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	106 1075 123	737 391 191	127	556	513	502	
10	1104.0.0	New New Here	00 10 00	10 4 H A A	0 4 N M	100	05 9 9	023	023	053	
۵.	*N(14104	-WUAUHF	-M 01 40 M	= M N ++ N ≸r	-17 17 (1- 8	- M M	= Ni 4	•	-	•	
ed 50	50000000000000000000000000000000000000	4000000 0000000	80000CC	NNNN	4800	35 25 25 25 25	4 G 0 G	13	43	00	
nu 1/s	απηπηπ 4. + + + + + + +	で し し し し し し し し し し し し し	C 1 1 1 1 1 1	о Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 5 4 4	330	556	53	
nti P⊀	102000554	-400000	-2000	• M O O O O	•200 •200	35	- CV 80	-	-		
် မှ	00000000000000000000000000000000000000	470700 4470700	700 700 700 700 700 700 700	2220	565 170 170	105	113	3	0	D C	
ĬŽ	+4 L U L U L U U	-		- MI V V V	-12 4 4 -12 4 4	4	4 M)	5.	5	5	
무법	э 	» daadaaa	° 	р Н Н н н н н	2	е 	۲. ۲.	21	21	51	
щ. Ч	-	000000 3 * * * * * *	2 2 2 2 2 2 1 4 4 4 4	N + + + +	4 + + +	20 + +		4	с».	4	
	6 4 •	0 0 0 0 0 0 0 0 0 0 1 1 2 1 2 0 0 0 0 0 1 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	N P P P P P P	000000 000000 000000	2005	0 0 C	2 C 6 C E	35.	46	25	
H < B	61	0 C 4 0 0 X F	940004 940044 940044 94004	00000 00000	800 2040 2044	8 4 2 0 2 0 2 0	69 90	θÛ	В Ф	ъ В	
					000	66		ŝ	~	3	
3	• ? 60000	-নান ল নানান এ	्नतननन उ ″	•नननन 2 7	***	- 2 2 7	- C1	•د]	12	.00	
~	4 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7	8000000 98999888 28999888		0,00000 0,00000	4 N N N	450	335	331	331	33(
					н н н Ц н н				•	.	
л х Сла	4433473 0800440	310000000 3100000	2 7 7 4 N 6 N 8 4 4 6 5	55044	5 N N N N N N N N N N N N N N N N N N N	5 7 0	44	14	24	27	
A M V	- 10 P 10 P - 10 - 10 P 10 4 0 P - 10 - 10 P 10 4 0 9	20892 - 7 9 9 7 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	で ・ の よ ら な ち ち ち ち ち ち ち ち ち ち ち ち ち	97777 97774 97774	*040 •040	339 163	•4 •4	3,1	3.1	3,1	
	າດບາດບາດ			0. N N N	a (6)	ан ас	ц. Ц	.,	.,		
		0 0 0 0 0 0 0 0 0 0 0 0	ッ で 日つコートー	0 0 0	ເ 	າ ບ ຟ.ສ.ລ	u73	573	442	\$36	
7		0000000	4 6 3 0 0 0	M 0 0 0 0	N 0 0 0 19 + + +	10 0 1 + +	0 8	06	ŝ	3 A G	
×		400004 4000004	8 5 4 5 4 4 5 7 7 9 4 + E E E E E E E E E E E E E E E E E E E	へのうち 4 0 ~ 0 ~ 1 1 1 1 1 1	4 C O O 4 C O O 6 M M •	4 7 4 4 7 4 4 7 1	4 7 7 1 7 1	4	4	4	
, <u>a</u>	040000	0 4 M 6 8 60	N 2 0 0 0 0 1	00000 0000	50F	7 28	40	•	ø	ų,	
	C / 4 Cl 0 0 C	0 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 9 M M G 4 4 9 M M G	20000	0	0 L 4	762	05¢	535	А Ц	
ar:	0 N M H N 4	0 40 N N O 4	9 10 10 10 10 10 10 10 10 10 10 10 10 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5 T C	۰ <u>+</u>	1.1	1.1		
¥			, ною 4 л	640 24		~ ~ ~	์ ี ศ	14	14	<u>v</u> u	
9	، م	4		4	4	4	4	J.	ν	U'	70
RC.	9 25	50 I N	26	30	56	2 Q	26	26	26	26	8
-1	l	i	i	ı		i	1				•

NOT REPRODUCIBLE

لى .

, it

TAN-PHASE NOZZLE PRUGHAM HAS BEEN CUMPLETED

UP THE = 278.218 PP TIME = 223.239

S 1) A 7 A		TD2P (PLUME) - NAMELIST/DATA PRIN JT
		(READ FROM TAPE 8)
GAPN	T	0,82+00,
CPL	T	0, o5t + 04,
CPS	=	0,076+04,
₽ĸ	3	0,622E+00,
<u>ר</u> ום די	T	0,2E+00,
ŌК	T	0,2E+G0,
DTHI	T	0,3E+01,
Ēw	T	0,18-02,
F A	•	<pre>U,U,U,U,U,U,E+C1, 0,125E+C1, 0,1E+C1, 0,1255E+C1, 0,1E+C1, U,126E+C1, 0,1001E+U1, 0,1265E+C1, 0,1002E+C1, 0,1582E+C1, D,1063E+U1, 0,1995E+C1, 0,1141E+C1, 0,251E+C1, 0,1224F+C1, U,316E+C1, 0,1315E+U1, 0,39EE+U1, 0,1412E+C1, 0,501E+C1, U,1517E+U1, 0,631E+U3, 0,1625E+C1, 0,795E+C1, 0,1745E+C1, U,1E+C2, U,1874E+C1, 0,126E+U2, 0,2026E+C1, 0,1582E+C2, U,2186E+C1, 0,1995E+C2, 0,2026E+C1, 0,501E+C2, U,316E+C2, U,276E+C1, 0,398E+C2, 0,3E+C1, 0,501E+C2, U,3252E+C1, 0,631E+U2, 0,316E+U3, C,79E+C1, 0,1E+C4, 0,2E+C2, U,101E+C4, 0,202E+C2, 0,1E+C6, 0,2E+C4, 0,0, 0,0, 0,0, 0,0, U,U, 0,C, 0,O, 0,U, 0,U, 0,U, 0,O, 0,O, 0,O, 0,O</pre>
		0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0
GAMMA		U,121E+01.
GMGQ	E	0,5066=04,
HPL	ĸ	0,403606E+08,
HPS	T	0,276606E+08,
IMAX	E	۶,
N1	T	5,
N2		1,

NOT REPRODUCIBLE

3

and an appropriate the second second

PC		0,225E+04,						
<u></u>	. L .		0.0. U.0.	Ú.U. U.U.	0,0, 0,0,	- 9 a D a 0 a D a	-0.0.0	-0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
-		U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.	U • O • U • O • U • O • U • O •	0,0, 0,0, 0,0, 0,0,	0.0, 0.0, 0.0, 0.0,	U , U , U , U , U , U , U , U ,	U + U + U + O + O + D + O + O + O + O + O + O + O + O + O + O	0,0; 0,0, 0,0, 0,0; 0,0; 0,0; 0,0; 0,0; 0,0; 0,0;
		U, U, O, O, Q, U, O, U, U, U, O, U, U, U, O, O, O, U, O, O,	U . U . U . U . U . U . U . U . U . U .	0 : U : U : U : U : U : D : U : U : U :	0,0, 0,0, 0,0, 0,0, 0,0,	U 2 U 2 U 2 U 2	U, D, U, U, U, D, U, U, U, D, D, U, U, D, U, U, U, D, U, U, U, D, G, O,	0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
• ••••		U.U, O,U, U.U, O,U,	U.D.	0.0. 0.0.	0.0, 0.0,	0 <u>1</u> 0 3	0 : 0 ;0 : 0 ; 0 : 0 ;	0,0, 0,9, 0.0,
R		U,492E=05; U,362E=04;	0,984E U,0,	•05, 0,0,	0,143 0,0,	2E=U4, U,U,	0,2296=04,	0,294E=04,
RCAP	¥	U,1917E+U4,						
RHOPO		υ.υ,						
SMP		0,25E+03,						
TGO	Ļ	U. 025E+04,						
TPM		0.417E+04.						
CPG	F	0,1575E+05,						
LNILP	2	15,						
THID		Ú,3E+02.						
WPWT	E	0,214E-01, 0,612E-01,	0,118E U,0,	+0U, 0,U,	0,239 0,0,	F+00. 0.0.	U,326 <u>F</u> +NO.	0,2344E+00,
RŢ		0.697E+00.						
RHT	E	0,25±+01,						
WPNGT	٤	0,136E+00,						
DZMIN	a	0,26+02,						
IFG		U.					. 0	1 F
THE ¥		U,1E+04,				NOT	REPRODUCIE	166

1.30

ZAX	E	0,8E+00,
-21		u, 3E+01,
7. J		0,2E+01,
DZI		U,2E=02,
10RDER	•	s,
SOWCON	•	υ,υ,
1541	•	0,
1542	•	σ,
1543		Ο,
ĨVAR	C	U,JE+00, U,O, 0,0, 0,1E+00, U,1F+00, 0,0,
FLAG		0,0,
THJD		U,9E+01,
SAUR		+0,15±+00, 0,1E+01, 1,5±+00, 0,3±+un, +0,1±+01, 0,0,
THED		0,78+01,
'PS		0.7446+01.
RWMAX		υ, Ο,
ZWMAX		Q.U.
IWALL		1.
THIW	=	0,12E+02,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	z	0,21E+02,
NTAPE		o, BLE
SEND		^{SODUCIT}
		T REPRO
		μ_{O} ,
18 mm		

SDATAP		
ZMAX	= U,8	E+02,
PMA	= 0,5	E+02,
NPM	= +1,	
NPLOT	= 1,	
NÇASES	= 180	31133849550850,
. POUT	= U_+Q	53E=02,
EMIS	= 0,3	E+0⊎,
C1	= 0,1	E+01,
C2	= 0,1	E+01,
AREA	= 0,1	E+01,
DL	= U,5	E+01,
DH	∎ V,>	E+0 <u>1</u> ,
NI	=),	
N2	= 1,	
GAMMA	= v.1	2 <u>1</u> 6+01,
SEND		

Ju

1

NOT REPRODUCIBLE

HEADY NG OF THO-PHASE PLUME PROGARM

CP TIME = 264.976 PP TIME = 222.234

GAS-PARTICLE FLOW

661 "UJUD 0"UDU 0"00 4 3 1.411491E-U3 4.920000E-06 2 9.279175E-03 9.84000UE-06 3 1.149416E-03 1.632000E-05 5 6.356445E-04 2.290000E-05 5 1.030999E-05 2.940000E-05 5 1.74368E-04 3.52000UE-05 000 4.920006706 9.3400006706 1.6320006706 2.290006705 4 4 ŝ 26 U7419 U,00U 0,00 4 1,341U835+03 4,920006+06 7,948U415-03 1,6320005+06 1,0922725+03 1,63200U5+05 -9,4828285+04 2,290005+05 .02809 ,U5379 -,0n461 0,0000 0,00 3,448250E-03 1,237737E-03 4,920000E+06 5,124849E-93 1,913857E-03 9,84nu00E+06 +1,317878E-02 -4,921>72E-U3 1,632000E-05 9 _ 60046 0,000 0,00 0 1,100051E-U3 4,920000E-06 1,001552E-03 9,840000E-06 E=04 4,920005+06 00.0 0,00 03128 05509 02379 0.0000 3.4138296-03 1.5828476-03 4.5 2.2101946-02 8.9928836=03 9.5 -2.9312006-03 -1.1873486-03 1.6 1.2831336-03 5.1970176-04 2.5 +8.0532796-05 -3.2021606-05 2.5 0,0060 0 0 0 0 0 _02314 _04367 +_00261 +2_506063E+03 -6_367701E **00000**.0 0,00000 03244 05661 3,390878=03 1 2,229168=92 9 2,7012838=92 9 1,5270078=93 6 1,5270078=93 6 1,5276078=93 6 2,4768958=98 -3 02992 05326 3.424150E-03 1 2.739564E-02 7 2.788865E-02 1 2.788865E-03 1 -2.421224E-03 9 02554 04719 3,3453516-03 1, 3,1162526-03 1, , Un684 .00610 492 76554 460 69742 461 69742 361 99492 3541 99492 3541 99492 3551 994492 3251 99644 3255 97229 3155 20745 291 57866 .00213 01245 18.581 .56178 01 3.5813644+03 11 4.170006+03 11 4.170006+03 11 4.170006+03 18,012 ,57372 1 3,6756664903 1 4,170006903 1 4,170006903 1 4,170006903 1 4,170006903 1 4,170006903 1 4,270006903 18,266 56788 3,6294006403 4,1700006403 4,1700006403 4,1700006403 4,1700006403 4,1700006403 19,630 ,55311 91 3,5225205+03 01 4,1700005+65 01 4,1700005+05 19,760 54113 1 3,449136+03 1 3,9009316+03 ۵ -II-Continued 35790 .34941 20.399 152997 1 313730586+03 0,00000 0,00000 0,00003 0,000225 0,000225 0,00255 0,002552 0,025522 0,3917 0,3917 0,3917 04250 50.JOU 46,556 • 18 92 2,8547 3549,2 9276,8 18 R 1451215+03 1,9382996+01 7 9640445+03 1,9539156+01 7 7062036+03 1,9485406+01 7 4377665+03 1,8465866+01 7 1913955+03 1,7487196+01 7 1913955+03 1,7487196+01 35P1, 3 8220,2 1t +93 1, P14750F401 +93 1, P14750F401 +93 1, A32515F401 +03 1, R27492F401 +03 1, 756454E401 +03 1, 729592F401 +03 1, 568055F401 C 2 2,9209 3511,2 8.35,6 R 204222E+03 1,867622E+01 R 0231685+13 1,880676401 7,765560E+13 1,874451E+11 7,494945E+13 1,8314026+11 J 2,9715 3456,9 8414,6 R 2028485+n3 1,9096176+n1 R 1025605+n3 1,9195316+n1 7,8475305+n3 1,9192316+n1 2,46005 4,75572 3,0436 3582,1 8523,0 : 1 1,5U2631E+0u 8,392385F+n3 1,973040E+01 2 7,050805E+0u 8,216630E+03 1,979165F+01 i 3,1118 3312,5 8625,3 8 8,4992365+03 2,0404235+51 Ŕ 3 7 ble 9917.1 9976. Ъ Ц 6 2193, ó 2236, • 56 2,8541 35PJ R 10947655+05 7,914081F+05 7,656591E+05 7,3306765+05 7,147428E+03 7,147428E+03 6,954750E+03 ۵ 4 4 325 4,3537 2 02452 4.21560 1 1.770344-60 8 2 8.4010926-00 7 3 2.552955401 7 4 5.185625401 7 5 8.6240096-01 7 5 8.6240096-01 7 5 8.6240996-02 5 2.06942 4.29592 1 1.751096E+00 8 2 9.2183016+00 7 5 2.4/1548E+01 7 4 5.094460E+01 7 5 8.495052E+01 7 2.17048 4.39092 1.1.6765036+00 8 2.7.9711586+00 8 3.2.4011866+01 7 4.4.9094436+01 7 2,28496 4,54008 1 1,6129066400 8, 2 7,6419516400 8, 3 2,2982156401 7, 64549 4,96690 1.357754E+UU 36 4,96638 966 4 3Ġġ~ 22927.5 ~ 2 -4 1037400 H N M ъ A 4 4 4 4 4 4 -1 -+1 --1

NOT REPRODUCIBLE

22

2.15809	40294	. 04660	283.78112
2.19333	42779	05201	273.23414
2.24021	46685	06094	257.08744
2.27580	48665	06566	249 22253
2 411 444	54460	02054	24+ 576H1
2 17704	50800	10/027 00491	222 10446
610//00 0 44/4 m	100004	104460	212 01202
2. 1000	10/30	.04134	213,00/93
2,42040	1014/3	. 69880	204,27810
2,22440	16/124	11442	167,45460
2,2021/	109942	12209	1/9,28431
2,60014	172A72	,13122	171,36860
2,67660	78857	14897	156,40278
2,75301	,84956	,16742	142,68412
2,61641	90097	1A320	133,63092
2,86652	194193	19599	128,61275
2,90966	97726	20722	125,74909
2,95094	1,01901	21817	123,56070
2,99285	1,04521	22949	121,48852
3.03505	1.07957	.24110	119,48831
3.07828	1.11469	25320	117.49159
3.12184	1.15002	26562	115.51223
3.16660	1.18626	27859	113.50851
3.21159	1.22264	20185	111.52440
1 25795	1.26008	30574	109.50731
1 10460	4 50773	14045	107 48011
3,00400	1 33464	10,1772 767490	107 140011
6 40127	4 77647	35013	107 21 407
6 45452	1 41404	34421	103131407
0140172		100021	101 20070
5 50120	1 - 2021	30084	9710000
3,22410	1 49820	134400	9/101203
3,00004	1,54049	+41/45	94,91009
3,00142	1,58443	43018	92,/54/2
3,/10.33	1,62832	45221	90,02400
3,77403	1,6/439	47553	88,42503
3,83167	1,72036	49013	66,26648
3.89275	1,76902	.51830	84,02449
3,92326	1,79332	52949	82,92145
3,95374	1+81759	154076	81,82921
4.01865	1,86924	,56501	79,54263
4,05105	1,89502	,57725	78,42206
4,05340	1,92076	5 8955	77,31415
4,15298	1,97611		74,97926
4,21380	2,02452	63995	72,98843
4,23064	2,03793	64655	72,44301
4,29592	2,08992	,67232	70,38958
4,32673	2,11448	68457	69,44011
4.39692	2,17048	71274	67,32773
4,46492	2,22461	74031	65.33656
4,54008	2,28496	77110	63,20652
4,26480	2,30476	78129	62,52586
4.60132	2,33405	79641	61,53874

4.35 \$

<pre>.5 2,923599E-03 1,118-91E+03 1,632000E+05 05 4,243202E+04 1,523503E+04 2,90000E+05 04 +2,129553E+05 -3,110129E+05 2,940000E+05</pre>	34 (07759 (5502 (41792 0,0000 n,00 3) 3 3 4235766+03 1,2643156-03 4,9200006-05 3 1,8361736-02 6,758/656-03 9,8400006-05 3 1,3712535-03 55,0539146-04 1,6320006-05 3 -2,4373406-03 9,0011556-04 2,2906006-05	<pre>45 102613 104782 -100307 01000 0100 4 03 31440360E+03 11209574E+03 41920000E+06 13 61718959E+03 21362275E+03 91840000F+06 13 41,322650E+02 41650219E+03 11632000E+05</pre>	37 102371 104437 100585 010000 0100 5 15 21289135-03 8,89961/E=04 4,920000E=06 33 1122230E=05 1,018568E=03 9,840000E=06 53 000446 04400 -500261 0.0000 0.000 4	13 +2,607534E-03 -7,864559E+04 4,92000E=06	56 C2844 05064 U3d35 U,00U0 0,00 2 3.3774866403 1.2570576-U3 4,9206006706 3 2.1099575-02 3.1546316+03 9.8400006-06 3 1.0589716-92 3.9433116+03 9.8400006-06 3 1.0589716-92 3.9433116+03 1.6320006-05 3 2.1075526+03 8.11829146+04 2.2900006+05 3 3.1829346+04 1.1555136+04 2.9200006+05 3 3.1829346+06 1.1555136+04 2.9200006+05 3 3.1829346+06 1.1555136+04 2.9200006+05 3 3.1829346+06 1.1555136+04 2.9200006+05	56 02731 04912 02929 0,000 0,00 0 0 0 53 3,401771E+03 1,225771E+05 4,923000E+06 0 <th><pre>>> 102594 104733 101473 0.0000 0.00 4 >>> 12334236525+r3 1.1915745+03 4.9200005+06 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre></th> <th>33 102429 104499 "UNIBI 0,00U 0,00 4 0.3 3,403799E-03 1,12610UE-03 4,920000E-06 0.3 8,006802E-0.3 2,568790E-0.3 9,840000E-06 0.3 81,328107E-0.2 44,393659E-0.5 1,632000E-05</th> <th>54 ,02200 ,04170 ,0n517 0,0000 0,00 4 13 2,0386526+05 6,2501496+04 4,920000E+06 13 3,129716E+n3 9,595159E+04 9,840000E+06</th>	<pre>>> 102594 104733 101473 0.0000 0.00 4 >>> 12334236525+r3 1.1915745+03 4.9200005+06 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	33 102429 104499 "UNIBI 0,00U 0,00 4 0.3 3,403799E-03 1,12610UE-03 4,920000E-06 0.3 8,006802E-0.3 2,568790E-0.3 9,840000E-06 0.3 81,328107E-0.2 44,393659E-0.5 1,632000E-05	54 ,02200 ,04170 ,0n517 0,0000 0,00 4 13 2,0386526+05 6,2501496+04 4,920000E+06 13 3,129716E+n3 9,595159E+04 9,840000E+06
3 2,399326+51 7,7590396+73 1,84425Uf+01 4,17r00Uf+ 4 * 8232516+91 7,492U156+93 1,80557U6+f1 1700U0E+ 5 .0454166+01 7,2454905+05 1,752918f+f1 ×,1700U0E+	7 4 2,22300 4,57544 2,9566 3471,1 849,3 16,549 555 1 1,5016086+00 5,25305+03 1,8631315+01 3,5355236+0 2 7,5284415+0 5,0782315+03 1,8756925+01 4,1700006+0 3 2,2716166+01 7,8212445+03 1,8716835+01 4,1700006+0 4 4,6971366+01 7,5520645+03 1,832335+01 4,1700006+0	2 4 2.34953 4.72/36 3.0091 3415, 3 8459, 5 19.010 5545. 1 1.5169555+00 8.3388045+93 1.906984E+31 3.4780166+3 2 7.2034395+00 8.1592755+93 1.9162555+01 4.72146954. 3 2.1593555+01 7.9049175+33 1.916535+01 4.1700006+3	2 4 2,53138 4,95536 3,0419 3339,8 8577,9 19,690 1534 1 1,410642E+0u 8,448435F+03 1,972496E+01 3,401810E+ 2 6,631155E+9u 8,273665E+03 1,97751/E+C1 3,758805E+ 2 0,7004 5,4004 3,4545 3,454 4,97751/E+C1 3,758805E+	2 4 2,72214 5,19290 3,1010 3209,0 00/9,0 20,099 ,022 1 1,267244E+00 8,5555715+03 2,140223E+01 3,329325++	Z 2.12409 4.5445b 2.9173 3599.8 9324.0 17,862 .561 1.542374E+00 8.1940456403 1.798004F+01 3.576862E+ 2.7.550592400 8.01475654-3 1.815705E+01 4.170000E+ 3 2.270105E+01 7.758301E+03 1.815705E+01 4.170000E+ 4 4.665526E+01 7.49319956+03 1.763027E+01 4.170000E+ 5 7.707091E+91 7.2490266+03 1.763029E+01 4.170000E+ 5 7.707091E+91 7.2490266+03 1.763339E+01 4.170000E+ 5 1.102117E+02 7.0349766+03 1.763339E+01 4.170000E+	2 4 2.198c5 4.64031 2.9516 3474,2 8378,9 16.153 555 1 1.543364E+0U 8.248691E+03 1.525/57E+01 3.536755+ 2 7.33664540U 8.248691E+03 1.625/57E+01 4.17000UE+ 2 7.3460456E+0U 8.069051E+03 1.8405156+01 4.17000UE+ 3 2.217312E+01 7.845498E+03 1.840415E+01 4.17000UE+ 4 4.568178E+01 7.545498E+03 1.805045+01 4.1700UE+ 5 7.621292E+01 7.298720E+03 1.805045+01 4.1700UE+ 5 7.621292E+01 7.298720E+03 1.765246F+01 4.1700UE+	2 4 2,28991 4,75739 2,9927 3430,9 3442,7 18,511 ,548 1 1,498694E+00 8,312072E+03 1,A5A995E+01 3,493032E+1 2 7,123990E+00 2,1324195+03 1,871036E+01 4,00421E+ 3 2,120752E+01 7,876934E+03 1,569244E+01 4,170000E+ 4 4,442731E+01 7,605041E+03 1,546495+01 4,170000E+ 4 4,442731E+01 7,605041E+03 1,546495+01 4,170000E+	2 4 2,41594 4,91871 3,0469 3374,0 8523,7 18,993 539 1 1,4414926+00 A,3936146+03 1,9044886+f1 3,4357916+ 2 6,7970406+00 8,2148786+55 1,9134616+01 3,862325+4 5 2,0484506+f1 7,9613446+13 1,909516+f1 4,17000064	2 4 2,60354 5,15615 3,1211 3297,8 8632,1 59,682 ,527 1 1,3280496+00 8,5033846+03 1,971336+n1 3,3597356+0 2 6,2448736+00 8,3295165+03 1,9760166+n1 3,6451286+0

NOT REPRODUCIBLE

2 10 P

> 4 2

> > ÷

2,79940 5,39630 3,4185 3001,5 9419,9 26,179 ,48023 ,01293 ,02693 =,0747 0,0000 0,00 5 1 5,308870£+00 P,68205/E+03 2,175078F+n1 3,22n442E+03 =3,466962F-03 =6,865a16E=04 4,92000UE=06 4 2

	2	CT.		
	1. 53836	0,100,0	0000000	439,22254
	97cc/ 1	04307	9CUU0.	417.00295
	1.42763	. 18916	00238	393 98606
	1.92921	15473	00702	362 93576
	1.97093	1 3 1 5 4	.0962	349,78500
	2,00372	20323	01193	339,45231
	2.05407	23526	01594	323,95082
	2.07974	25318	01820	315,94300
	2.10544	27019	.02060	308,29554
	2,14051	29350	.02410	297,96933
	2,19376	32915	05620	282,75595
	2,22092	34742	.03308	275,13104
	2,24030	502 °	040N0 .	267,61094
	2,26561	39133	.04123	257,42603
	2.34584	43133	504924	241,89115
	2,37316	45101	16230	234,29239
	2,40252	41207	.05794	226,95817
	2,48064	52726	07048	208,37681
:	2,51983	,52507		199.60046
	G9896 2	,58321	08396	151,22121
	2,63796	64080	5480,	175,18502
	2.67630	62029	.17630	167,33683
	2,71894	10000	d2451	159,81364
	2,60UR6	,76269	,13118	145,59651
1	. 2,682AU	.8261 ⁹		132,56702
	2,95042	87916	16379	124 01053
	3,0030B	92079	17580	119,32419
	3 ,4 793	, 95623	19623	116,69271
	5.09046	98995	19637	114,68727
	3,13373	1,02410	20685	112,78219
	\$17731	1,02P42		110,94954
	5,22197	1,09353	22864	109,13065
	5,26702	1,12887	24037	107,33063
	5,5133	1.10515	25245	105,50682
	3,5994	1,20161	26481	103,69300
	5,40800	1,2391 ^R	27778	111,84148
	5,45643	127791	29107	0226°00
	3,50656	1,31616	30506	98 03715
	3,25092	1,35545	31935	96 , 12056
	3,60920	1,39625	44400	94,17010
	5,60161	1 43712	34961	92,24544
	3.71610	1.47961	36606	00 0 7 00

:

ŧ

Table B- 5, 882,91 5, 885,18 1, 95959 4, 105939 4, 105959 4, 105959 5,	II-Continued 40024 86,31179 41818 34,33139 43734 32,28638 45689 80,27693	47776 78,16648 48636 77,15697 49903 76,13700 52203 74,00318 53365 72,95673 54554 71,92190	57076 69,74123 59351 67,87866 61851 65,90474 64371 65,90455 65140 53,41934 671817 50,41934 67255 50,49117	72264 58.46322 75121 56.64182 75124 56.64182 60653 54.65038 84154 51.37036 84154 51.37036 93798 49.50042 93798 46.27385 93798 46.27385	97024 29.10168 CHARACTERISTICS 3-46 (LAST) 97556 26.10168 ARE OWITTED 97121 23.2125 ARE OWITTED 97512 23.2125 ARE OWITTED 9752 26.1263 ARE OWITTED 97322 18.20323 18.20323 99322 16.05902 16.05902 100459 14.09456 14.09456 001475 76 14.09456	HETA-G IG/TG0 PG/PG0 DG/DG0 SUK/DG CF ISP TPK DPK/DPU RPK 0PK/D3 17576 23109 23468 0,0000 0000 4,8184796+03 3,2141122-03 5,4613506+03 4,9200006+0 4,8184796+03 3,2141122-03 5,4613506+03 4,9200006+0 4,9849156+03 3,2141122-03 5,4613506+01 2,5200006+0 5,0555286+03 7,9125826+02 1,344566+01 2,9400006+0 5,1013546+03 6,3131976+02 1,077726f+01 2,9400006+0 5,11013646+03 6,3131976+02 1,077726f+01 2,9400006+0 5,11013646+03 6,3131976+02 1,077726f+01 2,9400006+0
	Table B- 5,82791 1.556572 3,88518 1.61150 4,94538 1.65814 4,00550 1.70493	4 105935 4 105935 4 133008 4 133008 4 20099 4 20498 4 205867 1 885672 1 99957 1 99957	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4, 75739 4, 83274 4, 91821 4, 9766 5, 12994 2, 34690 2, 4590 2, 5490 2, 5490 2, 5490 2, 5490 2, 5490 2, 5490 2, 5400 2, 54000 2, 54000 2, 54000 2, 54000 2, 54000 2, 54000 2	<pre>>, 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	Z MACH TG VG T HETA-K THETA-K THA-K THA

ŝ

ຈອກສະກຸດ

λ Ω

L

TWO-PHASE PLUME PROGRA. HAS BEEN COMPLETED

CP TIME = 489,422 PP TIME = 246,239

SLINES

BEGINNING OF STREAMLINE GENERATION PROGRAM

CP TIME = 489,431 PP TIME = 247,752

STREAMLINE	(1) = 0,00000	PERCENT OF	THE TOTAL MASS	FLOW
ZINIT =	0,00000	(NONDIMENSI	UMAL . STHCY	•
PINIT =	1992,764306	(PSIA)		
TINIT =	6128,734034	(DEG, R)		
VINIT =	1918,291211	(FT/SEC)		
ZFINALE	11,540129	(NONDIMENSI	DNAL = ZZRC)	
MGKSK =	73	(NO. OF PRE	SSURE TABLE PO	INTS)
		•••••		
POINT	AXIAL	RADIAL.	STREAMLINE	PRESSURE
NQ.	DISTANCE	DISTANCE	DISTANCE	(PSIA)
	(Z/RÇ)	(R/RC)	(S/PC)	
	-1 268			
1	-1 440	0,000	0100	1992,764
2	-1 073	0 . 00n	108	1968 198
3		0.000	11/7	1939,718
4	- 904	0.000	1205	1906 875
2	- 00B	0.040	1354	1869 199
• •	• • • • • • • • • • • • • • • • • • •	0.000	1442	1826 204
/	• / 1 9	0.000	1531	1777 410
•	• 1 0 3]	0.000	+619	1727,201
V	•1242	0.000	1708	1693,414
10	• 4 5 4	0.000	1796	1652,289
11	.302	0.040	1855	1604 440
12	•1S11	0,000	1973	1550,596
1.5	• 188	0.000	1,062	1480,280
14	•1100	0.000	1,150	1430,930
12	011	0.000	1,239	1376,494
10	1077	0.000	1,327	1317,779
1/	100	0100	1+416	1246,342
18	1224	0.000	1,504	1186,698

19	, 343	0,000	1,593	1116,877
2C	,431	0,000	1,600	1057,315
21	.800	0.000	2,1.	806,477
22	.863	0.000	2,133	770,934
23	.967	0.000	2,217	732.580
24	1.055	0,000	2.305	693.313
26	1 1 4 5	0 000	2,307	452 510
24	1 244	0 000	2 404	611 114
20		0,000	5 504	
20	1 1 2 1 1	0,000	21271	2001010
28	1,440	0,000	x1286	520,072
29	1,503	ngaya	21418	402,/00
30	1,688	0,000	51938	439,223
31	1,820	n,000	31076	395,468
\$2	1,980	0,000	3,230	351,779
<u>پ</u> چ ع	2,211	0,000	3,461	295,815
54	2,313	0,000	3,563	269,062
35	2,395	0,000	3,645	254,118
56	2,526	0.000	3,776	226,334
37	2,546	0,000	3,846	214 67.0
38	2,657	0,000	3,917	202,486
39	2.766	0.000	4,016	187,451
4 0	2.924	0.000	4,174	165.741
41	3.008	0.000	4.255	154.696
42	3.095	0.000	4.345	145.360
43	3.219	0.000	4.469	131.440
44	3.423	0.000	4.673	112.893
45	1 532	0,000	4.782	103.410
45	7 447	0 060	4 997	06 422
40	1 068	01000		77 501
40	4 1 2 6	0,000	5 774	17 17 11 40 744
40	4 704	0,000	21370	40 617
49	4 ,301	0,000	2,221 B 000	021011
20	4,0/9	0,000	21454	47,784
	1972	0,000	.01142	43.040
22	2,113	0,000	0,303	341540
23	5,592	0,000	0,842	30,084
24	0,124	0.000	7 1 3 7 4	23,940
55	6,541	0,000	7,791	21,099
56	6,801	0,000	8,051	20,967
	6,969	0.040		20,351
58	7,110	0,000	8,360	19,551
59	7,255	0.000	8,505	19,935
6 D	7,404	0.000	8,654	19,982
61	7,561	0.000	8,811	20,057
62	7,723	0.000	5,973	20,123
63	7,596	0.000		20,196
64	8,075	0.000	9,325	20,171
65	8,268	0,000	9,518	19,915
66	8,466	0.000	9,716	19.849
67	8,676	0.000	9,926	19.856
68	8,893	0.000	10,143	19,904
69	9.131	0.000	10.381	19.929
70	0 104	0 000	40 444	10 204
711	91090	0,000	10 2 40	13 424
71	0 075	0,000	101 J	44 34 5
16	10 300	0,000	44 843	15 700
/3	1045A0	0 0 0	11,540	15-285

STREAM INF (2) = 20 ADAMA BLOCENT OF THE TOTAL WICH FLOR	,
- TINET =	Ň
$P(A) = 0_{A} = 0_{A}$	
TINIT = 6136 (9549) (PSIA)	
$\frac{1}{7} \frac{1}{1} \frac{1}$	
ACKER THING OF CHURCHAR START BRANCH	
INVERT 20 (NOT OF ENERGYDRE INBLE POINTS))
	CENIDE
NO. DISTANCE DISTANCE DISTANCE AND	100VKE
	·214)
(4/RU) (8/RU) (5/RU)	
1 •1.250 .560 0.000 200	7 827
	1 100
	5 157
5 w.896 .513 .757 103	4 4 4 1
A m.808 .500 444 487	4 0n0
7 • 719 400 518 47	11 745
9 m.542 474 74 74	4 400
	1 44 A
11 m.365 464 004 451	
	12 610 12 646
13 m. 188 . 451 1.060 441	17 000
	6 622
	4 474
	1 000
	3 000
	4 007
	171770
	8 222
21 .749 .440 D.O.K 90	4 304
	4 420
	41760

)

 $\neg \gamma \dot{J}$

24	1,082	.561	2,357	608.307
25	1,217	600	2,007	542,034
26	1.349	635	211 .	479.876
27	1.479	.665	2,768	424.826
28	1.607	.691	2.898	376.329
20	1.736	716	3.029	333.252
3.0	1.872	.743	3.168	293.268
34	2.015	772	3.314	257.000
32	2 168		. 474	223.123
33	2 132	.843	3.630	102.423
34	2.510	AHS	1,822	164.404
N.R.	2 705	0 1 3	4.021	141.668
34	2 682	055	4 204	127 500
30	8 4 5 5	1 002	4 420	444 827
4.5	3 150	1:10/		117102/
20	3 3 3 9 6	1.000	100/	1011400
34	3 6 6 6	1,110	41904	04,302
• •	4,102	1,210	2,420	14,033
11	41320	1,225	216/0	0/ 940
42	4 4 8 8	1,289	7,891	03,737
• 3		1,347	6,133	57,292
44	4,924	1,3/7	01599	24,289
45	5,081	1.4UR	6,446	51,376
4.6	5,301	1,422	6 <u>1</u> 6 7 N	47,649
47	5,660	1,523	7.036	42,318
4 A	5,856	1,562	7,237	39,716
49	6,057	1.601	7,441	37,301
20	6,355	1,659	7,745	34,057
51	6,844	1,753	8,243	29,536
25	7,112	1,804	8,515	27,408
23	7,374	1,853	8,782	25,547
54	8,153	1,999	9,574	20,908
55	6,573	· 2,078	10.002	18,877
56	6,998	2,155	10,434	17,113

-

	STREAMLINE	(3)= 40,00000	PERCENT OF	THE TOTAL MASS	FLOW
	AINII = PINTT =	2028.364264	(PSIA)	IONAL - SYNCY	
	TINIT #	6146 272736	(DEG P)		
	VINIT .	1774 130855	(FT/SEC)		
	ZFINAL=	10,421796	(NONDIMENS	10NAL = 4/RC)	
	MGKSK ¥	55	(NO, UF PR	ESSURE TABLE PO	INTS
	POINT	AXTAI	HADTAI	STREAMLINE	PRESSURE
	ND.	DISTANCE	DISTANCE	DISTANCE	(PSIA)
		(Z/RC)	(R/RC)	(S/RC)	
			• • • • • • •	•••••	
	1	=1,250	£799	0.00	2028 364
	2	=1,162	,781	• 0 9 0	1999,334
	3	w1,073	,762	,181	1965,110
	4	- 985	1745	1271	1925,349
	5	. ,896	1728	.301	18/9 029
	6	•,P08	1712	1421	182/ 4/1
	7	• 17 <u>19</u>	1097	1241	1700,3/1
and a state	8	• • • • • • • • • • • • • • • • • • • •	10/0	1002	17071072
	4	•124C	100/	1/ <u>6</u> 1	4450.323
	10	- 745	1024	1010	1582.554
	11	- 277	444	1070	1509.524
	13	- 188	. 438	1.078	1464.486
	14	. 100	635	1.164	1392.638
	15	•.011	.633	1.253	1318,565
	16	.077	632	1,341	1242,894
	17	165	653	1,430	1170,601
	18	254	654	1,518	1094 832
	19	343	638	1,607	1023,362
	20	431	. 643	1,696	249,990
	21	696	,643	1,960	752,080
	22	716	650 g	1,981	741,362
	23	,854	1696	2,127	665 075
	24	993	1745	2,273	586,250
	25	1,131	1786	2,419	500,725
		1,271			
	27	1,410	10/7	2,714	3701421
	20	1 700	1720	C1002	266.777
	6 V	+ / Vr 1 #61	1.020	3.476	228.607
	30	2.003	1,068	3.335	203.830
	32	2.159	1,115	3.498	187.352
·	33	2.325	1,106	3.671	172,308
	34	2,500	1,218	3,854	157,990
	35	2.687	1.275	4,050	144,262

1

STRAP STRANGER AND

-cip

36	2,889	1.334	4,260	131,120
37	3,108	1.399	4.6	118.411
3a	3,349	1,470	4,7.4	106.251
39	3,555	1.499	4,947	56,996
40	3,827	1.566	5,228	86.339
41	4,137	1.643	5,547	76,011
42	4,495	1.731	5,915	65,989
43	5,061	1.87?	6,499	53 372
44	5,332	1 939	6.77R	48,430
45	5,542	1,991	6,994	45.049
46	5,901	2,081	7,365	39,930
47	6,090	2.124	7,529	37 548
48	6,287	2 177	7,763	35,258
49	6,565	2,246	8,049	32,363
50	7,018	2,358	8,516	28,300
51	7,267	2,420	8 773	26,351
52	7 522	2,483	9:035	24,555
53	7 899	2,576	9,424	21,913
54	8,522	2,753	10.066	17,538
55	8,867	2,823	10,422	15,352

STREAMLI	NE(4)= 60,00000	PERCENT OF	THE TOTAL MASS	FLOW
ZINIT =	1,00000	(NONDIMENS	IGNAL . S/RC)	
PINIT #	2053,317024	(PSIA)		
TINIT =	6158,412074	(DEG, P)		
VINIT .	1567 048615	(FT/SEC)		
ZFINALE	9 236019	(NONDIMENS	IONAL • Z/RC)	
MGKSK .	51	(NO, OF PH	ESSURE TABLE PO	1N75)
POINT	AXIAL	RADIAL	STREAMLINE	PRESSURE
NÔ.	DISTANCE	DISTANCE	DISTANCE	(PSIA)
	(Z/RC)	(R/RU)	(S/RC)	
1	=1,250	992	0,000	2053,317
2	=1,102	.966	.092	2019,760
3	=1 ₊ 073	941	.184	1980,745
4	• • 985	917	1276	1935,960
5	- 896	895	.367	1884,962
4	- , A U B	874	∎458	1827 235
7	•,719	854	1549	1762,205
δ	-,631	,831	.640	1782,140

9012345678901234567890123456789012345678901

103 - Ar

and the method of a

~~~**}** 

| •             |                |         |          |
|---------------|----------------|---------|----------|
| <b>-</b> ,542 | <b>81</b> 8    | ±730    | 1714 942 |
| = 454         | 807            | 16.3    | 1642,099 |
| = 365         | 797            | د ي کو  | 1563 922 |
| = 277         | 768            | 997     | 1480,801 |
| - 168         | 781            | 1.086   | 1442,231 |
| - 100         | 777            | 1.174   | 1360 393 |
| .011          | 775            | 1 - 263 | 1277.440 |
| 077           | .774           | 1.351   | 1193.909 |
| 166           | 775            | 1.440   | 1118.471 |
| 254           | 770            | 1.528   | 1035.535 |
| 743           | 7/7            | 4 417   | 061.000  |
| 1040          | 1/04           | 1 7047  | 881.700  |
| 1491          | 1/71           |         |          |
| 1040          | 1795           | 1,919   |          |
| .683          | 1809           | 1,900   | 0701000  |
| 821           | 1852           | 2,104   | 608,907  |
| ,959          | 897            | 2,220   | 521 55   |
| 1,099         | 1945           | 21388   | 430,220  |
| 1,242         | 1996           | 21549   | 363,736  |
| 1,388         | 1.051          | 2,705   | 300,922  |
| 1,537         | 1,108          | 21865   | 259,784  |
| 1,690         | 1,167          | 3,029   | 238,081  |
| 1 846         | 1,225          | 3,195   | 219 675  |
| 2 007         | 1,263          | 3,366   | 202,352  |
| 2,171         | 1,341          | 3,540   | 186,125  |
| 2,341         | 1,399          | 3,726   | 170,940  |
| 2 518         | 1,457          | 3,906   | 156,551  |
| 2 706         | 1,520          | 4.104   | 142,859  |
| 2.906         | 1,585          | 4,314   | 129,878  |
| 3.120         | 1.656          | 4.540   | 117,497  |
| 3.351         | 1.732          | 4.783   | 105.732  |
| 3.604         | 1.814          | 5.049   | 94.526   |
| 3.881         | 1,905          | 5.341   | 83.896   |
| 4.411         | 1.042          | 5.573   | 76.402   |
| 4.424         | 2.030          | 5.400   | 67.350   |
| 4 781         | 2.1.50         | 6.276   | 58.696   |
| 5 405         | 2 247          | A . 490 | 50.387   |
| 5 857         | 61677<br>9 A33 | 7.384   | 40.085   |
| 4 169         | 2 524          | 7,712   | 36.114   |
| 4 444         | 5 804          | 7.049   | 37 395   |
|               | C1779          | 0 407   | 26 004   |
| 0,000         | <b>∠</b> 1710  | 5(407   | 20,001   |
| 7 029         | 21782          | N 1609  | 671094   |
| 7,294         | 2,874          | 8,885   | 221149   |
| 1029          | 51901          | A1520   | 10,021   |

351

| STREAMLINE | ( 5)= 80;00000 | PERCENT OF T | HE TOTAL MASS                 | FLOW               |
|------------|----------------|--------------|-------------------------------|--------------------|
| Z' 'IT =   | 0,00000        | (NONDIMENSIO | NAL = "/HC)                   |                    |
| P II =     | 2081,153171    | (PSIA)       |                               |                    |
| TINII =    | 01/1 0094/1    | (DEG_ R)     |                               |                    |
| VINIT #    | 1547 268632    | (FT/SEC)     |                               |                    |
| AF INALE   | 01044070       | (NONDIMENSIO | NAL - 67803<br>Rude 1.007 ddi |                    |
| MUNSA 4    | 49             | (NO UF PRES  | SAKE LABLE MOI                | N ( 5 )            |
|            |                |              |                               |                    |
| POINT      | AXTAL          | RADIAL       | STREAML INF                   | PRESSURE           |
| NO.        | DISTANCE       | DISTANCE     | DISTANCE                      | PSIAN              |
|            | (7/80)         | (P/Ril)      | (SZRC)                        | (1 • • • • 7       |
|            | 1+1-41         | 100047       | 101 OV 1                      |                    |
| 1          | <b>1,250</b>   | 1.106        | 0.000                         | 2081.153           |
| 2          | <b>1,162</b>   | 1.131        | 095                           | 2041 593           |
| 3          | <b>1</b> ,073  | 1.099        | ,190                          | 1996 673           |
| 4          | • 985          | 1 066        | ,283                          | 1946 054           |
| 5          | . 896          | 1.038        | :376                          | 1889 211           |
| 6          | - 808          | 1,011        | 469                           | 1825 507           |
| 7          | = 719          | 988          | 560                           | 1754 245           |
| A          | • 631          | 903          | 1622                          | 1790,229           |
| 9          | = 542          | 944          | 1742                          | 1711,576           |
| 10         | <b>=</b> ,454  | 932          | 1932                          | 1627,907           |
| 11         | <b>=</b> ,365  | 1919         | 1921                          | 1539,285           |
| 12         | • 277          | 1909         | 1.010                         | 1445,883           |
| 13         | -188           | 902          | 1:099                         | 1409 973           |
| 14         | -100           | + 597        | 1,198                         | 1318,953           |
| 15         | • 011          | 1894         | 1,276                         | 1227,295           |
| 10         | 0/7            | 1894         | 1,302                         | 1130,380           |
| 17         | 100            | 1877         | 1,423                         | 1020 140           |
| 10         | 1224           | 1947         | 1 1 2 7 2                     | 900 210<br>997 473 |
| 20         | 414            | 1710         | 11003                         | 201 QQA            |
|            | .582           | .930         | 4.874                         | 475,103            |
| 22         | .634           | 644          | 1.925                         | 641.228            |
| 23         | 673            | 955          | 1.966                         | 614.682            |
| 24         | 706            | .964         | 2.000                         | 593.222            |
| 25         | 885            | 1.021        | 2.188                         | 467.783            |
| 26         | 1.026          | 1 071        | 2.357                         | 382,882            |
| 27         | 1,171          | 1,126        | 2,492                         | 313 344            |
| 28         | 1,318          | 1,185        | 2,651                         | 286 172            |
| 29         | 1,468          | 1,244        | 2 812                         | 264 654            |
| 30         | 1,622          | 1,303        | 2,976                         | 244,259            |
| 31         | 1,779          | 1,303        | 3,144                         | 225 057            |
| \$2        | 1,940          | 1.424        | 3,316                         | 207. 084           |
| 33         | 2,106          | 1,486        | 3,494                         | 190,025            |
| 34         | 2,278          | 1,549        | 3 677                         | 174,106            |
| 35         | 2,456          | 1,615        | 3 867                         | 159,176            |
| 36         | 2,643          | 1,682        | 4 166                         | 145,173            |
| 37         | 2,539          | 1,752        | 41274                         | 132,022            |
| _38        | .3.047         | 1.127        | 4.492                         | 119,202            |

1216

1

·1 /

----

-

---

 39
 3,269
 1,906
 4,730
 107,882

 40
 3,507
 1,991
 4,004
 96,825

 41
 3,766
 2,004
 5,...8
 86,398

 42
 4,049
 2,184
 5,558
 76,594

 43
 4,610
 2,341
 6,143
 61,312

 45
 4,960
 2,449
 6,509
 53,710

 46
 5,360
 2,572
 6,928
 46,470

 47
 5,825
 2,718
 7,415
 37,957

 48
 6,591
 2,988
 8,227
 19,963

 49
 6,977
 3,147
 8,645
 14,839

END OF STREAMLINE GENERATION PROGRAM MGKS INPUT TAPE HAS BEEN PHEPARED

CP TIME = 492,122 PP TIME = 264,634

Table B-II-Concluded

۰,

and a subset of the second

131

. 1

9 P
Appendix C

Re-

Low

KINCON

# NONEQUILIBRIUM CHEMICAL KINETICS AND CONDENSATION COMPUTER PROGRAM

A Multiphase Reacting Gas Streamtube Model

Program Number H860

# TABLE OF CONTENTS

| Section     |                                                                                                                                                                                                     | Page                                   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| C. 1        | INTRODUCTION                                                                                                                                                                                        | 365                                    |
| C.2         | ANALYSIS                                                                                                                                                                                            |                                        |
|             | a. Conservation Equations<br>b. Condensation Equations                                                                                                                                              | 367<br>372                             |
| <b>C</b> .3 | NUMERICAL METHOD                                                                                                                                                                                    | 374                                    |
| C.4         | PROGRAM OVERLAY STRUCTURE                                                                                                                                                                           | 377                                    |
| C.5         | PROGRAM SUBROUTINES                                                                                                                                                                                 | 378                                    |
|             | <ul> <li>a. Main Overlay</li> <li>b. LINK 10 Subroutines</li> <li>c. LINK 20 Subroutines</li> <li>d. LINK 30 Subroutines</li> <li>e. LINK 41 Subroutines</li> <li>f. LINK 42 Subroutines</li> </ul> | 378<br>381<br>381<br>382<br>384<br>388 |
| C.6         | PROGRAM USER'S MANUAL                                                                                                                                                                               | 415                                    |
|             | <ul> <li>a. Operation Mode</li> <li>b. \$THERMO</li> <li>c. Thermodynamic Data</li> <li>d. Title Card</li> <li>e. Species Cards</li> <li>f. Reaction Cards</li> <li>g. \$PROPEL</li> </ul>          | 416<br>418<br>422<br>422<br>423<br>423 |
| C.7         | OUTPUT FOR A SAMPLE CASE                                                                                                                                                                            | 434                                    |
|             | <ul> <li>a. Reaction-Rate Screening Case</li> <li>b. Oblique Shock Case</li> <li>c. Normal Shock-Stagnation Streamline Case</li> <li>d. Automated Kinetics and Condensation Case</li> </ul>         | 434<br>434<br>434<br>434               |
| C.8         | REFERENCES                                                                                                                                                                                          | 458                                    |

Preceding page blank

1

# TABLES

| Table    |                                                                                                                                             | Page |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| C-1      | Species Residing on Master Thermodynamic Tape                                                                                               | 420  |
| C-11     | Sample Listing For Thermodynamic Function<br>Cards For N <sub>2</sub>                                                                       | 421  |
| C - 111  | Card Listing For Rate-Screening Case                                                                                                        | 435  |
| C-IV     | Sample Reaction-Screening Output                                                                                                            | 437  |
| C - V    | Final Summary Output After Screening-Results of Original and Screened Runs                                                                  | 438  |
| C-VI     | Card Listing For Oblique Shock Calculation in Air                                                                                           | 439  |
| C - VII  | Pressure Table                                                                                                                              | 440  |
| C - VIII | Shock Calculation                                                                                                                           | 441  |
| C-1X     | Card Listing For Normal Shock Stagnation<br>Streamline Calculation in Air                                                                   | 442  |
| C-X      | Input Velocity Distribution Table                                                                                                           | 443  |
| C-XI     | Sample Output For Normal Shock Calculation                                                                                                  | 444  |
| C-XII    | Kincon Sample Case-Data Lit .ing                                                                                                            | 446  |
| C-XIII   | Streamline Generation Program                                                                                                               | 447  |
| C-XIV    | Initial Conditions Kinetic Streamtube Calculation                                                                                           |      |
|          | Factor (FT) 8, $10000$ E-03                                                                                                                 | 449  |
| C - X V  | Kinetic Streamtube Conditions Axial Position                                                                                                | 450  |
| C-XVI    | Kinetic Streamtube Conditions Axial Position                                                                                                | 451  |
| C-XVII   | Area Ratio Table                                                                                                                            | 452  |
| C-XVIII  | Initial Conditions Kinetic Streamtube Calculation<br>Axial Position = 2,49885E+01 Input Normalizing<br>Axial Scale Factor (FT) 8, 10000E-03 | 454  |

| Table |                                              | Page |
|-------|----------------------------------------------|------|
| C-XIX | Kinetic Streamtube Conditions Axial Position | 455  |
| C-XX  | Kinetic Streamtube Conditions Axial Position | 456  |

# LIST OF ABBREVIATIONS AND SYMBOLS

sal.

| A, a            | Cross-sectional area of the streamtube                                                  |
|-----------------|-----------------------------------------------------------------------------------------|
| a, b            | Reaction-rate parameters                                                                |
| C <sub>p</sub>  | Specific heat at constant pressure                                                      |
| ° <sub>i</sub>  | Mass fraction of i <sup>th</sup> species                                                |
| f <sub>i</sub>  | Free energy of i <sup>th</sup> species                                                  |
| g               | Mass fraction of condensed phase                                                        |
| н               | Energy addition rate, per unit normalized length, per unit initial streamtube mass flux |
| h               | Enthalpy                                                                                |
| h'              | Enthalpy of condensed phase                                                             |
| J               | Nucleation rate, critical-size nuclei formed per unit volume, per unit time             |
| k               | Boltzmann constant                                                                      |
| К <sub>.</sub>  | Equilibrium constant                                                                    |
| k, k<br>j' kj   | Reaction-rate parameters                                                                |
| М               | Momentum flux, per unit normalized length, per unit initial streamtube mass flux        |
| M <sub>j</sub>  | Third-body reaction term                                                                |
| M <sub>i</sub>  | Chemical symbol for the i <sup>th</sup> species                                         |
| m               | Mass addition rate, per unit normalized length per unit<br>initial streamtube mass flux |
| m <sub>ji</sub> | Reaction-rate ratio                                                                     |
| m <sub>i</sub>  | Molecular weight of i <sup>th</sup> species                                             |
| Na              | Avogadro's number                                                                       |
| n               | Total number of species                                                                 |
|                 |                                                                                         |

Preceding page blank

| n j                                | Reaction-rate parameters                                                                                                 |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| P, P <sub>i</sub>                  | Pressure and partial pressure of i <sup>th</sup> species, respectively                                                   |
| R                                  | Gas constant of the mixture                                                                                              |
| Я                                  | Universal gas constant                                                                                                   |
| r*                                 | Normalization factor for x                                                                                               |
| <b>2</b> * *                       | Critical droplet radius                                                                                                  |
| ;<br>i                             | i <sup>th</sup> species mass addition rate, per unit normalized length,<br>per unit initial streamtube mass fl <b>ux</b> |
| Т                                  | Temperature                                                                                                              |
| V                                  | Flow velocity                                                                                                            |
| x <sub>j</sub>                     | Species production-rate term                                                                                             |
| x                                  | Axial distance                                                                                                           |
| γ                                  | Ratio of specific heats                                                                                                  |
| σ                                  | Surface tension                                                                                                          |
| η                                  | Condensation coefficient                                                                                                 |
| v <sub>ij</sub> , v' <sub>ij</sub> | Stoichiometric coefficients                                                                                              |
| ρ                                  | Density                                                                                                                  |
| ω <sub>i</sub>                     | Production rate of i <sup>th</sup> species                                                                               |

# SUBSCRIPT

| D  | Droplet                  |
|----|--------------------------|
| L  | Liquid                   |
| v  | Vapor                    |
| VS | Saturated vapor          |
| i  | i <sup>th</sup> species  |
| j  | j <sup>th</sup> reaction |

### Appendix C

## KINCON

#### NONEQUILIBRIUM CHEMICAL KINETICS AND CONDENSATION COMPUTER PROGRAM

A Multiphase Reacting Gas Streamtube Model

#### C.1 INTRODUCTION

The computer program described in this appendix is a subprogram to the Plume Contamination Effects Prediction Computer Program, <u>CONTAM</u>, and performs chemical-kinetic and single-species condensation calculations along gas-phase streamlines as computed by the Multiphase Nozzle and Plume Transport Computer Program, <u>MULTRAN</u>. <u>KINCON</u> may also be used as an independent computer program on any third-generation computer with a core exceeding 135, 000 words and a Fortran IV processor.

The present computer program is based on the ICRPG One-Dimensional Kinetic Nozzle Analysis Computer Program, <u>ODK</u> (References C-1 and C-2), and on modifications to the <u>ODK</u> by Dynamic Science Corporation under contract to McDonnell Douglas Astronautics Company (Reference C-3). The purpose of the original program was to provide an automated engineering tool for the kinetic analysis of one-dimensional chemically reacting gas systems. To this end, a number of options were included in the program to aid the user. These included a mass, momentum, and energy streamtube addition option, generalized oblique shock calculation, normal shock-stagnation streamline calculation, area-defined streamtube option, and a reaction screening option. Modifications performed under the present study include the addition of a thermodynamic nonequilibrium condensation model and the automation of the program to perform successive kinetics and condensation calculations for a series of streamlines.

Species and reactions are input to the program in symbolic form. The user may input arbitrary species (up to 40) and arbitrary gas phase reactions (up to 150). Specified third-body reaction rate ratios may be employed. A comprehensive library of thermochemical data is available as part of the computer program. This data may be expanded by input of tables punched directly from the JANAF format. Automatic plotting of temperature, density, and species concentration is available. A unique feature of the program is its ability to integrate-with complete numerical stability-the differential equations governing the kinetic system. Section C.2 contains a discussion of physical assumptions. The equations governing the inviscid, one-dimensional flow of a chemically reacting gas mixture are given in the form in which they are integrated in the computer program.

Section C.3 contains a discussion of the integration method used in the computer program.

Section C. 4 contains a description of the program overlay structure.

Section C. 5 contains a detailed engineering and programming description of the logic and the calculations performed in the computer program.

Section C. 6 contains a program user's manual describing the use of the computer program with an explanation of the program input and output.

Section C. 7 contains input and output for a sample case.

### C. 2 ANALYSIS

The method of solution consists of integrating the conservation equations for the chemical system in such a form that the chemistry is generalized for binary exchange and dissociation-recombination reactions. Condensed phase products are considered by a single-species nonequilibrium condensation option.

**Conservation Equations** a.

The KINCON computer program integrates a set of simultaneous differential equations along a pressure-defined streamtube (i.e., P(x) and dP(x)/dx are known). These differential equations represent the conservation of species, mass, momentum, and energy for the system as expressed by Equations (C-5), (C-6), (C-7), and (C-8) below.

The conservation equations governing the inviscid flow of reacting gas mixtures have been given by Hirschfelder, Curtiss, and Bird (Reference C-4), Penner (Reference C-5), and others. The following basic assumptions are made in the derivation of these equations.

- Mass ( $\dot{m}$ ,  $\dot{s}_i$ ), momentum ( $\dot{M}$ ), and energy ( $\dot{H}$ ) addition rates are 1. defined for the system.
- 2. The gas is inviscid.
- 3. Each component of the gas is a perfect gas.
- 4. The internal degrees of freedom of each component of the gas are in equilibrium.

In one-dimensional flow, the conservation equations have the form<sup>1</sup>

species 
$$\frac{d}{dx} \left[ (1 + \overline{m}) c_i \right] = \dot{s}_i + (1 + m) \frac{\omega_i r^*}{\rho V}$$
 (C-1)

mass

$$\frac{d}{dx}(1+\bar{m}) = \dot{m} \qquad (C-$$

2)

momentum

 $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}\left[(1+\overline{m}) \ \mathrm{V}\right] = \dot{\mathrm{M}} - \frac{(1+\overline{m})}{\rho \ \mathrm{V}} \frac{\mathrm{d}\mathrm{P}}{\mathrm{d}\mathrm{x}}$ (C-3)

<sup>&</sup>lt;sup>1</sup>The independent variable, x, is taken as unitless with r\* as the conversion factor to units. The quantity  $1 + \overline{m}$  represents the streamtube mass flux normalized by the initial streamtube mass flux; i.e.,  $1 + \overline{m} = (\rho Va)/(\rho Va)_{\rho}$ 

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}\left[(1+\overline{m})\mathbf{h}_{\mathrm{T}}\right] = \dot{\mathrm{H}},$$

energy

 $h_{T} = \sum_{i=1}^{n} c_{i} h_{i} + \frac{V^{2}}{2}$  (C-4)

1

If the expansion process is specified by the pressure distribution as a function of distance, Equations (C-1 through C-4) can be written as

$$\frac{\mathrm{d}\mathbf{c}_{\mathbf{i}}}{\mathrm{d}\mathbf{x}} = \frac{\dot{\mathbf{s}}_{\mathbf{i}} - \dot{\mathbf{m}}\mathbf{c}_{\mathbf{i}}}{1 + \overline{\mathbf{m}}} + \frac{\dot{\mathbf{\omega}}_{\mathbf{i}} \mathbf{r}^{*}}{\rho V} \qquad (C-5)$$

$$\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{\dot{M} - \dot{m}V}{1 + \overline{m}} - \frac{1}{\rho V} \frac{\mathrm{d}P}{\mathrm{d}x}$$
(C-6)

$$\frac{\mathrm{d}T}{\mathrm{d}\mathbf{x}} = \frac{1}{C_{\mathrm{p}}} \left[ \frac{\dot{\mathrm{H}} - \dot{\mathrm{m}} \, \mathrm{h}_{\mathrm{T}}}{1 + \overline{\mathrm{m}}} - \frac{\mathrm{V} \left( \dot{\mathrm{M}} - \dot{\mathrm{m}} \mathrm{V} \right)}{1 + \overline{\mathrm{m}}} + \frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}\mathbf{x}} - \sum_{i=1}^{n} \mathrm{h}_{i} \frac{\mathrm{d}c_{i}}{\mathrm{d}\mathbf{x}} \right] (C-7)$$

$$\frac{\mathrm{d}\,\rho}{\mathrm{d}\mathbf{x}} = \left[\frac{1}{\mathrm{P}}\,\frac{\mathrm{d}\mathrm{P}}{\mathrm{d}\mathbf{x}} - \frac{1}{\mathrm{T}}\,\frac{\mathrm{d}\mathrm{T}}{\mathrm{d}\mathbf{x}} - \frac{1}{\mathrm{R}}\left(\sum_{i=1}^{n} \mathrm{R}_{i}\,\frac{\mathrm{d}\mathrm{c}_{i}}{\mathrm{d}\mathbf{x}}\right)\right]\rho \qquad (C-8)$$

where

$$C_{p} = \sum_{i=1}^{n} c_{i}C_{pi}$$
(C-9)

$$Y = \frac{C_{p}}{(C_{p} - R)}$$
(C-10)

$$h_{i} = \int_{0}^{T} C_{pi} dT + h_{i0}$$
 (C-11)

For each component of the gas, the equation of state is

$$P_{i} = \rho_{j}R_{i}T \qquad (C-12)$$

Summing over all the components of the mixture, the overall equation of state is obtained

$$P = \rho RT = \rho T \sum_{i=1}^{n} c_i R_i \qquad (C-13)$$

The net species production rate  $\omega_{\underline{i}}$  for each species (component) is calculated from

$$\omega_{i} = \bar{m}_{i} \rho^{2} \sum_{j=1}^{n} (\nu'_{ij} - \nu_{ij}) X_{j}$$
 (C-14)

where

$$X_{j} = \begin{bmatrix} K_{j} \prod_{i=1}^{n} c_{i}^{\nu} i j - \rho^{\lambda} \prod_{i=1}^{n} c_{i}^{\nu'} i j \end{bmatrix} k_{j} M_{j}$$
(C-15)

and  $\lambda$  depends on the order of the reaction and M. is calculated only for dissociation-recombination reactions.

The equilibrium constant,  $K_{i}$ , is

$$K_{j} = e^{-\Delta F / \mathcal{A} T}$$

$$\Delta F = \sum_{i=1}^{n} f_{i} v_{ij} - \sum_{i=1}^{n} f_{i} v_{ij}'$$
(C-16)

The computer program considers chemical reactions defined by the generalized chemical reaction equation

$$\sum_{i=1}^{n} v_{ij} \overline{M}_{i} \neq \sum_{i=1}^{n} v'_{ij} \overline{M}_{i}$$
 (C-17)

where  $v_{ij}$  and  $v'_{ij}$  are the stoichiometric coefficients to be used in Equation (C-15) while  $\overline{M_i}$  represents the symbol for the i<sup>th</sup> chemical species.

The reaction rates,  $k_j,\ for\ the\ j^{th}$  reaction appearing in Equation (C-15) are represented in the Arrhenius form

$$k_{j} = a_{j}T^{-n}j e^{(-b_{j}/\mathcal{R}T)}$$
 (C-18)

where

a, is the pre-exponential coefficient

n, is temperature dependence of the pre-exponential factor

b is

is the activation energy

Since each dissociation-recombination reaction has a distinct reaction rate associated with each third body, the net production rate for each dissociation-recombination reaction should be calculated from

$$X_{j} = \sum_{k=1}^{n} \left[ K_{j} \prod_{i=1}^{n} c_{i}^{\nu_{ij}} - \rho \prod_{i=1}^{n} c_{i}^{\nu_{ij}} \right] c_{k}^{k}_{kj}$$
(C-19)

rather than Equation (C-15). However, Benson and Fueno (Reference C-6) have shown theoretically that the temperature-dependence of recombination rates is approximately independent of the third body. Assuming that the temperature dependence of recombination rates is independent of the third body, the recombination rate associated with the k<sup>th</sup> species (third body) can be represented as

$$k_{kj} = a_{kj}^{-n} T e^{-k_j/\Re T}$$
(C-20)

where only the constants  $a_{kj}$  are different for different species (third bodies). From Equation (C-19) it can be shown that

$$X_{j} = \left[K_{j}\prod_{i=1}^{n}c_{i}^{\nu}i_{j} - \rho\prod_{i=1}^{n}c_{i}^{\nu}i_{j}\right]\left[\sum_{i=1}^{n}\frac{a_{ij}}{a_{kj}}c_{i}\right] \quad a_{kj}T^{-n_{j}}e^{-b_{j}}/\mathcal{R}T \quad (C-21)$$

Thus, the recombination rates associated with each third body can be considered as in Equation (C-15) by calculating the general third body term  $M_j$  as

$$M_{j} = \sum_{i=1}^{n} m_{ji}c_{i} \qquad (C-22)$$

where  $m_{ji}$  is the ratio  $a_{ij}/a_{kj}$ .

In order to numerically integrate Equations (C-1), (C-5), (C-6), and (C-7), it is necessary to input the following type of information concerning the chemical system:

Boundary Conditions:

- x initial axial position
- P initial pressure
- T initial temperature
- V Initial velocity

x<sub>max</sub> final axial position

P(x) table of pressure versus axial position

#### dP(x)/dx table of pressure derivatives versus axial position

Species Information:<sup>2</sup>

- M. species name
- m; species molecular weight
- C<sub>pi</sub>(T) species specific heat
  - h<sub>i</sub>(T) species enthalpy

f;(T) species free energy

<sup>2</sup>The items  $C_{pi}$ ,  $h_i$ , and  $f_i$  are not available directly in the appropriate units. The computer program calculates these items for each species from the JANAF data for:  $C_p$  vs T

$$-\frac{H^{\circ} - H^{\circ}_{298} vs T}{T}$$

$$-\frac{H^{\circ} - H^{\circ}_{298} vs T}{T}$$

$$-\frac{H^{\circ}_{298} vs T}{H^{\circ}_{298}}$$

and

Reaction Information:

$$\sum_{i=1}^{n} v_{ij} \overline{M}_{i} \neq \sum_{i=1}^{n} v_{ij}^{!} \overline{M}_{i}$$
 each reaction must be input in terms of its stoichiometric coefficients and constituent species
$$a_{ij}, n_{ij}, b_{ij}$$
 constants defining k<sub>ij</sub>, the reaction rates

m<sub>ii</sub> third body reaction-rate ratios

Miscellaneous Information:

r\* normalization factor for x

Mass, Momentum, Energy, and Species Addition Functions:

- m (x) mass addition rate, per unit normalized length, per unit initial streamtube mass flux
- M (x) Momentum flux, per unit normalized length, per unit initial streamtube mass flux
- H (x) energy addition rate, per unit normalized length, per unit initial streamtube mass flux
- s<sub>i</sub> (x) i<sup>th</sup> species mass addition rate, per unit normalized length, per unit initial streamtube mass flux

A considerable amount of data (such as JANAF tables defining  $C_{pi}$ ,  $h_i$ , and  $f_i$ , reaction rate parameters and cards defining chemical reactions) are available with the computer program. Details concerning input to the computer program are given in Subsection C.  $\delta$ .

For the area defined option including mass, energy, and momentum addition, the pressure profile is obtained by an iteration to obtain the pressure profile such that A(x) obtained - A(x) input <  $\epsilon$  where  $\epsilon$  is an input convergence criteria.

b. Condensation Equations

Dropwise condensation of a single gaseous species is computed from classical liquid drop theory. In addition to the assumptions noted above, the condensation analysis assumes the following:

- 1. Condensed phase mass is uniformly distributed.
- 2. Droplets are spherical.
- 3. Droplets are small and follow gas streamlines.
- 4. Volume occupied by condensed phase is small compared to gas volume.

Two distinct processes are treated, nucleation and droplet growth. The nucleation process (spontaneous self-nucleation) occurs in the expanding supersaturated vapor and involves the clustering of vapor molecules to give rise to very small nuclei (radius of 10 to 100 Å). Only nuclei reaching the critical drop radius  $r^{**}$  can exist and grow. Critical drop radius is given by Frenkel (Reference C-7)

$$\mathbf{r}^{**} = \frac{2\sigma}{\rho_{\mathrm{L}}R_{\mathrm{v}}T \ln\left(\frac{p_{\mathrm{v}}}{p_{\mathrm{vs}}}\right)} \tag{C-23}$$

The nucleation rate, J, represents the number of critical-size nuclei formed per unit volume per unit time and is calculated from the expression by Stever (Reference C-8)

$$J = \left(\frac{p_{v}}{kT}\right)^{2} \frac{1}{\rho_{L}} \left(\frac{2\sigma m_{i}}{\pi Na}\right)^{1/2} \exp\left(-\frac{4\pi\sigma r^{**}}{3 kT}\right)$$
(C-24)

Once a suitable number of nuclei are formed in the vapor, the process of droplet growth accounts for the actual condensation. Droplet growth occurs through the collision of vapor molecules and stable liquid droplets.

The net flux of vapor to the droplet surface is computed from kinetic theory considerations where droplets are typically smaller than the mean free path of the gas. The droplet growth equation of Hill (Reference C-9) is utilized

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{x}} = \frac{\eta}{\rho_{\mathrm{L}} \mathrm{V}} \frac{1}{(2\pi \mathrm{R}_{\mathrm{V}})} 1/2 \left(\beta - \beta_{\mathrm{D}}\right) \tag{C-25}$$

where

$$\beta = \frac{P_v}{T^{1/2}}$$
$$\beta_D = \frac{P_D}{T_D^{1/2}}$$

Droplet temperature is assumed to be that of the saturated vapor.

The appropriate mass, momentum, and energy addition rates are computed internally from the following expressions

| ṁ      | Ξ | $-\frac{\mathrm{d}g}{\mathrm{d}x}$                             | Mass     |
|--------|---|----------------------------------------------------------------|----------|
| Ŵ      | = | $\dot{m}V + g \frac{(1 - \overline{m})}{\rho V} \frac{dp}{dx}$ | Momentum |
| Ĥ      | = | $(1 - 2g) \dot{m}h' - (1 + \overline{m}) g \frac{dh'}{dx}$     | Energy   |
| ;<br>i | Ξ | m, i = condensing species                                      | Species  |
|        | = | 0 for other species                                            |          |

The rate-of-change of condensed-phase mass fraction, dg/dx, is evaluated by summing the mass of all droplets formed upstream of a specific location, x, as follows

$$\frac{\mathrm{d}g}{\mathrm{d}\mathbf{x}} = \frac{4\pi\rho_{\mathrm{L}}}{\rho_{\mathrm{V}}} \left[ \frac{1}{3} \mathbf{r}^{**}(\mathbf{x}) \mathbf{J}(\mathbf{x}) \frac{\mathbf{A}(\mathbf{x})}{\mathbf{A}_{\mathrm{o}}} + \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{x}} \int_{\mathbf{x}_{\mathrm{o}}}^{\mathbf{x}} \mathbf{r}(\mathbf{x},\xi)^{2} \mathbf{J}(\xi) \frac{\mathbf{A}(\xi)}{\mathbf{A}_{\mathrm{o}}} \mathrm{d}\xi \right] \quad (C-26)$$

where the integral is replaced by a summation for numerical evaluation.

#### C.3 NUMERICAL METHOD

It has been shown (e.g., Reference C-10) that explicit methods of numerical integration are unstable when applied to relaxation equations [such as Equations (C-1), (C-5), (C-6), and (C-7)], unless the integration step size is of the order of the characteristic relaxation distance. Since in the near equilibrium flow regime the characteristic relaxation distance is typically many orders of magnitude smaller than characteristic physical dimensions of the system of interest, the use of explicit methods to integrate relaxation equations often results in excessively long computation times. An implicit integration method which is inherently stable in all flow situations (whether near equilibrium or frozen) is therefore used by the computer program. With this method, step sizes which are of the order of the physical dimensions of the system of interest can be used, reducing the computation time per case by several orders of magnitude when compared with conventional explicit integration methods.

Consider N first-order simultaneous differential equations

$$\frac{dy_i}{dx} = f_i(X, y_i, \dots, y_N) \qquad i = 1, 2, \dots, N \qquad (C-27)$$

with known partial derivatives (i.e. the Jacobian for the system) $^3$ 

$$\mathbf{n}_{\mathbf{i}} = \frac{\partial f_{\mathbf{i}}}{\partial \mathbf{x}} \tag{C-28}$$

$$\beta_{i,j} = \frac{\partial f_i}{\partial y_j}$$
 (C-29)

The following implicit difference equations are used by the computer program to determine the  $y_{i, n+1}$ , (the subscript n denotes the n<sup>th</sup> integration step)

$$y_{i,n+1} = y_{i,n} + k_{i,n+1}$$
  $h = x_{n+1} - x_n$  (C-30)

where

10

18. 20

+ A.

$$k_{i, n+1} = \left[ f_{i, n} + a_{i, n} h + \sum_{j=1}^{N} \beta_{i, j, n} k_{j, n+1} \right] \cdot h \quad (C-31)$$

for the initial step and for restart (first order).

$$k_{i, n+1} = \frac{1}{3} \left[ k_{i, n} + 2 \left( f_{i, n} + a_{i, n}^{h} + \sum_{j=1}^{N} \beta_{i, j, n}^{k} k_{j, n+1} \right) \cdot h \right] \quad (C-32)$$

<sup>3</sup>The computer program uses analytic expressions for calculation of the partial derivatives,  $\alpha_i$ ,  $\beta_{ij}$ .

for equal steps (second order with h = previous h)

$$k_{i, n+1} = \frac{h_{n+1}^{2}}{(2h_{n+1}+h_{n}) \cdot h_{n}} \left[ k_{i,n} + \left[ f_{i,n} + a_{i,n}h_{n+1} + \sum_{j=1}^{N} \beta_{i,j,n}k_{j,n+1} \right] \cdot \frac{h_{n}}{h_{n+1}} (h_{n+1}+h_{n}) \right]^{(C-33)}$$

for unequal steps (2nd order with  $h \neq$  previous h)

A derivation of these equations is given in Reference C-2.

If the flow is frozen, the explicit form of the above equations can be used ( $_i = 0$ ,  $\beta_{ij} = 0$ ); i.e., Equations (C-31), (C-32), and (C-33) are each reduced from an NXN system of linear simultaneous equations to N explicit equations (N = 3 + number of species).

Control of the integration step size, h, is provided by calculating estimates for the truncation error and comparing these to an input criterion,  $\delta$ .

The step size is halved if for any i = 1, 2, ..., N

E<sub>i</sub> > δ

The step size is doubled if for all i = 1, 2, ..., N

$$E_i < \frac{\delta}{10}$$

where

$$E_{i} = \left| \frac{k_{i, n+1} - 2k_{i, n} + k_{i, n-1}}{3k_{i, n+1} - k_{i, n}} \right|$$
(C-34)

The above expression for  $E_i$  is derived in Reference C-2.

# C.4 PROGRAM OVERLAY STRUCTURE

12

1

# ØVERLAY (FFILE, 6, 0)

|                 |                                   |         | SCREEN<br>DRIVER<br>FIND<br>STØICC<br>SPLN<br>AF073C<br>GTF<br>STF<br>APPRØX |                                                                                                                                                                                             |                          |
|-----------------|-----------------------------------|---------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| LINK 10         | LINK 20                           | LINK 30 | LINK 41                                                                      | LINK 42                                                                                                                                                                                     | LINK 50                  |
| TTAPE<br>CØLØUT | ECNV<br>INPUT<br>NUMBER<br>SPRXIN | STFSET  | ADDFIT<br>CØNVRT<br>PACKIP<br>PRES<br>SLP<br>TCALC                           | DERIV<br>EF<br>FLU<br>ADDXXX<br>IAUX 1<br>IAUX 1<br>IAUX<br>ITER<br>INT<br>LESK<br>MAIN<br>ØUTPUT<br>ØUTXXX<br>PLTSUB<br>PRNTCK<br>UTIL<br>SHØCK<br>SCRX<br>TREE<br>CØNAD<br>VAPØR<br>DRØPS | DSCPLT<br>MAXMIN<br>SCAL |

## C. 5 PROGRAM SUBROUTINES

This section contains a description of the program subroutines. These descriptions are given in the order that the subroutines appear-link 10 through 50-on the overlay chart of Subsection C.4. The order of execution of the program links is described below.

The main program sets up master limits for the chemistry, initializes certain logical control variables, and calls subroutine DRIVER. Subroutine DRIVER provides the overall logic control for the program.

After the program is loaded, LINK 10 is executed either to prepare a master tape containing JANAF Thermochemical Data from card input or to summarize the current master file used. LINK 20 is then executed to perform program input and species selection functions.

LINK 30 is then executed to prepare a blocked tape of packed and converted thermochemical data to be used by the kinetic calculation links. LINK 41 is then executed to prepare species and reaction information, pressure table and derivatives, and mass, energy, momentum, and species tables for the kinetic calculation. LINK 42 is executed to perform the kinetic expansion and condensation computation.

LINK 50 is executed to prepare plot output if requested.

- a. Main Overlay
  - (1) Program SCREEN

This subroutine provides overlay communication, defines the labeled common blocks, sets maximum limits for the chemical tables, and initializes certain logical control variables. It calls subroutine DRIVER.

(2) Subroutine DRIVER

This subroutine performs the overall logic for the program.

(3) Subroutine FIND

Provides indices of the table entries which bracket the value of a current variable. The subroutine saves its place in the table.

(4) Subroutine STOICC

Provides up to ten reactants indices and ten product indices from the master stoichiometric coefficient table.

(5) Subroutine  $AF \phi 73C$ 

This subroutine provides overlay linkage between the kinetic packing link, LINK 41 and the kinetic expansion computation link, LINK 42.

### (6) Subroutine GTF

This subroutine computes the effective gas constant, gaseous heat capacity, Y,  $\partial Y/\partial T,~\partial Y/\partial C_i$  from the following formulae:

$$R = \sum_{i=1}^{NSP} C_{i} \cdot R_{i}$$

$$Cp = \sum_{i=1}^{NSP} C_{i} \cdot Cp_{i}$$

$$Y = \frac{Cp}{Cp \cdot R}$$

$$\frac{\partial Y}{\partial T} = -\frac{Y \cdot (Y - 1)}{Cp} \cdot \sum_{i=1}^{NSP} C_{i} \cdot \frac{\partial Cp_{i}}{\partial T}$$

$$\frac{\partial \gamma}{\partial C_{i}} = \gamma \cdot (\gamma - 1) \cdot \left[ \frac{R_{i}}{R} - \frac{Cp_{i}}{Cp} \right] \qquad i = 1, \dots, \text{ NSP}$$

# (7) Subroutine SPLN

 $y'' = 6A(x - x_n) + 2B$ 

 $\begin{array}{l} \mbox{Performs cubic interpolation for a function and its first two}\\ \mbox{derivatives.} & Given function values $y_n$ and $y_{n+1}$ and first derivative values $y'_n$ and $y'_{n+1}$ at $x_n$ and $x_{n+1}$, this subroutine evaluates $y(x)$, $y'(x)$, and $y''(x)$ for $x_n$ $\leq $x$ $< $x_{n+1}$ using: } \end{array}$ 

y = 
$$A(x - x_n)^3$$
 +  $B(x - x_n)^2$  +  $C(x - x_n)$  + D  
y' =  $3A(x - x_n)^2$  +  $2B(x - x_n)$  + C

where:

$$A = \frac{1}{h^3} \cdot \left[ (y'_{n+1} + y'_n) h - 2k \right]$$

$$B = -\frac{1}{h^2} \cdot \left[ (y'_{n+1} + 2y'_n) h - 3k \right]$$

$$C = y'_n$$

$$D = y_n$$

$$h = x_{n+1} - x_n$$

$$k = y_{n+1} - y_n$$

(8) Subroutine STF

Using the SPLN interpolation subroutine, this subroutine computes the heat capacity and its temperature derivatives, enthalpy, and free energy, at the current temperature for all gaseous chemical species.

(9) Subroutine APPROX

This subroutine provides extension of the thermochemical data between the temperatures 9,000 and 20,000 °R. A message is provided each time an approximation is calculated. The approximation formulae are given below with X = 9,000 °R:

$$C_{P_{T}} = C_{P_{X}}$$

$$H_{T} = H_{X} + C_{P_{X}} * \Delta T$$

$$F_{T} = F_{X} - \left[\frac{H_{T}^{\circ} - H_{298}^{\circ}}{T} - \frac{H_{T}^{\circ} - H_{298}^{\circ}}{X} - C_{P_{T}} \log\left(\frac{T}{X}\right)\right]$$

### b. LINK 10 Subroutines

## (1) Subroutine TTAPE

This subroutine generates a master JANAF thermochemical tape which is subsequently utilized by Subroutine STFSET. The tape is written in the binary mode with the thermodynamic functions in caloric units. The thermodynamic functions for each species include:

| Function                              | Units       |
|---------------------------------------|-------------|
| C <sub>p</sub> °                      | cal/mole-°K |
| H° -H° 298                            | k-cal/mole  |
| - <u>(F° - H°<sub>298</sub>)</u><br>T | cal/mole-°K |

given at 100°K temperature increments over the range 100°K to 5,000°K, inclusive. Reference may be made to Subsection C. 6, the Program Users Manual, for a complete description of thermodynamic input format and output options.

(2) Subroutine COLOUT

Provides columnar output of species names for those species residing on the master thermo file.

c. LINK 20 Subroutine

(1) Subroutine ECNV

This subroutine translates a BCD string of characters, into one floating point numeric value. E, I, and F formats are permitted with the result always a floating point number. It is called by subroutine SPRXIN to decode numeric fields in the species and reactions cards.

(2) Subroutine INPUT

This subroutine performs specific case input for the program. It performs the following functions:

1. Variable initialization to nominal values.

- 2. Read title card.
- 3. Call subroutine SPRXIN to input the species and reactions cards.

T.P

- 4. Read \$PROPEL namelist for case input data.
- 5. Check input mole or mass fractions for unity  $(\pm 1.0E-4)$ .
- 6. Read initial conditions and pressure table from Tape 8 when operated in automatic mode.
  - (3) Subroutine NUMBER

This subroutine converts a one-character BCD number to a FORTRAN integer number. It is called by subroutine ECNV to decode free field numeric data.

(4) Subroutine SPRXIN

This subroutine processes the species and reactions cards. Species symbols, numeric mass or mole fractions, symbolic reactions, and rate parameters are processed. Reference may be made to Subsection C. 6, the Program Users Manual, for a complete description of input requirements.

- d. LINK 30 Subroutines
  - (1) Subroutine STFSET

This subroutine uses the master JANAF tape written by subroutine TTAPE, to generate a species thermal-function tape (KSTF) in blocked form for the kinetic calculations. The tabulated functions on the master tape are:

#### Function

 $H'_{i} = [H^{\circ} - H^{\circ}_{298}]_{i}$ 

### Units

cal/mole-°K

 $Cp'_i = Cp'_i$ 

kcal/mole

$$F'_{i} = -\left[\frac{F^{\circ} - H^{\circ}_{298}}{T}\right]_{i} \qquad cal/mole - {}^{\circ}K$$

For the kinetic calculations the above functions must be converted to the ft/sec °R units system by the following:

ng pr



These converted functions are then written in 900 °R temperature blocks. The free energy and heat capacity derivatives are computed using the formulae below with  $\Delta T = 180.0$ .

The function derivatives are computed according to the following formulae:

$$\frac{d\eta}{dT}(i, T_{1}) = \frac{4 \cdot \eta (i, T_{2})^{-3} \cdot \eta (i, T_{1})^{-\eta} (i, T_{3})}{2 \cdot \Delta T}$$

$$\frac{d\eta}{dT}(i, T_{j}) = \frac{\eta (i, T_{j} + \Delta T)^{-\eta} (i, T_{j} - \Delta T)}{2 \cdot \Delta T}$$

$$\frac{d\eta}{dT}(i, T_{50}) = \frac{3 \cdot \eta (i, T_{50})^{-4} \cdot \eta (i, T_{49})^{+\eta} (i, T_{48})}{2 \cdot \Delta T}$$

where  $\boldsymbol{\eta}_i$  may be species heat capacity Cp' or free energy F'.

- e. LINK 41 Subroutines
  - (1) Subroutine ADDFIT

For mass, energy, momentum and species addition functions, this subroutine calculates addition function tables and their derivatives from the input tables using one of the following options:

- 1. Simple differencing.
- 2. Spline fit.
- 3. Input derivative tables.
- 4. Parabolic fit.

The addition functions are normalized, modified by the appropriate multiplicative constants if required, and output in tabular form.

If single species condensation option is utilized, addition functions are not input but computed internally. No operations are performed by ADDFIT.

(2) Subroutine CONVRT

This subroutine converts input data from the externally input units to internally used computation units. In order to conserve computation time during the kinetic expansion, parameters such as molecular weights are included in these conversions. Primed numbers are input quantities.

(a) Dissociation-Recombination Reaction Rate Ratio

Input units: unitless

Internal units: (lbs-mass/lb-mole)<sup>-1</sup>

Formula:  $XMM_{i,i} = XMM_{i,i}/MW_{i}$ 

(b) Pre-exponential Reaction Rate Ratio

Dissociation-recombination reactions

Input units: cm, °K, g-mole, sec

Internal units: ft<sup>3</sup>, °R, lb-mole, sec

$$A_{j} = \frac{A'_{j} \cdot (.0160183)^{\eta} \cdot 1.8}{\prod_{i=1}^{n} MW_{i}^{\nu'} i_{j}}$$

Where  $\eta$  depends on the order of the reaction.

and

$$0.0160183 = \frac{3.531 \cdot 10^{-5} \text{ft}^3}{1 \text{ cm}^3} \cdot \frac{1 \text{ g-mass}}{2.2 \cdot 10^{-3} \text{lb-mass}}$$

1

(c) Exponential Term

Input units: kcal/mole Internal units: RFormula:  $B_j = B'_j \cdot 905.770$ where

905.770 = 
$$\frac{1000 \text{ cal}}{1 \text{ kcal}} \cdot \frac{1}{1.98726 \text{ cal/mole} - \text{`K}} \cdot \frac{1.8^{\circ}\text{R}}{1.0^{\circ}\text{K}}$$

(d) Equilibrium Constant Multiplicative Factor Input units: not input

Internal units: (lb-mass) - °R/ft<sup>3</sup>

Formula:

$$DATEF(J) = \frac{\prod_{i=1}^{n} MW_{i}^{\nu'_{ij}}}{\prod_{i=1}^{n} MW_{i}^{\nu_{ij}} 0.73034}$$

where

$$0.73034 = 49,721.011 \frac{\text{ft-poundals}}{(\text{lb-mole})-^{\circ}\text{R}}$$

(e) Heats of Reaction

(f) Pressure

Input units: PSIA Internal units: poundals/ft<sup>2</sup> Formula:  $P = P' \cdot 4633.056$ where

 $4633.056 = \frac{144 \text{ in}^2}{1 \text{ ft}^2} \cdot 32.174 \frac{\text{ft}}{\text{sec}^2}$ 

(3) Subroutine PACK1P

On the basis of those species currently being considered, this subroutine packs species and reaction information from the master tables into those control sections utilized by the kinetic calculation links.

The following is a description of the subroutine functions:

- 1. The reaction rate parameters for the reactions to be considered are selected from tape unit KREAX.
- 2. The symbolic reactions and their input rate parameters are printed.
- 3. Reaction mass balance is checked for a tolerance of  $\pm 1.0$  E-10.
- 4. Heats of reaction are computed.
  - (4) Subroutine PRES

This subroutine provides a pressure table and its derivatives suitable for processing by the kinetic calculation links. For a normal shock stagnation streamline, velocity table and its derivatives are provided in a form suitable for processing by the kinetic calculation links.

(5) Subroutine SLP (X, Y, N, MFLAG, YP, W1, W2, W3, IFLAG)

The purpose of this subroutine is to supply derivatives for a tabulated function. The end point derivatives may be specified or are calculated internally by parabolic interpolation. Interior point derivatives may be found by a cubic spline fit procedure.

Calling Sequence:

- X is a table of independent variables, x.
- Y is a table of the dependent variables, y;
- N is the number of entries in each of the tables X, Y, and YP. i = 1, ... N

### MFLAG this entry is a flag, m, such that

- m > 0 implies x is equally spaced
- m < 0 implies x is not equally spaced
- m = 1 y' will be continuous
- $|\mathbf{m}| = 2 \mathbf{y}'$  and  $\mathbf{y}''$  will be continuous
- YP is a table of the derivative,  $y'_i$
- W1 working storage of length N
- W2 working storage of length N
- W3 working storage of length N

IFLAG this entry is a flag, i, such that

- i = 0 implies value for YP(1) and YP(N) will be calculated internally by parabolic differencing
- i = l implies values for YP(l) and YP(N) will be input

### <u>Method</u>:

The cubic spline fit procedure utilizes the interpolation formula given within the description of subroutine SPLN, i.e.:

$$y = A(x - x_{o})^{3} + B(x - x_{o})^{2} + C(x - x_{o}) + D$$
  

$$y' = 3A(x - x_{o})^{2} + 2B(x - x_{o}) + C$$
  

$$y'' = 6A(x - x_{o}) + 2B$$

The piecewise cubic fit to a tubular function by the above relations will yield a discontinuity in the second derivative y", between adjacent fits of:

$$y_{1_{01}}^{\prime\prime} - y_{1_{12}}^{\prime\prime} = \frac{1}{h_{01}} \left( 2y_{0}^{\prime} + 4y_{1}^{\prime} - 6\frac{k_{01}}{h_{01}} \right) - \frac{1}{h_{12}} \left( 6\frac{k_{12}}{h_{12}} - 4y_{1}^{\prime} - 2y_{2}^{\prime} \right)$$

where

$$h_{01} = x_1 - x_0$$
  

$$h_{12} = x_2 - x_1$$
  

$$k_{01} = y_1 - y_0$$
  

$$k_{12} = y_2 - y_1$$

The method consists of setting the left-hand side of the above relation equal to zero so that the second derivative is continuous across juncture points. As applied to a tabular function, the above procedure results in a set of linear simultaneous equations (tri-diagonal) to be solved for the  $y'_1$ , provided that values for y' at the end points are known.

#### (6) Subroutine TCALC

This is a dummy subroutine to permit the user to generate the addition function tables using his own supplied subroutine. It must be replaced with the appropriate TCALC routine and used in conjunction with the IADD $\phi$ P = 2 option.

#### f. LINK 42 Subroutines

This link contains the one dimensional kinetic expansion subroutines.

The implicit integration method, used to integrate the fluid dynamic and chemical relaxation equations, requires the values of the partial derivatives of all total derivatives with respect to every variable. The program will generate a matrix of partial derivatives such that the entry in the  $n^{th}$ row and the  $m^{th}$  column is the partial derivative of d [n]/dx with respect to m. This matrix is called BETA(I, J). The velocity, density, and temperaturefluid dynamic variables considered for every case reside in rows 1, 2, and 3 respectively. The chemical species occupy rows 4 through the number of species plus 3. The following notation will be used to denote partial derivatives:

$$\beta(A, B) = \frac{\partial \left[\frac{\partial A}{\partial x}\right]}{\partial B}$$

To facilitate the identification of program variables with the engineering notation, the following format will be used where applicable:

#### engineering notation-program variable-equation

The program will also generate a matrix which will be solved for the variable increments for each integration step. This matrix will expand or contract, depending on the number of chemical species to be considered.

The total derivatives  $f_i$  and partial derivatives  $\beta_{ij}$  have been separated into two components: (1) adiabatic component with no mass, momentum, or species addition, and (2) addition component due to mass, momentum, energy, or species addition. Subroutines DERIV and FLU calculate the adiabatic components and subroutine ADDXXX calculates the addition component. When no mass, momentum, energy, or species addition functions are input, the addition component calculations are bypassed.

For the single-species condensation option, subroutines CONAD, VAPOR and DROPS compute the mass, momentum, and energy addition functions used by ADDXXX to calculate addition components.

#### (1) Subroutine DERIV

This subroutine computes the adiabatic components of total derivatives  $f_i$  and the partial derivatives  $\beta(i, j)$  for the chemical relaxation equations.

Notation: i = Species subscript

- j = Reaction subscript
- l = Total number of chemical reactions
- m = Number of dissociation-recombination reactions
- n = Total number of gaseous species

The generalized chemical reaction which is handled by this subroutine is defined by:

$$\sum_{i=1}^{n} v_{ij} C_i = \sum_{i=1}^{n} v'_{ij} C_i$$

with:

$$\Psi_{ij} = \nu'_{ij} - \nu_{ij}$$

The reverse reaction rate constant is defined by the equation:

k<sub>j</sub> SK(J) = A<sub>j</sub> · T 
$$^{-XN_j}$$
 · exp (-B<sub>j</sub>/T)

The net production rate for a reaction is given by:

$$X_{j} \qquad X(J) = \left[K_{j} \cdot \prod_{i=1}^{n} C_{i}^{\nu_{ij}} - \rho^{\lambda} \cdot \prod_{i=1}^{n} C_{i}^{\nu'_{ij}}\right] \cdot k_{j} \cdot M_{j}$$

where:

 $\lambda = 1$  for a dissociation-recombination reaction

= 0 for a binary exchange reaction

 $M_j = \sum_{i=1}^{n} XMM_{j,i} \cdot C_i$  for a dissociation-recombination reaction =

#### for a binary exchange reaction

The net individual species production rate is given by the equation:

$$\frac{dC_i}{dx} \qquad FN(1) = \overline{K}_i \cdot \sum_{j=1}^{\ell} \Psi_{ij} \cdot X_j$$

where:

$$\overline{K}_{i} = (MW_{i} \cdot \rho \cdot r^{*})/V$$

The partial derivatives of the net species production rate with respect to the chemical species, the gas velocity, the gas density, and the gas temperature are:

$$\beta(C_k, C_i) \qquad \text{BT}(I, K) = \overline{K}_i \cdot \sum_{j=1}^{\ell} \frac{\partial X_j}{\partial C_i} \qquad i = 1, \dots, \text{NSP}$$

$$k = 1, \dots, \text{NSP}$$

$$\beta(C_i, V)$$
 PHI(I, 1) =  $-\frac{1}{V} \frac{dC_i}{dx}$  i = 1, ..., NSP

PHI(1,2) =  $\frac{1}{\rho} \cdot \frac{dC_i}{dx} + \overline{K}_i \cdot \sum_{j=1}^m \frac{\partial X_j}{\partial \rho}$  i = 1, ..., NSP  $\beta(C_i, \rho)$ 

$$\beta(C_i, T)$$
 PHI(I, 3) =  $\overline{K}_i \sum_{j=1}^{p} \frac{\partial X_j}{\partial T}$   $i = 1, ..., NSP$ 

The equilibrium constants and their temperature derivatives are computed only for dissociation-recombination reactions; those quantities for the binary exchange reactions are computed by products and ratios of the dissociation-recombination reaction equilibrium constants and derivatives.

390

and

#### (2) Subroutine EF

This subroutine computes the dissociation-recombination reaction equilibrium constants and their temperature derivatives from the following formulae:

$$K_{j} = EK(J) = \frac{DATEF(J)}{T} \cdot exp \left[ \frac{-\Delta H_{j}}{T} - \sum_{i=1}^{n} Ft_{i} \cdot v_{ij} + \sum_{i=1}^{n} Ft_{i} \cdot v_{ij} \right]$$

$$\frac{dK_{j}}{dT} = DKT(J) = \left[ \frac{-\sum_{i=1}^{n} \left(\frac{Ht_{i}}{R_{i}}\right) \cdot v_{ij}}{T} + \sum_{i=1}^{n} \left(\frac{Ht_{i}}{R_{i}}\right) \cdot v_{ij}}{T} - 1 \right] \cdot \frac{K_{j}}{T}$$

where:

1

M M

11

- Ft. = species free energy at the current temperature
- Ht. = species enthalpy at the current temperature
- $\Delta H_j$  = heat of reaction for the J<sup>th</sup> reaction

DATEF(j) = is discussed in Subsection C. 5, e(2)

(3) Subroutine FLU

This subroutine computes the adiabatic component of the total derivatives  $f_i$  and the partial derivatives  $a_i$  and  $\beta_{(i, j)}$  for the fluid dynamic equations. Pressure defined fluid dynamic equations are used. The summation terms, energy exchange term B, the diabatic heat addition term A, the Mach number, and all the partial derivatives of these terms are computed. The pressure and its derivatives are obtained from the pressure table.

For a stagnation streamline calculation, the pressure derivatives are obtained from the relationship:

$$\frac{dP}{dx} = -\rho \cdot V \frac{dV}{dx}$$

where V and dV/dx are defined by input tables.

Notes:  $\Phi(i, \ell)$ ,  $\ell = 1, 2, 3$  are defined under Subroutine DERIV  $\Phi(i, 1)$ ,  $= \beta(C_i, V)$ ;  $\Phi(i, 2) = \beta(C_i, \rho)$ ;  $\Phi(i, 3) = \beta(C_i, T)$  The following relationships may be helpful:

$$f_{i} = \frac{dC_{i}}{dx}; f_{i} = \frac{r^{*} \cdot \omega_{i} \cdot R \cdot T}{P \cdot V}; \frac{dC_{i}}{dx} = \frac{\omega_{i}r^{*}}{\rho \cdot V}$$

Computation of the Summation Terms and their derivatives:

First Summation

SI SI 
$$= \frac{1}{R} \cdot \sum_{i=1}^{n} \frac{dC_i}{dx} \cdot R_i$$

$$\frac{\partial S1}{\partial V} \qquad DS1V \qquad = \frac{1}{R} \cdot \sum_{i=1}^{n} \Phi(i, 1) \cdot R_{i}$$

$$\frac{\partial S1}{\partial \rho} \qquad DS1R\phi \qquad = \frac{1}{R} \cdot \sum_{i=1}^{n} \Phi(i, 2) \cdot R_{i}$$

$$\frac{\partial S1}{\partial T}$$
 DS1T =  $\frac{1}{R} \cdot \sum_{i=1}^{n} \Phi(i, 3) \cdot R_{i}$ 

$$\frac{\partial S1}{\partial C_{i}} \qquad DS1C(I) \qquad = \frac{1}{R} \cdot \left[ \sum_{i=1}^{n} \beta(C_{j}, C_{i}) \cdot R_{j} - S1 \cdot R_{i} \right]$$
$$i = 1, \dots, NSP$$

Second Summation

S2 S2 = 
$$\frac{1}{R \cdot T} \cdot \sum_{i=1}^{n} \frac{dC_i}{dx} \cdot h_i$$

$$\frac{\partial S2}{\partial V} \qquad DS2V \qquad = \frac{1}{R \cdot T} \cdot \sum_{i=1}^{n} \Phi(i, 1) \cdot h_{i}$$

$$\frac{\partial S2}{\partial \rho}$$
 DS2RØ =  $\frac{1}{R \cdot T} \cdot \sum_{i=1}^{n} \Phi(i, 2) \cdot h_{i}$ 

10

$$\frac{\partial S2}{\partial T} \qquad DS2 T \qquad = \frac{1}{R \cdot T} \cdot \sum_{i=1}^{n} \left[ \Phi(i, 3) \cdot h_{i} + \frac{dC_{i}}{dx} \cdot Cp_{i} \right] - \frac{S2}{T}$$

$$\frac{\partial S2}{\partial C_{i}} \qquad DS2C(1) \qquad = \frac{1}{R} \cdot \sum_{j=1}^{n} \frac{\beta(C_{j}, C_{i}) \cdot h_{i}}{T} - S2 \cdot R_{i}$$

$$i = 1, \dots, NSP$$

Computation of the Energy Exchange Term B and its Derivatives:

B BB 
$$= \frac{Y-1}{Y} \cdot S2$$
  
 $\frac{\partial B}{\partial V}$  DBBV  $= \frac{Y-1}{Y} \cdot \frac{\partial S2}{\partial V}$   
 $\frac{\partial B}{\partial \rho}$  DBBRO  $= \frac{Y-1}{Y} \cdot \frac{\partial S2}{\partial \rho}$   
 $\frac{\partial B}{\partial T}$  DBBRO  $= \frac{Y-1}{Y} \cdot \frac{\partial S2}{\partial \Gamma}$   
 $\frac{\partial B}{\partial T}$  DBBT  $= \frac{Y-1}{Y} \cdot \frac{\partial S2}{\partial T} + \frac{S2}{Y^2} \cdot \frac{\partial Y}{\partial T}$   
 $\frac{\partial B}{\partial C_i}$  DBBC(I)  $= \frac{Y-1}{Y} \cdot \frac{\partial S2}{\partial C_i} + \frac{S2}{Y^2} \cdot \frac{\partial Y}{\partial C_i}$   $i = 1, ..., NSF$ 

Computation of the Diabatic Heat Addition Term A and its Derivatives:

A AA = S1-B  

$$\frac{\partial A}{\partial V}$$
 DAAV =  $\frac{\partial S1}{\partial V} - \frac{\partial B}{\partial V}$ 

$$\frac{\partial A}{\partial \rho}$$
 DAARO =  $\frac{\partial S1}{\partial \rho} - \frac{\partial B}{\partial \rho}$ 

$$\frac{\partial A}{\partial T}$$
 DAAT =  $\frac{\partial S1}{\partial T} - \frac{\partial B}{\partial T}$ 

$$\frac{\partial A}{\partial C_{i}} \qquad DAAC(1) \qquad = \quad \frac{\partial S1}{\partial C_{i}} - \frac{\partial B}{\partial C_{i}} \qquad i = 1, \dots, NSP$$

Computation of the Mach Number and its Derivatives:

$$M^2$$
 XM2 =  $\frac{V^2}{Y \cdot R \cdot T}$ 

$$\frac{\partial M^2}{\partial V}$$
 DM2V =  $\frac{2 \cdot M^2}{V}$ 

$$\frac{\partial M^2}{\partial T} \qquad DM2T \qquad = -\frac{M^2}{T} - \frac{M^2}{\gamma} \cdot \frac{\partial \gamma}{\partial T}$$

$$\frac{\partial M^2}{\partial C_1} \qquad DM2C(1) \qquad = -M^2 \cdot \left[\frac{\partial \gamma}{C_i} \cdot \frac{1}{\gamma} + \frac{R_i}{R}\right] \quad i = 1, \dots, \text{ NSP}$$

$$\frac{dV}{dx} \qquad FNX(1) \qquad = -\frac{1}{\rho \cdot V} \cdot \frac{dP}{dx}$$

$$\frac{\partial [FNX(1)]}{\partial x} \quad AL(1) \qquad = -\frac{1}{\rho \cdot V} \cdot \frac{d^2 P}{dx^2}$$

$$\beta(V, V)$$
 BETA (1, 1) =  $-\frac{1}{V} \cdot \frac{dV}{dx}$ 

$$\beta(V,\rho)$$
 BETA(1, 2) =  $-\frac{1}{\rho} \cdot \frac{dV}{dx}$
The Gas Density derivatives are Computed:

 $\frac{d\rho}{dx} \qquad FNX(2) \qquad = \rho \cdot \left[ \frac{dP}{dx} \cdot \frac{1}{\gamma \cdot P} - A \right]$   $\frac{\partial [FNX(2)]}{\partial x} \qquad AL(2) \qquad = \frac{\rho}{\gamma \cdot P} \cdot \left[ \frac{d^2P}{dx^2} - \left( \frac{dP}{dx} \right)^2 \cdot \frac{1}{P} \right]$   $\beta(\rho, V) \qquad BETA(2, 1) \qquad = -\rho \cdot \frac{\partial A}{\partial V}$   $\beta(\rho, \rho) \qquad BETA(2, 2) \qquad = -\frac{1}{\rho} \cdot \frac{d\rho}{dx} - \rho \cdot \frac{\partial A}{\partial \rho}$   $\beta(\rho, T) \qquad BETA(2, 3) \qquad = -\rho \cdot \frac{\partial A}{\partial T} - \frac{\rho}{P, \gamma^2} \cdot \frac{\partial \gamma}{\partial T} \cdot \frac{dP}{dx}$ 

$$\beta(\rho, C_i) \qquad \text{BETA}(2, i+3) = -\frac{\rho}{\gamma^2 p} \cdot \frac{\partial \gamma}{\partial C_i} \cdot \frac{dP}{dx} - \rho \cdot \frac{\partial A}{\partial C_i} \quad i = 1, \dots, \text{ NSP}$$

The Gas Temperature derivatives are computed:

- $\frac{dT}{dx} \qquad FNX(3) \qquad = T \cdot \left[ \frac{\gamma 1}{\gamma} \cdot \frac{1}{P} \cdot \frac{dP}{dx} B \right]$
- $\frac{\partial [FNX(3)]}{\partial x} AL(3) = \frac{\gamma 1}{\gamma} \cdot \frac{T}{P} \cdot \left[ \frac{d^2 P}{dx^2} \left( \frac{d P}{dx} \right)^2 \cdot \frac{1}{P} \right]$

$$\beta(T, V)$$
 BETA(3, 1) = - T ·  $\frac{\partial B}{\partial V}$ 

 $\beta(T,\rho)$  BETA(3,2) = -T  $\cdot \frac{\partial B}{\partial \rho}$ 

$$\beta(T, T) \qquad BETA(3, 3) = \frac{1}{T} \cdot \frac{dT}{dx} + T \frac{1}{\gamma^2 \cdot P} \frac{dP}{dx} \frac{\partial \gamma}{\partial T} - T \frac{\partial B}{\partial T}$$

$$\beta(T, C_{i}) \qquad \text{BETA}(3, i+3) = T \cdot \left[\frac{1}{\gamma^{2} \cdot P} \cdot \frac{dP}{dx} \cdot \frac{\partial Y}{\partial C_{i}} - \frac{\partial B}{\partial C_{i}}\right]$$
$$i = 1, \dots, \text{NSP}$$

For an adiabatic area defined calculation, the total derivatives  $f_i$  and the partial derivatives  $a_i$  and  $\beta_{ij}$  for the fluid dynamic equations are computed using the following area defined equations:

The area ratio and its derivatives are computed from:

$$a = Y^{2}$$

$$\frac{da}{dx} = 2 \cdot Y \cdot \frac{dY}{dx}$$

$$\frac{d^{2}a}{dx^{2}} = 2 \cdot \left[ Y \frac{d^{2}Y}{dx^{2}} + \left( \frac{dY}{dx} \right)^{2} \right]$$

where Y, dY/dx,  $d^2Y/dx^2$  are computed via interpolation in the table of derivatives of the input wall table generated in Subroutine SLP.

The Gas Velocity derivatives are computed:

$$\frac{dV}{dx} \qquad FNX(1) \qquad = \frac{V}{M^2 - 1} \cdot \left(\frac{1}{a} \frac{da}{dx} - A\right)$$

$$\frac{\partial [FNX(1)]}{\partial x} \quad AL(1) \qquad = \frac{V}{M^2 - 1} \cdot \frac{1}{a} \cdot \left[ \frac{d^2 a}{dx^2} - \frac{1}{a} \left( \frac{da}{dx} \right)^2 \right]$$

$$\beta(V, V) \qquad \text{BETA}(1, 1) = \frac{1}{V} \cdot \frac{dV}{dx} - \frac{1}{M^2 - 1} \cdot \frac{dV}{dx} \cdot \frac{\partial M^2}{\partial V} - \frac{V}{M^2 - 1} \cdot \frac{\partial A}{\partial V}$$

$$\beta(V, \rho)$$
 BETA(1, 2) =  $-\frac{V}{M^2-1} \cdot \frac{\partial A}{\partial \rho}$ 

$$\beta(V,T)$$
 BETA(1,3) =  $-\frac{1}{M^2-1} \cdot \frac{dV}{dx} \cdot \frac{\partial M^2}{\partial T} - \frac{V}{M^2-1} \cdot \frac{\partial A}{\partial T}$ 

$$\beta(V, C_i) \qquad \text{BETA}(1, i+3) = -\frac{1}{M^2 - 1} \cdot \frac{dV}{dx} \cdot \frac{\partial M^2}{\partial C_i} - \frac{V}{M^2 - 1} \cdot \frac{\partial A}{\partial C_i}$$
$$i = 1, \dots, \text{NSP}$$

The Gas Density derivatives are computed:

C. C. C.

$$\frac{d\rho}{dx} \qquad FNX(2) \qquad = -\rho \cdot \left[\frac{M^2}{M^2 - 1} \cdot \left(\frac{1}{a} \cdot \frac{da}{dx} - A\right) + A\right]$$

$$\frac{\partial [FNX(2)]}{\partial x} \quad AL(2) \qquad = -\rho \cdot \frac{M^2}{M^2 - 1} \cdot \frac{1}{a} \cdot \left[ \frac{d^2 a}{dx^2} - \frac{1}{a} \left( \frac{d a}{dx} \right)^2 \right]$$

$$\beta(\rho, V) \qquad \text{BETA(2, 1)} = \rho \cdot \left[ \frac{1}{(M^2 - 1)^2} \cdot \left( \frac{1 \text{ da}}{a \text{ dx}} - A \right) \cdot \frac{\partial M^2}{\partial V} + \frac{1}{M^2 - 1} \cdot \frac{\partial A}{\partial V} \right]$$

$$\beta(\rho, \rho)$$
 BETA(2, 2) =  $\frac{1}{\rho} \cdot \frac{d\rho}{dx} + \frac{\rho}{M^2 - 1} \cdot \frac{\partial A}{\partial \rho}$ 

$$\beta(\rho, T) \qquad \text{BETA(2, 3)} = \rho \cdot \left[ \frac{1}{(M^2 - 1)^2} \cdot \left( \frac{1}{a} \frac{da}{dx} - A \right) \cdot \frac{\partial M^2}{\partial T} + \frac{1}{M^2 - 1} \cdot \frac{\partial A}{\partial T} \right]$$

$$\beta(\rho, C_{i}) \qquad \text{BETA}(2, i+3) = \rho \cdot \left[\frac{1}{(M^{2}-1)^{2}} \cdot \left(\frac{1}{a}\frac{da}{dx} - A\right)\frac{\partial M^{2}}{\partial C_{i}}\right]$$
$$+ \frac{1}{M^{2}-1} \cdot \frac{\partial A}{\partial C_{i}} = 1, \dots, \text{NSP}$$

The Gas Temperature derivatives are computed:

$$\frac{dT}{dx} = FNX(3) = -T \cdot \left[ (\gamma - 1) \cdot \frac{M^2}{M^2 - 1} \cdot \left( \frac{1}{a} \frac{da}{dx} - A \right) + B \right]$$

$$\frac{\partial [FNX(3)]}{\partial x} = -T \cdot \frac{M^2}{M^2 - 1} \cdot \frac{\gamma - 1}{a} \cdot \left[ \frac{d^2a}{dx^2} - \frac{1}{a} \cdot \left( \frac{da}{dx} \right)^2 \right]$$

$$\beta(T, V) = BETA(3, 1) = T \cdot \left[ \frac{\gamma - 1}{(M^2 - 1)^2} \left( \frac{1}{a} \frac{da}{dx} - A \right) \cdot \frac{\partial M^2}{\partial V} + \gamma - 1 \cdot \frac{M^2}{M^2 - 1} \cdot \frac{\partial A}{\partial V} - \frac{\partial B}{\partial V} \right]$$

$$\beta(T, \rho) = BETA(3, 2) = T \cdot \left[ \gamma - 1 \cdot \frac{M^2}{M^2 - 1} \cdot \frac{\partial A}{\partial \rho} - \frac{\partial B}{\partial \rho} \right]$$

$$\beta(T, T) = BETA(3, 3) = \frac{1}{T} \cdot \frac{dT}{dx} + T \cdot \left[ \frac{\gamma - 1}{(M^2 - 1)^2} \left( \frac{1}{a} \frac{da}{dx} - A \right) \cdot \frac{\partial M^2}{\partial T} + \gamma - 1 \cdot \frac{M^2}{M^2 - 1} \cdot \frac{\partial A}{\partial T} - \frac{\partial B}{\partial T} \right]$$

$$-\frac{M^2}{(M^2-1)}\cdot\left(\frac{1}{a}\frac{da}{dx}-A\right)\frac{\partial\gamma}{\partial T}\right]$$

s.

$$\beta(T, C_{i}) \qquad \text{BETA}(3, i+3) = T \cdot \left[\frac{Y-1}{(M^{2}-1)^{2}} \cdot \left(\frac{1}{a}\frac{da}{dx} - A\right) \cdot \frac{\partial M^{2}}{\partial C_{i}}\right]$$
$$+ \gamma - 1 \cdot \frac{M^{2}}{M^{2}-1} \cdot \frac{\partial A}{\partial C_{i}} - \frac{\partial B}{\partial C_{i}} - \frac{M^{2}}{M^{2}-1}$$
$$\cdot \left(\frac{1}{a}\frac{da}{dx} - A\right)\frac{\partial \gamma}{\partial C_{i}}\right] \qquad i = 1, \dots, \text{NSP}$$

# (4) Subroutine ADDXXX

This subroutine calculates the addition component of the total derivatives  $f_i$  and the partial derivatives  $a_i$  and  $\beta_{ij}$  and calculates the total and partial derivatives.

The addition components of the total derivatives are presented

below:

$$\frac{\mathrm{d}V}{\mathrm{d}x}\Big|_{\mathrm{add}} = \frac{\dot{\mathrm{M}} - \dot{\mathrm{m}}V}{1 + \dot{\mathrm{m}}}$$

$$\frac{\mathrm{dC}_{i}}{\mathrm{dx}}\Big|_{\mathrm{add}} = \frac{\dot{S}_{i} - \dot{m}C_{i}}{1 + \bar{m}}$$

$$\frac{\mathrm{dT}}{\mathrm{dx}}\Big|_{\mathrm{add}} = \frac{1}{C_{\mathrm{p}}}\left[\frac{\mathrm{E} - \mathrm{\dot{m}} \mathrm{H}_{\mathrm{T}}}{1 + \mathrm{\bar{m}}} - \frac{\mathrm{V}(\mathrm{\dot{M}} - \mathrm{\dot{m}}\mathrm{V})}{1 + \mathrm{\bar{m}}} - \sum_{i=1}^{\mathrm{nsp}} h_{i}\left(\frac{\mathrm{\dot{S}}_{i} - \mathrm{\dot{m}} \mathrm{C}_{i}}{1 + \mathrm{\bar{m}}}\right)\right]$$

$$\frac{d\rho}{dx}\Big|_{add} = \frac{-\rho}{T}\frac{dT}{dx}\Big|_{add} - \sum_{i=1}^{nsp}\frac{R_i}{R}\rho\frac{dC_i}{dx}\Big|_{add}$$

On option the adiabatic and addition components of the total derivatives are output from this subroutine.

# (5) Subroutine IAUX1 (HL, H, QK, RK, JX)

This subroutine performs implicit integration according to the method discussed in Subsection C.3. The increments for the chemical species concentrations and the fluid dynamic variables at the forward point are calculated by solving the appropriate set of nonhomogeneous algebraic equations.

The calling sequence parameters are:

HL-last integration step size

H -current integration step size

QK-last increments for variables

RK-computed increments for variables

JX- 1 initial 3 steps

2 general step

- 3 special step
- 4 restart step

The total derivatives,  $f_{i,n}$ , and partial derivatives,  $\beta_{i,j,n}$  at the back point are calculated in subroutines DERIV and FLU.

The special step calculation is used only in halving the step size if required.

After each integration step, subroutine IAUX obtains the derivatives at the then current axial position.

For implicit integration the equations used are:

Initial Step and Restart

$$k_{i,1} = \left[ f_{i,0} + \alpha_{i,0} h + \sum_{j=1}^{N} \beta_{i,j,0} k_{j,1} \right] \cdot h$$

General Step

$$k_{i, n+1} = \frac{1}{3} \left[ k_{i, n} + 2 \cdot \left( f_{i, n} + \alpha_{i, n}^{h} + \sum_{j=1}^{N} \beta_{i, j, n}^{k} k_{j, n+1} \right) \cdot h \right]$$

Special Step

$$k_{i, n+1} = \frac{h_{n+1}^{2}}{(2h_{n+1}+h_{n}) \cdot h_{n}} \left[ k_{i, n} + \left[ f_{i, n} + a_{i, n}h_{n+1} + \sum_{j=1}^{N} \beta_{i, j, n}h_{j, n+1} \right] \cdot \frac{h_{n}}{h_{n+1}} \left( h_{n+1} + h_{n} \right) \right]$$

# (6) Subroutine IAUX (HL, H, QK, RK, JX)

This subroutine performs the iteration for the area defined, mass energy, momentum addition calculation. If the problem is pressure defined or an adiabatic-area-defined calculation, this subroutine merely calls Subroutine IAUX1 and then updates the derivatives at the forward point by calling Subroutine DERIV.

For the area defined, mass, energy, momentum addition calculation, the iteration proceeds as described below.

Prediction:

$$\frac{\mathrm{dP}}{\mathrm{dx}} = \mathbf{R} \cdot \mathbf{T} \cdot \frac{\mathrm{dP}}{\mathrm{dx}} + \mathbf{R} \cdot \mathbf{P} \cdot \frac{\mathrm{dT}}{\mathrm{dx}}$$

where

$$\frac{d\rho}{dx} = -\frac{1}{a} \frac{da}{dx} \cdot \rho \cdot \left(\frac{M^2}{M^2 - 1}\right)$$

$$\frac{dT}{dx} = -\frac{1}{a} \frac{da}{dx} \cdot T \cdot (\gamma - 1) \cdot \frac{M^2}{(M^2 - 1)}$$

if

$$0.99 < M^2 < 1.01$$
,

then

$$\frac{dP}{dx} = 0.005 \cdot \frac{P}{H}$$

i '

$$\frac{\mathrm{da}}{\mathrm{dx}} = 0.0,$$

then dP/dx from the previous step is used as the first estimate.

Iteration: Subroutine ITER is called successively to use the secant method to provide new estimates for dP/dx such that

$$f(A_{calc} - A_{input}) < \epsilon$$

Convergence: Convergence is obtained when

$$\frac{A_{calc} - A_{input}}{A_{input}} < \epsilon$$

and the pressure at the forward point is computed from

$$P_{i+1} = P_i + \frac{dP}{dx}\Big|_i \cdot H$$

## (7) ITER (F1, X1, XNEW, NOO)

The purpose of this subroutine is to find the root or zero of the algebraic equation

f(X) = 0

using the method of secant or false position. In particular this subroutine is designed to take advantage of the fact that the secant method will always find the root of the above equation if the root has been spanned.

Calling Sequence:

- 89

| F1 | is the value of the dependent variable, f, |
|----|--------------------------------------------|
|    | corresponding to the value of X1. (Input)  |

- X1 is the value of the independent variable, X, which corresponds to F1. (Input)
- XNEW is the predicted or new value of the independent variable. (Output)
- $N\phi\phi$  is a flag such that

 $N\phi\phi$  = -1 the first time ITER is called. (Input)

の日本の「日本」となっている

 $N\phi\phi = +1$  upon subsequent calls. (Output)

## Restrictions:

The user is expected to check for convergence as there are no internal checks made in ITER. A literal must not be input to this subroutine.

#### Method:

Subroutine ITER utilizes the secant method predictor formula

$$X_{i+1} = X_i - f_i \cdot (X_i - X_{i-1}) / (f_i - f_{i-1})$$

where the subscript i refers to the current value of X and f except for the first iteration in which the value of X is perturbed only slightly. When the root has been spanned, the subroutine saves 2 back values of f and X in order that the root may always be straddled and thus found. The linkage to the subroutine is set up so that if bounds on the root are known, then the value of XNEW may be disregarded and bounded values may be used for the first two guesses. This type of linkage necessitates that the value of X1 must be set equal to XNEW or the bounded value of X. In order to accelerate convergence, if the error within the bounded domain of the dependent variable exceeds a ratio of 10, then the new value of X is set equal to one half of the range.

(8) Subroutine INT

Provides control for the implicit integration procedure, determines the proper set of nonhomogeneous equations to solve, and, after each integration step, computes the next integration step size according to the following relations:

ŧ

$$h_{n+2} = 2h_{n+1}, \qquad \left| \frac{k_{i, n+1} - 2k_{i, n} + k_{i, n-1}}{3k_{i, n+1} - k_{i, n}} \right| < \frac{\delta}{10}$$
MAX

$$h_{n+2} = \frac{1}{2} h_{n+1}, \qquad \left| \frac{k_{i, n+1} - 2k_{i, n} + k_{i, n-1}}{3k_{i, n+1} - k_{i, n}} \right| > \delta$$
MAX

$$h_{n+2} = h_{n+1}, \quad \frac{\delta}{10} \leq \left| \frac{k_{i, n+1} - 2k_{i, n} + k_{i, n-1}}{3k_{i, n+1} - k_{i, n}} \right| \leq \delta$$
MAX

On option, (JF=1) only the fluid dynamic variables are used in determining the next integration step size.

If the step size is halved for the fourth step, the integration is restarting using one-half the original step size.

The correspondence between equation number and physical property is:

| Equation Number              | Property                                                                                        |
|------------------------------|-------------------------------------------------------------------------------------------------|
| 1                            | Velocity of gas                                                                                 |
| 2                            | Density of gas                                                                                  |
| 3                            | Temperature of gas                                                                              |
| $4 \rightarrow \text{NSP+3}$ | Gaseous species mass fraction<br>(1 $\rightarrow$ NSP) corresponds to (4 $\rightarrow$ NSP + 3) |
|                              |                                                                                                 |

(9) Subroutine LESK(Y)

This subroutine is a single precision linear equation solver which is used to perform the matrix inversions required by subroutine IAUX. Gaussian elimination is used with row interchange taking place to position maximum pivot elements after the rows are initially scaled.

## (10) Subroutine MAIN

Provides overall logic control for the kinetic calculations, controls the shock calculation for both generalized oblique shock and the normal shock for the stagnation streamline, and prints the summary for the maximum and minimum reaction net production rates.

The normal shock calculation equations are presented below:

$$P_{2} = \rho_{1} V_{1}^{2} + P_{1} - (\rho_{1} V_{1}) V_{2}$$

$$h_{2} = \frac{V_{1}^{2}}{2} - \frac{V_{2}^{2}}{2} + h_{1}$$

$$T_{2} = f(h_{2})$$

$$\rho_{2} = \frac{P_{2}}{R \cdot T_{2}}$$

## (11) Subroutine OUTPUT

This subroutine provides conversion from internal computational units to output engineering units. The following output parameters are computed by this subroutine:

The pressure (in PSIA) is computed from:

 $P_{(PSIA)} = P/4633.056$ 

The gaseous species mole fractions are computed from:

$$C_{i,m} = \frac{R_i}{R} \cdot C_i$$

The gas molecular weight is computed from:

$$MW = 49721.011/R$$

The percentage mass fraction change is computed from:

$$\triangle(\text{Mass Fraction}) = 100.0 \cdot \left(1.0 - \sum_{i=1}^{n} C_{i}\right)$$

The gas heat capacity is computed from:

$$Cp_{g} (BTU/LB-^{\circ}R) = 3.9969 \cdot 10^{-5} \cdot Cp_{g}$$

The gas static enthalpy is computed from:

$$H_{g} (BTU/LB) = 3.9969.10^{-5} \sum_{i=1}^{n} C_{i}$$
$$\cdot (h_{i} - 905.770 \cdot R_{i} \cdot \Delta H_{F_{i}}^{\circ})$$

The percentage enthalpy change is computed from:

$$\Delta H_{T} = \frac{100 \cdot \left(H_{c} - \sum_{i=1}^{NSP} C_{i} \cdot h_{i} - V^{2} / 2\right)}{HREF}$$

where

HREF = 
$$\sum_{i=1}^{NSP} C_i \cdot \left(h_i - 905.770 \cdot R_i \cdot \Delta H_{F_i}\right)$$

evaluated at the initial conditions in Subroutine CØNVRT.

The real gas constant and frozen gamma [Subsection C. 5f(2) (EF)] the enthalpy in internal units, the kinetic coupling terms A and B [Subsection C. 5f(3) (FLU)], the maximum relative error [Subsection C. 5t(8) (INT)], and the species concentrations in molecules per cc are also output.

(12) Subroutine OUTXXX

This subroutine is identical except in name to subroutine UTIL. It is used during the iteration for  $\theta$ , the shock angle, during a generalized oblique shock calculation.

(13) Subroutine PLTSUB

This subroutine saves the current values of the variables requested for plotting and generates the proper labels and formatting for processing by subroutine DSCPLT. Plot information is saved on logical unit IPTAPE.

(14) Subroutine PRNTCK

For the option to print starting at step ND1, printing every ND3<sup>rd</sup> step up to step ND2, this subroutine checks whether or not the current step should be printed. If it is to be printed this subroutine calls OUTPUT.

(15) Subroutine UTIL (F1, X1, XNEW, NOO)

The purpose of this subroutine is to find the root or zero of the algebraic equation

f(X) = 0

using the method of secant or false position. In particular this subroutine is designed to take advantage of the fact that the secant method will always find the root of the above equation if the root has been spanned.

#### Calling Sequence:

- Fl is the value of the independent variable, f, corresponding to the value of X1. (Input)
- X1 is the value of the independent variable, X, which corresponds to F1. (Input)
- XNEW is the predicted or new value of the independent variable. (Output)
- NOO is a flag such that

NOO = -1 the first time ITER is called. (Input)

NOO = +1 upon subsequence calls. (Output)

#### Restrictions:

The user is expected to check for convergence as there are no internal checks made in UTIL. A literal must not be input to this subroutine.

#### Method:

Subroutine UTIL utilizes the secant method predictor formula

 $X_{i+1} = X_i - f_i \cdot X_i - X_{i-1} / f_i - f_{i-1}$ 

where the subscript i refers to the current value of X and f except for the first iteration in which the value of X is perturbed only slightly. When the root has been spanned the subroutine saves 2 back values of f and X in order that the root may always be straddled and thus found. The linkage to the subroutine is set up so that if bounds on the root are known, then the value of XNEW may be disregarded and bounded values may be used for the first two guesses. This type of linkage necessitates that the value of X1 must be set equal to XNEW or the bounded value of X. In order to accelerate convergence, if the error within the bounded domain of the dependent variable exceeds a ratio of 10, then the new value of X is set equal to one half of the range.

#### (16) Subroutine SHOCK

This subroutine calculates the downstream oblique shock conditions for an arbitrary pressure rise. The chemistry is assumed frozen across the shock. The method used is an iteration on the shock angle,  $\theta$ , using the following:

1. 
$$\theta^{(o)} = \arcsin\left[\sqrt{\frac{\frac{P_2}{P_1}\left(\gamma_1 + 1\right) + \left(\gamma_1 - 1\right)}{2\gamma_1 M_1^2}}\right]$$

2. 
$$u_1^{(i+1)} = V_1 \sin \theta^{(i)}$$

3. 
$$v_2^{(i+1)} = V_1 \cos \theta^{(i)}$$
  
 $u_2^{(i+1)} = \frac{P_1 - P_2 + \rho_1 \left[ u_1^{(i+1)} \right]^2}{\rho_1 u_1^{(i+1)}}$   
 $H_2^{(i+1)} = H_1 + \frac{1}{2} \left[ u_1^{(i+1)} \right]^2 - \frac{1}{2} \left[ u_2^{(i+1)} \right]^2$ 

4.  $T_2^{(i+1)} = f(H_2^{(i+1)})$ , obtained by iteration using subroutine UTIL.

5. 
$$\rho_{2a}^{(i+1)} = \frac{P_2}{R T_2^{(i+1)}}$$

$$\rho_{2b}^{(i+1)} = \frac{\rho_1 u_1}{u_2^{(i+1)}}$$

6. if 
$$\left| \frac{\frac{\rho_{2a}^{(i+1)} - \rho_{2b}^{(i+1)}}{\rho_{2a}^{(i+1)}} \right| < \epsilon$$
 go to 9.

7. Call OUTXXX to obtain new value for  $\theta^{(i)}$  using secant method

8. Go to 2.

in the state of the second second

and the second second second

1/2 10

9. Compute and output downstream conditions:

$$Y_{2} = \frac{C_{P}(T_{2})}{C_{P}(T_{2}) - R}$$

$$V_2 = \sqrt{u_2^2 + v_2^2}$$
  
 $M_2 = \frac{V_2}{\sqrt{V_2 R T_2}}$ 

If the upstream Mach number is less than one, no shock calculation is possible and the calculation is terminated at this point.

If the specifed conditions are inconsistent, i.e., if

$$\sqrt{\frac{\frac{P_2}{F_1} (Y_1 + 1) + (Y_1 - 1)}{2 Y_1 M_1^2}} > 1.0$$

a normal shock calculation is attempted using  $\theta = \pi/2$  and no iteration. An error message is provided for both of the above error conditions.

(17) Subroutine SCRX

This subroutine screens the reaction set at each axial station for those reactions which are necessary to assure a relative accuracy for a specified chemical species. Summaries of an ordered set of those reactions which produce and those reactions which destroy the specified species, along with total production and destruction rates are provided.

The subroutine screens those reactions which produce or destroy the specified species and retains those which produce or destroy the species at a rate greater than the input criterion (a percentage of the total production or destruction per unit normalized length). A logical vector is generated with the entry TRUE if the reaction is required or FALSE if the reaction is not required.

(18) Subroutine TREE (L, LIND, N)

The purpose of this subroutine is to reorder an input vector L containing N components so that

 $L(1) \leq L(2) \leq ..., \leq L(N).$ 

L may be either real or integer.

The vector LIND must be input as a vector of integers 1, 2, ... N. The vector LIND will be output as a vector containing the integer numbers which were the original position numbers of the L components.

The method used by subroutine TREE is described by ALGORITHM 245, TREE SORT 3 by Robert W. Floyd, "Communications of the ACM." December, 1964.

(19) Subroutine CONAD

This subroutine calculates the mass, momentum, energy, and species addition functions to the gas phase streamtube resulting from the condensation of a single gaseous species.

Subroutine VAPOR is called at each integration step to determine location of current thermodynamic state relative to liquid-vapor or solid-vapor coexistence line on the pressure, temperature (P, T) surface.

Once condensing vapor becomes saturated, the critical droplet radius and nucleation rate are computed. The addition function components are not calculated until the nucleation rate surpasses a threshold value EJMIN (input under \$PROFEL). The addition functions are computed from the following:

$$\dot{m} = \frac{dg}{dx}$$

$$\dot{M} = \dot{m}V + g \frac{(1+m)}{\rho V} \frac{dp}{dx}$$

$$\dot{H} = (1 - 2g) \dot{m}h' - (1 + \overline{m}) \dot{g} \frac{dh'}{dT} \frac{dT}{dx}$$

$$\dot{S}_{i} = \dot{m}, \text{ for } i = \text{ condensing species}$$

$$= o, \text{ for remaining species}$$

The rate of change of the condensed mass fraction is obtained from

$$\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{4\pi\rho_{\mathrm{L}}}{\rho \mathrm{V}} \left[ \frac{1}{3} \mathrm{r}^{**}(\mathrm{x}) \mathrm{J}(\mathrm{x}) \frac{\mathrm{A}(\mathrm{x})}{\mathrm{A}_{\mathrm{o}}} + \frac{\mathrm{d}r}{\mathrm{d}\mathrm{x}} \int_{\mathrm{o}}^{\mathrm{x}} \mathrm{r}(\mathrm{x}, \xi)^{2} \mathrm{J}(\xi) \frac{\mathrm{A}(\xi)}{\mathrm{A}_{\mathrm{o}}} \mathrm{d}\xi \right]$$

The liquid droplet properties are obtained from Subroutine DROPS.

# (20) Subroutine VAPOR (PV, PVS, DPVSDT, TS, IP, JJ, ISAT)

This routine computes for a specified species JJ the vapor pressure (PV), saturated vapor properties, and the location of the current state with respect to both the triple point and the liquid-vapor or solid-vapor coexistence line. Vapor pressure is computed from

$$P_v = C_i \frac{Ri}{R} P$$

For pressures and temperatures above the triple point, the saturated vapor pressure (PVS) corresponding to temperature T, derivative of PVS with respect to T, and saturated vapor temperature (TS) corresponding to pressure P are obtained from expressions of the form

PVS = 
$$C_1 + C_2/T + C_3/T^2$$
  
TS =  $1./[C_4 + C_5 \ln (PV) + C_6 \ln^2 (PV)]$   
DPVSDT = -PVS (C<sub>2</sub> - 2.0 C<sub>2</sub>/T) / T<sup>2</sup>

At or below the triple point, the following expressions are used

$$PVS = \exp(C_8 - C_7/T)$$

TS = 
$$C_7 / [C_8 - \ln (PV)]$$

DPVSDT = PVS  $C_7/T^2$ 

where the constants  $C_1$  through  $C_8$  are determined from data and are input under PROPEL. Preliminary values of these constants for water vapor are stored internally and need not be entered.

The additional parameters in the calling statement are

IP = 0 Current state corresponds to triple point

= l Above triple point

= 2 Below triple point

ISAT = 0 Vapor is unsaturated

= 1 Vapor is saturated

## (21) Subroutine DROPS

This subroutine computes liquid droplet properties and derivatives as a function of temperature. Above the triple point, latent heat and density are computed from

$$L = A_{1} - A_{2}T - A_{3}T^{2}$$

$$\rho = A_{4} - A_{5}T_{D} + A_{6}T_{D}^{2}$$

$$\sigma = A_{11} - A_{12}T_{D}$$

At or below the triple point, the following are used

$$L = A_7 - A_8 T$$

$$\rho = A_9 - A_{10} T_D$$

$$\sigma = A_{11} - A_{12} T_D$$

Sanda Sanda

First and second derivatives with respect to temperature are obtained by differentiating the above expressions. The coefficients  $A_1$  through  $A_{12}$  are input under PROPEL. Preliminary values of these constants for water vapor are stored internally.

g. LINK 50 Subroutines

(1) Subroutine LINK 50

This subroutine reads the quantities saved for plotting from logical unit IPTAPE into the proper buffer areas and calls subroutine DSCPLT for the actual plotting.

(2) Subroutine DSCPLT

This subroutine is a generalized plotting routine utilizing Calcomp software to produce plots. It requires subroutines SCAL and MAXMIN.

# (3) Subroutine MAXMIN

This subroutine finds the maximum and minimum entries in an array,

(4) Subroutine SCAL( XMAX, XMIN, XI, DX, XO, XE)

Given the maximum and minimum of a variable and the number of units (inches, cm., etc.) available for plotting, this routine:

- 1. Determines the most efficient scale per plotting unit of the form  $1.0 \cdot 10^{a}$ ,  $2.0 \cdot 10^{a}$ ,  $5.0 \cdot 10^{a}$  where a is an integer.
- 2. Adjusts the minimum scale value so that the plot begins at a multiple of the scale value.

# Calling Sequence:

XMAX = the maximum value of the variable (input)

- XMIN = the minimum value of the variable (input)
- XI = the number of units (in., cm, etc.) available for plotting (input)
- DX = the scale selected for the plot grid (output)
- XO = the first plot grid value (output)
- XE = the last plot grid value (output)

The algorithm used is given below:

$$W = \frac{XMAN - XMIN}{XI}$$

Then select s = 1, 2, or 5 such that

W = DX is a minimum

where

$$A = 1 + \log\left(\frac{w}{s}\right)$$

B = [A], [A] = the greatest integer strictly less than A, e.g. [1,2] = 1, [0] = -1

a m

1 17

¥.

 $\mathbf{or}$ 

B = [A] - 1 if A = [A]' or A < 0 $C = s 10^{B}$  $D = \left[\frac{XMIN}{C}\right]C$ 

 $\mathbf{or}$ 

 $D = \left( \left| \frac{XMIN}{C} \right| - 1 \right) C \text{ if } C \cdot D > XMIN$ E = W/C

and

DX = C

XO = D

XE = E

also

if W=O then DX=XO=XE=O

C.6 PROGRAM USER'S MANUAL

This program was developed on the CDC 6500 computer using the FORTRAN IV language. Conversion to another computer system should be straight forward provided sufficient core storage (135,000 words) is available. Program overlay extends three levels deep including the executive level, when used as a subprogram to <u>CONTAM</u>.

The description of the operation mode and input to the computer program is divided into the following six Subsections:

C. 6. 1 OPERATION MODE-Automatic or manual.

- C. 6.2  $THERM \phi$ -Namelist input which controls the thermodynamic data input.
- C. 6. 3 THERMODYNAMIC DATA-Optional.

- C. 6.4 TITLE CARD-Also serves for plot labels.
- C. 6. 5 SPECIES CARDS-Species to be considered and their initial concentrations.
- C. 6. 6 REACTION CALDS-Input of reactions and rate data.
- C. 6.7 \$PRØPEL-Namelist input for a specific case.

Card listings for the complete input for several sample cases are given in Section C. 7.

## a. Operation Mode

Two modes of operation (automatic or manual) are available and specified through input variable KMØDE in the executive program, CONTAM.

(1) Manual Mode (KM ODE = 1)

In the manual mode of operation the <u>KINCON</u> subprogram is independent of the other subprograms. The user is free to specify, via input data (cards), the streamtube initial conditions, boundary conditions, and program options. A complete set of data (inputs described in Subsections C. 6b through C. 6g) is required for each streamtube calculation. However, if a specific nozzle/plume streamtube, generated by either the nozzle or plume portion of <u>MULTRAN</u> is desired; subprogram <u>SLINES</u> may be utilized in conjunction with <u>MULTRAN</u> to specify initial conditions and pressure distribution while operating in the manual mode. The variable NSL, which specifies the number of streamtubes processed by subprogram <u>SLINES</u>, is input through either the executive program or <u>SLINES</u> and is tested to determine if input data from <u>SLINES</u> via TAPE 8 is to be used in the manual mode of operation.

If NSL = 0, TAPE 8 will not be read and all data must be input.

If NSL  $\neq$  0, the initial values (Z, PI, T, V, and EXIT), as well as the streamtube pressure distribution (NTB, ZTB (I), and PTB (I)) are read from TAPE 8. If successive cases are run, TAPE 8 will be read successively until either the final case is completed or the number of streamtubes on TAPE 8 is exhausted. It should be noted that any or all data read from Tape 8 may be overridden by card input.

(2) Automatic Mode (KMQDE = 0)

The automatic mode of operation is designed to calculate both chemical-kinetic and single-species condensation effects (a two-pass calculation performed in that order) for a number of streamtubes calculated by <u>MULTRAN</u> and <u>SLINE</u> subprograms. This mode requires only one set of input data and is utilized in conjunction with subprogram <u>SLINES</u> (or a TAPE 8 previously generated by <u>SLINES</u>).

In the automatic mode, <u>KINCON</u> will accept input data describing initial gas-phase composition, chemical reaction and rate coefficients, and pertinent integration control parameters (described in Subsections C. 6. b through C. 6. g). Initial streamtube conditions and pressure distribution are read from TAPE 8, and kinetics calculation is then performed along the pressure-defined streamline. During the kinetics calculation pass the vapor pressure of the condensible species is compared with the saturated vapor surface to determine the vapor state. Once the saturated vapor state is reached, the streamtube conditions at the saturation point (location, temperature, pressure, velocity, and species composition) are written onto TAPE 1. The streamtube area ratio, referenced to the saturation point, is then computed and written on TAPE I during the subsequent integration.

TAPE 1 thus contains, at the completion of the kinetics pass, the initial conditions and area ratio distribution for the streamtube beginning at the saturation point.

If the saturation point is countered on the kinetics pass, a second pass is made to compute condensation. This pass, utilizing TAPE I generated during the kinetics pass, invokes frozen-chemistry and single-species condensation options to compute condensation effects along the area defined streamtube. Following the completion of the condensation calculation, initial conditions for the next streamtube are read from TAPE 8 and the calculation procedure is repeated until all streamtubes have been completed. If the saturation point is not reached on a given kinetics pass, the condensation calculation pass is not performed and the program proceeds to the next streamtube.

Inputs in the automatic mode consist of all inputs described in Subsections C.6. b through C.6.f and a limited number of inputs in \$PROPEL. Inputs required in \$PROPEL are the following:

RSTAR

20

PRINT VARIABLES (ND1, NI INTEGRATION VARIABLES (HI, HMI

Axial distance normalizing factor (nozzle throat radius) (ND1, ND2, ND3) (HI, HMIN, HMAX, DEL, JF)

Inputs that are available but not required include MISCELLANE-OUS VARIABLES (except IFLAST), INTERMEDIATE OUTPUT VARIABLES, and certain CONDENSATION OPTION VARIABLES.

#### b. \$THERMØ

Permits the generation of a master thermodynamic file or the use of a tape file previously generated master thermodynamic file.

| Variable |            | Value | Description                                                                                                                                                                                                                                                                                                                     |
|----------|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NUCHEM   | Ξ          | 1     | A master thermodynamic file will be generated<br>for this case on tape unit 4. Species and ther-<br>modynamic data will be read from unit INTAPE<br>(nominal=5, the input file) and a new thermo-<br>dynamic file will be generated on unit 4. The<br>new thermodynamic file will be end-filed and<br>rewound after generation. |
|          | 800<br>800 | 0     | A previously generated master thermodynamic<br>file will be used for this case. The master<br>thermodynamic file must be file TAPE 4. No<br>other input variables are required for this<br>option.                                                                                                                              |
| MAXSP    | *          | Input | If a master thermodynamic file is to be gener-<br>ated this variable specifies the number of<br>species for the master file.                                                                                                                                                                                                    |
| LIST     | =          | 1     | A list of species named for those species master file will be output.                                                                                                                                                                                                                                                           |
|          |            | 0     | This output will be deleted.                                                                                                                                                                                                                                                                                                    |
| LISTX    |            | 1     | Thermodynamic functions (CP, H, F) will be<br>output for each species (one page per species,<br>52 lines per page). Species names, molecular<br>weights, and heats of formation will also be<br>printed.                                                                                                                        |
|          | 1          | - 1   | Only a table of species names, molecular<br>weights, and heats of formation will be<br>printed.                                                                                                                                                                                                                                 |
|          |            | 0     | The above output will be deleted.                                                                                                                                                                                                                                                                                               |
| INTAPE   |            | Input | Tape file from which thermodynamic data is to be read (nominal = 5).                                                                                                                                                                                                                                                            |

\$END

c. Thermodynamic Data

For a NUCHEM = i option in THERMØ the program will read MAXSP Master Species cards containing: species symbolic identifier, molecular weight, and  $\Delta H^{\circ}F_{298}$ , and then read MAXSP sets of thermodynamic data (CP, H, F) checking names and card sequences. The Master Species cards must be sequenced sequentially in columns 41-50 (110 format) and must correspond directly to the order in which the thermodynamic data is to be read. Thermodynamic functions consist of 10 cards per function, 5 values per card corresponding to temperature values of 100  $\rightarrow$  5,000°K at 100°K

4.30

intervals. Table C-I lists the species for which thermodynamic data is currently available. For species which do not appear in Table C-I, this input may be obtained directly from the JANAF tables. Table C-II is a sample listing of the thermodynamic function input for the species  $N_2$ .

## Master Species Cards

| <u>Co</u> | lur | nn       | Information                                                                              |
|-----------|-----|----------|------------------------------------------------------------------------------------------|
| $1\\11$   | -   | 10<br>16 | Not used.<br>Species Symbolic Identifier, 6 alphanumeric<br>characters (left justified). |
| 17        | -   | 20       | Not used.                                                                                |
| 31        | _   | 40       | Species Molecular weight (F) format.                                                     |
| 41        | -   | 50       | Right justified sequence number used for sequence<br>checking on input (II0 format).     |
| 51        | -   | 80       | Not used.                                                                                |

It should be noted that a species is identified by the name assigned by the user. In general this name is the chemical symbol, e.g., O, O<sub>2</sub>, II, II<sub>2</sub>. However, it may be useful to define a dummy species with all the properties of another species but which may be treated in a special manner, e.g., the percentage of the total amount of a species which is designated as an inert (possibly to simulate incomplete mixing or combustion). This may be done by defining species O and OX where OX is identical to O except in name, but does not appear in any reaction.

Master Thermodynamic Function Cards

| Col | lur    | nn | Information                                                     |
|-----|--------|----|-----------------------------------------------------------------|
| 2   | 1<br>- | 10 | Not used.<br>Function value at $(100 + 500 (n-1))$ °K, n = card |
|     |        |    | number.                                                         |
|     | 11     | l  | Not used.                                                       |
| 12  | -      | 20 | Function value at (200 + 500 (n-1)) °K.                         |
|     | 21     | l  | Not used.                                                       |
| 22  | -      | 30 | Function value at $(300 + 500 (n-1))$ °K.                       |
|     | 31     | l  | Not used.                                                       |
| 32  | -      | 40 | Function value at $(400 + 500 (n-1))$ °K.                       |
|     | 41     | l  | Not used.                                                       |
| 42  | -      | 50 | Function value at $(500 + 500 (n-1))$ °K.                       |
| 51  | -      | 60 | Not used.                                                       |
| 61  | -      | 66 | Species symbolic identifier, left justified.                    |
| 67  | -      | 68 | Not used.                                                       |
| 69  | -      | 70 | Function Definition CP, 11, or F, left justified.               |
| 73  | -      | 76 | The word CARD.                                                  |
| 77  | -      | 78 | Card number 1-10 right justified.                               |
| 79  | -      | 80 | Not used.                                                       |

Species symbolic identifier, function definition, and card numbers are checked for consistency on input.

Table C-I. SPECIES RESIDING ON MASTER THERMODYNAMIC TAPE

| 1  | 4120       | 19  | SF4  | 37 | PCL3       | 55 | C2F2         | 73 | COF2        | 90  | ALF    |
|----|------------|-----|------|----|------------|----|--------------|----|-------------|-----|--------|
| ?  | H2         | ∪ 2 | SF6  | 38 | R <b>F</b> | 56 | 03           | 74 | N <b>03</b> | 91  | ALF?   |
| 3  | 0H         | 21  | С    | 39 | BF2        | 57 | H02          | 75 | NH          | 92  | ALF3   |
| 4  | 05         | 22  | C02  | 40 | BF3        | 58 | N02-         | 76 | NH2         | 93  | ALOCL  |
| 5  | Ü          | 23  | CO   | 41 | BOCL       | 59 | NA           | 77 | NH3         | 94  | ALOF   |
| 5  | 'n         | 24  | C2   | 42 | POF        | 60 | N <b>A</b> + | 78 | вн          | 95  | ALCLF  |
| 7  | AREON      | 25  | Ca   | 43 | BCLF       | 61 | NAO          | 79 | 8H2         | 96  | ALCL2F |
| é  | F 2        | 26  | CI-2 | 44 | PCL2F      | 62 | CF2          | 81 | H3          | 97  | ALCLF2 |
| 9  | 4 <b>F</b> | 27  | CH3  | 45 | BCLF2      | 63 | CF3          | 81 | 9246        | 98  | 0H-    |
| 10 | F          | 20  | CH:4 | 46 | P          | 64 | CF4          | 82 | 6202        | 99  | CH20   |
| 11 | N2         | 29  | C2H2 | 47 | CL         | 65 | C2F4         | 83 | P203        | 100 | NAOH   |
| 12 | N 19       | 30  | Ch   | 48 | CL2        | 66 | N02          | 84 | AL          | 101 | NAH    |
| 13 | ND ♦       | 31  | HCN  | 49 | N          | 67 | NZD          | 85 | ALO         | 102 | HZ2    |
| 14 | 02-        | 32  | Bti  | 50 | HCL        | 68 | нсо          | 84 | AL20        | 103 | ΗZ     |
| 15 | ()=        | 33  | B O  | 51 | CLF        | 69 | HC0+         | 87 | ALCL        | 104 | OHX    |
| 16 | F•         | 34  | 802  | 52 | CNCL       | 70 | C2H          | 88 | ALCL2       | 105 | PHOTON |
| 17 | F•         | 35  | BCL  | 53 | CNF        | 71 | H30+         | 89 | ALCL3       | 106 | 0Z     |
| 18 | ç          | 36  | BCL2 | 54 | CF         | 72 | H202         |    |             |     |        |

|                    |                    |                    |                    | ,                  |      |     |                  |
|--------------------|--------------------|--------------------|--------------------|--------------------|------|-----|------------------|
| 6,9560,<br>7,1960, | 6.9570,<br>7,3500, | 6,9610,<br>7,5120, | 6,9900,<br>7,6700, | 7,0690,<br>7,8150, | N2   | CP  | CAPD 1<br>CARD 2 |
| 7,9450,            | 8.0610.            | 8,1620,            | 8.2520.            | 8.3300.            | N/2  | CP  | CAPD 2           |
| 8,3980,            | 8,4580,            | 8,5120,            | 8,5590,            | 8,6010.            | M2   | CP  | CARD 6           |
| 8,6380,            | 8,6720.            | 8,7030,            | 8,7310,            | 8.7560.            | N2   | CP  | CAPD 5           |
| 8,7790,            | 8,8000.            | 8,8200,            | 8,8380,            | 8,8550.            | N2   | CP  | CARD 6           |
| 8 8710             | 8.8860.            | 8,9000,            | 8.9140.            | 8.9270.            | NI 2 | CP  | CARD 7           |
| 8,9390,            | 9,9500,            | 8,9620,            | 8.9720.            | 8,9830.            | NI2  | C P | CARD A           |
| 8,9930,            | 9.0020.            | 9,0120,            | 9.0210.            | 9.0300.            | N/2  |     | CARD 9           |
| 9,0390,            | 9,0480,            | 9,0570,            | 9.0660.            | 9.0740             | NI2  | CP  | CARDIO           |
| •1,3790,           | -,6830,            | ,0130,             | .7100.             | 1.4130.            | NI2  | ы   | CARD 1           |
| 2,1250,            | 2,8530,            | 3,5960,            | 4.3550.            | 5.1290.            | N2   | . H | CARD 2           |
| 5,9170,            | 6,7180.            | 7,5290,            | 8,3500,            | 9,1790,            | N2   | н   | CARD 3           |
| 10,0150,           | 10,8530,           | 11,7070,           | 12.5600.           | 13.4180.           | N2   | н   | CARD 4           |
| 14,2800,           | 15,1460,           | 16.0150,           | 16,8860,           | 17,7610,           | NZ   | Ĥ   | CARD 5           |
| 18,6380,           | 19,5170.           | 20,3980.           | 21,2800,           | 22,1650,           | N2   | н   | CARD 6           |
| 23,0510,           | . 23,9390,         | 24,9290,           | 25,7190,           | 26,6110,           | N2   | H   | CARD 7           |
| 27,5050            | 28,3990,           | 29,2950,           | 30,1910,           | 31,0890,           | N2   | н   | CAPD 8           |
| 31,9880,           | 32,8880,           | 33,7880,           | 34.6900.           | 35,5930,           | N2   | н   | CARD 9           |
| 36,4960,           | 37,4000,           | 38,3060,           | 39,2120,           | 40,1190,           | N2   | н   | CAPD10           |
| 51,9570,           | 45.4070.           | 45,7700,           | 46,0430,           | 46,5610,           | N2   | F   | CARD 1           |
| <b>47.1</b> 430,   | 47,7310,           | 48,3030,           | 48.8530.           | 49.3780.           | N2   | F   | CARD 2           |
| 49,8790,           | 50,3570,           | 50,8130,           | 51,2480,           | 51,6650,           | N2   | F   | CARD 3           |
| 52,0650;           | 52,4480,           | 52,8160,           | 53,1710,           | 53,5130,           | N2   | F   | CAPD 4           |
| 53,8420,           | 54,1600.           | 54,4680,           | 54,7660,           | 55,0550,           | N2   | F   | CARD 5           |
| 55,3350.           | 55,6060,           | 55,9700,           | 56,1270,           | 56.3760.           | N2   | F   | CARD 6           |
| 56,6190,           | 55,8560,           | 57,9870,           | 57,3120,           | 57,5320,           | N2   | F   | CAPD 7           |
| 57,7470,           | 57,9570,           | 58,1620,           | 58,3620,           | 58,5590,           | N2   | F   | CARD 8           |
| 55,7510,           | 58,9400,           | 59,1240,           | 59,3050,           | 59,4820,           | N2   | F   | CARD 9           |
| 59.6570,           | 59.8270,           | 59,9950,           | 60,1600,           | 60,3220,           | N2   | F   | CARDIO           |

# Table C-II.SAMPLE LISTING FOR THERMODYNAMICFUNCTION CARDS FOR N2

## d. Title Card

The title card contains free field information which will be written as a header label for the program output. The first 40 characters will be written as a label on each plot if plotting is requested.

## e. Species Cards

This input is prefixed by a single card with SPECIES in columns 1 to 7 and with the words MASS FRACTIONS or MØLE FRACTIONS in columns 9-22. If the identifier for mass or mole fractions is omitted, mass fractions are assumed. Up to 40 species cards may be input. <u>Only those species</u> <u>specified by input species cards will be considered</u>. The order of the input species cards is independent of the order in which the species appear on the master thermodynamic data file. However, the order of the input species cards does define the species order for the specific calculation, and other input referencing individual species must refer to the order of the input species cards. Species Cards are described below:

## Column

Function

| 1  |   | 10 | Not used.                                            |
|----|---|----|------------------------------------------------------|
| 11 | - | 16 | Symbol (left justified).                             |
| 17 | - | 20 | Not used.                                            |
| 21 | - | 60 | Value of initial species concentration (if zero must |
|    |   |    | be input as 0,0) free field F or E format.           |
| 61 | - | 80 | User identification if desired.                      |

## Symbols for Species Identification

A chemical species is identified symbolically by six alphanumeric characters as follows:

The species symbol must agree with that given on its master species card (columns 11-16) used in generating the master thermodynamic file. If the species is ionized, the degree of ionization is indicated by a + (or -) sign followed by an integer describing the degree of ionization (if no integer is given the species will be assumed singly ionized). The species symbol may not contain the characters \* or =. The special species symbol PHOTON is reserved for specifying radiative reactions.

#### Examples:

| Symbol | Interpretation                |
|--------|-------------------------------|
|        |                               |
| CL     | Cſ                            |
| NA+    | NA <sup>+</sup>               |
| K+2    | K <sup>++</sup>               |
| CL2-2  | C(Z-                          |
| H2O2   | H <sub>2</sub> O <sub>2</sub> |

## f. Reaction Cards

10

This input is prefixed by a single card with REACTIØNS in columns 1 to 9. Up to 15 dissociation reactions and a total 150 reactions may be input following this card. Only one card per reaction is permitted. Cards specifying dissociation-recombination reactions must precede cards specifying exchange reactions. The content and format of the reaction cards are defined as follows:

(1) Each card is divided into five fields, separated by commas. Each field contains:

| Field l | the reaction.                                         |
|---------|-------------------------------------------------------|
| Field 2 | A = followed by the value of A.                       |
| Field 3 | N = followed by the value of $N$ .                    |
| Field 4 | B = followed by the value of B, the activation energy |
|         | (Kcal/mole).                                          |
| Field 5 | available for comments.                               |

Rules for specifying the reaction are given in C.6.e(2) below. The values A, N, and B define the <u>reverse</u> reaction rate, k, as

$$k = A \cdot T^{-N} \cdot e^{-(B/RT)}$$

All three reaction rate parameters must be input. The numeric value of each parameter may be specified in either I, F, or E format. If E format is used, the E must appear before the exponent.

There may be no blanks between the characters A and equal sign, the N and equal sign, and the B and equal sign.

Input rate parameters are in units of cc, °K, mole, sec.

(2) The general form of a reaction is:

 $N_1$ \*Symbol<sub>1</sub> + $N_2$ \*Symbol<sub>2</sub>+...= $N_a$ \*Symbol<sub>a</sub> +  $N_b$ \*Symbol<sub>b</sub>+...

where the left-hand side represents reactants and the right-hand side represents products.

Each symbol must be as defined on an input species card (see the description of SPECIES CARDS).

The multipliers, N, must be integers and represent stoichiometric coefficients. If no stoichiometric coefficient is given, the value 1 is assumed.

It is required that

 $N_1 + N_2 + \dots \le 10$ 

and

 $N_a + N_b + \dots \leq 10$ 

Examples:

Reaction

Interpretation

 $+ 2\phi H^{-} = Be (\phi H)_2$ 

+  $C\overline{\ell}$  = NaC $\ell$ + M<sup>--</sup> = BM

| NA++CL- = NACL                   | Na <sup>+</sup>  |
|----------------------------------|------------------|
| B+2+M-2 = BM                     | B++              |
| $BE+2+2*\phi H = BE\phi H\phi H$ | Be <sup>++</sup> |

(3) The dissociation—recombination reactions specifying third-body terms must precede other types of reactions, and must be followed by the directive:

Column 1

## END TBR REAX

All reactions prior to the above directive will have a third-body term added to each side of the reaction. For example:

 $H_2 = H + H, ...$ 

END TBR REAX

is the same as

 $H_2 + M = H + H + M$ , . . .

where M is a generalized third body. Specific third-body effects may be included by inputting specific third-body reaction rate ratios XMM (J, I).

(4) Radiative reactions may be considered using the special species  $PH\phi T\phi N$ . The  $PH\phi T\phi N$  may only appear on the left-hand side of the equal sign for a reaction.

(5) The reaction set is terminated by a card containing LAST CARD in columns 1 to 9.

| φ. | \$PRØPEL |
|----|----------|
| 5• |          |
|    |          |

Case Variables

Units

| *Z    | Initial normalized axial position                                                  | None   |
|-------|------------------------------------------------------------------------------------|--------|
| *PI   | Initial pressure                                                                   | PSIA   |
| r     | Initial temperature                                                                | °R     |
| *V    | Initial velocity                                                                   | ft/sec |
| RSTAR | Axial distance normalizing factor (normally throat radius for nozzle calculations) | Inches |

\*EXIT Normalized axial distance for run termination None NØCHEM = 1 if a frozen chemistry case is desired None

Plot Variables (plotting not available in automatic mode of operation)

| IFP        | = | 1 | Plotting requested                          |
|------------|---|---|---------------------------------------------|
| ITP        | = | 1 | Plot temperature                            |
| IRØP       | = | 1 | Plot density                                |
| ICHEMP (1) | = |   | Species numbers for desired species concen- |
|            |   |   | tration plots, up to 30 species             |
| IXP        | Ξ | 1 | Plot functions vs normalized distance       |
| MLP        | = | 1 | Plot species MØLE fractions                 |
| MSP        | = | 1 | Plot species MASS fractions                 |

Print Variables

- 8

| ND1 | Print every ND3 <sup>rd</sup> step beginning with the ND1 <sup>st</sup> step |
|-----|------------------------------------------------------------------------------|
| ND2 | until the ND2 <sup>nd</sup> step. (The initial conditions and the            |
| ND3 | EXIT point are always printed.)                                              |

Integration Variables

| HI   | Initial normalized step size                         |
|------|------------------------------------------------------|
| HMIN | Minimum normalized step size                         |
| HMAX | Maximum normalized step size                         |
| DEL  | Relative error criterion                             |
| JF   | = 0 all variables considered for step size control   |
|      | = 1 only fluid dynamic variables considered for step |
|      | size control.                                        |

The variable which controls the step size; i.e., has the maximum relative error; is printed in the normal output under Integration Parameters, labeled Governing Equation. The number: variable correspondence is as follows: 1=T; 2=RO; 3=V, 4=Species 1; 5=Species 2; . . . NSP + 3 = Species NSP.

## Table Input Variables

\*NTB Number of input table entries for pressure table (101).

JPFLAG Determines the type of differentiation used to obtain derivatives for all input tables. Reference should be made to Mass, Momentum, Energy and Species Addition Functions for other input tables controlled by JPFLAG.

<sup>\*</sup>Values are read from TAPE 8 and need not be input when operated in automatic mode (KM $\phi$ DE = 0) or in a manual mode (KM $\phi$ DE = 1) and using streamtube data from TAPE 8 (NSL  $\neq$  0). If input, they will override TAPE 8 values for first streamtube only.

= 1 derivatives of input table obtained by simple
difference formulae with second derivatives defined
as 0. Normally used in automatic mode.

= 2 derivatives of input tables obtained by SPLINE fit (NTB  $\leq$  20).

= 3 derivatives input along with tables.

= 4 derivatives of input tables obtained by parabolic differentiation (NTB  $\leq$  20).

- \*PSCALE = Multiplicative constant for the input pressure table.
- \*ZTB (1) = Normalized axial positions for input tabular values for pressure table (always input).
- \*PTB (1) = Pressure table (PSIA) (always input).
- \*DPTB (1) = Pressure table derivative (for JPFLAG = 3 option).

## Miscellaneous Variables

- XMM (J,I) Reaction rate ratio effect on reaction J of species I.
- TU (1) Temperature above which approximate extension of JANAF tables will occur for each species (nominal = 9,000°R).
- IFLAST For overlay reasons must be set = 1 on the last case of a run.
- TST $\phi$ P Time at which a run will arbitrarily be terminated (CP time). Ignore in automatic mode.

Intermediate Output

| IDQDX  | = 1 | Print total derivatives.                                                     |
|--------|-----|------------------------------------------------------------------------------|
| IDXJDX | = 1 | Print individual reaction net production rates.                              |
| IEQØUT | = 1 | Print equilibrium constant and its temperature dependence in internal units. |
| IRATE  | = 1 | Print reaction forward and reverse rates in internal units.                  |

<sup>\*</sup>Values are read from TAPE 8 and need not be input when operated in automatic mode (KM $\emptyset$ DE = 0) or in a manual mode (KM $\emptyset$ DE = 1) and using streamtube data from TAPE 8 (NSL  $\neq$  0). If input, they will override TAPE 8 values for first streamtube only.

| IMASDX     | = 1              | For an IADDF = 1 option print chemical and addition function components of total derivatives.                              |
|------------|------------------|----------------------------------------------------------------------------------------------------------------------------|
| IØPXF      | = 1              | Print influence coefficient vectors.                                                                                       |
| IØPVAR (1) |                  | = Set consecutive entries equal to K for vari-<br>ables for which influence coefficient vectors<br>are to be output, where |
|            | K                | Variable                                                                                                                   |
|            | 1<br>2<br>3<br>4 | V<br>RØ<br>T<br>Species number 1                                                                                           |
|            | •                | •                                                                                                                          |
|            | •                | •                                                                                                                          |
|            | •                | •                                                                                                                          |
|            | NS P+3           | Species number NSP                                                                                                         |

For example: IOPVAR(1) = 4, 3, will output influence coefficient vectors for species number 1 and for temperature.

| Mass. | Momentum. | Energy, | and | Species | Addition | Functions |
|-------|-----------|---------|-----|---------|----------|-----------|
|       |           |         |     |         |          |           |

Variable

| IADDF    | = 1 | Addition functions will be input.                                                                                                                                                                                                |
|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IXTB     | =   | Number of entries in addition function tables $\leq$ 40.                                                                                                                                                                         |
| IADDØP   | = 0 | Addition functions input via tables.                                                                                                                                                                                             |
|          | = 1 | Addition functions defined via multiplicative<br>factors. See EFACT (I), XMFACT (I),<br>SPFACT (I,J) below. Note that IXTB factors<br>must be input.                                                                             |
|          | = 2 | A subroutine for addition calculation will be supplied by the user.                                                                                                                                                              |
| XADSCL   | Ξ   | Multiplicative scale factor for all addition<br>functions. Note that input of XADSCL as<br>1.0/( $\rho$ .V.A) will provide automatic nor-<br>malization (per unit initial streamtube mass<br>flux) for input addition functions. |
| ADDX (I) |     | Table of normalized axial stations for <u>all</u> input addition functions.                                                                                                                                                      |

| ADDMAS (I)    | =        |   | Mass addition rate, per unit normalized length,<br>per unit initial streamtube mass flux (unitless).                                                                                                                                                                                                                               |
|---------------|----------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADDE (I)      | Ξ        |   | Energy addition rate, per unit normalized<br>length, per unit initial streamtube mass flux<br>(BTU/lb).                                                                                                                                                                                                                            |
| ADDEX (I)     | H        |   | Auxiliary energy addition rate, per unit nor-<br>malized length, per unit initial streamtube<br>mass flux (BTU/lb) which will be added to the<br>energy addition rate ADDE (I). Note that<br>ADDEX (I) is independent of EFACT (I) for<br>IADD $\phi$ P = 1 option and will be added to ADDE (I)<br>before modification by XADSCL. |
| ADDMØM (1)    | =        |   | Momentum flux, per unit normalized length,<br>per unit initial streamtube mass flux (ft/sec).                                                                                                                                                                                                                                      |
| NPØINT (I)    |          |   | Species number (for current case) to relate<br>species addition functions to specific species.<br>See example under ADDSP (I, J).                                                                                                                                                                                                  |
| NSPADD        | Ξ        |   | Number of entries in NPØINT (I) table.                                                                                                                                                                                                                                                                                             |
| ADDSP (I, J)  | =        |   | Species mass addition rate per unit normalized<br>length, per unit initial streamtube mass flux<br>(unitless).                                                                                                                                                                                                                     |
|               |          |   | <pre>I=1, IXTB corresponding to number of<br/>entries<br/>J=1, NSPADD</pre>                                                                                                                                                                                                                                                        |
|               |          |   | e.g., NSPADD = 2<br>NPØINT = 3,5<br>ADDSP (I,1) corresponds to Species 3<br>ADDSP (I,2) corresponds to Species 5                                                                                                                                                                                                                   |
| EFACT (I)     | 11       |   | For IADDOP = 1, ADDE (I) computed as ADDMAS(O) *EFACT(I).                                                                                                                                                                                                                                                                          |
| XMFACT (1)    | -        |   | For IADDØP = 1, ADDMØM (I) computed as<br>ADDMAS (I) *XMFACT (I).                                                                                                                                                                                                                                                                  |
| SPFACT (1, J) | i<br>mir |   | For $1ADD OP = 1$ , ADDSP (I, J) computed as ADDMAS (I) $*SPFACT$ (I, J).                                                                                                                                                                                                                                                          |
| ШТФТҒ         | 8-       | 1 | Restart flag indicating that a case is being restarted and directing the initial enthalpy to be $HTOTX$ .                                                                                                                                                                                                                          |
| ΗΤΦΤΧ         | -        |   | Initial enthalpy if a case has been restarted $(ft^2/sec^2)$ .                                                                                                                                                                                                                                                                     |

| DMASDX (I)   | Ξ | For JPFLAG = 3 option, derivative of the mass addition rate $d(ADDMAS)/dx$ .             |
|--------------|---|------------------------------------------------------------------------------------------|
| DEDXT (I)    | = | For JPFLAG = 3 option, derivative of the total energy addition rate $d(ADDE+ADDEX)/dx$ . |
| DMØMDX (I)   | = | For JPFLAG = 3 option, derivative of the momentum addition rate $d(ADDMOM)/dx$ .         |
| DSPDX (I, J) | - | For JPFLAG = 3 option, derivative of the species addition rate $d(ADDSP)/dx$ .           |

# Generalized Oblique Shock Calculation

v

A generalized oblique shock calculation is specified by input of a pressure table containing a pressure discontinuity, and a pointer designating the shock location.

## UNITS

| NSHØCK   | = | Pointer designating the last entry<br>in the pressure table prior to the<br>shock. For example:                   | None |
|----------|---|-------------------------------------------------------------------------------------------------------------------|------|
|          |   | $\frac{P_2}{P_1} = \frac{PTB (NSHØCK+1)}{PTB (NSHØCK)}$                                                           |      |
|          |   | Entries NSHØCK and NSHØCK+1 in<br>the pressure table must have the<br>same axial position.                        |      |
| SHKBUG   | = | 1.0 provides intermediate output.                                                                                 | None |
|          |   | 0.0 provides no intermediate output.                                                                              |      |
| SMAXIT   | = | Maximum number of iterations<br>during a generalized oblique shock<br>calculation.                                | None |
| SKEPS(1) | = | Relative convergence criterion for<br>temperature iteration during a<br>generalized oblique shock<br>calculation. | None |
| SKEPS(2) | Ξ | Relative convergence criterion for<br>overall iteration during a general-<br>ized oblique shock calculation.      | None |

# Normal Shock Stagnation Streamline Calculation

The normal shock stagnation streamline calculation option performs a normal shock calculation from specified upstream and downstream velocities and continues the calculation as a velocity defined streamtube.

|        |   |                                                                                                                                                                    | UNITS  |
|--------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| NSTAGV |   | l specifies a normal shock stagnation streamline calculation.                                                                                                      | None   |
| VEL1   | - | Upstream velocity for the normal shock calculation.                                                                                                                | ft/sec |
| VTB(1) | Ξ | Array defining the velocity as a<br>function of normalized axial<br>distance. VTB(1) is defined as<br>the downstream velocity for the<br>normal shock calculation. | ft/sec |
| NVTB   |   | Number of entries in the velocity<br>profile NVTB ≤101.                                                                                                            | None   |

# Reaction Screening Input Variables

If a reaction screening calculation is requested, the program performs a two-pass calculation. The first pass utilizes the complete reaction set and determines those reactions which must be retained to satisfy the input criteria for each species screened. The second pass redoes the first calculation with an edited reaction set and provides a summary page comparing both calculations.

| TI | NITS  |  |
|----|-------|--|
| 0  | 11110 |  |

| ISCRF    | 100<br>00   | l, specifies a reaction screening case for ISCSP (I) species.                                                                                                                                                                                                  | None |
|----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ISCSP(1) |             | Species number for those species to be screened $\leq 40$ .                                                                                                                                                                                                    | None |
| EPSCR(1) | Ξ           | Relative retention criterion for each species to be screened. Defined as the maximum change in mass fraction relative to production or destruction of the species per unit normalized length for all reactions involving the corresponding species $\leq 40$ . | None |
| ISCBUG   | alan<br>Par | l, provides intermediate output<br>during the reaction screening<br>procedure.                                                                                                                                                                                 | None |

1

14

1.10
# Area Defined Option Input

19/

Area Defined Calculation With Mass, Energy or Momentum Addition:

- ITAREA = Input maximum number of iterations for area ratio calculation. A nonzero value for ITAREA triggers the area ratio iteration logic. After maximum iterations, the program outputs an error message, accepts the most recent values, and continues.
- $ABAR(1) = Area ratio table (A/A_0).$
- XARTAB(1) = Normalized axial coordinates for the input area ratio table.
- DABARX(1) = Derivative with respect to normalized axial distance of the input area ratio table (if input derivative option used).
- NPATAB = Number of entries in area ratio table  $\leq 40$ .
- ICALDA = 0 derivative of area ratio table controlled by JPFLAG.
  - 1, 2, 3, 4 replaces JPFLAG control for area ratio table ONLY.
- AREPS = Relative convergence criterion for area ratio iteration.

# Single Species Condensation Option

Condensation calculations require the use of both the mass, momentum, and energy addition option and the area-defined streamtube option. The pertinent parameters for these options are included below:

| *IADDF     | Ξ | 1 | Addition function option will be utilized.                            |
|------------|---|---|-----------------------------------------------------------------------|
| *IADDØP    | Ξ | 3 | Single species condensation routines will provide addition functions. |
| *ITAREA    | Ξ |   | Maximum number of iterations for area ratio calculation.              |
| *XARTAB(1) | Ξ |   | Normalized axial coordinate for input area ratio table.               |
| *ABAR(1)   | - |   | Area ratio table (A/A <sub>o</sub> ),                                 |

\*Values for these variables are calculated internally when operated in automatic mode (KMØDE = 0) and need not be input.

| *NPATAB     | = |   | Number of entries in area ratio table $\leq 40$ .                                                                       |
|-------------|---|---|-------------------------------------------------------------------------------------------------------------------------|
| *DABARX (1) |   |   | Derivative with respect to normalized axial<br>distance of input area ratio table (if input<br>derivative option used). |
| AREPS       | = |   | Relative convergence criterion for area ratio iteration.                                                                |
| *NØCHEM     | 1 | 1 | Frozen chemistry option is utilized.                                                                                    |
| ICØND       | Ξ |   | Number signifying the location of condensing species with respect to the species input order.                           |

The following inputs describe the vapor/liquid properties. A preliminary set of constants for water is stored internally and will be used if the following inputs are ignored. If improved values for water are available or if a different condensing species is being considered, some or all of the following may be input:

| TLIM       | = | Limiting temperature for saturated vapor<br>test. State of condensible vapor will not be<br>tested above TLIM (units = °R). |                                                                                                                           |  |  |  |  |  |
|------------|---|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| EJMIN      | = | Threshold value for nucle<br>which condensation effect<br>computed (units = 1/ft <sup>3</sup> -se                           | Threshold value for nucleation rate below which condensation effects will not be computed (units = $1/\text{ft}^3$ -sec). |  |  |  |  |  |
| ETA        | = | Condensation (or sticking<br>water vapor/liquid.                                                                            | Condensation (or sticking) coefficient for water vapor/liquid.                                                            |  |  |  |  |  |
| PCØNST (I) | = | Array of constants utilize<br>vapor state (see subroutin                                                                    | d in describing<br>1e VAPØR).                                                                                             |  |  |  |  |  |
|            |   | $PCONST(1) = C_1$                                                                                                           | (atm)                                                                                                                     |  |  |  |  |  |
|            |   | $PCONST(2) = C_2$                                                                                                           | (atm - °R)                                                                                                                |  |  |  |  |  |
|            |   | $PCONST(3) = C_3$                                                                                                           | (atm - (°R) <sup>2</sup> )                                                                                                |  |  |  |  |  |
|            |   | $PCONST (4) = C_4$                                                                                                          | (1/°R)                                                                                                                    |  |  |  |  |  |
|            |   | $PCONST(5) = C_5$                                                                                                           | (1/°R)                                                                                                                    |  |  |  |  |  |
|            |   | $PCONST(6) = C_6$                                                                                                           | (1/°R)                                                                                                                    |  |  |  |  |  |
|            |   | $PCOMST(7) = C_7$                                                                                                           | (°R)                                                                                                                      |  |  |  |  |  |
|            |   | $PCONST(8) = C_8$                                                                                                           | (-)                                                                                                                       |  |  |  |  |  |

\*Values for these variables are calculated internally when operated in automatic mode (KMØDE = 0) and need not be input.

| PCØNST                           | (9)           | =         | Triple poir<br>(poundal/ft  | nt pressure<br>2)              |
|----------------------------------|---------------|-----------|-----------------------------|--------------------------------|
| PCØNST                           | (10)          | =         | Triple poir<br>(°R)         | nt temperature                 |
| Array of<br>liquid dro<br>DRØPS) | cons<br>oplet | tan<br>pr | ts utilized<br>operties (se | in describing<br>ee Subroutine |
| DCØNST                           | (1)           | =         | A <sub>1</sub>              | (BTU/lb)                       |
| DCØNST                           | (2)           | =         | A <sub>2</sub>              | (BTU/lb)-°R)                   |
| DCØNST                           | (3)           | =         | A <sub>3</sub>              | $(BTU/lb) - R^2$               |
| DCØNST                           | (4)           | =         | A <sub>4</sub>              | $(lb/ft^3)$                    |
| DCØNST                           | (5)           | =         | А <sub>5</sub>              | $(lb/ft^3) - ^{\circ}R)$       |
| DCØNST                           | (6)           | =         | А <sub>6</sub>              | $(lb/ft^3 - R^2)$              |
| DCØNST                           | (7)           | Ξ         | A <sub>7</sub>              | (BTU/lb)                       |
| DCØNST                           | (8)           | =         | А <sub>8</sub>              | (BTU/1b - °R)                  |
| DCØNST                           | (9)           | =         | А <sub>9</sub>              | $(lb/ft^3)$                    |
| DCØNST                           | (10)          | Ξ         | A <sub>10</sub>             | (lb/ft <sup>3</sup> - °R)      |
| DCØNST                           | (11)          | =         | A <sub>11</sub>             | (Poundal/ft)                   |
| DCØNST                           | (12)          | =         | A <sub>12</sub>             | (Poundal/ft - °R)              |
| DCØNST                           | (13)          | =         | Condensed<br>capacity (B    | phase heat<br>TU/lb - °R)      |

DCØNST (I) =

and the second second second second

#### C.7 SAMPLE CASES

A sample case illustrating the abilities of the <u>KINCON</u> program as a subprogram to <u>CONTAM</u> has been presented in the program description of <u>CONTAM</u>, Section 7.0. In this mode, the <u>KINCON</u> program analyzes the nonequilibrium chemical kinetics and condensation of plume species for prediction of contamination effects on bodies submerged in bipropellant plumes. Several additional <u>KINCON</u> program options are available when run in the manual mode as an independent program. Sample cases are included in this appendix to illustrate these options.

#### a. Reaction-Rate Screening Case

Computer input card listing and selected output for the rate screening of pure-air chemistry system are presented in Tables C-III through C-V. The original system consists of a set of 14 species and 37 reactions as presented in the card-image listing in Table C-III. The complete reaction set is utilized on the first calculation pass. Those reactions which must be retained to satisfy the input criteria for each species screened are determined. A second pass recomputes the case using the edited reaction set and provides a summary page comparing both results.

Output for a rate-screening case differs from a standard kinetics run only by the addition of intermediate reaction-rate printout for each screened species at each output station and a summary page comparing the results of the original and edited reaction sets. Table C-IV contains the reaction rate output for screened species E-(electron) at axial position 20.0. A similar page is output for each remaining screened species. The summary page is included in Table C-V.

#### b. Oblique Shock Case

Card image listing for an oblique shock calculation in air is included in Table C-VI. A discontinuity in the input pressure table identifies the shock location as shown in pressure table output, Table C-VII. Results of the shock calculation are presented in Table C-VIII. The output for the integration to and from the shock is the same as the standard kinetics output and has been omitted.

c. Normal Shock-Stagnation Streamline Case

Card-image listing for a normal shock stagnation streamline calculation in air is included in Table C-IX. The streamline downstream of the normal shock is defined through an input velocity distribution table. Velocity table is output as shown in Table C-X. The normal shock calculation output is included in Table C-XI. The remaining output for this case is of the same format as the standard kinetics run and has been omitted.

## d. Automated Kinetics and Condensation Case

The following sample case was completed to illustrate the operation of the <u>KINCON</u> subprogram in the automatic mode including both kinetics and water vapor condensation passes in a single case. The test case corresponds to a streamline bounding 90% of the total mass flow for a typical MMH/NTO

# Table C-III. CARD LISTING FOR RATE-SCREENING CASE

STHERMO

No. 1 - Standing

| SEND.                                     | ······································      |            |
|-------------------------------------------|---------------------------------------------|------------|
| PURE AIR SCREENING                        | FROGRAF SCREEN                              |            |
| SPECIES                                   |                                             |            |
| <u></u>                                   |                                             |            |
| 02 0,2259369                              |                                             |            |
| 10 4,23915,35+3                           |                                             |            |
| 1,4184221=6                               |                                             |            |
| 0 1,0001730-2                             |                                             |            |
| 10+ 319219P5%+7                           |                                             |            |
| <u> </u>                                  |                                             |            |
| <b>1.96</b> ×0420mP                       |                                             |            |
| E= 7,0799420+12                           |                                             |            |
|                                           |                                             |            |
| Nen 7,5366388#9                           |                                             |            |
| ND2= 1.00907oF=10                         |                                             |            |
| 03 4,9775255+6                            |                                             |            |
| 1.03 9,9965195+61                         |                                             | ,          |
| REACTIONS                                 |                                             |            |
| <u>02 = 0 + 0 . AF 1.16+14. ME 1.2. B</u> | <u>1a 0.0.</u>                              |            |
| N2 = W + M , WH 1,598+17, WH 7,72,        | B= 0,0,                                     |            |
| NC = N + D , AF 4,06+15, F V,5, 8         | im u'su's                                   |            |
| NC2 E NO + 0 , AE 1,02+15, ME 0.0.        | He =1,79,                                   |            |
| NC = NO+ + N= , A= 0,676+26, 2,5          | Σ <sub>4</sub> is≓ P <sub>4</sub> 9.        |            |
| 03 = 0 + 02 + /= 1+800+19, /= 2.+         | $R = U_{\mu}U_{\mu}$ $I = ALL$              | 12,49      |
| 02- = 02 + E- , A=3.5110, N=0.0, 2=0.     | .0,                                         | 14,24      |
| 이 # 이 # 인 # 인 # A= 3.00+10. ^= 2.0.       | 0#0.0*                                      | 15,23      |
| - NC2+ = NO2 + N+ . A= 1.456+17, H=0.,    | ) d= 0.000 (MO2 KIM)                        | 16,77      |
| NC2- = 10 + 0+ , A= 3,4E+14, 1= 0,0       | De De Dara                                  | 17,151     |
| END THE REAL                              |                                             |            |
| - NC + O = C2 +                           | 15, A= 5,94, <u>1</u>                       | 4          |
| N2 + 0 = M0 + H , A= 1.3E+14, H= 0.       | <u>0. 9= 0.0. 19</u>                        | 5          |
| N2 + 02 4 NO + HO , A= 5.00+10, N=        | 5, 7, 8= 79, 5, 2.                          | F.         |
| NO + NO = 020 + 0 + 7= 1+25+14+ 04        | n,r, H= 27,7, 21                            | 51         |
| NC + NO = N + 202 , A= 3,00+12, .=        | C, N, R= 0, 3, 22                           | 52         |
| NC + 02 = 0 + 572 + A= 1+85+10, Set       | 0,1, 0= 1,15, 23                            | 56         |
| 02 + 02 = u + 13 , A= 2,15±+13, A=        | = U.C. E= 5,14, 24                          | 54         |
| NC + 02 = N + US + 4= 3.59+11. = 1        | 1.0. B= 1.0. 25                             | 55         |
| NC2 + 02 = NC + 93 , A= 4,38+11, A=       | 0,0, R# 2,5% 20                             | 57         |
| NO3 + D2 = 202 + 25 , A= 4,25+10, A       | v= ^,0, == 0,0, == 27 -                     | 139        |
| N2 + 02 = 022 + 0 , A= 3,02+17, M         | = U, U, R= 24, 1, 2 N                       | <u> 50</u> |
| N20 + C = + + 1,12 + A= 4,20+17, M        | = U, H, H= C, C, 2%                         | 53         |
| N2 + N0 = 123 + 1, A= 1,26+2, N=          | 0,1, P= 0,0, 3,                             | 141        |
| D2 + E+ = L= + D , A= 8.42+13, Ma         | = 0.0. H= 0.1. 31                           | 76         |
| US + E= = U= + 1/2 . A= 4,72+5=           | -0,83, hr 9,34, 38                          | 79         |
| 03 + E+ = 02+ + 0 , A= 1,9±+14, A:        | ≢ θ <sub>a</sub> ba 8= 8 <sub>4</sub> 9a 33 | 30         |
| N20 + E+ = C+ + N2 , A= 6.52+L, NE        | 0,0, P= U,C, 34                             | 81         |
| NC2 + E- = + 02 A= 1.06+10                | = 0,0, d= 0,°, 35                           | 159        |
| NC + E+ = U+ + + A= 9,42+14, 14           | = 0,6, B= 7,5, 3, 36                        | 160        |

NOT REPRODUCIBLE

# Table C-III-Concluded

| NC2 + E= # 0+ + 11 . A= 9.6E+13. N# 0.0. B= 0.0.            | 37 162          |
|-------------------------------------------------------------|-----------------|
| 02 • 0= = ur= + 0 , 4= 4,3-+13, 4= 6,1, P=6,1,              | 3 82            |
| 02 + NO2+ = 02+ + 002 , A= 4,55+14, K= 5,0, 34 0,0,         | 37 131          |
| NC2+ + 0 = 102 + 10+ , A= 7.25+14, N= 5.6, B= 6.6,          | 4. 154          |
| N + U = NU+ + L+ , A= 1,446+21, M= 1,5, B= 4,5,             | 4:7             |
| NC + G2 = NO+ + U2+ , A= 3,66+17, N= 1,0, B= 1,1,           | 4 <u>6 1</u> 2P |
| NC + O = W(+ + C+ + A= 3.55+17, N= 1.0. B= N.C.             | 43 129          |
| NC + NO2 = "u+ + .02+, A= 3.46+17, N= 1,0, C= 0.0.          | 44 142          |
| LAST CARD<br>PSPROPEL                                       |                 |
| NTa=>, PTF(1)=>=1,0, 213(1)=0,0,19,0,20,0,30,0,1,364, Z=0.0 | 0, Pl=1.0,      |
| PI = 1.0, MSUALE=0.0208, MO3=1, EVITED.45,1=4700.0, VE3800  | .0. RSTAR=12.0. |
| HI#0,1, HMIV=0,1, HCAX=9,0, DOL=0,005,0F=1,                 |                 |
| 15CRF=1, 1005F(1)=9,0,7,6,12,17,4, 4PSOF(1)=4+1,0=+2,3+1    | ·9E=2.          |
| NC3=2, IFP=L,                                               |                 |
| lCQDX#1,                                                    |                 |

SEND

and the second second second

The state of the second second

NOT REPRODUCIBLE

Table C-IV. SAMPLE REACTION-SCREENING OUTPUT

.

ļ

-

• • • • • • • • • • • •

2.00000E-01

AT AXIAL POSITION

REACTIONS INVOLVING SPECIES ET

| TION       | REACTION<br>5                | 4               | 24             |                |                |                |                |                |                |  |
|------------|------------------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| DESTRUC    | D(C(1))/DX<br>7.53288250E+20 | 4,950928446-14  | 6,41667151E-14 |                |                |                |                |                |                |  |
|            | REACTION<br>25               | 6               | 28             | 29             | 27             | 26             | ØD)            | 30             | 7              |  |
| PRODUCTION | D(C(1))/DX                   | 2 1 87207505-20 | 2.197822886418 | 1.91513964E=17 | 5.43746279E-17 | 1,55960595E=15 | 1.00316791E=14 | 2.20229032E=14 | 2,32151600E-14 |  |

NET PRODUCTION 5,69051127E-14 Net destruction 1,13676075E-13 -----

1

ł

i

~

| VARIABLE   |                                        | ORIG FINAL COND        | SCREENED FINAL COND                    |
|------------|----------------------------------------|------------------------|----------------------------------------|
|            |                                        |                        |                                        |
| VEL DEVE   |                                        |                        | 3,00000000000000                       |
| DENS       |                                        | 1,179930042400         | 1,1/9937046+07                         |
|            |                                        | 4:/U0UUDD1E+U3         | 4 ( / UU 000015+03                     |
| <u> </u>   |                                        |                        |                                        |
| U2         |                                        |                        | 2,279343732=01                         |
| N (J       |                                        | 4:140392022F03         |                                        |
| N          | ·                                      |                        |                                        |
|            |                                        | 3 0/0404435=07         | 1 00229190544<br>7 00229190544         |
|            |                                        |                        |                                        |
| 0-         |                                        | 2.034674635=09         | 2.035439615-00                         |
| 5-<br>F-   |                                        | 7.057137695-19         | 7 053437345-49                         |
| NO2        |                                        | 1.086001346-06         | 1.08509778E=06                         |
| N20        |                                        | 1.081615325=08         | 1.08141731E=08                         |
| N02-       |                                        | 1.025713485=10         | 1,02570492E=10                         |
| 03         |                                        | 5.706928286-09         | 5.70186569E=09                         |
| N03        | ···· · · · · · · · · · · · · · · · · · | 9,98570043E=11         | 9,99081900E-11                         |
| THE FOLLOW | ING RE                                 | ACTIONS WERE OMITTED O | IN THE SCREENED CALCULATION            |
| REACTION   | 5                                      |                        |                                        |
| REACTION   | 9                                      |                        | •                                      |
| REACTION   | 10                                     |                        |                                        |
| REACTION   | 18                                     |                        |                                        |
| REACTION   | 19                                     | <u></u>                | ······································ |
| REACTION   | 20                                     |                        |                                        |
| REACTION   | 25                                     |                        |                                        |
| REACTION   | 27                                     |                        |                                        |
| REACTION   | 28                                     |                        |                                        |
| REACTION   | 29                                     |                        | ALE                                    |
| 05.00      |                                        |                        |                                        |
| REAUTION   | 22                                     |                        | reprus                                 |
|            |                                        |                        | INT KE                                 |
|            |                                        |                        | No.                                    |

# Table C-V.FINAL SUMMARY OUTPUT AFTER SCREENING - RESULTS<br/>OF ORIGINAL AND SCREENED RUNS

CARD LISTING FOR OBLIQUE SHOCK CALCULATION IN AIR Table C-VI.

- 1

37

Z#0.0. PI#9,2004, T=431,41, V#22500., RSTAR#,5, EXIT#,056928, PSCALE#,00694444. H N M Q P 80 0 REACTION ( REACTION REACTION REACTION REACTION REACTION ZTB(3)=0,0,0,1,491961,6,548852,11,607338,21,724302,31,837449,52,060573, PTB(3)=9,2004,180,96,147,18,107,68,100,42,117,28,144,31,158,45, 8=79,488, 8=6,001, 8=0.0. 8=0.0. 8=0.0. 8=0.0. JPFLAGE1 N==1.5, N=0, U, N=1, 2, Histees HMINELEES HMAXEL.O. DELE.D. ND3310. NSD . U. 20 BLUNT BODY INVISCID FIELD STREANTUBE NO. Species Mass Fractions AF1,0E13, AF2,9E20, A=1,5E13. AE1,9616, A=1,0E18, A=6.0E16. .209476 ·781184 42600. 0.0 0 q PTB(1)=9.2004.9.2004. N + 0 = 20+ + N LISTEL ZT8(1)= -1., -,5, --+ Z N2 + 02 = 2+N0, TCOND(1)#40+0. ARGUN EXITE 49.7663. +01 ΟN 0 L L N Z ND + 0 = 02 ENC TUR REAX NO = N + O. Z O \* 2+N = 2\*0; NSHOCKED. NUCHEMED. REACTIONS AST CARD SPROPEL STHERMO N78=10. SENT. SEND 2 Z 20 U Z N

NOT REPRODUCIBLE

# Table C-VII. PRESSURE TABLE

| ****** | ******    | SHOCK OC | CURS AT | TABLE   | ENTRY | 3     | ********   |
|--------|-----------|----------|---------|---------|-------|-------|------------|
| I      | ×         |          | ł       | P       |       |       | DP/DX      |
| 1      | -1.000000 | 000E+00  | 9.20    | 0400008 | E+00  | 0.    |            |
| 2      | -5.000000 | 000E-01  | 9,20    | 0400006 | E+00  | Ο.    |            |
| 3      | 0.        |          | 9.20    | 0400006 | E+00  | 0.    |            |
| 4      | 0.        |          | 1.80    | 9600001 | E+02  | •2.26 | 413425E+01 |
| 5      | 1,49196   | 100E+00  | 1.47    | 1800001 | E+02  | =1,11 | 897475E+01 |
| 6      | 6.54885   | 200E+00  | 1.07    | 680000  | E+02  | =4,62 | 266508E+00 |
| 7      | 1.16073   | 380E+01  | 1.00    | 420000  | E+02  | 6,32  | 60068ÎE=01 |
| 8      | 2.17243   | 020E+01  | 1.17    | 280000  | E+02  | 2,16  | 953827E+00 |
| 9      | 3.18374   | 490E+01  | 1.44    | 310000  | E+02  | 1,35  | 712132E+00 |
| 10     | 5.20605   | 730E+01  | 1,58    | 450000  | E+02  | 6,99  | 199590E-01 |

# Table C-VIII. SHOCK CALCULATION

| ********** | ***** | ***********  | ***** | *******  | ***** | ******** | *** |
|------------|-------|--------------|-------|----------|-------|----------|-----|
| BEGIN      | SHOCK | CALCULATION, | AXIAL | POSITION | E     | 0.00000  |     |
| ********   | ***** | *********    | ***** | ******** | ***** |          | *** |

# CALCULATED SHOCK CONDITIONS

| SHOCK ANGLE | (DEG) | 1.07112538E+01 |
|-------------|-------|----------------|
| DEFLECT ANG | (DEG) | 8,47695096E+00 |
| P2/P1       |       | 1.96687101E+01 |

| PROPERTY            | UPSTREAM       | DOWNSTREAM     |
|---------------------|----------------|----------------|
| PRESSURE (PSIA)     | 6,389162586-02 | 1.25666586E+00 |
| TEMPERATURE (DEG=R) | 4.31411921E+02 | 1,75017828E+03 |
| DENSITY (LBM/FTS)   | 3.98120375E-04 | 1,930160286-03 |
| MACH NUMBER         | 2.20478049E+01 | 1.101069038+01 |
| FROZEN GAMMA        | 1,40065148E+00 | 1,33856013E+00 |
| -                   |                |                |

Table C-IX. CARD LISTING FOR NORMAL SHOCK STAGNATION STREAMLINE CALCULATION IN AIR

| No.       701104         No.       200         200       200         200       200         200       200         200       200         200       200         200       200         200 <t< th=""><th>STAGMATIUN SIMEAMLIN<br/>PECIES MASS FRACTION</th><th>E PASS NO. 1</th><th></th><th>·</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STAGMATIUN SIMEAMLIN<br>PECIES MASS FRACTION | E PASS NO. 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                           |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|
| 12       209474         10       0         10       0         10       0         10       0         10       0         10       0         10       0         10       0         10       0         110       0         110       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         111       0         1111       0         1111       0         1111       0         1111       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | 701104               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                           |                  |
| .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0         .0       .0       .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62                                           | 209476               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| 0.4       0       0       0       0         EACTIONS       AFRCOM       0.09334       AFL, 0416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                      | and a second sec | ny solatany analasia ana ana ang ang ang ang ang ang ang an |                  |
| F=       0         F=       6         AFCUM       UU334         E=       6         AFCUM       UU334         AFCUM       UU334         A=       0          A=       0         A=       0         A=       0         A=       0         A=       0         A=       0         A=       0         A=       0         A=       0      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •<br>г. <sup>1</sup>                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| Free       U         ARCGW       UUD34         EACTIONS       ARCGW         V2 = 2 * V       Artificitie         V2 = 0 = V + V       Artificitie         V2 + 0 = 0 + V       Artificitie         V2 + 0 = 2 * M       Artificitie         V2 + 0 = 2 * M       Artificitie         V2 + 0 = 40 + V       Artificitie         V2 + 0 + 100       Artificitie </td <td>•</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| EACTIONS<br>VE = 2 + 0,<br>VE + 0 = 02 + 1,<br>VE + 02 = 2 + 0,<br>VE + 0 | <b>۔</b><br>در<br>در<br>در<br>در<br>د        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| Z = 2 + Y,       A = 1, 9 = 16,       A = 0, 0,       A = 0, 0, <td>ATC.U.</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATC.U.                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| V2 = 2*°,<br>N2 = 0 = 00 = 00 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 000 = 0                                                                                                                                                                                                                                                                                                                                                                                                       | EACTIONS                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| 02 = 2*0;       03 = 2*0;       04=1,9516;       w=0.5;       6=0,6;       REACTION 3         NC = 0 = 0;       0 = 0;       x=1,956;       0 = 0;       REACTION 5         NC = 0 = 0;       x       x=1,956;       x=1,5;       8=6,01;       REACTION 5         NC = 0 = 0;       x       x=1,566;       x=1,5;       8=6,01;       REACTION 6         N2 = 0 = 0;       x       x=1,566;       x=1,5;       8=6,01;       REACTION 6         N2 = 0 = 0;       x       x=1,566;       x=1,56;       8=6,01;       REACTION 6         N2 = 0 = 0;       x       x=1,56;       x=1,56;       8=6,01;       REACTION 6         N2 = 0 = 0;       x       x=1,56;       x=1,56;       x=1,56;       8=6,01;       REACTION 7         N2 = 0 = x0;       x       x=1,56;       x=1,56;       x=1,26;       x=1,26;       REACTION 7         N2 = 0 = x0;       x=0;       x=1,26;       x=1,26;       x=1,26;       x=0;       REACTION 7         SFR/PEL       x=0;       x=1,26;       REACTION 6       x=1,26;       x=1,26;       x=0;         SFR/PEL       x=1,26;       x=1,26;       REACTION 7       x=1,26;       x=0;       x=0;         SFRG/FIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 H 2+%                                     | AE1, JE18,           | 251.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8=0,0,                                                      | REACTION 1       |
| NC = N + C<br>NC = N + C<br>NC + O = 02 + H<br>N2 + 02 = N + C<br>N2 + 0 = 02 + H<br>N2 + 02 = 2*MO<br>N2 + 12 + 12 + 12 + 12 + 12 + 12 + 12 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02 = 2+0,                                    | A=1.9E16,            | N=0.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8=0.6.                                                      | REACTION 2       |
| NC FUR SEAX<br>NC + 0 = 02 + A=1,8E 8, w==1,5, 8=6,001, REACTION 6<br>N2 + 0 = 00 + v, A=1,5E13, N=0.0, B=0.0, REACTION 7<br>N2 + 02 = 2+0, A=1,0=13, N=0.0, B=79,489, REACTION 8<br>AST CAR<br>SECON FIED, 005892, T=433,6, V=1791,6, RSTAN=0,75, EXITER,09, 0,0, REACTION 9<br>FIED, 005892, T=433,6, V=1791,6, RSTAN=0,75, EXITER,0914,<br>FIED, 005892, T=433,6, V=1791,6, RSTAN=0,75, EXITER,0914,<br>SECON FIED, 005892, T=433,6, V=1791,6, RSTAN=0,75, EXITER,0914,<br>NTH:1,E=4, HWHAXE1,9, DELE,01, ND3e96, UFFLAGE1,<br>NVTH:21, VELL=22499,<br>NVTH:21, VELL=22499,<br>NVTH:21, VELL=22499,<br>NVTH:21, VELL=22499,<br>VTE(1)=0257, 00544,00771,01026,01285,01545,01799,02056,02313,<br>VTE(1)=02570,00544,00771,01026,01285,01585,04128,00706,02355,0488<br>ZTE(1)=02570,00544,00771,01026,01285,01585,01712,04369,02056,02313,0488<br>ZTE(1)=02570,00544,00771,01026,01285,015855,04128,00706,02355,0488<br>ZTE(1)=02570,00544,00771,01026,01285,015855,04128,007313,04626,00255,004369,02056,02313,0488<br>ZTE(1)=02570,00544,00771,010265,012555,004369,02056,00255,04369,02056,00255,0488<br>ZTE(1)=05140,<br>VTE(1)=1701,001615,31559,11442,913566,71270,71154,0412,91064,4184,195,04756,071,05655,071,0565,071,0565,071,07128,000,04,0055,0000,02056,0713,0565,071,07128,000,04,0055,0000,02056,071,0565,071,07128,000,04,000,04,055,000,0000,04,055,0571,0550,000,000,000,000,000,0000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 H Z + 3                                   | A=5.0E16.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ä=0.0.                                                      | REACTION 3       |
| NC + 0 = 02 +<br>N2 + 0 = 00 +<br>N2 + 02 = 2*.0.<br>N2 + 02 = 2*.0.<br>N2 + 02 = 2*.0.<br>N2 + 02 = 2*.0.<br>N2 + 0 = 40+ + E=,<br>N2 + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ + 0 = 40+ +                                                                                                                                                                                               | NE THR REAX                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | ,<br>,<br>,<br>, |
| N2 + 0 = ×0 + ×, A=1,5E13, N=0.0, B=0.0, REACTION 7<br>N2 + 02 = 20.0, A=1,0E13, N=0.0, B=70.488, REACTION 8<br>N + 0 = ×0+ + E=, A=2,8E20, N=1.2, H=0.0, REACTION 9<br>SFR2PEL<br>SFR2PEL<br>THAT = 053992, T=433,6, V=1791.6, RSTAM=0.75, EXIT=0.0514, REACTION 9<br>NT = 053992, T=433,6, V=1791.6, RSTAM=0.75, EXIT=0.0514, REACTION 9<br>SFR2PEL<br>Z=0, PI=0,003492, T=433,6, V=1791.6, RSTAM=0.75, EXIT=0.0514, NEACTION 9<br>NT = 1, 2, H=0.0, 0,03492, T=433,6, V=1791.6, RSTAM=0.75, EXIT=0.0514, NT = 278(1)=0,04505, 002056,02313, ST = 278(1)=0,00000,00004,00004,00004,00004,00000,00000,00000,00000,00000,00000,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC + 0 = 02 + 11                             | A=1,3£ 8,            | NE-1,5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8=6,0 <sup>n</sup> 1,                                       | REACTION 6       |
| N2 + C2 = 2*.0.<br>N + 0 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N2 + 0 = %0 + %                              | A=1,5E13,            | N=0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>9</b> ■0,0,                                              | REACTION 7       |
| N + 0 = 40+ + E=, A=2,3E20,=1.2, H=0.0, FEACTION 9<br>AST CARD<br>5FR2PEL<br>2=0. PIED 003492. T=433,5. V=1701.6. ASTAH=0.75. EXITER.7514.<br>PT4(1)=0,063092.<br>HI=1,E=4, AMIM=1,F=4, AMAX=1.7. DEL=.01. ND3=90. UFFLAGE1.<br>NVT=21.<br>NVT=21.<br>NVT=21.<br>ZT6(1)=9, U0257.00514,00771.0128.01286.1564.03855.04112.04369.04626.07488<br>ZT6(1)=0.2570.02827.03084.03341.03590.03855.04112.04369.04626.0488<br>ZT6(1)=05140.<br>VTF(1)= 1701.01615.31529.1.1442.9.1356.71270.7.1184,0.1790.9.1013.1.<br>VTF(1)= 1701.0.1615.3.1529.1.1442.9.1356.7.1270.7.1184,0.1790.9.1013.1.<br>VTF(1)= 1701.0.1615.3.1529.1.1442.9.1356.7.1270.7.1184,0.1790.9.1013.1.<br>VTF(1)= 1701.0.1615.3.1529.1.1442.9.1356.7.1270.7.1184,0.1790.9.1013.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N2 + C2 = 2+.0,                              | AF1. PE13            | -10°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 <b>m</b> 70,489,                                          | REACTION 8       |
| AST CARD<br>SFROMEL<br>SFROMEL<br>Z=0., PI=0.005892, T=433,6. V=1791.6. RSTAH=U.75, EXIT=0.0514.<br>PTH(1)=0.063092.<br>HI=1.E=4. HMIM=1.F=4. HMAX=1.9. DEL=.01. ND3=96. UFLAG=1.<br>NSTAGV=1. VELL=22499.<br>NSTTAGV=1. VELL=22499.<br>STC(1)=900257.00514.90771.91n2A.01285.01285.01799.02056.02313.<br>ZTC(1)=900257.00514.90771.91n2A.01285.01285.011542.01799.02056.02313.<br>ZTC(1)=0.00257.00584.03084.03341.03596.013855.04112.04369.04626.02313.<br>ZTC(2)=0.05140.<br>ZTC(2)=05140.<br>VTF(1)=1701.011615.3.1529.1.1442.9.1356.7.1270.7.1184.8.1993.9.1013.1.<br>VTF(1)=1701.011615.3.1529.1.1442.9.13566.2.501.3.416.7.332.1.248.1.164.4.84.195.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 + 0 n 70+ + U.*                            | A=2,3E20,            | .=1.2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heu, 0,                                                     | PEACTION 9       |
| <pre>SFRDPEL Z=0. Ple0.005452. T=433.6. V=1791.6. FSTAH=U.75. EXIT=0.0514. PTH1=1.E=4. HMIH=1.F=4. HMAX=1.7. UEL=.01. ND3=90. UFFLAG=1. Hl=1.E=4. HMIH=1.F=4. HMAX=1.7. UEL=.01. ND3=90. UFFLAG=1. NVTH21. VELL=22400. NVTH21. VELL=2240. NVTH21. VELL VELL VELL VELL VELL VELL VELL VELL</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AST CARD                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| Z=0., PI=0,005692, T=433,6. v=1701.6, HSTAH=U.75, EXIT=0,0514,<br>PT4(1)=0,063092.<br>HI=1,E=4, HMIH=1,F=4, HMAX=1.0. DEL=.01. ND3=96. UPFLAG=1.<br>WSTAGV=1. VELL=22400.<br>NVTH=21.<br>NVTH=21.<br>VTH=21.<br>VTH=0, U025702570303403341.03596.01285.04122.04122.04369.04626.02313.<br>ZTH(1)=0257002570303403341.03596.01355.04112.04369.04626.0488<br>ZTH(1)=02570.02570303403341.03596.01355.04112.04369.04369.04626.0488<br>ZTH(21)=05144.<br>VTH(1)=1701.011615.3.1529.11442.9.1356.7.1270.7.1184.8.198.9.1013.1.<br>VTH(1)=927.5.641.9.756.5.571.3.586.2.5501.3.416.7.3371.249.1.164.4.84.195.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPRJPEL                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| РТИСЦ)=0,п63092,<br>HI=1,E-4, нм[И=1,F-4, нмАХ=1,9, ИЕЦ=,01, МИЗс96, UFLAG=1,<br>WSTAGV=1, VELL=22409,<br>NVTHE21,<br>ZTP(11)=,0257,.00514,00771,01024,01245,01542,01799,02056,02313,<br>ZTP(11)=,02570,02827,00304,03341,00596,03855,04112,04369,02665,0488<br>ZTP(21)=,0514c<br>ZTP(21)=,0514c<br>VTP(1)= 1701,01615,3,1529,1,1442,9,1356,7,1270,7,1184,8,1998,9,104626,0488,195,<br>VTP(1)= 1701,01615,3,1529,1,1442,9,13566,2,501,3,416,7,332,1,249,1,164,4,84,195,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z=0., P1=0,05452, T                          | =433,6, V=1791.6, HS | TAKEU, 75,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EXTTE, 1514,                                                |                  |
| Hist, E-4, HM[Hel, F-4, HMAXel, 7, DELs.01. ND3s96. UPFLAGEL.<br>NVTHEL, VELLE22499.<br>NVTHEL, VELLE22499.<br>ZTR(11)s.025704514.00771.01029.01295.01542.01799.02656.02313.<br>ZTR(11)s.02570.02827.03034.03341.03596.013855.04122.04369.04369.04626.0488<br>ZTR(11)s.05144.<br>VTR(1)s.05144.<br>VTR(1)s.05144.<br>VTR(1)s.0575.641.9.756.5.571.3.586.2.501.3.416.7.332.1.243.1.164.4.84.195.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PT4(1)=0,n63092,                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| WSTAGVE1, VELLE22499.,<br>NVT*=21,<br>ZT*(1)=9, .00257,.00514,.00771,.91029,.01295,.91542,.01799,.02056,.02313,<br>ZT*(11)=.0257002827,.0303403341,.03596,.03855041120436904626,.0488<br>ZT0(21)=.0514u<br>VT*(1)=.1701.01615,3,1529.1,1442.9,1356.7,1270.7,1184.8,1998.9,1013.1,<br>VT*(1)=.1701.01615,3,1529.1,1442.9,1356.7,1270.7,1184.8,1998.9,1013.1,<br>VT*(1)=.1701.01615.3,1569.1,1442.9,1356.2,501.3,416.7,332.1,249.1,164.4,84.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HIAL BEAS ANIMELE                            | , H"AX=1,7, DEL=.01. | - ND3=30. JI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PFLAGel,                                                    |                  |
| NVT 4= 21.<br>ZT (1) = 9, .00257, .00514, .00771, .91024, .01245, .1542, .01799, .02056, .02313,<br>ZT (11) = .02570, .02827, .03094, .03341, .03596, .03855, .04112, .04369, .04626, .0488<br>ZTU (21) = .0514u<br>VTE(1) = .0514u<br>VTE(1) = .0701, 0.1615, 3, 1529, 1, 1442, 9, 1356, 7, 1270, 7, 1184, 8, 1198, 9, 1013, 1,<br>VTE(10) = 927, 5, 641, 9, 756, 5, 571, 3, 586, 2, 501, 3, 416, 7, 332, 1, 249, 1, 164, 4, 84, 195,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WSTAGVEL, VELLE2249                          | 0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| ZT3(1)=9,,00257,00514,00771,01028,01285,01542,01799,02056,02313,<br>ZT3(11)=,02570,02827,03084,03341,03595,03855,04112,04369,04626,0488<br>ZT6(21)=,0514u<br>VT8(1)=1701,01615,3,1529,1,1442,9,1356,7,1270,7,1184,8,1793,9,1013,1,<br>VT8(1)=277,5,641,9,756,5,571,3,586,2,501,3,416,7,332,1,243,1,164,4,84,195,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVT:=21,                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |
| ZT <sup>C</sup> (11)=,02570,.02827,.0308403341,03596,03855,04112,04369,04626,0488<br>ZTU(21)=,0514u.<br>VT <sup>C</sup> (1)= 1701.0.1615,3,1529,1,1442,9,1356,7,1270,7,1184,8,1790,9,1013,1,<br>VT <sup>C</sup> (10)=927,5,641,9,756,5,571,3,586,2,501,3,416,7,332,1,249,1,164,4,84,195,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ZT (1)=0,, 00257, 01                         | U514, JU771, J1929,  | 01295. J15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42. 01799. 02                                               | 05602313.        |
| ZTU(21)=_0514u<br>VTE(1)=_1701.0.1615,3,1529.1.1442.9.1356.7.1270.7.1184.8.1900.9.1013.1.<br>VTE(10)=927.5.641.9.756.5.571.3.586.2.501.3.416.7.332.1.249.1.164.4.84.195.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ZT <sup>c</sup> (11)=,02576,028              | 27, 03094, -3341, 03 | 590 03855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04112 0436                                                  | 9. 04626. 04883. |
| VT <sup>E</sup> (1) = 1701.0.1615,3,1529,1.1442,9,1356,7,1270,7,1184,8,1793,9,1013,1,<br>VT <sup>E</sup> (10)=927,5,641,°,756,5,571,3,586,2,501,3,416,7,332,1,249,1,164,4,84,195,.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2Tb(21)=_0514c                               |                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                  |
| VTE(10)=927.5.641.9.756.5.571.3.586.2.501.3.416.7.332.1.243.1.164.4.84.195.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VTF(1)= 1701.0.1615                          | 3,1529,1,1442,9,135  | 6.7.1270.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1184.8.1793.                                                | 9.1013.1.        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VTE(10)=927.5.641.9                          | 756.5.571.3.586.2.5  | 01-3-416-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 332.1.249.1                                                 | 164.4.84.105.4.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND3=5.                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                  |

442

NOT REPRODUCIBLE

10 La P

|      | `1                      |                    |                  |
|------|-------------------------|--------------------|------------------|
|      |                         | VELOCIT            | Y TABLE          |
| 1    | ΰ.                      | 1,701600008+03     | -3,35797665E+04  |
| 2    |                         | 1,615300006+03     | -3,35603113E+14  |
| 3    | Þ.140000002-03          | 1,529100006+03     | -3,35603113E+04  |
| 4    | 7,710000005-03          | 1,44280000E+03     | =3,35408560E+04  |
| 5    | <u>1,02600000</u> E=02  |                    | -3-34924903E+04- |
| 6    | 1,265000006-02          | 1,27070000000      | -7,34435798E+04  |
| 7    | 1,542000n0F=n2          | 1,1848000000+13    | =3,34241245E+04  |
|      |                         | 1-109890000E+n3    | 3-34046693E++4   |
| 9    | 2,03000006-02           | 1:01310000000000   | =3,33463035E+14  |
| 10   | 2,3130(000E=02          | 9,27500000000000   | =3,33073930E+04  |
| -11  |                         |                    |                  |
| 12   | 2,827000n0F=n2          | 7,5650000000000000 | -3,31906615E+04  |
| 13   | 5,084000nnF=n2          | 6,71300000E+02     | -3,314229575+04  |
|      |                         |                    |                  |
| 15   | 3 <b>,5930</b> 0020F=02 | 5.01300000E+02     | -3,29766537E+04  |
| 16   | 3,95500000E=02          | 4.16700000000402   | -3,29182879E+04  |
| -1.7 | 4,112000005-02-         | -3,32100000E+02    |                  |
| 18   | 4,369000n0E=02          | 2.48100000E+02     | -3,26264591E+04  |
| 19   | 4,52600000E=02          | 1,64400000E+02     | -3,18881323E+04  |
| -70  | 4,883000000-02          | A,41950000E+01     | -3,19844358E+#4  |
| 21   | 2,14000000E=02          | 0 <b>e</b>         | -3,27407004E+04  |

Table C-X. INPUT VELOCITY DISTRIBUTION TABLE

and the second

the second state of the se

.

NOT REPRODUCIBLE

| Table C-XI. SAMPLE OUT  | PUT FOR NORMAL SHO   | OCK CALCULATION |
|-------------------------|----------------------|-----------------|
| •••••                   | *****                | •••••           |
| NORMAL SHOCK STAGNATI   | ON STREAMLINE CALCUL | ATION REQUESTED |
|                         |                      |                 |
| *********************** | ****************     | **************  |
| CALC                    | ULATED SHOCK CONDITI | nNS             |
| CALC<br>PROPERTY        | ULATED SHOCK CONDITI | DOWNSTREAM      |

-----

NOT REPRODUCIBLE

engine. The initial streamtube temperature was purposely reduced from the original combustion chamber value to ensure condensation within the region of interest.

A card-image listing of the case is shown in Table C-XII. The streamline conditions (initial pressure, temperature, and velocity) including the pressure distribution were obtained from the output of the MULTRAN subprogram and are presented in Table C-XIII. Printout of the input data and the pressure distribution table were omitted since that information is available in Tables C-XII and C-XIII. The initial streamline conditions for the kinetics pass are presented in Table C-XIV.

The water vapor saturation point is reached at station 24.988 as shown in the station output, Table C-XV. Conditions at the saturation point are saved as initial conditions for subsequent condensation calculation pass. An area ratio table is constructed as the integration continues downstream as can be seen by the area ratio printout. Table C-XVI shows the termination of the kinetics pass when the static temperature dropped below 180°R. The condensation calculation pass begins at the saturation point and follows the area ratio table computed during the kinetics pass. Table C-XVII presents this area ratio table plus the first derivative as output at the beginning of the condensation pass. Initial conditions for the condensation pass are included in Table C-XVIII; intermediate printout of pertinent water vapor properties and nucleation rate are also shown. Variables include

PV = vapor pressure (atm) PVS = 'saturated vapor pressure (atm) PRATIO = PV/PVS= critical droplet radius (cm) RS = nucleation rate  $(1/cm^3 sec)$ EJTS= saturated vapor temperature (°R)

As the flow continues to expand to higher degrees of supersaturation, the nucleation rate increases triggering droplet growth (condensation). Tables C-XIX and C-XX present the output at typical locations in the condensing region. These tables illustrate the additional printout in the condensing region (where nucleation rate is greater than threshold value). The FORTRAN symbols correspond to the symbols used in the analysis in the following manner for primary variables of interest;

RPRIME = r' $XMBAR = \overline{m}$  $= \int_{-\infty}^{\infty} \dot{H} dx$ HINT G

= g

# Table C-XII, KINCON SAMPLE CASE-DATA LISTING

| PECIES MASS PRACTI                                                                                          | UNS -                   |             |                      |                                                                                                 |
|-------------------------------------------------------------------------------------------------------------|-------------------------|-------------|----------------------|-------------------------------------------------------------------------------------------------|
| C02                                                                                                         | ,0652                   |             |                      |                                                                                                 |
| H20                                                                                                         | ,2738                   |             | •                    |                                                                                                 |
| CO                                                                                                          | ,2017                   |             |                      |                                                                                                 |
| H2                                                                                                          | ,020                    |             |                      |                                                                                                 |
| NZ                                                                                                          | ,42509761               |             |                      |                                                                                                 |
| NU                                                                                                          | ,002                    |             |                      |                                                                                                 |
| OH                                                                                                          | .00967                  |             |                      |                                                                                                 |
| 02                                                                                                          | ,000764                 |             |                      |                                                                                                 |
| C                                                                                                           | 1 <sup>1</sup> 0AF#11   |             |                      |                                                                                                 |
| H                                                                                                           | ,00117                  |             |                      |                                                                                                 |
| N                                                                                                           | 1,395=0                 | · · · · ·   |                      |                                                                                                 |
|                                                                                                             | 100001/                 |             |                      |                                                                                                 |
| 12AUIJUN3<br>12 - 240.                                                                                      | A=3 3547.               | ale1 0.     | <b>B=0</b> 0.        | PEACTION 4                                                                                      |
|                                                                                                             |                         |             |                      |                                                                                                 |
| NC = N + C                                                                                                  | AH7,0617,<br>AH7,0616.  |             | B=0 0.               | REACTION 3                                                                                      |
|                                                                                                             | A=7 (CLI);<br>A=5 0548. |             |                      | PEACTION A                                                                                      |
|                                                                                                             | Ast 17E17.              |             |                      | REACTION 5                                                                                      |
| $\begin{array}{c} \mathbf{H} = \mathbf{H} + \mathbf{O} \\ \mathbf{H} = \mathbf{H} + \mathbf{O} \end{array}$ | A=2.3E16.               | iv=0.0,     | 8=0.0.               | REACTION 6                                                                                      |
| 662 # Cn + 6.                                                                                               | A=5.1F15.               | N=0,0,      | 8#3.58.              | REACTION 7                                                                                      |
|                                                                                                             | A=6.0E8.                | NEG. D.     | 8:51.                | REACTION 8                                                                                      |
| NC THR REAX                                                                                                 |                         |             | 0-0-11               |                                                                                                 |
| NC + C = 02 + NA                                                                                            | A=3.0E11.               | N==0.5.     | 8=7.13.              | REACTION 9                                                                                      |
| NC + K = 12 + U.                                                                                            | A=2, ('E13,             | NEO.U.      | 8=75.5               | REACTION 10                                                                                     |
| N2 + 02 = 2+NC.                                                                                             | A=1.0E13,               | N=(,),      | 8879.489             | REACTION 11                                                                                     |
| CO + OZ = CO2 + 0,                                                                                          | A=1,9E13,               | N=C.0.      | 8=54,15,             | REACTION 12                                                                                     |
| $CC + N = C + NU_{\bullet}$                                                                                 | A=1,3E10,               | N=-0,5,     | 8=0.5.               | REACTION 13                                                                                     |
| $CC + O = C + O_{2}$                                                                                        | A=2,4E13,               | ix=0,0,     | 8=1,99,              | REACTION 14                                                                                     |
| CC + H = C + On,                                                                                            | A=1,2E14,               | N=0,0,      | 8=25,83,             | REACTION 15                                                                                     |
| CO2 + H = CC + JH,                                                                                          | A#5,6E11;               | N=0,0,      | B=1,08,              | REACTION 16                                                                                     |
| 0H + 0 = H + 02,                                                                                            | A=2,24E14,              | N=0.0.      | 8=16, <sup>9</sup> , | REACTION 17                                                                                     |
| 0H + H2 = H20 + H,                                                                                          | A=8,41E13.              | 'V=0,0,     | 8=20,1,              | REACTION 18                                                                                     |
| 2=04 8 420 + 0.                                                                                             | A=5,75F13,              | N=0,0,      | BEIR, 7,             | REACTION 19                                                                                     |
| H2 + 0 = 0H + H+                                                                                            | 4=7,33E12,              | N = 😳 🖕 🖯 🖕 | B=U,0,               | REACTION 20                                                                                     |
| H2 + 02 = 2 + 0h                                                                                            | A=4,98E23,              | N=2,5,      | H=85.7.              | REACTION 21                                                                                     |
| NO + CO = CO2 + N;                                                                                          | A=1,"E13,               | N=3,0.      | 8=9.93,              | REACTINE 22                                                                                     |
| NC + H = CH + H;                                                                                            | A=3,4E13,               | ·v≡ù,Û,     | 8=1.38.              | REACTION 23                                                                                     |
| CC + CO = CO2 + C,                                                                                          | A=1,0E13,               | v= · ,Ü,    | 6=9,93,              | REACTION 24                                                                                     |
| AST CARD                                                                                                    |                         |             |                      | n ngang ngangga minang dipangg <b>a pinan di angan</b> g ngan gga mingdimananan ina ina ina min |
| SPROPEL                                                                                                     |                         |             |                      |                                                                                                 |

4

AREPS=,001, ETA=0.1, TCOND(1)=12\*0., IDCOND=2, SEND

NOT REPRODUCIBLE

|  | Table | C-XIII. | STREAMLINE | GENERATION | PROGRAM |
|--|-------|---------|------------|------------|---------|
|--|-------|---------|------------|------------|---------|

CP TIME = 33,799 PP TIME = 192,713

| STREAML                                | INE( 1)= 90,000              | 00 PERCENT OF THE TOTAL MASS            | FLOW -                |
|----------------------------------------|------------------------------|-----------------------------------------|-----------------------|
| ZINIT B                                | 0,00000                      | 0 (NONDIMENSIONAL = S/RC)               |                       |
| PINII P                                | 67 52430<br>5457 07050       | 9 (PSIA)<br>O (DEO DA                   |                       |
| ······································ |                              |                                         |                       |
|                                        | 220/1/3401                   | 4 (11/3EU)<br>4 (NONDINENSIONAL - 7/04) |                       |
| AVINALE                                | 44,00900                     | 4 (NUNUIMENDIUNAL + Z/KC)               | 1. (F. P. ).          |
|                                        | /8                           | (NO1-OF-HE320HE-IVARE-H0                | -N [-5-)              |
|                                        |                              |                                         |                       |
| POINT                                  |                              | BADIAL STREAMLINE                       |                       |
| NO.                                    | DISTANCE                     | DISTANCE DISTANCE                       | (PSIA)                |
|                                        | (7/80)                       | (R/RC) (S/RC)                           |                       |
|                                        |                              |                                         | no as united to an an |
| 1                                      | €.237351E=01                 | 1.0108965+00 0.                         | 6.752437E+01          |
| 2                                      | •5.613616E-01                | 9,992094E=01 6.345886E=n2               | 6.550104E+01          |
|                                        | 4,989881E=01                 | 9.884265F=01 1.267576E=01               | -6-466242E+01         |
| 4                                      | •4,366146E=01                | 9,792893E=01 1,897968E=01               | 6,246165E+01          |
| 5                                      | =3,742411E=01                | 9,713276E=01 2,526764E=01               | 6,019785E+01          |
| 6                                      |                              | 9,645190E=01 3,154204E=01               | 5 A39127E+01          |
| 7                                      | =2,494940E=01                | 9,589293E=01 3,780439E=01               | 5,614706E+01          |
| 8                                      | =1,871205E=01                | 9 5452198=01 4 4057298=01               | 5,386846E+01          |
| <b>9</b>                               | 247470E=01                   | 9,512955E=01 5,030298E=01               | 8,155861E+01          |
| 10                                     | <b>■6,237351E</b> ■02        | 9,4925478=01 5,6543678=01               | 4,951774E+01          |
| 11                                     | 3,552714E+15                 | 9,484006E=01 6,278160E=01               | 4,715078E+01          |
| 12                                     | 6,237351E=n2                 | 9,487171E=01 6,901903E=01               | 4,4783596+01          |
| 13                                     | 1,247470E=01                 | 9,502609E#01 7,525830E+n1               | 4,274839E+01          |
| 14                                     | 1,871205E=01                 | 9,529274E=01 8,150134E=01               | 4,038052E+01          |
|                                        | 2,4949405=01                 | 9,567607E=01 8,775046E=01               | 3,8040445+01          |
| 16                                     | 3,118675E=01                 | 9,617624E=01 9,400784E=01               | 3,573715E+01          |
| 17                                     | 3,742411E=01                 | 9,680336E=01 1,002766E+00               | 3,374438E+01          |
| 18                                     | 4,366146[=01                 | 9,753766EE01 1,065571E+00               | 3,1521306+01-         |
| 19                                     | 4,9898816=01                 | 9,838889401 1,128522400                 | 2,935697E+01          |
| 20                                     | <b>0,010010E=01</b>          | 9,935746F=01 1,191043E+00               | 2,726202E+01          |
|                                        |                              | 1,0034255500 1,2550/85400               | 2,4492326401          |
| 22                                     | 0,001073E=N1                 |                                         | 2,400021E+01          |
| 23                                     |                              |                                         | 1,9803476401          |
|                                        | 0,0%U%UDCEU1<br>0.0505045-04 |                                         | 1 1 CAA40VEE01-       |
| 27                                     |                              |                                         | 1,/20/965901          |
| 27                                     | 1 226244610                  | 1 1524805400 11/0070/ETHU               | 1 5726525104          |
| 20                                     | 4 3457495+00                 | 1 1913245400 - 2 00146655400            | 4 47017AE+04          |
| 20                                     | 1 4688455400                 | 1 224472F400 - F1001022E400             | 4 3945895104          |
| 30                                     | 1 5960465400                 | 1 258866E+00 2.260882E+00               | 1.2055062401          |
| 34                                     | 1.727683F400                 | 1.294023F+00 2.3971A2F+00               | 4.2067444404          |
| 32                                     | 1.8644426400                 | 1.330303F+00 2.538672E+00               | 4.1208406404          |
| 37                                     |                              | <u>1.367891F+00</u> 2.686188F+00        | 4.0379665404          |

-

-

# Table C-XIII-Concluded

| 7.2  | 2 1544755400        | 4 4070005400          | 0 0405505+00  | 0 5940465400           |
|------|---------------------|-----------------------|---------------|------------------------|
| 76   |                     |                       | Z 0005045400  | 9,701210FVUU           |
| 35   | 2,3132022410        | 1,44//9/6400          | 3 1775705+00  |                        |
|      | 2,4/0/002400        |                       | 3,1/323UE+0U  | N 1184430E=UU          |
| 37   | 2,0520246400        | 1,7378032400          | 3,3777285+00  | 7.3680095+00           |
| 38   | 2,845226E+00        | 1,2846386+00          | 3,7718/92+00  | 6.052430E+0U           |
|      |                     | 1,6366191+00          | 3,7615436+00  | <u>5,0717795400</u>    |
| • [] | 3,269320E+00        | 1,693105E+00          | 3,989624E+00  | 5,314822E+00           |
| 4 1  | 3,5089836+00        | 5,754318E+00          | 4,236981E+00  | 4,702522E+00           |
| 42   | 3,773142E±00        | _1,821724E+00         | 41509604E+00- | 4,1211885+00           |
| 43   | 4,065000E+00        | 1,896143E+00          | 4.810801E+00  | 3,5810026+00           |
| 44   | 4,392306E+00        | 1,979536E+00          | 5,148564E+00  | 3,075581E+00           |
| 45   | 4,761856E+00        | 2,073639E+00          | 5,529907E+00  | 2+6102575+00           |
| 46   | 5,1852888+00        | 2,181412E+00          | 5,966838E+00  | 2 <b>.183015E+00</b>   |
| 47   | 5,675233E+00        | 2,3060876+00          | 6,472398E+00  | 1.797046E+00           |
| 48   | 6,251182E+00        | 2,452654E#00          | 7,066704E+00  | 1,4519386+00           |
| 49   | 6,625ü02E+n0        | 2,547389E+NU          | 7,452340E+00  | 1,2723736+00           |
| 50   | 7,074635E+0U        | 2,660688E+00          | 7,916029E+00  | 1,086394E+00           |
| 51   | 7,815313E+00        | 2,849148F+00          | 8,680306E+90  | 8,667201E=01           |
| 52   | 8,571396E+NO        | 3,041428E+00          | 9,460456E+00  | 7,0130925=01           |
| 53   | 9,265366E+00        | 3,218157E+00          | 1,017658E+01  | 5,882468E=01           |
|      | 9,975806E+00        | 3,399777E±00          | 1,090986E±01  | .4 <b>.</b> 941469E=01 |
| 55   | 1,0685n3E+n1        | 3,581162E+00          | 1.104192E+01  | 4,2498768=01           |
| 56   | 1,067373E+01        | 3,574772E+00          | 1,165490E+01  | 4,264300E-01           |
| 57   | <u>1,076d11E+01</u> | <u>3,604541E+00</u>   | 1,175387E+01  | <u>5,163831E=01</u>    |
| 58   | 1,113066E+n1        | 3 <b>,</b> 702849E+00 | 1,212951E+01  | 4,638904E=01           |
| 59   | 1,125574E+01        | 3 <b>,</b> 738687E+00 | 1,225963E+01  | 4.6410276=01           |
|      | 1,142516E+01        | 3,787626E+00          | 1,243597E+01  | 4,5894678=01           |
| 61   | 1,156782E+01        | 3,829747E+00          | 1,258472E+01  | 4,641766E=01           |
| 62   | 1,180306E+01        | 3,899483E+00          | 1,283008E+01  | 4,481104E=01           |
| 63   | 1,207228E+01        | 3,977769E+00          | 1,311045E401_ | 4,8025946-01           |
| 64   | 1,242947E+01        | 4,074703E+00          | 1,348056E+n1  | 5,042020F=01           |
| 65   | 1,2856528+01        | 4,183837F+00          | 1,392133E+01  | 4,871803E=01           |
|      |                     | 4,257693E+00          | 1,421712E+01  | 4,860031E=01           |
| 67   | 1,357414E+01        | 4,370228E+00          | 1,466277E+r1  | 4,534370E=01           |
| 68   | 1,411218E+01        | 4,5124236+00          | 1,521928E+01  | 4,268618E=01           |
|      | 1,478154E+01        | 4,686822E+00          | 1,591098E+01  | 3,080018E=01           |
| 70   | 1,003745E+01        | 5,1209418+00          | 1,781099E+11  | 2,2435335=01           |
| 71   | 1,816543E+01        | 5,4962048+00          | 1,939037E+01  | 1,536901E-01           |
| 7.2  | 1,9066918+01        | 5,6479682+00          | 2,030454E+01. | -1,482508E=01          |
| 73   | 2,1375786+01        | 0,24834/E+00          | 2,2008426+01  | 1,1307856+01           |
| 74   | 2,379229E+01        | 6,939570E+00          | 2,520350E+01  | 4,0966695=02           |
|      | 2,0844596401        |                       | -2+848313E+01 | <u></u>                |
| 76   | 2,942882E+01        | 9,1004412400          | 3,12/138E+01  | 9,9732098+03           |
| 77   | 3,142359E+01        | Y Y/3584E+00          | 3,3443/82401  | 7,9580118=03           |
| 78   | A,158523E+01        | -1, 424901E+01        | .4.420Y80E+01 | 2,3520456=03           |

448

. . ....

Table C-XIV. INITIAL CONDITIONS KINETIC STREAMTUBE CALCULATION AXIAL POSITION = 0. INPUT NORMALIZING AXIAL SCALE FACTOR (FT) 8. 10000E-03

2

| PLON PROPERTIES                                       |             |                                                              |                                          | ETIC C | Bw1,74no: | 187H        |                                            |            |
|-------------------------------------------------------|-------------|--------------------------------------------------------------|------------------------------------------|--------|-----------|-------------|--------------------------------------------|------------|
| NAGN NUNBER<br>PRESOURE (PE4A)<br>VELOUTY (P776EG)    |             | 17172//16<br>17172//16<br>17172//16                          | •01<br>•01<br>•01                        | LING   |           |             | - <b></b>  , <b></b>  , <b></b>  , <b></b> |            |
| DENG 7 Y (LO/773)<br>ENTHALPYCHO (07U/1               |             |                                                              |                                          | TENT   |           |             | .000000000                                 |            |
| HEAT CAPAGITY(STU)<br>PROLEN BANNA<br>AAE CONSTITATED | /LE-Dage) - | 984097718<br>2984097588<br>288445888<br>28445888<br>28445888 | •001<br>•001<br>•00<br>•00<br>•00<br>•00 |        | HATION (  | R 1 )       |                                            |            |
|                                                       |             |                                                              | CHENICAL CON                             | 1180at | Not       |             |                                            |            |
| O, SPECICO MAGO FR                                    | ACTION MOLE | FRACTION                                                     |                                          | Dz     |           | TANS TRACT  |                                            |            |
| 1 005 6.52000                                         | 05-02 0.91  | 53234-02                                                     | 7.07 <b>918</b> +17                      | •      | H20       | 2.738000E=( | 11 2,990922E-01                            | 7,2621E+18 |
| 3 60 3404 2001                                        | 78-01 1.41  | 71326=01                                                     | 3144098a18                               | •      | H2-       | -2,000005={ | <u>)2 1,0524035-01</u>                     | 4,7405E+18 |
| 5 N2 4,05097(                                         | 10-01 5'AB  | 10-04619                                                     | 7,25066+18                               | ٠      | Oz        | 2,00000E=(  | 3 1,311665E=03                             | 3,1848E+16 |
| 7 0H 9.67000                                          | 11.1 20-00  | 00-37£66                                                     | 2171688+17                               | •      | 02        | 7,640600E=C | 14 4,698654E=04                            | 1.14096+16 |
| 9 C 1.69000                                           | 16a11 2,76  | 10935-11                                                     | 4,7235E+00                               | 10     | 3         | 1,150000E=( | 3 2,2452646=02                             | 5,45266427 |



4.17000E=04 7.589186E=04 1.8427E+16

0

1,3900006+06 1,9508498-06 4,74168+13

z

7

Table C-XV. KINETIC STREAMTUBE CONDITIONS AXIAL POSITION 2.41693E+01

| 5,7408421746<br>6,780421746<br>7,444081376<br>7,444081376<br>2,334882616<br>2,334882616<br>1,789647236<br>1,989306566<br>1,360499626<br>1,375352646<br>1,375352646<br>1,375352646<br>6627) 5,479370806<br>6627) 5,479370806<br>100 HOLE FRACTION | 00<br>02<br>03<br>03<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>05<br>04<br>04<br>04<br>05<br>04<br>04<br>05<br>04<br>04<br>05<br>04<br>04<br>04<br>05<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04<br>04                                                                                                                                                                                                                                                    | 1 NG     1 NG | A     F     F     F     F       A     F     F     F     F       C     C     F     F     F       C     C     F     F     F       C     C     F     F     F       C     C     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F     F       C     F     F     F <th>145971255506<br/>145937925506<br/>125470000055506<br/>1366755556601<br/>136606875511<br/>077177265590<br/>3.1217625601<br/>3.1217625601</th> <th>HOLEC/CC<br/>3,90046+16</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 145971255506<br>145937925506<br>125470000055506<br>1366755556601<br>136606875511<br>077177265590<br>3.1217625601<br>3.1217625601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOLEC/CC<br>3,90046+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -1.7000000000000000000000000000000000000                                                                                                                                                                                                         | 01     01     01     01       01     01     01     01       01     01     01     01       01     01     01     01       01     01     02     04       01     01     04     01       01     02     04     04       01     04     04     04       01     04     04     04       01     04     04     04       01     04     04     04       01     04     04     04       10     04     04     04       10     04     04     04                                                                         | Z H20 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C (1)<br>C (1) | 244000056401<br>198473216490<br>136006876411<br>07717266403<br>07177266403<br>3.121766403<br>3.1217626401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HOLEC/CC<br>3,90046+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IEC2) -5,47937080E4<br>100 Hole Fraction<br>102 3,216600E402 4                                                                                                                                                                                   | 07<br>HENIGAL CGHPI<br>HOLEC/CC 1<br>10189E+15                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 351710N<br>40. SPECIES<br>2 H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 MASS FRACTION<br>2.8272146-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N MOLE FRACTION<br>3.1217826+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HOLEC/CC<br>3,9004E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 100 HOLE FRACTION<br>02 3.216600E-02 4                                                                                                                                                                                                           | HOLEC/CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 MASS FRACTION<br>2.8272146-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W MOLE FRACTION<br>3.1217826+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HOLEC/CC<br>3,9004E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 02 3,216600E+02 4                                                                                                                                                                                                                                | 101896+15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8272146-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,1217626=01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,9004E+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 01 1,409496E=01 1                                                                                                                                                                                                                                | 17561E+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,999614E=02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,9935466401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2 <mark>-465</mark> 3E+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 01 3,018460E=01 3                                                                                                                                                                                                                                | 1713E+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,001244E=03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,326677E=D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,6578E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 06 2,0450716-06 2                                                                                                                                                                                                                                | 15551E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,8379546=04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,385905E=04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,98106+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 122 6 - 6745415+12 - 4                                                                                                                                                                                                                           | 133936+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - H- 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,2854746+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,437R03E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,7564E+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .08 2,664416Een8 3                                                                                                                                                                                                                               | 3290E+09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.349727E=07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.138047E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,14176+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 01NT H20 AT Z = 2<br>01436-02 T= 4,5<br>933006-01<br>933006-01                                                                                                                                                                                   | 49885006+01<br>4317896+02<br>Area Ratio=<br>Area Ratio=                                                                                                                                                                                                                                                                                                                                                                                                                                               | V=7.48;<br>1.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11320€+03<br>€+00<br>€+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                  | 01     1,4094966=01     1       01     3,0184606=01     3       02     2,0450716=06     2       106     2,0454466=06     3       108     2,6644166=08     3       010     2,6644166=08     3       010     2,6644166=08     3       010     2,6644166=08     3       010     2,6644166=08     3       010     2,6644166=08     3       010     2,6644166=08     3       010     2,6644166=08     3       010     2,6644166=08     3       029006=01     953006     1       029006=01     964006     1 | 01       1,4034966401       1,75616416         01       3,0184606401       3,77136416         02       3,0184606401       3,77136416         06       2,0450716406       2,55516411         42       4,57454166408       3,33936405         42       4,57454166408       3,32906409         08       2,66441666408       3,32906409         01NT       H20       AT       2,843179956402         01S0006401       AREA       AATION         9530006401       AREA       AATION         929005401       AREA       AATION                                                                                                                                                                                                                                                                                                         | 01       1,409496E=01       1,7713E=16       4         01       3,018460E=01       3,7713E=16       6       NO         02       3,018460E=01       3,7713E=16       6       NO         06       2,04501E=06       2,5551E=11       8       02         42       6,474564E=06       2,5551E=11       8       02         42       6,4416E=08       3,3290E+09       12       0         08       2,664416E=08       3,3290E+09       12       0         01NT       H20       AT       2       2,4988500E+01       12       0         01S       2,664416E=08       3,3290E+09       12       0       0       12       0         01NT       H20       AT       2       2,4988500E+01       12       0       0         01NT       H20       AT       2       4,943178856+02       1,0000000       95773671         02900E+01       AREA       AATIOF       1,072884770       1,072884770       1,09110610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01       1,409496E=01       1,7713E=16       4       H2       1,9996146=02         01       3,018460E=01       3,7713E=16       6       NO       2,001244E=03         06       2,045071E=06       2,5551E=11       8       02       3,837954E=04         42       4,45071E=06       2,5551E=11       8       02       3,837954E=04         42       4,45071E=06       2,5551E=11       8       02       3,837954E=04         42       4,74564E=12       8;3393E=05       40       7,265474E=06         42       6,4416E=08       3,3290E=09       12       0       7,349727E=07         408       2,664416E=08       3,3290E=09       12       0       7,349727E=07         408       2,664416E=08       3,3290E=09       12       0       7,349727E=07         408       2,664416E=08       3,3290E=02       12       0       7,349727E=07         401NT       H20       4       4,543178856=02       14       7,349727E=07         401NT       H20       A       4,543178856=02       12       0       7,349727E=03         401NT       H20       A       4,844108       1,90000000E=00       9,577367E=03         445 | 01       1,409496E=01       1,7713E=16       4       H2       1,9996146=02       1,975140E=01         01       3,018460E=01       3,7713E=16       6       N0       2,001244E=03       1,326677E=03         06       2,045071E=06       2,5551E=11       8       02       3,837954E=04       1,437805E=04         12       6,33934E=05       10       7,285474E=04       1,437805E=02         12       6,33934E=05       10       7,285474E=04       1,437805E=02         13       564416E=08       3,3290E=09       12       0       7,285474E=07       9,138047E=07         08       2,664416E=08       3,3290E=09       12       0       7,349727E=07       9,138047E=07         08       2,664416E=08       3,3290E=09       12       0       7,349727E=07       9,138047E=07         01NT       H20       AT       Z       2,437195E=03       12       0       7,349727E=07       9,138047E=07         01NT       H20       AT       Z       2,437795E=07       9,138047E=07       9,138047E=07         01NT       H20       AT       Z       2,4331785E=03       12       0       7,349727E=07       9,138047E=07         01NT       H20       AT |

STEP\_STZE-HALVED\_AT\_Z\_R\_\_\_256029000E+01

Table C-XVI. KINETIC STREAMTUBE CONDITIONS AXIAL POSITION 3.52285E+01

5

|                | LOH PROPI                                               | ERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                               | KINETIC                       | COUPLING                         | TERMS    |                                                                                             |                                        |            |
|----------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|----------------------------------|----------|---------------------------------------------------------------------------------------------|----------------------------------------|------------|
| xā>            | AGH NUMBI<br>Ressure<br>ELOCITY                         | ER<br>(PSIA)<br>(FT/SEC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,09020824<br>6,97243082<br>7,86861493                                                | 100<br>100<br>100<br>100<br>100<br>100<br>100 |                               |                                  |          | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | <del>7933925=07</del><br>2439325=07    |            |
| ΞΦΨΑ           | ENERATU<br>Ensity (<br>Nthalpy=<br>AS_HOLEC<br>Eat capa | RE (DEG-R)<br>L0/FT3)<br>H0 (8TU/L8)<br>ULAR 451GHT<br>C1TY(8TU/L8-DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,4573592<br>2,77268073<br>-1,16315592<br>1,96930921<br>1,96930921<br>(GR) 3,51453953 |                                               | CURRENT<br>CURRENT<br>PERCENT | STEP SIZ                         | E CHANGE |                                                                                             | 600000E=01<br>339509E=01<br>113787E=01 |            |
| <b>L</b> (9 3) | ROZEN GA<br>As const<br>Um C(1).                        | ММА<br>( <del>Г72/6562/D56-</del><br>H(]) (Г72/SEC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,39712569<br><del>R) 2,49941089</del><br>·) <b>-5,</b> 72561720                      | 6 0 0<br>6 0 0<br>6 0 0<br>7                  | HAN I NUM                     | RELATIVE<br><del>Vg-Equari</del> |          | 5° 0                                                                                        | 3034126=04                             |            |
|                |                                                         | and service and the service of the s |                                                                                       | CHEMICA!                                      | COMPOS                        | 11 I ON                          |          |                                                                                             | •                                      |            |
| °<br>v         | SPECIES                                                 | MASS FRACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I MOLE FRACTION                                                                       | MOLEC/                                        | CC ND                         | SPECIES                          | MASS FRA | CTION                                                                                       | HOLE FRACTION                          | HOLEC/CC   |
|                | C02                                                     | 7,116333E=02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,216602E-02                                                                          | 913960E                                       | × • •                         | H20                              | 2,827214 | E=01                                                                                        | 3,121763E-01                           | 9,11996+15 |
| *              | 00                                                      | <u>1</u> 879046E=01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.40540 <b>6E-</b> 01                                                                 | -411056E                                      | +15 -4                        | H2                               | 1999619  | E=02                                                                                        | <u>4.</u> 973145E=0 :                  | 5,7638E+15 |
| in.            | N                                                       | 4,250984E=01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,018461E=01                                                                          | 8172E                                         | +15 6                         | 02                               | 2,001243 | E=03                                                                                        | 1.326677E-03                           | 3,8754E+13 |
| -              | НО                                                      | 1,636699E=06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,914335E-06                                                                          | 515920E                                       | <b>●10</b>                    | 20                               | 3,837965 | E=04                                                                                        | 2,3859066-04                           | 6,9695E+12 |
|                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                               |                               |                                  |          |                                                                                             |                                        |            |

| 0<br>Z | SPECIES | MASS FRACTION | HOLE FRACTION | MOLEC/CC           | NO. | SPECIES   | MASS FRACTION             | MOLE FRACTION | HOLEC/CC           |
|--------|---------|---------------|---------------|--------------------|-----|-----------|---------------------------|---------------|--------------------|
| -      | C02     | 7,116333E-02  | 3,216602E-02  | 9,3960E+14         | ~   | H20       | 2,827214E=01              | 3,121763E-01  | 9,1199E+15         |
| 3      | 00      | 1 8790465=01  | 1 405406E=01  | 4110566415         | +   | H2-       | 1,999619E= <del>0</del> 2 | 1,973145E=0 : | 5,7638E+15         |
| ŝ      | N<br>N  | 4,250984E=01  | 3,018461E=01  | 8 <b>,8172E+15</b> | ¢   | ON        | 2,001243E=03              | 1.326677E-03  | 3,8754E+15         |
| -      | HO      | 1,636699E=06  | 1,9143356-06  | 5,5920E+10         | æ   | 20        | 3,837965E=04              | 2,385906E=04  | <b>6</b> ,9695E+12 |
| 0      | U       | 41029764E=12  | 6_6742546=12  | 1,9496E+05         | 0   | Ŧ         | 7,285086E=04-             | 1,437727E=02  | 4,1997E+14         |
| 11     | 2       | 1,869501E-08  | 2,654922E-08  | 7,7553E+08         | 12  | O         | 8,333111E=07              | 1,036071E+06  | 3,0265E+16         |
|        |         | 2= 3,60477    | 00E+01        | AREA RATIO=        | •   | 9523233E+ | 00                        |               |                    |
|        |         | 2= 3,66669    | 00E+01        | AREA RATIOS        |     | 3103800E+ | 00                        |               |                    |
|        |         | 28-3,76861    | 00E+01        | AREA RATIOS        |     | 7108414E+ | 00                        |               |                    |
|        |         | Z= 3.85055    | 00E+01        | AREA RATION        | •   | 1616624E+ | 00                        |               |                    |
|        |         | Z= 3,93245    | 00E+01        | AREA RATIO         | •   | 6731070E+ | 00                        |               |                    |
|        |         |               | 006404        |                    | Ī   |           |                           |               |                    |
|        |         | Z= 4,09629    | 006+01        | AREA RATIC=        | 0   | 9366756E+ | 00                        |               |                    |
|        |         | Z# 4,17821    | 00E+01        | AREA RATIO=        | f   | 0732400E+ | 01                        |               |                    |

TEMPERATURE 176,204 IS OUTSIDE THERMAL TABLES

# Table C-XVII. AREA RATIO TABLE

|          | ¥              | <b></b>               | DA/DX CALGED   |
|----------|----------------|-----------------------|----------------|
| 1        | 2.49885000E+01 | 1,0000000E+00         | 0,             |
| 2        | 2.51933000E+01 | 1:05773674E+00        | 3,02360939E=01 |
|          |                | 1,12884704E+00        | 3,402682916=01 |
| 4        | 2,56029000E+01 | 1,19711063E+00        | 3,75357475E=01 |
| 5        | 2.58077000E+01 | 1,27759346E+00        | 4,12841215E=01 |
|          | 2,49125000E+01 | <u>1.36421039E+00</u> | 4,52888593E+01 |
| 7        | 2,62173000E+01 | 1,46309663E+00        | 4,93586234E+01 |
| 8        | 2,64221000E+01 | 1,56838331E+00        | 5,34413881E=01 |
| <u> </u> |                | <u>1,68199256E+90</u> |                |
| 10       | 2,68317000E+01 | 1,80360412E+00        | 6,11919442E=01 |
| 11       | 2,70365000E+01 | 1.93263476E+00        | 6,46n70464E=n1 |
|          | <u></u>        |                       |                |
| 13       | 2.74461000E+01 | 2,20930117E+00        | 6,98907936E=01 |
| 14       | 2,76509000E+01 | 2,35450728E+00        | 7,15425464E=01 |
|          | 2,785570006+01 |                       | 7,241989455-01 |
| 16       | 2,30405000E+01 | 2,65113916E+00        | 7,24603912E=01 |
| 17       | 2,92653000E+01 | 2,79913720E+00        | 7,16138891E=01 |
|          |                | <u>2794446965E+60</u> |                |
| 19       | 2,87261000E+01 | 3,12754171E+00        | 7,43507550E=01 |
| 20       | 2,89821000E+01 | 3:32514552E+00        | 7,96910279E-01 |
|          | 2,928930005+01 |                       |                |
| 22       | 2,95965000E+01 | 3,83644914E+00        | 8:48n97857E=01 |

# Table C-XVII-Concluded

an.

16

| 23 | 2,99037000E+01 | 4,09743291E+00            | 8,37479712E=01             |
|----|----------------|---------------------------|----------------------------|
| 24 | 3,02109000E+01 | 4,35099667E+00            |                            |
| 25 | 3,05181000E+01 | 4,58940859E+00            | 7,27663481E=01             |
| 26 | 3,09277000E+01 | 4.87258586E+00            | 6,17132385E=01             |
| 27 |                | <del>5,15915780E+00</del> |                            |
| 28 | 3,1951700QE+01 | 5,41739749E+00            | 4,85100428E=01             |
| 29 | 3,25661000E+01 | 5,70457492E+00            | 4.17098491E=01             |
| 30 | 3,33853000E+01 | 6,01534988E+00            | 3,44497609E=01             |
| 31 | 3,44093000E+01 | 6,33955291E+00            | 3,51928117E=01             |
| 32 | 3,60477000E+01 | 6,95232330E+00            | 3,95n30554E=01             |
|    |                |                           | 4 <del>-62962691E=01</del> |
| 34 | 3,76861000E+01 | 7 <b>,71084136E+</b> 00   | 5,19581533E=01             |
| 35 | 3,85053000E+01 | 8 <b>.16166239E</b> +00   | 5,87320313E=01             |
| 6  | 3,932450005+01 |                           |                            |
| 37 | 4,0143700DE+01 | 9 <b>,25*69520E+</b> 00   | 7,71221106E=D1             |
| 38 | 4,09629000E+01 | 9,93667562E+00            | 8,99477990E=01             |
|    | 4.178240005+04 | 4.071230095+04            |                            |

Table C-NVIII. INITIAL CONDITIONS KINETIC STREAMTUBE CALCULATION AXIAL POSITION = 2, 49885E+01 INPUT NORMALIZING AXIAL SCALE FACTOR (FT) 8. 10000E-03

|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                         |              |                |                |                         |                         |              | 56,867                    | 56,867                  | 56.867                  | 56,866                    | 56, 866                 |                |
|----------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|--------------|----------------|----------------|-------------------------|-------------------------|--------------|---------------------------|-------------------------|-------------------------|---------------------------|-------------------------|----------------|
|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MOL EC/CC                 | 3,0817E+16              | 1.19478E+16  | 1,3097E+14     | 2,35556+13     | 1,41 <del>93E</del> +15 | 9,2212E+10              |              | 26+00<br>TS= 4            | 05+00<br>TS= 4          | 3E+00<br>75= 4          | 26+00                     | 2E+00<br>75= 4          | 2E+00          |
|                |                                         | 000000E=00<br>94 <b>99</b> 4E=00<br>92 <b>960</b> 0E=111<br>92 <b>960</b> 0E=111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ADLE FRACTION             | 5.121782E=01            | 1,9731416-01 | L.326677E=03   | 2,385905E=04   | 1,437784€=02            | 9.340995E=07            |              | ATIO= 1.146190<br>0.      | ATION 1.146196<br>0.    | ATIO8 1.146215<br>0.    | ATION 1.145248<br>0.      | ATIO8 1.146338<br>0.    | ATIO= 1.146474 |
| 8128.          | <b>0</b>                                | 111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A SS PRACTION             | 2,827214E=01            |              | 2,001243E=03   | 5.837964E=04 2 | ,_28\$3¢0E=04- 1        | ,1512957E=07 5          | 1,00000E+00  | 144 40-3464<br>19         | 3175-04 PR              | 571E=04 PR              | 5356=04 PAI               | 328E=04 PRI             | 538E=04 PAL    |
| TIC COUPLING 1 | LING TERM A<br>LING TERM B              | ENT 97EP 512E<br>ENT 97EP 512E<br>ENTERTION 01<br>BUIND EQUATION 01<br>ANING EQUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO LIGN                   | 2 420                   | 4 42         | 07 9           | 8 02           | 10 H                    | 12 0                    | AREA RATIO - | PVS = 9.24994<br>EXPJe 0. | PVS = 9.2498            | PVS = 9,2496            | PVS # 7.2493(<br>EXPJe 0, | PVS # 9.2484            | PVS = 9.2471   |
| A I NE         | E+00<br>E+02<br>E+03<br>E+03<br>COUP    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHENICAL- CON<br>HOLFCZCT | 3 <sub>41</sub> 753E+15 | 31-3218511   | 219797E+16     | 1,99568+11     | 4, <b>9</b> 8886405     | 2 <sub>1</sub> 6275E+A9 |              | 021996=03<br>56046=07     | 021776=03<br>19736=07   | 021336±03<br>97446=37   | 02066E=03<br>0890E=07     | 01689E=03<br>1984E=07   | 01423E=03      |
|                | 5,98784801<br>4,989014281<br>7,48713199 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0. 5 8 4 7 1 0 V          | .216601E-02             | .4054046=01  | :.018461E=01   | .0214976-06    | • +74421E=12            | .661679E=08             | AP+1 = 0.    | PVF 1.06<br>ASE 9.982     | PV= 1.06<br>RS= 9.982   | PVE 1.06                | PVE 1.06<br>RSE 9.978     | PVE 1.006               | PV8 1.06       |
| 17185          | 81A)<br>7/86C)                          | //////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N NOTECA GA SAA           | ,116331E=02 3           |              | 1-2509945-01 3 | .728320E-06 2  | 1.0295665-12 4          | .8742595=08 2           | Ĩ            | 2.49895006+01<br>1078 0   | 2.4990500E+01<br>1CT= 0 | 2.4991500E+n1<br>107= 0 | 2.4992500E+01             | 2.4994500E+01<br>1678 0 | 2.4996500E+01  |
| FLOH PROPER    | PRESSURE (P                             | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 7 SPET 20                 | 1 502 7                 | 3 CO 3       | 5 N2           | 7 DH 1         | 4<br>U                  | 1 v                     | BAR - 0.     | 2 =<br>17ar               | 2 8<br>1748             | 2 a<br>17ar             | Z =<br>ITAR               | Z =<br>17AR             | 2              |

Table C-XIX. KINETIC STREAMTUBE CONDITIONS AXIAL POSITION 2. 70052E+01

2,000000006=03 •1,910106216+00 •1,224265136=11 7,041058566=01 ••• CURRENT STEP SIZE Percent Enthalpy CHANGE 1.0 - Summation C(1) Maximum Relative Error Governing Equation KINETIC COUPLING TERMS INTEGRATION PAPANETERS COUPLING TERM A COUPLING TERM B MACH NUMBER PRESSURE (PSIA) VELOCITY (FT/SEC) VELOCITY (FT/SEC) VELOCITY (FT/SEC) VELOCITY (L0/FT3) VELOCITY (L0/FT3) VELOCITY (L0/FT3) VELOCITY (L0/FT3) VELOCITY (L0/L2) VELOCITY (B/FT3) VELOC FLOW PROPERTIES

|            |                 |                              |               |               |               |                              |               |                  | 9.9241558E+21<br>1.5298692E+75 | 1.74968375+38 |                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                                        |               |                                      |                                      |
|------------|-----------------|------------------------------|---------------|---------------|---------------|------------------------------|---------------|------------------|--------------------------------|---------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|---------------|--------------------------------------|--------------------------------------|
|            | HOLEC/CC        | 1,2922E•1¢                   | 8,1479E+15    | 5.4918E+13    | 9,8765E+12    | 5,9517E+14                   | 3,8667E+1£    |                  |                                |               |                                 | 14E+02<br><del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175+02<br>1 TS= 436,717                          | 19E+02<br><u>                                     </u> |               | 4E+02<br>  75∎ 436,497               | 14E+22                               |
|            | W MOLE FRACTION | 3,121667E=D1                 | 1.973174E-D1  | 1.J26599Ee03  | 2,355945E-34  | 1.437405E=02                 | 9,3411515-37  | 00               | 1.4659714Ee12<br>1.0643246Ee01 | 4,67547945+22 | 8,3038654EeG1                   | PAATIO= 4,005644<br>J <del>= 1,58110615•1</del> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 741710= 4,541079<br>J= 1,7137061541 <sup>4</sup> | PRATIO≡ 4,076440<br>J <del>= 2,7475402541</del> 9      |               | PRATION 4,035370<br>Jm 1.70972826419 | PRATID= 4.054038<br>J= 1.7175175E+18 |
|            | S MASS FRACTIC  | 2,827104E+01                 | 1,9996455002  | 2,011274E=03  | 3,8780226+34  | 7,24547aE=94                 | 7,513071E=07  | - 1,90994E+(     |                                |               | u<br>U                          | 52116E+07 F<br><del>2660E+15 E</del> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 174585+07 f<br>66726+05 E.                       | 77772E=U7 1                                            |               | 174585+07 f<br>19816+05 f.           | 955716+07 1<br>29736+05 6.           |
| V0111304H0 | NO. SPECIE      | 5 H 20                       | н <b>4</b> н2 | C7 9          | 8 02          | 1 10 н                       | 1 12 0        | AREA RATIO       | 2,0003600E+13<br>1,5298692E+15 | 8531753E-10   | , 999763554Fen1<br>10361514Fen1 | PVS = 8.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PVS = 8,54<br>EXPJ= 1,227                        | PVS = 8,45<br>                                         |               | PVS = 8,54<br>EXPJ= 1,221            | PVS = 8,49<br>EXPJ= 1,234            |
| CHEMICAL C | ION MOLEC/CC    | 12 1 <mark>1</mark> 3315E+15 | 1 5,8181E+15  | 11 1,2495E+16 | 36 8.3681E+10 | 12 2 <mark>17629E+</mark> 05 | 28 1,1018E+09 | 9,99985E=01      |                                | RSTAK = 9     | XXDM =                          | .4558156E=04<br>00 <b>1561E=08</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4517867E=04<br>2948836E=08                      | .4477629E=04<br>19 <b>15</b> 5795=08                   | 50CE+01       | ,4477650E=04<br>2975443E=08          | 4457531E-04<br>9958750E-08           |
|            | 1 HOLE FACTI    | 2,216654E=(                  | 1 1,405519E+r | 1 3,n18511E+1 | 5 2,n21531E+i | 0.674532E+1                  | · 2.661723E=( | H TOUTEW         | 152508+01<br>194765+13         | 1834E+20      | 55942E+04<br>14737E+04          | 5 2 4 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 01 PVE 3,<br>BS= 2,5                             | 01 PVe 3,<br>86= 2,4                                   | 21127,5       | 01 PV# 3,<br>85# 2,9                 | C1 P4= 3,<br>BS= 2,9                 |
|            | S MASS FRACTI   | 7,1164396+0                  | 1,9798765-0;  | 4,251J486+01  | 1,7283465+0   | 4,0299265-1;                 | 1,874287E=0   | 1,52987E+C5      | EP42 . 2.70                    | B = 1,76      | HPOT = -1.39                    | . = 2,7007250E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : ■ 2,7109250E                                   | . 2.70112506                                           | HALVEJ AT Z - | . 2,715925064<br>Tarcta C            | ■ 2,7010250E4<br>TARCY= 6            |
|            | NO, SPECIE      | 1 CO2                        | 3 CO          | 5 12          | LO L          | ن<br>٥                       | 11 6          | •<br>•<br>•<br>• |                                |               | ×                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71                                               | 2                                                      | STEP SIZE     |                                      | 2                                    |

PRATIJE 4,07196375402 EJE 1,73452955418 75E 436,677

PVS = 8,45741126+07 EXPJ= 1,24757646+05

PV= 3,4437426E=04 FS= 2,9942002E=08

Z = 2,7311250E+01 |TARCT= 0

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | N MOLEC/CC      | 5,9604E+15   | 3,79626+15   | 2,5525E+13   | 4,5903E+12   | 2,7662E+14   | 1.7972E+1C   |              | 2 TERM1 = 3,4893055424<br>1 G = 2,1556556743<br>3,00902 = 1,00187315543 | G HPRIME = -1,7472215E+08                                                                                                                                                                                                                                                   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000006<br>45828926400<br>54834716412<br>1814557600<br>1814557600<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | MOLE FRACTIO    | 3,105386E+01 | 1,9778446-31 | 1,329A39E=03 | 2.391592E=04 | 1,441704E=02 | 9,363262E+07 | D            | 4,1365606E+1<br>1,50127445+0                                            | 7.8795803E+2<br>9.4144203E+0                                                                                                                                                                                                                                                |   |
| 160<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ССТ<br>ССТ<br>ССТ<br>ССТ<br>ССТ<br>ССТ<br>ССТ<br>ССТ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | MASS FRACTION   | 2,8117336=01 | 2,0039316-02 | 2,005563E=03 | 3,846248E=04 | 7.Jn1085E=04 | 7,5291736=07 | 3,36225E+0   | RPR]HE =<br>H]NT =<br>DDDV = =                                          | а а<br>Ш-Ч-Ч-Г-<br>П-Ч-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-Ч-Г-<br>П-П-П-П-П-П-П-П-П-П-П-П-П-П-П-П-П-П- | • |
| ПОСРГ. 20<br>1 120<br>1 100<br>1 120<br>1 120 | 1104 1444<br>8104 1444<br>81144 144<br>1444 1104<br>1444 1104<br>144 1104<br>144 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17104      | , SPECIES       | H20          | н2           | 0N           | 02           | I            | o            | A RATIO =    | 000E-04<br>365E-03<br>2855-03                                           | 577E=10<br>642E=01<br>248E=01                                                                                                                                                                                                                                               |   |
| K1NE110<br>COUPLING<br>COUPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAL COMPOS | C/CC NO         | 6E+14 2      | 16+15 4      | 3E+15 6      | 2E+10 8      | 16-05 10     | 9E+08 12     | •01 ARE/     | = 5.0000                                                                | - 7,1560<br>- 9,9663(                                                                                                                                                                                                                                                       |   |
| 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2125602<br>152602<br>332661<br>822641<br>822641<br>888661<br>988661<br>972640<br>972640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>978640<br>9786400<br>9786400<br>9786400<br>97864000<br>9786400<br>97864000000000000000000000000000000000000 | CHENT      | 104 MOLE        | 02 6118B     | 01 2,704     | 01 5,807     | 06 3.889     | 12 1,284     | C8 5,120     | 9,97844E     | DEL 2<br>X HBA 2<br>D L D D X                                           | RSTAR<br>Trac<br>Krom                                                                                                                                                                                                                                                       |   |
| 7,39520<br>5,59610<br>7,69226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | HOLE FRACT      | 3,224268E-   | 1,4088465-   | 3,025656E•   | 2,026316E-   | 6,690331E=   | 2,668024E+   | - 1-4484     | 7506+01<br>5306+15<br>2066+15                                           | 8196+21<br>5596+04<br>8536=03                                                                                                                                                                                                                                               |   |
| DFEATLES<br>40EA<br>: (PSLA)<br>: (FT/SEC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LURE (DEGER)<br>(LR/FT3)<br>(LR/FT3)<br>(HU (RTU/LB)<br>(CULAR HEIGHT<br>ACTTY(BTU/LB-DE(<br>APHA<br>(FT2/SEC2/DEGES<br>(HYFE/SEC2/DEGES<br>(HYFE/SEC2/DEGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | S MASS FRACTION | 7,131691E-02 | 1,9833186-01 | 4,2601595-01 | 1,7320516+06 | 4,0385636-12 | 1.87P304E+08 | 12.15566E=03 | ТЕРН2 = 2,9027<br>ТЕРН2 = 2,6369                                        | 38 - 1,32421<br>24PDT - 1,32421<br>24DDT1,35735                                                                                                                                                                                                                             |   |
| FLOH PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | NO. SPECI       | 1 CO2        | 3 60         | 5 22         | 40 CH        | ບ<br>໑       | 11<br>21     | н Вая        |                                                                         |                                                                                                                                                                                                                                                                             |   |

Table C-XX. KINETIC STREAMTUBE CONDITIONS AXIAL POSITION 2.90277E+01

| DHPDX  | = | dh'/dx |
|--------|---|--------|
| DGDX   | = | dg/dx  |
| DRDX   | Ξ | dr/dx  |
| RSTAR  | Ξ | r**    |
| JRATE  | = | J      |
| HPRIME | = | h'     |
| DHPDT  | = | dh'/dT |
| XMDOT  | = | m      |
| ХМОМ   | = | M      |
| E      | = | Ĥ      |

All values of variables printed out under the above symbols are in the internal computing units of poundal, pound mass, BTU, foot, and second.

# C.8 REFERENCES

- C-1. J. R. Kliegel, and H. M. Frey. <u>One-Dimensional Reacting Gas</u> <u>Nonequilibrium Performance Program.</u> 02874-6003-R000, March,1967, TRW Systems, Redondo Beach, Calif.
- C-2. J. R. Kliegel, H. M. Frey, G. R. Nickerson, and T. J. Tyson. ICRPG One-Dimensional Kinetic Nozzle Analysis Computer Program. Published by Dynamic Science, under contract NAS7-443, July 1968.
- C-3. H. M. Frey and G. R. Nickerson. <u>SCREEN, A Computer Program</u> for the Screening of Chemically Reacting Gas Mixtures. Published by Dynamic Science under Contract to McDonnell Douglas Astronautics Company, TR-141-1-CS, February, 1970.
- C-4. J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird. Molecular Theory of Gases and Liquids. Wiley, (New York), 1954.
- C-5. S.S. Penner. <u>Chemistry Problems in Jet Propulsion</u>. Pergamon, (New York), 1957.
- C-6. S. W. Benson and T. Fueno. "Mechanism of Atom Recombination by Consecutive Vibrational Deactivations." Journal of Chemical Physics, Vol. 36, 1962, pp 1597-1607.
- C-7. J. Frankel. <u>Kinetic Theory of Liquids</u>. Oxford University Press. (London), 1946.
- C-8. H.G. Stever. <u>Condensation in High-Speed Flows</u>. <u>High-Speed</u> <u>Aerodynamics and Jet Propulsion</u>. Vol. III, Princeton University Press, (Princeton, N.J.), 1958.
- C-9. P.G. Hill. "Condensation of Water Vapor During Supersonic Expansion in Nozzles." Journal of Fluid Mechanics, Vol 25, 1966.
- C-10. T.J. Tyson and J.R. Kliegel. "An Implicit Integration Procedure for Chemical Kinetics." AIAA 6th Aerospace Sciences Meeting, Paper No. 68-180, January 1968.

Appendix D

1

-

# SURFACE

# DEPOSITION AND SURFACE EFFECTS COMPUTER PROGRAM

A Plume Impingement, Deposition, Abrasion, and Surface Contamination Effects Model

Program Number P1942

# TABLE OF CONTENTS

# <u>Section</u>

1

| D. I         | INTRODUCTION                       | 465   |
|--------------|------------------------------------|-------|
|              | a. The SURFACE Program             | 465   |
|              | b, Scope                           | 465   |
|              |                                    |       |
| D. 2         | ANALYSIS                           | 466   |
|              | a. Summary                         | 466   |
|              | b. Configuration                   | 468   |
|              | c. Initial Condition               | 469   |
|              | d. Test Effects                    | 470   |
|              | e. Identification of Exposure Type | 471   |
|              | f. Impingement                     | 471   |
|              | g. Transformation of Coordinates   | 472   |
|              | h. Plume Impingement Effects       | 472   |
|              | i. New Condition of Surface        | 474   |
|              |                                    |       |
| D. 3         | PROGRAM OVERLAY STRUCTURE          | 474   |
| D 4          | SUBROUTINES                        | 474   |
| <b>D</b> , 1 | BODICO I INDE                      | - , - |
|              | a. Subroutine HCØNDF               | 475   |
|              | b. Subroutine HCØNDØ               | 475   |
|              | c. Subroutine REDRHØ               | 475   |
|              | d. Subroutine REDRØD               | 475   |
|              | e. Subroutine REDVIS               | 475   |
|              | f. Subroutine WEBBER               | 475   |
|              | g. Subroutine GETSUR               | 476   |
|              | h. Subroutine WARD                 | 476   |
|              | i. Subroutine MINSUR               | 476   |
|              | j. Subroutine INTER                | 476   |
|              | k. Subroutine MAXSUR               | 476   |
|              | 1. Subroutine INTRA                | 477   |
|              | m. Subroutine EXTRAP               | 477   |
|              | n. Subroutine ENTER                | 477   |
|              | o. Subroutine HØTPAR               | 477   |
|              | p. Subroutine FINDR                | 477   |
|              | q. Subroutine CØRTRN               | 478   |
|              | r Subroutine TRNCOR                | 478   |

Preceding page blank

| D. 5 | PROGRAM USER'S MANUAL       | 478        |
|------|-----------------------------|------------|
|      | a. General<br>b. Data Input | 478<br>478 |
| D, 6 | OUTPUT DESCRIPTION          | 491        |

# TABLES

| Table  |                                                                               | Page |
|--------|-------------------------------------------------------------------------------|------|
| D-I    | Input Data for SURFACE                                                        | 492  |
| D-II   | Satellite Configuration                                                       | 497  |
| D-III  | Projections                                                                   | 500  |
| D-IV   | Properties of Structural Materials                                            | 501  |
| D-V    | Operating Conditions                                                          | 502  |
| D-VI   | SURFACE Properties Input                                                      | 504  |
| D-VII  | Spacecraft Exterior Materials—SEEK<br>Values Input for Initial Conditions     | 508  |
| D-VIII | Current Condition of Satellite Exterior                                       | 510  |
| D-IX   | Effective Heat Transfer Constants—Initial<br>Conditions                       | 512  |
| D-X    | Spacecraft Exterior Materials After Plume<br>or Space Exposure                | 512  |
| D-XI   | Current Condition of Satellite Exterior for<br>Assigned Post-Plume Conditions | 513  |
| D-XII  | Effective Heat Transfer Constants-After<br>Assigned Exposure to Plume         | 515  |
| D-XIII | Impingement of Plume on Satellite                                             | 516  |
| D-XIV  | Coordinate Transformation                                                     | 517  |
| D-XV   | Physical Properties of Impinged Segment<br>Surfaces                           | 518  |
| D-XVI  | Wear Constants of Materials on Surface                                        | 519  |
| D-XVII | Arbitrary Plume Characteristics for<br>Testing Program                        | 520  |

-11 J

وتعقف والمعالة مرتجعه والمساوية والمراجع والمراجع والمراجع والمراجع والمراجع

1

al and a second

## Appendix D

## SURFACE

## DEPOSITION AND SURFACE EFFECTS COMPUTER PROGRAM

# A Plume Impingement, Deposition, Abrasion, and Surface Contamination Effects Model

#### D. 1 INTRODUCTION

## a. The SURFACE Program

The computer program described in this appendix is a subprogram to the Plume Contamination Effects Prediction Computer Program, <u>CONTAM</u>, and computes the effect of direct plume impingement on sensitive satellite surfaces in terms of changes in the thermal and optical properties of the surfaces. Required input to the <u>SURFACE</u> subprogram includes:

(1) The gasdynamic, thermodynamic, and chemical constitution description of a plume as computed by the <u>MULTRAN</u> subprogram (Appendix B) and <u>KINCON</u> (Appendix C).

(2) A configurational and material description of the sensitive surfaces of the spacecraft.

b. Scope

The scope of this portion of the study was initially limited to definition of the basic components of a computer model of direct plume impingement contamination effects caused by a limited number of species on selected sensitive surfaces. The objective of this initial approach was to demonstrate that the determination of surface effects was amenable to modeling by a computer program.

The program development proceeded faster than anticipated, and the program is much more nearly complete than expected. The program currently is a system model consisting of a general configurational description of a satellite with multiple thrustors, an extensive list of structural

# Preceding page blank

materials which may be included as part of the surface, and many of the expected plume contaminant species. The model of the plume-surface interactions is, however, still restricted to a limited set of steady-state conditions. A brief description of the model and computer program will be presented along with a sample output of the program.

Because the simplified program model is now operational, numerical values for "surface effects" can be calculated. Hence, there is a temptation to try to use the program to get valid answers to questions about plume-surface interactions. It cannot be too strongly emphasized that the current program may not give valid answers except in the simplest cases; therefore, engineering judgment must be exercised.

#### D. 2 ANALYSIS

#### a. Summary

(1) Configuration

The basic configuration of a model satellite: location of thrustors, materials of construction at various locations (segments), and properties of the structural materials are input to <u>SURFACE</u> first. **Proper**ties of typical deposit materials are then entered. A segment-by-segment mechanical description of the satellite is constructed and printed out.

## (2) Initial Condition

The optical and thermal properties of the surface materials are matched to the segment structure of the satellite, and a segment-bysegment listing of the current optical/thermal condition is printed. At the same time, the average  $\alpha$ ,  $\epsilon$ , and  $\alpha/\epsilon$  ratios for the whole satellite are calculated and then listed.

#### (3) Test Effects

The next portion, use of which is optional, consists of input of arbitrary or precalculated data about the current conditions of selected segments after plume exposure, and then determination and listing of the current segment-by-segment optical/thermal condition, plus averaged  $\alpha$ ,  $\epsilon$ , and the  $\alpha/\epsilon$  ratio. This portion can be used either to checkout the calculations of surface condition or to calculate the effects of surface plume interactions observed in tests or calculated by means other than this program.

(4) Segments Impinged

Based on a knowledge of the basic plume structure, as determined by the <u>MULTRAN</u> subprogram (or, in the manual mode, from test or other computed data), the <u>SURFACE</u> subprogram then determines and lists

the location of all portions of the spacecraft upon which the plume impinges. This permits the elimination of those spacecraft surfaces which will not be affected by the thrustor impingement, thereby preventing unneessary computations.

Transformation of coordinates from satellite-based to thrustorbased are calculated at this point, in order to accept data from MULTRAN and KINCON. The data to be transformed may be entered by card or may have been calculated earlier.

#### (5) Plume Impingement Calculations

The program then assembles and lists a file of properties of the current surfaces of the plume-impinged segments identified earlier.

Characteristic properties of the plume are then input based on the results of <u>KINCON</u> and <u>MULTRAN</u>. The thrustor pulse is sliced into selected increments, and the program calculates the gross effect of impingement on the surface material of each satellite segment during the time slice, thus determining whether abrasion or deposition (treated as mutually exclusive) occurs. After deciding the type of effect, the detailed effects on each segment are determined. The process is then repeated for subsequent slices, with the surface condition after each slice used as input for the next. When the calculation is completed for the total pulse, the final conditions for the affected segments are listed.

(6) Final Condition

The program then returns to calculation of the current optical/ thermal surface condition,  $\alpha$ ,  $\epsilon$ , and the  $\alpha/\epsilon$  ratio.

(7) Recycling

 $\mathbb{B}$ 

Reentry to calculate the effects of a new pulse can then be accomplished.

(8) Future Work

Among the parameters of major importance to the calculation of surface effects which are not yet embodied in the program are:

- Effects of exposure to space vacuum between pulses.
- Effects of transient conditions during pulse (start-up and tail-off).
- Sticking of droplets to surface.
- Heat transfer to surface during deposition.

Future work on <u>SURFACE</u> will emphasize modification of the program to include these effects.

- b. Configuration
  - (1) Satellite Structure

<u>SURFACE</u> accepts card data input to describe the external surface of the satellite. The surface is divided into a number of segments (variable at will), and each segment location is given in a cylindrical coordinate system. Additional inputs include the locations of all projections from the surface, the height of such projections, and the angle they present to the main axis of the satellite. The initial surface temperature at each location is noted. The program prints a set of tables showing all configuration data.

In the satellite-based cylindrical coordinate system, the origin is placed at the vertex of the satellite nose, with the satellite axis lying on the X-axis. The coordinates of any point in this system are given in terms of (X, R,  $\theta$ ), with  $\theta$  measured in radians from the horizontal Y-axis.

For purposes of locating the various conditions and effects on the surface of the satellite, the exterior is divided into segments, each with a specified area. Each segment is given an identification number, and its location is recorded in the cylindrical coordinates of its midpoint. The shapes of the segments are appropriate to the surfaces they lie on—squares on the cylindrical surface, annular segments and circles for the ends. The assignments are completely flexible and can be changed by simply changing the data cards. In general, there is no need to describe the satellite exterior completely. If the general areas which can interact with the plume are already known, then the input can be limited to these areas.

(2) Projection Configuration

Card data are accepted to describe the configuration and structure of projections above the satellite surface, including sensors, solar cells, and thrustors. Tables are printed showing the data for each projection. If a projection is in contact with two or more segments only the contacted segment with the lowest I. D. number reports information about the location of the projection.

(3) Structural Materials

Card data are accepted to describe the structural-mechanical properties of typical materials used for exterior structures of satellites. Materials include aluminum, gold plating, solar-cell-cover glasses, infrared ports, windows, ultraviolet ports, and white and black thermal-control coatings. Typical or handbook data are currently input. Definitive data
for specific alloys or compositions can be added easily when information on their behavior is required. The input data are listed.

(4) Optical and Thermal Coefficients for Structural Materials

Card data are accepted to define properties such as a solar absorptivity, thermal emissivity, transmittivity at selected wavelengths, etc., as functions of surface finish for the structural materials. Typical or handbook data are currently supplied. Specific data inputs for selected compositions of materials can be added as required. The input data are listed.

(5) Physicochemical Properties of Propellants and Deposits

Card data are accepted to define the physical and chemical properties of plume species and deposits at selected reference temperatures. Properties of propellants at other temperatures are then calculated. However, there are not sufficient data for most of the condensed reaction products for accurate extrapolation of these properties, and most of the data for these materials are treated as constant with temperature.

The methods used to calculate the properties are described in Appendix A, Subsection A. 2c(2).

(6) Optical and Thermal Coefficients for Deposits

Card data are accepted to define thermal and optical coefficients  $-\alpha$ ,  $\epsilon$ ,  $\tau$ , and  $\rho$ -as functions of temperature. Input data are listed.

c. Initial Condition

(1) Initial Assignment of Materials

Card data are accepted to assign specific structural materials to each satellite segment. As many as three layers of materials may be assigned to any segment. The data are entered into two arrays; one is the surface description array, and the other is a transfer matrix used to search for properties corresponding to the materials and their conditions.

A table is printed showing the materials assigned to each segment of the satellite and projections.

(2) Optical/Thermal Surface Parameters

This segment takes the transfer matrix and searches the stored optical and thermal coefficients for the appropriate data. Interpolations/ extrapolations are conducted if the specific data needed have not been entered during input.

The optical and thermal properties of structural materials are tabulated as functions of surface finish; the properties of the deposits are given as functions of surface temperature.

features:

The interpolation-extrapolation routines include the following

- No extrapolation of optical/thermal properties is done below the value given for the lowest temperature or surface finish in the tables; the minimum value is used.
- Extrapolation above the highest temperature/surface finish is a simple linear ratio from the values for the two greatest temperatures/surface finishes.
- Interpolation is by ratio from the nearest adjacent values, using essentially the method given by Wiberg 1.
- The new description of the surface is printed out.
  - (3) Effective Values of Heat Transfer Coefficients

This segment calculates the values for solar absorptivity and thermal emissivity and their ratio, averaged over the whole satellite exterior (excluding projections). The calculated values are printed out.

d. Test Effects

A flag is set during initialization to activate or bypass this module.

(1) Surface State

Card data are input describing the physical state of selected structural segments. Such data include presence of deposits, thickness of deposit and/or thickness of original surface, surface finish, and surface temperature. The data are listed.

> (2) Optical/Thermal Surface Parameters and Heat Transfer Coefficients

The program then returns to the calculation of surface parameters and coefficients described above in D. 2c (2) and (3), and lists the values obtained.

1 K. B. Wiberg, "Subroutine LØCATN," Computer Programming for Chemists, W. A. Benjamin, Inc., New York (1965).

#### e. Identification of Exposure Type

A flag is used to signify whether plume exposure or space exposure has occurred, or whether all exposures are over and the surface state should be recalculated. This flag can be preset during initialization, or set automatically when the end of a plume exposure computation is reached. If the exposure is to a plume, a branch is made to a routine which identifies the segments which are directly exposed. Space exposure involves the whole spacecraft, and no selection of segments is necessary.

If the flag indicates that the exposure is to a space environment, the computation is terminated because routines to determine the effects of space exposure have not yet been included in <u>SURFACE</u>.

#### f. Impingement

The intercept of the plume with the satellite is calculated. The variables used are satellite configuration, thrustor location, and plume geometry. The impinged segments are placed in the array named AFFSEG (affected segments).

The areas impinged by the plume are functions of the geometry of the plume and the configuration of the satellite. In the subsequent subroutines, the border of the impinged area is found by simultaneous solution of the equations of plume and surface, and then the surface description array SURDES is searched to find all segments whose coordinates are on or inside the border. These segment identification numbers are put into the array called AFFSEG.

A paraboloid shape for the plume is assumed. The latus rectum of the plume paraboloid, which defines the shape of the plume, is equal to four times P. P is a function of thrustor size, configuration, etc., and of the time in the cycle (pulse transient).

The computation is done in two separate segments. The first is the intersection of the plume with the satellite surface. Currently this segment is restricted to satellites of cylindrical cross-section. The second segment determines the intersection with projections. The computation assumes a plane surface on the projection, but it can lie at any solid angle to the axis of the plume. The configuration of the system used for these calculations is the data originally entered in the program (Section D. 2. (b)). There is no provision for recalculating the intersection of movable projections after they have changed position.

#### g. Transformation of Coordinates

The <u>MULTRAN</u> and <u>KINCO</u> subprograms treat the plume in thrustor-based cylindrical coordinates. In order to identify the locations of impinged satellite surfaces in the plume, a transformation to satellitebased coordinates is performed on the plume flow field. These calculations require inclusion of a radial angle in the plume coordinates because the cylindrical symmetries of the isolated plume are lost in the presence of the satellite structure. The origin for measuring this angle is defined by the plane in which the central axis of the thrustor and the central axis of the satellite both lie.

h. Plume Impingement Effects

(1) Surface Properties

The physical and mechanical properties of the surfaces of the affected segments are found and entered in the array SEARCH. These properties determine the type of interaction with the plume.

(2) Surface Effects

The results of the impingement of the plume on the segment surfaces are calculated for brief time increments, using plume characteristics read in at this point. The only mode used in program checkout has assumed uniform plume characteristics over all affected segments, but this is not a program-imposed limit. Impingement on one location by the plumes from two separate thrustors fired simultaneously is not treated; however, sequential firing of two or more thrustors may be treated.

As a first step, the abrasion wear is calculated. If the wear depth is less than 0.1 microinch, deposition from the plume is assumed to be the major process, and the program branches to the calculation of deposit formation. The results of either process are stored temporarily. The effects are then calculated for the next time interval, using the results from the previous interval as the base. When the exposure is completed, the final results are entered into the array EFFECT.

(3) Abrasion

All abrasion is assumed to be the result of impacting particles (droplets). There are no provisions for abrasive wear resulting from gas impact or for thermal ablation. If abrasion occurs, the impacting drops are assumed to depart along with the abraded surface material. There are no provisions for deposition of preexisting drops. The wear relation used is the fatigue wear term of Neilson and Gilchrist<sup>2</sup>. The rate of material

<sup>2</sup>J. H. Neilson and A. Gilchrist, <u>Wear</u>, Vol. 11, pp. 111-122 (1968).

removed per weight of impinging condensed phase is calculated by means of tabulated values for the fatigue wear parameter for several materials, plus constants for the equation used to calculate the value at specific velocities.

The wear rate constant  $(lb_m material removed per lb_m material impinged)$  for a particular material is a function of the impingement velocity up to a lower critical velocity; it then becomes constant. The critical velocity is a property of the material undergoing abrasion. Some data available suggest that there are upper critical velocities at which the form of the wear equation changes, but the data are insufficient for definitive application, therefore the program does not model the changes.

In the calculation of abrasion effects, the droplets are grouped into two size categories: the uncombusted material (large) and the condensed combustion products (small). An average diameter is used for each size category.

Two effects are calculated—the wear depth and the surface finish. If the abrasion is sufficient to completely remove the surface layer, subsequent calculations are conducted with the characteristics of the newly exposed layer.

#### (4) Deposition

60 1

The model used for the deposition process is a relatively simple one which is an analogy between heat and mass transfer, based on Trebal's model<sup>3</sup>. The model uses heat transfer coefficients, without data on mass transfer or deposition rates. However, the model does not include thermal effects of the deposition process or of chemical reactions between deposited species.

The determination of deposition requires the diffusivities of the condensing species in the gas stream. These are calculated from the boiling point, molecular radius, and density. The assumption is made that each condensable species diffuses independently through a medium consisting solely of nitrogen gas. Next, using the specific heat, viscosity, and molecular weight of the plume, the Prandtl number and Schmidt number are calculated; and then the mass transfer coefficient is determined. The deposition per time slice is then calculated.

The program then calculates the identity of the species on the surface, considering the species present, those depositing, and the likely chemical reactions between them.

The calculations are repeated for the entire engine pulse. The results of the deposition (species and depth) are then entered in EFFECT. The surface finish (roughness) of the deposits is not calculated at the present time; a value of 25 microns is arbitrarily applied to each deposit.

<sup>3</sup>R. E. Trebal, Illustration 3.4, <u>Mass Transfer Operations</u>, 2nd Ed. (1968).

47/3

i New Condition of Surface

The program returns to the section which calculates the current optical/thermal properties as described **previously**.

D.3 PROGRAM OVERLAY STRUCTURE

ØVERLAY (HFILE, 7, 0)

| SURFACE (H411) |
|----------------|
| GETSUR         |
| MINSUR         |
| MAXSUR         |
| INTER          |
| INTRA          |
| EXTRAP         |
| ENTER          |
| HØTPAR         |
| FINDR          |
| CØRTRN         |
| WEBBER         |
| WARD           |
| REDRHØ         |
| REDRØD         |
| HCØNDF         |
| HCØNDØ         |
| REDVIS         |
| TRNCØR         |

#### D.4 SUBROUTINES

There are 18 subroutines used in <u>SURFACE</u>. They are descrived briefly, in order of appearance in the program, in the following sections.

#### a. Subroutine HCØNDF

Approximates the enthalpy of the condensed phase fuel as a function of temperature, similar to HCONDF in <u>TCC</u>, but with the addition of a term for the heat capacity of the solid phase.

If

2 29

T < M.p.

then

 $H_F = C_{p_{solid}} \times T$ 

If

 $T \ge M.p.$ 

then

$$H_{F} = C_{x} M.p. + \Delta H_{fusion} + C_{x} (T-M.p.)$$

b. Subroutine  $HC\phi ND\phi$ 

Approximates the enthalpy of the oxidizer by a method analogous to the method for fuel in HCQNDF above.

c. Subroutine REDRH $\phi$ 

Approximates the reduced density of a liquid as a function of reduced temperature along the saturation line. Identical to REDRH $\phi$  in <u>TCC</u>.

#### d. Subroutine REDRØD

Approximates the reduced density difference (reduced density of liquid minus reduced density of vapor) as a function of reduced temperature. Identical with REDRØD in  $\underline{TCC}$ .

e. Subroutine REDVIS

Approximates the reduced viscosity of a liquid as a function of reduced temperature. Identical to REDVIS in  $\underline{TCC}$ .

f. Subroutine WEBBER

This subroutine is used to calculate the reduced properties of fuel and oxidizer at selected temperatures; vapor pressure, density, O/F density ratio, viscosity, and surface temperature. The calculations are outlined in Section A.2c (2).

### g. Subroutine GETSUR

This subroutine is used to find the optical and thermal properties corresponding to the surface roughness or temperature. The files are first searched to find if the needed value is entered. If it is not, other subroutines are used for extrapolation/interpolation.

GETSUR is also called by subroutine ENTER.

#### h. Subroutine WARD

This subroutine, called only from subroutine GETSUR, is used to transfer all lower layers upward one layer in the segment description if the data indicate a zero or negative thickness for the top layer.

#### i. Subroutine MINSUR

This subroutine, called from subroutine GETSUR directly, or by subroutines INTER and INTRA in turn called from GETSUR, is used when there is no value of a selected surface thermal/optical property corresponding to the surface finish of interest. It searches through the tablulation until the entry corresponding to the least increase in finish is found.

#### j. Subroutine INTER

This subroutine, called from subroutine GETSUR only, is used to interpolate values for surface optical/thermal properties when no values corresponding to the surface finish of interest are available in the tabulation. It searches to find the closest lower and higher values, and the corresponding roughnesses. A factor is calculated from the roughnesses

$$Q = \frac{R_{\phi} - R_{L}}{R_{\psi} - R_{L}}$$

The surface property required is then calculated.

$$S_{Q} = (S_{U} - S_{L}) \oplus Q + S_{L}$$

where S indicates the surface property, R the roughness, Q the property of interest, L the lower value, and U the upper value.

k. Subroutine MAXSUR

This subroutine, called from GETSUR, INTER, and INTRA is the mirror image of MINSUR. It is used to find the value of a surface property corresponding to the least decrease in surface finish.

#### 1. Subroutine INTRA

This subroutine, called from GETSUR only, is used to interpolate values for surface optical/thermal properties when interpolation is necessary on the surface finish entry as well as the desired property entry. The interpolation routines are the same as in INTER.

#### m. Subroutine EXTRAP

This subroutine, called from GETSUR, is in part a dummy subroutine. The routine is to be used to interpolate surface physical and chemical properties for plume deposits at various temperatures; however, for most of the possible deposits, there are insufficient data entered to determine trends accurately enough for interpolation. Only for N2O4 and MMH can properties be extrapolated, and then only the physical properties. Subroutine WEBBER is called for these cases: in all others, a statement is printed saying that the extrapolations cannot be performed.

#### n. Subroutine ENTER

This subroutine, called from the program <u>SURFACE</u>, is used to enter changed surface conditions and properties of segments into the files in which the original input data are stored. The old file is searched for the segment of interest; then the data for the segment are compared with the changed data. If the layer structure has changed (new or changed composition layer from deposition, or layer removed by abrasion), the required shifts are made in the locations of the filed data, and then the individual items of changed data are entered into the correct locations.

#### o. Subroutine HØTPAR

This subroutine is called by the program <u>SURFACE</u>. It calculates the overall effective values for  $a, \epsilon$ , and the  $a/\epsilon$  ratio corresponding to a particular set of surface conditions. Local values of  $a, \epsilon$ , and the area of each segment are read from the files. The products of a time area and of  $\epsilon$  times area for each segment are separately summed, then divided by the total area. Projections such as solar cells are not included in the calculation.

#### p. Subroutine FINDR

This subroutine is called by the program SURFACE. FINDR determines the ID number and coordinates of all satellite body segments which are wet by the plume. The subroutine is currently limited to satellites with a cylindrical shape and plumes which are paraboloids of revolution.

When specific values for thrustor location and the latus rectum of the plume are entered, the segments which are wetted are determined.

#### q. Subroutine CØRTRN

This subroutine is called from the rogram <u>SURFACE</u>. It is used to transform coordinates from the satellite based X, R,  $\theta$  cylindrical system to the cylindrical system based on any thrustor of known position. The transformation is by standard analytical geometry equations.

r. Subroutine TRNCOR

This subroutine, called from <u>SUR FACE</u>, is the inverse of the previous one. It transforms coordinates from a thrustor-based system to the satellite-based system.

#### D.5 PROGRAM USER'S MANUAL

a. General

The <u>SURFACE</u> program is the fourth link of the <u>CONTAM</u> computer program. It may be run as a subprogram to <u>CONTAM</u> under control of subroutine EXEC, or as an independent program. It was developed on a CDC 6500 computer using FORTRAN IV language. The <u>SURFACE</u> program requires 175,000g words of core storage, Conversion to another computer system should be straightforward, providing that sufficient core is available.

b. Data Input

The following input properties are required for <u>SURFACE</u>:

Propellant Properties and Thrustor Characteristics (INPUT 1)

External Materials

Satellite Configuration

Projection(s) Configuration(s)

Structural Materials

Propellant Temperature (Test Case)

Optical/Thermal Properties

Segment Structure

Program Option Selection

Modified Surface Conditions (Test Case)

Program Option Selections

Pulse Characteristics

Program Option Selection

Coordinate Transformation

Thrustor to Satellite Satellite to Thrustor

Molecular Weight

Wear Constants

1

Plume Characteristics

Velocity Limits

Heat Transfer Coefficients

Plume Physical Properties

Plume Configuration Change

DATA statements are not used for numberical data inputs.

The inputs are described in the following sections. Table D-1 at the end of this subsection is a listing of the card image for some of the inputs.

(1) Initialization Data

These are separate cards in the FORTRAN program. They follow the heading INITIALIZE.

| ITEM NAME | USE                                                 | INITIAL<br>VALUE |
|-----------|-----------------------------------------------------|------------------|
| DELTMA    | Variable time slice                                 | 0.0              |
| DELP      | Change in P, controlling plume shape                | 0.0              |
| IGØ       | Counter for number of exposure cycles               | 0.0              |
| NF1       | Counter for number of segments wet by plumes        | 0.0              |
| NTR       | Thrustor identification number                      | 0.0              |
| ZTEST     | Error flag; if greater than zero,<br>program aborts | 0.0              |

| ITEM NAME | USE                                                                                                                     | VALUE |
|-----------|-------------------------------------------------------------------------------------------------------------------------|-------|
| RUNFLAG   | Flag indicating availability of<br>exposure data; 0 = no data                                                           | 1.0   |
| IA        | Flag to indicate whether data to be<br>processed related to initial conditions<br>(IA = 0) or exposure results (IA > 0) | 0.0   |
| EXTYPE    | Flag indicating type of exposure;<br>-1 = no exposure; 0 = plume;<br>+1 = space.                                        | -1.0  |
| Ρ         | Controls plume shape; P = 1/4 latus<br>rectum of plume parabaloid                                                       | 0.0   |
| ITRNCL    | Flag for coordinate transformation calculations                                                                         |       |
|           | -1 = satellite to thrustor                                                                                              |       |
|           | 0 = none                                                                                                                |       |
|           | +1 = both types                                                                                                         |       |
|           | +2 = thrustor to satellite                                                                                              |       |
| KSTP      | Controls use of DELP to change P                                                                                        |       |
| RLOOPN    | Counter for number of pulse slices processed                                                                            | 0.0   |

(2) Propellant Properties and Thrustor Characteristics

This data input is identical to that described for the <u>TCC</u> program in Appendix A, Section A.6, and it follows the same INPUT 1 procedure. When all the links in the overall program <u>CONTAM</u> have been installed, this input will be deleted, and the data will be read from the <u>TCC</u> input.

(3) External Materials - Array NAME

| ITEM NAME  | INPUT FORMAT | MEANING OR USE         | UNITS |
|------------|--------------|------------------------|-------|
| NAME (n)   | 6 H          | Names of structural    | -     |
| n = 1 - 25 | Two cards    | materials and deposits |       |

Note: There are many unassigned NAME's for inclusion of new materials.

(4) Satellite Configuration - Array SURDES

| ITEM NAME | INPUT FORMAT | MEANING OR USE                                                    | UNITS |
|-----------|--------------|-------------------------------------------------------------------|-------|
| MIS       | 5X, 15       | Number of rows in<br>SURDES = number<br>of segments               | -     |
| M2S(=11)  | 5X, 15       | Number of columns in<br>SURDES = number of<br>segment descriptors | -     |

### The above two items are input on one card.

| TØTAR       |     | 10X, F10.0 | Area of satellite                                                                 | Ft <sup>2</sup> |
|-------------|-----|------------|-----------------------------------------------------------------------------------|-----------------|
| SURDES(MIS, | 1)  | F8.0       | Segment 1D No.                                                                    | -               |
| ,           | 2)  | F8.0       | X - coordinate                                                                    | Ft              |
| ,           | 3)  | F8.0       | R - coordinate                                                                    | Ft              |
| و           | 4)  | F8.0       | Theta coordinate                                                                  | Radian          |
| 9           | 5)  | F8.0       | Area                                                                              | Ft <sup>2</sup> |
| ,           | 6)  | F8.0       | X distance to nearest plume vertex                                                | Ft              |
| ,           | 7). | F8.0       | Surface temperature                                                               | Deg R           |
| ,           | 8)  | F8.0       | Height of projection<br>(if any) from segment                                     | Ft              |
| ,           | 9)  | F8.0       | Lambda direction<br>cosine of projection<br>surface referred to<br>satellite axis | -               |
| ,           | 10) | F8.0       | Mu direction cosine                                                               | -               |
| ,           | 11) | F8.0       | Nu direction cosine                                                               | -               |

SURDES(n, 1-10) are on one card, SURDES(n, 11) is on a second card. There are hence M1S pairs of cards.

(5) Projection Configuration - Includes More Array SURDES

| ITEM NAME | INPUT FORMAT | MEANING OR USE     | UNITS |
|-----------|--------------|--------------------|-------|
| PRJN (n)  | 10X, A6      | Name of projection | -     |

n is ID of satellite segment that projection is attached to

| ITEM NAME           | INPUT FORMAT | MEANING OR USE                                                                                                                                              | UNIT            |
|---------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| TRX (m)             | 5X, F10.0    | If PRJN = THRUSTOR,                                                                                                                                         | Ft              |
| m is the counter NT | R            | TRX is the X-<br>coordinate. For any<br>other PRJN, TRX is<br>the area of the<br>segment and its name<br>is changed to AREA                                 | Ft <sup>2</sup> |
| TRR (m)             | 5X, F5.0     | If PRJN = THRUSTOR<br>TRR is the R-<br>coordinate. For any<br>other PRJN, TRX<br>is changed to M11S,<br>the number of<br>segments.                          | Ft<br>-         |
| TRTHET (m)          | 5X, F5.0     | If PRJN = THRUSTOR,<br>TRTHET is the -<br>coordinate. For<br>other PRJN, TRTHET<br>is changed to M22S,<br>the number of data<br>points for the<br>segments. | Radians<br>-    |

The above 4 items are on one card. There are as many cards as there are projections. The sequence of cards is interrupted by the descriptive cards, next detailed, whenever the projection is not a thrustor.

| SURDES $(n, 1)$<br>(n = M1S + 1 to M) | F7.0<br>11S) | 1D No. of segment on projection    | -       |
|---------------------------------------|--------------|------------------------------------|---------|
| SURDES(n, 2)                          | F9.0         | X-coordinate of segment            | Ft      |
| , 3)                                  | F8.0         | R-coordinate of segment            | Ft      |
| , 4)                                  | F9.0         | $\theta$ -coordinate               | Radians |
| , 5)                                  | F6.0         | Area                               | $Ft^2$  |
| , 6)                                  | F9.0         | X-distance to nearest plume vertex | Ft      |
| , 7)                                  | F8.0         | Surface temperature                | Deg R   |

The above 7 items are on one card. There are MllS cards. M3S is set equal to MlS, and MlS increased by MllS.

| (6) St                | ructural Materials - Arr | ay MATERAL and File 1,          | МАТ                                        |
|-----------------------|--------------------------|---------------------------------|--------------------------------------------|
| ITEM NAME             | INPUT FORMAT             | MEANING OR USE                  | UNITS                                      |
| MTIS                  | 10X, I5                  | Number of rows in<br>MATERAL    | -                                          |
| MT2S                  | 10X, 15                  | Number of columns<br>in MATERAL | -                                          |
| Th                    | ne above two items are o | n one card.                     |                                            |
| MATERAL (n,           | 1) F3.0                  | Material code number            | -                                          |
| , i                   | 2) F7.0                  | Melting point                   | Deg R                                      |
| ,                     | 3) E10.7                 | Vickers hardness                | kg/mm <sup>2</sup>                         |
| <b>,</b> <sup>4</sup> | 4) E10.7                 | Bulk modulus                    | Lb/in. <sup>2</sup>                        |
| • • •                 | 5) F6.0                  | Surface tension                 | Dyne/cm                                    |
| , '                   | 6) F8.3                  | Heat capacity                   | BTU/1b-<br>deg R                           |
| ,                     | 7) F8.3                  | Thermal conductivity            | BTU-in./<br>ft <sup>2</sup> -sec-<br>deg R |
| ,                     | 8) E10.7                 | Yield Strength                  | Lb/in.2                                    |
| ,                     | 9) F5.2                  | Density                         | $Lb/ft^3$                                  |

The above nine items are entered on one card for each segment. There are MT1S cards.

(7) Propellant Temperature - Test Case

| ITEM NAME | INPUT FORMAT | MEANING OR USE       | UNITS |
|-----------|--------------|----------------------|-------|
| TTANKF    | 10X, F10.0   | Fuel temperature     | Deg K |
| TTANKO    | 10X, F10.0   | Oxidizer temperature | Deg K |

The above two items are entered on one card.

# (8) Deposits - Array CHEMIC and File 3, CHEM

| ITEM NAM     | <u>E</u> <u>INP</u> | UT FORMAT        | MEANING OR USE                   | UNITS                                      |
|--------------|---------------------|------------------|----------------------------------|--------------------------------------------|
| JC1S         |                     | 10X, 15          | Number of rows in<br>CHEMIC      | -                                          |
| JC2 <b>S</b> |                     | 10X, 15          | Number of columns<br>in CHEMIC   | -                                          |
|              | The above           | two items are on | one card.                        |                                            |
| CHEMIC (n,   | 1)                  | ₽8.4             | Material code number             | -                                          |
| n = 1,- JC1S |                     |                  |                                  |                                            |
| y            | 2)                  | F8.4             | Freezing point                   | Deg R                                      |
| ţ            | 3)                  | F8.4             | Density (solid)                  | $Lb/Ft^3$                                  |
| ,            | 4)                  | F8.4             | Critical temperature             | Deg R                                      |
| ,            | 5)                  | F8.4             | Boiling point                    | Deg R                                      |
| ,            | 6)                  | F8.4             | Heat of fusion                   | BTU/lb                                     |
| ,            | 7)                  | F8.4             | Thermal conductivity<br>(solid)  | BTU-in./<br>ft <sup>2</sup> -sec-<br>deg R |
| ,            | 8)                  | F8.4             | Thermal conductivity<br>(liquid) | BTU-in./<br>ft <sup>2</sup> -sec-<br>deg R |
| ,            | 9)                  | F8.4             | Heat capacity (solid)            | BTU/lb-<br>deg R                           |
| ,<br>,       | 10)                 | F8.4             | Heat capacity (liquid)           | BTU/lb-<br>deg R                           |

. /

#### The above 10 items are on one card for each material.

| ITEM NAME      | INPUT FORMAT | MEANING OR USE               | UNITS    |
|----------------|--------------|------------------------------|----------|
| CHEMIC (n, 11) | F8.4         | Refractive index<br>(liquid) | -        |
| , 12)          | F8.4         | Molecular radius             | Angstrom |

The above 2 items are on one card for each material. There are  ${\tt JClS}$  pairs of cards.

### (9) Optical Thermal Properties - Array PRØPTY and File 2, PROP

This input recycles once for each material entry in the array NAME. It reads the control cards (number of rows and columns), then the data cards for NAME (1). Then it recycles and reads the control card and data cards for NAME (2), etc. If NAME (n) is unassigned, it proceeds directly to NAME (n + 1). Note that the code number for each material (the first column in PRØPTY) is supplied by the FØRTRAN program.

| ITEM NAME   | INPUT FORMAT | MEANING OR USE                 | UNITS |
|-------------|--------------|--------------------------------|-------|
| N1S         | 5X, 15       | Number of rows in PRØPTY       | -     |
| N2 <b>S</b> | 5X, 15       | Number of columns<br>in PRØPTY | -     |

The above two items are on one card.

| $PR \phi PTY$ (n, 1) | Assigned by | Material code number | - |
|----------------------|-------------|----------------------|---|
|                      | program     |                      |   |

n = 1 - N1S

4

| , | 2) | F10.4 | Surface finish for<br>structural materials | Mu-in.                                    |
|---|----|-------|--------------------------------------------|-------------------------------------------|
|   |    |       | or temperature<br>for deposits             | Deg R                                     |
| , | 3) | F10.4 | Solar absorptivity                         | -                                         |
| , | 4) | F10.4 | Thermal emissivity                         | -                                         |
| , | 5) | F10.4 | Diffuse solar<br>reflectivity              | -                                         |
| , | 6) | F10.4 | Specular solar<br>reflectivity             | -                                         |
| , | 7) | F10.4 | Thermal reflectivity                       | -                                         |
| , | 8) | F10.4 | Thermal conductivity                       | BTU-in.<br>ft <sup>2</sup> -sec-<br>deg R |
| , | 9) | F10.4 | Infrared transmittance<br>(15 micron)      | -                                         |

The above 8 items are on one card per surface finish or temperature.

| ITEM NAME      | INPUT FORMAT | MEANINGOR USE                               | UNITS |
|----------------|--------------|---------------------------------------------|-------|
| PRØPTY (n, 10) | F10.4        | Visible transmittance<br>(0.5 micron)       | -     |
| , 11)          | F10.4        | Ultraviolet transmit-<br>tance (0.1 micron) | -     |

The above 2 items are on one card per surface finish or temperature. There are N1S pairs of cards.

# (10) Segment Structure - Array SURDES

In this deck, the array is filled column-by-column instead

| ITEM NAN                   | AE. | INPUT FORMAT            | MEANING OR USE                                                         | UNITS  |
|----------------------------|-----|-------------------------|------------------------------------------------------------------------|--------|
| SURDES (n,<br>n = 1, M1S   | 12) | 20F4.0<br>(7 cards)     | Code number of material<br>in top layer, all seg-<br>ments in sequence | -      |
| ,                          | 13) | 8E10.7<br>(17 cards)    | Thickness of top layer                                                 | In.    |
| ,                          | 14) | 16F5.0<br>(9 cards)     | Surface finish of top<br>layer                                         | Mu-in. |
| ,<br>n = 1-9 and<br>41-M3S | 25) | 20F4.0<br>(5 cards)     | Code number of<br>material for 2nd layer                               | -      |
| ,                          | 26) | $8 \pm 10.7$ (12 cards) | Thickness of 2nd layer                                                 | In.    |
| ,                          | 27) | 16F5.0<br>(6 cards)     | Surface finish of 2nd<br>layer                                         | Mu-in. |
|                            | -   |                         |                                                                        |        |

(11) Program Option Selection

of row-by-row.

| ITEM NAME | INPUT FORMAT | USE                                                                                  |
|-----------|--------------|--------------------------------------------------------------------------------------|
| RUNFLAG   | 10X, I3      | If zero, go to exposure routines<br>If positive, go to surface condition<br>routines |

| ITEM NAM                | <u>E</u> <u>INI</u> | PUT FORMAT           | MEANING OR USE                                                                  | UNITS  |
|-------------------------|---------------------|----------------------|---------------------------------------------------------------------------------|--------|
| й <b>s</b>              |                     | 5X, I5<br>(one card) | Number of segments<br>with changed conditions -<br>number of rows for<br>EFFECT | -      |
| EFFECT (n,<br>n = 1-IlS | 1)                  | G10.6                | X-coordinate of segment                                                         | Ft     |
| و                       | 2)                  | G10.6                | Y-coordinate                                                                    | Ft     |
| ,                       | 3)                  | G10.6                | $\theta$ -coordinate                                                            | Rad    |
| ŗ                       | 4)                  | G10.6                | ID number                                                                       | -      |
| ,                       | 5)                  | G10.6                | Surface temperature                                                             | Deg R  |
| ,                       | 6)                  | G10.6                | Top layer material<br>code                                                      | -      |
| J                       | 7)                  | G10.6                | Thickness                                                                       | In.    |
| J                       | 8)                  | G10.6                | Surface finish                                                                  | Mu-in. |
|                         | The above           | eight entries are    | on one card.                                                                    |        |
| ,                       | 9)                  | G10.6                | 2nd layer material code                                                         | -      |
| ,                       | 10)                 | G10.6                | Thickness                                                                       | ln.    |
| 1                       | 11)                 | G10.6                | Surface finish                                                                  | Mu-in. |

(12) Modified Surface Conditions - Test Case - Array EFFECT

The above three entries are on one card. There are IIS pairs of cards.

(13) Program Option Selection

| ITEM NAME | INPUT FORMAT              | USE                                                                     |
|-----------|---------------------------|-------------------------------------------------------------------------|
| RUNFLAG   | 10X, 13<br>(one card)     | See (11)                                                                |
| EXTYPE    | (10X, F10.0<br>(one card) | <pre>lf: -1, no exposure     0, plume exposure +1, space exposure</pre> |

. 487 (14) Pulse Characteristics - Impingement Locations

| ITEM NAME | INPUT FORMAT          | MEANING OR USE                            | UNITS |
|-----------|-----------------------|-------------------------------------------|-------|
| TRSLOC    | 10X, F5.0             | $\theta$ -coordinate of active thrustor   | Rad   |
| TOTIME    | 5X, F5.0              | Pulse duration                            | Sec   |
| The       | above two items are o | on a single data card.                    |       |
| Р         | 10X, F10.0            | P is 1/4 the latus<br>rectum of the plume | -     |

The above item is alone on a card.

| ITEM NAME | INPUT FORMAT | MEANING OR USE     | UNITS |
|-----------|--------------|--------------------|-------|
| NTR       | 10X, 15      | Thrustor number    | -     |
| P         | 10X, F10.0   | l/4th latus rectum | -     |

The above two items are on a single data card. One card is inserted for each impingement case of interest. The loop is terminated when NTR is given a value of 999.

(15) Program Option Selection

| ITEM NAME | INPUT FORMAT | USE                                                                                                 |
|-----------|--------------|-----------------------------------------------------------------------------------------------------|
| ITRNCL    | 10X, 15      | Selects which of the coordinate<br>transformations should be calcu-<br>lated. (See Initialization.) |
|           |              |                                                                                                     |

(16) Coordinate Transformation (Test Case)

#### (a) Thrustor-Based to Satellite-Based

| ITEM NAME | INPUT FORMAT | MEANING OR USE                  | UNITS |
|-----------|--------------|---------------------------------|-------|
| NTR       | 10X, 15      | Thrustor number                 | -     |
| N         | 10X, 15      | Case number for<br>thrustor NTR | -     |

The above two items are input on a single card.

| ITEM NAME   | INPUT FORMAT | MEANING OR USE                      | UNITS |
|-------------|--------------|-------------------------------------|-------|
| ZZ(NTR, N)  | 10X, F10.0   | Axial coordinate in thrustor system | Ft    |
| RR(NTR, N)  | 10X, F10.0   | Radial coordinate                   | Ft    |
| THE(NTR, N) | 10X, F10.0   | Angular coordinate                  | Rad   |

The above three items are input on a single card. The subroutine CORTRN repeats the above inputs until it finds a value of -1 for NTR.

(b) Satellite-Based to Thrustor-Based

The program does not require special input for this transformation. It automatically uses the coordinates of the segments identified as being impinged by the plume.

(17) Molecular Weight - Array MØLWT

| ITEM NAME                                                            | INPUT FORMAT            | MEANING OR USE                           | UNITS          |
|----------------------------------------------------------------------|-------------------------|------------------------------------------|----------------|
| MØLWT(n)<br>n is the code<br>number of deposited<br>materials, 19-25 | 7(5X, F5.0)<br>one card | Molecular weight of species in gas state | Lb-<br>mole/lb |

(18) Wear Constants - Array SCRPTE

| ITEM NAME                                          | INPUT FORMAT | MEANING OR USE             | UNITS                       |
|----------------------------------------------------|--------------|----------------------------|-----------------------------|
| SCRPTE (n, 1)<br>n is code num-<br>ber of material | 5X, F5.0     | Material code number       | -                           |
| ,2)                                                | 10X, G10.0   | Wear constant              | Lb mass/<br>lb<br>impinging |
| ,3)                                                | 5X, G10.0    | Lower critical<br>velocity | Ft/sec                      |
| ,4)                                                | 5X, F10.0    | Exponent                   | -                           |

The above four items are input on a single data card. Input is one card for each material in numerical order of the material code.

| (19) | Plume | Characteristics | (Test | Case) |  |
|------|-------|-----------------|-------|-------|--|
|------|-------|-----------------|-------|-------|--|

| ITEM NAME                                         | INPUT FORMAT            | MEANING OR USE                                              | UNITS                       |
|---------------------------------------------------|-------------------------|-------------------------------------------------------------|-----------------------------|
| NTR                                               | 5X, 15                  | Thrustor number                                             | -                           |
| SDR PDM(NTR)                                      | 5X, G10.0               | Small drop diameter                                         | ln.                         |
| LDR PDM(NTR)                                      | 5X, G10.0               | Large drop diameter                                         | In.                         |
| SDVEL(NTR)                                        | 5X, G10.0               | Small drop velocity                                         | Ft/sec                      |
| LDVEL(NTR)                                        | 5X, G10.0               | Large drop velocity                                         | Ft/sec                      |
| The al                                            | pove 5 items are inpu   | t on a single data card                                     |                             |
| SDAIMP(NTR)                                       | 5X, G10.0               | Small drop<br>impingement angle                             | Rad                         |
| LDAIMP(NTR)                                       | 5X, G10.0               | Large drop<br>impingement angle                             | Rad                         |
| SDMAPS(NTR)                                       | 5X, G10.0               | Small drop flow concentration                               | Lb/ft <sup>2</sup> -<br>sec |
| LDMAPS(NTR)                                       | 5X, G10.0               | Large drop flow concentration                               | Lb/ft <sup>2</sup> -<br>sec |
| The a                                             | bove 4 items are inpu   | t on a single data card.                                    |                             |
| PMCMP(I)<br>I = deposite code<br>number = 19 - 25 | 7(5X, F5.0)<br>one card | Concentration of con-<br>densables in gas phase<br>of plume | Lb/ft <sup>3</sup>          |
| (20) Veloc                                        | ity Limits - for Mate   | rial Wear                                                   |                             |
| ITEM NAME                                         | INPUT FORMAT            | MEANING OR USE                                              | UNITS                       |
| VUP1                                              | 5X, F10.0               | High velocity lower<br>critical limit                       | Ft/sec                      |
| VUP2                                              | 5X, F10.0               | High velocity upper<br>critical limit                       | Ft/sec                      |

The above 2 items are input on a single data card.

(21) Heat Transfer Coefficients (Test Case)

| ITEM NAME | INPUT FORMAT | MEANING OR USE                                                         | UNITS                                      |
|-----------|--------------|------------------------------------------------------------------------|--------------------------------------------|
| HTRNHI    | 10X, F10.0   | Heat transfer coeffi-<br>cient from plume to<br>surface at velocity G1 | BTU-in./<br>ft <sup>2</sup> -sec-<br>deg R |
| HTRNH2    | 10X, F10.0   | Heat transfer<br>coefficient at G2                                     | BTU-in./<br>ft <sup>2</sup> -sec-<br>deg R |
| Gl        | 10X, F10.0   | Superficial velocity                                                   | Lb/ft <sup>2</sup> -<br>sec                |
| G2        | 10X, F10.0   | Superficial velocity                                                   | Lb/ft <sup>2</sup> -<br>sec                |

The above 4 items are input using a single data card.

#### (22) Plume Physical Properties (Test Case)

| ITEM NAME | INPUT FORMAT | MEANING OR USE       | UNITS               |
|-----------|--------------|----------------------|---------------------|
| PMTP      | 5X, F10.0    | Temperature of plume | Deg R               |
| PMPRS .   | 5X, F10.0    | Pressure             | Lb/in. <sup>2</sup> |
| PMRHØ     | 5X, F10.0    | Vapor density        | Lb/ft <sup>3</sup>  |

The above 3 items are input using a single data card.

#### (23) Plume Configuration Change

| ITEM NAME | INPUT FORMAT | MEANING OR USE                  | UNITS |
|-----------|--------------|---------------------------------|-------|
| DELP      | 5X, F10.0    | Causes change in<br>plume shape | -     |

Table D-1 is a listing of the card image for some of the inputs.

### D.6 OUTPUT DESCRIPTION

The output of the <u>SURFACE</u> program consists of a set of tables which contain lists of data of interest. Copies of the tables (or portions thereof) are presented to illustrate the following discussion.

The first output (Table D-11) lists the configuration of the basic satellite and shows the location of all segments and projections. The second

| TABLE D-1, INTO I DATA FOR SURFACE | Table | D-I. | INPUT | DATA | FOR | SURFACE |
|------------------------------------|-------|------|-------|------|-----|---------|
|------------------------------------|-------|------|-------|------|-----|---------|

•

| 10/19305             | P0000000                  | 702194-74               | 102000100              | 011950                                       | andronate:               | 00019678                     | 000000000                               | 1100        | 0          |
|----------------------|---------------------------|-------------------------|------------------------|----------------------------------------------|--------------------------|------------------------------|-----------------------------------------|-------------|------------|
| 10519769             | 20000000                  | 500198198               | 0100000                | 011994                                       | 040000000                |                              |                                         |             | <u> </u>   |
| 10020100<br>10020500 | 1030109290'<br>103010829' | 191272031<br>100206101  | *1*270999<br>*86898669 | 002034                                       | 1698669666<br>1698669666 | 20323440<br>10320886         | 000000000000000000000000000000000000000 | 1100        | 0          |
| 10020950             | NG1 C1 2003 3             | 107210101               | 1000300000             | 092113                                       | 2-505050500              | 19721076<br>19721 <u>211</u> | 10-200504<br>108012404                  | 0101        | ) •<br>) • |
| 10021300             | nonucueu                  | 0021400                 | 101010100              | 012151                                       | 610500600                | 10-21610                     | 1010-0101                               | 0100        | 0          |
| 10021700             | 100700300                 | 000215000               | 0000000000             | 002190                                       | 00000000000              | 00022000                     | 1000000000                              | 2100        | 0          |
|                      | NA 2                      |                         |                        |                                              |                          |                              |                                         |             | 11         |
| ALLMINA              | MASCLU                    | ELTRPORTS               | IVPOPTUNA              | SHD GO                                       | LD PLACE                 | HITE UN                      | ASADU NASAD                             |             | UNA        |
| 11.55 1              | 16 124-5                  | 18/3625-01<br>11        | 144530 42              | <u>06 H-1</u>                                | UT NAM I                 | MUADOWN                      | HNUS HVH20                              | WATER.      | • •-•      |
| TOTAN                | 117                       | ų - T                   |                        |                                              |                          |                              |                                         |             |            |
| 1.                   | 0.0                       | <u> </u>                | 0.0                    | 1.0                                          | =3,501                   | 521                          | <u>•1.</u>                              |             | . –1       |
| 2,                   | v.305                     | 0,5900                  | 1.0472                 | 1.0                                          | -3,295                   | 520.                         | -1.                                     | -i,         | -1         |
| 3.                   | 0,350                     | 0.5900                  | 3.14159                | 1.3                                          | =3,295                   | 527                          | -1.                                     | -1.         | -1         |
| <u> </u>             | 0,305                     | 3,5900                  | 5.2360                 | 1_0                                          | +3,295                   | 527                          | <u>1,</u>                               |             | -1         |
| 5.                   | 0,520                     | 1.2000                  | 0.6203                 | £,n                                          | -2,980                   | 520                          | -1.                                     | -1.         | -1         |
| ő,                   | 0,620                     | 1,2000                  | 1,8849                 | 1.0                                          | -2,96(                   | 920,                         | _ =1.                                   | -1,         | -1         |
| 7                    | 0.520                     | 1,201                   | 3.14159                |                                              | -2,930                   | 52*                          | -1                                      | -1,         | 1          |
| ð.                   | <b>9.620</b>              | 1,200                   | 4,39815                | 1.0                                          | #2 <b>.</b> 96n          | 528.                         | -1.                                     | -1,         | -1         |
| -1,                  | 0.020                     | 1,200                   | 5.6546                 | 1.0                                          | -5.980                   | 5271                         | -1.                                     | =1          | =1         |
| 1 <u>.</u>           | 1,377                     | 1.01                    | C.31416                | 1,1                                          | =2,275                   | 525                          | •1.                                     | -1.         | !          |
| i                    | 1,320                     | .1.09 ·                 | Ú.)4240                | 3, ∎Ũ .                                      | -2,275                   | 5201                         | -1.                                     | -j.         | • 7        |
| .21                  | 1.320                     | 1, <b>6</b> () j        | 1,57984                | 1,0                                          | =2,27%                   | 520                          | -1,                                     | •1.         | = 1        |
| -13.                 | 1,322                     | 1.501                   | 2,19911                | <u>    1      1                         </u> | -2,275                   | 5201                         | -1.                                     |             | -1         |
| 14.                  | 1.320                     | 1,500                   | 2,32743                | 1.0                                          | -2,275                   | 5201                         | -1.                                     | <b>•</b> 1. | •1         |
| -1.                  | 1,325                     | τ <b>,</b> οΰυ<br>• ≮οα | 3+45575                | 1.1                                          | -2,275                   | 25.1                         | -1,                                     | -1.         | - 1        |
| -10                  | 1, 272                    |                         | 4.08407                |                                              | • 2 . 2 / 5              |                              |                                         |             |            |
| :7.<br><u>1.</u>     | 1,380                     | 1,600                   | 4,7124                 | 1.0                                          | -2.275                   | 526                          | -1.                                     | -1.         | -1         |
| 10.<br>-1.           | 1,325                     | 1,660                   | 5.34070                | 1.0                                          | -z,275                   | 5201                         | -1.                                     | -1.         | -1         |
| <u>19.</u><br>-1.    | 1.325                     | 1,600                   | 5.96742                | ·                                            | -2,275                   | 5201                         | •1.                                     |             | -1         |
| .US                  | 2,325                     | 1,603                   | 0.31410                | 1.5                                          | =1,27#                   | 520 <b>.</b>                 | -1,                                     | -1.         | =1         |
| 21.                  | 2,3%2                     | 1,400                   | 0.74246                | 1.0                                          | •1,275                   | 524                          | -1.                                     | -1.         | -1         |
| \$2,<br>-1,          | 2,525                     | 1,600                   | 1,27430                | _1                                           | -1,275                   | <u> </u>                     | -1,                                     | -1.         | 1          |
| 23.                  | 2,325                     | 1,600                   | 2.1.7911               | L.0                                          | =1,271                   | 525.                         | • • 1 •                                 | -1.         | -1         |
| 24,                  | 2,322 .                   | 1,683                   | 2+32713                | £.∎ IS                                       | -1,275                   | 420.                         | -1,                                     | -1,         | #1         |
| , ~~~~               |                           |                         | •                      |                                              |                          |                              |                                         |             |            |

NOT REPRODUCIBLE

ECOLOGI MICH \* 112 CONTRA SAROOTINE & U.E.C.

Table D-I. Continued

| <u><u> </u></u> | 115              | 10                    | 1325         | 1,19                 | 5 5,7595                      | 1.0                | 6,725                        | 5201          |                                         | =1,          | •1.   |
|-----------------|------------------|-----------------------|--------------|----------------------|-------------------------------|--------------------|------------------------------|---------------|-----------------------------------------|--------------|-------|
| 1,200           | 116.<br>999.     | 10                    | . 825        | 0.0                  | 0.0                           | 2.0                | 6,725                        | 520.          | +2,5                                    | 999.         | 999.  |
|                 | DHCAR            | CTVE                  | 1-1851       | A APEA               | 5.0                           | 811S= 0.           | 0 225=                       | 0.0           |                                         |              |       |
| P               | PHOJE            | CT in m               | THRST        | R APEA               | 0.0                           | h115= 0.           | 0 1225=1                     | 1 471         |                                         |              |       |
| 1               | Faris            | CTN-                  | 14451        | R ANEA               |                               | <u>M1158 U.</u>    | し ドイズミモ <u>ス</u><br>6 ドウラミモム | 1162          |                                         | ····         |       |
| D               | 1008             | CTLE                  | COL CR       | LI ANEA              | 20.0                          | 1117 U.            | 0.82258                      | 1/12          |                                         |              |       |
| 1               | 730              | 1. 6.                 | F342         | 2.56                 | 2.1991                        | 1 1.0              | 3,2642                       | 550.0         |                                         |              |       |
|                 | 731              | 2, 6,                 | 6052         | 4,16                 | 1 1.499                       | 1.0                | 7,1082                       | 540.0         |                                         |              |       |
| 7               | 730              | 3, 6,                 | 4¥32         | 4,25/                | 5 2.1991                      | 1 1.0              | 7.0132                       | 540.0         |                                         |              |       |
| •<br>•          | 73'              | 4.6.                  | 5962         |                      | 2,809                         | <u> </u>           | 2.9472                       | 540,0         |                                         |              |       |
| •<br>•          | 730              | 2. 6.                 | 4201         | 2,127                | 2 1,571                       | 1.0                | 2,8231                       | 540.0         |                                         |              |       |
| N.              | 7.3              | 7 6                   | 4171         |                      | n 2,1991<br>1 2 207           |                    | 0 8101<br>2+0121             | 500.U         |                                         |              |       |
|                 | 7.5              | <u>ra va</u><br>H. F. | 2320         | 6.10                 | <u>. 61211.</u> ) 1.513       | # • V<br>1 - D     |                              | <u></u>       |                                         |              |       |
| 2               | 731              | 9. 6.                 | 2270         | 4.02                 | 2.1991                        | 1 1.0              | 2.6270                       | 550.0         |                                         |              |       |
| N               | 731              | 0, 5,                 | 2220         | 5 94                 | 2,375                         | 1,0                | 2.6220                       | 540.0         |                                         |              |       |
| F               | 7.31             | 1, 6,                 | 7231         | 6,20                 | 2 -2.875                      | 1.0                | 3.1230                       | 510.0         |                                         |              |       |
| 1               | 731              | 2. 5.                 | 7130         | 6,11                 | 71-2,1991                     | 1 1.0              | 7,1130                       | 510.0         |                                         |              |       |
|                 | 751              | 3                     | 7175         | 5,73                 | -1 53                         | <u> </u>           | 31120                        | <u>_516.0</u> |                                         |              |       |
| Ř               | 732              | 21 21                 | 9111         | 7,23                 | 7 -2,247<br>71-3 1001         | 1.0                |                              | 510.0         |                                         |              |       |
|                 | 734              | 6. 6.                 | 9.541        | 5,13)                | /1=6:1771<br>92:1.521         | .L L.U             | 8.3044<br>1001               | 510.0         | •                                       |              |       |
| ٢               | 731              | 7.7.                  | 0902         | 4.27:                | 267412040<br>2 <b>2</b> 2.399 | ++ <u>9</u><br>1.0 | 3.4992                       |               |                                         |              |       |
| 1               | 73               | ō 7                   | 1942         | 4 15                 | 51-2,1091                     | 1 1.0              | 7 4942                       | 510.0         | I                                       |              |       |
| 2               | 731              | <u>y 7</u>            | 0692         | 4 03                 | 5 -1 459                      | 1.4                | 7 40.92                      | 510.0         |                                         |              | -     |
| V               | 732              | 0.7                   | 3722         | 2,60                 | 11-2.1391                     | 1 1.0              | 77722                        | 526.0         | ł                                       |              |       |
|                 | PKCUE            | CTNE                  | Tri∺\$]      | TR TPX :             | 11.05                         | TAR 1,E            | =4T8T4 <b>T</b>              | 0.0           |                                         |              |       |
| 5               | <u> </u>         | 5 8                   | <u>,</u>     | 7 11 125 1<br>71 1   | 5 35 A                        | 1200 IN            | 245 0 4                      | 67            | A7 6 71                                 | 40           |       |
| 1               | 2                | 1709                  | ) 66.<br>    | - 7日 - 1<br>- 5日 - 2 | 9,95 0                        | 200. 0.            | 212 H14<br>17 .00            | ラ7<br>1 A D   |                                         | 07.<br>162.  |       |
| ΰ               | ā                | 1325.                 | 4            | 19 <u>1</u> 2        | 9,95 6                        | 200. J.            | 18 .00                       | 242           | 7.E 3                                   | 132.         |       |
| ę               | 4                | 425                   | 4            | 55 2                 | 5.95 5                        | 2 0 0              | 21.09                        | ар<br>В       | r E S                                   | 391          |       |
| M               | 5                | 1390                  | 4            | 98 2                 | 9,9E 6                        | 210 0              | 13 .00                       | 26            | ⇒.E 3                                   | 135          |       |
| T               | <u> </u>         | -1                    | I            | •1,                  | <u></u> 1,                    | -1.                | -1.                          | -1.           | -1.                                     | -1.          |       |
| 1               | 7                | 2440                  | ຸ ວ          | • b E 1              | 1.1= 7                        | 1127, 0,           | 031 0.4                      | いろ            | 3 E 31                                  | 238.         |       |
| S               | • •              | 6768                  | •            |                      | -1,                           | -1, 0,             | 36 <b>.</b> 02               | 53            | =1.                                     | 119.         | 2     |
| -               | TTA              | 2270                  | 561          | <u>6. 5 </u>         | <u></u><br>Ттанка=            | 273 2              | PROPELL                      | ANT T         | AMPARAT                                 | 0071<br>UR85 |       |
| -               |                  |                       | 200          | 7 JC                 | ?S= 12                        | r'J.c              |                              |               |                                         | V ( 44       |       |
| 8               | <sup>-</sup> 19. | 4                     | 71.37        | 114.6                | 776.4                         | 527.2              | 08.51                        | -1.           | .0025934                                | 0,295        | 0.378 |
| E               | 1.421            | 3                     | 710          |                      |                               |                    | an ta tatu<br>A              |               | • ••• •• •• •• •• ••                    |              |       |
| P               | 30.              | 4                     | 19.2         | 114,3                | <b>-1</b> ,                   | 567,               | 72.9                         | -1.           | .00336                                  | 0,655        | -1.   |
| 0<br>4-         | 1 34             | Ú A                   | 0.85         |                      |                               |                    |                              |               |                                         |              |       |
| ĭ               | 21.              | 4                     | 42.          | -1.                  | 1052.                         | 64B.               | 07.3                         | -1.           | -1.                                     | 0,358        | 0,7   |
| Ť               | •1.e             | 4                     | • 547<br>- 1 | -1                   | -1                            |                    | -1                           | -1            | - 1                                     | -1           | -1    |
| ,<br>,          | -1               | <u></u>               | <u>- 1</u>   |                      |                               | ··· ····           |                              |               | · • · · · · · · · · · · · · · · · · · · |              |       |
| 2               | 23.              |                       | 194<br>-14   | -1.                  | -1.                           | = 1                | -1.                          |               | -1.                                     | -1.          | =1.   |
|                 |                  | 5                     | 298          |                      |                               |                    |                              | - •           |                                         |              |       |
| P               | 24               |                       | • 1 •        | =1.                  | -1,                           | •1.                | -1,                          | -1.           | -1.                                     | -1,          | -1.   |
| S               | -1.              | 5                     | • 4.49       |                      |                               |                    | 1.1.7                        |               |                                         |              |       |
|                 | 25               | 4                     | 91,1         | 57,2                 | 1165.                         | 671                | 143,2                        | .00416        | 7 .00113                                | 0,49         |       |
|                 | 1.35             | 03 3                  | 140          |                      |                               |                    |                              |               |                                         |              |       |
| 1               | - N151           | · ?                   | A 1452       | - 19<br>0.015        | 0.04                          | -1 0               | -1                           | <b>i</b> 1    | -100                                    | 57           | 0     |
| -               | 0.0              | <u> </u>              | 1.0          | <u> </u>             |                               |                    |                              |               | فالمستخرفة فالمحاش                      |              |       |
|                 | OPTI             | CAL                   | / TH         | ERMA                 | L CHAI                        | RACTER             | sistic                       | S             |                                         |              |       |
|                 | •                |                       |              |                      |                               |                    |                              |               |                                         |              |       |

E211 31 MHUJ

Table D-I-Continued

| <b>•</b><br>•,75 0,0<br>• N158 1 N255 10                                                |                                                      |                                               |                                               |                                                                                                         |                                       |                                              |
|-----------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|
| T 10, -1,<br>1,93 0,                                                                    | -11                                                  | -1.                                           | -1,                                           | -1,                                                                                                     | ,0:242                                | ,5                                           |
| <b>A</b> ,75 0,                                                                         | -1,                                                  | =1.                                           | -1,                                           | -1,                                                                                                     | ,095                                  | .85                                          |
| 11.<br>                                                                                 | -1,                                                  | -1,                                           | -1,                                           | =1,                                                                                                     | ,0026                                 | 0.0                                          |
| $\frac{T_{113}}{H_{110}} = \frac{2 N 23}{0.10} = \frac{10}{0.10}$                       | 0,02                                                 | 3,90                                          | u.607                                         | -1.                                                                                                     | , 506                                 | • 0                                          |
| <b>E</b> 1,0 0,25                                                                       | 0,04                                                 | <u>9,55</u>                                   | 2.607                                         | •1,                                                                                                     | -1.                                   | 0_20                                         |
| $ \begin{array}{cccc} M & 15 = & 2 & 25 = & 10 \\ A & & 16 & 0 & 90 \\ \end{array} $    | 0,85                                                 | <u>^.05</u> .                                 | -1.                                           |                                                                                                         | 1233                                  | 6.00                                         |
| 60,0 0,39<br>0,0 0,0                                                                    | 0,77                                                 | 3,02                                          | -1.                                           | -1,                                                                                                     | -1,                                   | 0,00                                         |
| <b>N15= 2 N25= 10</b><br><b>R</b> 10,0 0,12<br><b>D</b> 0.0                             | 0,93                                                 | 0,05                                          | -1,                                           | <del>-</del> 1,                                                                                         | ,9067                                 | 0,00                                         |
| P 60.0 0.21<br>E 0.0 0.0                                                                | 0;95                                                 | 0.02                                          | -1,                                           | =1,                                                                                                     | -1.                                   | C.00                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                    | -1,                                                  | -1,                                           | 0.0755                                        | -1,                                                                                                     | ,00239                                | • · • <u></u>                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                   | -1,                                                  | -1.                                           | <u>-1</u> L                                   | <u> </u>                                                                                                | 10336                                 |                                              |
| <b>S</b> 115= <u>1</u> 175= <u>1</u><br>560.0                                           |                                                      |                                               | /                                             |                                                                                                         |                                       |                                              |
| N1S= 1 N20= 1                                                                           |                                                      |                                               |                                               |                                                                                                         | · · · · · · · · · · · · · · · · · · · |                                              |
| 560,0 ,45<br>915= 1 (25= 7                                                              | ,75                                                  | •                                             |                                               |                                                                                                         |                                       | 9<br>                                        |
| <b>7</b> , | -1, $-7$ , $7$ , $7$ , $7$ , $7$ , $7$ , $7$ , $7$ , | 1.<br>• 7. 1.                                 | -1.<br>1. 1.                                  | 4458<br>14 44<br>14 14                                                                                  | $0^{0113}$<br>1, 1, 1,<br>1, 1, 1,    | 1. 1.<br>1. 1.                               |
| <b>5</b> 7. 1. 7. 1. 1.<br><b>F</b> 9. 1. 7. 1. 1.                                      | 4, 1, 9<br>2, 1, 5                                   | • 1. 1.<br>• 1. 7.                            | 9, 1,<br>9, 8,                                | 7, 1,<br>7, 1,                                                                                          | 1. 9. 1.<br>A. 9. E.                  | 9, 1, 9, 0,                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                    |                                                      | 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u> | 2 + <u>5 +</u><br>2 + 7 +<br>3 + 3 +          | <sup>6</sup> + <sup>6</sup> + <u></u><br>7 <sub>1</sub> 7 <sub>1</sub><br>3 <sub>1</sub> 3 <sub>1</sub> | $7 \cdot 7 \cdot 1 \cdot 3$           | <u>    8                                </u> |
| N 3,E- 4 3,E- 4<br>T 3,E- 4 1,E- 1                                                      | $\frac{7}{1}$ , $\frac{5}{2}$ , $\frac{4}{1}$        | 3, 5 = 4                                      | <u>, , , , , , , , , , , , , , , , , , , </u> | 4 <b>7, H</b> =<br>1 1, U <sup>H</sup> =                                                                | 4 3,F-<br>1 1,E-                      | 4 1,5E                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                    | 1,7-1                                                | 1,0= 1<br>1,1=1<br>1,5=1<br>1,5=1             | 1+HP<br><u>1+5</u> =<br>5+5=                  | 1 1,64<br>1 <u>1,64</u><br>1 <u>1,64</u>                                                                | 1 2.7"<br><u>1 1.5</u><br>1 1.5-      | 1 1.5<br>1 1.6<br>1 1.6                      |
| R 5.E- 3 1.E- 1                                                                         | 5,5- 3<br>5,F- 3                                     | 1,3- 1                                        | 1,F-                                          | 1 5,5.<br><u>3 1,5</u> -                                                                                | 3 1,E=                                | 1 5, F.<br><u>1 5, F</u> .                   |
| C 1,E-1 5,E-3<br>C 1,E-1 5,E-3<br>A T 5,E-3 7.8-3                                       | 1 1<br>1.H- 1<br>7.E- 3                              | 1,0= 1<br>5,0= 1<br>5,0= 3                    | □ + 5 =<br>1. + 1 =<br>7 + 5 =                | 3 1.+<br>1 7<br>3 5                                                                                     | 3 5 F =                               | 3 7 E                                        |
| <b>V</b> 5, E - 3 7, E - 3<br><b>R</b> 7, E - 3 7, E - 3                                | 5,8 - 3<br>7,8 - 3<br>7,7 - 7                        | 7, == 3                                       | 7 + H =<br>7 + H =                            | 3 5 ====<br>3 7 ====                                                                                    | 37.E=<br>37.E=                        | 3 5,E-<br>3 7,E-                             |
|                                                                                         |                                                      | 1                                             |                                               | 9                                                                                                       |                                       |                                              |

1

1074 Charles

NOT REPRODUCIBLE

Contra Laboration of the

ESI1-21 MNO3 .

UARCO austeria - service - fare

494

٠

.

# Table D-I-Continued

2

| 1. 3                    | .E- 4   | 3.E- 4      | 3.5- 4         | 3.5- 4          | 5,5= 1                                                                                                          | 5.== 2                                 | 5.E= 2                    | 5.            |
|-------------------------|---------|-------------|----------------|-----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|---------------|
| <u>S</u> 5              | E- 2    | 5 5 2       | 5.8-2          | 5 5 2           | 5, F= 2                                                                                                         | 5 . 7 = 2                              | 5 E 2                     | 5             |
| E _5                    | ,E- 2   | · 5,E- 2    | 5,5-2          | 5,6- 2          | 5,6-2                                                                                                           | 5.6- 2                                 | 5,6-2                     | 5.            |
| G 15                    | 16.     | 1, 1,       | 1. 1.          | 1, 5, 2, 5, 16, | 1, 16, 16, 16,                                                                                                  | 16, 10,                                | 10. 16.                   | 16,           |
| M 15.                   | 16,     | 16, 16,     | 10. 14.        | 16. 15.         | 32, 16,                                                                                                         | 32, 16,                                | 16, 32,                   | 16,           |
| E 10.                   | 16,     | 32, 15,     | 52. 15.        | 16, 32,         | 10, 32,                                                                                                         | 16. 16.                                | 32. 10.                   | 32.           |
| N 15.                   | 43,     | 10, 43,     | 40. 32.        | 49. 32,         | 40, 44,                                                                                                         | 28, 45,                                | 40. 49.                   | 48.           |
| T 43.                   | 49.     | 40, 32,     | 32. 32.        | 32. 32.         | 32, 32,                                                                                                         | 12. 32.                                | 32. 1.                    | 1.            |
| 11                      | 10.     | 10. 10.     | 10, 17,        | 10, 16,         | 10. 17.                                                                                                         | 16. 10.                                |                           |               |
| <b>S</b> <sub>1</sub> , | 1. 1    | . 1. 1.     | 1, 1, -1       | • 1.•           |                                                                                                                 |                                        |                           |               |
| <u> </u>                | -1, 1   | ·····       | $\frac{1}{1}$  |                 | <u></u>                                                                                                         | <u> </u>                               | <u></u>                   | <u>, -1</u> , |
| Ri                      | 1, 1    | 1, 1,       | 1, 1, 1        | . 1. 1.         | 1, 1, 1                                                                                                         |                                        | 3, 1, 1                   | , 1,          |
| <u> </u>                | <u></u> | <u></u>     | <u></u>        | والمشاورة       | 1.1.1                                                                                                           | <u> </u>                               |                           |               |
| C                       | .E= 1   | 1,0- 1      | 144-1          | 1,2* 1          | 1.c 1                                                                                                           | 1.5-1                                  | 1.0-1                     |               |
| <u> </u>                | E- 1    | -1,         | 1.5-1          |                 | -1,                                                                                                             | 1,E= 1                                 | -1.                       | 1.            |
| · U -                   | 1.      | -1.         | 1.E- 1         | -1.             | 1,6= 1                                                                                                          | -1.                                    | -1.<br>1 5- 0             | 1,            |
| R .                     | 1.      | 1.5-1       | -1             | -1.             | =1.                                                                                                             | 1.5- 1                                 | 1.6- 0<br>1.F- 1          | 1.5           |
| F 1;                    | 5E 0    | 1.56 0      | 1.5- 1         | 1.5- 1          | 1,6- 1                                                                                                          | 1."- 1                                 | 1.5-1                     | 1,            |
|                         |         | 1,6= 1      | . J.E= U       | 1,5-1           | 1.6- 1<br>1.F- 1                                                                                                | 245 <b>-</b> 2                         | 1,0= <u>1</u><br>1,F= 1   | 1.            |
| 1                       | ,E= 1   | 1,6- 1      | 1,6-1          | 1,5-1           | 1.5- 1                                                                                                          | 1,=- 1                                 | 1,E- 1                    | 1,            |
| - 1                     | .E- 1   | 1,6- 1      | 1,5- 1         | 1,5+1           | 1.5- 1                                                                                                          | 1,== 1                                 | 1,5- 1                    | 1,            |
| 2.                      | 2.      | 2, 2,       | 2, 2,          | 2, -1,          | ۷.                                                                                                              |                                        |                           |               |
| 1.6                     | -1.     | 10, -1,     | -1. 16.        | -1. 15,         | -11.                                                                                                            | 101.                                   | 161.                      | -1.           |
| -1                      | 16      | 10, 16,     | 16. 16.        | 10. 11.         | -16.16.                                                                                                         |                                        | •1• 1°•                   | 10,           |
| 15                      | 14.     | 10, 15,     | 16. 16,        | 15, 14,         | 16, 16,                                                                                                         | 10, 10,                                | 10. 10.                   | 10.           |
| <u> </u>                | 16.     | 15 15       | 10, 2.         | <u> </u>        |                                                                                                                 |                                        | OPTION 5                  | FIDG          |
| 113:                    | 10      |             |                |                 | MODIFIE                                                                                                         | D SURFA                                | CE CONDI                  | TION          |
|                         | 325     | 1,000       | 1.57000        |                 | 40° 1                                                                                                           |                                        | 0.000                     | 10            |
| 5.                      | 325     | 1.000       | 0.74248        | -1.             | 610.                                                                                                            | Υ.                                     | . 102                     | 60            |
|                         | 1       | 1           | 39             |                 | · · · · ·                                                                                                       |                                        |                           |               |
| 5                       | 525     | 1,000       | 1.57082        | 52.             | 650.                                                                                                            | 1,                                     | 0,925                     | 25            |
|                         | .1,     | -1,         | -1,            | 53.             | 510.                                                                                                            | 7                                      | .00                       | 80            |
| ,                       | 1,      | 0.1         | 3?             |                 | 70.0                                                                                                            |                                        | 11 0100                   |               |
| 5                       | -1,     | -1,         | =1,            | ¢Τ.             | /001                                                                                                            | 1,                                     | 0.00 Å                    | 20            |
| 5                       | 325     | 1,000       | 1,57060        | 62.             | nùn,                                                                                                            | 1,                                     | 0,079                     | 190           |
| 5                       | 325     | -1<br>1,001 | 2 : 9911       | <b>43</b> .     | 78.                                                                                                             | 1.                                     | 0,098                     | 58            |
|                         | -1.     | -1,         | -1,            |                 |                                                                                                                 |                                        |                           |               |
| , 7                     | -1      | -1,         | 1,57050<br>-1, | 12.             | 55".                                                                                                            | 2.1                                    | -U.U.                     | . B0          |
| ; د                     | 325     | 1.501       | 1,570.00       | #2,             | 610,                                                                                                            | 1,                                     | (· <b>, 1</b>             | 00            |
|                         | 325     | 1,500       | 1,57000        | \$2,            | 580 1                                                                                                           | 5.                                     | 0057                      | 32            |
|                         | 1.      | 0,1         | 32,            |                 |                                                                                                                 |                                        | H                         | 11            |
| 10.05<br>17 T 2 1 - 2   |         | ŋ.          |                |                 |                                                                                                                 |                                        | 586/5                     | c7.           |
|                         |         |             |                |                 | a la ser en | The second second second second second | 1 and 1 and 1 and 1 and 1 | *             |

NOT REPRODUCIBLE

Table D-I-Continued

A.r.



------

## Table D-II. SATELLITE CONFIGURATION

. .

|             | S E            | G M E              | NT                |              | X DIST                                 | RUDEACE          |                    | DIRECT       | TON CO             | SINES |
|-------------|----------------|--------------------|-------------------|--------------|----------------------------------------|------------------|--------------------|--------------|--------------------|-------|
| -10         | X              |                    | THETA             | AREA         | TO PLUME                               | TEMPER           | HEIGHT OF          | PROJEC       | TIONTA             | NSENT |
| ŇO,         | COORD,<br>(FT) | COORD.<br>(FT)     | (RAD)             | (SOFT)       | VERTEX<br>(FT)                         | ATÚRE<br>(DEĢ R) | PROJECTION<br>(FT) | LAMBDA       | PLANE              | NU    |
| •••••       |                |                    |                   | ******       | ************************************** | <b></b>          | -1 0               | -1.0         |                    | -1.0  |
| 2           | .305           | .590               | 1.04720           | 1            | •3.295                                 | 524.0            | =1.0               | =1.0         | •1.0               | •1.0  |
| 3           | .305           | .590               | 5.14459           | 1            | #3.295                                 | 520.0            | -1.0               | <b>1</b> • 0 |                    |       |
| 4           | .305           | .590               | 5.23600           | ī            | -3.295                                 | 520.0            | -1.0               | -1.0         | =1.0               | •1.0  |
| 5           | .620           | 1.200              | 62830             | ī            | <b>=</b> 2.980                         | 320.0            | -1.0               | -1.0         | -1.0               | •1.0  |
| <del></del> |                |                    |                   | ~ <b>1</b> ~ |                                        | 520 0            |                    |              |                    |       |
| 7           | ,620           | 1,700              | 3,14159           | 1            | <b>=</b> 2,980                         | 520,0            | -1,0               | =1.0         | -1,0               | =1,0  |
| 8           | ,620           | 1,200              | 4,3981P           | 1            | -5,980                                 | 52J,D            | -1.0               | =1:0         | =1,0               | =1.0  |
| 9           | ,620           | 1,200              | 5,45460           | 4            | -2,980                                 | 250,0            | =1,0               | =1:0         | -1.0               | =1,0  |
| 10          | 1,325          | 1,600              | ,31416            | 1            | •2,275                                 | 520.0            | -1.0               | =1,0         | <b>= 1 </b> , 0    | -1,0  |
| 11          | 1,325          | 1,600              | ,94248            | 1            | •2,275                                 | 250.0            | -1,0               | =1+0         | =1+0               | •1,0  |
|             | 1,322.         | 1.000              | 1,7787            | 1            | =7,775                                 | 220.0            | -1,0               | =1.0         | -1-1.              |       |
| 13          | 1,325          | 1,001              | 2,19911           | 1            | =2,275                                 | 520.0            | -1,0               | -1,0         | -1,0               | -1.0  |
| 1           | 1,325          | 1,000              | 2,82743           | 1            |                                        | 57 1 1           | -1,0               | =1,0         | -1+0               | •1,0  |
| 44          | 1 325          | 1,500              |                   | 1            | -2 275                                 | 570,0            | =1,0               | =1,0         | -1,0               | -1 0  |
| 19          | 1 325          | 1,500              | 4,78407           | 1            | -2 275                                 | 570.0            | -1,0               | -1.0         | •1+0               | -1 0  |
| 4 <b>4</b>  |                | 10U0<br>           | 5 94090           | 4            |                                        | 520,0            |                    | -1-"0"       |                    |       |
| 10          | 1.325          | 1 600              | 5,34070           | 1            | m2,275                                 | 520 0            | -1.0               | =1.0         | =1.0               | =1.0  |
| 21          | 2.325          | 1.600              | 31416             | 1            | =1.275                                 | 52               | -1.0               | =1.0         | =1.0               | =1.0  |
| 21          | 2.325          | 1.600              | .04949            | 1            | =1.275                                 | 520 0            | -1 0               | -1.0         | -1.0               | =1.0  |
| 22          | 2.325          | 1.600              | 1.87080           | 1            |                                        | 52               | -1 0               | =1.0         | =1.0               | -1.0  |
| 23          | 2.325          | 1.600              | 2.19911           | î            | . 275                                  | 551.0            | =1.0               | =1.0         | -1.0               | 1.0   |
|             | -2.325         | 4.000              | 2.42743           | 1            | •1.275                                 | 52               | <b>■</b> 1.0       | =1.0         | =1.0               | •1:0  |
| 25          | 2.325          | 1.600              | 3.45575           | ī            | •1.275                                 | 52.1             | -1.0               | =1.0         | -1.0               | -1.0  |
| 26          | 2.325          | 1.000              | 4, 18407          | 1            | •: 275                                 | 52.0             | -1.0               | -1.0         | -1.0               | •1.0  |
| 27          | 2,325          | 1,600              | 4,71240           | 1            | • 275                                  | 520.0            | -1.0               | =1+0         | -1.0               | -1.0  |
| 28          | 2,325          | 1,600              | 5,3407"           | 1            | -1,275                                 | 520,3            | -1.0               | =1.5         | -1.0               | =1,0  |
| 29          | 2, 325         | \$ 60n             | 5,96902           | 1            | -: 275                                 | 52               | -1,0               | <b>=1</b> +0 | =1.0               | =1:0  |
| ·3e-        | - 3,325        | 1,600              | ,71416            | 1            | • ,275                                 | 574,9            | 1,5                | 101          | APPLICA            | PLE   |
| 31          | 3,325          | 1,600              | 17424P            | 1            | + 275                                  | 27               | -1.J               | <b>=1</b> +Ú | =1+n               | -1.0  |
| 32          | 3,325          | 1,600              | 1,57080           | 1            | - 275                                  | 520.2            | 1,5                | NOT          | APPLICA            | PLF   |
| 33          | 3,325          | 1,600              | 2,19911           | 1            | 275                                    | 250.1            | -1.0               | -1.3         | =1,0               | =1,C  |
| 34          | 3,325          | 1,600              | 2, 92743          | 1            | ,275                                   | 22.11            | -1,0               | <b>-1</b> ,ŭ | =1+0               | -1,0  |
| 37          | 3,325          | 1,000              | 3 45575           | 1            | • 275                                  | 22-11            | 1,2                | 101          | APPLICA            | HLE . |
| 77          | 1 7 7 5        |                    |                   | 1            |                                        | 596.0            | •1,0<br>. E        | *1+U         |                    | •1,U  |
| 3/          | 5.323          | 1,500              |                   | 1            | • • 275                                | 570,0            | 1,2                |              | APPLICA            | M65   |
| 30          | 3,323          | 1,500              | <b>5 1 19</b> 978 | 1            |                                        | 52010            | -1.0               | =1+0         | -1.0               | •1,0  |
| 40          | 4.326          | 1 605              | 31444             | 4            | 725                                    | 52               | •1,0               | -1.0         | -1+0               | -1.0  |
| 44          | 4.304          | 1,600              | .24249            | 1            | .724                                   | 50.0             | -1 0               | -1.0         | -1+0               | -1 C  |
| 40          |                | 4.600              | 4.474484          |              | 725                                    | 52               | -1.0               | =1.0         | -1+0               | -1.0  |
| 43          | 4.325          | 1.600              | 2.10011           | 1            | .725                                   | 52               | =1,0               | -1.6         | -10                | -1.0  |
| 44          | 4.325          | 1.600              | 2,02741           | 1            | . 725                                  | 52               | -1,0               |              | •1.0               | -1.0  |
| 45          | 4.325          | 1.600              | 3.45575           | 1            | .725                                   | 529.0            | =1,0               | =1.1         | = 1 + 9<br>= 1 + 0 | -1.0  |
| 46          | 4.325          | 1.600              | 4.18407           | 1            | ,725                                   | 521.0            | •1.0               | ■1.0         | +1.0               | = 1.0 |
| 47          | 4.325          | 1.600              | 4.71240           | 1            | ,725                                   | 524.8            | •1, n              | =1.0         | •1.A               | •1.6  |
| +0          | 4.325          | 1: <del>6</del> 00 | 5-56979           | · · 1        | 725                                    | 529.1            | ■1.0               | <b>#1</b> .8 | •1.0               |       |
| 49          | 4.325          | 1.600              | 5,96902           | 1            | 725                                    | 521              | •1 0               | -1.0         | =1.0               | =1.0  |
| 50          | 5.325          | 1,600              | 31416             | 1            | 1 725                                  | 523 3            | -1.0               | -1.0         | -1 0               | •1.0  |
| 51          | 5,325          | 1.600              | 74248             | 1            | 1,725                                  | 521.0            | -1.0               | -1.0         | =1.0               | •1.0  |
| 52          | 5,325          | 1,600              | 1,57080           | ī            | 1 725                                  | 52.              | -1.0               | -1.0         | -1.0               | •1.0  |
| 53          | 5,325          | 1,600              | 2,19911           | 1            | 1,725                                  | 521.3            | -1.0               | -1.0         | -1-0               | -1.0  |
| F           |                | 1.630              | 2:032743          | • •1         | -1.725                                 |                  |                    |              |                    |       |

NOT REPRODUCIBLE

### Table D-II-Concluded

| 55     | 5,325          | 1,600                          | 3,45575                                       | 1          | 1,725            | 520,0          | -1.0         | -1.0         | •1,0              | =1,0            |
|--------|----------------|--------------------------------|-----------------------------------------------|------------|------------------|----------------|--------------|--------------|-------------------|-----------------|
| 56     | 5,325          | 1,600                          | 4,08407                                       | 1          | 1,725            | 520,0          | =1.0         | -1.0         | -1,0              | =1.0            |
|        |                | -1,000                         | 4,71240                                       | 1          | 1,725            | 520.0          | - 1 -, 0     |              | -110-             |                 |
| 50     | 5,327          | 1 400                          | 5 04902                                       | 1          | 1,725            | 520,0          | -1.0         | -1.0         | -1.0              | -1.0            |
|        |                | 1.600                          |                                               | - <u>+</u> |                  |                |              |              |                   |                 |
| 61     | 6,325          | 1,600                          | 94248                                         | ī          | 2,725            | 520.0          | -1.0         | -1,0         | -1.0              | -1,0            |
| 62     | 6,325          | 1,000                          | 1,57080                                       | 1          | 2,725            | 520.0          | -1,0         | -1.0         | -1.0              | -1.0            |
| 63     |                | 1,600                          | 2,19911                                       | 1          | 2,725            | 520.0          | -1.0         | =1,0         | -1.0              | •1;0            |
| 64     | 6,325          | 1,000                          | 2,82743                                       | 1.         | 7,725            | 520.0          | -1,0         | -1.0         | *1,0              | -1.0            |
| 07     | 0,325          | 1,000                          | 3 45575                                       | 1          | 21/22            | 320,0<br>      | ●1.U         | •1:U         |                   |                 |
| 47     | 6.325          | 1,600                          | 4.71241                                       | 1          | 2.725            | 529.0          | =1.0         | =1.0         | +1.0              | -1.0            |
| 68     | 6.325          | 1,600                          | 5.34070                                       | ī          | 2 725            | 520.0          | =1.0         | -1,0         | -1.0              | -1.0            |
| - 69 - | 6,325          | 1,600                          | 5,96902                                       | ī          | 2 725            | 520,0          | -1.0         | -1,0         | -1,0              | -1.0            |
| 70     | 7,325          | 1,600                          | 131416                                        | 1          | 3,725            | 520,0          | =1.0         | -1,0         | -1,0              | -1,0            |
| 71     | 7,325          | 1,000                          | ,94248                                        | 1          | 3,725            | 520,0<br>800.0 | =1.0         | =1,0         | =1;0<br>          | -1.0            |
| 71     | 7 125          | 1 600                          | 2 44011                                       | 1 '        | 1.725            | 520,0          | •1.0         | .0820        | .1000             | .0500           |
| 74     | 7.325          | 1.600                          | 2.82743                                       | 1          | 3,725            | 52.0           | -1.0         | =1.0         | <b>=1.0</b>       | •1.0            |
| 75     | 7,325          | 1,600                          | 3 45575                                       | ī          | 3 725            | 52v ii         | -1.0         | -1.0         | -1,0              | -1.0            |
| 75     | 7,325          | 1,600                          | 4,18407                                       | ī          | 3,725            | 52.0           | -1,0         | <b>•1</b> ,0 | -1,0              | -1,0            |
| 77     | 7,325          | 1,600                          | 4,71240                                       | 1          | 3,725            | 52J.C          | -1.0         | =1:0         | =1+0              | -1.0            |
| 78     | 77325          | -1-00                          | 7134070                                       | 1          | 31725            | 520.0          | -1.0         | -110         | ° <b>-</b> ∎1γ0°  | -1:0            |
| 79     | 7.325          | 1,607                          | 9,06902                                       | 1          | S 725            | 257.0          | =1.0         | =1,0         | -1.0              | •1.0            |
| 84     | 01327<br>8.325 | 1,600                          | 101917                                        | 1          | 4.725            | 529.0          | =1.0         | =1.0         | -1:0<br>-1:0      | =1.0            |
| 82     | 8.325          | 1,600                          | 1.57080                                       | 1          | 4,725            | 520.0          | -1.0         | =1+0         | -1.0              | -1.0            |
| 83     | 8.325          | 1,500                          | 2,19911                                       | 1          | 4 725            | 52. 3          | -1.0         | -1:0         | =1,1              | =1.0            |
|        |                | -1-1+00                        | -2,42743                                      | 1          | 4,725            | 520.0          | =1,0         | <b>=1</b> +0 | -1,0              | -1.0            |
| 85     | 8,325          | 1,601                          | 3,45575                                       | 1          | 4,725            | 52.0           | -1.0         | =1+0         | =1+9              | •1.0            |
| 56     | 8,325          | 1,400                          | 4,^3407                                       | 1          | 4 725            | 22-13          | =1.0         | -1.0         | •1_0              | -1,3            |
| 88     | 01327<br>A 128 | 1,600                          | 4,71241<br>5.34070                            | 1          | 4,725            | 520 J          | -1.0         | -1+0         | -1+0              | -1.0            |
| 89     | 8,325          | 1,600                          | 5.96902                                       | 1          | 4.725            | 52             | +1.0         | =1.ŭ         | -1.0              | =1.0            |
|        | 9              |                                | 91414                                         | 1          | 5 725            | 520.0          | -1.0         | =1.0         | =1.0              | +1,0            |
| 91     | 9,325          | 1,600                          | 0424A                                         | 1          | s 725            | 52 j           | =1.0         | -1.0         | = 1 <u>0</u>      | -1.0            |
| 92     | 9,325          | 1,600                          | 1,57080                                       | 1          | <b>5</b> ,725    | 522.0          | -1.0         | -1.0         | =1+0              | =1,0            |
| 93     | 9,325          | 1,000                          | 2,19911                                       | 1          | 5,725            | 520 J          | -1.0         | -1,0         | -1.0              | -1,0            |
| 95     | 9 124          | 1 600                          | 2142/43                                       | 4          | 5,725            | 523 3          | -1 0         | -1+0         | -1,0<br>-1,0      | -1.0            |
|        |                | 1-500···                       | 4.18407                                       | 1          | 5,725            | 529.0          | =1.0         | =1.0         | =1.0              | -1.0            |
| 97     | 9,325          | 1 600                          | 4,71241                                       | ī          | 5 725            | 52             | -1,0         | -1,0         | =1,0              | -1.0            |
| 98     | 9,325          | 1,600                          | 5,34070                                       | 1          | 5 725            | 52.5           | =1,0         | =1+0         | <b>=1</b> ,0      | -1,0            |
| 99     | 9,325          | 1,600                          | 5,96902                                       | 1          | 5,725            | 520.0          | -1,0         | -1.0         | =1 0              | =1.0            |
| 100    | 10,325         | 1,000                          | 131414                                        | 1          | 1,725<br>6 7 0 F | 570,0<br>550,0 | -1.0         | =1,0         | -1.0              | -1,0            |
|        | 10:323<br>     | ⊥_©UU<br>~-4- <del>688</del> • | <u>↓</u> ∀₩2₩~<br><b>1.<del>.</del>₩₩₩₩₩₩</b> |            | 6,725            | 594.0          | <b>w1</b> .0 | -1.0         | -140              | =1.0            |
| 103    | 10,325         | 1,600                          | 2 19911                                       | ī          | 5 725            | 520 3          | -1.0         | -1.0         | =1,0              | -1.0            |
| 104    | 10,325         | 1,600                          | 2,42743                                       | 1          | 6,725            | 52-0           | -1.0         | =1.0         | -1.0              | =1.0            |
| 105    | 10,325         | 1,600                          | 3,45575                                       | 1          | 6,725            | 520,0          | -1.0         | -1.0         | =1.0              | -1.0            |
| 106    | 10,325         | 1,600                          | 4,18407                                       | 1          | 6 725            | 0, USC         | =1,0         | -1,0         | =1+0              | =1.0            |
| 107    | 10,325         | 1,000                          | 4,7 <u>1</u> 240<br>5,74070                   | 1          | 01/27<br>A.TOR   | 520 U          | =1,0         | •1+U<br>=1+0 | -1,0              | =1,0            |
| 109    | 10.325         | 1.600                          | 5.96902                                       | 1          | 6.725            | 520.0          | =1.0         | -1.0         | •1.0              | •1.0            |
| 110    | 10.825         | 1.195                          | .52361                                        | 1          | 6,725            | 520.0          | •1.0         | =1.0         | -1.0              | •1.0            |
| - 111  | 10,825         | 1,195                          | 1,97080                                       | 1          | 6,725            | 520.0          | -1.0         | +1,0         | -1.0              | -1.0            |
| 112    | 10,825         | 1,195                          | 2,61800                                       | 1          | 6,725            | 520,0          | -1,0         | -1.0         | -1,0              | •1,0            |
| 113    | 10,825         | 1,195                          | 3,66520                                       | 1          | 6,725            | 520,0          | •1,0         | -1.0         | •1 <sub>1</sub> 0 | =1,0            |
| -114-  |                | -1,195-                        |                                               |            | - 6,725          | . 250 0        | -1.0         | -170         | =1+0              | •1,0            |
| 115    | 10,825         | 1,195                          | 2,73900                                       | 1          | 01/23            | 22J U<br>520 0 | -1.0         | •1+0         | -1,0              | •1.0            |
| 110    | 10,825         | 01088                          | 010000                                        | 2          | 01/27            | 320.0          | 4.7          | NUT          | APPLICA           | 10 <b>6 6</b> 6 |
| NOTE   | IVALUES OF     | =1,0 IN                        | DICATE NO DA                                  | EXTER      | REAL TOTAL       | AREA 4117.     | no souari    | FEET         |                   |                 |

NOT REPRODUCIBLE

(Table D-III) provides data on the projections present, identifying them as to type and location. Items which themselves are considered to consist of segments have their structures detailed.

The next few outputs (Tables D-IV to D-VI) consist of listings of properties of materials; structural materials, propellants, deposits (net illustrated), and thermal/optical properties (only first page of listing included).

Table D-VII, a partial listing, shows the structure of the segments of the spacecraft, with the materials called out for each segment.

The first output showing results of program computations is Table D-VIII. In this table, the structure and thermal/optical properties for each segment in its initial condition are detailed. Table D-IX presents the effective absorptivity, emissivity, and their ratio for the complete satellite.

The set of changed segment surface conditions which were input as data are listed in Table D-X, and the effect that these changes have on the segment properties is printed in Table D-XI. Note the changes in segments 51, 52 and 53 (see Table D-VIII, and D-XI), and the way the changes correspond to the input shown in Table D-X. The effect on the spacecraft's thermal condition may be noted by comparing Tables D-IX and D-XII.

The calculated impingement of the plume on the satellite for various plume geometries and nozzle selections is given in Table D-XIII, while D-XIV shows the results of coordinate transformation calculations. The inputs to the thrustor-to-satellite table are arbitrary selections, but those for the satellite-to-thrustor transformation are the segments impinged by the plume (Table D-XIII).

The mechanical properties of impinged segments are presented in Table D-XV, and Table D-XVI lists the wear constants of all materials of interest.

The important characteristics of the plume which relate to damage to the satellite surfaces are given in Table D-XVII.

The output after calculating the effects of the plume on the surface has the same format as that from the arbitrary changes (Table D-XI); therefore, no copy is presented. Table D-III. PROJECTIONS

| AT.                  | SEGMEN          | T NOS.                                                                                                         | (FT)            | (FT)                | (RAD      |                  |                      |
|----------------------|-----------------|----------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------|------------------|----------------------|
|                      |                 | A                                                                                                              |                 |                     |           | ••               |                      |
|                      | 3               | 2                                                                                                              | 3,600           | 2,600               | 1,571     |                  |                      |
|                      | 3               | 5                                                                                                              | 3,600           | 2,600               | 3,142     | 000              |                      |
| and advectory of the | 3               | · · · · · · · · · · · · · · · · · · ·                                                                          | 3-600           | 2,600               | - 4,712   | 000              | and ap-              |
|                      |                 |                                                                                                                |                 |                     |           |                  |                      |
|                      | SO              | LCEL AT SE                                                                                                     | EGMENT NO.      | 73                  |           |                  |                      |
|                      | 5 E             | GME                                                                                                            | NT              |                     | X DIST    |                  |                      |
|                      |                 |                                                                                                                |                 |                     | SEGMENT   | SURFACE          |                      |
|                      |                 | <del>R</del>                                                                                                   | TNETA           |                     | TO-PLUME- | ···· TEMPERa     | a                    |
| NO I                 | COURD           | , COURD,                                                                                                       | (8.5).          | (COPT)              |           | ATURE<br>(DEG DA |                      |
|                      | (///<br>======= |                                                                                                                | 174074          | (JWFI)<br>Eastrates |           |                  | 3                    |
|                      |                 |                                                                                                                |                 |                     |           |                  | -                    |
| 7301                 | 6,88            | 6 2,582                                                                                                        | 2.19911         | 1                   | 3,286     | 570.0            |                      |
| 7302                 | 6,60            | 4.101                                                                                                          | 1,49900         |                     | -3-008    |                  |                      |
| 7303                 | 6,60            | 3 4,056                                                                                                        | 2,19911         | 1                   | 3,003     | 500.0            |                      |
| 7304                 | 6,59            | 8 3,951                                                                                                        | 2.89900         |                     | 2,998     | 500.0            |                      |
| 7304                 | C   42          |                                                                                                                | 1,20100         | 1                   | 2 84 8    | 790,0<br>500 0   |                      |
| 7307                 | 6.44            | 0 4.054                                                                                                        | 2,80700         | 4                   | 2.840     | 566.6            |                      |
| · -7-3n8-            | ······          | 2                                                                                                              | <u>156366</u> - | ······              |           | <b>566</b> e     | 0 40-10 X 1 00 *** • |
| 7309                 | 6,22            | 7 6.020                                                                                                        | 2,19911         | i                   | 2,627     | 550.0            |                      |
| 7310                 | 6,22            | 2 5,940                                                                                                        | 2,89500         | 1                   | 2,622     | 500.0            |                      |
| 7311                 | 6,72            | 3 6,200                                                                                                        | -2,89500        | 1                   | 3,123     | 510.0            |                      |
| 7312                 | 6,71            | 6,119                                                                                                          | =2,19911        | 1                   | 3,118     | 510,0            |                      |
| 7313                 | 6,71            | 3 6,038                                                                                                        | -1,50300        | 1                   | 3,113     | 510,0            |                      |
| 7314                 |                 | 1 7,237                                                                                                        | -2 40944        |                     | 3,311     |                  |                      |
| 7312                 | A 00            |                                                                                                                | -1 E0100        | 1                   | 3,300     | 74V#P<br>510 0   |                      |
| 7317                 | 7.09            | 4.375                                                                                                          | -2.80200        | 1                   | 3,409     | 510.0            |                      |
| 7318                 | 7.09            | 4 4.155                                                                                                        | -2.19911        | 1                   | 3.494     | 510.0            |                      |
| 7319                 | 7.08            | 9 4.035                                                                                                        | -1,49900        | ī                   | 3,489     | 510.0            |                      |
| -7320                | 7 . 37          | 2 2,681                                                                                                        |                 |                     | 3,772     |                  |                      |
|                      |                 |                                                                                                                |                 | • • <del>-</del>    |           |                  |                      |
| + NEGA               | TIVE VA         | LUE FOR AN                                                                                                     | GLE SIGNAL      | S THAT SE           | GMENT IS  | ON               |                      |
| SIDE                 | OF-FRO          | IECTION-FAC                                                                                                    | IND AWAY F      | HOM THE P           | LOWE!     |                  |                      |
| NOTES                | VALUES          | OF -1.0                                                                                                        | O INDICATE      | NO DATA             | ENTERED   |                  |                      |
|                      | AREA OF         | SOLCEL IS                                                                                                      | 20.0 SQU        | ARE FEET,           |           |                  |                      |
|                      |                 |                                                                                                                |                 |                     | *******   |                  |                      |
| THR                  | USTORS          | LOCATED                                                                                                        | X               | R                   | THET      | A                |                      |
| A T                  | SEGMEN          | T NOS.                                                                                                         | (               | (FT)                | (RAD      | >                |                      |
|                      |                 | the second s |                 |                     |           |                  |                      |

~ 1

TOTAL SATELLITE AREA, INCLUDING PROJECTIONS, IS 137,00 SQUARE FEET.

Table D-IV. PROPERTIES OF STRUCTURAL MATERIALS

1

 
 BULA
 SURFAUE
 THENMAL

 BULA
 SURFAUE
 HEAT
 CONDUCTIVITY
 YIELD

 CFSIJ
 CFNEACT
 CAALCITY
 CHULA
 CENEACT

 CFSIJ
 CPNUL
 STAFAGT
 VIELD
 DENSITY

 CFSIJ
 CPNUL
 STAFAGT
 CHULA

 CFSIJ
 CPNUL
 STAFAGT
 CENEACT

 CFSIJ
 CPNUL
 STAFAGT
 CFSIJ
 CLB/CUFT

 CFSIJ
 CPNUL
 CFSIJ
 STAFAGT
 CFSIJ

 CFSIJ
 CFSIJ
 CFSIJ
 CFSIJ
 CFSIJ

 CFSIJ
 CFSIJ
 CFSIJ
 CFSI 43 DATA ENTRED VOTE: VALUES OF -1.0...2 INTIGATE

NOT REPRODUCIBLE

|                                          | EXTERNAL PRESSU<br>(PSIA)<br>,000000                             | RE: WALL TEMPERATU<br>(DEG R)<br>529,200000      | Ne                                        |
|------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|
|                                          | 1999 1996 1973 1973 1974 1975 1977 1977 1977 1977 1977 1977 1977 |                                                  | <b>90</b>                                 |
|                                          | FUEL PROPE                                                       | RTIES                                            |                                           |
| BOILING POINT<br>(DEG R)<br>648,000000   | FREEZING POINT<br>(DEG R)<br>399,60000                           | CRITICAL TEMP,<br>(DEG R)<br>1069,200000         | CRITICAL PRESS,<br>(PSIA)<br>1195.000000  |
| (BTU/L8=DEG)<br>(995000                  | L19UID CP.<br>(BTU/LR+DEG)<br>,690000                            | SOLID CP.<br>(BTU/L8=DEG)<br>,522292             | HOL, HEIGHT<br>46,074000                  |
| LATENT HEAT VAP.<br>(BTU/LB)<br>         | LATENT HEAT FUS.<br>(BTU/LO)<br>121,500000                       | LIG, THERM, CON<br>(9TU=IN/SGFT=DEG=S<br>,000484 | D, AGCOM, COEFF.<br>EC)<br>               |
| REFERENCE TEMP,<br>(Deg R)<br>540.000000 | SPECIFIC<br>GRAVITY<br>+870000                                   | VISCOSITY<br>(POISE)<br>.010400                  | SURFACE TENSION<br>(DYNE/CM)<br>34.000000 |

# Table D-V. OPERATING CONDITIONS

OXIDIZER PROPERTIES

| BOILING POINT    | FREEZING POINT   | CRITICAL TEMP.     | CRITICAL PRESS.  |
|------------------|------------------|--------------------|------------------|
| (DEG R)          | (DEG R)          | (DEG R)            | (PSIA)           |
|                  | 471,600000       | 777,600000         | 1441,300000      |
| VAPOR CP.        | LIQUID CP.       | SOLID CP.          | MOL, WEIGHT      |
|                  | (BTV/L#=DEG)-    |                    |                  |
| ,295000          | ,378300          | ,295000            | 46,005000        |
| LATENT-HEAT-VAP. | LATENT-HEAT-FUS. | LIG, THERM, CON    | D. ACCOM, COEFF. |
| (BTU/LB)         | (BTU/LB)         | (ATU-IN/SAFT-DEG-S | EC)              |
| 178,200000       | 68,760000        | .000024            | .10000           |
| REFERENCE TEMP.  | SPECIFIC         | VISCOSITY          | SURFACE TENSION  |
| (DEG R)          | GRAVITY          | (POISE)            | (DYNE/CM)        |
| 540,00000        | 1,434000         | .003940            | 28,00000         |
|                  |                  |                    |                  |

Table D-V-Concluded

|                  |                                                                                                                                          | L INSTRUCTIONS                             | ng ngan tan na n |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|
|                  | -STOP TIME<br>(Sec)<br>,064000                                                                                                           |                                            |                                                   |
|                  | KNUDSEN-LANG                                                                                                                             | UIR COEFFICIENTS                           |                                                   |
| CNSTHF           | CNSTHO                                                                                                                                   | CNSTVF                                     | CNSTV                                             |
| 2.8571428571E=06 | 3,000000000E=07                                                                                                                          | 2,9697757560E=05                           | 2,9675511683E=0                                   |
|                  |                                                                                                                                          |                                            |                                                   |
|                  | CAL INGEART-DA                                                                                                                           | VIS COEFFICIENTS                           | ·                                                 |
| LN(I             | CALINGEART=DA<br>P) = A+(B/(T=43+C)                                                                                                      | VIS COEFFICIENTS<br>) FOR P IN MM, T I     | N DEG K                                           |
| LN(I             | CALINGEART=DA<br>P) = A+(B/(T=43,0)<br>-Fuel                                                                                             | VIS COEFFICIENTS<br>) FOR P IN MM, T I<br> | N DEG K<br>                                       |
| LN(1<br>         | CALINGEART=DA<br>P) = A+(B/(T=43,0)<br>FUEL<br>= 3283,097298                                                                             | VIS COEFFICIENTS<br>) FOR P IN MM, T I<br> | N DEG K<br>Dizer<br>•3244,53365                   |
| LN(1<br>         | CALINGEART=DA<br>P) = A+(B/(T=43,0)<br>FUEL<br>B<br>=3283,0P7298<br>VAPOR ENTHALPY A<br>FUEL<br>(RTU/LB)<br>234,843895                   | VIS COEFFICIENTS<br>) FOR P IN MM, T I<br> | N DEG K<br><br>DIZER<br>•3244,53365               |
| 24,185411        | CALINGEART=DA<br>P) = A+(B/(T=43,0)<br>FUEL<br>B<br>=3283,09729R<br>VAPOR ENTHALPY A<br>FUEL<br>(RTU/LB)<br>234,843895<br>PARACHOR       | VIS COEFFICIENTS<br>> FOR P IN MM, T I<br> | N DEG K<br><br>DIZER<br>-3244,53365               |
| LN(1<br>         | CALINGEART=DA<br>P) = A+(B/(T=43,0)<br>FUEL<br>8<br>=3283,0P7298<br>VAPOR ENTHALPY<br>FUEL<br>(RTH/LB)<br>234,843895<br>PARACHOR<br>FUEL | VIS COEFFICIENTS<br>) FOR P IN MM, T I<br> | N DEG K<br><br>DIZEP<br>-3244,53365               |

Table D-VI. SURFACE PROPERTIES INPUT

ALUMI'

| -1,0000        |
|----------------|
| 200            |
| 07000<br>07000 |

| 14) 6,5 MTCFO, (VIS) 4,1 MICRO, (UV)                             | .920 F. 1000<br>.750 n.800 |            |
|------------------------------------------------------------------|----------------------------|------------|
| 1 F A 1<br>15 4 1 CHON                                           | 500<br>932                 |            |
| THERMAL<br>CONDUTIVITY<br>(2100-11/<br>(210-11/<br>2257-069-560) | • 7016.<br>•1. •010        |            |
| T T Y                                                            | 0.0000<br>0.0000           | 2          |
| LECTI<br>AR<br>(SPECULAR)                                        | • 9613<br>• 0013           | DATA ENTER |
| د الا الح<br>2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1             |                            | C CN BAADI |
| E4155<br>1 v1 t4<br>(THEP4AL)                                    | 000<br>000<br>000<br>000   | 1.1        |
| 445085<br>11/17<br>(50644)                                       | 0050.<br>0050              | • JU SENT  |
| SURFACE<br>FlvISu<br>(+U+l')                                     | .1023<br>1°,0003           | VOTER V    |

NDCN1.)

NOT REPRODUCIBLE
# Table D-VI-Continued

|                        | EMUSEA<br>1111<br>(SOLAR)   | 11122<br>1117<br>(146844L)             | cDIFFUSE)                             | L A R<br>(SPECULAR           | 2) THERMAL                                                                                       | CONDUCTIVITY<br>(ATU-IN/<br>DOFT-DEG-SEC)            | 19 HICRONITRY 0                         | fetatununte c'                            | 017 HICHON (UV)         |
|------------------------|-----------------------------|----------------------------------------|---------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------|
| 0000                   | -1,0000                     | 1,0000                                 | -1.000                                | - <b>BATA-E</b> 475          | -1-0000<br>REB                                                                                   | .0024                                                |                                         | 006.                                      | 0,000                   |
|                        |                             | ,                                      | •                                     |                              | RPORT                                                                                            | •                                                    | · · ·                                   |                                           |                         |
| RFACE<br>VISH<br>J-1*) | ARSORA<br>TIVITY<br>(SOLAR) | EMISS<br>IVITY<br>(THERMAL)            | a F F<br>S O<br>(DIFFUSE)             | FLECTI<br>LARCULAR           | V I T Y<br>THERMAL                                                                               | THERMAL<br>CONDUCTIVITY<br>(STU-IN/<br>SOFT-DEG-SEC) | T R A N S<br>19 MICRONCIR) 0            | . I T T A<br>.5 HICROP(VIS)               | N C E<br>U.1 MICROM(UV) |
| 5490                   | -1.9000                     | 0000 * 7                               | -1.000                                | 1.01.1-                      | -1-0000                                                                                          |                                                      |                                         | .750                                      | 2 • 000                 |
| VOTEL                  | VALUES OF -                 | 4 JF.B.                                | VIJCATE 40                            | DATA ENTE                    | RED                                                                                              |                                                      |                                         |                                           |                         |
|                        |                             |                                        |                                       | f 1                          | Lanas                                                                                            |                                                      |                                         |                                           |                         |
|                        | ARONA<br>TIVI<br>(Solar)    | (14138<br>1417<br>(1417<br>(1417)      | a F F<br>S 3<br>(JIFFUSE)             | LECTT<br>LARCULAS            | V 1 1 4                                                                                          | 148844L<br>094901114174<br>(91941171<br>(9194171     | T P A Y CHORCE                          | SIADUCAIS)                                | v f É<br>0.1 AICPO (140 |
| 6000                   | -1-0-00                     | -1.5000                                | 0400*1-                               | Genu+Fr                      | -1.0000                                                                                          | 920r*                                                | 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                           |                         |
| TFI .                  | • 30 53117A                 | 1.1.1.1                                | vr ∃1vulu:                            |                              | ີ<br>ພິ<br>ພິ<br>ເມື                                                                             |                                                      |                                         |                                           |                         |
| 45 A C E<br>41 S       | 445684<br>T1V1TY<br>(S3LAR) | 34155<br>1 v t t y<br>( t 4 e p 4 a l) | a E F<br>5 0  <br>(UIFFUSE)           | LECT!<br>LAR<br>(SPECULAR    | <pre>&lt; 1 T C C C C C C C C C C C C C C C C C C</pre>                                          | THERMAL<br>CONFUCTIVITY<br>(STU-12/<br>CFT-NEG-SEC)  | T R A V S V                             | A T T A L A L A L A L A L A L A L A L A   | , 5 8<br>3.1 -10Ru (UV) |
| 1 3 0 0                | 0007*                       | , r260<br>, r460                       | 0000<br>0000<br>0005-                 | 6673<br>6970                 | 1.5000<br>1.5000<br>1.5000                                                                       |                                                      | 5,061<br>0,001                          | 6.019<br>0.019                            |                         |
| 1 1 1 U                | - 1152 52                   | 1,1,1,6 14                             | C, BTATE -                            | DATA EVTE                    | с<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                                      |                                         |                                           |                         |
|                        |                             |                                        |                                       | ถ้                           | L ACK                                                                                            |                                                      |                                         | x                                         |                         |
| 1045<br>105<br>115     | 49504<br>11117<br>(53_44)   | 84155<br>1 1115<br>1 1114<br>1 1114    | н н н н н н н н н н н н н н н н н н н | L R I<br>L A R<br>(SPECULAR) |                                                                                                  | THERMAL<br>CONDUCTIVITY<br>(STULIX)<br>SET-PEG-SEC)  | e (El)::0401: ST                        | A T T T L S L S L S L S L S L S L S L S L | <br>J. 410F0+(UV)       |
| 0000<br>0000<br>0000   | 0064<br>0064                | , 75n0                                 | -7503<br>-7503                        | -1,000<br>-1,000             | -1.700<br>-1.700<br>-1.                                                                          | -1, -0-0                                             | n,000<br>0,600                          | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                         |

NOT REPRODUCIBLE

ACTER VALUES OF -1.7... IN INTICATE AN DATA ENTERED

Table D-VI-Continued

**JTIH** 

| N C E D. MICRON(UV)         |                             | 000°0            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------|-----------------------------|------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H I T T A<br>0.5 MICRONCVIS |                             | 0000             |           | and an a state of the state of |
| T R A N S<br>15 MICRON(IR)  |                             | 00000            |           | 5 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| THERMAL<br>CONDUCTIVITY     | 10-10-14/<br>10-1-0-0-5-0-1 | .0057<br>-1.0000 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V I T V<br>THERMAL          |                             | 0000             |           | ца<br>Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LECTI                       | <del>{6PECUL#</del> 4}      | 1,0000           |           | 0ata-64764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ے ۔<br>2 م ۔                | t <del>atruset</del>        | P500             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EMISS<br>EMISS              |                             | 0000             |           | rt[- 2***0t]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABSORA<br>TIVITY            | -( <del>50[#R]</del> -      | 1200             | n., t > • | 195 PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SURFACE<br>FINISH           |                             | 19,000           | 000 · 0   | 40 <del>15</del> 4 - 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

1204

ABSORA EMISS A F F L F C T V I T V THERMAL T P A N S V I T T A N C E Tivity Ivity 5 3 L a P Thermal conductivity 15 microweir) 5.9 microweves) 0.1 microweve (solar) ethermal) edifyses (specular) 505,CONG -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 1°4PE8-▲TURE (0E6 ₽)

VOTEL VALUES OF -1.7. ... INFICATE NO PATA ENTRED

2022

TE4PER- ABSCR3 E4ISS 3 E E L E C T I V I T Y TAERVAL T R A S <sup>a</sup> I T T A C E Ature tivity -14ity 5 J L A C E ("Ea 9) (Solar) (twermal) (difuse) (Specula) Soft-tes-sec) 560,000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,000 -1,000 -1,000 -1,000 -1,000

40TE1 VALUES OF #1.9.1. P PATE NO PATA ENTER

Г Т 2

TEMPER ARSORA EMISS PERLECTIVITY THERMAL TRAVSVITATA, CE ature tivity ivity 5.0 Lar thermal computity 15 michonomics) ",1 michonomic (Teg a) (Solar) (tuermal) (difuse) (Specular) (Thermal Computed 5.554,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

VOTEL VALUES OF +1.0.... INDICATE NO DATA ENTERED

Table D-VI-Concluded

A. K.

1

| TENPER-<br>LTURE<br>(DEG R) | AB50R8<br>71417<br>(50LAR)   | EHISS<br>CTHERMAL)          | R E F<br>(DIFFUSE)        | L E C T I I<br>L A A A A A A A A A A A A A A A A A A A | - 1 7 Y                                                                                                             | THERMAL<br>CONDUCTIVITY<br>(BTU-IN/                      | T R A N B                               | H I T T A                  | N C E                     |
|-----------------------------|------------------------------|-----------------------------|---------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------------|---------------------------|
| 0000.00                     | -1,0000                      | -1,000                      | -1,0000                   | -1,0000                                                |                                                                                                                     | JF 1 = DEGEBEC2<br>= = = = = = = = = = = = = = = = = = = |                                         |                            |                           |
| Hoter                       | *******                      | 1 0 • • 0 <b>1</b>          | NDICATE NO                | DATA ENTERI                                            | 0                                                                                                                   |                                                          |                                         |                            |                           |
|                             |                              |                             |                           | 1<br>X<br>X                                            | SON                                                                                                                 |                                                          | A MARINE VINCING                        |                            |                           |
| ГЕНРЕР-<br>Атине<br>(је а)  | ABSOR9<br>114179<br>(Solar)  | EHISS<br>TVITY<br>(THERAL)  | R E F<br>5 0<br>(D1FFUSE) | L E C T 1 '<br>L A A<br>(SPECULAR)                     | / I T Y<br>THERMAL                                                                                                  | THERMAL<br>Conductivity<br>(atu-in/<br>3ft=deg=sec)      | T R A N S<br>15 HICRON(IR)              | MITTTA<br>0.5 MICRON(VIS)  | N C E<br>0.1 HICRON(UV)   |
| 50, 8000<br>NOTE: 1         | -1.0000<br>VALUES OF         | -1.00n0<br>-1.010           | -1-000<br>Nateate No      | -1,00n0<br>Data Entere                                 | -1 0000                                                                                                             | 1,000                                                    | 000 - 1 -                               | - 1 - 000                  | -1,000                    |
|                             |                              |                             |                           | 1<br>7                                                 | 120                                                                                                                 |                                                          |                                         |                            |                           |
| Енева-<br>1996а<br>1966а)   | ABS08a<br>(501 a)<br>(501 a) | E415S<br>14177<br>(THERMAL) | R E F<br>C DIFFUSE)       | L E C T 1 '                                            | <ul> <li>1 1 ≺</li> <li>1 1 4</li> </ul> | THERMAL<br>                                              | T R A C S                               | v I T T A                  | v 6 E<br>•••±••±€\$34(uv) |
| 50-00<br>                   | .4500<br><u>**LUE6-8F-</u>   |                             | 1.000                     | 11-00001-                                              |                                                                                                                     | - 1 • 00 ° 0                                             | - 1 - 0 0 0                             | -1.000                     | 9999<br>999<br>9          |
| 64664-<br>47046<br>066 2)   | ABSORD<br>TIVITY<br>(Solar)  | EMISS<br>EMISS<br>(THERMAL) | R E F<br>S 0<br>(D1FFUSE) | L E C T 1 L L A R (SPECULAR)                           |                                                                                                                     | THERVAL<br>CONDUCTIVITY<br>(9TU-1N/<br>)FT+DEG+SEC)      | T R A N S                               | 1 1 1 4<br>1.5 41CADN(V10) | י ה 6<br>י נין יונאפינטעט |
| 0000                        | -1,0003                      | -1,0000                     | 000u • T •                | -1,0000                                                | 4,5600                                                                                                              | .0011                                                    | ••••••••••••••••••••••••••••••••••••••• |                            | -1-000                    |

507

NOTE: VALUES OF +1.0.1.0 INDICATE NO DATA BATERED

| SEGMENT   | TEMPERATU        | RE TOP     | LAY      | ER                     | 2 • N       | DLAY               | r e R             | 3 • R D     | LAYE                         | R                  |
|-----------|------------------|------------|----------|------------------------|-------------|--------------------|-------------------|-------------|------------------------------|--------------------|
| NOI       | (086 R)          | MATERIAL   | -DEPTH-P | <u>1919</u><br>(Huetni | *****       | DEPTH-P1           | INISH<br>Mustni   | HATERIAL    | DEPTH PI<br>(IN) (           | MIGINY             |
| ******    |                  |            |          |                        |             |                    |                   |             |                              |                    |
| 1         | 520.00           | GOLD       | .0003    | 1,00                   | ALUMIN      | 1000               |                   | - NONE-     | -1:0000                      |                    |
| 2         | 720,00<br>520,00 |            | .0003    | 1,00                   | ALUMIN      | 1000               | 2,00              | NONE        | -1.0000                      | -1.00              |
|           |                  |            |          | 1,00                   | -ALUHIN-    | 1000               | 2.00              | NONE        | -1.0000                      | -1.00              |
| ς 5       | 520.00           | GOLO       | .0003    | 1,00                   | ALUMIN      | 1000               | 2,00              | NONE        | -1.0000                      | +1,00              |
| 6         | 520.00           | GOLD       | .0003    | 1,00                   | ALUMIN      | .1000              | 2,00              | NONE        | -1,0000                      | -1,00              |
| ź         | 520.00           | SULD       | 1 5000   | 1,00                   | NONE        | 1000               | 2,00              | NONE        | -1.0000                      | •1,00<br>•1,00     |
| 9         | 520.00           | GOLD       | .0003    | 1,00                   | ALUMIN      | .1000              | 2.00              | NONE        | -1.0000                      | -1.00              |
|           |                  | ALUMIN     | -1000    | 10100-                 | -NONE       |                    |                   | - NONE      |                              |                    |
| 11        | 520.00           | ALUMIN     | .1000    | 16,00                  | NONE        | -1,0000            | -1,00             | NONE        | -1,0000                      | =1,00              |
| 13        | 520.00           | ACUS1~     | .1001    | 16,00                  | NONE        | =1.0000            | -1.00             | NONE        | =1,0000                      | <b>1</b> ,00       |
| 14        | \$20,00          | ALUMIN     | .1000    | 16,00                  | NONE        | -1,0000            | -1,00             | NONE        | -1,0000                      | -1,00              |
| 15        | 520,00           | ALUMIN     | .1000    | 16.00                  | NONE        | =1.0000            | -1,00             | NONE        | -1.0000                      | -1,00              |
|           | 520,00           | ALUMIN     | 90017 ·  | 16-00-                 | NONE        | -1-0000V           |                   |             | -1:0000                      |                    |
| 18        | 520.00           | ALUHIN     | .1000    | 16.00                  | NONE        | =1,000V            | =1.00             | NONE        | =1.0000                      | <b>41</b> +00      |
| 19        | 520.00           | ALUMIN     | 1000     | 16.00                  | NONE        | -1.00Pv            | -1.00             | NONE        | =1,0000                      | -1.00              |
| 20        | 520.01           | ALUMIN     | .1000    | 16.00                  | NONE        | =1,00Cu            | <b>-1.</b> 0n     | NONE        | =1,0000                      | =1,00              |
| <1<br>    |                  | ALUMIN     | 1000     | 10:00                  | NONE        |                    | =1,00             |             | =1:0000                      | <b>1</b> 100       |
| 23        | 520.00           | IRPORT     | 2500     | 5,20                   | NONE        | =1,0000            | =1.00             | MONE        | =1,0000                      | -1,00              |
| 24        | 520.00           | ALUMIN     | .1000    | 16,00                  | NONE        | -1, aona           | =1.00             | NONE        | •1,000f                      | -1,00              |
| 25        | 250.00           | ALUMIN     | .1001    | 16,00                  | NONE        | -1.000v            | •1.0n             | NONE        | -1,0000                      | <b>1</b> 100       |
| 27        | 520.00           | ALUMIN     | .1000    | 16.00                  | NONE        | =1,000u            | =1.0n             | NUNE        | -1,0000                      | =1.00              |
|           |                  | ALUMIN     | 1000     | 10,00                  | NONE        |                    | •1.01             | <del></del> | =1.000                       | 1.00               |
| 29        | 520.00           | ALUHIN     | 1000     | 16,00                  | NONE        | -1.000%            | -1.01             | HONE        | =1.0000                      | +1+00              |
| 30        | 520.00           | ALUMIN     | .1007    | 15,00                  | NONE        | •1,000J            | -1,00             | NONE        | -1,0000                      | •1.00              |
| 32        | 520.00           | ALUMIN     | .1000    | 16.00                  | NONE        | =1,0000<br>=1,0005 | =1.0C             | SONE        | =1.0000                      | • <b>•1</b> €00    |
| 33        | 520.00           | ALUMIN     | 1000     | 16,00                  | NONE        | =1.000.4           | =1.00             | VONE        | -1:0000                      | =1.6U              |
|           |                  | -*LU"1*    | -1000    | -16100                 | - NONE      |                    |                   |             |                              | -1.70              |
| 35        | 520.00           | ALUMIN     | .1000    | 16,00                  | NONE        | -1,0000            | =1.00             | 'JONE       | =1,0000                      | =1.00              |
| 37        | 520.00           | ALUMIN     | .1000    | 15.00                  | NONE        | +1,0000            | =1.01             | NONE        | =1.0000                      | • •1.00<br>• •1.00 |
| 3.6       | 520.00           | ALUMIN     | 1000     | 15.00                  | NONE        | =1,0000            | +1.00             | VONE        | -1,0000                      | -1.00              |
| 39        | 520.00           | ALUMIN     | .1000    | 16,00                  | NONE        | -1,0000            | =1.01             | NONE        | -1,0000                      | -1,00              |
| 41        | 520.00           | WITE       |          | 32.00                  | AT LIMEN    | 1000<br>1000       | =1.0°             | NONE        | - <b>-1:000</b> 0<br>-1:0000 | 1 1100             |
| 42        | 520.00           | ALUMIN     | 1000     | 16,00                  | NONE        | -1.0000            | =1.00             | NONE        | =1.0000                      | •1•00              |
| 43        | 520.00           | AHITE      | .0051    | 32,00                  | ALUHIN      | •1000              | 16.01             | TONE        | -1:0000                      | -1.10              |
| 44        | 520.00           | ALUMIN     | 1000     | 16,00                  | NONE        | =1,0000            | -1.00             | NONE        | -1,0000                      |                    |
|           |                  |            |          |                        | #1.++++++++ |                    | 90.10<br>00.80''' | NONE        | =1.0000                      | , <b>41</b> ,00    |
| 47        | 520.00           | ALUMIN     | .1000    | 16.00                  | NONE        | =1,0000            | -1,00             | MONE        | -1,0000                      | -1,00              |
| 48        | 520.00           | HHITE      | .0050    | 32,00                  | ALUMIN      | •10ac              | 16.00             | NONE        | =1,0000                      | -1.00              |
| 49        | 520.00           | ALUMIN     | .1900    | 16,00                  | NONE        | =1,000J            | =1.07             | NONE        | =1,0000                      | =1.00              |
| _ 51      | 520.00           | AHITE      | .0050    | 32.00                  | ALUMIN      | 1000               | 16.00             | HONE        | =1.0000                      | =1.00              |
|           |                  |            |          |                        |             |                    |                   |             |                              |                    |
| 53        | 520.00           | HHITE      | .0050    | 32,00                  | ALUMIN      | 1000               | 16.00             | NONE        | -1,000                       | -1.00              |
| 54        | 220.00           | ALUMIN<br> | 1000     | 10,00                  | NONE        | -1,0000            | -1.00             | NONE        | -1,000                       | -1,00              |
| 56        | 520.00           | WHITE      | .0050    | 32.00                  | ALUMIN      | .1000              | 14.00             | NONE        | +1,0000                      | -1.00              |
| 57        | 520,00           | ALUHIN     | .1000    | 16,00                  | NONE        | =1,0000            | -1.00             | NONE        | -1,0000                      | -1,00              |
|           | 720.00           |            | .0070    | 32,00                  | ALUMIN -    | 11000              | 10.00             | NONE        | -110001                      |                    |
| 50        | 520.00           | ALUMIN     | .1000    | 16-00                  | NONE        | -1.0000<br>-1.0000 | 1.00              | NONE        |                              |                    |
|           | 520.00           | WHITE      | -0070    | - 32,00                | ALUHIN      | 1000               | 18.00             | NONE        |                              |                    |
| 62        | 520.00           | ALUMIN     | .1000    | 16.00                  | NONE        | -1.0000            | -1.00             | NONE        | -1,0000                      | -1,00              |
| 63        | 20.00            | ##ITE      | .0050    | 32.00                  | ALUMIN      | 1.0000             | 10,00             | NONE        | -1,0000                      | -1,00              |
| 65        | 520.00           | ALUMIN     | 1000     | 16:00                  | NONE        | -1.0000            | =1.00             | NONE        | -1,0000                      |                    |
| 66        | 520.00           | HHITE      | 0.050    | 32,00                  | ALUMIN      | 1000               | 16.00             | NONE        | -1,0000                      | -1,00              |
| 67        |                  | ALUMIN     | .1005    | 16,00                  | NONE        | -1.0000            | -1.00             | NONE        |                              |                    |
| 00<br>A 0 | 520.00           |            | .1000    | 16.00                  | NUNE        | =1,0000            | =1.00             | NONE        | -1.0000                      | -1,00              |
|           |                  | BLACK      |          |                        |             |                    |                   | NONE        | -1,0000                      |                    |
| 71        | 520.00           | HHITE      | .0050    | 32,00                  | ALUMIN      | 1000               | 16,00             | NONE        | -1,9000                      | •1,00              |
| 72        | 520.00           | BLACK      | .0070    | 44,00                  | ALUMIN      | 1,5000             | 16.00             | NONE        | -1,0000                      | •1.00              |
| 74        | 520.00           | BLACK      | .0020    | 48.00                  | ALUMIN      | 1,5000             | 16.00             | NONE        | •1,0000                      |                    |
| 75        | 520.00           | BLACK      | .0070    | 48.00                  | ALUMIN      | 1000               | 10.00             | NONE        | -1,0000                      | -1.00              |
| <b>1</b>  |                  |            |          |                        |             |                    |                   |             |                              |                    |

### Table D-VII. SPACECRAFT EXTERIOR MATERIALS-SEEK VALUES INPUT FOR INITIAL CONDITIONS

. .

~ 1

Table D-VII-Concluded

| 77         | 520.00            | BLACK                                  | 0070      | 48,00    | ALUMIN         | 100U           | 16.00                                   | NONE        | -1,0000    | =1,00              |
|------------|-------------------|----------------------------------------|-----------|----------|----------------|----------------|-----------------------------------------|-------------|------------|--------------------|
| 78         | 520.00            | HHITE                                  | .0050     | 32.00    | ALUMIN         | 1009           | 16.00                                   | NONE        | -1,0000    | -1,00              |
| 79         | 520.00            | BLACK                                  | .0770     | 48.00    | ALUMIN         | 1000           | 16.00                                   | NONE        | -1.0000    | =1,00              |
| 80         | 520.00            | BLACK                                  | .0070     | 48.00    | ALUMIN         | 1000           | 16.00                                   | NONE        | =1.0000    | •1,00              |
| 81         | 520.00            | HHITE                                  | .0050     | 16.00    | ALUMIN         | 1000           | 16.00                                   | NONE        | -1.0000    | -1.00              |
|            |                   | -BL+0H                                 |           | -48-88-  |                |                | + + + + + + + + + + + + + + + + + + + + |             |            |                    |
| 83         | 520.00            | 44175                                  | 0050      | 16.00    | ALIMEN         | 1.0000         | 16.00                                   | MONE        | =1.0000    |                    |
| 84         | 520 00            |                                        | 0070      | 48.00    | AL HIMT N      | 1000           | 14 00                                   | NONE        | =1.0000    |                    |
| A.6        | 800.00            | BLACK                                  | 0070      | 48.00    | ALIMITN        | 1000           | 14 00                                   | NONE        | -1.0000    | -1,00              |
| 84         | 520 00            | JUITE                                  | .0070     | 12.00    | ALUMIN .       | 1000           | 10.00                                   | L ONE       | -1.0000    | -1.00              |
| 00         | 520.00            | 44.1E                                  | .0020     | 32100    | ALCHIN.        | 11000          | 10.00                                   | LONE        | -1 0000    | -1 00              |
|            | 520100            | BLACK                                  | + 0 0 7 0 | - 30-04- | ALVALY         | 11010          | 10.00                                   |             |            |                    |
|            | 520100            | 01 1 <b>0</b> 1                        |           | 32100    | ALCINED.       | 1000           | 10.00                                   | NONE        | -1 0000    | -1 00              |
| 04         | 220.00            | DLAUK                                  | .0071     | 40,00    | ALUMIN         | 11000          | 10,0                                    | NONE        | -1 0000    | -1+00              |
| <b>7</b> 0 | 220.00            | DLAUK                                  | .0070     | 10100    |                | 1000           | 10.00                                   | NONE        | -1.0000    | -1.00              |
| ¥1         | 220.00            | BLACK                                  | .00/0     | 40,00    | ALUTIN         | 1000           | 10,00                                   | TONE .      | -1,0000    | -1.00              |
| 42         | 250.00            | BLACK                                  | .00/1     | 47,00    | ALUMIN         | 10nu           | 10,00                                   | NONE        | -1.0000    | •1.n0              |
| 42         | 250.00            | ALACK                                  | +0070     | 45,00    | APOHIN .       | 100U           | 10.01                                   | NUNE        | -1.0000    | •1.nu              |
|            | 250.00            | BLACK                                  |           | 49100    | -#C/1414       |                | 10.00                                   | TONE        |            | <b>*1</b> 150      |
| 95         | 220.00            | REVCK                                  | .0070     | 48,00    | ALUMIN         | 1000           | 10,00                                   | YONE        | -1,0000    | =1,0U              |
| 96         | 520.00            | AFVCK                                  | .0070     | 48,00    | ALUMIN         | 1079           | 10.00                                   | VONE        | -1,0000    | -1+00              |
| 97         | 220,00            | BLACK                                  | .0070     | 48,00    | ALUMIN         | 11000          | 16.01                                   | UONE        | -1,0000    | •1, <sup>n</sup> 0 |
| 98         | 520,00            | BLACK                                  | .0070     | 48,00    | ALUMIN         | 10nv           | 16,00                                   | NONE        | -1,0000    | -1,00              |
| 99         | 520,00            | BLACK                                  | .0070     | 48,00    | ALUHIN         | 1000           | 16,00                                   | NONE        | =1,0000    | =1,00              |
|            | -560-00-          |                                        | .0020     |          |                | 11000          | 10,00                                   |             | -110000    | =1,00              |
| 101        | 520,00            | #H]TE                                  | .0151     | 32,00    | ALUHIN         | .100v          | 16,00                                   | ONE         | =1,0000    | -1,00              |
| 102        | 520,00            | WHITE                                  | .0050     | 32,00    | ALUMIA         | ,100u          | 16,00                                   | NONE        | -1,0000    | -1,70              |
| 103        | 520,00            | WHITE                                  | .0050     | 32,00    | ALIMIN         | 10nu           | 16.00                                   | NONE        | =1,0000    | =1,00              |
| 104        | 520,00            | HHITE                                  | .0050     | 32,00    | ALVHIN         | 1000           | 16.00                                   | NONE        | =1;0000    | =1,00              |
| 105        | 520,00            | HHITE                                  | .0050     | 32,00    | ALUMIN         | , <b>10</b> ∩∪ | 16.00                                   | NONE        | •1.0000    | =1 <u>+</u> CO     |
|            | <del>520,00</del> | ## <u> *</u> E                         |           | -96190-  | <u>▲╘₩</u> ╡₩  | ··· 10Av-      | -16-00-                                 |             | =1+0900    | <b>=1</b> ,00      |
| 107        | 520,00            | 4HITE                                  | .0050     | 32,00    | VLHUN          | ∎100V          | 16.00                                   | NONE        | =1.0000    | =1,00              |
| 108        | 520.00            | AH]TE                                  | .0150     | 32,00    | ALUHIN         | +100V          | 16.01                                   | NONE        | -1.0000    | =1,60              |
| 109        | 520,00            | WHITE                                  | .0050     | 32,00    | ALUMIN         | ,100v          | 16.00                                   | NONE        | -1,0000    | -1.00              |
| 110        | 520.00            | GOLO                                   | .0003     | 1,00     | ALUHIN         | , <b>10</b> 0⊍ | 2.00                                    | NONE        | -1,0000    | <b>■1</b> .00      |
| 111        | 520,00            | GOLD                                   | .0003     | 1,00     | ALUMIN         | ,100L          | 2,00                                    | NONE        | -1,0000    | <b>=1,</b> 00      |
|            | 520,00-           | GOLD                                   |           |          | <u>#L</u> UH]N | :1000          | 2.00                                    | <b>NONE</b> | -1,0000    | -1:00              |
| 113        | 520,00            | GOLO                                   | .0003     | 1,00     | ALUHIN         | ,10NJ          | 2.00                                    | NONE        | -1,0000    | ■1,00              |
| 114        | 520.00            | BOLO                                   | .0003     | 1,00     | ALUHIN         | ,100U          | 2.00                                    | NONE        | =1,0000    | •1,00              |
| 115        | 520.00            | GOLD                                   | .0003     | 1,00     | ALUMIN         | ,1000          | 2.00                                    | NONE        | -1,0000    | -1,00              |
| 116        | 520.00            | BOLO                                   | .0003     | 1,00     | ALUMIN         | ,100U          | 2.00                                    | NONE        | =1,0000    | =1,00              |
| _7301      | 550.00            | ALUMIN                                 | .5000     | 16,00    | NONE           | 1,0000         | -1.00                                   | NONE        | -1,0000    | -1,00              |
| 7562       | 200.03            | ··· 901 0                              |           | 17.00.   | - UNIASA D     | =1.0000        | 41.03                                   | - U2445ND - | ·· #1.0000 | 421-02             |
| 7303       | 560.00            | SOLCEL                                 | .0500     | 10.00    | UNASYO         | •1.000U        | -1.00                                   | UNASNE      | -1.0000    | +1.00              |
| 7304       | 560.00            | SOLCEL                                 | .0500     | 10.00    | UNASNO         | -1.0000        | -1.00                                   | UNASNO      | -1.0000    | .1.00              |
| 7305       | 560.00            | SOLCEL                                 | .0900     | 10.00    | UNASNO         | -1.0000        | •1.00                                   | UNASND      | -1,0000    | .1.00              |
| 7306       | 560.00            | SOLCEL                                 | .0500     | 10.00    | UNASNO         | -1.0000        | -1.00                                   | UNASND      | .1.0000    | •1.00              |
| 7307       | 540.00            | SOLCEL                                 | .0500     | 10.00    | UNASNO         | -1.00ev        | -1.00                                   | UNASND      | -1.0000    | -1.00              |
| 7808       |                   | SOLCEL                                 | 0900      | -10.00-  | UNASND         | -1.0000        |                                         | UNASNO      |            |                    |
| 7309       | 560.00            | SOLCEL                                 | .0500     | 10.00    | UNASNO         | -1,0000        | -1.01                                   | UNASND      | -1.0000    | •1.00              |
| 7310       | 560.00            | SOLCEL                                 | 0500      | 19.00    | UNASNO         | -1.0002        | =1.00                                   | UNASND      | -1.0000    | .1.00              |
| -7311      | 510.00            | SOLCEL                                 | .0500     | 10.00    | UNASND         | -1.0000        | -1.00                                   | UNASND      | •1.0000    | -1.00              |
| 7312       | 510.00            | SOLCEL                                 | 0500      | 10.00    | UNASHO         | -1.0004        | -1.00                                   | UNASND      | =1.0000    | •1.00              |
| 7313       | 510.00            | SOLCEL                                 | 0500      | 10.00    | UNASNO         | -1.000L        | 1.00                                    | UNASND      | -1,0000    | -1.00              |
| 7814       | - \$10.00         |                                        |           |          | UNASHD         | 1-000:         | -1:00                                   | UNASNO-     |            |                    |
| 7315       | 510.00            | SOLCEL                                 | . 050 0   | 10.00    | UNASIO         | <1.000u        | =1.00                                   | UNASND -    | =1.0000    | .1.00              |
| 7316       | 510.00            | SOLCEL                                 | .0501     | 10.00    | UNASNO         | -1.0000        | 1.00                                    | UNASNE      | =1.0000    | -1.00              |
| 7317       | 510.00            | SOLCEL                                 | .0500     | 10.00    | UNASNO         | -1.0000        | -1.00                                   | UNASNE      | -1.0000    | -1.00              |
| 7316       | 510.00            | SOLCEL                                 | .0500     | 10.00    | UNASIO         | -1.000         | -1.00                                   | UNASNO      | =1.0000    | -1.00              |
| 7319       | 510.00            | SOLCEL                                 | .0500     | 10.00    | UNASID         | -1.000         | -1.00                                   | UNASND      | =1.0000    | -1.00              |
| 7324       | 52004             | ++++++++++++++++++++++++++++++++++++++ |           |          |                | =1.000*        | -1.00                                   | - NONE      |            | <b>w1.00</b>       |
|            |                   |                                        |           |          |                | 1100.0         |                                         |             | -210000    | - 2 1 0 0          |
| NOTEL      | VALUES OF         | · •1.0                                 | INDICATE  | NO DAT   | A E'TEREC      | 0              |                                         |             |            |                    |

NOT REPRODUCIBLE

CURRENT CONDITION OF SATELLITE EXTERIOR-INITIAL CONDITIONS Table D-VIII.

TRV(.1) 0.0000 6.0000 1.0000 THA( 5) 0,0000 0,0000 1,0000 DEPTH FIVISH ABSRIY EMISTY REFUSED REFUTH) THRM COND TRN(15) .0003 1.0000 .2001 .0400 .4500 .6070 -1.0000 .6040 0.0000 .1000 2.0000 .0200 .0500 .4501 .9500 .4570 0.0000 .10000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 жытец маче 7 соцр 1 ацинт, -1 КОМЕ а. С. ж. -- +I

 
 TEPTH
 FILTH
 FASATY
 EAISTY
 EFF(SPC)
 FEF(TH)
 THSK CGGG TR(LS)

 10003
 1,0003
 2800
 1,600
 1,500
 0,000
 1,000

 10003
 1,0003
 2800
 1,600
 1,500
 0,000
 0,000

 11005
 2,000
 0201
 1,500
 1,500
 0,000
 0,000

 11,000
 -1,000
 -1,000
 -1,000
 -1,000
 -1,000
 -1,000
 TEV- 05JN H5T LATÈCA MU MU 590,0 -1,0 -1,7960 -1,8000 P:J+E X ■4,∎795 9 1.457 47EA 590 1.−472 1 

....

14.000.0 14.0000.0 10000.0

TERTH FIVISH A4SRTY EMISTY RAFUTY REFERD REFETH THREDET THE CONFTRUCT) 1003 1.00C .280C .00AU 450C .050C .640G .00C0 .100C 2.00C .02C .050U .450T .05CC .05CC .00C .100U \*\*,000Q -1.06G -1.00C -1.00C -1.000G -1.000G -1.00C TEV-V 593,HGT (A'57A 20 NU . 524,0 +1,0 +1,5599 +1,5596 +1,7969 × 11+0]L 10-00-00 10-00-00 я. Т.ПТА АЧПА. - ЭЭЛ Я, + 4:59 5 (2)
 (2)
 (2)
 (3)
 (4)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5) 245. L. ".

14.6.53 8.7075 9.7075 1.7070 9.7070 DEPTH FIVISH ASKIY FHISTY FHIFT AFF(SPC) HEF(TH) THEN CGNT TAF(19) 1903 1,000 12800 10400 14500 14000 14000 14000 1000 2,000 10200 10500 10500 10500 14500 14000 14000 11000 41,000 41,000 41,000 41,000 41,000 41,000 а тавта дава вушла тела вају аз цанда 20 ул 1596 5,9360- 1 –3,295 592,0 –1,0 –1,000 –1,000 –1,000 1172 1174 7 5567 1 11541 1 1 2056 11 . ۲۰5 **۲** 

ТЕЧР РЯДЧИТ ЦАЧЕСА КО ЧР 554.0 — 1.0 — 1.000 — 1.0000 524.0 — 1.0 — 1.000 — 1.0000 PLU~è X =7,950 T∴ET∆ APEA .4223r 1 1.205 ۲ \* 670 ្ឋា

14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1)) 14, (,1))14, (,1)) 14, (,1)) 14, (,1))14, (,1)) 14, (,1))14, (,1)) 14, (,1)) 12,(,5) r,603u 6,760u 1,000 
 TEPTH
 FIVISH
 AdSRTY
 ExiSty
 Def(Tr)
 THR(SPC)
 Def(Tr)
 <thDef(Tr)</th>
 <thDef(Tr)</th>
 4414L 144E 7 Goly 1 Alumi4 •1 101E

NOT REPRODUCIBLE

Table D-VIII-Concluded

150

R F PRUN HET LAMBDA TENP PLUME X AREA THETA

|          |           | TRN(+1)<br>0,0000<br>-1,0000<br>-1,0000                                         |
|----------|-----------|---------------------------------------------------------------------------------|
|          |           | TRN(                                                                            |
|          | 6.0       | TRV(15)<br>0,0500<br>-1,0500<br>-1,0000                                         |
|          |           | 1188 CON                                                                        |
| H YORAN  |           | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                           |
| UN HET   |           | REF (SPC)<br>- 7600<br>- 1,0000                                                 |
|          | 225-3     | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                           |
|          |           | 000<br>000<br>000<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00         |
| EA PLU   |           | ABSATY<br>2280<br>- 1.0001<br>- 1.0001                                          |
| ueta Ari | 21-10     |                                                                                 |
| ₽~<br>ar | • 00e     | DEP14                                                                           |
| ×        | 1 6251    | ₹<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 |
| 01       | 5<br>- 15 |                                                                                 |

| 0<br><br>8<br>8              | TRVC.5)        |
|------------------------------|----------------|
| 0000 <mark>11</mark> 00      | H CONT TRUCISI |
| 04 40<br>00 =1,000           | F(Tw) T=0      |
|                              | acf(SPC) aE    |
|                              | 5 (J[)]35      |
| лна х т<br><del>1929</del> - | ×≐S1H3         |
| 1964 PL                      | ABSHTY         |
| T-ETA A<br>                  | 151714 T       |
| н<br>1 433 -                 | 1694           |
| x<br>5, <del>325</del>       | LAL LAL        |
| £ 44                         | 1              |

| 18/(************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 10<br>- |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DET(14)<br>-1.0000<br>-4473<br>-1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 465 (SPC)<br>-1, 7070<br>-1, 7070<br>-1, 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| aaf (117)<br>1364<br>13364<br>12399<br>12399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 110000<br>110000<br>110000<br>110000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ABSATY<br>1996<br>228:<br>•1.0°03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FINISH<br>52.7000<br>15.7000<br>15.7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| серти<br>. 3090<br>. 1000<br>-1. 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| L 1446<br>4115<br>4006<br>4006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 0 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

78.6.1) 0.0000 0.0000 1.0001

| 000                                     | 191)<br>1910<br>1910<br>1910<br>1910<br>1910<br>1910<br>1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U 2000 -1 -1                            | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| * TO OLO -                              | ()////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | 2000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | Calla<br>50000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| т.<br>Х.<br>С.<br>Х.                    | > Fight<br>-                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | ▲85877<br>- 2283<br>-1.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -674 AB                                 | 1917<br>1917<br>1917<br>1919<br>1919<br>1919<br>1919<br>1919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| H + + + + + + + + + + + + + + + + + + + | 76974<br>- 1000<br>- 1. 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5,329 1                                 | ater<br>1 art<br>1 art<br>1 art<br>2011<br>1 art<br>1 |
| 11<br>24<br>25                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

TEME PROVIDE LANGE VU VU 59440 -1400 -14000 -14000 4 7 THETA 44EA PLUME X 5,425 1,500 2,1941 1 1,725 5

T⊡ur 24UN 46T LAY4CA YU VU 220,4 +1,6 +1,000 +1,2004 15,3000 PLUVE X 1.725 х ң <sub>Т</sub>:ста а<sup>д</sup>ба 5,325 1,60° 2,42<del>74</del>5 1

1.5

- 2133 4 € 1 1 - 22 3 3 - 2 4 4 2 6 4 4 2 6 4 4 - 1 1 SEPTH FIXISM ABSRTY RHISTY RHICTFY REFUSED REFUTH) THAY CONTRACTOR 1000 14,0000 12287 10500 15591 15992 17600 14673 14570 0,0707 110000 11,0000 11,0000 11,0000 11,0000 11,0000 11,0000 11,0000 11,0000 11,0000 11,0001 11,0000 11,0000 11,0000 11,0000 11,0000 4,175 4,155 4,154 4,1056 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,14 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144 4,144
4,144 4,144 4,144 4,144 4,144
4,144 4,144 4,144 4,144 4,144 4,144
4,144 4,144 4,144 4,144 4,144 4,144
4,144 4,144 4,144
4,144 4,144 4,14

ТЕ∵- РЯЦИ НАТ [A~87A ×U ~~` 52..J +1.0 +5;°00 +1;°00 +1;∩070 PLUVE X 1.725 x 4 TuETA AFEA 5,325 2,600 3,45575 1

E 🛢

18.(**\***).81 SATY FHISTY REFUTED REF(SPC) REF(TH) THE CTUP 'A'(15) 220 .000 .5991 .7000 .4473 .4970 5.3700 .0001 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 .0001 -2.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0701 -1.000 -1.0701 -1.070 ABSRTY -1-300 -1- -1000 -1-3000 -1- -1000 -1-3000 -1- -1000 LEPTH FINISH 1 AL(HT' -1 VOVE -1 VOVE -1 3-14 1424-

511

NOT REPRODUCIBLE

Table D-IN. EFFECTIVE HEAT TRANSFER CONSTANTS

SUM OF SEGMENT AREAS . 117.00

EFFECTIVE SOLAR ABSORPTIVITY 0 .323 Effective Thermal Emissivity 0 .409

AVETAGE VALUE,ALPHA/EPSILON RATIO FOR WHOLE SPACECRAFT # ,7890

Table D-X. SPACECRAFT EXTERIOR MATERIALS AFTER PLUME OR SPACE EXPOSURE

| SEGMENT<br>202 | TENPERATURE | T C P<br>MATERIAL | 1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |         | 2 .<br>MATERIAL |             |         |  |
|----------------|-------------|-------------------|---------------------------------------------------------------|---------|-----------------|-------------|---------|--|
|                | (DEG R)     |                   | (11)                                                          | ( 1 - 7 |                 | (N1)        | HU-1N)  |  |
| 42             | 600.0       | ALUMIN            | .050                                                          | 100,00  | DNASNU          | -1,0000     | 1.00    |  |
| 51             | 610.0       | 8H 2 40           | .0020                                                         | 80.00   | ALUMIN          | .1000       | 39,00   |  |
| <br>52         | 650.0       | ALUHIZ            | 0660.                                                         | 270,00  | UNASND          | -1,0000     | -1 · 00 |  |
| 56             | 610.0       | ERODED            | 000000                                                        | 90°00   | ALUHIN          | .1000       | 39,00   |  |
| 61             | 780.0       | ALUMIN            | 0990'                                                         | 56,00   | UNASND          | -1.0000     | -1.00   |  |
| ~              | 0.00        |                   |                                                               |         | <b>UNREND</b>   | -10000 1-1- | 00.1    |  |
| 63             | 780.0       | ALUMIN            | .0960                                                         | 20.00   | UNASNU          | -1,0000     | -1.00   |  |
| 72             | 630.0       | HOLE              | -,0500                                                        | 80°00   | UNSAUD          | -1,0000     | -1.00   |  |
| 28             | 610;0       | ALUHIN            | .1000                                                         | 00.00   | UNASNU          | -1,0000     | -1.00   |  |
| 92             | 580.0       | BLACK             | .0057                                                         | 32,00   | ALUMIA          | .1000       | 30.00   |  |
|                |             |                   |                                                               |         |                 |             |         |  |

Contract of

| -<br>                                | TRN(5) -0.01<br>2,0000 ,001<br>0,0000 0,000<br>-1,0000 -1,000                       |                                                                         | TRV(. 5)<br>0.2000<br>0.2000<br>0.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.000000<br>1.000000<br>1.00000000<br>1.00000000<br>1.000000<br>1.0000000000 | :                                      | TRAC,5) TRAC,1<br>0.6000 0.000<br>0.0000 0.600<br>-1.0000 -1.600                            |                                    | THV(5) TAV(1<br>0,000 0,000<br>0,000 0,000<br>+1,000 -1,000               |                                                                                                  | 18/(,5) 18/(,1<br>0.0000 0.000<br>0.0000 0.000<br>1.0000                               |
|--------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| NN NH                                | THRM COND TRN(15)<br>+ 6050 0,0000<br>+ 4570 0,0000<br>+1,0000 -1,0000              | HU NU<br>•0000 =11,0000                                                 | TLRH COND TRV(15)<br>• 6060 0.0700<br>• 4570 0.0700<br>• 1.0000 • 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 0000 - 1, 6000                       | THRM COND TR'(15)<br>6060 0.000<br>4570 0.000<br>1.0000 -1.000                              |                                    | ТНЯМ СОХО ТЯР.(15)<br>+ 5060 0.010<br>+ 4570 0.020<br>+1.0000 -1.0000     | HU NU<br>1 0000 -1,0000                                                                          | THRM COND TR. (15)<br>.6060 0.0707<br>.4570 0.0700<br>-1.0000<br>-1.0000               |
| LUINTE CUINTIILIU<br>PRJN HGT LAMBDA | 500 -1,0000 -1,0000<br>500 -5070 -1,0000<br>500 -9500 -9600<br>1000 -1,0000 -1,0000 | PRJN HGT LA <sup>v</sup> BDA<br>1-0001-1-1-1-0001-1-1-1-1-1-1-1-1-1-1-1 | rir) REF(SeC) REF(TH)<br>(501 .6070 -1.0000<br>(500 .9510 .9600<br>(000 -1.0000 -1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRJN HGT LAVADA -                      | rir) REF(SPC) REF(TH)<br>1501 15070 -11,0000<br>1502 19500 -11,0000<br>1500 -1,0000 -1,0000 | 19 000-11 10H NDR4                 | <pre>FIF) REF(SPC) FEF(TH) 1502</pre>                                     | PRJN HGT LAMBDA<br>1                                                                             | DIF) REF(SPC) REF(TH)<br>500 .6070 -1.0000<br>500 .9500 -1.0000<br>100 -1.0000 -1.0000 |
| PLUME X 164P                         | SATY EMISTY REF(<br>.2000 .0400 .0<br>.0200 .0500 .6<br>.00001 .1.0000 .1.0         | PLUKE X TEV?<br><del>5295</del> <del>520</del> ,0                       | ISATY EMISTY REF(<br>2800 - 0400 - 8<br>-0200 - 1.0000 - 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PLUME X TELT                           | ISATY EMISTY 466(<br>2800 .0400 .0<br>.0200 .0500 .4<br>.0000 -1.00004 .1.0                 | PLJ46 X 7640                       | SRTY EMISTY REF(<br>.200 .0400 .0<br>.0203 .0570 .0<br>.0001 -1.0000 -1.0 | PLUKE X TEAP                                                                                     | SRTY EMISTY REF.<br>2005 - 0400 - 5<br>0205 - 10000 - 1                                |
| 4 THETA AREA                         | DEPTH FINISH AE<br>0003 1,0000<br>1000 2,0000<br>0000 01,0000 01                    | 1 T-LEYA AREA                                                           | DEPTH FINISH AE<br>.0003 1.0000<br>.1000 2.0000<br>.1.0030 -1.0000 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | а<br>190 Тнета Ареа<br>190 - 3.19199 1 | DEPTH FINISH AE<br>.0003 1,0000<br>.1000 2,0000<br>-1,0000 -1,0000 -1                       | 1 Tueta APEA<br>1590 - 5,25600 - 1 | TEPTH FINISH AL<br>.0005 1.0000<br>.10000 2.0000<br>-1.0000 -1.0000 -1    | 1 THETA AREA<br>200 .82830 2                                                                     | DEPTH FINISH AB<br>-0003- 1:7000<br>-1000 2:0000<br>-1.0000 -1.0000<br>-1.0000 -1.0000 |
| 10 X 01                              | HATRL NAME<br>7 0000<br>1 Alumin<br>41 Nove                                         | 1<br>202<br>205                                                         | MATRL NA4E<br>7 GOLD<br>1 ALUMT<br>-1 NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 505 - 51                             | MATRL NAVE<br>7 00LD<br>1 ALLHIV<br>-1 NONE                                                 | 1 502 - 11                         | MATRL NAVE<br>7 gold<br>1 alumin<br>-1 None                               | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | HATRL NA4E<br>9                                                                        |

Table D-XI-Concluded

TRN(.1) 0.0000 41.0000 0,0000 -1,0000 -1,0000 TRN( . 5) 16.0000 .2280 .0800 .5291 .7000 .4473 .4570 0.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 EMISTY REF(DIF) REF(SPC) REF(TH) THRM COND TRN(15) -220'0 - 1'0 - -1'0000 -1'0000 -1'0000 2 3 PRJN HGT LAMBDA 76 M P PLUME X ABSRTY AREA FINISH FINISH THETA DEPTH -1.0000 1000 œ 1 - ALUMTA -1 NONE -1 NONE HATRL NAME 5,329 =**k** 

22 PH PRJN HGT LAHBDA 

TRN(.1) 0.0000 0.0000 1.0000 TRN(.5) 0.0000 0.0000 1.0000 FINISH ABSRTY EMISTY REF(NIF) REF(59C) REF(TH) TWRM COND TRN(15) 80.0000 .2100 .9503 .0200 10.0000 .0067 0.0000 39.0000 .3760 .5620 .5703 -.0571 .2000 .4570 0.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 0000'I= 0000'I= 0003'I=\_\_\_0'I=\_\_\_ 4 C.+ D.50 X R T4674 AFEA PLUME X DEPTH FINISH .0020 87.000 .1000 39.0000 -1.0000 -1.0000 MATRL LAME 9 amite 1 alumi2 -1 core

TPHC 51 0000-1-0000-1--0000-1-20 Л Л PRJN HGT LAVBDA -=1.0 =1.0000 65°,3 PLUME X X R TLETA AREA -51325- 1,500- 11,97080 -1ci di

TRE(,1) 0,0000 -1,0000 5EPTH FINISH ABSRTY EMISTY SEF(CIF) REF(SPC) REF(TH) THEM COND TRV(15) 10950 291,0000 .0000 .3400 .5700 .5000 .5000 .2000 .4570 0.0700 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 34 TRL 2440 1 2410412 1 20000 1 20000 240000

GCGU!T- GUDU!T- GGGJ'T-22 PRUN HGT LAMBDA MU 01c,3' - .1,0 n La Lu 52615 

THN(,1) -1,000 -1,0000 18~(.5) 0.0000 -1.0000 -1.0000 DEPTH FINISH ABSRTY EHISTY PEF(NJ7) RFF(SPC) PEF(TH) THR COND TRV(15) 1000 39.0000 .3760 .5620 .5600 -.0511 .2000 .4570 0.0000 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 TTRL NAVE 1 ALUMIX +1 NOVE +1 NOVE

TRN(,1) U,0001 -1,0000 TRN(.5) 0.0000 -1.0000 ABSRTY EMISTY REF(SIF) REF(SPC) REF(TH) THAM COND TRN(15) -2280 .0000 .5291 .7600 .4473 .4570 0.000 #1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 -1,0000 1 0000<sup>1</sup>1- 0000<sup>1</sup>1- 0000<sup>1</sup>1- 0<sup>1</sup>1- 0<sup>1</sup>12- 0<sup>1</sup>000<sup>1</sup> PRJN HGT LAVBDA PLUME X THETA AREA 46.0000 41.0000 00000 00000 DEPTH FINISH 2+420-2-009<sup>1</sup>7 1,0000 1,0000 1,0000 MATRL NAME 1-1-1 ALUMI 1-1 NONE 1 NONE 5195 24

TEup

œ

1

R

Ĩ

Table D-XII.EFFECTIVE HEAT TRANSFER CONSTANTS-<br/>AFTER EXPOSURE TO PLUME

SUM OF SEGMENT AREAS = 117.00

EFFECTIVE SOLAR ABSORPTIVITY = .336 EFFECTIVE THERMAL EMISSIVITY = .445

AVERAGE VALUE, ALPHA/EPSILON RATIO FOR WHOLE SPACECRAFT = .7548



### Table D-XIII. IMPINGEMENT OF PLUME ON SATELLITE

## Table D-XIV. COORDINATE TRANSFORMATION

|          |             | H<br>  | RU: | ) T | Ur        | r        | а I<br>    | 3         | 15   | · -          |              |                |            | T L           | )      |              |        | 3          | P.A.     | 1 2           | : 1.,           | 6          | <b>,</b> 1       | 2        | 2              | <b>Y</b> | 3      | 1        |            |        |     |           |       |                                               |
|----------|-------------|--------|-----|-----|-----------|----------|------------|-----------|------|--------------|--------------|----------------|------------|---------------|--------|--------------|--------|------------|----------|---------------|-----------------|------------|------------------|----------|----------------|----------|--------|----------|------------|--------|-----|-----------|-------|-----------------------------------------------|
| IXA      | AL<br>Zi    | C<br>Z | 001 | RD  | 11        | X<br>X   | TE         | :         | 1    | R            | A I          | ) †            | A          | L<br>RF       | )<br>} | ÇC           | 0      | 7 [        | 1        | N /<br>F      | 1 <b>T</b><br>2 | E          | •                |          | <b>A</b>       | IG       | U      | L/<br>Ti | AR<br>HE   | C      | 20H | ם א<br>דו |       | NŤ<br>ľ A                                     |
|          | <b>(P</b> ' | ++     |     |     | <b>††</b> | T        | +-         | - • •     | •    |              |              |                | 1          | -             | ·.,    |              |        | •          | 1        | F-1           | <del> </del>    |            | Ī                |          |                |          | +      | Rį       | 1D         | ነ<br>  | 4   | t†<br>    | t A 1 | <u>, , , , , , , , , , , , , , , , , , , </u> |
| 1.<br>4. | 73(<br>07(  | 00     | -   | 57  | 13        | 53       | 00         | )         | •    |              |              | 1              | •          | 0 ()<br>9 ()  |        | 0            |        | 1          | •        | 6 (<br>0 8    | 00              | 0          | 1<br>            |          | ~ -            | 32       | •      | 14       | +1)<br>37: | 6<br>0 | 4   | · • (     | 000   | )0<br>72                                      |
| •••••    | <b></b> ,   | •      |     |     |           |          |            | T         | HF   | ۲<br>کل<br>P | <b>S</b> 1   | t n            | R          | • E           |        | SE           | 0      |            | 00       | ÛF            | 20              | 11         |                  | <b>1</b> | ES             |          |        |          |            |        | •   |           |       |                                               |
| ••••••   |             |        |     |     |           |          |            | Ŷ         | r    | E.           | <b>ب</b> ،   | <b>e</b> r 1** |            | •             |        |              | . 1 .  |            |          |               |                 | <b>Q</b> ' |                  |          | 1              | ,        | -      |          |            |        |     |           |       |                                               |
|          |             |        |     |     |           |          | S          | G<br> -1: | <br> |              | A)<br>D<br>Z | X1<br>13<br>(  | A<br>F     | L<br>-<br>T ) |        | <b>۴</b><br> | R<br>R | D 1<br>† 5 | F        | L<br>T :      |                 | <b>A</b> ( | N G<br>-C<br>T F | U        | LA<br>Of<br>(f |          | יי     | >        |            |        |     |           |       |                                               |
|          |             |        |     |     | •         |          | 42         | 2         |      |              | 7            | 25             | 0          | 0             | •      | 1,           | 0      | -<br>n (   | )0       | <b>.</b><br>0 | • •             | <br>1      | -                | 7        | 07             | 79       |        | - (      | -          |        |     |           |       |                                               |
|          |             |        |     |     |           |          | 52         | 2         |      |              | 72           | 25             | Ō          | 0             |        | 1            | 0      |            | 0        | 0             | 12              | 4          | 5                | ;7<br>;7 | 07             | 79       | )      |          |            |        |     |           |       |                                               |
|          |             |        |     | ,   |           |          | 7          | 2         |      | 5-1          | 7            | 2              | 0          | t             |        | 1            | 0      | 0          | 0        | Ð             | -               | 1          | 1-5              | 7        | 07             | 9        | )      |          |            |        |     |           |       |                                               |
|          |             |        |     |     |           |          | 92         | 2         |      | ł.<br>5.     | 77<br>73     | 25             | 5 0<br>5 0 | 0             | P      | 1,<br>1,     | 0      | 00<br>00   | )0<br>)0 | 0             | -               | 1          | 12               | 57       | 07             | 79<br>79 | }      |          |            |        |     |           |       |                                               |
|          |             |        |     |     |           | 1        | 02         | 2         | - 1  | 5            | 7            | 25             | 0          | 1             |        | 1            | Ð      |            | 00       | 0             | -               | 1          |                  | 57       | 07             | 79       | )      |          |            |        |     |           |       |                                               |
|          |             |        |     |     | ,         | 73       | 10;<br>10; | 2<br>2    |      | 2 +<br>3 +   | 0            | 9 C<br>0 C     | 12         | 0<br>0        |        | 1,           | 5      | 78         | 37       | U<br>6        |                 | 1          |                  | 58       | 05             | 58       | ,<br>, |          |            |        |     |           |       |                                               |
|          |             |        |     |     | 1         | 73<br>73 | 101<br>101 | 3         |      | 5 i          | ()<br>0      | 0.ª            | 12         | 0             |        | 2            | 4      | 79<br>79   | )4<br>55 | 9             |                 | •          | . 2              | 27       | 83             | 39       | )<br>, |          |            |        |     |           |       |                                               |
|          |             |        |     |     |           | 73       | 50         | 5         |      | 2,           | 8            | 21             | 11         | Ŋ.            |        | 2            | 5      | 34         | 18       | 3             |                 | 1          | , 4              | 2        | 94             | 40       | )      |          |            |        |     |           |       |                                               |
| •        |             |        |     |     |           | 73       | 50)<br>(n) | 5<br>A    | 1    | 2+           | 8            | 15             | 51         | 0             |        | 3            | 3      | ∩ {<br>4 i | 36       | 3<br>1)       |                 | 4          | • *              | 16       | 21             | 36       | )<br>} |          |            |        |     |           |       |                                               |
|          |             |        |     |     |           | 73       | 50         | )         |      | 2.           | 6            | 27             | 0          | 0<br>0        |        | 4            | 2      | 04<br>T I  | 11       | 4             |                 | -          | . 5              | 57       | 04             | 46       | ,<br>) |          |            |        |     |           |       |                                               |
|          |             |        |     |     |           |          |            |           |      | A N          | G            | LF             | :          | F F           | 20     | м            | L      | ti         | VE       |               | 10              | 1          | N I              | l N      | G              |          |        |          |            |        |     |           |       | -                                             |
|          |             |        |     |     |           |          |            | 1         | X    | ES           |              | 0 F            | •          | S             | AT     | EI           | "Ľ     | 1          | TE       |               | AN              | D          |                  | ſΗ       | RI             | JS       | T      | Q        | R          |        |     |           |       |                                               |

Table D-XV. PHYSICAL PROPERTIES OF IMPINGED SEGMENT SURFACES

| ATERIAL      | CODE       | MELTING | VICKERS        | BULK           | SURFACE   | HEAT         | CONDUCTIVITY  | YIELD               | DENSITY |        |
|--------------|------------|---------|----------------|----------------|-----------|--------------|---------------|---------------------|---------|--------|
|              | .0v        | POINT   | HARDNESS       | MODULUS        | ENERGY    | CAPACITY     | (H10-1 N/     | STRENGTH            |         |        |
|              |            | (DEG R) | (MMDS/SX)      | (154)          | (DANE/Cr) | (87U/L8=DEG) | SOFT-DEG-SEC) | (124)               | (Laver) | 356 15 |
|              |            |         |                |                |           |              |               |                     |         |        |
| 11 11 - IN   |            | 1279.00 | 27. AAAF+00    | 98.000E+05'    | 900.000   | .215         | .457          | 47,000E+03          | 169,00  | 4      |
|              | • •        | 010     |                | 0. 000.00      |           |              | £\$+3         | -+7.0006+03         |         | 4      |
| 11.03        | -          | TETTOU  | nnasunat 13    |                |           |              |               | FOR DOC F           | 140 00  | 6.4    |
| V L M J N    | -          | 1279.00 | 27,00nE+0C     | 90,0006+05     | 900.004   | C12.         |               |                     |         | 4 G    |
| NI UM IN     | -          | 1279.00 | 27.0006+00     | 98.0006+05     | 900.005   | .215         | . 457         | 47,000E+03          | 109.00  | 2      |
|              |            | 010     |                |                | 000 000   | 8.10         | . 457         | 47.709E+03          | 169.00  | 82     |
|              | -+ t       | 0014121 |                |                |           |              | E C U         |                     | 118.00  | 60     |
| JLACK        | 0          | 0/02.00 | 20,007601      | -10-2000-01-   | n00*7+    | 2            |               |                     |         |        |
| ALTE<br>ALTE | 0          | 5270.00 | 20.0005+01     | -10.0006-01    | -1.000    | 250          | - 200 -       | -10-2006-01         |         | 204    |
|              |            |         | - unalune - 44 | 96 . none + n5 | 500.005   |              | 455           |                     | 169.00  | 1001   |
|              | 1 P        |         |                |                |           | 0            | 2017          | 80,0005+02          | 139.00  | 7302   |
| SULLEL       | 0          | 1960 00 | TABLOSA        |                |           |              |               |                     |         |        |
| SOLCEL       | m          | 1320,00 | 49.00nE+01     | 99 .000E+05    | 200.015   |              | 200.          | 20+2000 00          |         | 200    |
| SOLCEL       | m          | 1320.00 | 49.0006+01     | 99.000E+05     | 200.004   | C. 89 +      | .002          | 80 <b>,000E+0</b> 2 | 139,00  | 1234   |
|              | ٣          | 1320.00 | 40.0005+01     | 99.0006+05     | 200.000   | 181          | . 002         | 80,000E+02          | 139,00  | 7305   |
|              |            |         |                | 1000.00        | 100 000   | c 00         | 002           | 80.0006+02          | 139,00  | 7334   |
|              | ) <b>•</b> |         |                |                |           |              | 600           | Ar-racted?          | 139.70  | 7338   |
|              | p          | no uzet | 10-3-00.44     |                |           |              |               |                     |         |        |
| SOLCEL       | m          | 1329,00 | 49.007E+01     | 99,0006+05     | 203,000   | 180          | 200           | 80+300-E+02         | 139.51  | 1305   |

 $\bigcirc$ 

------

| NAME-                      |          | WEAR        | -VELOCITY                                                   | EXPONENT-       | HOLECULAR   |
|----------------------------|----------|-------------|-------------------------------------------------------------|-----------------|-------------|
|                            |          | CONSTANT    | LOWER                                                       | (SLOPE)         | WEIGHT      |
|                            |          | (FT+LB/LB)  | LIMIT                                                       |                 | (VAPOR)     |
| and an and a second second |          |             | (FT/SEC)                                                    |                 |             |
| ALUMIN                     |          | 3.000E+0    | 6 460                                                       | -3.3125         | =1.0        |
| WINDOW                     |          |             | <b>a</b> ••• <b>•</b> • <b>•</b> •••••••••••••••••••••••••• | #3-5625         |             |
| SOLCEL                     | 3        | 5.000E+0    | 4 170                                                       | -3.5625         | +1.0        |
| IRPORT                     | 4        | 5.0000+0    | 4 170                                                       | 3.5625          | <b>#1.0</b> |
|                            | <b></b>  |             | 4 14 70                                                     | -3.5625         | =1.0        |
| HNASND                     | 6        | -1 000E+0   |                                                             | -1,0000         | -1.0        |
|                            | ž        |             |                                                             | -7.3125         |             |
|                            |          |             |                                                             |                 | ·           |
| DLAUK                      | 0        |             |                                                             |                 | -1 0        |
| WPIIE                      | <b>y</b> | 1,200000    |                                                             |                 |             |
|                            | 10       |             |                                                             |                 |             |
| N204                       | 17       | 1,0002+0    | 4 260                                                       | •3,0000         | 40,0        |
| HND3                       | 20       | 1.000E+0    | 4 220                                                       | •3,0000         | 63,0        |
| ммн                        | 21       | 1.000E+1    | 4 220                                                       | <b>-3,0000</b>  | 46.0        |
| MMHH20                     |          | 1;000E+(    | 14 220                                                      | <b>#3</b> .0000 | 64,0        |
| MMHN03                     | 23       | 1.000E+0    | )4 220                                                      | <b>-3,</b> 0000 | 109,0       |
| MHN420                     | 24       | 1.000E+0    | 4 220                                                       | -3,0000         | 154,0       |
| WATER                      | 25       | 11000E+1    | 14 220                                                      | -3,0000         | 18,0        |
| NOTE                       | VAL      | JES OF -1.0 | INDICAT                                                     | E NO DATA B     | INTERED     |

a 1

9()+

# Table D-XVI.WEAR CONSTANTS OF MATERIALS<br/>ON SURFACE

HIGH VELOCITY LOWER LIMITS FOR ALL MATEPIALS

| HIGH     | HYPER    |
|----------|----------|
| Velocity | VELOCITY |
| (FT/Sec) | (FT/SEC) |
| 3000     | 900000   |

Table D-XVII. ARBITRARY PLUME CHARACTERISTICS FOR TESTING PROGRAM

•••

|   | SMALL<br>SMALL<br>(IN.)                                                                                         | LARGE  | SVALL<br>SVALL<br>(FT/SEC) | LARGE<br>LARGE<br>(FT/SEC) | SMALL<br>SMALL<br>(RAD) | ENT ANGLE<br>Large<br>(rad)    | CONCES<br>SMALL | LARGE | <del>Chperature</del><br>(deg r) | (PSIA) | CLB/CUFT    |
|---|-----------------------------------------------------------------------------------------------------------------|--------|----------------------------|----------------------------|-------------------------|--------------------------------|-----------------|-------|----------------------------------|--------|-------------|
| 2 | 0200                                                                                                            | , 2000 | 2000                       | 1500                       | ,15708                  | .0123                          | 0200            | .0010 | 2000                             | - 27,0 |             |
|   | The second se |        | 4<br>2<br>2<br>1<br>2<br>2 |                            | VELI<br>VELI            | RF1C1AL<br>OCITY<br>OFT-SEU) ( | 91U=11/5        |       | EG ř.                            |        | 2<br>2<br>2 |
|   |                                                                                                                 | 4      |                            |                            | Ň                       | •                              |                 | . 620 |                                  |        |             |
|   |                                                                                                                 |        |                            |                            | 5                       | 0.0                            |                 | 1.040 | 1<br>6<br>6<br>7                 |        |             |

520