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Inferences on Sample Size: Sequences of Samples

University of North Carolina at Chapel Hill

1. Introduction

In earlier papers [11-131, various aspects of analysis of possibly incom-

plete random samples have been discussed. These analyses all apply to data

from a single random sample only. The present paper describes some extensions

of these methods when sets of samples are available.

When more than one sample is available, the field of hypotheses, alter-

nate to that of having complete camples, becomes much richer. Some of the

more interesting possible situations are discussed, though no exhaustive general

theory is developed.

A secondary aim of this paper is to lay foundations for later extension

of the methods to cases when the analytical forms of the distribution(s) of

observed random variable(s) are not completely known. In such cases it is

almost essential to have a number of sarples; useful results can hardly be

expected from a single sample (even if it is quite large). Techniques for

such problems are not developed in the present paper, but knowledge of methods

appropriate when population distribution is known is an essential preliminary

to development of such techniques.

2. Notation end Preliminary Formulae

As in the earlier papers, it will be supposed that observed values of

independent continuous random variables with a common (population) density

function f(t) are being used. The i-th sample (i-l,....,u) eom'rises

r ordered values X iSX 2 S... XirX Such censoring as may have occurred is
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supposed liited to censoring of extreme values, in which the a o least and

alz. greatest values of an original, complete sample of size ni - ri + io

+ a Iri have been omitted, leaving the ri observed values.

The (or%! ted) probability integral transformt

(1) i - f(t)dt

have the joint density function

(2) T 'T J (ri+sl +siri)l Sio (1 - Y ) (O aSY *""Y ir l)

t-1 siol Sirs I il

The joint density of the a least values YIII Y2 1 *'."¥Yv and the m

greatest values Y~ lrY2r2'-2'r Yam is

a - • -2

r2 " rI I. .s) 1

The symbols *(x) will denote the digasma function of argument x,

*(x) - d o r(x))(- log(x-l)l)

Successive further derivatives *(1) ( W (2) (49.0. are the trigmma.

tetnegama ... functions.

3. Estitmrtion of Sample Size

In [1], problems of esttir ttlo of total size of a random sample, given

the r least (or greatest) values observed in the sample, vere discussed.

Here these results are extended to the case vhen it is known that a samples
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all have the same original size, n, but only the least ri,r 2,.. .,rm values

are recorded in the first, second,... m-th samplew respectively. In the

notation of Section 2, this means that s -0; Sir - n-r 1 -

From the Joint likelihood function of the ordered X's

(4) In)- M(x 1 .. x In) M n I- n 1-Y n-ri -"

M (n-a) in jail

we seek to obtain a maximum likelihood estimator of n.

Regarding n as continuously variable, we obtain the equation

(5) m •ft+l) - - *(f-.-+l) - log[ T7 l'1 Yir )

for the maximum likelihood estimator ft. An approximate value of ft can be

obtained by making

L( .ft +) - 4L(-ft 1)

which gives

(6) T7T El - ri(m + iTT 1-
1-1 1 2 1-1.iri-i i-l

Provided no Yiri equals 1 (which has probability zero) equation (6) has a

unique root greater than max(rl... r3 ) --!, The appropriate integer value

for fi is that between (h - n) ad (h + 2 (If these are integers. either

can be used.)

If r 1 - r 2  ri...r3  then (5) becomes

(5)' *(& + 1) - *(fi - r + 1) - 1 log[ T (1 - Xr)]
J-1

i.(. r - j) log M -1 (1 - YirJ.0 J=1



In this case, (6) becomes

(6)' 6 r[l -' -(1 -Y )-"Mr i
ir

which, for m - 1, gives

(6)" r Y• r -lr-2"

The Cramir-Rao lower bound for the variance of an unbiased estimator of

n is

(7) * (n-r +1) - m4 (ni+l)]-
i-1

For r -r 2  ... -r -r, this is

(7)' m-[ ( (n-r+l) - OM (n+l) ]-i. ,- 1 (n12)-1]-i

J-a

Unfortunately, if (7) (or (7)') is used to approximate var(ft), it gives

(at least for m-1) unduly optimistic (i.e. small) values. We have (since

Yir, has a beta distribution vith parameters ri, nU-xrl)

(8.1) E[Y•I_ l r-i'
ii

and

.) -2 1l(8.2) var(Yi)- n(n-rj+1)(ri-l)- (r -2)-

From (6)" we see that, for a -1

(9.1) EfIA) iy r(r-lf- n-

and

(9.2) var(a) 4 r 2 (r-l)-2 (r-2f 1 l n(n-ri-l)
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From (9.1) we see that there is a bias of about (r-i) n - . (Note

that the true value of E[f] cannot differ from (9.1) by more than 1).

Table 1 contains approximate values of the variance and mean square

error of E as given by (6)", and also values of the Cram~r-Rao lower bound

(from (7) with m-1).

Table : Approximate Variance and Mean Square Error
of n, and Crarnr-Rao Lower Bounds

m - 1 (Cram6r-Rao Lower Efficiency (Z) of

(Approximate) Bound) X m

r n Var(h) M.S.E.W()

4 4 3.56 4.25 0.7024 33

6 16.00 18.25 4.1427 46

8 35.56 40.25 9.6329 48

10 62.22 70.25 17.1295 49

12 96.00 108.25 26.6279 50

15 160.00 180.25 44.6267 50

6 6 2.16 2.65 0.6705 45

8 8.64 9.85 3.6046 60

10 18.00 20.25 7.9267 63

12 30.24 33.85 13.5892 65

15 54.00 60.25 24.5866 65

8 8 1.74 2.15 0.6547 49

10 6.67 7.53 3.3359 67

12 13.06 15.53 7.0739 71

15 26.12 28.82 14.5893 73

10 10 1.54 1.91 0.6453 52

12 5.5 6.25 3.1748 71

15 13.89 15.25 8.5595 76

12 12 1.43 1.78 0.6390 53

15 7.14 7.89 4.5594 76

15 15 1.32 1.65 0.6327 55

In view of the above results it seems worthwhile to seek some alternaitive

estimator for n.
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From (8.1), (ri-1)yl' is an unbaised estimator of n with variance

mn(n-ri+l)(ri-2)-I, So if ~l1 Mi"

(10) N(a,...,a I a (r -1)Y
i-i i

is an unbiased estimator of n. The variance of N(.) is minimized by taking

ai proportional to (ri-2)(n-ri+l)-1. As n is not known, it is not possible

to calculate this value of a,. For a first approximation it is reasonable to
-1

take a. proportional to r1-2, or even just to take ai a . . am - m

(which is, of course, optimal if rI - r2 - M)"

Table 2 gives some numerical comparisons between

2m -1 m m

(11) var(N(;i,...,;a)) w n (r1-2)] -a I (r -')(r±-2)[ 1 (r,-2)1-2

i-l i-I i-l

m

where a - (r 1 -2)[ 1 (r1-2) 1-I

and

(12) m

(12) var(�N~m 2 il(r±+l)(r-2 2)')
i-I

._j,'-1)I [(r-2)" -x n
2 aa i'1
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Table 2: Variances of (a) N(Wi,..., m)

(b) N(m',...,M")

m 2 r 1  r 2  r 3  r 4  (a) (b)

5 4 - - 0.2n 2-0.72n 0.2083n2-0.7083n
6 4 - - O.16n2-0.72in 0.1875n2 -0.6875n
7 6 - - O.i 2_0.6!73n 0.1125 2-O. 6 125n

8 6 - - 0.1n -0.62n 0.10416n2-0.60416n

9 8 - - 0.0769n 2-0.5799n 0.0774a2_0.5774a
10 8 - - 0.0714n2-0.5816n 0.0729a 2 -0.5729n

6 6 - - 0.125n2 0.625a

8 8 - - 0.08in2 -0.58n

10 10 - - 0.0625n - 0.5625n

m 3 5 5 4 - Oo1250 2 -0.4687 5 n 0.1296nr2 -0.4630n

5 4 4 - 0.1428n -0.4898n 0.1482a2_-O.4815n

7 7 6 - 0.0714n -0.4082n 0.0722n -0.4056n

7 6 6 - 0.0769n2-0.4142n 0.0778n -0.4111n

10 10 8 - 0.0455n 2 -0.3843n 0.0463n2 _0.3796n

10 8 8 - OO.500an2 -0.3900n O.0509n 2 _0.3843a

10 8 6 - O.0556n -0.4136n 0.0602n2-0.3935n

6 6 6 - 0.0833n1  
- 0.4165n

8 8 8 - 0.0556n2 - 0.3819n

10 10 10 - O.C417n 2 - 0.3750n

m a 4 5 5 4 4 0.0909n2 -0-3471n 0.09375 n2 _0-3437 5n

5 4 4 4 O.0111n2 _0.3703n 0.1146n 2-0.3646n

7 7 7 6 0.0526n 2 -0.3047n 0.0561n 2-0.3031n
2_ 2-7 6 6 6 0.0588n -0.3114n O.0594n2-0.3094n

10 10 10 8 0.0333n2 -0.2867n 0.0339n2-0..-d39n

10 8 8 8 0.0385n 2-0.2929n 0.0391n -0.2891n

10 10 8 6 0.0385n2-.0.3047n 0.0375n -0.2875n
10 a 8 6 0.0417n2 -0.3056n 0.0443n2_0.2943a

10 8 6 6 Q.0455n2-0.3182n 0.0495n2_0.2995n

6 6 6 6 0.0625n 2 0.3125n

8 8 8 8 0.0417n 2 
- 0.2917n

10 10 10 10 0.03125n2
- 0.28125 n
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It can be seen that little is lost by using N(m-l,...,m-1), at any rate

for the amount of variation in values of r shown in the table. The last

column of Table 1 gives the efficiency of N(m-*... ), relative to the

Cram~r-Rao lower bound, in cases when r - r2 - r.. -r

We note that in the case of symmetrical censoring with rI r2 2

rm - r, n - r+2a (s - sa - s), the maximum likelihood estimator of n

satisfies the equation 2

0 (ifi-r~)) +l) -* (6+1) log JY (1(Yi)

The statistic 
i-

m

j-- l(Yir-"l)"

is an unbiased estimator of n. It has variance

nm- (r-3)-l (a-r+2).

3. Tests of Saiiple Size

If we wish to test the hypothesis that the available data represent the

whole of the original samples, and still to confine ourselves to situations

where the original sample sizes are all the same (n 1 .n 2m...anmwu), then we

need consider only cares for wbich r.-r2 ,..-r. For if some r's are

smaller than others then (under the condition n11 - n2 - '- % -n ) the

corresponding samples must be incomplete and there is no need for a test.

It is showr in [21 that, for a single sample, a test with critical region

of form

Y (l-Y ) > C
r a

is uniformly most powerful with respect to aU alternatives to the hypothesis

so - or - 0, for which aO 1Ir - 8. If the nunber of available observations

is the same for all samples (rl-r2 ..... .- r) and the complete sample size

(n - r'sOS is also the same then



9

Eyo, (1-Yrl > c

i-1

is uniformly most powerful with respect to all alternatives for which so/ar -.

As particular cases we have (I) cenvori-ng from beZow, for which ar - 0 and

the critical region is of form

M
T• il > C a

and (ii) syvm -2i!oaZ oenaoiing, for which #0 - ar' and the critical region

Is of form

1[11 (1-Y ir)] > cc.

Of course oensoring fram above (so-mO) can be treated by similar methods

to those appropriate to censoring from below.

The values of C have to be chosen to give the required significance

level, in each case.

In the subsequent discussion we will consider a rather more general

situation in which the hypothesis tested is that the complete sample size is

n,(2 max(ri...rm)) aeai-at alternatives that it exceeds nO. We will however

usually restrict ourselves to the case r -r2-...-rmwr, though this is no

longer the only case of interest. The hypothesis of "completeness" corresponds

to taking n0 equal to r.

3.1 Censorirq from Below
From (2), putting *tO - n-r and s ir 0 we see that the likelihood

ratio of a - n' against u - n0 is
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.•(,j i) m y.~,n
constant. ( T7 i l

LCYIn 0 ) i=l

So a test with critical region

m
(13) T-T YU > Cc

i-l

Is uniformly most powerful with respect to the set of alternatives hypotheses

n > nU, given this kind of censoring. This Is so even if the rI's are not

all equal(provided of course no 0 m(rl,...prU)).

Each Y has a beta distribution vith parameters n-r+l, r. The die-
m

tribution of Y ii is complicated, but a useful approximation may be
in

constructed by considering the distribution of G - -2 loge(FT Yd) -
a

-2 1 log Y,. re cwmulant generating function of -logsY, is
i-l

(14) logo0 a -- log &Y], log Efy- 1a £

*log IR(-0 ~ -tr

- loger(n-r+l-T) - loger(a+1-T)

-1OgeF(n-rl) + logr(anl).

Beace the s-th cumulant of -logS Y. is

(15) K( (-log-i[) (-l)9[0 (n-r+l) - ' l )]

r-l- (s-1)I T (n-j)-."
j-0

r- 1

So -2 1 OeYi is distributed am I (n-j)-W ij where WiO.e..,W,,. a
Jd0

£ndpeg~• • arabes
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m

(16) G - -2 l log Yi is distributed aseii

m r-i r-I

i-i j..o ,-soi

2
where W are independent X variables.

So, to test the hypothesis n - no (against alternatives n > no) we

use the critical region

m
-2 • logaY 4 C O

where

r-l -(17) Pr[ Z (,,o -J),1 W < c] I

i-so

(Note that it is the lower tall of the G-distribution which gives significance.)

It is possible to give explicit formulae for the probability in (17) (see

Appendix I). since each W is listributed as a X2 with an even number of

degrees of freedom, but except for unrealistically small values of r and m,

these would not be useful for purposes of calculation. Useful approximationsr-l

(at least for uZ2) can be achieved by regarding : (no-j)-I W4 as

approximately equivalent to cX , with c and v chosen to give the correct

first and second moments, i.e.

(1a.1) c - I r (no-j-2)I[ r11 (no-j)'z]-:

r-1 1 2 r-l
(18.2) 'i - 2m[ 1 (n0-J)- [ I (n 0-J) 2 ] 1

Approximate values of the power can be obtained by replacing n0  by n.

For m - 1, exact values are easily calmalated, as shown in [3]. The approxt-

mation would be expected to improve as a increrses (in that the W 's, and
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also the approximation, both become more nearly normal). Better approximation

would also be expected, for given r and m, as n increascs, because the

coeffi.iients (n-j)-1 are in ratios closer to 1. Investigations summarized

in Appendix II confirm these expectationa.

3.2 Syriretrical Censoring

The first part of discussion followG exactly similar lines to that in

Section 3.1, and is therefore condensed. The critical region

m

(19) TT [Yil(l-Yi±)] > Ca
i-1

with C clhosen so that
a

m

(20) Pr4 T [YU (1-Y ir)] > C In - no] - a
i-i

given a test of the hypothesis n - no which is uniformly most powerful with

reaspect to alternatives n > n., given that censoring is symmetrical. This

also is true even if the ri's are not all equal, provided 0 ;> max(r.
1

From (3), with r 1 a r, a£ a - 8ir *,(n-r), we obtain the cumulant

generating function of -loSe(Yi1(1-Yir)] as

n- r -(21l) [ lo e r( -, +1-'T)-loger (•"2 +i) ]- [lo e r (,+l-2 O-logr (n-1) ].

m

Hence, if G - -2 I loge Yi (1-Yir)]I-il

(22) K (c) £l\2,[2 ' (_-1)-) (n+l)

Since !(a-r) must be an inte¢er

2 -1)(s-l)! [ (n-j)-

and (22) can be written
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s+1 s~l (n1 ()-1
(22)' K (G) - m.2 +1((a-l)I (nj)- 8 +(_) s(2 -1) (,+)

J-0

Although we du not have a simple representation, as In section 3.1, It

seems reasonable to approximate the distribution of G by that of cx2 with

(23) c- 2 ,2(G)[L(G)]1; v - 21tK(G)2[r[2 (G)1-1.

3.3 Gereral Purpose Tests

If the value of i(-s0/sr is not known, we do not have a uniformly most

powerful test of sample size. In [2) a test of completeness with critical region

Y1 + (1-Yr) ' Cc

with kCc(2,r-l) - 1-c, has been proposed, for the single sample case. This

test was derived on heuristic arguments, but ha3 been shown [2 ] to have pro-

perties rendering it a useful "general purpose" test when 0 is not kmown.

Put

V I- Y 61 + (1-Y id (I . 1,2s.,10().

The density function of V L is

LB(2+n-r,r-l)]-l v-r+l (1-vi)r-2 (0 < v1 < 1)

and so v• have the likelihood ratio

t(V 1 ,... V min') IY(24n Or~r-1)( (a VA) n

t(V 1 ,... ,Vinn) - I(2+n'-rr-12.[

So a uniforrly most powerful test of the hypothesis n - no (if only Vl,...,Vm

are to be used) a:aiwnt the set of alternatives n ; no, is obtained by ucin3

the critical region
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M
(24) T7 vi 3 c

i-i

with Pr[ T7v. > C Ino] -

i-i

Again this is so even vhen there are different numbers rl,r 2 ,...,r of

observations available in the different samples, and we now give some formulae

appropriate to this more general case.

The value of Ca depends on n0 , a, rl,...,ma. In order to develop use-
m

ful approximations we use the criterion C - -2 1 log Vi.
l-1

The cumulant generating function of -loge V, is

--Bi I(2+n-ri .ri-l)-1)

lance the s-th cumulant of G is

(61) r,- 2

(25) 2a(-1) [1(e-) (2 +n-r ) - (n+l)]- 2(s-l) I 1 (n-j)-.
i-l i-i J-0

The Listribution of C is that of

a r -2 -

(26) 1 1 (n-J)i W1

where the W's are Independant X 2 varina.
x2

(26) can also be expressed as
1-2 1R-2

(26)' R (n-j)"1  10) Wij a R (A) 1  W
I-0 i J-0

where R - max(rir.z... rm); and denotes sunmation over all I for
i

vhich ri X J+2. The W'Is are independent 2 variables, with

number of ri's greater than or equal to (Q+2).

If rl-r 2 m...-rmr, then (26)' becomes

r-2
(27) (.I-0
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2
with 0 W1 , .... W2 independent X2  variables. (Compare (16).)

As in section 3.1, the distribution of G may be approximated by that
2

of cx 2 with, In this case

(2.1c [r2 2 r-2 )-11-1
(28.1) - (n-j)" If r (n-j)- -

li-o J-0

(28.2) v - 2a[rl (n-j)-l 1 2 (n-j)'2]-1.

Variation in accuracy with a and n will be exactly similar to that in

Section 3.1.

.4. Some Nemerical Comparisons

Table 3 gives some values of -2 log C0 . 0 5  for each of the three tests

(13), (19) and (24). Values in parentheses were calculated from approximations
2

by (i) using cX2 approximation and (ii) making an ad hoc correction based

on comparison between exact and approximate values in cases when the former

was calculatud. The (exact) values for m - 1 (case (b)) are taken from 13).

Table 3: Critical limits for (a) one-sided (b) symetrical and

(c) eneral purpose tests (Values of -2 lost C0 . 0 5 )
0 05

r m (a) (b) (c)
4 1 1.281 4.435 0.572

2 3.821 (10.66) 1.839

3 6.734 (17.40) 3.318

4 (9.65) (24.40) (4.90)

10 1 2.703 7.115 1.862

2 (6.85) (16,50) (4.72)

3 (11.45) (25.55) (7.79)

4 (16.15) (36.80) (11.00)

Table 4 gives powers of these tests, with a - 0.05, with respect to

alternative hypotheses n - r+2, r46, r+10, Values in parentheses were
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obtained by using cX2 approximation, with the C values corresponding to

Table 3. (In Appendix Il there is some evidence indicating that as n

ScY. approximation rapidly increases in accuracy.) For the

"one-sided" and "symmetrical" tests the "best" forms of alternatives are

assumed, i.e., s0 - 0, sr - n-r for "one-sided", *o - sr - 4'(n-r) for

"symmetrical". For the "general purpose" tests, power depends only on

(s0+a r )€-,n-r).

Table 4: Power of tests (a), (b) and (c) (5 Significance Level)

Power of (a)
r n a 1 2 3 4

4 6 .294 .557 (.749) (.872)
10 .780 .989 (*) (M)
14 .955 * (M) (*)

10 12 .364 (.636) (.829) (.923)
16 .907 (*) (*) (M)
20 .988 (M) (0) (*)

Power of (b)

r n U, 1 2 3' 4
4 6 .206 (.364) (.522) (.658)

10 .594 (.933) (.996) (C)
14 .841 (*) (M) (,)

10 12 (.269) (.442) (.664) (.795)
16 (.798) (.992) (*) (A)
20 (.982) (N) (*) (N)

Power of (c)

r U. a1 2 3 4
4 6 .167 .296 (.420) (.530)

10 .470 .827 (.958) (.991)
14 .716 .978 (.999) (*)

10 12 .238 (.419) (.547) (.677)
16 .732 (.969) (.996) (*)
20 .949 (0) (M) (,)

(* deaot• "over .9995")
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The figures in Table 4 exhibit the rapid increase in power with m, the

number of s.nmples in the sequence.

Such powers will n,-z be attainable if the population density function

f(t) is not known. However, they do indicate the possibility that with a

sequence of moderate length, good power may be obtained even when f(t) is

not completely knots,- for example when the form of f(t) is known, but some

parameters have to be estimated.
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Apperndix I

The results obtained h.olow are not originul, but the durLvatIons aJre given

to assist comprehension. The symbols {w(h)) will d&note indep•ndent raneom

variables distributed as X2h The symbols {( } denote positive constants.

The characteristic function of

k (1)

is

*y Wt (1 2 kt -

yT (l2a1 .t)- Jl bj(l-2a it)'

where

k kSb '- (1-2a uit) --- 1
j-J. u~j

Putting t - (2a~i) gives
k

(A.1) b - kT (1-au/aj U1:'

provided no two a 'a are equal. Note that, putting i - 0. we obtain the
k

identity j*E bj - 1. It follows that Y, is distributed as a form,;alZ mixture

of k variables distributed as a x2 with weights b• (j-i,... ,k). (Some

of the b 's must be negative (if k > 1).)

Hence, for y > 0

k
(A.2) Pr[Y l<y] I 1 bl(1-e /'aia)

k
-1- b e-y/aj

w-v

vhere b• is given by (A.l).
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We next cousidcr

k

Y• aj(

which may be regarded as the sum of two independent random variables, each

distributed as Y V From the mixture representation (A.2) we see that the

distribution of Y2 is also a formal mixture, as set out in the following

table:

Distribution Weight

a W(2) (-=a
2) b 2

i ~ JX4 i

(1) (1)
aWi + ' 2b bit (j <j' )

Again using (A.2). the distribution of (a i W i + ai, j, is a formal

%I-xture of

a j X 2 with weight (1-a ,/a)-

(A. 3)2
a~X2 with weight (1-a /ail)l

Hence, for y > 0

k 2 eixtu re J)(A.4) Pr[Ycy) I b 21 4/a

i-i I
+ 2 Z I b b11[l-(l-aj,/aj)-l ej i..(l..aj/a,)-I e7/a

Wa now briefly consider

Y k a W(3)

3 - i11 i Ji- t
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which has the formal mixture distriburion set our below:

a (3)(ýa% 26b 3
aj j J

ajW +a, 3,al6bb~j J•Ja)w(2) + ,(1)jj (i is ~

ajW 1+a, W1 l+a1 *loW(1 6 b b bill Q~j

To obtain a representation of the distribution of (ajW (2) + we

note that

a(2)+ (1) ()+(W 1 + ~ )
i i jWj J J21 ~ ~ i

The distribution of (a J2 + aW IW ) can be obtained from (A.3). We find

that (a (2)W' + a4,• I is distributed as a mixture of2i. (1ai lai'i

aj y 4 with weight (1-a /aj)
1

(A.5) a.i with weight (.-aj,/a.)l -(l-a1/a 1 ,)- 1

2 -

aIX2 with weight (l-a /a,,)-2

After acme 6anipulation we find that for y > 0

k ,3 2 -. ý-+y/a

(A.6) Pr[Y3 y] a I - F b,[l+(iy/a )+4(;ys/a )le

-3 111 *bjb1 (l-a11/aj)ll+(*Y/a 1)+(l-a1/a1 1)
1i ,--,aj

-3 1 b (,I bh,(l-a 5/aj)-'}
2 e

i.-Ji 0'i

Similar formulae can be obtained for any

kYt I a W~m)
i1-i I

J.,J



22

The length v1 thO forula incrcas-i quitc rapidly with tn.

In the particular case (16), which can be written, in our present notation
r

(A.7) C I (n-j+l)- W
i-i j

we obtain from (A.1), putting k- r and a Cn-j+)"

r r
(A.8) b - FT (IT - l-Ti n-t+1 " j -

(-)r-- n Xr ___ (J-1#2#,...,r)
r j n-j+1

For a- l(and y>0), from (A.2)

k

(A.9) Pr[¥ 1 >Y] - Pr[YImY] - (n) Z (-l)J+l(r) I e.-4(n-j+l)y
1 j n-j+1

For m * 2, from (A.4)

n2r -4(n-j+l)y r 2 1 2+
(A.10) Pr(Y >Y] ) 2 r )a)(+ajly

i-i2 J1 (T- )J (,J(JJ)l

+2(_l)J r3 n~~) r '-~ (r.J(-,

Some particular cases (used In calculating Tables 3 and 4) are set out below.

(Note that C in (27) is obtained from (16) by changing r to (r-l).)

r n Pr[Y2 - y]
4 128 - - /2 (y- Y-)e-2+8(3 +84e 3y)2-( 2  47 e 2Y

)e 436(yIc+(y8e +2+,,

6 2 00( 3y-2)e' 3y/2+2025( 2y-3)e-2Y+6 48(5y+12)e-4y/ 2+l00(3y+23)e-3y

2 8 8 1184 _-7y/2+gy - 63 -4y 160 -9y/2 4 "52. 5 y
10 210[(-7y 4 t

14 11012x(8, 1888) -lly/2+(6y - 6ye -016 -1 3y/2 4 628a-7y
14 - e.. ... i. . .• " 977" " 147)"

3 4 36(y-5)e-Y+32(3y+2)e" 3y/ 2+9(2y+13) e' 2 y

6 2 2 5( 2y-ll)e-2Y+288(5y+2 ). Sy/ 2+100(3y+19)e-3y

2 9 207 -4y 4 -9y/2 9 279 -5y10 120 ,16 e +(2y+,,)e +20' _00e

14 3642 3 35 -6y 1_8 36 .- 13y/9 2 9 387 -7y
14 34X1e+LJ-j(-ty- f6)e +~3 TO-) (2 + tjjy )
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For 3m3,

(A.11) PrJY >yj r ( n) ~l3 e (_)~) 1ý(-+~
3 i-I j n-j+l

+ 4f4ý(n-J+I)y]2 2) + 3 (r)(J2 X _...)J(r, J'
j n--j+l JO' i-i,

(l+4Cn-J+l)y) - 3 r2 2 J'1'_,J(,

j n-j+l j'j-'

In particular, for r - 4, n - 4

2 2432 e-j4 (-0y 2 +3y45e-y+7y52y94) 231PrE (!y]I(By - 144 yi----)e4-Oy+3y35)e+7y+2yi24)

+ (-2y 2_46y-89 -2

And for r -3, n -4

6,
2 7 2  a'.1 5 -y( +2 '2-3y/2+.L.7 2 211 -2y'

3r(Yyj - 24( 2y15 3 2 (y+19,y+--) ]
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Apperdix Ii

Using the notation of Appendix I, if a,=a 2 ... aua then Y"a

2 2.. am thnY jul 3

is distributed exactly as a X . For general values of {a we might hope

2
to obt3in a useful approximation by supposing Ym to be distributed as c X,

with c and u chosen to make first and second moments agree. That is

k ] k 2
cv - ElY I2m aj; 2c v -var(ym) - 4 m I a

i-I .i-i

or, equivalently
k 2 k k k

c -M a,/ 1 ,,; m'v- 2 ( i a,)2/i a 2

Approximatioi&s of this kind have been used quite widely with satisfactory

results (Q4 ][ 5] etc.).

In order to check how suitable the approximation is in our particular case

some numerical comparisons are presented here.

For sums of the form Y¥ £ (n-j+l)-W(m), with n an integer at least
Sjin'i n

equal to k the least accurate approximation would be expected when n u k.

As n increases, so that the ratios n: (n-i):...: (n-k+l) approach 1, the
2

distribution should become closer to a c X 2 distribution. Table A.1 contains

exact and approximate values of Pr[Ya>y] for k-5 with isl,2 and n-5, 8,10

to exemplify this point.

The exact formulae are

n - 5: Pr[Y1 >y] a 1 - (1-e-Y/2)5

- 25 475-y/2 _OO 700-

Pr[Y ,Pyl (- -(-) 2(~ 3 )e+(150y+lCo)e 3/

575 -2y 5 131 - 5 y 12+(5v 3)"2 + f &--•
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-2y -Sy/27y2 4n 3: Pr[Y1 >y] - 70a- -224e + 280c •y - 16 0 e-'y 2 + 3 5 e-y

P2r,25 1175 -2v , 352 -5y/2+PrY>l-56 %-y" y - -- o-)e "•(uy --j-)e (75y+25)e-y

+200 + 15200 --7y/2 2 2) 2575 -4y-7-•y 147 -'o(0 y + "-Tg,)e-y

n- 10: Pr[Y1>y] - 210e-3y - 72ey/2 + 945e-y - 560e-9y/2 + 126e-5y

P2_[25 - 50- - 3y. 2 0 0  12800 -7y/2 225 225 - 4yPr[Y2>yl - 2522,2 'y - -ý) e + - ---y T •-e +-" •-

200 6400 -9y/2 5 +32 -Sy

For m - 3. and n - 5.

Pr[Y3 >Y] 1 .5 2 2625 98500 -4y 2 8000 6C0

80 +0 +' L(°Oy2-

+ (1125y2 + 1500y + 34750)e-3Y/ 2 -(250y 2+2750y + 4- --
3

+ 25 2 645 6887 -5y/ 2

2

For calculations of approximate values (based on c x. distributions)

the following values were used:

n - 5 0.6410 7.124m

8 0.1880 9.410m

10 0.1332 9.692m
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Table A.l: Comparison of Exact and Approximate Values of
5 )-Ym)

Pr[ I (n-j+') • A y

j=1 a

n 5 n - 8 n- 10

* 1 y Exact Approx. Exact Approx. Exact Approx.

0.5 .9995 .998 .9S) .982 .951 .950

1 .991 .982 .836 .834 .649 .650

1.5 .959 .943 .575 .576 .312 .312

2 .899 .882 .333 .336 .118 .118

3 .717 .712 .080 .080 .011 .011

4 .517 .526 .015 .014 .0008 .0007

5 .348 .363 .002 .002 - -

6 .225 .238 .0004 .0003

7 .142 .149 - - - -

a - 2 1 - - .9992 .9990 .993 .993

2 .9997 .9990 .933 .932 .743 .743

3 .995 .991 .648 .649 .279 .279

4 .973 .964 .309 .311 .058 .057

6 .828 .821 .031 .030 .0009 .0008

8 .580 .587 .0016 .0014 - -

10 .344 .356 - -

12 .182 .188 - -

14 .088 .089 - -

r4 6 8 10 12 14 16 18 203 Exact .9998 .992 .942 .811 .620 .421 .259 .147 .079

n -5 1Approx. .9994 .988 .934 .809 .626 .431 .267 .151 .078

The improvement in accuracy with n is marked, but with m, less so.

This suggests that is might be worthwhile devoting special efforts to obtaining

exact values for significance limits, while relying on approximations for

evaluation of power..


