Al 5708 7-rM

THE INSTITUTE
OF STATISTICS

THE CONSCOLIDATED UNIVERSITY
OF NORTH CAROLINA

> T ‘Du:h”i(: relegee distribution
not to he h f.n.«.lmgs in this Fonont 00
ment of :hcorzstx-uoa‘ as an ”fﬁcf-;]‘ Do d.“
nated b ihArmy Position, unless ‘o &Zm t.

Y other authorizeq docume-nt,‘. sige

=,
ol
- e
DEPARTMENT OF STATISTICS Yoy i
Chapel Hill, North Carolina {:‘}if}&;\- RInia ”E—i
Roproducad by ;

NATIONAL TECHNICAL
INFORMATION SERVICE

]
y
*
springfiald Va 22151 "

AN s ]
ll'wr""‘.'"“ MU A LU
Gtro o i ﬂﬂ-

.

29



s, pes e e 2 .
WRTTRES SR AR $h by
el N AW &S
: RN R

d fe QN

f’t -

R ;
;yy ¥
el B 8
} § o=
B B o 3
ﬁ' £ iy v
R ! i i

/\ ‘;@
€

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT  NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




Imelareicd

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security elassitication of tttle, hody of abstract und indexing annotatior must be entered wher the overall ropat 1 cln: siftod) -

1. ORIGINATING AC TIVITY (Corporate author) 28, HCPORT SECURITY 11 ASLITICATION
Unclascified

. . . . 2L, GF CuU#
Univercsity of Torth Cuorolina A

3. REPORY TITLE

Inferences on Sample Size: Sequences of Samples

4. DESCRIPTIVE NOTES (Type of report and inclusive dutes)
Technical kerport

)

AU THORIS) (First name, middie initial, last name)

N. L. Johnson

6. REPORT DATE Fu. TOTAL NO. OF #AGLS LG S oLEr e
Noveriber 1971 26 5
84, CONTRACT OR GRANT NO. 8. ORIGINATOFR'E REFOHT NUWMELE RIS
DAHCOL T1 C oOk2
b. PROJECT NO. RA
c. 95. OTHER REPOKT NO(S) (Any Gthor nar. e 8 el o, Le aveigond o
this report) k
d. 9778.1-!

10. DISTRIEVTION STATEMENT
Approved for public release; distribution unlimited.

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

U. S, Army Research Cffice-Durham
Box Clf, Duke Station

Durhem, lortk Cerolira 27704

13. ABSTRACTY . . .
In earlier papers various aspects of analysis of possibly incomplete randon

samples have been discussed. These analyses all apply to data from & single rundom
sample only. The present paper describes some oxtensions of these methods when sets
of samples are available.

When more than one sample is available, the field of hypotheses, alternate to
that of having complete samples, becomes much richer. Some of the more interestirng
possible situations are discussed, though no exhaustive general theory is develorpad.

A secondary aim of this paper is to lay foundations for later extension of the
methods to cases when the analytical forms of the distribution(s) of cbservesd randomn
variable(s) are not completely known.

1L, KBy WOITS
Inference
Sampling
Statistics
Analysis (mathematics)

roRM REPLACKS DD PORM 1478, 1 JAN 86, WHICH I8
1 wov "1473 OBSOLETE FOR ARMY USK. Urelnanit jed

Security Classification



* Mmis reseurcn was partially supported by the Army Research Office,
Juriar, wnader Grant do. DAHCCA-71-C-004%.

i
H
1
H
[
3
s
li.FERETICES Ol SAVPLE S1ZE:  SEQUEMCES OF SAMPLES™
Dy
N. L. Johnson
Doy avtment of Statistics
Drivepsity of dorth (arcliva at Chapel HiLll
Institute of Statistics Mimeo Series No. 784
lovemben, 1971
Y..
___)
CIE N
3 {' ]
©OJAN ab

"R

Qi

\',!T‘. Y
et



Inferences on Samsle Size: Sequences of Semples

By
N. L. JORMSON
University of North Carolina at Chapel Hill
1. Introduction

In earliex papers [1]-[{3], various aspects of analysis of possibly incom~
plete random samples have been discussed. These analyses all apply to data
from a single random sample only. The present paper describes some extensions
of these methods when sets of ssmples are avsilable.

When more than one sample is availsble, the field of hypotheses, alter-
nate to that of having complete samples, becomes much richer. Some of the
more interesting possible situations are discussed, though no exhaustive generai
theory is developed.

A secondary aim of this paper is to lay foundations for later extension
of the methods tc cases when the analytical forms of the distribution(s) of
vbserved random variable(s) are not ccmpletely known. In such cases it is
almost essential to have a number cf sacples; uscful results can hardly be
expectad from & single sample (even if it is quite large). Techniquecs for
such problems are not developed in the present paper, but knowledge cf methods
appropriate when population distribution is known is an esgential preliminary

to development of such techniques.

2. Notation 2nd Preliminary Formulae

As in the earlier papers, it will be supposed that observed values of
independent continuous random variables with a common (population) density
function £{t) are being used. The {~-th esample (i=l,2,...,u) comsrises

ordarad values x11‘x12""‘x:ri'

L7 Such censoring as may have occurred is
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supposed limited to censoring of extreme values, in which the 80 least and
‘1‘1 greatest values of an original, complete sample of size B, =T, + 840
+ '1r1 have been omitted, leaving the T, observed vaslues.

The (ord.red) probability integral transforms
6] E
1 Y, = I f(t)de
14 . €3
have the joint density function
- s -
m (r,+s, +5;,..)1 & ir
(2) Ldo M. 10 (1ay, ) | (osy s...sy, sD
1 ir il ir
i=) { s, 1 s, 1 i i
~ 30 “ir, -

The joint density of the w least values Yll' Y21""'Yn1 and the =

greatest vaiues er .th ""'an is
1 2 m

-(ri+310+s" ) 8 r, ~2 8ir
i ¥ 10 ( “¥,q) 1 -y, )
11 "1:1 11 iz,

3 1

i=1 __'10! ':lri! (r1-2) !

(O"ilsyiri‘l)

The symbols ¥(x) will denote the digamma fuuction of argument Xx,
d d
v(x) = 5= (log I'(x)) (= 4= log(x-1)1)

Successive further derivatives t(l) (x), 0(2) (x),.». are the trigamma,

tetreganma ... functions.

3. Estimation of Samnle Size

Ia [1], problems of estinstion of total size of a random sample, given
the r least (or greatest) values observed in tha sample, weore discussed.

Here these results are extended to the case when it is known that = samples
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all have the same original size, n, but only the least LTS YEERTS A values
are recorded in the first, second,... mw-th samples respectively. 1In the

notation of Section 2, this means that S0 "™ 0; siri = o-rg.

From the joint likelihood function of the ordered X's

- r -

n ] n-r i

(%) 2(X[n) = £CX; peenaX o) = H l Tu—fi;)—,- (¥, ) 1 1"1r £0X,4)
m =1 i -

we seek to obtain & maximum likelihood estimator of n.
Regarding n as contlnuously variable, we cbtain the equation
: ™ n
(5) my(Etl) - [ w(a-z+1) = dogl TT (1-v, )]
' i=1 i=1 i
for the maximum likelihood estimator f. An approximate value of # can be

obtained by making
Lxls + ) = Lxla - P

which gives
m Lo=1 o
(6) TTn-r@+dMs TTOY)
. 1=l 1=1 1
Provided no Yir equals 1 (which has probability zero) equation () has a
i
unique root greater than nnx(rl,....tn) -'%, The appropriate integer value
for 8 1is that between (B - %) and (B + %D. (If these are integers, either

can be used.)

If I =T, " ... =T, then (5) becomes

(5)" WA +1) -y@E-T+ 1) =w logl TT Q-1,0]
=1
r-1 -1 -1 m
1.e. I a-nDT=n log [TT -yl

3=0 3=1



In this case, (6) becomes

m
' A e - ljm-l_l
(6) d e rfl l-i (1 - Yir) ] T -
which, for m= 1, gives

(6)" Aery -%.

The Cranér-Rao lower bound for the variance of an unbiased estimator of

n is
NGV (1) -1
(¢) [ Zl 6 (amr+l) - ' (o) )
in

For 'rl - rz = L, = rn = r, this is
r-1
n® 2 v (aert) - P17t - a7l I @1 271
j-
Unfortunately, 1if (7) (or (7)') is used to approximate var(d), it gives

(at least for m=l) unduly optimistic (i.e. small) values. We have (since

Y has a beta distribution with parameters r,, a-r,+l1)
1r1 i i
S S |
(8.1) E[Yiri] n(r1 1)
and
(8.2) var(¥;} ) = a(a-r,+1) (r,~1) "2(r,-2)"}
¢ iri i 1 i *
From (6)" we see that, for m= 1
(9.1) 2(8) ¥ r(r-D"'n - 3
and

(9.2) var(d) ¢ r2(r-1)"2(r-2)"1 n(n-r+1)
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From (9.1) we see that therc is a bias of about (r-l)-l n - %’- (Note
that the true value of E[f] cannot differ from (9.1) by more than 1).
Table 1 contains approximate values of the variaace and mean square
error of 2 as given by (6)", and also values of the Cramfr-Rao lower bound
V(from (7) with m=l1).

Table 1: Approximate Variance and Mean Square Error
of n, and Cramer-Rao Lower Bounds

me= ] (Cramér-Rao Lower Efficiency (X) of
(Approximate) Bound) X m N(w-1,...,m°1)
b4 n Var(d) M.S5.E.(#)

4 4 3.56 4.25 0.7024 33
6 16.00 18.25 4,1427 46

8 35.56 40.25 9.6329 48

10 62.22 70.25 17.1295 49

12 96.00 108.25 26.6279 50

15 160.00 180.25 44.6267 50

6 6 2.16 2.65 0.6705 45
8 8.64 9.85 3.6046 60

10 18.00 20.25 7.9267 63

12 30.24 33.85 13.5892 65

15 54.C0 €0.25 24,5866 65

8 8 1.74 2.15 0.6547 49
10 6.67 7.53 3.3359 67

12 13.06 15.53 7.0739 71

15 26.12 28.82 14,5893 73

10 10 1.54 1.91 0.64535 52
12 5.5 6.25 3.1748 71

15 13,89 15.25 8.5595 76

12 12 1.43 1.78 0.6390 53
15 7.14 7.89 4.5594 76

15 15 1.32 1.65 0.6327 55

In view of the above results it seems worthwlifle to seek some altornative

estimator for n.



From (8.1), (ri-l)YIi i8 an unbaised estimator of n with variance

-1 1 n
n(n—ri+1)(ri-2) . So if gy a1
g 1
(10) N(a,,...0a_) = | a,(r,~1)Y,
i o 1a1 i1 iri

is an unbiased estimator of n. The variance of N{+) is minimized by taking
a, proportional to (rin)(n-ri+1)-1. As n 1s not known, it is not possible

to calculate this value of a,. For a first approximation it is reasonable to

1
take a, proportional to ri-z, or even just to take a =8, ™..o=a " o
(which is, of course, optimal 1if =)™ ... = rm).
Table 2 gives some numerical compariscns between
- - 2, B -1 n m -2
(11) var(N(a;,...r2))) = 0l I (x~2))"-n I (e 0 (-2 ] (r-2))
=} iw] i=]
~ o -1
vhere a = (ti-Z)[ii (r,-2)]
=1
and
-1 -1 -2 7 -1
(12) var(N(m “,eee,® )) = 10 Z (n—ri+1)(ri-2)

1w}

a(n=1) ¢ -1
- -i._z_l 1!2.1(:1_2) - ;
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Table 2: Variances of (a) N(’a’].....'a'm)
(b) N(m'],....m"])

2 3
4 -
4 -
6 -
6 -
8 -
8 -
6 -
8 -
10 -
5 4
4 4
7 6
6 6
10 8
8 8
8 6
6

8

10 10
5 4
4 4
7 7
6 6
10 10
8 8
10 8
8 8
8 6
6 6
8 8
10 10

SQODOOQQO\OJ\&\

(a)

0.202~0.72n
0.16n2-0.73n
0.1a2-0.6173n
0.1n2-0.62n
0.076902-0.5799n
0.0714n%-0. 58160

-

(b)

0.2083n%-0. 70830

0.1875n%-0.6875n
0.11250%-0.6125n
0.10416n%-0.60416n
0.07740%-0.5774n

0.072922~0.5729n

J

0.1250%
0.083n°
0.0625n2

0.125n%-0.4687°n
0.1428n2-0. 4898n

- 0.625

0.583n

«~ 0.5625n

0.12960"~0.4630n
0.1482n"-0.4815n

NN

0.0714n2-0.4082n  0.0722n%-0.4056n
0.0769n2-0.4142n  0.07780%-0.411ln
0.045502-0.3843n  0.0463n%-0.3796n
0.0500n2~0.3900n  0.0509a2-0.3843a
0.05565°-0.4136n  0.0602n2~0.3935n
)y 0.0823n° - 0.4167n

0.6556n® - 0.383%n

0.C4170° - 0.3750n
0.09090%-0.3471n  0.0937°n%-0.3437°n

0.0111a%-0.3703a
0.0526n2~0.3047a
0.0588n ~0.3114n
0.0333n2-0.2857n
0.0385n2-0. 29290
0.03852%-0. 30470
0.0417n%-0. 30560
0.0455n°-0.3182n

0.0625n

0.04170

NN N NN

~

2

0.1146n2-0. 3646n
0.0561n2-0.3031n
0.059402~0. 3094n
0.0339n2-0. 4395
0.0391n%-0. 2891n
0.037502~0.2875a
0.0443n2-0.2943n
0.049502=0, 2995n
0.3125n

0.2917n

NN NN

NN

0.0312%02 -~ 0.2812%a



It can be seen that little is lost by using N(ufl,....m.l). 8t any rate
for the azount of variation in values of t shown in the table. The last
coluan of Table 1 gives the efficlency of N(url.....m-l), relative to the
Cramér-Rao lower bound, iu cases when r1 - Ty = oo - rm - r,

We note that in the case of symmetrical censoring with Ty = fy % .. -

L% n= r+28 (so -8 = 8), the maximum likelihood estimator of n

satisfies the equation -
yCa-T)H1) - y(@¥1) = 2o § logly,,(1-Y, )] .

2 2 1= i1 ir
The statistic

-1 ? -1
m o (r=2) ) (Y, ~Y )
je1 ir "11
is8 an unbiased estimator of n. It has varlance

nm_l(r-3)-1(n-r+2).

3. Tests of Sample Size

If we wish to test the hypothesis that the available data represent the
vhole of the original samples, and still to confine ourselves to sitvations
where the original sarple sizes are all the same (nl-nz-...-nm-a), then we
need consider only caces for which Lt R A For 1f some r's are
smaller than others then (under the condition n, =~ n, ® ... =n, = n) the
corresponding samples must be incowplete and there is no need for a test.

It is shown in [2] that, for a single ssmple, & test with critical region

of form
Y a-v)>c
1 T a

is uniformly most powerful with respect to all alternatives to the hypothesis
s~ - 0, for which IO/lr = 8. If the purber of availebla obgervations
48 the game for all samples (rl-tz-...'tr-t) and the complete eample size

(n = x+uo+lr) is slso the game then




m

0
H (¥, =¥, 01 > ¢,

is uniformly most powerful with respect to all alternatives for which solsr = 0.
As particular cases we have (1) censoring from below, for which s, = 0 and
the critical reglon 1s of form

m
H Y1 > G
and (11) symmetrioal osnsoring, for which o " 8., and the criticsl region
is of form

m
H [v,,Q-¥, )] >C..

0f course censoring from above (s;=0) can be treated by similar wethods
to those appropriate to ceasoring from below.

The values of Ca have to be chosen to give the required significance
level, in each case.

In the subsequent discussion we will consider a rather more general
situation ia which the hypothesis tested is that the complete sample size is
no(z uax(rl...rn)) agaiast alternmatives that it exceeds n,. We will however
usually restrict ourselves to the case rl-rz-...-rh-r, thoug§ this is no

longer the only case of interest. The hypothesis of "completeness" corrssponds

to taking 1, equal to T.

3.1 C(Censorirg from Balow

From (2), putting s, = n-r and s, = 0 we see that the likelihood
i

retio of n = n' against n = n, is
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t [} m
Qi) | constant. x ( ]—r\'ﬂ)“'-no
L(¥|n,) {=1

So a test with critical region

(13) 1”'111

i=1

is uniformly moat powerful with respect to the set of altermatives hypothelea.
n > o,, given this kind of censoring. This is so even if the ri'o are not
all equal(provided of course ny 2 m(rl.....r‘)).

Each Yil has a beta distribution with parameters n-r+1 r. The dis-
tribution of H Y 1 is complicated, but a useful approxiuation usy be
conuruc:cd by considering the distribution of G = -2 log (1_1' Y,) =

-2 Z leg Yi The cumulant gencrating function of —-logeY:l is
ie]

-t los Y
(14) 1og. Efla - ] - log E[! ]

- Ri{n~4l-1,2
Log, Sy art1, )
- loger‘(n—ri-l-t) - logel‘(n-i-l-'r)

-log T (n-r+l) + log T (atl) |

Hence the s-th cumulant of -log‘ Yi is

(15) x‘(-loge'li) - (-1)'“:('-1) (o~r+l) - w('-l) (at+l)]
-1 .
- (a=1)! ] (a~3)":
3=0
-1 .
So =2 logeri is distributed as Jzo(n-j) J'H vhere "10""’"1.:*-1 are

indepeadent xg variables, and
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n
(16) Gm-2 | log Y, is ¢istributed as
i=]1
n r-l - -1 -
I I @™, - ] «ntw
1=1 §=0 3 je0 3

where W_  are independent xim variables.

i
S0, to test the hypothesis n = n, {against alternatives n > no) we

use the critical region
m
=2 121 logeYi < Cc
whara

-1 -1
(17) Pr[Jgo (no-j) "j < Ca] —

(Note that it 1s the lower tail of the G~distribution which gives significance.)
It is possible to give explicit formulae for the probability in (17) (see

Appendix I). since each wj is 1iistributed as a xz with an even number of

degrees of freadom, but except for unrealistically small values of r and n,
these would not be useful for purposes of calculation. Useful approximations
1
sko
approximately equivalent to cx3 » with ¢ and v chosen to give tha correct

(at least for m22) can be achieved by regsrding (no-j)-l WJ as

first and second moments, i.e.

r-1 -2 r-1 1.~
(18.1) =[] (g H I L (=17
- 1-0 j—ro
=1 - r-1 - -
(18.2) v=2al | (ag-0)"M%0 ] apn7H
3=0 3=0

Approximate values of the power can be ohtained by replscing B, by n.
For m= 1, exact values are easily calculated, as shown in [3]. The approxi-

mation would be expected to improve as m increrses (in thet the W, 's, and

J
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also the approximation, both become more nearly normal). Better approximation
would also be expected, for given r and m, as =n dincreascs, because the
coeffi:ients (n-j)-l are in ratios closer to 1. Iovestigations summarized

in Appendix II confirm these expectaticons.

3.2 Symretrical Censoring

The first part of discussion follows exactly similar lines to that in
Section 3.1, and is therefore condensed. The critical region
m

(19) 'I’I [v,,(-¥, )1 > c,

with Ca chosen so that

m
(20) Pr{ I-I'[Yil(l-Yir)] > Cc|n - no] -q

gives a test of the hypothesis n = 0, which is uniformly most powerful with
respect to alternatives un > ny» given that censoring is symmetrical. This
also is true even if tha ri'a are not all equal, provided L 2 max(rl,...,ru).
1
Trom (3), with e 8,8 E{n—t). we obtain the cumulant

generating function of ‘1°3e[Y*1(1-Yir)] as

(21) 2 [1oger(9~;£ +1-v)-log T (P-gi +1) 1-[log I (a+1-27)=Log I (w+1) ].
o

Hence, 1if G = -2 121 log [¥,,(1-¥, )]

(22) €, (6) = m(-1)°2° (29 BE 41 - 2%, (5~1) (0413

Since %(n-r) must be an integer

¥(o+r)-1 -
v EE 4« 0D ()4 (-1 (s-1)1! I @9 .
j-

and (22) can be written
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k(n+r)-1
(22)" « (@) = 2.2 (G-11 [ @0y 0D ()
3=0

Although we do not have a simple representation, as in section 3.1, It

seems reasonable to approximate the distribution of G by that of cx3 with

(23) e = ;@0 @17 v = 20 (@1 (e y(01 7N

3.3 Gereral Purpose Tests

If the value of 0(-30/er) 18 not known, we do not have a uniformly most

powerful test of sample size. In [2) a test of completeness with critical region
Yl + (l-Yr) > cu

with Ica(z,t-l) = l-a, has been proposed, for the single sample case. This
test was derived on heuristic arguments, but has been shown [2 ] to have pro-
perties vendering it a useful "general purpege” test when 6 43 not koown.

Put
Vi - Yil + (l.Yit) (i - 1.2..-.,0)0
The density function of Vi is

(B{24n-r,r-1) ] "L v&~ r+1(1—vi)“'2 ©<v, <1

Vi
and go 2 have the likelihood ratio

LV .00V [n') } (2+n -r,r-1) [ Y ]n 8,

v,

Z(Vl,...,vn]ﬂ ’ 2"1! -Ts r’ll' i=} *

So & uniforiily most powerful test of the hypothesis n = B, (if only Vl.....vn
are to be used) azainst the set of alternatives n > L is obtained by using

the critical region
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m
(24) TTv,>c
{=1 i a

m
with Pr{ ] l V, > C |n.] = a.
1=l i u! 0

Again this is so even when there are different numbers TisTpeevarly of
observations available in the different samples, and we now give some formulae
appropriate to this more general case.

The value of c° depends on Ngs By Tyeeecr¥ps In order to develop use-

m
ful approximations we use the criterion C=-2] log Vv
i=1

The cumulant generating function of -loge Vi is

“n(zh-:i-r.ri-l)]
_}(2+n—ti,ri-1)

1.

logcllvit] - 103‘

Hence the s~th cumulant of G is

n n ti~2
2§ 2D V) - P e ] ) @™
fwl i=l =0

The distribution of G 1s that of
T,~2

n i -1
(26) I I @™
1=1 350 3

vhere the W's are independent xg varizblna.

(26) can also be expressed as

R-2 R-2 _
(26)" [ @p [Pu e ] @y,
1=0 1 3 4=
vhere R = nax(rl.tz.....rm); and 2(3) denotes summation over all 1 for
. i
which r, 2 j¥2. The Uj'a are independent xi"j variables, with nj -

puxber of ri'l greater than or egual to (4+2).

1f T ). T T, then (26)' becomes

=2
@n ] (n—j)”le
3=0
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2
with "0' “1""'“z-z independent Xam variables. (Compare (16).)
As in section 3.1, the distribution of G may be approximated by that

of cx3 with, in this case

r=2 -2, K22 -1.-1
(28.1) c= ] @NUL -
3=0 3=0
=2 =2 -7 -
(28.2) ve=2af ) (=-"112 | 1 (a-9) 4L,
3=0 i=

Variation in accuracy with m and n will be exactly similar to that in

Section 3.1.

. 4. Some Nemerical Comparisons

Table 3 gives some values of -2 log CO.OS for each of the three tests
(13), (19) and (24). Values in parentheses were calculated from approximations
by (1) using cx3 approximation and (ii) meking an ad hoo correction based
on comparison between exact and approximate values In cases when the former

was calculated. The (exact) values for m = 1 (case (b)) are taken from [3].

Table 3: Critical limits for ga} one-sided (b) symmetrical and
(c)_general purpose tests (Values of -2 lo co os)

) 0,05 . _—
r m (a) (b) (e)
4 1 1.281 4.435 .572
2 3.821 (i0.66) 1.839
3 6.734 (17.40) 3.318
4 (9.65) (24.40) (4.90)
10 1 2.703 7.115 1.862
2 (6.85) (16.50) (4.72)
3 (11.45) (25.55) - (7.79)
4 (16.15) (36.80) (11.00)

Table 4 gives powers of these tests, with a = 0,05, with respact to

alternative hypotheses n = r+2, xr+6, r+10, Values in parentheses wers
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obtained by using cxi approximation, with the Cu values corresponding to
Table 3. (In Appendix II there is some evidence indicating that as n
increases, the cxﬁ approximation rapidly increases in accuracy.) For the
"ona-sided" and "symmetrical" tests the "best" forms of alternatives are

" assumed, i.e., 53 = 0, 8_ = n-r for "one-sided”, 8y = 8, = ¥(n~r) for
“symmetrical”. Por the “general purpose" tests, power depends only on

('0“ t) (’n"t) .

Table 4: Power of tests (a b) and (c 5Z Significance Level

Power of (a)

T n ne 1 2 3 4
4 6 <294 557 (. 749) (.872)
10 .780 .989 (*) (*)
14 . .955 * (*) (*)
10 12 .364  (.636) (.829) (.923)
16 <907 (*) (*) (*)
20 .988 (®) (*) (*)
Power of (b)
3 n me 1 2 3 4
[y 6 2206  (.364) (.522) (.658)
10 «594  (.933) (.996) (*)
14 841 (%) (*) (*)
10 12 (.269) (.442) (.664) (.795)
16 {.798) (.9%2) (™) (*)
20 (-982) (%) (*) (*)

Power of (c)

r n ne 1 2 3 4
4 6 .167 +296 (. 420) (.530)
10 470 .827 (.958) (.991)

‘ 14 .716 .978 (.999) (*)
10 12 .238  (.619) (.587) (.677)

16 «732  (.969)  (.996) (*)

20 949 (%) (») (*)

(* danotes "over .9995")
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The figures in Table 4 exhibit the rapid increase in power with m, the
number of samples 1in the secquence.

Such powers will nc: be at:aiﬁable if the population density function
£(t) 15 not known. However, they do indicate the possibility that with a
sequence of moderate length, good power way be obtained even when £(t) is
not completely known~ for example when the form of £(t) 1is known, but some

parameters have to be estimated.



(1]

(2]

(31

(4]

{s]
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Appendix

The results obtained bolow are not original, but the derivatlons are given

to assist comprehension. The symbols {wj“)) will dcenote independent random
variables distributed as xgh. The symbols {aj} denote positive constants.

The characteristic function of

E (1)
Y. = a, W
1755
is
k -1 k -1
oy (1) = T [ (1-2a1)™" = ] b, (1-2a,1t)
where

k k
P v, TT(2a4r)=1
=1 3wy u
Putting t = (2341)-1 gives
k -1
(a.1) by = T’T (1-a,/a,)

provided no two aj's are equal. Note that, putting t = 0, we obtain the
k

identicy jgl bj = 1. It follows that Y, 4is distribduted as a foral mixture

4
P

of k variasbles distributed as ajxi with weights b, (4=1,...,k). (Some

3

of the bj's must be negative (if %k > 1).)

Hence, for y > 0

k
(A.2) PriY;<yl = | bj(l-e“"’/“J)
3=1

K
=1- 7 b e-&Y/aj
g=1

where bJ is given by (A.1).



We next cousider

which may be regarded as the sum of two independent random variables, each
distributed as Yl' From the mixture representation (A.2) we see that the

distribution of YZ is also a formal mixture, as set out in the following

table:
Distribution Weight
w2 2
J (za x4) bj
(1) w(1)
+ '
aj H& aj. 40 2bj bj' q<i")
Again using (A.2), the distribution of (a 3 j + aj wj, ) ie a formal
aixture of
‘ 2 -1
. 8, X, with weight (l—aj./aj)
.3 13 . 4
aj.xz with weight ( -aJ/aj,)
Hence, for y > 0
-ky/a -ij/aj
(A.4) Pr(Y,<y) = Z b 1-e 3 ~Gsy/ayde )
j-
-1 "'?Y/aj- - 1 "’h’/a
+2770» bj,[l (1 aj,/aj) e (1 aj/aj.)

3<3’

¥y/a
8 1
e [b (1+¥Y/8 )+2b (l~a ,/a,) ']
jzl jjéj 373 b

Wz now briefly consider

1'1

-



which has the formal mixture distribution set cut below:

(3) 3
ajwj (= ajx6) bj
ne) (¢))] .2 .
jj +Aj'wj 3.jbj, (343"
1 §9) 1) . ' "
"‘ij -n-aj wJ +aj,,w " 6 bjbj,bj.. 3 <3 < 3.

To obtain a representation of the distribution of (a H(2)+a w(l)) we

J'3 3
note that
(2) (l) - (1) (1) (1)
jj +ag, j' ajwjl +(ajwj2 + a, wj ).
The distribution of (ajwj(l) 3'W§1) ) can be obtained from (A.3). We find
2
that (ajdjz) + aj.w(l)) is distributed as a mixture of
2
3114 with weight (1-aj,laj)
2 =1 -1
(a.5) asz with weight (1—aj./aj) (1~aj/aj.)
aj.xg with weight (1l-a /aj.)

After scxe manipulation we f£ind that for y > O

-ky/a
(A.6) PelY <yl = 1 - Z b [1+(&y/a Gy /ay) e T
g1t
'*yla
- 37 1 o2b,, (1-a o, St Ghy/a e 0may 10,07 3
J"J >/
~%y/a
-3Zb 2 b, (l-a,/a) e

Sim{lzs formulae can be obtained for any

Z a w(“)
3=l
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The length o the formula increases quite rapidly with m.

In the particular case (16), which can be written, in our present notation

T
(A.7) ¢= J (n-yt1)7t w(®
jul j
we obtain from (A.l), putting k = r and aj = (n~j+l)-1,
r . r
A3 b = P N n-t+l
(4.8) s m‘c D L‘jr )

- DMHOD ey o2

For m » l(and y>0), f£from (A.2)

k
- - - o - +1 -‘&( - +1)
(a.9) PrlY,>y) = Pr[Y =y] (r)jgl( nd ¢ ?xé})?-'f o ¥(n=3+1)y
For m = 2, irom (A.4%)
r -¥(o~j+l)y
(4.10) Pr(Y,>y] = ‘:)2521 e (5 i Oy @-sr1)y)

T
+ 2(-1)3(;');3@-34-1)‘1 )
3%

Some particular cases (used in calculating Tables 3 and 4} are set out below.

(-nd' Gos' =37

(Note tkat G in (27) is obtataed from {16) by changing r to (r-1).)

r o Er[Yz > y)
o 6 (ay- 287 R (ymnye Tenapesie Y 22t eV
6 200(3y-2)e Y 242025 (2y-3)e o4 (sy+12) e~V 24100 (3y+23)e” Y
10 21650y - 2B 29y - 8o o (g A0 /A 230 )
16 19012y~ }-gg-g-) /2 (gya11)e Y4 e zgég)e'm’ 2+(—‘7'74{-§—$-)e‘7’1

3 4 36(y-5)e Y+32(3y+2)e” Y/ 29 (2y+13)e” Y

6  225(2y-11)e D4288(sy+2)e”>Y/ 2+100(3y+1?)e-3y

10 1205 ( &gy LD Vatayrdre i Gepdl e

1 36 y- Byl « 21y + B

196
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For m = 3,
(a.11) Pr(Ypy] = (-1)%( ) ;Z(l -k(“_JH)y[( 1)3 (j) (-—31-;1-) {1+¥(n-3+1)y
+ ¥k (n-+D)y]%) + 3D =k j;j.<-1>j'(§.) -
{3+ (n-j+1)y) - 3(§)2 EI§IT jgjs -1)3 .) —3_§“77
+3<-~\3<);—1371{2 =0ido 5-1_,,—.—:1

In particular, for r =4, ne 4

Pr[Y3>y]-(8y2-164y+£ﬁ32)e 4 (- 168y %+4 32y~ 3456) eV (72724 528y+2944)e " /2

+ (~2y -46y- §%29e-2y

And for re= 3, n = 4

27 2

PriYppy) = 64[(Gy -27y+1355e V- 9y 12ys220)e™ Y 2 Ly liagpe 2Ly 70V
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Apperdix 11

Using the notation of Appendix I, if a,=a,%.. .73 =a then Ym - a z wgm)
i=1
is distributed exactly as a xfm. For general values of {aj} we might hope
- -
to obtain a useful approximation by supposing Ym to be distributed as ¢ xs,

with ¢ and v chosen to make first and second moments agree. That is

k
cv = BlY ] =2m z a 2¢% = var(Y ) =im ) a2
4 Y =1 3

or, equivalently

Z 3y / z .m L -2 Z a,) / Z a
3-1 5-1 g1 3 Tgmd
Approximatious of this kind have been used quite widely with satisfactory
results ({4 ][ 5] ete.).
In order to check how suitable the approximztica is in our particular case
some numerical comparisons are presented here.
For suzs of the form Y = jzl(n-j+1)-lw§m), with n an integer at least
equal to k the least accurate approximation would be expected when n = k.
AS n increases, so that the ratfos n: (n-1):...: (n-k+1) spproach 1, the
distribution should become closer to a ¢ x3 distribution. Table A.l contalus
exact and approximate values of Pr(Yn?y] for k=5 with m=1,2 and n=5,8,10

to exenmplify this point.

The exact formulae are

zw 5 Pr[Y1>y] -] - (l-e-y/z)s

Pr(Y,>y] = 2y~ 4054 12100y~ 20)e Y4 (150y+100)e” 3y/2

373

+ (50y+7)e "2 4 (—y+ 131) -5y/2



- - -l - -
n~ 8 Pr{Ypy) = 70¢” ~224e™/2 4+ 28007 - 160e W2 4 g5y

h ] . - - -
Prly,sy] = 567022 y - L2 (agy - Bhe 5912, (759+25)2"3
200 | 15200, ~7y/2 , 25 . . 2575, by
* Gy Ty e Y2 4 YRS

- - el -t - -
n=10: Pr(Yp>y] = 210" - 726e /2 4 g45e™ - 5606792 & 12607

25. 50, -3y zoo 12800, -77/2, 225 _ 225

r - - S ———

Pr‘Y2>yl 252 [(12 y - 3) +(~5y 147 =—==)e +5y 16
| (200 6300) ~97/2 ( %;)e-Sy]

For m= 3, and n = 5,

5
PriY >y] - (l 25 2 _ 2625 y + + 28590

yo B - 68000
5 T -(500y% - 4000y + 28290 4.~

+ (112557 + 1500y + 34750)e™ /2 (250y %2750y + 2418 )¢

25 2 645 € 2.
@ S

For calculations of approximate values (based on ¢ xi distributions)

the following values were used:
c v
n=S5 0.6410 7.124nm
8 0.1880 9.41Cm
10 0.1332 $.692m

ye Y



Table A.1:

m O & L N -

1o
12
14

==3 Exact
n=3S5

Approx.

5
Pre § (nes1) W™ 5 4

ne=3y

Exact Approx.

J=1

.9995  .998
.991 .982
.959 .943
.899 .882
.17 712
.517 .526
3648 .363
.225 .238
142 . 149
.9997  .9990
.995 .991
.973 .964
.828 .821
.580 .587
. 364 .356
.182 .188
.088 .089
4 6

.9998 .992
.9996 .988

. 942
.934

n=§

Exact  Approx.

.983
.836
.575
.333
.080
.015
,002
0004

-

.9992
.933
. 648
. 309
.031
.0016

10 12
.811 .620

.809 .626

.982
.834
.576
+336
.080
.014
.002
.0003

.9%90
.932
. 649
311
.030
.Q014

14

.421
.431

Comparison of Exact and Approximate Values of

26
n=10
Exact Approx.

<951 .950
.649 .650
.312 .312
.118 .118
011 .011
.0008 .0007
.993 .993
+ 743 .743
.279 .279
.058 .057
.0009 .0008

18 20

147 .079

.151 .078
less so.

The improvement in accuracy with n 1s marked, but with u,

This suggests that is might be worthwhile devoting special efforts
exact values for significance limits, while relying on spproximations for

evaluation of power. .

to cbtaining




