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POWER-SERIES SOLUTIONS FOR FLOWS OF AN

IDEAL DISSOCIATING GAS

1I. Introduction

This report deals with the solution of certain problems

in fluid mecbhanics by power-series expansion of the solution

in the independent varlable(s). The method is directly

related to the well-known Frobenius method for determining

analytic solutions of linear ordinary differential equations

(see, e.g., Agnew 1960). However, here we apply it to nonlinear.

systems of differential equations in as many as three independent

variables. In conseqaence, the recursion formulas for the

series coefficients are relatively complicated, and an

electronic computer is required to effect and to store their

solution.

There are some texts on numerical methods which discuss

power-"s'ries methods for the solution of nonlinear ordinary

differential equations (e.g., Henrici 1964), but usually.

only as ,a prelude to the description of more "practical

methods. Most applications of series expansions to nonlinear

problems have been fox the purpose of clarifying aome local

behavior of the solutions and, thus requiring only the first

few terms of the series, have been carried out analytically

rather than numerically. Nevec...oless, the use of series

methods in fluid mechanics has a considerable history.

Most of this history is related to the problem of the

Ateady aupersonic flow of a perfect gas past a blunt hody.
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on prescribing the bow shouk shape (analytically), one can

substitute approximate series expansions for the flow variables

into the governing equations and determine their coefficients

recursivt-'• .pen •.. u, :>• 2 .. . zs the series

converges encompasses tk.e body contour (which munt ,+:

determined as part of the solution) and the sonic line, beyond

wh..! ,.h . can be continued by the method of character-

istics. First to suggest th.ixa approach were Lin and Rubint:•.-

(194b).. Early attempts to implement it were made by DugundjI

(1948), !.in and Shen. (1951), andt Cabannet: .. ,

The fizat to use a computer able to generate.

substantial ,aumber o' series coefficients was Richtmyer (1957).

-:7' Dyke (1952) soon gave evidc: &

series do not conve::.'. .Ie scribd this

failure to the appearance in the analytic continuati:,;:.v

the series upstream of the shock a singularity which is closer

to the center oi ahe expansion than is ti:._ . . -'Ibsequent

v iere therefore directed at extending the reg2:- of

convergence of the series so that they would have.

... ' an Dyke (1966),

Leavitt (1969), and Moran (1970) all devised

succeisful sol, Aons of this prob.:+,

The raoted above are all based on expansion ot

Liie tiow properties ir sertes in e:,-ch of the irdependert.

variables. in 1908, l su.gs;etad th,_t the. growth of

two-dinensionnl lamannar b•undry layer in a p.ear•re gradient

could be detzm•ined by ex-nc'iny , sulution 1n a pow, :

series In the variable :-,unniibg along -the body. Thsa Coeff.c ient,.



would depend on the coordinate normal to the body and would be

determined by numerical solution of appropriate ordinary

differential equations (see Schlicting 1950 for subsequent

developments of this "Blasius series" approach). Van Dyke

(1965) applied a similar partial-expansion method to the

blunt-body problem with excellent results. He also used this

procedure, which he calls the series truncation method, on the

Navier-Stokes -quations for the flow past a circular cylinder

(Van Dyke 1964, Underwood 1969). Davis (1967) studied flow

past a flat plate with the same method. In the meantime,

Conti and Van Dyke (1966, 1969) have treated invi~scid

flows of dissociating gasses past blunt bodies with partial-

expansion methods, while Moran and Van Moorhem (1969, 1970)

used a full-expansion method for the three-dimensional

(two space., one time) flows of a perfect inviscid gas which

are generated when a plane shock wave strikes either a

stationary blunt body or one that is in steady aupersonic

flow.

The above listed flow situations have in coumn a "mooth

variation of the flow properties with the variables in which

they are expanded. To be sure, boundary layers, in 'which the

properties vary rapidly, do develop in the tlow of an inviscid

dissociating gas past a blunt body and in the high-Reynolds

number flow of a viscous fluid past h solid body. However,

the expansions used by Conti and Van Dyko (1966, 1969),

Davis (1967), and Underwood (0969) in treating these problems

were only in the variablea running parallel to these layers.

On the other hand, while Conti, Van Dyke and Davis were able
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to describe their boundary layers quite successfully, the

series of Underwood converge only in the low-Reynolds-number

regime, where the boundary layers are relatively thick and

the property variations relatively smooth.

The present investigations were dirocted at elucidating

the ability of the power-series methods to treat problems with

embedded boundary layers (as distinguished from cases in which

coordinate stretching has narrowed the focus to the boundary

layer itself, as in Blasius's (1908) problem). The problems

selected involveCi L .... i.w of a dissoc'.ating

gas (specifically, the "ideal dissociating gas" of Ligh.thill

(1957) and Freeman (1958)). Behind a strong shock, the finite-

rate relaxation of such a gas towards equilibrium. creates a

region in which the flo; properties may vary rapidly rolative

to their variations elsewhere in the flow. That is, the

characteristic relaxation length may be small comparec. to the

characteristic geometric length. Boundary layers also appear

rtear stagnation points when the ratio cf these charactecistic

lengths is at the other extreme.

The equatiora which ;overn all the flows studied are set

down in Secti2-, . 11o illuztrate the basic techniques we

eajtlo:1 , the relatively simple problem of determnining tha flow

properties behind a strong plare shock is exau,i.ned in 4.etail

in ti nex).t three Sections. First tIc recursion forix'..

for the siez'eas of~ i.nLs arQ derived, then tht manipulatirns

requircO tr -T..tke P aximrum use oao th.! coefficients determined &1LS

descrih.•_d, .jwn-l finally the ceavits obttned are examined. I
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Sections 6 and 7 are devoted to two-dimensional steady tiows

past pointed and blunt bodies. Finally, in Section 8, we

treat the three-dimensional (two spece, one time) flow which

results when a plane shozk reflects from a bl'iint body.

It would appear from our results that series-expansion

methods are of somewhat limited utility in discribing flows

with imbedded boundary layers. While a full-expansion

approach is generally easier to program, it may be necessary

to use a partial expansion, with no expansion in the variable

running normal to the layer. This is certainly so if

singularities appear in the flow field, and even then what

amounts to a local analysis of the singularity (cf. Conti

and Van Dyke 1966, 1969) iv necessary to make the method

useful. On the other hand, where the ories can be made to

converge, their accuracy is superb, this justifying much of

the effort required.



2. Basi quations

The forms of the conservation equations convenient for the

present investigation3 are as follows (Vincenti and Kruger

1965, p. 246):

D + P div v 0 (1)Dt

Dv
4p F grad p 0 (2)

RDh D W 3

Here p, p, h, v are the fluid pressure, density, enthalpy,

and velocity, and D/Dt is the convective deivative.

t = ÷v-grad (4)

For Lighthill's ideal dissociating gas, the species conservation

equation is

Da~ a*ct (5)

where a is the degree cf dissocida:ion, c t equilitrium

value, and T a rz!axatxon time. The law of nars action becoar-, in

Lighthill 's (iS57' 1jproximat'n,
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t2
d . d j /T

where T is the temperature aud (d Od a&re conn.t"ants of the

gas. .reama's (1958) equation for the relaxe-tion time may

be written

Pd 1-0*
I - (1-g*) (1-a) (7)

where C is a constant. Finally, tho equaticns of state are,

with R tha gas constant,

p - p0(.-u) RT (8)

h - (4+a) RT + aOd (9)

the latter of which also being an approx4.. uation due to Lighthi..

(19571.

Across shock waves, the conservatioYi equations become the

jump condcitions

Ip (•v - x )] - 0 (1.,)

[P + p -n 2. (11)

Iv] - 0 (12)

7
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3. Relaxation Behind a S.tedy Normal Shock: DeveLom2ent• o'

Series Solution

The simplest case we have considered is the one-dimensioa.l

flow thru a standing normal shock wave. Let x be l-he distance

downstream of the shock. With D/Dt = V-i/dx, the :!onservation

equations (l)-(3), together with the jump conditiorts (10), (11),

and (13), may be integrated to yield

pv =pov. (5

p + 0 vv+ (16)

h + v2/2- h. +v. 2/2 (17)

where the subscript w denotes values upstream 1:,f the shock.

The species conservation equation (5), however, remains in

differential form:

vda G*-O
- (18)

=CT BE[ (P_Px) e-d•/T 2 oZ2_

in which we have incorporated equations (6; and (7). From the

jump condition (14), we get the initial ccndi'.ion

a (0) -(19)

The series solution of these equations beginc- with the

assumption that each of the vari.ables may be expanz.ad in a

Taylor series of the form

A(x) A A (,0)
J=O 9



We then obtain recursion formulas for the coefficients Aby

substituting the zerias into the governing equaotiona aad

k
collecting terms of like order in x From the linear equation

(16), this yields

Pm+ P.VaVm - (P. + PVO 2 ) 6 mO (21)

with no trouble whatsoever. Equations with terms quadratic in

the unknowns are only a little more difficult. From (9), (15),

and (17) we obtain

h M jrM QjmiT + 'dam (22)

m
F Pilm-i , 0 V®MSMO (23)
i-0

+ M . h V ) (2 4 )
I'm E l2V- - MO

i=0

;Hwever, equations like (8), with a triple product of unknowns,

and the highly nonlinear (18), are rather nasty to work with.

We generally find it worthwhile to introduce enough auxiliary

varilzblea so that no equation contains terms more nonl.inear

than quadratic before expanding the variables therein in

Taylor series. Thus, with

b - pc,. (25)

equ.ation (3) becuyer

p ~4 h)7T(2-6)



and thair Taylor-series expansions yield the rccursion formulas

m

bm - Piomi (27)
i-O

mP " R a (pi + bi)Tn_i (28)

i-0

To simplify (18), we further define

f e'dIT (29)

g - d/T (30)

w S To (31)

d : (p-b)f-b 2//Pd (32)a

Then (18) becomes

dct
va = Cwd (33)

Equations (30), (32), and (33) are easily expanded in series to

give

SgiTmi - Yo (34)
i-O

m

Lm= JPi'bi)fm-i - bib_,-ilýe (35)

m- i-iV 4

11

L4

1-

t.m iml- ilmi(6



To help expand (29) and (31), we follow Leavitt (1)66) and first

differentiate with respect to x:

df Mf.-
C-• a f (37)

dw w dT (38)

These differbntial equations, on series expansion, yield the

recursic.. formulas

m
mfm - ri m-i (3)

i=0

Siw. T 8 4a iTiwm i (40)i-i rnT-i i~=1 r-

Note that equations (36), (39), and ('0) are ,valid only for

m > 0. For m = 0, they are replaced by the initial conditions

a = am (36a)

0 = e-3dTO (39a)

w T (40a)00

which are derived frorr i .or (134) and rafter setting r-0)

from the definitiorns (29) and (31).

.A Poblenm often nox diflicult -har, the formation of the

recur:, In formulaiq amonit Lhh seriaEs co-ffTicients is the

c.,?!r.rination of ho crcder in wnich tney may be scl1ved. A

;1
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(% ) (2 2) 2,

or (3a f zzy (4'? ýc::.*

routline is 22w f-r 7, 1 ý. . th y

Howevex, the cogiý.f~ -I 'tzia iL'r ixo.a--, raýý!~
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4. Utilization of Series Solution

Once the series coe-ffficients are known, the next step is

to use thu series to calculate the flow proporties at points

of interest. Where the series converge, they may be used

directly, and the accuracy of the results may be estimated by

examining the effect of varying the number of terms after which

the series is truncated.

Unfortunately, the series we encounter typically have

disappointingly small regions of convergence. The singularities

which limit convergence are usually outside the domain in which

thB series is of physical intezest.* The one which is troublesome

in the relaxation problem appears (from examination of the

series), to be located at some negative value of x, which would

put it upstream of the shock, where the flow is uniform and not

described by the series at all. This artificiality does not

make the singularity any less dangerous; the region in which

a series converges depends only on the distance from the center

of the expansion to the nearest singularity, and is otherwise

independent of the Locatie.n of that sinqulaaxity,

Thuis, for the series solution to be useful, we must be able

to continue it analytically beyond its basic region of conver-

gence, given (numerically-) only the fi•rst several coefficients of

the series. Lewis (1 F;.5, -tCudiled a number of approaches to this

problem~. PrIc~lcabl.'ý. ,-he. . wf is 5itsply to int-roduce a

new independhent va••i.•ble. .- t-o that, v i I, t- ea s, e rie s i s reexpanded

"'When• they ar ie t~ha'z. clorrain, wethod c.ne.rall' fails,
se~ •.ections 6 'and 7 belIwo.
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Sin the new variable, there is v. more favorable relationship

between the locations of the Biv.qularities of the function and

the domain of interest, Such traisformations were developed

further by Leavitt (1968), who madL. use of Domb's (1965)

procedure for locating and classifying the singularity closest

the origin of a function known only by the coefficients of its

power-series expansion.

Lewis and Leavitt both obtain splendid results for the

supersonic flow of a perfect gas past a blun2t body. The pro-

cedures we have employed, however, are based ".n the theory of

continued fractions. Given the coefficients ot a power series

a0 + a1x + a2x2 + ... = f(x) (41)

we can, under certain ::estrictions on the an's, find numbers

a such that the power-series expansion of the continu~d
n

fraction

a 0 /(l + alx/(l + 2x/(1 + ' 3 x/(1 + (42)

agrees with the left side of (41). Nn efficient procedure for

so doing is the "quotientS-difference algorithi," (Henrici 1963),

The theory of contixtued fractions is full of half-promises

concerning the efficacy o.. representing functions by expansions

like (42). It is known, for example, what conditions on the
coefficients a of the poer-serie% ee-,nsion of fix) are

necessary -. id sufficient i:,r iL to possess a continued-fraction

expansion like (42) •W:1l 1948. Chap. XI). flowever, these

conditions take the form that certain matrices whose elneents

are the power-series coefficients must be nonsingu.ar. Such

15



conditions cannot be verified wien, as' in our ca:.-e, 1H1w

coefficients are known only num,-riwcall;, because of rouvidoff

errors. IL is also known KWal! 1.94J, p. 399) that every function

analytic at the origin nas a continued-fraction expansion oZ

a form somewhat more general titan (42); specifically, the quantities

akx iust be replaced by aItx I, where. 6k is a positive integer not

necessarily equal to unity. E-wever, the, numerical difficulties

required to determine the S, also appear to be insurmountable.

Thus, all we can do is to asstine that the power series with which

we deal have -continued-frxcLiLjn e:rpansions of the form (42).

The convergence propertie3 of such expansions are rather

spectacular in certain cases. v.hJch of course is what motivates

us to use the expansions. If EL function f(x) canr be expandea

in the form (42), and if the covfficients ak approach a finite

limit , • (say) it c-,r be show- (Wall 1948, Chap. XI) that the

expansion converges to f(x) evey:•whe--E inl the complex x-plane

except at the poles of tthe fntons .if any) and along a branch

cut which begins at th(- pin- "< =-l 4a and :r.ocoees to infinity

along a ray fronm the or-i"i. Ho. :er, it is also possible to

constru .t. co, inued-rect•.C.n ý:<prn:, hich diverge within

the oi~rcle of conv 'rgqor,: of t...c *e:..c .-, zii; ........ e"

.Žxpansion. Forturnm>lP,, . u."',l:s appear t--o be •,athoiog4cal.

W•: h!vZe yet t.0 Cje:o h'2 .7( ": -t , whi -h ro•.rrcre•ed vet !:r

th n tne ., : t p., Q- " .. A 1.., AII



5. Relaxation Behind a Steady Normal Shock: Results

Calculations have been carried out as described above for

the three cases identified in Table 2, which were previously

studied by Freeman (1958) with a more conventional nimerical

method. Before carrying out the computations, the equati6ns were

of course made dimensionless. In particular, the independent

variable in which the series are ex-anded is not the physical

distance downstream uf the shock x, but

x* C P--2-x (43)

The first twenty--five coefficients of the power-series

expinsion of the temperatvre behind the shock for the first

case of Table 2 are listed in Table 3, along with the coefficients

of the corresponding continued-fraction expans'.nn. Note that

the lattc2 tend to remain of the same order of magnitude,

which is something of a convenience. However (unless the approach

is completely obscured by roundoff errors),they evidently do

not approach a limit, so that tne theorems quoted in the previous

section shed no light on the converoince properties of the con-

tinued-fraction expansion.

Of tourae, empirical evidence cn the utility of both the

power-series and continued-fraction expansions may be obtained by

varying thn number of terms used. Data rilevant to the

expansions whose coefficients are tabulated in Table 3 are

contained in Tables 4 and 5. It Is clear that the power series

is useless even for x* - 8.0 * although examination of the

17



coefficients by Domb's (,965) procedures indicates that the

series Phould converge up to about x* - 11.5. The continued-

fraction expansion, on the other hand, is quite satisfactory for

x* well above 100. Of course, il'n accuracy eventually diminishes

with increasing x', due tc roundoff errozs if nothing else;

the results listed certainly appear to be t to converge.

On the other hand, the fact that the continued-fraction results

appear to oscillate with diminishing amplitude as the number

of terms is increased is somewhat misleading. As can be seen

•rom Table 5, the exact rtsult (obtained by what is essentially

Freeman's (1959) method cf direct integration) does not

necessarily fall within the range of the oscillations. Thi.3,

again, is probably due to roundoff errors in the cont-inued-

fraction coefficients and/or in the evaluation of the expansion.

Results obtained from the continued-fraction expansion for

T are compared with the numerically exact results for cases I

and 2 in figure 1 (the results for cases 2 and 3 are mach the

same). To give some indication of the apparent conv'r~ernce

of the expansion, results obtained both by using 34 terms and

by using 35 terms are plotted, the difference between them being

indicated by a bar. 7z is seen that the results benave as

described above in both of cases I and 2, except tjat the range

x* for which thx -ftin expansion is useful

is mor•. r !"s r.Ct ,Land in case 3) than in case 1.

L....... .. i~ xpan. cn-i';1 tha last two IEar.s do

n tc .....n er; beycr, l - . `.,, w ich i•: far below the largest

: . . .- r ; h ~ c t h c ? , _ • , • % , o • s i q 2 o n t it n u e d . f r a c _ . • o .- i o u s ( .f u l .

F w~'t• eCr tre ot ,- pr ;'ýrties tue',ird the siock are quite

.,jI." -. r



o-Of course, the series-expansion method is no; really practic.al

for the problem of finding the flow behind a shock in a relaxing

gas; it canuot compete with ordinary numerical j..ntegration

either in range of utility or in time (the present method took

about 4 seccnds on a CDC 6600 to obtain resu!,;s equive.ent to

those obtained hy a Runge-Kutta method in 2 seconds.) However,

the series nethod is much more attractive in two- and t.ree-

dimensional problemts, for which alternt.tive procedures are at

least as costly and much less accurrte. For the presen:, the

main conclusion we can draw is that the series method ca.i be

useful through the most interesting part of the shock 1aytr.

The failure of the method to describe the solution accuAraialy

as it approaches equilibrium may simply be due to the larg.

arguments involved in the expansion.

19



6. Steady Supers-ni.c Ficw Past wedces and Cones

The next ::ost difficult problem we attempted was tte steaady

flow behind a shock attached to a wedge or cone. In spher"-:al

coordinates, equations (I)-(5) reduce to

•(pu) -1 +c)0 v+ 0
ipu), + -i- E r "t;ne +I - C (44)57r~ r rtane r F

Ua +1 u v 1 aD

uav v + _y v v+ 1 2P 0

IT r 'W - V- a 6 (s

h + (U2 .+ V2) constant (01

3r r 30

Here -t, v are the velocity componc.nts in the r, 0 directions,

respectively, while

=0 for plane flow (wedge case)

for axisymnet-ic flow (cone ease) (49)

If the shock is located at 8 £ kr), the shock j=,p conditions

(i0) - ('?) Decoime

t: sirn, s = - vs) (501

V. (r ccs 8 u + r' vt! (5:.)
0S

20



d 2

p~ -p

Again the subscript m denates properties upstream of the

shock. Note that the shc.k shape s (r) is to be determined as

part of the solution.

Finally, we have the condition of no flow thru the body:

v 0 at e -. eb (53)

where 8 = b, a constant, locates the body.

Were dissociation :bsent, these equations would have the

familiar r-independent Aimilarity solution. However, the

equation (48) introduces a characteristic length into the problem,

and the solution does lepend on both r and 6. On the other

hand, the problem is 7.yperbolic, and has been treated success-

fully by the method cf characteristics (Capiaux and Washington

1963; see also Sedne, and Gerber, 1963,. 1967).

Two versions of the series-expansion method were attempted

for these problems. The first is what Van Dyke (1966) calls the

"method of series .-uncation". The idea here is to expand the

variabler in r, e g.,

p E r (0) r (54)

determin3.'g tha 8-dependeit coefficients like pi(e) by solving

(niumeecally) the ordinary-differential .3quat±cas derived by

subraItUting equations lil:e (54) into the governing algebraic

a-ý partial differential equations and then collecting terms of

21



like order in r. Alternatively, one may develop the variables

in double series in r and 8 e.g.,

p Pijr ni (55)

i,j'o

where, bý using

8-68(r)

as an independent variable, we ease the satisfaction of the

boundary conditions both at the shocks (n - 0) and at the body

In either approach, the hyperbolic nature of the problem

is reflected in the determinability of the coefficients of r

independent of those of xJ for j>i. However, as in equations
i

like (22)-(24), the equations governing the coefficients of r

do involve the coefficients of r! for j<i, so that the coeffi-

0cients must be determined in order; first those of r , then

those of ri, etc. In the full-expansion method, the

coefficients like pij mubt also be determined in order of their

second subscript for any fixed i, and Pi-l'j must be known in

order to find p
i

In both methods, th'• coefficients of r are found by

solving a boundary-value problem, in which the shock shape

must be determined so as to produce a flow field which meets

the body boundary condition (53). Specifically, we expand the

shock-uhape function

"(r) L . (57)

i=0



Then 0i must be determined by iteration (we used tine E..ant

method) so that the coefficient of r in the expansion of

equation (53) vanishes.

In the partial-expansion approach, this boundary condition

becomes simply

vi(n) = 0 ati•= (58)

For an assumed ei, the shock-jump conditions fix the values

of the coefficients like pi and vi at n = 0. The value of

vi(1) for that 8i was then determined by integrating, from

n = 0 to r = 1, the system of ordinary differentia) equations

formed by sullstituting expansions like (54) into the governing

equations. While the lower-order coefficients on which those of
i

r depend are already known in principle, to save storage they

were regenerated by solution of their ordinary differential

iequations along with the coefficients of ri. Of courser since

a0 is then known for j<i, the problem of finding the lower-order

coefficients is initial-value in nature. Still, the partial-

expansion approach was found to be much more time-consuiing than

the full-expansion procedure, and no more accurate. Perhaps

the time problem could have been alleviated by storage of the

known lower-order coefficients (at least to an extent which would

have permitted their generation by interpolation). However,

we decided to spend most of our effort, on the full-expansion

method.

The derivation of the recursion formulas for the series

co(tfficients in the full-expansion method proceeded much as in
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the one-dimensional problem discussed earlier. To illustrate,

we shall consider in detail -'-he treatment of the differential

continuity equation (44), wh..ch, after introdu".ing (56),

becomes

pi + u, + (1+C) (6 :)u - CPvz + v + - 0 (60)

Here we have introduced the :ibbreviations
- •A C")s •A

A rI(0b-Bs) -a + (n-l)-. ] (61)

A being any field variable, iind

S(e-eb cot e

6(s- eb) cot ((G b-e a + 0s] (62)

if A and A are expanded aE in equation (55), on substituting.

such expansions into equation '61), and collecting terms

of order ri 3, we find

Aij M k k(i Ai-k,j 0+1) Aik,j+l]"

k=0
(63)

+ k A (CI -6
kj 1)ki i.

To help expand (62), we rietiI s-.,e more auxiliary variables.
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Le t

c - O.~ co 8s •b (1 -n)

C C s bs s sin (Ss 0 . -(I- )

and expand both functions in series lIke (55. Then

c io r: = coOs* l0s "b

i (65)

Z s r = sin (0s-b)

i=O

Following the strategy discussed in connection with equations

(37) and :39), we differentiate equations (65) with respect

to r and collect terms of orAer ri-I to obtain

cio = cos($ 0 - b) if i = 0

' > k(ek-Ob 6 k(:) si.-k

k=0
"if i > 0

sio sin 10e0-b) if i - 0

i
(6 - 0 - if i > 0 (66)

k b kO~
k=0

Similarly, after differentiptina (F4) with respect to ni

we find



k=O
1 (67)

sij k ]kb k0i i-k

k=0

Equation (.62) may now be expanded in r and fI to yield

Si j
- E •-0z. [sinb + Cos 8bj

~i-~k j-t [iOb, Ck + skk=0 • -

i

i-k - 0 6k) (Ck cosob - Skj sinO b) (68)

k=0

which may be solved for z,. once lower-order coefficients are
-J

knowp.

The expansion of equa io4n (60) itself is now relatively

straightforward. Cn introducing the series exrrassions for

the various quantities involved and collecting terms or order

r n, we obtain

- j
• {D "t ,. j-.Z• + Uk F'i...k j.

k=O X.=O
k

+ , 10,

k f

.1 . y ... ,.

Pk, V,,l Vi. iA. j - Z) v,, + .I r) 0 (69)
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The at~.'er con se rva tAiorn equatitson, are expanded .In much the

sa me w av (t" Iu; IL with I ~ i.asa d iAf.icniltyl 0; 1-_e .t he o'e f f

cientý; 1.;~ 10! UN~JI~~o assUilm'd 8 "W ~munt C.alcu~ate

the ~ ~ ~ ~ ~ i eof~icn;c: 5;t~cxpressiorn for v wand, f,..r

other: .icie of -in~e~rast.ý on the body surfac, r, F~ 1r orn

the equation (55) ,w-l: see that this ccefficient. is tho. inflnite

se~ries

vi TfljI (70)

which we recast as a crntc..nued fractioni be tore eval at-ion at

1l . Ina the case of flAow past a wedge, th~.s recasting

proved to be unnece,..;sar-I; the seri.es (69) converged quite

rptpidly' In its. raw formn. Tlhe cone case was muc,, Tr~ore

dii'fivzulL. as will" b-e deta.1ed bellow.

Thus, In~ esseace, tile ful'*-expansion methowd simp-ly uses

power--series methc~s to integraie the ordinary dif.ferantial

equations which go.,-e-.'r th.ý 83-depcnd,:nt coefficients of the

expansions (54) us,:.d in4 t.IC par:tiai--expansion methcd. Once

-these coeffi~cient;b are F_ýa.vi:Lab'Le at a fi.xed value of ', (or

rather n ) , ~.: recaý. ting of the riiýult I ri se~zies in r a.-to a

continue6 f'ýrac'ion in T- wa~s ne'cess.-iry to obtair. final results.

Ccucpuital-,ions Iroye 'ben carriedc:6 for thLý four cdie~s

treated by C,,apiaa'x and Wsic'n(1962"' with ti;' efo of

characteristics, sec Table 63. iRe,-;ul't., from the two approaches

are comp ared in ý'iqures, 2--4. Vqhere 'Zhey di sagre,?, theŽ Present

results dre :',re~ixned.to becomrrect, at leaist for relatively

2)7



.r;,l a-,ue~s ):f x*, thejj the -~;neJI. .•,ne ': xo tees ditance along the

wedge a~xic .see equation (43)), oi, r justification being the

convergence of our series expansionis evident in Table 7*" The

qeneral limitatiot•A cf the series m(ethod to small. arguments,

reflected in the figure by pl.ott-Liv; :h difference between

11- and 12- ter-m results, has already bsen discussed. The

characteristics method is not inherently so :Limited, but,

being an initial-value method, it may become too costly to

pursue the calculations to completion.. This is especially

true, if, as in the Capiaux-Washingtoii calculations. one

locates the points at which the solution is to be determined

at the intersections of characteristics proceeding downstream

from points at which the solution. -a known. The number of

points at which calculations are made then increases rapidly

with distance downstream of the w,-idgc. apex. It would have

been more efficient for them to prescribe the solution

points a priori, using Hartree's (195a) interpolating scheme

to integra_ te the compati ility equatons.

:%S it is, the .s and tha....teristics methods are

cc qhly' coinparable i. their range cf utility. The former

,t ,moi mee XA thh latter in case 4, but

s. C n. e. ra .ica :one rather. well even

... ;,tK c- ' t, , -- ty equilibrium region

i... -. ., tnie present method is clearly

.. ". t •:- t ,nck wve is concave,

-s- ." .. :'; ,nhy conver(ce are correct,
, ;..'by b uting tl:Pe series results

i ,: '. . Z•"" -? k %; •Q; •. ¢23



,id.I ibr.i um va W.e Capi. aux anfc Washra uton obtained a

re3U]lt, kZut could not et. c.nverge ce rhcugh ret r;o.ent og

tL~..r nie.sh size, arud• so di.sccurnt:,.-. t-h.: ove~r-sloot as ca nr, u er..

iCa iJ.nac cu~ra cy (to beý surc, I'• o Ye•'shc 0t lhY ,ob ta n,:'

waj much more severe tha;. ours ; s Fiquce :(c) , in which

Ax* is the distance between the first two poirnLs oi; the wdfiz:,,

at which calculations were made, anrd. so is indi,.ativre of

the general mesh spacinq)

Equations (e4)-(52) are equally applicable to flows

past wedges and coneis.. the only difference is in the con-

tiinuity equation A4.1 , see equa-ion (49) - The methods

used to solve those equati-.ns were exactly tne same for both

cases, and programs were written in which the input value of

£ was the only problem identifier.

WiUr-ortunately, the flow tzropexties a- not analytic at

the cone surface, so that the series expansions cannot be

nane to converge there. To see this, consider equation

(411), which, under the trangformation (56), beccn:.es

u Cr( [-.-te' - .ca(70)

^j n b

The f r-t two ter'ms in the par:tiaal v-pansion (in r) of this

equation .-re

29
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0 d (72)

Uo(bi(y, t' (nTe 4j C + V qt' d, 0dfl+lt2a~

C(b(P0)T0  [ P0-U (/T0 ( 0 /73)

b'- 0 0 )T 0 C 0-a 0 ~)e 0 PT0O

Equation (72) shows thzet, as would be expected, the flow is

"frozen" (a = constart;) in the immediate vicinif y of the

tip. As a result, in the ieroth-order approximation the

flow behaves lIkn a perfect- gas, for which the flow

properties are certainjy analytic in 6 and r.

Thus, using (72) we may write equation (73) as

0 + u b-0 f(74)0 dn 4UOLb~~ f1

where f is an analvtic function of T P., and a, and so

is an analytic funr-ioi of as well. For the complementary

solution of (74), we try a Frobenius-type expansion of the

form

:. ."' 0 (7 I)

ty ~e ara~yi: i~ ,theyIa .-0Inj , :'-n-,,..• , = • :, l, ..-' " •',,£ L 0 ,y , a a';i . •• , t e

30I



V V 
(

where 'Cho form. of <heoxpJ&nslion .Tor v ro~flectE the body

boundAry con~ditionf, 0  0 L " 'btivagtha~a

expafleionsI i Ot'j the hoflKyjqaxeQýuz vE.CrpJ) on ofk ,) so oNcbtaijn

(Ei . ilJ 1 j('77)

Tro f ix W Q insist thAt 0 0j C, and 8:0 Obtain tile Pi.

bi' h 00(7

(60), we get

(1C bl 0 30 u0 -V 0

(0O)

Ta.th~e deglree off dissc~iation ib ~aaaytiý.; in the cas~e of

f low pasi- a &Qg ,- " , but.' ha.i a squarta-root sinquiarity

at -th.i tsurf ace of a coi,iE 6--1)

Ti is ratther mT)re dif#'Aic-12.t anal.,'ze thie behavior o'P

the other fliC'w vuri&aS'.e at tiie boey tufa~ce. If We

Pexpanaiona like thal- ;f a in (IA.' tor- a-A N-e variabiezs,

we fin~d p, to- be analytit. at th-e ccne su~rfa,-, ut ,,

andI u~ to have equari-roct eaiqular-ltiee therc. W~. reeul.t

3:7



for v. coulo bp. r . owever. :cur nur.er.ca! calculations

seem tc Indc'Le -. tah z-derivativea of p and v are

indeed anatlytx Qi tnr.uci.: :low, but that the

oh_ ...- "i•'irt÷ tr- ur evidence

for these conclu5ions is exonited tpartially) in T'.ble 8.
which li~ts te coef-ic4.nts liU and V ef our original

double-series expansions C55). Since the vi's alternate in

Sign and decrease in magnltade with increasing i, convergence

of the series

L--I.A I=

is assured at least for r .< i. However, applying rDomb's

(U9651 Prccedures to trhe coefficients ,li" we obtain tho

sequeiences listed in T'able 9 for th•a location and type of the

singularity alosest the origin of z, nj. it seems clear from

these data that this singularity is at r1 = 1, and it is not

too hard to believe that it i3 indeed of square-root type.
- 3 -

The coefficients cf r and r in tne seri.:s (54) were

also determi'ned, a:-d behave in the same way as do those of
r• 1However, the higher trhe exponent of r: the less confidence

we have in o-r Ttiatn :f a' The equations for v ij

apoarant1y c•.o•; Ikss we I.. c-ndi c c .. d as i inc:eases,

rý,akignq our % '-- ':ell infi'-ted witn roundoff errors, so

,a t rhe serie6



while not diverging, does not approach a fixed niumber to

any aqceptable degree of accuracy.

Sedney .nd Gerber (1567) determined the first two terms

of an expansion of tho f'.low past a corte of a gas out of

vibrational equilibrium, and also found a singular behavior

of the solution at the cone isurface. However, their expansions

were of the form

V Pp o( + y p1 (i) + .,. (81)

where

2*iY (82)

is a stream function,

~~-py ~ PVx (83)

x, y are Cartesian coordinates,

x - r cos , r sin 0 (84)

and v , vy are the velocity comp:nents in the x, y directions.

1//2
It was not clear to us .hat the •I/ singularity of their

solution implied a (l-n) singul.rity in ours, nor is

singular behavior evident in the available characteristics

calculations of reacting flow past cones (Sedney & Gerber

1963, Spurck, Gerber and Sedney 196"). It would be of

intereat to attempt the removal of -Liese singularities,

perhaps by matching asymptotic axpaAwions.
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7. Steady Supersonic Flow Past a Blunt Body

While tha. singularity which foiled our solution of the

flow past a cone was s,-imething of a surprise, the existence

of a singularity in tire flew field of the corresponding

b~lnt-body problerc, ii well known (Conti and Van Dyke 1969,

Vinokur 1970). Specifically, the stagnation point of such

flows is singular. This phenomenon is connected with the

fact that, since the residence time of the fluid is infinite

at the stagnation point, the flow must reach equilibrium

there, no matter how slow is the reaction rate.

Nevertheless, as noted inthe Introduction, one.of the

most 4'.npressive successes of the series-expansion method in

fluid mnmchanics has been its solution of the supersonic

flow of a perfect gas past a blunt ncdy. Therefore we

wanted to see how it would perform in the present case of an

ideal dissociating gas, whatever a priori misgivings we may

have had. Conti and Van Dyke (1969) already employed

partial expansions of the form

p , Pl(r) cos2 a + p2 (r) sin2e + O(sin4%)

where (r, 0) are po.&:- c.oordinaLea centered at the center of

curvature of the shock iave. whioh waz prescribed as either

circular (for a two-dimensional calculation) or spherical

(the axisymmetric case). They did, in fact, obtain excellent

results for the fIow iL Le irumediatk vicinity of the stagnation

point. Tc enable approach to the, singularity, they, had to

introduce as an indepewdent variable (in place of r) the
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diffarence on the axis between the degqree of dissociation

and its equilibrium value (see Conti 1966).

The present calcule:tions are based on full Taylor-

series expansions of the form

p Pij (Xp X (7))a 4 (85)
i~ iii, j=O

where x-x (z) locates the 1)ow shock wave in cylindrical

coordinates and z is the nquare of the distar.ce from the a"is

of symmetry. Such an expansion eases thet satisfactlon of the

shock jump conditions (10)-(14): ind takes advantage of the

fact that p is even in the cylindrical radius (to insure

that all independent variables behaved similarly, we worked

with v/1z instead of the radial velocity component v, which

itself is odd in z.) With

y x-Xa (z)

w v/Fz (86)

A z~A _ xs aA

the conservation equations (l)-(5) become

ui+ 2wý + PkU-+ 2pw + 2piý 0 (87)

ur + 2wu 2+ ay • 0(88)p •y

d +2w+w2 + 20 _ 0  (89)

Uy+ 2Wh F (JOY + N13) (90)

ur + 2we -S!*_- (91)
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The shock -Jwip condiJtions (10)-(1.3) may '.)n solved for the fa .4

propert e,; beh.iand the bow shock as follows

U.. .. • sin2 ' (92)

2VS - sncos8 6 o, . Y --2

.2 (94"•_)si•,
-)sin28

PS Y+ - (95)SPs y+l s~ (5

Here
Y ,, 4_ (96)

r d x 2 2,( 9 7)
sine = ' [. z

Tho boundarv condition of no flow tihrough the body is taken

-- ncvo account b", worki ig in terms of a str•eaM function V)

defined by

dx
- . 2 wz* -z 0u + •.s V=Z •o o 0 -= (98)

Then

k ,(99)

z

!1. , ' . , ... .• e: . , . , . , the shock shape

r-U .... i~--, 's~ . - •cm, t~hs ? C¶O: .'oc• spo nd2.r cj body rshape

Se ut ..... i,....on ~ seaC.'A,.inq Zuo the

: c ... '.. ". . 1i•e r <i'n ..re]at fo e by substitut.i ný:

.3 G



the seri,:ýs like (77) in~to th~e yovevntrv ; t4Utofls out

to0 be so Lvabie in seqc%..ence of Ithr tot £1ý. order .14- -)F if (vf2CeL-

order, they are, detef,ýJj V'ne in o:e o h i r t s bn i t

i.. Spe Cifis I la1,1y , thfe SAiLCl'k Jm1 coxcidi 1tI (91) - (94

de-termine t.1eC soe A`ftICijenlt S wi th su: r ip i 0, 'anJ L Lh e
differential ,.ýquatiorns (86)-P(9) tsewith, ->O.

For problems in more than owindependent varitable..

there is no pr)ioneduxre directly anaioqcus to the rceca-sting of

a one-variabie seites into a corntinuied fraction. Thus, t

tLaprove .he8 converqence of' t~wo--dinaennio.)nal series like (84),

we aw s t sorkehOW put; them into on-ie.-ton.fr-ms. This

caa be do cne in any number of w,.ays. Van Tl(10,1967,1

1971)1 st'art-s with the series for p (e.g." -in the form

[ 7M F M j Y I

recaots t-he polynomials in square brackets inito the2 continued-

fracios kY) (say), and then cal~culates p from

ThIsis essentia~lly the procedure we u~si- ir. ourr analysis of

21low, p-a'st: wedges an3 co--nes, as described iLa th(,. pre..:edinq

-.;in ionlexcept that t.he series-cretpdic to e-miatiorn

(100) was i~tself recast into a cýontinuea fractloa in what

corresponded to ttne preisent. varliable z.
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However, in the case at hand, the unavailability of the

coefficients pij of total order i+j beyond some finite number

(M in equation (99)) means that the coefficients p (y) are

known with decreasing accuracy as j increases. Thus, after

experimentation with a variety of procedures similar to

Van Tuyl's (Moran 1965), we found it preferable to rearrange

series like (77) into the form

p i-~ (102)
i-O j-0

evaluate the polynomials in the square brackets for specified

z/y, and then recast the resultant series in y into continued-

fraction form. The advantage of so doing is that the

coefficients of yi in (101) are known exactly (within roundoff

errorsl up to the point at which the series in y is truncated,

since the coefficient of yi consists of a linear combination

Sof the coefficients p. of total order i. Therefore, our

application of continued fractions may be interpreted as

looking for the analytic continuation of a power series in y

on a curve of constant. z/y.

Our main objective was to find the shape of the body which

generated the prescribed (sphetical) shock and the flow

properties on that body. Once its series coefficients were

available, the continued-fraction expansion of i/z was formed

as described albove and its zkroes determined on curves of

tspecified ý/y by the secant method.

While a similar procedure worked beautifully in the

corresj,:.:nding perfect-q as problem (Moran 1970), results for

38



the present situation wer. very poor. Three cases, descri`*•."

in Table 10, were examnined in detail for comparison with

Conti ane Van Dyke's (1969) partial-expansion results. As

shown in Figures 5, In the two casem with relatively high

rea tion rate, we a~mply were unable to locate the body with

any accuracy. In case 2, thU preent reasulsA gve no

evidence at all of the boundary layer at the stagnation

point in which the f",uid makes its final approach to equilibrium.

Only in case 3, the cne with lowest reaction rate, did we

cet any indication o;' the presence of thie layer. Also in

case 3, our results o'or the degree of dissociation seem to

suggest the presen ci of singularities at (and beyond) the

stagnat )n point. While this is correct {nmi and Van Dyke

1969), our results for the stardoff distance (the value of

y at which Vp/z - 0 and z = 0) appear to converge to an answer

different from Conti ari Van Dyke's. We believe their

results to be correct, out cannot find any error in our

calculaticns either. Cur program was checked by evaluating

all the flow'properties ind their derivatives at some

point within the shock lii.yer from the series coefficients,

and determining that the results do indeed satisfy the governing

equations.

In any event, the apiarent failure of the full series-

expansion method in this )roblem was not entirely unexpected.

As noted above, Coati an= Van Dyke do show that the approach

of the fluid properties to their ctagnation values generally

is singular, their normal dcirivatives being proportional to

some negative fractional pcwwer of the distance froa the body.
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~jr artaI ~ss n *~r'hng his phtaromenon~ -n case

-, >it as 8w.iri5irvj as the -apparant, convergence in that

ý:ase to the wrong r~esult for the atandoft distaxiow.



8. Diffraction of a Plane Shock by a Blunt BodX

Our most ambitico-s project in this series was the deter-

mination of tbe time-dependent flcw produced when a planeK
shock wave impinges on and "cefloct. from a solid body -

specifically, a sphere - a problem i.f interest in connection

wJth the blast-wave loadirng of statio.Aary 6tructixrea and with

the starting of shock tubes and tunnel•i. Hecc we break

new ground; to the author's hnowledge, v-hix problem ht.s not

been solved by other methods. To be sure, it is related to

the well-studied problem oi` finding the fliw about a body

impulsively accelerated from roet, which iz mainly of interest

for -ts final steady states.

The problem is illuttrated in Figure 6. .3roperties are

known in the undisturbed region 1, while in region 2, bc~hind

the incident shock, their dependence on the distaAce from

that shock can be found by the procedure described In detail

in Section 2 of this report. Uoweyer , for all caseL

considered herein, the equilibrium degree of dissociati.on in

region 2 was less than 10-6. Since the other flow properties

in that region then also differ negligibly from their

equilibrium values, we ignored such differences in our ana-ysis

and took region 2 to bo uniform.

The determination of the flow properties in region 3,

between the body and the reflected shock, proceeds much as

in the other problems described in this repo.t, with the

L,•ilowing major difforauiess
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1.The properties dee'.u on tie aý -, as on two spa".:e

i Lk (103)

The three-dime:njionality of the series cooffi-zients Strains

the ca-,acity -ýf the cornpatex, ar that the total order

Ci+ j + k) of the~ co-!fticierit: ý.jmpu!'-abl~. Is a n-I.

10,~ less than we are -Qed to L 1ss tirn we would like.

H~owever, the -rograM-:i4 effort 48 not greatly, influenced

b:y the threu-'c-ierisionality per se. It i4 -robahly less

thar, 3/2 the effort required in a compar-able two~-dimensional

problemi,

2. Of tar greater ixr.pact is the boundary-.value nature of' tl~e

problem; we -_,cit ;h;iy sck jump cond4.ticons or- part

of the bour.4ary (x-xr z, t)) cof te.gion 3 , and impenetrability

conditions on thiý rest (the body s-urface x-x b(z) .~ The

previous prob.'6ems were Got purely i..rjtiali-value type. one

consequent.zo of which wdt thatt coeffi..cie.1.n;3 of a given

order waxe cýý.cblabil ciev~ in terma of coe~fficients

oi otflei orders. in thes t'~rzo't cae,. coefficients of

.iiff~erer,-: ocleArs etr eV. tc-2.ex t'o oris anotherz and u; be



determined simultaneously. Specifically, in determining

the coefficients of tutal ordsz: i+j+k-n, all thoNe

coefficients of the snno order 4 with respect to the

radial coordinate -ust' b* calculated at thhe sam, time,

starting with j-0, then J-l, etc, The equations Involved

are linear and of order 6(n-J), the unknowns being

coefficients oi t.he series expansions of p, u, p, 1/p,

h, and T. Coefficients of tie other series may be

determined separately.

3.' The shape of the boundary is not completely known

aPriori. The shock shape xr z,t) must thus be determined

as part 9f the sol:tion, partly from the shock jump

conditions and part.ly from the geometric condition

that the incident mad reflected shocks meet the body at

the sarn point, where r 2 - (t) (say):

Vat - Xb(Zi) -ri$ t) (105).

Here va is the spe-id of the incident shock.

4. While the series e.ipansion of most of the equations is

straight forward, '%he body boundary condition

db
Vuv- j. at X- ,Dz) (106)

where v is the axiil velocity and w the radial velocity

(divided by the radius to produce an even function of

the radius), is rolatively troublesome. The problas is to

evalate v and v or0 the body surface in terms of their
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s e r ies fi o i-'t1. S..rxce. fcr sxn

tx -x.21,

we mugt xntxrod-,ýe the atixiliary functions

y Zt; S jXr1t%!iI (108)

ijk-0

-j (0(.,) + OWt)~ (&09)

Thus

jkt '-0 F w

The ca-eas a- whL~r -- vn cx - lati~tora were carried out are

identifie'1 in T"al2le T1t. 7h& gas L-ropertiar associated~ with'

these ea-sea are at1>2ut the sam~ as 5.r %.apiaux and Washington~'s

"(1963) istudy. The va-ue:-- chosen for the tzisscciaticn rats

paramm~ter C ia e-quatiar. ( ,c~rzespor.iL Zoughl.y to body

radi~i of I : (cates 1 3 -,' 3) and1 ll- crz 21~ .'

"?iguri~ 7 drid 3 slo;, tha pTit bto~o ressv;re and

,iegr-3s crf o&3.;J:)P iog thle -)ody surface at two t~mes

'Fixa Cf svynst-y *r cv-' in rFqw:0; 9i &;-.a li. ".1he

crvjt s.*er tc. zm cl-wr-ii-. w~er. IV 6 LJ but a tenth



of tte sphere's :a-u5.`s--. %owever, ze c-. eff:ct of .e

dissociation rate prar.3ter C is quite clear. In tb-

correspondina perfect-Sas prob!-len, the icethod perfor-.•ed much

better, yielding useful results i-. the vicinity of the

stag.n-ation point for vst/rb up to 2.0 or more (Moran and

Van 4oorhem 1969). Of cours-se it was to be expected that

the present problem, .wvih its relaxation process, would be

much more difficult than the other.
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Table 2

Identification of Cases Studied:

Relanation Behind a Noreal Shock

Re• v0 2

Case* Oc

6
1. 10 0.0 1.• 0

2 106 0.0 2.1') 0

7'
3 10 0.0 2.0 0

5fj



co"Zicients of Expansions of T-,,a:ur eixin' "•a L

(Case I of Table 2)

T T0 + TxI+x* +  T0+ 0

1 + •2x

T T

n TAY n

1. 1.22449 x 10-1 .1224490

2 -3.79970 x 10-3 .0310308

3 4.43516 x 10-4 .0856934

4 -6.03850 x 10-5 .0264638

5 8.77213 x I0 6  .0568869

6 -1.32095 x 10-6 .0335236

7 2.03542 x 10- .0528393

8 -3.18718 x 108 .0366453

9 5.05080 x 10 .0517006
10 -8.07909 x 10-1 .0375344

11 1.30204 x 10-1 .0511719

12 -2.11143.x 10"11 .0371503

13 3.44196 x 10-12 .0514257

14 -5.63621 x 10"1 3  .0362754

-1415 9.26553 x~ 10- .0527321

16 -1.52846 x 10 .0349608

17 2.52912 x 10 .0551014

18 -4.12647 ;A 10"16 .0326020

19 6.98043 x 1017 .06P1612

20 -1.16376 X 10"17 .0244839
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Effect of Number of Tcrps Used on

Power-Series Result for Temperature Behind Shock

Number
of

Terms x* - 1.0 ,* -4.0 x* 8.0

1 .1224490 .1224490 .1224490

2 .1186593 .1072502 .0920514

3 .1190928 .1143465 .1204365

4 .1190324 .1104818 .0895194

5 .119041? .1127275 .1254502

6 .1190399 .1113748 .0821652

7 .1190401 .1122085 .1355224

8 .1190400 .1116864 .0686824

9 .119040fl .1120174 .1534208

.10 .1190400 .1118056 .0449851

11 .1190400 .1119421 .1847901

12 .1190400 .1118536 .0034195

13 .1190400 .1119133 .2399490

14 .1190400 .1118735 -. 0699049

15 .1190400 .1118983 .3375974

16 .1190400 .1118819 -. 2001800

17 .1190400 .1118928 .5117046

18 .1190400 .1,118856 -. 4332575

19 .1190400 M1118904 .8242251

20 .1190400 . I 1 6 !-o72 -. 8529350

21 .1190400 1, 1•Is893 1 o388612

Exact ,119400 ,1118985 .1,059518
Result
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Effect of NUmber of Terms used on

Continued-Fraction Result for Temperature behind Shock

Case 1 of Table 2

Numbcr
of

Terma - 4.0 0:* = 40.0 * 400.0

1 .1224490 .1224490 .1224490

2 .1089284 .0546346 .0091296

3 .1120878 .0956385 .0905788

4 .1118508 .0835421 .0296109

5 .1118920 .0909935 .0815088

6 .1118879 .0884608 .0469398

7 .1118885 .0899361 .0772184

8 .1118885 .0893760 .0576798

9 .1118885 .0896908 .0748744

10 .1118885 .0895659 .063818C

11 .1118885 .0896349 .0735434

12 .1118885 .0896073 .0673053

13 .1118885 0896225 .0727986

14 .1118885 .0896166 .0693158

15 .1118885 .0896199 .0723992

16 .1118885 .0896186 .0705000

17 .1118885 .0896194 .0721986

1i .11)8885 0896191 .0712143

19 .1118885 .08964 3 .072.1I00

20 .1118885 .0ZO6192 .0U1690C

21 .1118885 .0896193 .0720915

Exact Result .118885 .0896192 .0722560
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1 O.611 x 10 -2.5 0)153)1 10 01 32.0 25.1751

2 0.81L x 10' -2o5 0.15375 0.9 32.0 21.9985

3 0.81L x 10 6 -2.5 0.04 10''0 32.0 25.175

4 0.811 x 108 -2.5 0.04 0.9 32.0 21.9985

v* U

(4-ia~ 3. ~ RTI)

**Deterainwd a o mt In (0) 3



Th3le 7

_Zlf..c•t of Mi'ibor-of Terms U4sed on C _mtinu~ed-

kvrac-ion Rsultsz for Slt Pal tWegei Lighth.l11 Gasa

S•f •Tabla 6

Number cZ Terms

r*9 10 12

.0001 t (zad) .5229404 45229404 .5229404 .b2294C4

.001 6 (raci) .,174350 .5174350 .51743ý0 .5174J.'-

.01 so (rad) .4990483 .4982539 .4986145 .49S51%

2.0001 Pbod/O-v .2130972 .2130972 .2130972 .21309r7

.001 o .2061449 .2061468 .2061464 .206146C

.01 Pbody/P-v. 2  .1992687 .1998255 .1993362 .d98056C

.0001 %ody .0342119 .0342119 .0342119 .034211:

'001 abody .1998346 .1999623 .1999538 .199956t

.01 Oody .3848967 .4235381 .3882949 .4076512-



Coefficien-.s of-rin PowerSeries, (55)

Conditions Saa•s as Case 1 of Tuble 6

0 0 .0126422

1 -,.99705-17 -. 0.129672

2 -. 3148299 -. 0007958

3 -. 1225967 +.0015J06

4 - 10831509 -. 0007508

5 -. 0559873 +.0005975

6 -. 0432364 -. 0004271

7 -. 0334583 i.0003252

S-.0275312 . 000243.8

9 -. 0227804 +.0001872

10 -. 0.94839 -. 0001406

12 -. 0149197 -. 000033

13 --. 0129975 .OC',•EO

1.4 -,.0116260-

- .01C4534 031

-. ,0094833 -.,000:0332

-. 0OS6422 +. 0 44

18 -,00,Qc92"'O" ..

5 6



T2ble 9

P m Sec. ane o A1na."Oyf!~ of

the- Series L

gfficients ijý Irom Tabl

Do•'a &n•1ys±S aisumes

(Y) () +

where 9, h a:• regular for ? io . Then

10 0.9363 1.1365

1 i. 0587 -0.1529

15 0o9581 •1.0022

13 .1,0370 0.0139

14 0. 9726,082

5 i3 5 0.1430

i6 .).9622 0.7838

17 1.0151 0.2407

0.9885 0.7065

19 1.009'? 0.31A4

0 Q.9925 0-640

23. 1.0062

0.9952 0.&)4K,



Tab$j&* 14F

fitoady-r -11in fghg9rical.~~is

--. t "--00cl W "

pdRO dc po

v m vo

S6.4 x 106 0.0 0.8175 0.0 72.415 7.7333 x 105

2 8.4 x .IC6 0.0 0,175 0.0 72.415 1.3899 10 5

3 84 x 106 0.0 0.8175 0.0 72.415 2.6545 1 3

5p



dentficaton fudied

niffraction of Plans ahOCk by

! ,5x106 -2.5 218.U 10.0 !'

1.5 10 -2.5 218.0 1000

1.5 x 10 -2.5 218.0 1.510 0

3 8 7

S•I

Ii



Fi. . . . . . . . . . . .n s

Figure I. Temperature behind itormal shock in Lighthill gas

2(no-malized by v2/R). Cases identified in Table 2. Solid lines

are Freeman's (1958) rssults; circles, continued-fraction results

(34 and 23 terms).

Fig-ire 2. Angle between tangent to shock attached to wed,;e in

Lightill gas and freestream direction (radi'is). Solid lines

are Capiaux and Washington's (1963) results; circles, contilnued-

fraction results (11 and 12 terms). (a) Case 1 of Table 6.

Figure 2(b). Cage 2 of Tadle 6.

Figure 2(c). Case-3 of Table 6.

Figure 3. Presume distribution on wedge in Lighthill gas

(TNO.,a1iz'%d by, pv.). Tor legend see Figure 2. (a). Case 1

of Table 6.

?ig.re 3(b) Case 2 of Table 6.

Figure 3() C'•Se I of Table 6.

Ficvire 4, Temperature distribution or, wed'e in LiShtat o %a8

(normalized by v2/R). For legend set Vigure 2. (a). Case 1

of Table 6.

fl 4 4 f;)f Týc0ao 6.
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igure 5. Streamfunction 4ivided by square o- radiur (p/z) and

degree of diszociation (a) on axis of 8ynmetry in shock

layer of blunt body which spports spherical shock wave i'n

Ltghthi. as. Y It, AIstance doiiaistream of nose of

shock (normalized by shock radius).

Solid lines are Conti and Van.0yke's (1969) results; circles,

continued-fraction results (34 and 35' terms).

(a). Case I of Table 10.

Figure 5(b). Case 2 of Table 10.

Figure 5(c). Case 3 of Table 10,

Figure 6. Diffraction of plane shock by solid body.

Figure 7. Pressure distribution on surface of sphere of radius 1

after impingement of shock (normalized by p2V22 ). Times

normalized b1 I/vs. Continued-fraction results (10 and 11 terms).

Circles, case 1 of Table 11; triangles, case 2; squares, case 3.

Figure 8. D)egree of dissociation on surface of sphere of radius I

after impingement of vhock. For legend see Figure 7.

Figure 9. Pressure distribution of axis between reflected shock

and sphere of radiup (normalized by p0v2 2). For legend see

Figure 7.

Figure 10. Degree of dissociation on axis between reflected shock

and sphere of radius 1. For legend see Figure 7.
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