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POWER~SERIES SOLUTIONS FOR FLOWS OF AN
IDEAL DISSOCIATING GAS

1. Introducricn

Thig report deals with the solution of certain problems
in fluid mechanics by power-series expansion of the solution
in the independent variable(s). The method is directiy
relatecd to the well~known Frobenius method for determining

analytic solutions of linear ordinary differential equations

(see, e.qg., Agnew 1960). However, here wa apply it to nonlinear-

systems of differential equations in as many as three indepéendent

variaples. In consequznge, the recursion formulas for the
series coefficients are relativaely complicated, and an
electronic cemputer is required to affect and to store theix
solution. .

There are some texts on numerical methods which discuss
powar-saries methods for ths solution of nonlinear ordinary
differential eguations (e.g., Henrici 1964), but usually
only as .a prelude to the description of more "practical
msthods. Most applications of series expansions to nonlinear
problems have been fox the purpose of clarifying some local
behavior of ths solutions ard, thus requiring only the first
few terms of the series, have been carried out analytic#liy
rather than numerically. Neve:slucless, tha use of series
mathods in fluid mechanics has a considerable history.

Most of thie history is related to the problem of the

asteady supersonic flow of a perfect gas past s blunt body.
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\  On prescribing the bow shouk shape (analytically), one can
substitute approximate meries expansions for the flow variables
into'the governing eguations and determine their coefficients
recursive? 0 aopew oo ian aoplon in owhich the serles

converges sncompasses the body contour (which must Lo

determined as part of the seclution) and the sonic line, keyond
which 4o wpivi’on can be continued by the method of charactexr-
istics. First to suggest ctiis approach ware Lin and Rubiucv
(194&1, Barly attempts vo implement it were made by Dugundji
(1948) ; i-in and Ehen (1951), &and Cabannes 7143, (%504

The firat to use a computer = = uo oy able to generate «
. ' substantial sumber of series coefficients was Richtmyer (1857).

Fosanan o Dyke {(1958) soon gave evidanos ohion i

series 8o not converc.:: tu oom o ol Lwdw ., o ascribed this

|
failure to the appearance in the analytic continuwatios ~7 i
the‘series‘upstream of the shack a singularity which is closer ﬁ
to the center oi tcthe expansion than is tho oo . ibsequent
cnudles were therefore directed at axtending the reg.: . of
éonvergence of the series so that thay would have = ,H

Proc et oLvlar, e B L2, 1D . van Dyke (1966,

weiL. au85), Leavitt (1368}, and Moran (1970) all devisad
succas’ful polu.ions of this probi:-

The -+ .t roted sbeve are all hased on expansion oc
Lhe tiow propevties an series in each of the independent
variaples. 1In 1908, Blaciua sugysstad that the growth of o
two~dimensional laminar boundary layver in a pressure gradient
could be determined by expancang coe stlution in 2 pow. -

garies in the variable running clong the body. ‘Tha coefiiclents




would depend on the coordinate normal to the body and would be
determined by numerical solution of appropriate ordinary
differential equations (sece Schlicting 1958 for subsequent
developments of this "Blasius series" approachj. Van Dyke
(1955) applied a similar partial-expansion method to the

blunt~body problem with esxcellent results. He also used this

‘procedure, which he calls the series truncation method, on the

Navier-Stokes _quations for the flow past a circular cylinder
(Van Dyke 1964, Underwood 1969). Davis (1967) studied flow
past a flat plate with the same method. In the meantime,
Conti and Van Dyke (1966, 1969) have treated inviscid

flows of dissociating gasses past blunt bodies with partial-
expansion methods, while Moran and Van Moorhem (1969, 1970)
used a full-expansion method for the three-dimensional

(two space, one time) flows of a perfect inviscid gas which
are gener&ted wheq a plane shock wave strikes either a
stationary blunt body or one that is in steady 3upersonic
£low.

The above listed flow situations hava in common a «mooth
variation of ithe flow properties with the variables in which
they are axpanded. To be sure, boundaxy layers, in which the
properties vary rapidly, do develop in the tlow of an inviscid
dissociating gas past a blunt body and in the high-Reynolds
number flow of a viscous fluid past a solid body. However,
the expansions used by Conti and Van Dyke (1966, 1969),

Davis (1967), and Underwood (i569) in treating these problems
were only in the variables raning parallel tc thaese layers.

On the other hand, while Conti, Van Dyke and Davis were able
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to describe their boundary layers quite successfully, the
series of Underwood converge only in the low~Reynolda-number
regime, where the bourndary layers are relatively thick and
the property variations relatively smooth.

The present investigations were directed at elucidating
the ability of the power-series mathods 0 treat problems with
embedded boundary layers (as distinguished from cases in which
coordinate stretching has narrowed the focus to the boundary
layer itself, as in Blasius's (1908) problem). The problems
selected involved tiie nsn-egaliibziua fiow of a dissociating
gas (specifically, the "ideal dissociating gas" of Liglthill
(1957) and Freeman (1358)}. Behind a strong shock, the finite-
rate relaxation ¢f such a gas towards equilibrium creates a
region in which the flos properties may vary rapidly relative
to their variations elsewhere in the flow. That is, the
characteristic relaxation length mav be small compareé to the
characteristic gsometric length. Boundary layers alsc appear
nexr stagnation points when the ratio cf these charactecistic
lengths is aé the othzr exirene.

The eyuaticrs which govern all the flows atudiad are set
down in Secti-n I. To illuatrate the basic techniques ws
employ, the relatively simple problum of determining tha flow
properties behind a strong plane shock is exanined in cetail
in taes naxt three Sactions., TFirst trlg recursion fornl. . :
for the sexies Toefficients are derived, then the manipulaticns
raequired to meke nmaxinum uge of the coafficients determined auve

descrited, snd finaliy the raesuvlte obtained are axamiaed.




Sections 6 and 7 #re devoted to two-dimensicnal steady tlows
past pointed and blunt bodies. Pinally, in Section 8, we
treat the three-Zimensional (two spzce, one time) flow which
results when a plane shock reflects from a blunt body.

It would appear from our results that series-expansion
metths are of gomewhat iimited utility in deecribing flows
with imbedded boundgxy layers. While a full-exwansion
approach is generally easier to program, it may be necessary
to use a partial expanaion, with no expansion in the variable
running normal to the layer. This is certainly so if
singularities appear in the flow field, and even then what
amounts toc a local analysis of the singularity (cf. Conti
" and'Van Dyxe 1966, 1969) is necessary to make the method
useful. On the other hand, where the varies can be made to

converge, their accuracy is superb, this justifying much of

‘the effor. required.




2. Basic Equations

The forms of the consarvation equations convenient for the
present investigations are as follows (Vincenti and Kruger

1965, p. 246):

D
B +odivy=o0 (1)
DY

5 * grad p = 0 (2)
Dh . Dp 2

PSE B =0 \3;

Here p, p, h, v are the fluid pressure, density, enthalpy,

and velocity, and D/Dt is the convective de.iivative

D - d . .
bt 3% + v grad (4)

For Lighthill's ideal dissociating gas, “ne species conservatioa

eguation is

...
B (5)

&

where o ig the degree of dissociation, o its equilikrium
value, and t a r2laxation time, The law of mass action becor2s, in

Lighthill's (1%5%7) approximat’ -n,




‘\"2 p - ' |
%::;.-';,9- e"0a/T (6

where T is tne temperature aud Pgr Qd axe conntants of the
gas. Preeman's {1958) equatior for the relaxstion time may
be written

Pq l-g*

T = .
Co2rP  1-(1-a%) (1-a) 7

where C is a constant. Pinaliy, the equaticns of state are,

with R tha gas constant,

P = p(l+a) RT (8)
h = (44a) RT + ad, (9)

the latter of which also being an approxiaation due to Lighthill
(1957} .
Across shock waves, the conservation equations bscome the

jump conditions

lo(v, = %01 =0 (1e)

P+ niv, - x%i =0 (11)

v, = 0 | (12)
7
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Here [{ }}1 derotes the junp in { ) across the shock, v and

v, are the components of v noreal and tangential te the shock,
respectively, ond is ig the spaed ¢f the shock normai to Itself.
The use of Liglthill's czloric cgjuation of state (9) implies
that vibration is instantaneously half aquililrated immedisately

behind the sheock.




3. Relaxation Behind a Steady Normal Shock: Development o’

~Series Solution

The simplest case we havz considered is the one~dimensioacl
fiow thru & standing normal shock wave. Iet x be the distance
downstream of the shock. With D/Dt = v3/dx, the conservation
equations (1)-(3), together with tke jump conditionz (10}, (11),
and (13), may be integrated to yisld

o= o, | (15)
P+oe,V,Vv+p,+ pwv‘m:z (16)
2 2 .
h+v'/2 =h, +v, /2 (17)

where the subscript « denctes values upstream «f the shock.
The specieq‘cqnservation equation (5), however, remains in
differential form: |

do _ a*=a

V' .
dx T (18)

’ 2 2
= cr Brip-parefe/T - 290
Pq
in which we have incorporated equations (6, and (7). From the

jump condition (14), we get the initial ccndition
a(f) = a . (19)

The series aolution of these equations keging with the
assumption that each of the variables may be expanded in a
Taylor series of the form

Alx) = 2: A,x? | (20)
30 |




We then obtain recurseion formulas for the coefficients Aj by
substituting the seriss into the governing equations aad
collecting texrms of like oxder in xk. From the linear equation

(16), this yields

, 2
Pp * PuVa¥m = (Po * PuVe ) g (21)

with no trouhle whatsoever. Egquations with terms guadratic in
the unknowns are only a little more difficult. From (9), (15),

and (l17) we ¢btain

hm = 4m'm + 420 °1Tm-i + 850 (22)
m
% Pinei = Pavalng | (23)

(24)

y 2
hm + Z lv,v, . = (h + %_Vw )Gmi)

i n-i
i=0 )

Frwever, equations like (8), with 2 triple product of unknowns,
and the highly nonlinear (18), are rather nasty to work with.
We generaily find it worthwhile to introduce enough auxiliary
variables so that nc egquation contains terms more nonlinear
than quadratic btefore expanéing the variables therein in

Taylor series. Thus, with
bz pa ' (25)
equaticn {3) becores

P = (p ¢+ D;RT (26)

1y
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and thair Taylor-series expansions yield the rccursion formulas

m
bm * :z: Pi%n-1

i=0

m
Py = R Z (b, + BT
1=0

To simplify (18), we further define

£ = e-ed/T
g = Bd/T
wE TB
- 2
d £ (p=b)£f~b /pd

Then (18} becomes

do '
Va-i" Cwd

(29)

(30)

(31)

(32)

(33)

Equationg (30), (32), and (33) are easily expanded in series to

give

m
iZw 9iTm-1 ™ ®a%n0

m
qp = Z (og=by) i = Pyby.37/¢a

i=0

m Ju |
2 iagvpy = C %1 W3 -1%m-1

i=D

11

(34)

{35)

(36)




To help expans (29) and (31), we follow Leavitt (1366) and first

differeatiate with respect to x:

g;f" = fgx" A (37)
dw w dar
Ix "~ 8% Ix (38)

-

These differential equations, on series expansion, yield the

recursic.: formulas

m
mE = - Z ig, £ .. | (3:)
i=0

m n
Z iw, T = § E iT.w (40)
oy 4w e} im-i

Note that equations (36), (39}, and {40} are valid only for

m > 0. Form= (, they are replaced by the initial cunditions

a5 = a, (36a)
e a3 T (39a)

fo =a "d "0

Wg = TOB (40a)

which are derived from ~auatior (149) and fafter seitinc
from =he defiritions (29 and {31).
A probiem often more dif{ficult Uhar the formation of the

racursion formulas amonst the series cowfficients is the

determination of the crder in whicih they may be sclved. A

19
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4. (Utilization of Series Scolution

Once the series coefficlients are known, the next step is
to use thu series to calculate the flow propcrties at points
of interest. Where the series converge, they may be used
directly, and the accuracy of the results may be estimated hy
examining the effect of varying the number of terms after which
the series is truncated.

Unfortunately, the series we encounter typically have
disappoantingly small regions of convergence. The singularities
which limit convergence are usually outside the domain in which
thz series is of physical interest.* The cne which is troublesome
in the relaxation problem appears {from examination of the
series) to be located ac some negative value of x, which would
put it upstream of the shock, where the flow is uniform and not
described by thé series at all. This artificielity does not
maxe the singularity any lésa dangexcus; the region in which
a series converges depends only on the distance from the center
of the expansion to the nsarest singularity, and is otherwise
independent of the locaticn of that singularity.

Thus, for the saries solution to be useful, we must be able
to continue it analytically beyond its basic region of conver-
gence, given {numerically! conly the first several coefficients of

the series. Lewis (1946%) studied a nunbker of approaches to this

e

inply to lntroduce a

@

problam, Prctably the most powszful is
new independent variable so that, when the series is reexpanded

*When they are within that domain, 2ur method generally fails;
sae Sections 6 and 7 below.

i4




in the new variable, there is & more favorable relationship
between the locations of the singularities of the function and
‘the domain of interest. Such trawsformations were developed
lfurther by Leavitt (15%88), who mad:. use of Domb's (1965)
procedure for locating and classifyinc the singularity closest
the origin of a function known only by the coefficients of its
power-~series expansion.

Lewis and Leavitt both obtain splendid results for the
supersonic flow of a perfect gas past a blunt body. The pro-
cedures we have empleyed, however, are based »n the theory of

continued fractions. Given the coefficients ot a power series

2 . .
a, + a)x + ax" + ... = £(x) _ {41)

we can, under certain :estrictions cn the a_ 's, find numbers

n

a_ such that the power-series expansion of the continuad

fraction
EO/(l +ayx/ (1 + A/l + E/ L+ L (42)

agrees with the left zide of (41). An efficient procedure for
sc doing is the "quotien®-difference algoritha" {(Henrici 1963),
The theory of contimmed fractions 1ls full of half-promises
concerning the efficacy ¢! representing functions by expansions
like (42). It is known, ‘or example, what conditions on the
coafficients a, of the power-series expjnsion of f(x)} are
necessary ¢ .d sufficient fur it to possess a continued-fraction
expansion like (42) (wall 1948, Chap. XI). Nowever, these
conditions take the form that certain matrices whose elements

are the pocwer-series coef!/iclients must be nonsingular. Such

15
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corditions cannot be verified wnhen, as in our case, the

coefficients are known oniy numerically, because of roundoff

errors. 1L is also rnown (Wall 1944, p. 399) that every function

analytic at the origin nas a continued-fraction sxpansion ol

a form somewhat more general tian (42); specifically, the quantities

Ekx iwust be replaced by xek whare 8 is a positive integer not

necessarily equal to unity. Exwever, the numerical difficulties

required to determine the 8 also appear to be insurmountable.
n

Thus, all we can do is to zssune that the pcwer series with which

we deal have continued-fractian expansions of the form (42),
The convergence propertiss of such expansions are rather
spectacular in certain cases. vhich of course is what motivates
us tu use the expansions. If a function f(x) can ba expandea
in the form (42), and if the coefficients ;k approach a finite
limit , a_ (say) it c»n be show (Wall 1248, Chap. XI) that the

expansion converges to £(x) eve.ywhere in the complex x-plane

except at the pcles of the funrtions {if any) and along a branch

cut which begins at the polnt 2 = -1/45 and procceds to infinity

alony a ray from the origin. Ho erer, Lt is also pessible to

1ad

constry .t convinued~fraction axpaaniony which diverge within
the circle of convergenca of the soowvasvonding power-series
axpansion. Fortunazoly, such exanrlios appear to be pathnolougical

Woe have yet o enceouvator o powvoer serits which convergyed vetter

than tne coviesdonding contiauad Joacton,

-
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5. Relaxation Behind a Steady Normal Shock: Resgults

Calculations have been carried cut as described above for
the three cases identified in Tablea 2, which were previously
studied by Freeman (1958) with a more conventional numerical
method. Befofe carrying ocut the computaticns, the eqguations were
of course made dimensionless. In particular, the independernt
variable in which the series are exranded is not the physical
distance downstream vf the shock %, but

2\8 .
x* = C(Y‘ra") £ (43)

-]

The first twenty-—five coefficients of the power-series
expinsion of the temperature behind the shock for the first

case of Table 2 are listed in Table 3, along with the coefficients

of the corresponding continued-fraction expansion. Note that

the lattc. tend to remain of the same order of magnitude,

which is something of a conveniesnce. However {unless the approach
is completely obscured by roundoff errors),they evidently do

not approach a limit, so that tie theorems quoted ian the previous
section shed no light on the convercs=nce properties of the con-
tinued-£fraction expansion.

Of wourse, empirical evidence cn the utility of both the
pocwer-series and continued-fraction expansions may be obtained by
varying the number>of terms used. Data ralevant to the
expansions whone coefficients are tabulated in Table 3 ace

contained in Tables ¢ and 5. It is ciear that the power scries

is useless even for x* = 8.0 , although examination of the ' ]

17




coefficients by Domb ‘e (1965) procedures indicates that the
series rhould convergz up to about x* = 11.5, The continued-
fraction expansion, on the other hand, is quite satisfactory for
x* well above 100. Of course, i%s accuracy eventually diminishes
with increasing x*, due tc roundoff errors if nothing else;
the results listed certainly appear to be trying to converge.
On the other hand, the fact that the continued-fraction results
appear to oscillate with diminishing amplitude as the number
of terms is increased is somewhat misleading. As can be seen
.rom Table 5, the exact result (obtained by what is essesntially
Freeman's (1958) method ¢f direct integration} does not
necessarily fall within the range of the oscillations. Thiﬁ,
again, 18 probably due to roundoff errors in the éontinueé-
fraction coefficients and/or in the evaluation of the expansion.
Results obtained from the continued-fraction expansion for
T are compaied with the numerically exact results for cases 1
and 2 in fiqure 1 {the rasults for cases 2 and 3 are mcch the
same). To give some indication of the apparent converience
of the expansion, resuits obtained both by using 34 terms and
by using 35 terms are ploited, the difference between them being
indicated by a bar. T: ie seen that the vrasults behave as
described above in both of cases 1 and 2z, exXcept ti.at the rance
¢t x* for which the continued - -fraction expansion is useful
L8 more ragtrictad ... Lase ? oLand 1n cage 3) than in case 1.
Howaever, the power-series expansicnsd in the last two cases do
rote zconverge beyond <Y = 1.5, whicn is far below the largest
=% Zor whicon the covrespensing continued fract.on is useful,

Fesulta Jor the otloer proparties veldrd the suock ace guite

-
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‘0f course, the series-axpansion method is no: really practical
for the problem of finding the flow behind a shock in a relaxing
gas; it canvot compete with ordinary numerical integration
either in range of utility cr in time (the present method took
about 4 seccnds on a CDC 6600 to obtain resulis equivilent to
those obtained hy a Runge-Kutta method in 2 seconds.] However,
the series —method is much moreattractive in two- and tiree-
dimensicnal problems, for which alternstive procedures are at
least as costly and much less accurate. For the presen:, the
main conclusion we can draw is that the zeries method ca. be
useful through the most interesting part of the shock layur.

The failure of the method to deséribe the solution accurataly
as it appronéhes equilibrium may ﬁimply be due to the larg:

arguments involved in tha expanaion.

19




6. teady Suverssnic Ficw Past wedges anc Cones

The nexi miost difficuit rrodiem we attempted was the staady
£flow behind a shock atteched to a wedge or cone. In spherical

coordinates, squatians {1)-(5) zaduce to

3ipu) . 1 +e) pu pv LY dov
—5 t < *reanetr 6 = © (44)
udu . v du _ 23 + & %g
3&x r 939 °r ) r =0 (45)
wv v v _u 1 3p _ .4é
et T TYer 36 T 0 14€)
o1 2 2 (373
h o+ i-(u 4+ v°) = constant 27y
uda v da _ 2¥- iy
ar M r ¢8 T (43)

,4,»

i Here wu, v are the velocity components in the r, A directions,

respectively, while

? € =9 {oxr vlane flow (wedge case)
a1 for axisymmeiric flow (cone case) (43)

If the shock is located at § = esir}, the shock jump conditions

\4 . , .
: {id) ~ (12} Gecome
d . . .
> Vo= iz Sy = o {2 3w, - v} (504
o odr tz sin Vs vt s "z <]
r -.::._, a )} = i 3! 5:‘
Ve 37 (r cos 2} u  +orioov, (5.}
| 20
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d o ocinm
Pg = P, 3 [ger sing,)) Q-1 (59)
o V.2 1+ x%(e) ° Py

Again the subscript ~ denctes properties upstream of the
shock. Note tha*t the shc:k shape es(r) is to be determingd as
part of the snlution.

TFinally, we have the condition of no ficw thru the body:
v =20 at 8 = 8 (53)

where 8 = 8, a constant, locates the body.

Were dissociation :bsent, these equations would have the
familiar r-independent similarity solution. Howevexr, the
equation (48) introducts a characteristic length into the problen,
and the solution does iepend on both r and B; On the other
hand, the problem is 'yperbolic, and has been treated success-
fully by the method <f characteristics (Capiaux and Washington
1963; see aiso Sedner and Gerbér, 1963 . 1967).

Two versions of tha series-expansion method were attempted
for these problems. The first is what Van Dyke (1966) calls the
"method of series :uncation®™. The idea here is to expand the

veriabler in r, eqg.,

it

"3

i
iZ pfe) r” (54)
=0

determini.g thz 8-dependent coefficients like pi(e) by solving
(numer:cally) the ordinar, differential a2quaticad derived by
subr-ituting equations like (54) into the governing algebraic

a partial differential equations and then collecting terms of
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like order in r. Alternatively, one may develop the variables
in double series in r and 8 ; e.9.,
- E i3
P pijr n (55)
i,j~0 '

where, by using

n 2 g‘;-.e.'g’.(’l'(.’)g) 156)
as an independent variable, we ssse the satisfaction of the
boundary conditions both at the shocks (n = U) and at the body
(n=1). |

In either approach, the hyperbolic nature of the problem
is reflected in the determinability of the coefficients of ril
independent of those of xj for j>i. However, as in équations
like (22)-(24)f the equations governing the coefficients of ri
do involve the coefficients of rj for j<i, so that the coeffi-
cients must be deteimined in order; first those cf fo, then
those of rl, etc. In the full-expansicn method, the
coefficients like Pi- nust also be detérmined in order of their
second subscript for any fixed i, and Pi-l,j must be known in
order to find pij'

In both methods, the coefficients of ri are fcund by
solving a boundary-value preblem, in which the shock shépe
must be determined so as tou precduce a flow field which meets
the body toundary condition (53). Specifically, we expand the

shock-shape function

-~
4 (r) S oot (57)




P

Then ei must be determined by iteration (we used the cecant
method) so that the coeffinient of ri in the expansion of
equation (53) vanishes.

In the partial-~expansion approach, this boundary condition

becomes simply

vi(n) = 0 at n = 1 (58)

For an assumed ei, the shock-jump conditions fix the values
of the coefficients like P and v, at n = G. The value of
vi(l) for that 8 was then determinec by integrating, from
n=0+¢tonn =1, the system of ordinary differential equacions
formed by suhstituting ewvansions like (54) into the governing
eguations. While the lowar-~order coefficients on which those of
r':L depend are already known in principle, to save storage they
were regenér;ted by solution cf their ordinary differential
equatione along with the coefficients of ri. Of course, since
6. is then known for j<i, the problem of finding the lowe:r-order
coefficients is initial-value in nature. Still, the partial-
expansion apprcach was found to be much more time-consuring than
the full-expansion procedure, and no more accurate. Perhaps
the time problem could have been alleviated by storage of the
known lower-order coefficients (at least to an extent which would
havé permitted their generation by interpolation). .However,
we decided to spend most of our effort on the full-expansion
metnod.,

The derivation of the recursion formulas for the series

cocificients in the full-expansion method proceeded much as in

23
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the one~dimensional problem discussed earlier. To illustrate,
we shall consider in detail ‘he treatment of the differencial
continuity equation (44), wh.ch, after introdu:ing (56),

becomnes

. . v L 3p v _

pu + up + (l+e){6b eg) U EPVZ + T + p§ﬁ 0 (60)
Here we have introduced the :bbreviations

3A s oA
A r[(eb-»es)g; + ("l"l)“‘:“f‘ 35 ] (61)

n

A being any field variable, and

-]
fit

(Gs~0b: cct 8

LY

= (es-eb) cot {(Gb—eg)n + es] (62)

if A and A are expanded s¢ in equation (55), on subegtituting.
such expansions into equation '61), and coliecting terms

of order rlnj, we find

i
By = } JEROT Ay g 7 UL Ay 5]

k=0
(631

[3

{ g -
B0k 7 k!

To help expand {62), we neel supe more auxiliary variables.
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Let
¢ I cos (es~9b)(l~n)

8 ¥ sin (GS"Gb)(l—n)

and expand both functions in series i‘ke (35). Then

n _
e - 5
E S, ¥ cos(ﬁs Bb,

*
—

=0 (65)

i
E 8i0F = sin (es-eb)

i=0

Following the strategy discusssd in connection with equations

(37) and@ .38), we differentiite equations (65) with respect

to r and collect terms of order r* * to cbtain
Cig = cos(60~6b) if1=20
<L
1 k(8 =050%e) Biux
k=0
if 1 > 0
S;g = sin (eo-eb) if 1 = 0
&
1 e o
=T . K{8, =86, 4) @y ifi>0 (66)
k=0

Similarly, after differentisting (€4) with respect to n ,

we find




p.
k=0
l 1 (6-1.)
= e LY T [} )
Si = 73 zll(gk‘ebsko' €i-k
k=0
Equation (62) may now be expanded in r and n to yield
i J
z: z: ik, j-L [sindy ©,, + s, cos 6.1
k=0 =0
i
- 0, 4 - ebéik)(ckj cosb, - Si3 31n9b) (68)
k=0 ‘

which may be solved for z.. once lower-order coefficients are

L]

known.

The expansicn of equaticn (560) itself 1s now relatively
straightforward., Cn introdu¢ing the series exrrescsions for
the various quantities invelved and collecting terms or order

i3 .
by nj, we obtain

L J
D D I R
k=0 U=
k
/ 5 ; | s

*oilte) ;;O "Gb’fmo"",,_) Qi‘wm,'7 i~k,j~>

k %
N E;“ N .

A . _v'?‘ v, n , 4H . 1 .
Laonet et mry K-, Lo-n el ek
m== 0 x=0

R}

1) . . + 0V, , [ = i ( 3
T P, 0+1 vl"k;fj“‘-"?f Fka,hw“lpl---k,‘j-i! 0 (69




The other conservation egquationeg are expanded in much the

same way {(thoutgh with uch L2ss difficulty!l). OCnce the coeffil-

cients lile o, are anwn for an assumad 6 » we must calculate

e

the coefficiznt of 7 in the expression fer v iLand, loter, for
other varicules of in‘erest; on the body surface, n = .. TFrom

the equation (85), we gee that this ¢oefficient is tho infinite

geries
- o
‘S vi‘.{nJ (70)
ya) 4
i=0 no= 1

which we recast as # continued fracticon before evaluation at
n = 1. In the case of flow past a wedge, this recasting
proved to ke unnecessary; the sevies (89) converged juite
rapidly in its raw form. The cone case was muc: more
ditlficull, as will ba deta'led below.

Thus, in esseace, tle full-expansicn methcd simply uses
power-series methcds to integrave the ordinary differential
equations which govern tha ¢-dependant coefficients of the
expansions (%4) wused in the partiai-expansion method. Once
these coefficlents are available 2t e fixed value of ¢ (or
rather n )}, u reca ting cf the resulting series in r 1nto a
continuad fraclion 1n ¥ was necessary to obtain final results.

Computaticns have been garriet cut for thr four cases
treated by Capia.x and Washinuton (18630 with “he method of
characteristics, ses Table 6.> esults from the two approaches

are compared in “igures 2-4. Where thev disagres, the present

results are mresumed to be corract, at least for relatively




small vaiues of x*, Lhe diwensiculess distance azleng the

wedye axis [(see equaltion (421)), cur justification being the
converyence of our series expansions evident in Table 7*. The
general limitation ¢ the serias method to small arquments,
reflected in the figure by paotutiny the difference between i
11- and 12~ (erm xesults, has already been discussed, The
characteristics method is not inharently sc limited, but,
being an initial-value method, it may become too costly o
pursue the calculations to cémpletionh This is especially
true, if, as in the Capizux-Washington calculations, one
locates the points at which the sclution is to be determined
at the intersections of characterictics proceeding downstream
from points at which the soiuvtion iLs krnown. The number of
points at which calzulations are mads then increases rapidly
witzh distance downsztream of the wedge apex. It would have
been more elficient for them to prescribs the solution

i points a priori, using Hartree's (1953) interpolating scheme

to integrate the compatitility equations.

Ag 1t is, the se2rizs and charactaristics methoeds are

rouginly ocopparabla in theilr range of uwtility. The former

W AR wap—

wrethod L@ mucn more Limited than the latter in case 4, but
does doscribe bhe sntipe relarxation zone vather well even

sropecty equilibrium region

cean; 3t ¢ oenly tu the ooastant-

Phaat Lt Joges acouraty.  Lr caza ), uhe present method is clearly

SRV BSTER M ot thaa. in Lhie o Tess, the 1ok wave 13 concave,

: n . VOO AT A VOO TELROCLT s

U oaro YRt T Lwsalas Lo owiooh they converno are correct,
Wooaw oo cvean o oraaram by substituting the series results

i ¢ i IR Y “7 LS




H
F
i
]
:

;
E

ik A

acailibriwn value. QCapiaux and Washington obtained a - imiia-
result, but could not get convergeuce throuch refinonent of
theliv meeh size, and so discountaed ths Oover-zhoot as a numar -
ical inacocuracy (teo be sure, the oversncof they obtalinod
was nacli more severe than ours; sce Figquee ?2{c), 1n which
Ax* i1g the distance bhetween the first two poinls on the wadg?
at which calculations were made, and 30 is indirative of
the general mesh spaciny).

Equations {#4)~(52) are egually aprlicable to flows
past wedges and cones: the only difference is in the con-
nianulty eyuation {44%, see eguacion {49). The methods
used Lo solve those eguaticnsg were exactly the same for both
cases, and pfograms were written in which the input value of
£ Was the only problem identifier.

quortun&tely, the flow ovroperties a.e not analytic at
the cone surfece, so that the series axpansions cannot be
nade to converce there. To see this, consider equation

(48) , which, under the trarnsformation (56}, beccnes

]

~ 3 , P . -6 /T 2 -
ud + vie = Cri{d, -3 7" [{p-pw)e a’" - cva/v.) (7¢)
an | oY d
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+ial erpansien {in r) of this

aguation are
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doey 0

YoTdn T (72)
R . da du .
H -~ o - Py ——t

uo‘(eb uo)al t (n 1)61 &% ) Vo . + 1d“c

8 Z (73)

- IR Y. S :,
= C(6 )TO [(o(.‘ ‘)0“0)“ d "0 Po g /od]

b~%0
Equation (72) shows thot, as would be expected, the flow is
"frozen" (¢ = constart) in the immediate vicin.*“v of the
“ip. As a result, in the =zeroth-order approximation the
flow behaves lik~ a perfect gas, for which the flow
properties are certainiy analytic in 9 and n .

Thus, using (72} . we may write equation (73) as
*ug (8 ~€ ey = £(n) (74)

where f is an analytic function of To’ po, and . and so
is an analytic funsitionn of as waell. For the complementary

soluticn of {74), we try a Frobenius~type expansion of the

form
e 9
I tap
1 Soo0d {79)
1=0
wiare fo= o= 10, Supros v onad Us erae analviic i 0, tney
o v
may Ye expacded in o3 oias lke

gl s
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At

My m L g
iw0
o (15}
vo = L Vgt
t=1

whara the forw of whe oxpansion for Va refigcts tha body
boundary condition, Vg ™ 0 st £« 0, Gubstitriing thase
axpangions ianto the homoganeous vacsion of (73), we obtain

:

\ " i+ :-‘-« . ' : . -
c= ¥ &Y ¥ STRLEA A AP SR LR LTSRNy

o= jet 77

To fix ¢ , wo insist that 0.5 # ¢, and so obtain the tniteinld
equation

“5 s 3 -Q 1 { “

Yar * Op=Y) ugp = O (78!

0z0

But, «ollecting terums of order r in thg continuity oyuation

{60), we get

(1) (8 -85)uyy + vy = 0 | (7%)
30
17 (80)

Thug, the degqrea of disscociation is analytic in the case of
flow past a wedqga (¢+0), but has a square-coct singqularity
at tha surface of a core (c=1).

It is rather more difficult =0 analvze the kehavior of
the other fiow varxiah'es ac the bouldy surface. 1f we zosuma
expansions like thar 3¢ 3, an (74) tor a., the variables,

wa find p, to be analytic a% the cene surfsce, ut Py Ty

- ot G et i

ko Lot e Do

: 3
i and u; to have squari-roct eingularities there. Nc rasult 1
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for vy couio be proven. However, Sur numerical calculations
seenr tc indicaie that the r~derivatives of p and v are

indeed analiytac i i, tirovcascnte Jhe 1low, but that the

] cther varisbles 3o v sincnlaritiss a=m » = 1. Jur evidenc?
% for these conclusicns is exninited (partially) in Tikbie 3.

which liets the coafficiants %13 and Vii cf our original

double-series expansions (55). Since the v, 's aiternate ir
Bign and decrcaes in magnitude witn increasing i, cmvergence

of the ceries

Lo 1i
1=d

is assured at l=ast for = < 1. Howsver, applying Donb's
3 {1965} preceduvrea to the coefficients 3,50 We obtain the
seqiences listed in Table 5 for ths locaticon and type cf the

1 singularity =losest the origin of «,{n). It seams clear from
RN

" .

these data that this singularity xs z&t n = i, and it is not

toc hard tc believe that it i3 indeed of sgquare-root type.

-
- i

.. .3 . .
The ccefficients ¢f r~ and r’ in the seri.us (54) were

alac determired, and behave in the same way as deo those of
bl

r*. Lowever, tha higher thes exponent of r, the less confidence

we have in our Jeterminarien of &.. The equations for vij

aprarantly becomre less well condiiicned as i increasas,

raking ovr vesalts w2il infected with roundoff errors, so




T T T e g ey <

while not diverging, does not approach a fixed aumber to

any agceptable degree of acruracy.
Sedney .nd Gerber (1¢67) determined the first two terms
of an expansion of the flow past a cone cf a gas out of

vibrationali equilibrium, and slso found a singular behavior

of the solution at thea cone rurface. However, their expansions

ware of the form

p - Po(t} + Y pl(‘) + “r e (81)

where
- , 2

L= /Y (82)
v i3 a stream function,

Loy, ., Ly,

3;3% By ¥ B T PV | . (83)
X, Y are Cartesian coordinates,

(84)

X=ycos & , y=x ain 8

and v_, v_ are the velocity compcnents in the x, y directions.

x
It was not clear to us _hat the cl/z singularity of their

golution implied a (J.-n)l/2 singularity in our«, nor is
singular behavior evident in the avazilable characteristics
calculations of reacting flow past cones (Sedney & Gerber
1963, Spurck, Gerber and Sedney 196"). It would be of
interest to attempt the removal of tiese singularities,

perhsps by matching asymptotic axpan:ions.
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7. Steady Supersonic Flow Past a Blunt Body

While ths singulerity which foiled our solurion of the
flow past a cone was something of a surprise, the existence
of a singularity in thte flow field of the corresponding
blunt—body:problem is well known {Conti and Ven Dyke 1969,
Vinokur 1970). Speciiically, the stagnation point of such
flows is singular. This phenomenon is connected with the
fact that, since the residence time of the {lvid 1s infinite
at the stagnation point, the flow must reach equilibrium
there, no matter how slow is the reaction rate.

Nevertheless, as noted inthe Introduction, one.of the
most japressive successes of the series—expansion method in
fluid mechanics has been its solu“-ion of the superscnic
flow of a perfect gas past a blunt Dcdy.‘ Therefore we
wanted to see how it would perform in the present case of an
ideal dissociating gas, whatever a prioxri misgivings we may
have had. Conti and van Dyke {1969} already employed

partial expansions of the form

p = pl{r) cos? 8 + pz{r) sin28 + O(Sinée)

where (r,8) are polar coordinates centered at the center of

curvature of the shock wave, which was prescribed as either
civoular (for a itwo-~dimensional calculation) or spherical

{the axisymmetric case). They did, in fact, obtain excellent
resulte fer the flow in itne immediate vicinity of the stagumation
point. T¢ enable approach to the singularity, they had to

introduce as an independent variable (in place of r) the

34




difference on the axis between the degree of dissociztion

and its equilibrium value (see Conti 1966).
The present calculetions arxe hased on full Tavlor-

saries expansions of the form

p u E Py xex (2 7). (gs)
i,3=0
where x=x (z) locates the bow shock wave in cylindrical
coordinates ahd 2z is the square of the distance from the auxis
of symmetry. Such an expanaion eases the satisfaction of the
shock juﬁp conditions (10)~-(14). and takes advantage of the
fact that p is even in the cylindrical radius (to insure

that all independent variables behaved similarly, we worked
with vz instead of the radial velocity component v, which

itself 1s odd in 2z.) With

Y F x-x_(z)

w E v/ Yz ) ' (86)
= »{8A _ dxs 3A

hE ‘(:zt &z ay)

the conservation equations (1)~(S5) become

u%$-+ 2wp + p§§-+ 20w + 2pW = 0 (87)
u%-‘-;-+2wﬁ+%-%$n0 (88)
ug¥-+ 2w + we 4+ %; %% = 0 | (89)
u%% + 2wh = % (u%¥v+ 2wi) (90)
-u-gi;-+ vi = 20 o1
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The shock jump conditions (10)~(12) may '»¢ solved for the £1,w

properti=s behind the bow shnck as follows:

- .
- T ; YA A
0 o= 1 + :..—m- _Rf.._.f - sy B ln? 3] (92)
8 (L opou Yol L

2 . [ ¢ 343 Q o) YR&
v m - (81in8 cosh | - TS Li®es )
7ir s e osind ] Bu 2/

fr+l) sinzes .
y -1) sinzes +Azh2ﬁ2 (94

Dmum
2 2y - L De
Pg * 751 sin®9 Pl (55)
Here
v = 2= (96}

. ax, 29 -1
i

== + 4y (L S\ (97)
sinﬁB [} TR

Tha boundary condition of no flow tiirough the body is taken
into account by working in terms of a stream function ¥

defined by

S’)..‘i’. o e D P . M ot . 5 ').!:1 ! | w ar Y

Sy 0?2 Wz, v ol b o Ey, b o= Dak yaz=( (98)
Then

.“Ih w ! 9

¥ w0 (99)

oa the Lody.

Followiag the vsual love.se appgooach, the shock shape
X v&) wn ospecizisd Cin gour valouklatioas, oatry @ spherical
sk wave was gtualed) and the corvespending bedy shape

detosmined as parsn of Lhe golation ov searchting fur the

s oo0s Y ow/z . The recursien relationg lormed by substituting
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the serlias like (77) inte the governing eguatlions Lurr out
*o bhe solvable in sequence of the total order i+ of coelfi-
cients like pij' Anongst ~oefficients of the same Lotal
order, they are determined in arder of the first subscript
i. S8pecifically, the suock jump condivions (91)- (94}
determine the zoelficients with subscript i=0, and the
differential eqguationsg (86;-(90) those with >0,

¥Yor problems in more than one independent variable,
there is no procedure directly analogcus to the recasting of
a one-variable series into a continued fraction. Thus, o
improve the convexrgence of two-dinensional series like (84),
we Tust somehow put them into one~dimensiconal. forms. This
can be doae im any number of ways. Van Tuyl {1960, 1967,

1973} staris with the series for p (e.g.' in the form

1

T M | |

» -y 0 -

g ; 1 » 1 \ E

P E z é ) pij y J (o0} :

320 i=0

recasts the polynomials in sgguare brackets into thz continued-

fraviions Pj(y) {say), and then calculates p from

M .
p =¥ z Y 2d Py (121)
o J :

This is esgentielly the provedure we used ir our analysis of

flows past wedges and cznes, as described iu the precseding

seation,except thet the serias corresponding to egunatiion 3
{100) was itself recast into a continuea fractiovn in what

corresponded to the prasent variable z.
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Howevar, in the case at hand, the unavailability of the

coefficients pij of total order i+j beyond some finita number
(M in equation (99))‘means that the coefficients Pj(y) are
known with decreasing accuracy as j increases, Thus, after
experimentation with a variety of procedures similar to
Van Tuyl's (Moran 1965), we found it preferable io rearrange
series like (77) into the form
, o .

- Z gt 2 pi_j,j(;_)ﬂ (102)

| =0 =0 YJ
evaluate the pclynomials in the square brackets for specified

z/y, and then recast the reaultant series in y in%o continued-

fraction form. The advantage of so doing is that the
coefficients of yi in (101) are known exactly {(within roundoff
errors) up to the point at which the series in y is truncated,
since the coefficient of yi congists of a linear combination
of the ccefficients Pyl of total order i. Therefere, our
application of continued fractions may be interpreted as
looking for the analytic continuation of a'power series in y
cn a curve of constant 2/y. |

Qur main cbiective was to find the shape of the body which
generated the prescribed (sphericai) shock and the flow
properties on that hody. Once its series coefficients were
availal:le, the continued-fraction expansion of y/z waz formed
as described above and its zeroes determined on curves of

specified z/y by tha secant method.

while a similax procedure worked bheautifully in the
corresponding perfect-gas problem (Moran 1970), results for
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the present situation wers very poor. Three cases, describoed
in Table 10, were ecxamined in detail for comparison with
Contl and Van Dyke's (i869) partial~-expansion results. A»p
shown in Figures 5, in the two cases with relatively high

rea tion rate, we aimply were unable to locate the body with
any acouracy. In c¢ase 2, ths present results give no
evidence at all of the boundaxy layer at tha atagnhtion

point in which the f.uid makes its final approach to equilibrium.
Only in case 3, the ¢ne with lowast reaction rate, did we

cet any indication ¢! the presence of this layer. Also in
case 3, our results Jor the Jdegree of dissociation seem to
suggust the presenﬁe of singularities at (and beyond) the
stagnat o>n point. While this is corrscc (Conti and Van Dyke
1969),‘our results for the stardoff distance (thse value of

y at which y/z » ¢ and z = 0) appear to converge to an answer
differant from cOnt§ ard van Dyke's. Wa bealieve their
results to be correct, >ut cannot find any error in our
calculaticns ei;her. Gur program was checked by evaluating
all the flow'properties and their derivatives at some

point within the shock liyer from the series coefficients,
and determining that the results do indeed satisfy the governing
equ&ﬁiona.

In anybevantf the aprarent failure of the ful} series-
expansion method in this jroblem wae not entirely unexpected.
ﬁs noted above, Coati and Van Dyke <o show that the approach
of the fiuld properties %20 thair &tsgnation values generally
is singular, their normal d~rivatives baing proportional teo

some negative fractional power of the distance fron the body.
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w7 partial success in describing this phencomenon in case 3
is just ag suuprising as the apparent convergence in that

¢ase to the wrong result for the standoff distance.




g

8, Diffraction of a Plane Shock by a Blunt Body

Qur must ambitious project in this serizs was the deter-
mination of the time-dependent flcw produced when a plane
shock wave imﬁinqes on and veflect: from a solid body -
spacifically, a sphers - & proh;am of interest in connection
with the blast-wave louding of statlo.ary struvcturea and with
the starting of shcck tuhe:s and tunnels, Hece we break
new ground: to the author's knowledga, this problem h=s not
been solved by other methods. To be sure, it is related to
the well-studied problem o7 finding the flow about a body
impulsively accalerated from rewst, which iz mainly of ipterest
for its final steady stata.

The problem is illuwtrated in Figﬁra 6. >roperties are

known in the undisturbed region 1, while in region 2,.bohind

the incident shock, their dependence on tha distasce from

that shock can be found by the procedurec described ‘n detail
in Section 2 of this report. Hoveyer , for all caser
considered herein, the equilibrium degree of dissociation in
region 2 was less than 10 °. Since the other flow properties
in that region then also differ negligibly from their
equilibrium values, we ignored such differences in cur ana.ysis
and took regicon 2 to be uniform.

The determination of tha flow properties in region 3,
batween the body and the reflected shock, proceeds much as
in the other problems described in this repo.t, with the

fullowing major differences:
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The properties devend on time as well ag on two space

anozdinatey, & J co arn expaen’*d in three-dimensional

saries of tha form

P . P
k=0

L3y | '

’

shere (rf, equations (94} a2and (%))

zZ = rz, Y = x-xr(g,t) : {104)

The three~dimenzionality of the series cocfficiasnts strains
the capacity ~f the computer, s~ that the total oxder

(£ + 3 + k) of the wo=fiicients uomputable is & mese

10, less than we are usad to 2ad less than we would like.
Eowaver, the programming =ffort is not greatly influenced
Ly the threu~dimensionality per se. It is probably less
thar 3,2 the effort raguired in a comparzble two-dimensional
praobiem,

Of tar greater iinpact is the boundary-value nature of the
problem; we cwst Fatizly shuck jump conditicons on part

of the bournifary {xsxr(z,t)) of region 3. and impenetrability
conditions on the rest (the body surface x~xb(z)). The
previous prob.iems were oi purely initial-value type. one
consaquernce of which wau that coef{ficlenys of a given

order wara c:lculakle recursive.y in tarma of coefficients

of othey orders. In the prasert case, anafficients of

differen-: ocdesrs wre ooupled to opes onothar and muist be




-the same point, whare x

determined simultaneously. Specifically, in determining
the coefficients of toutal order i+i+k=n, all those
coefficients of the some ordar 3 with respoct to the
radial coordinate ~ust be calculated at the same time,
starting with jwﬁ, then j=1, etc. The aquations invclved
are linexzr and of order 6(n~j}, the unknowns being

coefticients of the series expansions of p, u, p, 1/p,

"h, and T, Comfficients of tle other series may be

detexmined separateiy.

"The shape of the boundary is not complataly known

& priori. The shock shape x.(z,%) must thus be determined
as part 9f the solation, partly from ths shock jump
conditicns and par:ly from the geometric condition

that the incident and refleeted.shocks meet the b&hy at

? - zi(t) (say) :

Vet = %, (8,) = x_i3,, ¢} (108):

Here v. is the spe:d of the incident ashock.
While the series expansion of most of the equations is

straight forwaxd, mhe'body boundary condition

dx,

v e v—a; at X = vniz) 1106)

where v is the axiul valocity and w the radial velocity
(divided by the radius to produce an even function of

the radius), is relatively troublesoma. The problam is to
cvninatt v and w on the body surface in terms of their
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series oo2fficisnts. Since, for sxamwie,
1 —-— i
{ $ C : 3.K . .
vi - N vk iz - x (2.t Pad {157}
: o i3k o
Ix = x, (2} 1ik=Q

Yi{z‘t} S ixb(z} - xr(z,tr) = :Z: yiik‘]t (1038}
iik=4
Since
y; = (0 + otent (209)
wa have
Yijk 0 ir k< L {118)
Thus
3 X F .
DIEED N
v Z 't Z A 4 vi,j—-i.k-myigm
x=xb(z} ik={ £ =0 m={ i={
{(113)

The cases for whick cormatations were carried out ars
identified in Table TY. The gas crorertias associated wich
these cases are about the same as n capiaux and Washington's

{1963) study. The value: chosen 7or the tisscciaticn rate
parameter £ ia gguation { 7 ; correspornd roughly to body
radii of 1 —m {cases 1 3.4 3) and Lli cn {case ).

Figures 7 and 3 ahkow tha distributlon o pressure and
degrae ¢f diggocidaticn aiong the nody surface at two times
gayly in the proesas, while thals distributiens along ths
axia cf svametsy &xas enhown in Figuwres § and 1&6. the

CORVETGANTS 1% $38Ln o Dx glow eyeu when v_© 48 but a teath




Ry T

£ M
effzct of e

cf the sphere's zalius. However, the stron
r

I8

s guite clear. In thk~

Jot-

dissociation rate paramatexr T

orresponding perfect-gas problem, the method performed much

Iy

better, yielding useful results in the vicinity of the
stagnaticn point for vst/rg up to 2.0 or more (Moran and
Van rloorhem 3969)}. Of course, it wes to he expectad that
the present problem, with its relaxation process, would be

much 2oxe dif€icult thar the other.
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Tabie 2

Identification of Cases Studied:;

Relaxation;§9hind a_Normal Shock

w N e

10
10

~ a0 o

10

0.0

0.0

0.0

Reg
?"i
V s
1.3
2.9

2.0

o O Q !JQ




wificients of Expansions of Teiusrature Beninag »oomal ho

(Case 1 of Table 2)

T=2T 4+ T.x¢ + 7T x*z + ree =7

0o * Ty 2 0
L +vT1x*
1l + sz*
1+...

n R %

1 1.22449 x 10°% .1224490
2 ~3.79970 x 10~ ,0310308
3 4.43516 x 107¢ . 0856934
4 -6.03850 x 10™° .0264638
5 8.77218 x 10°° .0568869
6 ~1.32093 x 107° .0335236
7 2.03542 x 107/ .0528393
8 -3.18718 x 10°° .0366453
9 5.05080 x 10”7 .0517006
10 -8.07909 x 1010 .0375344
11 1.30204 x 10~%0 0511719
12 -2.11143 x 10711 .0371503
13 3.44196 x 10”2 .0514257
14 -5.63621 x 10”3 .0362754
15 9.26553 x 1014 .0527321,
16 -1.52846 x 10™ .0349508
17 2.52912 x 10”13 .0551014
18 -4.19647 i 10716 .0326020
19 6.98043 x 10°%7 0601612
20 ~1.16376 x 10”17 .0244839




Power-Sexies Result for Temperature Behind Shock

Bffect of Number of Terms Used on

Number
of
Terms

9]

Exact
Result

= 1.0
.1224490
.118659%3
.1120928
.1190324
1190412
.1190399
.1190401
.1190400
.1190400
.1190400
.1190400
.1190400
.1190400
.1190407%
. 1190400
1190400
. 1190400
.1160400C
. 1190400
«1190400
.1190400

L L120400

x* = 4.0

.1224490
.1072502
.1143465
.1104818
1127275
1113748
.1122085
.1116864
1120174
.1118056
.1119421
.1118536

.1119133

1118735
.1118983
.1118819
.1.118928
. L118856
.1118904
1116872

L 1118893

L%

1118985

1]
2

x* = 8.0
.1224490
0920514
.1204365
0895194
.1254502
.0821652
.1355224
.0686824
.1534208
.0449851
.1847901
.0034195
.2399490

-.0695049
.3375974

-.2001800
,5117046

-.4332575
.8242251

- 8529350

1,388612

. 1059518




Paris o

TR g

T T TR I

Effect of Numbexr of Terms used on
§ : Continued-Fraction Result for Temperature behind Shock
Case 1 of Table 2
Numbe:x
of .
Texm x> 4.0 o = 40.0 x* = 400.0
b S . 1224490 21224490 ,1224490
2 .1089284 .0546346 .0091296
3 .1120878 .0956385 .0905788
4 .1118508 - .0835421 .02¢6109
5 .1118920 0909935 .0815088
6 .1118879 .0884608 .0469398
7 .1118885 .0899361 .0772184
€ .1118885 .0893760 .0576798
9 .11188§S .0896908 07487344
- 10 .1118885 .0895659 .063818¢
1k .11}8885 .0896349 .0735434
12 .1118885 .0896073 0673053
13 .1118885 0896225 .0727986
14 .1118885 .0896166 .0693158
15 :1118885 .0896199 _ .0723992
16 .1118885 .0896186 .0705000
17 .1118885 .08961%4 .0721986
.iG .1118885 »0896191 .07;2143
19 +1118885 .0896193 .0721.100
20 .1118885 .0006192 2071690¢C
21 - 1118885 .08961922 0720915
Exact; Rnu_lf; .lllgees . 0896292 .0722560
53
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wyblp [

Identification of Gacen Studisd

Steady Plow Past s Wedqe

ase Pazbe 2

8
1 0.614 x 10 2.5
2 0.81L x 10°  .-2.5
3 0.811L x 10 ~2.5
4 0.811 x 10° ~2.5
* Mw = vc'

(4+a,) (L + a )RT

P
-

** Dater:uin:d so that 98(6) we 30

RG,

<

v

w
L

0,15373

0.15375

0.04
0.04

[

10
0.9
1079

0.9

A

32.0
32.0
32.0
2.0

6o
25,1751
21.9985
25.175
21,9985
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Tmkle 7

pifact of Mumber of Terms (Jeed on Continued -

Fraction Results for Stexdy Flow Past Wedge in Lighthill Gas

Cave 1 of Table 6
NMurhear ci Terms

P X~ 9 10 il 12
.0001 0, (xad) .5229404  .5229404  ,5220404  .5229404
.001 2, (vaa) .5174350  .5174350  .5174330 51745
.01 6, (rad) .4990483  .4982539  .4986145 49351
0001 By, /ev,? 2130072 2130972 2130972 213097
00 my s few? 12061449 2061468 .2061464  .206146¢
.01 nbody/g,v”2 .1992687  .1998255  .1993362  .198056¢
0001 g, .0342113 .C342119 .0342119 .034211
001 g .1998346  .1999623  .1999538  .199956€
.01 %oy .3848967  .4235381  .3882949 4076512
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Tahle 8

Coefficiencs of r in Power Series (55)

9i

0
- 9870547
-.3148299
-. 1225967
-.0831509
~.0559873
-.0432364
~.0334583

~,0275312

~-.,0227804
~.D19483%
~,0187675
-.0149197
~.0129975%
-,0116260
-.0104534
-.0094632
-.008642%
-. 0679270

. 0070 a3

Conditions Same as Case 1 of Teble 6

Yo

A
.0126422
- 0.129572

- ~.0007958

+.0015 06
-.0007508
+.0005975
- 0004271
+,0003252
-.0002418
+.0001872
-.0001406
+.00511G3
-.0000533
4. CO0TRBD
L ON0045 5
LL000309
- .00001322
+.CI00:44
S o R

LI
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Toble 9

Domby's_Scquences for Analysis of

J
the Series L %4 M

Coefficlente “ij from Table 6

Domh’'a anzlysis avsumas

£M)-2Q¢~(w%ﬂqm}+mm

where ¢, b are regular for n # Ty . Then

b, =

- L e Ty
IR
(3 # 1) 3 - 3 '
34l ?;'
oy ¥ 4edej bj (£j+1)(£j a
21 °1
0.9363 1.1365
1.0587 -0.1529
0.9581 . 1.0022
3.0370 0.0139
0.9726 .0.88324
1,238 0.1430
.,5822 0.7838
1.0151 9.2407
0.988S 0.7085
1.0097 | 0,314
0.992% 0.6480
1.0062 . 1868
0.9952 0,694

31




Tahie M
Identification of Cases Studied;
Steady Flow past Behind Spherical Shock of Rudiue 1
R9
Ps g - S ‘3
Case e g Ve % Yo Ve
v g.ax 10° 0.0 0.8175 0.0 72.415 7.7333 x 10°
2 8.4 x \6° 0.0 0©.8275 0.0 72.415 1.3899 x 10°
3 8.4 x 10° 0.0 ©.817% 0.0 72.415 2.6545 x 10°
]
56




ws3ble 11

Iéencification uf Gauas stucieds

niffraction of Piane 3hock by
5% ere of madius 1

‘a ROsOy LY
LY L) 3; -3 1 Hl‘i;*
1 1.5 x 105 -2.5 218,G 10.0
2 1.5 x 1% -25 a0 10.0
3 1.5x10®  -2.5 2180 0 15.0

5%




Pigure Captlons

Figure 1. Temperature behind normal shock in Lighthill gas
{(normalized by ﬁf/R). Casges ideniitied in Table 2. Solid lines
are Freepsn's (1358) results; ciiclea, continued-fraction rasults

{34 and 235 terms).

Figure 2. Angle between tangent to shock attached to Qadge in
Lighthill gas and freestrsum direction (radias). 6o0lid lines
are Capiaux and Washington's (1963) results; circles, continued-

fraction results {11 and 12 terms}. {a) Case 1 of Table 6.
Pigure 2(b;. Cass 2 of Tahlia 6.
Pigure 2(c}. Case-3 of Tabla 6.

Pigure 3. Presume distribution on wedge in Lighthill gas

(normalizsd by p;yvf). ¥or legend see Figure 2. (a). Case 1

of Table 6.
Pigure 3(k) Case 2 of Table 6.
Pigure 3({z) :se 4 of Table 6.

Fiaure 4. Tewnperature distributiosn on wedge in Lichthill gas

(ncrmalized by vi/R). " For legend mea Migure 2, {(a}. <C(zee 1

of Table 6. . ]
|
SArvarw 2y, Case D of Tgblae 6.
Tioa 4{g), case 4 of Ticle 6.

v
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Figure 5. Streamfunction Aivided by square o radiur (VY/z) and

degree of digssociation (a) on axis of synmetry in shock
layer of blunt body which supports spherical shock wave in
tighthill 7as. ¥ ig distance dovnustream of nose of

shock (normalized by shock radius).

Solid linea are Conti and Van Dyke's (1969) results; circles,
continued-fruction results (34 and 35 terms).

(a}. Case 1 of Table 10.

Figure 5(b). Case % of Table 10,

Pigure 5(c). Case 3 of Table 10.

Figure 6. Diffraction of piana shock by.solid body.

Pigure 7. Pressure distribution on surface of sphere of radius 1
after impingement of shock (normalized by pzvzz). Times ‘
normalized by 1/v’. Continuved- fraction results (10 and 11 terms).

Circles, case 1 of Table II; triangles, case 2; squares, case 3.

' Figure a.' Degree of dissociation on surface of sphere of radius 1

after impingement of shock. For legend ses Piguce 7.

Figqurs 9. Pressure distribution of axis between reflected shock
and sphere of radiuvs (normalized by pzvzz). PFor legend see
Figure 7. ‘

Pigure 10. Degres of dissociation on axis between raflected shock
and sphere of radius 1. Por legend ses Pigure 7.
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