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OBJECT 

The object of this stud' ./as to apply temperature-time super 
position to thermogravimet ix (TGA) data involving the thermal 
degradation of epoxide resins. 

ABSTRACT 

Time-temperature  superposition was successfully applied to 
thermogravimetric (TGA) data for the thermal degradation of a 
number of cured epoxide resins.   For several epoxides and for two 
curing agents, the same values of log a^ were applicable.     This 
suggests that the same chemical processes were occurring in all 
cases,  at least up to conversions of about 50%.    Since log ap was 
linear with temperature,  it also was possible to superpose W versus 
log T plots at various rates of heating.    Once more, the same shift 
factors (log K) could be applied to all the epoxides studied. 



INTRODUCTION 

A widely used method of studying the thermal degradation of 
polymers involves measuring the volatile« given off by recording 
weight less as a function of time and temperature.   At least in cer- 
tain cases, it should be possible to apply superposition methods in 
the treatment of such thermogravimetric analysis (TGA) data (Ref 
1, 2).   This report describes such an application to TGA results 
obtained in these laboratories for a number of epoxide polymers. 

RESULTS AND DISCUSSION 

A temperature-time superposition method should be valid for any 
rate process where the temperature influences only the rate constant 
k.   Even where the effect of temperature is more complicated,    it 
usually is to be expected that the major temperature dependence is 
through the rate constant (Ref 1,  2). 

If k0 is the rate constant at the reference temperature and k the 
rate constant at any other temperature, then log (k/kQ) = log aD is 
the amount by which the data must be shifted along the log to axis. 
The rate constant is conventionally written 

k   =   Ae-AH/RT (1) 

Then the ratio of rate constants for temperatures T and T0 is 

log(k/k0_,logaD = -^ö^-     (T-TJ (2) 

whei * £H is the activation energy and R is the gas constant. 

Thermogravimetric data for several epoxide polymers have been 
obtained in these laboratories over the past few years (Refs 3 through 
7).   These data were used to test the validity of applying the super- 
position method to TGA curves. 



The epoxides studied and the abreviations that will be used in 
this report for them are shown in Table 1 (Ref 5).    Each epoxide was 
cured with m-phenylenediamine (MPD) as described in the earlier 
reports (Ref 3, 4).    In one case, the undecyl WL: cured with hexa- 
methylenediamine (HMDA) (Ref 3). 

The primary thermograms (Ref 3,  4) had been obtained as weight 
loss versus temperature traces at several rates of heating.   Such 
curves, due to the usual nonlinear temperature dependence of the 
shift factor (Ref 8), would not be expected to superposable by hori- 
zontal shifts along the temperature axis.   However,  since traces for 
several rates of heating were available (Ref 3,  4),  it was possible 
to plot weight loss versus log time from the information in the prim- 
ary curves.   Such plots are shown for DER 332 in Figure 1.   These 
weight loss curves were shifted to the 400° C curve along the log 
time axis to give the curve shown in Figure 2.   The shift distances 
along the log time scale are denoted log ap (Ref 1).   Figure 2 does 
indicate that a time-temperature superposition applies to this type 
of data.   Figures 3 through 12 show the corresponding plots for the 
other MPD cured epoxides listed in Table 1.   Figures 13 and 14 give 
the results for the undecyl epoxide cured with HMDA. 

It is noteworthy that the same shift factors (arj) could be used in 
constructing master curves, despite the structural differences in the 
epoxides.   This was also true in the one case where the curing agent 
was changed; and it would seem to indicate that the degration was 
following the same course in each case, the primary process not de- 
pending on structural changes that were introduced into this  series 
of polymers.    In earlier work (Ref 3,  5),  it was found that activa- 
tion energy values for the degradation of MPD cured epoxides were 
essentially constant within the experimental error.   This , lso indi- 
cated that chemical processes occurring in the degradation were the 
same for all the polymers.   It is known that degradation of cured 
epoxide resins during early stages primarily involves destruction 
of the aromatic ether moieties (Ref 5, 9).   The thermograms used 
in the present work are reliable up to around 50% degradation (Rsf 3). 
Above this degree of conversion, deposition of material on the balance 
weighing system made the results somewhat suspect.   So it would 
appear that the data obtained probably mainly reflects changes in the 
ether moiety*    It is believed that such changes will be little affected 
by steric factors arising from side-chain effects (Ref 3,  5). 
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The same conclusions appear to hold for the single HMDA cured 
sample.   As 'ndicated above, the same a^j vaiues that were used for 
the MPD c   ed samples could also be applied to this material.   Lee, 
Reich, an.» Levi (Ref 3) found that in this case the activation energy 
for degradation appeared to some 15% lower than that for MPD cured 
epoxides.    On the basis of the limited data at their disposal, however, 
they could not be certain whether this was a real effect or only experi- 
mental error.   Our results here tend to support the latter view. 

A. plot of log aj) versus 1/T according to Equation (2) is shown 
in Figure 15.   An activation energy of 15 kcal/mole was found from 
the Arrhenius plots for all of the cured epoxides studied.   This con- 
stancy is to be expected if the same degradation processes are oper- 
ating in all cases over the conversion range investigated. 

Most kinetic parameters evaluated from TGA data based on the 
reaction rate equations were weight dependent.   The prime para- 
meters in these equations were concentrations expressed in terms 
of weight changes.   The implication of weight dependency possibly 
would affect the values of the evaluated kinetic parameters.   This 
probably would account for the differences between the values for the 
activation energy obtained in the present study and those from earlier 
work. 

Figure 16 shows the temperature dependence of log ao»   The fact 
that log aj-j   is linear with temperature suggests that superposition 
might be applicable to W versus log T plots at various rates of heat- 
ing (Ref 8).   Visual inspection of such plots also indicated that they 
were nearly parallel. 

Shift factors, designated in this case, as K for superposing the 
weight loss-log temperature plots were determined by inspection 
for each of the epoxides.   Upon plotting the average log K values 
against rate of heating (RH), the curve shown in Figure 17 then were 
used in constructing the master curves shown in Figures 18 through 
24.    It appears that the superposition procedure is applicable to these 
curves and that the same log K values can be applied to all of them. 
This demonstrates once more thai t.se same chemical processes 
seem to be occurring in the thermal degradation of all the epoxide 
resins studied. 
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CONCLUSION 

Time-temperature superposition can be applied to thermogravi- 
metric data for cured epoxide resins. 
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TABLE 1 

List of epoxides studied 

CH2-CH-CH2-0-^     )i -C        £      h     -O-CI^-CH-Cl^ 

R 

R Abbreviation 

-CH3 Epon 820 

-CH3 DER 332 

-(CH2)6CH3 Heptyl 

"<CH2>10CH3 Undecyl 

-(CH2)14CH3 Pentadecyl 

0v CF3 0v 

CH2-CH-CH2-0- /      A    -9   4      /) -0-CH2-CH-CH2 

Halogenated 6F 
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Fig 3  Weight loss of Epon 820 as a function of time 
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