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13. ARSTRACT (Continued)

error, J.

McDonough's method for finding the {sk} is derived Ly
three different approache.. In the process, a new meihod
1s developed which offers the advantages of the earlier
results achieved by McDonough and by McBride, Schaefgen,
and Steiglitz. This new method reveals the 1link hetween
these earlier methods and provides a standard for comparing
these two linear lterative schemes using several numerical
examples.

The linear least-squares approximation procedure in
which both n and the {sk} (or {bk}) are fixed is also dis-
cussed in detall. Examples show the numerical difficulties
due to roundoff errors that arise even with the straight-
forward methods available to find the {ak}. A simple
criterion for estimating these errors before finding the
{ak} is developed to permit one to evaluate the feasibility

of obtalning accurate results in any given situation.
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LEAST=-SQUARES APPROXIMATION OF FUNCTIONS BY EXPONENTIALS

ABSTRACT

The approximation of an analytic time function in the least-squares
sense by sumg of exponentials is considered from several different points
of view, In particular, ve consider the determination of the 2n complex

n
parsmeters {a, ,8,} of the function £,(t) = zk_l o exp (s, t) so that for

a given n and f(t), the value of the functional

3= ] Le) - £ (0012 e
o

is minimized, Equivalently, the 2n real parsnmeters {;l,bk}. of the

Laplace transform

’.2"”_.*.‘.!1-1

bloba'#o.o "bn.

n-l"n

of t.(t). may be determined to achieve the ssme minimum value of error, J.

McDonough's method for finding the {'k} is derived by three different
approaches. In the process, a nev method is developed vhich offers the
sdventages of the earlier results achieved by McDonough and by McBride,
Schaefgen, and Steiglits. This new method reveals the link between these
earlier methods and provides a standard for comparing these two linear
iterative schemes using several numericeal examples.

The linear leastesquares approximation procedure in vhich both o and
the {s } (or (b }) are fixed is also discussed in detall, Examples shov
the numerical difficulties due to roundoff errors that arise even vith the
straightforvard methods available to find the (qt). A simple criterion
for estinating these errors before finding the hk) is developed to permit
one to evaluste the feasidility of obtaining accurate results in any given
situation.
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LEAST-SQUARES APPROXIMATION OF FUNCTIONS BY EXPONENTIALS

I. INTRODUCTION

1.1 Exponential Representations

In approximating a function of time, such as mighi{ arise in -~ontrol
or coomwnication problems, cne commonly uses a linear combination of a fine
ite set of simpler functions, Expcnential functions are particularly appro-
priate for this purpose because they have simple mathematical properties.
It has been demonstrated in [l]-[b]* that exponentials have very good
approximation prcperties for a rather broad range of signal vave shapes.
Furthermore, in linear time-invariant systems, the class of expunential
functions provides a natural representation since the natural response of
these systems is cmposed of exponential components. Another feature of
an exponential representation is that there are arbitrarily many éifferent
discrete sets {lxp(skt)} that are complete¢ over the semi-infinite interval
with respect to the l:.2 norm (i.e. the mean-square error in approximating
any piecevise continuocus f£(t) that is square integrable over 0 < t < = by
the form zk uhcxp(lkt.) can be made srbitrarily small). This completeness
property is established by Szasz's forz of Muntz's theorea (5], wvhich vhen
applied to this exponential basis may be stated as follows: The basia
(cxp(nkt)} is fundementsal vith respect to the 1.2 nore over the semi-infinite

interval if end only if
- Re(ck)

- —— ) -, (1.1)

112
kel 1s|se -,‘;I

’Hholo aumbers in brackeis refer to references listed bdeginning on pege 81,




-T-

However, for practical work we are not interested in letting k approach
infinity. Instead, we seek efficient representation im which k is small,
0f course, any finite rerresentetion will necessarily be approxiunate and
incamplete. We are interested in finding the basis of lowest possible
dimension thrt will lead to an approximation of acceptable accuracy.
Efficient representation will enable us to extract the information-bearing
attributes of the signal vith a minimum of processing. When the interval
of approximation is finite, one can resort to the discrete Fourier series
since sines and cosines belong to the class of the exponential functioms,
But, despite the popularity-of Fourier representation, one can oftem do
better than this for pulse=like signals by using more general exponential
components. For this reason exponential functions play an important role
in s.gnel representation,

Tco best approximate a signal by a set ¢f n exponentials, one mugt
determine the n "optimum" exponents 5, 88 vell as the n amplitudes LN
These exponents and amplitudes may be chosen to minimize the error with
respect to some norm. Two popular norms ave the integrated squared error

(L2 nom)

® n : -
Jufle6) = ) o expla )Pt = [ e°(t) at (1.2)
o k=] o]

and the Chebyshev norm (uniform norm), ::; je(t)|. The former, oftén re=
ferred to as the leastesquares (or minimumeerror energy) criterion has been
studied extensively becsuse it is the most tractable mathematically. For
given (ak}, it is easy in principle to choose the {“k} for the least-squares

criterion, since fa(t) is a linear function of the {ak}. However, practical

camputational difficulties exist because the exponential functions are highly
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correlated. As a consequence, solutions of the (ak} nay be subject to

large errors due to roundoff in the numerical computaticn. This difficulty

will be examined further in chapter II,
Difficulty of & more serious nature arises in finding the exponents

{sk} for a given f(t) that satiafy the minimum error energy criterion,

Until recently, only gradient methods were available, and these frequently

proved to be quite unwieldly for large n, Then in 1966 McBride, Steig-
1itz, and Schaefgen [6] and in 1968 McDonough and Huggire [7] developed
tvo different linear iterative schemes which have been found to be quite
successful for determining the {sk} even for large n., T/0 natural ques=-
tions about these methods are the following. First, how are these meth-
ods related? Second, when is it advantageous to use one method rather
than the other? This thesis provides answers to these questions by
developing & new linear iterative method under the least-squares cri-
terion.,

The Chebyshev or uniform-norm criterion has been studied less than
the least-squares criterion because it is analytically more difficult,
Apparently, not much has been done with this criterion to date but,

Tang [8] has shown how the {uk} may bé determined provided all the {sk}
are real and distinct. So far, it appears that the only way to find the
exponents {ak} for the Chebyshev criterion 1s by slowly converging grad-

ient methods,

I.2 Some Known Methods of Agproximstion by Exgonentills
I,2.1 Non-Optimal Aggroximation - Pronx'l Methed and Padé Approximants

Two simple, but often successful ways of cbtaining an approximation
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to & function by sums of exponentials use Prony's method and Pade ap-
proximants. Neither results in an optimal approximation with respe:t
to the L2, uniform, or any other norm, but they do provide two quick

and straightforvard weys of obtaining approximations that are usually

"fairly good”". In Padé approximants one matches the rational function

m
z14=1 8, k=1 (s

Fa(s) Y b gt = Oy * Pan1 71 (1.3)
k=1 'k

to the desired function F(s) (the Laplace transform of f(t) ) by adjuste
ing the {.k'bk} such that Fa(l) vill have the same power series as the

power series expansion of F(s) through the - power where m<n, That

is, the seminorm

|IF(s)-Fa(s)l|=lF(0)-F‘(0)I+IF‘(0)-F;(0)|+...+|F""’“(o)-ram"‘(o)| (1.4)

is made zero. The real merit of the Pasde method is the camputational
ease with which the {ak,bk) may be found. Finding the {bk} involves
solving n linear equations in n unknowns. Once the {bk) are determined,
the {a.k} are similarly found by evaluating another linear system of m
equations. These are explicit eguations, not simultaneous for the {a.k}.
To write F‘(s) as a sum of exponentials, & partial-fraction expan-
sion must be performed which requires finding the roots of the nth
degree polynamial D(s). Kautz [9]) and Mathers [10] have used the method
in designing circuits to approximate specified transient responses.
Teasdale [11] first applies the transformation z=(l-s)/(1+s) to ot=

tain an "indirect Pade approximant" matching a power series in z instead

of s, (Actually, since z=0 implies s=1, this is matching the power
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series about the point s=1 instead of s=0,) The procedure developed
will be different from the direct Pade approximant with generally small-
er errcr but at the expense of more computation.

Another simple vay of approximating a function by sums of ex-
ponentials is a method first used by Promy in 1795. This procedure
was first applied to network synthesis problems by Tuttle, Carr, and
Kautz. A detailed discussion of the method and its refinements is
given in McDonough's thesis [1]. The principle behind the method
originates from the fact that if a waveform is indeed composed of

exponentials, viz.

n
£f(¢) = ) exp (s, t) Re{s, } < O (1.5)
k;_l %k ¥ k

then f£(t) will be the solution to some homogeneous differentisl

equation of the nth order,

n i
] 3, %5=0 ,B =1 (1.6)
i=o dat

Provided one could find the coefficients {Bi} of this equaticn, the
{sk} could then be cbtained by evaluating the n roots of the poly-
nominal Z 120 Bisi-O. Our task then is to find the B:l appropriate to
a given £(t). Then, the {sk} which satisfy the differentisl equation
may be used to construct an exponential basis for f(t). If the signal
is nolisy or is not exactly the sum of n exponentials, the left hand
side of equation (1.6) cannot be made zero regardless of the choice

n b i
of {B,} and there will be a residual [, _ B, (d'f/dt") = € (t)e
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Since B,=1, equation (1,6) may be written as

n
e (t) = £(t) + § B (s

Then, one simply chooses the set of {Bi} to minimize this ep(t) in the

least-squares sense, thus

Es=f [cp(t)]2 at. (1.8)
o

Minimizing E over the coefficients Bl’BZ""’Bn results in n linear
simultaneous equations

3k
B

n -
2 ] e f® arao (1.9)
1

T 1)
= [ 0 gt +
o k=] o)
1 = 1'2..00'n0

However, the matrix elements

8y =/ £l1) (k) 4 (1.10)
o

will not exist unless f is of at least class C°. If the differential
equation is first integrated n times the corresponding new elements
will exist for any piecevise continuous function with finite energy
but, this initial integration should be performed the least number of
times to assure the existence of (1.10) since it has a tendency to
destray signal information. Fortunately, the matrix elements ¢1k have
certain recursion relations vhich make it necessary to calculate the
€.k O0ly. Prony's method yields only the frequencies (.k) but, the
amplitude coefficients (ok} may subsequently be found with little
difficulty (as discussed in the next chapter). It should be emphasized

that Prony's method does not lead to the optimum least-square approx-
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imation (unless f(t) is exactly the sum of n exponentials) since
cp(t) is not identical to r(t)-f‘(t). |
1.2,2 QOptimal Approximation in the Least-Squares Sense by Exponentials
The conditions for optimal exponential approximation of a funce
tion £(t) with respect to the L, nom over the semi-infinite interval
are described compactly oy the equations of Aigrain and Willisms {12].
Although theoretically attractive, these nonlinzar transendental
equations are computaticnally undesirable and algebraic solution is
seldom possible even when the Laplace transfora of f(t) is known in
closed form. Most often, thesr equations are solved by a gradient,
or sane other iterative method.
In chapter III, it will be shown that by suppressing the smplitude

. coefficients {uk} one mgy write the integrated square error, J, as
]
Jef[t%(¢t)at-FulE (1.11)
° =

vhere g_'l is the inverse of the generalized Hilbert matrix and F is a

column matrix (:F'-[F(a'l'),l-‘(lg),....F(n:)]). Equation (1.11) is a com-
pact mathematical expression for the mean-square error but, for large
n, (say n>5) it is very sensitive to the variation of the ('k} and
finding the minimum J by the usual gredient methods may be ineffec-
tive. The two my.h more effective vays of solving the Aigrain-Williams
equations for large n, vhich have been recently developed, shall nov
be briefly discussed.

The method of McBride, Schaefgen, and Jteigliti, the first of the

linear iterative methods mentioned earlier, introduces an approximate
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error
D,(s) N.(s)

E(s) = BJ—-(-;T F(s) - B‘L—GT (1.12)

J=1 J=1

with
nNel
N(s ‘1*.2.*0 . o*.n.

F (s) = = ——— (1.13)
a D(s n=l. . n ,
b 1+b2-+. . "bn' *8

where the subscript J refers to the iteration number. The previously
computed coefficients of DJ-l are regarded as fixed during the Jth
iteration., By this simple tactic, the error is linearized in terms of
the unknown coefficients {'k'bk} of the numerator polynomials N 3 and
D,. The primary difficulty with this method is that the approximate

J

rather than the true error is being minimized, Hence, the iterative
scheme does not converge to the true optimum, To circumvent this diffi.
culty, McBride et. al. introduce a different "Mode-2 Iteration" which
does converge to the true minimum but more slowly than one would hope.
The requirement for using two d’fferent iteration schemes also adds cxtra
complexity to the McBride method.

The difficulties of the McBride method are avoided in the linear
iterastive scheme devised Ly McDonough and Huggins. Here, the 2n
MMgraip=Williems equations are first reduced to & set of n equations
involving the {lk) only. This vas done by regarding F(s) as a signal
in a vector space and shoving that & necessary condition for the {'k)

to be optimum is that F(s) be orthogonal to the space spanned by 01(3)

i = 1.2.....0 vhere
13 (gen)

0 (o) » =2 i) TT T.—_;E, (1.14)

s~
] 1-n " i k=l k




————

wlha
with
-ﬁ- (a+ak) n D(es
e = 11 Gty = "1‘:'('-‘;' : (1.15)
This orthogonality condition may be written as
j F(=-8) oi(a) 5-% = Q i=1,2,...,n, (1.16)
-J.

The linear iterative scheme described by McDonough is obtained by ree-
placing H(s) with the new operator
n+l

“.(') - 121 bi(-si)i'l / D(s) s b

n+l = ] (1017)

The resulting iterative method is similar to the one described by McBride.
All these optimum least-squares methods will be discussed more fully in
chapter III.
1.3 Brief Discussion of Previous Methods

Prony's method and the methcd of Padé approximants have two things
in comon. First, each requires the solving of a system of linear
simulteaneous equations. Second, to find the epproximate {sk), one must
evaluate the roots of an nt"h degree polynomial, Each method uses the
application of these two operations cnly once. Hence, each is useful
in that it provides a rapid wey of cbtaining an spproximstion to a
desired wvaveform. To improve these initial approximations or to make
them optimal, either of the linear iterative schemes may be used.
These linear iterative methods also require solving a system of linear
simultanecus equations and finding the ruots of an nth degree polynomial
for each iteration. It vill be shown in the thesis that the method of

McDonough is the better vay of improving the approximation.
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Regardiess of the initial starting point in the approximation,
Mode=l, lode=2, and McDonough's method all converge to the optimal
soluticu in one step 4f the function f(t) is exaclly corposed of n
exponentials, This suggests that any of the linear methods will cone
verge rapidly to the optimum vhen the signal is "nearly exponential”,
I.4 Plan of the Thesis

It is vell known how to find the amplitude coefficients for a
least-square approximation to a fumcticn on a fixed or known basis,
However, camputational difficulties arise when the basis elements are
highly correlated. In chapter II & closed-form expression is developed
for the inverse of some Gram matrices that occur in lesst=square
theory. These new expressions can help to reduce roundoff errors
in camputing the amplitude coefficients. In particular, the exponen~
tial basis is studied. An explicit inverse for the generalized Hil-
bert matrix, the Graz matrix for an exposential basis, vas pudlished
in & French Journal in 1960 [14]. Although this result is quite use-
ful in least-square representation by exponentials and polynomials,
it appears to have remained unknown to the English litersture. Its
use is fully explored in regard to finding the amplitudes as vell as
the (s ).

The successful methods of McDonough and Huggins and of MeBride,
Schaefgen, and Steiglitz are discussed in detail in chepter III, A
nev schemg 1a developed which for the first time enables cne to make
a meaningful comparison of the methods, In chapter 1V, several

numerical examples compare the convergence properties of the linear
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iterative methods. Finally, in chapter V, the new method is extended

to deal with imperfectly known signals or sampled data.




II. DETERMINATION OF THE AMPLITUDE COEFFICIENTS IN LEAST-SQUARE APPROX=

IMATION OF FUNCTIONS BY EXPONENTIALS AND OTHER COMMO. LY USED BASIS
FUNCTIONS

Suppose x, (t), xz(t), cond xn(t) denote a finite sequence of con-
veniently chosen functions defined over some continucus interval (a,b)
n
of t. Let r.(t) * lp=1 akxk(t) be an approximation to the function
£(t). One problem is to find the a  such that [:lt(t) - f‘(t)lz at = J

is a minimun, The standard least-squares procedure yields the following

equations:
aJ ’z‘
o= (O Or g ., =1 1% 1,2,...40 (2.1)
aai 21 i3 i

L]
i
Gandf = ]: r(t)x:(t) dt are the elements of the column F. Then the

L ]
vhere 8y I: xi(t)xd(t) dt = g".  are the elements of the Gram matrix
best fitting amplitude coefficients are given by the column matrix A,
vhere

~Llr. (2.2)

A=

()

Theoretically, this algorithm presents no difficulty provided the x are
linearly independent., If they are not, the matrix 2 vill be singular
but the same minimum error J can be obtained with a set of less than

n of the X that are independent. When the x, are highly correlated,
but independent (exponentials for exsmple), the matrix G is "{1l-
conditioned" and computational difficulties arise in finding the
inverse accurately for any sizeable n, as evidenced in [19]-[21].

This difficulty is sametimes reduced by introducing a nev dasis of
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orthonormal functions, which are linear combinations of the original
vasis functions xi(t) end span the same space, However, these ortho=
normal functions no longer posess the simyle properties of the origi-
pal basis so this approach is not a cure-all, A method for finding

¢~ is still needed.

I1.1 Inverse of the Gram Matrix
Let Ql(t),oz(t).....on(t) be & set of orthonormal functions,
vhich may be determined from the xi(t) by the Gram=-Schmidt procedure.
That is,
i
o (t) = ] e x(t) i®=1,2,000,n (2.3)
k=1
and 4 cannot be zero if the x, are linearly independent, Written in

matrix notation, #(t) = CX(t), vhere C is & nonsingular n X n lower

triangular matrix and

)
EACIMOR (2.4)
a

Using Dirac notation, let 5] denote the column of basis elements and

|X 1ts sdjoint. Then

XX=¢ (2.5)
From (2.3)

& =cx (2.6)

x| = 1y (2.7)

X=13g” (2.8)

Note that € 1s the adjeint of C vhich mesns ‘5’“ - e;‘. If g 1s

real, then g is the transpose of C.




9]¢ = I (identity matrix).

g= ¢t

or the final result
=1

i
Lot

c. (2.11)

Equation (2.,11) is a useful result in two waye. First, it rey be used
to find explicit expressions for the inverses of some Gram matrices

that are ill-conditioned. Second, it can sometimes be used to construct
an orthonormal basis by simple inspection. The second application is
not one of the main goals of the thesis and therefore, is discussed

in Appendix A, The first application will now be demonstrated by finde

ing the inverse of the Hilbert matrix,

I11.2 The Generalized Hilbert Matrix

The generalized Hilbert matrix is the n X n Hermitlan matrix with

elements hiJ - - (!i¢l3 -1 or
[1/(s,8%) 1/(s,#83) oo 1/s 457)
l/(32+s;) l/(82+lg) eee l/(32+s:)
g- - . . . (2.12)
L_J./(an*s'i) 1/(s_*83) «os 1/(ln*|;)

vhere the s, are n camplex scalars and s, ¥ s, if 1 ¥ J, and s, ¥ 0,

3




=20=

The Hilbert matrix is discussed extensively in the literature [21]-

[24k]). The inverse of this matrix is shown to have for its elements

(s, +8%) (8, +s")

- (s, +s? (sp+s,)
-l i i ”

3 k=l k
k¥

RETem— © 2

A o ot

Prof: Let xi(t) = exp (+311.-.), Re(li < 0), then hiJ =
]: xi(t) xg(t) dt. As in (2.3), let the orthonormal functions be given by

¢#(t) = C X(t), vhere

‘ (-#1)_ (-s ~g¥ )1/‘(3 +8 { (s bes }
i i | I
[ = (2.1‘4)
i (s‘i'ﬂ )

3 ‘ k=]

k3

The ¢1(t) are knovn to be orthonormal from Keutz's method [13], [18].

The Laplace transform of Qi(t) is

rr - (-ai-s'{)l/z 1 (a#s;)
Oi(s) - zsts‘i'i pml zsbskj (2,15)

The ciJ in (2.14) correspond to the residues of this transform,

From (2,11)

-1 n

hiy= ) e c (2.16)
id max (1,4) ki“k)

since ¢,/ = 0 if i < m. From (2,14) and (2.16)

hin = cni nn %

(s,48%)(s_+s¥) TT 5, *s?) o (s*8 )
- i ' I k¢ n (2017)
T "1"”’ {k-l '('s'fTY K=l (O]
3 ki k¥n

Because of the symmetry in the original matrix, if Cn is replaced by <, 3

in (2.17), the formula must hold for the general term hzj' (since the




order of 81485900098 in g'cnn be changed without affecting the form
of the equations) and (2,13) is proved. In the special cese that all
the s 4 are real, the formula reduces to
-1 bs,s “ (s, *s,) (- +8
hyy " - T—Lrsi*d r—s =Rl (2,28)
k=l
kyi k#J
This result agrees with Gastinel [1k)] who found this expression for the
inverse of a generalized Hilbert matrix by a rather tedious application
of Lagrange's interpolation polynamial., Appendix B gives another inter-

esting explicit inverse using Laguerre functions.

I1.3 Roundoff Errors in the Amplitude Coefficients Using a Fixed

Exponential Basis
Let f(t) be a piecewise continuous real function having finite

energy in the semi-infinite interval, i.e.

/ 2(t) at < =, (2,19)
o

We wish to find the smplitude coefficients {ak} that will minimize the

nmean-square error,

J= I (£(¢) - 1 a expls, £)1% at (2.20)
kel

for a apecified set of exponential functions, having {sk} with negative
real parts. From (2,1), the simultanecus equations for determining

the (ak} are’

t must occur in complex conjugate pairs.

Since f£(t) is real, the 8y
Hence, there is no loss in generality if every s; is replaced by 8,

in (2.21) and to simplify the typography this will be done throughout

the remainder of the thesis,
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- - 4 r -
F(-2}) /(s +8)) 1/(s #3) « o o L/(s 48)| )
F(-s;) 1/(:2+|;) l/(-2+s'2') « . 1/(-2";) a,
. . - . . . ) (2.21)
» *
LF('Bn)_ L-l/(anﬂl) 1/(s +83) . . . 1/(sn¢s;l _G"J

where F(s) is the Laplace transform of f(t). In matrix form these
equations are F = g A, vhere _g_ is the generalized Hilbert matrix,
and their solution is A = 2:1 F. However, the Hilbert matrix is
notoriously ill-conditioned and computation of g:l by any of the
standard methods (Gauss-Jordar., Seidel's method, method of Crout,
etc.) encounters serious roundoff difficulties for n greater than
5 or so, even when double=precision arithmetical operations are used.
The rapid growth of roundoff errors with incresasing n may be
demonstrated by ccuparing the inverse of H (for s =i 1%1,240004n
with n=5 and T) calculated by the explicit formula (2,13) with the
inverse obtained by the method of Crout [15]. All calculations vere
made by an IBM 7094 having approximately 8 significant decimal digits.
Teble 2,1 shows that only 3-place accuracy is attained in many of the
elements of the inverse matrix for n=5, and a complete loss of sig-
nificant results for n®7 using Crout's method., For still larger n
the results are meaningless. On the other hand, the explicit formula
achieves T-place accuracy (for both n=5 and 7)., (This was validated
by double-precision calculations,) Since a detailed analysis of

roundoff errors arising in inversion of matrices cn computers is

given in references [16] and [17], this topic will not be discussed




further here,
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Moreover, the explicit formula for inverting the Hilbert

matrix has so reduced these errors in finding the inverse as to make

them insignificant for modest n.

Inverse of the Hilbert Matrix h
of Crout and by Explicit Formul

Figure Accuracy.

Table 2.1

3-1/(1+a) for n=5 and 7 by Method
&"on Computer Having 8 Significant
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~242724.0
11a800.0

“S11860.0
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~SIas b, 0
lanian.n

LR LY Py
~1DAShH .Y
B PR LT L]
ALY RV
L LY R LU
~2NalIns 2
LREL PN

LU
~&l00
176M.9

=% 20.0
XL

4700 .0
UYL
R R P
L IAGDI L
LAY Y IO

1200040
-lal)sc.0
«IC4r 0.0
-ACANNN, O
254000, 0

1%l 0
L 1ha00.N
-606en00,0
19V000,0
- 9952000, 0

6400.0 |
~1%600.0
268400,0

«1%2#00.0
191760.0

Explicit Formula n=5 (Exact Inverse)

akin
LI
1/75K7 .4
“150% 0.4
w290, 1

RICT Y
as08 1.4
S1aN24.h
1761804
B LYY 1A

12582.0
=14CY25.%
LLE LY PV
X AT Y
20423404

~1%09¢%. 7
1761%0.4
~6034AN Y
192730
- 3521310

620.2
~1%00.9
2047304

-352332.n
15099%.5

Method of Crout n=5 (3 Significant Places)

~2R224 .0
S11%%6.0
-Wmin219.9
11821099, 4
S RALYA LY
1302100 10.4
ELURLUEY Y]

Explicit Formula n=7 (7 Significant

-108n01.1
PARRAVEYYN
ERLLLGELY e
DaN2UN L
-AI9ISONN U
ANV, 0
/1040 Y, 0

176400.0
A LITTAL N ]
28460CC0.0
-81]56994.0
130921C0Nn. 0

-100%C079%,0

1C2102m.0

120%86.2
-16INI0IN. A
1222120080

- 1IM24A2NN,.0
AA4NALB24,0
~5%0719%1%4n, 0
158100 292,.0

=517440.0
L16e23199, 4
-8315v99%.0
266804974.0
~A268R871576.0
332912612.0
-100v00791.0

~231%999. 1
$4]1%54249.9

- 3971021340, 0

1298171%804.0

-2 78,0
1668240920,

~510044460.0

170160.0
~1796255%9.5
130971000.0

-A26A87972.0
8715%n980.0
~544864208,0
16A4Rs310,0

3107184.0
~-8IOAITINS.0
$81270%76.0

~2104A897104.0
INZR264104.0
~2T126440000.0
8316383920

~5716576.0
13621407.4
-100990795.0
3)2912n08.0
-564HA& 96,0
43)2166400.0
-13%1A9045.0

Places)

-2012320.9

$8723000%.0
-304038154.0
EXLETTYS TN
-2106704R84.0
21s5180/700.0
~6%5M824032.0

Method of Crout n=T (No Significance)

tenl6n,0
~403603) .0
302702138.)
-100900191.0
1644ns3t0.0
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4122%100.4%

N1179s,2
-2071510%22.0
153710410,0

~306 1914100
A28439432.0
~851872%14.0
2021041 %40

Another source of roundoff error occurs in the computation of the

(s} vhen g‘l is multiplied by F. From (2.21) and the explicit formula

for grl. the k

th

amplitude coefficient can be expressed as




.} 'Y
2 °1T:
o == hsk Tt 121 3 o F(mzi) (2,22)
wvhere n ( )
8 _*8
n B k (2023)
T " ﬂ!.l-.k’
m=]
o¥k

The estimation of a roundoff error in evaluating equation (2,22) may
be illustrated by considering the approximation of a square pulse,
f(t) = u;l(t) - u_l(t-l). vhere u_l(t) is the unit step,

u_l(t) =] t>0

=0 ¢ <0

and thus

F(s) = (1-e"%)/s. (2.2h)
Agsin let s,=i i=1,2,...,n. Columns 1, 2, and 6 of Table 2.2 summarize
the results using cquation (2.22) with ne5,7,and 9. (The error is es-

timated by comparing these results with those obtained by double-

n
k

same order of magnitude for almost all n and k., This implies that

precision calculations.) Notice that a, snd T exhibit nearly the
the sum of the n terms within the brackets of (2.22) must be roughly
of unit magnitude. Also, all of the F(—lk) are less than .. (In
chapter V it is shovn that for sny normalized f(t), IF(-lt”:
[230{-lk}]-1/2.) Therefore, the number of significant decimal
digits lost in each of the a computed by this method, vhich forms

small differences of very large numbters, may be expected to be the

sahe as the number of places to the left of the decimal point in

the largest '1’:. In the example provided by Table 2.2, for n®5,
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2 has the largest magnitude of 315, Thus, a loss of about three sig-

T
nificant places may be expected; for n=9, 'I’z = «210210 indiceting a
loss of six significant places in each oy These predictions agree

with the actual accuracies obtained in Teble 2.2,

Table 2.2

Anplitude Coefficients of exp(-ks¢) k®1,2,,..,n for a Least=Square
Approximation of the Square Pulse

From E From Double- Tn
(2.22) rror (2 Error
(2, q.(2.32) recision k
[ 0.296 N.99y Co296 -0.7209 1,26 15.007
-12.9" ~0.00) -12.%C1? 0.0n]) 12908 ~iN% .00
nUo 120 N (0% WG LS -0. 002 (OISR RN} FLICIT TN
L2041 0,004 1264860 0,003 1284471 -319%.000
60o 312 QN7 60.399 -0, 001 6€0.310 126000
n=5 Loss of 3-Places
l.204 0.019) le)vl -0. 004 1. 194 28,000
-19.080 -0k 10 -1H.A2% 0.0CRS ~18.919 -3 0Ny
i5.712 1.304 313. 165 -0, 640 b 64 2100.0n0
263.R30 -§.017 269,987 2.14% 26 7.844 =57175.001
-902.102 1194 ~920.4H42 ~3.547 “91h.935% ®filn.00Nn
13.6010 -5.44)17 1202.332 2.84A8 Y1544 “ANOA HOND
b LY. B Y. 1.574 ~3ht.297 ~0.HhS “Yhh6l2 1716.007
n=T Loss of 5S5«Places
-2.%4) N 164 -2.401 0.088 -2.6M9 49%.00)
fus. 1t ~ 1949 192.23R -3.662 10%.900 -9.9,00)
~1211. 0 15,434 ~1198.921 &A,.307 ~128A.A3N Yrey,rny
603 7.52% ~319.29K LOLT. U R Y -29%.RnhH HA82 324 -4 50484 VN
A LINN SN LYY TR A I ~1%30%.4 26 QT6. 08T ~1A2KA. 4133 12812%4,.000
20081908 SLITA AN 20192.09 -1848.4490 228,504 =210 2% 102
BYSIYS:hL) A40.031 ~1SCeS. Ths L9v8,2%2 ~12004.0)3 29%910 )
Shal. -T31.AA1 SH2. 4K -1151.21s 623V.60) SeaING ey
AL L LV XYY (LY PR R ILTR R R 213.058 ~ThI A5y 24300 48

n=9 Loss of T«Places
2006000

A procedure that is often used to avoid the inversion of the

illeconditioned matrix of equation (2.21) is achieved by introducing

orthogonalized combinations of the original exponentials. The orthog-
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onalizing procedure masy be implemented in practical filters by a
method due to Kautz [13], (18] which is based on the traditional
Gram-Schmidt procedure applied to exponentisl functions, Rewriting

(2.14), the orthonormal functions are

i
o,(t) = ] ¢, exp(st) (2.25)
k=1
vwhere
, (s, +8*)/=(s +87)
iy = (-1)14‘1 _L::T':—"—L Ti i>k (2.26)
Then
n
£ (t) = T a el(t) (2.27)
k=1

As is wvell-known from the theory of orthonormal basis, the expansion

coefficients

d = { £(t) ok(t) dt (2.28)

sutcmatically yield a least-squares fit. Equation (2,28) may be ex-

pressed in matrix form as

~3 - - “1 r 1

(2.29)

Ld". _cnl €n2 n3°**Son LF(-ln)_

E

or D= CF, When the signal coordinates on the orthonormal basis are
transformed to find the coordinates on the original exponential basis

one gets




o

«2T=

) ® 39 ¥ ) ¥ egppd) + e

u2 . c22d2 + c32d3 + een (2.30)

a3 ® C33d3 * oo

see P8 8080000000000 0000000008000

Equation (2.30) is easily verified using (2.2), (2.11) and (2.29).
Hence, explicit equations for the {ak} can be obtained in two

simple steps by cambining! (2.29) and (2.30),

A=C(CE (2.31)
or
) I e, R >] (
a = c c,, F(-s 2.32)
R T ]

To minimize the nurber of arithmetical operations required in evaluat-
ing A = ?:__:_ C F, the product C F should be formed first. This requires
n(n+l) multiplications, whereas if Eg is formed first, roughly
n3/2 multiplications are needed to find all the {uk}.

Although A may be evaluated by either equation (2.22) or (2.32)
(vhich are theoretically equivalent), equation (2.22) is compute=
tionally preferred for three reasons. First, it is much simpler,

requiring only s tingle summation rather than the double summation

* 0f course, if the '5:;' € in (2.31) is cambined and simplified, one
obtains the explicit expreasion for the ipverse of the generalized
Hilbert matrix obtained earlier. Apparently, this way of finding
the inverse of a Grar matrix has not appeared previously in the

literature,
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of (2.32), Second, only n 'lﬁ are needed in the first method, whereas

in the second, n(n+l)/2 different c,, must be evaluated,’ Third,

13
the method of equation (2.22) provides a simple estimate of the
nunber of significant places that will be lost due to roundoff even

before the actual computation is made,

By observing the magnitudes of the '1‘:, in Table 2,2, we have
already noted that the percent roundoff error corresponds to the
magnitude of the largest T::. Table 2.2 shows that the accuracy of
either method is about the same, so the choice rests entirely on
vhich offers the greatest computational advantage: this is the
method of equation (2.22),

Thus far, we have presented two methods for determining the

amplitude coefficients, For single-~precision computetion size-

eble numerical errors arise in both methods for n greater than U,

Same simplification is possible in evaluating these c,, by making

id
use of a recwrsion relation which requires the calculation of only
the n ckk' all other quantities being obtained from these, The re-
lation obtained from (2.23) and (2.26) is

[ ]
c = - |/ si’il"i"’,ll 21" c 1>k
i+1,k (s, +s) ik -

85¢17%

Even using this recursion, the computation of the Cnk alone requires

at leaat as much vork as the '1‘:
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20 with 8,®i) even double-

and for n greater than 15 (maximum 'I‘i > 10 5

.precision arithmetic may not be adequate, There remains a real need

for further detailed study of the computational aspects of these

methods.

II.4 The Vandermonde Matrix

The Vandermonde matrix arises in many branches of applied mathe-
matics. In control theory one encounters the equation i (t) =
g\__x(t) + D m(t) [27], vhich may be simplified by transforming *he
state vector X to Y = rl X vhere V is the Vandermonde matrix.

In numerical interpolation by polynomials of a function defined
by a set of n ordered pairs of real or complex numbers (ak,zk)
with all the s, distinct, one seeks a unique polynamial

n=1

“(')"1’“2“”"’%' (2.33)

for which

N(sk) =z k= 1,2,...,0, (2.34)

The conditions (2.3Lk) form a system of n linear equations in the

a, coefficlients of the polynomial,

i

po— - p— — r- T
2 n-1

1 'l ll een '1 .1 ‘1
2 n=1l

l1s,8, ... 2. |% (2.35)
2 n=1

_l s s s. _ _“n_ _zn~ .

The matrix of this system is named after Vandermonde and is showm to

be non-singular provided all the s, are distinct (28].
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The Vandermonde matrix also arises in least-square approximation
using exponentials over the semi-infinite interval as we now show.

By zolving equation (2.21), one obtains the best fitting approximation

o a a
1 2 n .
Falo) = gor v, e e (2.36)
1 2 n

vhich has the properties ennumerated by Aigrain and Williams [12], that

F(‘.k) = Fa(-'k) k = 1.2.000'n¢ (2'37)
Equation (2,.36) may also be written as the rational fraction
a +a.8+.. .+anan'1
Fa(s) = —— (2.38)
b1+b2"oo-+bnﬂ +8
- N(s) o H§s§
(s-sl)(s-sa)...(s-an) D(s) * (2.39)

When the (gk} are optimally chosen, equation (2.37) is sstisfied. Then,

D(-sk) F(-sk) = D(-Bk) F‘(-sk) = N(-sk) 3'1.2..o..n. (2.“0)

In matrix form,

[0(-0)) Ples)) 1 (o8 (oap)Zen (= [
D(-3,) Fl=s))| , [1 (-8,) (~a,)30e (=5,0" |0, (2.41)

D(-un) F(-sn) ..1 (-ln) (_-qa)f..(-nn)n‘i a

d ot L

Equation (2.41) also exhibits the Vandermonde matrix V vith elements

3-1

v - (-'1) $,31,2,44. 40, (2.42)

1
To solve (2.41) for the coefficients of the numerator polynamial,
a closed-form expression for the inversa x'l of the Vandermonde matrix

is needed. An explicit expression for the inverse of this important




matrix ia given by Tou [29] and the result may be sumarized by the

tollowing theorem:

Theorem 1 - Let V be the Vandermonde matrix with elements viJ.('ai)J-l
- - -1
and V 1 be its inverse with elements v, 3 Then the generating func-

i
tion for these inverse elements is the Lagrange interpolating poly-

nomial [30],

(s) (s+s, ) ‘2‘ S .
L.(s) = -(———y = v s s, ¥8, if kvj.
: kel KOS =1 U ol

k#§

for which?t

LJ(-sk) = 6Jk

Theorem 1 will assist us, in chapter III, in making a direct come

parison of two recently developed methods for exponential approximation.

t Usually the Lagrange interpoleting polynomial is written
| T (8-5,)
[ . i tive elements
| LJ(B) " ??;;;) This difference is due to the negative eleme
; kel
| k¥J
|

(-Bi} in go
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III. DETERMINATION OF THE MATCHED EXPONENTS OF A DEFINED ANALYTIC

FUNCTION

In the previous chapter, two methods were examined to find the
amplitude coefficients in a least-square approximation of a function
£(t) by a specified set of expoaential functions, These linear least-
squares procedures can always be carried out given sufficient time and
precision to determine accurately the amplitude coefficients. In cone
traat, finding the camplex frequencies of the set of exponential come
ponents to best match the specified function f(t) is much more difficult.
Our attack on finding this set of matched exponents begins with the

equations of Aigrain and Williams [12],

ITI.1 The Equations of Aigrain and Williams

For a given f(t), t > O, the necessary conditions on the 2n para-

meters {uk,sk} to minimize the functional
= n
2
J = £ (£(t) - k£1 @ exp (skt)] at (3.1)

are expressel by the two sets of n equations

S n
== [ 2 [f(t) - a, exp(s, t)] [-exp(s,t)] dt = ©
% £ kzul k k J ’
or
; / [ (s,t) ( )
' exp((s +5, )t) dt = [ £(t) exp(s,t) dt 3.2a
kél % {: B M £ J
J=l’2’¢00 .no
and

3 T th -
'a's;’ £ 2[f(t)-kzl o exp(skt)] ['°Jt exp(s, t)] at = 0,
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or

n o
=) o [ texp((ses )t) dt = - [ £0t) ¢t exp(s,t) dt (3.20)
kel ° J ] J

J-l.a.oo. 'n.
These conditions for stationarity of the integrated squared error may

be written in the frequency domain as

T%
-kzl-?drsi- = F‘(-BJ) (3.3a)
n
- ak = F‘(-B ) J-l,2,...,n (3¢3b)
k=1 (sJ+sk) J
or even more simply as
Fa('sj) = F(~SJ) (3.4a)
F;(-sj) = F'(-sd) J=1,2,000,n (3.bp)
vhere ag usualt
F(s) = [ £(t) expt-st) at (Re{s}>ao) (3.5a)
o
F'(s) = =2 [F(s)] (3.5b)
and
n a

F(s) = ] £

K2y 88 (3.5¢)

(Equations (3.4) reveal that in approximation theory, the important
information of the signal is contained at the mirror images of the
poles of Fa(s) which are all points such that Re{s}>0. This suggests

that the most useful information about F(s) and Fa(s) is in the right

*

o 0 if £ £2(4) dt <o,
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half plane and not at the poles of Fa(s)l To further demonstrate this
point, consider the following two functions,

. sl(t) = exp(-at) “—1(t) a>0
§ gz(t) = exp (=at) [u.l(t) -u_l(t-'r)] v>0

Then the correspondirng Laplace transforms are

Gl(g) [ -
6 (s) = d=exp{=(s+a)t)
5 .

s+a

Notice that 62(5) does not have any poles even for arbitrarily large 1

t. This means that the pole of Gl(a) in the left half plane is due
solely to the tail end of the exponential which is a negligible part

of the function gl(t) for large at,):

T RO R AR

. The 2n equations (3.l4) were formulated by Aigrain and Williems in
1948, Despite their simple appearance, closed-form solution of these
nonlinear equations is impossible except in trivial cases, Two ways

that have been used to solve these equations are gradient methods and

"linear iterative schemes", These methods will now be discussed.

I1I1.1.1 Gradient Methods

¥ One straightforward way of finding the matched exponents is based

on the method of steepest descent, That is, one finds a suitable

scalar function of the 2n parameters {uk,sk} which has a relative min-

H imum for values of these parameters that satisfy the Aigrain and Williaems

equations. Clearly, a suitable function is the integrated squared-error ]

e UM
.

J defined in (3.1). The gradient of J is computed at some initial point

in parsmeter space and then the parameter point is perturbed in the

e <
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direction of the negative gradient, The process is repeated until the

gradient is approximately zero.

Let r(t) be normelized so that

He(e) ]2 = <e(e) B> = [ £(£)£%(t) at = 2 (3.6)
o]
Then
gellt=t P12 o F(-s)+} a F (es.) (3.7)
- - = -, -8 + =g . L]
. e S T

The dependence of J on the (o.k} may be suppressed by using (3.4a) and

its equivalent form (2,21). Under the constraint of equationt (3.ka),

t Equation (3.8) has an interesting geometric interpretation. By
definition, the @ are the coordinates of r‘ on the oblique basis
B| vhose elements are {exp(akt)}. The reciprocal basis is defined as
D| vhere |D = |B (_B_|§)'1. A "vector" (f | may be also written as a

linear combination of the dual basis elements,
n ~ o~
<t|l= ] g <B|=<ad
k=1

The square of the length of {F | is
g, ll? = <£,E> = <AB|DT) = <AL)
n
" L% &
However, it is a well-known fact that J=||e|| % Il £l 2-”1““ 2ine
least-square approximation. Hence, the {F(-sk)} are the coordinates

of f£(t) on the reciprocel basis of B| i.e.

n ~
{t,| = k-zvl F(-s,) <D, |,
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i o R
J=1l- a, F(=s,) (3.8)
e Kk
and from (2.21)
? f (=5,) h7L F(as,) (3.9)
Je]la F(=8 F(-8 3.9
k=1 g=1  F LR

vhere h;j are the elements of the inverse of the Hilbert matrix defined
in (2.13). 1In matrix form
Je1-FE Ee=1-FZ¢gF
=1-(CH¢F (3.10)

vhere the c, are defined in (2.14). Hence, equation (3.10) gives an
explicit expreasion for the integrated squared error in terms of the
(sk) only.

For the scalar function J, however, gradient methods have two serious
shortcomings. First, this error is insensitive to changes in the {°k}
and as a result convergence to the minimum is slow., Second, because
of the correlation between exponentials the error can be reduced to near
its minimum value for a wide range of {sk}. In several cases tried,
descent methods converged to values other than the minimum, (Box [31]
has shown with several examples why gradient methods den't alwvays converge
to the minimum.) As n increases, convergence to the matched exponents
by gradient methods becomes difficult to attain since the measure of
dependence between the set of exponentials increases so rapidly with n.

A better method of attack, achieved by vworking directly with the

AlgraineWilliams equations, will now be considered.
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II1.1.2 Direct Method of Elimination of the {aj} From the Equations of

Aigrain and Williams

In matrix form equations (3.3) are:

E - '}i A (3011&)
and
Fe-gh (3.11v)
wvith
- — - - — . -
F(-Sl) ql F (-al)
F(-S ) a F‘(-s )
E. = 2 ’ A= 2 . E‘. 2
F(-s ) [+ 3 -
- n._ L n_ : (-'n)‘
and G and H are n X n matrices vith elements
1 -1
8iJ - sj,lfsd [} hiJ = T.—i‘;s—ay i'Jﬂl.Q.... oI,

Since the {a, } may be expressed as a function of the {s,} only, (2.21),
the 2n equations (3.11) may be reduced to n equations involving the n
unknown {sk) alone, By matrix inversion the n new equations become

Fm-GHYF=BF (3.12)

and the {ak} are eliminated. However, equation (3.12) is hopelessly
nonlinear in {sk} and in its present form has been found to be worthless
for computing these exponents, The next two theorems will help put (3.12)

in more useful form.

III.1.2,1 Explicit Inverse of the Hilbert Matrix

In chapter II, a derivation for an explicit expression for the in-

verse of the generalized Hilbert matrix was derived using orthonormal
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exponentials and the restriction that the real part of every L be
positive., This constraint was introduced simply to insure that the
exponential components could be normalized. Except for that, it seems
to be unnecessary and may be removed by "analytic continuation", to
yield the more general theorem:

Theorem 2 - Let hi,j = '1/(81".1) be an element of the n X n generalized
Hilbert matrix g associated with the set of n scalars {sk} with

si# + 8, for all 1 and J (i#)) and “1"0 i=1,2,...4n. Define _g

a8 the n X n matrix with elements

Ls,s

4, = = =il P P

iJ s, +3, 1 7}

where a ( |
8 +8
k m
T, = ‘Iﬁ = Gy (3.13)
k nm
k=]l
k¥m

Then D = H~*
— =

Proof by induction

Let A be the product matrix A = 2 g. We wish to prove that g is

the unit matrix with elements ¢ 13° Define
n '21
A =4, = h
13 7% " L Pak %y
n hska T T (3.14)

k=1 "1 k" k )

nel hska ‘Ip-l -l

n-1l k
A - 2 T—H—% .
i) k=1 siﬂ 5 *5

k" "k

From (3.13) it follows that

r




(s _+s. )

n k -]
and thus
ge1 B hs s Tp ™ (l -8 ) (a -8
“ k_lr—-‘-ﬂ—-’—-)- -(——-y. e -(-—-J-)-. - (3.15)
so

n pe1 B[ lbes T: T (s -2, )(s s,)
AiJ AiJ kzlL(s +3 (. +8 1- lg:+g Hs +s ;

k’'%n""y
n bss, T T,
r—"yk,lmﬁ'v—‘—v
or
A“d :31 - 2% 7 A" 1,3#1,2,.00,0=1s  (3.16)

in
(sn*-J)Tz

For (3.16) to hold when j=n and iy¥n, Azgl must be defined to be zero,

For (3.16) to hold when i and J are both equal to n, one must subtract

A:;l from the right hand side of (3,16) whenever isn, With this modi-

fication, so that it may be applied generally, equation (3.16) becomes
n n-1 28 Tn

A - J n -§ n—l

AiJ ~ Piy (s +8 )™ (Ai in nn
n J'n

) i.J.l 2.oon.no (3.16‘)

We now assert as the inductive hypothesis

n=l 8

A“ =8y (3.17)

vhich is readily shown to be true for n®2 and 3. To establish validity

for larger n, first substitute (3.17) in (3.16a) to obtain

2, 'x'“l
[Aid iJ] ( Tn [A:n - 61n] = 0, 1,J%1,2,..04n (3.18)
sn"a) n

Then for the n X n matrix A




B

R

«lila

28 . T
a,, = §

WRKVRS x 6,0 (3.19)

(A, =
3 Tn in in

From the symmetry in equation (3,14), if the subscripts j and n are
interchanged equation (3.19) must hold. Hence,
2lnTn
b= 8,,* T;;:;STEZ (AiJ - 614) (3.20)
Substituting (3.20) in (3.19) one gets
s 8

1. —Bdo (s

l]=0
2
(sn+sJ)

13 = 844

Thus, it is necessary that

Byy = 84y 1,J91,2,000,0

end Theorem 2 is proved by induction, Qe Ee De

I1I.1.2.2 Simplification of B = - G K ™

———

Theorem 3 - Let G and gfl be n X n symmetric matrices with elements
- =ks,s

1 -l i
8y (91’53)2 and by, (%) Ty Tye
Then the elements of the matrix B = - G 2'1 of equation (3.15) are
n _ 2 -1
¥ kzl Bix Pxy
s, T
p— S (3.21s)
ai(ui-sJ)T?
n 28
n 1 k
B ," ---; + kil =73 (3.21)
= 8 <%
k¥i

Proof




f ar 2 , 2]

1 l 1 ”s ('1"2) o h'1'2 (81”2
(231)2 ,(81"2)2 1_s]:-a? o \ 151"2, 51-92
...... LooT S, "o T T 2T - =

1 C T hsls2 (31"2) : o (.1“2)

2| 2 {s.+s,) \s.-s 2ls.-s,
_5'2*'1) |(2:2) J i 1°2 127 . 1772 g
= ] —-—

1 28, W,

2 2 2, ! -

%1 (s,-8,%) s,(s,-s,)

s : ) __l_‘, 2-1
8 \8,=8 , 28 2 2
_2 271 2 ('2 -8, )J

By definition
n s s, O T°
B“- _)‘_JELAL_ (3.22)
k=1 (si+sk) (lk"'ﬂj)
n

We novw establish an inductive principle to derive BiJ along lines very

similar to that used for Alild' As in equations (3.1L) to (3.16) it is

readily shown that

28 Tn
B . Bn'l N D - B® . {3.23)
Mo [(snnJ)T::] tn

Now make the inductive hypothesis

s,(s -8,)(s *s )™

Tn-l
e T B -t . i A YR PPN
J si(si-sd)'l‘:- Si(li-sd)(ln’l.’)(l --ni)'l';.l

n

Using (3.23) and (3.24)

3’;" - l_..’.al.'lj— = Bn-l + -::433 ‘ B? [—:ﬁ_—]

i | in ~
'1(81“,1”'21 L('n"a)'lﬁj li(li-lJ)T‘;
- n
- ~-st'1‘:}L . (sn-o )(’n"i) . 2|ITnI Bin
'i('i'sJ)T‘i‘ { ('nﬁ,j’ hn"i’ (lnﬂJ)T:

or
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I ™ ™ ™
la‘i‘d- —'L_..L ] - 3.1..1_ [B?n' o’n ] =0 (3.25)
si(si-sJ)T? (s #aJ)Tn '1('1"n)T?

or

s, T 28T s T
- n'n
BIJ l11|1-|JSTi = an+ngT; {;in' .i!.i--niwi *

As in Theorem 2, from the symmetry in (3,22) it is necessary that

s, T

B, = —dd 14y (3.26)

1 31(81"J)T1

and (3.21a) is proved by induction. When iuj,

-1
B oy goel n=l 'xT: N (s,-s,) _ 5ol 'kT: (s,-s,)
i i k=) (si+-k)3 i ['n"i1 1 kwl (li¢lk)3(ln¢l

X

(s "1) n 'kT:('n'.k)

= <« bg 10 -8 —_— (3.27)

1°1 Ta %a]) kgl (5,48 )3(s_+s )

ik n k

Then
Bl " E 'kT: [Tnn-li)(ln-ak) ) l]
i1 i1 Kol (si"k)3 'n"i ln+nk,
23 Tp

| - _ai_;_ Bn (3028)

(anOli)T: in’

From (3.26) and (3.28)

n n-1 z.n
8, -8
i n

and (3,21b) is proved by inductian,

Q.E.D.
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11I.1.2.3 Equations of the Direct Method in Integral Form

An explicit expression has now been found for the matrix g in
equatiéna (3.12) and the equations of Aigrain and Williams have been
reduced to a set of n equations and n unknowns in the {sk} alone, Al=-
though equations (3.12) appear in the simplest form possible, they are
highly nonlineer in the {sk} and serious computational difficulties
arise in their solution. With & little manipulation, these equations
mgy be expressed in an integral form which, as we shall see in the next
section, has an illuminating geometrical interpretation. Even more im-
portant, this form is well suited for solution using a linear iterative
method,

By multizlying each equation in (3,12) by aiTz one gets

n
» n .
siTx.; F (-si) - 'an e:.LT;:l Bik F(-sk) s 0 im1,2,.,.,0. (3.30)

It can immediately be shown that (3,30) cer be written in the more came

pact form
Jn ,
H{3) F(=3)ds .
-.{..Eé's_i'—’c"ﬁ—’ 0 i=ly24000yn (3.31)
vhere

B (s+s )
H(s) = T—‘k . (3.32)
: :E[ 8=k’

This is easily verified by using residue calcuius and noting that

n
T

i, n l,.n "
aai - (Bii + 231) I‘io (303J)

The relaticn of equation (3.31) to the Keutz procedure for construction
of orthogonal functions and associated development by others, is discussed

next,
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II1.1.3 Method of McDonough and Huggins

In a recent paper [7] McDonough and Huggins suppressed the ampli-
tude coefficients {uk} in the Aigrain-Wililieams equations by regarding
f(t) as a signal in a vector space., Their argument proceeded as follows:
Let the error of the approximation be e(t)st(t)-fa(t). Then it is read-

ily seen that equations (3.2e) and (3.2b) may be written respectively as

| e(t) exp(s,t) at = 0
o

and (3.34)

j e(t) t exp(skt) dt = 0 k-1,2.o.o.no

i
i
]
[
H
A
4
,
1
b

(=]
In the language of vector spaces, equation (3.34) means that the error

e(t) is orthogonal to the space S, which is spanned by the 2n "vectors"

en

A TR Ty

{exp(s,t), t exp(s;t)}. Also, by definition, the approximating func-

tion fa(t) must lie in the subspace Sn spanned by the n vectors

{exp(sit)}. Let S, -5 denote the subspace of 5, that is complementary

2n 2n
to S end let {¢n+i(t)} i=1 2,...,n be basis for this subspace. A basis

s

- i

% for §, -5 can be formed by applying the Grem-Schmidt procedure to the

functions (exp(sit),...,exp(snt). t exp(sit)....,t exp(snt) ) taeken in
that order, to construct the orthonormal basis functions {°1}' im1.2,.40,20,
Clearly, {¢n+i} i=:1,2,...,n is orthogonal to both ra(t) and e(t) and

hence, must be orthogonal to f(t) = e(t) + fa(t). The ¢ ,.(s), which

n+i

o e

are the Laplace transforms of ¢n¢i(t)' may be constructed by simple in-

spection from Kautz's method. That is,

3 0 4i(8) = H(s) ¢,(s) (3.35)
i where &gain B )

: s+8.

{ - K
N H(s) 1:[ 5-8, (3.36)

I ety L TR
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and
N arger SR (s¢+s )
- i 74 l I k
01(8) ———"'1 W . (3.37)
k=]

Now, n independent equations of constraint on the {sk} must be

] £(¢) ¢n+i(t) it = 0 i#1,2,..4,0, (3.38)
[

vwhich vwhen written in the frejuency domain, using the Parseval relation,

are
J Fl-8) o (8) H(s) FPh=0  1m12,..n. (3.39)
-Jo

Since these equations involve the {sk} only, the {ak} have been suppressed
as in (3.31). In fact, it will be shown in the next section that the
left-hand sides of equations (3.39) are merely linear combinations of
the left-hand sides of equations {3,31). These equations, (3.31) or
(3.39), are 8till nonlinear in terms of the unknowns {ak} and apparently
one of the beat ways to solve for them 1s by & numerical iinear itera-
tive scheme first suggested by Sears [32] and described as follows:

Let the all-pass’ operator H(s) in (3.39) (or (3.31) ) be replaced

by the more general operator

n+l bksk'l (-1)"p_(-8)
Ha(S) ) kzl D(s) D(s) » Pryg=d (3.ko)
where
n
D(s) = ]—T (s-sk). (3.41)
k=l

t H(s) is sometimes celled the all-pass operators for if s is replaced
by Jw, the magnitude of H(s) is one, independent of the value of the

frequency we
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1f Ha(s) is used in (3.39) instead of H(aL one obtains n simultaneous
equations which, being linear in the {bl’b2""’bn}' mey be written
in matrix form es

MB=Z (3.k2)

vhere M is an n X n matrix with 1,kth element

Jw
my s tFe) "/n(s)) oy (a) 2 . (3.43)

B and Z are columns with elements

T TS (3.4k)
and bi are the unknown coefficients, The iterative algorithm is as

follows:

(a) Given the poles at the Jth iteration, i.e.,

{81,32,...,sn}J

evaluation the matrix (M) J and the vector (2) It
(b) Solve equation (3.42), to obtain the coefficients of the

vector (_1}_)‘,"'1

(¢) From (E)Jvl find the new pole locations {sl,....sn} 41 Using

J
(Da(s))J+1 =0,

(d) Repeat from (a) with j=j+l. Continue the process until

the change m:xl(si)a-(s | is less than some small

1)J+l
i pre=-assigned value,
The convergence properties of this method shall be discussed in chapter
Iv,

I1I.1.4 Equivalence of the Direct Method and McDonough's Method

Let ¥, (s) = H(s) - i21,2,004 0. (3.45)

8-81

T AT L MW
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Then from Xautz's method it is easily seen that the {Yi(s)} also
form a basis for the difference space Szn'sn and hence, equations

(3.31) have the same gecmetric interpretation used by McDonough.

Thus,
| F(e8) ¥, (s) 2—:}-;- =0 1=1,2,000 40 (3.46)
o]

are just linear combinations of equations (3.39). Notice that the
all-pass function H(s) is still preserved and the same linear itera~-
tive scheme can be used.

These new equations in terms of Wi(s) have two edvantages over
(3.39). First, ?i(s) has only one double pole vhereas ¢ .. (s) has i
double poles, This means the o0ld set will have 1-l extra derivative
terms when the residues are evaluated and, moreover, each term will
have (i-1) extra factors of the form (sk¢si)/(sk-si). Clearly, there
is a saving in computational time by using the new equations. Second,
equation (3,46) may be written in the matrix form

E'=BF. (3.47)
This enables one to use matrix algebra to find the {sk} using (3.21).
Solution of the equation in this form hes not been attempted here, but
is a topic for further investigation.

While the ’n#i(s) are orthonormal, the ?1(0) are not. As a result]

t One is contrasting an orthogonal versus an cbligue basis, both of which
span the same space. Naturally, there will always ©be more correlation
between the oblique elements, However, here, as is usually the cose,

the oblique elements are easier to express mathematically and any gains

in accuracy made by using orthonormal elements may be lost due to the

extra complexity introduced into these expressions,
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although equations (3.46) have the simpler form

g s” ds
kgl [-gm Fl-s) 5 -rT (5 -84 ) o ] --!j Fl-s) DTﬂ(s -8, ) 2n

n

- ri i-l'z’..‘.n

= P b
Gy Tikk

or

P B =R, (3.18)

they are "softer" than equations (3.42).

Evaeluating the elements of the matrix .P_ by residue calculus, one

gets
k=1 , 1
(-si) [% (-sk)*{kk-l)#si mzl TE;:E;T}F("i)}
Doum m¥i
ik
Ty
n (=s )k'l F(=-s_)
m M
* mgl (Sm-si) Tn (3.19)
m#i
where n
ry = -I:T (si-sm) (3.50)
m#i

Since f(t) is reel, the {sk} must occur in complex conjugate pairs,

Upon examining (3.49) it is seen that if s, is replaced by s¥ becomes

1 1* Pix
pi}:. This also implies that if 8y is real, so is Py Hence, it ir

possible to avoid complex arithmetic altogether in finding the real

{bi} from (3.48) by using the equivalent system of n equations

n
] o,

Ly Py 2 i=1,2,. . NREAL (3,51a)

=ri
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n
Re { Z pinJ a ri}
=1 i= NREAL +1,...,n=1 in (3.51b)
steps of 2
n
I LD, =
B {J-Z-].pl" J i)

vhere NREAL is the number of real roots, If an i corresponding to a
complex valued 8; is used in (3.51b), an i corresponding to s: will
give the identical equations and so should be omitted.

I11.1.5 Method of McBride, Schaefgen, and Steiglitz

In this section we examine the method of finding the approximation
of £(%) by exponentials due to McBride, Schaefgen, and Steiglitz [6]
(hereafter referred to as the MSS method). They start with the ep-

proximating function expressed in the frequency danain as

n=1l
a.+a,.8%,,.%a 8
Fls) = 2t — B . [OB (3.52)
bl+b23+...+bns +sn

instead of the equivalent partial fraction expansion, Then, the func-

tional

J= J [f(t)-fa(t)]a it = [ e%(t) at
o o

is to be minimized over the 2n real coefficients {'k'bk}‘ Necessary

conditions at the minimum are that

aJ < de(t
— =0 w2 [ elt) at
T AT

(3.53)

ob

Bouon o] e Bl e
k o

k’l,egoco.n

Equations (3.53) are nonlinear in the {lk.bk) and one is faced with

the same difficulties in solving them as with the equations of Aigrain
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and Williams, The key feature of the MSS method is the introduction

of an approximate error Ea(s), viz.

] D,(e) N,(s)

E(s) = Etm F(s) - bﬁ_ﬂ?’ (3.54)
vhere now the subscript ) refers to the iteration number. To solve
the equations in a feasible way, the previously computed (bk)J-l co-
efficients of Dj-l are regarded as fixed during the Jth iteration.,

This linearizes the error in terms of the unknown coefficients

(ak,bk}J of the numerator polynomials NJ and Dd' One now replaces

e(t) in (3.53) vy es(t), the inverse transform of Ea(s), and uses an
iterative scherne very similar to the one employed by McDonough described
earlier, With repeated iterations Dj-l(s) approaches DJ(s) and thus
La(s) approaches the true error E(s)-F(s)-Fa(s).

However, inserting ea(t) in (3.53) has three distinct disadvantages.
First, instead of utilizing the convenient point form of the Aigrain-
Williams equations, one must evaluate a set of 2n partial derivatives
and then integrate, The resulting equations are much more complicated
than (3.4), Second, and more important, the Mode-l Iteration used on
these 2n new equations does not converge to the optimum solution since
the approximate error is minimized rather than the true error. Thus,
following the Mode-1 Iteration, a Mode-2 Iteration is also needed to
further refine the results and find the optimum solution. This diffi-
culty does not arise in the Mode-2 Iteration becease the expressions
are correct in the limit as the (bk} approach their optimum values,
Third, several examples will demonstrate that Mode-2 converges more

slowly than McDonough's method and & new method which we will present
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Mode-l Iteration of the MSS Method
M

To minimize the functional
Iy = £ ea(t) e.(t) 1t

These two Modes will now be examined in detail,

(3455)

over the 2n coefficients {ak.bk}, one requires that Ja be stationary

with respect’to,chanses in the parameters,

8J ® de (t)
3:;'- 0=2 [ e (t) --:;— =0
8Ja de (t) (3056)
a—b-i' =2 f e (t) =0 1%1,2,.., 00
Observe that
BEa(s) i si-l
da, T DJ(§7
and
3E (s) gi-1
a F(s)
abi D —(B) 1‘1.2.000 olle (3057)
Using the Parseval relation on (3.56) one gets
g D,(~s)F(=s)=N,(=8) T gi=1
i__a, -l ] ds _ .
2 da, = [ DJ_l(-s) 41ipy 1(~7] ong = O (3.58a)
3 D, (=8)F(8)=N («8) I [ 11, ]
l a 5 8 8 ds _
asr'_,_,["l 5 1) JITRE B-o Gom

J

1-1 .2".. .n.

Hence, equations (3.58) provide another linear iterative scheme involva

ing 2n real parameters {ak,bk} instead of just the n {bk}'

the iterations are carried out as in the McDonough method.

Othervise,
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Mode=2 Iteration of the MSS Method

The error E(s) may be written

E(s) = F(s) - F (8) = F(s) ~ g—&;- . (3.59)
Thus
i=l
aESsZ -8
ani ® Dzsj
3E(s) _ -s1=I(s) - st F (s) (3.60)
%, p2(s) D(8) ' s

Using the Parseval relation on (3,53) gives the conditions for the sta~-

tionarity of the integrated square error in the frequency domain as

-i: s - 5 [ %E)l‘] 5a3 " O (3.61a)
-:,'}: [F('B) - N(-s) '{";‘] ey i (3.61b)

i=]l,2,.044n

If the iterative process for Mode-1l converges, Dj-l(') approaches DJ(n)
and comparison with (3.61a) shows that (3.58a) is correct in the limit,
However, (3.58b) is not correct in the limit which is cbserved when

it is compared with (3,61b). For this reason, Mode-l Iteration does
not converge in general to the optimum solution, This difficulty may

be eliminated by using (3,60) to change {3.58b) to

J= D, (~8)F(=8)=N (-8) t-1 N, .(s)
J J 8 -] ds
-g' [ Dy, l8) ] [DJ-1(°) 5%;1(17] Zng " 0 (3.62}

J=1

Equations (3.58a) and (3.62) are now used in the Mode-2 Iteration.

Convergence to the optimum solution is nov usually possible, but as

ve shall see in chapter IV, Mode-z converges so slowly that in order
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to make the MSS method practical, one must first use the mor. rapidly
converging Mode-1 Tteration to bring one "near enough" to the optimum
peint in parameter space, Furthermore, there is no guarantee Mode 2
converges if e is not "near enough" since the equations that de-

termine it are not correct unless one is actually lt. the minimum,

I111.1.6 The New Method

Thus far, we have discussed two linear iterative schemes in
sections III.1l.3 and III.1.5. Each has worked well for the cases
reported and sppears to be useful in finding by rnumerical computation
the matched exponeats for the approximation of a known time function,
This section develcps yet another linear iterative method which offers
the advantages of both the methods descrived in sections III,1.3
and III.l.5 and reveals the lipk between them, Thia method leads
to the same results as those described by McDonough and Huggins.
Fundamental Equations

The Aigrain-williams equations (3.4) may be written in the form.

E("k) = F(-s ) - Fa("k) =0

E'(-sk) - F’(-ak) - F;(-ak) -0 (3.63)

k.l.a.Q [N J .no
The equations in this form suggest that a better vay of using the ap-
proximste error En(a) defined by (3.54) is to impose the constraints

of equations (3.63) directly upon it. This immediately yields a set

th

of nev linear equations for the J  iteratiom.

E(s) = 0 (3.64a)

for s = (=a ) k=1,2,50040
k J-l [ 2ol ] ]

E;(s) = 0 (3.6kb)




where tlie (lk) je1 are the roots of the denominator Dj-l obtained from
the previous iteration. Equations {3.64a) may be expressed as

DF-N, =0, 8= (-5 )

N ’ k k=1l,2,.0.40 (3.65a)

J-1
Similarly, upon differentiating E‘(l) with respect to s, egquations

(3.64b) may be written as

E's {DJ_I(DJF +DJF) - DJ D F+(DJ 2Ny~ J J l)}/D

=0, 8= (-8 ) k=1,2,.00,0

k’3-1
which by using (3.65a), simplifies to

F DJ-F D‘1 = NJ

. s = (--ak).’_1 K=1,2,000,0 (3.65b)
The 2n simultaneous equations (3.65) are linear in terms of the unknowns
(ak.bk} « The iterative procedure is carried out in the same way as
described in the tvo previous methods using equations (3.65) or the
equivalent equations (3.67) for convenient computation to find the
{‘k'bk}a' The initial poirt in parameter space mey be determiped
perhaps from Prony's method or Pade approximants.

A very important consequence of imposing these constraints upon
E‘(l) is that the DJ“_1 required in the formulation of the MSE method
does not appear in equations (3.65); the introducti m of the approxi-

mate error E.(s) vas unnecessary. In fact, an appropriate set of
linear equation:z may be gotten directly from the Aigrain-Williams
constraints as follows:
From (3.4a) and (3.52)

N(s) = D(s) F(s) for s = ("i) i21,2,000,40 (3.606a)
vhere the (li) are the roots of the n'l degree pclynomial D(s). Also,

s

F" ={-D" N + N° D)/n2
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From (3.68), (3.69) and Theorem U, C can be written explicitly in

terme of the {si} as

Y 3-1
-~ - W - y o~ {—a ) = (wa ) -
"ik “ik L ‘id\ -'1: F\ -1; (3 70)
J=1
and U may be regarded as the negative of the n+lth column of C or
“1. - ci.n+1 1-1.2'.00’!1' (3071)

But (3.48), {3.49), and (3.70) revea) that
Py Pyy ™ Cyy

and thus McDonough's method and the ore developed here must be equivalent,
Discussion

In this section we have revealed the strong link between the MSS
method and that of McDonough. Both methods use equation (3.54) or its
equivalent to linearize the iterative process (although this was not
so obvious in the latter). The crucial difference in the methods is
that the MSS method considers variation of the error with respect to
the {ak,bk} parameters, whereas in McDonough's method (and the one
developed here), the variation with respect to the exponents {sk} (and
the hidden {uk}) is considered, It is not possible to write a set of
linear equations in the {ak,bk} for the true error surface whereas
equations (3.65) and (3.66) show that one msy do this when the varia-
tion is with respect to the {ak.sk}, thus avoiding the need for two
types of iterations.

In conclusion, the new method developed here has several computa=

tional advantages over the one developed by MSS, First, it requires

only one iterative scheme instead of two., Second, by using the point
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form of the Aigrain-Williams equations, the matrices in equation (3,67)
immediately appear as explicit function of the {n1}= In the MAS method
the corresponding matrix elements (see Table 4,1, p. 61) are much
harder tc evaluate. Thiri, as we shall show in chapter 1V, for all
examples thus far examined, the new method ccnverges more quickly to

the matched exponents than the MSS method.
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IV. CONVERGENCE AND COMPARISON OF THE LINEAR ITERATIVE SCHEMES

In the previous chapter three linear iterative schemes were
described. Two of these, the method of McDonough and the new method,
vere shown to be equivalent in their results, although computationally
different! That is, for any initial {81} and fixed n, the resulting
iterations of either of these methods will be identical barring
rounioff errors. However, because the new method uses the ratiocnal
fraction form of Fa(s)' a direct comparison of it, rather than McDone
ough's scheme, with the MSS method will be made since this will be
much easier to do,
IV.1 Camparison of the Iterative Equations

The 2n equations used in the iterative scheme of MSS may be
written in matrix form as

+

1>

B =

+ »

(k.1)

Iz ¥=

Lo
[of}e

iE 1=
>

for Mode-1l Iteration and as

= X

>
v
=
[

I5 1

+ G
+ H2

1>

B = (k.2)

15 li=

for Mode-2 Iteration., From (3.568a) it is seen that the elements of

V1 are
e

vl = - }“ (:g)k-l gi=2 ds
ik e DJ_1(297 DJ_lTbT'ZwJ

(Bk)i*-3

n-k n
- S.-_l.%_. )
k=1 T’-‘l- (skz_s 2 £,K%1,2 0000,

n

m=]

m¥k

(ho 35)
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. campared with the corresponding much simpler expression \rm-(-si)k“1
given in equation (3.67) for the new method, and
» g r | it (3
3= 3-1 3-1 1
x1, = 'sli,n+1‘ (be3e)

; From (3.58b) it is shown that the remaining elements in equation

(k,1) are
= (_g)E-1 Gi-1p

v, = f el e TTr(e) s (. ba)

ik g Dd_l(-s7 DJ_l(s) 2n}
g J= (--s)i"l sk-lF(e) F(-8) ds
{ hl, = - (bL.bv)
P A OB N T
| and
1. Py =y rte)

t ‘ Equation (L,4b) can be difficult to evaluate by residue calculus.
For example, if £(t) is the equare pulse, F(s) = (1l-e"")/s, the product
of F(8) F(-8) with any rational function of s will have an essential

singularity at infinity, in both the right and left hand planes, and

thus, direct evaluation of (L,Ub) by residues requires special treat-
mentf (Of course, one may evaluate these Fourier transforms by direct

integration with respect to w over == to @ without resorting to resi-

dues but this is usually extremely difficult.,) Alternatively, cne

[

may invoke the Parseval relation and evaluate the eguivalent time-domain
equations (3.56) to obtain the matrix elements for Mode-l Iteration.
Table 4,1 summarizes all of these equations and clearly shows that

the elements in the new method are much easier to compute,

_ T See Appendix C for detalls,
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Iv.2 Rates of Convergence

To predict by mathematicel analysis the rate ;nd region of cone
vergence of any of the linear iterative schemes for a general fr(t)
is extremely difficult except for the simple case when n=l, Instead,
we provide several numerical examples to give the reader some feel
for results obtained by the difrereﬁt methods, For any f(t) that

is composed exactly of n exponentials, any of the iterative processes,

Mode-1, Mode-2, and the new method, will yield these exponentials
immediately after one iteration. Consequently, when f(t) is "nearly"
exponential, one would also expect reasonsbly rapid convergence for
any of the methods. This is indeed the case as we now illustrate by
specific examples.

Numerical Regsults - Consider the two time functions

r(e) = (78 + &) u_(4) (h.5)
and

f2(t) e (e7¥ 2t u_,(t) (4,6)

1
each to be approximated by a single exponential. Figure 1 shows quali-

tatively why fl(t) can be approximated very accurately by one exponene
tial whereas fz(t) cannot.,

Table 4.2 gives the result for fl(t) of the iterations by the var-
ious methods all starting with an initial value of 8= = l.2. The new
method and Mode-2 Iteration converge to the same result (the optimum
approximation) but Mode-2 required 500 iterations whereas the¢ new method
needed only 4, In contrast, Mode-l converged as rapidly as the new method,

but not, to the optimum approximation. Thus, for this simple signal, the

new =ethod is superior to both Mode=l and Mode-2,
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figure 1 -- Plots of f;(t) and f,(t) and the best approximations of them
by a single expcnential,

rl(t) -

ral(t) ---- 0.3

0.2

G.1

>t

L2212 22 1]

6.5 1.0 1.5 2.0

For f2(t), shown in Table 4,3, the Mode-2 Iteration took about
3000 cycles! Also, cbserve that the Mode=l error is considerably
larger than in the case for fl(t). This is reascnable since fl(t)
more "nearly" resembles a single exponential than uoces fa(t). (Recall
that Mode-1 only gives exact values when f(t) is an exponential,)

From equation (3.54), the linearized error for approximating the

square pulse, F(s)-(l-e")/s. by a single exponential beccmes
(b.) =(b.), .t

AL 13-1
e‘(t) T‘o—r‘L f3(t)-(‘1),j e

1'3-1

[(6)),=(0,), ;1 e-(bl)d_lt -(

- —74—5—‘1— {u_l(t)-e

bl J=1

b,)
179-2 u_l(t-l) }

(L. 7)
vhere

f3(t) = u_;(t)-u_,(t-1),
Table L,k reveals that Mode-2 Iteration and “he new method converge to
the optimum exponent at the same rate, (By coincidence, the iterations

are almost identical for this case, They diffe: in gth or ch deciml
phoe.)
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Table 4,2 = Approximation of the function

£ !t5=|exp(-t)+exp(-2t)]u_l(t) br One Exponential.

1
(al)J (bl)J (‘1)3 (bl)J (‘1)4 (bl)J
1,20000 1,20000 1,20C00

1,846197 1,20139 1.93499  1,32265 1,93369 1.32095

1.8“309 1,20277 1.93779 1.32639 1,93908 1.32815

1.8442 1.,20416 1.,93787  1,3265 1.93938  1.32856

1.,84531  1,20555 1,93768  1,3265 1,9394 1.32859
. . 1,93788  1,3265 1.939%  1.32859

1,92123 1,30392

1.9216 1,30642

1,92197  1,30492

1,92233 1.30541

1.92269 1,30588

1,93739 1.32584

1.93744 1,3259

1.93748 1.32596

1.93753 1,32602

1,93757 1,32608

1,93919 1,32831

1,9392 1,32831

1,9392 1,32832

1.93921  1,32833

1.93921 1,32833

1.93938  1.32856

1.,93938 1,32856

1,93938  1,32856

1.93938 1,32856

1.9394 1.32859

Mode«2 Iteration Mode«l Iteration New Method
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Table k,3 = Approximaticn of the function
£,(t)= exp(-t)-exp(-zt)]u_l(t) by One Exponential,
(ay )y (a)y () (s, (b)),
5.0C000 5.,00000 5.00000
0233677  4,81444 121212  ,090909 2076923 =1,76923
«238613  4,63995 .267525  ,519313 |-1,65714  2,0989
283427 L ,47615 J2uLEL2 417085 138931 =,334183
208103  4,32267 249351 43871 423824 809271
248736 434005 216462 «290949
. 248978 .uafozg $279182 53473
« 218926 434802 245733 421202
248937 43485 0260058 JB4336
2248935 43484 «25325 o952
«248935 34842 256473 JL61122
2248935  L73uBu41 254956  ,L557
248935 434841 «255663 458234
0255332 L5705
255487 k57603
«255k14 L573658
$255488 457466
«255432 457409
+ 25544 457436
e255436 457423
«255438 457429
«255437  LS57426
0255437 457428
0255“37 0“57b27
0255437  UuSP427
¢329639  2,1215
0329687  2,12001
«329735 2.11855
«332367 2,03381
¢ 332371 2.03369
0332375 2.03357
+ 255437  JAS7427
Mode-2 Iteration Moda=] Iteration Nev Method

SNE088e
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In this example the term containing the factcr [(bl)J'(bl)J-l] has
little affect on the equations that determine the iterations, However,
it seems quite possible thet the extraneous terms, which alwvays srise
vhen using Mode-1 or Mode~Z, that contain the factor [(bl)J-(bl)J_li
could sometimes affect the equations enough to prevent convergence of

Mode=2 if (b.), is not "near enough" to its optimuu value.

1

Table L.U = Approximaiion of the Square Pulse by One Exponential

J (“1)3 (bl)J (nliJ (bl)J (al)J (bl,J
1,00000 1,00000 1.00000
1 1,51217  1,39221 1.383u4  1,18857 1,51217 1,39221
2 1.3y272 1,188 1.3638 1.14261 1.39272 1,128
3 14911 1,29183 1.36851  1,15348 1.bks511 1,29183
1.,42045 1,23836 1,36759 1,15089 1.,b2045 1,23836
5 1.43597 1,26572 1.367¢€6 1,15151 1.43597 1,26572
6 1.42796 1,25167 1.36759 1,15136 1,2796 1,25167
7 1,43206 1,25887 1,36761 1,154 1.,43206 1,25887
8 1,42995 1,25518 1 3676 1,15139 1,42995 1,25518
9 1,43103  1,25707 1,36761 1,15139 1.43103  1,25707
10 1.43048 31,2561 1,367€1 1,15139 143048 1,2561
11 1,43076 1,2566 1.43076 1.2566
12 1.43061  31,25634 1.43061  1,25634
13 1.3069 1,25648 1.43069  2,25648
14 1.43063 1.25641 1.43065 1,25€41
18 1,43067  1,25644 1.43067 1.25684
16 1,43066 1,25643 1,L3066 1,25643
17 1.,43067 1,25643 1.43067  1,25643
18 1.43066 1,25643 1,3066 1,25543
19 1,83066 1,25643 1.43066 1,25543
Mode=2 Iteration Mode=1 Iteration Nawv Method
sadedes

Tedble 4.5 shows the results fitting a square pulie using 3 exponen-
tials vith the initial values of th# parameters chosen as {li) -
{=1,2,~3). After 90 iterations the nsv method hud ccavergec to
5" -2,246602, 92.3- «1l.hb36k? +34,150Th1 vhich is in agreemeat tc
6 eignificant figures vith McDoncugh's result, {1} p. 159, found by

N
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Three Exponential Approximation of the Squure Pulse,

Exponents After That Iteration

"30 0

-2.540835
-2 0050%5
=2,437354
-2 0091982
=2.385592
-2 . 129335
-2,350106
-2.32k005
-2,180300
=2.30k550
-2,196827

-2,247180
-2,246105
-2.247036
-2.246230
-2.246927

-2.2&8600
=2,246607
«2,2U46602

-2 0 -1.0
=2, 037829 + J3.43386L
-1.153318 ¥+ 33,881929
-1, 786042 + Jh.09Lk6LU8
-1.185975 + Jk,093363
-1.686921 * 3k,160736
-1,26309 * Jk,125865
-1,625349 ¥ jh,165192
-1,296223 * $k,134689
-1,580867 * Jh,162651
=1,334265 * Jb.139171
=1,547741 ¥ 3k4,159904
=1,362868 + Jh.142197
~1.522938 * Jh,15T€9k
-1,384329 + jh,1kk391

~1,L49385 + 3L4,150813
-1,448001 + $4.150679
-1,449200 * jk,150795
=1,Lk48162 + 3h,15069k
«1,449060 + 3k,150781
=1,448283 + 3k4,150706

-1, 448639 + §k,150Tk1
-1, LuB6LT + JL,150Tk2
=1,L4486L40 + 34,150Th1

#RNNNNN

IV.3 Accelerated Convergence = Shanks' Method

Although the new method converged to the optimum solution faster
then the MSS method (even assuming a switch from Mode~l to Mode=2 is
made at the best :.ime, a decision which is apparently ad hoc) in every
case tested, it too converged rather slowly in some cases = 90 iteratioms

with n=3 for the square pulse and 24 iterations with n=1 for fa(t).
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larger n it seems that convergence would be e ‘en slover. In an attempt

to speed up convergence one may incorpcrate a little used method due to
Shanks [35].

Consider any of the numerical sequences in Tables 4,2 through L.5
which are either monotonic or oscillatory. Draw a smooth curve through

these discrete points, Typical graphs are depicted in figure 2,

Figure 2 -- Graphs demonstrating transient characteristics in the itera-
tive sequences,

bJ+h

bJ*3
b

JHl
New Method -- £, (t), f3(t) New Method ~- f,(t)
Mode-1 - £,(t), f3(t) Mode-1 - fl(t)
Mode=2 - f3(t) Mode-2 -- fl(t), fe(t)

LIl 2T

These graphs look like first~or second-order transients, By "nth order

transient” we mean any function which has the form

n
p(t) * B+ ) ¢, exp(~a,t) Re {a } > 0,
LG 1 $

Shanks' method predicts the 1limit B of such sequences by "filtering out"”
or ennihilating the exponential components.

Tables 4,6 shows the result of applying Shenks' method to 2 sequences
obtained by using the new method., In both cases the thirteenth iteration
is correct to only two decimal digits or so, but e5 is already correct to
gix digits., In any event, extreme caution must be exercised when applying

Shanks' method to these sequences since there is no theory to justify its

use here. However, it has been demonstrated how helpful the method can
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sanetimes be in reducing the number of iterations neaded and is a topic

worthy of further investigstion.

Teble L,6a ~ Shanks' Method Applied to the First 13 Iterstions of the
Matched Exponent of & One Exponential Approximation of £, {(t) by the

New Method.
3 (b1)3
) %.00000000 00
? 1. 783923000 00
1) 09890000 00
4 ~3.34100000L 01
S A.UMTI4000-01
[y 2.490952000-0}
1 5.34133000-014
a 4.,21205000-01
9 4.18339000-01
10 4.49523000-01
1 4.61125000-014
12 4.5%%70300D-01
13 4.58237000-01
.
.
24 4,5742700D-0%

Table 4,6b - Shanks' Method Applied to the First 13 Iterations

€

6.%2301610-01
6.0830274p-01
L 43901845 0-04)
4.%2H1A600-01)
45681 I04ND- Ut
4.51216320-0¢
4.5739919n-01
4.57423310-01
4.5742RA50-01}
4.574290850-01

4.57429920-01

€2

8.21699310-01
4.%232214n-01
4,600 74 7A0-01
4.57338260-01
4.57444010-91
4.574292 -01
4,574 30460-0}
4,574 40090-01

4.57429920- 721

(1221114

€3

4.56298240-01
4.51259430-01
4.574221710-01
4.57429961-01
%.51430330-01
44374301 70-01

4.574496T70-01

ey
A.514 1G9 0-01
S.51429690-01
4,.574303860-01)
+1.576430200-01

4.57431710-01

e

P

4.37430290-01
4.57430170-01

£.57427090-0)

£ the

Real Matched Exponent of a Three Exponential Approximatior of f (t)
Using the New Method.

J

1
2

i
12
3]

Ay

(-sl)J
3.064701300 00
2:.06559100 00
2.54083%00 00
2.0%0865%0D0 00
2.43735%400 00
2.09198200 00
2.385%17200 OC
2.12933500 00
2.35010600 00
2.15834600 00
2.3240050Q0 00
2.18030000 00

2.30455%000 00

2. 24660700D 00

€1
2.3I8%84481) 00
2429958770 00
2.26692530 00
2.256496630 00
2.25%067920 00

2.264875960

)0
2.24793210 00
2.24748330 00
2.24722420 00
2.,2470%5350 00

2.24693560 00

€2
2.2%643120 00
2.24625300 00
2.248%1990 00
2.264722%20 00
2.264732020 GO
2.24694350 00
2.24567410 00
2.2467706D0 QN

2.248067470 00

310998 30 0
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V. DISCUSSION OF RESULTS AND AREAS FOR FURTHER WORK

Throughout this work we have assumed the real function f{t) to

be: known analytically for all time; piecewise continuous; and of
bounded energy, f: f2(t) dt < ¥, Under these three restrictions we
reviewed in chepter II1 several ways’of finding a linear combination

of n exponentials to yield a least-squares approximation of the func-
tion over the semi-infinite interval, The results presented in chap-
ter IV show the new method is the best of these for finding the matched
exponents. This method requires that the function F(s) and its first
derivative be evaluated only at the n points s= - 8, in the right-half
of the s~plane. In the vicinity of these points the function is always

well-behaved, as may be seen from the Cauchy=Schwartz inequality,

|F(-si)|2=|£ f(t)exr{s t) dt|2_<_[£ f2(t)dt][<{ Iexp(lit)|2 at ]

or

IF(-Bilf_-——l——. f f2(t)dt]l/2 (5.2)
2Re -si o

provided (-si) is in the right half plane.

The restriction that the signal be expressed initially as an analytic
function of time can alsc be removed provided the signal is expressed
on some other basis such as f= chk¢k for which the 0k(s) are known in
“he right half plane. The next section gives an important example in
which the signal is represented initially on a discrete primal basis.
V.l The New Method Applied to Sampled Data

Let p(t) = Z:=_w 5(t=-kT) denote an impulse train with the impulses

spaced T second apart. The sampling of & function can be described




umtmm|§|>1 k=1,2,0¢000,
is defined to be

e(kT) = £(xT) = fa(kT)
and

E(z) = F(2) - F.(z).

Then (Ragezzini p. 179)

=] etk 2= £ EaE}) £
k=0 unit
circle

mathematically by multiplication with p(t)., That is
[ [
to(t)ep(t)r(t)= )} £(t)8(t=kT)= } £(KT)6(t=kT) (5.2)
k=+w K=o
It is easily shown [33] that the Laplace transform of f#(t) is
an o«
Pe(s)= f ro(1)e™®® at= | f(ke)e™ T (5.3)
o kSen
Consider the change in variable z=exp(Ts) which maps the left half plane
in the s domain inside the unit circle in the z domain. Then the
Z-transform of the function f(t) (f(t)=0 t < 0) is defined to be
e K
F(z)= | f(kT)z . (5.4)
k=o
] The approximating function at these sampled instants, is given by the
rational Z-transform:
-1 «(n-1)
Nz al+a2 2 +.e0t an z
F‘(z)a D(z = -1 «n
E l+bl Z taaet bnz
3 a ] o
_ e n
-l-.-z +_l_- *.0'."‘]-.-2 (5'5)
z 1 z Z2 Z n

The poles of Fa(z) must all be inside the wnit circle to ensure stability

The error at these sampled instants

(5.6)

(5.T)

(5.8)




The necessary conditions on the 2n parameters {ai,zi} to minimize

the functional J are

aJ - ol Eézz dz
30, 0 ° 2n) 4;2 z-2, (5.98)

i

3 L w0l gE(z) dz
2z, 0 " %53 2 (5.9v)
k z(z-zi)

From the Cauchy integral formula and the fact that E(z) has all its
poles inside the unit circle
E(zi) = 0

(5.10)
E°(zg) v 0 1=1,2,0004n

Equations (5.10) are intuitively correct since they are the Aigrain-
Wiliiams equations applied to sampled data. Notice Izil >1
corresponds to a point in the right half plane in the frequency domain,
These equations are solved iteratively exactly as before except one
uses F(z) instead of F(s).

Steiglitz and McBride [34] have also applied their mcre complicated
method to sampled data.
V.2 Concluding Remarks

For large o (n>5) double-precision arithmetic is required to get mean=
ingful results using the new method. This is not unexpected since the
same difficulty arises in the simpler linear least-squares approximation
discussed in chapter II, Based on experience with the two methods, it
is of the author's opinion that the roundoff errors in this nonlinear

approximation will be about the same order of magnitude as those in

chapter II. The computational aspects of this method deserve additional
study, but they will not be pursued further in this thesis because they

involve considerations foreign to the main thrust of this work.




APPENDIX A

Construction of Orthonormal Functions

kquation (2.).) can also be used in a reverse manner so that if

¢t 1s known, one can sometimes construct an orthonormal basis by

simple inspection and av+id the Gram-Schmidt method altogether., With

Gastinel's result (derived without regard to orthogonal functions)

and use of (2.11) it is possible to derive Kautz's important result

for orthogonalizing exponentials, This second application is demonstrat-
ed by the following example.

A _General Formula for Orthonormal Polynomials with Hespect to a Cone
stant Weight Funection

Define
51-1/2 .
x= t . 0_<_t5_1,si>1/2,
then
1 51-1/2 33-1/2
gi.’ - ] t t dt = s +8 1.3.1'2.....11. (Atl)
o b S
As shown previously, the inverse of this n X n symmetric matrix is
ks.s
-] i
g, = R?;j-)— T, T, (A.2)
vhere
n e s
T -'1-[ 2,
m 8,.~8,
k=1
kym

From (2.17) and (A.2)

N (A.3)
Mso c ¢ . = g;j. and from (A.2) and (A.3) ]
28
1/2 J
cnj » (2sn) WTJ. (A.b)

I



~The

Since the formula must hold for any n,

i
2s 8, +8
c“'(2si)1/2 8,48 TT ;k—-ai et (A:5)
: 173 (a1 K
ke)
Hence by (2.3), (2.4) and (A.5)
i 53-1/2
o (t) = ] cq gt . (A.6)

i=1
However, this set is orthonormal on (0,1). To generalize to (a,b),
consider the linear transformation twkt' + d. When t=0,t' = a and

vhen t=1, t' = b, So k=1/(b-a) and d= -a/(b-a), Hence, the general

formula 13*‘

1/2 s =1/2
, .12 B ((es)7(2s,) t'-a)]

ivote that there is no requirement s

J--:L/2 be an integer. Now let Pn(t)

denote the Legendre polynomial of degree n, It is not hard to show

from (A.7) that, in this special case for which s ~1/2 = j-1,

3
n J-l
Pn(t)'(-l)n i —J%JZ—Z-HML——Z- (a.0)
J=1 (=2)" T (n=3)1(({g=2)1)
vhereﬁ‘ 1

_{ Pn(t)Pm(t)dt '(5':1171') cm. (A.9)

T Note that ]i ¢, (t) QJ(t) at = j:.i(t') ¢,(t°) at°/(o-a)= 5“. Hence,

)-1/2

the factor (bea appears in (A.7).

t* e factor (~1)® can be dropped and the polynomials will still be or-
thonormal. This factor is added to make (A.8) agree with the standard

Legendre polynomials,




R i

e r— ¢ —

«T5=

The Determinsnt of the Gram Matrix

Let Dn be the determinant of the n X n matrix g. Then

det(g‘l)-dez(gg)-det("g_')dez(g)-l/nn. (A.10)

But C is a triangular matrix and its determinant is just the product

of its diagonal :t‘ems. Hence

-1
2
D, -“I ckk) . (A.21)
ksl
Also, it is seen thatf
D 1/2
nel
.3—) . ' (Acl«z)
n

¢ =
nn

For the Hilbert metrix

nel, \1/2 = (s,+s )
cnn-(-l) (an) TT Ts_k-B—nT . (A.13)
ksl
or TT [.j‘.s
s, +
1oy 447 (A.24)

Dn(uilbert)s

n
TT (2s,)
kel

{=] 2,i0en=1 J = 2.3...0 pDe
Similarly, for the matrix discussed with the Laguerre basis considered
in the Appendix,

n 2
Dn(l.nsuerre)-{TT(k-l) |} . (A.15)

kml

since cnn-(-l)n-l/(n-l) l.

+ Szego, [25) sec. 11.1.10, recognized this formula for orthonoraal

polynomials,
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Concluding Remarks
The method described at the heginning of chapter II shows a way

. of finding a closed form inverse of some Gram matrices that often occur
in linear least-squares problems, provided an analytic expression for
an appropriate set of orthonormal functions can be found in terms of
the original basis elements. If an analytic expression cannot be
found for the orthonormal functions, the Gram-Schmidt procedure can
alvays be used, But then the method loses same of its merit, for if
the basis elements are highly correlated, one may encounter the new
difficulty of computing the elements of C accurately.

Another distinct advantage of this method over the "direct" use
of orthonormal functions in least-squares is that it will reveal com-
mon factors that may be present in each term of the inverse. This is
illustrated by equation (B.5) in Appendix B which shows the common
factor [(i--l)l(,j--l)l]'2 of each  term in the inverse of G(Laguerre).
It is unlikely that this common factor would have been observed if
linear combinations of the orthonormal functions were used to recon-

struct the original basis. Finding such factors vhen they exist can

cbviously save time and improve computational accuracy. The results

g

for the Hilbert matrix are even better.

Perhaps more important than the direct application to the leasst-

squares problem is the possibility of comstructing orthonormal basen
by simple inspection from cndog:‘j/((;‘ll)uz vhen sn explicit expression

L
H £
¥
L
£
4

for g;j can be found (as in the case of the Hilbert matriy.). The

VAl

constructicn of the orthonormal besis for fracticnal powers of t vas

achieved by this method.
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APPENDIX B
A Leuusgmei Problem Using Laguerre Polynomials

The Laguerre polynomial I‘n(t) is & polynomial of degree n in t
for which

J et L (t)L(t) at w6 . (B.1)
o

Laguerre polynomisls are orthonormal with respect to the weight func*ion

et over (0, =). It :ls known that
l ("1) £)52 (B.2)
Lo 1 ko1 k-l ! ¢
so that
‘ -%/2
¢ t) = e” 7L L(2), (B.3)

Suppose ane desires to find the a, such that a continucus function f£(t)

is approximated in the least-square sense over (0, =) by

£(t) = ] a (i) .} (t).
& x=1 qk k=1 ‘k

(This may appear to he an odd choice of the X» but they are much easier

-t f2

t0 vork with than e Ln(t). Just as integrals involving single terms

of the form cxp(skt) are casier to evaluate snalytically than integrals
involving orthogonal functions formed from the exponentials.) Then, as
in (2.3) it is immediately seen from (B.2) that
-l -1
g (Ul GU L el (8.4)
-0 1< g,
From (2.11) one finds'

+ At first glance one might think that g';:‘ © CpyCpys in the Hilbert mg.
triz. liovever, the result held there regardless of the ordering of the s
Here (B.4) holds only for s particular ordering of the dasis elements snd
the generalisation cannot be mede. Hemce, the summation is necessary.

x‘
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-1 )'c

Biy ” ey ki'kg

J=1
(- L1 kely (=1
Py, éT:%JT"( Y 43:%77_
iey n 2
=) k1)1
" -0 131172 kzi (i-:)s!k-JS|

vhere

8y ymCxy x> = £.e't 3492 44 w (145-2)1
and

£y £.r(t)t3'1e'1/2 dt 31424000400

(B.S)

(8.6)

(B.7)

Hence, the soluticn in closed form is A= Qflz. (Assuming that (B.7)

may be evaluated in closed form,)




APPENDIX C

Nurerical Example for Mode-l Iteration

Consider the functien

-t

£,(t) = e " [u_ () = u_(t-1)]

to be approximated by one exponentiai, The Laplace transform of fh(t)

is
-(g*a)
1-
Fh(’) - :+a
end s+(b)) (a))
Ea(s)‘: m Fh(s) - Wﬂ:

From Table L, page 61

n & )yl 1%
Vi B (b)) 4
vhere
v = _}' 1 as 1
SR R L CA N 2 O Py B Rl C oy
= ) s B, 1)
811 ° _ﬁ,, T+ (o), T=e#(h ) T ) © L?(b'l‘t:
o sF(e) w R, )
" :g,fsﬂbl) PRI OV LT R =
Ju F\,(s) s Pyl )
U CT Oy ey e oy e el acn -
and
- .}w F)(8)F,(=8) ds
e (e+(y), ) ){=st(b ), 1) 2nJ

To evaluate the last integral by residues one must be particularely care~

ful because the product Fh()Fh('s) has an essential singularity at s=e,




|
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Hence, one cannot make use of Jordan's lemma, [36] p. 300, to directly
evaluate the integral by residues., However, the integral may be broken
down into the sum of two parts, one which vanishes along the infinite
semi~circular arc containing the left-half plane and the other which

vanishes along the infinite arc containing the right-half plene, That

is
- }- (1*e-2u_e-(n+a) s
LI s*u)(s+(b1)J_ij(-s#u)l-n+(bl)d_l) 2n)
RHP
T (sm)(;:;:u;) Ty e o Ry
. 17521 1’31

vhich simplifies to

-2a ,, =(a+(b,), .) «20
hll o it -2e . 1 g-l‘ + l=e = - .
2(b1)3_1(a '(bl)a-l ) 2u((b1)d_1-u )
Finally
}. th(s)Fh(-s) ds
ya-h T - ——
1 12 -je DJ-i(S) DJ_1(;§7'2ﬂJ
-2Q =2a
- l#e2 + 1+e — = 0.
2(a '(bl)J-l) 2((b1)§_1-° )

An iterative algorithm very similar to the one described on page Uub

is then used to find (a.l)J and (bl)J°
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