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13. AB3STRACT (Continued)

error, J.

McDonough's method for finding the [sk] Is derived by

three different approach_. In the process, a new method

is developed which offers the advantages of the earlier

results achieved by McDonough and by McBride, Schaefgen,

and Steiglitz. This new method reveals the link between

these earlier methods and provides a standard for comparing

these two linear iterative schemes using several numerical

examples.

The linear least-squares approximation procedure in

which both n and the {Sk) (or [bk]) are fixed is also dis-

cussed in detail. Examples show the numerical difficulties

due to roundoff errors that arise even with the straight-

forward methods available to find Lhe [,ky. A simple

criterion for estimating these erz-ors before finding the

(ak] is developed to permit one to evaluate the feasibility

of obtaining accurate results in any given situation.

/
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LEAST-SQUARES APPROXIMATION OF FUNCTIONS BY E1PONENTIALS

ABSTRACT

The approximation of an analytic time function in the least-squares

sense by sums of exponentials is considered from several different points

of viev. In particular, ve consider the determination of the 2n complex

parameters k of the function f (t)m• k-1eXP (akt) so that for

a given n and f(t)9 the value of the functional
aD

2j [f(t) - f (t)) dt
0

is minimized. Equivalently, the 2n real parameters {abk}, of the

Laplace transform
n-1

b 1 + b 2 a + * b n aU
1 + an

of f (t), ma be determined to achieve the awe minima value of error, J.

McDonough's method for finding the (ak) is derived by three different

approaches. In the process, a new method Is developed vhich offers the

advantages of the earlier results achieved by McDonough and by McBride,

Schaefgen, and Steiglits. This new method reveals the link between these

earlier mothods and provides a standard for cowparing these two linear

iterative schemes using several nuericsl exemples.

The linear least-squares approadmation procedure in vhich both a and

the {ak) (or (bk)) ire fixed Is also discussed in detail. Exaiples show

the naerical difficulties due to roudoff errors that arise even with the

straightorazrd methods available to find the {k.)* A simple criterion

for estimlating these errors before finding the (sk) is developed to pemit

one to evaluate the feasibility of obtaining accurate results in any given

situation.
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LEAST-SQUARES APPROXIMATION OF FUNCTIONS BY EXPONEiNTIALS

I. INTRODUCTION

I.1 Exponential Representations

In approximating a function of time, such as migMh' arise in :ontrol

or comunication problems, one commonly uses a linear cabination of a fin-

ite set of simpler functions. Exponential tanctions are particularly appro-

priate for this purpose because they have simple mathematical properties.

It has been demonstrated in [ 1 ]-[u] that exponentials have very good

approximation prcp-erties for a rather broad range of signal wave shapes.

Furthermore, in linear time-invariant systems, the class of expunential

functions provides a natural representation since the natural response of

these systems is ca.posed of exponential components. Another feature of

an exponential representation is that there are arbitrarily many different

discrete sets {exp(skt)) that are capletf over the semi-infinite interval

with respect to the L2 norm (i.e. the mean-square error in approximating

any piecewise continuous f(t) that is square integrable over 0 < t < - by

the form 1k akexp(skt) can be made arbitrarily small). This completeness

property is established by Szasz'l form of Muntz's theorem [5], vhich when

applied to this exponential basis may be stated as follove: The basis

(exp(skt)) is fundmental with respect to the L2 norm over the semi-infinite

interval if and only .f
: - Rels)}

S- (_1.1)-
k'l 1 1sk

ke

t Whole numbers In brackets refer to references listed beginning on page 81.
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However, for practical work we are not interested in letting k approach

infinity. Instead, we seek efficient representation in which k is small.

Of course, any finite representation viii necessarily be approximate and

incomplete. We are interested in finding the basis of lowest possible

dimension thp't will lead to an approximation of acceptable accuracy.

Efficient representation will enable us to extract the information-bearing

attributes of the signal with a minimum of processing. When the interval

of approximation is finite, one can resort to the discrete Fourier series

since sines and cosines belong to the class of the exponential functions.

But, despite the popularity of Fourier representation, one can often do

better than this for pulse-like signals by using more general exponential

components. For this reason exponential functions play an important role

in s;*.gnUl representation.

To best approximate a signal by a set of n exponentials, one must

determine the n "optimum" exponents sk as well as the n amplitudes k*

These exponents and amplitudes may be chosen to minimize the error with

respect to some norm. Two popular norms are the integrated squared error

(L2 norm)
(L2 norm)t n ' 4 . e27t dt (1.2)[f(t) I a exp(skt) 2 t " e2 (t).

o kol o

and the Chebyshev norm (uniform norm), t ie(t). The former, often re-

ferred to as the least-squares (or minimun-error energy) criterion has been

studied extensively because it is the most tractable mathematically. For

given ( k, it is easy in principle to choose the (k} for the least-squares

criterion, since f a(t) is a linear function of the {a k}. However, practical

computational difficulties exist because the exponential functions are highly
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correlated. As a consequence, solutions of the {ak } may be subject to

large errors due to ro-ndoff in the numerical computation. This difficulty

j will be examined further in chapter II.

Difficulty of a more serious nature arises in finding the exponents

(akI for a given f(t) that satisfly the minimum error energy criterion.

Until recently, only gradient methods were available, and these frequently

proved to be quite unwieldly for large n. Then in 1966 McBride, Steig-

litz, and Schaefgen [6] and in 1968 McDonough and Huggire [71 developed

two different linear iterative schemes which have been found to be quite

successful for determining the {s k  even for large n. Tio natural ques-

tions about these methods are the following. First, how are these meth-

ods related? Second, when is it advantageous to use one method rather

than the other? This thesis provides answers to these questions by

developing a new linear iterative method under the least-squares cri-

terion.

The Chebyshev or uniform-norm criterion has been studied less than

the least-squares criterion because it is analytically more difficult.

Apparently, not much has been done with this cr'.terion to date but,

Tang [8] has shown how the { ) may bb determined provided all the (s Ik k

are real and distinct. So far, it appears that the only way to find the

exponents {sk } for the Chebyshev criterion is by slowly converging grad-

ient methods.

1.2 Some Known Methods of Approximation by Exponentials

1.2.1 Non-Optimal Approximation - Prony's Method and Pade AEProximants

Two simple, but often successful ways of obtaining an approximation
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to a function by sums of exponentials use Prony's method and Pade ap-

proximants. Neither results in an optimal approximation with respe.t

to the L,2, uniform, or any other norm, but they do provide two quick

and straightforward ways of obtaining approximations that are usually

"fairly good". In Pad; approximants one matches the rational function
m k-i
kml ak S

F (s) I - =  bnl 1 (1.3)
lkh k

to the desired function F(s) (the Laplace transform of f(t) ) by adjust-

ing the {akgbkl such that Fa(s) will have the same power series as the

power series expansion of F(s) through the m+nth power where mcn. That

is, the seminorm

I IF(B)-FaCs) I l=l F(O)-Fa(O) l+ lF-(O)-Fa(0) + ... +ipFm+n(O)_F m+n (o) I (1.4)
aa

is made zero. The real merit of the Pade method is the computational

ease with which the {ak~bk) may be found. Finding the b k ) involves

kl solving n linear equations in n unknowns. Once the {bk) are determined,

the {ak) are similarly found by evaluating another linear system of m

equations. These are explicit equations, not simultaneous for the (ak).

To write F a(s) as a sum of exponentials, a partial-fraction expan-

sion must be performed which requires finding the roots of the nt h

degree polynomial D(s). Kautz [9] and Mathers [10] have used the method

in designing circuits to approximate specified transient responses.

Tesdale [11] first applies the transformation z-(l-s)/(l+s) to ob-

tain an "indirect Pads approximant" matching a power series in z instead

of a. (Actually, since z=0 implies sl, this is matching the power
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~series about the point sal instead of 9=O.) The procedure developed

will be different from the direct Pade approximaiit with generally small-

er error but at the expense of more computation.

Another simple wa of approximating a function by sums of ex-

ponentials is a method first used by Prony in 1795. This procedure

wan first applied to network synthesis problems by Tuttle, Carr, and

Kautz. A detailed discussion of the method and its refinements is

given in McDonough's thesis [1]. The principle behind the method

originates from the fact that if a waveform is indeed composed of

exponentials, viz.

n
f(t)u I k exp (sult) Res k  < 0 (1.5)

k-1

then f(t) will be the solution to some homogeneous differential

th
equation of the n order,

n di f~B Af 0 UB-l(.6)
io dt 0

Provided one could find the coefficients {B of this equaticn, the

(s ) could then be obtained by evaluating the n roots of the poly-

nominal ino Bi limo. Our task then is to find the Bi appropriate to

a given f(t). Then, the {s k ) which satisfy the differential equation

ma be used to construct an exponential bauis for f(t). If the signal

is noisy or is not exactly the su of n exponential., the left hand

side of equation (1.6) cannot be made zero regardless of the choice

of {B and there will be a residual £io B (d f/dti) ).(BU) i n
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Since Bow-, equation (1.6) may be written as

n

Cp(t) _ f (t) + I t
k=i dtk

Then, one simply chooses the set of (B1 ) to minimize this c (t) in the

least-squares sense, thus

2Ef [C p(t)] d.
op

Minimizing E over the coefficients B1 B2 1 ... 9B results in n linear

simultaneous equations

E f(i)f a

dt + Bk  () (k)dt o (1.9)o kul o

I * 1,2,....,n.

However, the matrix elements

gik a f(i) f(k) dt (1.10)
0

wili not exist unless f is of at least class Cn . If the differential
equation is first integrated n times the corresponding new elements

will exist for any piecevise continuous function with finite energy

but, this initial integration should be performed the least number of

times to assure the existence of (1.10) since it has a tendency to

destroV signal information. Fortunately,, the matrix elements Sik have

certain recursion relations which make it necessary to calculate the

gkk only. Prony's method yields only the frequencies (s k ) but, the

amplitude coefficients {Xk) may subsequently be found with little

difficulty (as discussed in the next chapter). It should be emphasized

that Prony's method does not lead to the optin least-square approx-
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imation (unless f(t) is exactly the sum of n exponentials) since

Sp(t) is not identical to f(t)-fa(t).

1.2.2 Optimal Approximation in the Least-Squares Sense by Exponentials

The conditions for optimal exponential approximation of a func-

tion f(t) with respect to the L2 norm over the semi-infinite interval

are described compactly oy the equations of Aigrain and Williams [12].

Although theoretically attractive, these nonlinear transendental

equations are computationally undesirable rmd algebraic solution is

seldom possible even when the Laplace transform of f(t) is known in

closed form. Most often, these equations are solved by a gradient

or some other iterative method.

In chapter III, it will be shown that by suppressing the samplitue

coefficients {ak } one may write the integrated square error, J. as

J 7f(t) dt - FHH1F (1.11)
0

where ="1 is the inverse of the generalized Hilbert matrix and F is a

column matrix (_[F(s*),F(,),... .(S )]). Equation (1.1) is a com-

pact mathematical expression for the mean-square error but, for large

n, (say n.!5) it is very sensitive to the variation of the (s k I and

finding the minimum J by the umual gradient methods may be ineffec-

tive. The two mi;.h more effective vwy of solving the Aigrain-Williams

equations for large n, which have been recently developed, shall now

be briefly discussed.

The method of McBride, Schaefgen, and Steiglitaz the first of the

linear iterative methods mentioned earlier, introduces an approximate
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error D.) NC.) ..
EaCs) U F(s)- (1.12)

with n-i
Na, - s) al+%" '".+anFha)- $ -&n n- - (1.13)b1 +b2 0*+*b nl .

where the subscript j refers to the iteration number. The previously

computed coefficients of DJ 1 are regarded as fixed during the j th

iteration. By this simple tactic, the error is linearized in terms of

the unknown coefficients (akbk} of the numerator polynomials N and

D The primary difficulty with this method is that the approximate

rather Ithan the true error is beinb minimized. Hence, the iterative

scheme does not converge to the true optimum, To circumvent this diffi-

culty, McBride et. al. introduce a different "Mode-2 Iteration" which

does converge to the trae minimum but more slowly than one would hope*

The requirement for using two different iteration schemes also adds extra

complexity to the McBride method.

The difficulties of the McBride method are avoided in the linear

iterative scheme devised by McDonough and Huggins. Here, the 2n

11.graln-Willims equations are first reduced to a set of n equations

involving the (a k ) only. This was done by regarding F(s) as a signal

in a vector space and showing that a necessary condition for the (a k

to be optimum is that F(s) be orthogonal to the space spanned by (s)

i - 1,2,...,n where

_ _1 
0+- i 

(1.e)')

0-1' a Cs 8_6"I ka-a k11



with n SSk

kul k

This orthogonality condition may be written as
ft F('8) *1 (s) A" 0 i o 1,2,...,n. (1.16)

The linear iterative scheme described by McDonough is obtained by re-

placing H(s) with the new operator

ii+l i-I
Ha(s) * 1 bi(-si) / D(s) *bn 1 a 1 (1.17)

imil

The resulting iterative method is similar to the one described by McBride.

All these optimu least-squares methods will be discussed more fully in

chapter III.

1.3 Brief Discussion of Previous Methods

Prony's method and the method of Padi approximants have two things

in €con. First, each requires the solving of a system of linear

simultaneous equations. Second, to find the approximate ( k ) one must
th

evaluate the roots of an n degree polynomial. Each method uses the

application of these two operations only once. Hence, each is useful

in that it provides a rapid way of obtaining an approximation to a

desired vaveform. To improve these initial approximations or to make

them optimal, either of the linear iterative schemes may be used.

These linear iterative methods also require solving a system of linear

simultaneous equations and finding the r'ots of an nth degree polynomial

for each iteration. It will be shown in the thesis that the method of

McDonough is the better way of improving the approximation.
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Regardless of the initial starting point in the approximation%

Mode-l, Node-2, and McDonough's method all converge to the optimal

solutici in one step If the function f(t) is exactly co tposed of n

exponentials. This suggests that any of the linear methods will con-

verge rapidly to the optimum when the signal is "nearly exponential".

I.4 Plan of the Thesis

It is vell known how to find the amplitude coefficients for a

least-square approximation to a fuctianon an fixed or known basis.

However, computational difficulties arise when the basis elements are

highly correlated. In chapter II a closed-form expression is developed

for the inverse of some Gram matrices that occur in least-square

theory. These new expressions can help to reduce roundoff errors

in computing the amplitude coefficients. In particular, the exponen-

tial basis is studied. An explicit inverse for the generalized Hil-

bert matrix, the Gram matrix for an expametial basis, was published

in a French Journal in 1960 [14). Although this result is quite use-

ful in least-square representation by exponentials and polynomials,

it appears to have remained unknown to the English literature. Its

use is fully explored in regard to finding the amplitudes as well as

the (a k).

The successful methods of McDonough and Hluggins and of McBride$

Schaefgen, and Steiglitz are discussed In detail in chapter III. A

new scheme is developed which for the first time enables one to make

a meaningful comparison of the methods. In chapter IV, several

numerical examples compare the convergence properties of the linear
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iterative methods. Finally, in chapter V, the new method is extended

to deal with imperfectly known signals or sampled data.

*
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II. DETERMINATICU OF THE M'WLITUDE COEFFICIENTS IN LEAST-SQUARE APPrOX-

IMATION OF FUNCTIONS BY EXPONENTIALO M4D OTHER COW. LY USED BASIS

FUNCTIONS

Suppose x1(t), x2 (t), ... xn(t) denote a finite sequence of con-

veniently chosen functions defined over some continuous interval (asb)

of t. Let f(t) -. axk(t) be an approximation to the function

f(t). One problem is to find the ak such that Jaf(t) - f5 (t)1 2 dt - J

is a minimum. The standard least-squares procedure yields the following

equations:

u0 or i a f i I 1,2,...,n (2.1)

where g fb xi(t)x*(t) dt * are the elements of the Gram matrix

and b f(t)x(t) dt are the elements of the column F. Then theSa .

best fitting amplitude coefficients are given by the column matrix A,

where

A - G_11. (2.2)

Theoretically, this algorithm presents no difficulty provided the xi are

linearly independent. If they are not, the matrix G will be singular

but the same minimum error J can be obtained with a set of ler than

n of the xi that are independent. When the xi are highly correlated,

but independent (exponentials for example), the matrix G in "ill-

conditioned" and computational difficulties arise in finding the

inverse accurately for any sizeable n, m evidenced in [19)-[21].

This difficulty is soetimes reduced by introducing a new bau of
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orthonormal functions, which are linear combinations of the original

sanis functions xi(t) and span the same space. Hoever, these ortho-

normal functions no longer pomess the simjle properties of the origi-

val basis so this approach is not a cure-all. A method for finding

-s i still needed.

II.1 Inverse of the Gram Matrix

Lot *1(t) ,*2(t).... (t) be a set of orthonormal functionag

which may be determined from the xi(t) by the Gram-Schmidt procedure.

That is,
i

i(t)- I c1kx(t) i li2..... (2.3)
kal

end cii cannot be zero if the xk are linearly independent. Written in

matrix notation, 1(t) - 2X(t), where C is a nonsingular n X n lover

triangular matrix and

b
I i(tl)(t) dt 6ij (2.4)

a

Using Dirac notation, let denote the column of basis elements and

I_ its adjoint. Then

X17 1- G (2.5)

From (2.3)

.1 c xj (2.6)

j 10C'±1I1 (2.7)

Ix- 1#_36 (2.8)

nt t% is the a&Joint of e .M"" G it is

real, then C is the transpose of C.=INS

f
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-l 4'q C_1 0 - (2.9)

but

t I (identity matrix).

Hence

G -c 1  (2.10)

or the final result

G7"  -C C. (2.11)

Equation (2.11) is a useful result in two wqe. First, it iray be used

to find explicit expressions for the inverses of some Gram matrices

that are ill-conditioned. Second, it can sometimes be used to construct

an orthavormal basis by simple inspection. The second application is

not one of the main goals of the thesis and therefore, is discussed

in Appendix A. The first application will now be demonstrated by find-

ing the inverse of the Hilbert matrix.

11.2 The Generalized Hilbert Matrix

The generalized Hilbert matrix is the n X n Hermitian matrix with

elements h * - (l+J or
ijJ 2 n

1/(.,+sI) l/(s+S) ... 1/(+*S)

s 1 2 l,2

Ho - (2.12)i . :

where the si are n complex scalars and a s if i j, and a 0.Ii
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The Hilbert matrix is discussed extensively in the literature [21]-

[24]. The inverse of this matrix is shovn to have for its elements

-l (s +31)(s +8a' (a~j (k'*lf
h " k T (2.13)

k ki kal

Pr f: Let xi(t) - e p (e+t) Re(e < 0), then h =

jf x (t) x (t) dt. As in (2.3), let the arthanorual hinctions be given by

_(t) -C X(t), where

i j j i k. ) (2.14)

kal

ky~j

The W are known to be orthonormal from Kautz's method [131t [18].

The Laplace transform of (t) is

(s~s ) (2,15)
Ik

The c in (2.14) correspond to the residues of this transform.

From (2.11)

h1u a cic (2.16)

ij max (iqj) lu. kj

since cim -0 tf i < m. From (2.14) and (2.16)

in nirn

i-i n~n) -'~si k
(s +9 (2.17)T sks.-i n•a k-i' k-1

k~i k~n

Because of the symmetry in the original matrix, if cnn is replaced by Cnj
in - (since the

in(2.17), the formula must hold for the general te-rm h 1 i nc h



-21-

order of 9lS2,..,sn in H can be changed without affecting the form

of the equations) and (2.13) is proved. In the special case that all

the ui are real, the formula reduces to

hkT 8 (a k +8) n k 1..)

kk i

k~i k~j

This result agrees with Gastinel [14] who found this expression for the

inverse of a generalized Hilbert matrix by a rather tedious application

of Lagrange's interpolation polynomial. Appendix B gives another inter-

esting explicit inverse using Laguerre functions.

11.3 Roundoff Errors in the Amplitude Coefficients Using a Fixed

Exponential Basis

Let f(t) be a piecewise continuous real function having finite

energy in the semi-infinite interval, i.e.

f f 2 (t) dt < -. (2.19)
0

We wish to find the amplitude coefficients {ak } that will minimize the

mean-square error,
- n

[f(t) - . %k exp(skt)]2 dt (2.20)
o kol

for a specified set of exponential functions, having {sk I with negative

real parts. From (2.1), the simultaneous equations for determining

the Vak aret

t Since f(t) is real, the sk must occur in complex conjugate pairs.

Hence, there is no loss in generality if every a* is replaced by sk

in (2.21) and to simplify the typography this will be done throughout

the remainder of the thesis.
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1

F(-B*) l/(s +8*) l/( 2 s 2 ) I0~

S- - (2.21)
* . . a 0

F(- c"+8 )  1/(s :) o
n n 1 ns2 '/B~ n an

where F(s) is the Laplace transform of f(t). In matrix form these

equations are F - H A, where H is the generalized Hilbert matrix,

and their solution is A - H 1 F. However, the Hilbert matrix is

notoriously ill-conditioned and computation of H 1 by &,iy of the

standara methodts (Gauss-Jordar, Seidel's rethod, method of Crout,

etc.) encounters serious roundoff difficulties for n greater than

5 or so, even when double-precision arithmetical operations are used.

The rapid growth of roundoff errors with increasing n may be

demonstrated by comparing the inverse of H (for siMi J'l,21,ooan

with n-5 and 7) calculated by the explicit formula (2.13) with the

inverse obtained by the method of Crout [15]. All calculations were

made by an IBM 7094 having approximately 8 significant decimal digits.

Table 2.1 shows that only 3-place accuracy is attained in many of the

elements of the inverse matrix for n=5, and a complete loss of sig-

nificant results for n=T using Crout's method. For still larger n

the results are meaningless. On the other hand, the explicit formula

achieves 7-place accuracy (for both n-5 and 7). (This was validated

by double-precision calculations.) Since a detailed analysis of

roundoff errors arising in inversion of matrices on computers is

given in references [16] and [17 , this topic will not be discussed
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further here. Moreover, the explicit formula for inverting the Hlilbert

matrix has so reduced these errors in finding the inverse as to make

them insignificant for modest n.

Table 2.1

Inverse of the Hilbert Matrix h i l/(i+j) for n-5 and 7 by Method
of Crout and by Explicit Formula on Computer Having 8 Significant
Figure Accuracy.

S',1 Q. C, . 1)- 1 1? l.. 1,1 00.0
-*4l. 64 iC 

' .  
- 111/(C 0 I 16 400.r0 -IS " JO:b t

41 , .' 4 ,r ro. - 04 O. 0 0

A. / tj - IA' .. /A4..rI.(, - 9)I*.O I~* 0.0 iIA.

Explicit Formula n-5 (Exact Inverse)

. I4 4 14 . 4 - 14 ( , . I ,' 1 s o:. 4 h 4 ' 0
|l/4.4 - 40,+4..4&S'Il. A &0"SII. 1 ?A4? 3A.A

. 01 4 I 1'6143. -6.C 3'46%. 6 rq? r So. 1 - | J1 .1

Method of Crout n=5 (3 Significant Places)

1?A4u. A - +Nt1? l. l , '&00:.0 -511440.0 ?76160.0 *IO 1657)6,.0 16816.0"+ P,/74.,' $1516 -IIIOP +.9 I 14 9'J. 4 -1196zS59q.S 10I 21401O-4 -40 360| 3.41|
I~~~~~~~~ 0"'*t

.  
1I

r ) ' - ' ' 
?4tCf. -IS :I V99YS. O I 07/?000.0 - 1009",) f"95.0 tO.+'0+11. |1

.q11s994.0 66104 91.0 :426)191.0 1" 4.I O 0 -SIO O 91.0P t. "h I - 111067-1 1. N _I Ing I lCon).0 4- 4 4 16 -9 6 0 11 *ss:,::0.3 -%$46 :11,4 70 :00 6 44 : ""10.0
-%? 'M 0b. 14 1t+ 1 #') 1. 4 -0,09 I+ CJ'S0 ""~l~l. I546P8 a 1: 64 .00 SI 1 11s0 .0|
1Z4f. nh r -4n 1"r)I I . "l IC? 102 11I.0 - I ' '0O0fr Il. 0 1644P11 I.00 -4 )3 1 1 &4494041. 0 41 M SINO.-I

Explicit Formula n-7 (7 Significant Places)

4141.1 l0 41rj I.I ,A 5I16. 7 -231,99.I )O1116.0 -lA'1?310. a 11?964.2
1I 11',I. s. - I .Ai1l -6 SOI7 0I-i A%1On1. O Pl#014. 6*?It .O - ill. +. 0

tlt~.. -14i+0 4. I
)  I '
14111';

11
0 |lPP 5'i 0 .1,104:tO' 6-0 "0' Ift S ~ ltOS0

) ~ ~ ~ ~ - 01lI, , -nr Ss. + +i I4, fi. .0 -' 01;t. 1,lltI 0 - ~ l~i4 0 26 41014 I'll | 0
-,gt4j % on I+.. I'' 7;,160 . 10 S ?I 1 . (

,
- i0'5lsm . 0 16 i'Z)6 I9+ I. -, - 11 1~ , l~l.0 , 1 4 4 111( -:11$ I 1' sl.tG

is a SOP'P.6 -P JfI140 UI, 1. 4 % 41 . -%S1004646I0.0 8 )16%411.0 -4,S°4,+'o 1I .q .01"10o, 10,,. o

Method of Crout n=7 (No Significance)

**o *e

Another source of roundoff error occurs in the computation of the

vhen H-' is multiplied by 7. From (2.21) and the explicit formula

oib
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u - Bk T [2 ~ F(aii(2.22)

where

ffL~i (2.23)
,-"1

m~k

The estimation of a roundoff error in evaluating equation (2.22) may

be illustrated by considering the approximation of a square pulse,

f(t) - u (t) - U 1 (t-1). where u 1 (t) is the unit step,

U_ilt W i t> 0

"0 t<0

and thus

F(s) a (l-e5 )/s. (2.24)

Again let s i i-l,2,..,n. Columns 1, 2, and 6 of Table 2.2 summarize

the results using equation (2.22) with n-5*Tgand 9. (The error in es-

timated by comparing these results with those obtained by double-

precision calculations.) Notice that ek and Tkn exhibit nearly the

same order of magnitude for almost all n and k. This implies that

the sun of the n terms within the brackets of (2.22) must be roughly

of unit magnitude. Also, all of the F(-s k ) are less than -1. (In

chapter V it is shown that for any normalized f(t), IF(-s k)l

(2Re(-Sk} A1/2.) Therefore, the nuber of significant decimal

digits lost in each of the uk computed by this method, which forms

small differences of very large numbers, may be expected to be the

so as the nmber of places to the left of the decimal point in

the largest e. In the example provided by Table 2.2, for nR5,k
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T has the largest magnitude of 315. Thus, a lose of about three sig-

nificant places may be expected; for n=9, T? * -210210 indicating a
6

loan of six significant places in each ek. These predictions agree

with the actual accuracies obtained in Table 2.2.

Tabe 2.2

Amplitude Coefficients of exp(-kt) kul,2,...,n for a Least-Square
Approximaticn of the Sauare Pulse

From FromIak Double- --*qk2.2 Error .(22) Error Precision k

-1 .404 '0 - OJI -1 cl .C) 2 1O.')0') -12: r1iF -1 o S 1
r)

mf. I ?(, n4 I 1 5 -U.OUZ 0',. I 11

-iZ . 1 - } ,- I I I,*/t .n e -______._____ -____ 1___.00,t.4 1it, 04o 6 0g' - nti ',. Ilt.Ii~f

n5* Lose of 3-Places

1.204 0.01 1 -0.06' .i.19 2H.00,.L i *040 -f. ij - I .R O. t's -I .91 - IIN.0o,
1% . 1 1 .sot1. -0.640 34.4 10n6 zou.0n')

26 o1 a -4.! i 11'.19 7 2. , t 'l.1.8 ji -1?1.5.00f)
-1Ot t. . 7%'. -' 0.14Zt - 1..? II -' ,.9 ,5 14 .

9 5 0.tQ 4 -12.'. i? I2.84.0 ' 544 - t iv.,

-364.8 I.41; - 6.? I? -0.1664', -3e...I? I 11 .r',,

n=7 Loss of 5-Places

-244 I~A-240 0.088' -2.6"9 1.0
IVu..1i - I.1 ' 102.4!a 2 -3.661 101.90 - .

-01 31 '541~2% 4Q'.
44044.%2% (- (146 b.~ -14 e14.1 -!?A1i,.-l1- 11 . 0fl1 46.: 1 #t - P1 X4. 416 19 .1"1 - I 10 , (14 ' S 2NIV.I:(#

."'ahi IU% -t ?6*0."j 20 I0.rP)h - 1146.4'00 2?4) 1.Sh# -2 Ir. ?^, 0." )'

I&14:0) ".11 -SO2 1 -194N.P14 - 1 A.0 It. -lp1511.%%,I I . 'ra -4 IfI. I ,"I -12.461i -t'| !2 1 4 b 2 1.- 6 M.

n=9 Loss of 7-Places

00e6*0

A procedure that is often used to avoid the inversion of the

ill-conditicned matrix of equation (2.21) is achieved by introducing

orthogonalized combinations of the original exponentials. The orthog-
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onalizing procedure may be implemented in practical filters by a

method due to Kautz [13], [18] which is based on the traditional

Gram-Schmidt procedure applied to exponential functions. Rewriting

(2.1), the orthonormal functions are

i

,i(t) i 0ik exp(skt) (2.25)
kol

where.,________ i

k ( =i+1 kk i _P k (2.26)
i k

Then

f (t)i dk *k t). (2.*2T)
kal

As is well-known frcm the theory of orthonormal basis, the expansion

coefficients

d - f(t) *k(t) dt (2.28)
0

automatically yield a least-squares fit. Equation (2.28) ma be ex-

pressed in matrix form as

d c 10 0... 0 F(-s 2)

d 2  c 21 c 22 0 .., 0 (s2

(2.29)

d c c .. c F-0
L -nl cn2 n3* n LF d

or D a C F. When the signal coordinates on the orthonormal basis are

transformed to find the coordinates on the original exponential basis

one gets
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aI  C11dI + c2 1 d1 + a 31d 1 +.

a 2  a €2 2 d 2 + 32 d 3  + ( 2..0
+c d .... (2.30)

a3 " 33 d3 4.

Equation (2.30) is easily verified using (2.2), (2.11) and (2.29).

Hence, explicit equations for the {ak) can be obtained in two

simple steps by combiningt (2.29) and (2.30),

A -=C' (C F) (2.31)

or

i•  ci c F(-s-) (2.32)
ink inl

To minimize the number of arithmetical operations required in evaluat-

ingA C C F, the product C F should be formed first. This requires

n(n+l) multiplications, whereas if oCC is formed first, roughly

n3 /2 multiplications are needed to find all the {%k).

Although A may be evaluated by either equation (2.22) or (2.32)

(which are theoretically equivalent), equation (2.22) is computa-

tionally preferred for three reasons. First, it is much simpler,

requiring only a iingle summation rather than the double summation

Of course, if the C C in (2.31) is ccmbined and simplified, one

obtains the explicit expression for the inverse of the generalized

Hilbert matrix obtained earlier. Apparently, this wvy of finding

the inverse of a Gram matrix has not appeared previously in the

literature.
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of (2.32). Second, only n Tn are needed in the first method, whereas
k

in the second, n(n+l)/2 different c,6 must be evaluated.t Third,

the method of equation (2.22) provides a simple estimate of the

number of significant places that will be lost due to roundoff even

before the actual computation is made.

By observing the magnitudes of the IF, in Table 2.2, we have

already noted that the percent roundoff error corresponds to the

magnitude of the largest To. Table 2.2 shows that the accuracy of

either method is about the same, so the choice rests entirely on

which offers the greatest computational advantage: this is the

method of equation (2.22).

Thus far, we have presented two methods for determining the

amplitude coefficients. For single-precision computation size-

able numerical errors arise in both methods for n greater than 14

t

Some simplification is possible in evaluating these ci6 by making

use of a recursion relation which requires the calculation of only

the n ckk, all other quantities being obtained from these. The re-

lation obtained from (2.23) and (2.26) is

/isl,k = . si ) m a A
i - c tk

Even using this recursion, the computation of the cnk alone requires

at least as much work as the .k"

L mm k
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and for n greater than 15 (maximum e > 10 10 with s i) even double-k i

precision arithmetic may not be adequate. There remains a real need

for further detailed study of the computational aspects of these

methods.

I. 4 The Vandermonde Matrix

The Vandermonde matrix arises in many branches of applied mathe-

matics. In control theory one encounters the equation t (t) a

A X(t) + D M(t) [27], which may be simplified by transforming *he

state vector X to Y a V-1 X where V is the Vandermonde matrix.

In numerical interpolation by polynomials of a function defined

by a set of n ordered pairs of real or complex numbers (ak.Zk)

with all the 9k distinct, one seeks a unique polynomial

N(s) f +a2  %... an sn-l (2.33)

for which

N(sk) a sk k l,2,..•,n• (2.34)

The conditions (2.34) form a system of n linear equations in the

a, coefficients of the polynomial,

1 s1 8/ 1 2 ln- a1  z1

2 n-i
1 2 2 2 2 2  n - 22 (2.35)

S 2 n-1
L n n ... n J n n

The matrix of this system is named after Vandermonde and Is shown to

be non-singular provided all the 8k are distinct [28].
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The Vandermonde matrix also arises in least-square approximation

using exponentials over the semi-infinite interval as we now show.

By zolving equation (2.21), one obtains the best fitting approximation

1 +--L + ... n (2.36)Fa~ =s-s" s-s s-
1 2 n

which has the properties ennumerated by Aigrain and Williams [12], that

k F(-S k  P a (-8k k o 1,2,.,.,n. (2.37)

Equation (2.36) may also be written as the rational fraction
n-1a l+a s+. •..+ana

F(s) 1 (2.38)
b+b 2s+...+b s + n

12 ) n

When the (ak } are optimally chosen, equation (2.37) is satisfied. Then,

D(-s ) F(-s ) D(-s k ) F a(-s k ) * N(-sk) k-l,2...,n, (2.40)

In matrix form,

D(-s) F(-s 1 1  1 () (-,1)n1 a1

D(-u 2 ) F(-s 2  1 (-a 2 )  a. (-82)n-l a2  (2.41)

D(-s n ) F(-.) I (-s) (.1) e(-mn)nl a

Equation (2.41) also exhibits the Vandermonde matrix V with elements

V )'' 1,Jul,2,...,n. (2.42)

To solws (2.41) for the coefficients of the numerator polynceial,

a closed-form expression for the inverst V"1 of the Vandermonde matrix

is needed. An explicit expression for the inverse of this important
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matrix is given by Tou [29] and the result may be summarized by the

following theorem:

Theorem 1 - Let V be the Vandermonde matrix with elements v F=(-si- -1

and V 1 be its inverse with elements v a Then the generating func-

tion for these inverse elements is the Lagrange interpolating poly-

nomial [30],
n (s+sk  n - -fLj(s)-T (s..s. ) --. -i vi ' k~sJ if k"J.

L S) T l ( k - j i1k=l

k J

for whicht

L (-s)= 6

Theorem 1 will assist us, in chapter III, in making a direct com-

parison of two recently developed methods for exponential approximation.

Usually the Lagrange interpolating polynomial is written

L (a) k 1 .). This difference is due to the negative elements

i k
koj

(-s in V.
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III. DETERMINATION OF THE MATCHED EXPONENTS OF A DEFINED ANALYTIC

FUNCTION

In the previous chapter, two methods were examined to find the

amplitude coeffiients in a least-square approximation of a function

f(t) by a specified set of expoaential functions. These linear least-

squares procedures can always be carried out given sufficient time and

precision to determine accurately the amplitude coefficients. In con-

trat, finding the complex frequencies of the set of exponential com-

ponents to best match the specified function f(t) is much more difficult.

Our attack on finding this set of matched exporents begins with the

equations of Aigrain and Williams [12].

I1I.1 The Equations of Aigrain and Williams

For a given f(t), t > 0, the necessary conditions on the 2n para-

meters ({ksk' to minimize the functional

n
Juf(f(t)- aexp (s t)] dt (3.1)

Qk k0 k=l

are expressed by the two sets of n equations

- f 2 [f(t) - k exp(skt)] [-exp(s t)] dt 0$

or

k exp((s+j+k )t) dt = J f(t) exp(s t) dt (3.2a)

3=1,2,... ,n.

and

a s 2[f(t)' a exp(skt)] [-a t exp(kt)] dt- 0,
0 k=1
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or
n - -

I a k t exp((sj +uk)t) dt f (t) t exp(s t) dt (3.2b)
kol o 0

3-1,2,...• ,n.

Theme conditions for stationarity of the integrated squared error may

be written in the frequency domain as

" -F(-s ) (3.3a)
n Ok

-1 2 '= (3.3b)
k=1 (s+k)2 )-1,2,...3k

or even more simply as

F (-S ) F(-s (3.4a)

F(-,s = F (-s3 ) Jo1,2,...,n (3.4b)

where as usualt

F(s) - f(t) exp'-st) dt (Re{s>o ) (3.5a)
00

F'(s) - -d [F(s)) (3.5b)ds

and
n aFa(S) = I -

F k=1 S8k (3.5c)

(Equations (3.4) reveal that in approximation theory, the important

information of the signal is contained at the mirror images of the

poles of F (a) which are all points such that Pe{s}aO. This suggests

that the most useful information about F(s) and Fa (s) is in the right

° o irf f2 (t) dt <-.
0
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half plane and not at the poles of Fa (S)l To further demonstrate this

point, consider the following two functions,

g1 (t) - exp(-Qt) u (t) a > 0

g2 (t) - exp (-at) [Ui(t) -e > 0

Then the corresponding Laplace transforms are

G (0) 1

1 8+
G()*l-exP(-(s+a)T.j

Notice that G2 (s) does not have any poles even for arbitrarily large

T. This means that the pole of G (a) in the left half plane is due

solely to the tail end of the exponential which is a negligible part

of the function gl(t) for large ai.)'

The 2n equations (3.4) were formulated by Aigrain and Williams in

1948. Despite their simple appearance, closed-form solution of these

nonlinear equations is impossible except in trivial cases. Two ways

that have been used to solve these equations are gradient methods and

"linear iterative schemes". These methods will now be discussed.

III.i.1 Gradient Methods

One straightforward way of finding the matched exponents is based

on the method of steepest descent. That is, one finds a suitable

scalar function of the 2n parameters {kisk} which has a relative min-

imun for values of these parameters that satisfy the Aigrain and Williams

equations. Clearly, a suitable function is the integrated squared-error

J defined in (3.1). The gradient of J is computed at some initial point

in parameter space and then the parameter point is perturbed in the
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direction of the negative gradient. The process is repeated until the

gradient is approximately zero.

Let f(t) be normalized so that

If (t) 112 _ <f (t),9 tf(t)> =f f(t)f*(t) dt =1 (3.6)

0

Then
j- 11 f-fl!2. 1 - 2 n n kF( OTI Ok F(-Bk) I Fa-k. .)

k-l kl

The dependence of J on the {a k ) may be muppressed by using (3.4a) and

its equivalent form (2.21). Under the constraint of equationt (3.4a)g

t Equation (3.8) has an interesting geometric interpretation. By

detinition, the % are the coordinates of f on the oblique basis

B I whose elements are {exp(skt)). The reciprocal basis is defined as

DI where ID - JB (B I)-l A "vector" <fjl may be also written as a

linear combination of the dual basis elements,

n<ql" . k <"kl- <G
k 1

The square of the length of <Fal is

Ilfall 2  <faf,> I > >

n

k1l

However, it is a well-known fact that JOIlell 2"llfll 2 -11fllI 2 in a

least-square approximation. Hence, the {F(-sk)) are the coordinates

of f(t) on the reciprocal basis of BI i.e.

n
<%1 I F(-sk) <D

kul
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n

j a -I a k  ( - sk )  0.8)
kul

j n n -

indfo (2.)Imaixom
ka" 1- Jul(s ) bk (s 3

I (C - F ) C F (0.10)

where the c are defined in (2.14). Hence, equation (3.10) gives an

explicit expression for the integrated squared error in terms of the

(a k) only.

For the scalar function J, however, gradient methods have two serious

shortcomings. First, this error is insensitive to changes in the {s k

and as a result convergence to the minimum is slow. Second, because

of the correlation between exponentials the error can be reduced to near

its minimum value for a wide range of {S ). In several cases tried,

descent methods converged to values other than the minimum. (Box [311

has shown with several examples why gradient methods don't always converge

to the minimum.) As n increases, convergence to the matched exponents

by gradient methods becomes difficult to attain since the measure of

dependence between the set of exponentials increases so rapidly with n.

A better method of attack, achieved by working directly with the

Aigrain-Williams equations, will now be considered.
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111.1.2 Direct Method of Elimination of the {ai } From the Equation, of

Aigrain and Williams

In matrix form equations (3.3) are:

F H A (3.11a)

and

F' - G A (3.11b)

with

F(-s ) 01 F,('s

F(-s 2 )  02 F'F(-s2

and G and H are n X n matrices with elements

2 2

1 -1

gij J. ( +6s') h hij Z (a +s6 s' ss " n

Since the (a k may be expressed as a function of the {sk }I only, (2.21)6

the 2n equations (3.11) my be reduced to a equations involving the n

unknown to k  alone. By matrix inversion the n nev equttions becme

F-1)

F- G H" F = B F (3.12)

and the {ak } are eliminated. However, equation (3.12) in hopelessly

nonlinear in isk ) and in its present for has been found to be worthless

for computing these exponents. The next two theorems will help put (3,12)

in more useful form.

111.1.2.1 Exlicit Inverse of the Hilbert Matrix

In chapter II, a derivation for an explicit expression for the in-

verse of the generalized Hilbert matrix was derived using orthonormal
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exponentials and the restriction that the real part of every ak be

positive. This constraint was introduced simply to insure that the

exponential components could be normalized. Except for that, it seems

to be unnecessary and may be removed by "analytic continuation", to

yield the more general theorem:

Theorem 2 - Let hij -1/(si + ) be an element of the n X n generalized

Hilbert matrix H associated with the set of n scalars {s } with
- k

+ s for all i and J (i j) and slO iml,2,...,n. Define D

as the n X n matrix with elements

dia Tn . Sps
d aiJ s 85 i 3

where A

Tm ay Ps(3.13)T m _- o- (s k-sm)•
kha

Then D H 1

Proof M induction

Let A be the product matrix A - H D. We wish to prove that A is
- W

the UMit matrix with elements 6j. Define

n
a Ea n- I h1i d~Kij - ij ka 1 h " dkj

n 4SkSITn4 (3.14)
"kal i (s~k)(k+Sj "

Then n-l -l

o 3it fkol+l lk)(Sks th

From (3.13) it follows that
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Tnu (a n --

k (an-k "

and thus
n-I~ 4 a 4SSTk TJ , 8 (nk) (an-S
- n k (3.15)

i C ( )Sk(k+ (sn+Sk) T-sn+j

so

n 4 5 TnT n(an Ski )(11s -n nlok kJ r n k nA
k- I IB~k(ks)f ( 8k)an+

2s n 4s aT ?

n kol Ik k+

or

A n U1~L '~ ~pln i12,.ni (3.16)

For (3.16) to hold when Jon and ion, An-iAn must be defined to be zero.

For (3.16) to hold when i and j are both equal to n, one must subtract

An -1 fron the right hand side of (3.16) whenever ion. With this modi-
nn

fication, so that it may be applied generally, equation (3.16) becomes

ni 2s in-6i f-
n .n-I •2 j (,,n n-l,

Ai " ( " 6) i,Jai,2,...,n. (3.16a)

n n

We now assert as the inductive hypothesis

AiD-I (3.17)

which is readily shown to be true for n.2 and 3. To establish validity

for larger n, first substitute (3.17) in (3.16a) to obtain

2sT
A U-6] - , [,n . 6in. o. ijul,2te n (3.18)

" (s +s )Tn  in in

Then for the n X n matrix A
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2s T
A " 61 + (A 6 ) (3.19)

ijT in in

Frm the symmetry in equation (3.14), if the subscripts j and n are

interchanged equation (3.19) must hold. Hence,
2a T

Ain 6 in s*)T j
n j ij j

Substituting (3.20) in (3.19) one gets

: Thus, it is necessary that

and Theorem 2 is proved by induction. Q9 E. Do

111.1.2.2 Simplification of B = - G H "1

Theorem 3 - Let G and H"1 be n X n symmetric matrices vith elements

1~ an i S T .

giJ (si+a2 and hij = j Tn

iJ H~-I

Then the elements of the matrix B - G H of equation (3.15) are

k 1 1iJ kul i

(3.21a)
si(a i-sj)~

n

n n 2sk (3.21b)

k i k

Proof

Formula (3.21) holds for n-2 since - G H "1
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(2. )2 2  1 2 81-2

/u92) 7/5_8

(=2 1) (+2=2) _" -8 2 2 22f

18 1 2 8+22 (ai8

22 29

2 7 1 2
8I~ 2 +(s)(2 2u1)

2a 2
. . . .I . . . . . .

. (a 1 _ 61( 2 1

2•t 2-5 1) 2s 2 (a 2_2-

By definition

Bn ." (.
Bj i k J 2 k j.1L. (3.22)

kul (( +,,k) (.k,.j)

We nov establish an inductive principle to derive B n along lines very
i.

similar to that used for n j. As in equations (3.14) to (3.16) it is

readily shown that

-B B (3.23)ij ij (a +s )Tpj in*

Nov make the inductive hypothesis

:4 n-i sjTn"1  sj(nm ) (n Pj

BU a sI)-l si(a)n, j)( ) i'J. (3.24)

Using (3.23) and (3.24)

B n. i L. o -B -.' 1+ Ban .[' i
j [y(i )TnJ Li L -) -

'- " (s )(S 9)1 2s v, B,

or
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Is - 8 )T )-I [B'. n"T (3.25)

I or
BaT 2sjT j T

13 (s 3 T - 7 [Bn n
3wT

As in Theorem 2, from the symmetry in (3.22) it is necessary that

B i si j)Ti  (3.26)

and (3.21a) in proved by induction. When iiji )

n-1 4s~- n-1~ k9 -n1 4 8 81 n nis
i In k~k 3 1( +17k1

|'kal 
(a 1 +8k) 3 = "a (9

l (Sn') (%+ k..

n. i k kSnk

k-i (Psiisk+ 3(S k (3.27)

(a +8 )- (a.+
Then

(B" 3 in 3.8
n T - 2

(S ( kii 
(3.28)

i " n

Fram (3.26) and (3.28)

B± n Bni 2s n(3.29)

and (3.21b) is proved by induction.

Q.E.D.



111.1.2.3 Equations of the Direct Method in Integral Form

An explicit expression has now been found for the matrix B in

equations (3.12) and the equations of Aigrain and Williams have been

reduced to a set of n equations and n unknowns in the {a ) alone. Al-

though equations (3.12) appear In the simplest form possible, th.ey are

highly nonlinear in the isk  and serious computational difficulties

arise in their solution. With a little manipulation, these equations

may be expressed in an integral form which, as we shall see in the next

section, has an illuminating geometrical interpretation. Even more im-

portant, this form is well suited for solution using a linear iterative

method.

By multi;lying each equation in (3.12) by sita one gets

n
s T' F(-s)"- s T.' B' F(-s 0 i-l,2,...,n. (3.30)i i ki ;i ik k

It can immediately be shown that (3.30) cap be written in the more zom-

pact form

s-s) ( = 0 iul,2,...,n (3.31)

where
n

H(s) - TF (s . (3.32)
;"I k

This is easily verified by using residue calculus and noting that

Sn 1 n
S (B i 2i ) T. (3.33)

The relaticn of equation (3.31) to the Kautz procedure for construction

of orthogonal functions and associated development by otherso is discussec

next,



111.1.3 Method of McDonough and HuKgins

t In a recent paper (7] McDonough and Huggins suppressed the ampli-

tude coefficients {ak ) in the Aigrain-Williams equations by regarding

f(t) as a signal in a vector space. Their argument proceeded as follows:

* Let the error of the approximation be e(t)nf(t)-f (t). Then it is read-
a

ily seen that equations (3.2a) and (1.2b) may be written respectivel:, as

e(t) exp(skt) dt - 0

and (3.34)

J e(t) t exp(Skt) dt - 0 k-l,2,...,n.

0

r. In the language of vector spaces, equation (3.34) means that the error

* e(t) is orthogonal to the space S2n which is spanned by the 2n "vectors"

{exp(sit), t exp(sit)). Also, by definition, the approximating func-

tion fa(t) must lie in the subspace S spanned by the n vectors~n

{exp(sut)}. Let S -S denote the subspace of S that is complementary
i 2n n 2n

to Sn and let .n+i(t)) i-!,2,...,n be basis for this subspace. A basis

for S 2n-S can be formed by applying the Gram-Schmidt procedure to the

nn

that order, to construct the orthonormal basis functions {*j0 i-I,2,...,2n.

Clearly, {On.i i-l,2,...,n is orthogonal to both f (t) and e(t) and
n+i a

hence, must be orthogonal to f(t) e(t) + f (t). The 0 (s), which
a n+i

are the Laplace transforms of *ni (t), may be constructed by simple in-

spection from Kautz's method. That is,

0 n~i(s) = H(s) 0i(s) (3.35)

where Lgain
H(s) -TT (s~si)

TsZ) (3.36)

k=
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and

(s) ii k) (3.37)

i *si TT s--kal

Now, n independent equations of constraint on the {s k must be

J f(t) n+i(t) dt - 0 iul,2,...,n3  (3.38)
0

which when written in the frequency domain, using the Parseval relation,

are
J-
J F(-s) *ni(a) H(s) -- 0 i-l,2,...,n. (3.39)

n+i 2iu j

Sinc'e these equations involve the {ak } only, the (a kI have been suppressed

as in (3.31). In fact, it will be shown in the next section that the

left-hand sides of equations (3.39) are merely linear combinations of

the left-hand sides of equations '3.31). These equations, (3.31) or

(3.39), are still nonlinear in terms of the unknowns (ak } and apparently

one of the b..,st ways to solve for them is by a numerical linear itera-

tive scheme first suggested by Sears [32] and described as follows:

Let the all-passt operator H(s) in (3.39) (or (3.31)) be replaced

by the more general operator

n+l bksk1 (-l)nD (-a)
Ha(s) = a , bn 1 .l (3.40)

where
n

D(s) - (s-J[ k). (3.41)

k-l

t H(s) is sometimes called the all-pass operators for if s is replaced

by Jw, the magnitude of H(s) is one, independent of the value of the

frequency w.
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If H (s) is used in (3.39) instead of H(s), one obtains n simultaneousa

equations which, being linear in the (bl,b2 ,...,b }, may be written

in matrix form as

M B - Z (3.42)

where M is an n X n matrix with i,kth element

k-" do
mik = [F(s) sk '/D(s)] O y- (3.43)

B and Z are columns with elements

Z" m ,n~l (3.44)

and b i are the unknown coefficients. The iterative algorithm is as

follows:

(a) Given the poles at the jth iteration, i.e.,

evaluation the matrix (M) and the vector (Z)

(b) Solve equation (3.42), to obtain the coefficients of the

vector (B)3 1

(c) From (B) J 1 find the new pole locations {Sl9...,Sn}j 1 using

(Da(s)) 0.

(d) Repeat from (a) with J=Jl. Continue the process until

the change malt(s i )J - (s i ) 3 1 1 is less than some small

pre-assigned value.

The convergence properties of this method shall be discussed in chapter

IV.

111.1.4 Equivalence of the Direct Method and McDonough's Method

H(s) - i=1,2 ,...,n. (3.45)
i ~ s-s i
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Then from Kautz's method it is easily seen that the {Y ()) also

form a basis for the difference space S 2n-S n and hence, equations

(3.31) have the same geometric interpretation used by McDonough.

'Thus,
m d

f F(-s) (a) 0 0 i-l,2,...,n (3.46)

are just linear combinations of equations (3.39). Notice that the

all-pass function H(s) is still preserved and the same linear itera-

tive scheme can be used.

These new equations in terms of Ii(s) have two advantages over

(3.39). First, fi(s) has only one double pole whereas 0n~i(s) has i

double poles. This means the old set will have i-1 extra derivative

terms when the residues are evaluated and, moreover, each term will

have (i-1) extra factors of the form (s k+s)/(s k-s). Clearly, there

is a saving in computational time by using the new equations. Second,

equation (3.46) may be written in the matrix form

F' - B V. (3.47)

This enables one to use matrix algebra to find the {s } using (3.21).

Solution of the equation in this form has not been attempted here, but

is a topic for further investigation.

While the 0 (s) are orthonormal, the V (a) are not. As a result,
n+i i

One is contrasting an ortholonal versus an oblique basis, both of which

span the same space. Naturally, there will always be more correlation

between the oblique elements. However, here, as is usually the case,

the oblique elements are easier to express mathematically and any gains

in accuracy made by using orthonormal elements may be lost due to the

extra complexity introduced into these expressions.

__
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although equations (3.46) have the simpler form

n~ . k- . nF k(-s.g~ b--I. F(-s) s dL77 (s- kij D(s)(s-s) n
ku..jc jvo

n

I Pikbk r i
kal

or

P = R9, (3.48)

they are "softer" than equations (3.42).

Evaluating the elements of the matrix P by residue calculus, one

gets

(-s kl)+sF(-s J
i ~ ~ ~ r- iF.-s)( T sm

m~i
Pik' r

n (-s ) k- F(-s)
+ I m4 (3.49)
m= - i) rM

where n

r T T (s-s ) (3.50)
m=i im

m~i

Since f(t) is real, the {sk  must occur in complex conjugate pairs.

Upon examining (3.49) it is seen that if si is replaced by sa, pi becomes

This also implies that if e. is real, so is p Hence, it ir

possible to avoid complex arithmetic altogether in finding the real

(bi} from (3.48) by using the equivalent system of n equations

n

Pij bj = ri i-i,2,...,NREAL (3.51a)I~
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n
Re { pi bi a r .)

Jul im NREAL l,... n-1 in (3.5 1)

steps of 2

n
Im J PiJbJ = ri

Jul

where NREAL is the number of real roots. If an £ corresponding to a

complex valued s. is used in (3.51b), an i corresponding to s will

give the identical equations and so should be omitted.

111.1.5 Method of McBride. Schaefgen. and Stei litz

In this section we examine the method of finding the approximation

of f(t) by exponentials due to McBride, Schaefgen, and Steiglitz [6]

(hereafter referred to as the MSS method). They start with the ap-

proximating function expressed in the frequency domain an

1s a+2 s,.an a *l. (3.52)
a bl4b2 s+" "+bn +Sn

instead of the equivalent partial fraction expansion. Then, the func-

tional

- [f(t)-f (t)] 2 dt f e2(t) dt
0 0

is to be minimized over the 2n real coefficients {ak,bk). Necessary

conditions at the minimum are that

a_ o - 2C e(t) dt
~ak 0 a

(3.53)
aJ

k bk kl,2,... n

Equations (3.53) are nonlinear in the {akbk) and one is faced with

the same difficulties in solving them as with the equations of Aigrain

I
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and Williams. The key feature of the MSS method is the introduction

of an approximate error Ea(s)$ viz.

D (s) N(s)
DJl F(s) - (3-54)

where now the subscript J refers to the iteration number. To solve

the equations in a feasible way, the previously computed (bk)J-1 co-

efficients of D .l are regarded as fixed during the jth iteration.

This linearizes the error in terms of the tmrknown coefficients

{ak,bkli of the numerator polynomials N and D,. One now replaces

e(t) in (3.53) by ea(t), the inverse transform of Ea(S). and uses an

iterative schene very similar to the one employed by McDonough described

earlier. With repeated iterations Dj_I(s) approaches Di (a) and thus

La(S) approaches the true error E(s)-F(s)-Fa(S).

However, inserting ea(t) in (3.53) has thre distinct disadvantages.

First, instead of utilizing the convenient point form of the Aigrain-

Williams equations, one must evaluate a set of 2n partial derivatives

and then integrate. The resulting equations are much more complicated

than (3.4). Second, and more important, the Mode-l Iteration used on

these 2n new equations does not converge to the optimum solution since

the approximate error is minimized rather than the true error. Thus,

following the Mode-i Iteration, a Mode-2 Iteration is also needed to

further refine the results and find the optimum solution. This diffi-

culty does not arise in the Mode-2 Iteration becrase the expressions

are correct in the limit as the {bk) approach their optimm values.

Third, several examples will demonstrate that 14ode-2 converges more

slowly than McDonough's method and a new method which we will present
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in section (111.1.6). These two Modes will now be examined in detail.

Mode-i Iteration of the MSS Method

To minimize the functional

J f ea(t) e a(t) it (3.55)
0

over the 2n coefficients {akbk}, one requires that J be stationary

with respect to, canges in the parameters,
31 4 e a~t e (t)

a 0~ 2f1e (t) .7 ~ * ~ m
i 0 i
am 2 ae (t) (3.56)0- 2 ea(t )  I

b 0 a 
, ai

Observe that

Ea(s) i-I

ai =D

and

= a( i (s )  i 1,2,...,n. (3.57)
abi D

Using the Parseval relation on (3.56) one gets

2 aa . DT)7J 2( iJ

1 =  j ] [ o (3.8)
.jD L Dj.I~s 2J

31 aD j(-s)F(-s)-N j(-) ] r[ a lF a d (35 b
2b f D D(-a) D a~~ 2,rj

Hence, equations (3.58) provide another linear iterative scheme involv-
ing 2n real parameters {a ,bk } instead of Just the n {b ., Otherwise,

the iterations are carried out as in the McDonough method.
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Mode-2 Iteration of the MSS Method

The error E(s) may be written

E(s) l F(s) - Fa(s) = F(s) - L . (3.59)

Thus

3ii-

,E(s) -s'-s N(s) - (3.60)

ab.i 2 (S D(aT) F(s) (.o1b D2(s)

Using the Parseval relation on (3.53) gives the conditions for the sta-

tionarity of the integrated square error in the frequency domain as

j[F-s) - -s[ i'l d (3.61a)

D(-s) IDs ) J

[ -s- (s s da. 0 (3.61b)

-Job~~ii i2-s~ I., !_in ~)

If the iterative process for Mode-i converges, D,-1 (s) approaches D (a)

and comparison with (3.61a) shows that (3.58a) is correct in the limit.

However, (3.58b) is not correct in the limit which in observed when

it is compared with (3.61b). For this reason, Mode-l Iteration does

not converge in general to the optimum solution. This difficulty may

be eliminated by using (3.60) to change (3.58b) to

inr(sF(sm ([ ~r N (s)j i
A 0 (3.62)

-, t-123 J

Equations (3.58a) and (3.62) are now used in the Mode-2 Iteration.

Convergence to the optimum solution is now usually possible, but as

we shall see in chapter IV, Mode-2 converges so slowly that in order
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to make the MSS method practical, one must first use the morL rapidly

converging Mode-1 Iteration to bring one "near enough" to the optimum

point in parameter space. Furthermore, there is no guarantee Mode 2

converges if one is not "near enough" since the equations that de-

termine it are not correct unless one is actually at the minimum.

111.1.6 The New Method

Thus far, we have discussed two linear iterative schemes in

sections 111.1.3 and 111.1.5. Each has worked well for the cases

reported and appears to be useful in finding by numerical computation

the matched exponents for the approximation of a known time function.

This section develops yet another linear iterative method which offers

the advantages of both the methods described in sections 111.1.3

and 111.1.5 and reveals the link between tVem. This method leads

to the same results as those described by McDonough and Huggins.

Fundamental Equations

The Aigrain-Williams equations (3.4) may be written in the form.

E(-s F(-s) F (-sa)" 0k 14 Fa k
E(-s k ) F'(-s k ) - Fa(-ak J kl,2,...,n" (3.63)

k k a k I kn.0..n

The equations in this form suggest that a better way of using the ap-

proximate error Ea (s) defined by (3.5) is to impose the constraints

of equations (3.63) directly upon it. This immedlately yields a set

of new linear equations for the J th iteration.

L (s) - 0 (3.64a)

E(s) for a (-a )3.6

a I
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where the (s k)J 1 are the roots of the denominator DJ. 1 obtained from

the previous iteration. Equations (3.6 4a) may be expressed as

D jF-Nj = - ) J1 kal,2,.,,,n (3.65a)

Similarly, upon differentiating Ea (s) with respect to s, equations

(3.64b) may be written as

E'- (D (D.F'+D'F) - D' D F+(D'N,-N'D_)/D 2

J-1 3 i j1 1 3-1 3- J-1
.0 S - (-sk)j_1 ki,2,...,n

which by using (3.65a), simplifies to

F'D -F D' - N s - (-s) k-l,2,...,n (3.65b)
i j k 3-1

The 2n simultaneous equations (3.65) are linear in terms of the unknowns

(ak,bk) . The iterative procedure is carried out in the same way as

described in the tv* previous methods using equations (3.65) or the

equivalent equations (3.67) for convenient computation to find the

{a,bk}. The initial point in parameter space may be determined

perhaps from Prony's method or Pads approximants.

A very important consequence of imposing these constraints upon

Ea(s) is that the D required in the formulation of the MSS method

does not a in equations (3.65); the introducti i of the approxi-

mate error E (a) was unnecessary. In fact, an appropriate set of

linear equationb may be gotten directly from the Aigrain-Willinms

constraints as follows:

From (3.4a) and (3.52)

N(s) n D(s) F(s) for s - (-ai) iul,2,...,n (3.66a)

where the (s ) are the roots of the nth degree p1lyno-'al D(s). Also,

F* -(-DA N + N' D)/D 2
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From (3.68), (3.69) and Theorem 4 . C can be written explicitly in

terms of the {si} as n

hik __ V . 1 i F - (3.70)

and U may be regarded as the negative of the n+lth column of C or

Ui C,n+ll,2,...,n (3.71)

But (3.48), '3.49), and (3.70) reveal. that

Pi pij C ij

and thus McDonough's method and the one developed here must be equivalent.

Discussion

In this section we have revealed the strong link between the MSS

method and that of McDonough. Both methods use equation (3.54) or its

equivalent to linearize the iterative process (although this was not

so obvious in the latter). The crucial difference in the methods is

that the MSS method considers variation of the error with respect to

the {akbk} parameters, whereas in McDonough's method (and the one

developed here), the variation with respect to the exponents {ak ) (and

the hidden (ci ) is considered. It is not possible to write a set of

linear equations in the {akbk) for the true error surface wherea3

equations (3.65) and (3.66) show that one may do this when the varia-

tion is with respect to the {ck,sk), thus avoiding the need for two

types of iterations.

In conclusion, the new method developed here has several computa-

tional advantages over the one developed by MSS. First, it requires

only one iterative scheme instead of two. Second, by using the point
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form of the Aigrain-Wil)-iams equations, the matrices in equation (3.67)

immediately appear as explicit function of the {o I- +he MSS method

the corresponding matrix elements (see Table 4.10 p. 61) are much

harder to evaluate. Third, as we shall show in chapter IV, for all

examples thus far examined, the new method converges more quickly to

the matched exponents than the MSS method.
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IV. VONVERGENCE AND COMPARISON OF THE LINEAR ITERATIVE SCHEMES

In the previous chapter three linear iterative schemes were

described. Two of these, the method of McDonough and the new method,

were shown to be equivalent in their results, although computationally

different l That is, for any initial {si ) and fixed n, the resulting

iterations of either of these methods will be identical barring

rounloff errors. However, because the new method uses the rational

fraction form of Fa(s) , a direct comparison of it, rather than McDon-

ough's scheme, with the MSS method will be made since this will be

much easier to do.

IV.l Comparison of the Iterative Equations

The 2n equations used in the iterative scheme of MSS may be

written in matrix form as

Vl A + GI B a Xl

Wl A + HI B a Yl (4.1)

for Mode-i Iteration and as

Vl A + G1 B m Xl

W2 A + H2 B a Y2 (4.2)

fQr Mode-2 Iteration. From (3.58a) it is seen that the elements of

VI are

j - k l ai l dovik- D ('-s) D ( -'
-jC J-1 DJ.(

(-~n nm J( ) ~ (4 .3a)2 nu L (i (2_ 2

m=l
mok
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compared wit tb, corresponding much simpler expression v ikm(si)kl

given in equation (3.67) for the new method, and
® (-s 8."  k-1iF(s) do 4.b

ik •j D _ 8s D (s) NJ-7(

i i ,n+l" "

From (3.59b) it is shown that the remaining elements in equation

(4.1) are

Wl~ l ('s) k'l si-'F s as(44a
ia D~ (-s D (s)a)r

hik =. ]= (-s)i ' sk'iF(s) F(-s) ds
_= D Dj (-5) ,.

and

Yli = - hi,n+I.  .0

Equation (4.4b) can be difficult to evaluate by residue calculus.

For example, if f(t) is the square pulse, F(s) = (l-e'S)/s, the product

of F(s) F(-s) with any rational function of a will have an essential

singularity at infinity, in both the right and left hand planes, and

thus, direct evaluation of (4.4b) by, res'dues requires special treat-

ment! (Of course, one may evaluate these Fourier transforms by direct

integration with respect to w over -- to - without resorting to resi-

dues but this is usually extremely difficult.) Alternatively, one

may invoke the Parseval relation and evaluate the equivalent time-domain

equations (3.56) to obtain the matrix elements for Mode-1 Iteration.

Table 4.1 summarizes all of these equations and clearly shows that

the elements in the new method are much easier to compute.

t See Appendix C for details.
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IV.2 Rates of Convergence

To predict by mathematical analysis the rate and region of con-

vergence of any of the linear iterative schemes for a general f(t)

is extremely difficult except for the simple cae when n1l. Instead,

we provide several numerical examples to give the reader some feel

for results obtained by the different methods. For any f(t) that

is composed exactly of n exponentials, any of the iterative processes,

Mode-l, Mode-2, and the new method, will yield these exponentials

immediately after one iteration. Consequently, when f(t) is "nearly"

exponential, one would also expect reasonably rapid convergence for

any of the methods. This is indeed the case as we now illustrate by

specific examples.

Numerical Results - Consider the two time functions

fl~t W (e-t + e"-2t ulW (4.5)

and

f2 (t) (e-t e "2t) U 1(t) (4.6)

each to be approximated by a single exponential. Figure 1 shovw quali-

tatively why f1(t) can be approximated very accurately by one exponen-

tial whereas f 2(t) cannot.

Table 4.2 gives the result for f (t) of the iterations by the var-

ious methods all starting with an initial value of sl - 1.2. The new

method and Mode-2 Iteration converge to the same result (the optimum

approximation) but Mode-2 required UO iterntions whereas the new method

z.eeced only 4. I1 contrast, Mode-1 converged as rapidly as the new method,

but not, to the optimum approximation. Thus, for this simple signal, the

new -athod is superior to both Mode-1 and Mode-2.
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Figure 1 -- Plot@ of fl(t) and f2(t) and the best approximations of them
by a single exponential,

2.0 (t) f (t)

t 0.3

1.0 0.2

0.1

! t i ,i i t
0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

For f2(t), shown in Table 4.3, the Mode-2 Iteration took about

3000 cycles! Also, observe that the Mode-1 error is considerably

larger than in the case for f (t). This is reasonable since f l(t)

more "nearly" resembles a single exponential than aoes f2(t). (Recall

that Mode-i only gives exact values when f(t) is an exponential.)

From equation (3.54), the linearized error for approximating the

square pulse, F(s)-(l-e'8)/s, by a single exponential becomes

(b (b)(bl) (bleJi
eat &W bll. f 3ll-lall j e 1

ab 1 e- 1)jlt W - 1J1

(4.7)
where

f 3(t) U-1(t)-U-1(t-l).

Table 4.4 reveals that Mode-2 Iteration and %he new method converge to

the optimum exponent at the some rate. (By coincidence, the iterations

are almost dentleal for this oss.. Thq d1ftk in 8 th or 9th decival

place.)
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Table 4,.2 - Approximatiot of the function
f(t)=[exp(-t)+exp(-2t)]u .(t) by One Exponential.

(a1) j  (b1) 1 (a1) 1 (b1) 1 (61) 1 (b1)

1.20000 1.20000 1.20000
1 1.84197 1.20139 1.93499 1.32265 1.93369 1.32095
2 1.84309 1.20277 1.93779 1.32639 1.93908 1.32815

1.84 2 1.20416 1.93787 1.3265 1.93938 1.32856
1.84531 1.20555 1.93788 1.3265 1.9394 1.32859

1.93788 1.3265 1.9394 1.32859

100 1.92123 1.30392
101 1.9216 1.3C442
102 1.92197 1.30492
10 1.92233 1,30541
10 1.92269 1.30588

200 1.93739 1.32584
201 1.93744 1.3259
202 1.93748 1.32596
203 1.93753 1.32602
204 1.93757 1.32608

4 9

300 1.93919 1.32831
301 1.9392 1.32831
302 1.9392 1.32332
303 1.93921 1.32833
304 1.93921 1.32833

*

9 1

400 1.93938 1.32856
401 1.93938 1.32856
402 1.93938 1.32856403 1.93938 1.32856

500 1.9394 1.32859

Mode-2 Iteration Mode-i Iteration Nev Method
I0ittil
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Table 4.3 - Approximation of the function
fl(t)[xp(-t)-exp(-2t) ]al1 (t) by One Exponential.

( (b1)a (a (b1 )3  (i1) (b1 ) J

5.0C000 5.00000 5.000001 .233677 4.81444 .121212 .090909 .076923 -1.76923
2 .238613 4.63995 .267525 .519313 -1.85714 2.0989

.243427 4.47615 .244642 .417085 .13a931 -.334i83

.248103 4.32267 .249851 .43871 .428884 .8098715 248736 .434005 .216462 .2909496 248978 .435023 .279182 .53473
7 .248926 .434802 .245733 .421202
8 .248937 .43485 .26o54 .4?43369 .248935 .43484 .25325 :""952

10 .248935 .434842 .256473 .46112211 .248935 .434841 .254956 .455712 .248935 .434841 .255663 .45823413 .255332 .45705
14 .255487 .45760315 .255414 •457e,5
16 .255488 •457466
17 .255432 .457409
is .25544 •45743619 .255436 .457423
20 .255438 .457429
: .255437 .457426
.2 .255437 .45742823 .255437 .45742724 .255437 .457427

10 .329639 2.1215
101 .329687 2.12001
102 .329735 2.11855

300 .332367 2.03381
301 .332371 2.03369
302 .332375 2.03357

3000 .255437 .457427
Ho4.-2 Iteration Node-1 Iteration New Method

.**eeee
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In this example the term containing the factcr [(bl) -(b )1  ] has

little affect on the equations that determine the iterations. However,

it seems quite possible that the extraneous terms, which always arise

when using Mode-1 or Mode-2. that contain the factor ((b ) -(b 'I

could sometimes affect the equations enough to prevent convergence of

Mode-2 if (bl)3 is not "near enough" to its optimum value.

Table 4.4 - Approximation of the Square Pulse by One Exponential

(a,) (bi)a (al) (bl)3  (a) (blI

1.0000 1.00000 1.0000r )
1 1.5121? 1.39221 1.38344 1.18857 1.51217 1.39221
2 1. 9272 1.188 1.3638 1o14261 . 9272 1.188

1.4511 1.29183 1,36851 1.15348 1.4511 1.29183
1.42045 1.23836 1.36759 1.15089 1.42045 1.23836

5 1.43597 1.26572 1.36766 1.15151 1.43597 1.26572
6 1.42796 1.25167 1.36759 1.15136 1.42796 1.25167
7 1.43206 1.25887 1.36761 1.15.4 1.43206 !.25887
8 1.42995 1.25518 1 3676 1.15139 1.42995 1.25518
9 1.43103 1.25707 1.36761 1.15139 1.43103 1.'5707

10 1.43048 1.2561 1,36761 1.151.39 1.43048 1.2561
11 1.43076 1.2566 1.43076 1.2566
12 1.43061 1.25634 1.43061 1.25634
13 1.43069 1.25648 1.43069 1.2564814 1.43063 1.25641 1.43065 1.25641
15 1.43067 1.25644 1.43067 1.2564
16 1.43066 1.25643 1.43066 1.25643
17 1.43067 1.25643 1.43067 1.25643
18 1.43066 1.25643 1.430l66 1.25643

19 1.43066 1.25643 1.4306, 1.25643

Mode-2 Iteration Mode-i Iteration Ne'w Method

Table 4.5 ohms the results fitting a square pulse using 3 exponen-

tials with the initial vtlP.es of tht prmte.-ta ch-aer. as (*.I

(-l,-2,-3). After 90 iterations the new meth- hv4 'anvergee to

al -2.246602, s,- -1.464 *I4.15074I which is in aigreeu-t to

6 significant figures with HmDonough's result, Il] p. 159, found by
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a search method.

Table 4.5 - Three Exponential Approximation of the Square Pulse,

Iteration Exponents After That Iteration

-3.0 -2.0, -1.0
1 -3.o47813 -2.037829 + J3.433864
2 -2.065591 -1.153318 ± j3.881929
3 -2.540835 -1.786042 4.o94648
4 -2.050865 -1. ,85975 + J4.093363
5 -2.437354 -1.686921 4.160736
6 -2.091982 -1.246309 + 34.125865
7 -2.385592 -1.625349 J4 3.165192
8 -2.129335 -1.296223 4.13689
9 -2.350106 -1.580867 j 4.162651
10 -2.158346 -1.334265 j4.139171
11 -2.324005 -1.5477414 J4.159904
12 -2.180300 -1.362868 j4.142197
13 -2.304550 -1.522938 : J4.157694
14 -2.196827 -1.38_4329 T 14.14439

4; -2.2147180 -1,449385 + 34.150813
46 -2.246105 -.1448001 * 34.150679
47 -2.247036 -1.449200 4 4.150795
48 -2.246230 -1. 448162 34.150694
49 -2.246927 -1.14o9060 A 3.150781
50 -2.246323 -1.448283 T 34.150706

82 -2.246600 -1.4148639 + A.150741
83 -2.246607 -1.4486147 j 314.150742
84 -2.246602 -1.44864o _j4.150741

IV. 3 Accelerated Convergence - Shanks' Method

Although the new method converged to the optimum solution faster

then the MSS method (even assuming a switch from Mode-1 to Mode-2 is

made at the best *Ame, a decision which in apparently ad hoc) in every

case tested, it too converged rather slowly in some cases - 90 iterations

with n=3 for the square pulse and 24 iterations with nml for f2(t). For
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larger n it seems that convergence would be e en slover. In an attempt

Pto speed up convergence one may incorpcrate a little used method due to

Shanks [35].

FConsider any of the numerical sequences in Tables 4.2 through 4.5

which are either monotonic or oscillatory. Draw a smooth curve through

these discrete points. Typical graphs are depicted in figure 2.

Figure 2 - Graphs demonstrating transient characteristics in the itera-
tive sequences.

b b b3

.1+b 2  J++2

b 1l

New Method-- f2(t), f3(t) New Method -- fl(t)

Mode-i -- f2(t), f3(t) Mode-i - fl(t)

Mode-2 -- f 3(t) Mode-2 -- f 1 (t), f2(t)

These graphs look like first-or second-order transients. By "nth order

transient" we mean any function which has the form

n
p(t) - B + ci exp(-ait) Re (ai > 0.

Shanks' method predicts the limit B of such sequences by "filtering out'

or annihilating the exponential components.

Tables 4.6 shows the result of applying Shanks' method to 2 sequences

obtained by using the new method. In both cases the thirteenth iteration

is correct to only two decimal digits or so, but e5 is alreactr correct to

six digits. In any event, extreme caution must be exercised when applying

Shanks' method to these sequences since there is no theory to justify its

use here. However, it has been demonstrated how helpful the method can
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smetimes be in reducing the number of iterations needed and is a topic

vortby of further investigation.

Table 4.6.,- Shanks' Method Applied to the First 13 Iterations of the
Matched Exponent of a One Exponential Approximation of f 2 (t) by the
New Method.

(b )4 e 2 e3 e 4  e 5
I 5.0000000U o0 b.o* 0ih1-ni 8 . 21|499 11W- N| 4.56298240-01 4.514 10990-01 4.5 14 ;0290-01I

I. Iso? 30)01, 00 6.(19s ,1Mi-ni 4.)2 122 141)-0 1 4.M259410-01 4. ',14296 9D-01 4.5141011O-O

I 04' 0Uf)0O 00 4'.4 I'afI$4f-I- j 4.600141RIU-0 4. 1-1472 IIJ-O1 4.57MIe60-o1 4.?'42',091O-Ol

4 -J.141HOOOU 01 4.%T4?9600-.O 4.51306260-01 4.5147')969-01 **.F410201 -o

5 A.'IR 1400U-O I 4. 5M 111140- j 1 4. 5 74,40 1()-J1 4.5#43O330-01 4.574311-O1

6 2.I045?000-0 1 4.52 6,1?0- 01 4..51429? 10-01 4.1574301?0-OI

1 '.341I0 oor.-ot 4.Srq9ql-o 4. 14 IU46-ol 4. 57429670-01

a 4.1120%00[-01 41.%423J.?-OI 4.o 141O090-0|

-1 4.14)90U-01 4.5 142R850-9)| 1.574299?)- )I

10 4-4952JO00-01 4.5?42qfi.u-oI

11 4..6112S000-01 4.5?' P0?r-OI

12 4.1,%10 100()-Ol

I11 4.54217000-01

A~ 4.542700D-O:.eee

Table 4.6b - Shanks' Method Applied to the First 13 Iterations .,f the
Real Matched Exponent of a Three Exponential Approximatior- of f (t)
Using the Nev Method.

, (S1),j e 1  e 32 •3  4 e5
1 3.04?01100 00 2.)tSR' l6u 00 2.264j12n O0 2.'4868960 00 2.247144 0 00 2.24651140 00

a 2.06559100 00 2.29959U10 00 2.2462510U 00 2.2,1?5M40 CO E..467?703 OJ 2.24660690 00

I 2.40350OU 00 2.266925501 00 Z.244S|99U 00 Z.24130500 00 2,24661600 00 2.24660970 00

4 2.05086500 00 2.2549663D 00 2.241:2520 00 2?4120230 00 2.24o60?2t 00

S 2.4315401) 00 2.Z061920 00 2.2'.732020 00 Z.24686520 00 2.24661060 00

6 2.09198200 0 ?.24RM5960 JO 2.24694350 00 Z.24103400 00

7 2.3R550200 00 2.24193210 00 2.14481410 00 e.24666260 00

a 2.12933500 00 2.2414933) 00 2.?467106P O
n

9 2.3%010600 00 2.24722420 00 ,.24661470 00

10 2.15834600 00 2.2470535D C0

It 2.32400500 00 2.24691560 00

12 2.18030000 00

1) 2.10455000 00

Jr 2.P146r,0700P 00
e§e**ee

L.
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V. DISCUSSION OF RESULTS AND AREAS FOR FURTHER WORK

Throughout this work we have assumed the real function f(t) to

be: known analytically for all time; piecewise continuous; and of

bounded energy, r f(t) dt < q. Under these three restrictions we

reviewed in chropter III several ways of finding a linear combination

of n exponentials to yield a least-suares approximation of the func-

tion over the semi-infinite interval. The results presented in chap-

ter IV show the new method is the best of these for finding the matched

exponents. This method requires that the function F(s) and its first

derivative be evaluated only at the n points s= - s. in the right-half
1

of the s-plane. In the vicinity of these points the function is always

well-behaved, as may be seen from the Cauchy-Schwartz inequality,

• IF(-s )12=1/ 1f(t)exr's t) dt 12<[f* f2(t)dt][I a lexp(s t)12 at]

0 0 0

or

12[f2 t)dt]/ 2  (5.1)
V2Re{-s7 0

provided (-si) is in the right half plane.

The restriction that the signal be expressed initially as an analytic

function of time can also be removed provided the signal is expressed

on some other basis such as f= kCkok for which the 0k(s) are known in

the right half plane. The next section gives an important example in

which the signal is represented initially on a discrete primal basis.

V.1 The New Method Applied to Sampled Data

Let p(t) 6(t-kT) denote an impulse train with the impulses

spaced T second apart. 1he sampling of a function can be described
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mathematically by multiplication with p(t). That is

fC t)-pCt)ft)= r(t)6(t-kT)= 7 f(kT)6(t-kT) (5.2)
k= - ka-m

It is easily shown [33] that the Laplace transform of f*(t) is

F'(s)= ff*(t)e-ot dt= i f(kt)e-kTB (5.3)
o k.-

Consider the change in variable z=exp(Ts) which maps the left half plane

in the a domain inside the unit circle in the z domain. Then the

Z-transform of the function f(t) (f(t)-O t < 0) is defined to be

km o

The approximating function at these sampled instants, is given by the

rational Z-transform:

F (z N(z) al+a2 z-1+...+ an Z-(n-l)

l+b1 z'l+...+ b z-n

M l 2 (5.5)

"Zl "Z2  z n

The poles of F (z) must all be inside the unit circle to ensure stability
a

and thus 1Izk > 1 k--l,2,...n. The error at these sampled instants

is defined to be

e(kT) a f(kT) - f (kT) (5.6)

and

E(Z) a F(z) - F (z). (5.7)

Then (Ragazzini p. 179)

Ju [Le(kT) E(Z)E(.!)c l (5.8)
koo 2wjitJ z

circle
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The necessary conditions on the 2n parameters {ai,z i } to minimize

the functional J are

aiCEz d) 2 dz0__"2"_=  (59a)

31 0 M 1 2 f (z) dz (5.*9b)

From the Cauchy integral formula and the fact that E(z) has all its

poles inside the unit circle

E(z.) a 0
(5.10)

E'(Zi) V 0 i=l,2,...,n

Equations (5.10) are intuitively correct since they are the Aigrain-

Williams equations applied to sampled data. Notice 1zi I 1

corresponds to a point in the right half plane in the frequency domain.

These equations are solved iteratively exactly as before except one

uses F(z) instead of F(s).

Steiglitz and McBride [34 ] have also applied their mure complicated

method to sampled data.

V.2 Concluding Remarks

For large n (n>5) double-precision arithmetic is required to get mean-

ingful results using the new method. This is not unexpected since the

same difficulty arises in the simpler linear least-squares approximation

discussed in chapter II. Based on experience with the two methods, it

is of the author's opinion that the roundoff errors in this nonlinear

approximation will be about the same order of magnitude as those in

chapter II. The computational aspects of this method deserve additional

study, but they will not be pursued further in this thesis because they

involve considerations foreign to the main thrust of this work.
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APPENDIX A

Construction of Orthonormal Function

Equation (2.4') can also be used in a reverse manner so that if

G"1 is known, one can scumetimes construct an orthonormal basis by

simple insDection and av,>.Id the Gram-Schmidt method altogether. With

Gastinel's result (derived without regard to orthogonal functions)

and use of (2.11) it is possible to derive Kautz's important result

for orthogonalizing exponentials. This second application is demonstrat-

ed by the following example.

A General Formula for Orthonormal Polynomials with Respect to a Con-

stant Weight Function

Define

xi t 8 0 < t <i S 1/2,

then
1 s $-/2t a J -1/2 d " ij l,2 o..,no (A.1)gi,1 Io

As shown previously, the inverse of this n X n symmetric matrix is

-1 T T (A.2)

where n

ki k smk~l

From (2.17) and (A.2)

c2 2 (A.3)

-1
Also cnncnj w gnjs and from (A.2) and (A.3)

c 3 -(2 /2 2s (A.4)Cnj n (a n +A.

(s +s )
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Since the formula must hold for any n,

2s 1 13s+

c- (2s 1/2 -. (A.5)
(s1 0 kJB

kal
k~j

Hence by (2.3), (2.4) and (A.5)

± s 1l/2
it ) - cit (A.6)

However, this set is orthonormal on (0,1). To generalize to (a~b),

consider the linear transformation t~skt' + d. When taOt' - a and

when tol, t' - b. So k-l/(b-&) and do -&/(b-a). Hence, the general

formula is*

2n 12s il) /2 (28 A s~l) J-1/2

iote that there is no requirement s-1/2 be an integer. Now let P (t)

denote the Legendre polynomial of degree n. It io not hard to show

from (A.7) that, in this special case for which s -1/2 - J-1,

P Pn(t).(.1)n  1 1)2
II Jl 1 (-)'(n-J)I|((J-l)t)

2

wherett 1
P n(t)P (t)d t = n- 6 (A.9)

Note that J* #1(t) # j (t) dt -/ 4(t ) 4t1 ) dt/(b-)- 6W. Hence,

the factor (b-.&) 1/2 appearn in (A.7).

tt The factor (- 1 )n can be dropped and the polynomials will still be or-

thonormal. This factor is added to make (A.8) agree with the standard

Legendre polynomials.
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The Determinant of the Gram Matrix

Let D be the determinant of the n X n matrix 0. Thenn

det(-_G" -)det('_)-det( )d( - o (A.10)

But C is a triangular matrix and its determinant is just the product

of its diagonal terms. Hence
2 )-1

Du[[ ) . (A. 11)n .ckk)
kal

Also, it is seen that
t

C nn= w D n -/2(.)

For the Hilbert matrix

cn=(-l)nl(2sn1/2 U1 (seen) (A.13)
nn n TT (S. k n8Tkal

or 2

DnlHilbert)1 (A.14)1

T (2sk)

kal

ial,2,...,n a 1 j a 2,3,...,n.

Similarly, for the matrix discussed vith the Laguerre basis considered

in the Appendix,

D(Laguerre)ufF[(k-l)I} (A.15)

since C nn=(-l./n-).

t Saego, [25] sec. 11.1.10, recagnized this fozuula for orthnorual

polynomials.
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Concluding Remarks

The method described at the beginning of chapter II shows a way

of finding a closed form inverse of some Gram matrices that often occur

in linear least-squares problems, provided an analytic expression for

an appropriate set of orthonormal functions can be found in terms of

the original basis elements. If an analytic expression carnot be

found for the orthonormal functions, the Gram-Schmidt procedure can

always be used. But then the method loses some of its merit, for if

the basis elements are highly correlated, one may encounter the new

difficulty of computing the elements of C accurately.

Another distinct advantage of this method over the "direct." use

of orthonormal functions in least-squares is that it will reveal com-

mon factors that may be present in each term of the inverse. This is

illustrated by equation (B.5) in Appendix B which shos the common

factor [(i-l)1(J-l)11] 2 of each term in the inverse of G(Laguerre).

It is unlikely that this common factor would have been observed if

linear combinations of the orthogormal functions were used to recon-

struct the original basis. Finding such factors when they exist can

obviously save time and improve computational accuracy. The results

for the Hilbert matrix are even better.Ii Perhaps more important than the direct application to the least-

squares problem is the possibility of constructing orthanorual basev
1 _-1 1/2

by simple inspection from cn.ougl/( nn) when an explicit expression-l

for 1 can be found (as in the case of the Hilbert matri).). The

construction of the orthonormal basis for fractional powers of t vas

achieved by this method.
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APPENDIX B

A Least-Squares Problem Using Laguerre Poynmia

The Laguerre polynomial L (t) is a polynomial of degree n in t

for whi chf o w i h w O t  L ( t ) L ( t ) t - 6 n .( . )
0

Laguerre polynomials are orthonormal with respect to the weight fune ton

i-t over (0 -). It is known that
oath e (t ), t-' (s.2)
of e m"(t) are ek ) tol uyk-1

so that

on .t) a- t/2nlt) (B.3)

Suppose mne desires to find the a k such that a continuous function f(t)

is approximated in the least-.square sense over (0, -) by

Skal kal

S(This ay appear to be an odd choice of the xk, but they arm much easier

t.o work with then e' L/2L_(t), just as integralsI involving single terms

! of the form exp(skt) are easier to evaluate analytically then integrals

involving orthoonal functions formed from the exponentials.) Then, as

in (2.3) it is imediately seen from (B.2) that

.(-1) (-1) "1 . -I.(- (B.4)lj" "J-1 (Q-1)1 "(i-J) ((M-1)t) I PC (B

0 0i1' J3.

From (2.11) one findst

tAt ftrst iane* one night think thatg a ,n, as In the Hlbert ma.
tniz* owever, the result head the r" 41404 of the Orderif of thN

Here (B.4) holds only for a particular ordering of the basis elements and

the gmeralisation cannot be adae. amee the sw atief is necessary.
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ki [ Cki kj

*~~~ L ( ) f. (3..k-1)J- (B-5)
k'i

* r(rh-1) l~) kal (kil2-)

where

£ij U(Xitx 3 >u f e t t i J3 2 dt -2)i (B.6)
0

and

f j "z 7f(t)tjle " 1 / 2 dt J-lg2g*.b,n. (B.7)

0

Hence, the solution in closed form is A - G!. (Assuming that (B.7)

mq be evaluated in closed form.)
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APPENDIX C

Numerical Example for Mode-i Iteratiom

Consider the function

f4(t) - e-at [U-l(t) - u~l(t.l)]

to be approximated by one exponential. The Laplace transform of f 4 (t)

is

F (s) 
-

a n d s + ( b ) j  ( a) .

Kas): +(b _ F4 (s) -+ )j. 1

From Table 4, page 6

v 1 9 1 (a) x l

where

V 11 [-s+(b) 1  1L) +(b9 do1

11 2r1 2 b-11 J-

F4(s) do F4((b) J_)

x11 f [,+(b1 1 )( [-+(b 1  7 - 2(b )_1j J-1 1J1 -

BF F4 (s) do F4((b 1) J-1)

xi"-(s+(b -)(" (b ) "Fj 2
cc F 4(s) do Ph((b 1 .1)

l" -1. (9()b .)(-s+(bl).) 3-j 2(b1

and

J" F4 (s)F0-ls) do
11= ] (,+(bl) .)(-s+(bl)7.7)773

1 3-1 1 J-1

To evaluate the last integral by residues one must be particularely care-

ful because the product F 4(s)F4(-s) has an essential singularity at s-o.
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Hence, one cannot make use of Jordan's lemma, [36] p. 300, to directly

evaluate the integral by residues. However, the integral ma be broken

down into the sum of two parts, one which vanishes along the infinite

semi-circular arc containing the left-half plane and the other which
i vanishes along the infinite arc containing the right-half plane, That

hs J" +e-2a-e ( s + C0 a

s +m ''( (-s+*) (.s+(bz~. -I1
RHP

a- -(ci-s)J.-e- 08 do

+ (s+a)(s+(b ) -~)(e+b7 7
IMP

which simplifies to

ha +e -2a 12e -(-+(b).1.)-1 1-e c2
11 2_ 2 2 22(b) (a (b 2((b - )

Finally

sF4(s)F4(-) da

-a (S) D(-a) 2w'3

=le2a +le2* O
l+e- l+e

2(c2-(b ) ) 2((b1)3.1-0 2 )

An iterative algorithm very similar to the one described on page 46

is then used to find (a and (b )
13 13
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