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ABSTRACT

A matrix 8 is a solvent of the matrix polynomial

M(X) - X + A1 X-I h + + Am)

if M(S) Q, where A., X and S are square matrices. We

nresent some new mathematical results for matrix polynomials,

as well as a globally convergent algorithm for calculatirng

such solvents.

In the theoretical part of this paper, existence

theorems for solvents, a generalized division, interpolation,

a block Vandermonde, and a generalized Lagrangian basis are

studied.

Algorithms are presented which generalize Traub's

scalar polynomial methods, Bernoulli's method,and eigenvector

powering.

The related lambda-matrix problem, that of finding

a scalar A such that

IXm + Am-1 + "'" + A

is singular, is examined along with the matrix polynomial

problem.
The matrix polynomial problem can be cast into a

block eigenvalue formulation as follows. Given a matrix A of

order inn, find a matrix X of order n, such that AV = VX,

where V is a matrix of full rank. Some of the implications

of this new block eigenvalue formulation are considered.
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CHAPTER I

Introduction

In this chapter we state the problem, give some of

the definitions, present the major results of the paper, and

outline the entire dissertation.

1.1 Preliminaries. Algorithms for the solution of the scalar

polynomial problem, xm + a1xM-1 + *.. + am M 0, have become

extremely efficient. See Traub [20,21] and Jenkins and Traub

[7,83. A zr-a-ivation of the scalar polynomial is given by

the following.

Definition 1.1 Given n n matrices AoAI$,...Am, a matrix

polynomial M(X) is the matrix function

M =(X) AoXm + A1Xm-1 + + Am (1.1)

in the n by n matrix variable X.

If A0 is nonsingular, then the monic matrix polynomial is

M(X) E A1-M(x). (1.2)

Two generalizations of the roots of a scalar poly-

nomial are to be examined. The first one, the major emphasis

of this work, is classical. Little is known, however, about

existe:oce and calculation of such roots of matrix polynomials.
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Definition 1.2 A matrix S is a solvent of the matr-x poly-

nomial M(X) if

M(S) = 0. (1.3)

Definition 1.3 A matrix W is a weak solvent of the matrix

polynomial M(X) if

det M(W) = 0. (1.4)

A special case of the weak solvent problem is the

important lambda-matrix problem. Restricting the class of

weak solvents to scalar matrices, AI, and using the notation

M(A) E M(AI), the lambda-matrix problem is that of finding

a scalar A such that

M(X) = Ac0 m + A1 X-I + .-. + Am (1.5)

is singular. Such a scalar is called a latent -oot of M(A)

and vectors b and r are right and left latent vectors, respec-

tively, if, for a latent root p, M(p)b - 0 and rTM(p) - 0T

MO) in equation (1.5) is an n by n matrix whose elements are

scalar polynomials in A. See Lancaster [13], Gantmacher [2],

MacDuffee [15], and Peters and Wilkinson [17] for a complete

discussion of lambda-matrices. A description of some of the

present method3 of solving the lambda-matrix problem is found

in Appendix B.
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Only monic matrix polynomials are studied in t'e

main part of this dissertation. The case of tne nonmonic

matrix polynomial, and where Ao is singular, will be consid-

ered in Appendix A. If A is nonsingular, the monic matrix

polynomial M(X) can be obtained by the solution of several

linear systoms, as was suggested by Peters and Wilkinson [17].

Hence, we consider

MC.X) Xm + A Xm1- + -.. + A M. (1.6)

The following are some well-known results that will

be frequently used. They may all be found in Lancaster [13].

A corollary of Bezout's theorem states that if S is

a solvent of M(X) then

M(A) = Q(X)(IX-S), (1.7)

where Q(X) is a monic lambda-matrix of degree m-l. Another

result is that the lambda-matrix MM) has mn latent roots,

and hence, it follows immediately from (1.7) that the n

eigenvalues of a solvent are all latent roots of the lambda-

matrix. Furthermore, the n(m-l) latent roots of Q(X) are

also latent roots of M(M).

If one is interested in the solution of a lambda-

matrix problem, then a solvent will provide n latent roots

and can be usd for a matrix deflation, which yields the new

problem Q(X).



:1.2 ~ la ' or, th P.Avh.'. T1 follow IilK 41, the pt1111-

c, pal renult' (if thtn work, Thr• oy will i' prov- o in Ii ,nt,

• ~c~h•p ter .•

The FundAmental 1Theorem o• AI nbht'#, tuitg n ri!4 14

polynomial has at leant ono rero, do*e not hold truie rot,

matrix polynomials. There are matrix polynomials whito h4ve

no solvents (Theorem 2.6).

It in useful to have a conoept of a mAtrtx pOly-

--nomial with a complete set of solvents. Th•t Is a gefnerall.-

zation of an nth degree scalar polynomial having n roots.

Definition 1.4 A set of m solvents of M(X) Is a coamplete net

of solvents, if the set of mn eit~envalues of the. M solvents

is the same, counting, multiplicities, as the gtt of. mn latent

roots of MM).

Thus, in the special case of M(X) having mn dis-

tinct latent roots, a complete set of m solvents must have

no common eigenvalues and oach solvent must have distinct

eigenvalues.

We consider a generalization of the scalar

Vandermonde matrix.

Definition 1.5 (liven ri b n matrices Sl,..O,S , the block

Vandermonde matrix is



Th

M. I M-

V(:•l' ". * =6 (lti•)

It will |e bahown in (Thapti ei that It, In not, ufrtfi-

olotiL that matrioes 8]** * hAve dIaL1not, and t14JO~nt,

olgenvaluon for V(s,.'.,m) to be uonaingulAr.

Kxiatenoe or a oomplet. met of nolvento t'ov tho

Importantl epeolal caa of the lambda-matrix having diatinot

latent rooto in given by the following theorem (Theorem I.1).

Theorom It M(M) 1•. • la•.n. root ien M(X) h a

c o011P le *t of ovjnQti, .- '9' 3 Rd V ( aonk

DLwinition 1.6 A !21yeil of M(X) is a dominqnt solvent if

the n egenvaluels of this solvent are striatly the n largest

latent l'oots of M(.\).

Algorithm i, presented below and again In Chapter 5,

attempts to find a dominant solvent of M(X). It is a gener-

alization of one due to Traub [21] for scalar polynomials.

The algorithm has two stages. The first, a generalization of

Sebastiao e Silva's algorithm (see Householder [4]). generates

a sequence of matrix polynomials, all of degree less than m.

Then the last two matrix polynomials of the generated



*0e(0IIQNP 41t'1 %Ipott itl i mat'trix tt'(rAtion whtA!h I to oonv".r'K

to a do)mtltant. no|v~nt.

a (X) M a (X)X - 01 )(1.9)

£2Ln = 0,1,...,L-1, ~1E

an Wh'l ory(l O

(X) am-l + ... + (1.10)

xi+

fon i n•i ' '

X+ a (X )0-1 (Xi)(.1

for 1 04,1o.*.

Convergence of thls algorithm is established for a

class of matrix polynomials (Theorem 5.1).

Theorem If

(i) M(X) has a complete set of solvents, SI.9 '.,Sm,

(ii) S1 is a dominant solvent, and,

(iii) V(Si,...,Sm) and V(S 2 ,...,Sin) are nonsingular,

then

(1) On(M)= (a I) On(X) - (X) as n * ®, where



L~e~ro -1w -p .-

}..tl,'&, n-. wit toxv~ nt... S2  "In.,, but not ai d

(1.) LorV I. _ ,ntly .lar x o_. euatn. (, 1) xo.'on-

vege to S1

It will be shown (Corollary 5.2 and Lemnma 5.7) that

each stage of the algorithm is linearly convergent. Let o be

the absolute value of the ratio of the smallest eigenvalue of

S 1 and the largest romaining latent root of M(X). Then the

asymptotic error constants of the first and second stage are

c1O and a2aL-1, respectively, where a < 1 and L is the num-

ber of iterations of the first stage before switching to the

second stage. Thus, the second stage, though linearly con-

vergent, can be made arbitrarily fast by increasing the num-

ber of iterations of the first stage. In the oomputational

algorithm, we pick an arbitrary L and then examine the second

stage. If it is converging too slowly (or diverging), then

the first stage is resumed for several steps and the process

is continued. Thus, given that the three hypotheses of the

above thecrem are satisfied, this process, in exact arithmetic,

is guaranteed to yield a solvent of the matrix polynomial.

If a dominant solvent does not exist, then the algo-

rithm will not yield a solvent. In addition to the results in

the above theorem, the first stage yields a dominant latent

root, if one exists. Consider the following algorithm which

obtains a dominant latent ro3t (Chapter 7).



Def.tn~tIon 1.7 avn vectors V0 ,Vluoao,vm .of dimension n, a

Iambda-vector g(X) is the vector function

g(., =-- vo0Xm + v 1 A - + Gas + V . (1.12)

Algorithm 2 Let g o(A) be an arbitrary m-i de.gree lambda-

vector, Generate

gn(A) M- g - M(X)vln), (1.13)

where

9n( -= v(n)Am-l + o*" + v(n)" (1.14)

This is another generalization of Traub's scalar

polynomial algorithm. For a vector v, denote by max v the

first element of v which has the maximum absolute value.

Note that max v is not a norm. Then a convergence theorem

for the algorithm is as follows (Theorem 7.1).

Theorem If

(i) M( X)_ __ ha 41 & = l t n root s, p l,...,Pmn,

(ii) Ip11 > 1Pil for i p 1, and

(iii) r go(pI) # 0, where rTM(p) -OT

then

(1) g( max )- 1 bl, where M(Pl)bI = 0
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and

v(n+l) (vn)
(1 -. 0 . ( 1 . 1 5 )

max v(n)

The transpose of any column of equation (1.9) with

X - XI, is precisely equation (1.13), with MT (X) replacing

M(W). Since the latent roots of MT (N) are the same as those

of M(A), a dominant latent root of M(X) can be obtained from

equation (1.15) by Algorithm 1, the matrix polynomial solvent

algorithm. This can be done regardless of whether a dominant

solvent, or any solvent at all, exists.

1.3 Outline of the Remainder of the Paper. This paper con-

tains three intertwined yet distinct subjects. They are

(i) new theoretical results on matrix polynomials,

(ii) algorithms for solvents and latent roots, and

(iii) a new block eigenvalue problem.

Chapter 2 considers the basic properties of sol-

vents. The existence of solvents and factorization of lambda-

matrices are considered here. A generalization of BUzout's

Theorem and the relationship between polynomial coefficients

and the elementary symmetric functions are al-so discussed.

In Chapter 3 we present some of the basic proper-

ties of matrix polynomials. Interpolation, representation

theorems and fundamental matrix polynomials are presented in

this chapter.
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Properties of the block Vandermonde matrix are given

in Chapter 4.

The second major area of this dissertation concerns

itself with algorithnij for finding solvents and latent roots.

Chapter 5 presents Algorithm 1, the main algorithm of the

paper. The method finds solvents and is a generalization of

Traub's scalar polynomial methods [21]. A convergence

theorem, computational discussion and flow-chart are given

here.

A block Bernoulli method is described in Chapter 6.

The relation between this method and Algorithm 1 is discussed.

In Chapter 7 we present Algorithm 2, which finds a

dominant latent root. The key result is given - the computa-

tions of Algorithm 2 are done by Algorithm 1. A vector

Bernoulli method is also described.

The third area of this work is a new block eigen-

value problem. It is that of finding a matrix X of order n

such that for given matrix A of order mn, the equation

AV = VX is satisfied for a matrix V of full rank. Chapter 8

deals with this problem. It is shown that when A is the

block companion matrix, this problem is a generalization of

the matrix polynomial solvent problem. A general theory of

block eigenvalues as well as two algorithms based on eigen-

vector powering are offered.

Chapter 9 describes numerical testing of Algorithms

1 and 2.



CHAPTER 2

Solvents

%In this chapter we study some of the properties of

solvents. Section 2.1 considers a division of matrix poly-

nomials which results in a new derivation and generalization

of B gzout's theorem. Section 2.2 examines the block compan-

ion matrix. Principal vectors of solvents are considered in

Section 2.3. The existence of solvents and factorization of

lambda-matrices are both dealt with in Section 2.4.

2.1 Generalized Division. The class of matrix polynomials

is not closed under multiplication or division. Consider the

product of N(X) : X + N and L(X) z X + L. We get

N(X)L(X) - (X+N)(X+L) - X2 + NX + XL + NL which 13 not of

the general form of a matrix polynomial; X2 + A1X + A2 . A

new operation will be defined for matrix polynomials which

will reduce to division in the scalar case; n - 1.

Theorem 2.1 Let M(X) - Xm + A Xrm-1 + --- + Am and

W(X) - Xp + B1 XP- + ... + B , with m > p. Then there

exists a unique, monic matrix polynomial F(X) of degree m-p

and a unique matrix polynomial L(X) of degree p-1 such that

M (X) E F (X )Xp + BIF(X)XP- 1 + ''' + BpF(X ) + L (X). (2.1)

Proof: Let F(X) - Xm-p + F1X m-P-J + -*. + Fm- p and

L (X ) - XP -1 + L 1Xp - 2  + + L p _1 . E q u a t in g

- 11 -
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coefficients of equation (2.1), FiF 2 ,-', Fmp and

L ,L 0 ' p1 can be successively and uniquely

determined from the m equations. #

Equation (2.1) is the matrix POlynomial division of

M(X) by W(X) with quotient F(X) and remainder L(X).

Definition 2.1 Associated with the matrix polynomial,

M(X) B Xm + AiXm-1 + -.. + A, is the commuted matrix poly-

nomial.

A(X) -= Xm + Xm-iAI + -'- + Am. (2.2)

If M(R) = Q, then R is a left solvent of M(X).

The matrix S such that M(S) - Q, previously Just

called a solvent, will be referred to as a right solvent when

confusion might occur.

An important association between the remainder,

L(X), and the dividend, M(X), in equation (2.1), will now be

given. It generalizes the fact that for scalar polynomials

the dividend and remainder are equal when evaluated at the

roots of the divisor.

Corollary 2.1 If R is a left solvent of W(X), then

L()- M~(R).

Proof: Let Q(X) - M(X) - L(X). Then, it is easily shown

that

(I(X) Xr'PW(X) + Xm-p-IW(X)FI + . + Q(X)Fm-p. (2.3)
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The result immediately follows since Q(R) = 0 for

all left solvents of W(X). #

The case where p = 1 is very useful in this paper.

Here we have W(X) - X - R where R is both a left and right

solvent of W(X). Then Theorem 2.1 shows that

M(X) - F(X)X - RF(X) + L (2.4)

where L is a constant matrix. Now Corollary 2.1 shows that
A

L M(R), and, thus,

M(X) - F(X)X - RF(X) + M(R). (2.5)

There is a corresponding theory for M(X). In this

case, equation (2.1) is replaced by

M(X) --- xPH(x) + X-I(x)B 1 + -*- + H(X)Bp + N(X) (2.6)

and Corollary 2.1 becomes the following.

Corollary 2.2 If S is a right solvent of W(X), then

N(S)- B(3).

We again consider the case of p - 1. Let

W(X) - X - S. Then equation (2.5) becomes

M(X) E XH(X) - H(X)S + M(S). (2.7)

Restricting X to a scalar matrix XI, and noting that
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M(M) • MM), we get B6zout's Theorem (see Gantmacher [2,

vol. I, p. 81]) from equations (2.5) and (2.7):

MM ).) (IX-R)F(A) + M?(R) = H(X)(IX-S) + M(S) (2.8)

for any matrices R and S. If in addition R and S are left

and right solvents, respectively, of M(X), then

M(X) S F(X)X - RF(X), (2.9)

M(X) XA(X) - (x)s (2.10)

and
M(X) E (IX-R)F(X) E H(A)(IX-S). (2.11)

Hence, Corollaries 2.1 and 2.2 are generalizations of

Bezout's Theorem.

The use of block matrices is fundamental in this

work. For notational purposes it is useful to have a concept

of the transpose of a block matrix without transposing the

blocks.

Definition 2.2 Let A be a matrix with block structure (Bij)

with Bij matrices of order n. The block transpose of dimen-

sion n of A, denoted AB(n) is the matrix with block struc-

ture (Bji)

The order of the block transpose will generally be
S, AB ( n) AT

dropped when it is clear. Note that, in general, A A

except when n a 1.

A scalar polynomial exactly divides another scalar

polynomial, if all the roots of the divisor are roots of the
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dividend. A generalization of the scalar polynomial result

is given next. The notation is that of Theorem 2.1.

Corollary 2.3 If W(X) has p left solvents, R,...,p which

are also left solvents of M(X), and if VB(R, ,Rp) is non-

singular, then the remainder L(X) .

Proof: Corollary 2.1 shows that C(Ri) 02 for

I = 1,.--,p. Since VB(R 1 ,...,Rp) is nonsingular,

and since

I R RP** L (

1 1 p-i 1

I R .. RP-I L(R 2 )
I R2 p2 2(R)

I Rp "'" RP-I L° L(R)

pp 01p

it follows that LWX) E. Thus,

M(X) = F(X)Xp + B IF(X)XP-I + .-- + B pF(X). # (2.12)

From equation (2.11) it follows that the eigen-

values of any solvent (left or right) of M(X) are latent

roots of M(M). These equations allow us to think of right

(left) solvents of M(X) as right (left) factors of M(X).

In the scalar polynomial case, due to commutivity,

right and left factors are equivalent. Relations between

left and right solvents can now be given.



G(oX1 ) 1 l tla iy , tit .I' l •, .itd I !fi i11

M(X), F (-v1yV, (ki i l, '1~A ' ¶ ,ti

" 0 W11•, 1,X i (X) d1, ,'X I 1 t'Anj1i t) It'

P-?9) w Ith R 1,

ouu ,: 1' qu t A oni -. .9 .... w.I t. h. t

SI rice S ar(1 R, havco no 0conunon Otgoi nv~iti

F (,. ) * Q�wUnique-ly Thit) follow.A , ilnth'r, tl

solution of AX n XB has the unlqu s olt-oiuti

X w 0, If and only if A aUnd B hLaVo no oortinion

elgenvalues. Sen Gantmacher [2, p. 215]. #

Given a left solvent R1 of M(X), Theoremi 2.1 ahows

that FI(X) exists uniquely. If S is a right aolvollt of M(X)

and if F (S) is nonsingular (S is not a weak solvent of Fi(X)),

then equation (2.13) shows that

R Fi(S)SF 1(S). (2.1 ')

This gives an association between left and right solventsi.

2.2 Block Companion Matrix. A useful tool in the study of

scalar polynomials is the companion matrix. The Ctei1nVIAIluC

of a companion matrix are the roots of It;s associated puly-

nomial. See Wilkinson [22, p. 12]. A geneializaltion o0 thls
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is given below. Definition 2.3, Theorem 2.2 and Corollary

2.5 can be found in Lancaster [13).

Definition 2.3 Given a matrix polynomial

M(x) B 3? + A Xm-1 + +.. +

the block companion matrix associated with it is

0 0 -Am

C -Am, (2.15)

I -A1

It is well known that the eigenvalues of the block

companion matrix are latent roots of the associated lambda-

matrix. See Wilkinson [22, p. 12]. Simple algebraic manipu-

lation yields this result.

Theorem 2.2 Det(C-XI) = (-l)mndet(IXm+AIXm-l+-..+Am).

Since C is an mn by mn matrix, we immediately ob-

tain the following.

Corollary 2.5 M(X) has exactly mn finite latent roots.

The form of the block companion matrix could have

been chosen differently. Theorem 2.2 also holds for the

block transpose of the companion matrix:
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o 1
* 0 e

cB ( (2.16)
oI

-A. -A._ 1  ** -A 1

The algorithms given in this paper are b•--ed on

elgenvector powering schemes. It will be useful to know the

eigenvectors of the block companion matrix and its block

trarspose. The results are a direct generalization of the

scalar case.

Theorem 2.3 If i is a latent root of M(X) and bi and ri are

right and left latent vectors, then Pi Ls an eigenvalue of C

and of CB and

bi

(i) P Is the right eigenvector of CBP

ri

(11) i Is the left eigenvector of C, and

rn-ipm-l*.
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(iii) (1) is the right eigenvector of C, wherebi

bi

M(A)b I b Am-1 + b 1) ,m-2 + (+ b(2 17)
A - Pi

Proof: Parts (i) and (ii) are easily verified by substi-

tutions into the appropriate eigenvalue problem.

For part (III), consider

0 "'i0 -A I d(m

* :(m1) )-Ai

dil i dl

T -A 1  d() d(0)

(2.18)

thMultiply out; multiply the j component equation

by AJ-i; and add. The result is

(0) P M
(A)X- M(A)d0 - PIH (X), (2.19)

where

Hi() d i'l)+ dm-2 )X + ''-+ d(0)Xm-. (2.20)
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Equation (2.19) at A p. shows that

M(P )d 1 O) . 0 and, hence, d(0) is a right latent

vector. Manipulating equation (2.19), the result

equation (2.17) with d(0) - b and d =j) . b~j)

for j - l,..,m-l, follows.

2.3 Structure of Solvents. The elgenvectors and principal

vectors of a solvent will now be considered. From equation

(2.11) it follows that the elgenvectors of a left (right)

solvent are left (right) latent vectors of the lambda-matrix.

Lancaster [13, p. 50) gives the characterization of a solvent

that has only elementary divisors.

Theorem 2 . 4 If M(A) has n linearly independent right latent

vectors, bl,-.,jbn' corresponding to latent roots. p l,'-',

then QAQ- 1 is a right solvent, where Q = [b 1 ,...,bn] and

A - diag(pl,...,Pn).

Proof: From M(QAQ- 1) (QAm+A 1 QAm-l+'''+AmQ)Q-1 the

result follows, since QAAm + A QAm + - +MQ

is just M(Pi)bi 0 0 for i = l,-..,n.

It follows from the above proof that if a solvent

is diagonalizable, then it must be the form QAQ- 1, as in the

above theorem.

Corollary 2.6 If M(A) has mn distinct latent roots, and the

set of right latent vectors satisfy the Haar condition (that

every set of n of them are linearly independent), then there

are exactly (mn) different right solvents.
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Consider next the case of a solvent which is not

d(lafonallIzable. In a manner similar to Roth [18], we con-

sider the principal vectors of a solvent.

Definition 2.4 The J principal latent vectors of M(X) with

respect to the latent root p is Pi., which satisfies

1  M(J-l) (1)P + 1 ( -2 M( p )P2  + 0- + M(p)Pj (221(3J-17 1 (PP T j--2)Tl2

(2.21)

where

dk

M(k)(X) = - M(X)
dXk

Note that the first principal latent vector is a latent

vector.

Theorem 2.5 The principal vectors of a solvent are principal

latent vectors of M(A).

Proof: To alleviate notational difficulties, consider the

case where m = 2 and n -k =3. The Jordan
iP

form of the solvent is J - ( p . Let

P)

P (P 1 P2 P3 ) where S - pjp-i is the solvent

of M(X) - 2 + A1X + A2 . Thus,
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Q = M(S)P f 1P P P3)J2 + A3 (P 1 P 2 P 3 )J + A2 (P 1 P 2 P 3 )]

"R I(p2+AIp+A2 )PI,(21p+A1 )P 1 +(Ip 2 +AlP+A2 )P 2 ,1P 1

+ (21p+A)P 2 + (IP 2 +AlP+A2 )P 3]

=[M(P)PIM'(p)P1

+ M(P)P 2 , ½ M"(P)P 1 + M'(P)P 2 + M(P)P

Hence, PI" P2 and P3' the principal vectors of S,

satisfy equation (2.21), the definition of prin-

cipal latent vectors. #

It is the strategy of this paper to solve the

lambda-matrix problem by finding solvents and then finding

the eigenvalues of those solvents. The calculation of sol-

vents from the solution of the latent root problem has been

considered in the literature. The following Is a short

description of the method.

Since the eigenvalues of a solvent are latent roots

of the lambda-matrix, and there are mn latent roots, it fol-

lows that there are only a finite number of Jordan forms of

potential solvents. Let the latent roots be given and let J

be a matrix in Jordan form with n of the latent roots as its

elgenvalues. Then, to find a corresponding solvent S, if

one exists, a nonsingular matrix P must be found such that

M(PP-) -1 Thus, a nonsingular matrix P must be found

such that
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m PJm-11 Pi + (2.22)

This approach, described in MacDuffee [15, p. 95], is of the

general form

A XB + A XB + - + A XB = C. (2.23)
1 1 2 2 m m

Lancaster [11] and Gantmacher [2] have considered the solu-

tion of equation (2.23). The problem is difficult numerically.

Algorithm 1 tries to find a solvent directly,

rather than by the above route of solving the latent root

problem first.

2.4 Existence of So3vents. We now show that the Fundamental

Theorem of Algebra does not hold for matrix polynomials.

Theorem 2.6 There exists a matrix 2olynomial with no sol-

vents.

Proof: Consider

M(M) (I 1 I•2- 21X + .
-1 X2_-2 10

(2.24)

Det M(X) -X4 _ 03 + 6X2  0 4k + 1, which has all

four roots at X - 1. Thus, the Jordan form of a

solvent must either be Jl 1 I or J2 (2 1).

(0 1
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Since M(I) d Q, it follows that J2 is the only
2

feasible Jordan form. M(l) - ) and, thus,

b = (1,-i)T is the only latent vector, to within

a scalar multiple. The second principal vector

is such that M'(l)b + M(1)P 2 = 2. Here,

M'( = 2X-2 0) and, hence, M'(l) =

Thus, P2 = b to within a scalar multiple. Using

Theorem 2.5 and the linear dependence of the first

two principal latent vectors, it follows that J_ is

not a feasible Jordan form for a solvent of equa-

tion (2.24). #

Consider now the special case of a matrix polynomial whose

associated lambda-matrix has distinct latent roots. It will

be shown that in this case a complete set of solvents always

exists. First we need the following fact about block matrices.

Lemma 2.1 If a matrix A is nonsingular, then there exists a

permutation of the columns of A to A such that A=
A A\A21 22/

with All Arid A2 2 nonsingular.

Proof: Let A and Al1 be matrices of orders n and k, re-

spectively, with arbitrary 1 < k < n. Assume the

lemma is false. Consider evaluating the deter-

minant as follows. For each of the first k rows,

pick an element from a different column. Then



- 25 -

multiply these elements and the remaining minor.

The sum, with appioopriate signs, of every possible

choice of the k columns, is the determinant of A.

The k choices of the columns determine a square

matrix. If that matrix is nonsingular, then the

minor must be zero, since the lemma was assumed

false. Thus, such terms make no contribution to

the determinant of A. A particular minor appears

several times in the sum. It occurs the number

of ways the same k columns can be picked in dif-

ferent orders. Each minor can thus be factored

from several terms; the result being the minor

times the determinant of the matrix formed by the

k columns and the first k rows. Thus, if the

matrix formed by the k columns is singular, then

there is no contribution from this term in the

determinant of A. Therefore, A must be singular,

which is a contradiction. #

Once the columns of A are pertnutated to get All and

A22 nonsingular, the process can be continued to 3imilarly

divide A22 into nonsingular blocks without destroying the

nonsingularity of All.

Theorem 2.7 If A, a matrix of order mn, is nonsingular, then

there exists a permutation of the columns of A to A - (Bij),

with B,, a matrix of order n, such that BI, is nonsingular

for I - 1,''-,m.
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The important existence theorem is now given.

Theorem 2.8 If the latent roots of M(X) are distinct, then

M(X) has a complete set of solvents.

Proof: If the latent roots of M(A) are distinct, then the

eigenvalues of the block companion matr.ix are dis-

tinct, and, hence, the eigenvectors of the block

companion matrix are linearly independent. From

bi

Theorem 2.3 the set of vectors Pibi for

Pm-1 bPi i

for i - 1,...,mn are eigenvectors of C0. The

matrix whose columns are these mn vectors is non-

singular. Theorem 2.7 shows that there are m dis-

joint sets of n linearly independent vectors b .

Using the structure QAQ- 1 of Theorem 2.4, the com-

plete set of solvents can be formed. #

Corollary 2.7 If M(X) has distinct latent roots, then it can

be factored into the product of linear lambda-matrices.

Proof: Since M(M) has distinct latent roots, there exists

a right solvent S and M(X) - QU)(IX-S). Q(X) has

the remaining latent roots of M(X) as its latent

roots. It follows then, that the latent roots of

Q(M) are distinct. Thus, the process can be con-

tinued until the last quotient is linear. #
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The process described in the above proof considers

solvents of the sequence of lambda-matrices formed by the

division M(X) - Q(X)(IX-S).

Definition 2.5 A sequence of matrices CI,.-.,Cm form a chain

of solvents of M(X) if Ci is a rIght solvent of Qi(X), where

Qm(X) E M(X) and

Qi(X) = Qii 1 (M)(IX-Ci). (2.25)

It should be noted that, in general, only Cm is a

right solvent of M(X). Furthermore, C1 is a left solvent of

M(X). An equivalent definition of a chain of solvents could

be defined with Ci, a left solvent of Ti(X), and

Ti(X) = (IX-Cm-i+1 )Tiil(X). (2.26)

Corollary 2.8 If M(X) has distinct latent roots, then M(X)

has a chain of solvents.

Given C. and Q,(X), Q11l(X) of equation (2.25) can

be found by a generalized Horner division scheme. In the

numerical solution of the lambda-matrix problem, the strategy

considered here will be to find a chain of solvents using the

matrix polynomial solvent algorithm and Homer division.

If C1,...,Cm form a chain of solvents of M(X), then

MOL) B I~m +A X m-1 + ... +Am (IX-C)(I-C2)...(I-Cm).

(2.27)

I'i
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Vhis lauds to a generallatilon of tho ,C*as*1*l 'A1P0406'.i f'

scalar polynomilsl which relates ooeftic*ents to *lmntrL'Y

symmetric functions. By equating coef'ticelnto of eq\A1'fttuti

(2.27) one sets the following theorem.

Theorem 2.9 If C ,.,C1 ai 2L A•l• • 1•., •£.

M(X) = Xm + A I xm + "" 4 Aa 1

A1  . I(ci+C2 +6.4+Cm)

A2  (CiC2 +C1C3 3"'+66-*+0 ) (2.28)

Am *(-I)mC1C2*"Cm



Unmo of' theo hailo prop~rtl,, or' mi.mtrt polyoifnl

avo~ .ooiitdold In thisI Ohaptea'1 30at1on 3.1 oonntiin~ l ~UOI'

w~t~h mA~trts polynomAal Inteiaolatlor. A Xonotil&lea~tti'n or

th.o t'uildfflteftal noialer polynomialsl III £IVttyl~ntIdn1

theovoms for matrix polyno~mial## lambda-matrioes, andI lamhda-

veootora are presented In 3tation 3.2. Section studelon~

the fundamental matrix polynomiala.

3.1 jaSR1ajn Olven saalars V11,. the fundamental

m
polynomial* m1,(x) a where p(x) i R1 (x-% 1),

are of great importance in Interpolation theory. Their use-

fulneac comes from the fact that m4 ( 3  6 8V WO will now

generallse this ror our matrix problem.

Definition 3.1. 912L3n JLU R2C MA~Lr.S3. 31'' 3  kh

runamantal M1jrjx p~jjn2iiamija I &j IiiL m- 1 Uar.21 Mirx

Surrtieint. oonditionso on the aet of oiistri-jes

1911-'' t fox, a set of fundamental matrix polynop~ilaJl to

exist uniquely will bo given in Theorem 3.2. Firat, ho'wever,

we need the following results'.

Theuroni 3. 1 Given m Rairs or~ matrjoea, (X i.Y) i

the there exists a uiqu marx 1nQp

-29-



6 0 ,,-

I'(XI w AI X i-I ,+ A IXm- + -' ' + ,, An L m ,gI L4 P(X 1) 0 Y

l I a l,',.,,m, U r za1 U. V(Xpis'" bxm) La. M•..'u .,

111-6o C"I IN X ) I YI tel, i *k 16".-Il to Oqlltvalont t .o

a l I

Corollary 3.1 given m L ! 9,• Iati'iaiu (X1 ,Y1), i a 11 ,,,,m,

tlic3d unL2MLijL 2g3±krLi. IL mIofla L1rim5 olagm.a~i.l

F(X) a x 4 + A M.1 + se + A 2 = P(Xi) w Y

I a 1,,,,6m, Ir U M U V(Xi)(x %$" ,xm) Ai DIofloalaJA•.

t'rooli Let Y Y1f X• and apply Theorem 3.1 to (Xti$). #

Let M(X) have 'a complete not of solvents1 S11".. 3 m)

such that V(S 1 40...8m) in nonsingular. Aocording to Theorem

3.1, there exists a unique matrix polynomial

M (x) x A(•±)X'l 4+ se + A•1 ) (3.1)

euch that

Notet that MI(X) has the samne solvents as M(X), except Si has

been deflated out. The MI(XM's are the fundamental matrix

polynomidala.
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IDorwstt by V(SIs.,, SI~lj~t+lj..,sm) the' blook

VYAndormonde at the m-i bolvents, Sll.,,Smj with Si deleted.

Theorem 3.2 Il mri.es S,,...,m A are such that V(S i'.ISm)

,.1 nonuOn, there exist unique matrix Polynomials

M,(x) M A•)xm1 + as* + A() for a l,*,m, such that

M (X),.*,Mm(X) are fundamental matrix polynomials. If..

trthermores V(S1 ,' ' Sk.1,Sk+I,'''bSm) i nonsingular, then

A(k) neonsinular.

Prooft V(SVO..S. m) nonsingular Implies that there exists

a unique set of fundamental matrix polynomials,

Mi(X).s'.Mm(X). V(S1.'.,%Sk.l1Sk+l.'.. Sm)

nonsingular and Corollary 3.1 imply that there

exists a unique monic matrix polynomial

Z(x) I )P'l + N(k)X"- 2 + ... + N(,k). suoh

that Nk(SJ) - for 3 0 k. Consider

Qk(X) N Nk(Sk)MQ(c(X), 1k(S) - k(S3) for

3 - l'..,m. Since V(S0i,...sm) is nonsingular

and both Qk(X) and Nk(X) are of degree m-1, it

follows that Qk(X) 3 Nk(X). Thus,

N Nk(X) I N k(Sk)Mk(X). Equating leading coeffi-

cients, we get I a N (S )A(k) and thus A (k)

Sis nonsingular.#

3.2 Representaton Theorems. The fundamental matrix poly

nomials, MI(X)8-'"914(X), can be used in a generalized

SLagrange Interpolation formula. Paralleling the scalar case

we get the following representation theorems.
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Theorem 3.3 I matrices SI,°..,Sm are such that V(Sl,...,Sm)

is nonsingular, and MI(S),...,Mm(X) are a set of fundamental

matrix polynomials, then, for an arbitrary

0(X) 3 BlXm-l + -. + Bm, (3.3)

it follows that

0(X) - 2G(Si)Mi(X). (3.4~)
ial

m

Proof: Let Q(X) * G(S,)M,(X). Then Q(S.) - G(Si)
jll

for i - l,...,m. Since the block Vandermonde is

nonsingular, it follows that Q(X) is unique and,

hence, G(X) ! Q(X).

A lambda-matrix was defined as a matrix polynomial

whose variable was restricted to the scalar matrix AI. Thus,

the previous theorem holds for lambda-matrices as well.

Corollary 3.2 Under the same assumptions as in Theorem 3.3,

for an arbitrary lambda-matrix

G(A) 1 Am-1 + -' + Bm, (3.5)

it follows that



- 33 -

m
o(X) G(S1 )Mi(X). (3.6)

t=1

A basis for lambda-vectors will be presented next.

Theorem 3.4 If M(X) has distinct latent roots, pl,...,Pmn•,

with right latent vectors bl,''.,bmn, then for an arbitrary

lambda-vector

g(X) •lkm-1 + -.- + v(3.7)

there exists a unique set of constants al,,... amn, such that

mn

Q MM b (3.8)
90N) Fa • i A - Pi i

i-i

Proof: If the latent roots of M(W) are distinct, then the

eigenvectors of the block companion matrix (Theo-

rem 2.3 (ii)) form a basis for vectors of dimen-

sion nn. By equation (2.13) lambda-vectors

k b. are formed by partitioning the eigen-

vectors of the block companion matrix into the

vector coefficients. The ai's are those required
Tto write (Vl,..,Vm)T as a linear combination of

the eigenvectors of the block companion matrix. #

3.3 Fundamental Matrix Polynomials. Fundamental matrix poly-

nomials were defined such that M(j) - 6 1. A result

i .j
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similar to equation (2.9) can be derived based on the funda-

mental matrix polynomials. It was previously (Section 2.1)

developed using matrix polynomial division.

Theorem 3.5 If M(X) has a complete set of right solvents,

SI,.',sSm, such that V(S 1 ,,.",Sm) and V(S1,.-.,SiISi+I,...eSm)

are nonsingular and MI(X),.-.,Mm(X) are the set of funda-

mental matrix polynomials, then

Mi(X)X - SiMi(X) Ai)M(X), (3.9)

where A1i) is the leading matrix coefficient ofM M.

Proof: Let Qi(X) Mi(X)X - SiMi(X). Note that

Q1(Sj) - for all J. M(X) is the unique monic

matrix polynomial with right solvents SI,.,.,Sm

since V(SIS'',Sm) is nonsingular. The leading

matrix coefficient of Q(X) is A1  which is non-

singular, since V(S 1 ,..,iSiISi+I,..-,Sm) is

nonsingular. Thus, M(X) : AWi)-IQM(X). #

A previous result (equation (2.5)) stated that if

Ri was a left solvent of M(X), then there exists a unique,

monic polynomial Fi(X) of degree m-l, such that

M(X) Fi(X)X - RiFi(X). (3.10)

Comparing equations (3.9) and (3.10), we obtain the following

result.
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Corollary 3.3 Under the conditions of Theorem 3.5

F (X) [A)]- M(x) and

R [A1')]'s1 AI ) (3.11)

is a left solvent of M(X).

If M(X) has a complete set of right solvents,

SI,...,Sm, such that V(SI,...,Sm) and V(SI,... AISi+I,. .. Sm)

for i - l,...,m are all nonsingular, then, by equation

(3.11), there exists a complete set of left solvents of

M(X), RI,...,Rm9 such that R, is similar to Si for all i.

Corollary 3.4 Under the conditions of Theorem 3.5, if Ri is

defined as in equation (3.11), then

M i( ) M (IA-RI)-MMx. (3.12)

Proof: The result follows from equation (2.11) and

Corollary 3.3. #



CHAPTER 4

The Block Vandermonde

The block Vandermonde matrix is of fundamental

importance to this work. This chapter considers the prop-

erties of the block Vandermonde.

It is well known that in the scalar case (n = 1),

det V(S..ss.ssm) = I (s -s ) (4.1)
I>j

and, thus, the Vandermonde is nonsingular if the set of s I's

are distinct. One might expect that if the eigenvalues of

X and X2 are disjoint and distinct, then V(XI,X 2 ) is non-

singular. That this is not the case is shown by the follow-

ing example.

The determinant of the block Vandermonde at two

points is

( I

det V(XIX 2) det ( det (X2-XI). (4.2)

Even if X and X2 have no eigenvalues in common, X2 - 1 may

still be singular. The example X - )and
I/X2 22 X

= ( ) yields X2 - X, singular.
3 3! 36
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It will be shown that the X1 and X2 in this example

cannot be the complete set of solvents of a monic matrix

polynomial. First, however, the following is needed.

Lemma 4.1 Let matrix A have distinct eigenvalues, and N be a

subspace of En of dimension d. Suppose further that if v eN,

then Av e N. Under these conditions, d of the eigenvectors

of A are in N.

Proof: Let Avi -Uivi for i - l,.--,n. The set of vi 's

is a basis for En, since A has distinct eigenvalues.

Let v e N C En, and order the {vi) such that

s

vm civi with ci 1 0 for i * )*,. Let

P(t) - I (t-Aj), then P(A)v- 0 for

J=-2
J * 2,.,.s. Hence,

S

P(A)v - ciP(A)vi - clP(A)v 1
S~i-i

S

=c! (A-X 1, vI

1 cI )) vie

L
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Let d 1 ( (Xl-XJ)) 0' 0. Thus,

V =l P(A)v e N. Similarly, vi 6 N for

i = l,''',s. The lemma follows, since v c N

was arbitrary.

Theorem 4.1 If M(M) has distinct latent roots, then there

exists a complete set of right soiv~nts of M(X), SI,--',SmX

and for any such set of solvents, V(S,...,S Sm) is nonsingular.

Proof: The existence was proved in Theorem 2.7. Sl,.-.,Sm,

being right solvents of M(X) - X m+AIXm-1 + +Am

is equivalent to

I 0...

(AmS 1  "' *m ( ' m

• "- i)0 S S , "-1
(Am,.,A .

1l m

(4.3)

Assume det V(S 1 ,...,Sm) m 0, and let N be the null

space of V(S 1 ,...PSm). That is, v e N if and

only if V(SI'.,*pSm)v 0. Since AI,..e,Am in

equation (4.3) exist, Joining any row of

(-Si,...,-Sm) onto V(SI,...,Sm) gives a larger

matrix but with the same rank as V(S 1 ,...,Sm).

Thus, for all v e N, S 0. Hence, for

all v e N
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$ 2 "' S2
S m

0,- * : v V(S,..,Sm)diag(.Sl,.,Sm)V.
S Sm ***'SrS m . . Sm

i m
(4.4)

Letting A * diag(Sl,.-.,*Sm) equation (4.4) shows

that for all v E N, Av e N. Since A has distinct

eigenvalues, Lemma 4.1 applies, and there are as

many eigenvectors of A in N as the dimension of N.

The eigenvalues of diag(Sl,s'',Sm) are the eigen-

values of the Si's, and the eigenvectors are of the

form (0T'vT,0T), where v is an eigenvector of one

of the S 's. This is because if

s 0 0

V V

0 -A 0

V V

Sm 2 .

then Siv- Xv and S w - Xw. This cannot be

since S and S do not have any common eigenvalues.

Let an arbitrary eigenvector of diag(S ,...,Sm),

(0 0 TT soT)T, be in N. Then
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1 01
**" Sm

: : v
* S

But then, Iv -, 0 whIch in a oontreudlctIon. 'hur

det V(SI,... ,Sm) $ 0. #

The example c.,aimdered before this theorem wan a

case where matrices X1 and X2 had distinct and disjoint

eigenvalues and det V(V1,X 2 ) - 0. Thun, by thm theorem,

they could not be a complete ,-IAt of right solvents for a

monic, quadratic matrix polynomial. In contrast with the

theory of scalar polynom:tals, we have the followinK result.

Corollary 4.1 There exist sots containing m matrices which

are not a set of right solvents for an matrix polynomial of

Se i..

A general1zation of ocuation (4.1), that the

Vandermonde of scalars is the product of the differences of

the scalar-, will be given. Let M ,d).. M be a monic, . ~SI .. S k()bameo

Smatrix polynomial of degree d > k with right solvents

°i"° ,' The superscript d will be omitted if d - k.

Note that thle matrix polynomIal need riot necessarily exist,

r,-r be unique.

T•orc iW.2.If- V(S1 ,''" ,Sk) Is nonsIngular for k= 2,...,r-l,

thon



P'roof i Tile nonwinigulAVtty Of Vt-I~ 0'' 11'.0 w)illd Covo11 aI'yI

3,1 guarante. thiAt M * , (X) exis t" uni 'p'ly.

by block Oausulan olImInation uninst thp NtA~ t~hot

dot A ) dot (A+RC n4+R) (46

Dot V(38'''s) a dot 1

1rr

s 231 so r-

8r-1 *,~ 3r-Isr- r1

1 3-

*dot m2~ (Sr~

2 1 2 12

m~2  (S. (r-1)~ (S
do ~1 s2 3s 1S 2  r

('4-7)



wher, e M Xcl) (X) - '.4 )012X-.sd)

(83-So) to nonsingular, mince

det (32 US,) a dot V(SIO32) 0 O, It will be shown

that artetr k atep. or the block (ausluian elimina-

tion, the general term for the 1,j blockgj ), k,

is tI'14,, ('1), Assume it is true after k-l step.

Then, a•ter k stepo, the 1,j element is

31 k l a. I k-.•s.1, ,1 k-l) - 1 k-!k

This in merely M(t"1) (X) evaluated at X a Sj,

Using the fact that the determinant of a block tri-

angular matrix is the product of the determinants

of the diagonal matrices, (see Householder [5))

the result follows.

Corollary !4.2 If V(SI".,, Sk.1) Lt nonginsular IUd Sk lA

not a weak solvent or HMS .,,S.(X), kte V(Sl,,,,,Sk) &A

noneinaular.

It Is useful to be able to construct matrix poly-

nomials with a given set of right solvents.

Corollary 4.3 Given matrices S1,,I,.Sm such that V(S,' 3... Sk)

is nonsingular for K - 2,.*',m, the iteration No(X) a I

N (X) - N (X)X N- N1.. (S )S N- 1_(s )NM.1 (x) (4.8)
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Nme(x), I•~~~~ N .(3•) . o g • I 1,...,m,

Proofr N1 (X)IX-8 1 mNl (X). Asetlme Nk(X) I1MS...k (X)

Then, from equation (4-8), Nk+l(Sd) * a for

1 a 1,*'..k+l ands henoe, Nk+l(X) I MS1 Goek+1(X).

The sequence oF blook Vandermonde being nonsingular

guarantees the nonsingularity of N,-1(3,). #

Corollary 14. 4UV(Sa,...,Sk) Ln nona La k a a a- 2 a..,m,

MLI 310e IB m a A2M25ISJL a"~ 2L r*kb. 32LQ.20tfl LU
14l •.i(X).

Proof., The result follows directly from Theorem 3.5, where

we obtained

(IA-Si)Mi(A) *A(I)MM~. # (4.9)

L1



CHAPTER 5

A Matrix Polynomial Algorithm

This chapter presents the paper's main algorithm.

It computes solvents and is a generalizatJon of one of

Traub's methods. Seotion 5.1 gives the algorithm. A global

convergence theorem is presented in Section 5.2. Section 5.3

considers computational aspects of the algorithm and has a

detailed flow-chart of the method.

5.1 A Generalization of Traub's Algorithm. The following

algorithm for matrix polynomials, in the scalar case, reduces

to Traub's scalar polynomial algorithm.

Algorithm 1 (i) Let 0 (X) - I and generate matrix poly-

nomials OnX) 0

an 1 (X) M- a(X)X - ainM(X), (5.1)

for n - 0,,**,L-I, where

0 ) n xm -1 + nte + n (5.2)

n 1m

Then, (ii) let X0 a and generate

= GL(Xi)GL1 (Xi)_ (5.3)
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The algorithm has two stages. The first, a ge-ner-

alization of Sebastiao e Silva's algorithm (see Hou~seholder

(4]), generates a sequence of matrix polynomials. Equation

(5.1) enauren that each of these matrix polynomials i1: of

degree less than m, the degree of M(X). Under suitable con-

ditions n(X) (a 1) On(X) will be shown (in the next

section) to converge to Mi(X), a monic fundamental matrix

polynomial.

The second stage generates a sequence of matrix

iterates which will be shown (in the next section) to con-

verge to a solvent. The point at which one switches from

stage one to stage two, the value of L, will be considered

in Section 5.3.

5.2 The Convergence Theorem. In the proofs that Bernoulli's

method and Traub's scalar polynomial algorithms converge, the

main property needed is that if p1 is a dominant root, then

(P i/P)n + 0 as n - -, for p1 any other root. To gener-

alize this property to solvents, the following result is

needed, the proof of which was provided by P. A. Businger of

Bell Telephone Laboratories.

Definition 5.1 Mat_-I1. A dominates matrix B if all the eiGen-

values of A strictly dominate, in modulus, those of B.

Lemma 5.1 If matrix A dominates matrix B, then A-nCBn 0

as n - , for Aa constant matrix C.

Proof: For any c > 0, let
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B a PB(C)(JB(C))PB(c)E (5.4)

where

A B

C AB B
SJB(C) (5.5)

C B

See Ortega and Rheinboldt [16, p. 43] for a discus-

sion on this modified Jordan form. Then,

JIBnI, <_ IlPB(¢)II lIP (0)-I1 (c+maxlxBl), (5.6)

where the norm is the infinity norm. Noting that

Ix

A A
C•• A -ex A x

A A A

(5.7)

the result

[[A -n[[ , [,P A(E),,[,PA(W -11,,21 + 1 (5.8)

(mi AA A2ij
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is similarly obtained, where PA(c) is defined as

in equation (5.4). Combining equations (5.6) and

(5.8) we get

IIA-nCBni < k c+maxIABI) , + )B ) minl XA21 miniX;AI '

S~ (5.9)

where k, a function of c, is independent of n.

When c = 0, the constant to the nth power is less

than one, since maxI BI /mIntXAI < 1. By continu-

ity, there exists an c > 0 so that the constant

is still less than one, and, hence, IIA-ncBnr; - 0

as n*. #

We now give the convergence theorem for .Algorithm 1.

Theorem 5.1 If

(i) M(X) has a complete set of solvents, S 1 i'''Sm,

(ii) S1 Is I dominant solvent, and,

(iii) V(SI,...,Sm) and V(S2,...,Sm) are nonsingular,

then (i) Gn(X) M E n Gn(X) + MI(X), where MI(X) Is the
unique monic form of the fundamental matrix polynomial such

that M 1(SJ ) 0 I, and

(ii) for L sufficiently large, X. of (5.3) converges

to SI.

Proof of part (i): From equation (5.1), the result

G(S G (S n .)Sn (5.10)Sn() 0 Goe1e
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follows. By Theorem 3.3 and equation (5.10), we

got

m m

an(X) M Gn(Si)Mi(X) M SnMM(X), (5.11)
1ni i- i

and, thus,

mn E SAn(a . .(512)

i-I

S and AM are nonsingular and, thus, there is an

N such that for n > N, atn must be nonsingular,

since using Lemma (5.1) and equation (5.12)

an SnA) )1 + I (5.13)

as n * . Using equations (5.11) and (5.12) and

Lemma (5.1), we get, for n > N,

n-1E (0) Gn(X)

(5.-14)
(cont'd)

L/
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m

( >))
÷ A('1-MI(X) -- MI(X), (5.14)

(514

by Lemma 5.1. #

We defer the proof of part (ii) of the theorem to

first obtain some results which will be needed in the proof.

Corollary 5.1 Under the hypotheses of Theorem 5.1,

a( f 'n+l . R1 (5.15)

as n*-, where R, is the dominant left solvent.

Proof: Modification of equation (5.14) and Corollary 3.3

yields nl) n+l -" (4Al)) 1-s 1 A1l) = R as

n o. #

The following lemmas all use the same hypotheses

as in Theorem 5.1. Let

OL(X) S GL(X)GL 1(X). (5.16)

Thus, stage two of Algorithm 1, equation (5.3) is

X -i L(Xi). (5.17)
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In Lemma 5.2 we show that every right solvent Is a

fixed point of rL(X for each L. Lemma 5.4 shows that L(X)

is defined for all X in some neighborhood of the dominant

solvent. Lemma 5.6 gives the local convergence of the second

stage of Algorithm 1. Finally, Lemma 5.7 says that stage one

will yield a point in the locally convergent region (Lemma

5.6) of the dominant solvent. Stage one supplies a suffi-

ciently accurate starting value for the locally convergent

stage two and, hence, the overall algorithm is globally

convergent. The proof of part (ii) of Theorem 5.1 then

immediately follows.

Lemma 5.2 *L(S) - S for all L and any right solvent S.

Proof: The result follows from equation (5.10) and the

fact that G (X) - I. #

Lemma 5.3 There exists a nontrivial ball B, centered at S1.

such that for all X C B

(1) 11II-MI1(X)JII < K < 1, (5.18)

and

(Ml I ~(X)!< D, J # 1, (5.19)

for some D independent of J.

Proof: A matrix polynomial is a continuous function of its

matrix variable. The results thus follow from con-

tinuity and the facts that M1 (SI) 1 1 and

M (S 1 ) 0 for J # 1.
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It follows from Lemma 5.3 that for all X e B,

M1 (X) is nonsingular and

I _i iIMl(X)1I • (5.20)

Lemma 5.4 If X 6 B, then there exists an L' such that

OL(X) is defined for every L > L'.

Proc,: For X e B, let

Vj(X) = IM(X)MII(X) (5.21)

and

m

WLMx-. sL s L x, (5.22)
J-2

Then,

m

GL...l(X)L-1 L-1S~J X

S s~ I S v M;L~~v()~ M Mx

J--2

" sL-I(I+WL (x)) M X). (5.23)

Note that WL(X) W 0 as L - m uniformly for

X e B. This follows since
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II Iv (x)II H, IM (X)M-l• 1(

by Lemma 5.3. Thus, I + WL(X) I • I,M

and, hence, I + WL(X) is invertible for Jar:g b.

By equation (5.23), OLl(X) is invertible for

large L and the result follows.

Lemma 5.5 If X E B, then

SLJ()I(X)S L -- :aL IIM (X) Im MIIx 1 (-q' 5-21

where 0 < o < I, and T is a constant independent of L and_ -

Proof: The result follows from equation (5.9), where

a - maxXsj I/minjXSl1 1<1 for J 9 1..

Lemma 5.6 If Xo 0 B and L is sufficiently large, then

X , W fL ( X 1_ 1) -p S I .

Proof: Let X e B and L > L' of Lemma 5.4. Set

EL(X) = eL(X) - Si. (5.21)

Then, since

mS L (V)( Xm S(L)1 V ( X
L-I (

E ( j (XSJ) V
J-1 ) J=l



It Collowri that

m n
, 'I ( x) - )] (:'.-, ,- I )1 X).

t- M ,$ ".

Thua , by Lemma 5,5

IITJ,L(X)I! •_ 1-K"0

an L -o Choont1 I. lnt'e enough so that

m

F,1 II L jX)II IF < 1?8

for all X e B. Then,

rm fit

EL(X) I + TjL(X) k, IL -,.- IjL W
Ju2 1-2

gives, by equation (5.25),

in 1S --s II-l- '- tIM (X)IIIIM 1 (x)Ii

IIE.(X)II . -t-- .... _J (5.29)

S1 - F



for' it I I X f . A mutl ri x polytioiru1a in c'rittr-l

uounily dlfrerentlable. , 1 ne r Mj( I r ol

j • 1, the remeiiIt

IIMj (x)II < tllX-;: 1ll1 (5 -.30)

where J l 1, t w sup 1I M (X)II, follows from the'

Jxl

mean value theorem. Finally,

lL(x)-sll _< Ll (5,31)

for all X i B, where

m

a a abs j I(522

The renult follows from equation (5.31), since

0 < a < 1 and L can be taken large enough so

that co"- < 1.

The preceding lemma gave convergence for the second

stage of Algorithm 1 if X e B. The next lemma shows that
00

X 0ais n B if the first stage is continued long enough.

Lemma 5.7 F'or L sufficiently 1ýýe a L)(OtL-1) E B



M

Proof: Noting that a LJl a proof r.im•1.A7 t,

Jul

that in Lemma 5.6 will yield

a- S (5.33)

as L"-. #

The second part of Theorem 5.1 can now be easily

proved using Lemmas 5.2 through 5.7.

Proof of Part (ii) of Theorem 5,1: For L sufficiently

large, Xo E B by Lemma 5.7. Lemma 5.6 then

shows that Xi + SI. #

Equation (5.31) reveals the rate of convergence.

Corollary 5.2 IIL(X)-SlII - cc LI IIx-SJI1 for all X E

where 0 < a < 1.

This corollary shows that even though the second

stage is only linearly convergent, the asymptotic error

constant can be made as small as desired by increasing the

number of iterations of the fir.. stage. The 4symptotic

error constant for stage one will depend on

a - maxj)s j/minjxSlI < 1, while that of stage two can be

significantly faster than stage one. This is the purpose of

the second stage, for equation (5.33) shows that stage one

can also yield S1 .



I I', l.y III l''rie'a . . A thr, :wejil iec (1 (, X ) Ii : ' ' oii'*

(n~l(X) - Q (X)X - nM(X). (5 .3)

In; that the mntrix coefficients of n(X) will grow ,xpo-

ticrnt Ially. This may be avoided by generatIng Gn (X) by

Kn+ (X) - Gn(X)X - &M(X) (5.35)

anld

Kn+1 (X) if Kn~l i

11Kn+lll 1f

Gn+l(X) 1 1 (5.36)

Kn+"(X) otherwise,

-n n(

where &n and Kn are the lead matrix coefficients of X) and

Kn(X), respectively. Then let

GLI(X) - GLI(X) (5.37)

a nd

aM -a W L-I MMx (5-38)GL(X) Q LI(X)X - ce'MX. (.38

Now, GL(X) and GaI(X) contain the same scalar constant that

wa; bulilt-up in normalizing Gn(X) in equation (5.36). Thus,



I,'' " " *!

rov>• I i, or thn coef', i,- I"c ent htia b(- enn :.1 or)p wd mi T, t.r m h r s,

Un ) -, n(X).

Thv fo1.1.wtng .trategy In usied to switch from

ntaFre one to stage two.

(I) Compute n(X) until the matrix polynomials tend to

nettle down.

(ii) Compute stage two, as long an rapid convergenoe

appears to be occurring. If stage two is too slow

or is diverging, resume stage one for several more

steps.

A flow-chart of the algorithm that exhibits the

strategy follows. It is guaranteed to work, using exact

arithmetic, for any matrix polynomial satisfying the condi-

tions of Theorem 5.1. The actual computer program that was

used to test this algorithm appears in Appenaix D.
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GIVEN N(X)

WANT S SUCH THAT Ill(S)fl<4

S~STAGE 0NE
ITERATION

+, -�E NO

YES



CHAPTER 6

The Block Bernoulli Method

This chapter covers a generalization of Bernoulli's

scalAr polynomial method to the matrix polynomial problem.

A relationship is shown between it and Algorithm 1.

Definition 6.1 Por the matrix polynomial

M(X) - Xm + A1Xrn-1 + 044 + (6.1)

the block Bernoulli iteration is

X + AIXi + -.. + AmXi m+l - (6.2)

with Xo,X 0 , ,*** im+ ven starting matrices.

The general solution to the matrix difference

equation (6.2) is obtained precisely as in the scalar case.

Theorem 6.1 If SIOB, Sm are right solvents of M(X), such

that V(SI,.,ge Sm) is nonsingular, then

XI -i sa 4 .0. + Si (-3
1 1- ll ~ +Smctm (6.3)

is the general solution to the matrix difference equation

(6.2), where al,..,m are matrices determined by the initial

conditions.

Proof: Substitution of equation (6.3) into equation (6.1)

- 59 -
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yields

m in m

Fa ijX+a+i AE Aa E1 k+JImJ-0o ,1ko k-ui

kal J=O)I

where A° M 1. The nonsingular block Vandermonde

insures that al,...,am can be uniquely calculated
A

in terms of X oXI,...,X-m+I. If X i is the general

solution to equation (6.2) and X I for the

ii first m consecutive subscripts$ then X * for

all i.

In the scalar Bernoulli method, if there is a

dominating root, then the ratio of the Bernoulli iterates

'iverges to the root.

Theorem 6.2 If M(X) has aolvents Sl,..-,Sm, such that SI is

a dominant solvent, and V(SlS,...Sm) is nonsingular, and if

Xo,0X_ 1i...OXm+l are chosen so that a, is nonsingular, then

(I)X- X a1 3J.alS and

(ii) x X- aS

n n-l 1 a

Proof: Part (i) is obtained from
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61

-1n- lslnl

n-11 n11ul i

For part (ii),

XnXn-.I - (i.• Szi)(i• S•'iCil-

nI n- l-iln i i+

-where

m In

wS- n s • 3s(n-1) (6.4)

J=2

and
M1

V sn-10 S-(n-1) (6.5)
Vn E 1 ( 1n "

ut r W

n 1I I1



The block Bernoulli Iteration (6..') oasi alnO b"

written an

Xl0m+2 0 Xti-m+l

X1 0 1X ,
Xi, I -Am Am-A '' -Al X1

(6.6)

where Xi Is a matrix of order n. Equation (6,6) looks like

Xs- m+l

eigenvector powering except is not a vector in

Xi

the usual sense. A theory of such power methods will be

considered in Chapter 8.

Consider the same power-like method on the trans-

pose of the matrix In equation (6.6). That is, consider

+ 0 •' 0 -AT W"

T

W WW - . . WI
2 S*2

•I+i I 1
"W I -A ' w1



MulIt Ip tyl A out., Cho AyINIOM

W A1  W
W'mI 'i 1

W1 1 - 1 - Ar W1m•, I" M . k Am&I
r0. (1)

Wt+1 W9  Ar T I

1w04ul I Ln MultkIply th# jh quMl, ti, n ,t'i .lrt by x r)J

Ani add, The resut to

() ( - Wi)TM(x) (6,9)

w hore

Q M I ( Wi)TX- + +,' +WmT (6.10)

This is precisely stage one of Algorithm 1. Those results

a're generalimationn oF what ocoura in the soi•ar osse. So*

Traub [21.
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lt thl• ohaptetr we preR.nt An alsorithm, agatn

baNPPd O ii r1eimi•a' eoalmr polynomial alaorlthm, to obtain A

dominaWt, Inttnt root;,. eotion 7.1 given the algorithm and a

%'IAv0lgeiOe tIeOPOem, Seotion 7. ti~ onolde 1r another goner-

it4.•t1orn or tihe tIornotlli mothod and its rolationahip to

tho algovithm ol' Seotion 7,1.

'.1 & &I.q. §i•i.g 2L1 Lmbdq-Vecgtors,. The basio approaoh

to theo lambda-matrix problem taken in this paper is to find

a Miin of solvents and, then, to find the *igenvaluess of eaoh

mat.vix of the chain. For Algorithm 1 to yield a solvent,

whioh is needed in this approaoh, a dominant solvent must

exist. S3nce a dominant solvent need not exint, an alter-

native approach will be considered.

A.1gor'itim,~ 2 1dt g (A) Le j~t Irit& m-l d2Agr2, lambda-

vetr. Oenerate

(k)
gk+l(X) -k(X)X M- ()v ,(71)

where

(k k) m-l (kc)(7)

( ) - v 1 + *as + V m( .

Algorithm 2 is another generalization of Traub's

scalar polynomial algorithm. It seeks a dominant latent root.

- 64
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Theorem 71I
(M) N(A) bMa ULiUMI. Laknn ig2&.1, p "'0 mn

(1) ik(A) Ska ) -.!i "p )b
max ' M

~(k+) (k

max

Proof: By Theorem 3.4, the lambda-veotor g n(A) can be

represented uniquely by

inn

where t(p lbt a Q, Thus,

Substituting equations (7.3) and (7.4) into equa-
nn (k+l) (k)

tion (7. 1), one gets M4x) b ± 0
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for all A~. Thus, 0(k) , Ic k hr 0(0)

U'sing thins

Smr

$.P -MA) , b-

ikM(A) mn (

• 1

as c * , if 1 0 , mmnae b is unique to

within a scalar multiple. Furthermore,

g0p)*0M( 1 b bi and, thus,
I=2

since rT~M(pl) * T0Tw e

T~~pi T ,1 'N(pl)b I (7.5)

Finally, rg Co(pl) •' 0 imnplies •I • 0. For-

part ((i)

m,!
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mn k

1 " -wn • , - o , 0 .
max 1 (1 (i

Let (v) denote the r component of Vector v.

Corollary 7.1 nder the conditions of Theorem 7.1, it

bi 0. then, Pvk•- 14

rr

Proof:

UA m
as k- , as •long as ,0b)'0

S1 /ft 1I 1)

rr

i__ II k__I

r

ii

Fr

aska ogas(1b1 0



68 -

If' division of veotors is defined as componentwise

diviuions, then v ( k+ l)*4 (k) Is an n dimension vector, with
11

each component an eotimate of pl. In a manner similar to

the last two proofs, we get the following result.

Corollary 7.2 Under the conditions of Theorem 7.1,

v(k)vi

max vk

Consider again, the first stage of Algorithm 1:

= G~~~k+ 1(X) a3 O(X)X -. *~ ) 76

a W aM X . C~ MMI(7.6)

where

Gk(X) -0 1l + "" + ' (7.7)

I Tn

Transpose both sides of equation (7.6) and substitute

X - AI to get

T -T TX- () kT (7.8)
Gk+lX Ok(A)1

Let gi(.A) be the lambda-vector formed by taking the ith

column of the matrix coefficients of OT(X). Then,k

i I T

g 1k+1 (A) _ gk(X)X - MT(\)vk1  (7.9)

where v is the leading vector coefficient of g M.i 
k
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Equation (7.9) is precisely Algorithm 2, operating on MT(.).

The latent roots of M(O) are the same as those of MT(M.

Thus, the computations of Algorithm 2 are done by Algorithm 1.

Even if Algorithm 1 does not work, due to the lack of a domi-

nant solvent, it is possible to obtain a dominant latent

root by extracting the computations of Algorithm 2 from the

computations (successful or not) of Algorithm 1.

The convergence theorem for Algorithm 2 has the

requirement that r go(PI) 0 0. Since Algorithm 1 used

G0(X) W I, it follows that at least one column of equation

(7.8) satisfies this requirement.

7.2 A Vector Bernoulli Method. A block (,matrix) Bernoulli

iteration was previously considered. Another generalization

of Bernoulli's method is now presented. Similar ideas may

be found in Guderley [3].

Definition 7.1 For the lambda-matrix

IXm + A 1m-1 + ..- + A, (7.10)

the vector Bernoulli iteration is

v(k+l) + A].V(k) + es* + Amv(k-m+l) - 0, (7.11)

with v(o) "..v(-m+i) given vectors.
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Equation (7,11) can be written an

v(k-m+2) 0 1 v(k-m+l)

v(k) 0 v(k-1) J(7.12)
v~kl 0. v~k

v k~)-Am -AM-, -A 1 -V

This is Just the eigenvector powering on the block transpose

of the block companion matrix. Eigenvector powering on the

block companion matrix is

v(k+l) 0 0 -Av(k)

I -A.0 1 m- A 1 .&

(7.13)v(k+l) ". .v(k)_
V2 *2

v(k+l) I -A1  1~~

Multiplying out, we get

'• v(k+l)m = - AmVlCk)

m ml1

v(k+l) - v(k) - A v(k)
m-T m m-h 1-- • (7.14)

Then,
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k k+(A) MA) - M(M)v(k) (7.15)

where the lambda-vector

k, (k)xm-i+ + + v(k) (7.16)
9k 1m (716

is obtained by multiplying the ith equation of (7.14) by

A i-i and adding.

Equation (7.15) is precisely Algorithm 2. Consec-

utive substitutions of equations (7.14) yields

Vk+1) + A1 Vk) + -.. + Amy(k-+) 1 0. (7.17)

Thus, the leading vector coefficient of Algorithm 2 is a

vector Bernoulli iterate. This is a generalization of what

occurs in Traub's [21] scalar polynomial algorithms.

I•



CHAPTER 8

block Eienvalue Problem

A block eigenvalue problem is considered in this

chapter. Let A be a given matrix of order mn. The matrix X

of order n is desired such that there exists an mn by n

matrix, V, of full rank, so that AV - VX. Power methods of

the form V1+1 - AVi are considered, where Vi is an mn by n

matrix. It was shown in Chapter 6 that the first stage of

Algorithm I is of this form, where A is the block'companion

matrix. Sections 8.1 and 8.2 define the problem and con-

sider complete sets of block eigenvalues. In Section 8.3 we

present some generalizations of linear algebra with respect

to this new formulation. The application of the new eigen-

value problem to the block companion matrix is given in

Section 8.4. Also discussed is the relationship between

block eigenvalues and right solvents. In Section 8.5 we pre-

sent two algorithms based on eigenvector powering.

8.1 Block Eigenvectors. Let the term block vector denote an

mn by n matrix that has been partitioned into a column of n

by n blocks. It is equivalently an m-tuple, each of whose

components is a square matrix.

Definition 8.1 A matrix X of order n is a block eigenvalue

of order n of matrix A of order mn, if there exists a block

vector V of full rank, such that AV - VX. V is a block

elgenvector of order n of A.

- 72 -
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Generally the order of a block eigenvalue or block eigen-

vector will be understood and will not be referred to

explicitly.

A problem that has received a good deal of

attention is that of finding a matrix X such that AX - XB,

where matrices A and B, of orders m and n, respectively, are

given. Jameson [6) and Gantmacher [2, p. 215] are amongst

many authors who have considered this problem. The main re-

sult for this problem is that AX a XB has only the trivial

solution X I Q if and only if A and B have no common

eigenvalues. This result will be of use in this paper.

Returning to the block eigenvalue problem, we have

the following.

Theorem 8.1 If AV - VX with V of full rank, then all the

eigenvalues of X are eigenvalues of A.

Proof: Let X be an eigenvalue of X with eigenvector u.

Thus, AVu - VXu a XVu. Therefore, either X is an

eigenvalue of A with eigenvector Vu or Vu - .

Since V is an mn by n matrix and it is of full

rank, there exists a left inverse to V. Thus,

Vu - 0 can only occur if u - 0, which cannot

happen since u is an eigenvector of X. #

Corollary 8.1 If A is the block companion matrix, then all

the eigenvalues of a block eigenvalue of A are latent roots

of M(X).
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Proof: The result follows fr'om Theorem 8.1 and the faut

that the elgenvalue$ or the block oompanion matrnix

are latent roots of itn associated lamhda-matrix.,

8.2 CoMotet2 E of 1 i It will Le shown

that a solvent is a block *iget.,aluo of a block oompanion

matrix. Furthermore, it will be proved that a matrix always

has a block eietenvalue. Since a solvent does not always

exist by Theorem 2.6, it follows that a block eigenvalue of

a block companion matrix in not necessarily a solvent.

Definition 8.2 A Lt of •Jq" g IL I mtr 3

complete, set If the fet U LU 1U..~j 21OMUIL Melas b192h
eigenvalues is the act of eialenvylues 91 Q1i m

Theorem 8.2 Every matrix A, order • ms, Mas I COM L21

of block eigenvalues of order n.

Proof: Let PI"' Pn be any n elgenvalues of A and lot

P ..."Pn be their asso tated elgenveetors or prin-

cipal vectors, where needed. Then, V-(PI,..%,Pn)

is a block eigenvector with block eigenvalue in

Jordan form. This process can be continued for

each of the m sets of n eigenvalues of A. #

As an example of the construction in the above

P 1

proof, let P . Then,
1P



A(1' Itý) • (P' ltý and tIIP1 a° (P 1
I t ( 0 I t

h ~ l)p a l l d | iA lV O A • 0 4 i m p i et , e o a , o r ' b l o k

(O 11 (a 1) P)

el jpnva t~iva or A.

Sd UM 11 Wýý. dUWAU 0il D1.LIS AUII'~ktM

The construction or Theorem 8,2 can be done such

that the first block e*genvalue contains the n largest etgen-

values or the matrix% We thus get the rollowing important

result that wan not true ror solvents.

Corollary 8.2 % tlQak U15%&M 4a & •£2MLL Wt gL al

212211MLIL X&IA 2U 2L &l15 KU~l- 9MLOnlat

Block eigenvalues thus rar considered have all been

In Jordan form. However, unlike solvents, any matrix similar

to a block eigenvalue is also a blole elgenvalue. This rol-

lows, since, If AV a VX and Y w P lXP, then A(VP) -(VP)Y,

and VP is still of rul rank.

8.3 Block V algbra, We now consider some or the basic

properties of block eigenvalues.

Definition 8.4 Blok V, Vl,.S Vk of dimenoion mi .b. n,

k

k linearll independentIt if V~A 1 ~ in~lil
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1 At I Ai~~1~~~j All M in.xkMu. gL USttr n.

Note that. i set oC blook veotorts being blook

11tintrly dopendent does not Imply tthat one of them can he

solved ror am a oomhlnation or the others, since all tho

Al i may he singular.

Loemma 8. - 1 r I a i.''mp lt UM~ Uamq Y-Sv1 * (v 11 ,"',v 1 n). 3b.l.,g, v•,.v &•3 •i2 •.,ly

IJ # ,.,, an, a ut l(• v,11 ) £.g. n. -Z

Prooft (I) Assume (vjj) are linearly dependent. Thus,

there exists (aij) not all szro, such that

E aj .j Let A, be a matrix whose firat

ij

column is (OaW"'.c..in) T and the remainder of the

m
matrix is zero. Then a ViAi - 0 and not all

1*1

the A, ,

(ii) Assume (Vi) are block linearly dependent.

Thus, there exists (Ai) not all zero matrices, such
m

that V1AI Q Let k be such that there is an

element in the kth column of at least one Ai that

Is not zero. Then, E vij(A ) -0 since this is

ii
m

the kth column of • VIAI and, since, (vjj} are
i-i

linearly dependent.
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nelattion 8.5 •0 ý vctgrs V, ,',Vn or dlMenelon mn

n rorm .• o b L for ., V of the same dimension

th@e'@ exists a unIQue .et of matrices Al, ,Am such that
m

V E V I1 A:"

Block vectors being block linearly independent and

forming a block basis are related by the following.

Theorem 8.3 Block vectors V ,,.*Vm of dimension mn by n

form a block basis if and o if they are block linearly

independent..

Proof: Let V be a block vector of dimension mn by n.

V" • V Ai is equivalent to V- (VI,... 2Vm )

The matrix (VI,-..eVm) is square and, by Lemma 8.1j

nonsingular, if and only If (Vi) are block linaarly

independent.

A generalization of a matrix with distinct elgen-

values being similar to a diagonal matrix, is given by the

next result.

Theorem 8.4 If A has block eigexivalues X,1 ',,Xm with block

eigenvectors VIso..Vm that are block linearly independent,

and if X is also a block eigenvalue of A, then X is a block

eigenvalue of diag(XI,...,Xm). Furthermore,

(Vl,...,Vm)- 1 A(VIs..,Vm) - aiag(Xl,...,Xm). (8.1)
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Proof: Equation (8.1) is easily verified. Let AV w VX.

Then, by Theorem 8.3, there exists a unique set

of n by n matrices, acl,'.,sm, such that

mT

i-1

V - (Vl,.s.*.Vm)A. Since (Vls...,Vm) is nonsingular

and V is of full rank, by definition, it follows

that A is of full rank. Now, using equation (8.1),

we get

(Vl,...,Vm)AX - vx a A(Vlj...,Vm)A

a (Vl,#..,Vm) diag(Xlee',Xm)A.

Finally, diag(Xl,...,Xm)A - AX with A of full

rank. #

8.4 Block Companion Matrix. An application of the block

eigenvalue problem is given below. We again consider the

block companion matrix. Recall that

0 0 -Am

C- -Ar- (8.2)

1 -A1

and
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0 1

CB. (8.3)
0 I

-Am -A M-1 -A 1

where

M(X) S X' + A1 Xm- 1 + *. + A M. (8.4)

It will be shown that a solvent is a block eigen-

value, The converse is not true, since a matrix similar to

a block eigenvalue is also a block eigenvalue, but the same

is not true of solvents.

The following is easily verified.

Theorem 8.5 If. S is a right solvent of M(X), then S is a
I

B S
block eigenvalue of CB with block eigenvector

Sm-i

Unlike the scalar elgenvalue problem, the block

eigenvalues, with respect to left and right block eigen-

vectors, are different.

Definition 8.6 An n by n matrix Y is a left block eigenvalue

of dimension n of A, a matrix of order mn, if there exists a

block vector W of dimension n by mn of full rank, such that

WA = YW. W is a left block eigenvector.
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A generalization or what occurs in the scalar case,

(see Jenkins and Traub [8)), is given in the next theorem.

Theorem 8.6 If R is a left solvent of M(X), then R is a

left block eigenvalue of CB, with left block eigenvector

(Dmin.s,.',DI), where

D(X) " IAm-l+D Am-2 +-. +D 2 X +D rn- (IA-R)- 1 M(M). (8.5)

Proof: Let

0 1n i

n S

(Drni ' D1 1) 0 1 a Y(Drn ... 93D1 I).

S-Am -A r- .. -A1

Multiplying out, we get

D, 1 - Am 1  YDm 2

B :(8.6)

D2  - A2  = YD1

DI -A 1  "Y

Consecutive substitutions yield

Sm + Ym-I1A 1 + ... +YAr !1 + Am W 0. Thus, Y - R,

a left solvent of M(X). Now, multiply the ith
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equation of (8.6) by Al; add; let

D(A) S+ Dml m-2 + . +D ; and get

equation (8.5). #

In a similar manner, we find that if S is a right

solvent of M(X), then S is a block eigenvalue of C, with

Vmi

block eigenvector : , where
V1

I

+ V 1m-. + see + VmI. (8.7)

Let R. be a left solvent of M(X). Then by equation

(8.5) and Corollary 3.4, it follows that MR(X) - Di(X), if

the appropriate block Vandermondes are nonsingular. Also, by

equation (3.12), Di(Si)- (AMi))-, which is the inverse of

the leading matrix coefficient of the ith fundamental matrix

polynomial.

Let

SM-

si

and
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Wi"- (D(') ,'66,Di,) M 89

where it is assumed that both V(SI,...ISm) and

V(SI,...S±_ISi+I,...,Sm) are nonsingular, and that

R1 - A)- SiAMi) from equation (3.11).

The biorthogonality of right and left block eigen-

vectors is given by the following.

Theorem 8.7 Under the above assumptions

w - 61 A 1 )-. (8.10)

Proof:

I

W WVj " D(it) ... SJ

rn-
_-=• SM-1

a D(I) + D(i) S + .. + 8 m-i D (Sm-I m-2 3 3 Di(j

a D Di(Si)Mi(Sj) - 6ijD(Si) - 6jA 1 #

From Theorem 8.5 and Lemma 8.1 the result that

V(SlI,'..Sm) is nonsingular, if and only if the block eigen-

vectors of CB are block linearly independent, is easily

obtained.
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8.5 Algorithms for Block Eigenvectors. Consider now block

powering meethods, as in equations (6.6) and (6.7). Let
V1I V2

(V)k a Vk, where V 2 and Vi is an n by n matrix.
0

Vm

Algorithm 3 Let

Un+1 AUn (AUn)U (8.11)

where UO is an arbitrary block vector of full rank and

1 < k < m is an arbitrary fixed integer.

The normalization in equation (8.11) depends upon

the nonsingularity of (AUn).

Lemma 8.2 Un = AnUo((AnUo))
kY

Proof:

Un+1 ' AUn ((AU)

a A 2 Un-1 ((AU nl))kl((A2 U nl((AU nl))l)

n- AUn((AU nl)k)-l((A2n- ) ((-~lk1)

SA .Un((A2Unl)) . k) -oAlo((Ao'lo 0 )).,
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With this identity, convergence can be proved.

Theorem 8.8 Let- S ,..-.,S mbe a complete set of block elgen-.

values of A with block eigenvectors V,.1,V%. If SI domi-

nates all the other block eigenvalues and Uo is in the span

m

of {V,}, that is U0 - & Vi,,, and a, is nonsingular, then

U n+l IN AU n ýAnQ converges to V 1 islk) i

nonsingular.

Proof:

U n (AnU 0)((A nU.))'

( /

Ii-i/ii

as n * V, by Lemma 5.1. Since, as shown above,
(AUn)kllSln- (Vl)k it follows that (AU)k s

nonsingular for n sufficiently large since tVl--

exists by the hypothesis.
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In the application to the block companion matrix,

the existence of a k such that (Vl)k is nonsingular, is

equivalent to the existence of a solvent. If a right solvent

exists, k can be taken as I by Theorem 8.5. The converse is

proved below.

Theorem 8.9 If C -V VX and (V) 1 is nonsingular, then

S - (V) 1X(V)•l is a right solvent.

Proof:

I
D2

Let V(V) 1 - D - . V(V)- 1 is a block'

Dm

eigenvector of C with block eigenvalue'

S - (V)IX(V) 1 . Thus,

2 2  S.
0 1

-Am -Am -A 1  Dm Dm

Multiplication yields Di - S and
DmS + AID + see + Am Hence, S is a right
m I m

solvent.

Thus, Algorithm 3, applied to the block companion

matrix, converges to a block elgenvector associated with a

A
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solvent. Since block vienvalues alwayis ex*•t bu.t molvonto

do not, it is nacenaary to consider a norma1iviatton which

does not depend on the existenoce QC bolv@nt. A hAlook ,tKwn-

value yieldn, by Corollary 8.1, as much informatlon to the

latent root problem as a nolvent does, The diffioulty to

that a deflation of tho form M(X) o Q(X)(IX-S) is not

available for block eigenvalues.

For a block veotor Vj of full rank, lot (VJ)k

denote the n by n matrix formed by taking the first n rows of

Vj that are linearly independent. Actually, the rule for

choosing the n linearly independent rows is not important)

as long as the rule yields a unique set of rows,

Algorithm 4 Let

SAUJ AU) ) (8.12)

If it is assumed that A is non.ingular and U is of0

full rank, then AU will remain of full rank, and the itera-

tion (8.12) will always be defined. It is the goal here to

get U to converge to Vl, the block eigenvector corresponding

to the dominant block eigenvalue of A. Since the dominant

block eigenvalue cannot be singular, it follows that for U

close to V1, A is not required to be rionsingular to ensure

that the normalization, (8.12), is defined.



11 ~ ~ .
A7 

-1 
A U

3411

Lot ( Vj) rdenote the n by n matrix r,)rmed from the

first n linearly Independent rows of V,, Convergence of

Algnrithm 14 can now be proved precisely, as in Theot'em 8.8.

Tho%;rem 8. 10 Let S *'I Sm ki IL LonWj&ý,± WkS 2f 19 ~J2iL h 2iuiŽP

valven of A W= blo~okegnivotreV lsVi -Vm.UjLS, d2ffl

9..&AA.~3aUJ+1 AU,((AUa )) oonverses to Vl"~
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Kight, numE'ioal examplsm V'ollow. All oalculations

wv'v dono ti Cornell Univeri1ty 'a IBM 360/67 in APT., Tht• 4g

n tV1mo-ahlrtinl language t.iAt gives the numerloal antilyst

rC.bxbittty in deosignng algoritlhms. It ha' oomplete matrix

'It 1hmeott and does all, caloulatinnn In dciihle prc.aoiuhn,

1).1 Contiider thie monio oublo matrix polynomial

M(X) a X3 ( 2X + 18 66)
(-3 1 -33 -81

Algor'ithm I yields for stage one

( X

1.111 -4.7778 2.333 6.333

1 .(I 02 1 2.979 (1.105 -6-865)2 (x) a X2 + 1.o9)X + ,342 912
-6.290 3.1432

X2A)* (1.956 3-356)\ + (-1-394~ -8.061)\
3\(-1.678 -6.989/ 4.030 10.697/

?YX)- X2 +(-2.008 3-5784\X (-1-586 -8.76,

-1787 -7.368 4.381 11-557)

88 -
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and

) W x. + (-2.096 3-7193X +
5 -(.856 - 7 5 9 3 4j597 12.075

and for stage two

(3.9925 -2.14261\
1.2131 7.6317/

39729 -2.0892)
U .0,,6 7.1067)

/3.9927 -2.0179
k .0089 7.0195)

X 'M 09985 2.00314

o0017 7.0035)

4 0003 7.0006)

and

(3.9999 -2.0001)

4 -2

- 0o0 7 .O001)

S(1 -) is a dominant right solvent of the matrix

polynomial.

9.2 Consider the monic, cubic matrix polynomial having right

solvents S1 *( S2 ( and S - Q1 4 2 2 3 3-1
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which have eigenvalues 5,6; 3,4 and 1,2, respectively. Thus,

fIt u dominant nolvent., Furthermore, V(SI, 2 ,S 3 ) and

V(S 2 2S3 ) are nonsingular. The unique monic matrix polynomial

having these solvents, which was obtained using Corollary 4.3,

is

M(X) X3 (1-9048 08095)X

42314328358 -10.161417910
-13.43283582 25.64179104)

<(-50.35820896 21.88059701
19.58208955 -22.80597o15)

The corresponding lambda-matrix has latent roots and latent

vector3

Root Vector
1 (i~i.5) T

2 (1.1) T

3 (1,-2) T

4 (i,,-I) T

5 (!-)T

6 ( 1 ,-. 5 )T

From these results, we find that S 4 -( ) is also a

solvent. Its eigenvalues are 3 and 5 and, hence, it yields
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only redundant information for the lambda-matrix problem.

Note that the only combination of latent roots that cannot be

eigenvalues of a solvent are 4 and 5.

For this problem

()-X2 +(-57/ _I49X+( 8 719 4 1/9)
1 8/9 -4 2/9 - 8/9 4 5/9

2to which U nX) is to converge. Letting 0(X) 0 , we get

.6(x) x2 + 8X + ,

.724 -2.644 .259 2.122

( c
2(X) MX 2 + (5.696 1.407) 8.566 -3.986)

1.759 -4.161 -\3.553 4,357/

and

U + (- 5.770  1.441)X 8.756 -4099
1.876 -4.216/ 4-3.854 4535)

The ratio of the leading matrix coefficients, which is to

converge to S ( 2), results in- 4

(-O) a9 1- 7 1 -8 )

-1.910 9.209

-T8774.30
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and

(Q20&191 - 6.983 1.966)

Algorithm 2 which yields a dominant latent root was shown to

be obtainable from the first stage of Algorithm 1. The iter-

ation for this problem is

Latent Root Estimate

1 11.7910411
2 8.332911
3 7.247455
4 6.743387
5 6.467439
6 6.302969
7 6.200093
8 6.133848
9 6.090399

10 6.061549
11 6.042225
12 6.029191
13 6.020346
14 6.014309
15 6.010162
16 6.007294
17 6.005296
18 6.003892
19 6.002895
20 6.002181
21 6.001663
22 6.001283
23 6.001000
24 6.000787
25 6.000626
26 6.000501
27 6.ooo4o4
28 6.000327
29 6.000267
30 6.000218

All of the iterations thus far described have been

linearly convergent. The ratio of the errors has been .8,
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which is the ratio of the smallest eigenvalue of the dominant

solvent and the largest of the next dominant solvent. The

second sta~e should also be linear, but with a ratio of

errors C(. 8 )L-. The results are

L 10 L 5 L- 2

6.8738 1.6815 6.8632 1.0039 8.3287 -.0258
S(-.8769 4.3084) -. 8216 4.9284) (-1.2123 6.4868)

l -. 9770 4.0475) - 8495 4.3918 -. 8895 5.3558

(6.9963 1.9927 69153 1.8115) 6.8201 *.88144)
.-9964 4.0072 -. 9215 4.1741) -. 8009 4.9547)

(6.9994 1.9989 69602 1.9165 6.7670 1.11458)
X3 O( )(

-. 9995 4.0011 -. 9630 4,0774 -. 7878 4.7206

X4 6.9999 1.9998 6.9819 1.9630 6.7763 1.3414
-. 9999 4.0002) -. 9832 14.0343)( -. 8043 4.5559)

X7 2 '\7 2 (6.9790 1.9573)
15 -1 44 / 4 -. 9819 4.0367

The ratio of the errors, which by Corollary 5.2

should be C(.8) L- was found for large values of i to be
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10 .15
8 .23
6 .36
4 .54
2 .78
1 .91

This shows that by increasing the number of iterations of

stage one, stage two can be made to converge more rapidly.

9.3 Consider the matrix polynomial

M(X) = X2 (i.44382802 3.420249653/
+ 0.8613037448 -5.556171983)

(41.02912621 -20.93481276
+ 0.5533980583 7.332871012)

(-39.65603329 23.56171983

0.6074895978 -3 386962552)

It has a complete set of solvents, S1  ) and-1 4

S2 M $3 .The eigenvalues of S1 are 5 and 6, while

while the eigenvalues of S2 are 1 and 2. Clearly, V(SIS 2 ,S 3)

and V(S 2 ,IS 3 ) are singular. Algorithm 1 converged for all

values of L. With L - 6, we get

x ( 6.7783 1 )2464)
° -1.0231 3.9215
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X1 6.9896 1.9764
-1 001i 3.9975

and

x - 6.9997 1.9995)
- .0000 3.9999

The convergence is fast, though linear, since the asymptotic

6error constant is (.4)

9.4 Consider the problem

M(X) - X2'+( 4 4)X2 52.6 -29.2) (+73.2 40.8

1.6 -8./ 1.4 22.8 16.8 -19

7 2
This problem has a complete set of solvents, s1  .(-l 4)

S2  ( 0), and S3 (3 ). SI dominates, V(SI,S 2 %S3 )2-2 04

is nonsingular, and V(S 2 ,S 3 ) is singular. MI(X) exists

uniquely, but its leading matrix coefficient is singular.

Hence lim U (X) does not exist. However, Algorithm 1 con--nm

verged. This is because the second stage needs the ratio of

GL(X) and GLl(X), not ZL(X). For this type of problem, the

equation Xo a a can cause difficulties because

1 can become singular, For this problem, however, the
1

ratio did exist since aLl did not quite become singular.
i ~ If it had, a random Xowould have been used. After twenty

I
Iti aarno 0wudhv enue.Atrtet
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iterations of the first stage,

S-0(5.0260 -2.0376)

x -5065 5.0094 "

Then,

X 1 = ( 5 - 7 4 1 -1 .6 5 4 4 )

-.(186h 14.1628)

and

(69929 1.9857)

(.9982 4.0036

9.5 Consider the quadratic

i M(x) - x2 + x + .

The corresponding lambda-matrix has latent roots -16,05113,

-. 4215 and -. 2637± 1.8649i. There exist two solvents having

these as their eigenvalues, but neither can dominate, since

there is a complex pair of latent roots whose absolute value

is between the two other latent roots. Algorithm 1 did not

converge, but Algorithm 2, whose computations are done by

Algorithm 1, did converge to yield the dominant latent root,

-16.05113. The order of the matrix coefficients was then
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reversed and the minimum latent root was fcund. Using these

results, a solvent was formed, deflated, and the new problem

yielded a solvent with eigenvalues which were the remaining

complete pair of latent roots. This problem suggests the

use of a random complex shift of the variable in the lambda-

matrix. This will break up troublesome complex pairs of

latent roots. With a shift of i, Algorithm 1 converged with

no difficulties. All computations were done in the complex

domain.

9.6 Consider the quadratic

M(X) - x2 + -)x +(O 12)

2 -9 2 14

The corresponding lambda-matrix has latent roots 1,2,3.4 with

corresponding latent vectors ( 1 , 0 )T, ( 0 , 1 )T, (iI)T, (1 ,1 )T.

The problem has a complete set of solvents S1  and

S - . Other solvents have eigenvalues 1,2; 1,4 and2 0 2

2,3. The only pair which cannot be the eigenvalues of a sol-

vent is 3,4. Thus, no dominant solvent exists and Algorithm

1 did not converge. However, Algorithm 2, as computed by

Algorithm 1, yielded the dominant latent root, 4.

Reversing the order of matrix coefficients has the

effect of making the latent roots the reciprocals of the

original latent roots. The right solvents are the inverse of

-- I

mj
m :1
mI

mA
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the original ones, Thus, L And k aro the new domtititl, aitLiit

rooto. Algorithm I convergod to 0) , Andt h01100 It
/1 (0)

soIvent( 0) was found for the orilinal problem, Noto t~hsit

for the problem for which Algorithm I did oonverige, tho''. wao

no complete set of solvents which included the dominant mol

vent

9.7 Lancaster considers a teat problem whioh "depends on a

parameter whose value determines the proximity of olusterod

roots" [13, p. 90). Consider M(X) - X2 + A1 X + A2 b where

3a - (1+a2+202) *(1+20 2) -02(02+82

2 0 0 0

A"-1 0 2 0 0

0 0 2 0

and

_-1+ 2 2  2 2+282) 2 282 - 82 2 2)
12t 0-01(a o2+202 2a a3 -a$2 (a o2+0•

2az -(a +20 2aO -8 (01 +0
I 0 0 0

0 0 0

where a o + 1. The eight latent roots of MM) are



A 1 earlt hm I won L~tods t * ti *A~twori'fit ribi' no*t~*I * Andt

.00 1. When a to mad. Hmal1, tho 14ma11e~t. .teIgivalkio 4'I4 tho

dtomna1int. molvevi app1'uohesli tho lArgont olitonvolue oir theo

nex~t solvent. Thus, %)onv~rxont,* to oiottnnPvah~iy ntl;'woi t'o

amaller fa. Using the oode An Apporidix DO, the renulteo woro

103

1 10 .9~1

10 j 8110 .6

.1 28 7 "X0

1001 30 6o4

9.8 F~inally, consider the intriguing problem

Note thiat



- ~ |I" R |om Ilil alit iPoI •volI t s blt it, nail he 1hon|•lel th~t,
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*.(X - 2;(X)0• 1 (X)

61(( 1)X (2 2)J( 1 x 1X (2 2)

It i, eoun•ly seen that 2 (X) I S for all X muoh that

X- ') is nont ingular. Thus, the exact solution\ ý! 2 (o0

In obtained in one iteration of stage two 'or any X

tnntiafying this one easy condition.



APPENDIX A

This paper has oonsai$ored only matrix po]ynomials

(.%nd Isoubda-matrioen), where the identIty matrix was the

leading matrix coueffioient. Consider now, the matrix

polynomial

M(X) h AoXm + Am'I + so- + Am (A.1)

Ir Ao in nonningular, then R(X) I Ao1M(X) is the problem

that is dealt with in the body of this paper. Ir R is a left

solvent of M(X), the 1 w A;1 RAo in a left solvent of RM.

The case where Ao is singular presents some diffi-

oulty in the matrix polynomial problem. Franklin [1) con-

siders the problem M(X) w(1 0 ) X2 + (0 2> )X+(0 0). 2
(0 0 3 0 6

0 -2

which has a solvent ( ) for all values of 1 and b. Thus,

a matrix polynomial with both A. and Am singular can have

solutions with variable eigenvalues.

If Am is nonsingular then

MR(X) = Amxm + Am-lXm-i + -' + Ao (A.2)

can be used. The solvents of MR(X) are the inverses of the

solvents of M(X). M(X) does not have any singular solvents

since A. is nonsingular. However, if MR(X) has a complete

- 101 -
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Net of nolventOa then one of them must be aingular slince

zn,'o is a latent, root o0' MR(x). This follows since

(let M (0) P dot A° - 0.

In oontrast to the matrix polynomial problem, the

latent roots of the lambda-matrix problem

MA ÷5A i Am (A-3)o 1

can be oaloulated, even if Ao is singular. If Am i singular,

then A = 0 is a latent root of M(X). If a is not a latcnt

root of M(A), then Am (o) Is nonsingular, where

M ") M(+c) " Ao(,)m + ... + A m(). (A.4)

Furthermore, if p • 0 is a latent root of Ml(), then i/p

is a latent root of

MR(A)" X" M(l) -AmXm + Am._,Xml + - + As• (A-5)

If MR(X) has a zero latent root (A0 is singular), then MO)

is said to have an unbounded latent root. A lambda-matrix

M(X) is said to be degenerate if det MMA) - 0 for all X.

This can only occur if A. and Am are singular.

Consider the following algorithm for a non-

degenerate lambda-matrtx. It transforms a lambda-matrix
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with a singular leading matrix coefficient into one which is

not. The tannuformed lambda-matrix in either

(1) MR(,) if Am Is nonsingular

or (iU) MS(x) M(M + ) , where det M(c) # 0.

Part (ii) works since XmMS(1) - M(+c), which does not

have a zero latent root.

F



APPENDIX B

Previously Known Methods for Lambda-Matrices

The determinant of a lambda-matrix is a scalar

polynomial. Let f(X) a det M(N). If one is willing to

evaluate the determinant many times, then one can use any

of a number of algorithms for the zeros of a scalar function.

Tarnove [19] considers the use of Muller's method. He de-

P-I

flates known roots by considering fp(A) - f(X) H (X-\I)I
ju1

Lancaster [10) notes that

f'(X) - f(X)Trace(M-l(X)M'(X)), which he uses in Newton's

method. Newton's method is also used by Kublanovskaya C.9],

who finds fr(x)/f'(Xi) by using a factorization of M(Xi).

Another approach analyzed by Lancaster [12) is the

use of a power-like method with a generalized Rayleigh

quotient. That is, for arbitrary Go, ro and X let

-"[M(UA) , ni - MT(Xi) no, and

Xi+l Xi nTM,( . Lancaster has shown that, for a

class of lambda-matrices, this iterative process is locally

convergent and quadratic. Modifications of the above algo-
]-V1

rithm by ýi = [M(XN)]-1&I'_, ni M T (xi) fij1 has also

been considered by Lancaster.

- 1o4 -
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Another approach, due to Lancaster [14), is to

connider the eigenvaluen of M(A). Let p(A) be a scalar such

that M(X) - P(X)I Is singular. Then a scalar p is needed

such that P(p) w 0. Lancaster considers Newton's method

on P(A).

The above methods of Lancaster and Kublanovskaya

are only locally convergent and they do not have a method of

deflation associated with them.

A symbol-manipulation approach is to perform

Gaussian elimination on the lambda-matrix using polynomials

in the computations. That is, every non-trivial lambda-

matrix with det Ao 0 0 can be transformed, by elementary

transformations only, into a form such that

M(X) - P(X)N(X)Q(X), where det P(X) - c1 Pi O,

det Q(X) - c 2 # 0 and N(X) a diag(a 1 (X),...,a n(X))) with

a i(X) monic polynomials and ai( ) divides a+1 (X). N(A) is

called the Smith canonical form of M(M). See Wilkinson [22,

p. 19). Then all the roots of the a iC)'s are latent roots

of M(X).

This method parallels the approach of finding the

characteristic equation in the eigenvalue problem.



APPENDIX C

The Quadratic Matrix Polynomial

The monic, quadratic matrix polynomial,

M(X) - X2 + AIX + A2 , (C.1)

with right solvents SI and S2 , is of the general form

M(X) - x - [s1 + (S1-S 2 )S2 (Sl-Ss)-1]x + (s 1 -s 2 )s 2 (S 1-s r-s 1

(C.2)

if det V(SI,S 2 ) - det (S 2 -8I) # 0. Nute that if S1 and S2

commute, then

M(X) - X2 - (Sl+S2 )X + SIS2 (C.3)

even if V(SIS 2 ) is singular.

The corresponding lambda-matrix can be factored as

M(M) x (i S - 2)S2(Sl-S2)-l)(IX-sl)

- (I_- (S 1-S 2 )S 1 S(-S 2 )-l)(IA-S 2 ). (C.4)

Thus.,

R2 = (S-$2)$2(SI-32)-1 (C.5)

- 106-



-107-

and

H1 - (SI-S 2 )s1(s-s2)-S 1  (c.6)

are left solvents of M(X). From equation (C.5) it follows

that

s 2 _ s1 - (S +R2 )(s 2 -S().c7)

Furthermore, -A 1  R2 + S 1 - R1 + S2 and A2 -R 2S 1  R1 S 2 .2'

It is easily verified that

0- (C.8)
I2 - (S1 ) (l I)Sl V 2)

and hence, the block companion matrix Is similar to )
regardless of V(S 1IS 2 ),

Assume that A1 and A2 are real matrices and let

S1  Sr + iS be a right solvent. Then,

M( 2 + A + A X- 2 +iR 2  ,XS+iS). (C.9)

c crEquating coefficients, we get R+ S -0 and Rc 3+R S -0.
r c cr

Then, R R2 +SIS1 - 0. By direct substitution it now follows

that Sr - iSc is also a right t,. '_vent. Thus,
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Theorem C.1 For a real, monic and Suadratic matrix poly-

nomial, if S + iC is a right solvent, then

(i) S - iC is a right solvent,

(ii) R - iC is a left solvent, and

(iii) R + iC is a left solvent,

where R + S = -AI.

Given arbitrary matrices S1 and S 2, Corollary 4.1

shows that there might not be a monic, quadratic matrix poly-

nomial having them as solvents. Such a condition occurs if

S and S 2 have distinct and disjoint eigenvalues and if

det V(SI,S 2 ) - 0. If V(SIS 2 ) is nonsingular, then M(X)

always exists. The following result gives necessary and

sufficient conditions for the existence of M(X).

Theorem C.2 There exists a matrix polynomial

"M(X) a X2 + A1X + A2 having right solvents S 1 an__d S2 if and

onlZ if there exists a solution Y of

Y(S 2 -SI) = ($2-s2). (C.10)

Proof: In finding A1 and A2 to satisfy

M(S) -2 s+ A S1 + A2

M(S2 2 + + A2  O (C.11)
2 S 2  1AS2

the matrix A1 must satisfy A (S 2 -SI) - $-SI). #
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Note that if V(SI,S 2 ) is singular and the condi-

tion of Theorem C.2 is satisfied, then M(X) exists, but is

not unique. From equation (C.10) if follows that

Corollary C.1 If (S 2 -SI) is singular and (s2_-S2) is non-

singular, then there is no monic, quadratic matrix poly-

nomials having S1 and S 2 as right solvents.

I
t$
I

I

!

I

b
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The computeri |.1ogr'am thatt wall usod for Alg~orIthm I

follows. It Is written in APL V'vi, the IBM 360/67, it In n)n

interactive language and the program naka Cor

(I) the degree of the mat.Ix polynomial,

(ii) the dimension of the matrix coefficients,

(iii) the matrix polynomial,

and (iv) the stopping criterion (an c such that IIM(X)II 01 <

terminates the computation).

Following the code is an actual output for Example 1

in Chapttr 9.
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