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ABSTRACT

A matrix 8 is a solvent of the matrix polynomial

M(X) = x™ + A x™1

l + s +Am’

1f M(S) = Q, where A,, X and 3 are square matrices. We

l‘ . nresent some new mathematical results for matrix polynomials,
as well as a globally convergent algorithm for calculatling
such solvents.

In the theoretical part of this paper, exlstence
theorems for solvents, a generalized divisiocn, interpolation,
a block Vandermonde, and a generalized Lagranglan basis are
studied.

Algorithms are presented which generalize Traub's
scalar polynomial methods, Bernoulli's method,and eigenvector
powering.

The related lambda-matrix problem, that of finding

a scalar A such that

m m-1 .
INT + Ay + + A,

is singular, is examined along with the matrix polynomial

problem.

The matrix polynomial problem can be cast into a
block eligenvalue formulation as follows. Glven a matrix A of
order mn, find a matrix X of order n, such that AV = VX,
where V 1s a matrix of full rank. Some of the implicatlons

of this new block eigenvalue formulation are considered.
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CHAPTER 1

Introduction

In this chapter we state the problem, give some of
the definitions, present the major results of the paper, and

outline the entire dissertation.

1.1 Preliminaries. Algorithms for the solution of the scalar

polynomial problem, x™ + alxm-l + e 4 an = 0, have become

exiremely efficient. See Traub [20,21] and Jenkins and Traub
{7,8]. A Z~~erslimation of the scalar polvnomial is given by

the following.

Definition 1.1 Glven n by n matrices Ao’Al""’Am’ a matrix

polynomial M(X) 1s the matrix function

M(X) = on’" + ALY, L A, (1.1)

1

in the n by n matrix variable X.

——  castna——

If AO is nonsingular, then the monic matrix polynomial 1s
H(x) = ATIM(X). (1.2)

Two generalizations of the roots of a scalar poly-
nomial are to be examined. The first one, the major emphasis
of this work, is classical. Little is known, however, about

existence and calculation of such roots of matrix polynomials.




Definition 1.2 A matrix S 1

gclvent of the matrix poiy-

I

nomial M(X) if
M(S) = 0. (1.3)

Definition 1.3 A matrix W 1s a weak solvent of the matrix

polynomial M(X) if

det M(W) = 0. (1.4)

A special case of the weak solvent problem 1s the
important lambda-matrix problem. Restricting the class of
weak solvents to scalar matrices, AI, and using the notation

M(X) = M(AI), the lambda-matrix problem is that of finding

a scalar A such that

m m=1 e
M(2) AT + A + + A (1.5)

is singular. Such a scalar 1s called a latent oot of M(A)

and vectors b and r are right and left latent vectors, respec-

tively, 1f, for a latent root p, M(p)b = 0 and rTM(p) = oL,

M(1) in equation (1.5) 1is an n by n matrix whose elements are
scalar polynomials in A. See Lancaster [13], Gantmacher [2],
MacDuffee [15], and Peters and Wilkinson [17] for a complete
discussion of lambda-matrices. A description of some of the
present methods of solving the lambda-matrix problem 1s found

in Appendix B.
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Only monic matrix polynomlals are studled in tle
main part of this dissertation. The case of tne nonmonic
matrix polynomial, and where Ao i1s singular, will be consld-
ered in Appendix A. If A0 is nonsingular, the monic matrix
polynomial M(X) can be obtained by the solution of several
linear systems, as was suggested by Peters and Wilkinson [17].
Hence, we conslder

MX) = X"+ A X" 4 e wa L (1.6)

The followling are some well-known results that will
be frequently used. They may all be found in Lancaster [13].

A corollary of Bézcut's theorem states that if S is

a solvent of M(X) then

M(2) = Q(A)(Ixr-8), (1.7)

where, Q()\) is a monic lambda-matrix of degree m-l. Another
result 1s that the lambda-matrix M(A) has mn latent roots,
and hence, it follows immediately from (1.7) that the n
eigenvalues of a solvent are all latent roots of the lambda-
matrix. Furthermore, the n(m-1) latent roots of Q(A) are
also latent roots of M()).

If one is interested in the solution of a lambda-
matrix problem, then a solvent will provide n latent roots

and can be used for a matrix deflation, which ylelds the new

problem Q(A).




R

L2 Main Reaulta of thin Paper. The following ave the prine
cipal reaulta of thia work., They will be proved in latep
chaptera,

The Fundamental Theorem of Algebra, that a acalav
polynomial has at least one rero, doea not hold true fop
matrix polynomiala. There are matrix polynomiala whioh have
no solventa (Theorem 2.6).

It 1a useful to have a coneeapt of a matrix poly-
nomial with a complete set of anlvents. Thia 1a a generali-

th

zation of an n degree ascalar polynomial having n roots,

Definition 1.4 A set of m solvents of M(X) ia a gomplete set

of solvents, i1f the set of mn elgenvalues of the m solvents

Oom— e ——————— iume  TErceaeES  Ewegees  GeAWEt  ammeem Wl

is the same, counting multiplicities, aa the get of mn latent

—— o o

roots of M(\).

Thus, in the special case of M(A) having mn dia-
tinct latent roots, a complete set of m solvents must have
no common eigenvalues and each solvent must have distinct

eigenvalues.

We conslder a generallzation of the scalar

Vandermonde matrix.

Definition 1.5 (@iven n by n matrices S,,***,S , the block

Vandermonde matrix 1is




nm--l ﬂw-l nmw\
| v "

Tt will be ahown in Chapter 4§ that tt in not aufft-
vient that matrioes s).'--.sm have dlatinot and diajoint
eigenvaluea for V(81°"°'8m> to be nonaingular,

Rxiatence uf a ocomplete aet of molventa for the
important, apecial ocaanco of the lambda-matrix having diatinot

latent roota is given by the following theorem (Theorem 4.1),
Theorem If M()) haa diatinet Jatent roota, then M(X) haa a
complete aet of solvents, 8,,+++,8 , and V(8,,*++,8 ) ia nop-
aingular.

Definition 1.6 A solvent of M(X) ia a dominant solvent if

the n elgenvaluea of thia aolvent are astriotly the n largeat

latent roots of M()\).

Algorithm 1, presented below and again in Chapter 5,
attempta to find a dominant aolvent of M(X). 1t is a gener-
alization of one due to Traub [21] for scalar polynomials.
The algorithm has two stages. The first, a generalization of
Sebastiao e Silva's algorithm (see Householder [4]), generates
a sequence of matrix polynomlials, all of degree less than m.

Then the last two matrix polynomlals of the generated




aeguence Are uned tn a matrix {toration which in to converge

to a duminant avlvent,

Algortthm )
(1) Let (10()() -1 and

n
0n+1(X) = A (X)X = ayM(X), (1.9)

m n= 0.1..'..10"1. !“0?’2

n -1 L BN I ] n
Q. (X) & ulx"' + + ar. (1.10)

-1
(11) Let X, -(uli‘)(oll"l) and
-1
Xyqy = 0p(X)0701(X,) (1.11)

for 1 = 0,1,°°*>,
Convergence of this algorithm is esatablished for a
class of matrix polynomials (Theorem 5.1).

Theorem If

(1) M(X) has a complete set of solventa, S,,+**,5,,

(11) S1 is a dominant solvent, and,

(111) V(Sl,---,sm) and V(s2"°"sm) are nonsingular,

-1
(a?) cn(x) -+ l(X) as n + =, where

~~
(e
N’
<l
~
>
~r
i

b




£y

HI(X) ia the upigue monte matrix polynomial of

degree m-1 with soivents S,,0*,5 . but not 5,, and
(11) for L sufficiently large X, of equation (1.11) ¢on-
verges to S,

It will be ahown (Corollary 5.2 and Lemma %.7) that

each atage of the algorithm is linearly convergent. Let ¢ be

the abaolute value of the ratio of the amallest eigenvalue of
S1 and the largest remaining latent root of M(A). Then the
asymptotioc error constants of the first and second stage are

oL'l, respectively, where o < 1 and L is the num=-

¢,0 and o,
ber of iterations of the first stage before switching to the
second stage. Thus, the second stage, though linearly con-
vergent, can be made arbitrarily fast by increasing the num-
ber of iterations of the first stage. In the oomputational
algorithm, we pick an arbitrary L and then examine the second
stage, If it is converging too slowly (or diverging), then
the first stage 1s resumed for several steps and the process
is continued. Thus, given that the three hypotheses of the
above thecrem are satisfiled, this process, in exact arithmetic,
is guaranteed to yleld a solvent of the matrix polynomial.

If a domlinant solvent does not exlst, then the algo-
rithm will not yield a solvent. In addition to the results 1in

the above theorem, the first stage yields a dominant latent

root, 1f one exlsts. Conslder the following algorithm which

obtains a dominant latent root (Chapter 7).
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Definitlon 1.7 Glven vectors VorVystttaVpy of dimension n, 8

lambda-vector g(A) is the vector function

Pl SRR (1.12)

= m
g(r, = VOA + vy n

Algorithm 2 Let go(x) be an arbitrary m=-l degree lambda-

vector., (enerate

B4 (V) = & (DA = MOV, (1.13)

where

(n),m-1 _ ... (n)
vy A + + Vi (1.14)

i

gn(k)

This is another generalization of Traub's scalar
polynomlal algorithm. For a vector v, denote by max v the
first element of v which has the maximum absolute value,
Note. that max v is not a norm. Then a convergence theorem

for the algorithm is as follows (Theorem 7.1).

Theorem If

(1) M(X) _has distdnct latent TuOLS, Py,*** 5P >

(11) |pl| > Ipi| for 1 # 1, and

(111) r?go(pl) # 0, where r{M(pl) = ET,
then
g (1)
- _ M())
(1) g () = —2 - b where M(p.)b, = 0
n max vinT A - Py 12 —= 1’%1 -




and

———

(n+1) (n)
v -0

(11) & e\
max Vl

(1.15)

+
io

The transpose of any column of equation (1.9) with
X = A\I, 1s precisely equation (1.13), with MT(A) replacing
M(2). Since the latent roots of M ()A) are the same as those
of M(A), a dominant latent root.of M(A) can be obtalned from

equation (1.15) by Algorithm 1, the matrix polynomial solvent

algorithm. This can be done regardless of whether a dominant

solvent, or any solvent at all, exlsts.

1.3 Outline of the Remainder of the Paper. Thils paper con-

talns three intertwined yet distinct subJects. They are

(1) new theoretical results on matrix polynomials,

(11) algorithms for solvents and latent roots, and
(111) a new block eigenvalue problem.

Chapter 2 considers the baslc properties of sol-
vents. The exlstence of solvents and factorization of lambda-
matrices are considered here. A generalization of Bézout's
Theorem and the relationship between polynomial coefficients
and the elementary symmetric functlons are also discussed.

In Chapter 3 we present some of the basic proper-
ties of matrix polynomials. Interpolation, representation
theorems and fundamental matrix polynomials are presented in

this chapter,
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Properties of the block Vandermonde matrix are glven

in Chapter 4.

The second major area of this dissertation concerns
1tself with algorithns for finding solvents and latent goots.
Chapter 5 presents Algorithm 1, the maln algorithm of the
paper. The method finds solvents and 1s a generalization of
Traub's scalar polynomial methods [21]. A convergence
theorem, computational discussion and flow-chart are given

here.

A block Bernoulll method 1s described 1in Chapter 6.
The relation between this method and Algorithm 1 1s dilscussed.

In Chapter 7 we present Algorithm 2, which finds a
dominant latent root. The key result 1ls glven - the computa-
tions of Algorithm 2 are done by Algorithm 1. A vector
Bernoulll method 1s also described.

The third area of this work is a new block eigen-
value problem. It is that of finding a matrix X of order n
such that for given matrix A of order mn, the equation
AV = VX 1s satisfied for a matrix V of full rank. Chapter 3
deals with this problem. It is shown that when A is the
block companion matrix, this problem is a generallzation of
the matrix polynomial solvent problem. A general theory of
block eigenvalues as well as two algorithms based on elgen-
vector powering are offered.

Chapter 9 describes numerical testing of Algorithms

1 and 2.

1
1
1

3

|

[

i

i

it

i




CHAPTER 2

Solvents

«In thls chapter we study some of the propertles of
solvents. Section 2.1 considers a division of matrix poly-~
nomials which results in a new derivation and generalization
of Bézout's theorem. Section 2.2 examiaes the block compan-
ion matrix. Principal vectors of solvents are consldered in
Section 2.3. The existence of solvents and factorizatlon of

lambda-matrices are both dealt with in Section 2.4.

2.1 Generalized Division. The class of matrix polynomials

is not closed under multiplication or division. Consider the

product of N(X) = X + N and L(X) =X + L. We get

2 + NX + XL + NL which 13 not of

the general form of a matrix polynomial; x2 + Alx + A2. A

N(X)L(X) = (X+N)(X+L) = X

new operation will be defined for matrix polynomials which
will reduce to division in the scalar case; n = 1.

Theorem 2.1 Let M(X) = X™ + Alx"“'1

+oeem + AL and
Ww(x) = xP + Dlxp‘1 # e++ + B, with m > p. Then there

exists a unique, monic matrix polynomial F(X) of degree m-p

and a unique matrix polynomial L(X) of degree p-1 such that

M(X) = FOOXP + BlF(X)Xp-l + eee 4 BF(X) + L(X), (2.1)

by vei 4 F and

] m-p m-p-
Proof: Let F(X) = X + FiX m=p

LX) =L xP"1 4L xP"2 4 vt ¢+ L .. Equating
° 1

p-1

- 11 -
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coefficients of equation {(2.1), Fl’Fz""’anp and
Lo,Ll,“-,Lp_l can be successively and uniquely
determined from the m equations. #

Equation (2.1) is the matrix polynomial division of

M(X) by W(X) with quotient F(X) and remainder L(X).

Definition 2.1 Assoclated with the matrix volynomlal,

+ Alxm'l + *e¢ + A, 1s the commuted matrix poly-

M(x) = x™

nomial

m

=
~~
tad
n

I Gt VS, A (2.2)

1

£ M(R) = Q, then R 1is a left solvent of M(X).

The matrix S such that M(S) = Q, previously Just
called a solvent, will be referred to as a right solvent when
confusion mlght occur.

An important assoclatlon between the remainder,
L(X), and the dividend, M(X), 1in equation (2.1), will now be
given. It generalizes the fact that for scalar polynomials
the dividend and remainder are equal when evaluated at the

roots of the divisor.

Corollary 2.1 If R is a left solvent of W(X), then

£(R) = M(R).
Proof: Let Q(X) = M(X) - L(X). Then, it 1s easily shown

that

Q00 = X™PE0 + XMPTIOOR) ¢ e+ QOO L (2.3)
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The result immediately follows since Q(R) = 0 for

all left solvents of W(X). #

The case where p = 1 1s very useful in this paper.
Here we have W(X) = X - R where R 1s both a left and right

solvent of W{X). Then Theorem 2.1 shows that
M(X) = F(X)X - RF(X) + L (2.4)

where L 1Is a constant matrix. Now Corollary 2.1 shows that

L = ﬁ(R), and, thus,
M(X) = F(X)X - RF(X) + M(R). (2.5)

There is a corresponding theory for ﬁ(x). In this

case, equation (2.1) 1is replaced by
Mx) = XPR(X) + XPTHR(OB, + eee 4+ {i(x)Bp + N(X) (2.6)

and Corollary 2.1 becomes the following.

Corollary 2.2 If S is a right solvent of W(X), then

N(S) = 1(3s).

We agaln consider the case of p = 1. Let

W(X) = X - S. Then equation (2.5) becomes
M(X) = xA(X) - A(X)S + M(S). (2.7)

Restricting X to a scalar matrix AI, and noting that
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M(A) = ﬁ(A), we get Bézout's Theorem (see Gantmacher [2,

vol. I, p. 81]) from equations (2.5) and (2.7):

M(A) = (IA-R)F(A) + M(R) = H(A)(IA=S) + M(S) (2.8)

for any matrices R and S. If in addition R and S are left

and right solvents, respectively, of M(X), then

M(X) = F(X)X - RF(X), (2.9)

M(x) = xfi(x) - A(x)s (2.10)
and

M(A) = (IA-R)F(XA) = H(A)(IA-S). (2.11)

Hence, Corollaries 2.1 and 2.2 are generalizations of

Bezout's Theorem.

The use of block matrices is fundamental in this

work. For notational purposes it 1s useful to have a concept

| of the transpose of a block matrix without transposing the
}

b blocks.

Definition 2.2 Let A be a matrix with block structure (Bij)

with B,, matrices of order n. The block transpose of dimen-

1J
sion n of A, denoted AB(n)

» 18 the matrix with block struc-

ture (Bji)'

The order of the block transpose will generally be
aB(n) T

dropped when 1t 1s clear. DNote that, in general, s
except when n = 1.
A scalar polynomial exactly divides another scalar

polynomial, if all the roots of the divisor are ronots of the
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dividend. A generalization of the scalar polynomial result

i1s given next. The notaticn is that of Theorem 2.1.

Corollary 2.3 If W(X) has p left solvents, R,,***,R_ which

1’ p
are also left solvents of M(X), and if VB(RI,'--,RP) is non-

singular, then the remainder L(X) = Q.

Proof: Corollary 2.1 shows that ﬁ(Ri) = 0 for

1= 1l,***,p. Since VB(Rl,"°,Rp) is nonsingular,

and since
’I R, ==- Rp-l\ . fﬁ(n )\
1 1 p-1 1
I R, -+ REM{L o, £(r,)
P : S "2
L N N p-l T
I Rp Rp 1 lLo / \L(RP)J

it follows that L(X) = Q. Thus,
- p p-1
M(X) = F(X)X" + BlF(X)X + eee 4 BpF(X). # (2.12)

From equation (2.11) 1t follows that the elgen-

values of any solvent (left or right) of M(X) are latent
‘ ) roots of M()A). These equations allow us to think of right
(left) solvents of M(X) as right (left) factors of M(X).

In the scalar polynomial case, due to commutivity,
right and left factors are equivalent. Relations between

left and right solvents can now be given.




e

Cornvllary D4 1¢ :\J and Hj are rleht o mpd lefy, polyenta of
M(X), reapeotively, and-Ayoand By have o vomnen efgenvaduen
thaen Fi(SJ) " Qs where W OX) 4a ¥(X) defined by egquat ton
(2.9) with R » Ry

Proof:  Bquation (2.9) ahown that

Fl(sJ HJ - “1“1(35) - Q. (Lol )

Since SJ and R1 have no common elgenvaluen,

Fi(sj) = 0 uniquely., This followid, aince the

solution of AX = XB has the unique aolution
X = 0, I1f and only Iif A and B have no cammon

elgenvalues. See Gantmacher {2, p. 2158). y

Glven a left solvent Ri of M(X), Theorem 2.1 ahowa
that Fi(x) exists uniquely. If S 1s a right solvent of M(X)
and if Fj(s) ls nonsingular (S 1s not a weak solvent of B (X)),

then equation (2.13) shaws that

R, = <1(S)SF'1(S). (2.10)

This glves an assoclation between left and right solventsa.

2.2 Block Companion Matrix. A useful tool in the study of

scalar poiynomials 1s the companion matrix. The cigenvalues
of a companion matrix are the roots of 1ts associated poly~

nomial. See Wilkinson [22, p. 12]. A generalization of this
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is given below. Definition 2.3, Theorem 2.2 and Corollary

2.5 can be found in Lancaster [13].

Definition 2.3 Given a matrix polynomial

Mx) = X"+ Alx‘""1 +oeen v A,

the block companion matrix assoclated with 1t 1s

o e 0w
1 -
C = . f‘“‘l (2.15)
I -a

It is well known that the eigenvalues of the block
companion matrix are latent roots of the associated lambda-
matrix. See Wilkinson [22, p. 12]. Simple algebralc manipu-
lation yields this result.

Theorem 2.2 Det(C-\I) = (-l)mndet(lxm+AlAm-l+---+Am).

Since C is an mn by mn matrix, we immediately ob-

tain the following.

Corollary 2.5 M(X) has exactly mn finite latent roots.

The form of the block companion matrix could have
been chosen differently. Theorem 2.2 alsc holds for the

block transpose of the companion matrix:



o . \
Bl . . (2.16)
0 1
| ~An Ayl e -4,

The algoritams given in this paper are b--ed on
elgenvector powering schemes. It will be useful to know the
elgenvectors of the block companion matrix and 1ts block
trarspose. The results are a direct generalization of the

scalar case.

—— —  C—————— S — w—

right and left latent vectors, then Py 1s an eigenvalue of C

and of ¢® ana

by
PyPy B
(1) . is the right eigenvector of C°,
m~1
Ty
0173
(11) . is the left eigenvector of C, and
m-1_
ipi 1




is the right elgenvector of C, where

(111) (1)
by
b, |
M(A)b
W':—Fi = bixm‘l + bil)km‘z + v ¢ bim—l). (2.17)

Proof: Parts (1) and (1i) are easily verified by substi-
tutlions into the appropriate elgenvalue problem.

For part (i11), consider

o e o A \ ]dim-l) fdim-lﬂ
I Apaf] :
"o : dil) TPy dil) :
T =Ay J \d§0) ld§0)
(2.18)

| Multiply out; multiply the Jth component equation
by Ajhl; and add. The result is

(0)
Hi(A)A ~ M(A)d1 piﬂi(k), (2.19)

E where

- 4(m=1) (m-2) - (0) ,m-1
H (X)) = dg + 4, A+ 4,0 . (2.20)
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Equation (2.19) at A = py shows that
M(pi)dio) = 0 and, hence, dio) is a right latent
vector. Manlpulating equation (2.19), the result

equation (2.17) with dio) = b and dij) = bij)

1
for J = 1l,°+*+,m-1, follows. #

2.3 Structure of Solvents. The elgenvectors and princlpal
vectors of a solvent will now be considered. From equation
(2.11) 1t follows that the eigenvectors of a left (right)
solvent are left (right) latent vectors of the lambda-matrix.
Lancaster [13, p. 50] gives the cheracterization of a solvent

that has only elementary divisors.

Theorem 2.4 If M(A) has n linearly independent right latent

vectors, bl,---,bn, corresponding to latent roots Pys® " sPps

then QAQ™t is a right solvent, where Q = [bl,...,bnj and
A = diag(pl,...,pn).
Proof: From M(QAQ™D) = (@A™ Q™ l+e.e4a Q)Q71 the
result follows, since QA™ + AlQAm_1 + oeee +AQ
is just M(pi)b1 =0 for 1 = 1l,°¢+,n. #
It follows from the above proof that if a solvent
is diagonalizable, then 1t must be the form QAQ-I, as in the

above theorem.

Corollary 2.6 If M(A) has mn distinct latent roots, and the

set of right latent vectors satisfy the Haar condition (that

every set of n of them are linearly independent), then there

are exactlx,(ﬁ?) different right solvents.




T
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Consider next the case of a solvent which i1s not
diaponalizable. In a manner similar to Roth [18], we con-

sider the principal vectors of a solvent.

Definition 2.4 The Jth principal latent vectcrs of M(A) with

respect to the latent root p 1is PJ, which satisfies

1 (3-1) 1 (3-2) e _
DT M PR gy M (0B +ee # Mp)Ry = 0,
(2.21)
where
k
u(n) = S M),
dA

Note that the first principal latent vector is a latent

vector.

Theorem 2.5 The princlpal vectors 2£ a solvent are principal

latent vectors 2£ M()).

Proof: To alleviate notational difficulties, consider the

case where m=2 and n = k = 3. The Jordan

p 1
form of the solvent 1s J = p 1 ]. Let
P
P = (P,P,P;) where S = PJP"! 1s the solvent

of M(X) = X° + AX + A.. Thus,

1 2




= = 2
[¢] M(S)P ﬁPlP2P3)J + Al(PlP2P3)J + A2(P1P2P3ﬂ

- [(Ip2+Alp+A2)Pl,(21p+A1)Pl + (Ip2+Alp+A2)P2,IPl

2
+ (2Ip+A1)P2 + (Ip +A1p+A2)P3]

+ M(0)P,, 3 M"(p)Py + M'(p)P, + M(p)P,].

Hence, Pl, P2 and P3, the princlipal vectors of S,
satisfy equation (2.21), the definition of prin-

cipal latent vectors. #

It is the strategy of this paper to solve the
lambda-matrix problem by finding solvents and thenh finding
the eigenvalues of those solvents. The calculation of sol-
vents from the solution of the latent root problem has been
considered in the literature. The following is a short
description of the method.

Since the eigenvalues of a solvent are latent roots
of the lambda-matrix, and there are mn latent roots, 1t fol-
lows that there are only a finite number of Jo?dan forms of
potential solvents. Let the latent roots be given and let J
be a matrix in Jordan form with n of the latent roots as its
elgenvalues. Then, to find a corresponding solvent S, if
one exlsts, a nonsingular matrix P must be found such that

M(PJP—l) = 0. Thus, a nonsingular matrix P must be found

such that
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pI™ + Alme’l +ess 4+ AP = Q. (2.22)
This approach, described in MacDuffee [15, p. 95], 1is of the
general form

A.XB, + A XB

1XB, oXB 5 + e 4+ AmXBm = C. (2.23)

Lancaster [11] and Gantmacher [2] have considered the solu-

tion of equation (2.23). The problem is difficult numerically.
Algorithm 1 tries to find a solvent directly,

rather than by the above route of solving the latent root

problem first.

2.4 Existence of Solvents. We now show that the Fundamental

Theorem of Algebra does not hold for matrix polynomials.

Theorem 2.6 There exists a matrix polynomial with no sol-

vents.

Proof: Consider

A2-2242 1 > 1
M(A) = = INS - 21+
-1 A2 =22 -1 0

(2.24)
Det M(A) = A% - 4a3 4+ 632 - 42 + 1, which has all

four roots at X = 1. Thus, the Jordan form of a

1 1
solvent must eilther be J, =1 or J, = .
1 2 0 1
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Since M(I) # 0, 1t follows that J2 is the only

1 1

feasible Jordan form. M(1) =<- ) and, thus,

1 -1
b = (l,-l)T is the only latent vector, to within
a scalar multiple. The second princlpal vector
is such that M'(1)b + M(l)P2 = 0. Here,

21-2 0
M'(A) = ( ) and, hence, M'(1l) = Q.

0 2A-2
Thus, P2 = b to wlthin a scalar multiple. Using
Theorem 2.5 and the linear dependence of the first
two principal latent vectors, 1t follows that J2 is

not a feasible Jordan form for a solvent of equa-~

tion (2.24). #

Consider now the special case of a matrix polynomial whose
associated lambda-matrix has distinct latent roots. It will
be shown that in thls case a complete set of solvents always

exlsts. First we need the followling fact about block matrices.

Lemma 2.1 If a matrix A 1s nonsingular, then there exists a

-~ -~

A A

11 12

~

permutation of the columns of A to A such that A=

Aoy Aop

with Al1 and A22 nonsingular.

Proof: Let A and Kll be matrices of orders n and k, re-
spectively, with arbitrary 1 < k < n. Assume the
lemma is false. Consider evaluating the deter-
minant as follows. For each of the first k rows,

plck an element from a different column. Then
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multiply these elements and the remaining minor.
The sum, with appropriate signs, of every possible
choice of the k columns, 1s the determinant of A.
The k cholces of the columns determine a square
matrix. If that matrix 1is nonsingular, then the
minor must be zero, since the lemma was assumed
false. Thus, such terms make no contribution to
the determinant of A. A particular minor appears
several times in the sum. It occurs the number
of ways the same k columns can be picked in dif-
ferent orders. Each minor can thus be factored
from several terms; the result being the minor
times the determinant of the matrix formed ty the
k columns ard the first k rows. Thus, if the
matrix formed by the k columns 1is singular, then
there is no contribution from thls term 1n the
determinant of A. Therefore, A must be singular,

which 18 a contradiction. #

Once the columns of A are permutated to get Rll and

-~

A22 nonsingular, the process can be contlinued to similarly

divide 5?2 into nonsingular blocks without destroylng the

nonsingularity of Rll'

Theorem 2.7 f A, a matrix of order mn, is nonsingular, then

there exists a permutation of the columns of A to A = (Bij)’

with B,, a matrix of order n, such that B11 is nonsingular

1)

for 1 = 1,*+*~,m.
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The 1lmportant existence theorem 1s now gliven.

Theorem 2.8 If the latent roots of M(XA) are distinct, then

M(X) has a complete set of solvents.

Proof:

If the latent roots of M(A) are distinct, then the
eigenvalues of the block companion mat:rlx are dis-
tinct, and, hence, the elgenvectors of the block

companion matrix are linearly independent. From

[ by
Pyby
Theorem 2.3 the set of vectors . for
m-1
|P1 Py
for 1 = l,*++,mn are eigenvectors of CB. The

matrix whose columns are these mn vectors 1s non-
singular. Theorem 2.7 shows that there are m dis-
Joint sets of n linearly independent vectors bi'
Using the structure QAQ'l of Theorem 2.4, the com-

plete set of solvents can be formed. #

Corollary 2.7 If M(A) has distinct latent roots, then 1t can

be factored into the product of linear lambda-matrices.

Proof:

Since M(A) has distinct latent roots, there exists
a right solvent S and M(A) = Q(A)(IX=8). Q(A) has
the remaining latent roots of M(A) as its latent
roots. It follows then, that the latent roots of
Q(A) are distinct. Thus, the process can be con-

tinued until the last quotient 1is linear. #




- 27 -

The process described in the above proof considers
solvents of the sequence of lambda-matrices formed by the

division M(A) = Q(A)(IA=S).

Definition 2.5 A sequence of matrices Cys***sC, form a chain

of solvents of M(X) if C, 1s a rlght solvent of Q,(X), where

Q. (X) = M(X) and

Q, (M) = Q_(AM(IrCy). (2.25)

It should be noted that, in general, only Cm is a
right solvent of M(X). Furthermore, C1 1s a left solvent of
M(X). An equivalent definition of a chain of solvents could

be defined with Ci’ a left solvent of Ti(X), and

Ty (A) = (IA-Cp 4,107y _1(R). (2.26)

Corollary 2.8 If M(A) has distinct latent roots, then M(X)

has a chaln of solvents.

Given C, and Q,()), Q (X)) of equation (2.25) can
1 i-1

i
be found by a generalized Horner division scheme. In the
numerical solution of the lambda-matrix problem, the strategy
censidered here will be to find a chain of solvents using the
matrix polynomial solvent algorithm and Horner division.

If Cl,“-,cm form a chain of solvents of M(X), then

- m m=-1_... = - - Ve i
M(X) & I +AA + +A = (I cl)(n 02) (Ix cm); |
2.27




This leuds to a generalisation of the plassical reauls for
scalar polynomiala which relates coefficienta to elementary
symmetric functions. By equating coefliclents of equatiun

(2.27) one gets tho followlng theorem.

Theorem 2.9 L C,,+**,C, form & hain $f aeivents [oX
M(X) = X+ AX™ e e # AL, then

Al = -(Cl+02+' '°+(‘.m)

Ay ® (clc2+clc3+m+cm_lcm) (2.28)

m ‘o
Ap ™ (=1) 0102 Cn’




ONAPTIR 3
Lrepersden of Mahrdx fedynowlads

Soma of the basio proparties of matirix polynomiala
ave conntdered th this ohapter, Reotion 3.1 connerns ltpell
with matprix polynomial interpolation. A generalisation of
the fundamental aoalar polynomiala {a given, Repreanentation
theorama for matrix polynomiala, lambdu-matricea, and lambda=-
veotora are preaented in Seotion 3.2, Seotion 3.3 .atuwdlen

the fundamentul matrix polynomiala.

3.1 JInterpelatien. Oiven acalars a,,***,8,, the fundamental
m

polynomials m (x) 2 . 'nfﬁe(. ! where p(x) 3 [] (x-a,),
M i 1e)

are of great importance in interpeolation theory. Their uae-
fulneas comea from the fast that ml(‘d) . 61J‘ Wo will now

ganeralize thia for our matrix problem,

Definition 3.1. Given & pet of matriced, 3,,'°*,3,, the
fundamental matrix pejynomials are & aset of m-1 dexnge matrix
polypomigly, M (X),+++,M (X), guoh that "1‘33’ ) 6131‘
Suffioient conditiona, on the set of matrives
Sl""’sm’ for a set of fundamental matrix polynomiala to
exlat uniquely will bae given in Theorem 3.2. PFirat, however,

we need the following results.

Theurem 3.1 Given m paira of matriges, (X,,Y,) 1 = 1,*+,m,

they there exlats & unique matrix polynomial




w N0 =

X w A XM e A X™ T e e A paeh Wk PR e Y,
Lor Vo= Lyeeeum, 4 aod enly AL VOXyace X)) AR neaninsular.

Moot le) " Y‘ for 1 » l,*»+ . m {n squivalent to

FI X 1 1
x) XX xm
LML TRAANLICE I . S PT PYARANT PR
m=1 .., M= 1
xl Xm

Corollary 3.1 Qjven m pajrs of mavriced, (X,,¥), 1=1,:+,m,
they unlquely getermine & monic matrix pojynomial
PCX) » X™ ¢ A X™ 1 4 vov 4 A, puoh that PCX,) =¥, for
L= 1,00v,m, AL and ondy AL V(X,,0+,X,) i3 nonsingujer.
Proof: Let 91 " Y- XT and apply Theorem 3.1 to (xiﬂih '
Let M(X) have a complete net of solvents, S10°* 8

auch that V(Sl.-'-.sm) ia nonaingular. According to Theoorem

3.1, there exists a unique matrix polynomial

My (x) 1 ALy ey a0 (3.1)
aguch that

Ml(sj) - 6131| (3.2)

Note that Ml(x) has the same aolvents as M(X), except S, has
been Jdef'lated out. The Mi(x)'a are the fundamental matrix

polynomials.




R o At Lty ey

Donute by V(Sl.°-~.81.1.81*1.°--.Bm) the bloak

Vandormonde at the m=) solvento, Sl""’sm' with 31 deleted.

Theorem 3.2 If matrices 8,,***,S, are such that V(S8,,*++,S.)
is nonsingular, then there exist unigue matrix polynomials
Miex) 8 a{amt e v al8 ) for 4w 1,eeeim, suoh that
My(X),* M (X) are fundamental matrix polynomials. If.
furthermore, V(8,,°**,8, ,,8,,72*°*,8S,) 18 nonsingular, then
Agk) 3a nonsingular.
Proof': V(sl"°°’sm) nonsingular implies that there exists
4 unique set of fundamental matrix polynomials,
Ml(x).°'°.Mm(x). V(Sy st a8y 1810t " 0Sy)
nonsingular and Corollary 3.1 imply that there
exists a unique monic matrix polynomigl
N (X) E =14 Nik)xm'2 + voe & N;k). such
that Nk(sd) =0 for J ¥ k. Consider
Q(X) 7 N (8,)M (X). Qk(sJ) . Nk(SJ) for
J = 1l,°¢e,m, Since V(sl.-'-.sm) is nonsingular
and both Q. (X) and N (X) are of degree m-1, 1t
follows that Qk(X) - Nk(x)- Thus,
Nk(X) - Nk(sk)Mk(x)' Equating leading coeffi-
clents, we get I = Nk(Sk)Agk) and thus Agk)

is nonsingular. ¥

3.2 Representation Theorems. The fundamental matrix poly-
nomials, Ml(x)."'.Mm(x), can be used in a generalized
Lagrange interpolation formula. Paralleling the scalar case

we get the following representation theorems.
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Theorem 3.3 If matrices Sl,---,sm are such that V(Sl,--°,sm)
is nonsingular, and Ml(S).---,Mm(X) are a set of fundamental
matrix polynomials, then, for an arbitrary

0(x) = ByX" 14 eee 4B, (3.3)
it follows that
n
G(X) = Y 6(S,)M,(X). (3.4)
i=]
m
Proof: Let Q(X) = 3 G(S,)M,(X). Then Q(S,) = G(s,)
1=1

for 1 = 1,.«¢ . m., Since the block Vandermonde is
nonsingular, 1t follows that Q(X) 1s unique and,
hence, G(X) = Q(X). #

A lambda-matrix was defined as a matrix polynomial
whose variable was restricted to the scalar matrix AI. Thus,

the previous theorem holds for lambda-matrices as well.

Corollary 3.2 Under the same assumptions as in Theorem 3.3,

for an arbitrary lambda-matrix

a(\) =B A4 e 4B, (3.5)

1

t follows that

—




B N
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m
G(A) = }: G(S,)M, (). (3.6)
i1=]

A basis for lambda-vectors will be presented next.

Theorem 3.4 If M(A) has distinct latent roots, Pys®**sPps

with right latent vectors bl""’bmn’ then for an arbitrary

lambda-vector

g(\) = lem-l e v (3.7)

there exists a unique set of constants Uyseeest s such that

mn
gx) = Y o, X-Mé%bi. (3.8)
1=1

Proof: If the latent roots of M(A) are distinct, then the
elgenvectors of the block companion matrix (Theo-
rem 2.3 (111i)) form a basis for vectors of dimen-
sion mn. By equation (2.13) lambda-vectors
XMéA%I b1 are formed by partitioning the elgen-
vectors of the block companion matrix into the
vector coefficients. The ai's are those required

to write (vl,---,vm)T a8 a linear combination of

the elgenvectors of the block companion matrix. #

3.3 Fundamental Matrix Polynomials. Fundamental matrix poly-

nomials were defined such that “1(33) - 61JI. A result

adorlh P
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similar to equation (2.9) can be derived based on the funda-
mental matrix polynomials. It was previously (Section 2.1)

developed using matrix polynomial division.

Theorem 3.5 If M(X) has a complete set of right solvents,

Sl"‘“Sm’ such that V(Sl,-~5Sm)'and V(Sl,~-3si_l,si+l,--5sm)

are nonsingular and Ml(x),~--,Mm(x) are the set of funda-

mental matrix polynomlials, then

- A(1)
Mi(x)x - simi(x) = Ay M(X), (3.9)

where Agi) is the leading matrix coefficient of Mi(X).

Proof: Let Qi(x) = M (X)X - simi(x). Note that
Qi(SJ) = 0 for all J. M(X) is the unique monic
matrix polynomial with right sclvents Sl,-u,sm
since V(Sl,"°,8m) is nonsingular. The leading
matrix coefficient of Qi(x) is Aii) which 1s non-

singular, since V(Sl,-'-,si_l,si+l,---,Sm) is

-1
nonsingular. Thus, M(X) = Aii) Qi(x). #

A previous result (equation (2.5)) stated that i1if

R1 was a left solvent of M(X), then there exists a unique,

monic polynomial Fi(x) of degree m-1, such that

M(X) = Fi(X)X - RiFi(x)‘ (3.10)

Comparing equations (3.9) and (3.10), we obtain the following

result.

34
13
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Corollary 3.3 Under the conditions gE_Theorem 3.5

-1
F,(X) = [Agi)] M,(X) end

-1
Ry = [A&i)] s, a{d) (3.11)

is a left solvent of M(X).

If M(X) has a complete set of right solvents,
Sl""’sm’ such that V(Sl,' "’Sm) and V(Sl,~ . "si-l’si*-l" . -,Sm)
for 1 = 1l,*+,m are all nonsingular, then, by equation
(3.11), there exists a complete set of left solvents of

M(X), Rl,'--,Rm, such that R1 is similar to S1 for all 1.

Corollary 3.4 Under the conditions of Theorem 3.5, if R, 1s

defined as in equation (3.11), then

-1
B = [al] w0 = aaerp) ey (3.12)

Proof: The result follows from equation (2.11) and

Corollary 3.3. ¥
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CHAPTER U4

The Block Vandermonde

The block Vandermonde matrix is of fundamental
importance to this work. This chapter considers the prop-

erties of the block Vandermonde.

It i1s well known that in the scalar case (n = 1),

det V(sl,'~',sm) = II (81'83) (4.1)
1>J

and, thus, the Vandermonde 1s nonsingular if the set of si's
are distinct. One might expect that if the eigenvalues of

X, and X, are disjoint and distinct, then V(xl,xz) is non-

1 2
singular. That this 1s not the case 1s shown by the follow-
ing example.

The determinant of the block Vandermonde at two

points 1is

I I
det V(xl,x2> = det ( ) = det (xz-xl). (4.2)

Xl X2

Even 1f Xl and x2 have no eigenvalues in common, x2 - xl may

2 0
still be singular. The example x1 = ( ) and
-2 1

4 2
x2 = (0 3) ylelds X2 - X1 singular.

- 36 -
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It will be shown that the xl and x2 in this example
cannot be the complete set of solventa of a monic matrix

polynomial. First, however, the following 1s needed.

Lemma 4.1 Let matrix A have distinct elgenvalues, and N be a

subspace of E" of dimension d. Suppose further that 1f veN,

then Av € N. Under these conditions, d of the elgenvectors

of A are in N.

Proof: Let Av1 = Aivi for 1 = l,**+,n. The set of vi's
is a basis for En, since A has distinct elgenvalues,

Let v € NCE", and order the {v,} such that

8
vV e 2 e, Vy with ¢y ¥ 0 for 1 = 1l,e++,s., Let
i=1
8
p(t) = [I (=1,), then P(A)v, = 0 for
J=2
J = 2,¢+,8. Hence,

8
P(A)v = 2 ¢ P(A)v, = c,P(A)v,
1=1
8
-, T (A-x,1 ) vy
A

8
. cl(]'[ (A=Ag) ) vy

e

Ve
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]
Let d; = ¢ ﬂj (kl—kd) # 0. Thus,
J=2
v, = -t P(A)v ¢ N. Similarly, v, € N for
1 dl i

i =1,**,8. The lemma follows, since Vv € N

was arbitrary. #

Theorem 4.1 If M(A) has distinct latent roots, then there

exists a complete set of right so.ivents of M(X), SpsttsS

m’

and for any such set of solvents, V(Sl,-~-,Sm) is nonsingular.

Proof:

The existence was proved in Theorem 2.7. S,,¢*,S

l’ ] m?
veilng right solvents of M(X) = Xm-bAlxm'l *oee kA,
1s equivalent to

’I co e I
S oo e S
m m
(Am,.‘.’Al) :l :m 3(-31,000,_Sm).
m-1 cee m-1
lsl- Sm

(4.3)

Assume det V(Sl,---,Sm) = 0, and let N be the null
space of V(Sl,---,sm). That is, v ¢ N 1f aand
only 1f V(Sl,--~,sm)v = 0. Since AyseeeuAy in
equation (4.3) exist, Joining any row of
(-Sl,~--,~Sm) onto V(Sl,--°,Sm) gives a larger
matrix but with the same rank as V(Sl,°--,Sm).

Thus, for all v e N, (ST"°"S:)V = 0. Hence, for

all v €N




0 o= . . Vv = V(sl"”’sm)diag(sl"“’Sm)v'

(4.4)

Letting A = diag(81,°-°,sm), equation (4.4) shows
that for all v € N;, Av e N. Since A has distinct
eigenvalues, Lemma 4.1 applies, and there are as
many eigenvectors of A in N as the dimension of N.
The eigenvalues of diag(Sl,°",Sm) are the elgen-
values of the Si's, and the elgenvectors are of the
T T
sV

form (0 ,OT), where v 1s an eigenvector of one

of the Si's. This 1s because 1if

s, \ [2] o |
l Sm |} 2 J | 2]

then Siv = \Av and SJw = Aw. This cannot be
since S1 and SJ do not have any common eigenvalues.

Let an arbitrary eigenvector of diag(sl,---,sm),

™
(0T,v7,07), be in N. Then




S [V

S ] S 0
1 m -
. . -Q'
. . v
ghm=1 gh=1 Q

1 m

But then, Iv = 0 which ia a contradietlion, Thun

det V(Sl,--°.Sm) ¥ 0. ¥

The example cwusidered before thia theorem was a
case where matrices x1 and x2 had distinct and disjoint
; eigenvalues and det V(V1*x2) * 0. Thus, by the theorenm,
they could not be a complete usn~t Of right solvents for a
monic, quadratic matrix polynomial. In contrast with the

theory of scalar polynomlals, we have the following result.

Corallary 4.1 There exist scts containing m matrices which

are not a set of right solvents for any matrix pelynomial of

degrre m
A generalization of ~cuation (4.1), that the
Vandermonde of scalars is the product of the differences of

the scalars, will be given. Let Méd?..s (X) be a monic
1l k

matrix polynomial of degree d > k with right solvents

°"Sk‘ The superscript d will be omitted if d = k.

Note that thle matrlx polynomlal need not necessarlly exlst,

(] .
;)l ’

nor be unique.,

Theorem 4,2 E{ V(Sl,~--,Sk) 1s nonsingular for k= 2,4+ ,r-1,

then

. T e e s p e s .




w i1 =

ot V(Hyyeer i) @ det VI ey lygg) et N g Gl

(“\"’
Prooft The nonuingulartty of V(al""'ar-\> and doroliary

3.1 guarantee that My . (X) extats uniquely.,
B S AT

The determinant of V(8,,¢++,8.) wil) be evaluuted

by bloak Oausaian elimination uaing the favt that

A B A+EC R+ED
det u det R {(h.6)
¢ D ¢ b
1 see I
S XX ]
Det V(8,,+++,8,) = det| * r
r=1 r-l
81 (XX} Sr
I I [ X I
s -s LN ) s -S
- det 2 o
el Pewl Pel P=l
| 92 -5, A et |
1 1 I see I \
;=S  84-8, vee 8.=8,
- det M(z) (55) e Méa) ()
5,82 152
(r-1) (r-l)
M (8) +o+ M (s )}
\ 5,52 515,

(4.7)
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w A x e (x0es?) o (89-30Yca s )"dexe
where N33 (X) = (x-s) - (3339 )ca 8,7 x-8,),

(aa-sl) {a nonatngular, since

that after k atepa of the blook Qauasian elimina=-

tion, the general term for the 4,) blook, 1i,J > k,

1 N{A=D)

31"'sk(83)' Asaume it ia true after k=1 steps.

Then, after K stepn, the 1,J element ia

)'1M(k-1)

S,v++8

M(l‘l) (s )_ M(&'l) (3 )M(k-l) (s
1Y k 1

sl‘..sk- sl.“sknl 81"‘5 -

k=1 K

kw1l

(SJ)'

This 1o merely M{*T1)0 (X) evaluated at X = 3.
1" 8

Using the fact that the determinant of a blook tri-

angular matrix is the product of the determinantsa

of the diagonal matrices, (see Householder [S]),

the result follows.

’

Corollary 4.2 If V(S8,,...,5,_ ,) is nonaingular and S, i3
p—o—t. 9. w---—..k _l_w vent o—t-: Ms e § (X). m V(SIO...OSk) Lﬂ_
1 k=1

nonsingular.

lt 1a useful to he able to construct matrix poly-

nomials with a given set of right solvents.

Corollary 4.3 Given matrices Sl,u-,sm such that V(Sl'°'°’sk)

is nonsingular for K = 2,+*«s,m, the iteration No(x) - I

-1
N (X) = Ny (X)X = Ny _1(8,)8, Ny, (8,)N, _,(X)

(4.8)
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18 defined and vielda an m dexree mopig mASrix pelynemial
No(X), BMgh XhAL N, (8,) = @ for 1 = 1,0ve,m,

Proof: NI(X)IX-SI-NSI(X). Assume Nk(X)iMsl,,,sk(X).

Then, from equation (U.8), N, ,(8,) = Q for
L = ),see,k¢]l and, hence, N _.(X) ® M, ... (X).
S ' bk $1°* Sk

The sequence of block Vandermonde being nonaingular

guarantees the nonsingularity of Ni-l(si)' ’

Corollary 4.4 JIL V(8,,**+,S,) ia nonsingular for k=2,*::,m,
then 3,,°**,8, Are & sompiete aet of right aclventa for
Mslocosm(x)'

Proof: The result followa directly from Theoren 3.5, where

we obtained

(1)
(1A-8,0M, (M) = a3 mEn). #o(4.9)




CHAPTFR 5

A Matrix Polynomial Algorithm

This chapter presents the paper's maln algorithm,

It computes solvents and is & generalization of one of
Traub's methoda. Section 5.1 gives the algorithm. A global
convergence theorem 1ls preasented in Section 5.2. Sectlon 5.3
considers computational aspects of the algorithm and has a

detailed flow=chart of the method.

5.1 A Generalization of Traub's Algorithm. The following

algorithm for matrix polynomials, in the scalar case, reduces

to Traub's scalar polynomial algorithm.

Algorithm 1 (1) Let GO(X) = ] and generate matrix poly-

nomials 0 (X) by

n
Gy p(X) = 0 (X ~ a M(X), (5.1)
for n=0,1,**+,L-1, where

= n'm-l XK} n
On(x) Z ek + oo (5.2)

L\/ L-1\"!
Then, (11) let Xo = (“1)(“1 ) and generate

i} -1
Xypq = Gp (X607 (X)), (5.3)

- 4y -
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The algorithm has two atagesa. The firat, a gener-
alization of Sebastiao e Silva's algorithm (see Householder
[4]), generates a sequence of matrix polynomials. Fquatlon
(5.1) ensures that each of these matrix polynomials i: of

degree less than m, the degree of M(X). Under suitable con-

-1
(a?) Gn(x) will be shown (in the next

section) to converge to ﬁl(x), a monic fundamental matrix

ditions En(x)

polynomial.

The second stage generates a sequence of matrix
iterates which will be shown (in the next section) to con-
verge to a solvent. The polint at which one switches from
stage one to stage two, the value of L, will be consldered

in Section 5.3.

5.2 The Convergence Theorem. In the proofs that Bernoulli's

method and Traub's scalar polynomial algorithms converge, the
main property needed 1s that if Py is a dominant root, then
(pi/pl)n + 0 as n~» e, for py any other root. To gener-
alize this property to solvents, the following result is
needed, the proof of which was provided by P. A. Businger of

Bell Telephone Laboratorles.

Definition 5.1 Mat;'1> A dominates matrix B if all the elgen-

values of A strictly dominate, in modulus, those of B.

Lemma 5.1 If matrix A dominpates matrix B, then A™TcB" »+ @

as n > », for any constant matrix C.

Proof: PFor any € > 0, let
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B = PB(e)(JB(e))pB(e)"l, (5.4)
where
| Ag
¢ \g
Jgle) = - . (5.5)
€ s |

See Ortega and Rheinboldt [16, p. 43] for a discus-

sion on this modified Jordan form. Then,
Bl < “PB(e)“ ”PB(e)"l“ (e+max|kB|), (5.6)

where the norm is the infinity norm. Noting that

R

| W a2
(5.7)

the result

+

A" < lle, Cedll e, (&)~ —= 1 (5.8)
- A A minikil min|A, |
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Theorem 5.
(1)
(11)
(114)

then (1)
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is similarly obtained, where PA(e) is defined as
in equation (5.4). Combining equations (5.6) and
(5.8) we get

n
IA™"eB™ || < k| (etmax|Ag]) [ —F—gp + —2—
B min'AAl minIXAI ’

(5.9)
where k, a function of €, is independent of n.

th power 1s less

When € = 0, the constant to the n
than one, since maxlABl/minlel < 1. By continu-
ity, there exists an € > 0 80 that the constant
is still less than one, and, hence, [|[A”"cB"|| + 0

as n + =, #
We now give the convergence theorem for Algorithm 1.

1 1f

M(X) has a complete set of solvents, S,,***,S,

Sl is a dominant solvent, and,

V(Sl,'°°,8m) and V(S2,°'°,Sm) are nonsingular,

G_(X) (al) G, (X) » M,(X), where M (X) is the

unique monic form of the fundamental matrix polynomial such

that M, (S

(11)

to 8.

Proof of part (i1): From equation (5.1), the result

) =8 and

I
J S
for L sufficiently large, X, of (5.3) converges

n n
Gn(Si) = Go(si)si = S (5.10)
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followa. By Theorem 3.3 and equation (5.10), we

get
m m
= - n
G, (X) = 37 a (SOM(X) = 3 sim, (0), (5.11)
i=] i=1
and, thus,
2 s} A(i). (5.12)
i=]
Sl and Agl) are nonsingular and, thus, there 1is an

N such that for n > N, a? must be nonsingular,

since using Lemma (5.1) and equation (5.12)

l(s A(l)) + 1 (5.13)

as n + », Using equations (5.11) and (5.12) and

Lemma (5.1), we get, for n > N,

§_(x) (arl")—lcn(x)

-1

m
n, (1) ng=n n
Z spatt’ ) sl X sPmy (0
1=1

(5.14)
(cont'd)
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m ( -1 m
- a~Nen, (1) -Nan
2 87ty 2. S1MsiM(x)
qm] 1m]
(1\~? .-
- (Al ) w0 = Fn, (5.14)
by Lemma 5.1. #

We defer the proof of part (ii) of the theorem to

first obtain some results which will be needed in the proof.

Corollary 5.1 Under the hypotheses of Theorem 5.1,
-1
n n+l
(“1) o) ~ + Ry (5.15)

as n + «, where R, 1s the dominant left solvent.

Proof: Modification of equation (5.14) and Corollary 3.3

-1 -1
yields (a?) a?+l -+ (Agl)) SlAgl) =R, as

n + o, #

The following lemmas all use the same hypotheses

as in Theorem 5.1. Let
6,(X) = a ()67 (x). (5.16)

Thus, stage two of Algorithm 1, equation (5.3) is

Xypqp = 00X, (5.17)

s AN SR ey e e Do S
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In Lemma 5.2 we show that every right solvent 1s a

fixed point of ¢L(x) for each L. Lemma 5.4 shows that ¢L(X)
is defined for all X in some neighborhocod of the dominant
solvent. Lemma 5.6 gives the local convergence of the second
stage of Algorithm 1. Finally, Lemma 5.7 says that stage one
will yield a point in the locally convergent region (Lemma
5.6) of the dominant solvent. Stage one supplies a suffi-
clently accurate starting value for the locally convergent
stage two and, hence, the overall algorithm is globally
convergent. The proof of part (ii) of Theorem 5.1 then

immediately follows.

Lemma 5.2 ¢L(S) = S for all L and any right solvent S.

Proof: The result follows from equation (5.10) and the
fact that GO(X) = T, #

Lemma 5.3 There exists a nontrivial ball B, centered at Sl’

such that for all X ¢ B

(1) IT-M (Ol < K < 1, (5.18)

and

(11) IlMJ(X)H <D, J £ 1, (5.19)

for some D independent of J.

Proof: A matrix polynamial 1s a continuous function of 1its
matrix variable. The results thus follow from con-
tinuity and the facts that Ml(Sl) = I and

MJ(SI) =0 for J ¥ 1. #
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It follows from Lemma 5.3 that for all X ¢ B,

Ml(x) is nonsingular and

ool s s eI 5-20)

Lemma 5.4 If X € B, then there exists an L' such that

¢, (X) 1s defined for every L > L'.

Proc.: For X € B, 1let

. -1
VJ(X) MJ(X)MI (xX) (5.21)

and
=LgLy
Wy (X). = 2: ST7SyV,(X). (5.22)
Then,

m
L-1
G, (X) = 30 s57hM (0

m
L-1 ~(L-1)qL-1
=571+ Y sT SyTTV, (X)) My(x)
§=2
« ST H(zewp_ (0) M (x) (5.23)

Note that W, (X) + 0 as L + = uniformly for

X € B. This follows since
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s | -1 : =
IIVJ(X)H Mg (xymy 70 .

by Lemma 5.3. ‘lhus, 1 + HL(X) L Y N
and, hence, I + wL(x) is invertible for large L.
By equation (5.23), GL-I(X) is invertible for

large L and the result follows.

Lemma 5.5 If X € B, then

-

L
[sbvy sty < wotim oolmtool < B,

A
14"

Proof: The result follows from equation (5.9). where

g = maxlxsdl/minllsll <1 for J # 1. #

Lemma 5.6 If X € B and L is sufficiently larse, then

Proof: Let Xe B and L > L' of Lemma 5.4. Set

U
-
MND

EL(X) = ¢L(X) - Sl‘ (
Then, since

-1
¢L(X) = @ (X)G ", (X)

-1

m m

. L 1-1
> SV, (0 > s,V 0
J=1 J=1

where 0 <0 <1, and v is 8 constant independern®t of L and 7.
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it follown that

m m
> h ul""l - - woon (\l"l
B, (X) Z S L (5 -5 8y "y o

J=1 J=e
L.et,

m - b=l we(L=1) (o
IJ,L()” ”J \:'J()()J1 . (H.21)
Thus, by Lemma 5.6,

L
, g
ey 0l < F¥% » 0

ag L+ », Choose L large enough s0 that

m
3 Iy (X < F < (5.28)

J=2

for all X € B, Then,

r m m
EL(X)[I + E T, (0] - )_3 P IRACY
Jm2 J=

gives, by equation (5.25),

m \J L-l ‘1-
llbj—slllw “MJ(X)IHIMl OOl

e, GOl < 35 (5.29)
J=2

1-F




Loy

forr nll N € v, A matrix polynomtial In contin-
uounly differentiable. Since MJ(SI) =~ 0 for

J ¥ 1, the reault

M, OO < llx=a, 1l (5.30)

where J ¢ 1, t = asup "M;
xeB
Jrl

mean value theorem. Finally,

(XM, follows from the

lo, (x)=8,ll < oo™ tlix-s,lI (5.31)

for all X ¢ B, where

m
2, lsg-8yjitt

o = absl =2 (5.22)
(1-F) (1-K)

The result follows from equation (5.31), since
0 <o <1 and L can be taken large enough so

u"l

that co < 1. ¥

The preceding lemma gave convergence for the second
stage of Algorithm 1 if xo € B, The next lemma shows that

X0 is in B 1f the first stage 1s continued long enough,

Lemma 5.7 For L sufficlently large, (ag)(ag“l) ¢ B.




m
L oL, (
Proof: Noting that al . Z "JAlJ)’ a proof simflar to

£ G
—

that in Lemma 5.6 will yleld

(a‘{)(a‘,jl)" - s, (5.33)

as L » =, ¥

The second part of Theorem 5.1 can now be easily

proved using Lemmas 5.2 through 5.7.

Proof of Part (11) of Theorem 5.1: PFor L sufficiently
large, xo € B by Lemma 5.7. Lemma 5.6 then

shows that X, » S.. #

i 1
Equation (5.31) reveals the rate of corivergence.

L"'ll

Corollary 5.2 N¢L(x)-slu < co lx-sln for all X € B,

where 0 <0 < 1.

This corollary shows that even though the second
stage 1s only linearly convergent, the asymptotic error
constant can be made as small as desired by increasing the
number of iterations of the fir.. stage. The asymptolic
error constant for stage one will depend on

o = max|Ag |/min|Ag | < 1, while that of stage two can be
J 1

significantly faster than stage one. This is the purpose of
the second stage, for equation (5.33) shows that stage one

can also yield Sl.



o hempat attonadl Cencbaeratlons . A computatlonal i rrt-

cully Yo pencrating the gsequence ()n(.!() In stage one,

n -
0n+1(X) n Gn(x)x - mIM(x). (5.38)

15 that the matrix coefficlents of hn(X) will grow cxpo-

nentially. This may be avolded by penerating 5n(x) by

. ~ ~n
Kpeq (X) = G (X)X = &7M(X) (5.35)
and
K .(X)
T
K
o~ 1 .
G 4y (X) = (5.36)
‘ Kn+1(X) otherwise,

where &2 and K? are the lead matrix coefficients of 5n(x) and

Kn(x), respectively. Then let

Gp-1 (%)

111

G, _,(xX) (5.37)

and

L-1
G (X) = a1 (X = o). (5.38)

Now, G, (X) and G, _;(X) contain the same scalar constant that

was bullt-up in normalizing an(X) in equation (5.36). Thus,




PSSR SP

the constant vantshes tn ¢, (X) =~ 6 1X)4 (X, et ot
,

-1
L L~1
prowth of the coeffictent has been stopped.  Furtheprmore,
G (X = T_(x).

The follrwing strategy 19 used to switch from
astame one to stage two.

(1) Compute ﬁn(X) until the matrix polynomials tend to

settle down,

(11) Compute stage two, as long as rapid convergence
appears to be occurring. If stage two 13 too clow
or is diverging, resume stage one for several more
steps.

A flow-chart of the algorithm that exhibits the
strategy follows. It 1s guaranteed to work, using exact
arithmetic, for any matrix polynomial satisfying the condi-

tions of Theorem 5.1. The actual computer program that was

used to test thils algorithm appearsa in Appendix D.
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SIVEN M(X)
WANT 8 SUCH THAT |IM(S)]I < ¢

£e— 08

:

STAGE ONE ‘
ITERATIOM

NO
YES
ITER=~|
STAGE TWO
ITERATION
YES  TRESULT X4

ITER=—ITER+! |

IM(Xigd Il < 178 fiMix;) |
OR ITER<3

E=-|/2E




CHAPTER 6

The Block Bernoulli Method

This chapter covers a generalization of Bernoulli's
scalar polynomial method to the matrix polynomial probiem.

A relationship 1s shown between 1t and Algorithm 1.

Definition 6.1 For the matrix polynomial

MCX) = X™ 4 A XML 4 cae s A (6.1)

1

the block Bernoullil iteration 1is

X + se0 + AX

1t My mii-me1 © Lo (6.2)

1+

with X ,X_qsc0X 49 given starting matrices.

The general solution to the matrix difference

equation (6.2) 1s obtained precisely a8 in the scalar case.

Theorem 6.1 If 31""’Sm are right solvents of M(X), such

that V(S,,¢++,S ) 1s nonsingular, then

1 LI 1
X, = S oy 4 + Sma (6.3)

1 1l m

is the general solution to the matrix difference -equation

(6.2), where a,,*+*,0, are matrices determined by the initial

conditions.

Proof: Substitution of equation (6.3) into equation (6.1)

- 59 =
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yields
m m m
- 14541
MXypey = 2 Ay 3 8.
J=0 J=0 k=1

n

m
- z.\ z: Adsrlrcx—d Si+23-m+1ak )
k=]l \ j=0

where Ao = I. The nonsingular block Vandermonde

insures that ®ys°°*sa, can be uniquely calculated

m

in terms of xo.x_l,...,x If ii is the general

-m+l’
solution to equation (6.2) and x1 " 21 for the

~

first m consecutive subscripts, then x1 = xi for

all 1. #

In the scalar Bernoulli method, if there 1is a
dominating root, then the ratio of the Bernoulll iterates

¢ werges to the root.

is

Theorem 6.2 If M(X) has 3olvents Sys°°*,8,, such that S,

8 dominant solvent, and V(S,,*+*,S; ) is nonsingular, and if

XysX_qs°**»X_p4q 8re chosen so that @, is nonsingular, then
~1 -1
(1) X ~1¥p * 9,78,0,, &nd
-1
(11) XX ~,+ S, & n =+ =,

Proof: Part (1) i1s obtained from
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-1

m
.1 n-1
xt X, = Z Sy L syay
1= 1=1
o 1
. 2: SI(n«l)Sgnlai 3,0+ 2: s—(n-l)s a
1s2 i=2
For part (11),
. -
-1 n -
b T sty )| 2 st
1=1 =1
n-1 -lg-(n-1) n-1 (“'1))
(s +W 817 Ta 7S] )(I*V 51 %15 ’
where
-(n—l)
E: SJ ] 1 (6.4)
and
m
. n-1_ o-(n-1)
J=2




-1

nnel * A

v s““‘a;‘a;(“”l’ * Q2. Thus, XX

nl 1’

The blook Bernoulll lteration (6.2) ocan alno he

written aa

xl-m+2 0 I ‘ ’xtwm*l
x1 0 I xi-l
X401 An o RApey MR
(6.6)
where X, 1s a matrix of order n. KEquation (6.6) looka like
{xi-m+1‘
eigenvector powering except ) is not a vector in
X1
| X, |

the usual sense. A theory of such power methoda will be
conslidered in Chapter 8.
Consider the same power-like method on the tranas-

pose of the matrix ln equation (6.6). That ia, conalder

’wi*l\ 0 e @ -A: ’ w&l

. 'I‘ .

. I -A .

‘“ . mltl . (6.1
+ . L] 1

W2 .. 4 N2

141 7 1

\wl | \ I -A] \“1]
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Multipiying out, the aystem

141 - 7 i

" ~ Ay My
141 \ T \

L L

N . . ] (h.l\)
1¢]

- w‘ - A“‘ ‘\’3

) 2 MY

th AT
reaultn.  Multiply the equation on the left by (X :
and add, The reasult ia

(\7
Ay 0 = 0 0% = (W) wen, (6.9)

where
T T
IV em=2 oL, i
a0 ® (W) a3 e en o (W2) (6.10)
Thia {a precisely atage one of Algorithm 1. Theae reaults

are generalimationa of what oacura in the aocalar case. See

Traub [21).




CHAPMTRR 7
A baithda-Mateas Alsurtsiun

In thin ohapter we prenent an Algorithm, again
baned on Traub'a aoalar polynomial algorithm, to obtain a
dominant latent root, Seotton 7.1 givea the algortthm and a
convergence theorem, deotion 7.2 conailders another gener-
altwatlon of the Rernoulll method and ita relationahip to

the algorithm of Seotion 7.1,

7.1 A Methed Based qu Lambda-Veqkopra. The Lasic approach

to the lambda-matrix problem taken in thias paper is to find

a4 vhain of aolventa and, then, to find the eigenvalues of eaoh
matiix of the chain, For Algorithm 1 to yield a solvent,
whioh ia needed in this approach, a dominant solvent muat
exist, 3Since a dominant aolvent need not exiat, an alter-

native approach will be considered.

Algorithu 2 Let & (A) be an arbitr m-1 degree lambda-

veutor. Jdenerate

Ber (M) = g (M)A - M(x)vik), (7.1)

g (\) : vgk)xm‘l b oere t vék). (7.2

Algorithm 2 is another generalization of Traub's

scalar polynomial algorithm. It seeks a domlinant latent root.

- 6l -




then
(1 g 0 Sk r.ilﬁl Ml !
- w o ) L]
sk max vm - p1 where A )]
and ,
(k+1) (k)
v - 0,V i
(11) ~A— + Q.
max \'1

= 04 =

Theorem 7.1 If
(1) MO ban ddatdnet latent reots, Pyst P
(11) '91' » 'p‘l for t v, and

T T
(111) Plgc(Dl) ¥ o, Nhere r}‘M(PI) -0,

Proof: By Theorem 3.4, the lambda-veator gn(a) can be

represented uniquely by

g (2) = }[: 8{¥) rﬂﬁ—lu by, (7.3)

i=]
where M(p )b, = 0. Thus,
2 e(k) ' (7.4)
i=]

Substituting equations (7.3) and (7.4) intc equa-

(k+1) _ 8(k)p
tion (7.1), one gets M(\) 2 - § - pi i by =0
i

i=]
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for all A, Thua, ng) " inf. where ‘1 - I§°).

Using this,

2 84P% Xm")" by

g () = A5

max z 310

i=)

as k + », 1if Bl ¥ 0, s8sinoe b1 is unique to

within a scalar multiple. Furthermore,

M(o,)
8,(p)) = B M'(py)by + 2 ——-L b, and, thus,

{m2 ° fy

T

since rEM(pl) = 0", we get

T o a T

Finally, r'{go(pl) ¥ 0 implles 8, # 0. For
part (11)
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k
Sk (k) E °1( ) (py=py b
) * Y]
mnax \'1
max z 8 ( ) b,

th

Let (v), denote the r”" component of vVector v.

Corollary 7.1 Under the conditions of Theorem 7.1, if

(b) ¥ 0, then ((ku)z-—*p
1 ’ ’ '('(W) 1

Proof:

poony  (Z sot)
1 1=] r

r

(vgk))!‘ - (mﬁ: 31"'1("1) "

i=)

r

mn k+1l
(Z () )
i\p i
{ul 1

-pl r*pl

(E u(3))

r

as k » =, as long as (Blbl) A 0.
r
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Iff division of veotora is defined as componentwise
diviaton, then v§k+1)§v§k) is an n dimension vector, with
each component an euntimate of Py In a manner similar to

the last two prools, we get the following result.

Corollary 7.2 Under the conditions of Theorem 7.1,

o {K)

max v;ﬁ? 1
Consider again, the first stage of Algorithm 1:
. N o ¥
Gk+l(X) a, (X)X - ayM(X), (7.6)
where
= k ‘1 LI ) k ,
Gk(X) g nlxm + o (7.7)

Transpose both sides of equation (7.6) and substitute
X = A to get

7
T T T k .
Gyyq (V) = GL(AA = M (A)(al) : (7.8)

Let gi(k) be the lambda-vector formed by taking the 1 th
column of the matrix coefficients of Gz(k). Then,

Bre1 (V) = (O = HTOOVY |, (7.9)

where v? 1 is the leading vector coefficient of gi(k).

?
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Equation (7.9) 1s precisaly Algorithm 2, operating on MT(A).
The latent roots of M()A) are the same as those of MT(A).
Thus, the computations of Algorithm 2 are done by Algorithm 1.
Even 1f Algorithm 1 does not work, due to the lack of a domi-
nant solvent, it 1s possible to obtaln a dominant latent
root by extracting the computations of Algorithm 2 from the
computations (successful or not) of Algorithm 1.

The convergence theorem for Algorlthm 2 has the
requirement that r?go(pl) ¥ 0. Since Algorithm 1 used
Go(x) = I, 1t follows that at least one column of equation

(7.8) satisfies this requirement,

7.2 A Vector Bernoulll Method. A block (matrix) Bernoulli

iteration was previously considered. Another generalization
of Bernoulli's method 1s now presented. Similar ideas may

be found in Guderley [3].

Definition 7.1 ¥For the lambda-matrix

m m-l [N 3 ]
INT 4 AjA + + A, (7.10)

the vector Bernoulli iteration is

v(k+1) + A v(k) + see 4 Amv(k-m+1) -

] 9, (7.11)

(-m+1)

with v(o),---,v given vectors.
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kEquation (7.11) can be written as

o (k=m+2)] 0 I
v(k) ) 0

(k+1)
v l l-Am ~Ane1

l v

v(k—m+1)

v(k-1)

(k)

(7.12)

This is jJust the elgenvector powering on the block transpose

of the block companion matrix.

block companion matrix is

Multiplying out, we get

(k¥ |
m

L) (k)

m-1 m

v§k+1) - Vék)

Then,

S0
m

o0

en| [0 e
. 1

(k+l) .

vy ..
[V§k+l)l l I

(k
| v,

- A v(k)

Eigenvector powering on the

(7.13)

(7.14)




-T1 =

(k)
Ear(A) = g, (2 = M(A)v, "7,

where the lambda-~vector

(k) -,
m (7.16)

g, (V) vgk)xm‘l $oees 4y

th

is obtained by multiplying the 1~ equation of (7.14) by

A1 and adding.
Equation (7.15) is precisely Algorithm 2. Consec-

utive substitutions of equations (7.14) yields

(k+1) (k) e ol k=m+l)

2 + AV 4 + ALY, 0. (7.17)
Thus, the leading vector coefficient of Algorithm 2 1s a
vector Bernoulll iterate. This 1is a generalization of what

oceurs in Traub's [21] scalar polynomial algorithms.




CHAPTER 8
Block Eigenvalue Problem

A block eigenvalue problem 1s considered in this
chapter. Let A be a given matrix of order mn. The matrix X
of order n 1s desired such that there exists an mn by n
matrix, V, of full rank, so that AV = VX. Power methods of

the form V1+1 = AV are considered, where V1 1s an mn by n

1
" matrix. It was shown in Chapter 6 that the first stage of
Algorithm 1 1s of this form, where A is the block ‘companion
matrix. Sections 8.1 and 8.2 define the problem and con-
sider complete sets of block eigenvalues. In Section 8.3 we
present some generalizations of linear algebra with respect
to this new formulation. The application of the'new eigen-~
value problem to the block companion matrix is given in
Section 8.4. Also discussed is the relationship between

block elgenvalues and right solvents. In Section 8.5 we pre-

sent two algorithms based on eigenvector powerilng.

8.1 Block Eigenvectors. Let the term block vector denote an

mn by n matrix that has been partitioned into a column of n
by n blocks. It 1s equivalently an m-tuple, each of whose

comporients is a square matrix.

Definition 8.1 ﬂ matrix X of order n is a block eigenvalue

of order n of matrix A of order mn, if there exists a block

vector V of full rank, such that AV = VX. V is a block

eigenvector of order n of A.

- 72 -
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Generally the order of a block eigenvalue or block eigen-~
vector will be understood and will not be referred to
explicitly.

A problem that has received a good deal of
attention is that of finding a matrix X such that AX = XB,
where matrices A and B, of orders m and n, respectively, are
given. Jameson [6] and Gantmacher [2, p. 215] are amongst

many authors who have considered this problem. The main re-

.sult for this problem is that AX = XB has only the trivial

solution X = g, if and only if A and B have no common
eigenvalues. This result will be of use in this paper.
Returning to the block eigenvalue problem, we have

the following.

Theorem 8.1 If AV = VX with V of full rank, then all the

e ]

eigenvalues of X are eigenvalues of A.

Proof: Let A be an elgenvalue of X with eigenvector u.
Thus, AVu = VXu = AVu. Therefore, either A 1s an
eilgenvalue of A with eigenvector Vu or Vu = Q.
Since V 18 an mn by n matrix and it 1s of full
rank, there exlsts a left inverse to V. Thus,

Vu = 0 can only occur if u = 0, which cannot

happen since u is an elgenvector of X. 4

Corollary 8.1 If A is the block companion matrix, then all

the eigenvalues
of M(A).

f a block eigenvalue of A are latent roots




v

- M .

Proof: The reault follows from Theorem 8.1 and the faot
that the eligenvaluea of the blook companion mateix

are latent roaota off ita assooliated lambdm=matrix.#

8.2 Complete Sets of Blook Eigenvalues. It will be shown

that 3 solvent ia a block eiger. .alue of a blook vompanion
matrix. Furthermore, it will be proved that a matrix always
has a block eigenvalue. Since a solvent does not always
exist by Theorem 2,6, it follows that a block eigenvalue of

a block companion matrix is not necessarily a solvent.

Definition 8.2 A get of block eizenvalues of & MAtrix js A
complete set if the set of all the gigenvajues of these dlogk
eigenvalues 1is the set of eigenvajues of the matrix.

Theorem 8.2 Every matrix A, of order mn, has a gomplete set
of block elgenvalues of order n.

Proof: Let Pya®* Py be any n eigenvalues of A and let
Pl""’Pn be thelr asso lated eigenvectors or prin-
cipal vectors, where needed. Then, V'-(Pl,'-~.Pn)
1s a block eigenvector with block eigenvalue in
Jordan form. This process can be continued for
each of the m sets of n eigenvalues of A, v
As an example of the conatruction in the above

o 1l

o1

-1
proof, let (plpzp3pu) A(P,P,PSP,) = . . Then,




T

- .

) ) (p ‘ ) (r.r,) (r.r) >0 )
AP L) o (1, and A n () and

p o o
henaoe , and ( are a ocomplete awt of blook
0 0O p

oeligenvaluun of A,

Definttion 8.3 L a gomplete get of DIQKK sienvaiues. one
af shem la woakly dominent. 30 all LR elgenvajues Axe
gredtel shan or equal Lo Lhe elxenvelven of any gther blogk
eigenvajue il ihe aemniwie Met.

The construotion of Theorem 8.2 ocun be done auch
that the firat blook eigenvalue contalns the n largest eigen~
values of the matrix. We thus get the following important

reault that was not true for solventa.

Corollary 8.2 Rvery blook RALIiX hes A gemplete st of Rlook
tigenvalues ¥ith one of Lhen weakiy deminant.

Blook eigenvaluea thus far conaidered have all been
in Jordan form. However, unlike aolvents, any matrix similar
to & blook eigenvalue 18 also a blook eigenvalue. This fol-
lows, aince, if AV = VX and Y = P"IXP, then A(VP) e (VP)Y,
and VP is atill of full rank.

8.3 PBlogk Vegtor Algebra. We now conaider some of the baslc

propertieas of block eigenvalues.

Definition 8.4 Blogk vegtors, VieeresV o et dimension mn by n,

k
are blook linearly independent, if 2 ViAi « Q0 implies
i=1

-




10 -

WAL Ay = @ for ald !, where A, Are mabrices of oxder n.
Note that a set .0of bBlook veotora being blook

linearly dependent doea not imply that one of them can he

aolved for as a combination of the others, since all the

Ai‘a may bhe aingular.

Lemma 8.1 Fop 1 = 1,°*+,m, Jct ghe Rlogk veotor
Vo = (vypetrtuvy)e Then, Vysece,V, are blook linearly
indgpendent i and DAy AL {vy,} for 3 = 1,::+,m,
J = 1,**+,n, are linearly independent iy k™.
Proof: (1) Assume {vid) are linearly dependent. Thus,

there exiats (“1J) not all sero, asuch that

E: @gVyy " Q. Let A, be u matrix whose first

1

column is (uil""’uin)T’ and tho remainder of the
m

matrix ia zero. Then Z VyA; = § and not all
i=]

the A, = Q.

(11) Assume {Vi) are block linearly dependent.

Thus, there exists {Ai) not all zero matrices, such

m
that D, V,A, = 0. Let k be such that there is an
11

element in the kth

column of at least one Ai that

is not gzero. Then, 2: ViJ(Ai) =0 since this 1s

1) Jk
m
th .
the k column of 2: ViA1 and, since, {Vid} are
i=]

linearly dependent. #
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Definttion 8.5 Blogk vestors V,,***,V, of dimensjion mn by
n form & blook basis if for any V of the same dimension

there exista a unique aet of matrigcaes A,,***,A, sugh that

m
Ve ) VA,
1=1

Block vectors heing block linearly independent and

forming a block baals are related by the following.

Theorem 8.3 Block vectors V,,***,V, of dimension mn by n

form & block basis if and only if they are hlock linearly

independent..

Proof: Let V be a block vactor of dimension mn by n,

m

V= Z "1“1 is equivalent to V= (vl,n-,vm
i=1

The matrix (vl""’vm) is square and, by Lemma 8.1,

nonsingular, if and only if (Vi} are block lincarly

independent. ¥

A generalization of a matrix with distinct elgen-
values being similar to a dlagonal matrix, is given by the

next result.

Theorem 8.4 If A has block eigenvalues X,,*°*,X with block

eigenvectors Vl,-°-,Vm that are block linearly independent,

and if X is also a block elgenvalue of A, then X is a block

eigenvalue of diag(xl,-°~,xm). Furthermore,

(Vysees V) ™ AV e e,V ) = afag(X),ee+,X) . (8.1)




——
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Equation (8.1) 1is easily verified. Lat AV = VX,
Then, by Theorem 8.3, there exists a unique set

of n by n matrices, Aystte,0, such that

m
V= E "1“1' Let A = (oz'{.-“,u:;)q‘. Thus,

1=]
Va (Vl,~--,vm)A. Since (V1.~--,Vm) is nonsingular
and V is of full rank, by definition, it follows
that A is of full rank. Now, using equation (8.1),

we get
(vl’on-,vm)hx a X = A(vl"“’vm)A
= (le.'.ovm) dias(xlg"',xm)A.

Finally, diag(xl,"°,xm)A = AX with A of full

rank. ¥

8.4 Block Companion Matrix. An sapplication of the block

eigenvalue problem 1s given below. We again consider the

block companion matrix. Recall that

and

0 o - |
I -A
C = . m-1 (8.2)
I -A




M(X) M=l y vee s A (8.4)

4
ol
=3
+
>
f
>

It will be shown that a solvent is a2 block elgen-~
value., The converse 18 not true, since a matrix similar to
a block eigenvalue 1s also a block eilgenvalue, but the same
is not true of solvents.

The following 1s easily verified.

Theorem 8.5 If S is a right solvent of M(X), then S 1is a
I

S
block eigenvalue of c® witn block eigenvector .

Unlike the scalar eigenvalue problem, the block
elgenvalues, with respect to left and right block eigen-

vectors, are different.

Definition 8.6 An n by n matrix Y is a left block eigenvalue

of dimension n of A, & matrix of order mn, if there exists a

block vector W of dimension n by mn of full rank, such that

WA = YW. W is a left block eigenvector.
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A generalization of what occurs in the scalar case,

(see Jenkins and Traub [8)), is given in the next theorem.

Theorem 8.6 If R is a left polvent of M(X), then R 1s a
B

left block elgenvalue of C~, with left block eigenvector

(Dm_l,°--,Dl,I), where

D(A) = 1™ L4p a™Z 4.4 A4D o = (I-R)TIM(A). (8.5) 1

1 2
Proof: Let
o I 1
(Dp_qs®**sDp,1) 0 e Tl
["An  “Ape1r A

m m-1
Dp-1 = Ap-y = ¥0p s
: : : (8.6)
D - A2 = YDl

Consecutive substitutions yileld

Y™+ Y™ A+ oo 4yA o, + A =0. Thus, Y =R,

h

1 1l
a left solvent of M(X). Now, multiply the 1t
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equation of (8.6) by Ai'l; add; let
D(A) = 1A™1 Dlxm'z + eec +D__,i and get
equation (8.5). V

In a similar manner, we find that if S is a right

solvent of M(X), then S 1s a block eigenvalue of C, with

vm-l
block eigenvector | : , where
Vi
I
-1 o om=l m-2 . ...
MO (IA-5)"1 = ™l 4 o™ty e w0 (8T

Let R1 be a left solvent of M(X). Then by equation
ﬁ (8.5) and Corollary 3.4, it follows that Ei(X) = D (X), 1if

the appropriate block Vandermondes are nonsingular. Also, by

-1
equation (3.12), Di(si) - (Aii)) » Which 1s the inverse of
the leading matrix coefficient of the 1th fundamental matrix

polynomial.
Let
! . ‘
v, = fi (8.8)
-
and
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wi - (Dx(nfi"“’ugi)’l)» (8.9)

where it 1s assumed that both V(Sl,--°,sm) and
V(Sy,00*,8

1—1’Si+1"'°’sm) are nonsingular, and that
-1
- a1 (1)
Ry = Ay S4Aq from equation (3.11).

The biorthogonality of right and left block eigen-
vectors 1s given by the following.

Theorem 8.7 Under the above assumptions

-1
WV, - 613A§1) . (8.10)

Proof:

« (p(1) ... p(2 S
W, vy (Dm~1’ »Dj )*I) :

m=-1
Sy 7

L (1) (1) oy el
Dp1 * Doy Sy + + 8 D, (5,)

-1
- - - (1)
From Theorem 8.5 and Lemma 8.1 the result that
V(Sl,°'-,Sm) is nonsingular, if and only if the block eigen-

vectors of CB are block linearly independent, is easily

cbtalined.
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8.5 Algorithms for Block Eigenvectors. Consider now block
powering methods, as in equations (6.6) and (6.7). Let

Vi
\P:
(V) = Vi» where V =j, and V, is an n by n matrix.
vm
Algorithm 3 Let
-1
U ey ™ Aun((wn)k) , (8.11)

where U, 1is an arbltrary block vector of full rank and

1<k <m 1s an arbitrary fixed integer.

The normalization in equation (8.11) depends upon

the nonsingularity of (AU ) .
n/y

-1
e Al n
Lemma 8.2 U_ = A UO«A Uo)k) ]

Proof:

s = A(00,))
ey (00, (s (090, )) )
T Ry

- A2Un-—l((Azun-l)k)’l =t An+luo((An+luo)k)_l"

U




- 84 -

With this identity, convergence can be proved.

Theorem 8.8 Let Sl,--o,Sm be a complete set of block elgen-

values of A with block eigenvectors Vl,---,vm. ££ S, domi-

1
nates all the other block eigenvalues and U0 is in the span
m
of {Vi}, that is UQ = Z V1°‘1’ and ay is nousingular, then
i=]1

-1
Un+1 = Aun((AUn)k> converges to v (( 1) ) » 1f 1)k is

nonsingular.

Proof:

(==
|

. (AnUO)((AnUO)k)-l

i=)

k

m m -1
(Z (St [ 2 vysTey

m m -1
Z ySTa a7 87" (Z (Vi) sfa,07's7"

7 vl((vl)k )- ’

a3 n + «, by Lemma 5.1. Since, as shown above,

(AUn)kailsIn > (vl)k, 1t follows that (AUn)k 1s

~1

k
exists by the hypothesis, ¥

nonsingular for n sufficiently large since (Vl)




- 85 -

In the application to the block companion matrix,

the existence of a k such that (Vl) is nonsingular, 1s

equivalent to the exlistence of a solvent.

exists, k can be taken as 1 by Theorem 8.5.

proved below,

k

If a right solvent

The converse 1s

Theorem 8.9 If cPy = VX and (V); iz nonsingular, then

S = (V)lx(V)I1 is a right solvent.

Proof:

Let V(V)Il =D =

[ X N 2

D |

. V(V)']'_1 is a block

eigenvector of C with block eigenvalue’

S = (N;X(M7T. Thus,

0 I
¢ . .
0 I
“Am Apar -Alj

Multiplication ylelds D

DmS + A1

solvent.

i
Dm+ o-o+Am-Q,

. si-1

and

Hence, S 18 a right

¥

Thus, Algorithm 3, applied to the block companion

matrix, converges to a block elgenvector associated with a

e
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solvent. Sinoe bloock eigenvaluen alwaya exiat bhut nolventna
do not, 1t 1la necenaary Lo oconaider a normalimation whioh
does not depend on the exiatencve of wulventa. A bhlook elgen=
value ylelds, by Corollary 8.1, aa muoh information to the
latent root problem as a aolvent dooa. The diffioulty in
that a deflation of the form M(A) = Q(A)(IA=8) 1ia not
avallable for block eigenvalues.

For a block veastor VJ of full rank, let (VJ)
k
J

denote the n by n matrix formed by taking the firat n rows of

V, that are linearly independent. Aoctually, the rule for

J
choosing the n linearly independent rowa is not important,

as long as the rule ylelds a unique aet of rows,

Algorithm 4 Let

-1
Uy = AUJ<(AUJ)kJ) . (8.12)

If it 1s assumed that A is noncingular and Uo ia of
full rank, then AUJ will remain of full rank, and the itera-
tion (8.12) will always be defined. 1t 1is the goal here to
get UJ to converge to Vl, the block elgenvector corresponding
to the dominant block eigenvalue of A. Since the dominant
block eigenvalue cannot be slngular, it follows that for UJ
close to Vl’ A is not required to be nonsingular to ensure

that the normalization, (8.12), is defined.




- 07 -

-
Lemma 0,9 HJ ) AJ"..\((AJUn)k ) .
J

Proot)

I3

A <(4\n\,)k >-l
J,
. ! v )
“a"d“((w"‘)h-x) “'"J“(“U"'l)“a-l) ky
wl » -1
*Q"J-l((“ud-l)ud-l) (AQUJ-l)“J((de)“J-I,)

-1
‘2“3-1<(*2°J-1)k3> " ® “J‘l"o(("w"o)ud) !

Let (vl)r denote the n by n matrix formed from the

-1

-1

firat n linearly independent rowa of Vl‘ Convergence of

Algorithm 4 can now be proved precisely, az in Theorem 8.8,

Theurem 8.10 Let S,,-++,5 be a gomplete aet of Rlook eigen-
valuen of A with blogk eigenvagtonrs Vl.---.vm. 1f S1 domi-
pates all the other blook eigenvalues {n the aet apd U, is in

n
the sean of {V)), that s Uy = D7 Vyo,;, and o) is non-
1=1

aingular, then Uy, = AU ((AUJ)kJ)

-] -1

r

sonverges gg_vl(vl)
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CMAPTER 9
Numerical Rsgwlte

Eight numerioal examples tollow. All caloulationa
wel'e done on Cornell Univeraity's IDM 360/6T in APL. Thin 4&s
a Line-aharing language that givea the numerical analyat
flexibility in deaigning algorithma. It has ocomplete matrix

artthmetiec and does wll caloulationa in deuhle precislion,

9.1 Connider the monio oublo matrix polynomial

3 -6 6 2 ¢ =~h2 18 66
M(X) » X° + X5+ X + .
-3 =15 21 65 ~-33 =81

Algorithm 1 ylelds for stage one

2
Hocx) - X%,
2 "10“““ 2'22 ‘°|667 “u 667
Gl(x) = X° + X +
«1.111 -h4.778 2.333 6.333
_ o [-1.821  2.979 (-1.105 ~6.865
a,(X) = X° «+ X + R
¢ -1.490 ~6.290 3,432 9.192

1.394 -8.061
-1.678 -6.989 .03 10.697

Gu(x) = X

2 -1.956  3.356
ﬁ*<x) - X< + X +

\.._/\—/

-2.008 3. 57&) ( ~1.586 -8.762
X +

-1.787 -7.368 4.381 11.557

. 88 -
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o -2.026  3.711 -1.715 -9.193
US(x) . X“ o+ X + [, ,
-1,856 ~7.593 4,597 12.075

and for atage two

and

3.992%  ~2.4261
1.2131 7.6317

X 3.9729 -2.0892
1 \1.044€  7.1067

1.0089 7.0195

X, (
3-9985 "20003“
X »
3 \1.0017  7.0035
(3.9997 -2.0006
X“ -
1.0003  7.0006
1, - (

)
).
3.9927 -2.0179) ’
)
)

and
3.9999 —2.0001)

1.0001 7.0001

y -2
Sl -( ) 1s a dominant right solvent of the matrix
1 7

polynomial.

9.2 Consider the monic, cubic matrix poclynomial having right

7 2 5 1 4y -2
solvents S, = S, = and S, =
L O Y A SR 3 \3 1/’
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which have eigenvalues 5,6; 3,4 and 1,2, respectively. Thus,
9y tn u dominant solvent. Furthermore, V(Sl,82,83) and

] V(SE,S3) are nonsingular. The unique monic matrix polynomial
having these solvents, which was obtained using Corollary 4.3, 7

is

3 -11.79104478 0.82089552 2
M(X) = X° + X
1.91044776 ~-9.,20895522

42,34328358 -10.16417910
+ X
-13.43283582 25.64179104

~50.35820896 21.88059701
+ .
19.58208955  -22.80597015

The corresponding lambda-matrix has latent roots and latent

vectors

Root Vector

1 (1,1.5)T
2 (1.1)7T

3 1,-2)7
u (1,-1)7T
5 (1,-1)7
6 (1,-.5)T

7 2
From these results, we find that SH -( ) ) is also a
- 1l

solvent. Its eigenvalues are 3 and 5 and, hence, it yields




T ey,

T e gy
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only redundant information for the lambda-matrix problem.
Note that the only combination of latent roots that cannot be
eigenvalues of a solvent are 4 and 5.

For this problem

- 2 -5 7/9 l 4/9 8 7/9 -4 1/9
Ml(x) = X° + X + ,
1 89 -4 2/9 -3 8/9 4 5/9

to which UA(X) 1s to converge. Letting GO(X) - x2, we get

_ s [=3.541 .678 4,183 -1.708
G, (X) = X% + X + ,
724 2,644 -1.259  2.122

2 "5.696 lo l"07 80566 .‘3-986
G,(X) = X% + X + s
10759 -“¢16l "'3'553 l‘~357

and

) -5.770 1. 441 8.756 -4.099"
(X) = X° + X + .
1.876  -4.216 -3.854  4.535

The ratio of the leading matrix coefficlents, which is to
7 2

4) » results in
-1

converge to Sl = (

-1 11.791 -.821
("‘i)(ag ) (_1,910 9.209) ’

-1 6.874 1.682
I G I
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and
1/\1 ~.983 4,034
Algorithm 2 which ylelds a dominant latent root was shown to

be obtainable from the first stage of Algorithm 1. The iter-

ation for this problem 1is

Latent Root Estimate

11.791044
8.332911

10 6.014309
15  6.010162

16 6.007294
17 6.005296
18 6.003892
19 6.002895%
20 6.002181
21 6.001663
22 6.001283
23 6.001000
24 6.000787
25 6.000626
26 6.000501
27 6.000404
28 6.000327
29 6.000267
30 6.000218

All of the 1iterations thus far described have been

linearly convergent. The ratio of the errors has been .8,
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which 13 the ratio of the smallest eigenvalue of the dominant
solvent and the largest of the next dominant solvent. The
second stage should alsc be linear, but with a ratio of

L-1

errors C(.8) The results are

L= 10 L=5 L = 2

8.3287 .0258
1.2123 6.4868

6.8738 1.6815
.8769 4.3084

6.8632 1.0039
-.8216 4.9284

.9766 1.9515
.9770 4.0475

(o o) ( )
v (S ) o o)
o (S iy (o e (e
(o o) (oo i
(o o) )
(

-.8895 5.3558

.9994  1.9989

<9995 4.0011 ~.9630 4.0774 ~-.7878 4.7206

6.7763 1.3414
-.8043 4.5559

.9999 1.9998 6.9819 1.9630

.9999 4.0002

6.7670 1.1&58)

-.9832 4.0343

15

2 7 2 (6.9790 1.9573
4 -1 4 -~.9819 4.0367/

The ratio of the errors, which by Corollary 5.2

should be C(.B)L'l, was found for large values of 1 to be
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[ X142-81 ,H/in-siﬂm

.15
023
.36
.54
.78
.91

(&)
HMOEAANDO Ib

This shows that by increasing the number of iterations of

stage one, stage two can be made to converge more rapidly.

9.3 Conslder the matrix polynomial

,  {-11.44382802 3.420249653)

M(X) = X° + X
0.8613037448  -5.556171983
< 41.02912621 ~20.93481276

+ X
0.5533980583 7.332871012
(-39.65603329 23.56171983

+ .
0.6074895978 -3.386962552

7 2
It has a complete set of solvents, Sl = ( ) and
-1 4

y -2
S, = S_ = . The eigenvalues of S, are 5 and 6, while
2 3 °\3 -1 1

while the eigenvalues of 82 are 1 and 2, Clearly, V(Sl,Sz,S3)

and V(82’33) are singular. Algorithm 1 converged for all

values of L. With L = 6, we get

( 6.7783 1.2u6u)
xo" »
-1.0231 3.9215




( 6.9896 1.975u)
xl - »
-~1.0011 3.9975%

X 6.9997 1.9995
2 \_1.0000 3.9999/

and

The convergence 1is fast, though linear, since the asymptotic

error constant is (.N)s.

9.4 Consider the problem
P D 4.4 2 52.6 =-29.2 ~73.2 4o .8

M(X) = X°+ X+ X+ .
1.6 -8.6 ~10.4 22.8 16.8 -19.2

7 2
This problem has a complete set of sclvents, S1 -( ) »
~1 U

1 0 3 2
82 - o s , and 33 - o 4 . S1 dominates, V(Sl,Sz,S3)

is nonsingular, and V(SQ,S3) is singular. Ml(x) exists
uniquely, but 1its leading matrix coefficient 1is singular.

X Hence 1lim En(x) does not exist. However, Algorithm 1 con-
n+o

verged. This 1s because the aecond stage needs the ratio of

@, (X) and G;_,(X), not Gi(x). For this type of problem, the

-1
equation xo - a%(ag'l) can cause difficulties because

a1 can become singular, For this problem, however, the

1
L=-1

ratio did exist since a, d1d not quite become singular.

If it had, a random x° would have been used. After twenty

|
|
LMhﬂh*_‘““”“*‘**“““-&M“Mu~&ml
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iterations of the first stage,

(5.0260 ~2.0376

Xo -
-.5065 5.0004
Then,
5.1741 -1.6544
X1 - R
~-.5435 4,9136
6.6745 1.3489
x2 -
~-.9186 4.,1628
and

6.9929 1.9857
X3 =
-.9982 4.0036

9.5 Consider the quadratic

5 <7 8) (9 3)
M(X) = X + X + .
8 10 § 4

The corresponding lambda-meirix has latent roots -16,05113,
-.4215 and -.2637+ 1.86491. There exist two solvents having
these as their eigenvalues, but neither can dominate, since
there is a complex pair of latent rnots whose absolute value
1s between the two other latent roots. Algorithm 1 did not
converge, but Algorithm 2, whosa computations are done by
Algorithm 1, did converge to yield the dominant latent roo¢,

-16.05113. The order of the matrix coefficlents was then
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reversed and the minimum latent root was fcund. Using these
results, a solvent was formed, deflated, and the new problem
yielded a solvent with eigenvalues which were the remaining
complete pair of latent roots. This problem suggests the
use of a random complex shift of the varlable in the lambda-
matrix. This will break up troublesome complex pairs of
latent roots. With a shift of 1, Algorithm 1 converged with

no difficulties. All computations were done in the complex

domain.

9.6 Consider the quadratic

» (r-l -6) ( 0 12)
M(X) = X° + X + .
2 -9 -2 14

The corresponding lambda-matrix has latent roots 1,2,3,4 with

corresponding latent vectors (1,0)T, (o,l)T, (1,1)T, (1,1)T.

1 2
The problem has a complete set of solvents S1 = ( ) and
0 3

hy 0
Sz = ( ) . Other solvents have eigenvalues 1,2; 1,4 and
0 2

2,3. The only pair which cannot be the eigenvalues of a sol-
vent is 3,4. Thus, no dominant solvent exlsts and Algorithm
1 did not converge. However, Algorithm 2, as computed by
Algorithm 1, yielded the dominant latent root, 4.

Reversing the order of matrix coefficients has the
effect of making the latent roots the reciprocals of the

original latent roots. The right solvents are the inverse of

L T

colli . ..,mm.m ililhoibil i ﬂ&m,,m.

R ST 1S
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the original ones. Thua, 1 and % are the new dominant latent

1

0
roota. Algorithm ! converged to ( > » and, henove, Lhe
0 %
/1 0
saolvent ( waa found for the ovriginal problem. Note that

n 2
for the problem for which Algorithm 1 did converge, tho:ie wan

no complete set of solvents which inoluded the dominant aul F

(o +)
vent .
0 %

9.7 Lancaster considers a test problem whivh "dependa on a

parameter whose value determines the proximity of cluatered

2

roots" [13, p. 90]. Consider M(X) = X° + Alx + A?' where

’3& ~(1+a%+28%)  a(1+28%)  -p%(a‘+8?)
2 0 0 0
A, =
0 2 0 0
0 e 2 0 |
and
.—l+2u2 a-a(a2+282) 20262 —u82(02+82)
2u ~(a2+28%9) 208° -82(a+p8%)
Ay = ,
1 0 0 0
K 1 0 0 |

where B = a + 1. The eight latent roots of M(XA) are




- 0“ "

0,
"
wa
tflenjt

and ~as{lta)tl ,

Algorithm | wan teated, and worked for o = S 1, 0h, 01 and
yO001. When a ta made nmall, the amalleat efgenvalue of the
dominant aolvent approachen the largeat eigenvalue of the
next solvent. Thua, uvonvergence {a aonatderably alower fop

amaller a. Using the code in Appendix D, the reaults were

- . Jo iverations I X d
2 10 3 perg=0
1 10 2 ax10™®

5 10 2 ax10™8

1 28 7 2x1070

.001 30 6 004

9.8 Finally, conaider the intriguing problem

. (-1 -1) <2 2)
M(X) = X* + X + .
-2 -2 0 0

Note that

o o)
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$ o

Vo0
n‘ - ( ) e A dominant molvent, but tt oan he ahown that

there ta no correaponding 52 that would form A complete net

off rolventa.,  letting OO(X) e X, WNe get

1 | Q 2
uﬂx) - X -
‘ R ¥ 0 0
1 1 2 2
OQ(X) - x - .
‘ 6 6 b i

and

with

-1
02(X) = A,(X)GT7(X)

oGO -G
L x"‘ X" 3
6 6 by 2 2 0 0

JL 1 eaally aeen that oe(x) t S, for all X suoh that

1 1 @ 7
/ )x - ( ) 1a nonaingular. Thua, the exact solution
\a 2 0 0

in obtalned in one iteration of stage two f'or any X

aatiafying this one easy condition.




APPENDIX A
Nonmonde Lambda-Matrioes

This paper has oconsidored only matrix polynomials
(and lanbda-matricen), where the identity matrix was the
leading matrix cueffiolent. Conaider now, the matrix

polynomial

‘ m m-1 ces
M(X) & on + Alx * + “m' (A.1)

It A, ts nonaingular, then M(x) = Agln(x) is the problem

that {8 dealt with in the body of this paper. If R is a left

solvent of M(X), the R = AZIRA 1o a left solvent of M(X).
The case where Ao is aingular presents some diffi.

oculty in the matrix polynomial problem. Franklin [1] con-

1 0 2 0 2 0 0
siders the problem M(X) = )x +( X +( -9,
0 0 3 0 0o 6

0 =2
which haa a solvent < for all values of a and b. Thus,
a b
a matrix polynomial with both Ao and Am singular oan have
solutions with variable eigenvalues.
It Am is nonsingular then

m-1

MROX) = AX™ # A (XM e b n (A.2)

can be used. The solvents of MR(X) are the inverses of the
solvents of M(X). M(X) does not have any singular solvents

aince Am is nonsingular. However, ir MR(X) has a complete
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set of nolventa, then one of thom muat be singular, since
zoro ia a latent root of MR(X). Thias follows nince
dot MY(0) m det A_ = 0.

In contrast to the matrix polynomisl problem, the

latent roots of the lambda-matrix problem

1

. m m-1 ., ...
M(A) = Aok + AL + * Ay (A.3)

1

can be calculated, even if Ao is singular. If Am is singular,
then A = 0 1is a latent root of M(A). If ¢ is not a latent

root of M(A), then Am(c) is nonsingular, whare
= = m TN
Mo(A) = M(A+a) & A (o)A + + A (o). (A 4)

Furthermore, if p ¥ 0 18 a latent root of M()), then 1/p

is a latent root of

R = Mo f(l m m-1 . .
R R S VRS L SETER Y SR O

1113
>

Ir MR(A) has a zero latent root (Ao is singular), then M{1)
is sald to have an unbounded laten® root. A lambda-matrix
M()) 1is said to be degenerate 1f det M(A) = 0 for all A,
‘This c¢can only occur if AG and Am are singular,

Consider the following algorithm for a non-

degenerate lambda-matrix. It transforms a lambda-matrix
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with a singular leading matrix coefflclent into one which la

not. The tranaformed lambda-matrix in either

(1) MR(A) 1f A_ 18 nonsingular
‘ S Y | \
or (11) M7(A) = A" M(§ + c), where det M(c) ¥ O.

Part (11) works since AmMS(%) = M(A+c), which does not

have a zero latent root.




[@

] APPENDIX B

Previously Known Methods for Lamhda-Matrices

The determinant of a lambda-matrix 1s & scalar
polynomial. Let f(A) = det M(A). If one is willing to
evaluate the determlinant many times, then one can use any
u of a number of algorithms for the zeros of a scalar function.

] Tarnove [19] considers the use of Muller's method. He de-
P=1

flates known roots by considering rP(A) = £(A) H (A-Ai)'l.
i=]

Lancaster [10] notes that
£r(A) = f(A)Trace{Mul(A)M'(A)}, which he uses in Newton's
method. Newton's method 1s also used by Kublanovskaya [9],
who finds r(xl)/r'(xi) by using a factorization of M(Ai).
Another approach analyzed by Lancaster [12] is the

use of a power-like method with a generalized Rayleligh

quotient. That 1s, for arbitrary Eo’ Ne and Ao, let
= [M(x,) T2 = [MT(A )]_1 and
51 i o? Ny 1 Ny

T
niM(Ai)Ei
A = )\, = —F——T———=. _ Lancaster has shown that, for a
1+1 1 nTM'(x )E
i 17~1
class of lambda-matrices, this iterative process 1s locally
convergent and quadratic. Modifications of the above algo-~

-1
rithm by £, = [M(Ai)]"lﬁi_l, n, = [MT(xi)] ny_, has also

been considered by Lancaster.
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Another approach, due to Lancaster [14], 1s to
connsider the elgenvalues of M(A). Let u(A) be a acalar such
that M(A) - u(A)I 1s singular. Then a scalar p 13 nceded
such that u(p) = 0. Lancaster considers Newton's method
on u(A).

The above methods of Lancaster and Kublanovskaya
are only locally convergent and they do not have a method of
deflation assoclated with them.

A symbol-manipulation approach 1s to perform
Gaussian elimination on the lambda-matrix using polynomials
in the computations. That is, every non-trivial lambda-
matrix with det Ao # 0 can be transformed, by elementary
transformations only, into a form such that
M(A) = P(AIN(A)Q(A), where det P(A) = cq ¥ 0,
det Q(A) = c, A 0 and N(A) = aiag(a;(A),=++,a, (M), with
ai(x) monic polynomials and ai(x) divides a1+1(x). N(A) 1is
called the Smith canonical form of M(A). See Wilkinsor [22,
p. 19]. Then all the roots of the ai(k)'s are latent roots
of M(A).

This method parallels the approach of finding the

characteristic equation in the elgenvalue problemn.




APPENDIX C

The Quadratic Matrix Polynomial

The monic, quadratic matrix polynomial,

2

M(X) = X° + AJX + Ay, (c.1)

1

with right solvents Sl and 82, 1s of the general form

2

. -1 -1
M(X) = X2 - [51‘*(31‘52)32‘31'52) ]x + (5,-5,)5,(5,-5,)7 s,

(C.2)
if det V(Sl,Sz) = det (82—81) ¥ 0. Note that 1f S, and S,

commute, then

% 2
| M(X) = X% - (8,+5,)X + 8,8, (c.3)

even 1if V(Sl,Sz) is singular.

The corresponding lambda-matrix can be factored as
M) = (1A - (8,-8,)8,(5,-8,) 1) (1A-5,)
1 727721 T2 1

-1
- (IA— (5,-5,)8,(5,-5,) )(IA—SQ). (C.14)
Thus,
-1
R, = (sl-sz)sg(sl-sz) (C.5)
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are left solvents of M(X).

that
s2 - 82 = (S,+R,)(S.~S,) (c.7)
2 1 12 2 717 )
i

‘Furthermore, -Al = R2 + Sl = Rl + 82 and A2 - R2Sl = Rlsz.

It 1s easlly verified that

0 I 1 I 0 Sl I

-A2 —Al S1 S1 I/\O 82

S. I
and hence, the block companion matrix 1s similar to ( 1 )
2

regardless of V(S,,8,).

Assume that Al and A2 are real matrices and let

= r ¢
Sl S1 + 1Sl

- 2 - r c _{<r c
M(A)zs IxA® + All + A2 (IA- (R2+1R2)>(IA (Sl-o-isl)\).

Equating coefficients, we get

RORS +5%8T = 0,

Then, oRy 151

r [
that S1 - 181

-1
Sz)Sl(Sl—Sz)

be a right solvent.

By direct substitution it now follows

is also a right ro.veat.

(Cc.6)

From equation (C.5) 1t follows

0 S

Then,

(€.9)

e, aC o Ca
R+ S g 297

2 1 and R

r.g
+RZSl--O-'

Thus,




Theorem C.1 For a real, monic and gquadratic matrix poly-

nomial, if S + 1C is a right solvent, then

(1) S - 1C 1is a right solvent,

(11) R - 1C a left solvent, and

e e
o |&
[+

(111) R + iC a left solvent,

where R + S = —Al.

Given arbitrary matrices Sl and 82, Corollary 4.1
shows that there might not be a monlec, quadratic matrix poly-
nomial having them as solvents. Such a condltlon occurs if
S, and S

1 2
det V(Sl,Sz) = 0, If V(Sl,sz) 1s nonsingular, then M(X)

have distinct and disjoint elgenvalues and 1f

always exlsts. The followlng result glves necessary and

sufficient conditions for the existence of M(X).

Theorem C.2 There exlsts a matrix polynomlal
2

+ AlX + A2

only if there exlsts a solution Y of

M(X) = X

having right solvents Sl and S f and

i vo 24

¥(5,-5,) = (sg-si). (C.10)

Proof: In finding A, and A, to satisfy

1 2

2 =
M(Sy) = S5 + AJS) + Ay = Q

+ A.S., + A, =0 (c.11)

[A SN0 ]

M(SZ) = S

e ol
the matrix A, must satisfy A1(52"Sl) = (sg-sl). #
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Note that 1if V(Sl’s2) 1s singular and the condi-
tion of Theorem C.2 is satisfied, then M(X) exists, but is
not unique. From equation (C.10) if follows that

Corollary C.1 If (Sz—sl) is singular and (Sg—si) 1s non-

singular, then there 1 0 monic, quadratic matrix poly-

nomials having Sl and 82 as right solvents.




APPENDIX D

Computer Programa

The computer program that was uaed for Algorithm 1}
follows. It ts written i{n APL tor the IBM 13160/67. 1t la an
{interactive language and the program aska for

(1) the degree of the matrix polynomial,
(11) the dimension of the matrix coeffiolenta,
(111) the matrix polynomial,
and (1v) the stopping criterion (an ¢ such that HM(XI)“ < €
terminates the computation).

Following the code is an actual output for Example 1

in Chapt:r 9.
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