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CHAPTER 1

1l. Introduction

R. A. Wooding (1956) derived the p-variate complex normal distri-
bution. lLet £ denote & complex norma. random vector with cumponents
Ej (j=1, 2, *** , p). Then each Ej (j =1, 2, **+ , p) represents a
corplex random varinsble with real and imaginary components given by
xj and v j It was found that if the covariance relation between the

components of £ had the following form
E(xm xn) = E(ym yn) ;l’-:(xm yn) = -E(xn ym) (1.1.0)

then the p-variate complex normal density function could be represented

as
1P| exp(- £+17lg) (1.1.1)

where L is the non-singular Hermitian variance-covariance matrix and £*'
represents the transpose of the conjugate of £ . The mean of the vector
£ is assumed to be 0 . Wooding (1956) also derived the characteristic

function for the above distribution and found it to be given by

exp(— %'2*'1’!)

where T is some arbi- -=ry complex parameter.
It appears that N. R. Goodman (1963), working independently and

using the same assumptions as given in (1.1.0), has also derived the complex




multivariate normal distribution. He extended the development further

by deriving the complex analogue for the real Wishart distribution, de-
noting it as the complex Wishart distribution. Also, foodman derived

the distributions of the complex analogues for the sample multiple a.d
sample partial correlation coefficients. In the complex case, these are
denoted as the sample multiple coherence and the sample partial coherence.

All developments that have followed in this area of complex multi-
variate analysis have been based on the assumption of the density function
specified by Wooding (1956) or Goodman (1963).

Other authors who made early contributiors in this area of complex
multivariate analysis have been M. S. Srivastava (1965), N. Giri (1965),
D. G. Kave (1966DP), and C. G. Khatri (1965). D. G. Kabe (19653) gave a
simplified method of deriving the distribution of the sample multiple
cocherence and the sample partial coherence. He represented the density
functions in a finite series while Goodman (1963) had presented these as
infinite series. Kabe (1966F) developed the complex analogue some results
in classical multivariate normal regression theory. Srivastava (1965)
gives a direct and simplified method of deriving the Wishart distribution.
Khatri's (1965) contributions were in many areas. He obtained the mexi-
mum likelihood estimates of the parameters of the complex multivariate
normal given by Wooding (1956) and Goodman (1963); he then derived the
distributions of these estimates. Also included in his work are pro-
cedures for transforming from densities of complex random variables to
other complex random variables. Using these techniques, Khatri (1965)
derived the distributions of the sample multiple coherence.

Khatri (1965) also derives the distribution cof Wilks' A in the

complex case. He gives a representation of Wilks' A (in the complex




case) as the product of real independent beta variables. It is this
development that proves useful to the work given in this dissertation.

Throuon the work of the above authors the foundaticn for complex
multivariate analysis, based on the assumrtion of a complex multivariate
density as given in (1.1.1), has been established. It is the purpose of
this dissertation to extend this 3evelopment by exanining Wilks' A which
appears ac a solution to some inference problems associated with this
particular complex multivariate normal distribution.

This extension is covered in Chapte: III by an examination of
Wilks' A as presented in the multivariate analysis of variance of com-
plex normal data, the regression analysis of complex normal variables
upon real dummy variables, and discrimination among several complex
neimal populaticns with the same variace-covariance matrix but with
di fferent means. Also the goodness of fit of a hypothetical discriminant
function is considered.

In Chapter II, some basic theorems dealing with the complex multi-
variate normal are established along with the Bartlett decomposition of
a complex Wishart matrix. These results are used in establishing some
di fferent expressions for the sample coher.-nce and sample multiple
coherence. These results prove useful in working with Wilks' A in
Chapter III. Chapter IV presents a summary of the work covered in this
dissertation along with possible extensions of this research into other

areas.

2. Definitions and Notation

Let £ denote a p X 1 complex random vector,

5' - [51/ Ezr M Epllxp (1.2.0)

st AR .

e

[P S PSP



where Cj = xj + iyj . Denote the (2p x 1) vector of real and imaginary

components by

n' o= 0x 0¥y Xye¥ye 00t s X LY

o'¥pl1x2p (1.2.1)

and let this random vector have a 2p-variate normal dist.ibution with
[ - [ A . “oe
8§ E(M") = [u, Wy ¥orvy, ' up,vpl

and the variance-covariance matrix given by

where the 2 x 2 submatrices of Xn have the following special form

E[xj - E(xj)][xk - E(xk)] E[xj - E(xj)][yk - E(Yk)]

E[yj - E(yj)][x'k - E(’S()] E[yj - E(yj)][yk - E(yk)]

oi 1 0]
—9?— J lf]=k

0 1
= (1.2.2)
o.0, [ - B.
Jzk jk J#] if 34K
Pk T Can)

Then the density function of n is given by
P(n) = expl- 2(n - &I T - & (1.2.2)
- 1/2 22 =ty 2 = it

P
(2m) Izn|

provided that lZnI ¥ 0 .

-




It has been shown by dooding (1956) and Goodman (1963) that if

condition (1.2.2) is satjafied for n, then { is distributed as a p-variate

complex normal vector vith probability density function given by
P(g) = (11"|z§|)’1 expl-(§ - g)*'Egl(g - W) (1.2.4)

whers the mean y is given as

LI L = LN ]
p' = E(g") = [u tiv,, uyHv,, ’ up+1vp]

2

and the variance-covariance structure is given by the Hermitian positive

dafinite matrix ZE , where

I, = EL(E - w)(E - W]

and the elements of I, are given as

§
012( if j=k

o =

ik )
(“jk"'mjk) j x ifj#k

The density function (1.2.4) will be denoted as CNp(g, L)
Let F(f) denote the distribution function of the complex random
vector § with density given as ()lp(l_l, L) . By the probability that £ is

less than §0 , the following is meant.

P(E)) = P(E < E) = P(EL < §on 7 §; & §po) (1.2.5)

wvhere SR denctes ths real part of { and 51 denotes the real random variable

attached to the imaginaxy quantity.




Let El' §2, see , En denote n independent and identically distri-

. buted p-variate complex normal vectors with density given by CNp(g, LY .

Then the random matrix S, defined by

0n
fl
‘13

(5-1 - 8) (gi - e

where

has been shown by Goodman (1963) and Khatri (196%) to be distributed as

a complex Wishart with probability density function given Ly

1 :

el P s| PP expl- tr 1 7s)

P(s) = [Pp(n)]

where
51- P(p-1)l p
I' (n)y =n T T(n-j+1) .
p [j,,l

The complex Wishart density function with parameter I and degrees of
freedom n-1 will be denoted as mp(s!n-llzs R

Let £, where §' = !‘,1, 52, cee r}p], be distributed as a C.Np(}_, L)
As in real multivariate analysis, the relationship between the component

£ and

a . i £y §
‘lp ll 2’

("]
}J

3
[4-
[
ke
Q
[$]
&

SEI.

p-1 has a very important

role in complex multivariate analysis. In the real case this relation-
ship is measured by the multiple correlation coefficient which is defined

as the maximum correlation between ane component and a linear combination




of the others. In complex multivariate analysis, Goodman (1963} has

termed this guantity as the multiple coherence and shown it to be given i
. by i
* ®? 5 1
p? . £ eee £ ) = TPt _ i (1.2.6)
*p o1’ t2f " Cp-1 a e

g
pp pp

where L,., L., L

1 12 are obtained from the variance-covariance matzrix I

21
which is partitioned as

"07 .
P P
4’00!,6,/8[

Tzll ' 212‘[

) S ]
L =

Goodmer: (1963) ond XKhatri (1255 have agiven the distribution of

. . =2
the sample =5timate, P, of P_ . - - . 3s

;
220 (n) 2\ a2, p-2
£(R) =7 BT (n-p_ D) (1-p7) " (R")

- 222
(1-R) " Pr(n, n ; p-1, P R)

where P denotes (1.2.6), the pciulation multiple coherence of Ep with
El, 52, cee Ep . fzz denctes the sample estimate and F( , ; ; } denotes

the hypergeometric fumction, i.e.,

Tn+d) . Tntg) | Tip-» , (B°R%)7
T (n) T'(b)  T(p-1+3) i )

<0

~2
F(n, n ; p-1, P2R ) = 2
3=0




CHAPTER 11

1. Basic Results

There is a great deal of similarity between the multivariate analysis
of complex random variables and real random variables. Despite this
similarity, it seems torthwhile to include the following results with

formal proofs in order to provide a firm foundation for the material

presented in latter chapters.
In the case cf real normally distributed random variables, it is
of great importance to establish the distribution of the square of the

random variable. The analogy of this in the complex case is the complex

random varizble times its conjugate. Lo~ &, (0, 1l}. As pointed cut
in Chapter 1, Z is composed of two real, independently distributed normal
variables with ¥y = 0, and 02 = 1/2 . Consider the real random variable
defined by y = 22* = x2 + y2 which is the sum of squarss of two indepen-
dent N(0, 1,/2) random variables. From real univariate theory, it is

clear that

2
X(2)
S )

y = 2Z*% A (2.1.0)

where x:: £) stands for a chi-square random variable with f degrees of

freedom.
Let prl denote a complex random vector with probability density
: function given by

1

P = P2 expl- (€ - WG - w1 .




Congsider the transformation given by

!rXI - Ax:’fp prl

where A is a real or complex matrix of rank r < p. If r = p, then the

probability density function of the random vector Y is given by

1

piy) = ) expt- 7Yy - wrr taly - w1 - 4]

where J(x + y) is given by Khatri (1965)

g = |al 7 as

Thus the density functicn of Y becomes
] P ' -1 ' N -1
P(Y') = (T |AZA*'|) "expl~ (¥ - RBw)*'(AIA*') (Y - Aw)] .

This result is stated formallv as the following theorem.

Theorem 2.1. If { is distributed accordingly to CNP (), L), then ¥ = AE
ig distributed accordingly to CNP(AE , ALA*"), where A is a p X p real or
complex matrix of rank p.

Now consider the transformation

erl = Ar><p ngl

where the matrix A is of rank r < p. The mean of Y is given by

E(Y) = E(Af) = AE(E) = Ay

and the covariarce is given by

E[Y - E(Y)][Y - E(Y)*'] = RE(f - W) (§ - p)*'A%’

= ALA*'

—
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I

Since Arxp is of rank r, it is known that there exists a matrix

(o] such that the trangformation
(p-r) xp

| for ).t

\Ze-nxa)

)

lere

is a non-singular transformation. Then Y and Z will have a joint com-
plex normal distribution and the marginal distribution of Y will be
CNI(AH, ALA*'). This result will be stated as the following theorem.
Theorem 2.2. If § is distributed accordingly to CNp(l_J_, L), then ¥ = A §
is distributed accordingly to CNr(AE, AXA*'), where A is a r x p matrix

of real or complex elements of rank r < p.

Now let £ v ON (0, T ), and make the transformation
“px1 P~ "pxp

prl = prp prl

where U is a unitary matrix, i.e., U*'U = UU*' = Ip . Then by Theorem 2.1,
Y A~ ON (0, I ). It should be notzd that the elements of U must be
“pxl p- p

constants. If the elements are random variables, the transformation is

a random unitary transformation and the distribution of Y is not necessarily

that cof a CNP(Q, IP) . In either case

YA'Y = VUMD £ = E*E (2.1.1)

1 Thus, §*'f{ remains invariant under a unitary transformation. Now consider

the transformation

(2.1.2)

!rxl = Arxp épxl

:
{ where the matrix A is of rank r < p and has the additional property
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A*" =1 ., This transformation will be referred to as a semi-unitary
P pxr r

transformation. As in Theorem 2.2, it is known that the matrix A may

be augmented with a matrix B such that the transformation

,Y \
-rxl A
-(3)e

g(p-r)xl
is of full rank and furthermore it is unitary. Thus

erl
“veN (0, ID)
D= p

g(p—r)xl
and from the invariance property (2.1.1)

€6y + 38, ¢ 0r + EAE = VIV, 4 VRV, 4 e b YR 423 + cc + Z¥Z

ST P r+1%r+1
and the variables Yl' Yz, e, Yr ’ Zr+1' Zr+2' e Zp are distributed

as independent CNl(O. 1) as are the El' 52, e, Ep .

From (2.1.1) we have

t 4 = ® + * 4 ver 4 »
Y'Y = YY) 4 YY) Yy

&nd since Yl' YZ' eee , Yr for an independent set of axl(o, 1), then from

(2.1.0)
X2
2r

*® * se e & ey
b 4 TS PR - R S

Also

2

X
o e a —22
EXE, + E5E, 4 RNV TS -
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Then
2
| E*E +€.E 4 see +E*E - (Y*Y, 4+ s°- +Y.Y)f\‘x2( "I_)_

171 7 %272 pp Y 2y ) oo 2B X
Since //

//

* ! cee = *® ces * - * e *

Bl ey ¥ T BN T EJE) + e B - (npY 4 b wRY)

This result is the complex analogue of Fisher's Lemma, and is formally

stated as the following theorem.

2
X2p
iy N *Z Y A, - 1 =
Theorem 2.2. 1If épxl CNP(Q, Ip), then £*§ 3 a:g ifY 4 =A%,
where A is a semi-unitary transformation, then Yr'Yy v —%5 . Moreover,

X3 (p-
Z*'Z = EX'E - Y*'Y 0 -2i§-£L and is independent of Y*'Yy .

let X = [gl, §2, eee , §n] whexe the 51 " Independent CNP(Q, L)
and consider matrix of Hermitian forms, XAX*' where A is a real idempotent
matrix of rank r. The distribution of XAX*' needs to be established.
Since A is a symmetric matrix, the spectral decomposition of A may be

used, A may be written as

where the Xi are the characteristic roots of A, and iLhe Ei are the
corresponding orthogonal characteristic vectors of A. Since A is
idempotent of rank r, then Ai =1, for 1 = 1, *°* , r and Aj = 0 for

j=1r+1, *+* , p, th's the spectral decomposition of A is given by

and
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X X
XAX#' = X | B B!X* = ] XBB!X*' .
gy 21 je1 T

Since Ei N CNp(g, L), then the distribution of the matrix xp n is given
X
by CNPxn(a, I © I) where ® stands for the Kronecker product. Making the

transformation Y, = X8, , it is seen that Y % CNP(g, gigi 8 L) for

i
i=1,2, ", rvhich is the same as ¥, " CNP(Q. L) since B:8. = 1
and the 31' !2, see , !r form an independent set of CNP(Q, L) since

BB, = O, thus

3

r r
XAX*' = ) XB.S!X*' = J Y.Y* N CW_(XAX*'|r|D) .
B 5 . =i~i P
i=1 1=1
This result will be stated formally as the following theorem.
Theorom 2.4. X = [gl, 52, eer En] where gj are distributed as

Independent CNP(g, I), then for A a real indepotent matrix of rank r < p,

the matrix of Hermitian fcrms XAX*' is distributed as a CWP(XAX*'lrIZP) .

2. Bartlett Decomposition of a Complex Wishart Matrix

Kshirsagar (1959) has presented an elegant method of deriving the
Bartlett decomposition of a real Wishart matrix, i.e., expressing the
Wishart matrix as the product of a lower triangular matrix times its
transpose and giving the distribution of the elements of the lower tri-
angular matrix by using random orthogonal transformations. This has been
achieved in the case of a complex Wishart matrix by following the above
procedure. The minor changes that are encountered are pointed out at the
conclusion of this section.

Let £,v &0 °°° En where Ei = [Eli, 521, s, Epil' denote

n independent and identically distributed p-variate complex normal vectors
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with probability density function given by CNP(Q, Ip). Denote the matrix
of the vectors by ¥, i.e., X = [El’ 52. see , En]pxn .

Let A denote the matrix defined by

then it has been shown [Khatri (1965)] that the matrix A is distributed
as ow_(a|n]1).
P P

Now consider the vectors defined by

- -
(&11-| FEZI gpl
12 £22 tp2

-1 = : H Zz = : i vt gp = : (2.2.0)
_Eln_ _€2r_u _gpn

which are the vectors of observations on each of the p-variates. Each
of the variables gir is independent and distributed as CNl(O, 1).

Orthogonalize these vectors, 2 s, gp' by using the Gram-Schmitt

1!

process such that the new vectors form an orthonormal basis. The new

vectors, Y

Yy Yor °°° Xﬁ may be represented as

2'

ad
n

g
N

N Y ;
- -2 —p

(L]
]




The bii for i = 1, 2, *** , p can be chosen to be real while the bkj,

k>3, k=1, 2, *° ,p 3J=1,2, *** , p will in general be complex.

To see this consider [Hohn (1958)])

1
!1 = b lgl
11 . . 11 1

and since b"" is to be chosen such that Y*'Y = 1, this implies b =

|1 VZ5 iz,
which is real. Now 11

_ .21 22
L=r g *b g

and with the coudition, gi'! = 0, this implies

2

2 11 1 22
L) . " = -
b lb Zl 51 + b lb Zl Zz 0

This is a homogeneous equation in two unknowns, bzl and b22 . A complete

solution is given by

21 _ _ . .
b™" = (zi Zz)t

22
- .
b (z1 Zl)t

where t is an arbitrary parameter. Continuing in this fashion, it can

be shown that b33 is proportional to (zi'zl)(zs'z,). So if t is chosen

to be real, we have b2‘ real, also b33 real, and all other b11 will be

real. Attention should be called to bkj, k > jJ . For a real t, this

does not imply that b'J will be real. Thus the b,,, i =1, 2, *** , p,

ii

will be restricted to be real.

Then the above system may be written as




Denote (2.

Since

Iet B= [b

diagonal elements of ﬁ_l = B must necessarily be real.

™ [ 11 ]
'Y b 0 = 0O
Y! b21 b22 ) 0
-2
Y' bp]' 0 soe bpp
| "B L A
) 2 )
2.1) as
Y =B X
pxn Pxp pxn
X = {§1: §29 et ;nlpxn =
j.j] .

pxp pxn

%)

pxn

16

(2.2.1)

Since the diagonal elements of B are real, then the

Hence, bii for

i=1, 2, «++ , p are real elements and the reciprocal relation may be

written as

or as

L"P]

X
pxn

B Y

Pxp pxn

see 0

s 0 0

cee b
PP]

(2.2.2)
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\

which implies that
Ze TPl * Rl t ot thgde v (2.2.3)

i.e., the gk can be expressed in terms of the unitary vectors Yk’
k-l’o.t’p.
From (2.2.2) it is seen that the matrix X can be represented as

the matrix B times the semi-unitary matrix Y, then
XX*' = BYY*'B*' = BB*' , gince YY*' = Ip .

The distributior of XX*' is cwp(nlnlxp) thus BB*' ~ CWp(A|n|Ip) or that
A = BB*' . Thus a complex Wishart matrix can be expressed in terms of a
lower triangular matrix, whose diagonal elements are real and the non-
zero off diagonal elements are complex, times the transpose of its conjugate.
Also note that
k - 1’ e p

y*'z =b (2.2.4)

j k kj j = 1' 2' oo ’ k
this result follows from (2.2.3).

Now keep Z., Z_, *** , gk—l fixed. This automatically fixes

2!
+ b

1

b by virtue

Ty Yy S AR T T NI U R VS |

-
of relation (2.2.4). Also recall that the Eir are distributed independently
as ml(o, 1). Consider, from (2.2.4), the bkt' t=1,2, *** , k-1, which

may be written as
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by, = ¥3'%, (2.2.5)

= Yk'7
bea = ¥3'%

o
]

- [ 2
k k-1 = Yk-1%

and by holding _z_l, gz, see -z-k—-' “.r2d, this becomes a semi-unitary

transformation from Ekl' Ekz' e L to b, ., b _,** , b

kn k1" k2 k k-1 °

Observing that

[§1, ?_2: RO Z_p]
fixed random
Yo
automatically requires that 7 y 0
“p,
000
FC e . 4 o e I -1‘ 0/0(
11 721 k-1l ki plj £

12 fa2 T a1 e T R

3 |

_Eln €2n gk-l n gkn qu
fixed random

b = Y*'Z for

(W]
]
o
N

.
.
L]
-
x
1
ot

is distributed a: a linear combination of the th where t = 1, 2, **° , n

and the Ekt are istributed as independently CN (0, 1). Thus

NN, D {
bkj 1 1
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since var(bkj) =1_{;'3_{ =1, and E(b = 0, Furthermcre, the b t forms

3 jk) k
an independent set for t = 1, 2, *** , k~1. Observe that for t # t°

= *? * * =
cov(bkt, b . ,) <:ov(Yt Zk, Yt'zk) = Yk'y 0.

kt' t 't

Thus (2.2.6) is the conditional distribution of the bkj with

El' gz, ees Ek-l being fixed, the Et's do not enter into the distri-

bution, so (2.2.6) is alsoc the unconditional distribution of the bkj'a,

for § < k and the b _.'s form a mutually independent set. Hence, the

kj

result

b ev e ,b

k=1’ A Independent CNl(O, 1) . (2.2.7)

k k-1

As stated previously, the transformation (2.2.5) is a semi-unitary trans-

formation from & see , £ or This trans-

k1’ kn O Prys Prar TTT e by g

formation can be completed with {n -~ (kx~1j] new random variables in such

Ib 'b

k k-1’ and

a way as to maintain independence between b

k1’ k2’

the [n - (k-1)} random variables, so that the complete transformation

is unitary. Since the transforrmation is of full rank and wmitary, then

ket 2tk T Hnbkn T

* '] ® - - -y
br.bey t +bf . 1Pk k-1 ¥ [0 - (k-1)] random variables.

Rewrite the abowve as

[} = * e * - -
g}: gk bklbkl + + bk k-lbk k-1 + [n (k-1)] random variables(z.z.a)

and note the independence among the variableé:s on the left once more.

X
Furthermore, (2.2.9) ibuted as a ~—(§P—)- , but by (2.2.3), it

is seen that



[
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- 2
* . - * ass *
Zg & = PRaPry * * bR Pk k-1 Pk

Also, by virtue of (2.1.0), it is seen

2
X
2{k-1)
* e e * ———m e
bkt T PR Pk ka1l M T 3 .
Thus by Fisher's Lemma, it is seen that
2
2 , 2[n - (k-1))
= * - * see *
Pek = %k 2k~ Bgiby * b k-1Pk k-1 Y 2

2 1 i oo see
and bkk is independent of bkl’ r» by k-1 and Zir 2y v 2y -

This result is true for every k = 1, 2, *°* , p.
In s mmary, it is seen that a complex Wishart matrix A, may be

represented as the product of a lower triangular matrix, B = [bkjl, where

x=1 ; are complex times

b r N~ -
kk

the transpcse of its conjugate where the

2, o re real and b ., k > 3

14 r p 'a-- - kj P e

bkj v Independent CNl(O, l) for j<k,k=1,2, **-,p

and

2
X
p2 o ~2fn - (k-1)]
kk 2

These results are similar to that of the decomposition of a real

Wishart matrix in that the b, . ~ Independent N(0, 1) for j < k,

k3
k=1,2, = a b2~y
’ 7 ’ P ar‘ kk X[n - (k_l)]




3. Coherence Between Two Complex Random Variables

Ruben (1966) obtained, in the case of real bivariate normal
situetion, a very good approximation to the distribution of the cor-
relation coefficient. This was done by expressing the sample corre-
lation coefficient as a ratio of a linear combination of a standardized
normal variate and a chi-variate to another chi-variate, where all three
were mutually independent. This work has been extended to the multi-
variate situation by Kshirsagar (1969), who gives a matrix representation
of this result for correlation between two wvectors.

Following Ruben's work in the bivariate case and Kshirsagar's
work in the multivariate case, similar results have been obtained in
the complex case. These will be presented here.

Congider a random sample £,/ &,/ =** + § of size n from a

CNg‘E' L) where

The Wishart matrix of sum of squares of products is given by

[‘11 212
A= Y wz(aln—llZ) ’
1 %2

where

n

a=2(z

-z )z, —z)*
SR

and

z, = ———— for i =1, 2

-
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The coherence between zq and z, is given by

%12

V11922

and the sample ccherence is given by

p:

812
Y B ———— .

Van2s
Define

(1-pp*)

Dt
1

/2

and

=% (2.3.0)
(l-xrr*) 2 )

N
|

b ]
1/

It is the quantity r whose distribution will be approximated.
Now make the transformation from § to Y by the following trans-

formation

!2)(1 = C(é - E)
where C is given by
Fol 0
11
C =
p* 1
1/2 1/2
* - *
i on(l—op ) 022(1 pp*) |
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From Theorem 2.1, the distribution of Y is given )y CNZ(Q. CIC' = 12)

and, furthermore, the Wishart matrix A has bean reduced to its canonical

form, i.e., D = CAC*' " 0'2(1)' n-1| 12). These results are summarized in

the following table

Variable E Y =C(§ - p)
mean M g
variance I I
Wishart matrix A D = CAC*'
The Wishart matrix D = CAC*' has the form
r -
1 Pan . 82
2 2 1 1/2
*® »
%11 oll(l-pp ) 011022(1—00 )
D=
*
11 . 22 s
2 1/2 1/2
* *®
_on(l-vo ) 011022(1-90 ) ]
where
] * ®
5 - ‘PPt a12° ) 219°
2 2 ¢
* 4 * *
on(l-oo ) 011022(1-00 ) 011022(1-00 ) 022(1—pp )
Since D Vv Glp(Dln-llL), it may be written as D = BB*' wvhere B is a
lower triangular matrix given by the Bartlett decompnsition. BB*' is

given

by (observing the bi

i

for i = 1, 2 are real)

2
*
bll 0 l'bll bZlqI bll

*
ba1 P22 LO bzzJ b,1P11

»
b11b21

(b, .b*

2
4»
21°31 * P2l

|
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and equating the elements of BB*' with the corresponding elements of

D = CAC*', the following system of equations is ¢ .tained.

a
bil - ;%l
1
b)Ph - L 172 - 2 " 1/2
011022(1-99*) cu(l-oo‘;
b bt + bgz i} 2‘11°°' R I ' Yy .
011(1—00*) ollazz(l-po*) 011022(1-00*) 022(1-99*)

Solving the abowve system for the aij (i=1,2; 3§=1, 2) the following

golutions are obtained:

2 .2
an - ou bll (2.3.1)
1/2 -2
- *
815 = 09105, {1P0*) 70y, by 40 b))

2 2 - . .2
- * * * *' *
8y, = 95 (190*) [(b )08, + b3,) + 5 by b, + 5% by, + 5§ b11] :

Now, from Section 2, it has been shown that the

2
X
b2 " 2{n-1)
11 2
x2
b2 n 2(n-2)
22 2

b12 ~ 011(0, 1

and all are mrtually independent. Upon substituting (2.3.1) into
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(2.3.0), the following representation for r is obtained

. Dyt P by,

r =
b22

which can be rewritten as

Xopo

N (0, 1) +5 2n=2

- V2
X2n-4
V2

(2.3.2)

where X, denotes a real chi-variable with v degrees of freedom. Attention

should be called to the distribution of r in “he null case, i.e., p = C,

X2n-4
)

vhich has the appearance of what cculd be called a complex t.

Consider a probability statement about the complex random variable
defined by (2.3.2)

x- .
CN(O, 1) + p Zn-2
- . /2 -
P(r<r0)=P < xr,
X2n-4
V2
or rewritten as
P(L < 0)
where
Xo. _ L X5l
L=, 1) +p-22 5 204 (2.3.3)
2 /2
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Jsing Fisher's normal approximation for a chi-variable with v degrees of

. 2v-1 1 .
freedom, i.e., X v N 3] (2.3.3) can be rewritten as

~ x
2 4n-3 iy__o 4n-5 1

L= Q\l(O, 1) + N 2 ’ 2 N - 2 = 2 .
V2 2

Thus L is a linear combination of independent complex normal variables,
which is also a complex normal random variable. The mean and variance

of L is given by

E(L) = 5‘[4n;3 _ }0 "4!1;5

V(L) =1+ 36 p% + 5 Ex8
and
0]
1l -1
P(L< Q) = m exp[—(l - E(L))*(L E(L))(V(L)) dL]
) -E(L)
V(L) _
= —I:;‘—- e uu* du

8 ~E(L)
“CN V(L) ’

Replacing io by ¥ in -E(L)/V(L), then

~ CNl(O, 1) .

'y
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Now following Kshirsagar's (1969) work, a matrix representation for
coherence between two complex vectors will be derived. Let the variance-

covariance of two complex vectors ?SpXI and gqx 1 be given by

(2.3.4)

{(ptq) x {p+q)

and let the matrix of corrected sum of squares (s.s.) and sum of products

(s.p.) of cbservations from a sample of size n+l on these variables be

given by

(2.3.5)

(ptq)x (p+q)

which is based on n degrees of freedom. Then the following matrices can

be obtained:

-1
EO = matrix of regression coefficients 812511' of Xon 2 ;

B = matrix of s.s. and s.p., due to regression S }

-1
1252251

1 S !

" n - N =
A = "residual” s.s. and s.p. matrix i 512522521 112

A+B = "total” matrix Sll .

The corresponding matrices for the population are _8_-!112!2;; ; 3122—12 p

22721
and I g, -f. L1

1102 ™ Iyy T Iypfapt,y ¢ respectively.

A ..




28

If the vector !_!( Yl

(4, £) where u' = [u |u 1 and I is defined by (2.3.4), then the

defined by Y' = [X'|2'] is distributed as

N (prq)

matrix S, defined by (2.3.5) is distributed as CW n|Z) and from

(p+a) (s
this density it has been shown by Xabe (1966) that

sll-Z 4" Glp<sn.2|n-q|£u.2> (2.3.6)

and that Su‘ 2 is distributed independently of Bo and 822 . Also,

Kabe (1966) has shown that

Syp ™ cuq(szzlnlzzz) (2.3.7)
and that §0' for fixed 822, ig distributed as
N (B, I, (2.3.8)
and is independent of 81102 °

Now let 9, n, M, F, C, and K be lower triangular matrices such

- LA
222 *¢

at
Ligeg = mn

- LA
522 MM

A = PF*'

B = KK**

A+B = CC*!

Define further
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U= n-l(no - B)M (2.3.9)
Ve ly

U= n-ll'

i W rl"lzn.."‘l

R 1 w1

R=Fis M

R=c 2k

L = RR*' « C~lpce'~1 .

Transform to U, V, and ¥ from BO' 22

(2.3.7), and (2.3.8). Then it can be shown

50 and s Y regspectively, in (2.3.6),

a) u (L =21, *¢+ , p; =1, 2, *»+ , q), the pg variables

13
in U are independent CN(0, 1);

(2) vjj (3 =1, *** , q), the diagonal elements of the lower

triangular matrix V are independent X, (n /v’2- and the

-3+1)

off diagonal element vkj for k > j are independent (N(O, 1)

and independent v, .

33

(3) v (i =1, 2, *** , p), the diagonal elements of the lower

triangular matrix W are independent x2(n /Y2 variates,

-i+1)

while w, i > 4, are independent CN(0, 1), independent of

i}’

w,, also.
ii

referring back to the transformations in (2.3.9), it can ba seen

L = RR*' i{s the matrix generaligati~ of rz, which is the ratio of

i > e
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regression sum of squar-: to the tota' sum of squar-s and RR*' is the
matrix generalization of r.'z/l--r:2 » the ratio of the regression sum of

squares to the residual sum of squares. Observing that
PV = n—1 w1 =1
U + PV n 812!4
where P is the population matrix corresponding to R, then
. -1 .
R=W “(U + PV) (2.3.10}

which is the matrix =malogue to the result (2.3.2), i.e.,

Y
N (0, 1) + 5 Zn-2
. Y2
r =
Xon-4
/2

which corresponds to Ruben's result in the real case. Then
e-u+1‘>v-wi0 (2.3.°%

is the matrix analogue of result (2.3.3), and also corresponds to
Kshirsagar's result in the real case.

From this result (2.7°.11), one can obtain results siwmilar to Ruben's
about every element of the matrix {, however in multivariate analysis, one
prefers an ~verall criterion based on the whole matrix rather than indi-
vidual results on the elemsnts. Hence, no attempt is r de to pursue this
further; instead, we shall be considering owverall criteria such as Wilks'

A in the complsx case.




4. Multiple Coherence

In the case of real multivariate normal analysis, an extensive
amoumt of work has been done relaing to the multiple correlation
coafficient, i.e., the maximum correlationvbetween a random variable
x_and a linear combination of a set of variables x., x,, **° 4 .

D 1" "2 ' Tp-1
1£f , where

} ' -
11 %12 %1p
Ay
- ,211 12
Y= L =
.
| “p1 “p2 Pop 11 2a ! Tpp
L J

denotes the variance-covairiance struc-ure of this set of variables

Syr Fpr xp, it can be shown that the square of the maximum cor-

relation coefficient is given by

7 -1

2 2n"11" 12 ]
12 = Lot

and the same multiple corxrelation is given by

, -1
2 - A21A11A12
N T xp_l) 20p

where
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..s tha sample variance-covariance matrix based on a sample of size n.
Podgson (1957), followina Puben's (1966) approach, has shown RZ/(l-Rz)

L8 distributed as

r ( -1 2

. { 2

‘in_l + 1 U+ (P(l-P )) 2 xn-l}J
2
Xn-x-1

vhere %the x2 and the unit normal variate U are mutually independent.
From this, Hodoson has obtained a normal approximation for the statirtic
R2/(1-R2). These results have been achieved in a somewhat similar
fashion fox the multinle cchierence in a multivariate complex normal

cituation.

suppase § ‘v Q!F('i:, n). wWithout loss of cenerality, it will be
2gsumed that i = J and L has the following special form
~ a

1 G sey N P

0 1 see 0O o

where P is the true multiple coherence between Ep and El, Ez, e, Ep-l '

ag defined in (1.2.6). This can be shown as below:

Let § ~ CNP(E' L), where
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1 %1 %2 77| %y
“2 A
E- . and I = - .
. L] 0 o L ¥ ]
pl "p2 PP
¢ | A
| B

(bserving that Zuis an hermitian positive definite matrix, then thare

) -1 -1
» Y, = L A *? =
exigts a D such that 11 DD*' and D )"ua Ip- 1° Make the following

trensformation from £ + Y by ¥ = A(§ - u), vhere A has the following

form
i )
1 D-l g
A=
f . 1
- 1/2 .
. R PP ]

then E(YTxl) = @ and var(Y) = ALA*', observe

- 1
Io-1 D 1212 172
PP
ATA*' =
v pee-1 1
L1aP 172 1
I PP

Furthermore, the multiple coherence remains invariant under this trans-

formation, since

v v~1
P2 - 212211212
gp(gl' EZ' et Ep—l) OPP

and
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>

wt~1p-1 -
o2 TPy, Taknta
lp(!l, YZ' ses , Yp-l) opp cpp '
i.e.,
2 2
P aen Y =P sse *
Y DB Yl Yo Y
Thus we have
Y ~ CN (g, €)
- ‘Al p g
where
g .
Tp-1 .
€
p~1lp
€ = .
e L N ] e
L pl p-lp |l 1
Consider the true regressiom of Yp on Yl' Yz, cee , Yp—l' which can be
written as
see = oes = L}
S(Yplyl' sz ’ YP—]-) B].YI. + Bzvz + + BP_1YP_1 g Y+
vhere 8' = ¢* I = [e € e , E ]. Make the following

p-1 pl’ p2’ plp

transformation




fan Lad

[ ]
x, = & _ Yt
/8'ge °
- a!
=2
: Pl o
: RO
al
x . = ——P1 v
Pl e
=p-1-p-1
x =Y
P p
wiere a,r ay cee , ép-l are 3o chosen that
'e = a'g = **¢ = a' =
EzE 935 ép-lg o,

i.e., find p-2 vector orthogonal to ¢ , and noting the following relation-

. ships among the x's .

[
-
(2]
]
L}
(8

n
[

-

%)
L]
.
L ]

jge]

var(xi)

cov(xi, xj) ata, = 0 for i¢¥3;i=1, 2, ** , p-1

fl
ke
»
o
H
o
Hh
Q
la]
=
n
N
-
L ]
.
-
e
[
ot

cov(xl, xi)

"70V(xp' "1) = f*'a. =0 for i=2, *°° , p-l

and

. .
covix,, x ) = cov(y , —1-—8'y+>= _B*'8
1" 'p P z

Thus we have

s




where
~ -
1 o 200 P
0 cee o
2 P . . 0 - . . (2.4.

0
P 0 e 0 1

Let 51’ 52, ser , Qn denote a random sample of size n from a

CNP(Q, L) where I is of the form given by (2.4.0). Ilet AE denote the

complex Wishart matrix associated with this sample, i.e.,

n
e d s

It is desired to look at the Bartlett decomposition of this Wisha:=t.

matrix, but the distribution of AE is not in the canonical form. By

making a transformation of the original sample, it is possible to

express A, as

3

AE = CTT*'C*'

36

0)

where T is a p x p triangular matrix whose elements are independent random

variables, the off diagonal elements being CN1 (0, 1) and the diagonal

elements being x variables. To see this, consider the following argument.

Let § Cﬂp((_), L), L is hermitian positive definite, thus

I =CC* | Transform from AE to AY by

A, = C‘lAgc"’l




where
L = CC!
or

AE = CI\!C*' = CTT*'C*!

a

which is the desired result.

37

(2.4.1)

Now if £ v @ (0, I) and £ is of the form (2.4.0), the matrix C,

such that C-lfcr*-1l = I, is given by

1 o .- o
Q 1 ees 0
C = . . . . ] l
o> - * - !
|
0 0 e 1 0 |
P 0 =+ 0 (1-p2)1/2!
L A
and from (2.4.1), A is given by A = CTT*'C*' . First examine CT,
B 7
t 0 0
- 21 2 0
I 0
al ot ]
| te11 Y12 to-1 p-1
= LP 0 ¢+ O | (1—P2)l/2_| ] L t . cees
pl p=z p p-1 PP -
o M \ !
Ip--l l 9 T Q' '
) l
5 l (1-p2)1/2 0 % |
-
T 0
5'T + (1-p2)1/2g | (-2 /2,

s -
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cbserxving

1 1 1 1
2.3 2 2 5 2.2, ]
] - L] XX} i -~ Lt ge . a0 - -
and letting X' represent this quantity, thea
[ T ! 0 { 4'0,\
CT = -— 7
| o
X' (fk—pz)l/zt‘ l '900
- /
%
and CIT*'C*' is given as ¢
Tk ’ TRt
!
CTT*'C*' = | - Il
XPT*T L (2} r";Lz
- | rp
; s -}-:‘l-(*
observing that
2.1/ 2,1/2
‘YR = - ' 4 - x
XX+ = (et + (1-27) ztpll ey + (1= 4 2k )
p-1
T SR
i=a PM P
Hence
TT*' , i &
A= = e e L (2.4.2)
xrer | oeptod
; 2

Interest lies with the quantity Rz/(l—Rz) . Obs:rve that



|a|
1-R: = (2.4.3)
IA11 2
which may be rewritten
p
(1-p%) N ¢2
2 jup i1
1-R* = =
| Tre| < {(1-p3 2+ xoxe)
pp - e
(1-p%)t2
- PP
{(1-pz)t2 + X'X*}
PP
then
g2 i X'X*
-8 (1-pH)e?
PP
/ 2 p_l
et + -pH)Y2 3" + a-p%) J t_.te,
11 P {=2 pi pi
= 2.2
1-p)t
( ) op
or
| 2172, 12 ¢
2 t1* (p/(1-pP%) )tll + . taths
=2
5 - 3 (2.4.4)
1-R t

PP
2,1/2 2
where ltpl + (P/(1-P°) )tlll represents the modulus of the quantity.

pl

(1-1>"’)1/2 . _
Iet § = — tpl + tll and using the fact thet t

and tll which is a chi-variable and can be approximated by a real

N('lg_(lg;_ﬂ-i , %) the § can be approximated by

~ 011(0, 1)
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4 (1-p%)
then
p-1
1.y 2 2
(1 + %) +x5 1 [n-(i-11
nz - 4 (2, 1) i=l
1-82 x; (n-p-1)

where the noncentrality parameter X is given by

92_

(1-F7)

A=

if P =0, i.e., the true multiple coherence coefficient is zero, then

2 p-1l
—R—z-z p[z Y {m-& 11, 2[n-(p-1)]}] .

1-R k=1

This is exact and follows from (2.4.4).




CHAPTER IXI

1. A Test for Bquality of Means

In the case of k real p-variate normal populations, tests have been
developed for teating hypotheses related to the means of these k popu~
lations. Test statistics have been dewveloped by Roy, Lawley, Hotelling,
Pillai, and Wilks. Wilks' statietic, usually referred to as Wilks' A,
is the simplest one and is related to the likelihood ratio criteriom.
Thus it has the desirable properties associated with the likelihood ratio
procedure. It is for these reasons that the complex analogue of Wilks'
statistic will te used to develop tests for distinquishing between the
means of k complex p~variate normal populations.

Let samples of size n ttoamy be available from k = g+l

1’ 2
complex p-variate normal populations with means u(1), u(2), *** , u(k)
and the same variance covariance structure given by L. ILet gal denote
the vector of responses for the lth member of the a population (¢ = ],

2, *** , na; a =1, 2, *** , k) on which the observations are made. It

is desired to dsvelop a test for the hypothesis of equal means, i.e.,
Ho: u(l) = u(2) = «*+ = u(k)

against the alternate hypothesis that the pcpulations have different
means. Represent the alternate hypothesis by Ha.
Giri (1965) has shown that the likelihood ratio criterion for certain

hypotheses about complex multivariate rormal populations possesses optimum

41
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properties which are characteristic of this test in the real case. These
properties will not be investigated here, but since the likelihood ratio
teat has been found satigfactory for the praoblem in the real case, it will
be used here in the complex case. The author feels that the desirable
properties are maintained.

Letting N = n_, + n, + e 4+ n . then the likelihood function, Q,

1

may be written as

1 k 2“ -1
Q= ——————expi- L [ [E, -u@]I*I (g

NP, N 2 - ple)]
HOR (P e=1 ° -1

afl

The likelihood ratio statistic is given by

Max Q
[p—
Max Q

where Max Q. is the maximum of the likelihood function under the assump-

0
tion that the null hypothesis, H,, is true and Max Q is the maximum value
of the likelihood function cver the entire parameter space, denoted by fl.
The test is given by rejecting H, when CA is less than some specified con-

stant depending on the size of the test.

Using Giri's (1965) results, the Max QO is obtained when

- k Ny
U—EZ 2_02:5.,
a=1 £=1
and
2 1 k Ng
£e =T where T = § ) (£, -8 (5 =-E )*
N ag  =eel e oo
a=l 2=1
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The Max Q is given when

N
u= ;;-221 5qz Ea-
and
R k o
£=Aa= Qzl A, where A = mzl (€ho ~ Byt &gy - &L -

After some simplification, it can be shown that

|l

A= —

° e
angd obserxving that

Te=A+*B

where B is defired hy

k
B= ] n(g, ~E)E, -&I .
o=l

Then tha likelihood ratio gtatistic is given by

|2l

Ao

avs]

-

c

The statistic CA is the complax analogue of the resvlt cbtained by Wilks;
it will be referred to as Wilks' A in the complex ~ase and Asnoted as CA .
Gup.z (1971) has derived the eract distribution of CA when tre

alternate hvpothesis is of wunit rank. He gives the explicit expression




%"

ey

£nr the case of p = 2, 3 and general degrecs of freedom for the hypothesis
and errox.

The results obtained by application of the likelihood ratio principle
may be summarized in the following complex multivariate analysis of variance

table (CMANOVA).

Source of Variation a.f. s.s. and s.p.

k

Betvesa o0 == y - oF v

ljf_,. N - - q B Z n(‘ (—F’.uu én.) (éa- gco)*
o=1

Within groups n-q A=+
k By

PO neN-1|28+B= ) J (. -E )(E ,~E )
_al .e -az =

a=1 ¢=1

1 (bv subtraction).

That the degrees of freedcm ars indeed g for the between groups and n-q
for the within groups will now ke shown by examining the distributions of
the matrices B aad A.

Define a p X N matrix X by
- LI N ] aess l'.. .00
X =08y By ’ é1:11“-:21' £22 ¢ Son,| 817 Exar S

Let ENN denote an N X N matrix composed of all ones and let e 1 denote

NX
a vector with all elewents being unity. Also define e,r an N X 1 vector,

with zero everywhere except in the n, positions; there are ones in all of

the n, positions, i.e.,

9& = [0 O *°* Q0 *°° 1 1 ese ] eee (g * ollxn .

na ones




Then the matrices A, 3, and A+B may be written as

kR 1
= Ve - FY. 1]
B=x| I “eel - By lxt = xext
ja=1 "o
- -
= - . Vi o "L I
A=xlT - | =ee!lx* = xox
L a=l o
as = x[1 - LE ]x*' = XEX*' .
N TN NN

(3.1.0)

(3.1.1)

(3.1.2)

It should be noted that the matrices C, D, and E are idempotent of ranks

q, n-qg, and n, respectively.

Observing that

EGO =M= ), u(), o0, u@]eeelpk), plk), oo, p&k)] (3.1.3)

and recalling that
Eaa ™ CNP(g(a), L)

then by Theorem 2.4,

(X-M) C(X~M) ** cwb((x~M)c(x—M)*'|q|2) .

(3.1.4)

Thus the degrees of freedom associated with the between groups sum of

squares (s.s.) and sum of products (s.p.) matrix B, is given by the rank

of the idempotent matrix C which is q.

From {3.1.3), it can be shown that

E(XCX*') = gL + MCM*'

and under the assumption of Hy, i.e., equal means for the k-complex




p~variate populations, M can be written as

M= LW

where p represents the common value. Observe that umnder H,,

m = a []
Then
(X-M)C(X-M)*' = (X~M)C(X*'-M*')
s XCX¥' - XCM*'! - MCX*' 4+ MCM*'
= XCX*!'
Thus

XCX*' & i (xex*'fqlD)  Af () =p@ = e o= k)

Now the distribution of A = XDX*' needs to be established. From

Theorem 2.4, it is seen that
(X-M) D(X-M) *#* o ((x-M C(x-M) ** [n-q]E)

And the degrees cf freedom associated with A are given by n-q, the rank
of the idempotent matrix D.

Now
(X-M)D(X~M) *#' = XDX*' - XDM*' — MDX*' + MDM*'

and it can be shown that
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Hence
(X~M) D(X-M) #' = XDX*' ~ avp(xnx-'ln-qlz) .

Attention should be calied to the fact that the distributioca of A = XDX*'
is independent of the null hypothesis, i.e., regardless of whether H, is
true or not, the distribution of A is still pr(al n-qlt) .

Also, it should be noted that A and B ars distributed independently.
Since, as in the real case, two forms XCX*' and XDX*' are independent if
Ch=¢g .

To summarize these results, it is seen that
B cwp(qu|>:) if u(l) = p(2) = o¢r = plk)
AN va(A|n-q|E) independent of Hg,

and A is distributed independently of B. The test statistic, CA, is given
by the ratio of the determinates of the complex Wishart matrices A and
AtB, i.e.,

|al

A=
C

| a+B|

Khatri (1965) has shown that the distribution of cA, where CA is
defined as abowve, is the same as the product of p independant real beta

variables, i.e.,

| a] P
A= = [l ui
¢ I A+B| i=1

where uy ~ B(n-q - i+l, q) and all are independent for i = 1, 2, *** , p.
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Furthermore, he has shown
“m log A% 2
9 X2pq

where m = (2n-q-p) and "\" denotes "approximately distributed."

Hence if Hy is true, -m 1~3 cA will be distributed as an approximate
chi-square variable with degrees of freedom given by 2pqg.

To summarize the procedure for testing the hypothesis of equal means
among k = g+l complex p-variate normal populations, one must first cal-
culate the matrices A and A+B. Then, consider the statistic cA given by

|2l

A=
C

| a+B]

and compute -m log CA . If -m log CA is greater than xgpq at the desired

a-level, then reject H,, otherwise do not reject H, .

2. A Test for the Dimensionality of the Mcean Space

In the last section a test for equality of the means from k p-variate
complex normal populations with the same variance covariance structure was
developed. The hypothesis, H,, implies that the mean vectors of the k
populations would lie in a complex space of zero dimension, i.e., repre-
sented by a point in the complex space. If H, is rejected in favor of Hgy,
then the means of tha k populations may lie in a complex 1 dimensional
space, that is they are collinear, or in a complex 2 dimensional space,
that is they are coplanar, and so forth up to a complex k dimensional
space.

In real multivariate analveis, it is important to know the dimen-

sionality of the space spanred by the mean vectors for this is equivalent
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NOT REPRODUCIBLE

Lo knewing the by o i, oz discrewarsnt fancutons that arxe nacescory
to distinguish among the k-populations. This is true also in the complex
normal situation. 1In this section a test for the dimensionality of the
complex space spanned bv the mean vectors will be developed and will be
shown to be equivalent to the number of linear discriminant fuuctions
needed to discriminate among the k populations.

Recalling the complex multivariate analysis of variance table that

was developecd in the previcus section, and adding a column for the expec-

tation of the s.s. and s.p. matrices, then the table is given by

Source of Variation | d.f. s.s. and s.p. E(s.s. and s.p.)
Between groups a B = XCX*!' E(B) = qL + MCM*'
Within groups n-q A = XDX*' E(AY = (n-q)X

TOTAL n A+B

Now M was defined by (2.1.4) as

E(X) = M= [1(1) o p(D)feee|utk) oo g(knpxN .

Denote the rank of M by r(M) and observe that
e = r([u(1), pe2), =, ulk) = r(w

which is equivalent to the number of linearly independent points repre-
senting the means of th: k populations. Denote the k populations by

LR PR and consider a linear combination of £, an observation

1" 2

from one of these populations, given by £*'§ . Suppose further that

RA(1) = LX'(2) = cee = RNu(K) = 6,
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7. . Then this linear

i.e., that &*‘g has the same mean in ﬂl' LPY e, X

function given by £4*' would not be useful in discriminating among the
populations, i.e., one could not determine which population § came from

by examing 2*'f . Furthermore, observe that

®! = ess = .
L*'M = [6 6 §1=86"-e

then

and hence
LE'MCM*'L =0 .
Conversely, if 2*'MCM*'L = O, this implies

k
Zl na(ua - u)(ua -u)* =90 (3.2.0)

F Y
k nu& E(“)

U But (3.2.0) implies that
o]

where &*'H(“) =u and u =
a=1

each term of the summation must be zero or that
uOl = u for all a= ", 2, *** , k .
From this it is seen that

U = 440u@) = = R uk)
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So if 2*'{ has the same mean value in «1' 12, e, dk then
. 2*'MC = 0 and conversely if 2*'MC = 0, then £*'§ will have the same
mean valuwe in Fae Mor *00 4 Ty . In either case &4*'f will not be use-
ful as a discriminator.

Thus a linear function of £, given by 2*'€, will not be a good

discriminator if
L%'MC =0 . (3.2.1)

An adequate number of linear discriminators will be given by p minus the
i : number of independent &'s which satisfy (3.2.1). For any &, such that
(3.2.1) is satisfied, L*'f will be called a covariate. Observe that

(3.2.1) is equivalent to

MCM*'L = € .

So the maximum number of such covariates is equal to the multiplicity of

? the zero characteristic roots of the matrix MCM*' . Denote this multi-

F plicity by s. Now the rank of MCM*' is equivalent to the number of non-
zero characteristic roots of MCM*', say r, which is the number of linear
discriminate functions needed. Hence, we have the number of discriminate

functions needed given by

Let the s covariates be given by

R0 (1)E, L*-(2)E, *rr , %' (8)]
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and let the matrix Ir be defined by

e
24 (2)

L= (3.2.2)

[ 24" (8) _
SxXp

then

Lsxpupxk = 281k =k -"sxk

since &*' () (t =1, 2, *++ , 8) is a covariate and this implies that
i*'(t)ufa) =v, (£t =1, 2, *** , s; =1, 2, **+ , k). Since (1),

&(2), seee , &(s) are independent, this implies that the rank of L is

8, i.e., r(L) = s . Thus the hypothesis of needing r discriminate functions
is equivalent to the hypothesis that there exists a matrix L of rank s

such that

\
Lu = VE,,

for some ungpecified v . A test for this hypothesis will now be developed
by using the likelihood ratio criterion.

Recall that the likelihood function, Q, was given as

/ n

. T ;
SRS (R )
nN | a=1 =1 \"%* “
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n
- a
By adding and subtracting £(a) = ;l- Z §ﬁ9 and simolifying, Q may be
a t=1 ‘

written as
k na
1 - -
Q=———exl|- ] { -£(a))* 21 -E(a)
IIPNIXIN acl £=1(§02 = ) (-0.2 = )

k - -
- exp(- | na(g(a)-g(a))"2'1(§(a)—g(a)) .
a=l

Assuming I to be known, the O can be written as

'Y

Q= (constant w.r.t. unknown parameters, g(a))

+ exp - g rE@p@) 1 E@-y@)) .

a=1
The parameter space { consists of the 2pk parameters given by u(1),
u(), -+, pu(k) . The maximum of Q with respect to  is given when
i) = E(a) .
Now the likelihood function must be maximized subject to the con-
ditions of the hypothesis of needing r discriminant functions. This is

ejuivalent to the hypothesis that there exists a matrix L such that

H: Lg(a) =V a=1, 2, °** , k

or

I: Ly = vE
H v VE Ik

which is equivalent to saying the r(MCM*') = r . 1In all cases it should
be noted that the matrix L and vector V are not specified. The maximi-
zation under the assumption that H is true will he -arried out through

the following procedure.
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Make the following transformation

]

LE ()

i
[
N

.

.
-
=

Y(“) a

]

ng(a) z(a) a= ), 2, s , k

choosing Ll such that

LZLi' =@ .

. 2
Letting R denote the uxponent of 9, then

o)
[N
]
|

n(E@ - u@) (@ - p@)

a=1

= ] n (i@ - w@)r @) (@ - m)
a=1

+

it o~

r 1 ] —l r
ny (L@ - Lou@)* @ Ine) “(LE(0) - L)

a=1

and under the assumption that the hypothesis is true, the above becomes

2 X -1
I T N TR

a=]

4

1 o—1x

. n (z(@) - ng(u))t'(LlﬁLi‘)—l(g(a) - Lyu(a)) i

. . " 2 . N .
and to maximize the likelihood, the exponent R is minimized (observing

Q

2 .
that R 1s real). Hence

Min R° = Min n {y() - y)*'(LYL")-l(y(u) - v)

It~ %
[




sisce 4ifferentiation vith respuct to L)y (1) gives Lijia) = L {le}, 8o
thet the second tarm in R’ vanishes. Thus

k
Ma & = mn | n (E@ - vi* 0 sie)  aE @) - v
am]

k
=Min § ntr@r) i@ - v1EE@) - vie

a=i

k - - - - - - -
= Min ] n tr(IZL')” (LE(a) - 1€ + IE - vI(zE(@) - LE + if - v]e'

a=1

where

“hus

Min R® = Min tr(LSpa') >

k k
{1 n@f-wak-vi* + [ n 8@ - EILEa) - :{1"}

a=1 a=1

and minimizing this with respect to v, i.e., \E - Lg, then

k
Min R = Min  tr@izt) ']} n (E(@) - ElE( - E]*'lm'

(wer.t.L) o=l

=  Min  tr(uir*') Y(weL+')
(w.r.t..L)

where B is the between groups s.s. and s.p. matrix from the CMANOVA table.




v /D

Now jea¢ - T ' then TT* Do L7

-1 =172

2 .
Min R~ = Min te(TT*') (v Bl T*')

-1/2__-1/2

= Min tr Y (% YY*!

-1/7 . .
where Y = (TT*') T, observing Y¥*' = J. So the problem of minimizing

/250172 s

2 . . L. -
R with respert to n roduces to minimizing the tr[y(s BZ
subject to the conditien that ¥v**' = 1. "5 in *he case of real positive

definite svmretric rmatricee, fhe nmirism e aiven by the sum of the

-l 2. =-1/" )
smallest s roots of I ' “BU [Rao(1905) ], i.e., tlie s smalle- . roots
of
ie-1/2 _=1/2 : .
. - \;Ti == ! 1, 2, *** , s
or
R -1t =0 i=1,2, «** , s .
1

Thus the maximum value of Q under H is given as

(constant) * exp(- sum of the smallest s roots of Z~1/2BZ-1/2)

and the likelihood ratis statistic X is given as

-1/2_.-1/2
A\ = p-(sum of the srallest s roots of & / RY / )

and

1/2_.-1/2

-2 In A = (sum of s smallest roots of 5 B )

= 2(A o+ A

rt
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v—1/2gﬁ—1/2

. The Adistribution +¢ -2 Iln \ is an asvmptoric chi-square with degrees of
“resdom given by the number of parameters specified in 2 minus the number
of restrictions of the parameters specified by the hypothesis.

Rao (1965), in the real case, has presented a geometrical argqument
for determinina the deqrees of freedom for this particular test. Wani
ané Kabe (1970) and Kshirsagar (1971) have presented an analytical
argument which is somewha* casier o follow for the non-geometrician.
Tehirsagar's vrocecdure will be foliowed here to determine the dearees of
treedom for tie chi-riuar mest o dirensionality.

The nurbe~ o7 naranrtnws spacified in © is given by 2pk. The number

. parameters Mol ricted Do oshe raxinizetion of O under H needs to be

Lotkermined. Pecall oo ococodure for maximizine ¢ under H.  First the

Lransformaticn ov L ana 1. took

LE(L!) a=1,2, *** , kK
u{n)
Lyu()

2 C 2 .
and the exporent R was minimized, wher- R was ¢given as

k
K = ) n lyf) - \_J]*'(L;I.*')—l[
a=1

y(x) - v]

£ () = L@ ] L) Tz - Lp@)]
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i
14
s
%

e siainisetion vas done in stepe:

Step I: NMin of Part II, i.e., min of Part II with respect to

L,u(a). The nuber of paramsters restricted was 2(p-s)k

,

or 2rs.
Step II: Min of Part I, i.e., min of Part I with respect tov .

The number of parameters restricted was 2s.

This left

Min R° = Min tr(LIL*') (LBL*')

(w.r.t.L)

Now L is an 8 x p matrix of rank s and the number of parameters restricted

needs to be determined. Write

Le=s[H]| G]
8 p-s

and note that
F e x| 8 Y6
8
Returning to
Min tr(Liz*") "} (zBLe)
which can be written as

Min tr[L*' (LZL")-l(IB)]

or as




whe.s: AP

hence the minimum in'rlveg
ality given by : 7 {(p-o.

in the minimizat. » -

parameters restrions 2o

and the deqgraes ¢f tro-din

where g = k+1 .

In summary. the toos

et a0 1“'.P‘:
. . . -1
oot Y ertut L on mutrz{. Choose P to be H ~,
‘.
] -1
| whre .. =D G

only ‘vactinns of LO, where LU has Aimension-
Thus onlv 2[- > (p-s)] parameters are restricted

T (1:0.x'y . Therercre the numbexr of

L 20 o Oeip-s)
oz tie o-suare test 1s given by

of the hypnthesis that the number of linear

discriminant fanotion- r, cov the number of covariates is s = p-r, is
given by the [iielidced rotis v tjan as
. 2
- . "..“A)r\,~‘
o ala . N X
vl re2 r 2 (p-r) (g-Tr)
where X Lo, e, ire tho s smallest roots of
r+l vl
- 4 ﬁ: -
where B {s t=. «pte v 1o L os.a. and s.r. matrix obtained from the

CMANNOVA tail




Y WP

I£ L is wnam, thes the estimste, A/h—q, vhere 2 is the within
8.8. 8d 8.p. from the CNNIOVA tadble, may be wsed to cbtsin am sgprumi-
mate tist for the number of discriminant functions needed. 7The test will
be given as the s smallest roots of

~

la--—LA

e =|B-nal =0 .

The test statistic is given by

e 2
- (n-q) (2) ("r+1 + LIS + + np) v xz(p_r) (q-r)
-
where nr+1, nr+2, sod np are the s smallest roots of

B - nAl = 0.
[ - nal =0

Instead of considering the roots of IB - nA| = 8, considar the

A

roots of
|B - 2(a+B)| = 0
or
r2
,B - 2 Al =0
1-r
i.e.,
. t2 or L r2
l-r2 n=d l-r2
or
1+ A2
n




TPV R

for larce n. Using the eubstitwtion

loq(l + :T) W= loq(l-t.‘:)

then
) - 16g(2-2D)
n
and
+ ‘A 4+ o0 e &4 i P
r+1l r+2 P - - log i (1"’ri)
n i1
or
P
2+ 2
-2n log T (l-r;) v x -
i=r+l * 2{p=x) (g}

2
where the r'i‘ are the roots of |B - r(A+B)! = 0. This gives a procedure
for estimating the dimensionality of the mean space. The procedure is

to tert sequentially the following hypotheses.

dimensionality space criterion
P 2.+ 2
H: r=0 0 1 pt. -2n leg T (1-x)) ~ X
i 2pq
=]
H 1 1 2 ots. (collinear) - 2n 1 IEI’ (l-rz) ~ X2
1 = Dis. lo] a og -2 i 2(p_1) (q-l)
H: 2 2 3 pts. (coplanar) -2n 1l 11; (1-r2) ~ X2
P pts. {coplana 9 a3 i 2(p-2) (g-2)

if the means are known, then the number of discriminant functions can be

determined exactly by examining the rank of I where ;' is defined as

Pl fmg) -




To see this, consider L as Nrfined by (3.2.2) and undar B, the

hypothesis that the number o“ discriminant functions is r, thea
Luys= \_)En_ .

Obsorve

- 1 1
th = L“(I "k Ekk) = Y Tk Ekk) =7
or

Lsxpupxk g . (3.2.3)

Now the -ank of L is s since £(1), 2(2), *+* , %(s) are linearly inde-
pendent and this is the exact nurber of covariates that exist. From

(3.2.3), we have

L E =0 (3.2.4)
Sxp pPxp

where E =y _p* , and from (3.2.3) we havwe
pxp

pxk kxp

£#' (1)E = 0

L*'(2)E = 0

2+ (s)E = 0

and there are no more non-trivial solutions to the system Et = O, thus
we have the r(E) = p-s which is the gane as r(y) = ps=r.

Thus the rank of u is the mame as the number of discriminant functions
needad. RAtcention should be called to the fact that this is the exact

nuber cf discriminate functions needad and not an estimate.
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{ 3 ]
I the fiist scection, Wilks' A wes 4dcfimed as
cA M evne—
| asn|
and it was shown that the test statistic for the hypothesis of equal
means, i.e., u(1) = p(2) = *+- « u(k), vas given by
-m log A~ x2 (3.2.5
og c x2pq . «2.5)

The distribution and correction factor m = 2n - p - q were derived by
Khatri (1965).

When the dimensionality »f the mean space is zero, this is the same
as saying all of the means are equal and the test was given as

- 2n log noaecd) e X2 (3.2.6)
=1 i 2pq

vhere the ri are obtained from |B - r:2 (A+B)I = 0. But the hypothesis
that the dimensionality is zero is the sames as the hypothesis that
u(l) = p(2) = *=- = u(k). Thus the two test statistic (3..2.5) and (3.2.6)

should be equivalent. Since

lal p )
CA = w I (l-ri)
A+l i=1

it is seen that the two tests differ only in the constants m = 2n - p - gq
and 2n. Khatri's result has bren corrected, so it will be used in (3.2.6)
and the correction will be adjusted in general without a formal proof.

Thus a test for dimensionality being r will be g.ven as




-~

P 2 - 2
m - (p-e) - (g-1)) dog &R (-x,) v x .
I,y i 20p-0) (-7)

As stated before, the hypothesis that the &imsceicnality is r is
equivalent to the hypothesic of L"Pgtc) =mv,fora=l, 2, °°  k,
which is also equivalent to the hypothesis that r(L) = s » p-r. Now the
matrix L and the vector v are unspecified, and for a new cbservatiam §
fromw (o =1, 2, *°* » k), LE would provide the s covariates, L*'(1)§,
2*%'(2)E, **> , L*'(8)¢ . Now these s variables all have the same mean
in L (a0 = 1, 2, *++ , k) and are no good as discriminators. Consider
now erp§ such that L):LI' = @ . Now these r variables are uncorrelated
with i and these can be used as discriminators. Unfortunately neither
L nor I..l is known, but the maximum likelihood estimator of L can be
acbtained.

In deriving the likelihood racio procedure, the
o1 '
Min tr(LIL*') ~(LBL*')

was considered. Now the maximum likelihood estimats of L would be the

matrix L that does minimize the above. Recall that T = L}Z-l'/z and the

above bacame

Min tr(rr*) Lirrl/2prt 2pey

L

and then set Y = (T‘I‘")l/z'l‘, and ocbtained
hin iy (Y8271 2 yer
;$¥p

subject to YY*' - T .




To find the solution, consider the last s eigenvectore Y satisfying

¢ V272 3y =0 (3.2.7)
-pxl

cozresponding to the 8 smallest eigenvalues cf

222 5 g) 20 . (3.2.8)

The condition YY#' = I will be satisfied since the eigemnvalues correspond-
ing to distinct roots are orthogonal and eigenvalues corresponding to
repeated roots can be made orthogonal. We can take 'i?*' to be ;'" from the
s orthogonal eigenvectors [¥,, ¥,, *** , ¥ ] corresponding to the s

smallest roots and

-1/27 -1/2

U LTS R

and this is the maximum likelihood estimator of L** .
If we consider the largest p-s eigenvectors corresponding (3.2.7)
and (3.2.8), these will provide the r discriminant functions. To show

thet LZL‘l" = @ , consider

1/ -1/2

25

" ~AI)Y =0
or a
@M a2 ny .o
or
B-rf DY a0
or
(B~AIZI)L=0
“"1/2 ] 1
where £ = 1 Y . Now the ¥'s were mutually orthogonal, i.e.,
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f 0 i#3
Y (1)Y()) =

1 i=9

but ¢ = £ /% , thus £ ()52 (3) = O, which implies that IXLy = ¢ .
Now consider a new observation § from one of the populatione

L (a =1, 2, **- , k). It is desirod to place this observation into

one of L {fa =1, 2, **+ , k). The procedure for this discrimination

process is as follows:

Step 1: Find the matrices B and A by finding the CMANOVA from

the sample cbservations.

Step 2: Obtain roots cf

2 2_ 2 2
(B - r“(a+8)] = 0 x]> 1, > 1

Stup 3: Determine the dimensionality sequentially by finding the
smallest val'e of r 3uch that

-m lug Iil) (1-1‘2) ~ X2
jmptl i 2(p-r) {q~r)

is insimificant.
Step 4: Determine the eigenvectors

[B - ra(AB))L(1) =0 i=1.2, 20, 2

corresponding to ri, cor , ri_ .

Step 5: Normalize the £(i) by

1 imy

Lo ()22 (§) = {0 13

if T is not known use Z = A/n—q .
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Stap 6: Then the digcriminant functions are

L (Vg =Y
f L*'(2)E = Y,

e o PPN % b

ARCIERS

If a new observaticn is observed and the measure.’ charac-

teristics are recorded as f{, , then
; - -

- et (1)E,
ngo : .
. iﬂl }
Ik- L= (= 'E'o.l

L. The distance (modulus) of this point from the estimated
mean of T is the quantity that will determine which
ropulation that -E-O will go into, i.e.,

X

N, * B Mgt (DEE@IM I (Mg (DE ()

+ooee 4 (B2 (D) E-Rrt (D) E @) )0 (42 (1) § 4% (D) E (o))

P

@ (L8, = LiE(@I** [LE, - L,E(a)] .

Step 7: Letermine the minimum of

2 2 2
a _ ,a eee , QA
[ L8 * 2.4’ ’ "~v§o}

and assign "j if pininum is d§ €0 . In case of a tie, one
?

couid randomige.

3. Goodness oi Fit of a Single Hypothetical Discriminant Function

In the last section, a test of the hypothesis that r discriminant
functions are needed to discriminate arony the ' = 4+l complex p-variate

nermal populations was developed. The following discusrion will center
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around the case were the dimensionality is ore, i.e., only one discrim-
inant function is needed and with tests about this single discriminant
function. 1In this section a test of the gocdness of fit of a single
hypothetical function will be developed. This hypothesis will consist
of two parts, (i) whether a single Lypothet’ cal function is adequate,
and (ii) whecther the hypothetical function agrees with the true dis-~
criminant function. As in the real case, the hypcthesis will he stated
as the collinearityv aspect and the direction aspect. The test statistic
will be partitioned into twe parts, cone corresponding to the collinear-
ity aspect and “he cther to the directinn aspect. Independence butween
these factors will be shown.

The CMANOVZ, as presented in the last sections, can be considered
to be a recression of the complex vector £ on the real dummy vector

variable ¥ . The dummy vector variables, ¥ o7

1’ Y ves Xq' have com—

ponents of either 0 or 1 depending on which population the § comes from,

i.e.,

Y':[OO...O'oo llo-a l--oOOot. 0]

n n
1 a nk
and the regression can be written as

E(f) = My if e T, 4= 1, 2, *** , k

+ - j + cee 4 - Y
(uy Y (gq By

B -1 q

which can be rewritten as

= +
E (X) EkElN RY
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where
= 18 B3y *7 Eangl 7 T Beo tt Sy )
and
Yixq (¥, X0 = gql
with

B= MUy~ Wrly — ¥ vt yu_-ul .

With this in mind, the CMANOVA, may be written as

Source of Variatien | 4.f. s.s. and s8.p.
Regression (Between) a B=2¢C c-lc
Xy Yy ¥X
Error (Within) n-q A=C =C =C C-J‘C
XXy XX Xy YY YX
TOTAL n A+B = C
%X

1
where for J = (IN N ENN)" then

C =Y'JY C. = Y'JX*'

YY | yx i
C_ = XJY C__ = XJX*'

Xy XX

Define Ai as the matrix consisting of the first i rowes and columns

of A and likewise for B. With Ao = 1 and Bo = 1. Then




N

| al P Ia,_,!

A = = 1 i~

¢ Jamml =1 | A+B,
|2, *B;

which can be written in terms of regression as

|a,|
= 2
P la, .| p YR (e, B, e Lk Y')
= i-1 i1 2 ' i-1'
A=1 = 1 3
i=1  |Aa,+B i=1 1 - R
L S L £ (60 Epr vve 4 By )
|25 _1*8;,]
vhere R2

oo is the multiple coherence of {, with
Ei(Ell Ezl ’ Ei_l) 1

&0 E5r *** ¢ &, + This fact follows from

2
1-R
IAf_ll - Ei(gl' Ezl ety Ei_l' !')
2
IA +B l 1 - R [N ]
I S S €8 s €y r €5 y)
13,18,

which is evident from (2.4.4). It can be shown that

1 2

- R ese N ' 2
Ei(gll EZ' ’ ti-l' ! ) & X2[n-(q+1-i)] = B(n-g+l-i, q)
2 2 2 .
1-R Xo tne (qe1-431 * X
E (6, £y oot 4 By ) 2[n-(q+1-1)] ¥ X2q
Thus,
2
p PR, 6y e B Y P
CA- n 3 s I u, (3.3.1)
=1 1-R e, e, 8y
ity t2f e T3 ]
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vhern u; B(n-q+1-i, g). This is the result obtained by Khatri (1965),
vwho has shown that the v, (i=1,2, °** , p) form an independent set

of beta variables. Another dafinition of cA is given by equation (3.3.1),
i.a., if & s.ctustic CA is Aistributed as iil ui #+here u 1 =1, 2,°*+, D}
are independently distributed as B(n-q+l-i, q), then cA is said to have

a complex Wilks' A distribution with parameters n, p, and q, denoted by

CA(n' pr @Y. Thus

= u cA(n—l, -1, q)

[}

=2 . = .

u, u, cA(n 2, p=2, @
The hypothesis of equal means can be restated in terms of the re-

gression of £ on Y as one of no association between £ and ¥ . This

hypothesis can then be broken into the following sub-hypotheses

le El has no association with Y

HZ: 52 (eliminating El) has no association with ¥

H : Ep (eliminating El, 52, see , Ep-l) has no association with ¥ .

If the overall hypothesis of no association is rejected, then at least

one cf the Hi (ie=1, 2, *** , p) ia rejected.

¥ SO,
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Observe that the criterion ror the sub~~-pothesis is given by

I, 2
1- R
IAi"‘ll 61(51: 521 ’ Ei_ll !') -
2,43, LUK e, e ) *
=2 1617 &y ' 5§-1
A _1*B; )

It is desired to develop a goodness of fit test for a hypothetical

discriminant function. Denote this function by &*'E = Z, and consider a

1
non-singular transformation of £ + 2 by L§ = Z where the first row of
L is £*' . It is now desired to test that Zl is the reason that the
dimensionality is not zero. Considering the population means of the

transformed variables, Z. is the one that differs from Zz, z3, e, 2 .

1 B
If this is true, then after eliminating z1 the set z2, soe , ZP will have
no association with Y .
Thus the test statistic is giwven by
- L p
CA = §?—- n uy
U1 w2
where CK = |LAL*'|/|L(A+B)L*'| s 1.e., the transformed CMANOVA. But
cbserve
. |uaw] |al
€ |uasByLrt|  |asB]  ©
thus the test statistic is givan.by
. cA cA
"~ = 3.3.
M7 @I (BIE (3.3-2)
1




but from

P 2
CA = (l—ri)
i=)
so the test statistic becomes
2
At (l-ri) P ,
- = n (l—ri) (3.3.7)
u LAUAL/L* (A+B)L ) (i=2

Gbserve that the second factor is the tesl statistic for the dimension-
ality of one. Th: first factor tests that the discriminant function is
given by 4*'f . Observe further that the two factors are not indepen-
F dent, since the ri (1=1, 2, *** , p) are not independent. From
(3.2.3) an approximate )(2 test can be constructed.

Now a factorization of c;\ into two independent factors that measure
the direction aspect and the partial collinearity agpect can be achieved
or C;& can be the factor into two independernt factors measuring the

d collinearity and 'partial' direction aspect. The use of the word ’'partial’

k will be discussed later. In the real and ganeral case this factorization

wzs developed by Bartlett (1951), who gave a geometrical argument.

r Kshirsagar (1970) gave an analvtical argument for the same factorizatiom.
| The work presented here in the complex case is a combination of the two,
with extensive use of Kshirsagar's work. 1iie factorization of CA into
the direction and 'partial’' collinearity aspects is presented. The

altemate factorization can be achieved in a similar manner.

If the hypothesis that £*'§ is the only discriminant function is

true, then £*'f is the only variable that has a different mean among the
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k populations. Any other linear combination of £, uncorrelated with
L*'€, has the sare mean in all the k groups. iet L be a p X p non-
singular matrix with &*' as its first row and let L be such that
LIL*' = I . (There is no loss of generality for thic assuwption.)

Transforn from § to 2, where 2' = [Zl, Zyr ttt Zp] by

Then z1 is the hypothetical discriminant function and 22, see , Zp are
all uncorrelated with Zl. as LIL*' = I . Under the hypothesis;

22' see , ZP all have the same mean in the k groups. The test for the
hypothesis has been developed and was shown to be on (3.3.1)
~ A A

A = = 5= .

L*AL/H (AB)L C 1

Q

]

(3.3.4)

-~

Now assuming that the factorization of CA can be achieved and cA

can be represented as

where cA2 is the direction factor and cA3 is the 'partial' collinearity
factor.

The alternative factorization is given by

whexe A, is the collinearity factor and CA

M ig the 'partial' direction

5
factor.

Tc siow that the above is indeed the case, consider the following

arqument. Let D be the between groups matrix for the transformed
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variables Z, then

= »
D 1BIL, = [dij]

and the within groups matrix is W, given by

= *! o
W= LAL [wij] .

As in the real case, it is obvious that W has the Wishart density giwvew
by CWp(W] n-qu) since ILIL*' = I and likewise D = ILBL*' is distributed as
a non-central complex Wishart, with the non-centrality parameter due only
to the difference in means of zl alone in the k groups and thus affects

b,, only, i.e., bl is a non-central x2 with 2g degrees of freedom. So

11 1

the density of D may be written as
s ‘
@gfaqh)§®1ﬂ

where §(bn) ig the contribntion due to the non-centrality. An explicit
expression for §(bl1) will not be necessary in this development.

Now W ~ pr(wln—ql I) where W = [w From this we have

ij]'

w

w, W
il i eoe iy = -_ii_i_l.: - 1
Y1y (i =2, » P) and Wiy T Yy " i1,9=2.. .., p
11
11
!

are independently distributed. The are croplex standard normal

11

and independent variables, while the matrix W= [';ri ] is a complex

3

Wishart of order p~1 . This follows, as in the real case, from the fact

that i{f s Vv cwp(s!n§1) and




. re—

then S S is of order p-k and distributed as a complex

-1
22 ~ 521511512

Wishart and is independent of Sll and Szlsﬁ . So applying this result,

22°1
we have
Wn cwp_l(wl n-q-1/ 1)

In a similar matter, " can be split up as

il ~ dildjl
dll’ {a___ (l = 2, LI ) ’ p) and dij = dij - dll (i'j = 2’ ceeo e ’ p)
Vo
1/2

and are independently distributed. The dil/(dll) are CNl(O, 1) and
are indzrendent and D = [aij} is distributed as CWp ,(f)]q—l]I) . All of
—4&

tnese elements are independent of W and hence W .

Consider the variable

. - 4y /dn } "11\
oV \dn v

for i =2, ¢« , p

which is a CNl (0, 1) .andom variable. To see this consider the conditional

density of Oi for d11 and Y1 fixed. This is CNI(O, 1) but does not

depend on Wiy ©OF b]l' hence it is *h: nconditiocnal distribiations. Let

8 denote the colurmn vectors ei (L =2, 3, -+, p).

Thus the following results ire cbtained

W OW _,(ﬂn-q—l!'.)

IS

D oW Dlg-1lD
p-1- '

8 v N0, 1)
p-1 -
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and all uve independent. Observe that 8 2*' is distributed as a pseudo-
complex Wishart with one degree of freedom.
Recail that Wilks’ cA with parameters n, p, g was adefined as
|
| Al

A=

o]

= Afn, P/ q)
'as] €
where 2 " CWP(AIn—q|2) independent of B ~ CWP(B|q|£). The parameter n
is the d.f. of A plus the degrees of freedom of B; p ig the order of

K'B; g is the degrees of freedom of B. Using this terminology. then

[ Aln-g-1+#1, p-1, 1) = A
A n-g-l+ - =
g on| C T
|w+e o*'|
———— 2 A(n-1, p-1, g-1) = A
|wepre oxt|  © cd

o At 1) A
— n-1, p-1, g-1) =
wb] € c3
| w+D! ,
v Aln-1, p-1, 1) = A .-
liweDee %] © c 2

Furthermore, independence between cl\2 and cA3 s obtained or independence
between CA 4 and cAS is cbtained. The same argument for the real case is
valid in the complex situation, i.e., if A v CWP(Al £|1) and g, v N (0, 1)

(=1, 2, **= , n), then

P




n
in independently distributed of A + ) £ _E%° .

jop i
Ncw, it must be shown that CA iy indeed given by the oproduct

d§2 S PO And then it will be chown that cA2 is the direction factor

and cA3 is the 'partial' collinearity factor. The alternate factori-

gation, cA = cA4 . cAS , can also Le shown. Consider

-~

| w]
Ay + Ay = ——— —
€2 C3  lubro o%]
!
i Y11
W+D+e o'
and observe that
o : 1
W+ D+ oo |wap | (3.3.5)
byt
then the above can be written as
|w]
!
wes |
b1t
[2*" (2+8) 21 [Lar* |
(g*'A %) jua+BIne" |

= A A ),
Since w,, = 4*'AL aud (w,, + b,)) = L (A+B) 2,




1.1
. 1~

| e8|
{ - &*'M
L%7 (A+B)L

A
c

c'1
ard it is seen that (3.3.4) is verified.
Now it must be shown that cA2 is the direction factor and cA3 is
the 'partial' collinearity factor. Consider cAZ first. To see this,

define a matrix H by

. 11 12 1p
Y21
wij + dij
(1, = 2,°°*,p)
wpl
5 .
and a vector k bv
t = LN
k' = 1A sy e agd
then cbserve that
D+ W=HH+ nk*
and
[u] = v, %+ B (3.3.6)
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; ayd from (3.3.5), that
t
‘:' . - &0 - - " ~ x0T
, R N T R [ P S T (3.3.7)
g, Then CAZ may be written in teims of (3.3.6) ang (3.3.7) as
] pooPuty) o El
33 <2 Y11 [H + X k*'|
E.
then the abov: mav he written us

s
e i U
) -1
vy 1+ k*'H 'k
Since [ + kx| = [0« |14 7k x*'| = |u] « 1+ 5*'n_lg) and A,

A

i can be furtier cimlified wo

(1. . )
Tt

e R LU C I S SO
11

this can be seen bv using the fact that

" (T +p) Y =1 - p(r 4 op) Lo .

Noting tnat

1 1

k' = g*'p  prae” L*'/[&*'(L'lDL*'-l)&ll/2

then cﬁz mas le written as

1 1.-1

DL*'[LMI(W*D)L*'— 1 L
1

1 1

DL*' g

gerp”

»
s
st
~e
-
~—
o—

? ge0 (1, Ipae 1)y
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8l

and observing that

-1 - |
Y} -~ "t -
byt i 2% [L “(W+D)L*' T)L

11 gt (e Tl

then
oL onwe (n 7 oy et Y " g 7Yy

&*' (L—IDL*'-I)&

1 ~

&*'(L-1WL*'-1)&/&*'[L-l(D+W)L*'-l]&

and using the fact that D IBL*' and W = LAL*', then

1 - g*'B(A+B) 'Bp/g*'BL

22 BL/L" (ASB)

2|

|A+B|

1 - g*'B(a+B) 'B/2*'BL

Returning to the CMPIOVA for the transformed variable 2 = L§, it

can be expressed as

Source of Variation | 4.f. s.s8. and s8.p.

o §
Regression (Between) IBL** =D=¢C C °C

o ( d ZY YY YZ
Cr s N a
Error (Within) n-q LAL*' = W = sz‘_v
TOTAL n L{A+B)L*' = C
zz




The CA can be expressed as

- lc,,.,| i | C ey .3.8)
el el
then using the fact that
Cox ] ] ]
"‘" Yoo e ~c cle | =le e -c Y |3.3.9)
‘c c Yy yX xxxy Yy’ Txx  Txy yy yx
yx vy

A= XX (3.3.10)

Now (3.3.9) i« a .easure of the "lacit of relationship” between L{ and ¥
cad {3.3.10) is a meacure of the "lack of relationship" between Y and Lf .

Multiplying and dividing (3.3.10) by lcyy , the residual of Y with

otl

the effect of zl = ¢t removed, CA can be written as
A - Icyy-tl . Icyy.xl .
C
C C
€l Gyl

Consider the first factor, using (3.3.9), this can be written as

-1
lcﬂ.t | tt'yl I et T Ct}fﬂfxs_'___ &t'Cxx.L& ) &QIA&
le,,l legl |y, R*IC L L% (MBIL

N CA CA _Cx\vnx
o - &*'A&/&*'(A‘*B)& = I/](‘ I = IC "-l" (3.3.11)
'yy 1 .

{ -
i

yy't
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which is the test statistic when L*'¢ = t is eliminated, thus measuring
the association between Y and 2, eliminating t . Now cA must be factored
into CA:2 and cA3 . This will be achieved by factoring the numerator and
denominator of (3.3.11).

Let § denote the sample projection of t on the Y space. The re-
1l

gregsion of £ on Y is C Cc_C__ , thus the regression nf t = L%'E on Y
= XY Yy ¥X - 2=
-1 -
is L*'C_C 'Y . The sample projection § is given by § = L*'C_C ]Y or
= Ry yys ample bres TR T2 Ny -

by § = m*'Y where m*' = g,_*'cxyc;; . let y denote the remaining g-1 linear

|

functions of the ¥'s . Then Iny.zl can be factored into ’C§§'Z|.|CYY'§Z

This follows from (3.3.9). Likewise iCYY'tl may be factored into

and cA may be expressed as

|ny°tl =|C§§.t 'ICYY.gtI

. |
- lC§§'xl ’ny_-‘éx‘

-

A
(o]
5. 1€ yese!
or as ‘
; |50l (}!yes o
[o}
IC55.el ] (1Syes5 ¢l

Now it will be shown that

IC§§-xI
A, = ——— .
M L
55t /
|
Now
= LA
C§§'x m ny xm
=*c cYe -c ¢k 1cte
= Txy Yy YY | YX XX Xy YY yx-
- gre cle g-gre e cle e s
S Xy yy yx= - Xy YY YX XX Xy YY YX~

= L*+'BY - £*'B(A+B) 'BL

e b




and

5§+t yy*t
-1 -1
ag*Cc Cc ¢ =C cC g
= xyyy[yy yxttty]yyyx-
atrc clic ~c 2@t o) lec 1k o
= XYY yy @yx- = Txx~ = Txy yy yx-
-1
=¢*'c C [C - c, AN/ LA
- xyyy[yy ( / ”cyycyxl
-1 -1
=awe coc b - Lgre coc 0) /2*'(‘ 3
VY yx-— XV VvV yX-
= a%'Bg - [@rBR) PR uB)e) .
Thus
. e R*'BL - L*'B(A+B) 1BY
§6.x - - = -
(&*lB&)Z
. |C§§'t‘ &*'B& -
2%' (A+B)%
-1
2*'B(A+B) "BL
&*'B& 1 -
L*'BL
2#'BL *'AL
L+ (A+B) L

2+'B(a+B) 'BL

1 -
L*'aL

G
N
.

ARV

L% (A+B) 2

In a similar matter, cA3 follows. Thus we have

lcge. | lC el
A = 98X 4 A = —YY8X
c 2 c 3 lc I

|F5§'t| yy st
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Now cl\z is 2 mmagsure of the association of §, the sample projection

on the Y space, with the § space with the effect of the discriminant
function, t, removed. Now § = m*'Y, where m*' = &*'cxyc;; . Observe
that m is determined by £, the given direction, thus one would expect no
association to be present if £*'f = t is eliminated. Since ¥ = m*'Y is
considered first and then the y's are considered after eliminating m*'Y,
cA3 is called the ‘'partiai' collinearity facror. Considering ths yv's
first and then considering § after the elimination of vy will give the

alternate factorization, i.=.,

where cA4 is the collinearity factor and cAS is the ‘'partial’' direction
factor.

cA3 is the collinearity factor since it depends on the number, but
not the direction, of the remaining g1 variables.

In summary, we have the test for the hypothesis that L*'¢ is the
anly linear discriminant function needed to discriminate a.mmg the

k = g+l complex p-variate normal population based on the statistic

- A
cA =~_&—S_'KLT__—-= cA2 ) cA3
g*'B(ma)-lBg [a]
e LY AL | A+B|
) L*'AL . £e'B(aB) 'BL
L “‘*B)_&- T L*'AL

s At © o s




where A, ~ Atn-1, p-1, 1) independently of My v An-1, p-1, q-1)5 whers

cl\ is the direction factor and cA is the 'partial' collinearity factor.

2 3




CHAPTER IV
SUMMARY

Through the work of Wooding (1956) and then Goodman (1963) the
foundation for complex multivariate anulvsis was established. This work
was extended by the major contribution of Xhatri (1965) who developed
much of the basic theory needed for the analysic of complex multivariate
normal randor variables. It was thir author's intentions of further
extending this development by examining the complex analogue of Wilks'
statistic as used in the multivariate analysis of variance rrocedure and
a3 used in the discrimination problen.

Chapter II of this paper contains the basic theorems necessary for
the development of the analogue of Wilks' statistic as developed in
Chapter III. Also included are yesults pertaining to the decompositiom
of a complex Wishart matrix. This decomposition was fundamental in
establishing results ajout the coherence between two complex random
variables and the cch~ .nc2: between two complex random vectors. One
possible extension of this area is the investigation of the complex t-
distribution which occurs as the distribution of the sample estimate when
the true coherence between two complex normal variates is zero. This is
in direct analogy with the real case.

The development pertain’ ag to Wilks' statistic was presented in
Chapter III. In Section 1 of Chapter III, a test for the equality of

means of X complex p-’ariate normal populations was developed. ™. is was
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accompiished by use of the likelihood ratio criterion. A possible ex-
tension of this section would be to examine the propertieas of this test
procedure when applied to complex random vaiiables. Some work has been
done in this area b, Giri (1965). In Section 2, a test for dimensionality
of the mean space was developed and it was shown that this was equivalent
to knowing the number of linear discriminant functions needed to discrimi-
nate among the k-populations. A needed extension is to determine the
exact correction factor that should be used for the chi-square test. 1In
Section 3, a test for the coodness of fit of a single hypothetical dis-
criminant functiua was deweloped. The test statigtic was factored into
two independent par' s, one for the direction of the hypothetical discrimi-
nant function end che other to test the 'partial' collinearity of the means.
i possible extencion would be the agoodness of fit of more than one dis-
criminant function. Another extension would be the goodness of fit of a
single discriminant fuaction from the vector space of dummy variables.
For the p-variate complex normal as defined by Wooding and Goodman,
Rhatri (1964) has noted "that one can handle all the classical prcblems
of point estimation and testing hypotheses concerning the parameters of
complex multivariate normal populations much as one handles thocse for
muitivariate populations in real variables.” This is truve for the prob-
lems that hawe been considered in this paper. As a matter of fact, all
the work so far with the p-variate complex normal as defined by Wocding
and Goodman has been done by paralleling the real case. Ewen so, this
type of development 1is important because complex multivariate analysis
has possible use and applications in stochastic processes and spectral
analysis of multivariate time series and point processes. N. R. Goodman

and M. R. Dubman (1968) have considered the th ory of time-varying
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spactral analysis and corplex Wishart mat rix proce’.ses and the assumption
of stationarity and normality. They have considered complex Gaussian
processes, Wishart processes and time-varying spectral estimates along
with distributional results associated with them. This author feels that
the work ceported in this dissertation will be helpful, indirectly at
least, in such investigations.

Pavid Brillinger (1968) has considered the canonical analysiz of
stationary time series. The distributional reszults abhont canonical
correlation of corplex normal vec ors are likely to be useful in chis

area.
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