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‘he program of rescarch offered in the work proposal for F.Y. 1971
(Decenmber 1, 1970 - November 30, 1971) has been fulfilled as follows:
1) Woe have investigated the practical consequences of the commonly occur-
ring thermospheric condition of turning points for propagating acoustic
and internal gravity wave modes. This has required some rather novel theo-
retical developments, which we have entitled : '"The W.K.B. Approximation,
Turaing Points and the Measurcment of Phase Velocities'" (sec beloy).
23 In the process of carrying out 1), we have made some sample calculations
illustrating the relationships between phase velocity measurements and the
existing values of the Vais#ld frequen;y and acoustic cut-offs (figures 1,
2, B).
3) We have also included a very brief and probably oversimplified study of
the retlection of internal gravity waves of long period at great heights
tor which the wavelength becomes of the order of the mean free path of the
molecules. Since the net effect is one of damping on the long-range propa-
gation of trapped internal waves, we have entitled this report '"Damping of

Very Long Internal Gravity Waves in the Atmosphere' (partly carried over

from F.Y. 1970).



THE W.K.B. APPROXIMATION, TURNING POINTS AND
THE MEASUREMENT OF PHASE VELOCITIES

1. Introduction

(1,2) (3,4)

In the fields of acoustic and electromagnetic wave theory,
as well as in some aspects of elastic wave theory(s), W.K.B. type
methods uften ~€%er the only sensible means for obtaining useful,
closed-torm approximations for the description of wavefields in strati-
fied media, The method is, in many respects, ideally suited for ‘the
caiculation of the far field in wave ducts(l), of diffracted fields
under conditions of caustic formation(z‘G), of focalization intensitics,
cte.  lirrors incurred by the use of this method are often no greater
than experimental uncertainties, such as those due to fluctuations of
the modium(l); indeed, were it not for the fact that the approximation
diverges near turning points, the method would be quite sufficient to
deal with most practical problems and the calculation of wavefields by
means of exact solutions of the wave cquation would acquire a largely
eclectic interest. Thus, in long range transmission calculations in
geoacoustics and in e.m. theory, the cumulative experimental uncertain-
ties of phase are often comparable to or greater than the errors of the
W.K.B. procedure: as long as one can stay away from turning point
effects, there is then no reason to try to improve upon this approximation.
There exists, however, another class of problems in which one tries
to make accurate phase comparisons over short ranges. This occurs, for
example, in the design or interprctation of array measurements (i.e., of
any system consisting of two or more sensors comparing phase). The usual
methods of relating phases for neighboring measurements are cquivalent to

the tacit assumption that the medium is locally homogeneous or that ray

optics and the W.K.B. picture are valid; while this assumption is fre-



quently justiticd, it can and will break down in stratificd geophysical
media 1a the neighborhood of turning points, Thus, in a vertically
stratitied medium (in which the physical parameters are functions of the
vertical z coordinate), this breakdown may lead to false conclusions
concerning vertical phase velocity and directionality. These observa-
ti-ns, which we shall clarify in sections 3, 4 and 5, are germane, in
principle, to geoacoustic fields like underwater sound, atmosphcgic
infrasonics and e.m. waves. As we shall see, they are probably mcst

pronounced for long period acoustic-gravity waves in the atmosphere.

2. The W.K.B. method and the turning point phenomenon: review

Consider a stratified medium in which the physical parameters are
tunctions of z only. Whether we are dealing with acoustic, gravity or
¢.m. waves, the assumption of simple harmonic wavetrains, i.e., of

i(ax-wt)

solutions proportional to e reduces the problem to a Helmholtz

equation of the type:

dl 2
5?% + Yy*h = 0 (1)

where vy is some function of z.

The classic W.K.B. approximation has the form:

h = y %*1(s-50) (2)

with

w
n

z
t[ ydz (3)

and s, is an integration constant.

C
(1,2)

As is well known , equation 2 is a good approximation as

long as: .

] d?

1 2 . 1fd iy
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4 conuition that is seen to break down near
y =0 (5)

i.c., at a turning point of the lielmholtz equation (1). With the

exception of the neighborhood of multiple turning points (for which one
or more derivatives of v also vanish), (4) is equivalent to:

1
Y

~—d—1 ny

1z << 1 (6)

This somewhat more succinct statement says that the W.K.B. approximation
applies as long as the physical properties of the medium do not change

(7) that

appreciably over a vertical wavelength; it may also be shown
this is equivalent to assuming that, as the wave energy propagates
through the medium, onec may neglect the process of continuous backscatter
(reflection) from the stratification. Near the turning point itself, the
z wavelength becomes very large, conditions (4) and (6) break down and the
approximation (2) becomes divergent. Exact solutions ncar the turning
point of course show no unusual behavior at y = 0: this point simply
marks the transition from a region of oscillating solutions (y2 > 0) to
cxponential ones (y2 < 0): the wave function and all its derivatives are
continuous through the turning point.

It is useful and instructive to examine the case of a linear yZ:

v2 = Pz ¢+ y2 (7)

in which case,

s = gf% y3 , for v2 > 0 (8)

Standing wave or modal solutions may then be expressed in terms of

Bessel functions:

h = wr['\-l),,3 (s) + N_lé (s)] ) (9)
4. VN, () - W, ()] (10)



and, in the y2 < 0 region:

AR B (11)
2y
g = *3.];Y 3
h = y'[-AT (o) + BI (0)] (12)
1/3 -1/3
oy (o) - BI, (a)] (13)
- -2/3 /3 '
where ] , 1 are the modified Bessel functions.
31/3 *2/3

It is a simple matter to verify that the W.K.B. approximation cor-
responds to the asymptotic forms of (9), (12) for large s or o, an
observation that provides a direct and classic method for determining
the connection formulas between W.K.B. solutions to both sides of the
(8)

turning point

The progressive wave solutions corresponding to (9), (10) have the

form:
h = YME;;Z)(s) (14)
& =21 (1)

where Hankel functions of the first or second kind are used, depending

upon whether one wishes to represent down- or up-traveling disturbances

iut)

(depending upon the sign of the exponent in e’ . This is conveniently

seen by going to the asymptotic forms:

nf})a = 2%( g i (8 - 50/12) (16)
“Ej) . 2%(ns) Y i(s - 50/12) . an
3

We sce that the W.K.B. approximation (2) corresponds to the use of



these asymptotic approximations. Lquations (16), (17) are in fact quite
accurate for s >> 1 - a condition which, by virtue of (8) and (7) is
<< %, i.e., is consistent with (6).

In dealing with a medium of indefinite extent and lincar v“, we

. 1] d
cquivialent to the statement Vlﬁ? Iny

require that in the region y2 < 0 solutions (12), (13) give a convergent
cencrgy density for o + ». This is achieved by taking A = B, giving for
h:

(o) (18)

>

where Kl/a(o) vanishes like o %¢ °for large o.

Note that the standing wave solutions (9) with A = B, together with
(18), are the result of superposing an incident and a totally reflected
field. Thus, taking the turning point y = 0 at the origin z = 0, with
y¢ > 0 for z < 0, we have P < 0, and taking s = & ydz = -5%73 gives
s > 0 for y2 >0; with these conventions, the incident wavetrain traveling

towards the turning point would be

- (2) -igt
¢, = A y;ﬁll/a (s) e (19)
and the reflected wave train, traveling away from the turning point:

. .
0, = A '3 Y;-‘nfg(s) e (20)

It is easily verified that the superposition of (19) and (20) gives the
standing wavefield (9) with A = B, and gives (18) in the y2 < 0 region.
It is important to understand here that this total reflection process

is spread over a zone near v = 0. Thus, as s + 0 we approach the turning
point und @R -+ -cig ¢i, so that the actual reflection coefficient at

z = 0 is equal to -ei§ = e'Zig} on the other haﬂa, as s + =, we see from
2i(s - n/4)

(16), (17) that OR + e

ficient is asymptotically equal to e‘lﬁ} There is then a region, in the

®.) i.e., the effective reflection coef-



Viesmn vy or the turnng pornt, that contreibutes an extra phase change of
v /0, above and beyond the integrated phase puth contribution: in other
words, the reflection process is not concentrated at the turning point,
but is smeared out over a layer of thickness given by s = 1.

It is also worth noting that while h and dh/dz both change from

oscillating to expounential type solutions, they do not obey the same

llelmholt:z equation(g). Thus, differentiating (1) gives:
d*h di dy? |
Gl PR (21)
Taking
1
dz

and using (1) we have:

doy _dy, d. 2¢ o
W& S ma Yy =0 (23)

Thus y obeys (1) if the W.K.B. criterion (6) is satisfied, but not

otherwise., We must, in general, define the function:

y = YW (24)
and
7
%‘} s 82 = 0 (25)
where
d z g2
R R - (g;lnYJ + 57 Iny (26)

It appears then that W satisfies the Helmholtz equation (25) with a
turning point at
g=20 (27)
i.e., at a different value of z from that corresponding to (s).
One might conclude from this that the function y = dh/dz, or some
lirear combination of h and y, changes character (from oscillating to

exponential) at a different value of z than h itself. That such a con-



clusion is, in fact, quite specious is seen from the cxact solutions

(9), (10) and (12), (13). Mathematically, this svparcent ambiguity arises
from the feature that, at y= 0, 82 is singular: a proper discussion of
(25) near the singulurity must, ncedless to say, yield the same conclu-
sion as examination of the exact solutions.

It follows also from what has been said above that the ray picture
interpretation of y, 8 is misleading near turning points., Conclusions
concerning direction of phase travel, cnergy flux, levels of reflection,
ctc., that are based upon one's usual intuitive picture of the wave-
number vector are, in the final analysis, only as good as the W.K.B.
approximation; furthermore, inspection of (4) and (26) shows that the
domain of validity of this approximation is precisely the same for h, y,
w, dw/d:z or for any linear combination of these functions.

We¢ shall show in what follows that there are situations in gco-
acoustics and, in particular, in acoustic-gravity wave theory, for which

these teatures of the wave solutions acquire a practical significance,

3. Phuase velocity measurements in stratified media

We now focus our attention on the problem of mcasuring the z compon-
ent of phase velocity (normal to the stratification), a problem one
encounters in the use of vertical arrays in the oceans or atmosphere.
This situation occurs, for example, whenever one attempts to interpret
vertical phase velccities in terms of the stratification (structure) of
the medium,

A general representation of a traveling harmonic wavefield is:

o= melt e i . (28)

where m,¢ are real functions. The phase velocity in the z direction is:

W
Yz 3¢/ 3z (29)



It (2) is valid, it follows from (3) that:
3¢/dz = ty (30)

and

Vv ~ *E (31)
Y

Thus, if the W.K.B. approximation applies our usual understanding of
vertical phase velocity as the ratio of angular frequency to vertical
wavenumber component is valid: this is the realm of ray optics.,

But if the conditions of validity for the W.K.B. method, i.e.,
inequalities (4) or (6), are not fulfilled, the statement (31) is no
longer correct. This is easily seen by turning one's attention once
again to the exact solutions for the linear y* case. Here ¢ is given by

the phase of H(I’z)(s), i.e.,

1/3
J (s)
¢ = arctan {cotan% Sl Jtl[%s) ] (32)
sin% 1/3
giving
3¢ ., 2Y 1
== (33)

: 1
le/s SUR  SSVAS 2J-1/3(S)]2'r

By going to the limit of vanishing s, y (using equation 8), we have the

vertical phase velocity at the turning point:

b -1
as v+ 0, v, =g atn 3T a0

Thus the vertical phase velocity tends to a finite limit at the turning

point (whereas literal acceptance of the ray picture leads to an infinite
value for vz).

Therefore, unless exact solutions for ¢, a&/az are used, one may be
appreciably in error in deducing the vertical phase velocity and angle of

truvel of a harmonic wavefront. Conversely, for measurements made near a



turning point interpretation of observed phase velocities may lecad to er-

roncous conclusions ¢o rning the stratificati~n unless the exact equa-

tion (33) is used in ).
Figure 1 shows a it of ¢ and of d¢/ds = -dv/dz. These quanti-
ties are plotted aga s, so that the W.K.B. oximation for ¢ is,
by (2), a straigh* of slopc one; it's ~pt is, by (16), so = 57/12.
The exact curve J$/3s are seen to *he W.K.B. values

quite closely fo!

s >> 1 (35)
At s = 1, the W.} cror for 9¢/3s and, thus, tical phasc velo-
city calculation: less than 5%: condition (. as pointed out
above, an altern: statement of (6).

It is ¢ ne interest to estimate (34) low frequency
acoustic waves (v 111 discuss acoustic-gravity i in the next
section). If on lects the effect of gravity v substitute for

P in (34)1);

P = uk (36)
where ¢ is the sc¢ peed.
This gives t rning point value:
1 1
_\fﬁ -B /3f /3 (37)
c
where f is the f zy in hz. In underwater acou: one usudlly

deals with gradients less than dc/dz ~ 1 sec~!, Thus 2.3 f1/3is pretty
much the smallest value for (37) in marine acoustics experiments. It
gives vz/c =5 for £ = 10 hz, and vz/c = 10 for.f = 102 hz. In practical
terms, the difference between an infinite move-out velocity and one that

takes place at 10 times the speed of sound is hardly significant, when
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one venembers that the measurcment must take place over a fraction of a
waveleagth;  in underwater sound experiments, for frequencies of 104 hz
and above, this effect is unlikely to be important.

liowever, in infrasonic measurements in the atmosphere and thermo-
sphere, the phenomenon is more likely to be observable. Thus, gradients

of the order of de/dz = 1072 sec™!

are characteristic of the thermosphere.
Siynals having periods as long as 4 minutes have been observed in'con-
nection with Apollo firings (10), i.e., we may take f = 4x10"% and
v./¢ = I at the turning point: here measurements of the critical phase
velocity may yield misleading results, unless they are interpreted with
the help of exact formulas of the type of (29), (33). As we shall see in
Scction 4, this effect is even more marked for acoustic-gravity waves in
the 5 - 30 minute period bandpass at thermospheric heights.

As for the behavior of dh/dz near the turning point, we once again
have recourse to the exact form for the progressive wave solution with

linear vy%, i.e., we use equation 15, Thus dh/dz corresponds to wavefields

of the type:

y = el¥ e vt (38)
where the phase v is, by (20):
J, . (s)
L 1A i 1 . .2/3
v = arctan [cotan 3T J.2/3(—5_;)] (39)

For large s, i.e., in the region for which W.K.B. applies, it is clear
from the usual asymptotic form for Hé};Z)(s). that y - s + n/12 so that
S./3c - 39/5z and the phase velocities of the ¢, Y fields are the same.
sut, for s < 1, equation (39) shows that the behavior of 3y/9z, 9¢/9z

will be quite different. In fact, if we use the first terms of the

power series fox J+2/3(s), equation (39) gives

dy . 1/3
= =0,15 s (40)
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{hus the phase velocity near the turning point goes to infinity like vy~ 4.

{e behavior of v, dy/ds is shown in Figure 1.

5. Acoustic-gravity and internal gravity waves

ve have established that one's interpretation of infrasonic wave
hehavior near turning points may be seriously in orror, unless he uses
the exact ficld cquations, ‘The use of ray-optical concepts here is
crroneous; furthermore, the amount and sign of the error depends upon
the ficld quantity being studied.,

The largest errors will be encounterced for acoustic-gravity waves
at ionospheric hzights, Measurements of traveling wave systems at those
heights are currently a subject of considerable interest; naturally
occuring wave systems, in particular, are being studicd intensively for
tie light they shed upon upper atmospheric structurc(ll' 12); disper-
sive acoustic-gravity waves with periods of scveral minutes have been

(10)

detected by vertical phase sounders in connection with Apollo launches

(13)

and disturbances in the same passband as well as with longer

(14, 15) have been scen in connection with large atmospheric

periods
explosions, It is therefore important to sec how the considerations of
Section 3 apply to acoustic-gravity and internal gravity waves at these
heights,

With this in mind, let us fix our attention upon a specific model
of a specific section of the thermosphere. Since much of the recent
phase sounder work has been conducted with sounding frequencies in the
2 - 6 Maz passband, i.e., at true daytime heights in the 150 - 250 km
range, let us select a reference height of 180 km and usc this as the
origin of our z coordinate. We may then expand y2 into a Taylor series

"

in z: keeping the first term only gives the linear law (7). The range




Ol Vaerdity of this model depends upon the actual rates of variation of

the pavsical parameters.,  We begin with the differential cquation for

0 4
e elastic pressure p(1 ), Writing:

- i(ax - wt
P =9 1/2 h cl( wt) (41)
§ives cquation I, with

&

Yo o=

(.‘»—4

(e - u;p) + %E-(Nz - w?) (42)
X

wiore ¢ is the adiabatic sound speed, o the density, “op is the elastic
pressure "acoustic cutorf", N is the Brunt-Vaisild frequency, Yithc hori-
contal phase velocity
W
Vo= — 43
= 2 (43)

It can be shown(IA) that a reasonable fit for the actual Wone Co
&

N variations in the thermosphere is obtained by taking the perfect gas

law with

c2 =Pz + co2 (44)
i.e.,
.2 2
Nt = Pz ¢+ 0.4g) (45)
S 1 2.2 _ pe
“op = Fez(@TT - P9 (46)

wiaere 7 = 1.4 is the ratio of specific heats. We may therefore approxi-

mate y© by a linear law as long as 1/c? is approximately linear, i.e.,

v,

i

R 22
S 7

Iiie exact solutions of Sections 2 and 3 will thus be useful if
e v ] (48)

Vaning at ¢ = 0 (180 km height) the values(14):

5.94x10° m? sec~?

(49)

6.2 m sec™?
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Goeosce that (48) imposes the limits:
5 c
2 << 107 W (50)
Luootier words, we shall be limited to a range of about 25 km to cach
side o z =0, i.e., to a zone of truc heights between 155 km and 205 km.
Withh thiis limitation in mind, we can apply the results of Sections 2 and

3 to the actual thermosphere.

Lquations (45), (47), (49) give then:

yl
52 « N2+ nz, ne-N2L (51)
(o) OCO‘

No = 1.22x10"2 rad scc-!

2
2 Yop
Sheal g2 « @ R L P (52)
4 dasr ’ = e
c ¢,° o°p, € <
- % =)
op. ~ 0.682%10° © rad scc
0
Giving, in (7): 2 ’
W N
o o o) W 2
R AL st (53)
o o X o )
2 2 ® 2 w
2=U - 4 = 0
Yo '\Z(z (&Tco 1) + —Q-vx —‘g'co . (54)

Using the sumerical values (49) and (51), (52) we may calculate exact
wave functions, phases, phase velocities etc., for 155 km < z < 205 km.
“h¢ procedure may be applied in the vicinity of a succession of z values
10 cover any desired height range in the thermosphere.

Figures 2 and 3 show the behavior of s at these heights, for the
thermosphericconstants (49), (51), (52): it is seen that the validity of
the W.K.B. and ray-optical points of view is contingent upon frequency and
Vo

The vertical displacement ¢ is, to within a % iw factor, similar to

tac vertical velocity and is of particular interest since it is more direct-

iy related to the physical quantity measured in ionospheric phase sounders



(Ciectvon veloeity ). Lt is related to the elastic prussure flcld(ld) by

the equation:

AT TRE RARITEE < (55)
But

Rapldgne e otfzdhieax - wt) (56)
and .

t= oM@ - ‘%)'1 ( h(%g-z- Inp + %?-) + % (s7)

The relative importance of the h, hz terms ncar the turning point is
determined by examining the exact solutions (14), (15) in the limit of

y ~0, s >0, It is then scen that dh/dz = 0.5 Pl/3h. But, for the case
under consideration, for periods in the 10 - 30 minute range and for hori-

zontal phasc velocities v, <300 m sec™!, P will be seen to vary in the

)|

1043 to 10-1%pm73 range. Since furthermore g/vx2 >10"" m’! and
d/dz 1no = 1073 m™}, we have, approximately:
SV I itk
A R i (58)
X X

This approximation, good for v < 3%102 m sec”! and periods in the 10 -

30 minute range, shows that we may usefully apply the exact solutions (14)
to obtain the vertical phase velocity from (29) and (33) and, in particular,
the limiting turnirng point value (34). Since we have here vlec2 <), dint

foilows from (53) that we have, approximately:

N2 p
AR (59)
X o

and the turning point phase velocity (34) is given by

<

2

& §.an §-4/0 [r(%)]-z N-2/3 p-xlacglaw;x/a

<

Q

1.4x1o3xuxv;1/3 (60)



Thus, for periods of the order of 30 minutes and horizontul phase velocities

107 @ sec” ! we have Vz/vx = 1 at the turning point, giving an apparcnt
phase front inclination of 45°! Since vV, = V, is
often observed in the ionosphcrc(ll) , these calculations are very perti-
nent to the interpretution of actual ionospheric obscrvations of acoustic
and acoustic-gravity travelling wavetrains.

It must be emphasized, however, that in gencral it is (57) that must

be used: the interpretation of phase velocity measurcments must then
proceed by defining, with the help of (14) and (15), an exact phase function
tfor h., This is slightly more involved than the calculations for our sim-
pliried case with v, < 3x102 m sec”}, but does not offer any particular

difticulties,

5. Discussion

In problems involving wave propagation in stratified media, it is not
dirficult to convert a set of values for the local paramcters and their
derivatives into an explicit , simple criterion for the validity of the
W.K.B. approximation in the solution of the fundamental lelmholtz equation
{1). It is rather illuminating, in fact, to assume that y2 in cquation (1)
may be treated locally as a linear function of z (a classic assumption

(8).

first used by Langer' “in his solution of the connection problem, the limi-
tations of which are easily stated in terms of a permissible range of :z
values). This approach has the advantage of yielding locally exact solu-
tions of (1) that are valid for simple turning points y = 0, solutions
which furthermore yicld the W.K.B. approximations explicitly as an asymp-
totic limit. This shows that the W.K.B. method is valid in the limit of

iarge cnough phase paths, a statement that can be written very succinctly

as s >> 1, where s is given by (3). The W.K.B, approximation is essentially
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the plane wave ray-optical point of view, so that this criterion yields
also the domain of validity for the usual formulas relating phasc velocity
(vertical phase velocity, in the present case) to the corresponding wave-
number components and angles of incidence. In fact, a glance at Figure 1
shows that the criterion may be, in practice, relaxed to s > 1; in this
domain everything can be interpreted in terms of the usual ray-optical
imagery. In the vicinity of a turning point of the lclmholtz equgtion,

interpretation becomes more delicate: the W,K.B, approximation is no longer

valid and the usual concepts of wavenumber and phase velocity components
tail us - but we do, in this case, have exact cquations to fall back on.

The failure of the simple-minded ray-optical concepts here is best under-
stood as the result of interference effects concentrated near the turning
peint. Thus, we may visualize the flow of wave energy through a continu-
ously stratified medium as actually taking place through a succession of
very thin homogeneous layors, representing incremental changes in the physi-
cal parameters. Assume, for the purpose of simple visualization, that we
arc dealing with acoustic waves in a temperature stratified medium; when

the wavefronts and wavenumber vectors can be unambiguously defined they are
nutually orthogonal, and the energy flux vector is colincar with the wave-
number: as thc wave travels towards regions of higher sound velocity, the
rays (energy paths) are bent according to Snell's law; as the wave progresses
reflcctions take place at the boundary of each incrcmcntal layer: as the
layers become infinitesimal, this provides a continous reflection process,

a sort of effective backscatter of the cnergy. As has been pointed out(7),
the W.K.B., approximation ncglects this backscatter entirely, a procedurec
that is jJstificd as long as the paramcters of the medium vary little over

a vertical wavelength. But thcn, as we approach a turning point, we ncar

a condition of grazing incidence so that, no matter how small the increment
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in sound'vclocity botween neighboring layers, one eventually approxinates
a condition of total reflection: the backscatter is then no longer small
and cannot be neglected. This is the physical reason for which the W.K.B.
method fails; it is also the recason for which it becomes impossible to de-
fine a vertical phase velocity: even an isolated '"upward" or '"downward"
moving wavefield of the type (19) or (20) will thus get involved with
interference effects near y = 0. “These effects are irrcducible and cannot
be eliminated by directional filtering. It must be emphasized that this
is not the same thing as the generation of a standing wave pattern such as
(9) (c.g., with A = B) by a superposition of the incident and reflected
wavefields (19), (20), a pattern that is, in principle, analyzable into two
scparate upward and downward moving wavefields. It is, for instance, pos-

wt g
moving away

sible to produce a pure wavefield of the type Hf}z (s) e'.1
from the turning point (e.g., by lecakage of a harmonic wave system through
a high velocity barrier); such a wave would be carrying cnergy away from
the turning point but would, nevertheless, scatter and interfere with it-
self in a narrow region near vy = 0. Since this scatter actually consists

(2‘7), it contains both upward and downward moving

of multiple reflections
compcnents, so that directional filtering cannot get rid of these effects
which are thus irreducible.

This, then, is the root of the difficulties one may have in interpreting
the phasc velocities of a travelling harmonic wavefield in the vicinity of
turning points in stratified media, i.e., in regions for which the W.K.B.
method fails. We have, in Sections 3 and 4, dealt with thesc questions
explicitly in the case of infrasonic and acoustic-gravity wave propagation

in the thermosphere. In the last few years, observations have been made of

(11)

travelling wave systems at these heights and, in some cascs , the ob-

servations appear to fall in the range of values for which interprctation
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becomes ambiguous., The purpose of this paper has been, chiefly, to explore
and clarify the nature of the ambiguity in such a way that futurc experi-
mental measurements at infrasonic and acoustic-gravity wave frequencies
will be able to deal with it; since this is largely a matter of making

sure that, in such instance, one has enough vertical measurcment points

to determine whether or.not he is ipproaching a turning point region, this

should not be difficult to achieve.
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Figure Captions

Figure 1. Progressive wave phasc angles as a function s; ¢ is the phase
of h, ¢ the phase of dh/dz in a medium of linear v2(z). The asymptotes of
$, v correspond to the W.K.B. approximation, It is scen that the slopes
¢', ' have quite different behavior near s = 0 (turning point), implying
ditferent limiting vertical phase velocities. It is also scen that phase

and phase velocity are satisfactorily given by W.K.B. for s 2 1. ,

Figure 2. Behavior of s in th- carth's thermospherec at an altitude of 180
km, as a function of w for various selccted values of the horizontal phase
velocity Yo The dotted line s = 1 separates, for all practical purposes,
the region in which the W.K.B. approximation is valid (s > 1) from the
region in which it is insufficiently accurate for the calculation of phase
velocity (s < 1); note that, in the latter region, it may still be possible

to use W.K.B. for order of magnitude amplitude calculations.

Figure 3. Same as Figure 2, but with horizontal phase velocity vV, as

variable and period in minutes as parameter.
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DAMPING OF VERY LONG INTERNAL GRAVITY
WAVES IN THE ATMOSPHERE

Classic waveform calculations for atmospheric explosions, s;ch as
those of llavkrider (1904), have been largely (but not cntirely, sce e.g.,
Harkrider and Wells, 1968) limited to the acoustic and shorter period
internal gravity wave spectrum (periods T < 5 min.). These calculations
reproduce quite well the waveforms observed on microbarographs. There
is now a growing body of evidence indicating that long wavelength distur-
bances gencrated by nuclear explosions in the atmosphere can also travel
to great distances. Both ionospheric mecasurements (Breitling ct'al,
1907; Rose et al, 1961; Hultquist et al, 1961; Dieminger et al, 1962;
Herron and Montes, 1970) and long period barographs (Tolstoy and tierron,
1970; tierron and Montes, 1970) indicate the occasional existencc of long
wavelength arrivals having travelled at least once around the globe.
Propagation to these great distances implies that, for long wavelengths,
attenuation need not be prohibitive and that channelling and waveguide
effects must take place. Although it is possible that the surface gravity
mode (m = U) may account for some of these observations (Tolstoy and
Herron, 1970; Tolstoy and Pan, 1970), multiply reflected internal gravity
waves are potentially capable of explaining arrivals with group velocities
below 600 m.sec” ). Thus we shall show in what follows that the attenuation
of the lower modes (m = 1, 2, 3) neced not be excessive. The relatively
short range observations of Stoffregen et al (1961) can be explained by
internal gravity waves (Hines, 1967) along direct ray paths only,traveling
from the explosion source to the obs;;vétion point, with no reflections.
It has been suggested that these waves are absorbed in the upper atmosphere
because of what amounts to an indefinite increase in kinematic viscosity

with height as the density tends to zero. In other words, upwards traveling

energy is attenuated and transformed into heat: there is no reflected wave
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energy.  This situation would correspond schematically to that of fijure 1.
As we shall see, this mechanism is only plausible for sufficiently short
wavelengths:  long waves are reflected in the manner demonstrated below,

an eftect which was first shown by Yanowitch (1967). This appears to

be the only reasonable explanation for the observed propagation of long

wavelengths to ranges of 10 km or more,

In order to keep the discussion simple, we shall consider a locally
isothcrmal atmosphere, i.e., an atmosphere consisting of layers in
which:

P =0y e V2 (1)
where v is a constant. At ionospheric heights between 200 and 500 km.,
v is probably such that:

S m-l

-5 m-l

- 1x10 (2)

<v < 3 x10

Assuming then

v=1.5x10° n! (3)

implies that the thickness d over which the density varies by one order

of magnitude (the scale height) is:

d=2.3/2v=.8x10°m (4)

Essentially complete absorption of the energy should take place for wave-
lengths of the order a few d and less: this covers, in practice, a good

part of the observed TID spectrum.

The statement that the cnergy of an upward traveling wave gets
entirely absorbed and changed into heat hinges on a literal acceptance

of the equations of continuum mechanics and upon the ensuing infinite

r
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hinematic viscosity as p » 0. This statement must also be qualified in
terms ot the wavelength: it has been shown by Yanowitch (1967) that waves
of sufricient length are reflected; Yanowitch interprets this result to
mean that one has reflections from layers of large, rapidly varying kine-
matic viscosity. Yanowitch's proof is based upon a straightforward dis-
cussion ot the effects of the viscous terms on the internal gravity wave

field cquations,

In fact, of course, the continuum cquations cease to be valid as
» » 0, and a more sophisticated trcatment is required: neceded herc is an
adequate molecular model of the gas, combined with an analysis of Boltz-
nann's equations for a rarefied, density stratified gas in a gravity field.
Such an analysis would be extremcly difficult and is beyond our reach at
present.  lowever, pending the appearance of a more rigorous theory along
such lines, one may perhaps indulge in some assumptions as to what the
long wavelength limit of such solutions is likely to show (Tolstoy. 1967).
Interestingly enough, it is possible in this manner to obtain a result

comparable to Yanowitch's.

We assume the critical dimensionless parameter in this problem to be
ki, where Kk is the wavenumber and i is the mean free path of the molecules.
For angles that are not too steep, it would seem plausible to assume that:

1) For heights such that

ke << 1 (5)
the equations of continuum mechanics will apply

2) For heights such that !

kg > 1 (6)

i.e., if the mean free path of the molecules is of the order of or less

N
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than the wavelength, the medium acts effectively as a vacuum [providing
hydromagnetic interactions can be neglected in the atmosphere at these
heights: this is probably so for periods less than threce hours or so,

as can be shown by application of the Dungey-Fejer-llines criterion,

see e.g., Tolstoy, 1967]). An equivalent statement would be that, for
collision times longer than the characteristic time scale (period) of

the disturbance, no transmission of cnergy can occur (this is, effective-
ly, the operational definition of a vacuum). ’

3) Between the vacuum region defined by (6) and the continuum corres-
ponding to (5) there exists a zone of high kinematic viscosity in which

most of the attenuation takes place. We shall refer to this as the

transition layer. The height of this layer above the earth's surface

depends upon the wavelengths considered: according to our best estimate
of the mean free path, the base of the layer should be at a height of

the order of 500 ¢ 50 km. for wavelengths in the 5x102 - 5x103 km. band.

Kinetic gas theory tells us that the kinematic viscosity n is given

approximately by:

n:§<v>ﬂ, (7)
where <v> is the mean velocity of the molecules and & is their mean free

path. The same theory tells us that

<y> = ¢ (8)
where ¢ is the adiabatic sound speed.

Elementary wave theory furthcer shows that, for constant n, a pro-

gressive harmonic wave in a continuous medium attenuates like e-qx‘ where

~ nk2
q = nk /Vph . (9)
vph being the phase velocity. If, for an order of magnitude argument,

we assume that vph and ¢ are of the samec order, i.e.

27



Vi € = WP (10)

and

(k2)k (11)

Al —

q:
thus, for fixed k&, as k - 0, q » 0.
Let us then assume we have free space for
ke > 1 (12)

and a continuum for

ke < 1071 ‘ (13)
This is tantamount to the statement that, for given k, the attenuation
takes place primarily within a layer in which ¢ varies by one order of
magnitude; since p « 271, it follows that the thickness of the transi-

tion layer is essentially the scale height d (equation 4).

Finally, we make the additional assumption that, within this tran-
sition layer, the attenuation for very long wavelengths is similar to
that of a layer of thickness d having a mean kinematic viscosity n:

- 1 d 2vz
n = Me 3 f e dz = 4n, (14)
[o]

where ne is the kinematic viscosity at the bottom of the transition layer.
In this picture, a long wavelength (k - 0) internal gravity wave

traveling upwards suffers some attenuation as it passes through the tran-
sition layer, but is then partially reflected (figure 2): it can be
plausibly assumed that, for long enough wavelengths, this reflection pro-
cess is similar to that obtaining at a 'free' surface of contact between

a continuous fluid and a vacuum. In the present model, interposed between
the vacuum and the continuous fluid is the transition layer; the thickness

of this layer is of the order of a scale height and is, in an isothermal

model of the upper atmosphere, independent of the wavelength: for very



long wavelengths, thercfore, it acts cffectively as a thin high viscosity
film.

The validity of these assumptions cunnot be demonstrated in any rigo-
rous way on theoretical grounds. What we have done is simply to make some
heuristic assumptions concerning the possible behavior of solutions of

the Boltzmann equation for wavelengths long compared to d.

1f these qualitative arguments are accepted, it follows that one can
estimate the loss of amplitude for a long wavelength wave upon reflection
from the transition layer. We are limited to the case

yd <1 (15)

i.e., where y is the z component of the wavenumber: we must have wave-
lengths that are at least 2w times the thickness of the transition layer.
Furthermore, in order to compute roughly the decay of the wave as it
travels through this layer in both directions, w~ assume an attenuation
like e-qL, where L is the effective path. For order of magnitude argu-
ments we may assume, in this part of the frequency-wavenumber domain,
moderate angles of incidence and x,z wavenumbers of the same order. We
thus take k = y with a total effective path length of the order of 4d,
i.e.,

ql - 4dq = 3 vivd (16)
Thus the reflection coefficient modulus would be:

[R| = e"4L : e-4/3 Yiyd (17)
Remarkably enough, if we take yf = gn (which is consistent with equation

12), we get:
|R| = e™™d (18)

This is the result obtained by Yanowitch (1967) from the continuum
equations, for the reflection of internal gravity waves from a region of

large kinematic viscosity. Considering the relationship between kinetic

28



theory and continuum mechanics, this is not entircly surprising., Wwe have
simply contirmed the statements that most of the attenuation comes from a
layer in which the hinematic viscosity becomes prohibitive, that the thick-
ness of this layer is of the order of & scale height d and that for wave-
lengths much greater than d reflection tukes pluce. lor very long vave-

lengths, (17) or (18) show that this reflection becomes total,

For modest amounts of attenuation, then, we write:

IR| =1 - ¢ (19)

1]

with

ql. = 7yd (20)

£

1f now we consider a waveguide of thickness h in which multiple imperfect
reflections of this type will occur, then the attenuation in the horizon-

tal dircction goes like e-ér, where (Tolstoy and Clay, 1966):

§ = ¢/2h tané (21)
where it is assumed that no losses other than those due to reflection

at the top surface take place.

1t is perhaps more convenient to obtain an expression for the
attenuation in tarms of the wavenumber and frequency. For this we return

to (9). Using, as in (16), L = 4d we have:

- k3 .
qL = ¢ = 4n L d (22)
Thus
. mE ik d
§ N BT TEb (23)

assuming modest 6, i.e., tan 6 = 1, we have:

S

1
[ ]
3

d k3
Ru (24)

l.e., the attenuation is given by the usual factor, weighted by the ratio
of the path length in the highly viscous layer to the total path length.

n is given by (14), and it is not easy to pick a suitable figure for ne.
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The graph given by Midgley and Laicmohn (1906) gives 1 - 10 m? sce’ b oat

2 = 200 km. It scewms, though, that the molecular viscosity decreasces with
\

height, somewhat counteracting the 1/p effect. This suggests something

of the order of 10° m ?sec’ ! at heights in the 400-500 km range. On the

other hand, if we take an elémentury Kkinctic gas theory result for a

small hard sphere model, we find (Tolstoy, 1967) for the mecan free path

in meters:

6.2 x 1078 p71 (25)

=
"

and (7) gives

3
"

% <v> X 6.2 x 107 8x p°} (26)

assuming <v> = ¢ = 8 x 102 m.sec ! and p =10"!llkg. m 3 at the base of

the transition layer, somewhere near the 500 km level,
ne = 1.8 x 106 (27)

Take then, in (24)

ne = 1.4 x 10

n=56x 1086 (28)
2 ~. 15
h
and we have
k3
6§ = 1.7 x 10 — (29)
(]

Assuming a phase velocity in the neighborhood of 600 m.sec !, wavelengths
of the order of 6 x 102 km. will propagate to ranges of the order 10“ km
with an amplitude decay of .l1. Thus, with the numbers we have used, only
wavelengths in excess of 6 x 102 km will propagate to any distance.

These very simpleminded calculations suggest that the waveguide mode

picture for internal gravity waves could be valid for long enough wave-
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lengths. As is well known, it also applies for that part of the short
wavelength spectrum for which the cnergy finds itself trapped below heights
of 200-300 km (sce e.g., Harkrider, 1964; Harkrider and Wells, 1968), It
scems therefore that a good part of the rclevant explosion-generated inter-
nal gravity waves can be so treated. llowever, it must always be kept in
mind that, ultimately, everything hinges on the magnitude of n: satcllite
drag measurements at thesc hcights suggest that this quantity wil} vary

a greaf deal, depending upon solar activity and other factors (Harris and
Priester, 1967; Schilling, 1967). Onc may thus expect the actual attcnu-
ation to vary substantially (and in both directions) from the above esti-

mates, which can only be regarded as plausible mean valucs.
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Figure 1:

Figure 2:

FIGURE CAPTIONS

Complete absorption of an upward traveling internal gravity
wave in an isothermal layer with kinematic viscosity tending

to infinity as z » =,

Reflection with loss of amplitude by transition layer of

high viscosity but thin compared to the wavelength,
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