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rhe program of research offered in the work proposal for F.Y. 1971 

(December 1, 1970 - November 30, 1971) has been fulfilled as follows: 

11 Wo have investigated the practical consequences of the commonly occur- 

ring thormospheric condition of turning points for propagating acoustic 

and internal gravity wave modes. This has required some rather novel theo- 

retical developments, which we have entitled : "The W.K.B. Approximation, 

Turning Points and the Measurement of Phase Velocities" (see below). 
# 

2)  In the process of carrying out 1), we have made some sample calculations 

illustrating the relationships between phase velocity measurements and the 

existing values of the Vaisälä frequency and acoustic cut-offs (figures 1, 

:. 3). 

3} Wo have also included a very brief and probably oversimplified study of 

the reflection of internal gravity waves of long period at great heights 

for which the wavelength becomes of the order of the mean free path of the 

molecules. Since the net effect is one of damping on the long-range propa- 

gation of trapped internal waves, we have entitled this report "Damping of 

Very Long Internal Gravity Waves in the Atmosphere" (partly carried over 

from F.Y. 1970). 



THE W.K.ß.  APPROXIMATION,  TURNING POINTS AND 
THE MliASUKliMENT OF PHASE VELOCITIES 

1.  Introduction 

In the fields of acoustic     and electromagnetic  ' wave theory, 

as well as in some aspects of elastic wave theory  , W.K.IJ. type 

methods often offer the only sensible means for obtaining useful, 

closed-form approximations for the description of wavcfields in strati- 

fied media. The method is, in many respects, ideally suited for'the 

calculation of the far field in wave ducts^  , of diffracted fields 

f 2 61 
under conditions of caustic formation .   , of focalization intensities, 

etc. Lrrors incurred by the use of this method are often no greater 

than experimental uncertainties, such as those due to fluctuations of 

the mediunr 'j indeed, were it not for the fact that the approximation 

diverges near turning points, the method would be quite sufficient to 

deal with most practical problems and the calculation of wavefields by 

means of exact solutions of the wave equation would acquire a largely 

eclectic interest. Thus, in long range transmission calculations in 

geoacoustics and in e.m. theory, the cumulative experimental uncertain- 

ties of phase are often comparable to or greater than the errors of the 

K.K.B. procedure: as long a^ one can stay away from turning point 

effects, there is then no reason to try to improve upon this approximation. 

There exists, however, another class of problems in which one tries 

to make accurate phase comparisons over short ranges. This occurs, for 

example, in the design or interpretation of array measurements (i.e., of 

any system consisting of two or more sensors comparing phase). The usual 

methods of relating phases for neighboring measurements are equivalent to 

the tacit assumption that the medium is locally homogeneous or that ray 

optics and the W.K.B. picture are valid; while this assumption is frc- 



qucntlv justified, it can and will break down in strati Tied geophysical 

media in the neighborhood of turning points. Thus, in a vertically 

stratified modium (in which the physical parameters are functions of the 

vertical z coordini.tc), this breakdown may lead to false conclusions 

concerning vertical phase velocity and directionality. These observa- 

tions, which we shall clarify in sections 3, 4 and 5, are germane, in 

principle, to geoacoustic fields like underwater sound, atmospheric 

infresonica and e.m. waves. As we ?hall see, they are probably most 

pronounced ior long period acoustic-gravity waves in the atmosphere. 

2, The W.k.B. method and the turning point phenomenon: review 

Consider a stratified medium in which the physical parameters are 

functions of z only. Whether wo are dealing with acoustic, gravity or 

e.;a. waves, the assumption of simple harmonic wavetrains, i.e., of 

solutions proportional to e la    reduces the problem to a Helmholtz 

equation of the type: 

JTT * Y^h = 0 (1) 

where y is some function of z. 

The classic W.K.B. approximation has the form: 

h . ^%'Us-So) (2) 

with 

s = »[ Ydz (3) 

and Bfl is an integration constant. 

(1 2) 
As is well known' ' ', equation 2 is a good approximation as 

long as: . 

11 1 d2.  2   1 f d .  )2|   . ... 
ll^di?1^2 -^IdT1^] I <<1 (4) 



a conüition that Is seen to break down near 

> = 0 (5J 

i.e., at a turning point of the lielmholtz equation (1J. With the 

exception of the neighborhood of multiple turning points (for which one 

or more derivatives of y  also vanish), (4) is equivalent to: 

d7lnY 1 (6J 

This somewhat more succinct statement says that the 1V.K.B. approximation 

applies as long as the physical properties of the medium do not change 

appreciably over a vertical wavelength; it may also be shown   that 

this is equivalent to assuming that, as the wave energy propagates 

through the medium, one may neglect the process of continuous backscatter 

(reflection) from the stratification. Near the turning point itself, the 

z  wavelength becomes very large, conditions (4) and (6) break down and the 

approximation (2) becomes divergent. Exact solutions near the turning 

point of course show no unusual behavior at Y = 0: this point simply 

marks the transition from a region of oscillating solutions (y2 > 0j to 

exponential ones (Y
J
 < 0): the wave function and all its derivatives are 

continuous through the turning point. 

It is useful and instructive to examine the case of a linear Y2: 

Y2 * Pz ♦ Y2 
o 

s = tTP Y3   .     for Y2 > 0 

in which case, 

^3P 

Standing wave or modal solutions may then be expressed in terms of 

Üessel functions: 

h - Y[AJ  (s) ♦ BJ   (s)] ' (9) 

, 

dh 
d2 ' T l~-24 v-"   -2/3 TI-^-2. W -"(*)] do) 



and, i» the y2  < 0  region: 

Y'2 =   2 (11) 

3 

IP 

h = Y'[-AI  (O) * 11   (a)] (12) 
1/3      -1/3 

liiere I   , I ^  are the modified Bessel functions. 
»V3   *2/3 

It is a simple matter to verify that the W.K.B. approximation cor- 

respends to the asymptotic forms of (9), (12) for large s or a,  an 

observation that provides a direct and classic method for determining 

the connection formulas between W.K.B. solutions to both sides of the 

(8) 
turning point  . 

The progressive wave solutions corresponding to (9), (10) have the 

form: 

h = YH[;,2)(S) (i4) 

£-y2n[lfis) (15) u" 2/3 

where iiankel function.« of the first or second kind are used, depending 

upon whether one wishes to represent down- or up-traveling disturbances 

(Jepcnüing upon the sign of the exponent in e   ). This is conveniently 

seen by going to the asymptotic forms: 

H{JJ .Z^'W'WW (i6) 
'/a 

H^   - 2WVi<s " 5"/12> • (17) 
3 v 

Wc sec that the W.K.B. approximation (2) corresponds to the use of 



these asymptotic approximations, liquations (16), (17.) are in fact quite 

accurate for s >> 1 - a condition which, by  virtue of («J and (7J is 

1 
equivalent to the statement -y— Inv << v. i.e., is consistent with (6), dz  '    3 

In dealing with a medium of indefinite extent and linear Y2J we 

require that in the region y2 < 0  solutions (12), (13) give a convergent 

energy density for a -► °°. This is achieved by taking A = B, giving for 

hi 
v 

h =A3'iT-V K. . (o) (18) 
V3 

-h -o where K, , (o) vanishes like o e for -large o. 
v3 

Note that the standing wave solutions (9) with A = B, together with 

(IS), are the result of superposing an incident and a totally reflected 

field. Thus, taking the turning point y = 0 at the origin 2=0, with 

z       2^ Y^ > 0 for z < 0, we have P < 0, and taking s - -f    ydz -  -TpT gives 

s > 0 for Y2 >0; with these conventions, the incident wavetrain traveling 

towards the turning point would be 

Mi)   r.i --i«t 
'a *i = A Y ^1/, (s) e (19) 

and the reflected wave train, traveling away from the turning point: 

•JJ - A t1* tM/JCi) e-iü,t (2Ü) 

It is easily verified that the superposition of (19) and (20) gives the 

.standing wavcfield (9) with A = B, and gives (18) in the Y2 < 0 region. 

It is important to understand here that this total reflection process 

is spread over a zone near Y = 0. Thus, as s -♦ 0 we approach the turning 

point and -^ -* -e •* *. , so that the actual reflection coefficient at 

ji   _2iJ|- 
: = 0 is equal to -e "J = e  p| on the other hand, as s -► °°, wc see from 

(16), (17) that ♦g -^ e lls " ' V, i.e., the effective reflection coef- 

ficient is asymptotically equal to e *, There is then a region, in the 



vii init\ öl I lir luimiif; point, Lluit > >>iil n ImU". tin cxtt'd [ilm.sc cliuJlgu "I' 

fi/o, above aivd hcyuad tht' IntOgratoU |)l»ase path contribution!  in other 

words, the reflection process is not concentrated at the turning point, 

but is smeared out over a layer of thickness given by s • 1. 

It is also worth noting that while h and dh/dz both change from 

oscillating to exponential type solutions, they do not obey the same 

Heimholt: equation 
(9) 

Thus, differentiating (1) gives: 

Taking 

d3h   9dh  .dy2  n ■rrr + Y2J— + b—f— = 0 (ll3   T dz     dZ 

dh 
'V = dl 

(21) 

and using (1) we have: 

d2y  dy d.  2   2   n 
■ATT -  ^'xr^Y2 + Y2y = 0 (23) dz2  dz dz 

Thus y obeys (1) if the W.K.B. criterion (6) is satisfied, but not 

otherwise. We must, in general, define the function: 

y = yW (24) 

d2W ß2W (25) 

where 

/ d  )2  d2 32 = Y2 - ^lnYJ * ^ lnY (26) 

It appears then that W satisfies the Helmholtz equation (25) with a 

turning point at 

ß = 0 (27) 

i.e., at a different value of z from that corresponding to (s). 

One might conclude from this that the function y = dh/dz, or some 

lir.ear combination of h and y, changes character (from oscillating to 

exponential) at a different value of z than h itself. That such a con- 



elusion is, in fad, i|uito specious is seen from tlic exact solutions 

(9), (.10) and (12), (13).  Mathcmalical ly, tliis ouparcnt UDbiguity arises 

froffl the feature that, at y = 0, i'.2 is singular: a proper discussion of 

(25) near the singularity must, needless to say, yieM the same conclu- 

sion as examination of the exact solutions. 

It follows also from what has been said above that the ray picture 

interpretation of y, B   is misleading near turning points.  Conclusions 

concerning direction of phase travel, energy flux, levels of reflection, 

etc., that are based upon one's usual intuitive picture of the wave- 

number vector are, in the final analysis, only as good as the W.K.B. 

approximation; furthermore, inspection of (4) and (26) shows that the 

domain of validity of this approximation is precisely the same for h, y, 

w, dv/dz  or for any linear combination of these functions. 

We shall show in what follows that there are situations in gco- 

acoustics and, in particular, in acoustic-gravity wave theory, for which 

these features of the wave solutions acquire a practical significance. 

5.  Phase velocity measurements in stratified media 

We now focus our attention on the problem of measuring the z  compon- 

ent of phase velocity (normal to the stratification), a problem one 

encounters in the use of vertical arrays in the oceans or atmosphere. 

This situation occurs, for example, whenever one attempts to interpret 

vertical phase velocities in terms of the stratification (structure) of 

the medium. 

A general representation of a traveling harmonic wavefield  is: 

* = m e1* e"iait . (28) 

where m,^   are real functions. The phase velocity in the z direction is: 
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If  (2)   is valid,  it follows from (3)  that: 

H/3z - ±y (30) 

and 

•   vz  = ^ (31) 

Thus, if the W.K.B. approximation applies our usual understanding of 

vertical phase velocity as the ratio of angular frequency to vertical 

wavenumber component is valid: this is the realm of ray optics. , 

But if the conditions of validity for the W.K.B. method, i.e., 

inequalities (4) or (6), are not fulfilled, the statement (31) is no 

longer correct. This is easily seen by turning one's attention once 

again to the exact solutions for the linear Y case. Here 4>  is given by 

d 2) the phase of Hv  '    (s),  i.e., 
1/3 

J-lA^ 
j 

inj 

r     TT     i    J i/ (s) 1 
* ■ arctan cotan3 ■ —T ' J,' (s) C32) 

i-       sin-r-   l/3,■ ' -i 

giving 

ii = ± il —. 1         (33) 
J2i/3

is) + i[Ji/3Cs)" u^/t*)]2} 
3z    ns j 

By going to the limit of vanishing s, y  (using equation 8), we have the 

vertical phase velocity at the turning point: 

as Y " 0'  v
z 

= 1^717 * ±47T 3"V3|pr1/3[r(2/3)]-2(,  (34) 

Thus the vertical phase velocity tends to a finite limit at the turning 

point (whereas literal acceptance of the ray picture leads to an infinite 

value for v ). 

Therefore, unless exact solutions for $,   94>/8z are used, one may be 

appreciably in error in deducing the vertical phase velocity and angle of 

travel of a harmonic wavefront. Conversely, for measurements made near a 
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where  f is the  f 

;ieed. 

rning point value; 

l/3fVs (37) 

:y in hz. In underwater acou one usually 

deals with gradients less than dc/dz ^ 1 sec'. Thus 2.3 f 3 is pretty 

much the smallest value for (37) in marine acoustics experiments.  It 

gives v /c -  5 for f = 10 hz, and v /c -  10 for f = 102 hz.  In practical 
• z , 

terms, the difference between an infinite move-out velocity and one that 

takes place at 10 times the speed of sound is hardly significant, when 



10 , 

one ronomber* that tlie moasurtMiicnt must take place over a fractiü;i of a 

wavelength; in underwater sound experiments, for frcciucncics of 10^ hz 

and above, chis ett'ect is unlikely to be important. 

However, in infrasonic measurements in the atmosphere and thermo- 

sphere, the phenomenon is more likely to be observable. Thus, gradients 

of the order of dc/dz  = 10"? sec" are characteristic of the thermosphere. 

Signals having periods as long as 4 minutes have been observed in con- 
f 

nection with Apollo firings (10), i.e.,, we may take f ■ 4*10"3 and 

v /c ' 2  at the turning point: here measurements of the critical phase 

velocity may yield misleading results, unless they are interpreted with 

the help of exact formulas of the type of (29), (33). As we shall see in 

Section 4, this effect is even more marked for acoustic-gravity waves in 

the 5-50 minute period bandpass at thermospheric heights. 

As for the behavior of dh/dz near the turning point, we once again 

have recourse to the exact form for the progressive wave solution with 

linear y2. i.e., we use equation 15, Thus dh/d?, corresponds to wavefields 

•f the typo: 

y = n e  e (38) 

where  the phase  i]/ is,  by   (20); 

TT 1 J2/3(S) 

v = arctan  [cotan •=- ♦ —^ nr • r~- 7—r-l (39) 1 3      sin ff/J      J_2/3^ 

For largo s,  i.e.,  in the  region  for which W.K.B.  applies,  it is clear 

from the usual asymptotic form for H^,'     (s),  that v ** s ♦ rc/12 so that 

O,/'JZ -" di/az and the phase velocities of the *,  ¥ fields are the same. 

but,   for s  <  1,  equation  (39)  shows that the behavior of 3ij//3z,   ZQ/Zz 

will be quite different.     In fact,  if we use the. first terms of the 

power     series for J  2/,(s)» equation  (39)  gives 

^=0.15sl/3 (40) 
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;....-.  the phtM velocity near UM turiiing point goes to Infinity li*.«-- Y"
2
. 

i'iic bchaviot ot' Vi  tlv/Js is shown in Figur« 1. 

I.     AVOUN ii c-gravity and intcmal   gavity waves 

.vo have established that one's   interpretation of" infrasonic wave 

behavior near turning point! may he seriously in orrur,  unless    he uses 

(he exact  field equations.     The use of ray-optical  concepts here  is 

erroneous;   fur the more,  the amount and sign of the error depends 'upon 

the  field quantity being studied. 

•he  largest errors will be encountered for acoustic-gravity waves 

at  ionospheric heights.    Measurements of traveling wave systems  at those 

he;^hts are currently a subject of considerable interest; naturally 

occuring wave systems,  in particular,  are being studied intensively for 

Che light they shed upon upper atmospheric structure      '      'j  disper- 

sive acoustic-gravity waves with periods of several minutes have been 

detected by vertical phase sounders in connection with Apollo launches1    ' 
fix) 

and disturbances in the same passbandv    '      as well as with longer 

periods^    '      '    have been seen in connection witn large atmospheric 

explosions.    It is therefore important to sec how the considerations of 

Section 5 apply to acoustic-gravity and internal gravity waves at these 

heights. 

With this in mind, let us fix our attention upon a specific model 

of a specific section of the therraospherc. Since much of the recent 

phase sounder work has been conducted with sounding frequencies in the 

2 - o Mh: passband, i.e., at true daytime heights in the ISO - 250 km 

range« let us select a reference height of 180 km and use this as the 

origin of our z coordinate. We may then expand y2 into a Taylor scries 

in z:    keeping the first term only gives the linear law (7). The range 
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dl   \ :>• ot" thif moJol ilcpciuls upon tiie actual  rates of variatiort of 

the physical para:;.oters.    Mt btgia with the differential equation for 
(14) 

tan elastic j^rossuiv pv    ',      hnting: 

1/ ■  .      i (ax -  u,tj ,., 

^iVv-s oijualion    1,  with 

o- op        v- ' (42) 

where v.- is t.'.o wiitbttii sound speed, p the density, H      is the elastic 

pressure "acoustic cutoff", N is the Urunt-Vaisiila frequency, v the hori- 

ZOntal  ptlMt  velocity 

V    =   — 
x     a (43) 

that a reasonable fit for the actual u , c, 
op'  ' 

I: con bo shown'' ' 

\ variations in the thcrmosphere is obtained by taking the perfect gas 

ISM witn 

(44) Pz * c 2 

i.e. , 

&  ■ SKP« • 0.4g) (45) 

(46) 

wh«r« : : 1.4 is the ratio of specific heats. We may therefore approxi- 

.T.^tü Y~ by a linear law as long as i/c2 is approximately linear, i.e., 

I :" 

1      p- 
(47) eT 

1     Pi 

o o 

...<-■  i,'X>.ct solutions of Sections 2 and 3 will thus be useful if 

< 1 (48) 

raking tt S • 0 (IM km height)   the values^14^; 

c -  = 5.94*105 in2 sec"2 

0 

P     =» 6.2 m sec"2 
(49) 
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...   .>i     :....;   ^48)   jniposcs  tiic  limits: 

|l|   <<  Id'' ■ (5ÜJ 

In v>t!.or HordS| M sluill l)c  limitfd tu a rungc  of aliout   t2S km to each 

tide of z  ■ 0|   i.e.,  to a :one of true heights between   155 km a/.ii 205 km. 

h'ith  w.-is  limitation  in iiurnl, wc  can apply the results of Sections 2 and 

3  to  (ho actual  thormosphero. 

EquatiOM   C-J5),   {.A7),   (49)  give then: 

U2  = N 2* M, n  =  - \ 2-^r (51) 
0 0   c 

0 

.-i .\    - 1.22*10"^ rad sec' o 

c-c^op ' c^c^ 
0 ' 0 0 0 

u)        s 0.682x10'2 rad soc'1 

^o 

Civiag,  in (7): 2 

O O X o 

V0
2  ^   C^ -   1)   . ^ - ^ . (S4) 

X O X 0 

Using t!)c ;iumerical values (49) and (51), (52) we may calculate exact 

wave funetiOMi phases, phase velocities etc., for 155 km < z < 205 km. 

Tht procedure may be applied in the vicinity of a succession of z values 

to cover any desired height range in the thcrmosphere. 

iifcUres 2 and 3 show the behavior of s at these heights, for the 

ti.ermosphcricconstants (49), (51), (52): it is seen that the validity of 

t..e IV.K.B. and ray-optical points of view is contingent upon frequency and 

v . 
X 

The Vertical diiplacemcnt C is, to within a ± iw factor, similar to 

t..e vertical velocity and is of particular interest since it is more direct- 

ly related to the physical quantity measured in ionospheric phase sounders 



iiii-v i . ,.ii  vi-lociiyi.     It   IM  rcl.nc-d I-»  llic elastic iirussurc  Jicld''    '  by 

thi equation: 

; = (^i> ^) / *& - 6 (55) 

But 

JV> 1  tl    . 1/2 dli     i (ax - ut) ,.,. _X.,   p  I__lnp   .   pl/2  __c   ^ (56) 

ana 

; -   o-i/^.^-r   Ili(i4rl^*fo*#] (57) 2 dz —     f     dz^ 

The rclativo  importance of tlie h, h    terms near the turning point is 

dotcrmiacd by examining tlie exact solutions  (14),   (15)  in the limit of 

>   • 0,  s   ♦ t).     It  is then seen that dh/dz ■ 0.5 P1'^.    But,  for the case 

under consideration,   for periods  in the  10 - 30 minute range and for hori- 

zor.tal phase velocities    v    < 300 m sec    »  P will be seen to vary in the 

10    *  to  10"^m"3  range.    Since furthermore g/v      * 10~    m"    and 

d/dz Ino  ■ IO"5 m'1, we have, approximately: 

(  ■ p-1/2   (J - -ft"    -^-h (58) 
x x 

2     ~ 1 
Thil approximation, good for v < 3xi0 m sec  and periods in the 10 - 

30 minute range, shows that we may usefully apply the exact solutions (14) 

to obtain the vertical phase velocity from (29) and (33) and, in particular, 

2  2 
the limiting turning point value (34). Since we have here v /c << 1, it 

follows from (53) that we have, approximately: 

N 2 

V ^ c ' 
X  o 

(59) 

anu the turning point phase velocity (34) is given by 

— ■  4Tr  3-'V3   [T&r2  N"2/3 p-l/3c2/3uV-l/3 
v l   v3yj ox 

x 

■   l^xlO-^uxy-1^ 
X (00) 



is 

Tiius,   tor periods oi" the order ol" 30 minutes  ;ind hori^uutal  phase velocities 

■  10*   !:i sec"1 we have v /v    ~  1 at  tiie turning; j)oint,  giving an apparent 

phase   front  inclination of 45° I    Since v,  ■ Vx is 

ill) 
otton ooserved in the ionosphere , these calculations are very perti- 

nent tu the interpretation of actual ionospheric observations of acoustic 

and acoustic-gravity travelling wavetrains. 

It must be emphasized, however, thut  in general it is (57) that must 

be used: the interpretation of phase velocity measurements must then 

proceed by defining, with the help of (14) and (15), an exact phase function 

for ii. This is slightly more involved than the calculations for our sim- 

plified case with v < 3xl02 m sec-1, but does not offer any particular 

di fficulties. 

5.  Discussion 

In problems involving wave propagation in stratified media, it is not 

difficult to convert a set of values for the local parameters and their 

derivatives into an explicit , simple criterion for the validity of the 

W.K.B. approximation in the solution of the fundamental ilelmholtz equation 

(1).  It is rather illuminating, in fact, to assume that y2 in equation (1) 

may be treated locally as a linear function of z (a classic assumption 

(8) 
first used by Langer^ ^in his solution of the connection problem, the limi- 

tations of which are easily stated in terms of a permissible range of z 

values). This approach has the advantage of yielding locally exact solu- 

tions of (1) that are valid for simple turning points y  = 0,  solutions 

which furthermore yield the W.K.B. approximations explicitly as an asymp- 

totic limit. This shows that the W.K.B. method is valid in the limit of 

large enough phase paths, a statement that can be written very succinctly 

as s >> 1, where s is given by (3). The W.K.B. approximation is essentially 
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the piano wave ray-optical point of view, so that this criterion yields 

also the domain of validity for the usual formulas relating pha  velocity 

(vertical phase velocity, in the present case) to the corresponding wavc- 

nunbor components and angles of incidence. In fact, a glance at Figure 1 

shows that the criterion may be, in practice, relaxed to s > 1; n this 

domain everything can bo interpreted in terms of the usual ray-optical 

Iwagmty,     In the vicinity of a turning point of the llclmholtz equation, 

intorprotation becomes more delicate:  the W.K.B. approximation is no longer 

valid and the usual concepts of wavenumbor and phase velocity components 

fail us • but we do, in this case, have exact equations to fall back on. 

The failure of the simplc-mindod ray-optical concepts here is best under- 

stood as the result of interference effects concentrated near the turning 

point. Thus, we may visualize the flow of wave energy through a continu- 

ously stratified medium as actually taking place through a succession of 

very thin homogeneous layers, representing incremental changes in the physi- 

cal parameters. Assume, for the purpose of simple visualization, that we 

are dealing with acoustic waves in a temperature stratified medium; when 

the wavefronts and wavenumber vectors can be unambiguously defined they are 

mutually orthogonal, and the energy flux vector is colinear with the wave- 

number:  as the wave travels towards regions of higher sound velocity, the 

rays (energy paths) are bent according to Snell's law; as the wave progresses 

reflections take place at the boundary of each incremental layer:  as the 

layers become infinitesimal, this provides a continous reflection process, 

a sort of effective backscatter of the energy. As has been pointed out  , 

the W.K.B. approximation neglects this backscatter entirely, a procedure 

that is justified as long as the parameters of the medium vary little ovc?r 

a vertical wavelength. But then, as wo approach a turning point, we near 

a condition of grazing incidence so that, no matter how small the increment 
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in souaJ vt-locity between neighboring layers, one eventually approximates 

a condition of total reflection:  the backscatter is then no longer small 

and cannot be neglected. This is the physical reason lor which the W.K.B. 

method fails; it is also the reason for which it becoriies impossible to de- 

fine a vertical phase velocity: even an isolated "upward" or "downward" 

■OVing wavefield of the type (19) or (20) will thus get involved with 

interference effects near y - 0.    These effects are irreducible and cannot 

be eliminated by directional filtering. It must be emphasized that this 

is not the same thing as the generation of a standing wave pattern such as 

01) (o.g., with A = B) by a superposition of the incident and reflected 

wavefields (19), (20), a pattern that is, in principle, analyzable into two 

separate upward and downward moving wavefields.  It is, for instance, pos- 

sible to produce a pure wavefield of the type " , (s) e   moving away 

from the turning point (e.g., by leakage of a harmonic wave system through 

a high velocity barrier); such a wave would be carrying energy away from 

the turning point but would, nevertheless, scatter and interfere with it- 

self in a narrow region near y = 0. Since this scatter actually consists 

(2 7) 
of multiple reflections ' , it contains both upward and downward moving 

compenents, so that directional filtering cannot get rid of these effects 

which are thus irreducible. 

This, then, is the root of the difficulties one may have in interpreting 

the phase velocities of a travelling harmonic wavefield in the vicinity of 

turning points in stratified media, i.e., in regions for which the W.K.B. 

method fails. We have, in Sections 3 and 4, dealt with those questions 

explicitly in the case of infrasonic and acoustic-gravity wave propagation 

in the thermosphere.  In the last few years, observations have been made of 

travelling wave systems at these heights and, in some cases^  , the ob- 

servations appear to fall in the range of values for which interpretation 
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becomes  mbiguous.    The purpose of this paper has been,   chiefly,  to explore 

and clarify the nature of the ambiguity in such a way that future experi- 

mental measurements at inf-asonic and acoustic-gravity wave frequencies 

will bo able to deal with it; since this is  largely a matter of making 

sure that,  in such instance, one has enough vertical measurement points 

to determine whether or not he is approaching a turning point region, this 

should not be difficult to achieve. , 
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Pigurg Captions 

Figure 1. I'rogressivo wave phase angles as a function s; 41 is the phase 

of h, C the phase of dh/dz in a medium of linear Y2(z).  I'he asymptotes of 

I, C' correspond to the W.K.B. approximation. It is seen that the slopes 

y ,   il»' have quite different behavior near s = 0 (turning point), implying 

different limiting vertical phase velocities. It is also seen that phase 

and phase velocity are satisfactorily given by W.K.B. for s > 1. 

l-'igure 2. Behavior of s in th' earth's thermosphere at an altitude of 180 

km, as a function of u for various selected values of the horizontal phase 

velocity v . The dotted line s = 1 separates, for all practical purposes, 

the region in which the W.K.B. approximation is valid (s > 1) from the 

region in which it is insufficiently accurate for the calculation of phase 

velocity (s < 1); note that, in the latter region, it may still be possible 

to use W.K.B. for order of magnitude amplitude calculations. 

Figure 5. Same as Figure 2, but with horizontal phase velocity v as 

variable and period in minutes as parameter. 
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MMPIM Of Vl.KY LONG l.MI.KNAL GRAVITV 
KAVLS IN illt ATMOSl'lUiRli 

Classic wuvot'orm calculutions for utmosphuric explosions, such as 

those of llirkrider (11)04), have hecn largely (but not entirely, see e.g., 

ll.irkridfr and Wells, 1968) limited to the acoustic and shorter period 

internal gravity wave spectrum (periods T < 5 min.). These calcul.itions 

reproduce quite well the waveforms observed on microbarographs. There 

is now a growing body of evidence indicating that long wavelength distur- 

bances generated by nuclear explosions in the atmosphere can also travel 

to great distances. Both ionospheric measurements (Breitling et al, 

liU>7; Rose et al, 1961; Hultquist ot al, 1961; Dieminger et al, 1962; 

liorron and Montes, 1970) and long period barographs (Tolstoy and Ilerron, 

1970; ilerron and Montes, 1970) indicate the occasional existence of long 

wavelength arrivals having travelled at least once around the globe. 

Propagation to these great distances implies that, for long wavelengths, 

attenuation need not be prohibitive and that channelling and waveguide 

effects must take place. Although it is possible that the surface gravity 

node (m ■ o) may account for some of these observations (Tolstoy and 

Ilerron, 1970; Tolstoy and Pan, 1970), multiply reflected internal gravity 

wave; are potentially capable of explaining arrivals with group velocities 

below 600 m.sec" . Thus we shall show in what follows that the attenuation 

of the lower modes (m = 1, 2, 3) need not be excessive. The relatively 

short range observations of Stoffregen et al (1961) can be explained by 

internal gravity waves (Mines, 1967) along direct ray paths only4traveling 

fron the explosion source to the observation point, with no reflections. 

It has been suggested that these waves are absorbed in the upper atmosphere 

because of what amounts to an indefinite increase in kinematic viscosity 

with height as the density tends to zero. In other words, upwards traveling 

energy is attenuated and transformed into heat: there is no reflected wave 

i 



BllCrgy,  Ulis situation would corrtsjiond schematically to tliat of f. ,;urc 1 

As M shall see, tlüs mechanism is only plausible for Mifficicntly Wiort 

wavelengths:  lon^ waves arc reflected in the manner demonstrated below, 

an effect which was first shown by Yanowitch (1967).  This appears to 

be the only reasonable cXjlanation for the observed propagation of long 

wavelengths to ranges of W*  km or more. 

In order to keep the discussion simple, we shall consider a locally 

isothermal atmosphere, i.e., an atmosphere consisting of layers in 

which: 

p = PO e (1) 

where v is a constant. At ionospheric heights between 200 and 500 km., 

v is probably such that: 

1 x 10"5 m"1 < v < 3 x 10'5 m"1 (2) 

Assuming then 

v = 1.5 x 10"5 m'1 (3) 

implies that the thickness d over which the density varies by one order 

of magnitude (the scale height) is: 

c 
d ■ 2.3/2v = .8 x 10 m (4) 

Essentially complete absorption of the energy should take place for wave- 

lengths of the order a few d and less: this covers, in practice, a good 

part of the observed TID spectrum. 

The statement that the energy of an upward traveling wave gets 

entirely absorbed and changed into heat hinges on a literal acceptance 

of the equations of continuum mechanics and upon the ensuing infinite 

?s 



kiiK-matic viscosity us p » U.  Tins stutcmcnt must also bi qualified in 

tornis of the wavolongth: it Ivas been shown by Yanowitch (1007)  that waves 

ot" Mlffident length arc reflected; Yanowitch interprets this result to 

mean that MM has reflections from layers of large, rapidly varying kine- 

matic viscosity.  Yanowitch's proof is based upon a straightforward dis- 

cussion of the effects of the viscous terms on the internal gravity wave 

field equations. 

in fact, of course, the continuum equations cease to be valid as 

p * 0,  and a more sophisticated treatment is required: needed here is an 

adequate molecular model of the gas, combined with an analysis of Boltz- 

nann's equations for a rarefied, density stratified gas in a gravity field. 

SUCH an analysis would be extremely difficult and is beyond our reach at 

present.  However, pending the appearance of a more rigorous theory along 

such lines, one may perhaps indulge in some assumptions as to what the 

loiij; wavelength limit of such solutions is likely to show (Tolstoy, 1967). 

Interestingly enough, it is possible in this manner to obtain a result 

comparable to Yanowitch's. 

\ 
We assume the critical dimcnsionless parameter in this problem to be 

kt, where k is the wavenumber and i  is the mean free path of the molecules. 

For angles that are not too steep, it would seem plausible to assume that: 

1) For heights such that 

kl « l (5) 

the equations of continuum mechanics will apply 

2) For heights such that 

kl >    1 (6) 

i.e., if the mean free path of the molecules is of the order of or les.'> 
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tlwm the wavclonntli, tlic mcüium acts fffcctivcly as a vacuum [prcividing 

IjyUroma^net ic intei'actions can be neylccted in the atmosphere at these 

heiylits:  thus is probably so for periods less than three hours or so, 

as can be shown by application ol" the lJungcy-rejer-llines criterion, 

see o.g., Tolstoy, 1907]. An equivalent statement would be that, for 

collision times longer than the characteristic time scale (periodj of 

the disturbance, no transmission of energy can occur (this ic, effective- 

ly, the operational definition of a vacuum). 

5) Between the vacuum region defined by (6) and the continuum corres- 

ponding to (5) there exists a zone of high kinematic viscosity in which 

most of the attenuation takes place. We shall refer to this as the 

transition layer. The height of this layer above the earth's surface 

depends upon the wavelengths considered: according to our best estimate 

of the mean free path, the base of the layer should be at a height of 

the order of 500 ± 50 km. for wavelengths in the 5xl02 - 5xl03 km. band. 

Kinetic gas theory tells us that the kinematic viscosity T\  is given 

approximately by: 

n = | <v> ä (7) 

where <v> is the mean velocity of the molecules and i  is their mean free 

path. The same theory tells us that 

<v> ■ c (8) 

where c is the adiabatic sound speed. 

Elementary wave theory further shows that, for constant n, a pro- 

gressive harmonic wave in a continuous medium attenuates like e'^*, where 

q " ^/Vph • O) 

v . being the phase velocity.  If, for an order of magnitude argument, 

we assume that v , and c are of the same order, i.e. 
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v  = C ~ <V> (10) 

q ■ | ikW ill) 

thus, for fixed ki, as k -> 0, q -•• 0. 

Let us then assume we have free space for 

ki >  I (12) 

and a continuum for 

kl <  10"1 (13) 

This is tantamount to the statement that, for given k, the attenuation 

takes place primarily within a layer in which Z varies by one order of 

magnitude; since p <* «, 1, it follows that the thickness of the transi- 

tion layer is essentially the scale height d (equation 4). 

Finally, we make the additional assumption that, within this tran- 

sition layer, the attenuation for very long wavelengths is similar to 

that of a layer of thickness d having a mean kinematic viscosity T\: 

n = no J   e vz dz = 4no (14) 
' o 

where no is the kinematic viscosity at :he bottom of the transition layer. 

In this picture, a long wavelength (k •* 0) internal gravity wave 

traveling upwards suffers some attenuation as it passes through the tran- 

sition layer, but is then partially reflected (figure 2): it can be 

plausibly assumed that, for long enough wavelengths, this reflection pro- 

cess is similar to that obtaining at a "free" surface of contact between 

a continuous fluid and a vacuum.  In the present model, interposed between 

the vacuum and the continuous fluid is the transition layer; the thickness 

of this layer is of the order of a scale height and is, in an isothermal 

model of the upper atmosphere, independent of the wavelength: for very 



long  wavelengths, therefore, it acts ciTuctively as a thin high viscosity 

film. 

The validity of these assumptions cannot be demonstrated in any rigo- 

rous way on theoretical grounds.  What wc have done is simply to make some 

heuristic assumptions concerning the possible behavior of solutions of 

the Boltzmann equation for wavelengths long compared to d. 

If these qualitative arguments arc accepted, it follows that one can 
» 

estimate the loss of amplitude for a long wavelength wave upon reflection 

from the transition layer. We are limited to the case 

yd < 1 (15) 

i.e., where y  is the z component of the wavenumber: we must have wave- 

lengths that are at least 2TT times the thickness of the transition layer. 

Furthermore, in order to compute roughly the decay of the wave as it 

travels through this layer in both directions, w assume an attenuation 

like e q , where L is the effective path.  For order of magnitude argu- 

ments we may assume, in this part of the frequency-wavenumber domain, 

moderate angles of incidence and x,z wavenumbers of the same order. We 

thus take k = y with a total effective path length of the order of 4d, 

i.e., 

qL s 4dq = | ylyd (16) 

Thus the reflection coefficient modulus would be: 

|R| ; e-qL : e-4/3 Y*Yd (17) 

3 
Remarkably enough, if we take ySL ~  TTT (which is consistent with equation 

12), we get: 

|R| = e-^d (18) 

This is the result obtained by Yanowitch (1967) from the continuum 

equations, for the reflection of internal gravity waves from a region of 

large kinematic viscosity. Considering the relationship between kinetic 
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theory and continuum mechanics, this Ls not entirely surprising.  We have 

simply cüiifirmcU the statements that most of the attenuation comes from a 

layer in which the kinematic viscosity becomes prohibitive, that the thick- 

ness of this layer is of the order of a scale height d and that for wave- 

lengths much greater than d reflection takes place.  For very long w.ive- 

lengths, (17) or (18) show that this reflection becomes total. 

For modest amounts of attenuation, then, we write: 

|R| = 1 - e (19) 

with 

E = qL - nyd (20) 

If now we consider a waveguide of thickness h in which multiple imperfect 

reflections of this type will occur, then the attenuation in the horizon- 

tal direction goes like e  , where (Tol.stoy and Clay, 1966): 

5 - e/2h tane (21) 

where it is assumed that no losses other than those due to reflection 

at the top surface take place. 

It is perhaps more convenient to obtain an expression for the 

attenuation in t^rms of the wavenumber and frequency. For this we return 

to (9). Using, as in (16), L - 4d we have: 

- k3 
qL = e : 4n ^- d (22) 

Thus 

6 - 2n i r—r (23) 
h u tanO v J 

assuming modest 0, i.e., tan 6 - 1, we have: 

6 = 2n ^ (24) 

i.e., the attenuation is given by the usual factor, weighted by the ratio 

of the path length in the highly viscous layer to the total path length. 

fi is given by (14), and it is not easy to pick a suitable figure for n«.. 
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The graph given by MlUgloy and Licmohn (i'Jooj j;ivü.s <, -  üJ1' m'' sec ' at 

z  ■ 200 km.  It .soonis, though, that the rnolocular viscosity decreases with 

heightj somewhat counteracting tlie* 1/p effect. This suggests seunething  ' 

of the order of 106 m ?sec ' at heights in the 400-500 km range.  On the 

other hand, if we take an elementary kinetic gas theory result for a 

small hard sphere model, we find (Tolstoy, 1967) for the mean free path 

in meters: 

i -  b.2 x  10"8 p"1 '(25J 

and (7) gives 

n = i <v> x 6.2 x 10"8x p"1 (26) 

assuming <v> - c = S x lü2 m. sec 1 and p -IC'^kg. m 3 at tiie base of 

the transition layer, somewhere near the 500 km level, 

no - 1.8 x 106 (27) 

Take then, in (24) 

no = 1.4 x 106 

n = 5.6 x 106 (28) 

h 

and we have 

k3 
6 = 1.7 x 10 i- (29) 

cu 

Assuming a phase velocity in the neighborhood of 600 m.sec'1, wavelengths 

of the order of 6 x 102 km. will propagate to ranges of the order 101*  km 

with an amplitude decay of .1.  Thus, with the numbers we have used, only 

wavelengths in excess of 6 x 102 km will propaga.te to any distance. 

These very simpleminded calculations suggest that the waveguide mode 

picture for internal gravity waves could be valid for long enough wave- 
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lengths. As is well known, it also applies for that part of the short 

wavelength spectrum for which the energy finds itself trapped below heights 

of 200-300 km (see e.g., Harkrider, 1964; llarkrider and Wells, 1968). It 

seems therefore that a good part of the relevant explosion-generated inter- 

nal gravity ,vaves can be so treated. However, it must always be kept in 

mind that, ultimately, everything hinges on the magnitude of n: satellite 

drag measurements at. these heights suggest that this quantity will vary 

a great deal, depending upon solar activity and other factors (Harris and 

Priester, 1967; Schilling, 1967). One may thus expect the actual attenu- 

ation to vary substantially (and in both directions) from the above esti- 

mates, which can only be regarded as plausible mean values. 
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FIGURE CAPTIONS 

Figure 1: Complete absorption of an upward traveling internal gravity 

wave in an isothermal layer with kinematic viscosity temiing 

to infinity as z ■* *•. 

Figure 2:  Reflection with loss of amplitude by transition layer of 

high viscosity but thin compared to the wavelength. 
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