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departments is minimized. The locations arz considered to be points in
a lattice. A simple expression is developed for the minimum value of
the objective function for all values of nj the eipression has as a
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ABSTRACT

The problem is considered of assigning n facilities, or departments,
to locations so that the maximum of the rectilinear distances between
departments is minimized. The locations are considered to be points in
a lattice. A simple expression is developed for the minimum value of
the objective function for all values of n; the expression has as a
corollary a necessary and sufficient condition for an assign t, < a
configuration, to be minimax; also a simple geometrical procedirc s
developed for constructing minimax configurations. A closed form solu-

tion is obtained for an analogous continuous problem.
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INTRODUCTION

Define a lattice point in the pfane to be any point in the plane such
that each entry ia the point is an integer. Note that, with reference to
Figure 1, each lattice point is the center of a square of unit dimensions,
so that n distinct lattice points may be considered to represent n nonover-
lapping unit squares. Each unit square may be considered, for example, to
be a department of a plant, and the problem of interest would be to find a
best configuration of n departments, where "best" will be defined subsequently.
Alternatively, a "facility" may be considered to consist of n unit squares
each having a lattice point as a center, with the individual squares having
no particular interpretation; the problem of intérest would then be to find
a '"best" facility configuration. Note that, by choosing dimensions
appropriately, the length of each side of each square may be assumed to be
one without any loss of generality.

Some notation and definitions will now be useful. Given any two points
X1 = (xl, yl) and Xz = (x2, y2) in the plane, the rectilinear distance between
the two points will be denoted by r(Xl, Xz), where, by definiti.ion,
r(Xl, XZ) = |x1 - x2| + [yl - yzl. It should be noted that the use of a recti-
linear distance, rather than a Euclidean distance, is more appropriate in
commonly occurring industrial situations where travel is carried out on a set
of rectilinear aisles, each of which is orthogonal to either the x or the
y axis; thus the rectilinear distance between two lattice points in a configﬁra—
tion would be an approximation to the distance items would travel between the
two departments, unit squares, having lattice points as their centers.

Denote the set of all lattice points in the plane by L. Let n be a
given positive integer, at least two, and denote by Sn a set consisting of n

distinct lattice points. The collection of all sets of n distinct lattice



points will be denoted by Hn(L). A set Sn will be called a configuration of

size n if and only if Sn € Hn(L)' For any configuration Sn of size n, the
diameter of Sn’ denoted by d(Sn), will be defined to be the maximum of the
rectilinear distances among all distinct pairs of lattice points in Sn'
Note that the rectilinear distance between any two distinct lattice points
will be a positive integer, so that d(Sn) will be a positive integer.
Intuitively, the diameter of a configuration of size n is a measure of the
closeness of the lattice points in the configuration.

The concern in the sequel will te with finding configurations of size n
of minimum diameter, that is, with finding minimax configurations. Note that
the set {Q(Sn): Sn € Hn(L)} is a collection of positive integers, so that the

principle of the smallest integer [3] guarantees that the function f(n), where
f(n) = min {d(Sn): Sn £ Hn(L)} ¢))

is well defined; f(n) is the minimum diameter of all configurations of size n.

Define the integer valued strictly increasing function g(i) as follows:

]

g(1) (12 + 2i + 2)/2 if i is an even, nonnegative integer

g(1)

(2)
(i2 + 214+ 1)/2 if i is an odd, positive integer.

n

Denote by il the collection of all positive integers. Then the main result
of this paper is as follows: for any positive integer i, f(n) = i for
ne¢l[gld-1)+1, g(i)](\I+. A proof of the result will be given subse-
quently. As an illustration of the result, £(2) = 1; f(n) = 2 for n = 3,4,5;
f(n) = 3 forn= 6, 7, 8. Thus, for example, the minimum diameter of all com-
figurations of gsize 6 is 3, and so any configuration with a diameter of 3 will
be a minimax configuration if it is of size 6. In the sequel a systematic
method will be given for constructing minimax configurations.

As concerns related literature in location theory, the area of literature

most closely related to the problem being considered appears to be that



involving the quadratic assignment problem, first formulated by Koopmans

and Beckmann [15]. A special case of the quadratic assignment problem
represents the case where n lattice points are to be chosen from a finite
number of lattice points in such a way that a total cost consisting of terms
directly proportional to distances between lattice points is minimized. An
extensive discussion of, and list of references on, the quadratic assignment
problem has been given recently by Pierce and Crowston [24]. However, as
pointed out by Nugent, Vollmann, and Ruml [23], the quadratic assignment
problem is still largely computationally intractable, so that heuristic
approaches to solving the problem have been of considerable interest.
Hillier, [12], [13], has considered a heuristic approach which is equivalent
to choosing from among a finite number of lattice points; he also considered
distances between lattice points to be rectilinear. The location problem
considered herein, due to its objective function, is simpler than the
quadratic assignment problem, and permits the ready obtainment of optimum
solutions. It is hoped that the study of location problems with special
structure will eventually result in a fruitful approach to the study of more
general problems.

It may be worth noting that in at least one sense the problem being
considered here is quite general, since all lattice points in the plane are
considered as candidates for locations, rather than a finite number of
lattice points; interestingly enough, considering all lattice points
substantially simplifies the analysis. Further, there are certainly
instances in which a minimax criterion is at least as acceptable as other
criteria; the minimax approach requires less data than does a total cost
approach, for instance. Particularly if a new facility is being built, the
cost data required for the quadratic assignment problem formulation, for

example, may be unavailable. Alternatively, the facility may be intended to



serve a number of different uses at different times, so that total cost data,
if available, might change in an unknown manner with time. Also, the minimax
criterion has sometimes been suggested as being appropriate for emergency
situations; there may be instances where it may not be as important to minimize
long term total costs of movement as it is to be able to travel between any two
points in the facility as quickly as is possible.

There exists other literature on minimax location problems, for example,
[7] and [8]); however, other than a statement of a minimax problem by Newman [18],
tnere appears to be no literature on minimax location problems involving
distances between points which cannot share common locations. There is some
literature on somewhat related max-min location problems [10], [28]; these
problems appear to be extremely difficult to solve. It should also be pointed
out that while there is quite a large literature on lattices (see, for example,
[1] and {4]) only the very simplest properties of lattices, employed in the
next section, are used in this paper. There does exist some literature in-
volving packing problems [6], [26] which has location theory aspects, and in
which lattices are sometimes emplcyed, but this literature, with the exception
of the max-min location problems referred to earlier, where lattices are not
employed, does notappeAar tobe directlv relevant to the problem being studied here,
due to differences in the objective functions being considered. The material in
some of the foregoing references is discussed by Saaty [27], as well as a number
of related geometric optimization topics; Saaty gives an extensive list of
references.

SOME GEOMETRIC PRELIMINARIES

Crucial to the development to follow are properties of the rectilinear
distance. In this section the properties needed subsequently are developed.

Given a point P in the plane and a nonncgative number t, the set

p(P, t) = {X ¢ E,: r(?, X) < t} will be called a diamond with center P and
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radius t; the diameter of D(P, t) will be defined to be twice the radius. A
graph of D(P, t) shows that the diamond is just a square which has been rotated
45 degrees; graphs of the boundaries of diamonds of diameter 4 appear in
Figures 2 and 3. It is readily verified that the rectilinear distance be-
tween any two points on opposite edges of a diamond is equal to the diameter
of the diamond, and that the rectilinear distance between any two points in
a diamond is equal to or less than the diameter of the diamond.

Given any nonempty closed and bounded set S in the plane, a diamond
D(P, t) will be called a smallest diamond containing S8 if D(P, t) contains S
and the radius of any other diamond containing S is at least as large as t.
In [9], Francis establishes the existence of a smallest diamond containing S
by giving an explicit procedure for constructing the diamond; his work is a
sequel to earlier work by Elzinga and Hearn [5], who established the existence
of a smallest containing diamond for the case where S consists of a finite

number of points, and also developed a solution procedure. For any points X

v

and Y in S, since X and Y are in D(P, t), it follows that r(X, Y) < 2t.
Further, an examination of the procedure for constructing a smallest containing
diamond D(P', t) shows that at least two opposite edges of D(P, t) have nonempty
intersections with S, so that there exist points, say X* and Y*, in S and in
D(P, t) such that r(X%, Y*) = 2t. Thus the maximum of the rectilinear distances
between all pairs of points in S is equal to the diameter of any smallest
diamond containing S. lence it makes sense to define the rectilinear diameter
of S, denoted by d(S), as follows:

d(s) = max {r(X, Y):X, Y ¢ S}. ' (3)
Note that when S is a collection of n distinct lattice points, say Sn’ the
previous definition of the diameter of Sn agrees with the definition (3), so
that the diameter of Sn is equal to the diameter of any smallest diamond

containing S
n



The foregoing discussion of the question of the smallest diamond con-
taining a set is directly analogous to the question of the smallest disk
containing a set. TFor this latter question there is quite a substantial
literature, beginning with the work of Jung,in 1901 and 1909,who developed
an inequality relating the Euclidean diameter of a set to the diameter of
the smallest disk (or, more generally, hypersphere) containing the set. A
discussion of Jung's work, as well as extensions of it, is given by
Blumenthal and Whalin [2]. Klee [14], discusses, and gives references to,
subsequent generalizations of Jung's inequality, as well as necessary and
sufficient conditions for the inequality to hold as an equality; equality
does not always hold when the Fuclidean distance is used. However, the
rectilinear diameter of a compact set in the plane is always equal to the
diameter of any smallest diamond containing the set; extensive use is made
of this fact in the sequel.

At this point it is czonvenient to give names to several .ypes of diamonds
which will be employed in the subsequent analvsis. A Type 1 diamond will be
a diamond having exactly two opposite vertices coincident with lattice points
and having as its diameter an odd positive integer. A Type T1I-a diamond
will be a diamond having all four vertices coincident with lattice points and
having as its diameter an even positive integer. A Type II-b diamond will be
a diamond having as its center the center of a unit square which has a lattice
point at each corner and having as its diameter an even positive integer.
Illustrations of Type II-a and Type II-b diamonds are given in Figures 2 and
3 respectively.

It is easy to verify, simply by counting, that the number of lattice
points in a Type 1 diamond is (12 + 24+ 1)/2 if i i the diameter of the
diamond. Likewisc, the numbher of lattice points in a Type II-a diamond of
diameter 1 is ({2 + 21 + 2)/2 , and the number of lattice points in a Type TI1-b

diamond of diareter 1 is (12 + 21)/2.
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Given any diamond D in the plane of diameter i, if i 1s an odd positive
integer it can be showa, using simple geometrical arguments, that there exists
a Type 1 diamond of the same diameter such that every lattice point in D is
also in the Type 1 diamond. Likewise, given any diamond in the plane of
diameter i, if i is an even posiiive integer, it can be shown that there exists
a Type II-a or a Type II-b diamond such that every lattice point in the given
diamond is in the Type II-a or Type II-b diamond. Thus it follows that the
maximum number of lattice points which any diamond of diameter i, where 1 is
a positive integer, can contain is g(i), where g(i) is defined by (2). A
number of geometric problems in number theory, some quite famous [17], have
to do with finding the least or greatest number ¢f lattice points in some
type of planar set, [16], [20], [21], [22], [25]). The problem of finding the
maximum number of lattice points a diamond cf integral diameter can contain,
while related to these problems, especially to the one considered by Newman {19],
is a conceptually much simpler problem, and does not appear to be a special
case of anv of the prchlems in the literature.

MAIN RESULTS

The main results of the paper will now be developed. It will be useful.
in the sequel to make use of the easily established fact that the sequence
{f(n)} n:2 , where f(n) is defined by (1), is integer valued and nondecreasing.

The result stated in the first section will be proven first.

Lemma 1 For any positive integer i,

f(n) =i forall ne [gd - 1) +1, g(DINT .

Proof The proof will be by induction on i. Let {1 1; then g(i - 1) + 1 =

"

2 = g(i) and it is geometrically evident that f£(2) 1, since : 1y two distinct
lattice points must be a distance apart of at least 1.
Now assume the lemma is true for { = t. By assumption, t = f[g(t)],

and so t < flg(t) + 1]. Let p = g(t) + 1 and suppose t = {(p). Then there

7



exists at least one Sp € HP(L) such that d(Sp) = t, Thus if Dp is a smallest
diamond containing Sp, then the diameter of DP is also t. However, Dp contains
p = g(t) + 1 lattice points, and the maximum number of lattice points that
any diamond of diameter t can contair is g(t). Thus t < f{g(t) + 1], and so,
since { is integer valued, t + 1 < flg(t) + 1]. Thus t + 1 < f(n) for all
ne [g)+1, gt +1)IN I+. Now since a diamond of diameter t + 1 can
contain gt + 1) 1lattice points, let p = g(t + 1), let Dp be a diamond

of diameter t + 1 containing p lattice points, and let Sp be the collection
of all distinct lattice points in Dp, so that Sp € Hp(L). Then d(Sp) <t+1,
and so flg(t + 1)} j_d(Sp) <t+1. Thus t +1 < f(n) <t+ 1 for all

ne [g(t) +1, gt + 1)](\I+, and so the proof is complete.

The iemma may be readily uéed to obtain necessary and sufficient con-
ditions for a configuration of size n to be a minimax configuration.

Corollary Let Sn € Hn(L). Then Sn is a minimax configuration of size n if
and only if

d(Sn) =3i ,
where i is the unique positive integer such that n ¢ [g(i - 1) + 1, g(i)]()]+.
Proof 1If d(Sn) = i, where i is the unique positive integer such that
ne [gi-1)+1, g(i)](\I+, then Lemma 1 implies d(Sn) = f(n), and so Sn is
a minimax configuration.

Suppose Sn is a minimax configuration in Hn(L), so that d(Sn) = f(n).
Clearly it is possible to choose ar integer i € ' such that n ¢ [g(i - 1) + 1,
g(1)INn T*; then, by Lemma 1, £(n) = i and so a(s ) = 4.  Further the
choice of 1 is unique, since the intervals [g(i - 1) + 1, g(i)] and [g(j-1)+1,

£(3)) are disjoint for distinct positive integers i and j.



CONSTRUCTING MINIMAX CONFIGURATIONS

It is easy to use Lemma 1 to determine the minimum diameter for configura-
tions of size n. Table 1 shows the minimum diameter for n as large as 221; the couputa-
tion of the table entries is facilitated by using the rcadily established fact
that g(2) = g(i - 1) + 1 if 1 is an odd positive integer, and that g(i) = g(i-1)
+ i+ 1 if 1 is an even positive integer. Table 1 may be readily psed in con-
junction with Lemma 1 as follows. The minimum diameter of configurations of
size 2 is 1; of configurations of size 3 through 5 is 2; of configurations of
size 6 through 8 is 3; etc.; the minimum diameter of configurations of size 201
through 221 is 20.

As well as finding the minimum diameter forelonfigurations of a given size,
it is also of interest, of course, to be able to construct configurations
which have a minimum diameter, The following propositions address the question

of constructing minimum diameter cenfigurations.

TARLE 1

i g(1) i g(i)
1 2 11 72
2 12 85
3 8 13 98
4 13 14 113
5 18 15 128
6 25 16 145
7 32 17 162
8 41 18 181
9 50 19 200
10 61 20 221



Proposition 1 Let n be a given positive integcr, at least 2, supposc Sx

is a minimax configuration in Hn(L), and let {1 = d(S:). If i is an odd
integer, then S: is contained in a Type I diamond of diamcter i, say D(i).
Further, for any configuration Sn such that SnC:D(i) and Sn £ Hn(L), d(Sn) =1,
and there are (gsi)) such configurations.

Proof Let D'(i) be a smallest diamond containing S:. Then D' (i) has a
diameter of i, and the same approach as in the preliminaries section can be
used to show that there exists a Type I diamond, say D(i), also of diameter
i, such that S:CLD(i). Now let Sn 3 Hn(L) be such that SnC.D(i); then
certainly d(Sn) < i. Suppose that C(Sn) <1 - 1; then therc exists a diamond
of diameter no greater thun i - 1, say D(i ~ 1), containing Sn' By the
corollary, i is the unique infeger such that n € [g(i - 1) + 1, g(i)](]l+,
and thus g(i ~ 1) + 1 <n. However, D(i - 1) can contain at most g(i - 1)
distinct lattice points, and Sn<:D(i - 1) implies n < g(i - 1), giving a
contradiction. Thus d(Sn) = i. Since D(i) contains g(i) lattice points,
there will be (géi)) difterent cholees of n distincet lattice points from
among the lattice points in D(i).

Notice that there is no physical reason to distinguish between two
different configurations of the same size if one configuration can be ob-
tained from the other by a sequence of translations or rotations. Thus
for a given n such that i = f(n) is an odd intecer it suffices to consider
only configurations of size n in a single Tvpe 1 diamnnd of diameter i
when constructing minimax configurations of size n. FEven then, it may be
possible to obtain some configurations wit, the piven diamend from others
in the diamond by means of rotations.

When f(n) = 1 and 1 is an even positive inteper, the procedure for
constructing minimax configurations is given below in Pro.osition 2. The
proof of Proposition 2 will not be given, as it is similar to the proof of

10



Propositien 1; the main point of difference in the proofs is that use is
made in the proof of Proposition 2 of the fact that all of the lattice
points in S: are in a Type II-a diamond or a Type Il1-b diamond.
Proposition 2 Let n be a given positive integer, at least 2. Suppose S:
is a minimax configuration in Hn(L) and let 1 = d(S:). If i is an even
positive integer then S: ie contained in a Type II-a diamond of diameter i,
say D*(i), or in a Type II-b diamond of diameter i, say D**(i). Further, for
any configuration such that SnC:D*(i) and Sn € Hn(L), d(Sn) = i andAthere
are (gﬁi)) such configurations. For any configuration Sn such that SnCZD**(i)
and S € Hn(L), d(Sn) = i and there are <§(i)-l) such configurations.

Due to Proposition 2, when f(n) = 1 and i is an even positive integer,
it is only necessary to consider a single Type II-a diamond and a single
Typce TI-b diamond when constructing minimax config.rations of size n.
Notice that if n = g(i) then there is a unique configuration of size n,
which nust be contained in a Type 1I-a diamend. Define two configurations
of the same size to be cquivalent if one configuration can be obtained {rom
the other by a scquence of translations or rotations., Then when g(i - 1) +
1 < n< g(i) therc may te a number of configurations which are not equivalent.
For c¢xample, consider the Type II-a and II-b diamonds shown in Figures 2 and
3 respectively., Fach diamond has a diameter of 4; minimax configurations of
size 9 through 13 have a diamcter of 4. Ry an inspection of the figures it
is easy to see that tﬁcfo Arc; for example, a number of minimax configurations
of size 9 in the Type II-a diamond which are not equivalent to any minimax
configuraticn of size 9 in the Tvpe IT-b diamond. Thus it is not enough to
consider only Tyvpe II-a diamonds or Type TI-b diamonds when constructing
minirax configurations; both types must be considered in order to find all
possible minimax confipurations of a given size which are not equivalent.

On the other hoand, there are cases when Type II-a and Type IT-b diawmonds of

11



the same diameter contain equivalent minimax configurations, as can be
easily seen by constructing Type II-a and 1I-b diamonds of diameter 2 and
considering minimax configurations of size 3.

Figures 2 and 3 may serve to illustrate several other points as well.
There exist minimax configuraticns which are perhaps what might be expected
intuitively, and there also exist minimax configurations which perhaps might
not be expccted intuitively, as can be seen by examining non-cquivalent con-
figurations of size 9 contained in the diamond of Figure 23 note alco that
there are a number of such non-equivalent minimax configurations of size 9.
One otlier point can he illustrated by means of the figures; the largest si. .o
minimax configuration which the Type II-a diam®.d can contain is 13, while
the largest size minimax configuration which the Type II-b dizmond can contain
is 12.

A CONTINUOUS PROBLEM

As indicated previously, a facility could be considurcd to consist
of the union of n unit sguares with centers at lattice pointe, so that
the facility could be theought of as a set in the planc of arca n. If the
lattice point assumption is ne longer made, so that no distinctions are
made between departments, then an analopous "continuous" problem could be
considered of finding a compzct set in the plane of a given area, say A,
having the smallest possible rectilinear diameter. The lemma boelow
established that a compact set of ares A has a minimum rectilinear diameter
if and only if it is a diamond.

Lemma 2 If 8§ is any compact set in the plane of arca A, the rectilinear
diamrter of S is equal to or greater than (2A)J/2, the rectilinear diameter
of a dianond, say D¥, of arca A. Convcrsely, any compact set of area A

having a minimum rectilinear diameter is a diamond.



Proof A direct computation establishes that the diameter of any diamond
of arca A is (2A)1/2. Now let S be any compact set of area A, and let D
be a swallest diamond containing S, so that d(D) = d(S). Since S is
contained in D, the arca of D will be at least A; denote the area of D

by A'. Since A' > A, d(S) = d(D) = (2a")}/2

> @2 < ao#y, which
completes the first half of the proof.

To establish the converse, let S be a compact set of area A of minimum
rectilinear diameter and let D be a smallest diamond containing S, so that

1/2

d(D) = d(S) = (2A) As above, S contained in D Implies the area of D

is at least A, and if thc area of D is greater than A then 4(D) > (2!&)1/2 =
d(S). Thus the area of D is A, so it follows ,/:at the area of the set D-S
is zero. Now let Y ¢ D; we shall show Y ¢ S, so that D is contained in §
and the conclusion will then follow. Sirce Y ¢ D and D is a closed sct,
every epsilon neighborhood of Y, N(¥Y, €), where ¢ > 0, contains a point of
. Supposc Y is not in S; then, since S is a closed set, there exists
¢ > 0 such that N(Y, ¢)NS is emptv. Now peomrtrical considerations evidently
imply there exists 7 ¢ N(Y, €) and €' > 0 with €' < e such that N(Z, €")CN(Y,e),
and N(Z, ¢'")YCD. Tuc since N(Z, £')NS is empty, N(Z, ¢')CD-S, implying ihc
area of D-S is positive, which is a contradiction. Thus Y € S and the proof
is complete.

By way of comparison, the rectilinear diamcter of a square of area A,
which has the smallest rectilinear diameter of all rectangles of arca A,

is Z(A)]/z. The rectilinear diamcter of a disk of area A is (2/7T1/2

1/2

yea)t/? &

.13) (2
Vhen a diawond of arca A is rotated 45 degrees, a square of area A is
obtained, of course; howvever, since the axes are also rotated, each aisle

in the svstew of rectilinear aisles nov mokes an annle of 45 degrees or -45

13



degrees with some edge of the square. In other words, a set of the smallest
rectilinear d’ameter may still be considered to be a square of anvca A} it
simply has an aisle structure rotated 45 degyces from the usual aisle
structure, It is not difficult to imagine arronging desks in an office,

for examplce, wo that such a rotated aisle structure could bhe realizod.

Even if the answer provided by Lemua 2 cammot be utilized directly, it may
still be useful a2s a design benchmark. TFurther, Lemma 2 provides additional
insight into the minimax solutions obtained to the lattice point problem.
Roughly spcaking, minimex configurations of size n are obtained by cloosing
a smallest diamond of integer diameter which will contain u lattice points.
For the continuous case, a minimax solution is obtained by choosing a
smalles£ dizmond which will contain a set of area A; namely, a dicmond

of area A, It should be evident, however, that the lattice point "discrete"

problem and the continuous problem each has its own special points of

interest. -
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