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ABSTRACT

The problem is considered of assigning n facilities, or departments,

to locations so that the maximum of the rectilinear distances bet.een

departments is minimized. The locations are considered to be points in

a lattice. A simple expression is developed for the minimum value of

the objective function for all values of n; the expression has as a

corollary a necessary and sufficient condition for an assign t, (L: a

configuration, to be minimax; also a simple geometrical procedl -' s

developed for constructing minimax configurations. A closed form solu-

tion is obtained for an analogous continuous problem.
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INTRODUCTION

Define a lattice point in the 1ane to be any point in the plane such

that each entry in the point is an integer. Note that, with reference to

Figure 1, each lattice point is the center of a square of unit dimensions,

so that n distinct lattice points may be considered to represent n nonover-

lapping unit squares. Each unit square may be considered, for example, to

be a department of a plant, and the problem of interest would be to find a

best configuration of n departments, where "best" will be defined subsequently.

Alternatively, a "facility" may be considered to consist of n unit squares

each having a lattice point as a center, with the individual squares having

no particular interpretation; the problem of interest would then be to find

a "best" facility configuration. Note that, by choosing dimensions

appropriately, the length of each side of each square may be assumed to be

one without any loss of generality.

Some notation and definitions will now be useful. Given any two points

X = (X1 , yl) and X2 = (x 2, y 2 ) in the plane, the rectilinear distance between

the two points will be denoted by r(Xl, X2 ), where, by definiti~ion,

r(X 1 , X2 ) = IxI - x 2 1 + lyI - y 2 1. It should be noted that the use of a recti-

linear distance, rather than a Euclidean distance, is more appropriate in

commonly occurring industrial situations where travel is carried out on a set

of rectilinear aisles, each of which is orthogonal to either the x or the

y axis; thus the rectilinear distance between two lattice points in a configura-

tion would be an approximation to the distance items would travel between the

two departments, unit squares, having lattice points as their centers.

Denote the set of all lattice points in the plane by L. Let n be a

given positive integer, at least two, and denote by S a set consisting of n
n

distinct Thttice points. The collection of all sets of n distinct lattice



points will be denoted by H n(L). A set Sn will be called a configuration of

size n if and only if S e H (L). For any configuration S of size n, then n n

diameter of Sn, denoted by d(S n), will be defined to be the maximum of the

rectilinear distances among all distinct pairs of lattice points in Sn-

Note that the rectilinear distance between any two distinct lattice points

will be a positive integer, so that d(S n) will be a positive integer.

Intuitively, the diameter of a configuration of size n is a measure of the

closeness of the lattice points in the configuration.

The concern in the sequel will be with finding configurations of size n

of minimum diameter, that is, with finding minimax configurations. Note that

the set {d(S ): S E Hn(L)} is a collection of positive integers, so that the

principle of the smallest integer [3] guarantees that the function f(n), where

f(n) = mn {d(S n): Sn C H n(L) (1)

is well defined; f(n) is the minimum diameter of all configurations of size n.

Define the integer valued strictly increasing function g(i) as follows:

g(i) = (i 2 + 2i + 2)/2 if i is an even, nonnegative integer

g(i) = (i2 + 2i + 1)/2 if i is an odd, positive integer.

Denote by I+ the collection of all positive integers. Then the main result

of this paper is as follows: for any positive integer i, f(n) = i for

n c (g(i - 1) + 1, g(i)]J(I+. A proof of the result will be given subse-

quently. As an illustration of the result, f(2) = 1; f(n) = 2 for n = 3,4,5;

f(n) - 3 for n - 6, 7, 8. Thus, for example, the minimum diameter of all con-

figurations of size 6 is 3, and so any configuration with a diameter of 3 will

be a minimax configuration if it is of size 6. In the sequel a systematic

method will be given for constructing minimax configurations.

As concerns related literature in location theory, the area of literature

most closely related to the problem being considered appears to be that
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involving the quadratic assignment problem, first formulated by Koopmans

and Beckmann [15]. A special case of the quadratic assignment problem

represents the case where n lattice points are to be chosen from a finite

number of lattice points in such a way that a total cost consisting of terms

directly proportional to distances between lattice points is minimized. An

extensive discussion of, and list of references on, the quadratic assignment

problem has been given recently by Pierce and Crowston [24]. However, as

pointed out by Nugent, Vollmann, and Ruml [23], the quadratic assignment

problem is still largely computationally intractable, so that heuristic

approaches to solving the problem have been of considerable interest.

Hillier, [12], [13], has considered a heuristic approach which is equivalent

to choosing from among a finite number of lattice points; he also considered

distances between lattice points to be rectilinear. The location problem

considered herein, due to its objective function, is simpler than the

quadratic assignment problem, and permits the ready obtainment of optimum

solutions. It is hoped that the study of location problems with special

structure will eventually result in a fruitful approach to the study of more

general problems.

It may be worth noting that in at least one sense the problem being

considered here is quite general, since all lattice points in the plane are

considered as candidates for locations, rather than a finite number of

lattice points; interestingly enough, considering all lattice points

substantially simplifies the analysis. Further, there are certainly

instances in which a minimax criterion is at least as acceptable as other

criteria; the minimax approach requires less data than does a total cost

approach, for instance. Particularly if a new facility is being built, the

cost data required for the quadratic assignment problem formulation, for

example, may be unavailable. Alternatively, the facility may be intended to

3



serve a number of different uses at different times, so that total cost data,

if available, might change in an unknown manner with time. Also, the minimax

criterion has sometimes been suggested as being appropriate for emergency

situations; there may be instances where it may not be as important to minimize

long term total costs of movement as it is to be able to travel between any two

points in the facility as quickly as is possible.

There exists other literature on minimax location problems, for example,

[7] and (8]; however, other than a statement of a minimax problem by Newman [18],

there appears to be no literature on minimax location problems involving

distances between points which cannot share common locations. There is some

literature on somewhat related max-min location goblems [10], [28]; these

problems appear to be extremely difficult to solve. It should also be pointed

out that while there is quite a large literature on lattices (see, for example,

[1] and i41) only the very simplest properties of lattices, employed in the

next section, are used in this paper. There does exist some literature in-

volving packing problems [6], [26] which has location theory aspects, and in

which lattices are sometimes emplcyed, but this literature, with the exception

of the max-min location problems referred to earlier, where lattices are not

employed, does not appear tobe directlv relevant to the problem being studied here,

due to differences in the objective functions being considered. The material in

some of the foregoing references is discussed by Saaty [27], as well as a number

of related geometric optimization topics; Saaty gives an extensive list of

references.

SOME GEOMETRIC PRELIMINARIES

Crucial to the development to follow are properties of the rectilinear

distance. In this section the properties needed subsequently are developed.

Given a point P in the plane and a nonnegative number t, the set

D(P, t) = {X c E2: r(P, X) < t} will be called a diamond with center P and

4



radius t; the diameter of D(P, t) will be defined to be twice the radius. A

graph of D(P, t) shows that the diamond is just a square which has been rotated

45 degrees; graphs of the boundaries of diamonds of diameter 4 appear in

Figures 2 and 3. it is readily verified that the rectilinear distance be-

tween any two points on opposite edges of a diamond is equal to the diameter

of the diamond, and that the rectilinear distance between any two points in

a diamond is equal to or less than the diameter of the diamond.

Given any nonempty closed and bounded set S in the plane, a diamond

D(P, t) will be called a smallest diamond containing S if D(P, t) contains S

and the radius of any other diamond containing S is at least as large as t.

In [9], Francis establishes the existence of a smallest diamond containing S

by giving an explicit procedure for constructing the diamond; his work is a

sequel to earlier work by Elzinga and Hearn [5], who established the existence

of a smallest containing diamond for the case where S consists of a finite

number of pofints, and also developed a solution procedure. For any points X

and Y in S, since X -id Y are in D(P, t), it follows that r(X, Y) <2t.

Further, an examination of the procedure for constructing a smallest containing

diamond D('. t) shows that at least two opposite edges of D(P, t) have nonempty

intersections with S, so that there exist points, say X* and Y*, in S and in

D(P, t) such that r(X*, Y*) = 2t. Thus the maximum of the rectilinear distances

between all pairs of points in S is equal to the diameter of any smaallest

diamond containing S. Hence it makes sense to define the rectilinear diameter

of S, denoted by d(S), as follows:

d(S) = max {r(X, Y):X, Y c S}. (3)

Note that when S is a collection of n distinct lattice points, say Sn, the

previous definition of the diameter of S agrees with the definition (3), son

that the diameter of S is equal to the diameter of any smallest diamondn
containing S .

n
5



The foregoing discussion of the question of the smallest diamond con-

taining a set is directly analogous to the question of the smallest disk

containing a set. For this latter question there is quite a substantial

literature, beginning with the work of Jung,in 1901 and 1909,who developed

an inequality relating the Euclidean diameter of a set to the diameter of

the smallest disk (or, more generally, hypersphere) containing the set. A

discussion of Jung's work, as well as extensions of it, is given by

Blumenthal and Whalfn [2). Klee [14], discusses, and gives references to,

subsequent generalizations of Jung's inequality, as well as necessary and

sufficient conditions for the inequality to hold as an equality; equality

does not always hold when the Euclidean distance is used. However, the

rectilinear diameter of a compact set in the plane is always equal to the

diameter of any smallest diamond containing the set; extensive use is made

of this fact in the sequel.

At this point it is convenient to give names to several _ypes of diamnonds

which will be employed in the subsequent analysis. A Type 1 diamond will be

a diamond having exactly two opposite vertices coincident with lattice points

and having as its diameter an odd positive integer. A Type TI-a diamond

will be a diamond having all four vertices coincident with lattice points and

having as its diameter an even positive integer. A Type II-b diamond will be

a diamond having as its center the center of a unit square which has a lattice

point at each corner and having as its diameter an even positive integer.

Illustrations of Type II-a and Type II-b diamonds are given in Figures 2 and

3 respectively.

It is easy to verify, simply by counting, that the number of lattice

points in a Type I diamond is (12 + 2i + 1)/2 if i i. the diameter of the

diamond. Likewise, the number of lattice points in a Type Il-a diamond of

diameter i is ; 2 + 21 + 2)/2 , and the number of lattice points In a Type I1-b

diamond of dia:reter i is (1 2 + 2i)/2.
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Given any diamond D in the plane of diameter i, if i is an odd positive

integer it can be sho;a, using simple geometrical arguments, that there exists

a Type I diamond of the same diameter such that every lattice point in D is

also it, the Type I diamond. Likewise, given any diamond in the plane of

diameter i, if i is an even positive integer, it can be shown that there exists

a Type 11-a or a Type I-b diamond such that every lattice point in the given

diamond is in the Type Il-a or Type TI-b diamond. Thus it follows that the

maximum number of lattice points which any diamond of diameter i, where i is

a positive integer, can contain is g(i), where g(i) is defined by (2). A

number of geometric problems in number theory, some quite famous [17], have

to do with finding the least or greatest number qe lattice points in some

type of planar set, [16], [20], [21], [22], [25]. The problem of finding the

maximum number of lattice points a diamond of integral diameter can contain,

while related to these problems, especially to the one considered by Newman [19],

is a conceptually much simpler problem, and does not appear to be a special

case of any of the prcblems in the literature.

MAIN RESULTS

The main results of the paper will now be developed. It will be useful

in the sequel to make use of the easily established fact that the sequence

{f(n)} n=2 , where f(n) is defined by (1), is integer valued and nondecreasing.

The result stated in the first section will he proven first.

Lemma I For any positive integer i,

f(n) = i for all n E [g(i - 1) + 1, g(i)]•l+.

Proof The proof will be by induction on i. Let i = 1; then g(i - 1) + I

2 = g(i) and it is geometrically evident that f(2) = 1, since iy two distinct

lattice points must be a distance apart of at least 1.

Now assume the lemri is true for i = t. By assumption, t - f[g(t)],

and so t < f[g(t) + 1]. Lct p = g(t) + 1 and suppose t = f(p). Then there

7



exists at least one S c H (L) such that d(Sp) = t. Thus if D is a smallest

diamond containing Sp, then the diameter of Dp is also t. However, 1)p contains

p = g(t) + 1 lattice points, and the maximum number of lattice points that

any diamond of diam~eter t can contain is g(t). Thus t < f~g(t) + 1], and so,

since f is integer valued, t + 1 < f[g(t) + 1]. This t + 1 < f(n) for all

n c [g(t) + 1, g(t + i)] n 1+. Now since a diamond of diameter t + 1 can

contain g(t + 1) lattice points, let p*= g(t + 1), let D) be a diamondP

of diameter t + 1 containing p lattice points, and let S be the collectionP

of all distinct lattice points in Dp, so that S p I1 (L). Then d(S p) - t + 1,P P

and so f[g(t + 1)] < d(S p) < t + 1. Thus t + 1 < f(n) < t + 1 for all

n E [g(t) + 1, g(t + l)1()I+, and so the proof is complete.

The lemma may be readily used to obtain necessary and sufficient con-

ditions for a configuration of size n to be a minimax configuration.

Corollary Let S E H (L). Then S is a minimax configuration of size n ifn n n

and only if

d(S n) = j

where i is the unique positive integer such that n L [g(i - i) + 1, g(i)]lI+.

Proof If d(S ) i, where i is the unique positive integer such that

n c [g(i - 1) + 1, g(i)]flI+, then Lemma I implies d(Sn) = f(n), and so S isn~ m

a minimax configuration.
Suppose S is a minimax configuration in H (L), so that d(S n f(n).

n n n

Clearly it is possible to choose ar integer i E I+ such that n . [g(i - 1) ± 1,

g(i)](lI+; then, by Lemma 1, f(n) - i and so d((S ) = 1. Further the
n

choice of i is unique, since the intervals [g(i - 1) + 1, g(i)] and [g(j-l)+],

g(j)) are disjoint for distinct positive integers i and j.

8



CONSTRUCTING MINIMAX CONFIGURATIONS

It is easy to use Lenmma 1 to determine the minimum diameter for configura-

tions of size n. Table I shows the minimum diameter for n as large as 221; the co imuta-

tion of the table entries is facilitated by using the readily established fact

that g(i) = g(i - 1) + i if I is an odd positive integer, and that g(i) = g(i-l)

+ i + 1 if i is an even positive integer. Table 1 may be readily used in con-

junction with Lemma 1. as follows. The minimum diameter of configurations of

size 2 is 1; of configurations of size 3 through 5 is 2; of configurations of

size 6 through 8 is 3; etc.; the minimum diameter of configurations of size 201

through 221 is 20.

As well as finding the ninimum diameter for-donfigurations of a given size,

it is also of interest, of course, to be able to construct configurations

which have a minimum diameter. The following propositions address the question

of constructing minimum diameter configurations.

TABLE 1

i g(i) i g(i)

1 2 11 72

2 5 12 85

3 8 13 98

4 13 14 113

5 18 15 128

6 25 16 145

7 32 17 162

8 41 18 181

9 50 19 200

10 61 20 221



Proposition 1 Let n be a given positive integer, at least 2, suppose S
n

is a minimax configuration in 11 (L), and let i = d(S*). If I is an odd
n n

integer, then Sn is contained in a Type I diamond of diameter i, say 1)(I).

Further, for any configuration S such that S CD(i) and S nc (L), d(S in aI n n

and there are (g(i)) such configurations.
an

Proof Let D'(i) be a smallest diamond containing S Then D'(i) has an

diameter of i, and the same approach as in the preliminaries section can be

used to show that there exists a Type I diamond, say D(i), also of diameter

I, such that S CD(i). Now let S E H (L) be such that S C D(i); then
n n n n

certainly d(S n) < I. Suppose that C(S n) < I - 1; then there exists a diamond

of diameter no greater than i - 1, say D(i - 1), containing S By the

corollary, i is the unique integer such that n c [g(i - I) + 1, g(i)] ln+,

and thus g(i - 1) + 1 < n. However, D(i - 1) can contain at most g(i - 1)

distinct lattice points, and S CD(i - 1) implies n < g(i - 1), giving a

contradiction. Thus d(S n) = i. Since D)i) contains g(i) lattice points,

there will be (g"i) diftfcjie.nL choiLcs of ka distinct, lattice points fireil

among the lattice points in D(i).

Notice that there is no physical reason to distinguish between two

different configurations of the same size if one configuration can be ob-

tained from the other by a sequence of translations or rotations. Tlus

for a given n such that i = f(n) is an odd integer it suffices to consider

only configurations of size n in a single Type I diamond of diameter i

when constructing minimax configurations of ýize n. Even then, It may be

possible to obtain some configurations wit, the given diam, ond from others

in the diamond by means of rotations.

When f(n) - I and i is an even positive integer, the procedure for

constructing minimax configurations is given below in Pro,,osition 2. The

proof of Proposition 2 will not be given, as it Is similar to the proof of

10



Propusiticm 1; the main point of differeace in the proofs is that use is

made in the proof of Proposition 2 of the fact that all of the lattice

points in S are in a Type Il-a diamond or a Type l1-b diamond.n

Pr ion ? Let n be a given positive integer, at least 2. Suppose S$
n

is a minirax configuration in H (L) and let i = d(S ). If i is an even
n n

positive integer then S is contained in a Type Il-a diamond of diameter i,n

say 1)*(i), or in a Type Il-b diamond of diameter i, say D**(i). Further, for

any configuration such that Sn C D*(i) and S c 11 (L), d(Sn) i and there

are (gFi)' such configurations. For any configuration S such that S CD**(i)\ n ) n n

and Sn c H (L), d(S) i and there are g(i()l) such confi[gurations.an n n n'

Due to Proposition 2, when f(n) = i and i is an even positive integer,

it is only necessary to consider a single Type II-a diamond and a single

Type TI-b diamond when constructing minimax configurations of size n.

Notice that if n = g(i) then there is a unique configuration of size n,

which mulzi be contained in a Type 11-a diamond. Define two configurations

of the same size to be equivalent if one configuration can be obtained from

the other by a sequence of translaLions or rotations. Then when g(i - 1) +

I < n < g(i) there mayx be a number of configurations which are not equivalent.

For exa:ple, conzider the Type II-a and II-b diamonds shown in Figures 2 and

3 respectively. Each diamond has a diameter of 4; minimax configurations of

size 9 through 13 have a diameter of 4. By an inspection of the figures it

is easy to see that there are, for example, a number of mininmax configurations

of size? 9 in the Type II-a diamond which are not equivalent to any minimax

configiuration of size 9 in the Type IT-b diamond. Thus it is not enough to

con--idcr only Type II-a diamonds or Type TI-b diamonds when constructing

miniufr i c(,nfigr;at ions; both types muqt be considered in order to find all

pos!;blc J inie:, confilour;,tions of a given sfze which are not equivalent.

On the othLr h.l, there are cases when Type IT-a and Type IT-b diamonds of

11



. n uln ! I I ! nII

the sawe diameter contain equivalent minimax configurations, as can be

easily seea by constructing Type lI-a and 3i-h diamonds of diamctcer 2 and

considering sin'max configurations of size 3.

Figures 2 and 3 may serve to illustrate several other points as well.

There exiSt minimax configurations which are perhaps what might be expected

intuitively, and there also exist minimax configurations which perhaps might

not be expected intuitively, as can be seen by exainiining non-equivalent con-

figurations of si2e 9 contained in the diamond of Figure 2; note also thot

there are a number of such non-equivalent minimax configturations of size q.

One other point can be illustrated by means of the figures; the largest si.,o

minimax configuratioii which the Type II-a diam,..d car contain is 13, 1Thile

the largest size minimax configuration which the Type II-b diam:,nd can contain

is 12.

A CONTINUOUS PROBLEM

As indicated previously, a facility could bu cuncidured to 'onscist

of the union of n unit square: wi th 2e:; ters at 1 a itt . "of't!., ,,,I that

the facility could be thouglt of as a set in the plane of area n. If the

lattice point assumtption is no longer made, so that no distinctons are

made between departments, thon an analogous "continuous" problem could be

considered of finding a compact set in the plane of a given area, say A,

having the smallest possible rectilinear diameter. The lemma bel.-ow

established that a compact set of arca A has a minimum rectilinear diamotcr

If and only if it is a diamond.

Lemma 2 If S is any compact set in thtu plane of area A, the rectilinear

1/2diameter of S is equal to or greater than (2A)Y, the recti1. linear diameter

of a diamond, say ]V*, of area A. Conversely, any compact set of area A

having a minimum rectilinear diameter is a diarnond.

12



Proof A direct computation establishes that the diameter of any diamond

of area A is (2A) /2. Now let S be any compact set of area A, and let D

be a swallest diamond containing S, so that d(D) = d(S). Since S is

contained in D, the area of D will be at least A; denote the area of D

by A'. Since A' > A, d(S) = d(D) = (2A') 1/2 > (2A)1/ 2 = d(1)*), which

completes the first half of the proof.

To establish the converse, let S be a compact set of area A of minimum

rectilinear diameter and let D bc a smallpat diamond containing S, so that

1/2d(D) = d(S) = (2A) .2. As above, S contained in D implies the area of D

is at least A, and if the area of D is greater than A then i(D) > (2A)1/ 2 
-

d(S). Thus the area of D is A, so it follows ,:,at the area of the set D-S

is zero. Now let Y £ D; we shall show Y c S, so that D is container! in S

and the conclusion will then follow. Sirce Y c D and D is a closed set,

every epsilon neighborhood of Y, N(Y, E), where c > 0, contains a point of

P. Suppose Y is not in S; then, since S is a closed set, there exists

r > 0 such that N(Y, F)f)S is empty. Now peomotrical considerations evidently

imply there e7ists 7. N(Y, c) and c- > 0 with e' < e such that N(Z, c')CN(Y,E,),

and N(Z, c')CD. ru, since N(Z, t')nS is empty, N(Z, c')CD-S, implying the

area of D-S is positive, which is a contradiction. Thus Y E S and the proof

is comapletc.

By way of coiparison, the rectilinear diameter of a square of area A,

which has the smallest rectilinear diameter of all rectangles of area A,

is 2(A)/2. The rectilinear diameter of a disk of area A is (2/r /2)(2A)I/2 A

(1.1 3) (2,%)]/2

Wkhen a diattond of area A is rotated 45 degrees, a square of area A is

obtained, of course; howevor, since the a:.Tes are also rotated, each aisle

in the :;yst(-:.i of rectilinear aisles now," makes in angle of .5 degrees or -45
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degrees with some edg-e of the square. In other words, a set of the -,millest

rectilinear d ameter may still be considered to be a square of area ,•; i

simply has an aisle structure rotated 45 degrees from the usual oi•Ase

structure, It is not difficult to imagine arronging dt2sks in an office,

for example, so that such a rotated aisle strUcture could be realie:d(.

Even if the answer provided by Lem:ýa 2 cannot be utilized dlirectly, it may

still be useful as a design benchmark. Further, Lemma 2 provides ar1ditional

insight into the minimax solutions obtained to the lattice point problem.

Roughly spcaking, minimax configurations of size n are obtained by clc-osing

a smallest diamond of integer diameter which will contain a lattice points.

For the continuous caFe, a minimax solution !s obtained by choosing a

smallest d:iimond which will contain a set of area A; namely, a dipmond

of area A. It should be evident, ho-:cver, that the lattice point "discrete"

problem and the continuous problem each has its own special points of

interest.



Figurei
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Figure 2
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Figure 3
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