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ABSTRACT

Some of the theoretical and experimental implications of isotropic

incremental elastic-plastic constitutive models fornmlated with constant

values for the shear modulus G are examined. Iwo types of constant G

models are considered, i.e. a single constant value of G for loading and

unloading and two separate values of G , one for loading and one for un-

loading. These material property specifications are successively coupled

with four increasingly more real-stic idealized stress-strain relations

representing constrained modulus M functions obtained for a state of

uniaxial strain and a von Mises-type limiting shear envelope characteristic

of that specified fc the classical Prandtl-Reuss material. The resulting

models a.'e used to calculate mean normal stress or pressure versus volu-

metric strain and uniaxial strain principal stress difference versus pres-

sure relations for qualitative comparison with observed test phenomena.

The results fom this simple examination of several highly idealized

material descriptions indicate that many of the behavior characteristics

of real earth materials often recorded during laboratory tests can be simu-

lated, at least qualitatively, by elastic-plastic constitutive models of

the constant G type by observing certain restrictions on the material

property parameters G and M . Other characteristic phenomena, however,

cannot be mirrored with these types of models under any circumstances.

The constitutive equations of a classical Prandtl-Reuss material and

the behavior of this ideal model for conditions of uniaxial strain are in-

cluded in an appendix for reference and informational purposes.
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PREFACE

The work described herein is part of a continuing research effort

being ccnducted by personnel of the Soils Division, U, S. Army Engineer

Waterways Experiment Station (WES), aimed at developing physically re-

alistic and theoretically satisfying constitutive models for a broad

ranre of soil and rock materials for use at input to free-field ground

$hocI\ calculation computer codes. This paxicular study, which deals in

general terms with relatively simple idealizations of material behavior,

developed as an adjunct to an investigation begun by CPT J. A. Spitz-

nagel, CE, into the use of constant shear modulus-type constitutive

models to represent the actual behavior observed in the WES Soil Dynamics

Laboratory during numerous tests on soils and weak sedimentary rocks.

The theoretical analyses of these idealized models were performed during

the period February-April 1971 by Dr. Behzad Rohani; this paper was

written by Dr. Pohani and Dr. J. G. Jackson, Jr.

The project is sponsored by the Defense Nuclear Agenicy as part

of their Nuclear Weapons Effects Research Subtask SB209, "Propagation

of Ground Sho2k Through Earth Media." The work is being performed

under the 6en!'al direction of Messrs. J. P. Sale, R. G. Ahlvin, and

R. :. Cunn , of the Soils Division, VIES. The Director of WIES during the

preparation and publication of this report was COL Ernest D. Peixotto,

CE. Technical Director was Mr. Fred R. Brown.
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CHAPTIER 1

INTRODUCTION

1.1 BACKGROUND

The constitutive equations currently used to represent various types

of earth media in two-dimensional ground shock calculation codes are

based on the assumption of isotropic incremental elastic-plastic material

behavior. in the elastic range, material behavior is described by the

following incremental constitutive relation that effectively separates

the deformation into hydrostatic and deviitoric componeats.I

Kc8.. 1 1 (1.1).
ij k kj G Ckkai(

where a. = components of the total stress increment tensor

3 kkij 4 ij

K = bulk modulus =
':kkkk = sum of the incremental normal strains = incremental change

in volumetric strain

bij = Kronecker delta
i1 S.

G = shear modulus =e
eij

6ij = components of the total strain increment tensor

V1

3 kk ii ij

Okk sum of the incremental normal stresses = 3p

sij = components of the incremental stress deviator tensor

eij = components of the incremental strain deviator tensor

I Elastic range as used in this paper does not imply linear reversible

behavior of the material, but rather refers to all stress-strain re-
sponses for deviatoric stress states less than that defined by an ex-
plicit plastic yield function.
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TIonlinear behavior is incorporated by making K and G functions of

,tress and/or strain invariants. Hysteretic behavior is taken into ac-

count L, u;in7 different values of K and G on loading and unloading.

A peutidoplastic beAhavior is thus built into the incremental constitutive

relation (Equation 1.1) in thr form of permanent compaction prior to
yield.

Classical plasticity is incorporated into the model by specifying a

yield colndition that effectively serves to limit the maximum shear

strength of the material. The yield surface is usually a combination of

the Prager-Prucker and von Mises types, often with a functional form that

ensures a smooth transition from the former to the latter with increasing

pressure (References 1 and 2).

With zero work hardening, the yield function is specified by a rela-

tion of the form

f~p) (1.2)

where ' = second invariant of the stress deviator tensor2 2 -iJ ij
1

p = mean normal stress or pressure

s.. = components of the stress deviator tensor

From within this generalized description of elastic-plastic material

behavior, many specific descriptions are available, depending upon the

various restrictions placed on the constitutive property parameters K

an, (J') max One of the more common versions involves consider-

able flexibility in describing volume change chrracteristics by permit-

inf; K to be defined by nonlinear polynomial functions while restricting

the description of shear behavior to constant values for G and ( max

Thc, significance of such restrictions can perhaps best be illustrated by

cxamnining the behavior of these constant shear modulus models when sub-

jected to the states of stress most often employed in the laboratory to

experimentally determine the stress-strain response of actual earth

intermls.

The testing technicue most frequently used for studying stress-strain

8



response in the laboratory in conjunction with ground shock problems in-

volves confiring undisturbed specimens so that they deform in an undrained

state of uniaxial strain under an applied transient stress (Reference 3).

The test results are usually illustrated through a plot of vertical stress

versus vertical strain; the slopes of such plots define the constrained

modulus M , i.e. 2

M - K+-G (1.3)7Z)niaxial 3

strain

Triaxial shear tests are normally used to determine relationships between

4or maximum principal stress difference (a. - r)max and p

For a given material, a unique path of (, z - cr) versus p is also de-

scribed by a material undergoing uniaxial strain loading and unloading;

-he slopes along a stress path of this type define the ratio of shear

modulus to bulk modulus, i.e.

zr' -2G1 (-1.4)
Z p uniaxial

strain

Thus, as an aid in understanding the practical eignificance of constant

G constitutive models, it is helpful to examine, for a given uniaxial

strain az versus C. relation and a given triaxial shear envelope, the

characteristic features of the corresponding p versus Ekk and uniaxial

strain (az - or) versus p relationships imposed by the further specifi-

cation of a constant value for G

1.2 PURPOSE AND SCOPE

The purpose of this paper is to examine some of the theoretical and

The laboratorj tests currently used for soil property investigations
are axially symmetric so that the specimens can be analyzed in terms

Cof eooiinates z and r dnotir," vertical and radial directions.
respectively.



experimental implications of isotropic incremental elastic-plastic consti-

tutive models formulated with constant values for the shear modulus G •

Two types of constant shear modulus models will be considered. The first

model, in whicb one single constant value of G is used for loading and

unloading, is referred to as a "linear elastic G model." The second,

in which two separate constant values of G are specified, one for load-

ing and one for unloading, is called the "linear hysteretic G model."

Shear stress-shear strain diagrams for both models are given in Figure 1.1.

Four idealized uniaxial strain a versus Cz relations are used

in conjunction with the two constant G relations. The first represents

the simplest idealization, i.e. that defined by a linear elastic con-

strained modulus. The second is in the linear hysteretic form defined by

separate constant values for M , i.e. one for loading and one for unload-

ing. The third represents a bilinear hysteretic constrained modulus de-

scription and the fourth a general nonlinear hysteretic description. The

four relations are diagramed in Figure 1.2.

It is assumed that plastic behavior is governed by a von Mises-type

yield criterion as postulated for the classical Prandtl-Reuss im.terial.

Chapter 2 presents an analysis of six models, developed by successively

coupling the two constant G descriptions (Figure 1.1) with the M de-

scriptions outlined in Figures 1.2a, b, and d, subjected to maximum devi-

atoric stress levels insuffisient to invoke the yield criterion. Two

cases in which the deviatoric stress paths reach tie plastic yield sur-

face are examined in Chapter 3; these cases are defined by successively

coupling the linear elastic constant G descriptions with the two M

descriptions given in Figures 1.2c and d,.

For reference and informational purposes, the mathematical constitu-

tive equations for a linear elastic-plastic mode2 of an ideal Prandtl-

Reuss material are presented and its uniaxial strain behavior is examined

in Appendix A.

10
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Figu:,_ 1.2 Vertical stress versus vertical strain curves for
conditions of uniaxial strain.
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CHAPTER 2

CONSTANT SHEAR MODULUS CONSTITUTIVE MODELS
FOR STRESS STATES BELOW YIELD

The basic constitutive relationship in the elastic range is Equa-

tion 1.1, which contains two material constants (or functions) K and

G . Equation ? .1 can also be written in terms of constrained modulus M

and shear modulus G by utilizing Equation 1.3, i.e.

J = MC .. + 2( j (-2.1)

The procedure adopted in this chapter to study the behavior of the two

constant G models for subyield stress stateo (elastic range) is to as-

sume that M and G are Mnown for each model and then substitute in

Equation 2.1 to calculate the pressure-volumetric strain or K relation

and the uniaxial strain path of principal stress difference versus pres-

sure. The calculated behavior is then discussed in terms of the general

behavior observed during tests on actual earth materials.

If M and G denote the constrained and shear moduli, respec-

tively, for virgin loading and Mu and Gu denote the corresponding

values for unloading, the expressions for the pressure-volumetric strain

relation and the stress path associated with the uniaxial strain test

become

, G.) z = K" (2.2a)

Virgin
loading

- p = (2.2b)

=(Mu Gu) C,= KG (2.2c)

; Unloadingu

and.
reloading ( u 2Gu

u p=-)- P (2.2d)

13



The values of loading and unloading shear moduli are constant throughout

the calculations, whereas the values of loading and unloading constrained

moduli could vary with stress level, in which case tie construction of

the model must be carried out incrementally by solving for compatible

values of ( " and p corresponding to each pair of ' values.

The pertinent incremental relations are

z- ) = 2G Iz for loading (2.3a)

- r) -2Gu for unloading-reloading (2.3b)

2; 2 a ) (2.3c)

The total quantities needed for plotting pertinent stress-strain and

stress path relations are then obtained from the following expressions:

(Oz - ar) (or ar) + (a Cyr) (2.4c)

-- + p (2.4d)

where i = 1 , ... , m . The calculation is performed in each increment

of loading or unloading as if the material were elastic.

Six different models are considered in this chapter using various

combinations of constrained and shear moduli as outlined in Section 1.2.

The models are presented below in the order of increasing complexity.

14



2.1 LINEAR ELASTIC G MODEL FOR MATERIALS WITH A LINEAR ELASTIC M

This model corresponds to a linear elastic material and is obviously

the simplest possible constitutive model available. It is presented here

only to demonstrate the methodology used in this chapter. Since both the

shear modulus and the constrained modulus are elastic, it implies that

Me = Mu = M and G = Gu = G so that the pressure-volumetric strain re-

lation and the stress path associated with a state of uniaxial strain for

this model become

p = (M4 .G c. (2.5a)

(az -a) / 13 (2.5b)

From thermodynamic considerations, it is necessary to impose the follow-

ing inequalities on the shear modulus G and on Poisson's ratio v

G > 0 (2.6a)

-l <v <1 (2.6b)2

in order to insure the positive definite character of the quadratic frnm

of the elastic strain energy function (Reference 4). Negative values of

v , however, have not been found experimentally for any isotropic elastic

material. Thus, from purely phenomenological considerations, the re-

striction on v should be revised to limit it to positive values, i.e.

0 < V < (2.7)

* The relationship between v , M , and G is given from elastic theory

as



The pertinent stress-- -rain and stress path plots for this simple elastic

model are shown schematically in Figure 2.1.

2.2 LINEAR HYSTERETIC G MODEL FOR MATERIALS W{ITH A LINEAR ELASTIC M

Figures 2.2a and b depict the vertical stress-strain and the prin-

cipal stress difference-strain difference relations, respectively, for

this model under uniaxial strain conditions. Since the constrained modu-

lus is linear elastic (M. = Mu = M) and the shear modulus is linear hys-

teretic (Gu > GA), the pressure-volumetric strain and the principal stress

difference-pressure relations for the model are

p =M- (2.9a)

Virgin
loading

a2 ) = (.9b)

S u) (2.9c)

Unloading

and
reloading (nd- a) =)2Gu(*& - ) =  _7 p ( 2.'gd)

Equations 2.9a through d are plotted schematically in Figures 2.2c and d.

The material is first loaded (in uniaxial strain configuration) to a

stress level corresponding to Point 1 and then unloaded to a stress level

corresponding to Point 2.

Figure 2.2c demonstrates an important aspect of the constant shear

modulus model when there is no hysteresis in the iniaxial strain curve

(MA = Mu). Since Gu > GA, the unloading slope of the pressure-

volumetric strain curve is smaller than the loading slope, i.e.

(16< (Mu) < G) (2.10)

16



which results in an energy-generating loop in the pressure-volumetric

strain curve. This is in direct opposition to the available experimental

evidence, which indicates that a true hydrostat would not show an energy-

generating loop and the model should not produce one in the constructed

pressure-volumetric strain curve.

It should be pointed out that the values of G and Gu  are not

arbitrary. In uniaxial strain tests, it has generally been observed that

incremental increases in az are accompanied by increases in ar and

C , that incremental decreases in a result in decreases in ar and

z , and that neither ar nor E exhibits tensile values while sub-

jected to compressive values of az . Thus, M and K remain positive

at all times. This condition restricts both G and Gu by requiring

that

4G< M (2.11a)

4
- u <M (2.lb)

Equations 2.11a and b, however, must be replaced by

2GA < M (2.llc)

2C < M (2.ld)

in order to exclude negative values of Poisson's ratio (Equations 2.7 and

2.8). Therefore, the maximum values of G and Gu  are fixed by the

value of constrained modulus M according to Equations 2.11c and d.

2.3 LINEAR ELASTIC G MODEL FOR MATERIALS WITH A LINEAR HYSTERETIC M

Figures 2.3a and b depict the vertical stress-strain and the prin-

cipal stress difference-strain difference relations, respectively, for

this model under uniaxial strain conditions. Since the shear modulus is

linear elastic (G. = G = G) and the constrained modulus is linear hyster-

etic (Mu > MA), the pressure-volumetric strain and the principal stress

'.7



difference-pressure relations for the model are

P = - z (2.12a)
oirgin

loading .

= "-5 (2.lb)

Unloading p 3 G) z 
(2.12c)

and
reloading ( G ) =

zy r (2-12d)

Equations 2.12a through d are plotted schematically in Figures 2.3c and d.

Unlike the previous model, there is no energy-generating loop in the

pressure-volumetric strain curve associated with this model (Figure 2.3c).

This is due to the fact that Mu > MI , which results in an unloading

slope for the pressure-volumetric strain curve that is larger than the

loading slope, i.e.

(Mu . G) > (M,44 G ~) (2.13)

Thus, utilizing a hysteretic constrained modulus in a constant G consti-

tutive model results in a pressure-volumetric strain curve that is quali-

tatively in agreement with observed behavior. However, the constructed

stress path (Figure 2.3d) is contrary to most of the existing experimental

data, which generally indicate that the unloading stress path should fall

below the loading path. In iiew of Equations 2.12b, 2.12d, and 2.13, it

is clear that unloading stress paths constructed wth this type model will

always fall above the loading paths.

As discussed for the previous model, the value of G for this model

is also restricted by the inequality

2G <M (2.1)

18



2.4 LINEAR HYSTERETIC G MODEL FOR MATERIALS WITH A LINEAR
HYSTERETIC M

Figures 2.)1a and b depict the vertical stress-strain and the prin-

cipal stress difference-strain difference relations, respectively, for

this model under uniaxial strain conditions. Both the constrained and

shear moduli are linear hysteretic, i.e. Mu > MA and Gu > G I The

pressure-volumetric strain relation and the principal stress difference-

pressure relation for the model are shown schematically in Figures 2.4c

and d. The material is first loaded to a stress level corresponding to

Point 1 and then unloaded to a stress level corresponding to Point 2

(Figures 2.4a and b). The constructed pressure-volumetric strain (Fig-

ure 2.4c) and principal stress difference-pressure relations (Figure 2.4d),

however, may follow Paths 1-A or 1-B upon unloading depending on the eela-

tie values of M , M u, G2 ,and Gu. If G

the pressure-volumetric strain curve will unload along the Path 1-A re-

sulting in an energy-generating loop, which is contrary to existing ex-

perimental data, as was pointed out in Section 2.2. If, on the other

hand, (M - G) > (M- . G ), the pressure-volumetric strain curve

will unload along the Path 1-B, which is in general agreement with the

available experLmental data. The stress diifference-pressure relation

will unload along Path 1-A, which is contrary to most of the experimental

data, if Gu/(Mu)- < Gu),<G/(M, - . G,) and will unload along Path 1-B

if Gu/(% - Gj)> Gg!(Mg - A Gt) - Thus, in order for both the

,pressure-vblumetric strain relation and the principal stress difference-

pressure relation to unload along Path 1-B, the following inequalities

must be satisfied for the model

(M -M)>A(G -G) (2.15a)
u A' 3 u A

> u (2.15b)

The values of G and for this model are also restricted as

previously noted by the inequalities

19
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2% < mu  (2.16b)

2.5 LINEAR ELATIC G MODEL FO, WERIALS WITH A NONLINEAR
HYLSTERETIC 14

Figures 2.5a and b depict the vertical stress-strain and the prin-

cipal stress difference-strain difference relations, respectively, for

this model under uniaxial strain conditions. 'The pressure-volumetric

strain and the principal stress difference-pressure relations for the

model are plotted schematically in Figures 2.5c and d. This model is

the nonlinear version of the model presented in Section 2.3 an. Figure

2.3. Althougb the principal febaWres of the models are the same, there

is an additional feature associated with the nonlinear model that is not

evident in a linear model. Since the slope of the stress path varies in-

versely with the constrained modulus, it follows that the stress path has

a curvature that is opposite to that in the corresponding portion of the

uniaxial strain curve. This behavior is illustrated in Figure 2.5 by the

dashed line A-B. The experimental data obtained to date, however, indi-

cate that the stress path is generally continuously concave to the pres-

sure axis throughout the loading cycle (such as Path A-1 in Figure 2.5d)

regardless of the shape of the vertical stress-strain curve.

2.6 LINFiR HYSTERETIC G MODEL FOR MATERIALS WITH i NONLINEAR

HY"STERETIC M

Figures 2.6a and b depict the vrtical stress-strain and the prin-

cipal stresE difference-strain difference relations, respectively. This

model is the nonlinear version of the model presented in Section 2.4 and

Figure 2.4. The constructed pressure-volumetric strain and the principal

stress difference-.,pressure relations Tor the model are plotted schemati-

cally in Figures 2.6c and d. As discussed in Section 2.4, the constructed

pressure-volumetric strain relation (Figure 2.6c) and the principal stress

difference-pressure relation (Figure 2.6d) may follow either Path 1-A or

Path 1-B upon unloading, depending on the relative values of M , M. ,

GA , and Gu

20



In order for both the pressure-volumetric strain relation and the

principal stress difference-pressure relation to unload along Path 1-B,

the inequalities given by Equation 2.15 must be satisfied for this model

at any stress level. To prevent the occurrence of negative [ values,

the values of GI and G must also be restricted by the inequalities

given by Equation 2.16 for any stress level.
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CL APTER 3

CONSTANDT SHEAR MODULUS CONSTITUTIVE MODELS FOR
STRESS STATES REACHING YIELD

The procedure used to construct the various constant G mcidels dis-

uussed in this chapter is basically the same as that described in Chap-

er 2. The distinction between the two procedures becomes apparent only

when a stress state satisfying the von Mises yield condition (G = k) is

obtained.' When such a stress state is reached, the value of shear modu-

lus becomes effectively equal to zero and the constrained and bulk moduli

become equal. Two different models are considered ii, this chapter as

outlined in Section 1.2.

3.1 LINEAR ELASTIC G MODEL FOR MATERIALS WITH A BILINEAR
HYSTERETIC M

Figure 3.1a depicts the vertical stress-strain relation for this

model under uniaxial strain conditions. The loading portion of the

stress-strain curve is approximated with two straight lines haring slopes

and where M4 > 1 . The unloading part of the curve is alsoand whre >M an1M

represented by two straight lines with slopes Mu and M2  where
1 2 u u

M > M u . The principal stress difference-strain difference relation for

the model is shown in Figure 3.1b. The material first behaves as a lin-

ear elastic G model with a linear hysteretic constrained modulus (Sec-

tion 2.3) until a stress state corresponding to the von Mises yield limit

k is reached. This corresponds to Point 1 in Figure 3.1. Physically,

Point 1 is often associated with the forcing of entrapped air into solu-

tion and the subsequent saturation of the soil specimen, which results in

a stiffer oehavior in uniaxial strain or hydrostatic compression and a

weaker behavior in shear.

Upon yielding, the material behaves as though it were a constrained

fluid exhibiting no shear resistance. The slope of the vertical stress-

strain curve breaks at Point 1 and becomes equal to A . The slope of
the principal stress difference-strain difference curve also breaks at

Point 1 and becomes equal to zero. The stress difference and vertical

stress magnitudes at Point 1 are, respectively, V3_ k and 13 kM/2G

28



During unloading from a stress state corresponding to Point 2 (Figures 3.1a

and b), the material behaves as a linear elastic solid in shear (G, = G

G), but since M , it exhibits hysteretic effects in the hydrostatic
part of ite deformation unless uM - - G = M£ . When the lower yield sur-

face corresponding to Point 3 is reached, the material again flows plasti-

cally. The slope of the vertical stress.-strain curve breaks at Point 3 and

becomes equal to Mu and the slope of the principal stress difference-
S2

strain difference curve becomes equal to zero. Since Mu > M I, hysteretic

volume change continues to increase with subsequent further unloading.

Equation 2.1 can now be utilized to calculate The pressure-volumetric

strain and the stress difference-pressure relations associated with a state

of uniaxial strain. During loading from Point 0 to Point 1 (Figure 3.1),

the pressure-volumetric strain and the stress difference-pressure relations

become

p = (m- G) (3.1a)

(z - ;r)(= i 2G) (3-1b)

Equations 3.1a and b apply only up to Point 1, which corresponds to

p -4. G) (3.2a)

(o - ar) = V3k (3.2b)

During loading from Point 1 to a stress state corresponding to Point 2, the

material flows plastically and the shee- naodtdus becomes effectively equal

to zero. Accordingly, the pressure-volumetric strain relation becomes

=M 2(3.3)

During unloading from Point 2 to a stress state corresponding to Point 3,

the material behaves elastically in shear resulting in the following stress

difference-pressure relation
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At Point 3, the yield surface is intersected again, this time on its
"lower" side so that

(a, - ar) = 5 k)

The pressure-volumetric strain curve, however, may unload along Paths 2-A

or 2-B as shown in Figure 3.1c, depending on the relative values of the

constrained and shear moduli used for the model. The mathematical expres-

sion describing the pressure-volumetric strain relation for the stress

range between Points 2 and 3 is given by

p = Ml- G(3.6)u- "3 z

If - G) <M , the pressure-volumetric strain curve will unload

along Path 2-A, resulting in an energy-generating loop, which contradicts

available experimental data. If, on the other hand, (M . G) > M 2,

the pressure-volumetric strain curve will unload along Path 2-B, which is

in general agreement with current experimental data. If unloading is con-

tinued beyond Point 3, the material flows plastically again and the

pressure-volumetric strain relation becomes

P M2  (3.7)u z

Equations 3.1 through 3.7 completely describe the behavior of the

model under conditions of uniaxial strain. In order to avoid an energy-

generating loop in the pressure-volumetric strain relation, the constrained

and shear mc iuli must be restricted by the following inequality

- AM1 3 ) > . G (3.8)

To avoid np"ative values of v , the value of G is further restricted

by the inequality

2G<M1 (3.9)2G
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3.2 LINEAR ELASTIC G MODEL FOR MATERIALS WITH A NONLINEAR
HYSTERETIC M

This model is the nonlinear version of the bilinear hysteretic model

presented in Section 3.1. Figures 3.2a and b show the vertical stress-

strain and the principal stress difference-strain difference relations,

respectively, for this model under conditions of uniaxial strain. The ma-

terial first behaves as a linear elastic G model with a nonlinear hys-

teretic constrained modulus (Section 2.5) until the plastic yield stress

is reached. This corresponds to Point 1 in Figure 3.2. Upon yielding,

the slope of the principal stress difference-strain difference curve

breaks and becomes equal to zero. The slope of the vertical stress-strain

curve, however, increases with continued application of vertical stress.

The magnitude of the stress difference at Point 1 is V-3 k , where k is

the von Mises yield limit. The magnitude of the vertical stress at Point 1

is the value of a. corresponding to G = . During unloading from
z 2G

a stress state corresponding to Point 2, the material behaves as a linear

elastic solid in shear and exhibits nonlinear hysteretic behavior in the

hydrostatic part of the deformation, until the lower yield surface corre-

sponding to Point 3 is reached. The slope of the stress difference-strain

difference curve breaks again at Point 3 and becomes equal to zero. The

slope of the vertical stress-strain curve continuously decreases with fur-

ther unloading of the vertical stress beyond Point 3.

This description of the vertical stress-strain relation is more real-

istic than the bilinear representation presented in Section 3.1. Since

the constrained modulus in this case depends on the stress level, the con-

struction of the model must be carried out incrementally utilizing Equa-

tions 2.3 and 2.4 and imposing the condition that (* - ' ) = 0 on the1z Cr
yield surface.

The constructed pressure-volumetric strain and stress difference-

pressure relations for the model are plotted schematically in Figures 3.2c

and d, respectively. In order for the pressure-volumetric strain curve

(Figure 3.2c) to avoid ixhibiting an energy-generating loop and to unload

along Path 2-B, the following inequality must holi in ai stress increieliL
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> Z G (3 •1o)

As was pointed out previously, the above inequalliy insures that the un-

loading slope of the pressure-volumetric curve is greater than the corre-

sponding loading slope in any stress increment. The shear modulus is

further restricted to positive values of v by the inequality

2G (3.11)

in any stress increment. When coupled with Equation 1.4, the above in-

equality also restricts the slopes along the uniaxial strain-stress paths

plotted in principal stress difference versus pressure space to positive

values less than 3, i.e.

z r) < 3 (3.12)
p )uniaxial

strain

Tb-' stress path in Figure 3.2d has a curvature in the elastic range

(Path 0-1) that is opposite to that in the corresponding portion of the

vertical stress-strain curve (Figure 3.2a). Thus, while the vertical

stress-strain curve stiffens as pressure increases, the stress path

softens until the material yields. The unloading stress path between

Points 2 and 3 for this model apprf aches a straight line at high pres-

sures where the unloading constrained modulus is essentially linear and

becomes convex to the pressure axis at low pressure where the hook or

tail in the vertical stress-strain cuive starts developing. Thus, if the

constrained modulus is continuously hardening, the slope of the calcu-

.laLed stress path is continuously reduced; if the constrained modulus

so_-fens, the calculated stress path becomes progressively steeper. This

latter calculated curvature when unloading reaches low pressure is in

direct. contrast with available experimental uniaxial strain-stress path

data.
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-CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The results from this simple examination of several highly idealized

material descriptions indicate that manir of the behavior characteristics

of real earth materials often recorded during laboratory tests can be sim-

ulated, at least qualitatively, by elastic-plastic constitutive models of

the consta.t G-type by observing certain restrictions on the material

property parameters G and M . Other characteristic phenomena, however,

cannot be mirrored with this type model under any circumstances.

For example, even if Mu  is always greater than MA at any stress

level, only by utilizing the linear hysteretic G model and observing

the following inequalities,

G M
N M) > (Gu - GL) and u > 1

M3 u -

can one insure that pressure-volumetric strain curves will be constructed

that exhibit energy-absorbing hysteretic behavior rather than energy-

generating loops when unloaded from any stress level. These same inequal-

ities must also be adhered to if unloading pathr, of principal stress dif-

ference versus pressure for a 'state of uniaxial strain are to fall below

the loading path rather than above it. In order to be consistent with

the experimental observation that axial and radial stresses simultane-

ously increase or decrease during loading or unloading, respectively, and

also restrict Poisson's ratio values to be greater than zero at any stress

level, it is necessary to observe +he inequalitie&

2GA < M and 2G < M

The linear hysteretic G model will obviously incorporate the well known

ability of soils to dissipate energy in shear, even at subyield stress

levels.

Uniaxial strain tests on undisturbed natural soils, however, usually
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reveal a reversal of curvature in oz versus ez plots during loading,
first softening and then hardening, while the corresponding (a. - ar) ver-

sus p plots generally indicate monotonically softening behavior. Any con-

stant G model., however, if coupled with a loading constrained modulus
that reverses curvature, will of necessity have a curvature reversal during

loading in its ( -ar) versus p curve, unless a plastic yield criterion

is invoked at a pressure level less than that of the inflection point. On
the other hand, reversals of curvature have never been observed in plots of

unloading constrained moduli; yet unloading stress paths frequently exhibit

directional changes in curvature. Again, if the constrained modulus un-

loading curvature does not change sign, then the unloading stress path cur-

vature calculated with any constant G model cannot. In fact, when unload-

ing reaches low pressure or approaches the lower-bound or negative plastic

yield limit, the constant G calculated stress path curvature is always in

direct contrast with available experimental uniaxial strain test data,

While it is obvious that elastic-plastic constitutive models formu-

lated with constant values of G can match some of the dominei~t features

exhibited by soils and weak rocks during uniaxial strain tests, it is

equally obvious that some feature-s can only be mirrored in a limited fash-

ion and others not at all. It is also quite obvious that any model that is

linear in G cannot possibly exhibit the nonlinear stress-strain behavior

usually obsezved during triaxial compression tests.

4 .2 ECOMMENDATIONS

Thus, it is recommended that research efforts to develop realistic

mathematical constitutive models of earth media for use in free-field

groiuid shock calculation codes continue. In the authors' opinion, such ef-

forts should be governed by the following criteria:

1. The models should be capable of qualitatively and quantitatively

matching the salient nonlinear and hysteretic response characteristics of

earth media, not only as determined from the uniaxial strain test, but also

t detern.icd from a variety of other laboratory test boundary conditions.

If confidence is to be placed in a ground shock code which must calculate

earth material response to an unknown number of varying states of stress,
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transifit boundary loadings, and erratic site geometries, the material

model usea should at least have the capability to reasonably duplicate the

response of relatively ".'mogeneous specimens of simplified geometries

loaded in the laboratory along known stress paths under carefully controlled

conditions.

2. The numerical values of the coefficients defining the models

should be readily derivable from laboratory test data. It is most impor-

tant that the coefficient values not be merely a set of numbers generated

through a trial and error "black box" routine to fit a given set of data,

but that they have physical significance in terms of compressibility, shear

stren th, etc., so that when extrapolating to different materials, rational

engineering judgments can be made as to their relative magnitudes based on

geologic descriptions, mechanical properties, and other conventional

indexes.

3. Theoretical restrictions, such as those imposed by uniqueness and

continuity considerations, should be satisfied to the maximum practicable

extent. It should be kept in mind, however, that earth materials are al-

most invariably nonhomogeneous, anisotropic, stress-history dependent,

chemically entangled mixtures of gasas, liquids, and solid particles.

Therefore, it seems unreasonable to expect that constitutive models for

these materials can be developed which satisfy all the mathematical re-

strictions imposed through assumption of formal continuous media theories

while accurately mirroring all of the details observed during various lab-

oratory tests. Obviously, some compromises will inevitably have to be

made; parametric studies to evaluate the relative importance of ignoring

certain features of either data or theory are needed.

4. Any ground shock prediction technique or code should be thoroughly

checked against the available analytical solutions and a variety of actual

field experiments. Efforts to incorporate new constitutive models into

generalized codes for calculating transient ground shock effects from ex-

plosive events should also include attempts to obtain analytical or closed-

form solutions to special problems of wave propagation through materials

containing the principal features of the new models. Presumably, improved

models should provide improved correlations with existing field data.
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'fhe above criteria axe admittedly more pragmatic than theoretical.

However, the authors strongly believe that any critical analysis of

material models should include examination in the light of all these

criteria ..n order to maintain a balance in perspective.

[
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APPENDIX A

CONSTITUTIVE EQUATIONS AND UNIAXIAL STRAIN BEHAVIOR
FOR A PRANDTL-REUSS MATERIAL

A.1 PURPOSE

When constructing constitutive models to represent the rather compli

cated nonlinear hysteretic behavior of real earth materials using incre-

mental stress-strain relations based on classical elastic-plastic theory,

it is helpful to review the equations governing the behavior of an ideal

elastic-plastic material and examine its response under typical test

boundary conditions.

The purpose of this appendix is to perform such a function for per-

haps the most widely known ideal elastic-plastic material, i.e. the

Prandtl-Reuss material, and the most useful test conditions for blast-

oriented problems, i.e. loading and unloading states of uniaxial strain.

A.2 CONSTITUTIVE EQUATIONS

A.2.1 Yield Criterion. The yield criterion associated with the

Prandtl-Reuss material is the well-known von Mises criterion given by

T' = k (A.1)

where k is a material constant related to the cohesive strength of the

material. Equation A.1 describes a right-circular cylinder in the prin-

cipal stress space with its central axis the line of hydrostatic stress

as shoin in Figure A.l.

According to the basic postulate of the plasticity theory, the mate-

rial would flow plastically, undergoing plastic as well as elastic strains

when Equation A.1 is satisfied. The total strain is then the sum of the

elastic (recoverable) strain and plastic or permanent strain. When the

stresses are less than those satisfying Equation A.l, the material will

Undergo elastic strains only; i.e., the material behsves as a linear

elastic solid. In incremental notation, these conditions can be written

as
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where c.. = components of elastic strain increment tensorii

P. =components of plastic strain increment tensorii

According to Hookes' law, the elastic strain increment tensor is given by

.. + - (A.3)
ii E- aii 2 "Kk ij

where E = Young's modulus of elasticity.

The plastic strain increment tensor can be derived from the yield

criterion (Equation A-.1) by utilizing the theory of plastic potential,:

g = x (A.4)clj b lij
iii

where x a positive scalar factor of proportionality
, 2

A.2.2 Stress-Strain Relationship. In view of Equation A.4 and the

function f , the plastic strain increment tensor becomes

g _ (J' 2) = s(A-5)

Since s kk 0 , it follows from Equation A.5 that (

indicating that no plastic volime change can occur in the plastic range

for Prandtl-Reuss material. Hence, all volume change is elastic, i.e.

e (A.7)

kk kk

ho



and

p Kk (A .8)

Accordingly, the plastic deviator strain increment tensor e?. is the.p3
same as the plastic strain increment tensor . The total deviator

13
strain increment tensor e.. then becomes

13

e "eij= e ij (A.9)

where e e /2G = components of elastic deviator strain increment ten-

sor. Employing Equation A.5 in Equation A.9 results in the following re-

lation for the total deviator strain increment tensor

S.
e _13+ Xs (A.lO)
ij 2G ij

Multiplying both sides of Equation A.1O by 2Gsij yields

2s = sisij + ;,.Ps.s.. (A.11)

ij ij ij iSi

or

2GW + 2 LGXJL (A.12)

where W = sijei =the rate of work or increment of internal energy due

to distortion and J' sijsij . Since J k2  constant during yield-
2 i~j2

ing,J = 0 and Equation A.12 yields the following relation for the pro-

portionality factor X

2k 2 (A.13)2k2

It is to be noted that W is only due to plastic deformation. In

view of Equation A.13, the total deviator strain increment tensor (Equa-

tion A.l0) takes the following form
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e (;.. + S (A.1)eij k i 2 sii) A

Equation A.14 can be inverted to solve for the deviator stress increment

tensor sij , i.e.

5 =. - s )  (A.15)
s'ij 2k2

Equation A.15 (or Equation A.14) is the Prandtl-Reuss stress-strain rela-

tion; it applies in the plastic range when J' = k2  and W > 0 . If
J2

W < 0 , unloading is taking place, i.e. the behavior is only elastic and

Equation A.3 applies. If W = 0 the loading is said to be neutral.

The above results can be summarized in the following form

5.
ei -- when V < k (elastic (A.16a)

2G loading)
1 i ' + GW sij

when- =k , > 0 (A.16b)
ij G \1 k 2.J w.en J2=k

e j = 2 when W < 0 (alastic (A.16c)unloading)

In order to obtain the components of the stress increment tensor aij ,
Equation A.16 must be combined with Equation A.8.

A.3 BE2AVIOR UNDER CONDITIONS OF UNIAXIAL STRAIN

For uniaxial strain conditions in a cylindrical coordinate system

r,e,z , the following boundary conditions prevail (Figure A.2)

E = c O

r e

r e z (A.17)

2
z 3Z

In the elastic range, the behavior of the material is governed by Equa-

tion A.3, which can also be written in the following form
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sij +  i (A .18)
ij 2G 3k i Aj8

Since r = = 0 Equation A.18 yields the following relations betweenr e
components of deviator stress increment and p

2G (A9)
r 6 pA.1

In view of the fact that Skk = 0 , Equation A.19 gives

-2s (A.20)
z r 3K

Utilizing the relation s = - p in Equation A.20 results in the fol-

'16 ng relation for the vertical stress increment az

Cz4GK (A.21)

Since for uniaxial strain conditions kk = , and in view of Equations

A.7 and A.8, the vertical stress-strain increment relation in the elastic

range becomes

= (K + 4G+  =M4 (A.22)

From Equation A.19, the principal stress difference, in incremental form,

is

--r) (A.23a)

indicating that the slope of the uniexial strain-stress path in the

elastic range is equal to 2G/K . From the relations between constants

in elastic theory, it can readily be shoum that

2G *1- 2v) (A.23b)
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w1ic14, Aien coupled with Equation A.23a) gives the following relation for

the condition of uniaxial strain

4 V • (A 24 )- V=r --- s (O.2h

In view of Equations A.8, A.17, and A.23, the Principal stress difference-

strain difference relation for uniaxia. strain becomes

(*z -*r) = 2G( - )= 2G (A.25)

For v'j.rgin loading in the elastic range, Equations A.17 through A.25

can be used without the dot notation.

In the uniaxial strain test

= (a z - or) (A.26)

Thus the material wiill yield when

1 (a,- r) = k (A.27)

In view of Equations 2.8, A.21, and A.27, the value of vertical stress

a, at yield becomes

Y2 k (A.28)
'z 2G

Thus, when az reaches the value given by Equation A.28, the material

yields and the continued application of vertical stress causes the mate-

rin.l to move along the yield surface undergoing plastic as well as elas-

tic strains. In the plastic range Equations A.18 through A.25 no longer

%pply and recourse to Equations A.8 and A.15 is necessary.

According to Equation A.15, the deviator stress increment z in

the plastic range is given by
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s z -2Ge - 2 s Z  (A.29)

The rate of work W for conditions of uniaxial strain reduces to

- s zez + 2srer (A.30)

or, utilizing the fact that sk =kk 0

U = S (A.31)

Substituting Equation A.31 into Equation A.29 and utilizing, the relation
* =2.
e = Z results in the following expression for s

= G _I2
ze3=Zk 2 ZZ

Sz 3 z" 2 , z z  (A.32)

In the plastic range

ka2  , (A.33)
23 r~ z

and Equation A,32 reduces to

4Z GZ " 0 (A34

Since sz =0, sr  0 also, and

= s +p=p (A.35a)z

ar = z  (A.35b)

which indicates that the material behaves as though it were a fluid once

it has reached its limiting shear resistance. Substituting Equation A.8

into Equation A.35a and considering the fact that kk Z z the verti-

cal stress-strain increment relation in the plastic range becomes
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F.

. (A 36)

z

Thus, the loading slope of the az versus C curve breaks or so'tensZ

when yie'ding occurs and becomes equal to the bulk modulus. Accor&Lxngly,

the loading slopes of the principal stress -difference-pressure curve and

the principal stress difference-strain difference curve become zero. The

slope of the pressure-volumetric strain curve, however, is not affected

and remains constant.

Once the material uuloads, it behaves as a linear elastic solid

again, satisfying Equations A.18 through A.25. If unloading is contin-

ued until the lower yield surface corresponding to

a,) = -k (A.37)

is reached, the material flows plastically again and Equations A.8 and

A.15 govern the behavior of the material.

The foregoing analyses are depicted schematically in Figure A.3.

From Figure A.3 it can readily be seen that a Prandtl-Reuss material ex-

hibits no hysteretic effects during a hydrostatic test. Furthermore, for

a Prandtl-Reuss material, the vertical stress-strain curve from a uniax-

ial strain test would break or soften when yielding occurs and remain

concave to the strain axis with continued application of vertical stress.

These observations are generally contrary to existing experimental data

on the stress-strain behavior of earth materials even from a qualitative

point of view. This simply illustrates a fact of no great surprise, i.e.

that the ideal linear elastic-plastic (Prandtl-Reuss) model does not ade-

quately describe the stress-strain behavior of real, nonideal soils--in

particular the behavior under conditions of uniaxial strain.
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FiguLre A.2' Uniaxial strain configuration in
cylindrical coordinate,
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