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ABSTRACT

Some of the theoretical and experimental implications of isobropic
incremental elastic-plastic constitutive models fornulated with constant
values for the shear modulus ¢ are examined. ‘Iwo types of constant G
models are considered, i.e. a single constant value of G for loading and
unloading and two separate values of G , one for loading and one {or un-
loading. These material property specifications sre successively coupled
with four increasingly more real.stic idealized stress-strain relations
representing constrained modulus M funclions obtained for a state of
uniaxial strain and a von Mises-type limiting shear envelope characteristic
of that specified fc the classical Prandtl-Reuss material. The reswlting
models are used to calculate mean normal stress or pressure versus volu-
metric strain and uniaxial strain principal stress difference versus pres-
sure relations for qualitative comparison with observed test phenomena.

The results from this simple examination of several highly idealized
material descriptions indicate that many of the behavior charecteristics
of real earth materials often recorded during laboratory tests can be simu-
lated, at least qualitatively, by elastic-plastic constitutive models of
the constant G type by observing certain restrictions on the material
property parameters G and M . Other characteristic phenomena, however,
cannot be mirrored with these types of models under any circumstances,

The constitutive equations of a classical Prandtl-Reuss material and
the behavior of this ideal model for conditions of uniaxial strain are in-

cluded in an appendix for reference and informational purposes.

preceding fage blank
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PREFACE

The work described herein is part of a continuing research effort
being ccnducted by personnel of the Soils Division, U, 8. Army Engineer
Waterways Experiment Station (WES), aimed at developing physically re-
alistic and theoretically satisfying constitutive models for a broad
range of soil and rock materials for use a: input to free-field ground
shock calculation computer codes. This par.icular study, which deals in
seneral terms with relatively simple idealizations of material behavior,
developed as an adjunct to an investigation begun by CPT J. A. Spitz-
nagel, CE, into the use of constant shear modulus-type constitutive
models to represent the actual behavior observed in the WES Soil Dynamics
Laboratory during numerous tests on soils and weak sedimentary rocks.

The theoretical analyses of these idealized models were performed during
the period February-April 1971 by Dr. Behzad Rohani; this paper was
written by Dr. Rchani and Dr. J. G. Jackson, Jr.

The project is sponsored by the Defense Nuclear Agency as part
of their Nuclear Veapons Effects Research Subtask SB209, "Propagation
of Ground Shock Through Earth Media." The work is being performed
under the jeneval direction of Messrs. J. P. Sale, R. G. Ahlvin, and
R. W. Cunny, of the Soils Division, WES. The Director of WES during the
preparation and publication of this report was COL Ernest D. Peixotto, ;

CE. Technical Tirector was Mr. Fred R. Brown.
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CHAPTER 1
INTRODUCTION
1.1 BACKGROUND

The constitutive equations currently used to represert various types
of earth media in two-dimensional ground shock calculation codes are
based on the assumption of isotropic incremental elastic-plastic material
behavior. In the elastic range, material behavior is described by the
following incremental constitutive relation that effectively separates

the deformation into hydrosiaiic and deviatoric components.l

S, 2 1 \
Op5 = KepBys + (654 - 3 Sadyy) (1.1)
where 5ij = components of the total stress increment tensor
-3 + o
"3l Tty
K = bulk modulus = —&-
. : kk
€ = sum of the incremental normali strains = incremental change

in volumetric strain

813 = Kronecker deita .
S, .
G = shear modulus = % =
eij
eij = components of the total strain increment tenscr
lo . ~
—-gekksij'l'eij -
6kk = sum of the incremental normal stresses = 3ﬁ
.ij = components of the incremental stress deviator tensor
e. . =

13 components of the incremental strain deviator tensor

1 Blastlic range as used in this paper does not imply linear reversible
behavior of the material, but rather refers to all stress-strain re-
sponses for deviatoric stress states less than that defined by an ex-
plicit plastic yield function.
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Nonlinear behovior is incorporated by making K and G functions of
stress and/or strain invariants. Hysterelic behavior is taken into ac-
countl. by usine different values of K and G on loading and unloading.
A pseudoplastic behavior is thus built into the incremental constitutive
relation (Equation 1.1) in the form of permanent compaction prior to
yield,

Classical plasticity is incorporated into the niodel by specifying a
yicld condition thait effectively serves to limit the maximum shear
strength of the material. The yield surface is usually a combination of
the Prager-Prucker and von Mises types, often with a functional form that
ensures a smooth transition from the former to the latter with increasing
pressure (References 1 and 2).

With zero work hardening, the yield funciion is specified by a rela-

tior: of the form

,/(né)max = #(p) (1.2)

4 s . . 1
second invariant of the stress deviator tensor = 3 5.8

I

where Jé

1]

L
P = mean normal stress or pressure = § Opk

n

S. components of the stress daviator tensor

ij

From within this generalized description of elastic~plastic material
behavior, many specific descriptions are available, depending upon the
various restrictions placed on the constitutive property parameters K ,
G, and ‘KJé)m;; . Onc of the more common versions involves consider-
able flexibility in describing volume change chnracteristics by permit-
inr K to be defined by nonlinear polynomial functions while restricting
the description of shear behavior 4o constant values for G and ‘/(Ié)max .
The sipnificance of such resirictions can perheps best be illustrated by
~xamining the behavior of these constant shear modnlus models when suo~
jected to the states of stress most often employed in the laboratory to
exporimentally deterine the stress-sirain response of actual esrth
matorials.

The testing technique most frequently used for studying stress-strain

8




response in the laboratory in conjunction with ground sheck problems in-
volves confiring undisturbed specimens so that they deform in an undrained
state of uniaxial strain under an applied transient stress (Reference 3).
The test results are usually illustrated through a plot of verticsl stress
versus vertical strain; the slopes of such plots define the constrained

modulus M , i.e.2

G
)
M=|-=2 =K+§‘G (1.3)

€z /uniaxial
strain

Triaxial shear tests are normally used to determine relationships between
\ﬁ?ZS;;; or maximum principal stress difference (cz - dr)max and p .
For a given material, a unique path of (oz - Of) versus p is also de-
scribed by a material undergoing uniaxial strain loading and unloading;
vhe slopes along a stress path of this type define the ratio of shear
modulus to bulk modulus, i.e.

.

g = 0

2 = & (1.%)
p uniaxial
strain

Thus, as an aid in understanding the practical significance of constant

G constitutive models, it is helpful to examine, for a given uniaxial
strain o, versus Cz relation and a given triaxial shear envelope, the
characteristic features of the corresponding p versus €kk and wniaxial
strain (cz - or) versus P relationships imposed by the further specifi-
cation of a constent value for G .

1.2 FURPOSE AND SCOPE

The purpose of this paper is to examine some of the theoretical and

2 The laborstory tests currently used for soil property investigatious

are axially synmetric so that the specimens can ve analyzed in terms
of coordinabtes =z and r denoting vertical and radial directions,
respectively.




T TR o ra ey g

experinental implications of isotropic incremental elastic-plastic consti-
tutive models formulated with constant values f2r the shear modulus G .
Two types of constant shear modulus models will be counsidered. The first
model, in vwhich one single constant value of G 1s used for loading and
unloading, is referred to as a "linear elastic G model." The second,

in which two separate constant values of @ are specified, one for load-
ine and one for unloading, is called the "lincar hysteretic G model."
Shear stress-shear strain diagrams for both models are given in Figure 1.l.

Four idealized uniaxial strain o, versus GZ relations are used
in conjunction with the two constant G relations. The first represents
the simplest idealization, i.e. that defined by a linear elastic con-
strained modvlus. The second is in the linear hysteretic form defined by
separate constant values for M , i.e. one for loading and one for unload-
ing. The third represents a bilinear hysteretic constrained modulus de-
scription and the fourth a general nonlinear hysterelic description. The
four relations are diagramed in Figure 1.2.

It is assumed that plastic behavior is pgoverned by a von Mises~type
yield criterion as postulated for the classical Prandtl-Reuss material.
Chaptei 2 presents an analysis of six models, developed by successively
coupling the two constant G descriptions (Figure 1.1) with the M de-
scriptions outlined in Figures 1.2a, b, and d, subjected to maximum devi-
atoric stress levels insuffizient to invoke the yield criterion. Two
cases in wnich the deviatoric stress paths reach the plastic yield sur-
face are examined in Chapler 3; these cases are defined by successively
coupling the linear elastic constant G descriptions with the two M
descriptions given in Figures 1.2c and d.

For reference and informational purposes, the mathematical constitu-
tive equations for a linear elastic-plastic model of an ideal Prandtl-
Reuss material are presented and its uniaxial strain behavior is examined
in Appendix A.

10
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Figure 1.1 Principal stress difference versus
principal strain difference relations for lin-
ear elastic and linear hysteretic G models.
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Figuoo 1.2 Vertical stress versus vertical strain curves for
conditions of uniaxial strain.
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CHAPTER 2

CONSTANT SHEAR MODULUS CONSTITUTIVE MODELS
FOR STRESS STATES BELOW YIELD

The basic constitutive relationship in the elastic range is Equa-
tion 1.1, which contains two material ccnstants (or functions) K and
G . Equetion ).l can also be written in terms of constrained modulus M
and shear modulus G by utilizing Eguation 1.3, i.e.

‘3’13 = Mékksij + EG(éij - ékkaij) (2.1)

The procedure adopted in this chapter to study the behavior of the two
constant G models for subyield stress states (elastic range) is to as-
sume that M and G are known for each model and then substitute in
Equation 2.1 to calculate the pressure-volumetric strain or X relation
and the uniaxial strain path of principal stress difference versus pres-
sure. The calculated behavior is then discussed in terms of the general
behavicr observed during tests on actual eerth materials.

If M, and G

y £ ;
tively, for virgin loading and Mu and Gu denote the corresponding

denote the constrained and shear moduli, respec-

values for unloading, the expressions for the pressure-volumetric strain

relation and the stress path associated with the uniaxial strain test

becomz
([ L
Pr (Mz "3 Gz)ez = K2y (2.22)
Virgin é
loading G oG
(6,-0) =[—F—)p==2p (2.2b)
z r M -2g Kz ’
£ 372
[ b
p=‘<M--G € =Ke€ (2.2¢)
Unloading wo3uf o vz )
and
reloading| . . 26, .G,
- (GZ - O'r) = m P = -?.- ~(2.2d)
\ u - 3 Yu

13
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The values of loading and unloading shear moduli are constant throughout
the calculations, whereas the values of loading and unloading constrained
moduli could vary with stress level, in which case the censtruction of
the model must be carried out incrementally by solving for compatible
values of (&Z - ér) and P corresponding to each pair of &z,éz values.
The pertinent incremental relations are

(oZ - Oi) = 26 ,€, for loading (2.3a)
( , r) = 26.¢€, for unloading-reloading (2.3b)
b=o -=<(c -0 (2.3¢)

z 3 'z T '

The total quantities needed for plotting pertinent stress-strain and
stress path relations are then obtained from the following expressions:

(o), = (%), * 0, (2.ba)

(), = (2), )" % (2.10)

(2" %), " (%" %), " (o, - o) (2.kc)
(p); = ()4 * P (2.44)

where 1 =1, ..., m . The calculation is performed in each increment
of loading or unloading as if the material were elastic.

Six different models are considered in this chapter using various
_combinations of constrained and shear moduli as outlined in Section 1.2.

The models are presented below in the order of increasing complexity.

14
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2.1 LINEAR ELASTIC G MODEL FOR MATERIALS WITH A LINFAR ELASTIC M

This model corresponds to a linear elastic material and is obviously
the simplest possible constitutive model available. It is presented here
only to demonstrate the methodology used in this chapter. Since both the
shear modulus and the constrained modulus are elastic, it implies that
M =Mu=M and G

4 4
lation and the stress path associated with a state of uniaxial strain for

= Gu = G so that the pressure-volumetric strain re-

this model become

p = (M -4 G)e,, (2.5)
_ G
<°2 - o&) = (—"—_E-:) P (2.5b)
M-=3G
3
From thermodynamic considerations, it is necessary to impose the follow-
< ing inequalities on the shear modulus G and on Poisson's ratio v
G>0 (2.6a)
< l l
; -l<v<3} (2.6b)

in erder to insure the positive definite character of the quadratic frm
of the elastic strein energy function (Reference 4). WNegative values of
= v , however, have not been found experimentally for any isotropic elastic
1 material. Thus, from purely phenomenological congsiderations, the re-
striction on v should be revised to limit it to positive values, i.e.
: 1
] | O<v<3 (2.7}
i The relationship between v, M, and G is given from elastic theory

as

M-2G

A\ =m (2.8
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The pertinent stress-s .rain and stress path plots for this simple elastic

model are shown schematically in Figure 2.1.

2.2 LINEAR HYSTERETIC G MODEL FOR MATERTALS WITH A LINEAR EIASTIC M

Figures 2.2a and b depict the vertical stress-strain and the prin-
cipal stress difference-strain difference relations, respectively, for
this model under uniaxial strain conditions. Since the constrained modu-
lus is linear elastic (Mz = Mu = M) and the shear modulus is linear hys-
teretic (Gu > Gz), the pressure-volumetric strain and the principal stress

difference-pressure relations for the model are

(. I .
p = (M -2 G;)ez (2.92)
Virgin
loading § oG
(o, ~ o) =[———p (2.90)
. M-3G
(
. _ )4 .
p = (M - 3 Gu)Ez (2.9¢)
Unloading
and
R 2G
reloading . * N L u ,
(o, - 0,) = ;;tfzgz;' P (2.94)
- ' 3

Equations 2.9a through d are plotted schematiéally in Figures 2.2c¢ and 4.
The materiai is first loaded (in uniaxial strain configuration) to a
stress level corresponding to Point 1 and then unloaded to a stress level
corresponding to Point 2.

Figure 2.2c demonstrates an important asgpect of the constant shear
modulus model when there is no hysteresis in the 1+laxial strain curve
(M

£
volumetric strain curve is smaller than the loading slope, i.e.

(M - % Gu) < <M~- -1-3* G!) (2.10)

16

= Mu). Since Gu > GE , the unloading slope of the pressure~
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which results in an enecrgy-generating loop in the pressure-volumetric
strain curve. This is in direct oppasition to the available experimental
evidence, which indicates that a true hydrostat would not show an energy-
generating loop and the model should not produce one in the constructed
pressure-volumetric strain curve.

It should be pointed out that the values of Gz
arbitrary. In uniaxial strain tests, it has generally been observed that

and G are not
u

incremental increases in c, eare accompanied by increases in o, and
GZ , that incremental decreases in o, result in decreases in o, and
€, » and that neither o, nor € exhibits tensile values while sub-
jected to compressive values of o, Thus, M and K remain positive
at a&ll times. This condition restricts both G, and Gu by requiring

)/
that

L
-§G2 <M (2.11a)
L G. <M (2.11p)
3u )

Equations 2.1le and b, however, must be replaced by $

2Gz <M (2.11c)

26, <M (2.114)

in order to exclude negative values of Poisson's ratio (Equations 2.7 and
2.8). Therefore, the maximum valueg cof GL and Gu are fixed by the
value of constrained modulus M according to Equations 2.1lc and d.

2.3 LINEAR ELASTIC G MODEL FOR MATERIALS WITH A LINEAR HYSTERETIC M

Figures 2.3a and b depict the vertical stress-strain and the prin-
cipal stress difference-strain difference relations, respectively, for
this model under uniaxial strain conditions. Since the shear modulus is

linear elastic (Gz = Gu = () and the constrained modulus is linear hyster-

etic (Mu > Mz), the pressure-volumetric strain arkd the principal stress




difference-pressure relations for the model are

f
p= (1, -2 q)é (2.120) |
z 3 7, . a ‘(‘
YVirgin ‘
loading < . o .
(°i - cf) = ;r-:-grg P (2.12b)
- L 3
(. x \e
Unloading
and
reloading . LN 2G . .
(0, - 6,) = ——E—% Y D (2.124)
\ 3

Equations 2.12a through d are plotted schemstically in Figures 2.3c and d.

Unlike the previous model, there is no energy-generating loop in the
pressure-volumetric strain curve associated with this model (Figure 2.3c).
This is due to the fact that Mu >kMz s
glope for the pressure~volumetric strain curve that is larger than the

L i ,
(Mu -3 G) >(M£ -3 G) ' (2.13)

Thus, utilizing a hysteretic constrained modulus in a constant ¢ consti-

which results in an unloading

loading slope, i.e.

tutive model results. in a pressure-volumetric strain curve that is quali-
tatively in agreement with observed behavior. However, the constructed
-stress path (Figure 2.3d) is contrary to most of the existing experimental
data, which generally indicate that the unloading stress path should fall
below the loading path. In view of Equations 2.12b, 2.124, and 2.13, it
is clear that unloading stress paths constructed witn this type model will
always fall above the loading paths.

As discussed for the previous model, the value of G for this model
is also restricted by the inequality

2 <M, (2.1%),
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2.4 LINEAR HYSTERETIC G MODEL FOR MATERIALS WITH A LINEAR

HYSTERETIC M

Figures 2.l4a and b depict the vertical stress-strain ani the prin-
cipal stress difference-strain difference relations, respectively, for
this model under uniaxial strain conditions. Both the constrained and
shear moduli are linear hysteretic, i.e. M.u >»Mz and Gu > Gz . The
pressure-volumetric strain relation and the principal stress difference-
pressure relation for the model are shown schematically in Flgures 2.hec
and d. The material is first loaded to a stress level corresponding to
Point 1 and then unloaded to a stress level corresponding to Point 2
(Pigures 2.4a and b). The constructed pressure-volumetric strain (Fig-
ure 2.L4c) and principal stress difference-pressure relations (Figure 2.4d),
however, may follow Paths 1-A or 1-B upon unloading depending on the rela-
tive values of M, , M , G, ,&nd G . If (Mu-%Gu><(Mz-%Gz)’
the pressure-volumetric strain curve will unloed along the Path 1-A re-
sulting in an energy-generating loop, which is contrary to existirg ex-
perimental data, as was pointed out in Section 2.2, If, on the other
hand, (Mﬁ - % Gu) >»(Mz - % Gz) » the pressure-volumetric strain curve
will unload along the Path 1-B, which is in general agreement with the
available experimental data. The stress difference-pressure relation
will unload along Path 1-A, which is contrary to most of the experimental

3 6,) 1¢,)
data, if Gu/(Mu -3 6,) <G Jz/(M 4~ 30,) andwill unload along Path 1-B

if Gh/(ﬂu -‘% Gh)‘> Gz/(Mz - % Gz) . Thus, in order for both the

pressure-vblumetric strain relation and the principal stress differecnce-
pressure relation to unload along Path 1-B, the following inequalities
must be satisfied for the model

I

(MUl - Mz), >3 (Gu - Gz) (2.15a)
G M
u u

-— = (2.15b)
G, My

The velues of Gz
previously noted by ihie inequalitices

and Gu for this model are also restricted as
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20 <M (2.168)

26, <M, (2.16b)

2.5 DLINEAR ELASTIC G MODEL FOR MATERTALS WITH A NONLINEAR
HYSTERETIC M

Figures 2.5a and b depict the vertical stress-strain and the prin-
cipal stress difference-strain difference relavions, respectively, for
this model under uniaxial strain conditions. The pressure-volumetric
strain and the principal stress difference-pressure relations for the
model are plotted schematically in Figures 2.5¢ and d. This model is
the nonlinear version of the model presented in Section 2.3 and Figure
2.3. Although the principal features of the models are the same, there
is an additional feature associated with the nonlinear model that is not
evident in a linear wodel. Since the slope of tha stress path varies in-
versely with the constrained modulus, it follows that the stress path has
a curvature that is opposite to that in the corresponding portion of the
uniaxial strain curve. This hehavior is illustrated in Figure 2.5 by the
dashed line A-B. The experimental datas obtained to dete, however, indi-
cate that the stress path is generally continuously concave to the pres-
sure axis throughout the loading cycle (such as Path A-1 in Figure 2.5d)
regardless of the shape of the vertical stress-strain curve.

2.6 LINEAR HYSTERETIC G MODEL FOR MATERIALS WITH : NONLINEAR

IIYSTERETIC M é

Figures 2.6a and b depict the vertical stress-strain and the prin-
cipal stress difference-strain difference relations, respectively. This
model is the nonlinear version of the model presented in Section 2.L4 and
Figure 2.4t. The constructed pressure~volumetric strain and the principal
stress difference-pressure relations for the model are plotted schemati-
cally in Figures 2.6c and d. As discussed in Section 2.4, the constructed
pressure-volumetric strain relation (Figure 2.6c) and the principal stress
difference-pressure relation (Figure 2.6d) may follow either Path 1-A or
Poth 1-B upon unloading, depending on the relative values of M, , M ,

4 u
Gz , and Gu .
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In order for both the pressure-volumetric strain relation and the
principal stress difference-pressure relation to unload along Path 1-B,
the inequalities given by Equetion 2.15 must be satisfied for this model
at any stress level. To prevent the occurrence of negative  values,
the values of G, and Gu must also be restricted by the inequalities

£
given by Equation 2.16 for any stress level.
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Figure 2.2 Behavior of linear hysteretic shear modulus model for
materials with a linear elastic constrained modulus under condi-

ticns of uniaxial strain.

N 23




-

T

T v

Snaiids S IER VLIV

o. VERTICAL STRESS-STRAIN
RELATION

€k = €,

¢. PRESSURE-VOLUMETRIC
STRAIN RELATION

Bt EAIE

o, =0l 7 -

2G

(61 = Er)=€l

b. PRINCIPAL STRESS DIFFERENCE-
STRAIN DIFFERENCE RELATION

lo, - o)

P

d. PRINCIPAL STRESS DIFFERENCE-
PRESSURE RELATION (STRESS
PATF)

Figure 2.3 Behavior of linear elastic shear modulus model for materials
with a livear hysteretic constrained modulus under conditions of uni-

axial strain.

ol

e




ﬁf
o lo, = o,)
| ®
£
Mu ZGu
Mg 1 1
1 ZGI
1
€ - =
. z (6 2 €r) €z
a. VERTICAL STRESS-STRAIN b. PRINCIPAL STRESS DIFFERENCE-
RELATION STRAIN DIFFERENCE RELATION
p (o, ~ o,)
26, A
1 1
L v - 1 Q) My =3 %
«” 3%
® 26,
4
4 M ~-=-G
# My =3 S 4 R
Me-2 !
3 L 374 ZGl
1 4
WAL 0
¢ ekk €,
d. PRINCIPAL STRESS DIFFERENCE-
! ¢. PRESSURE-VOLUMETRIC PRESSURE RELATION (STRESS
STRAIN RELATION PATH)
Figure 2.4 Behavior of linear hysteretiv shear modulus model for
- A materials with a linear hysteretic constrained modulus under con-
i . ditions of uniaxial strain. :
< 25

e A
1

-




8. VERTICAL STRESS-STRAIN

RELATION
I fO©
/
/
/
/
' 4
7
@

=c
<

€k~

¢. PRESSURE-VOLUMETRIC
STRAIN RELATION

(o, ~o)

2G

e, ~¢) ¢,

b. PRINCIPAL STRESS DIF EERENCE-
STRAIN DIFFERENCE RELATION

(o, =0))

d. PRINCIPAL STRESS DIFFERENCE-
PRESSURE RELATION (STRESS
PATH)

Figure 2.5 Behavior of linear elastic shear modulus model for
materials with o nonlinear hysteretic constrained modulus under

conditions of uniaxial strain.

26




AT

=TT T yre——

N

T T e e e e e - oo e

(al - cr,)
@ ZG.L
1
6 -
: (e, =€) =€,
a. VERTICAL STRESS-STRAIN-RELATION b. PRINCIPAL STRESS DIFFERENCE-
- STRAIN DIFFERENCE RELATION
lo, - g,)
@®
.. [ 4
ekk =€
d. PRINCIPAL STRESS DIFFERENCE-
¢. PRESSURE-VOLUMETRIC PRESSURE RELATION (STRESS
STRAIN RELATION™ PATH)

Figure 2.6 Behavior of linear hysteretic shear modulus model for
materials with a nonlinear hysteretic constrained modulus under
conditions of uniaxial strain.

27




CHAPIER 3

CONSTANY SHEAR MODULUS -CONSTITUTIVE MODELS FOR
STRESS STATES: REACHING YIELD

The procedure used to construct the various constant G madels dis-
cussed in this chapter is basically the same as that described in Chap-
“er 2. The distinction between the two procedures becomes apparent only
when a stress state satisfying the von Mises yield condition GJ32'= k) is
obtained. When such a stress state is reached, the value of shear modu-
lus becomes effectively equal to zero and the constrained and bulk moduli
become equal. Two different models are considered i this chapter as
outlined in Section 1.2.

3.1 LINEAR ELASTIC G MODEL FOR MATERTALS WITH A BILINEAR

HYSTERETIC M

Figure 3.la depicts the vertical stress-strain relation for this
model under uniaxial strain conditions. The loading portion of the
stress-strain curve is spproximated with two straight lines having slopes
Mﬁ and Mi where Mi >'Mi . The unloading part of the curve is also
represznted by two straight lines with slopes Mi

1 e . . . . .
Mu > Mu . The principal stress difference-strain diiference relation for

the model is shown in Figure 3.1b. The material first behaves as a lin-

and Ms where

ear elastic G model with a linear hysteretic constrained modulus (Sec-
tion 2.3) wntil a stress state corresponding to the von Mises yield limit
k 1is reached. This corresponds to Point 1 in Figure 3.1. Physically,
Point 1 is often associated with the forcing of entrapped air into solu-
tion and the subsequent saturation of the soil specimen, which results in
a stiffer vehavior in uniaxial strain or hydrostatic compression and a
weaker behavior in ghear.

Upon yielding, the material behaves as though it were a constreined
fluid exhibiting no shear resistance. The slope of the verticel stress-
strain curve breaks at Point 1 and becomes equal to Mi + The slope of
the principal stress difference-strain difference curve algo breaks at
Point 1 and becomes equal to zero. The stress difference and vertical

stress magnitudes at Point 1 are, respectively, V3 k and V§'kM%/2G .
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During unloading from & stress state corresponding to Point 2 (Figures 3.1a
and b), the mater*al behaves as a linear elastic solid in shear (G

u
= @), but since Mu >’M§ , 1t exhibits hysteretic effects in the hydrostatlc
part of its deformation unless Mi - % G = Mi . VWhen the lower yield sur-

face corresponding to Point 3 is reached, the material agsin flows plasti-
cally. The slope of the vertical stress-strain curve breaks at Point 3 and
becomes equal to Mﬁ and the slope of the principal str;ss difference-
strain difference curve becomes equal to zero. Since Mu >»Mz s hysteretic
volume change continues to increase with subsequent further unloading.
Equation 2.1 can now be utilized to calculate *he pressure-volumetric
strain and the stress difference~pressure relations associated with a state
of uniaxial strain. During loading from Point O to Point 1 (Figure 3.1),

the pressure-volumetric strain and the stress difference-pressure relations

beconme
3 _ l _’i )o
p= (M- 3G, (3.1a)
. . 2G. .
(o, - o,) = (‘1—T—) P (3.1b)
M, -=G
L 3
Equations 3.la and b apply only up to Point 1, which corresponds to
v3k/(, 1l L
p=%5(n-30) (3.2)
(o, = o.) = ¥3k (3.20)

During loading from Point 1 to a stress state corresponding to Point 2, the
material flows plastically and the shexr-mo&gius becomes effectively equal
to zero. Accordingly, the pressure-volumetric strain relation becomes
2 2

p Mz (3‘3)
During unloading from Point 2 to a stress state corresponding to Point 3,
the material behaves elastically in shear resulting in the following stress
difference-pressure relation

(5, - &) (W)p T3
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At Point 3, the yield surface is intersected again, this time on its

"ower" side so that
(0, - o) =-V3 k (3.5)

The pressure~volumetric strain curve, however, may unload along Paths 2-A
or 2-B as shown in Figure 3.lc, depending on the relative values of the
constrained and shear moduli used for the model. The mathematical expres~
sion describing the pressure-volumetric strain relation for the stress

range between Points 2 and 3 is given by

(1 bk \.
p = (Mu -3 é)ez (3.6)
!
If M& - % é) <:M§ , the pressure-volumetric strain curve will unload

along Path 2-A, resulting in an energy-generating loop, which contradicts
available experimental data. If, on the other hand, (Mi . % G) >»Mi ”
the pressure-volumetric strain curve will unload along Path 2-B, which is
in general agreement with current experimental data. If unloading is con-
tinued beyond Point 3, the material flows plastically again and the
pressure-volumetric strain relation becomes

= M5 (3.7)

uz

Pd.

Equations 3.1 through 3.7 completely describe the behavior of the
model under conditions of uniaxial strain. In order to avoid an energy-
generating loop in the pressure-volumetric strain relation, the constrained

and shear mcuuli must be restricteda by the following inequality
1,2,k (
(Mu Mz) >3 G (3.8)

To avoid negative values of v , the value of G 1is further restricted

by the inequality

26 < Mi (3.9)
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3.2 LINEAR ELASTIC G MODEL FOR MATERTALS WITH A NCNLINEAR

HYSTERETIC M

This model is the nonlinear version of the bilinear hysteretic model
presented in Section 3.1. Figures 3.2a and b show the vertical stress-
strain and the principal stress difference-strain difference relations,
respectively, for this model under conditions of uniaxial strain. The ma-
terial first behaves as a linear elastic G model with a nonlinear hys-
teretic constrained modulus (Section 2.5) until the plastic yield stress
is reached. 'This corresponds to Point 1 in Figure 3.2. Upon yielding,
the slope of the principal stress difference-strain difference curve
breaks and. becomes equal to zero. The slope of the vertical stress-strain
curve, however, increases with continued application of vertical stress.
The magnitude of the stress difference at Point 1 is V3 k , where k is
the von Mises yield limit. The magnitude of the vertical stress at Point 1
ig the value of a, corresponding to € =-3E%§- . During unloading from
a stress state corresponding to Point. 2, the material behaves as a linear
eléstic solid in shear and exhibits nonlinear hysteretic behavior in the
hydrostatic part of the deformation, until the lower yield surface corre-
sponding to Point 3 is reached. The slope of the stress difference-strain
difference curve breaks again at Point 3 and becomes equal to zero. The
slope of the vertical stress-strain curve continuously decreases with fur-
ther unloading of the vertical stress beyond Point 3.

This description of the vertical stress-strain relation is more real-
istic than the bilinear representation presented in Section 3.l. Since
the constrained modulus in this case depends on the stress level, the con-
struction of the model must be carried out incrementally utilizing Equa-
tions 2.3 and 2.4 and impcsing the condition that (éé - éf) = 0 on the
yield surface.

The constructed pressure-volumetric strain and stress difference-
bressure relations for the model are plotted schematically in Figures 3.2c
and d, respectively. In order for the pressure-volumetric strain curve O
(Figure 3.2¢c) to avoid ~xhibiting an energy-generating loop and to unload
along Path 2-B, the following inequality must hold in any stiress lncerement -
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(Mu - M,2> >3 G (3.10)

As was pointed out previously, the above inequaliicy insures that the un-
loading slope of the pressure-volumetric curve is greater than the corre-
sponding loading slope in any stress increment. 7The shear modulus is

further restricted to positive values of v by the inequality

26 <M, (3.11)
in any stress increment. When coupled with Equation 1.k, the above in-
equality also restricts the slopes along the uniaxial. strain-stress paths
plotted in principal stress difference versus pressure space to positive

values less than 3, i.e.

-

— <3 (3.12)
P uniaxial
strain

The stress path in Figure 3.2d has a curvature in the elastic range
(Path 0-1) that is opposite to that in the corresponding portion of the
vertical stress-strain curve (Figure 3.2a). Thus, while the verthical
stress-strain cuwrve stiffens as pressure increases, the stress path
s2ftens until the material yields. The unloading stress path between
Points 2 and 3 for this model appr:aches a straight line at high pres-
sures where the unloading constrained modulus is essentially linear and
becomes convex to the pressure axis at low pressure where the hook or
toil in the vertical stress-strain curve starts developing. Thus, if the
constrained modulus ig continuously hardening, the slope of the calcu-
taved stress path iz continuously reduced; if the constrained modulus

so tens, the calculated stress path becomes progressively steeper. This
latter calculated curvaiure when unloading reaches low pressure is in
direct. contrast with available experimental uniaxial strain-stress path
data.
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The results from this simple examination of several highly idealized
material descriptions indicate that manv of the behavior characteristics
of real earth materials often recorded during laboratory tests can be sim-
ulated, at least qualitatively, by elastic-plastic constitutive models of
the constant G-type by observing certain restrictions on the material
property parameters G and M . Other characteristic phenomena, however,
cannot be mirrored with this type model under any circumstances.

For example, even if Mu is always greater than M 6 at any stress

4
level, only by utilizing the linear hysteretic G model and observing

the following inequalities,

M
(Mu' Mz)>% (Gu - Gz) and %>ﬁf

can one insure that pressure-volumetric strain curves will be constructed
that exhibit energy-absorbing hysteretic behavior rather than energy-
generating loops when unloaded from any stress level. These same inequal-
ities must also ve adhered to if unloading paths of principal stress dif-
ference versus pressure for a state of uniaxial strain are to fall below
the loading path rather than above it. In order to be consistent with

the experimental observation that axial and radial stresses simultane-
ously increase or decrease during loading or unloading, respectively, and
also restrict Poisson's ratio values to be greater than zero at any stress

level, it is necessary to observe the inequalities

2G£ <:M£ and EGu <:Mﬁ

The lirear hysteretic G model will obviously incorporate the well known
ability of soils to dissipate energy in shear, even at subyield stress

levels.,
Uniaxial strain tests on undisturbed natural soils, however, usually
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reveal a reversal of curvature in o, Vversus ez plots during loading,
first softening and then hardening, while the corresponding (02 - °b) ver-
sus P Dplots generally indicate monotonically softening behavior. Any con-
stant G model, however, if coupled with a loading constrained modulus
that reverses curvature, will of necessity have a curvature reversal during
loading in its (cz - of) versus p curve, unless a plastic yleld criterion
is invoked at a pressure level less than that of the inflection point. On
the other hand, reversals of curveture have never been observed in plots of
unloading constrained moduvli; yet unloading stress paths frequently exhibit
directional. changes in curvature, Again, if the constrained modulus un-
loading curvature does not change sign, then the unloading sitress path cur-
vature calculated with any constant G model camnot. In fact, when unload-
ing reaches low pressure or approaches the lower-bound or negative plastic
yield limit, the constent G calculated stress path curvature is always in
direct contrast with available experimental uniaxial strain test data.
Vhile it is obvious that elastic-plastic constitutive models formu-
lated with constant values of G can match some of the dominant features
exhibited by soils and weak rocks during uniaxial strain tests, it is
equally obvious that some features can only be mirrored in a limited fash-
ion and others not at all. It is also quite obvious that any model that is
linear in G cannot possibly exhibit the nonlinear stress-strain behavior

usually obseyved during trisxial compression tests.

4.2 RECOMMENDATIONS

Thus, it is recommended that research efforts to devclop realistic
mathematical constitutive models of earth media for use in free-field
grownd shock calculation codes continue. In the authors' opinion, cuch ef-
forts should be governed by the following criteriat

1. The models should be capable of qualitatively and quantitativeiy
matching the salient nonlinesar and hysteretic response characteristics of
earth media, not only us determined from the unisxial strain test, but also
as debermined from a variety of other laboratory test boundary conditions.
If confidence is to be placed in a ground shock code which must calculate
earth material response to an unknown number of varying states of stresé,
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transiFnt boundery loadings, and erratic site geometries, the material
model used should at least have the capability to reasonasbly duplicate the
response of relatively ".umogeneous specimens of simplified geometries

loaded in the laboratory along known stress paths under carefully controlled
conditions.

2. The numerical values of the coefficients defining the models
should be readily derivable from laboratory test data. It ig most impor-
tant that the coefficient values not be merely a set of numbers generated
through a trial and error "black box" routine to fit a given set of data,
but that they have physical significance in terms of compressibility, shear
strenzth, etc., so that when extrapolating to different materials, rational
engineering judgments can be made as to their relative magnitudes based on
geologic descriptions, mechanical properties, and other conventional
indexes.

3. Theoretical restrictions, such as those imposed by uniqueness and
continuity considerations, should be satisfied to the maximum practicable
extent, It chould be kept in mind, however, that earth materials are al-
most invariably nonhomogenecus, anisotropic, stress-history dependent,
chemically entangled mixtures of gases, liquids, and solid particles.
Therefore, it seems unreasonable to expect that constitutive models for
these materials can be developed which satisfy all the mathematical re-
strictions imposed through assumption of foimal continuous media theories
while accurately mirroring sll of the details observed during vearious lab-
oratory tests. Obviously, some compromises will inevitably have to be
made; parametric studies to evaluate the relative importance of ignoring
certain features of either data or theory are needed.

4., Any ground shock prediction technique or code should be thoroughly
checked against the available analytical solutions and a variety of actual
field experiments. Efforts to incorporate new constitutive models into
generalized codes for calculating transient ground shock effects from ex-
plosive events should also include attempts to obtain analytical or closed-
form solutions to spzcial problems of wave propagation through materials
containing the principal features of the new models. Presumably, improved
models should provide improved correlations with existing field data.
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the above criteria are admittedly more pragmatic than theoretical.
However, the authors strongly believe that any critical analysis of
material models should include examination in the light of all these

ceriteria In order to maintsin a balance in perspective.
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APPENDIX A

CONSTITUTIVE EQUATIONS AND UNTIAXIAL STRAIN BEHAVIOR
FOR A PRANDTL-REUSS MATERIAL

A.1 PURPOSE

When constructing constitutive models to represent the rather compli-
cated nonlihear hysteretic behavior of real earth materials using incre-
mental stress-strain relations based on classical elastic-plastic theory,
it is helpful to review the equations governing the behavior of an ideal
elastic-plastic material and examine its response under typical test
boundary conditions.

The purpose of this appendix is to perform such a function for per-
haps the most widely known idesl elastic-plastic material, i.e. the
Prandtl-Reuss material, and the most useful test conditions for blast-

oriented problems, i.e. loading and unloading states of uniaxial strain.

A.2 CONSTITUTIVE EQUATIONS

A.2.1 Yield Criterion. The yield criterion associated with the

Prandtl-Reuss material is the well~known von Mises criterion given by

J! =k (A.1)
Vo2

vhere k is a material constant related to the cchesive strength of the
material. Equation A.l describes a right-circular cylinder in the prin-
cipal stress space with its zentral axis the line of hydrostatic stress

as shown in Figure A.l.

According to the basic postulate of the plasticity theory, the mates
rial would flow plastically, undergoing plastic as well as elastic strains
when Equation A.l is satisfied. The total strain is then the sum of the
elastic (recoverable) strain and plastic or permanent strain. When the
stresses are less than those satisfying Equation A.Ll, the mabterial will
undergo elastic strains only; i.e., the moterial behaves as a linear
elastic solid. In incremental notation, these conditions can be written

as
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= e® 1
cij Gij when J2 <k

(A.2)
. .e

- .p ':
Gij 5.3 + eij when "J2 k

‘e . .
where Gij = components of elastic strain increment ‘tensor
ng = components of plastic strain /increment tensor

According to Hookes' law, the elastic strain increment tensor is given Ly

Gi,j i O:Kkaij (A'3)

fe

. +
é¢ Lty

ij = B
where E = Young's modulus of elasticity.

The plastic strain increment tensor can be derived from the yield
criterion (Equation A.1l) by utilizing the theory of plastic potential:

> _ ., af
eij z a°ij (a.4)

where ) = a positive scalar factor of proportionality
f=Jé-k2

A.2.2 Stress-Strain Relationship. In view of Equation A.l4t and the

function f , the plastic strain increment tensor becomes

€. , = et ——— 22 R oF
ij = M 30 ASy 5 (A.5)
Since Sy = 0 , it follows from Equation A.5 that
GPH = 0 (A.G)

indicating that no plastic volume change can occur in the plastic range
for Prandtl-Reuss material. Hence, all volume change is elastic, i.e.

o

“kk 7 “kk (a.7)
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and

I; = Kéle{k (A.S)

Accordingly, the plastic deviator sitrain increment tensor é?j is the

same as the plastic strain increment tensor éij « The total deviator

*
strain increment tensor eij then becomes

L] .e .p
= + € .9
© 5 = € 13 (A.9)
where ésj = éij/2G = components of elastic deviator strain increment ten-
sor. Employing Equation A.5 in Equation A.9 results in the following re-

dation for the total deviator strain increment tensor

S
o ‘.7'--—1"1 .
5 = 78 + xsij (A.10)

Multiplying both sides of Equation A.1O by 2Gsij yields

.

= Y .
854813 = 5135543 \2Gs, .S (A.11)

1371
or

. _ . ' '
2GW = g, + hG)\JQ (4.12)

where W = sijéij =.the rat? of work or incremegt of internal energy due
to diﬁtortion and Jé = 834544 Since Jé = k” = constant during yield-
ing, Jé = 0 and Equation A.12 yields the following relation for the pro-
portionality factor

W
A== (A.13)
2k
It is to be noted that W is only due to plastic deformation. 1In
view of Equation A.13, the total deviator strain increment tensor (Equa-

tion A.10) takes the following form
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= (s gy o\ !
°5 =5 <ui3 + 2 sia‘) (A.1h)

Equation A.1lk can be inverted to solve for tle deviator stress increment
tensor sij s, l.e.

. . “q

S,. = 2Gle., ~ —x5 S, . ALl

ij < ij 2k2 lJ> ( 5)
Equation A.15 (or Equation A.1hk) is the Prandtl-Reuss siress-strain rela-
tion; it gpplies in the plastic range when J)} = k2 and W>0, If

2
W < 0 , unloading is taking place, i.e. the behavior is only elastic and

Equation A.3 applies. If ﬁ = 0 the loading is said to be neutral:
The above results can be summarized in the following form

S
] when ,’J’ <k (elastic (A.16a)
ig 2G 2 X
loading)
2= (s el - Tt = :
< Tl (élJ . Sij) when Jy=k,W>0 (A.16b)
. Ss . . . )
i3 = 7%? when W <0 (elastic (A.16c)
J unloading)

.

In order to obtain the components of the stress increment tensor 6i3 N
Equation A.16 must be combined with Equation A.8.

A.3 BEHAVIOR UNDER CONDITIONS OF UNIAXTAL STRAIN

For uniaxial strain conditions in a cylindrical coordinate system

r,0,2 , the following boundary conditions prevail (Figure A.2)

€r=€e=0 ™)
1
= S o= €
rT %73 } (A.17)
2
eZ—§€Z J

In the elastic range, the behavior of the material is governed by Equa-
tion A.3, which can also be written in the following form

L2
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- E.u 2 ‘
eij = 4 + 3K Bij (A.l8)

Since ér = Ge = 0 , Equation A.18 yields the following relations between

components of deviator stress increment and »p

'_._gg'
5, =8g=- P (A.19)
In view of the fact that ékk = 0 , Equation A,19 gives
.—. ?—uGl
s, = =28 = =% P (a.20)

Utilizing the relation éz = éé - ﬁ in Equation A.20 results in the fol-
1dviing relation for the vertical stress increment éﬁ

o = .35.__”2)1‘, (a.21)
Z 3K
Since for uniaxial strain conditions ékk = éz » and in view of Equations

A.7 and A.8, the vertical stress-strain incremert relation in the elastic
range becomes

. b e
Z..(K+-§G>ez_mez (A.22)

From Equation A.19, the principal stress difference, in incremental form,
is

. . _ -zg .
(o, - o)=Zs (a.23a)
indicating that the slope of the uniaxial strain-stress path in the

elastic range is equal to 2G/K + From the relations between constants
in elastic theory, it can readily be showm that -

26 _ UL - 2y
2-ny (2.230)
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witic)i, when coupled with Equation A.23a, sives the following relation for

the condition of uniaxial stroin

(A.2h)

In view of Equations A.8, A.Ll7, and A.23, the grincipal stress difference-

strain difference relation for unioaxial strain becomes

(oz - of) = eg(ez - er) = 2g€, (A.25)
Tor virgin loading in the elastic range, Equations A.L7 through A.25
can be used without the dot notation.

In the uniaxial strain test

\/:T_é -‘-é (o, - o) (A.26)

Thus the material will yield when

L

= (o, = 0) =k (A.27)

r
In view of Equations 2.8, A.2h, and A.27, the valuec of vertical stress

o, ab yield becomes

-

o, = Yau k (A.28)

Thus, when o, reaches the value given by Equation A.28, the material
yields and the continued application of vertical stress causes the mate-
rizl to move along the yield surface undergoing plastic as well as elas-
tic strains. In the plastic range Equations A.1& through A.25 no longer
opply a2nd recourse to Equations A.8 and A.15 is necessary.

According to Equotion A.15, the devialor stress increment s in
? ) 7

the plashic range is given by

hl
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s = e - A g (A.29)
Z Z k £

The rote of work W for conditions of uniaxial strain reduces to

W=se +25e (A.30)

or, utilizing the fact that Sek = =0,

kk
W= % sz Z (A.31)

Substit.utmg Equation A.31 into Equation A.29 and utllizing the relation
e = % GZ results in the following expression for s

z
© ko G 2
5, =3 €, - -k—2 5.€, (A.32)
In the plastic range
2 _ .y _1 . y2._.3.2
K" =9,=3 (o, = 0 )" =% s, (A.33)

;,Z = 53‘. Géz - % Géz = 0 (A.34)

Since ;z =0, ér =0 also, and
62 = éz +p =D (A.35a)
o, =, (A.35b)

which indicates that the materisl behaves as though it were a fluid once
it has reached its limiting shear resistance. Substituting Equation A.8
into Equation A.35a and considering the fact that ékk = éz ; the verti-
cal stress-strain increment relation in the plastic range becomes

b5
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= Ke (A.36)

Z

2]

Thus, the loading slope of the o, versus €Z curve breaks or soitens
when yie ding occurs and becomes equal to the bulk modulus. Accordiqgly,
the loading slopes of the principal stress difference-pressure curve and
the principal stress difference-strain difference curve become zero. The
slope of the pressure-volumetric strain curve, however, is not affected
and remains constant.

Once the material unloads, it behaves as a linear elastic solid
again, satisfying Equations A.18 through A.25. If unloading is contin-
ued until the lower yield surface corresponding to

;_1:-3_’ (o, = 0,) = -k (4.37)
is reached, the material flows plastically again and Equations A.8 and
A.15 govern the behavior of the material.

The foregoing analyses are depicted schematically in Figure A.3.
From Figure A.3 it can readily be seen that a Prandtl-Reuss material ex-
hibits no hysteretic effeuvts during a hydrostatic test. Furthermore, for
a Prandtl-Reuss material, the vertical stress-strain curve from a uniax-
ial strain test wouwld break or soften when yielding occurs and remain
concave to the strain axis with continued application of vertical stress.
These observations are generally contrary to existing experimental data
on the stress-strain behavior of earth materials even from a qualitative
point of view. This simply illustrates a fact of no great surprise, i.e.
that the ideal linear elastic-plastic (Prandtl-Reuss) model does not ade-
quately describe the stress-strain behavior of real, nonideal soils--in

particular the behavior under conditions of uniaxial strain.
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