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ABSTRACT

A ma:tcr's thesis which discusses the solution of con-
cave-convex games. An algorithm is developed, a computer
program written and applied to an anti-submarine warfare
force allocation problem as an illustration. Techniques
for handling concave-convex problems in high dimensions

are included.
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I. INTRODUCTION

A. A GAME THEORY APPROACH TO RESOURCE ALLOCATIONS

Problems in the allocation of resources can be divided
into two descriptive categories: Single-agent problems and
ddversary problems. Single-agent problems have only one
participant optimizing without intelligent opposition. 1In
the solution of adversary problems, opponents work at cross
purposes. Each choice of an allocation of resources by one
participant must be made in light of those of his opponent(s).
Of course, games are adversary problems.

The great interest in game theory as a technique of
modelling which followed von Neumann's statement of the
fundamental concepts in 1927 18] ceniinues today. The
fascination of the game as a model for conflicts of almost
any sort is enhanced by the fact that the solution to a
game is entirely independent of assumptions regarding the
actual behavior of the antagonist(s).

Matrix games and differcntial games are extensively
treated in the literature; some references are noted here.
Matrix games or games over the square are discussed in
basic form by Williams [21] and a thorough study is done by
Karlin [8). For a first essay in the subject of differen-
tial games, see Isaacs [6). Taylor [16,17]) gives additional
examples of the modelling of combat operations including
search using differential games.

The development of the derivative game is due to

Danskin [4]. A very large class of concave-convex problems
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yield to solution when the algorithm based on this game is
applied. It is with the derivative game and the algorithm

evolved from it that this paper is primarily concerned.

B. THE CONTENT OF THE PAPER, BY CHAPTER

Chapter 1I surveys some of the more important mathe-
matical ideas necessary to the development of the algo-
rithm for the solution of concave-convex games.

Chapter III is concerned with the programming of an
anti-submarine warfare force allocation example. The ex-
ample serves to illustrate both the use of the algorithm
and the theory on which it is founded. The problem is
formulated and the basic computatioral steps toward the
solution are enumerated. If any fears stem from the
formidable appearance of the matrices used in the example,
they hopefully will be dispelled by the description of the
form for input in the programming notes. Technical matters
regarding programming arc considered in some detail.

Chapter IV draws together this presentation with some
concluding remarks.

Chapter V contains suggestions for further study.

The Appendix consists of the programming flowchart.

The Computer Program Listing is included as well.




IT. MATHEMATICAL CONCEPTS

A.  GENERAL

The fundamental theorem of the theory of games in the
form appropriate here is the following:

Suppose F(x,y) is a continuous function on X =z Y,
where X and Y are ccmpact and convex. Suppose that the set
of points X(y) yielding the maximum to F for fixed y is
convex for each such y, and that the set of points Y(x)
yielding the minimum to F for fixed x is convex for each
such x.

Then there exist pure strategy solutions x° and y°
satisfying

F(x°,y3
F(x,y°)

F{x",y%), v yoy

[AY4

1)
F(x°,y%), v xex.

A

A complete proof of the theorem in this form can be found

in [7]. Assuming that the conditions for the existence of

a solution satisfying (1) are met, the problem can be statcd
in the form

Max Min F(x,y),
x Yy

which is equivalent to

Max ¢(x)
x
where ¢(x) = Min F(x,y).
b4

The theorem applies to two-person zero-sum games. Thus,

Max Min F(x,y) = Min Max F(x,y).
x Yy y X

TSN




One important difficulty arises from the fact that,
although F may be smooth, ¢(Xx) is not in general differ-
entiable in the ordinary sense. Danskin, in [3], has shown
that under general conditions on X and Y, there exists a
directional derivative in every direction. It is this fact
that has provided the key to the solution of problems of

the type described.

B.  THE ALGORITHM FOR THE SOLUTION OF CONCAVE-CONVEX GAMES

The algorithm to solve games concave in the maximizing
player and convex in the minimizing player is developed and
presented in great detail in [4]. The following gives a
brief survey of those results which are most important for
the design of the algorithm; to fill the apparent gaps, a
thorough reading of [4] remains necessary.

1. The Derivative Game

Suppose x°cX. Associate with x° a non-empty set
of admissible directions y, I'(x®°). W is defined as the

convex hull (e.g., see [19]) of the szt of points

Yy (x°,y)},

W(y) = {Fxl (x°,y), **+ , F
where yeY(x°).
The derivative game then is

HOy, W) = yow
defined over I'(x°) = ﬁ. The maximizing player maximizes H
by choice of yel'(x®), the minimizing player minimizes H by

A A

choice or welW,
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THEOREM 1
A necessary and sufficient condition for the exis-
tence of a direction of increase for ¢(x) is that
the value of the derivative game defined by H be
positive at x°. The y° which yields the valuc of
the derivative game is a pure strategy.
If the value is positive one can find and use this direction.
If the value is non-positive, a direction of increase does
not exist, i.e., the solution has been reached.
The application of the derivative game in practice is greatly
complicated by the necessity for approximations.

2. The Lemma of the Alternative

The Lemma takes into exact account the approxima-
tions involvad in the applicalion of the derivative game.
It states that a certain process (to be explained below)
must either yield a sufficient increase to ¢(x) at a point
x° or determine that the point x° is nearly optimal. Be-
fore the lemma can be formulated in mathematical terms,
some further difficulties and the tools with which to over-

come them have to be outlined.

a. The Brown-Robinson Iterative Process in the
"Auxiliary Game"

The Brown-Robinson (B-R) process employs the
following idea: Let G be the pay-off functién. At stage
N=0 both players choose arbitrary strategies x° and y°. At
stage N=1 the maximizer chooses x! such that G is maximized

against y°; then the minimizer chooses y! to minimize G




» against x', and so forth. At stage N the maximizer chooses
i xN as if the minimizer's strategy were an evenly weighted

mixture of strategies y°®, e¢se ,yN'l; the minimizer chooses

yN as if the maximizer's strategy were an evenly weighted

N |

mixture of strategies x°, «¢+¢ ,X

i For matrix games, Julia Robinson [12] proved

that

N-1 N
lin sup | & Z 6xy™ - & Z c™,y) 1= 0.
N> n=0 n=0

; % Danskin (1] has generalized the proof to hold

for two-person zero-sum games with continuous pay-off de-

fined over X z ¥, X and Y arbitrary compact spaces. It
should be noted here that the B-R process is very slow in 3

convergence when applied directly +to finding an approxima-

rr——— -

tion to the value of the game defined by (1). However, it ‘
is not applied to the basic game in this algorithm but rather

to an "auxiliary game' for which an accurate solution is not

required.

g ST T T

The derivative game mentioned above cannot be *
solved directly because the sct Y(x°) is not known. All one
has is a single element yeY which approximately minimizes
F(x°,y). The place of the derivative game, therefore, is

taken by the "auxiliary game' employing a modified version

of the B-R process described below. This process makes it

possible to keep track of the approximations involved and
their consequences. The "auxiliary game" is defined as

follows:

10
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For any €>0, denote by Ye(x) the set of yeY
such that F(x,y) = ¢(x) + €. Let Y_(E) = W Y (x), ver(x®),

XeE
yeY(E). . .
F(x°+d ¥,y) - ¢(x°)
Then H(y,y) = 3 , ford_ >0,
a minimum step size, is a game over I'(x°) = Ye(E) with vy

the maximizing and y the minimizing player. This game has
dptimal mixed strategies for both players. Applying the
idea of approximate optimization to the convergence proof in
[1] leads to
THEOREM II
N 1 N1 n, .
Let y be chosen such that N nZo h(y,y’) is

maximized to accuracy g, and yN be chosen such

that % ngo H(Yn,y) is minimized to accuracy n.

Then -
1'% n 1 % n
lim sup NL" H(yv,y ) - H(y",y) | € 2(¢+n).
N+ N n=0 ’ N n=0 ’

This holds for continuous H,
Let 6 be the maximum oscillation of VF(x,y) over a distance
do’ Then

Fxo+dg ¥ ,y™) - B, y™ 2 v Fixo,y™) - o

d

The lemma of the alternative now can be formulated.
b. Statement of the Lemma
Suppose 0<a<B, y°eYe(x°).
Then the generalized B-R process will, at some stage N, de-
termine that one of the two following statements is true:
1. The maximum over T'(x°) of the directional

derivative does not exceced 8.

11
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2. The point x = x° + do Y, where

N
=N_1 n
Yy = Y
N ngl ’

and the point yNeYe(iN), where yN minimizes

F(EN,y) to accuracy €, satisfy

FG M) - F(x®,y°) o 4563
% ) 3; .

3. The Corollary of the Alternative

Suppose that F(x,y) is concave in x and convex in
y. Then the modified B-R process applied at x° will, at
some stage N, determine that one of the two following state-
ments is true:
A o = . N
1. The pair x = x°, y = y', where

=N 1 N n

Y N+T Ag% Yo
are approximate optimal strategies for the game
defined by F.
2. The point INeX yields an increase to ¢(x) by at
least a specified amount.
For details and proof see [4], pp. 36 ff.

Reference [4] continues with a detailed discussion
of delicate problems which can only be listed here: The
choice of the minimal step size do; the problem of acces-
sibility of a point » from a point x°; the problem of ob-
struction; the choice of a, B, €, their interaction with each
other, and the choice of p where p is the accuracy to which

Max ¢(x) is to approximate the value of the game defined by

12




(1). It must be noted that the conditions derived for the

selection of these parameters are sufficient,

4., The Algorithm

The algorithm as a consequence of the foregoing
mathematical considerations is presented in section 10 and
11 of [4] and will not be reproduced here in detail. A ver-
bal description of its basic structure - depicted in Figure
1 -, however, may be useful:

The maximizing player, called Max, having arrived
at a point xx, has a direction of maximal increase y, ob-
tained either from the derivative game Dy¢(xx) or from
the B-R process in the auxiliary game, and a distance d > do’
The minimizing player, called Min, is at a point yy. F(xx,yy)
~is known. Max makes a proposal to move Lo a point x = xx + dy.
Of course, F(x,yy) > F(xx,yy). Min accepts Max's proposal
and starts minimizing against x, looking for a direction
of maximal decrease g. If there is none, yy is a minimum
against x as well as against xx in which case Max will move
to the point x. If there is a direction of decrease Min
forms a point y = yy + Dg such that F(x,y) < F(x,yy). A test
is performed to determine whether Min has already '"beaten"
Max: if F(xx,yy) > F(x,y) Min stops the minimization pro-
cess, and Max discards his proposal x beccause moving to x
will not increase ¢(x). Max halves the distance d and, with
the same vy, forms a new trial point x. If F(xx,yy) < F(x,y)
Min continues to minimize until either F(xx,yy) > F(x,y) or

Min can no longer find a direction of decrease. If now

13
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Figure 1. Flowchart of Algorithm.
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F(xx,yy) < F(x,y), indicating that Min, even after a complete

minimization, was not able to ''beat' Max, Max moves to the

"proposed point x realizing a gain for ¢(x). Max then looks

for a new direction of increase. The process terminates when
such a direction does not exist.

The situation that leads into the Brown-Robinson
process is the following one: The proposed points x = xx+dy
have been '"beaten' by Min until d gets cut down to do’ in
spite of the fact that y, obtained from the derivative game,
is an apparently good direction. If the trial point x = xx
+ doy does not result in a move for Max, the B-R process,
Figure 2, is used.

Denote the present y - the one that so far has
lead to a failure for Max by 7', and the associsted VFX
by w°. Minimize F completely against x = xx + doy. The
resulting y then leads to a new VE, which is averaged with
the previous w°, giving w'!'. Suppose that w! as input to
the derivative game Dy¢(x) produces a new y° such that the
value of the derivative game is positive as required. (If
such a y° does not exist the problem is solved). This v,
averaged with Y!, gives ¥? which in turn creates a new
trial point X? = xx + do Y. X2, or ™ in general, then is
exposed to Min's reaction as described previously. Once Max
finds a direction and an associated trial point that cannot
be "beaten'" by Min, Max moves and leaves the B-R routinec.

The y-strategies are also averaged and saved although their

average is never used during the computation. In case the

15
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Figure 2. The Brown-Robinson Process.
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game defined by F(x,y) is terminated while in the B-R pro-

cess, this average of the y-strategies represents the op-

timal solution for the minimizing player.

17




IIT. PROGRAMMING ASPECTS OF AN ILLUSTRATIVE EXAMPLE

A. FORMULATION OF THE PROBLEM

An algorithm for the solution of a wide class of con-
cave-convex games over polyhedra has been presented in
%E, abbreviated form above. In this chapter that algorithm is
{é épplicd to a particular game, an anti-submarine warfare

force allocation problem.

For this problem, five indices are employed: h, i, j,

k, and m. In a meaningful example, the maximum numbers

il
R AT

corresponding to these indices might be, respectively:

Eﬁ 5, 25, 10, 500, and 5. The indices have the following
{ meanings:
;é h: Submarine type !

i: Submarine mission
[E j: Type of antisubmarine weapoﬁ (or vehicle)
l k: Place in which submarine and weapon encounter one
another

m: Stage of the submarine mission.
An additional index is used. 2(k) is the "kind of place."
A "kind of place" might be defined by a particular set of
weapon employment parameters. These include the tactical
and the natural environment. The natural environment con-
sists of oceanographic and meteorological conditions. Ex-
amples of the tactical environment are destroyers in an ASW
screen and patrol aircraft in barrier patrol. The "kind of

place" in which an encounter occurs impacts on the outcome

18
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of an encounter between submarine and weapon. A reasonable

number of "kinds of places™ in the present context might be
25.

A submarine mission is described by a matrix ||Ehijkm||.
This matrix has as its elements real numbers denoting the
extent to which a submarine of type h at stage m of mission
i is exposed to a weapon of type j at the kth place. The
effects of these weapons and thus of the encounters are
characterized by a “technical" matrix Ilchjz(k)" in the fol-
lowing meaning: exP['Chjl(k) yjk] is thé probability that
a submarine of type h survives one exposure to y units of
weapons of type j at a "kind of place" 2(k). These en-
counters are assumed to be mutually independent. Note that
the protability of survival to the mth mission stage is
conditioned on the completion of the previous stages. Sup-
pose that there are Yik units of force of type j at the kth
place. Then the probability of a submarine's completing

stage m of mission i is

mnsmexP[°Ehijkm' Chje(x) Y5kl

which, due to independence of the events, equals exp [-ehim],
where

ehim

R o

%Ehijkm' Chjeex) Yk

<m

Now, by carrying out a premultiplication,
Mnijkm = Enijkm Cnjs ()

19




the exponent becomes

®him = Apijrme Yk

3 wiv]
IE W‘M

In this example, the vast majority of the Ehijkm’ and there- e

fore of the Ahijkm’ are zero. If 3000 non-zero Ahijkm are

allowed, each type of submarine can be employed on ten dif-

ferent missions and undergo up to 60 encounters with anti-

anwan iy

submarine weapon systems,

1. The Space X

Let x, be the proportion of submarines of type h
assigned to the ith mission. Make X = ||x,,|| satisfy the

conditions

- ~ AT W ~ >
ithj ], for overy a, Ahi 4 0,
and
aps S Xpg S Bhi’ for every pair h,i,

where the sets {ahi}, {Bhi} are supposed to satisfy

Z oy < 1 - Zshi for every h
i i
and

0 <op; < By for esery pair h,i.

2. The Space Y

Let yjk be the proportion of antisubmarine forces

of type j sent to the kth place. Make Y = ||ij|| satisfy

the conditions

20




Si'(. yjk = 1, for every j, yjk >0

and

ajk < yjk < bjk for every pair j,k

where the sets‘{ajk}, {bjk} are supposed to satisfy
’ ) )

a.,. <1, < b.
: k ’ k
| k J k J
and

0 < ajk < bjk for every pair j,k.

3. The Function F(x,y)

Vhim is the value of accomplishing stage m of
mission i for a submarine of type h. The character of
F(x,y) can be examined.
set

Yhim = Vhin *P [-®hjp]

where ehim is &s before. Put

Tpi = § Yhim®

Then

m

F(x,y) = hz"'i Xpi Thi
This function is linear in x and exponential in y and is
therefore a concave-convex game of the type treated in [4],
defined over X = Y. The quantity F(x,y) represents the

total expected payoff to the submarine player. Re-expressing

F(x,y) in its explicit form gives:

21




F(x,y) = zh: g Xhi % Vhim e"P['g« % Ehijkm Chjs(k)Yik):
The remainder of this chapter gives details of the application
of the algorithm to the game defined above.

The principal result is the flow-chart (Appendix).

Since this flow chart is constructed around the algorithm

from [4), it is helpful, though not essential, to have (4]

r available. The complete program listing is included following
the Appendix. The program is written in FORTRAN IV and was
‘ run on the IBM 360/67 computer at the Naval Postgraduate

School, Monterey, California.

3 B. BASIC COMPUTATIONS

] 1 Cuiiputation of £, .
. s viilp him

For fixed (h,i), ehim is non-decreasing in the mis-

sion stage m. This reflects the trivial fact that

T Y

P[submarine survives stage m]

< P[submarine survives stage m-1].

Equality holds when the '"threat'" due to the encounters at

stage m is non-existent, i.e., when either no ASW-forces
yjk are present or their effectiveness against the submarine,
Chjz(k)’ is zero. Hence ehim’ for each pair (h,i), is ac-

cumulated over the mission stages as follows:

®him * ®hi(m-1) *}j: g Mijkm Yk Cnio ™ O

22




2., Partial Derivatives with Respect to x4

Because of the linearity of F in x the partials with

respect to X, ., F_ , are the coefficients of Xpi and do not

X, .
hi
explicitly contain x. Vhim exP['ehim] can be represented as
a matrix of dimension (n x m), where n is the number of pairs
(h,i). Then

F = V.. exp[-6,. ]

Xps % him him

is the sum of the elements in the (h,i) row of that matrix.

3. The Value of F(x,y)

F(x,y) is obtained by pre-multiplying Fx by Xy : and
hi e
summing the products

FO,y) = & x5 Fy
11 nl

4. Partial Derivatives with Respect to Yik

Because of the cumulative property of Ohim® @ change
in yjk during some mission stage m' will affect the following
stages as well, For each pair (h,i), premultiply Xpi by
the corresponding Ahijkm" where m' is the mission stage in

which the yjk of interest occurs. Sum Vhim exp[-6 ] over

him
the mission stages for which m'<m, multiply the result with

X3 Ahijkm' and sum the products over h and i:

Fyoo " § 21: Xhi Anijkm®

Yix  Vhimt ©XP[-Opip0 ]

m'<

5. Finding Directions of Incrcase (Decrcasc)

F and F are inputs to the derivative games for
*hi Y5k
x and y. For x, the direction v° is sought such that Dy¢(x)-

VFx°y is maximized; for y, g° is songht such that Dg Max F(x,y)=
X
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VFy-g is minimized (equivalently, -VFY-g is maximized). The

side condition is that y° and g° be unit vectors:
. = .. = 0 2 = 2. = 1;vh j .
iZth % ng ’ iz Yhi % ng sVh, Vj

A method of finding such directions - called THE DIRECTION
FINDING ALGORITHM - is derived from the Kuhn-Tucker conditions
and the Schwartz Inequality. It is contained in [4] and has

been applied to a vector - valued function by Zmuida in. [22].

C. PROGRAMMING NOTES

The flow chart (Appendix) and the associated program may
not be optimal with respect to machine time and memory space
required, and may provide opportunities for improvement. For
computer routines like this, intended to solve high-dimensional
problems, a trade-off between time and space is generally ap-
parent. The user, considering the particular facilities
available to him, must decide on his optimal trade-off, and
modify the program accordingly. The following discusses some
of the techniques that have been implemented; it points out
the major difficulties that have been encountered and the ways
presently used to deal with these, and offers some remarks
about the impact of the underlying mathematics on the use of
the algorithm for realistic problems. The numbers referenced
are statement numbers.

1. Prcsentation of Input - The Mission Description

In a realistic application, most of the Ahijkm will
be zcro because the effectiveness Chjz(k) contained in A will
be zero. Example: suppose k denotes a place in the western
Baltic and 2(k) classifies this place as shallow with extrcme-

ly poor sonar conditions; j denotes a nuclear killer-submarine,
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h represents a conventional attack submarine. Then Chjz(k)
will be zero for all practical purposes.

The method of presenting the matrix E which avoids
computing of and with A when C is zero, is one which is ex-
tremely easy for the user to understand and employ. He gives
his description of a submarine mission by plotting it on a
chart, marks off in order the places the submarine must go,
and notes the forces it might meet at those places. He
will give the exposure E required by the particular mission
in terms of a standard which he will have set. He will mark
off the points in the mission where the various stages of
the mission will have been accomplished. Such a description

might run as follows:

m=0
h=1 i=1 k=1 j=¢ L=1.U
j=5 E=1.5
k=7 j=1 E=2.0
j=3 E=3.0
m=1 (the first stage of the first mission is completed)
k=8 j=4 E=1.2
j=7 E=1.7
m=2
k=15 j=3 E=0.3
j=2 E=2.0
j=4 E=0.5
m=3

The above mission (mission 1 for submarines of type
1) has three stages and nine encounters, in four different
places. Then the listing starts for thc next mission with
h=1, i=2, and continues until all missions for all types of
submarines have been described in this manncer. Note that

this listirg has alrcady taken inio account thc classification
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of the places k by 2(k). This is done in such a way that

& for each encounter on this mission listing the associated

k Chjz(k) is positive. In other words, a place k, and hence

g % an encounter, will appear on the mission listing only if it

! seems possible that the opponent will allocate forces to that

F % place and the corresponding effectiveness against the maxi-

- mizer's submarine operating in that place is positive.
There are various possible ways of storing the

information contained in the mission description in the

# machine. One way which is very economical in terms of

| storage space requirements is to read the list encounter by

encounter, i.e., card by card, starting with an N=1. Then

A(N) = B'Chjz(k) and an indicator array
P(N) = I+JeKeMo(h-1) + JeKeMe(i-1) + KM+ (j-1)
+ Me(k-1) + m + 1

contain the complete information. I, J, K, M denote the

maximum values of the indices i, j, k, m. The reason for

i using (m+1l) is that the correct m appears after the mth
stage is completed. The disadvantage of this method is
that during computations the individual indices must be re-

computed from P(N):

P(N
h=1 *[ nDC ] [+] means "the largest
integer in "
A = P(N) - 1+J+Kel(h-1)
i'“[rﬁm]
A = A - JeKeMe(i-1)
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AA
1*[2‘-‘»&]

j-

AAA = AA - KeM(j-1)
e [
m = AAA - M(k-1)

In the sample program contained in this paper, the indices
in their original form are stored in vector arrays and are
directly accessible throughout the computations.

2. The Contraction with Respect to ‘%im

This contraction takes into account the possibility
that the stage m of a mission may have been noted, but that

the associated Yim MaY have been declared to be zero.

Since it is uscless e calculate asnything involving a Yim™ "
the corresponding elements in the index arrays of the mission
are eliminated. This is done prior to the execution of the
game and may therefore be referred to as the basic contrac-
tion.

3. Working in Subspaces

It can be expected that most of the Xp i and yjk
will be on their boundaries at any stage, including the
approximate optimal solution. This suggests the idea of
eliminating computations involving variables which have
fixed values either temporarily or throughout the process.

To do this, one reduces the dimensions of the
spaces, thus saving machine time. One can redefine the
space so as to "freeze" the variables on the boundaries

leaving the remainder free to move.
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Where in the program should redefinition of the
Y-space take place? The minimizer can hold the subspace
fixed and continue to move in that subspace until an ap-
parent minimum has been reached. At this point the al-
location corresponding to this minimum has to be checked for
optimality in the full space. This will require at least
one iteration through the minimization routine in the full
space. After a minimum valid in the full space has been
obtained, the Y-space is reduced to a new subspace. An
alternative approach is to redefine the space after each
change in the Y-allocation, thus maintaining a continously
changing subspace. The authors feel that the latter will
enable the minimizing variable to stay in the subspace
lenger finding dirccrions of decrease, befure the need
arises to employ the full space. This idea was implemented
in the progranm.

The contractions for x (statement 1871) and y (125)
eliminate computations involving elements that are on the
lower boundaries. It must be noted that the contraction
itself and the complications caused by its use take machine
time. Worthwhile time savings ‘in computation will not be
realized until this technique is applied to relatively large
scale problems.

INDX(N), N = 1,...,NNX, contains the indices of
the Xei 2 0, INDY(N), N =1,...,NNY, contains the indices of
the yjk > 0. NNX and NNY are the dimensions of the subspaces

for X and Y. These index arrays are used to control which
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variables are to be involved in the computations. The way
this is done in practice can be seen in the program list-
ing.

One remark concerning the DIRECTION FINDING ALGO-
RITHMS, (400) and (1400), may be in order: these algorithms
have to be applied row by row to the matrices |1xp;11 and
||yjk|L In subspaces, the number of elements belonging to
a particular row varies. The outer do-loop runs over the
number of rows. To find the numbers of elements per row
(these numbers serve as the termination values of the inner
do-loops) a test on the indices stored in INDX and INDY is
conducted (402 £ff), (1402 ff). The test value, NTEST, is
the index of the last element in the rows of }Ixhill and
llyjk!!’ respectively., UWhes the test passes. all elewenis
in the row at hand have been collected and the algorithm
begins. Before the next row is picked, NSTART is incre-
mented by the number of elements found in the previous row
so that the search through INDX or INDY always starts in the
correct position,

4. Machine Accuracy Problems

The program calls for frequent testing of floating
point numbers. Throughout the development of the program
these tests have been sources of troubie. Testing for
equality must be strictly avoided even after - as has been
done here in various places - variables close to a fixed
quantity have been reset to that quantity (e.g., (1050 ff)
or (1060 £f)). Although the program specificd double-pre-

cision, it took extensive experimentation to maintain
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feasibility, i.e., satisfy the side conditions
Lox:m & Vi =1
i hi X jk

to at least the 13th decimal place.

Of critical importance is the accuracy in the
computation of the direction matrices y (GAX) and g (GAY).
In the neighborhood of a maximum or minimum, the partials
E, and F are close to zero, as are the Lagrange multi-

Yy
pliers (XMU and YMU ), and the differences Fx-XMU,F -YMU

y
(SD). In order to determine the value of the derivative
game, the sum of the squares of these differences has to be
formed, an operation that may very likely lead to erroneous
results which, in turn, carry over into the computation of
Yy and g.
The countermeasure taken is to premultiply the SD

when they are small by a large number, (505 £f), (1510 ff).

5. Testing the Program

As the calling of subroutines is exceedingly time
consuming, the present program does not use them. This made
debugging tedious. The '"standard" routine, i.e., the pro-
gram employing the derivative games in the original form,
was tested running a small scale example where ||x|]| was
(2 X 2) and ||y|| was (2 X 4), making it possible to hand-
check the computations.

The "auxiliary game' routine using the B-R process

was debugged using the following objective function:
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F(x,y) = 2x, exp[ -2y;-y,1 + 2x, exp[ -y -2y,]
+ X5 exp [-y)-y,-Y5l
Subject to: 2 X, = 2 Y = 1
. 1
i k
lf Xi0 Yx >0
with initial allocations x =.(0,0,1), y=(0,1,0). For a
discussion of this example in light of the algorithm see
[4]. The reason that this can only be solved through the
B-R routine lies in the fact that, against the initial x,
any y represents an exact minimum, however, the value of
the derivative game for x is positive, yielded by y° =
(O) ’/2./2’ '/2./2)'

Finally, an example with 100 encounters was rigged

"

up where ||x|| was (4x4), ||y|] was (5x10). While this does
not yet represent a problem in high-dimensional space, the
authors are confident that this example provided a suffi-
ciently severe test to demonstrate the validity of the pro-
gram as written.

6. General Comments

The following remarks are intended to facilitate
the use and modification of the program.
a. Initial Allocation
The initial allocations are generated as corner
points in the stationary part (99). It can be expected that,
in the optimal solution, most of the variables will be on
the boundaries. An initial point on the boundaries insures

that the number of "absurd" allocations is minimal.
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If one were to use an interior point as a
starting solution, it possibly would involve large numbers
of absurd allocations (e.g., a submarine in an aircraft
barrier patrol). ~The machine would spend an enormous
amount of time reducing such allocations to zero.

b. Distance Policy

The initial and re-set values for the dis-
tances are determined from the dimensions of the spaces;
the user may employ his own rules. A compromise between
re-set values too large causing '"overshooting" and values
to small causing '"creeping' should be considered. In gen-
eral, "crceping" is much costlier in terms of machine time.
The policy for halving distances and its rationale is out-
lined in {4].

¢. Upper and Lower Bounds

. For simplicity, 0 and 1 have been used in the
program. Specifying individual bounds O Bhi and ajk’
bjk does not introduce additional problems but increases the
storage space required considerably (e.g., for y, two addi-
tional arrays of the same dimension as y).

d. Modifying the Objective Function

The algorithm as stated is valid for concave-
convex functions under quite general conditions. Though the
present program has been designed to handle a particular lin-
car-exponcntial function, it is quite flexible. The objec-
tive function mentioned in subsection 5 may scrve to illus-

trate this point:
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F(x,y) = le exp[ '2)’1")’2] + ZXZ exp [—y1-2y2]

+ x3 exp ['yl'yZ'yS]

is produced by a very simple adjustment of the mission

description:
h=1 i=1 k=1 j=1 E=2.0
k=2 j=1  E=1.0
k=3 j=1 E=0.0 END OF MISSION 1
m=1
h=1 i=2 k=1 j=1 E=1.0
k=2 j=1 E=2.0
- k=3  j=1 E=0.0 END OF MISSION 2
m=1
h=1 i=3 k=1 j=1 E=1.0
k=2 j=2 E=1.0
k=3 j=3 E=1.0 END OF MISSION 3
m=1
‘The assocjatcd \-vaiues are: vlll = 2.0
V121 = 2.0
V131 = 1.0
The associated Chjz(k) are: C111 = C112 = C113 = 1.0
e. Assigning Values Vhim

The values (of completing stage m of mission i
for submarine of type h) are relative measures. When as-

signing Vhi the user should consider that a submarine may

m’
have spent part of its weapons (resources) during stage m-1.
This may reduce its operational capabilitics for stage m,
and the value for stage m should reflect this fact.

f. Choosing p (RiO)

The parametcr p, mentioned in Chapter II,

section B.2.b, has tc be chosen by the user. It specifics
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the accuracy to which Max ¢(x) is to approximate the value
of the game F(x,y), V. p affects the y-minimization by

controlling the accuracy, €(d), to which the derivative game
Dg M;x F(x,y) = -VI&-g has to approximate its mathematical
value. The y-minimization is the most time consuming por-

tion of the process.

JORE o

where & is the diameter of the X-space. Considering the
"worst'" case, when d = d° = p/36-L, (L is the maximum os-

cillation of Fx)’ it becomes apparent that

(dy) = gz

is of order of magnitude p2-10 >,

Recall that the conditions established for
the valididty of the algorithm are intended to guarantee
that, at the approximate optimal solution, |¢(x)-V|<p.
Test runs of the program seem to indicate that the accuracy
actually obtained is much higher.

Although generally valid conclusions cannot be
derived from this observation the user must be aware of this

feature because he will pay heavily in terms of machine time

when p is unreasonably small.
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IV. SUMMARY

The devlopment of the mathematical theory underlying
the derivative game and the concave-convex game algorithm
has only been sketched out in this paper. Here, that al-
gorithm has been employed in the formation of a potentially
useful example. With programming techniques designed to
provide economical running in high dimensions, large-scale
problems should be amenable to the application of the con-

cave-convex game algorithm.
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V. SUGGESTIONS FOR FURTHER STUDY

A.  MATHEMATICS

In Section III.C.6.e., the question of the proper choice

of p was addressed. Recall that

| Max ¢(x) - V]|< p.
X

Even when the user has based his choice of a value for p

on extensive experimentation with a program, he still will

not know exactly how close Max $(x) is to the value of the
: X

game. The desirable state of aftairs would be
| Max ¢(x) - V| = p
X

This wouid require the formulation of neccessary conditions

on the functions a, B and ¢.

B. PROGRAMMING

The fact that, for the class of games at issue, MaxMinF

x
= MinMaxF can be exploited to arrive at the neighborhood of

theyopiimal solution faster than the present program will:
Start the problem as MinMaxF. The course of action then is
reversed with considerable advantages. The maximizer sees
the present y-allocation; the maximization is trivial, gas-
signing as much weight as possible to the Xhi with the
largest cocfficients (the Fx(x,y°)), which results in a

corner solution for x. Then the B-R technique is employed

directly to F(x,y) which will bring x off the boundaries
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again, and, after a pre-set number of iterations, will pro- i
duce an allocation not far from the solution. At this stage

the problem is reinterpreted as MaxMinF and solved in the

manner of the present progran.

Another feasible refinement particularly useful in the
I
application of the algorithm to objective functions linear

171
"doubling", outlined in [4]. The problem is treated as

in both x and y, i.e., F = z; X.a, yj, is the idea of
ij :

MaxMin and MinMax at the same time. Here the value of the

game is approached from below and above simultancously which

provides a stopping rule when the difference MaxF(x,y)-¢(x)
X

arrives at a pre-specified value.
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