
AFFDL-1R-71-52
VOLUME III

COMBAT OPTIMIZATION AND
ANALYSIS PROGRAM- COAP

VOLUME III: PROGRAMMER'S MANUAL

D. S. HAGUE, R. 7. JONES, AND C. R, GLATT

AEROPHYSICS RESEARCH CORPORATIONk

BELLEVUE, WASHINGTON

TECILNICAL REPORT AF-FDL-TR-71-52, VOLUME III __

MAY 197*-

Appruved for public release; distribution unlimited

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO
Rop.oducccd by

NATIONAL TEChNICAL
INFORMATION SERVICE

U4CWASIFIED

(.Security ctsfi::, lo at WIS.it0n of *&effect and Ind"W"'g d""fto~s" must be entered whom th:,epf Owti eportI Ce lassified,

IORIGINATING ACTIVITW Croaeato)2"IPOTSCRT ;AVF:TO

Aerophysics Research Corporation nlsaiie
FP. 0. Box 187 7Wo GROUP,___

Bellevue, Washi.ngton 98009 N/A
R EPORT TITL.

Zombat 0p~timization and Analysis Program - COAP, VolumeIII: Programmer's Manuall

A.ow CSNoPITIva NOT as (Trpo report imfic l 5 al-oi ~dfed)
Final Report _________________________________

S. LUTNOnisI (Pr#F1I''fo ' '"Jom., ,.d Jolliet, #mot now*)
D. S. Hague, R. T. Jones, and C. R. Glatt

s. meP-OnT OAT& To. 10TAL NO *or PAGE: t7.N.of'Rps

IApril 1971
48 8 o6

SC0. C O N TR A C T O R G R A N T N O . 0A. O P., OSNA TO 0N5 A C PO R Y H N 1i1 EIM SIl

F33615-70-c-lo36 None
b. bOJ9CT No.

14&31 _________

C. Sb. OTHI~k REPORT NO(S) (Aow other numnborg Ulel mwy be eege
WINe mJ),%rt)

_______________________________ AFFDLI-TR-71-52, Volume III

10. DISTRIbUTION STATEMWENT

Approved for public release; distribution unlimited.

III. SUPIOLEC.EMTARY MOTES 12. SPONWIQ I41 MILITAIIY ACTIVITY

None Air Force Flight Dynamics Laboratory
Attn: FXG

____________________________ Wright-Patte7.son Air 'Force Base, Ohio
ý8. ANSTRACT

COAP is a program for the simulation and optimi4zation of combative and
cooperative tt;o-vehicle flight pat.hs. It includes aingle vehicle flieht pathJproblem capability as a subcase. Considerable emphasis is placed on the use of
modern optimization.

The program has the ability to perform trajectory optimization by the
variational F'teepest-descent method including search for optimal initial conditions;
search for optimal arc (stage) lengths; constraints def'ined at terminal point,
intermediate corners (stage points), or along the pai-h; and optimum parameter
(design variable) values. The program carl solve two system (vehicle) problems
with or without reacting feedback from the second sy.,tem (veh:lcle).

"U~ternatively, the program may be used to vP.pply the direot mult.Lvariab'z
search approach to trajectory optimization. A variety of' multýivariable search
algorithms are available in this mode including elemental perturbation (one
parameter at a time); organized first- and second-orler methzcdL, and randomized
methods. A method of solution for problems exhibiting multiple extremals and a
procedure for the location of saddle points ifi also included.

Point mass equations of motion for a two--vehicle system are incorpýorated in
the COAP program. Motion takes place about a rotating oblate planet having up to
four harmonics in its gravitational field, non-unitorm atmosphere (1959 or 1962
ARDC), ind winds. Auxiliary computations for aerodynamic heating are included.
The vehicle3 may have arbitrary and independent aerodynamic and propulsive
characteristics. If desired two independent set'; of planetary characteristics

tmay be emploRYed,

D D . e o 4 7 3V R I L A c as 0 0 mo d " ' u e 7 2. 1 'OA l a d , W W B C I s U c a s f e
'New~~~~~rt ~ 59SE96AM *U classifiaed

NOTICE

When Government drawings, specifications, or other data are used for any purpose

other than in connection with a definitely related Government procurement oporation,

the United States Government thereby incurs no responsibility nor any obligation

whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be regarded

by implication or otherwise as in any manner licensing the holder or any other person

or corporation, or conveying any rights or permission to manufacturo, use, or sell any

patented invention that may in any way be related thereto.

"UtitE

Copies of this report should not be returned .mless return is required by security

consideratlous, contractual obligations, or notice on a specific document.

AIR FORCE: 8-10-71/150

Unclassified

13. Abstract (c3ntinued)

Combative ligic is defined in terms of vehicle relative states.
The logic defines feedback control on the basis of relative state.
The COAP program may utilize variational optimization procedures to
determine optimal open loop control. against a reacting opponent
employing feedback control defined by combat logic. Alternately, the
combative feedback control logic may be parameterized permitting
the use of multivariable search for the definition of optimal feedback
control parameters against a reacting opponent. Finally, by param-
eterization of both vehicle feedback control logic, a "mini-max" mode
of operation may be employed in which a solution is obtained by multi-
variable search for a saddle point.

All capabilities described are available in a single general
Purpose FORTRAN IV digital computer program developed for the CDC
6600 computer. This volume, Volume III, presents a programmer's manual
containing instructions regarding

(a) Computer requirements

(b) Program structure

(c) Detailed subroutine descriptions

Unclassified

Unclassified
Uetwityt Claml•sIleation -

.LINK A LINK L0INK C
4. stay WORD$ MOL.R AT RO01. WT 4L0E WT

Parameter optimization, non-linear
programming, steepest-descent,
"amini-max" solution, saddle point
solution, multiple extremal solution

'Jnclassified

AFFDL-TR-71-52
VOLUME III

COMBAT OPTIMIZATION AND
ANALYSIS PROGRAM - COAP

VOLUME III: PROGRAMMER'S MANUAL

D. S. HAGUE, R. T. JONES, AND C. R. GLATT

AEROPHYSICS RESEARCH CORPORATION

t

Approved for public release; distribution unlimited

t

FOREWORD

The research project outlined in this report was completed in the
period from September 1969 to December 1970 under the sponsorship of
the Air Force Flight Dynamics Laboratory, Air Force Systems Command,
Wright-Patterson Air Force Base, Ohio. This report was prepared by
Aerophysics Research Corporation, Bellevue, Washington, under the United
States Air Force Contract F33615-70-C-1036. Mr. B. R. Benson and
Mr. David T. Johnson of the Air Force Flight Dynamics Laboratory were
the cognizant Air Force representatives for the study.

This report was authored by Mr. R. T. Jones, D.S. Hague,and C.R. Glatt
of Aerophysics Research Corporation. The report was prepared and organized
by Mrs. Jan! Yonke of Aerophysics Research Corporation. The report and study
benefit directly from a number of previous government-sponsored research
studies including:

USAF Contract AF33(616)-6848, for trajectory equation and program
development

USAF Contract AF33(657)-8829, for development of the variational
optimization procedure and program

USAF Contract AF33(615)-3932, for extension of the variational
optimization program

NASA Contract NAS 2-4507, for development of the parameter
optimization procedure and program

NASA Contracts NAS 2-3691, for extension of the optimization
NAS 2-4880, NAS 1-9936, procedures
and NAS 3-13331

This project has resulted in considerable extension of the previously
available AFFDL generalized steepest-descent computer program. Notable
extensions consist of the addition of equations of motion for a second
vehicle, addition of self-contained combative logic, extension of the
variational steepest-descent procedure to situations involving a reacting
opponent, addition of parameter optimization capability by multivariable
search, and the development of a saddle point search procedure for the
solution of parametrically defined trajectory or combat performance problems.

The study results are reported in four volumes as follows:

Volume I - Trajectory, Combat and Variational Optimization
Formulaticon

Volume II - Program User's Manual

Vo..ume III- Programner's Manual for Trajectory, Combat, and
Variational Optimization Subprograms

il

Volume IV - Programmer's Manual for Parameter Optimization

iSubprogram AESOP

This report was submitted by the authors March 1, 1971.

This technical report has been reviewed and is approved.

Pi P. ANTONATOS
Chief, Flight Mechanics Division
Air Force Flight Dynamics Laboratory

S~iii

ABSTRACT

A program for trajectory optimization by the variational steepest-
descent is described in detail. The program capability includes search
for optimal initial conditions; search for optimal arc (stage) lengths;
constraints defined at terminal point, intermediate corners (stage
points), or along the path; payoff function at terminal point or inter-
mediate corner (stage point); search for optimum parameter (design
variable) values; and two systemi (vehicle) problems with or without
reacting feed-back from the second system (vehicle).

The program also incorporatv; an alternative direct multivariable
search approach to trajectory optimization employing a variety of multi-
variable search algorithms including elemental perturbation (one param-
eter at a time), organized first- and second-order methods, and
randomized methods. A method for solution for problems exhibiting
multiple extremals and a procedure for the location of saddle points
is also included in the program.

Foint mas5 equations of motion for a two-vehicle system are avail-
able in the program, Motion takes place about a rotating oblate planet
having up to four harmonics in its gravitational field, non-uniform
atmosphere (1959 or 1962 ARDC), and winds. Auxiliary computations for
aerodynamic heating are included. The vehicles may have arbitrary and
indcpendent aerodynamic and propulsive characteristics.

Combative logic defined in terms of vehicle relative states is
availabie in the program. The logic defines feedback control on the
basis of relative state. Variational optimization procedures may be
employed to determine optimal open loop control against a reacting
opponent employing feedback control defined by combat logic. Alter-
nately, the combative feedback control logic can be parameterized
permitting the use of multivariable search for the dafinition of optimal
feedback control pa.rameters against a reacýting opponent. By param-
eterization of both vehicle feedback control logic, a "mini-max"
situation capable of solution by multivariable search for a saddle
point can be con3idered.

All capabilities described are availqble in a single general
purpose FORTRAN IV digital computer program developed for the CDC 6600
computer.

iv

TABLE OF CONTENTS

Section Page

I INTRODUCTION• 1

II COMPUTER AND SYSTEM REQUIREENTS 3

III PROGRAMMNG CONCEPTS 4

1. TheUse of COMMON 4
2. Table and Table Usage 4
3. Symbolic Input 4
4. Trajectory Printing Method 5
5. Tape Usage 5
6. Overlay Listing 7
7. Program Organization 12
8. Program Generation, Modification, and Execution 13
9. Data Format 20
10. Table Format 22
11. Brief Write-Up on System. Routineu 23
12. ENCODE/DECODE 25

IV MAIN PROGRAM AND SUBROUTINE MAIN2 27

1. MAIN and MAIN2 27
2. BDATA1 - Block Data Subroutine 29
3. BDATA2 - Block Data Subroutine 29
4. BDATA3 - Block Data Subroutine 29
5. BDATA - Block Data Subroutine 29
6. BDATA5 - Block Data Subroutine 29
7. BDATA6 - Block Data Subroutine 29
8. BDATA7 - Block Data Subroutine 29
9. SPRANG - Random Number Generator 29

10. CHAIN - Overlay Control Program 30
11. MSGONE - Combat Message Subroutine, Vehicle 1 32
12. MSGTWO - Combat Message Subroutine, VehicJe 2 32

V PROGRAM MAINI AND SUBROUTINE MAIN12 33

1. RF-DA and READA2 - Input Routines for Vehicle 1
and Vehicle 2 Data 37

2. DORD11M - Directory Order Output Routine 45
3. PACIL - Pack Routine 46
4. DSFKRC2 and DSERCr- Directory Search Floutine for

Subscripts 47
5. STOP1 - General Stop; Roatine 49
6 EXERR - Error Routine 51
7. TSRCH and TSRCH2 - Directory Search for Thble

Subscript 52
8. READB and FREADB2 - Binary Stage Data Input Routine 54
9. BAESOP - Pacameter Optimization Input Subroutine 56
10. DIPLAC - Integer Sbift Boutina 57

.11. DEF and DEF2 - lH3ding and Page Eject 59
12. TABRE and TABRE2 - Table Dimension Subscript

Routines 60

Section Page

13. LINES and LINES2 - Lines Accounting Routines 62
14, PACBCD - Packs Six Character Words 64
15. PACKR - Packs BCD Characters 66
16. READ31 - Binary Conversion Routine 68
17. SVI and SVI2 - Block Save Routines 70
18. BIBLOCK - Data Output in Blocks 72

19. SHELL - Numeric Sorting Subroutine 74

VI PROGP6UM EXE AND SUBROUTINE EXE2 75
1. DIFEQ - Differential Equation Selector 82
2. MANNTGT and MANTGT2 - Maneuvering Target 84
3. CTVS and CTVS' - Control Variable Routine for EXE 90
4. IFCS - In-Flight Constraints 93
5. PARTS - Pprti;xl Derivatives 96
6. LINCOM and LINCOM2 - Linear Combination Routines 104
7. SLACK and SLACK2 - Slack Variable Routines 107
8. PENAL and PENAL2 - Penalty Aunction Routine 109
9. PLTS and PLTS2 - Data Gathering Routine 112

10. OBSFUN and OBSFUN2 - Observation Function
Routine 115

11. FILTER and FILTER2 - Repeater Routines for
h-Transformation 120

12. STGTST and STGTST2 - Stage Testing Routine 122
13. EXTRAN and EXTRAIN2 - Driver for h-Transformation 125
14. INTGRT, INTGRT2 and INTGRTR - Interface for

.Integration Routine 128

15. CODES and CODES2 - Code Print Routines 131
16. ITEMS and ITEMS2 - Variable Print Routines 133
17. COMBAT and COMBAT2 - Combat Control Routine 135

18. MIMINF and MIMINF2 - Integration Routine 143
19. TIMID and TIMID2 - Step Function Routines for

Time Points 147
20. VALUES and VALUES2 - Value Print Routines 149
21. MISCUT and MISCUT2 - Abortion Routine 151
22. ONLINED - On Line Display Routine 153
23. DIFEQ1 and DIFEQ2 - Point Mass Equetions of

Motion 154
24. DIFEQ3 - Du;zmy Subroutine 164

25. TLUREV - Two Dimensional Table Look-Up Routine 165
26. ACOS - Arc Cosine Routine 167
27. ASIN - Arc Sine Routine 169
28. TLU and TLU2 - Two Dimensional Table Look-Up

Routine 170
29. ATAN2 - Arctangent Routine 172
30. TLUI - Two Dimensional Table Look-Up Routine 174
31. TIMREV and TIMREV2 - Time Point Collection

Routine 177
32. PSUBR - Evaluation of Pertial Routine 179
33. PRPACK - Blocking Routine for Partials 182
34. FLUSH1 and FLUSH12 - Buffer Flush Routine

ior P2PACK 184
35. SETGRD - Paper Plot Grid Size Routine 186
36. PAPEMP - Printer-Plot Control Routine 187

vi

Section Page

37. DETECT and DETECT2 - Sensor Control Program 188
38. ROLE1 .nd ROLE2 - Role Selection Subprogram 190
39. HLIMIT and HLIMIT2 - Minimum Altitude Constraint

Routine 194
40. ANGLES and ANGLES2 - Relative Angular Orien-

tation Routines 196
41. CRATE and CRATE2 - Finite Control Rate Routine 199
42. TIM001 and TIM0012 - Tabular Time Point Routine 204
43. DEQPRE and DEQPRE2 - Equation of Motion Pre-Data

Initialization 206
44. FIRFUN and FIRFUN2 - Fire Control Subprograld 207
45, GAM9l and GAM92 - Flight through Vertical

Routine 211
46. DEQINI and DEQINI2 - Equation of Motion Post-

Data Initialization 213
47. DEQBCI and DEQBCI2 - Derivative Calculation

Before Control Definition 214
48. FPPS and FPPS2 - Flight Plan Programmer 215
49. ONETWO - Transformation of Selected Vehicle 2

Variable to Vehicle 1 COMMON 218
50. CTLITR and CTLITR2 - Control Dependent Deriv-

ative Calculation 219
51. DEQACI and DEQACI2 - Derivative Calculation

after Control Definition 220
52. FPPG and FPPG2 - Gamma Command Flight Plan

Programmer 222
53. DEQSIP and DEQSIP2 - Derivative Evaluation

Initial Point 224
54. DEQCOD and DEQCOD2 - Trajectory Code Print 225
55. DEQVAL and DEQVAL2 - Trajectory History Print 226
56. DEQIV and DEQIV2 - Integrated Variable

Specification 227
57. DEQHT and DEQHT2 - Trajectory h-Transformation

Subroutines 228
58. ERROR and I1ROR2 - General Table Error Routine 229
59. PTBEQN and PTBEQN2 - Driver Routines for

Equations 231
60. TWOONE - Transformation of Selected Vehicle 1

to Vehicle 2 COMMON 234
61. IZERO and IZER02 - Packs Non-Zero Numbers 235
62. PPLNLN - Main Paper Plot Routine 237
63. SENSOR and SENSOR2 - Vehicle Sensor Routines 239
64. VISION and VISION2 - Pilot Vision Routines 242
65. PASSVI and PASSe2 - Passive Tactics Routine 244
66. DEFERI amd DEFEN2 - Defensive Tactics Routine 246
67. EVADE1 and EVADE2 - Evasive Tactics Routine 249
68. OFFEN1 and OFFEN2 - Offensive Tactic Routine 252
69. ATTACI and ATTAC2 - Attacking Tactics Routine 255
70. OALPBA end OALPBA2 - Subprogram for Instantan-

eous Control Vector Iteration 258
71. HIHO and HIH02 - N-Dimensional Table Call Routine262
72. TMTX - Transformation Matrix Routine 264
73. TRNPOS - A 3 x 3 Matrix Transpose Routine 267

vii

Section Page

74. MULT31 - A Matrix Multiplication Routine 268
75 HETS and HETS2 - Heating Computations 269
"76. TFFS and TFFS2 - Single Engine Thrust and

Fuel Flow 276
77. SACS and SACS2 - Aerodynamic Routines 279
78. LATS and LATS2 - Geodetic-Geocentric Conversion 288
79. ATMS and ATMS2 - Atmosphere Selector 290
80. GVSP and GVSP2 - Gravitational Routine 291
81. ANITR and ANITR2 - Throttle Dependent Deriv-

ative and Thrust Vector Calculation 293
82. BAITR and BAITR2 - Bank Angle Dependent Deriv-

ative Calculation 294
83. ASRCH and ASRCH2 - Directory Search Routines for

BCD Characters 295
84. GRIDXiY - Paper Plot Grid Routine 297
85. PLCPTS - Paper Plot Point Placing Program 299
86. IPICK - Random Tactic Selector 300
87. DEFENI and DEFEN21 - First Defensive Tactic 301
88. FIXEDR and FIXZDR2 - Fixed Role Selection Routine307
89. EVADEll and EVADE21 - First Evasive Tactic 308
90. OFFENl and OFFEN21 - Lag-Pursuit Offensive

Tactic 312
91. OFFEN12 and OFFEN22 - Lead-Pursuit Offensive

Tactic 313
92. OFFEN13 and OFFEN23 - Reference Vector Offensive

Tactic 314
93. ATTACll and ATTAC21 - First Attacking Tactic 315
94. ATTAC12 and ATTAC22 - Second Attacking Tactic 316
95. CTLOFT - Internal AESOP Optimization Loop 318
96. NDTLU - N-Dimensional Table Lookup Routine 320
97. ChP and CHEMP2 - Chemical Jtate Computation 323
98. CONV - Non-Linear Equation Solver 326
99. TFFM and TFFM2 - Multiengine Thrust and Fuel

Flow 329
100. ATMS59 and ATMS592 - 1959 Atmosphere Calcula-

tion Routine 333
101. ATMS62 and ATMS622 - 1962 Atmosphere Calculation

Routine 335
102. PUT - Character Manipulation Routine 337
103. GET - "haracter Manipulation Routine 338
104. OPTBA and OPTBA2 - Bank-angle Iteration Routine 339
105. IMAINOP - Internal Parameter Optimization

Interface Routine 341
106. ISELECT - Inte".al Search Selection Routine 343
107. MULT33 - Matrix Multiplication Routine 344

VII PROGRAM CTLS 345

1. CTLS1 - Original Control System 347
2. CTLS2 - Arbitrary Control System 357
3. DISPLAY - Console Display Routine 362
4. SEARCH - Search Routine 363

viii

Section Page

5. CARDS - Restart Cards Routine 367
6. DALCAL - Delta Alpha Calculation 369
7. KCALC - Step Size Logic Routine for Control

System 1 374
8. INVERT - Iý* Inversion 379
9. DECIDE - Driver for Decision Routines 384

10. OFFSW - Display Drop Routine 385
11. TLUU - Two-Dimensional Table Look-Up Routine 386
12. UNBLOCK - Unblocking Routine for A's 388
13. SUMOLA - Linear Combination Routine for A's 390
14. PLOT - Point Plot Subroutine 392
15. MATINV - Matrix Inversion Routine 398
16. DECID3 - Step Size Routine for Control Systems 40o
17. DECID2 - Arbitrary Decision Routine 406
18. PACK - Integer Word Conversion Routine 407
19. WNORM - Weighting Matrix Norm Calculation 409
20. UPDK - Convergence Control Routine 411

VIII PROGRAM REV 428
1. CTVSR - Control Variable Routine for REV 434
2. ADJEQ Adjoint Equations Routine 436
3. UNPART - Unblocking Routine for Partials 442
4. MIMINR - Integration Routine for REV 444
5. WMA - Weighting Matrix Routine 446
6. DALPACK - Blocking Routine for X's 453
7. FLUSH - Buffer Flush Routine 455
8. IZUNPK - Switch Testing Routine 456

IX PROGRAM GRAPH 458
1. Mapping Routines 459
2. Arrow, Line, and Point Plotting Routines 459
3. Character Plotting Routines 459
4. Absolute Plotting Routines 1159
5. Utility Routines 460
6. Internal Routines 460
7. PAPLT - Parameter Collection Routine 472
8, PRPLT - Partials Collection Routine 474
9. PLTCUR - Microfilm Plotting Routine 476
10. Dummy Plot Routines 479

X DIRECTORY 482
1. CTAE - Parameter Optimization Control Program 483

XI ALPHABETIC INDEX OF SUBROUTINES 486

ix

SECTION I

INTRODUCTION

This report describes a generalized digital computer program for
the simulation and/or optimization of arbitrarily defined vehicle flight
paths. Two simultaneously coupled three-dimensional point mass trajec-
tories about a rotating oblate planet having a multi-layered atmosphere
may be employed. Levels of reduced ccmplexity varying frcm the generalized
problem to straightforward planar point mass, single vehicle, vacuum
trajectories may be studied with the aid of the progr&A.

The program itself has evolved over a period of some ten years,
mainly on the basis of four Air Force Flight Dynamics Laboratory (AFFDL)
sponsored contractor research studies. The program has also been
supported by National Aeronautics and Space Administration studies %t
Ames Research Center, Langley Research Center, and the Manned Spa': ecraft
Center and has received wide distribution throughout the aerospace
industry.

In addition to the point mass capability, compatible trajectozy
equation options of increased complexity up to and including a six-
degree-of.-freedom single vehicle option employing generalized vehicle
and planetary characteristics and a generalized trajectory error and
dispersion analysis are available from AFFDL.

PURPOSE

The program reported in this document extends the existing AFFDL
sir'le-vehicle point mass program to the two.-vehicle point mass problem.
Specifically, the original program has been extended to provide a gener-
alized two-vehicle (one-on-one) combative engagement simulation and
optimization capability. The combative encounter may be defined at
several levels of complexity short of differential game formulation
including:

OPTION (A): Self-contained role and tactic selection
based on relative vehicle states

OPTION (B): Parameterization of one vehicle's role and
tactic selection rules followed by the
application of multivariable search proced-
ures to obtain the optimal pirameter values.
This option defines optimal parameters
against a specified opponent employing
fixed combat logic parameters.

1

OPTION (C): Parameterization of both opponent's role and
tactic selection rules followed by the appli-
cation of a multivariable saddle point search
technique. This option defines a "mini-max"
optimal procedure for opponents employing
variable combat logic parameters.

OPTION (D): Open loop, continuous control optimization
by the variational calculus against an
opponent performing a pre-specified maneuver,
the "maneuvering target" option.

OPTION (E): Open loop, continuous control optimization
by the variational calculus against a
reacting opponent employing fixed parameters
and self-contained combat tactics.

It should be noted that the formulation and program include as
subcases two-vehicle cooperative problems. This leads to

OPTION (F): Cooperative twc-vehicle parametric control

OPTION (G): Cooperative two-vehicle open loop contin-
uous control

These last two options permit the optimization of two-vehicle rendezvous
problems and are equally applicable to aircraft or spacecraft problems.
Single-vehicle problems may also be studied by means of the program. In
this reduced mode, both parametric and variational optimization formulations
can be employed.

2

SECTION II

COMPUTER AND SYSTEM REQUIREMNTS

The combat simulation program has been written for use with the
CDC 6600 series computer system using the run compiler. F&cept for
three small subroutines, GET, PUT, and OFFSW, the program is written
in CDC FORTRAN IV.

Computer resource requirements are

1. A CDC 6600 computer with 131k (decimal) core

2. A card reader

3. A line printer

4. A card punch (if restart cards are to be punched)

5. Twenty-two tape transports or a disk to simulate
magnetic tape

6. A display console (This requirement is omitted
when the display subroutine SCOPE is replaced by
a dummy subroutine).

3

SECTION III

PROGRAMMING CONCETS

1. The Use of COMMON

Whenever possible, a variable is pla,.ed in the FORTRAN "COMMON" ares..
There are several reasons for this:

a. The communication between subrcutines is simplified

b. The structure of the directory is simplified. Since
the number of variables in CO'0MON is quite large, all
COMMON cards are not placed in each assembly/compilation.
Instead, access to any quantity in the COMMON blocks
is through individua3 "EQUIIALENCE" statements placed
in each deck of source cards. This has in a small
manner reduced the number of COMMON cards in each deck.

in order that the user may better obtain the required COMRMO location
for a given variable, a system of COMMON subscripts is used. The first
location of COMMON has a subscri'?t of 1; the second, 2, . . The listing
of the suffix directory can be cbtained by a program user if the data
quantity "DLIST" is input as 1.9 to the program.

The data for vehicle onc, iL stored in "blank" COMMON. The data for
vehicle two is stored in naaed COMMON/COMMON2/. Blank COMMON and /COMMON2/
eacb use 3000 core locations. The COMMON subscript of a given variable is
the si-me for both vehicles. For example, bank angle, "BA77D," is the
sixty.-fourth location of blank COMMON for vehicle one and is the sixty-
fourth location of /COMMON2/ for vehicle 2.

2. Table and Table Usage

One of the usual required modifications of any program is the change
of table sizes. With this in mind, a COMMON block of locations has been
set aside,and the required number of cells required for each table is
specified with data (check TABRE for data preparation). This re'uires
no re-assembly or recompilation unless the total numbzr of cells required
exceeds the COMMON block. This has been set at 4000 cells for each
vehicle. Table data for vehicle one is stored in numbered COMMON /5/,
and table data for vehicle two is stored in numbered COMMON /52/.

3. _bolic Input

Although the FORTRAN system itself has a system of input routines,
the program does the actual translation of cards using special coded
routines. Input data may be read using a system of symbols which is
designed to give engineering meaning to the analyst. The symbols are
internally referenced to actual locations by the use of COMMON and
subscripts.

14

4. Trajectory Printing Method

The printing of a trajectory may be divided into five categories:

a. Initial printing - The printing of specific values of the
first stage dnd at each subsequent major stage. Initial
print is designed to print certain values which will be
constant during the trajectory and serve as a reminder of
what values have been used for these constants.

b. Code printing - The printing of codes which will identify
the variables which are to be obtained in the coming time
history print. Only those variables to be print'ed in the
time history will have a code name pr'LDted. All subpro-
grams being used as well as the differential equations
rcutine wYll print a set of codes.

c. Time history printing - The printing of values specified

at the requested points of the trajectory. If a certain
variable is not desired as output, it is not printed, and
other desired variables are moved in the print fonmat
accordingly.

d. Observation functions - A maximum of thirty-two variables
for each vehicle may be designated as observation functions.
At the end. of each major stage, the time history of all
observation functions are printed in tabular format. Obser--
vation functions may also be plotted on the line printer.
The object of observation function printout is the construc-
tion of compact histories for the major trajectory variables.

e. Diagnostic error printing - The printing of errors detected
by the program.

The entire printing is con, tolled to print on a pare 11 x 14 inches
and will print a maximum of fifty-four lines per page. Page ejection and
lines control are provided by the subroutines LINES and DEF.

In addition to the above printout, all input data involied for a case
may be printed on the output page preceding the computation of the first
stage printout. This printout is user-controlled and will be coitted
when IPNA14L = 0. This print will oceur on thb first cycle only.

5. Tape Usage

This section will describe the tape usage o'aer than the FORTRAN
system. All modification of tapes required may be ma4e with control
cards placed in front of the program before sub.itting to the computer.

TWPE EQUIPHKNT VEHICLE USAGE

Tape 5 Disk or tape 1 & 2 Data input

Tape 6 Disk or tape 1 & 2 Printed output

5

TAPE EQUIPMENT VLHICLE USAGE

Tape 10 Disk or tape 1 Save the a history for that
valid step for use with all
trials until another valid
step is found.

Tape 11 Disk or tape 1 This unit is used in the
reverse integration to save
data for use in computing
the mode shape in the con-
trol system.

Tape 12 Disk or tape 1 Partials and control vari-
ables are written on this
unit for use in the reverse
integration

Tape 13 Disk or tape 1 Target data is written on
this tape when using the
maneuvering target option.

Tape 1i Disk or tape 1 & 2 Used to save the AESOP data
base for the outer AE3OP
parameter optimization loop.

Tape 15 Disk or tape 1 This tape is used for restart
cards. Restart cards for the
last completed cycle are
written on this tape. The
program call card may be used
to automatically assign this
tape to the punch file.

Tape 16 Disk or tape 1 Used to prepare the input
tape in binary for use in
the iterative procedure.

Tape 17 Disk or tape 1 Collects data for plotting
in overlay 5, 0 (GRAPH)

Tape 18 Disk or tape 1 & 2 Save the AESOP parameter
and performance history for
the summary report at the
end of an optimization cycle.

Tape 19 Disk or tape 1 & 2 Save the AESOP parameter and
performance history for the
final summary report.

Tape 20 Disk or tape 2 Same as unit 10.

Tape 21 Disk or tape 2 Same af unit ii

6

TAPE E m VEHICLE USAGE

Tape 22 Disk or tape 2 Same as unit 12.

Ta&c 23 Disk or tape 2 Same as unit 13.

Tape 25 Disk or tape 2 Same as unit 15.

Tape 26 Disk or tape 2 Same as unit 16.

Tape 27 Disk or tape 2 Same as unit -7.

FILMPL Disk or tape 1 Used by the CDC 280 recorder
and display system.

6. Overlay Listing

The following is a list of the overlay structure of the combat simulation
program including the main program, subprograms, subroutines, and system
routines used. (Note: System routines appear in italics).

OVERLAY 00.00

1. MAIN 2. BDATA1
3. BDATA2 4. BDjATA3
5. BDATA4 6. BDATA5
7. BDATA6 8. BDATA7
9. SPRANG 10. MAIN2

11. CHAIN 12. MSGONE
13. MS(•.wo 14. SYSTEM
15. FINBIN 16. ACGOER
17. EXP 18. AL.tLOG
19. SQRT 20. SECOD
21 OUTP2'C 22. OVERLAY
23. REW-NJM 24. OUTPB
25. SIO$ 26. GETBA
27. KODER 28. OVERLOD

OVERLAY 01.00

1. MAIN1 2. READA
3. DORDER 4. PACKL
5. DSERCH 6. STOPI
7. EXERR 8. TSRCH
9. READB 10. MAIN12

11. BAESOP 12. DIPLAC
13. DEF 14. TABRE
15. LINES 16. PACBCD
17. PACKR 18. READ31
19, SVI 20. BIBLOCK
21. SHELL 22. SHELLX
23. READA2 24. DSERCH2
25. TSERC02 26. READB2

7

27. TABfRE2 28. SV12

29g. BACKSP 30. .TNPUTB

31. INFVTC 32. OUTPTS

33. IFENDE 34.. INPUTN

35. OUTPTN 36. INPUTS

37. KRAKER

OVERLAY 02.00

1. EmE 2. DIFEQ
3; MNTG14. CTV3

3. MIFTGT
6. PARTS

5. LIFCS 8. SLACK

7. PENCOL 10. PITS

iiOBSEUN 12: FILTE1R

13.M24
STGTST

13. EXE2A 16. READB,

17. T' NGE 18. DEE

17.TNTRT20. CODES
19. LINES 22. COMBAT
21. ITEMS 24.. OBSFIJN2

23. COMBAT2 26. MIMIFIF2
25. 1-LM1NF 2b. T4IMID

27. STGTST2 3.MSU

29'. VTALUES 3.MS
-32. O4LfINED

31. MISCUT2 34.. DIFEQC
33. DIFEQ! ~ 36. DiFEQh

35. DIFEQ3 38. DiFEq6

37. DIFEQ5 4.0. TSE'2"H

39. STOlPl 12. ACOS
4.1. TLUBEV1.. U

13. ASIN4.
L

1.7 ATIMRE 48. DSERCH
47. EXERBV 50. ONETWO

51. PSUBE 5l,2. PRPhCK

53. FLUSHI 54.. SETGRD

55. PKPEFF 56. MAIITGT2

57. CTVS2 58. IFCS2

59. PAT260.
LINCOM2

6 A.Tsum 62. PENAL2

63. PLT2S264 ITM

65. EXTRAN2 66. RZADB2

67. INTGRT2 68. CODES2

69. ITE2132 70. TIMID2

71. VALU2oS2 72. DETECT

73. ROLE1 74.. HIINIT

75 . ANC~LE'S 76. CRA:TE

77. DE-I'ECT 78. ROLE?

79. HLDU¶T2 80. ANGLES'

6i. CRATE2 82. DSERCH2

83. 'Ti1I100l 81.. DEQPRE

85. F~IFIJN 86. GAMA91

87. DXQLNI 88. DEQBCI

89. FPPS 90. CTLITR
91. DEQACI 92. FPPG
93. DEQ3IP 94. DEQCOD
95. DEQVAL 96. DEQIV
97. DEQHT 98. DEQPRE
99. FIRFUN2 100. GAMA92

101. DEQINI2 102. DEQBCI2
103. FPPS2 i04. CTLTTR2
1)5. DEQACI2 106. FPPG2
2-07. DEQSIP2 108. DEQCOD2
109. DEQVAL2 110. DEQIV2
111. DEQUT2 112. ERROR
113. PTBEQN 114. TWOONE
115. IZER0 116. PPLNLN
117. TSRCH2 118. TLU2
119. TDMREV2 120. TIMO012
121. SENSOR 122. VISION
123. PASSV1 124. DEFENI
125. EVADE1 126. OFFENJ
127. ATTACI 128. OALPBA
129. HIHO 130, TMTX
131. TRNPOS 132. MULT31
133. SENSOR2 134. VISION2
135. PASSV2 136. DEFEN2
137. EVADE2 138. OFFEN2
139. ATTAC2 14o. OALPBA2
141. HETS 142. TFFS
143. SACS 144. LATS
145. ATMS 146. GVSP
147. ANITR 148. BAITR
149. HETS2 150. TFFS2
151. SACS2 152. LATS2
153. ATMS2 154. GVSP2
155. ANITR2 156. BAITR2
157. ASRCH 158. PTBEQiW2
159. GRIDXY 160. PLCPTS
161. ERIROR2 162. IPICK

163. DEFENl 164. FIXEDR
165. EVADEll 166. OFFENll
167. ATTAC11 168. CTLOPT
169. NDTLTU 170. DEFEN21
171, FIXEDR2 172. EVADE21
173. OFFEN21 174. ATTAC2J
175. CHEMP 176. coNV
177. TFFM 178. ATMS59
179. ATM362 180. CHEMP2
181. TFFM2 132 HIH02
183. ATMS592 184. ATMS622
185. PUT 186. GET
137. ASRCH2 188. OPTBA

189. INITOP 190. BESTAF

9

191. IMAINOP 192. WARPS

193. PENLTY 194. OPTBA2

195. PGAIN 196. ALFLIM
197. INF71AL 198. FESET
199. SAVALF 200. PATERN

201. ISELECT 202. PSRCH

203. WEIGHT 204. OUTALF
205. OUTFUN 206. PCYCLE

207. FNEVAL 208. PFINAL

209. SUMARY 210. SECCON

211. CREEPR 212. OUTWGT
213. OUTSUM 214. RANDUM
215. BOUND 216. SECTON

217. ASVCHK 218. FESAV
219. RGEN 220. SHELL

221. FUNTYP 222. STDALF
223. INPUTB 224. BACKSP

225. SINCOS 226. RBAIEX

227. IFENDF 228. OUTPTS
229. SCOPE 230. REAREX
231. TAN 232. IBAIEX

233. TANH 234. ATAN
235. ENDFIL 236. CPC

OVERLAY 03.00

1. CTLS 2. CTLS1

3. CTLS2 4. DEF

5. LINES 6. DISPLAY

7. SEARCH 8. STOPI
9. CARDS 10. DALCAL

11. KCALC 12. INVERT

13. DECIDE 14. OFFSW

15. DSERCH 16. TLUU

17. UNBLOCK 18. SUMOLA
19. PLOT 20. MP.TINV
21. DECID3 22. DECID2

23, PACK 24. WNcRM
25. UT-DK 26. INPUTB
27. ENDFIL 28. LOCF

. oUTPTS 30. RBAREX

31. INPUTS 32. KRAKER

OVERLAY 04.00

1. REYI 2. CTVSR
3. ADJEQ 4. DEF

5. LINES 6. UNPART

7. INTGRTR 8. TLUREV

9. MIMINR 10. CODES

11. VALUES 12. TLU1
13. WMA 14. DALPACK

15. FLUSH 16. IZUNPK

17. STOPL 18. BACKSP
19. INPUTB

10

OVERLAY 05.00

1. GRAPH 2. PAPLT

3. PRPLT 4. FRAME

5. PLTCUR 6. ABSBEAM

7. ABSVECT 8. MAP

9. LINEOPT 10. CHABOPT

11. SETBEAM 12. NUMBER

13. SYMBOL 14. VECTOR

15. INPUTB

OVERLAY 06.00

1. DGAMES

OVERLAY 07.00

1. CTAE 2. STOPI

3. INITOP 4. BESTAF

5. MAINOP 6. WARPS

7. CODES 8. VALUES
9. CODES2 10. VALUES2

11. SADDLE 12. PENLTY

13. SADDLE 14. PGAIN

15. ALFLIM 16. iNEVAL
17. 1ESET 18. SAVALF

19. PATERN 20. SELECT

21. PSRCH 22. WEIGHT

23. ENDCYC 24. FNEVAL

25. OUTALF 26. OUTFUN

27. SUMARY 28. DEF

29. SECCON 30. MAGNFY

31. STDESC 32. CREEPR

33. QUADRA 34, DAVIDN

35. RPOINT 36. RANRAY
37. RAYSEC 38. BAESOP

39. OUTWGT 40. OUTSUM
41. PCYCLE 42. PFINAL

43. RANDUM 44. BOUND

45. SECTON 46. DERIV

47. WMAT 48. INISTD

49. ASVCHK 50. FESAV

51. MINALP 52. ALPERT

53. ALFNUL 54. QUTRA

55. QUADOP 56. MAXRDP

57. DMATRX 58. SAVDER

59. RGEN 60. RANCOS

61. SHELL 62. FUNTYP

63. STDALF 64. MATMLT
65. Q)XINV 66. RBAIEX
67. INPUTN 68. OUTPTN
69. EADFIL 70. INPUTB

1i

7. Program Organization

The combat simulation computer program is written in CDC FORTRAN IV
except for one small display routine OFFSW and two small character mani-
pulation routines GET and PUT. The program takes advantage of the overlay
feature to minimize core requirements.

This section describes the overall org-*nization of the program from
the viewpoint of control cards, tape usage, and r_-ck set up. The program
in broken into eight overlays as follows:

1. MAIN - MAIN zeros out all of the common locations and moves
the directory data to common locations.

2. MAIN1 - Does some data initialization and prepares an input
tape for use in the iterative procedure.

3. EXE - Solves the equations of motion and computes the
partial derivatives.

4. CTLS - To compute the step size and new control variable
table for the next trajectory being computed.

5. REV - The reverse integration program computes integrals
which determine the mode shape of the changes in the con-
trol variables and puts this out on tape for use in
CTLS.

6. GRAPH - Dumy

7. DGAMES - Dummy

8. CTAE - Parameter optimization AESOP

a. Storage References

All variables requiring arrays have been arranged in the standard
FORTRAN convention. For example, an array Ai is stored in increasing
storage locations for increasing i. Matrices are stored columnwise.

b. Integers

All integers are assumed to be in a 60 bit word right Justifted.

c. COMMON

In order to decrease the length and t.h: i4azir a ." Vdn

sequences, liberal use of COMMON has been made,, Three types of COMMON
are used: blank, numbered, and labeled. For the actual variables and
their arrangement in COMMON, the user is referred -o the program listing.

d. Variable Names

Becuase any variable may be referred to by FORTRAN, all integer
variable names begin with the leading letters I, ., K, L, M, or N. This

12

does not mean that all non-integer variable names begin with latters
other than I, J, K, L, M, or N. They may, in some subprograms, be
declared integer or real.

8. Program Generation, Modification, and Execution

The following examples are designed to aid the user in litilizing the
features of the CDC 6000 series computer for modification and execution
in the combat simulation program. All examples shown ere base. upon an
overlayed program organized as follows:

OVERLAY(TRAJOPT, 0, 0)
MAIN
OVERLAY(TTRAJOPT, 1, 0)
MAIN1
OVERLAY(TRAJOPT, 2, 0)
EXE
OVERLAY(TRAUOPT, 3, 0)
CTLS
0VERLAY(TRAoPT, 4, o)
REV
0VELAY(TRAJOPT, 5, 0)
GRAPH
ovE0LAY(TRAOP, 6, o)
DGAMES
OVERLAY(TRAJOPT, 7, 0)
CTAE

All control cards are left-Justified in card column 1. The end of record
is a 7, 8, 9 punched in column 1 and an end of file card is a 6, Y. 8, 9
punched in column 1. In the control iard examples, an end of record and
an end of file will be used in place of these cards.

a. Building the Program Overle•y File

In constructing the program overlay file a CDC-developed utility
program COPYLIB is used. COPYLIB is a user library simulation copy routine
developed by CDC to take most of the work out of building overlay or
normal load files. However, COPYLIB is not a standard CDC utility program;
hence, i short description is supplied below with exarples of its use.

COPYLIB is called by a control card and reads text cards.

(1) Control Card

cOA~imi(GUT;FL2, LTR. LIF2 .TJB)

where OUTFILE is the name of the disk or tape file upon which the output
(the program overlay file) is to be written, and LIBI, LIB2, . .. , LIBi
(l .< i & 6) are the names of the user-supplied library fi.les containing
subpr:ograms output from a CDC 6600 compiler or assembler in relocatable
object form (odd parity).

13

(2) Text Cards

The order and content of the text cards define the output file.
They are free form in columns i through 72, blanks ignored. The text cards
are listed as follows:

ident

where ident is a subprogram name. The purpose of the ident card is to
name the main program. Once the main program name is known, it and all
the routines it calls or references and all they call or reference that
were available in the library files are copied onto the output file
specified.

Usually, only the one card naming the main propgýz.. aeed be
given except for certain cases such as Block Data routines that are
uecessary but not specifically called or referenced by any program. (In
the case of an otherwise unnamed Block Data routine, the additional
ident card would contain only BLKDATA). Another ingtance might be one
in which the order of loadir.: was important to guarantee that the longest
named COMMON refae.:'u.d come first. The order would be forced by
the iotz in u additional cards containing the names of the routines
in tue order required.

OVERLAY(fn, If, 12)

Overlay text cards are necessary to properly define the structure of
the file to be built for overlay loading. These cards cause an overlay
loader directive record containing all the information on the text card
to be written on the out file. The order and form of this text card
must be exactly as defined in the Scope Reference Manual or the FORTRAN
Reference Manual, with the exception of the starting column.

An ident text card containing the name of the main program in the over-
lay must follow each overlay text card.

Given correct overlay and ident text cards, COPYLIB will correctly build
an overlay structure file; no routine needed or defined in a more funda-
mental overlay will be placed in a less fundamental level. If an ident
card incorrectly attempts to call a routine that has somehow either
through a previous ident text card or through a call by a subroutine at
that level aireAdy been -laccd in the more fundamental level, the ident
card is ignored and an informative diagnostic is printed. It is possib!½
to have several 0, 0 level overlay cards in the text stream if the pur-
pose is to build different overlay structured prcgrams.

WEOF

This text card causes an end of file to be written on the OUTFILE after
all the preceding text cards are processed. (A file mark might be

.14

between two separate overlay structured programs being output in a single
run).

(3) Interesting Details and Limitations

For perhaps 98 p •.t of all the times COPYLIB is used.,
500008 will be 3ufInt field length. COPYLIB will abort if the fcl-
lowing intert tables overflows:

Name of Table Size

Library Subprogram Name 768
Subprogram Entry Points 1280
Subprogram External References 3840
Current Overlay Need Stack 383
Working Storage Buffer variable (see below)

The working storage buffer size can be determined by subtrac-
ting 405008 fxom the field length. It is difficult to determine what the
minimum size required will be unless the lengths of the relocatable binary
records present on the user library files are known. The length of the
longest record determines the minimum working storage buffer size. (Note:
this length is not the amount of core required to load the subprogram for
execution but the number of words output by the compiler or assembler.)
In other words, it is proportional to the number of binary cards that
would be punchied out ,were the subprogram punched out, not necessarily
related to the size of any arrays dimensioned inside the subprogram. This
length can be obtained exactly, if necessary, from the information output
by a "LIBLIST" of the library files, and should be rounded upward to the
nearest 10008 when figuring the minimum field length necessary for COPYLIB.

COPYLIB rewinds each user library file starting with the
first mentioned then transfers every routine contained in it to a random
access file, rewinds the library file, and then repeats this process with
the next user libr&ry file mentioned, for every file given.

If during the transfer process a subprogram is found that has
a name duplicating one found previously, the latter subprogram is skipped,
an informative diagnostic printed, and the process continues. This is
handily put to use when one wishes to use a never versicn of a routine
instead of the version contained in one of the user library files, e.g.,
by placing the name of the newer library file to the left of the older
version, the user causes the duplicate routines on the later file to be
ignored.

Entry points must be unique to one subprogram. If two or
moie huve the s'me entry point names, COPYLIB output may be scrambled.
The responsibility for proper overlay text card 3equence is tntirely the
user's. Incorrect sequencing, as defined in the Scope and FORTRAN
Reference manuals, will not be flagged until an attempt is made to load
the outfile.

15

The out file is rewound at the beginning and end of COPYLIB.
It will be ended with one end-of-file mark unless more are forced through
WEOF cards at the end of the text cards.

The random access file mentioned earlier is called RANSCR
and must be a disk file. However, at the conclusion of COPYLIB it can
be rewound end copied by the normal control cards (RLWIND and COPYBF) if
the user wishes to save a new version of the user library. This file
contains all of the routines found in the library files input to COPYLIB
minus any duplicate routines, overlay cards, and compiler or assembler
error records.

The present version does not allow the use of INPUT (the

card reAer) as a library fiJ•.

FXAMPLE 1

The initial installation of COPYLIB as a permanent file.

RFL,6oooo.
UPDATE (N,C)
FIN (I=COMPILE)
LOAD(IwO)
NOGOý
CATALG(COPYLIB,COPYLIB,fID=ARCAFFDL ,EX=ARCl,

CN=ARCl ,ND=ARCl ,RP=999)
end of record

COPYLIB source deck}

end of record

EXAMPLE 2

The initial installation of the COMBAT similation program.

The FORTRAN source decks are arranged, sequenced, and stored alpha-
betically. The following deck set up is used for the initial generation
of the COMBAT simulator program overlay file NEWPGM on tape ARCO1.

REQUEST NEWPGM,HI. (ARC0liRING)
RFL,60000.
lUN(s,, .,,.o77000)

ATTACH (COPYLIB, COPYLIB)
COPYLIB(NEWPGM,LGO)

COMBAT source decks arranged alphabeticaalt

16

OYERLAY(TIIWJOPT,O,O)
MAIN
OVERLAY (mAJOPT, 1,*0)

OVERIAY(TRMLOPT ,2,0)
EXE
OVERLAY (TRAJOPT ,3,0)
OTIS
oVERIAY (TRAJOPT , ,0) COPYLIB text cards
REV
OVERLAYCTRAJOPT, 5,0) J
GRAPH
OVE=LY (TRAJToPT, 6,o)
DGAMES
OVERLIAY(TIAJOPT¶,7 ,o)
CTAE

end of record
end of file

EXAMPLE 3

Modificat~on of the combat simulation pro gram

The following deck set up is used vtien making modifications to
the comabat simulation p~rogram.

REQUEST OLDPGM,III. (ARCOL/NORING)
REQUEST NEWPGN ,HI. (ARCO2/HING)
RYL,60000.
RUN(S T7000)
ATTUACH (COPmLIB,COPYLIB)
COP!-LIB(NEWPGM, LGO, OLDPGM)

end of record
Modified COMBAT source decks

end of record

OVERLAY(TRAJOPT,G,0)
MAIN
OVERLAY(TRAJOPT ,a.,o)
MAINI
OVERIuYx(TWAOPT ,2,0) ~COPYLIB text cards

OVERLAY(DRAOPT.3,O) J
ovrL.AY(!!ruTo0PT,h ,o)
mK
OVERLAY (TRAJOPT1,5, ,0)
GRAPH
oYERLAY(TRAJoP'r 6,o)
DGANES
OVERLAY (TRAJOPT,? ,O)
CTAE

end of record
end of file

17

EXAMPLE 14

The following deck Bet up is used to modify and execute the combat
simulation program.

REQUEST OLDPGM,HI. (ARCOl/NORING)
REQUEST NEWPGM,HI. (ARCo2/RING)
REQUEST ABSPGM4,HI. (A1PCo3/RING)
RFL ,6oooo.
RUN(S,,77000)
ATTACH(COPYLIB ICOPYLIB)
COPYLIB(NEWPGM LGO ,OLDPGM)
REWIN (NEWPGM)
RFL ,317000.
sE1'(o)
MODE (1)
LOAD (NEWPGM)
NOGO.

wRmLmA0oPT)

COPYBF(TRAJOPT ,ABSPGM,1)
REWIND(TRAJOPT)
RFL ,317000.
TRAJOPT.
end of record

SModified COMBAT source decks

end of record

OVERLAY (TRJAJOPT,0,0)
M4AIN
OVERLAY (TRAjOPT ,1,0)
MAINi
OVEFJ.IAY(ThAJOP'2,2 ,o)

OVERiLAY (TRAJ ,)PT .3,0)
CTLS u OFYLIB T'ext Cards
O-vERLAY(TRAJOPT,4 ,o)
REV
UVERLAY(TRAJO.-T,5,o)
GRAPH
OvERIAY(TRAJOPT,6,O)
DGAMES
OVERLAY(TRAJOPT,7 ,o)
CTAE
end of record

)dazra deck for pi-iBT ~ogram

end of record

end of file

hL

ErAMPLE 5

The following deck set up is used to execute the combat
simulation program from a tape containing the absolute
program element.

REQUEST ABSPGM, HI. (ARC03/NORING)
REWIN(ABSPGM)
REWnID(TRAJOPT)
RFL,20060.
COPYBF (ABSPGM, T_"JOPT, 1)
RFL,317000.
MODE (1)
TRAJOPT.
end of record

J data deck for combat
simulution program

end of record

end of file

(4) Program Call Card

In th- two previous examples the combat simulation program
was executed by use of the program call cao'd

TRAJOPT.

where TRAJOPT is the name of a disk file that contains the absolute program
element., The program call card may also be used to override file name
parameters which appear on the program card of the source deck. The file
paramete.-s appear as follows:

PROGRAM MAIN (INFUT=1001, OUTPUT=-1001, TAPE5=INPUT, TAPE6=OUTPUT,
$ TAPEIO-1001, TAPEl=1001, TAPE12=1001, TAPE13=1001,
$ TAPEI4hlool, TAPE15=100l, TAPE161001, TAPEIT=I001,
$ TAPEI8=1001, TAPE12=1001,
$ TAPE20=1001, T.APE21=±OOI, TAPE22=1001, TAPE23=1001,
$ TAPE25=IO01, T.PE26-IO0l, TAPE27=I001, FILMPL=1001)

The restart cards for the combat program are written on TAPE15. The fol-
lowing call card may be used with any 6000 machine which has a card punch
and recognizes the PUNCH file to automatically punch the restart cards at
the end of the job.

TFAJOPT(,.,,,,, PUNCH)

19

9. Data Format

Card Format - The program input routine (READA) expects the following format.

Card Columns 1-6 7 8-10 11 12-66 67-72 73-80
Field I II III IV V VI VII

Card Field I Contains the symbolic name of the variable into which
data contained in Field V begins loading.

Example: Card Column 1 12
GAM7D -1.23
SIG7D 90.

Card Field II Not used.

Card Field III Contains the words DEC, OCT, BCD, TRA, INT, PAR, or is
blank depending on the type of data to be loaded. The
word OCT indicates that the data Js to be interpreted
as octal numbers. The -rord BCD specifies that N binary
coded decimal words (N punched in column 12) begirning
in column 13 are to be loaded. The word TRA denotes
to the input routine that all data has been input and
to return control to the calling progiam. The word
PAR indicates that the input quantity i6 to be treated
as a free parameter in a multivariable optimization
study. The word DEC and blank are equivalent and
specifies that data loaded is decimal data.

OCT Example

Card Column 1 8 12
NPOINT OCT 17

BCD Example

Card Column 1 8 12
REM BCD 2

The 2 in coluwmn 1ý specifies two words where each word
is considered to be six characters including blanks.
The largest number of six character words that can be
loaded from one card is nine. The a.alysts should be
very careful to see that the BCD information does not
get punched into Field "I. This will cause an input
error.

DFC Example

Cara Column 1 8 12
ATABO1 DEC 2,-100.,l.,,I00.,l.

Note ÷hat the first chýracter in column 12 is an
integer and the input routine will loai only one
integer per DEC card and that has to be the firsT
number punched in Field v.

20

|4

ATABOl DEC 2.,-lOO.,l.,lOO.,l.

If the above card is punched, the two will now be
loaded into the machine as a binary floating l-Ant
number. Likewise, the other numbers will be loaded
in the s.me manner with the decimal point assumed
right justified.

If anything other than OCT, BCM, INT, TRA, or blank
appears in Field II, then the word DEC is assumed.

U*'V Example

Card Column 1 8 12
JPSCUT fIT 1
JPSCUT I
JPSCUT INT 1, 1, 1, 1

When the word INT is used, it is assumed that all
numbers on the card will be loaded as integers. If
only one integer is punched per card,the INT may be
punched or omitted.

PAR Example

Card Column 1 8 12
GAM7D PAR 2

The PAR in column 8 indicates that the input quantity
GAMTD is a free parameter. The 2 in column 12 indi-
cates that GAMTD is the second free parameter.

Card Field IV - Not used.

Card Field V - The actual input data to the program is punched in the
Field V. DEC, INi, and OCT must always be left adjusted,
that is, it must start in co]umn 12 on the input card.
All numbers are separated by a "comma,"and the field
terminates with the first blank. BCD information begins
in column 13, and the naximum number of six character
words per card is nine. Note that since Field V ends
with the first blank, the user may punch any comments
in the remainder of the field.

Card Field VI - This field specifies the initial subscript of the data
in Field V. If this field is blank, an initial sub-
script of . is implied. The subscript may appear
anywhere within the field.

Exale.

Card Column 1 12 67
ATABOI 4,o,20.,lo.,18. I or blank
ATABOI 20.,17.,30.,15. 6

21

In the example above the integer 4 is loaded into the
first cell of the array ATABO1. On the second card
20. is loaded into the sixth cell of the array. The
one und six punched in Field VI indicate the SL .vcript
for the array ATABO1.

Card Field VII - Not used as far as the input routine is concerned.
This may be used as a sequence number for the card.

10. Table Format

The various types of tables used by the program may be classed as
follows:

Two dimensional table.

Example TTABO1 T = f(t)
Card Column 1 12

TTABO1 N, ti, T1 , t 2 , T2 , ts, Ts, . . ., tn, Tn

N equals fixed point number equal to two times the number of independent
variables. For a 20 point table N would equal 40. The total number of
machine cells required for this table is 41.

ti independent variable values

Ti = corresponding dependent values

N-dimensional table.

Example ATAB8o C = f(x,y)
Card Column 1 12

IA8OX NX
IA80Y NY
ATAB80 Xl, X,, X, Xnx
ATAB80 "l Y',' Yny
ATAB8o Cxl=,y-l, Cx=2, yl'" Cx-nx, y=l

ATAB80 Cx=l, y=2, Cx=2, y=2, ' x=nx, y=2

ATRAB80 Cx=l, y--ny, Cx=2 , y=ny . . ., Cx=nx, y-ny

NX and NY are fixed point nimbers of independent variables. Cx=l, y=l
Cx~nx, y=xV equal values of independent variables. The table

subscripts would apply to tbl N-dimensional table as well as the two
dimensional. The total number of machine cells required for an N-dimen-
sional table equal XN(NY) + N-X + NY.

Examples

C = f(x,y) NX points for x = 2
NY points for y = 2

22

Machine cells requires 2 x 2 + 2 + 2 = 8 cells

c = f(X, Y, Z) NX = points for X = 20
NY = points f~r Y = 10
NZ = points for Z = 15

Machine cells required = 20 x 10 x 15 + 20 + 10 + 15 = 3045 cells.

All tables must have at least two points per table. A check for each
individual table should be made to see if an indicator is necessary for
the program to read the table.

11. Brief Write-up on System Routines

This section is a brief write-up of some of the system subroutines
used by the CDC 6000 software. Since the system software is in a state
of constant change, this information may be of little or no use.

a. INPUTB

Only one logical record is read each time INPUTB is called. If
the list is longer then the logical record, the excess words in the list
are ignored by the routine.

An attempt to read past an end of file will cause a program short.
The end of file condition can be cleared by testing for end file after
the file mark has been read and prior to another attempt to read.

INPUTB calls routines GETI-A (to locate Buffer Argument address),
UMERR (to output Unassigned Medium diagnostic), MARKFI (to end file
OUTPUT and position file INPUT), and XRCL (to go on Recall while an I/0
transmission is in progress and computation can not continue).

b. INPUTC

INPUTC handles the I/0 transmission for the input to the computer.
It calls routine KRAKER to perform conversion.

An attempt to read past an end of file will cause the program to
be aborted.

The end of file condition can be cleared by testing for end file
after the file mark has been read and prior to another attempt to read.
The end file condition for the file INPUT is set by either an end of file
mark or a short record (end of logical record).

INPUTC also calls routines GETBA (to locate Buffer Argument
address), UMERR (to output Unassigned Medium diagnostic), MARKYI (to
end file output and position file INPUT on .ogram abort), and XRCL (to
go on Recall while on I/O transmission is in progress and computation
can not continue).

23

c. INPUTS

INPUTS does the core to core transmissions. It calls routine
KRAKER to perform conversion.

The parameter specifying the record length may be an arbitrary
number of BCD characters less than 150. The record starts with the leftmost
character of the location specified by Format and continues ten BCD charac-
ters per computer memory word for the BCD characters or until a zero
character is encountered. If the record ends in the middle of a word, the
remaining characters are ignored. Each record begins with a new computer
word. The number of records processed by each call to INPUTS depends on the
Format and the length of the list. If the number is greater than 150
characters, the routine aborts the program and gives a diagnostic.

INPUTS also calls routines CONADD (to convert the calling address)

and MARKFI (to end file OUTPUT and position file INPUT).

d. KODER

KODER is a data conversion routine. The necessary conversion is
specified by a Format. Any transmission of data is handled by the routine
making the call to KODER.

KODER calls routines CONADD (to convert the calling address) and
MARKFI (to end file OUTPUT and position file INPUT on the program abort).

d. KRAKER

KRAKER is a data conversion routine. The necessary conversion is
specified by a Format. KRAKER is a DECODE conversion routine,and KODER
is an ENCODE conversion routine.

KRAKER calls routines CONADD (to convert the calling address) and

MARKFI (to end file OUTPUT and position file INPUT on program abort).

f. OLTPTB

OUTPTB does the I/O for binary output. One logical record is
written each time OUTPTB is called; to decrease the number of I/O trans-
missions, data should be blocked in large arrays before outputting to nome
I/o device.

OUTPTB calls routines GETBA (to locate Buffer Arguments address),
UMERR (to output error message), and XRCL (to go on recall while an I/O
transmission is in progress).

g. OUTPTC

OUTPTC does the I/O transmission for the output file. The infor-
mation is stacked into a buffer, and IO is done when the buffer is filled.
It calls KODER for data conversion. For the output file only, a line count
is kept, and, if this count is exceeded, it causes an abort.

OUTPTC also calls routines GETBA (to locate Buffer Argument aduress),

UMERR (to output error diagnostic), MARKFI (to end file OUTPUT and position

24

file INPUT on program abort, and XRCL (to go on recall while an 1/0

transmission is in progress).

h. OUTPTS

OUTPTS performs the reverse of INPUTS. ENCODE routine makes use
of OUTPTS where DECODE routine calls INPUTS.

OUV.-'TS also calls routines CORADD (to convert the calling
address) ani MARKFI (to end file OUTPUT and position file INPUT).

i. STOP

STOP flushes the buffer and places a file mark on the files
named OUTPIL? and PUNCH if they were declared on the Program Header Card.

J. END

The purpose of END is to position the file named INPUT to the
beginning oV the next logical record if it has not been so positioned
by the program and if it has been declared on the Program Header Card.

k. EXIT

EXIT enters a dayfile message with the name of the routine and,
for END and STOP, follows the routine name with an actual number if one
appeard on the Rource statement.

No other files are terminated or positioned by these routines.
It is the programmer's responsibility to insure that other buffers are
flushed and that their files are properly terminated or positioned at
the end of a program.

12. ENCODE/DECODE

ENCODE and DECODE are system routines and are comparable to the
BCD write/read statements with the essential difference that no peripheral
equipment is used in the data transfer. Information is transferred
under Format specifications from one area of storage to another.

Entry is made Lý, th' zeu÷tinas by tae following statements:

ENCODE(C,N,V)LIST
DECODE(C,N, V)LIST

where N is a Format statement number, a variable identifier, or a formal
parameter representing the associated Format list. LIST is the input/
output list. V is a variable identifier o." an array identifier that
supplies the starting location of the records. The identifier mky be
subscripted.

C is an unsigned integer or an integer variable, simple or subscripted,
specifying the length of a record. C may be an arbitrary number of BCD
characters. The first record star'ts with the leftmost character of the
location specified ýy V and contains BCD characters.

25

a. ENCODE

ENCODE converts the information in the list according to Format
list N and stores it in locations starting at V,C BCD characters per
record. If the Format list attempts to convert more than C characters
per record, a diagnostic occurs. If the number of characters converted
by the Format list is less than C, the remainder of the record is filled
with blanks.

When C is not a multiple of four, the last record does not fill

a computer word; the remainder of the word is blank-filled.

b. DECODE

DECODE converts and edits information from records consisting
of C consecutive BCD characters starting at Address V according to
Format list N and stores it in the I/O list. When the Format list
specifies more than C characters per record, a diagnostic is provided.
If DECODE attempts to process a character illegal unuder a given conver-
sion specification, a diagnostic occuis. When fewer than C characters
are specified, the remainder of the word is ignored.

Since these routines are system routines, no flow charts will
be furnished, and all diagnostics will come from the FORTRAN system.

26

SECTION IV

MAIN PhOGRAM AND SUBROUTINE MAIN2

1. MAIN and MAIN2

The MAIN program is a requirement of the CDC system. When called
by the system, all of Blank and Numbered COMMON is zeroed. The MAIN
progriuu may consist of as many subroutines as necessary. The only
functions that MAIN serves to this program besides meeting the system
requirement is to move the vehicle table directory from Labeled COMMON
to Nuiftered COMMON to initialize program block data. to initialize the
randon number generator, and to call MAIN2.

Subroutir.l MAIN2 moves the vehicle 2 table directory from Labelled
COMON to Numbered COMMON.

27

L

MAINKfI

CALL ?JN IN (1,0,0)

CALL BDATA1
CALL BDATA2
CALL BDATA3
CALL BDATA3
CALL BLDATA4
CALL BDATA5
CALL BDATA6
CALL BDATA7

OpTTIMA=2

MAXT3=M.AXT

- DOo 20 1f l, XT

RSTAT=RUNIF (l0) Initialize randomIF number generator

CALL MAIN2 Initialize second
vehicle

CALL CHAIN(l) RETURN

MAIN2

,MAXT3=MA.XT

DO 20 i=l,MAXT

RETURN

28

2. BDATAI - Block Data Subroutine

This block data subroutine establishes all basic directory available
maneuvers.

3. BDATA2 - Block Data Subroutine

This block data subro-utine establishes all data table names.

4. BDATA3 - Block Data Subroutine

This block data subroutine establishes control variable table
names CTABLE and DAIALI", for vehicle 1.

5. BLATA4 - Block Data Subroutine

This block data subroutine is a du=W routine.

6. KMAA5 - Block Data Subroutine

This block data subroutine establishes control variable table
names CTABLE and DALALF for vehicle 2.

7. BDATA6 - Block Data Subroutine

This block data subroutine establishes all additional directory
variable names.

8. BDATA - Block Data Subroutine

This block data subroutine sets all AESOP parameter optimization
variables.

9. SPRANG - Random Number Generator

Random number generator for AESOP program. See Volume IV.

29

10. CHAIN - Overlay Control Program

Purpose :

Controls program overlay structure.

Method:

CHAIN controls the following seven program overlays:

OVERLAY 1, MAIN-MAIN PROGRAM FOR TRAJECTORY CALCULATION

OVERLAY 2, EXE-EXECUTIVE PROGRAM FOR TRAJECTORY CALCULATION

OVERLAY 3, CTLS-VARIATIONAL OPTIMIZATION CONTROL PROGRAM

OVERLAY 4, REV-TRAJECTORY REVERSE INTEGRATION

OVERLAY 5, GRAPH-GRAPHICAL ROUTINES

OVERLAY 6, DGAMES-DUMMY OVERLAY

OVERLAY 7, CTAE-PARAMETER OPTIMIZATION CONTROL

Usage:

Entry is made to the routine with the following statement:

CALL CHAIN(N)

where

N = Overlay number to be loaded

30

E i x~ - x x

X, OrIc

LkaJ ' Of AI3 0 40e'

~ C~,cii 19AVZ3JC

.LP

I ~'3~~*d'~ Z " A y'oe'ly7,

All)JJ~

A~i(ScTWO (LItsk

1 /.Lt' A- '

31

Ii. MSGONE - Combat Message Subroutine, Vehicle 1

Preserves the current combat message for vehicle 1. Message is
subsecuently printed by EXE

"MSGONE

DO0 i.-. 1 , 6

MMSGlj MSGj

-4---

RETUR

12. ,SGTWO - Comoat Message Subr'outine, Vehicle 2

Preserves the current combat message for vehicle 2. Message is
subsequently printed by vehicle 2.

YSGTWO

0 10 i . 1, 6

=S- ;:M-SGi

"1i0 CONTITNUE

k 0E'IIJ IRN

3,:

SECTION V

PROGRAM MAINI AND SUBROUTINE MAIN12

This program is executed once per case. The nominal values arc set,
and subscripts to BCD word input are searched for. DATA2 is read in,and
a tape is prepared in binary to be re.d again in program EXE for each
trajectory. DATA1 is read in this chain and never read again for that
case. The MAIN1 program determines whether or not the two vebicle option
is requested (INDNOM=2) and whether or not a variational optimization
formulation option is to be employed (OPTIMA=2).

Subroutine MAIN12 performs the MAIN1 function for vehicle 2. However,
since MAIN12 is only called when a second vehicle exists, the test for
a second vehicle is omitted. Again, since a variational option is re-
quested, it xaust be exercised through the first vehicle; the variational
test is omitted from MAIN12.

A flow chart for MAIN1 follows; MAIN12 is identical to MAIN1 with
the exceptions noted above.

33

U44

I

I

4-

''..so
as00.

34

-�I-
3
a

4- a
13!

0 -'33 K
I.

uNx 3
- U 4

I. -. � U
a =

0 3
U 4
* i

L

0
It

- z

- - -C

z -�i �I'. -� I: WILL
4-0

tJ -

3

N

U :4-I
3 - z

K K II 4- 4 4

-. -. -

- 4I
UU zl��r�2i�
4 4

I.

2* -. -*0

3 33 5 - 4.-

at flUs. -, C- U-

- - U

4g. - . - C

U. -
3 -
�o -

0

3,;

AL 0

" 1,

a G

~ & 2

-S

03

1. READA and READA2- Input Routines for Vehicle 1 and Vehicle 2 Data

To provide a general method of reading a variable field data card and
assigning variable length table. Data may be read into symbolic locations in
memory.

ykthbaq

Decimal, Octal, and Integer numbers are converted to binary integers. BCD
information is stored in six character words.

Card Formats

The variable name punched in columns 1-6 is the location into which the
first data word will be loaded. The variable field information is for re-
location. A fixed point integer punched anywhere in the field (67-72) will
be treated as a subscript to the variable name punched in column 1-6. Nega-
tive integers punched in coluims 67-72 will be in violation of the subroutine.
The first blank character found in the card to the right of column 12 termin-
ates loading from the card. One exception to this is BCD data. Nine 6 char-
acter words may be loaded including blanks.

The general character of the data to be loaded is determined by a three
letter pseudo-operation punched in columns 8-10. The pseudo-operations are:
DEC or blank, OCT, INT, BCD, PAR, and TRA. The pseudo-operation TRA is a
method of exit from the subroutine.

Decimal Data

Decimal data beginning in column 12 and ending in column 66 is converted
to bWnary and loaded into the symbolic location punched in column 1-6 sub-
scripted by the integer punched in column 67-72. Signs are indicated by + and
- preceding the number. All unsigned numbers are treated as positive. If
either the characters E or . or both appear in the decimal data word, the word
is converted to a floating binary number. The decimal exponent used in the
conversion is the number which follows iumdiately after the character E.
This number may have a + or - sign preceding it. If the character E does not
appear the exponent is assumed to be zero. If a decimal point does not appear
it is assaeizd to be at the right of the number. Unless it is the only word
or the first word on a card then it is assumed to be an integer.

37

All the examples below are equivalent.

1. 12.345B03
2. 12.345M03
3. 12.345E3
4. 12345E0D
5. 12345.
6. 1.2345E4
7. 1234500E-02
8. +123450OE-2

Note that in the examples above all decimal words have decimal points.
If the first word on a card, or if it happens to be the cn1v word on a card
and it does not contain a decimal point, the word will be conveited to binary
integer.

Octal Data - OCT

The Octal data is loaded the same as decimal data but must have OCT
punched in column 8, 9, and 10. All data is converted t- binary with binary
point assumed at the right end of each word.

Hollerith Data - BCD

Hollerith information is loaded from column 13 through 66 and assigned
consecutive locations for every 6 characters. A modimum of nine 6 character
words may be punched on any one card and the number of words must be punched
in column 12. A subscript may also be punched in column 67-72.

The purpose of the TRA card is to transfer control from the subroutine
back to the main program. TRA must be punched in column 8, 9, and 10. The
subscript field is not used. A REWIND may be punched beginning in column 12.
Only the R is checked and the only use is for the rewind of a data tape.

Integer data begins in column 12 and ends in column 66. INT is punched in
column 8, 9, and 10. It may be relocated with respect to the BCD name by punch-
ing a subscript integer in column 67 through 72. If only one data word is punched
per card, column 8, 9, and 10 may be left blank.

Parameter - PAR

Integer data begins in column 12. PAR is punched in columns 8,9,and
10. It may be relocated with respect to the BCD name by punching a sub-
script integer in columns 67 through 72.

A message is written on the output tape describing the type of error en-
countered. If an error is encountered, execution of the case is deleted and
the subroutine only searches for other possible errors in the data.

38

The following error messages are possible.

1. Symbol not in directory.

2. Column 12 is blank.

If a bad pseudo-operation is punched in column 8, 9, and 10 the subroutine
will treat it as decimal data.

All checking for redundancies, end of tape, format errors, etc., is handled
by FORTRAN system input/output routines.

u~IAK

No initialization is required, the entry is established by a:

CALL READA or CALL READA2

Subroutines called and used by READA and READA2 other than normal
FORTRAN system routines.

DIPLAC DSERC(2) PACBCD
DEF PACKR SVI(•)
TABRE(2) READ31
LINES BIBLOCK

Data PreDaration

The first card expected by READA or READA2 is a

STCASE TAB

with the S beginning in column 1 and TAB punched in 8, 9, and 10. Following
this card is a set of cards ,hich define the table sizes necessary for that
case.

Example: TTABl 10

TAB02 20

On the above example TTABO1 is punched beginning in column 1. The numbers
10 and 20 are punched in column 12 and indicate the number of machine cells
necessary for that tabl]e. Any number of tables may be assigned as long as the
total number of machine cells does not exceed 4000. Follow all table assignments
with a TRA punched in column 8, 9, and 10. The next data required by the sub-
routine is DATA2 (this is data that is read at the beginning of each trial and
valid step) this may be made up with any combination of OCT, BCD, INT
cards. All this data is written on a data tape and reserved for future use.
If the last TRA card has a R punched in column 12 this data tape will be re-
wound as soon as the test is made. This is not necessary for the program to
work, just more efficient if used.

39

The next set of data e~xected by the subroutine is LATAM (this is data

which is mnly read one time per case). This data should begin with:

STCASE DATAl

The STCASE is punched beginning in column 1 and DATAM beginning in column
12. This data is terminated with a TRA beginning in column 8.

A flow chart for RFADA is provided. Subroutine READA2 is identical to
READA except for the COMMON block, tape units, and auxiliary routines employed.

40

-Trq Pe-

Yes .5,-l1 YE

0

L IT

/Z AIE

NO/ E

op 'ReA 0

,c ae'e-.Wle-

tio 10/0 yes
AIC,

OP YC- S

- 'ER.

oe_ r

.ZAIC vfS
(:; r.

0 IVE,

NO

op
-Zý .1670

NO

o

jj=

_TJ 174,61-ir,

sf-,r5ym 'S

1*9

43

FLO __?-

p 1
.6r.

/s

-T44

2. DORDER - Dire.tory Order Outpat Routine

Purpose:

To provide an ordered listing of the directory on user request.

Method:

When the input DLIST = 1, an ordered directory listing is oatput
ahead of the trajectory print. The directory is first sorted in
numerical order and printed; then it is sorted in alphabetic order
and printed. The sort routines SHELL and 1HMLX perform the
numeric and alphabetic sorts, respectively.

Remarks:

It is assumed that vehicle 1 and vehicle 2 directories are identical;

hence, only one directory order output routine is provided.

1, L CIa]V

TM =10i, I.uv

-I--

AO-Iij,3O~

This routine packs two words into One.

The routine takes the first five characters of one word and the first

character of the second word and packs this into one w-,rd.

Usam:

Entry is made to this routine by the following statement:

CALL PACKL (A,ADOT,D)

where,

A = the fivc charv." r word.

D = the single c .-decter word.

ADOT = the result of the packed word.

This subroutine uses ENCODE which is a system subroutine. For more

information, check ENDODE write-up.

PACKL

ENCODE
(10, 1, ADOT)

A,

RETURN

4i6

7,

4. DSERCH and DSERCH2. Direct nrE Search Routine for Subscripts

To provide a method of searching the directory to find the subscript
corresponding to a BCD argument.

The routine searches the directory for the exact BCD na required by
the argument. When an equal copare has been found, the corresponding
subscript is returned as a finxd point integer. An error message will
result if the BCD name is not in the directory.

Entry is made to the routine with the following statement:

CALL DSERCH (STN,LOC,ICCO)

where

SD(= BCD name being searched for.

WOC - The location the corresponding subscript will be stored in.

ICOM- Error code in case a compaxe is not found.

If an error occurs In the BCD nane, IOC is set to zero. Location ICON
is set to one and a message is printed stating that the BCD name is not
in the directory.

No subroutines are called from these subroutines.

Subroutine DSERCH2 is identical to DSERCH except for the COMMON
blocks employed. A flow Qhart of DSERCH is providied.

47

DSERCH

DoOle lei cOufqr

DO I6S i
1

.IMAXT

AMAM AS) -i(

SYRW ITuBI (III

108

5. GOn - General %og gWiB2

Purposeg:

To print out a stop nmber and return to the next case.

To initializ ICHANE, print a stop nuber and return the program
to se.int KMA for re-initialization for the next case.

Note: STOP1 was used for the inme of this routine because there
was a system routine by the name of STOP.

Usage:

Entry is made tv this routine by the statement:

CALL STOP1

If this routine Is called a statemnt is printed:

STOP LINK N

where,

N - 'ri sewint llvc SIMPI was called from

N - 1 N4AD1I aepent

N - 2 19 segent

N - 3 I segment

N 4 BR egment

N = 5 GRAPH segment

N = 6 DGAMES segment

N 7 CTAE segment

Subrout•ines LIKES, CHAIN and Normal I/0 FORTIAN routines are called
ftcom this routine.

149

IC.4i-A6 6')

50

6.R --Error 5,rts

ParDose:

To provide a method of printing a stop number code ead ending the
execution of a given case.

Method:

The routine obtains thL reqdred stop nmber fro the calling progrm,
prints it, and calls tlie routine IMOPI. The statement STOP NWMR
XXX is printed.

VOLOV

Entry is =ade to this routine by the statuient:

CALL EXIWNO)

where N is the stop number desired to print.
This routine calls STOPl and the normal I/0 YORTRAN routines.

EXERR

6,2

CALL STOP'

RETURN

7. TSRCH and TSRCH2 - Directory Search for Table Subscript

To provide a method of searching the directory for table subscripts.

The routine searches the directory for the exact BCD name required tv the
argument. When an equal has teen found the corresponding subscript is
returned as a fixed point integer.

Entry is made to the ioutine with the following statement:

CAILL TSRCH (SMjUOC2,N2, lER)

where

Sf12 - BCD name of argument.

IC2 - Location of first subscript.

N2 - Number of sequential subscripts to return with.

IER - Error Code:

IER is P to a plus 1 if the BCD argument does not compare.
IER is set to a minus 1 if the BCD argument does compare.

No other subroutines are called from these subroutines.

TSRCH2 is identical to TSRCH except for the CON40N blocks employed. A
flow chart for TSRCH is provided.

52

TSRCH

DO 10SSO =IoMAXT

F: _ Sy...,| STABLE (1)

1000
CON 'TINUE

---- -iR
-

LOCR (4) a 5.0CR UrI)

500

RETURN
53

8. READB and READB2 - Binary Stage Data Input Routines

To read the stage data from the data tape (TAPEl6 or TAPE26).

CALL READB (ISFnI)

ISFIN is returned with the following vallue:

ISFIN < 0 alumys.

ISFIN = -10 data for the last stage has been mad.

RADB rewinds TAPE16 when the data for the last stage has been read. For
each call to READB, the stage data for one stage is read in. Stage data
is ordered sequentially on TAPE16 in the order that the stage data appears
in the input deck.

READB may be called only after READA has been called once, since READA
prepe:-s TAPE16 (vlia the ad-hoc blocking routine BIBIOC).

READB2is identical to READB except for the tapes and COMMON blocks employed.
A flow chart for READB is presented.

54

7 D6

NJo

IT) Y
55 ,.eaaz

9. BAESOP - Parameter Optimizaticn Input Subroutine

Purpose:

To rer.d in the param,!ter optimization program AESOP, Volume IV,
input data.

Method:

Data is read in conventional FORTRAN NAMELIST manner. NAMELIST nexie
is IAESOF?

56

10. DIPIAC - Intener Shift Routine

To let the routine right justify a number so that the displacement
(col. 67-72) on an input card may be punched anywhere in the field.

The displacement field is read into the machine with an A format and
right Justified before the conversion is made to a binary integer.

Entry is made to this routine with the following statement:

CALL DIPIAC (M1',INCSLAI)

where,

R w The six character BCD array.

IN - Loation that the converted integer will be stored in.

BLA - Blank character used for comparing.

Subroutine Caled:

PAGrl READ31

57

DIPLAC

11
DO 7 1!,6

RA[IA B LANK T

=i III

DO 1I N:- 16

*RAI (NJ) :RAI(NZ)C
L R A 3

' 'I
IINC ,0

RETURN

58

iDEF and DEFM - ifeading and Page Eject

Pros__e:

To provide page ejection and title print.

Initially the current page number (NPAGE) is incremented by 1.

The page is ejected and return is made to the calling program.

Usage:

Entry is made by the following statements:

CALL IX? or CALL DEF2

Only the normal I/O FORTRAN routines are used with this routine. DEF2
is an entry point used by vehicle 2.

DEF, DEF2

NPAGE = NPAGE + 1

LONG =0

WRITE

RETURN

59

12. TABRE and TABRE2 - Table Dimension Subscript Routines

Purpose:

This subroutine is called from RMADA or READA2 and computes sub-
scripts such that the table dimension requirements may be variable.

Method:

Uses input data prepared by the user to compute subscripts for

variable table assignments.

Usage:

This subroutine is cal 'ed from subroutine READA or READA2 one time
per caseand linkage is obtained by:

CALL TABRS (TABSrP)

where TABSTP is an indicator set false by TABRE or TABRE2 when
READA or READA2 will not recall TABRE or TAFRE2.

Subroutines Called:

DIPLAC LINS

BTror Massages:

1. Symbol does not exist in table list.

2. Total table size N exceeds maximum size N%
where N is the required and NI is the maximm.

Data Preparation:

Control will be transferred to subroutine TABRE or TABRE2 when

READA or READ processes a control card:

STCASE TAB

SICASE beginning in columi 1 and TAB punched in column 8, 9 and 10.
Following this card will be the cards requesting table sizes.

TTABOl 10

ATABOl 20

TTABOI and ATABOI punchd beginning in column I and the required
machine cells (10 and 20 in this case) punched i•Aginning in column 12.
Anything punched past column 15 will not be used. After all table
aseignments a TRA should be punched in coiumn 8, 9 ad, 10.

6o

TABUE

•'1 ,•, J SMAI

$TunaA SCOT

AL LIs.

ITSI

0 ,
STAIIUmm WTU

is").-.irsto
gs R Insist q

61

13. LIN and LINES2 Lines Accounting Routines

Purpoose:

To keep an accounting of the number of lines printed per page, and
to provide tor page control.

If the number of lines to be printed (LOOUNT) is such that it will
not fit on the current page, the page is ejected (via MF) and printing
will begin on the new page. Initially, the location LONG, should be
set to zero, indicating that, currently no lines have been printsd
on the present page.
usage:

Entry is made to the routine by the following statement:

CALL LIME (LC(OUNT) or CALL LINES2 (LCOUNT)

where,
LCCJNT - A fixed point variable or constant indicating the

number of lines to be printed.

Subroutine MF is called from this routine. LINES2 is an en+ry point
used by the second vehicle.

u2

LINES, LINES2

LONG LONG + LCOUNT

F fLNG <54 T

CALL DEF RETURN

LONG LCOTJNT

RETURN

63

14. PACBCD - Packs Six Character Words

To pack BCD wor'Is into six character words.

The first character is converted to an integer by the system routine,
DECODE. This integer is the number of six character words contained
on the card. ENCODE is then used to pack that number of six character
BCD words.

Entry is made to this routine by the following statement:

CALL PAC'BCD (RA,vI,JJ)

where,

RA - is the first location of the array being converted.

FI - is the first location where the results will be stored.

JJ - is the number of six character worrvs.

This subroutine uses ENCODE and DECODE which are system routines. For
more information, check write-up for ENCODE and DECODE.

64

PACBCD

CDECODE

I1, 5 , RA, JJ

K1 .2

KK 7

DO 10 I1 1, Xi

NCODE
10, 1, P1(i)

RA(

KI K= + 6

LKK: KK XZ

RETURN

65

15. P-.0KR - Packs BCD Characters

Packs BCD Characters into words.

This routine uses ENCODE to convert BCD information to a binary integer.
No I/O transmission takes place.

Entry is made to this routine by the state'ent:

CALL PACKR (II,12,N)

where,

Ii - Contains the BCD integers to be converted.

12 - Location of where converted numbers are to be restored.

N - Number of words to be converted.

This routine uses ENCODE which is a system routine. For more information
check ENCODE write-up.

66

PACKR

Lk a 20-N

ENCODE
10, 1, XMAT

k, N

ENCODE
20, XMAT, 12

RETURN

67

16. READ31 - Binary Conrsion -Routin

To convert from BCD to Octal, Floating Point and Integer numbers.

This routine takes the BCD display code and converts it to the necessary
binary data depending on the operation code.

Entry is made to this routine by the following statement.

CALL RIEtD3l (IFI,FJ,FI,JJ)

where,

IFI - is a code that determines if its Octal, Floating Point or
Integer conversion.

FI - is the location where the answers are stored.

FJ - contains the BCD characters to be converted.

JJ - the number of words to be converted.

This subroutine uses the system routine DECODE. For more information on
DECODE check the write-up fer DECODE.

68

RIADc0a

00 its, ~0 II ~* JJ A0 4

4.0

69

17. §VI and.SVI2 - Block Save Routines

To place a number of variables into an array. The location of each
piece of data is contained in any array, The routines also equate
data flagged by the PAR input subject to the appropriate optimizing
parameter.
Method:
"f"-chpiece of data is picked up sequentially beginning with A and
stored into an array beginning with the subscript ISTAir.

Usage:

3kntry is made to the routine with ths following statement.

CALL SVI (IC0,N,ISTART,A, IA,PAROPT)

where,

ICOK - Type of data being saved.

N - Number of words being saved.

ISTART - Comon subscript for A.

A - Location where value is being moved from.

A.A =Optimization parameter suffix area.

PAROPT =Flag indicating data is to be set equal
to an optimizing parameter.

No other routines are called from this routine.

Subroutine SVI2 is identical to SVI except for certain COMMON
blocks. A flow chart is presented for SVI.

70

733

18. UEOCK - Data Output in Blocks

To prepare ard output data in large blocks rather than a card at a time.

Thi.e dimension arrays are used by this routine to input data too. The
da&4 is read into the machine in BCD and then decoded depending on the
peeudo-opeiation punched on the card. After decoding all data is treated
as integers, then stored in one of the three dimnsion arrays. Just prior
to this call, a subecript is stored which defines which cell in the array
the number will be stored into when it is read back int) the machine. When
either of three buffers are filled, all three buffers ate flushed out on
tape. if anyone of the buffers fail to have anything stored in it a du
cell is set up. This is necessary because of the wy the Fortran system
works. It is impossible to store zero words on tape.

Linkage is made by the following call:

CALL BIBLOCK(IID,JJ,FI,ITABLE)

where

IID - the subscript which relocates the integer in core.

JJ = the number of integers to be stored in the array.

FI - the integer to be stored In array.

ITABLE - contains a number defining which of the three arrays to
store into. In this case ITABLE is either 0, 1, or 2.

No initialization or printing is necessary for this routine.

Subroutines Called

The only routines called are the normal output FORMAN routines.

72

BIB LOCK

TT

T ax
-SMAC

IXAIX - uA

FKIS .I
-ISI

ý 11 . IXA 0+

*A I.

xv l~.73

19. SHELL - Numeric Sorting Subroutine

Purpose:

To store an array in ascending order.

LIMBO = IARRAY (I)

IARRAY (1) - IARRAY (ii)
IARRAY (II) = LIMBOi
LIMBO - KEY (i)
KEY (I) KEY (II)

KEY (II) N LIMKO

'T+ I j 1-1

704

LIBI ARA I

SECTION VI

PROGRMI EXE AND SUBROUTINE EXE2

ECE is the executive program that drives both vehicle forward trajectories.
ME controls the major logical decisions that must be made. The subprograms

of EXE are responsible for accomplishing the calculations which fall into
their respective doaains of specialization. Since, during any one call, it
is not feasible for a subprogram to do all types (e.g. initialization, print-
ing, function calculations, etc.) of computations delegated to it, the sub-
programs are segented into functional units; access to a particular func-
tional un.t of a subprogram is accomplished by calling that subprogram with
an argument called the entry point. For most of the subprograms of EXE there
is the following correspondence between entry points and functional units:

Batry Point Functional Unit

1 pro-data initialization (to be done at
the beginning of each trajectory before
data is read)

2 post-data initialization and/or initial
transformation (to be done at the
beginning of each stage after data is
read)

S3 main calculation (e.g. calculate
derivatives)

4 initial print; generally this in for
print of that which is calculated at
entry point 2.

5 code print; to identify the valuesprinted at entry point 6.

6 value print; for printing time history
of vari ables calculated during tra-

jectory.

for specifying variables that are to be
integrated. Each variable that is to
be integrated shor1d have its deriva-
tive cop',•,ced at entry point 3.

8 h-tranaformation (or miscellaneous
chores)

In addition to the so called "standard subprogram" of E,' there are a
few which are of such a special nature that the standard entry points no
longer apply, or else perhaps vn additional entry point is included for sime

75

special purpose. Those subprogram which hif multiple entry points which
deviate from the standard are GND1F, INDMRT, EMTAN, PLTS, 9ATGT, and EXE2,

The structure of MM is integral with the structure for accomplishing
the nuerical integration. This is necessitated by the promise that EOE
should have control. As a result, the numerical integration routir*s, KYNINF,
is a slave to EMK. The relationship between IMWINF end EME differs distinctly
from that of the standard subprograms and EM. The fEUINF writeup contain
a complete description of the entry points and their respective fun-tions.
ErTRAN is a special subprogram which is In reality a subdrivor fot acomplish-
ing the initial transformation and the h-transformation.

One great benefit of this type of organization of EM is that it is
geoneraL; any trajectory prograu my be set up this way. In particular, this
fact wes used for the progriing of the reverse trajectory. MV is the
executive progrva that drives the reverse trajectory and hence the structure
of RV is virtually isomorphic td EM.

Commication between MK and its subprograms L accomplished by setting
indicators. However, of all the indicators used in EE proper, EE sets moot
of them itself. The following is a list of all those iLlicators that are set
by subprograms of m for the purpose of communication with ME proper.

!fdcator nftr~o

r-WPAS and MIMPAS2 UMIN and M4IINF2

INDPAIg NANTGT

IWHOK and INGHOM2 STTST and STGTST2

DIMT3 and INDSTE2 any subprogram (denotes error)

INDSTG and IWDSTG2 SMTST and STGT2ST2

WWO0W and LOOK2 SMST3T and STGTST2

One of the most critical functions of EKE is to control the integration
step size. EXE itself actually does very lit.ýie 'f the calculation for the
stop size. Yet, it governs the sequence of u.Uc that are made to subprograms
which determine a step size to meet their respective requirments. ae must
then weigh each factor against the other and select that step size which is
"moat reasonable". A rsary of the step si.e- control procedure follow:

The logic in EKE that controls the integration step sire, HO, during
the forward trajectory is necessarily somewhat complicated because of all the
factors that have to be considered. "Staging" and/or "time points" may
require the step sise to be either cut ba,ýk or increased. Depending on the
situation the integrated variables may)-ave to be backed up one step.

MIMINF(5) and MIMThF2(5) are ý±.e entries to the integration routines
which check the trunca.ion error; S'TUTST(3) and STGTST2(3) are the entries
to the stage test rcutines whicU, check the staging variable (s) to see
when they pass from L2.e side to the

76

other of their respt.at.ive staging values. 'The KINF and STGTIT writeups
should be referred to if it is desired to know how these routines determine
the step size when they are aranted this responsibility.

The following points summarize the logic involved in controlling the
step size:

(1) 4n integration step is a "trial step" until it has been accepted
as valid by MIMINF(5), MININF2(5), STGTST(3), and STcTST2(3)

(2) If MIINNF(5) or MIMF2(5) rejects the trial step, then the inte-
grated variables are backed up one step,and a now trial 3tep is
made with the step size (HO) which MDIINF(5) and MlMINF2(5) have
determined,

(3) Only after 4IMINF(5) and MIMINF2(5) accept a trial step does
STGTST(3) and STGTST2(3) have the opportunity to reject it. If
STGTST(3) or STGTST2(3) reject a trial step, then the integration
is backed up one step, and a new trial step is made with the
step size (HO) which STGTST(3) or STGTST2(3) have determined.

(4) It is assumed that the HO determined by (2) or (3) when a trial
utcp is rejected, is less than the HO which produced the bad step.

(5) After a valid integration step has been taken, the next time point,
TIMPT, is picked up. TIMPT will be the first time point greater
than TIMES + AMINER.

(6) The next trial step must have an HO 4< TIMPT - TIMES.

(7) After a valid step, the HO for the next trial step will have been
determined or at least sanctioned by MIMINF(5) and MIMflF2(5).
Paragr'aph (6) merely imposes a further condition in addition to
MIKnF(5) and £4IM (5).

(8) Once staging has started; i.e., once STGTST(3) or STGTST2(3)
has rejected a trial step, MDIfl F(5) and MMLINF2(5) will be
passive. This means that MIMINF(5) and MIMINF2(5) accept every
trial step and compute no new HO.

(9) KMIn F(5) and MIMINF2(5) have sole control over increasing the
step size HO; MINF(5) or MIM3 •K'5'1 may increase HO only if

they accept the trial step and L.:e Uot passive.

(10) The above procedure insures that ail time points are hit, and
that variable step integration does not interfere with the
staging process.

It nhould be noted that EXE drives the second vehicle trajectory through
EXE2. This routine is virtually a copy of EXE. However, correct interfacing
of the two vehicle trajectory integration procedures has required BXE2 to be
split into a sequence of entry points. Each entry point carries out a well
defined function for Vehicle 2's trajectory control. Control of integration
stepsize for both trajectories ib carried out by EXE itself.

77

A flow chart for program EXE is presented. Subroutine EXE2 follows the
general computational flow of program EXE. However, the COMMON blocks,
tapes, and subroutines employed are differentiated from those of EXE by
the numeral 2. For example, COMMON/lI becomes COMMON/12/; DIFEq becomes
DIFEQ2; and tape 12 becomes tape 22.

S78

CIO 1-4 ýg -1kii ~ ¾ C.)HE tot3 (Z E-

'I1C14

C9 C

L_____ LI

~C Q

C%0

t Il

Q.3 C13 U) C3

H - E4 -__

k1 __v

Q 43i Ira__t4w____

H, 1% I- U)

Cell

H Hco

-43~

F4 >4

(HU~ H _ _____ ____

Ir 8N0otoT

tot

04

0 E-i

cq'

H Z,

H H ~till
.~ -- !.j

EII N*- 10

to-

24r
E-

cla)

eq*

ri r

:03 e 4 L U) t

p481

1. DIFEQ-Differential Ecuation Selector

Purpose:

To enable the user to select which set of differential equations will

be used by the program.

Usae:

CALL DIFEQ(IENTRY)

IENTRY = indicator which determines what task is to bis performed by
the differential equations subprogram which will be called
by DIFEQ.

INDSM_ is of the form iOj. j determines which differential equations
subprogram will be used. INDSEL is nominally 101, so for this
INDSEL, J - 1 and DIFEQI will be used.

Remarks:

DIFEQ is called by EXE, EXTRAN, and PTBEN

DIrQ calls DIFEQ1, DIFEM2, PIK,03, DI. Q4, DIFEQ3, DIFEQ6, and STOP.

i determines which control •Mtem will be used. It should be noted that in
the combat simulation, the first vehicle equations of motion are contained
in DIFEQl,and the second vehicle equations of motion are in DIFEQ2.

DIFEQý3, DIFEQ4, DIFEQ6

These are dummy routines included so that the user may write his own
differential equations for use with the optimization progrem.

In writing a new differential equation subprogram, the entry point
pattern established by EXE for such a subprogram must be ldhered to.
DIFEQ1 and DIFEQ5 are examples of such subprograms.

82

I:

ILI

4 3

-k-

0 0)

ago

83

2. MAN•T and MANTGT2 - Maneuvering Target

Tharpose:

To prepare a target tape containing the time history of a "target
trajectory."

To read the target tape as a function of time during a forward trajec-
tory and to computc functions of the variables read from tape or in COMON
together with the variables of the current trajectory.

Method:

This subprogram has all the standard entry points of EXE, except that
entry point 8 is unique, in that it prepares a target tape.

INDICP = 0: No computations made.

INDICP = 1: A target tape will be prepared; the target tape is
TAPE 13. The information put on this tape is the
values of the following variables:

TINE, XE77F, "IE77F, ZE77F, UE77F, VE77F, WEM7P,
UE77Fl, V977F, WE771F.

At entry point 1 the tape is rewoimd and INDPAB is
set, to 0 (this deletes computation of partials). At
entry point 8 the tape is written. None of the other
entry points will be effective. ME proper calls
MANTGT (8) at every (ITC(IT+l)h valid integration
step. ITCCXT is inpat. It is assumed that only a
forward trajectory is to be run for a case with INDICP
1 in the data. This trajectory should be set up to
terminate on TMAX.

INDICP 2: It is assumed that a target tape (TAPE 13) has been
prepared by a previous case run with INDICP = 1 (or 3)
in the qata. During each forward trajectory of the
present case, the target tape will be read sc that the
value of trajectory time of the prevent case is
bracketed between the trajecto-y time of two adjacent
records on the target zape. The instantaneous value
of the variables on the target tape are estiwmtad
by linear interpolation. Then the necessary
functions are conpubed from these interpolated vplues
and the information available from the present trajec-
tory. Code and value printing of the computed quan-
tities are accomplished at entry points 5 and 6
respectively.

84

It uust be known that the values of TIME on the target tape exceed the
largest value of TIM that will be encountered on all trajectories of a
case with INDICP - 2.

TIM should be a state variable when INDICP - 2.

INDICP - 3:

This option is designed for the purpose of running a standard came, with-
out maneuvering target, for INDCYC cycles and then defining the last
cycle as a target trajectory to be put on the target tape exactly as if
IlDICP were input as 1. On the last cyole, at MAN7T (), TMAX in set
to T0W and NCYCLE is set to 0 and INDICP is set to I so that the case
will terminate just as if one trajectory with INDICP - 1 were run;
however, this will not be done until INDPAR has been set ý0 on the last
cycle.

The following basic functions are ccmputed at MANTGT (3): (see formu-
lation manual for detail)

XAJ!? A XE

SACoordinate differences of theY~f• AE " two vehicles

IAM Aiz Velocity differences of the two

P•~ vL eadiacles

ZANTD •ra • o edage"

VAN!!?Jv

BANTFI (VCRAF) - .>/jJRate off change of

PHUW~t~ 511,Ladagle

ntr OrD Heading of lead angle -rector

SimD UIx Heading of line-of-eight vector

SGM XE) Heading error fros l•ne-of-eight pAth

OAV LO Inclination error frm line-of-eight path

85

F

34ERD MAa Heading error from lead angle path

GHERD ATMA Inclination error from lead angle path

TC Time to kill

In addition, the following missile calculations are made:

HKINF R Minimum missile range

RC77F Re Range to kill zone

ESE7D ISE Allowable steering error

The input data for MANTGT calculations may consist of:

Nominally
INDICP 0 Option indicator

ITCONT 0 Skip indicator

AC 0) Arrays of rmissile range constants

BC 0

cIC 0

C2C 0 Allowable steering
error constantsc3c 0

DlC 0
Missile minimum range constants

D2C 0

D3C 0

R1AXF RMXU 0 Missile maximum range constants

DLVMF AMm 0 Kissile AV

GTABO1 f(TR-) Two dimensional table for multiplier in
"a steering error calculation.

A flow chart for MAJITGT is presented. MANTGT2 is identical except
for use of vehicle 2 COMMON blocks, tapes, and auxiliary subroutines.

86

2040

aAtft ooo/ jxc Petz

*~~
.~4. A

CU16 CP- I$4

,NUNN: so

686.0

6886

I,- I'1% Ii **44 d

I-]
-' > 4 -� Iii

(i� ��ij 4�tjj
!Uj J)k�L

)
2 I

a

;' j 'i-I *
U �-OS �jJ 4.4

I .,
.71 � 0 4

�

LL
rr�

.� j

U * A
a *

S.

I

1'a

Q I. + I ,J,
�

� 4y� -

h 44 �j�-�K �

- .' - .. - 4.
-U-. � I �.j L*d�j�

58

% N & 2o
9 LP

ICA146. aZ

/ Tq~f'~ C,-: CA'1,I(4'J 1r
CVA*4Nv (4,)

05)TF

300

NVO

AieiilelP

89 1

r

3. CTVS and CTVS2 - Control Variable Routine for EXE

Purpose:

During the forward trajectory, to obtain the instantaneous values of
the control variables as a function of stage -ime; to obtain values of
the initial conditions at the start of stage 1; to define points in
stage time which must be hit in the corresponding stage of the reverse
trajectory.

(,ontrol Variables

CTABLE is an array of HPOINT stage time values and the corresponding
vw ues of the MCONT control variables. The format ý,f the CTABLE array
is:

NPOINT NPOINT NPOINT NFO~IT

At 6TS(3), tae task of this routint is to interpolate in the CTVBLE
to obtain the a-rrent values of the control variabies. This is accom-

Iplished trivially by calling the interpolation routine TMU. CTVS(3)

does not allow values of the control variables that exceed the upper
or lower boundaries (CTABUB, CTABLB) which may be input for the respective
control variables.

CTABLE will be considerad to contain stage time values unless INDCTA is
0. When a new CTABLE is prepared (in DALCAL) INDCTA is set to 1; hence
on all trajectories after the nominal, CTABLE will contain stag& time
values. For the nominal trajectory CTABLE may be defined as a function
of trajectory time if INDCTA is input 0 in stage 1 data. If the range
of the CTABLE for a stage ic exceeded, the pertinent ena. points will be
used as the values of the control variables.

Tape Usage

In order that the CTAMLE for a particular stage be available for CTVS(3),
it must be read from tape before CTVS(3) is first called. This is the
task of CTVS(2). For the nominal trajectory, the CTABLE exists in the
data; hence after the stage data has been read the CTABLE for that stage
m4y be assumed to be available% for CTVS(3). On all trajectories after
the nominal, the CTABLE for euh major stage residts on tape IATAP.
Furthermore, the stages exist in inverse order on IATAP; hence to get
the proper stage from IATAP, CTvs(2) does a BACKSPACE, HAD, BACKSPACE
at the beginning of each major stage. It is assumed that IATAP has not
been rewound since it was last written (in DALCAL). The information on
IATAP io not for the exclusive use of CTVS; in fact, each logical record
on IATAP contains much more .Information than just the CTABLE for that stage.

90

The complete format, of each logical record of IATAP is described in the
write-up of the routine (DALCAL) which prepares 1ATAP.

Initial. Conditions

The values of the INDIOP initial conditions (which are not specified
categorica' y in the stage 1 data) may be perturbed from trajectory
to trajectory in a manmer analagous to the way the control variable
values in the CTABLE are perturbed. VALINS is the ar-ay of these
initial conditions. VALINS is read from IATAP at the same time the
CTABLE for stage 1 is read. Hence, at CTVS(2), after IATAP has been
read for stage I., the values in the VALINS array are givev to the ros-
pective initial conditions. On the other hand, for the nominal, the
VALINS array is initialised with the nominal values of the initial
conditions specified in the stage 1 data. Just as with the control
variables, the values of the initial conditions are not allowed to
violate their respective upper or lower boundaries (VALIUB, VALIL).

Time Points

When partials are being computed (INDPAR 0 0), CTTS(3) makes a call
to TDWV in order to attempt to insert the current stage time value
into the array of points which must be hit in the corresponding stage
of the reverse trajectory.

However, the tolerance DELTSA is used in the call to TINV. This
means the points stipulated by CTVS(3) may be no closer than DELTSA
from any other point which has already been stipulated as one which the
reverse trajectory must hit, The motivation for this feature is to
enhance the performaica of the variable step integration option by
preserving the CT'LE at every point used to generate a trajectory
(using DELTSA - 0). DELTSA may be input. It is nominally I000.

CTVS has the standard entry points. Entry points 2 and 3 have been
described in detail above. Code and value printing of the control
variables is done at entry points 5 and 6 respectively.

Remarks:

UTVS2 vbtains instantaneous values for the second vehicle control
variables as a function of stage time, obtains initial second
vehicle conditions at the start of stage 1, and lefines points
in time which must be put in the corresponding points in time
of the reverse trajectory. CTVS2 is identical to CTVS except for
the une of Vehicle 2's COMMON blocks, auxiliary routines, and
tapes. A flow chart of CTVS is presented.

91

r

* K j5

S.

U
0

* I
S. i�iUj �!i

- .11 1
0* * �
U -�

L-J

I
I-I

'1i-4�5 1-
-� - 5

U

92

F

* IFCS-In-fli~ht Constrain&s (Boundary Violation houtine)

Pumose:

To calculate the instantaneous boundary violations of given functions
and to integrate each of these violations.

IFCS is a subprogram of EXE; it has all the standard entry points. Up
to six functions may be specified for IFCS; this is done in the data.
If no functions are specified then IFCS is not active.

The instantaneous violation of the ith IFCS function is computed at
entry point 3 as

{IFCSi max [O (Y"i _ p (-i))]IIND•Di if INDNDi ><0

whare Yi is the value of the i'th variable listed in the BFCDV array

ti is the value of the i'th variable listed in the BFCDV array

Pi is the function tabulated as a two dimensional table on the
i'th PSTAR data card (s).

INDBNDi is an indicator which is input > 0 to define an upper
boundary; and which is input < 0 to define a lower boundary.

At entry point 7, the violation A IFCSi is integrated.

The names ascribed to the respective violations and their integrals are,
in order:

Violations Integrated Violation

AIFCSl AIFCS
BIFCSl BIFCS
CIFCSl CIFCS
DIFCSl DIFCS
EIFCSl EIFCS
FIFCSl FIFCS

The first IFCS function for which no computation is requezted terminates
the list of those IFCS functions for which computations Vll be made.

93

Remarks:

IFCS2 calculates instantaneous boundary violations of given functions
and their integrals for vehicle 2. A program modification is required
to permit specification of second vehicle in-flight constraints in
cooperative variational optimization. IFCS2 is identical to IFCS
except for the use of the second vehicle's COMMON blocks and auxiliary
routines. A flow chart for IFCS is presented.

94

- I.:"04>

.•A C.,

95

5. PARTS-Partial Derivatives

Purpose:

To obtain all necessary partial derivatives and put them on the partial
tape (TAiE2); also, to transmit information from the forward trajectory
to the reverse trajectory by putting it on the partial tape.

Methods:

This subprogram has the standard entry points of all the other sub-
programs of EXE. The calculation of a particular matrix of partials
is accomplished by a call to PSUBR; the particular matrix desired is
completely spec!.ied in the arguments to PSUBR.

The partials to be computed are:

1O(ATX R = L1 initial conditions
SPARTS (2)

PMATX P = Lxj+ h-transformation beginning of a stage

FATX F = J PARTS (3)
G during a stage

PARTPH

PARTTS terminal partials PARTS (3) At the
end of every major
stage

PA RTOM

PH1771 - $

OMEGAl :=

PS1771 +

96

I !!• • • ar | Fii

0, f, and 14fk} are comupted by the chain rule:

e.g.,

this is valid since 0I)0(x, ta) + C

It may be necessary to modify the terminal partials at the end of a
stage. If the contribution 41o the payoff at the end of a given stage

is 0,, then J-3qýand $) are set to 0. Likewise if the contribution to

the ith constraint at the end of stage i is 0, then 4V and *i are

set to 0.

These conditions are determined by the values of JPHCUT and JPSCUP
respectively. For the payoff, the contribution is 0, if JPHCUT !_ 0.
For the kth constraint the contribution is O, if JPSCUTk 0. the
analyst has control of JPHCUT and JP-cUfk in the input data.

At PARTS (3) a call to TTHRV is made (with 0 tolerance) to define the
current stage time as a point which must be hit in the corresponding
stage of the reverse trajectory.

At PARTS (2), the R =trix is calculated at the first stage only (and
then only if it is needed). Lt the beginning of any stage after the
first, the P matrix is calculated but only if it Is actually needed.
The R matrix and the P matrix are put on the partial tape directly
within PAETS. The F matrix, the G matrix, all terminal partials and
other information for reverse is put on the partial tape via the ad-hoc
blocking routine PRPACK.

At PARTS (4), the R matrix or the P matrix is printed (if it has been

computed).

At PARTS (5), code printing is done for the F and G matrices.

At PARTS (6), the values of the F and G matrices are printed; at the
termination of a stage the terminal partials are printed also.

The information (besides the partials) which is tranmuitted to reverse
is:

TDMS Stage time

ND Indicator detemnining beginning and type of a major stage.

ALPHC Current valuec of control variables.

DELTER Integration step size for reverse.

97

INDVOA Weighting matrix option for reverse.

WAI Weighting matrix parameters.

WBI Weighting matrix parameters.

This nformation is put on the partial tape every time an F and a G
matrix are put on the tape.

Sa'inr a - Points

There are several ways of preserving the a history which generates a
given trajectory. (there will be no reason to preserve the a history
on a trial trajectory). The success of the program will depend to
some extent on the accuracy in preserAng the a-history of a given cycle.

The (TIMES) history exists in tabular form (CTABLE) as a function of
stage time for each major stage. During the numerical integration of
the forward trajectory the CTABLE is sampled (by some given inter-
polation formula) at the various points in stage time dictated by the
particular numerical integration method. It is only this _smped
version of the a-history which determines the trajectory. Hence to
preserve the a-history which generated the trajectory it is only nec-
essary to preserve the corresponding sample of the CTABLE that um used.

There are basically three options available for preserving the a-history.

Option I:

The a-history is preserved at those points in the forward
trajectory where partials are computed, and only at those points.

Option II:

The a-history is preserved at those points in the forward trajec-
tory where partials are computed (as in Option I), and in addition
a subset of the sample points used to effect the numerical inte-
gration; the subset is determined as follows:

An a point is preserved if it is no closer than a distance
of DELTSA away from the previous a point which ms pre-
served. (distance means distance in stage time). Thea
time points are preserved in strictly monotonically in-
creasing order; if for any reason the integration is backed
up, all a -time points that might have been accumulated in
the back-up interval are annihilated.

Option III:

Use Option I on the nominal (i.e. first cycle of a run) and Option II
on all others.

98

Every a -time point which is preserved in the forward trajectory will
be hit in the reverse trajectory and a corresponding 8 a will be
produced at this point.

Observations and Remarks

(1) uption I accomplishes precisely what the program has aluays done.

(2) Option I is a special came of Option II (with DELTSA - x'). In
fact this is the way Option I is selected.

(3) Option II still can fail to preserve all the a -history that we
used to generate a trajectory even when DELTSA - 0. This may happen
because the integration step size control logic has a part in deter-
mining the trajectory; if we cannot reproduce the exact step size
control logic on the next cycle with a 8 a history identically 0,
then we cannot reproduce the same trajectory. Now a trial inte-
gration step which was rejected on the nominal does not have an
a -tine point associated with it. Hence this a point wa not
preserved; hence the next cycle might not obtain the same a value
for this point and hence the tri,41 integration step which was re-
jected on the nominal may bL accepted on the next cycle.

() A reedy to the problem in (3) would be to have an Option that
would preserve every a -time point even if it were associated with
an integration step that was rejected. However, it is questionable
whether the problem is of that much importawnce.

(5) When utiifzing vehicle 2 functions in a cooperative variational
optimization problem, care must be taken to insUre that

(a) The second v!hicle function has a unique name assigned
in the vehicle I directory.

(b) Appropriate transformations are available in ONETWO and
TWOONE.

99

L

PAR#POSTS

r -- 16q1mw -

----- A .Imul:

. mA,.

A-I I

* -.-. sflt

ft I M.f7AYG f Im

*mhw 3CTfu

%m,.c I

100 AS U V

IL u
WIL

I'll

LA16

'II

10

PARTS (3)

0
IDrIOP

ACCOUNT FOR]
LINE S

PRINT: "PARTS" PR.NT: "PARTS'

"IRMATX" PAX

PRINT CODES FOR RMA'i7

STVARS;, I NVARS I]

~=~NSIATF
¶-INO.OPI

-1
- - -5 0 -2

PRINT: "FARTS"

FMATX & GMAT)X(

SACCOUNT
FOR

-cC-OL IN ES __

PRIN4T COO ES !: R FMATX: 1

STVARI1 STVARSj

PRINT CODES FOR rMATXl

ISTVARtI. C'(VARSi

-i-MCONT

RE TJRN

[1C)2

PARTS (4)

ACCOUNT FOR
LI1J ES

PRINT VALUES
FUATXjj

I =I -. t4STATEC

i="1 -NSTATE

PRINT ALUESPRINT:

GMATXIJOMEGAI. PH1771"

I= I-NSTTE PRINT VALUES:

-J~l -CONT-OMEGAI. PHI 771

I N D S T GN D P U T

N ±
(MOSTY*G)OR(INDSG~j)

Y ES R UR~N rPRINT:"PS 177 1 '

ACONT _R IE PRINT VALUES:
PSt771i

i=t-INDPNT

1PRINT:
"TERMINAL PARTIýA:LS]

PRINT: "XSlflt'
PRINT: PRO'PRINT VALUES
PkINT 'VALUES:Xil

1
PAR TOMN

i=¶-NTATEI , NsTAT E

PRINT: "PARTPI4"

PRINT VALUES RETURN

1=1 -. NSTATE

IkOPMT

PRINT: 'PARtTPS-

PRIMI VALUES.

PAR TPSik

I1- NSTATE

C

6. LINCO and LINCOM2 - Linear Combination Routines

Puose"

To compute new functions as linear combinations of existing functicns.
n

i.e. * ci C ii=l
where the ti are existing functions, the ci are fixed coefficients, and
ý* is the new function.

The ci and the ti for a particular * are specified in the data -- the
ci are input directly; the ýi are input as BCD names, and hence the
names for the gi must be in the directory.

Up to five different linear combination functions, w*, may be defined
this way. For each t*, n must be • 3. If a linear combination is
desired with more than three component functions ti, then it must be
defined as a linear combination of already computed linear combinations
(as will be illustrated in the e'camples below).

The names of the five available linear combination functions are ALINK,
BLINK, CLINK, DLINK, and 'SLINK. The names of the cost vector for the
above linear combinatiri, functions are, respectively, ACOST, BCOST,
CMOST, DCOST, ECOST. ALINK through ELINK are computed in alphabetical
order.

Example 1:

To define a linear combination = (1)h + (2)Vg, the following
input data is sufficient:

BLINC BCD 2HGý,7FbVi77F

BOOST 1., 2.

Eamole 2:

To define a linear combination p + (5.2)MN + (6.5)h + (2.0)AIFCS +
(lO.)v the following input data in sufficient:

ALINC BCD 3AMACHbHGC7FbAIFCS

ACOST 5.2, 6.5, 2.0

BHINC BCD 2ALINKbVG77J

BCOST 1., si).

1O04

define a linear combination (1* (i/2)1 + (i/2)m2
- h2 where

m denotes the masq in the first stage, m denotes the mass in the
second stage and hc the altitude in the second stage, the follow-
ing data is sufficient:

[ALINC BCD lAMASS
Stage 1

[ACOST .5

"ALINC BCD lb

Stage 2 BLINC BCD 3ALINKbAMASSbHGC7F

.BOOST i., .5,1.

Hence, at the end of the last stage, BLING will be the average of the
mass at the termination of the first stage and the last stage plus the
altitude at the end of the last stage. Note that when a linear com-
bination function is "blanked out" in the data, the value of that
function remains constant.

This subprogram has all the standard entry points. However, entry points
4, 5, 6, and 7 are vacuous. That is, no printing of the values of the
linear combinations is done; also, nothing is integrated.

It is well to note that it is possible to take linear combinations in-
volving in-flight constraints and also to take in-flight constraints of
linear combinations. The reason is that LINCOM(3) is called before
EFCS(3) from EXM.

Remarks:

LINCOM2 computes linear combination functions for the second vehicle.
The use of second vehicle linear combination functions in cooperative
variational optimization problems will require a program modifi-
cation. LINCOM2 is identical to LINCOM except for the use of the
second vehicle's COMMON blocks and auxiliary subroutines. A flow
chart for LINCOM is presented.

105

I
- a -I - \ISI

- S

2

� -41I �j} V � : �j LI�.4�
U I S *

o 0

o -

41 41

* U 5

* * .4.�
-'S - �41���*.I41I

US -

o 0 5 -.

41 11
S II

I]

106

S. SLACK and SLACK2- - Slack Variable Routines
,.3

Purpose:

To make available "slack" variables that may be used for various
effects including optimal staging and optimizing or constraining the
initial value of a variable.

Method:

The four slack variables, FLUXA, FLUXB, FLUXC, FLUMD, and their re-
spective derivatives, FLUXAl, FLUXB1, FLUXCI, and FLUXD1, are available.
SLACK has all the standard entry points, however, some of the entry
points are vacuous.

The first IINDFLXj slack variables are integrated; INDI'L is input.
If INDFLX is 0, no slack variables are integrated. FIX= is an array
of BCD names; the BCD name in FLUXEQi equates the ith slack variable
with the initial value of that variable. (i.e., tha value at the
beginning of stage 3.).

Code and value printing of the first INDFLX slack variables and their
derivatives is done if and only if INDFLX >0.

All variables are nominally 0; FLUXTQ is nominally blank.

Remarks:

SLACK2 defines slack variables for the second vehicl. Before use
of the second vehicle's slack variables in a cooperative variational
optimization problem, a program modification equating the second
vehicle's slack variables to names in the first vehicle's directory
is required. SLACK2 is identical to SLACK except for the use of
the second vehicle's COMMON bloc,-s and auxiliary subroutines. A
flow chart for SLACK is presented.

107

SLACK
STASRT

DOIII 1@ 14S
T F INDFULA I

RE R
NDFLX~ < * F

RETURN REUR C .'L L
92

tiTU

1 of0 F X KLI NE1 S(2)[F INFI

, ,RN A L L . Q S I RC H It E r U ~ M RA I T I
FLIIXLWUOC FLX

URHCAL L o il

L . ESM2 fCALL INT6RT

F 'ERROR
CALL A FUXA(IRIT FL.XSFLUX.A

IFLU lAO) COMON(LOCFLX)1
rALL COOIS CALL VALUES

INDFLX FLU)LA INOFLX, FLUXAI
ON 4FLUKS. FLUEC FLUL @S1. FLUXId

FLUXO

(CON INut) .49-CALL COOK$

It f RM ~~INDFLX. FlUXI (ALI

FLUX*-

CALL
CO 065

108

8. PAL and PENAL2 -- Penalty Function Routine

To compute a penalty function using the values of the variables, 1i, whose
names are listed in the ENDCOF array and/or values Y * that have been
accumulated at previons stage points for these variables in the PSSTAR
table.

PENAL is a standard subprogram of EXE. PENAL will be effective if and
only if MAXIM or MINIM contains the name "P4NALTY". PEALTY is the name of
the function that will be computed at entry point 3:

IIIP4T
A A

PF = w T1 wi (Ti
i=2

wh6re Wi are weights (WGTSI) and
A - -

= Vi* - ii if JPSCUTi < 0

= 0 if JPSCUT. = 01

The - sign is used if the name "•PALTY" is in MAXIM. The + sign is used
if the name "PNALTY" is in MINIM.

The weights W may be input or may be controlled by some logic in the
control systel. JPSCUT. is the array of indicators that indicate the
stage point to which the corresponding Y. function applies. Y is an
element of the PSSTAR table and is the value of Yi at the most recent
stage point for which JPSCUT. = 1.

Code and value printing are done at entry points 5 and 6 respectively.
The value of PNALTY will be printed.

Egmarks :

1. WGTSI and DSINL are two names for the same array.

2. Note that the number of functions is taken to be IIIfMT. (This is
set in MAIN1.).

3. The penalty function must be computed when using control system
CTLS2. Thus, when using CTLS2, MAXIM or MINIM rm•st contain the
name "PNALTY", the variable being maximized or minimized mrust
appear as the first name of the RWDCON array and the remaining
names of the ENDCON array must bc those variables that are being
constrained. 109

4. PENAL2 creates a penalty function from the second vehicle
variables, Pj. Use of the second vehicle's penalty
function in cooperative variational optimization will
require a program modification. PENAL2 is identical to
PENAL except for the use of the second vehicle's COMMON
blocks and auxiliaxy subroutines. A flow chart for PENAL
is presented.

110

IzI

.- Ii

--4 i K -W

9. PLTS and PLTS2 - Data-Gathering Routine

PURPOSE:

To record the time histories of a set of prescribed variables on a
tape to be used later (GRAPH segment) for plotting.

Method:

The following assumptions are made

1. The variable whose time histories are to be saved are input
(PLOTS card(s)).

2. The time histories are to be saved for each pass up tc the sixth
without requiring the tape.

3. The F and G matrix time histories are to be saved on the last
forward trajectory of a cycle on a different tape than the other
variables.

4. Saving of the F and/or G should be done as an option based on the
value of the indicator INDFAG.

Tape 17 is used for the regular variables.
Tape ILTAP is used for the F and/or G.

SPoint 1: Number of points for a trajectory is zeroed.

E Point 2: Tape 17 is written. NPASS, INDSTG and the point number
for the pass, MPT (NPASS), are put on tape 17 along with the val].es
of the variables that have been specified.

Entry Point 2: Tape ILTVA is written only if INDFAG ý 0. NPASS, INDSTG,
the pcint nimber (MPTFAG) and TIME are put on ILTAP. In addition the
following is put on ILTAP depending on the value of INDFAG:

INDFAG - 1 FMATX
GMATX

S3 FKATX and GMATX

Entry point 2 is called by EXE after every (IGCONT+l) valid integration
steps. Entry point 'I is called by EXE after the F and G •re computed.
IGCONT may be input.

Up to 40 variables may be specified in the PLOTS array by BCD names.
Dn2.y distinct variables are written on tape. This means that if a
variable is specified twice in the PLOTS array, its value will be put
on tape only once per record.

11 .

The LPLT array is set up in MAflN1. LPLrj is either the COMMON subscript
for the name in PLOTS1 or is a negative integer j where J points to the
cell in the LPIJT array which contains the COMMON subscripts for the name
in PLOTSj. PLTS2 performs the PUTS function for vehicle 2.

113

-I oNDFAG

FAFT(NPASS) - IN-A

OFM PT F

-LNPLT()

2, I

KL2L MDT(I I! Id

-"WLP11.

111

10. OBSFUN and OBSFUN2 - Observatioi. 'anction Routine

PUrPDoe:

To provide an organized time history c~utput of selected trajectory
variables, the observation functiors,

Method:

Input data defines a set of observation functions for each vehicle.
Time histories of these variables are organized and printed in a compact
form at set intervals of time. Seiected observation functions may
also be plotted on tbh print-er using the printer-plotter routine,
PAPERP.

Remarks:

A flow chart for OBSFUN is presented. OBSFUN2 is identical except for
the use of vehicle 2 COMMON blocks and auxiliary routines.

115

'10000

0"

NO860

2Y2

116

10•

~~p~ rs.~

Tff 0

i oc 0 s (.
No~

woew
A iv,~3

N "V111s~f vi pa 1

,4wdJ

YO /vow

NO

118

/

LWA~ LctA 4

I0

YES

NO

%Ye

IV

11l9

FLLR and ,TILTER2 - Repeater Rovtines for h-ITansformation

Purrose:

To detect if a change has been made in the value of a prescribed
00)N v&;: Ible and if a change has been made to produce either the
original u, the altered value when asked to do so.

Method.:

There are three entry points to FILTER.

FILTER (1): The current values are saved; a filter in laid over
each variable.

FILTER (2): Alterea values of variables that are tripped in the
filter are saved; the original values of the variables
are restored.

FILTER (3): A variable for which there is an altered value is set
equal to the altered value.

If FILTER(l) is ever called, FILTER (2) must be celled before the values
being filtered are ever used. FILTER(3) may be called any numbb.r of
times after FTLTER(l) and FILTER(2) have been called. FILTER(3) is the
entry point which reproduces the detected change. FILTER(l) and FILTER(2),
in conjunction, detect the change.

The variables to be filtered are presczibed by putting their CtCWC
locations successively into the cells of the name-common block/FILTER/.
At most 14 variables may be filtered.

Remarks:

FILTER2 detects changes in the value of specified second vehicle
COMMON variables. FILTER2 is identical to FILTER except for the
use of vehicle 2's COMMON blocks. A flow char- of FILTER is
provided.

120

0

00 0

2U

Np

IIr

I-7

1 7

-2-1

04 If 0 #

-- f -4b -0 v

o -* t,

121

13. _S1TST. and SPITST2 - Stage Testing Routine

(1) To determine if the trajectory should be terminated (i.e.,
(lu -

(2) To determine if a stage should be terminated (i.e., fli " f
i m29 ... , 410

(3) To determine an integration step size to use to achieve condition
(1) or (2).

(4) To cominicate the information thet is gleaned to MEE 1roper for
the appropriate action.

PLis mubprogram has the staidard e+.ry poi-ts. Code and value print-
ing are used only for diagnostic purposes sud are called if and only if
DM=. is input 0 0.

Up to four variables may be prescribed for terminating the trLjectory
or the stage by the BCD names in the array CUTOFF. The reep'ictive
valnes of these variables at which termination is desired appear in the
array CUBAR.

T__ltion Criteria

(i) I~n1i0- 1~± io(il + 1)
f2) it is no'u the first point of a major stage.

(3) if i - 1 tlIt, -TIME >_ TUCAX - DT0D

If the above three conditions are satisfied for the i'th variable listed
in the CUTOFF array, then INDSTG is set equal to i at STGTST (3). This
informs EM to terminate the stage if i - 2, 3, or 4 or to terminate the
trajectory if INDSTG - 1,

Termination AlAoritku

(1) tp is the value af stage time ts, at the last valid integration
step. flip is the value of H, on the last valid integration step.
STOTST(3) updated 0i4P and t P only if it does n-t reject the inte-
gration step (or if 1t is the first point of a major stage).

(2) STGTST(3) rejects an integration step (sets LOOK 0 0) only if the
termination criteria is not satisfied and'•i-i) (I -?i) < 0 for some i and TDIE > TCKAX - DTM)D if i - 1.

(3) For each i which dictates that the integration step bb rejected an
integration step size hi is computed.

122

a -Op °

(Pip) / (t - taP)

Z.as is the step Aize which the linear prediction estimates shb.ld
be taken from the last valid integration step in order to eWact4
satisfy i - ITi.

(4) The minimu of all the hi's is determined; call it h*. The step
size HO, to use on the next integration step is set equal to h*
sign (HO). LOOX has beer. set nonzero; this informs EXE that the
integration is to be backed up to the last valid step.

(5) INfHOM is set to 1 Ahenever STGTST(3) rejects an integration step.
Within a given stage, STGTSr(3) may reject an integration step -n
account of the behavior of flI at most 20 times. If this limit
ia reached the staging criteria is assumed to be satisfied (even if
it is not in fact) for the variable in question.

(6) Within a given stage, each time STGTST(3) atcevts rn integration
step after INGHCI has once been set jo 1, INGHOM is incremented by
1. The iter ttion is terminated if DIGHOM ever reaches 100; if
this happens, INDSTE is set to 0 to indicate an error in the
trajectory.

(1) Specifying TW and DTNOD permit dealing with a multiple valued
cutoff function; cutoff cannot be achieved until 'rim > TOKAX -
DTMOD. TCOAX and DT may be input; TMEIX is set to the termina-
tion time of the trajector7 of the previous cycle in CTLS. Care
should be exercised when specifying TOMAX and DTHOD.

(2) BCDSIM is equivalunced to the second location of the CUTOFF array
(in the directory). Likewise STEST is equivalenced to the second
location of the CMBAR array. (Each of these may be input .- n stage
data to define the staging variables and their desired staging
values).

(3) Before stage data is read for a given stage, EXE proper blanks out
CUTOF(2), CUTOFF), CUTO(F(4), (i.e. the BCDSTG array).

(4) There is no restriction on the riumber of stages.

(5) No provision is made for specifying "increasing" or "decreasing"
as an additioral requirement of the termination criteria, but such
a modification should not be difficult.

(6) STGTST2 extends the stage testing function to the second vebicle.
STGTST2 is identical to STGTST except for thef use of the second
vehicle's COHM? N blccks and auxiliary routines. Mik directly
controls STGTST2. A flow chart for STGTST is presented.

123

[fff-- IL
~LL

L I j

1 :I

~~i124

13. MXRAN and EXTRAN2-Driyer for h-Transformation

Pupse:

To drive various ccmbinations of the initial transformation and the
h-transformation determined by the value of the indicator INDHTR.

Methods:

EXTRAN is a speciaL subprogram of EXE. Its entry points are not
standard.

Entry Point

1 INDHTR is set to 0 and the number of the location ,,f,
and the values of the state variables are saved. Values
of variables that are to be filtered are saved by a call
to FILTERCi).

2 The new values of the filtered variables are picked up by
a call to FILTER(2).

3 The initial transformation or h-transformation is driven
according to the -. e of LNDHTR:

INDHTR

0 Na calculations

-1 or 1 Initial Transformation: +M +

2 h-transformation:

f~~~ -FI TE+3 +
X UT-ERM) 1(3) D-IFPQIW')

3 h-transformation:

f - f+ + __ +

4 h-transformation:

- ,+ +
X x-DIFEQ(8) FILTER(3

where x- denotes values of state variables at end of last stage.

x+ denotes values of state variables at beginning of current
stage.

- denotes values of auxiliary variables (i.e. functions of
the state variables) at end of last stage.

/ + denotes values of audxliary variables at beginning of
current stage. 125

Usage:

At the beginning cf the trajectory EXE proper set* NDHTR co 1 in order
to accomplish the initial transfoimation.

EXTRAN(i) is called by m at the beginning of every stage after the
first, before the stage data for that stage is read. EPTRAN(2) is
called after the stage data is read. And, of course, EXTRON(3) is
called +,) do the initial or h-traniformaticn in order to initialise
the valaes of the variables that are to be integrated.

Remarks:

The reason for having .several basic options for the h-transformation is
in order to achieve flxibility. It is assumed that DIFEQ(2) is the
inverse of the DIFEQ(3) transformation (and vice-versa) with respect
to the values of the state variables and the audliary variables.
DIFBQ(8) is either a transformation from the state variables to the
state variables directly (INDH•R - 4) or from the auxiliary variables
to the aurwMary variables (DINDHTR - 3). FILTER (3) is the transforma-
tion equivalent to the reading of data for those variables that are set
up to be filtered. This perm..ts some simpla types of h-transformations
(INDWR - 2) to be accmplished within the data without the need for
introducing new code at DIFEQ(8), and also permits the other types of

h-transformations to be modified to a limited extent right within the
data.

On a trajectory for which partials are being computed EXTRAN(3) vill
be entered in the process of computing the P matrix and/or the R matrix.
This action is initiated by PARTS. Negative values of INDHTR are to
indicate that the P-matrix for that particular h-trar iformation is the
identity and hence need not be amW4 aed.

The indicator IhDHTR plas an important role in EM proper too. ND is
an indicator which is normally 2 to denote the begaming of a major
stage after stage 1. Uf a P matrix is computed at a stage point (i.e.
INDHTR > 0) then ND is set to 3 to inform RPV To expect a P matrix on
the partial tape.

EXTRAN2 performs the identical and h-transformaticn for Vehicle 2.
It is called by FMG2 and .s ider.tical to EXTRAN other than for use
of Vehicle 2 COMMON blocks and auxiliary subrcutines. A flow
chart for EXTRAN is provided.

126

020

.. a

~L1

Ut

12

14. ,NTGRT INTGRT2, and INTGRTR - Interface for Integration Routine

To serve as an interface between the integration routine proper
(MIMINF or KMIINR) and any routine requesting a variable to be inte-
grated; also to backup the integration.

There are five logical functions which Vi ds routine perfo:.a depending
on the status of the indicator INTCAL. For a particular call to INTM.W
one of these functicns will be enacted. Th3 P array is the array of
curTent derivative vwi.ues of the variables that are being integrate'
The Y array is the array of the current inteb,,ated variable values.

Usame:

To integrate XDOT and have the resulting integrated value stored in X

use the statement

CALL I•RT (INTNUM, XDOT, X)

INTNUM must be a distinct call uced in, and only in, the calls for the
integration of XDOT.

A call of the above form must be made at, throe different times (when
the value of DTCAL is 2, 3, and 4). However, all of this may be accom-
plished with only one statement if the statanent is imserted at the entry
point 7 of the calling program.

INTNUIM is the subscript in the P and Y arrays .for the values XDOT and X
respectively.

Method:

INTCAL = 1 the P and.Y arrays are set to ; the number of
integrated variable is set to 0.

INTCAL = 2 the subscript INTNUM is computed for the argu-
ments XDOT and X; the number of integrated
variables is updated by 1.

INTCAL - 3 the value of XDOT is put into its proper place
in the P array.

INTCAL 4 4 the value of the integrated variable is picked
up from the proper place in the Y array and put
in X.

INTCAL = 5 the integration is backed up one step by resetting
the Y array to the previous Y array (YO) and by
resetting T to TO.

128

INTG•r will terminate the case if more variables are requested to be
integrated than there is room for in the integration arrays; at present,
.hia u~ppr limit is 25 variables in the forward trajectory, and 300 in
the reverse trajectory.

EmE proper is the only routine which calls INTGRT when INTCAL - 1 or
when INTCAL - 5. ECE has sole control over setting the indicator INTCAL.

INTGRT2 serves as an interface between the integration routine MIMINF2
for the second vehicle and any second vehicle subroutine requesting a
variable to be integrated. It is identical to INTGRT except for use of
Vehicle 2's COMMON blocks. INTGRT2 is directly controlled from EXE.
A flow chart for INTGRT is provided.

INTGRTR serves as an integration interface routine for the reverse time
integration of the adjoint equations through MIMINR and the REV program.
It is identical to INTGRT other than for usi of the UPDCAR COMMON block
and subroutine STOP2.

129

lo

z

U- z ill
z

Ag

ILI

130

FM

15. ODES and CODES2 - Code Print Routines

PAM2n

To print code name of variables to identify the values in the output.

CALL CODES (L, Al,...,AL)

L is an integer 0 9 L 8 identifying the nuber of argu enta
following it.

Al

* L cells each containing a Hollerith code word of at most
AE 10 characters.
AL

The above call adds the L Hollerith code words to the list of code words
to bei output on the next line of print. When 8 code words have buen accumlated,
the line is printed; am exeess code words are added to the list for the next
line of print. If L is 0, then the cods in the existing list (the number may
be less than eight) are printed imediately.

Lines accounting in taken care of within this routine.

This subroutine is designed to be used in conjunction idth the VALUES
subroutine.

Codes are printed with a "5XAIO" format.

COMB and VALUES control small secondary output buffers Athin the program
itself.

NorrAlW a call to CODES in mde before ay call to VALUE in order to
identify the valwa - Tho CALL CODE (0) is necessary to be sure that the codes
are printed; the 4LL VALUES (0) is necessary to be sure the values ar printed.
(If this is not done the buffers may never be flushed.)

Remarks:

A flow chart for CODES is presented. CODES2 is identical to CODES
but is required to insure correct output function for the second vehicle.

131

CODES

CCIMOUNT"
Tm9

INS

%A$RIT
S....0

M(4)~ s -A4 UN0

S(3) NUE -A

c4"

IN S

16. ITE(S and ITDE4S2 - Variable Print Routines

To allow printing of variables in addition to those prinved by other
subprograms of EXE at entry points 5 and 6.

Usage:

CALL ITEZ4 (IENTRY)

IENTRY = 5 prints BCD names of specified variables.
IENTRY = 6 prints values of specified variables.
CODES and VALUES are used for output.

All variables specified on the VPRINT card will be output. Up to
twenty variables may be specified.

Remarks:

ITEMS is called by EXE.
ITEMS calls CODES and VALUES.
ITEMS2 is identical to ITEMS except for the use of

vehicle 2 COIMON blocks and auxilizy suibroutiues.
ITE4M2 is called by EXE2.
A flow chart for ITEM is presented.

133

ITEMS

SIE NTRY RETURN

AL AL
LINDES? LINESES

IMIS

(C0V~iiU+1- (CONTIku

III URN

134

17. COMBAT and COMBAT2 - Combat Control Routine

Purpose:

To set the initial values of the combat parameters and act as the
calling program to other subroutines for combat role and t.,ttics
selection

Usage-

Entry is made to this routine by the following statement

CALL COMBAT (IEhTRY)

where IENTRY is a fixed point variable.

IENTRY = 1

This is the pre-data initialization. At this entry the nominal
values are established for the following combat parameters.

MNEMONIC NOMINAL DESCRIPTION
VALUE

BGSPE 1.0 Load factor to use in the maximum specific
energy maneuver.

DLTSPE 2.0 Numbei'. of seconds "Look Ahead" used to
determine maximum specific energy path.

MSUBE 1.0 Mach number at which to start "NGSPE/2"
oath during maximum specific energy maneuver

MSUPE 1.2 Mach number at which to end "NGSPE/2" path
during aaximuE 3pecific enez-gy maneuver.

GAMSPE -15.0 Lower bound on '"ight path angle during
"NGSPE/2" portion of maximum specific
energ maneuver.

ESUBE 25000. Altitude at which to utart "NGSPE/2" path
during maximum specific energy ,aaneuver.

AFSUBE(1) 1.0 Factor applied to ALPNG to establish loqer
bound on angle of attack for aubsonic
portion of maximum specific energy path.

AFSUBE(2) 1.5 Factor applied to ALPNG to establish upper
bound on angle of attack for subsonic
portion of maximum specific energy path.

S335

MNEMONIC NOMINAL DESCRIPTION
VALUE

AFSUPE(l) -2.0 Factor applied to ALPBG to establish lower
bound on angle of attack for supersonic
portion of maximum specific energy path.

AFSUPE(2) 1.5 Factor applied to .LPNG to establish upper
bound on angle of attack for supersonic
portion of maximum specific energy path.

INDDIV 0 Switch indicator set by program (Do not
input as data).

IPCMWSG 1 Print control for combat message
I Print combat messages
0 Do not print combat messages

CPCON(l) 1.0 Factor applied to maximum angle of attack
(AMAXD) to establish the upper bound on
desirel angle of attack (ALPDD)

CPCON(2)

CPCON(12) 30.0 Role zelection logic: attack incoming
targets when

cONBD 4 CPCON(12)

CPCON(13) 60.0 Role selection logic cone angle for second
sector- offensive role w;hen

CONBD < CPCON(13)

cPcoh(1) 1.0

CPCON(15) 0.0

CPCON(16) 10.0

CPCOM(17) 10.0 Role selection logic, take evasive action
when

ESERDT < CPCON(17)

136

MNEMONIC NOMINAL DESCRIPTION
VALUE

CPCON(18) 1.0 Tarottle factor for hard turn defensive
maneuver

AND = ANMAX * CPCON(18)

CPCON(19) 1.0 Angle of attack factor for hard turn
defensive maneuver

ALPDD = AMAXD * CPCON(19)

CPCON(20) 90.0 Table of desired band angles for hard turn
defensive maneuver.

CPCON(29) 90.0

cPcON(3)

cPcoN(4)

CPCON(5) 1.0 Finite control rate logic: factor on angle

of attack rate

ALPHD1 = ALPDOT * CPCON(5)

cPCON(6) 1.0 Finite control rate logic: rate adjustment
factor for angle of attack

RAFALP = ALPDOT * PELTS * CFCON(6)

CPCON(7) 1.0 Finite control rate logic: factor on bank
angle rate

BA77D1 = BADOT * CPCON(7)

CPCON(8) 1.0 Finite control rate logic: rage adjustment
factor for bank angle

RAFBA = BADOT *.DELTS * CPCON(8)

CPCON(9) 1.0 Finite control rate logic: factor on throttler
rate

AN7771 = ANDOT * CPCON(9)

C00ON(10) 1.0 Finite control rate logic: rate adjustment
factor for throttle

RAFAN - ANDOT * DELTS * CPCON(10)

137

UfE4&,RIC NOMINAL DEScGTPrION
VALUE

CPCON(1I) 90.0 Rolc selection logic, outgoing target when

PHOFD < CPCON(1U)

CPCON(30) 1.0 Throttle factor for line-of- ight vector
rotation defensive maneuver

AND = ANNAX * CPCON(30)

cPCON(32) 1.0

CPCON(33) 1.0 Angle of attack factor for Split S defensive
maneuver

ALPDD = AMAXD * CPCON(33)

CPCON(3h) 1.0 Throttle factor for Split S Defensive man-
euver

AND = AMAXD * CPCON(34)

CPCON(35) 1.0

CPCON(36)

CPCOH(37)

CPCON(38) 1.0 Angle of attack factor for lag-pursuit offen-
sive maneuver

ALPDD = AMAXD * CPCON(38)

CPCON(39)

138

SN• ONIC NOMINAL DESCRIPTION
VALUE

CFCON(Iil)

c coN(142)

CFCO(1N(43)

CPCOi(~46)

c~coN (I6)

cPcoN(47)

CPCON(48) 1.0 Attacking maneuver: TC * CPCON(48)
determines the time constant for elimination
of pointing error.

cPCOm(49) 1.0 Attacking maneuver: throttle control if

RP RI77F then

3D AMAX *CPCON(49)

139

MNEMONIC NOMINAL DESCRIPTION
VALUE

CPCON(50) 1.0 Attacking maneuver: throttle control if

RP (R177F then

AND = ANMAX * COCON(50)

INDBNCi 0 Boundary control

INDBNCi = O, ith boundary violation can
not be controlled

=, jl th boundary violation can be

controlled by angle of attack

ALPDOT 20.0 Maximum rate at which angle of attack can
be changed (DEG/SEC)

IBADOT 45.0 Maximum rate at which bank angle can be
changed (DEG/SEC)

ANDOT .2 Throttle rate (Fraction of full throttle/
sec)

AMAXD 15.0 Maximum angle of attack (DEG)

ANMAX 1.0 Mazimum throttle setting

VMINF 200. Minimum vehicle velocity (Ft/Sec)

IENTRY = 2

This is the post-data inicialization. At this entry the values of the
array CPCON is output on unit 6.

IENTRY 3

At this entry subroutines ANGLES, DETECT, ROLEi, TjI.IT, and CRATE are
called role selection and to determine desired angle of attack, bank
angle, and throttle setting.

IENTRY = 4

Entry for initial print.

140

IENTRY = 5

Entry to print mnemonic headings. The following codes are printed

ALPHDl BA77Dl AN7771 ALPDD BAD7D AND ALPHJD BA77D All XAIDF

YAIMF ZAIMF

IENTRY 6

At this entry the corresponding values to the mnemonic codes of Entry 5
are printed.

Remarks:

A flow chart for COMBAT is presented. COMBAT 2 is identical except
for use of vehicle 2 COMMON blocks and auxiliary subrou.tines.

I

114

C71 7)72A

I-
(''

I)&7~fC;e-c

;&C se f 7-l- PWl r

142v

18..� �F and MDMIF2 - Integration Routime

To perform the calculations necessary to Integrate an array of variables
by the Runge-Kutta method; to determine an estimate of the truncation
error and, with this information, to decide whether to accept or reject
an integration step; to compute a new step size, HO, (based on the
truncation error) to be used for the next integration step.

T - the independent variable for the integration

TO - the value of T at the last valid integration step

Y -' array of current values of integrated variables

YO n arrazr of the values in the Y array at the last valid
integration step

1 - array of current values of derivatives of integrated
variable*

Usam:

In general, a nuerical integration routine must make several inter-
mediate or preliUiary calculations of the integrated variables before
an integration step is actually taken. This routine is organized so
that for each basic entry point to it, one of the several intermediate
calculations of the Integrated variables is performed. The reason for
organizing it this way is so that NMI3NF does not have to be shackled
with the responsibility of driving other calculations which need to be
performed durirg an integration step; as a consequence, NIMINF itself
is virtually void of complex logic.

17E proper is the only routine which calls I4IMWNF. ComAmication
between EXE and MIKN is accomplished for the most part by the indice-or
eTVZAS. On the call to MID=NF at which the final values of the inte-
grated variables for an integration step are cocputed, MININF sets
!4IKPAS - 0 in order to inform EM that the step is tentatively all right.
After each return from a basic call to MINF, ECXE increases NDPAS by
1. EXE makes each basic call to MDEI with (the absolute value of)
4IKPAS as the argument. Hence at each basic call to MII the next
intermediate calculation of the integrated variable is performed.

Now every integration step that is made has to be double checked by
MDaNF; it is only when th- nexwt integration step is ready to start that
there is e*ough information for MIII to get a good estimate of the
truncation error that has occurred on the last integration step. Hence
at this time, ME makes the terminal call to KfIINF (entry point 5) for
the truncation error check. If the truncation error is too large MDCINF
(5) sets XMPAS - -1; this informs EXE that the integration is to be

backed up and the last integration step is to be attempted again with
a smaller step size h (i.e. HO) determined by MIMF (5).

143

Method:

The method employed here performs three intermediate calculations of the

integrated variables, YA,, i, yC, before the final value of the int-,
grated variables, Yn+l, is calculated.

Entry point i: - Yn + h/2 Yn

Entry point 2: YB =Yn + h/2 kA

4Entry point 3: YC =yn + h ýB

Entry point I: yn+l = Yn + h/ 6 n + *A + 4 2B + C)

(The calculation of the necessary derivatives (i.e. ' *, *,* will have
been done elsewhere by the time that entry point of MI1IFis called.
The general form of these derivatives is

tn = f (yn,tn)

YA = f (Y'A tn + h/2)

ýB = f (yB'. tn + h/2)

kc = f (yc, tn + h)

The derivatives are picked up from the P array. The values of the inte-
grated variables are put in the Y array. At present, at most 25 va-i--
ables may be integrated.

Entry point 5 Truncation error estimation and step size control

At this entry point, the truncation error Tn is estimated as

Tn -h h±D• - 'w

This is done for each integrated variable. Finally, Tn* is defined as
the maximum in absolute value of all the Tn' s. Now there are three
possibilities:

(a) DM 5 Tn* < EAX : in this caseMIMINU (5) accepts the
integration step and retains the same value of HO for the
next step.

(b) T * < EIN -in this case MffENF (5) accepts the, integration
sRep and sets HO -sgn (HO) min 2 I IA RJ

(c) Tn* MAX : if IHO -AMNER the integration step is
accepted; otherwise MIMINF (5) rejects the integration step
(setting]MIMPAS - -1) and sets HO - sgn (HO) max 1/2 IHOI,

11414

"Variable step" integration is an option (specified in the data by
INDVAR - 1). If IWDVAR is 0 then the "fixed step" option i1 used.
For the fixed step, the calculatims of MDMW (5) an described above
are not used; entry point 5 for fixed step is trivial; HO is set
eqal to DELTS.

!IMINF2 performs the calculations necessary to integrate the
second vehicle array of variables. It is identical to MIKN
except for the use of Vehicle 2 COMOEN blocks. It should be
noted that MIMKWF2 is ca-lled directly by EM. Program EXE
thus directly controls both vehicle equation of motion inte-
grations. The indicator INDNUM controls the number of vehicles
in EXE; INDNUM = 1 signifies only one vehicle is being
employed, and INDNUM = 2 signifies two vehicles are being
employed. A flov chart for MIMINF is presented.

1.1
�-j*-*I 3I �1�- -t

[IIt�J
U 14

U - U.

A
3 0 2
.. : .. �

ii
I
3 - I-
U -

* . U U -
6 * U
* - 2 �, U
4 - A - p.- -

' -
.J I- U

I i9
__________ .3Li Ij U

ii- U

I II
WI �6

�
- a
- U

a -
0�

p..-
62

p.3

-IA
�Ig1 U

U
2 -
U

IC

1

..i
N .- j:j

I � �I-i

:46

19. TIID ad TIMID2 - Step FINction Routines for Time Points

To compute the step function y - (x) given by

yf=imin IYY I yZXI

where Y contains the following types of elements

1) all integral multiples of DELTS

2) y-•, •rl(x) where -r is the step function evaluated by the
T 1l subroutine.

U_•:

CALL TIMID (XXn)

where

XX is the argument.

i. is the answr.

EME is the only routine which calls TM'ID; it does so t., compute the
next stage tim point that must be hit as a function of the current
stage time. In order that TIMID not return a stage time point which
is "too close" to the current stage time, EXE calls TIMID as follows:

CALL TIMID (TIMES + AMI?=I, TIMPT)

Remarks:

TIMf2 computes y - T(x) for the second vehicle. TIMID2 is
identical to TIMID except for the use of vehicle 2's COMMON
blocks and auxiliary subroutines. A flow -.hart for TIMID
is presented.

Si147

• TIMID

START

YY m xx+ ID E LT SI O Di7 ITI]

CALL
TIM I @I

tRET1U RN

20. VALUES and VALUES2 - Value Print Routines

To print the values of floating point variables.

CALL VALUES (L, x.1,...,XL)

L is an integer C S L ; 8 identifying the number of
arguments following it.

n

L cells each containing the value of sowe floating

* point variable to be printed.

The above call adds the L variable values, n1,...,fl, to the list of
values to be output on the next line of print. When 8 values have been
accumulated the line is printed, any excess values are added to the list for

to next line of print. If L is 0, then the values in the existing list (the
number ma be less than eight) are printed iindiately.

Lines accounting is takan care of within this routine.

This subroutine is designed to be used in conjunction with the CODES
subroutine.

Values are printed with a "lPE15.7" format.

CODES and VAIUES control small secondary output buffers within the program
itself.

Normally a call to CODES is made before any call to VALUES in order to
identify the values. The CALL CODES (0) is necessary to be sura that the codes
are printed; the CALL VAUJES (0) is necessary to ýA sure the values are printed.
(If this is not done the buffers may never be flushed.)

Remarks:

A flov chart for VALUE$ is presented. VALUES2 is identical but is
required for corin!t output •u-.tiuri for the beeond -ehi-le.

149

VALUES

(772g'•

0o2o,•.o)•-

Sco.., l

•Io', - 1 I'•°°"*'' I
i

SiDO 5•

, •1,•oo.,.• I
t

ZSO

Sg •

?

1 jM)ISMUT and MISCUT2 - Abortion Routine

Purpose:

To terminate the trajectory if any specified variable lies outside a
3pecified upper or lower bound for tha. variable.

CALL KISCUT

If a spec ' 'eid variable il"s outside a specified upper or lower bound,
TIME is set to 1.E36. 1MAX shcitld not be greater than l.E36 when use
of this routine is specified. Thub the trajectory will terminate on
HISSED CUTOFF.

Up to nine variables may be specified for bounding on the MISVAR card.
Values for bounding the variables appear in the corresponding positionr
on the BOTNDS card. Testing of the boundaries is determined- by the
LUBML card.

The integfrs appearing on the LUBGLB -ard are of the form

ij

J specifies that the jth variable on the NISVAR card will be checked.

'When i = 0 the jth value on the BOUNDS card will be ignored and no
check made.

Wen i ý 1 the jth value on the BOUNDS card will be an upper bound
for the jth variable on the MISVAR card.

'When i = 2 the jth value on the BOUMIS card will be a lower bound for
the jth variable on the MISVAR card.

Remarks:

MISCLT is called by EXE. MISCUT2 terminates the trajectory if any
specified second vehicle lies outside specified upper and lower
bounds. A flow chart for MISCUT is presented; NISC-JT2 is identical
except for use of gecond vehicle COMMON blocks.

151

[ic

MISCUT

LUBGLBSU)

IJB UB3GLB(1I 10
CU7

(~zVU13GBOUDSI
1 ?

(CON TI #4UE)

QRrTURN)

22. ONLINED - On Line Display Routine

Purpose:

To display a thirty-nine character message on the CDC display
station of a CDC 200 user terminal.

Method:

The system routine encod is used to construct the message line,
and the sy..tem routine scope is used to display the message on the
MWT device.

Usage:

Entry is made to this routine with the following statement:

CALL ONLfINE

Subroutines Called:

ENCODE
SCOPE

NO •~.m• E:

~~~SFAC 6sIe7 A'E4

153



23. DIFEQI and DIFEQ2 - Point Mass Eguations of MQoion

Purpose:

For performing all calculations necessary for the three-degree of freedom
trajectory equations.

Method:

DIFEQ1 has several subprograms; in general the subprograms are respon-
sible for performing the calculations made necessary by certain physical
attributes of the vehicle, the trajectory or the environment. DIFEQ1
may be called from EXE, EXTRAN, and PTBEQN (by first passing through the
interface routine DIFEQ).

Subprogram

HETS Temperature and heating parameters

TFFS Thrust force; mass flow

FPPS Control variables as functions of already computed
FPFG variables

SACS Wind axes aerodynamic forces on vehicle

A7MS Atmosp1beric parameters

GVSP Local geocentric gravitational force components

LATS Conversion from geodetic to geocentric latitude and
vice-versa

In addition to the vehicle and planetary charactcristics subprograms
above, DIFEQI is broken down into a sequence of control subroutines.

Subroutine:

DEQPRE Used at Entry 1 from EXE

DEQINI Used at Entry 2 from EXE

DEQBCI Used at Entry 3 from EXE

DEQACI Used at Entry 3 from EXE

DEQSPI Used at Entry 4 from EXE

DEQVAL Used at Entry 5 from EXE

DEQCOD Used at Entry 6 from EXE

DEQIV Used at Entry 7 from EX

DEQHT Used at Entry 8 from EXE

FIRFUN Control computation of fire control functions

154



GAM9l Controls flight through the vertical

CTLITR Controls instantaneous control variable
iteration process.

With DIFEQ1 itself there is a considerable amount of code that may be
by-passed depending on the type of problem being considered. Many of
the calculations done at DIFEQ1 (3) would be purely auxiliary. Therefore
for calculations of this type, there are indicators which may be input
0 if it is desired that a p. icular calculation be performed. Since
DIFEQ1 (3) has to be called so many times during a trajectory, any dele-
tions of calculations which are not essential will help to cut down on
the machine time.

A general description will be given of each entry point associated with
DIFFl. Detailed information can be obtained in the user's manual for
each entry point used by DIFEQ1.

DBQ (1)

At this entry point nominal values of indicators are set an! the values
of the integrated variables are initialized at 0. Also, nominal values
are set for the standard constants used in the equations. (e.g. polar
and equatorial radius of the earth). See DEQPRE.

D I FOU (2)

This is the initial transformation. It is always performed at the
beginning of a trajectory; it may be performed at the beginning of a
major stage (see EXTRAN). Also, it may be used in certain combinations
for the h-transformation (see EXTRAN). See DEQINI.

The main body of the calculations in DIFEQ1 appear at this entry point.
The primary purpose at this entry point is to compute the derivatives
of the variables that are being integrated. See DEQBCI, DEQACI, and CTLITR.

At this entry point the variables computed at either the initial trans-

formation or for the h-transformation are printed. See DEQSPI.

DIFf,1 (5)

At this entry point, the codeu are printed, the codes identify tie
variables printed at DIFEQi (4) and DIFEQI (6). See DEQUAL

D!IFE (6).

At this entry point the values of the variables computed at DIFE1 (3)
are printed. Also, th3 values of the state variables (and perhaps
ol.her n,.rted v-aeles) are p-inted. F.tty i, m-Rde tn DIF=0) (6)
only at ralid integration steps. In some cases the value of & variable
is printed only if the correspondIng indicator is set in the data. See
DEQCOD.

155i



At this entry point the variables to be integrated are defined by making
a call to INTG for each variable to be integrated. In some instances
this will be done only if the appropriate indicator is set. See DEQIV.

DIFEUI (8)

At DIFEQU (8) an h-transformation is made. This transformation may be
performed at a stage point (see EITRAN). See DEQW.

Remarks:

Subroutine DIFEQ2 is identical in form to DIFEQI. DIFEq2 controls the
vehicle 2 equation of motion calculations using appropriate COMMONblocks and auxiliary subroutines. A flow chart of DIFEQI is presented.
For user convenience, the original single vehicle equation of motion
routine, DIFEQ1, is also presented.

156



Aý-oo oe

sO 
sD

q/ AFý/ A(0
~Ac T T

c rO

)l~rFdz11I

~'ET4'kJ157



- -q

T __ ____ ____ __ ____ _ _158_



mUSW( a)DIFEQI 
(2)

0D G*55? COA Ct

al R, kL.*

0L -L R__WV- o_,x 
_ -a'MS

'-L [Down 1oC S

O .'- 
._______ 

,, SF I~

cmpw,,gmiwm. UA

C% A.~ 15SII

~.f (YfU:) WTM42

.s(~ ~ V.a~ ___s _

ORIGINAL SINGLE VEHICLE2 EQUAJ.TIONS

159



TO T T

RADIANTlf F , T TV

T I TTO %II
-~ I4mpflAXS T. L '1 j...-.L3

P A8Arx., is

Z IA I ABOUT 1 AXIS : A"

I A6OUT. AXIS L .

R
T

ATI~

-'A.

5IIIT I

ORIGINAL SINGLE VEHI-CLE EQUJATIONq

3.6o



F D1 FE01 (4)

ND 
IFOIND

a~. -sv, . o

INDIW ~ ~ PA

+ u) Z 'W" YA

ILI a 1 V124 U)

tWOID *1 b# D33

lit Re

N S F PO C(PRi

-V!? IF tA . I NEIG i.

Xi1 IF SNDA0l4 1-A*~~

AL '4( n~m@) Z, 1/q kfJ 4 I

QRXCJUA SINGLE VEHICLE EQUATIONS

161 
RETURN



LIMEka ""U TAPLUS 4
EEcTI. .Mv, a

0mATir uET

*UAouN -10SS A~lf..r4 '

Iow IF SP "of*5 U NO!

MATNlEUT- If uvPAsENIF

I.oq w'e

VALOE .TTN U AOUs .1 SWIPEDG a

lot.i *sNS7TNm - sOI

lltCC. Tn." . rESt.

VONE 
IN

SAfCS I t Nw

vcllo SN

I.LVIAUTUMN

CRIGZNALSINGE VEICLEEQUAION

A'A62



01111 smart

X . 16smeo

-- "-- 9 .4 "ro-o-

ORGIA SIGL VEILEEUAIN

V- • I I J,,-! C 161 *I

* - -ii QiII

JIS4~..LiI uSIA *J

**D

ORIGINAL SINGLE VEHICLE EQUATIONS

163



24. DIFEQ3 - Dummy Subroutine

DIFEQ4 - Dummy Subroutine

DIFEQ5 - Sample Arbitrary Differential Equations

This is intended only as an example of how a new set of differential
equations may be programmed for use in conjunction with the optimization
program. The equations of this example are in cylindrical coordinates
and describe a two-dimensional point mass with constant thrust in a
vacuum having direction of thrust as a control variable. No flow chart
is included with this subroutine.

DIFEQ6 - Dummy Subroutine

164



25. TLU;=V - Two Dimunsional Table Look-nv Routine (Special)

To linearly intirpolate in a table which has just two points.

CALL a UREV (X, C, Y, IER)

where

X is tLie argurent

Y is the functional value

IER is set to 1 if extrapolation was necessary

C i: the array containing the points of the table according to the
'ollowi.1g format

C(i) = Not used

c(2) x

U(3) = X

C(5) = r2

It is assumed that X1 < X2

MANTGT and REV are the only routines which use this routine.

165



F

TLUREV

Y (C (5)-C(3)) (X-C(2))
YzC3C C(4)-C (2)

FF T
IE R

166



26. ACOS - Arc Cosine Routine

AouBe

To compute the arc cosine of a normalized floating point argumnt X.

For IX I < 7.4505806 x 10-9 the arc cosine is set equal to 1T/2. For x = 1.
arc Cosbife is set equal to zero and for X = -1. arc cosine is set equal to r.
When the argument 1 7 + 1. the routine gives the arc cosine in radians from 0 to r.

Ulma

The arc cosine is computed using the statement

Y = AOOS(X)

where, i X 1. and Y =Cas' 1 .

Remarks

No error returns are provided.

167



FUNCTION ACOS

WRITE

RETTURN

ACOS:3.1415 EN

'M415S2641A

xii68

009 Il



27. ASI Arc iose

To compute the arc sine of a normalized floating point argument. 1.

The arc sine is computed using the statement

ASIN - 1.5707963 - AOOS(X)

T - ASIN(X)

where X1 jg 1. and T sin-1 X

No error returns are provided

169



28. TIL and TLU2 - Two-Dimension= Table Look 2p Routine

Given an argument X, to conpute = f(X) from a table of X and Y values by
linear interpolation.

The table of X values is searched until for some i, X < X < " Linear

interpolation is then performed. If, for some i, X - Xi tIn Y ia set to Yi.

Entry is made via the statement,

CALL TWU (X,C,Y,IND)

where, X - Variable name of the argument.

C = Array name of the curve being used.

Y = Variable name of the interpolated value.

"U = 0, no errors indicated.
1, limit of the curve has been exceeded and the result 4s an
extrapolation using the last two points.

The curve C must be stored as follow:

C(l) N Number of points in curve (fixed point integer)

c(2) = xl

c .= (3

cM ) Y 2

c(2N)+=) =I

Remarks:

A flow chart for TLU is presented. TLU2 is identical to TLU except for
use of vehicle 2 COMMON blocks.

170



0OCZMI=LOZ -1

D01 Is 1, N

U F LLCCZZ

IRI+

2.732



4

29. ATAN2 Ar tannet Routine

To compute the arctangent of the quotient of two normalized floating

point quantities, A/B, with proper quadrant control.

Meth~d

The routine conputes the quotient X/Y. The arctargent is computed with
quadrant according to the sign of Y and X. If X = 0 and Y 0 0, the routinc
computes

Y =tan-' (rlx) Y .

If X 0 and Y =, it i'vputes

Y = tan- (Y/X) 0

The ar- angent of Y/X is obtained via.

T ATAN 2 (1,X)

172



FUNCTION ATANIIY.X)

ATAN NOW

I OC tXT. 0)REUR

1. 3

II



30 . TLUl.- Two - Dizesional Table Look-up Routine

Given an argument X, to compute Yi = f(X) by linear interpolation, where
i _- 1.

The table of X values is searched until for some i, X1 < X < X+. Linear
interpolation is then performed on the number of curves requested. Itfor somen
i, X = X., then the Y. are set to that corresponding value of the dependent
variable.

Usage

Entry is made via the statement.

CALL TLUl (N, TAPLE,TIME,NDEP,ANS,IND)

whe re,

N = The number of points in each curve.
TABLE = The array name containing the sets of curves.
TIME = The variable name of the argument.
NDEP = The niumber of curves contained in the arrat CURVE.
ANS = The array name iT.to which the NDEP answers are to be stored.
IND = 0, no errors ind cated and all interpolations seem to be good.

1, the argumen+ X lies outside the range of the independent
variable. lf less than the range, the first points were
used. Tf greater, the last points were used.

The table "CURVE" must have been set up as follows:

CURVE(l) = x,

CURVE(2) = 2

CURVE(3) = X

CURVE(N) =

CURVE(N+l) = Yl1

CURVE(N+2) = Yl2

CURVE(N+3) = Y1
3

1714



CURvE(ZN) = TI

CURVE(2N-t-) = Y

CUlWE(2N-+2) =2 2

CIJRVB(2N+3) =Y .3

CURVE(3N) = Y

CURVE(3N+1) = 731

CURVE((NDEP'+1)WN) = NDEPf

No other routines ame called from this routine.

175



DOS51 I, N

10 15

211

N1 sN TEMPs TABLE dI-1)-TIMEj/ [TABLEC.10-TABLE (1

DO 9 K=INDEP

I DO 20 K c1,NDEP

NSUB = KN+

EISWX ABLE (NSUB)

j ~AN S(K)&rABLE(NSUB-1I.TABLE (NSUB)-TA8LE iNSUB-I)TEMP

REURN7

tL TUR N

176



31. TIMHEV and TIMREV2 - Time Point Collection Routine

Purpose:

During the forward trajectory, to build an array of stage time points
that must be "hit" during the corresponding stage of the reverse
trajectory.

Usage:

CALL TIMREV (TIMDRS, TOL)

TIMRS the stage time point that is to be added to
the list of points that must be hit in the
corresponding stage of the reverse trajectory.

TOL a tolerance: if a previous point of the list
differs from the current point to be added by
less than TOL, the current point is not added.

The name of the array of points is TIMESA. The TIMESA array is bailt
in monotonically increasing orler. If for any reason TIMRS is less
than a point in the TIXESA array, all points greater than TfM4S in the
TIMESA array are annihilated. XPT is the current number of points in
the array. NPT must not exceed the dimension of the TIMESA array- if
it does the case will be terminated. The first point of a stage will
always be inserted in the TIMESA array.

This routine was written in anticipation of the need to hit stage time
points in reverse for a number of different reasons. In particular,
the routines PAWTS and CTVS call TDMEv. It is imperative that PARTS
(3) call TINR with the current stage time and a tolerance of 0.

TIMREV2 builds the array of stage time points for the second
vehicle reverse trajectory. It should be noted that all variational
optimization problems must be phrbsed in terms of the first vehicle
data. In cooperative variational optimization, a program modi-
fication setting second vehicle control variables to names in the
first vehicle directory is required. A flow chart for TIMREV is
presented. TIMREYV2 is identical to TIMREV except for use of the
second vehicle's COMMON blocks.

177



TI M REV

MRSZT T NPT T

CTIM Sa(NT:MRSA

RN TURNPMXT

F 7t



32. PSUBR-EB'aluation of Partial Routine

'DERse:

To calculate matrices of partial derivatives numerically.

This is a general routine; it is used in the following manner:

suppose y1 - fl(x1 , "", xn)

YM - fm(xl' "" 'Xn)

and we want to compute

Y__ *. Yl

J . .

a m aym

then a call to PSUBR should be made as follows:

CALL PSUBR (NI,LX,LXST,HB,N2,LY,ANS,JP,P,LFCNS)

where N1 is n

LX is an array containing the COMMON locations of the
variables xl, .. O, xn.

LXST is an array containing the CCHMON locations of same
variables x1 *, ... ) XV* to be used in determining
perturbatioR sizes.

HB is an array of the minimum perturbation sizes to be
used for the respective variables xl, ... , xn.

N2 is m

LY is an array of the CONMMN locations of the variable
YI ...'# Ym"

ANS is J, the array in which the answer is to be stored
(this must be dimensioned 15 x 15)

JP is an airray of indicators one for each variable x, .

JPi 0 means that the i'th column of J is knowno"o be 0.

179



P is a constant used to determine the perturbation size.

LFCNS is an indicator used to direct PSUBR to the code for
the funstions f1l *°* • m"

Method:

The elements of J are comptated a column at a time by the following
approximation

3Xj 2hj

wdhere hj = max (Hpj IXJI 1 0 -P)

If Jij - 0 then -Yi is set = 0 for i -I, ... , m. This eliminates the

need for calling the routine to calculate the f functions for column J.

The variables in PSUBR are dimensioned to compute a 15 x 15 matrix of
partials; PSUBR stores the answer in ANS which it expects to be dinen-
sioned 15 x 15.

After ANS has been computed and before returning P3UBR makes a final
call to comTute the f functions with the 2Eiinal values oZ the x's.
This is intended to insure that values of variables after computing
partials are the same as the value before computing partials.

Remarks

(1) PSUBR is called only by PARTS.

(2) P is PM in all calls; PMX is input.

(3) HB is either HBAUM, BA4, HBARI, OR UBART depending on
the call; all of these are input.

(4) PSUBR charges the routine PTBEQN with the responsibility
for driving the calculations of the f functions specified
by LFCNS.

(B) The basic state variables for the secund vehicle may be
perturbed through PSUBR. Appropriate transforma'ions to
permit such perturbations are introduced through subrou-
tines ONETWO and TWOONE.

(6) Perturbation of vehicle two's control variables in a
cooperative variational optimization requires a program
modification in ONETWO vnd TWOONE.

180



PSUBa

(oits i=1Nt) T~)WON"

i ____ _ _A~~CONTI NUE)po l I.2

-4wo lot=I,N 1) FOl N t.2

It = LY(LI)
MI. Y(L) STAVARU),j

ANS(IJ) 0 ANSINI)_ - _ (N,) YIN.!)

L-0,0016 LIý IN2)T WOH

0 N TI N E) -(CONTINUE)

______CALL

DM1= - I PTE9QN

0(2)= 1. SN+I) 5

Sc Ii. (CONTINHUE)

J. LX1LI)

STA VAR U) SNOM(L)
J= LX(I)

SNOMMI= STAVARMI 
1- 1 .. LOl L- I.NI)

J LxML

-1C Owl INUE) I iNUI T $11. OI *0L) STAVAI((J) .SNOU(L

(Do isl I= I'mi) - -(CON TINULE)
"(OIsE L -I,2)

N~ SNO(I)SCCALL
S xI .SNO~)P TS EQ N

jp (ly 
R5yETURN

N -jCOU0N (,)ISC
T

181



33. Pt - Blocking Routine for L

To enter values into an array for output to tape.

All non-zero numbers (integer at floating point) are packed into a large
array before being output to tape.

Linkage to this routine is made via the statement.

CALL PRPACK (MCONT, NPOINT,NSTATE,IPM,IGM,IT,.ND,IALP,IDEL, IWA,
TWAI, IWBI, INDPM4T, IPA RTS, IK,IENTEY)

where,

MCONT is the number of control variables.
NROINT is the number of values in CTABLE.
NSTATE is the number of State Variables.
IF( is a (NSTATE*STATE) Matrix.
IGM is a (MCONT*NSTATE) Matrix.
IT TIME
ND is a control that is passed to the reverse, segment 0 at

the beginning of the trajectory, 1 within the stage and
2 at the end of the stage.

IALP CTABLE points for that time.
IDEL TIME step.
IWA Weighting Matrix indicator
IWAI Constants used to construct the WI Matrix.
IWBI Constants used to construct the W' Matrix.
INDPHT Number of end constraints.
IPARTS array of terminal partials
IK not used.
IENTRY serves as an entry point to the subroutine.

C044ON References

CTA=LE in numbered CO0KC4O of 1

Subroutines Called

TZERO
FORTRAN I/O routines.

182



I Li� UUL� II�Ii C�iI iriPi�t.

II -�

N� I � -

'I..* 
I-

� P

I
U
A

A �l!II.I
U * a IS �S -

w Ii
I

* I __- __-____

V � I
U *
'a I I
a,.
- I
a. I I t

� I
I �

ah�J * �-- .1

* x
- A

I
A
A

z AitL*
Uj a - U

* 131
lag
ICi-II

EJ
133



34. F-USHI and FLUSH12 - E..ffer Flush Routine for PRPACK

P212086

To write on tape a partially-filled ,Tuffer.

To test and determine if a buffer is partially filled and if so to write
that part out on tape.

Entry is made to this routine by the following s. Itement:

CALL FLUSHI

'ý ly the normal I/ FORTRAN routines are used by this routine. A flow
chart for FLUSH1 is presented. FLUSH12 is identical except for the
use of vehicle 2 COMMON blocks and units.

184



FLUSH1

FX =X T

RETURN

IA = IX + 1

DI)A =IXA -1

WRITE

~12

RETR

185



35. SETGRD -- Paper Plot Grid Sii Routine

Purpose:

To establish maximun and minimum dimension for x and y
axes for eich paper plot.

Usage:

Call SETGRD (XMAX, XMIN, YMAX, YMIN, ITC)

XMAX - Maximum value in the X array
XMIN - Minimum value in the X array
YMAX - Maximum value in the Y array
YMIN - Minimum value in the Y array
NC - Number of curves to the plotted

SETGRD

DX = IYMAX - XMIIN * .075

Y = IYMX - YMIN! * .075

Y.= XMAX + DX

XM = XMIN - DX

YB = YMAX + DY

YM = YMIN - DY

NT = NC

RETURN

186



36. PAPERP - Printer-Plot ContLlrol Routine

To provide on-line paper plot capability during equation of
motion computation.

Usage:

Call PAPERP (X, Y, NX, TITLET, TITLEB)

Where

X is an array that contaiuis the values of the
independeni; variable to be plotted

Y is an array that contains the values of the
dependent variable to be plotted

NX is the number of data points to be plotted

TITLET 120 character title that will be placed at
the top of the .lot area

TITLEB 120 character title that will be placed at
the bottom of the plot area

PAPERP

NWT = 12
NWB = 12I, ~ý.ALL PPLNLN'

RETURN

187



37. DETECT and DETECT2 - Sensor Cont ro ram

Purpose:

T-) control the sensor and vision routines.

Remarks:

A flow chart for DETECT is presented. DETECT2 is identical except
for the use of vehicle 2 auxiliary su'-oitines.

188



-T6CT

-AI

/ -- S.

IV-T~e- V) 6

IV-V/ IZ 7)

7) oo

V .iO .i .5~ ........ A?

18oi



38. ROLEl and ROLE2 - Role Selection Subprogram

S~Purp~ose:

To define each vehicle s combative role on the basis of instantaneous
vehicle states.

Method:

Each vehicle role is selected on the basis of their relative states.
Role selection includes the following:

a. ATTACK

b. OFFENSIVE

c. DEFENSIVE

d. EVASIVE

An override permits selection of a fifth role

c. PASSIVE

The subprogram contains the standead EXE 2TRY points.

Remarks:

A flow chart for ROLE1 is presented. ROLE2 is identical except for
use of vehicle 2 C0M40N blocks and auxiliary subroutines.

190



J/ýoD) z-o/

OcMTV/ ('))

&OCI66,vj 7)

f2f7,qL Ir)4f'4C)7

20)

ues

NO

?A S Af 1/ (4 co 'sC DdaV~A

ýco ma b,kEAt o, CoU %b,~D~T, &'4V44 .

191



3001

PASV/ (Y%) :2- ,

:32

ss

7~.( >/;/0

pr Y S3)4

Y cv-# ebo -YES

31oao
1419z

IZ~



Z5 A6A

Aj I I

1930

ic,"64j/(3) -'0



39. HLIMIT and nLIMIT2 - Minimum Altitude Constraint Routine

Puzrpose:

To force a pull-up maneuver when a miniuum altitude boundary is violated.

Method:

A minimum altitude is defined as

a. Constant

b. F)uiction of y

c. Function of y, V

When this minimum altitude limit is not satisfied, the angle-of-attack,
bank-angle combination,which maximizes vertical force component, is
used. Whenever the altitude limiter is employed, an appropriate message
is printed by MSGONE or MSGONE2.

Remarks:

A flow chart for WfIMIT is r,-esented. HLIMIT2 is identical except for
the use of vehile 2 COMMON blocks and auxiliary subroutines.

1 9 4



131~

ti
N O I N P A-~~~19 5 / 7- - / 2 1

c7I E



40. ANGLES and ANGLES2 - Relative Angular Orientation Routines

Purpose:

To compute the relative angular orientation of the two vehicles
In body axes and to compute steering errors from the referenice
vector and associated functions.

Usage:

Called from the i-ombat logic during equation of mction computations.

Remarks:

A flow chart for ANGLES is presented. ANGLES2 is identical except
for the use of vehicle 2 COMMON blocks.

196



[ ~' =tan-
1 (sinO cosci/cos~J

TnfX:

Compute [U, V, W1 matrix
Rotate:

(-a) about y axis
(8') about z axis
(o) about x axis

TMTX:

Compute [r, s, t] matrix
Rotate:

(-BA) about x axis
(-YA) about y axis
(-aA) about z axis

I,

TRNPOS:
[i, J, k]T [i, J, k]'

MULT31
"[Axg - T Axe

yg [i,j,k] AYe!
i X9LAze ,

TRNPOS:
[r, s,tiT = Er, s,t]'

MULT31[-06A T [Axg"
"Ay] = [r, s, t] Ayg

L AzA Azg

TRINPOS:
[u, v, w]T -= [u, v, wl'

197



AXB AXA
AYB [u, V, WIT YAy

AZB AZA

0 AZI tan[AYB/AxB] a Target Angles in

e EIEV =tan (-AzB/VAx.132 +AYB 2 ) oyAi System

6 CON tal[/AYB 2+AzB 2/AxB]

(xAIM ` xe + Xes

YAIM ` Ye + Yes

zAIM ze +Zes

xes = Axe + C P1 5 * (AxjAp,-Lxe) * Steering vector

Yes =AYe +Cp 1 5 * (AYLA-AYe)

Zes =Aze + Cp1 5 * (AzLA-Aze)

g=xes +Yes5 +zes

FT =Fxe +FYe +Fze

ES= cos'(l(xes'ue+Yes-ve+zes-we)f/(v-vs)I

FSTU= (Xes Fxe+yes FYe+zes rze) /vs

C f =cos'([FSTV/FTJ

Oof f= 18o - e ASP

198



41. CRATE and CRATE2 - Finite Control Rate Routines

Purpose:

To introduce a finite control rate capability ito combat simulations.

Method:

Desired control vector components are defined by either combative logic
COMRAT wad COMBAT2 or the flight plan programmer routines, FPPS or FPPS2.
The instantaneous control error is then used to define an error magniud-
dependent control rate. Control values are obtained by integratioa of
their rates. Logic to maintain controllable inequalities is incorporated
in the finite control rate option.

Remarks:

A flow chart for CRATE is presented. CRATE2 is identical except for use
of vehicle 2 COMMON blocks and auxiliary stbroutines.

199



YIFI

I A I/ A l A

200



A'P7-( -T K9

AN 01 20170



A IDIzR .0Cri &VX

/L.P, ieL /~ 7

202



MNO

2030



42. TIIO and TIMO012 - Tabular Time Point Routine

To provide additional time points that the integration routine must "hit"
in the forward trajectory.

CAOL TIMD1O (VALTPT)

VAL is the current time value.

TFT is the next time point larger than VAL which should be "hit" in
addition to other time points normally "hit" in the forward trajectory.
TIDO01 performs a table look-up on specified 2-dimensional tables to
find the smaliest time value in these tableb which is larger than VAL.

If no tables are specified TIMO01 returrs l.E36 for TPT.

TI)O01 will use the tables specified on the TIMTAB card.

Remarks:

TIDO01 is called by TIMID. TIMO012 is called by TIMID2 and provides
for additional time points in the vehicle 2 trajectory. TIM0012 is
identical to TIM001 except for the use of the vehicle 2 COM4ON
blocks. A flow chart for TIM001 is presented.

2o4



TIMO01

1•O3ItNTAB

LOCI 21 LOCTAB(I

MEND -LOCI÷2"NVAL (LOCI)
LOCI ,a LOCI-1

L-1-C

_,AL- 1I3

TPT' itMI .O

205



p

43. DEQPRE and DEQPRE2 - Equation of Motion Pre-Data Initialization

Parpcse:

Perform the DIFEQl(1) and DIFEQ2(l) pre-data read functions for

vehicle 1 and vehicle 2.

Method:

NominalJ values of indicators are set, •rnd the integrated variable

values are set to zero. Nominal values are set for standard con-

straints used in the equations (e.g., polar and equatorial radius

of planet).

PFeiarks:

A flow chart for DEQPRE is presented. DEQPRE2 is identical except for

use of vehicle 2 COMMON blocks and auxiliary subroutines and sub-

programs.

IIWA

p.A"

-. -.
Snn.

TA

•o14

Subroutine DE'ýPRE

206

I



44. FIRFUN and FIRFUN2 - Fire Control &ibprogram

Purpose:

To compute selected fire control function effective time maneuvers.

Method:

The fire control subroutines integrate the period of time that each
of three fire control characteristic function constraints are
satisfied. The three fire control functions for each vehicle may
involve a combination of up to nine trajectory variable values.
FIRFUN and FIRFUN2 have the standard EXE entry points. The subpro-
grams are called by DIFEQ and DIFEQ2, respectively.

Remarks:

A flow chart for FIRFUN is presented. FIRFUN2 is identical to
FIRFUN except for the use of vehicle 2 COMON blocks and auxiliary
subro•u•• nes.

207I



'adfra

A'0 200

0.

1 CgTAON i . v ZJ g5

YesA <9 INO

jI,262 rA8L COVES~x

208



300

YES

Abf,ý,40)

now

AIO

1-0

LT. X T i

AID

L OCr y o't)
ezv ý co-jov 64.)

A PCD V tX)

F W

X4 +1

yf5 I)ASR NO
4'r-

IC

Fbv f PV

APO

209



1i 0

210 -L

I~~,C c[wf Lt1



4 5. GAM91 and GAM92 - Flight through Vertical Routines

' Purpose:

To permit each vehicle to fly tbrough the vertical without "locking
on" to the wind axis.

Method:

Whenever programmed logic indicates that a vehicle has flown through
the vertical, a 180 degree rotation about the velocity vector is
introduced. This rotation is combined with the 180 degree rotation
introduced by the wind axis transformation at flight through the
vertical. The resulting combined rotation permits a smooth passage
through the vertical, and Imielmann- or Split S-like maneuvers can
be performed.

Remarks:

A flow chart for GAM91 is presented. GAM92 is identical except for
use of vehicle 2 COMMON blocks.

211



D615JU6 360. - Are s5f&

D faq ojdg-4/D.
I48OO5bLr. A 119'.

ouTA44 f~C4

212



46. DEQJII and DBQINI2 - Equation of Motion Post-Data Initialization

Pur.pose:

Perform the DIFEQL(2) and DIFEQ2(2) post-data read function for
vehicle . and vehicle 2.

Method:

This is the initial transformation. It is always performed at
the beginning of a trajectory; it may be performed at the
beginning of a major stage (see EXTRAN and EXTRAN2). Also, it may
be used in certain combinations for the h-transformation (see
EXTRAN and EUA2).

Remarks:

A flow chart for DEQINI is presented. DEQ2INI2 is identical except
for the use of vehicle 2 COMMON blocks, auxiliary subroutines, and
subprograms.

S. . . . .i o •

n,..• 14 -vs_
I -.. Msee m - "-MI

""ITO" I

.4L

%..'''. U.......U ]
L___

04-, ILA").4*liu

StJBOUTII4E JDEQINI

213



4~7. DEq.BCI and DEFQEC12 - Deri'rative Calculation Before Control Definition

Pvrp~ose:

Perform that part of the equation of motion derivative calculation
wlich precedes the vehicle con~trol definition.

Rem&rks:

A flow chart for DEQBCI is presented; DEQ~BC12 is identical except for
the use of vehicle 2 COMMON blocks and auxil. ary subroutines.

AT CIN~t

.4. 0.4 t- ' mmm o. t. .. V .~

"-V- - - 1 .'

VA- Va

NO 94:00snu
.4a ""f "n

tue~~a1--# 

S tlaS~IL
567£,, ISIAT - S .W(-, II156.1-LV

ToNS ________ TOn ", 40M:*

( r * \)a ,r AXIS 01e.r I-.
C~3 ).@OUT AN'S *I AN

vs-SIt Y'IS

[J.I 4h I ~ "?214



48. FPPS and FPP62- Flight Plan Progr•mmer

1•rpse:

To provide an alternative for computing a variable (which would other-
wise be a control variable) as a tabula- function of any variable already
computed.

Method:

It is legitimate to use FPPS only to compute those variables which are
allowed to be control variables. Up to six different control type
variables may be ccmuted through the use of FPM3. FPPS is a subprogram
of DIFM.; it has the standard entry pints. The data for FPPS may
be changed at any major stage at which DIFMI(2) is called, FPPS will
be active only if there is data for it and only if INDFLT is input non-
Seo".

To compute a - f (Mach) the fun ttion f is defir4ed pointwise by
a two dimensional table (in the standard manner for setting up
tables). It is imperative that Mach have been computed before
FFS is called to evaluate a .

When vaing FIVS, it is i wer-ative to check the coding to be sure that
the independent variable of the "f" function has actually been ccmputed
at the time FPPR 3) is called; if such is not the case then it is
saetimes possible to perwute the order of calculations in such a
mrier that this criteria will be satisfied.

input Data

This data m-st go in the stage data. The data may be inserted at any
stage at which the initial transformation is ezecuted.

FPPIV BCD 2SIGDbAMACH

PPIV BCD 2BAT77DALPII
• •FTAB0I 4, -90., 180.,-.lI,180.

FTA802 2,0O. ,2.,5.

INDF'LT 1

7PPIV defines the nmes (at most 6) of the respective inde-
pendent variibles for the tables FTAB01 through FTAS06.

215



FPV defines the names of the respective dependent variables
for the tables •PABO1 through FTAB06.

two dimensional tables c .responding to the definitions
set up in FFIV and FPPrV.

FTAB06
INDFLT 0 O turns on FPPS

"0 turns off FPPS

Great care met be exercised in how FPI3 is wued.

Pemaz !,s:

A flow chart for FPPS is presented. FPPS2 is identical except for
use of vehicle 2 COI.9ON blocks and auxiliary subroutines.

216



40 a.
u Z-

10IL z

4L.
IL.

as

g ~ -;U U I

+-.

~b. 4~ .21T-



49. ONETWO - Transformation of Selected Vehicle 2 Variable to
Vehicle 1 COM40N

Purpose:

ONETWO takes variables having a unique name in vehicle 2's COMMON
and transfers the variable value to a specified location in vehicle
l's COMMO.. The routine is used for the inverse TWOONE transfor-
mation when vehicle l's perturbation equations are employed to
perturb a vehicle 2 function, or when a variational problem is
terminated. Additional variable transfo'i.mtions may be introduced
by simply adding the transformations to both ONETWO and TWOONE.

ONETWO

Itore m, m, le, Ye, Ze,
xe, Ye, and Ze from
vehicle two's COMMON
into vehicle one's COMMON

store fire functions and
fire function derivatives
from vehicle two's COMMON
into vehicle one's COMMON

RETURN

218



5O.CTL1TR and CTLITR2 - Control Dependent Derivative Calculation

Purpose:

CTLITR and CTLITR2 control the calculation of the portion of the
derivative calculation which depends on the instantaneous control
variable values.

Method:

Angle-of-attack and sideslip functions including the (u,v,w) matrix
are computed directly. Throttle effects are computed through ANITR
or ANITR2. Bank angle effects are computed in BAITR or BAITR2.

Remarks:

A flow chart for CTLITR is provided. CTLITR2 is identical except
for the use of vehicle 2 COMMON blocks and auxiliary subroutines.

CTLITR

I S

a- AMOUT I AXIS

219



51. DEqACI and DEqAC!2 - Derivative Calculation after Control Definition

Purpose:

To carry out secondary derivative calculations following computation

of the control dependent functionq (e.g., j and & computations).

Remarks:

A flow chart for DEQACi is presented. DEQACI2 is identical except

for the use of vehicle 2 COMMON blocks and auxiliary subroutines.

220



IDEqACIZ

Y,.~IN F, V h INOSPI

. a mvs aP , PA*

F i,.(1~,'.u :,.,~~u* PA&A

.N IRF IIAO-

*Ua IF INDAD.L - cq( P"IWgE'q

*I~T IF INOAD.

I~(l~n4ITI *N IF INOADG-4

NoIt.'(EP INNCJ4SU

0., IF IND i ii

e ~ 8INDOPN

*0k

LI.vs i,

9221



52. FPFG and FPPG2 - Gamma Co--and Flight Plan Programmer

To provide the capability for flying a specified flight path angle
( Y) time history by computation of the angle of attack,

The change ia angle of attack is computed to correspond to the second
term of the Taylor expansion of a (Y) plus a small correction term.

S-t• 
+ C ((Yc - Y) + (ýc- )

where

C m VAI(T cos o + L/r)

C [(Yc)t- (Yc)t_ At]I At

At is set equal to 1. second by the progr.am.

is either an initial input value of a,, o. the value
remaining from previous computation at the entry into FP!G(3).

(Y is then limited between a maximum value (ALI1W) set equal to 24'
by the program, and a lower limit (ALIML) set equal to -4- by the
program.

Remarks:

A flow chart for FPPG is presented. FPPG2 is identical except for
the use of vehicle 2 COMMON blocks and auxiliary subroutines.

222



S. .. • ,. ;• •-•-•,. •:• • • j• , , :,, •,,,.• •••,.. -.,•, - -

r

a

a U - -,q

S0 0 a

+ +x

U ' 1 -'

a|

223



53. DEQSIP and DEQSIP2 - Derivative Evaluation Initial Point

Purpose:

To provide an initial print heading for the differential equations
of motion output.

Remoarks:

A flow chart for DEQSPI is provided. DEQSPI2 is identical except
for the use of vehicle 2 COMMON blocks an&u auxiliary subroutines.

E 
".. 

."T.o
1-I

, ~nm.,l peai I
SUBOSU)sacs W) "I

"I..? .. 1

DESIP

,.224



514. DEQCOD anid DEQCQD2 - Trajectory Code Pri.nt

Purpose:

To provide a trajectory history code print for the selected output
variables.

Remarks:

A flow chart for DEQCOD is presented. DEQCOD2 is identics~l except

for the use of vehicle 2 COMMON blocks an-' auxiliary subroutines.

m,"OLD '6,,u,-

Me m u.. to"fie

.F~~ wovoe I

w ""Fro,.

-PKOW 'eý 1-VPt,,.el

'11.4614,

"911

-24 14W efhr

IFP PPS PSI

'PS...

PAN. go

SUBOUINEDEOO

ame' :3225 "



55. DEQVAL and DEQVAL2 - Traj •ctory History Print

Purpose:

To provide a hiotory of selected variable values along a trajectory.

Remarks:

A flow chart for DEQVAL which generates the first vehicle output
values is presented. DEQVAL2 which provides the second vehicle
output values is identical except for the use of vehicle 2 COMMON
blocks and auxiliary subioutines.

0

b *

Wi Ice 6' 1

"". ... ,fl . ... -_V..

"T '

0

*. ..... .

910a q k. ... ... :

SUROUTINE DEQVAL

226



56. -DEQI and DE~jV2 - Integrated Variable Specification

Purpose:

To define active integrated variables.

Remarks:

A flow chart for DEQIV is presented. DEQIV2 is identical except
for the use of vehicle 2 COMMON blocks and auxiliary subrý'atines,

-UBO . ,

FLo.-27
% *

S. Y. I..

L m,--.•.

, I

SUBhROUTINE DEQIV

S~227



57. DEWJT and DEQUT2 - Trajectory H-Transformation Subroutines

Purpose:

To carry out specified h-transformations at selected stage points.

Remarks:

A flow chart for DEQ'T is presented. DEQHT2 is identical except
for the use of vehicle 2 COMMDN blocks.

• - •-•-•, ~~-&..;.. .. ••,,

............ ..... -'"-T PLR

SUBROIJTINE DEqHT

228



58. ERROR and EMOR2 - General Table Er or Routine

To provide a method of indicating the table which my possibly contain
an error.

Given the subscript of the curve in error, the routine will search the
subscript table and find the corresponding BCD word. This Tw:'rd will then be
printed as:

"TABLE ERROR AAAAAA"

where AAAAAA is the BCD name of table. If the =2 cannot be found in the
directory

"TABLE ERROR

... Location of table not listed in directory..."

is printed and a returr. to th,'. calling program is made. In either cc.Ne INDSTE
is set to zero.

AMa
Bntry is made to the routine with the following statement:

CALL EROR (IOCZ)

where IOCZ is the table subscript.

Subroutines Called

LINES

AISCH

Nomrl FORTRAN I/0 routines.

A flov chart. for EPROR is provided. ERROR2 is identical to
ERROR except for the use of vehicle 2 COMMON blocks and auxiliary
subroutines.

229



ERROR

INDSTE=O

CALL LINES
(2)

CALL ASRCH
LOCZ, NAME

-- NAME -IBK

RETURN RETURN

230



59. rngp21N and PTBEQN2 - Driver Routines for Equations

Purpose:

To duplicate the sequence of calls to subprogramit made by EXE for
entry poin'ts 2 and 3.

CALL PTBBFN (IENTRY)

IMIT1T - 2 make calls to entry points 2

1•4RY - 3 make calls to entry points 3

PTBEQN is called only by the P"JBR routine. IENTRY is an argument
in the call to PSUeR freom PARTS; PSUBR transmits it to PTBEQN. PTBhQN
may be looked upon as that rouUne which drives the particular function-
al calculation necessary for computing partial derivatives numerically.
The indicator INDEQN is set to 1 upon entering ,I'MBEQN and is set to C,
upon leaving; this indicator is not essential to any of .he logic but.
is designed only for diagnostic purposes.

When IENTRY - 2, PTBEQN only calls EXTRAN (3). EXTRAN(3) takes care
of evalua&ing the functional calculation for the initial transformation
of major stages (either initial conditions or h-transformation).

PTBEQN controls the transformation of selected vehicle 2 funetions
into unique vehicle 1 functions for use in two vehicle variational
optimization problems. This is achieved by use of the transfor-
mation subroutines TWOONE and ONETWO. The 3elected vehicle 2
functions are perturbed by PTBEQN2 which is called from PTBEQN.
Flow charts for both PI£BEQN and PTBEQN2 are presented.

233-



PTBEQN

BEGIN

T1WOONE
INDEQN z I

AI
E II

AL

IFI

AL

P ENA

INDE~zOPTBEQN2 (IENTRY)

232



PTBEQN 2

BEGIN

LCINDNUM =1RETURN

N

,INDEQN. I

233



60. TWOONE - Transformation of Selected Vehicle 1 Variable to Vehicle 2

COMMON

Purpose:

TWOONE takes variables having a unique name in vehicle l's COM10.N and
transfers the variable value to a specified location in vehicle 2'c
COMMON. The routine is used for the inverse ONETWO transformation
when vehicle l's perturbation equations are employed to perturb a
vehicle 2 function. Additional variable transformations may be intro-
duced as discussed in the ONETWO write-up.

234



61. IZ and IZER02 - Packs Non-Zero Numbers

Test the argwi.nt for non-zero and set up indicators for packing.

•hod

The argument is tested for zero and a switch iL set for each word. The
switch is on for zero and off for non-sero.

Entry is made to the routine with the following statemnt:

CALL IZMo(I)
where

IA - The number to be packed.

No other subroutines are cafled from this routine.

235



IZRO

I-- I~x ---IEIIIIII

ROE

~K +

F~~~ LLS

ITARLI tKK) 0

RETURN

236



62. PPLNLN - Main Paper-Plot Routine

Purpose:

To control scale size, construct grids, plot points, and
title each paper plot.

Usage:

Call PPLNLN (X, Y, NPTS, XMAX, XMIN, YMAX, YMIN, NPLTS,
TITLE, IWORDS, TITLEB, NT)

x is the array that contains the values of the independent
variable to be plotted

y is the array that contains the values of the dependent

variable to be plctted

NPTS number of points to be plotted

XMAX maximum value of plot gri,1 for x axis

XMIN minimum v'alue of plot grid for x axis

YMAX maximum value of plot grid for y axis

YMIN minimum value of plot grid for y axis

NPLTS number of curves to be plotted on this frame

TITLE title to be printed at the top of the plot

IWORDS number of ten character words in TITLE

TITLEB title to be printed at the bottom of the plot

NT number of ten character words in TITLEB

237



PPLIJ U4

no W NPLIS

< t4 >30 
.30

> t4=--

WO NO
lov

NCWA.Pl= sloo

Tf-PVJ = to
ZPLDITIL TpLDT*lIPLoT= 0 r

W Ak- Y14W
YMA&-YMbJ CALL PLOTS

M=010 bY.= 1.0 so Us N > 0 RCTOW

tly=OO bY= tz

SKIP FXGE

%kP-- too. /by,
yp= 10O./a -pwc V t OT

IRACxz-O

RT 4 0 WRIfCAITLIB

I DY-Y

NFRAME W.NRAME:

REldersi

238



63. SENSOR and SEISOR2 - Vehicle Sensor Routines

Purpose:

To supply each vehicle with a system of sensors for detection
of an opponent. Each vehicle may employ up to seven inde-
pendent sensors.

Usage:

Given the opponent's position each sensor is checked
sequentially to see whether or not the opponent can be
observed. In the present program an opponent is observed
when the target's cone angle (in body axes) is less than
the sensor half angles and the target's range lies between
minimum and maximum limits. The time each sensor
observes an opponent is integrated and the time at which
a sensor loses an opponent is preserved.

A call to SENSOR or SENSOR2 i's made as follows:

CALL SENSOR (IENTRY) or CALL SENSOR2 (IENTRY)

IENTRY is tl], standard EXE entry point indicator.

A flow chart for SENSOR is provided. SENSOR2 is identical
to SENSOR except for the use of vehicle 2 COMMON blocks.

239



10100 2 2. W S oo

RA ý05 0 300 I NI f

t e12% e dS~A-~ ~ ~ t~~- IO- CN>S

~ -

21OM

A- V.



6Oo

CRETOQN

_ 4

TTz.66"+ CO{LS
TO(Uý= + 4-CO(

c cz ao R!o.

241



64. VISION and VISION2 - Pilot Vision Routines

Purpose:

To supply each pilot with a visual detection model. Visual
scans are made at specified time intervals.

Usage:

Given the opponent's pocition a periodic visual check is
made to see if the opponent lies between tabular upper and
lower elevation limits as a function of target azimuth. If
the opponent lies in these e'evation limits and is in visual
range, it is assumed that he will be detected. A flag is
set whenever an opponent is lost from sight and at all times
the last two visual sightings are recorded in time,azimuth,
elevation, and range senses.

A call to VISION or VISION2 is made as follows;

CALL VISfON 1IENTRY) or CALL VISION2 (IENTRY)

IEI'.RY is the standard EXE entry 2cinr indicator.

A flow chart for VISION is presented. VISION2 is idcntical
except for the use of vehicle 2 COMMON blocks.

"242



frmbv1z- 0 WOVLb~oWWI?
SO

1LockV -=ME

4 4ooo AvTr6c2

C:~~ OJN 
CXC&cr

PT RETRNL, \TiO

[!týIL2)~yt. 4' f)y. %

< C)

N.~ ~ ~ ~ ~ R N~f~Pd Ic~Tx
(tEcO-r=U~4RN Toe

VA~2 3 KS



65. PASSV1 and PASSV2 - Passive Tactics Routine

Purpose:

PASSV1 and PASSV2 serve to interface flight plan program options or fixed
control history flight paths with the combat logic. In particular, it
con~erts all such control specifications to the finite control rate
option at the analyst's request. A flow chart for PASSV1 is presented.
PASSV2 is identical except for use of vehicle 2 COMMON blocks.

24



MOO -rC A-7,C

-~ ~0AN

I~~lSS~z J '7SG-rwv& - f4AV

( *,~D

Do'o,

245



66. DEFENI and DEFEN2 - Defensive Tactics Routine

Purpose:

To select each vehicle's defensive tactic.

Method:

ROLEl and ROLE2 have selected each vehicle's role. When a defensive
role is selected, DEFENI and DEFEN2 define a specific defensive tactic
for vehicles 1 and 2, respectively. Defensive tactics may be selected
in random or ordered manner. An override to another specified role
is also possible by use of FIXEDR or FIXEDR2. The analyst may also
specify a minimum elapsed time between tactic changes.

Remarks:

A flow chart for DEFEN1 is presented. DEFEN2 is identical except for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

24 6



3000 ~a) go

:1,/a47A01 -~tol

ocd/ / +

K: 19 +;
TAbLE W=) CP(OtjCK)

NOL 11

A/066A

JAh



?eNo

7 rz

C-N



67. EVADEl and EVADE2 - Evasive Tactics Routine

Pupse:

To select each vehicle's evasive tactic.

Method:

ROLEI and ROLE2 have selected each vehicle's role. When an evasive
role is requested, EVADEl and EVADE2 define a specific evasive tactic
for vehicles 1 and 2. Teztics may be selected in random or ordered
fashion. An override to another specified role is possible by use
of FIXEDR or FIXEDR2. The analyst may also specify a minimum elapsed
time between tactic changes.

Remarks:

A flow chart for EVADEl is presented. EVADE2 is identical except f.or
rse of vehicle 2 COMMON blocks and auxiliary routines.

249



/0

A100

S,000

250



A

2oooo

Rc~t/RA

2 51



68. OFFENI and GFFEN2 - Offensive Tactic Routine

Purpose:

To select each vehicle's offensive tactic.

Method:

RO1E1 and ROLE2 have selected each vehicle's role. When an offensive
role is requested, WFFEN1 and OFFEN2 define a specific offensive tactic
for vehicles 1 and 2, respectively. Offensive tactics may be selected
in random or ordered manner. An override to another specified role is
also possible by use of FIXEDR or FiXEDR2. The analyst may also specify
a minimum elapsed time between tactic changes.

Remarks:

A flow chart for OFFENI is presented. OFFEN2 is identical except for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

252



7'A 19r03I2r K3

5do< -S

jorr

-6-1)/c'or L.~c I) f~

_ZL3



F _ý

ZOIIWI/ z
TO A Z4J~

ndAeqs zil)

Y~fS IV'

-A

251

IN



69. ATTACI and ATTAC2 - Attacking Tactics Routine

Purpose:

To se7ect each vehicle's attacking tactic.

Method,

RCLAl and ROLE2 has selected each vehicle's role When ean attacking
role is requested, ATTAC and ATTAC2 define a sp.cific actacking
tactic for vehicles 1 and 2. Tactics may be selected In random or
ordered manner. Aa override to another specified role . i•tlso possible
by use of FIXEDR and FIXFD32, The analyst may also specify a r lnimum
elapsed time betweer. tactiL changes.

Remarks:

A flow chart for ATTAC1 is presented. ATTAC2 is identical except for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

255



I..,-,'1

ýF- /41y./V

AfVf'U7t4C <',, A- .

- ,(zr4

30 'V6- IOi7

256



ff7A ~ ~ Cz4.0 ?!)

.NNO

257o



70. O•AJPRA and OALPBA2 - Sul. pog:am for Instantaneous Control Vector Iteration

Purpose:

To define instaritaneous angle-of-attack and bank-angle on the basis of
local optimization and constraint criteria.

Method:

A local minimization criteria, 0(t), anL local constraints criteria,
*i(t), are created where

0(t) = 0(a, BA) and Wi(t) = *(a, BA)

An inner loop parameter optimization procedure, CTLOPT, is used to
define the angle-of-attack and bank-angle combination which satisfies
the resulting local (t = constant) optimization problem. The local miri-
mizs ijon criteria involvc. a variety of ccubat guidance laws. Constraints
include a minimumr speed override on angle-of-attack, which reduces the
angle-of-attack search range and any in-flight inequality constraint de--
fined by IFCS which in directly affected by the control vector (INDBNCi-l).
Final steering and force vector errors are also computed in OALPBA and
OALPBA2.

Remarks:

A flow chart for OALPBA is presented. OALPBA2 is identical except for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

258



,4. '4'.4 ,e4

VtA 7 _7

INA(



V.1

£~~~'0AC 7PWCZ,

'26o



B

R tCS z)
L7.

adecl /--L

A/

261



71. HIHO ann- HT-n2 - N-Dimensonzal Tab-l Call Routine

To set up the NA array and Z locat iou of tablea with dimesion from 3 to
5 as recquired by the calling sequence to NDTW which is

CALL NDTLU (ND,NA, X, Z, XA, ZU 1A, NEXTR),

to make the call to NDTLU, and return thbe function value or data on a table
read error.

Linkage to the subroutine is made via the statement

CALL HIlH) (N, LOCZ, NX1, N12, NX3, 14,, XlAI, X2ARG, 13A11,

X4A1E, A)

where,

N - Dimension of table look-up. When A - f(X) N ,. 2.
LOCZ - Locat:on of the first value in t.he table.
?X1 to X1ARG = Location of nusiber of points in the Xn to x4 arrays

of L--dependent variable values.
11A11 to X4ARG - Narm or X1 to X4 argument or a du= 2ocatior if N <5.
A - Location of the depeident variable.

Subroutines Called

NDTLU, ERROR, LINES
Normal FORTRAN I/O routines

Remarks:

1.. flow chart for HIHO is presented. HIH02 is identical except for the
use of vehicle 2 COMMON blocks.

26L



-H t No

.A If)- ~XXIARc't

KA~~ I...AR

K A(4). K 4A WAT t1C.~I~

NMAI .N XK NIJ M -I

NI(NA(I 11 NI

NA (3D.NX 3 NA RQz:

N A 14). N K 4 N A

[JCAU*G. NARGNA4J

INAT.NAT4.A(NA(A(*IN -I NAT- AT+NA f~ lkTNAT+NTAE NAO

I1I. NAV+,I0l C?.O~tAG

NEKT: 
iV.IT4.NTAN -I

IPCIZAA(I.E@. I RETUN L

CALL II[ft5 iLOCrZj

263



72. T1TX - Transformation Matrix Routine

To calculate the transformation matrix, N given the angles of transform-
ation 01, V 2' 03 and the desired axes about which rotation is to occur.

N A 4-1

where Ai is a matrix determined from angle Q,- If 0i = 0, Ai= I (identity
mat.rix)
A i is deflnm " follows:

"1 C 0

Ai 0 C D X axis rotation matrix

0 -50 C9 when K j=l

I-i @i

O %1 0 ' i-
c~i 0 -~

A: = 0 1 0 = T axis rotation matrix

Si o c when Ki = 2

o 1

A. = -S3 C' 0 Z axis rotation matrix

LO when hi

The transformation matrix routine is entered by the statement:

CALL TWU (ý, K• , , 22' K2 Y Q3" K3 ' M, V) where:

1. Qi 2 @.2 define the transformation angles

2. KI K2 ,. K, as Irnicated above, determine the axis to 'wich the
corrvspoing 6i refer-a

264



V
3. V is a 1-dimnsional array caooaining past values of the following:

"1, S 1, 0 1,"2, Sin'2, 2 , 03' SinQ3 , WCOS31 (in that order)

4. N is the 3 x 3 array where the resultant traneiforation matrix is to
be stored.

V -ontains the last computed values of each Gi, SinGi. If the current Gi presented
by the call stateaent is such that

I 0newi -1 old il sE, E 1.E-6

then SinQ , COSO are not recomputed. If all O.'s are such that 1 9 new i -

old i I : E, tien N is not recomputed at all. Anl recomputed values are
stored in the V array.

To avoid possible errors in the E-test, V(W), V(4), and V(7) should be
initialized to angles which would never be encouitered in the user's prograL
bfore the first entry into TMTX.

For any given transformation, it is assumed that the order of rotation
about the 3 axes will not chauge.

When 0 = 0, K. '.a ignored.

265



4

a

- a

4 8 -
0U 

V - aU 
SS

4.

9.

.3;: 
... --.4-.i I

a-. I
a a

a *.
V 3,ILa 

r.
a 

- S

a

� * a U

U a
Sa 0 

-

a
a U

SC) aha -op. 5aa? a
a,

I
266



I

73. OS- A 3 x 3 Matrix Transgose Routine

To transpose a 3 x 3 matrix A to obtain the 3 x 3 matrix A'.

The resulting transposed matrix is stored in a separate array. All elements

of A mast be stored in the normal FORTRAN sense (i.e., csluuiwise).

maa

The transpose of a matrix A is obtained by the statement,

CALL TRNIOS (AB)

where,

A - The vwriab]J) name of the 3 x 3 matrix A'.

B - The variable name of the 3 x 3 matrix A'.

This routine calls r-ý other routines.

TRNPOS

DO 1. 1 1

DO 1 J = 1,3

Bi~ = Aj,1

RETURN

267

I



74. MULT31 - A Matrix Multiplication Routine

Mrpose

To post-multiply a 3 x 3 matrix by a 3 x 1 matrix.

The resul~t of [A?1 [BIJ = [ic] is coqputeiA using single precision floating
point arithmetic. AU1 elemenans must be stored in the normal FORTRAN sense
(i.e., columviss).

Ulm~

The matrix multiplication is obtained by the statement:

CALL MULT31 (A; B, C)

where,

A = Array na of the 3 x 3 matrix [Al

B =Array nAi of the 3 x I. matrix [B]

C = Array name of the resulting 3 x 1 matrix [c-
MULT31

This routine ca11 no otier rmat.ne.

DO 1 i 1,3

ci=0

DO 1 j 1,3

F2C= CR+ATURN

268 RET~URN



75. HETS and HETS2 - Heating Computations

Puri•ose:

To monitor a characteristic structural temperatu e and/or aerodynamic
heating rate.

Method-,

This subprogram has all the standard entry points of EXE.

INDHET 0 0: No computations made.

INDHET = 1: Wedge skin temperature computed.

INDHET = 2: Hemispherical nose temperature computed.

INDHET = 3: Both wedge skin and hemispherical nose temperatures
computed.

DLTSF 0: Equilibrium temperature computed for wedge skin.
Transient temperature computed for hemispherical nose.

DLTSF • 0: Transient temperatures computed for both wedge skin
and hemispherical nose.

Remarks:

The following quantities are computed at HETS(3):

QDOTS Convective heating rate of the wedge skin.

TS77.RI Rate of change of wedge skin temperature (set equal
to sero if DLTSF - 0).

TS77R Wedge skin temperature.

QDOTE Convective heating rate of the hemispherical nose.

TSTGRl Rate of change of hemispherical nose temperature.

TSTGR Hemispherical nose temperature.

RN2 Reynolds number at edge of boundary layer.

RNCR Critical Reynold's number at edge of boundary layer.

A flow chart for HMT is presentO.. HETS2 is identical to HETS except
for use of vehicle 2 COMMON blocks .nd auxiliary subroutines.

269



va '

JUU

*11

ItI

gig

270

~~ ;



00

44~4L

flN N 40

24 4 U

9-J -

271-



0

UA

+VO+ .

Via aa Z

1.IL ILil

.4 a.

C4

fit

a.9 I

2'(2



IL a

IL a a.

4.

C4

we -A I is -- 1

t 
U,

NN

+1"I

*v 

4IIL

am

~Oma~min

I273



44

;l 4 z t

2T4



IL

SWe

F, 

NC4 C

.1 U U -
at

U 
U

44 
Lga~ 

-V T.

I-. 
-

I
tvU

* ~W4

U 
# 275



76. TFFS and TFFS2 - SinM1e E sgine 9u-ustand Fuel Flow

PuLrpose:

The single engine thrust and fuel flow program provides the means of
introducing the engine thrust and propellant flow rate data. It
corrects the Lhrust for ataospheric effects and resolves the thrust
vector into its componlents.

Linkage to TFFS is accomplished via the general statement:

CALL TFFS (IENrRT)

where IENTU is a fiL-ed point variable.

IETNTY - 1

This performs the pre-data initialization. At this entry the subecripts
for all tablea are ccoiputed and the following data is initialimad.

INDTFF - 0 = thrust option indicator

N = 1. - throttle setting

BUMN1S = 2. = number of identical engines

In addition, the data initialisation of TFFM when its IENTUY is 1 is
performed under this entry.

IENITRY -2

Thib performs the post-data initialiw~tion. At, this entry the
following data is initialised;

ID 0 - rate of change of vehicle mass

Mo = n = mass of vehicle

mf - 0 - fuel used

Tx - 0 - thrust component along x-axis

Ty = 0 - thrust component alcng ?-axis

Tz W 0 = thrast component along i-axis

T = 0 - thrust after atmosphe: . effects correction

TVAC 0 = vacuum thrust of engine

Mf = 0 - fuel f1lw rate

276



3

At thir. entry the thrust omponnts and fuel flow are cmWated. If
IPDTW - 0 no computatioes are performed. For values of INDTFF of I
throng 5 the following coCmpt,,tions are performed:

~0
T -KU•AX - P A Ae j toW corrected thrust

at-a - total rate of change of vehicle mass
TVAC and at are input as tabular data. The functional relationships
for thG varions options are as follow:

Value of Fmnctional
INDTF• ption Relationship

1 Single Agine Noncontrolled W= f(rO)
Thr"Ist TVAC = f(r)

2 Single Engine Controlled t - f(N).
Thrust TVAC = f(,a

3 iC-e Fmgine Air Breather Ot- f(N,h, a ,MN)
TvAc f (N,h, a,,)

4 Fractional or Maltiple tnt - f(h,Nu,N)
Identical .t Ugine TlVAC - 1"(hNN)

5 Simplified SIngle gine Mt= f(N,h)

TAO f(Nh)

NOTES:

While it is possible to change frcm the single engine option (TFFS)
in a given stage to the mfltiengine option (TFFW) in L later stag,
the opposite is not possible.

277



IKI

r4'J VY• 1 -z

t. I''-, c Ic i Z

StZ 
.7-i ._

zif

" [- -I

!, , "• ;-E

0oC 0

1 •J ,- ~ o .i.• .,,l. 1-

278



77. SACS and SACS2 - Aerodynamic Routines

To compute the aerodynamic forces, side force (SIDEP), drag force
(DRIAGP) and lift force (ALIFTP). SACS is used for vehicle 1; SACS2,
for vehicle 2.

Linkage is made via the general statOment:

C.0.. SDCS (IEiTRr)

where IFNTW is a fixed point number.

IETfRY - 1

At this entry curve read subscripts are found by calling subroutine
TSRCH and the following variables are initialized

INDAER M 0

INDBAD M 0

L ALIFTP = 0

D DRAGP 0

Y SIDEP 0

Cy CD4NU - 0

CL CL4U = 0

haero AMAXH l0I6

max

AMAXA 300000.

AAICD - 1.

CPAKl = 0

CPAK2 - 0

INDAOI = 0

INDA02 0 0

INDAO3 = 0

INDA04 0 0

279



INDAO7 - 0

INDA10 - 0

IDAU-.1 0

•A11l2 = 0

INDA•l3 = 0

II.DA114 = 0

IDMA17 0

INDA24 0

INDA.25 = 0

INDA26 = 0

INDA27 - 0

IND"2 = 0

INDA31 = 0

INDASO = 0

INDA90 = 0

INDA9l = 0

INDA92 = 0

IETR! = 2

Checks to see if INDAER is less than 0 and if so sets INDAM to 0.

IErTRI = 3

If INDAER is 0 no canputation. If INDAER is nonzero a check is made on
altitude (HGC7F). If altitude is greater than AMAH theo the following
variables are set

ALIFTP = 0

DRAGP 0

SIDEP = 0

280



F

If altitude is less than AMAXH a test is w-de on t he data input value
(AMAXA). If altitude (HGCTF) is greater than AMAXA then the following
variables are set before ALIFTP, DRAGP and SIDEP are conputed.

CA = CDMNU CYA = CYMNU CL = CLNU

If the altitude is less than the input value AMAXA the following variables
ars set.

CA--O CYA= 0 CN =0

at this tim, a test is made on the INDAER for the option chosen.

If INDA9O is 0 then CN is Unchanged;

if INDA90 = 1

S= f (Al ID,AMACH).

If INDA90 = 2

CN = f (APIHD,AMACH,HG(,7F)

If INDA91 is 0 then CA is untanged, if not

CA = f (1CNIAM4AcH).

CIA is set to 0.

If INMO1 is 0 then DE.CA is set to 0, if INDAO1 is nonzaro then

DELCA f (AxAcir).

CA f (CA + rNLA).

If INDA02 is 0 then CPAX1 is unchanged, if INDA02 is nonzerco then

CPAnl = r (ACH).

If INDA03 is 0 CPAK2 is unchanged, if INDA03 is nonsero then

CPAU. = r (AMACH).

Cockpit and pitch angle are computed "a •iliary computations as follows:

CPA7D Cockpit - MAK . + CPAK2

PA77D Pitch angle 7 + a Cot BA - AINCD

After this computation ALIFTP, DRAGP and SIMEP are cmputed.

281



fIER-2

I~4 - VA77F/ANUA7F where

RN Reynolde Numnber

VA77F = Velocity, VA

ANUA7F = Kinmatic Viscosity, a'

If INDA80 is O,CAO= CAVAH - 0, if INDA80 is nonzero then

Ck = CAVAH = f011, AMAcii)

If any of the following indicators are nonzero,. then the respective

coefficients are ccmputed as a~ function of Mach number.

INDA01 CAALPH CAa f(AMACH)

INA02 CAALS9Q - CAa 2  = f(A14ACH)

IN4DA03 CABETA CAP f (AIACH)

DM904 CABTSQ = AJ 2 = AMI

INA07 CAAIABT = CAaq3 f(AMACH

INDA10 CNlZER = CNO. f(AMACH)

INDAll CN1ALP MaC~ f(A14&CH)

INDA12 CtlA3Q C a 2 = f(AMACH)

INDA13 CN1BETI CNP f(AMACH)

INA14 CN1BSQ Nf3 2 - MAH

INDAl7 CNIALB O ng f(AMACH)

INDA24 CYZEFI = CYO f (A14ACH)

IN4DA25 CYALPH = Cya T(AMACH)

INDA26 CYALSQ - CYa 2 =(MAH

INDA27 CYBETA = CT0  f(AMACH)

DIDA28 CYThTQ - Y 2 f f(AMACH)

INDA31. CYAIJBT = CY~ - f(APACH)

282



From these coefficients CA, CN and CIA are computed as:

CA - t. I jCAC + CAo + .2CA a 2 + CA, + ,,,A ,,2 + CAaloI,8la

C,, a CNa, + CN. + o J,,CN. 2 + ,1 , +P +J1 lc""

CYA - Ia ICY0 + CYO + C~2a2d + C'T1Oý j M2 + ieI P( CYa p

After this computation ALIPW, DRAGP and SIDEP are computed.

INDAER - 3

If INDA9O, INDA91 and INDA92 are 0, CA, CN and CYA respectively are
unchanged but if either indicator is nonzero, the coefficients are computed
as follows:

If INDA9O 0 CA - f(ALPHD,BETADAMACH)

INDA91 9 0 CN - t(ALM,,BETAD,AMACH)

INDA92 0 0 CYA - f(ALPHD,BETAD,AMACH)

The routine then ,vputes lift, drag and side force.

If INDA9O, INDA91 and INDA92 are 0, then CA, CN and CYA are unchanged. If
any of the indicators tire nonzero, the coefficients are computed as
follows:

If NMA9o 0 CA - f(AMACH,ALPHD)

IN 91 9 0 CN = f(AMACH,ALPHD)

INDA92 9 0 CYA - f(ALPHD,BETAD,AKACH)

With these coefficients lift, drag and sideslip are compited.

If any of the indicators listed are set to 0 the respective coefficient is
unchanged. If any indicators are nonzero the coefficients are compited
as follows:

If INDAIO 9 0 CAMIN - f(AMACH)

INDAU. 0 ELPM: - f(A.ACH)

INA1.2 0 o zK - f(AMACH)

INDA13 90 oLZ - f(AMACH)

283



INDASO 7 0 CN = f(ALPHD,AMACH)

INDA0I 1 0 DELCA f(AMACH)

INDAO2 0 CPAKI = f(AM-ACH)

INDA03 7 0 CPAK2 f(AMCH)

CA = CAMIN + ELPRIM (CN-CLZ) 2 + 7.(CN-CLZ)6 + DELCA

CYA= 0

Cockpit alpha and pitch angle are computed as auxiliary computation.

CPA7D = Cockpit y = CPAKIo+CPAK2

PA77D - Pitch angle = y + e cos BA-AINCD

with the above computation lift, drag and sideslip are computed.

If INDA9O and INDA91 are 0, CA and CN are unchanged. If INDA9O and/or

INDA91 are not zero the coefficients are computed as follows:

A = (a2 + 92)ý2

INDA9O 7 0 CA = fA.AMACH,HGC7F)

INDA.91 7' 0 CN f(A,AMACH,HGC7F)

CN = ON L

If INDASO and/or INDA10 is zero then CA amd CN are unchanged.

If INDASO 7 0 then

CA f (ti C7F,ALPHDD)

If INDA1O 0 0, then

CN = f(AIP-D)

LIFT, DRAG, SIDE FORCE

If INDBAD is V 0, the following computations are made.

CD = CA CY = CYA CL =CN

If INBAD 0, the following computations are wade.

[-C] [uvw] [-A P

CD u CAA]_:. C N2 8



With these coefficients lift, drag and side force are computed a• follow:

LIFT - ALIFTP - q S( t 1 CL+ E2)

DRAG DRAGP - q 3( e3 CD+ E)

SIDE FORCE - SIEEP - q s( e5CY+ e 6 )

a - dynamic pressure

f 1  e2 9'E3, E5, and 16 are input error constants

S = reference area.

IENTRY - 4

Not used.

IETJ = 5

A test is made on INDAER if O, no computation. If INDAER is eqal to 2
the following codes are printed.

CAVAH CL CD CY LWD

If INDAER - 1, the following codes are printea

C, CD C! LVD PA77D CPA7D

If INDAER - 5, the following codes are printed

C1 CD CT LWD PA77D CPAD

For any other value of INDAER ý 0, the following codes are printed

CL CD CY LWD

IENTU - 6

With this entry the corresponding values to the code in entry 5 are
printed.

CL W Lift force coefficient

CD M Drag force coefficient

CY W Aerodynamic side force coefficient

LVD - This will be 0 if CD is O, if not L D CL/CD

PA77D - Y +( co£A -AIXD

CPA?! - CPAl .a + CPAK2

"285



nI

ljjL

286



I

Li• :::, J . .

" " I II

!! !! ! ...... -

U U7



78. LATS aad LATS2 - Geodetic-Geocentric Conversion

Purpose:

To cmpute the geocentric latitude in terms of the geodetic latitude
and vice versa. LATS is used for vehicle 1; LATS2, for vehicle 2.

CALL LATS (IENTRf, PHIC, PHIG, TrP)

IENTRY - 1 compute geocentric latitude in terms of geodetic
latitude

= 2 compute geodetic latitude in terms of geocentric
latitude

PHIC the geocentric latitude (degrees)

PAIG the geodetic latitude (degrees)

TMP an array of dimension _ 7 for tumporar.- calculations

The COMMON variables HGCTF, RP77F, RE77F, R777F are used also.

Method:

IENTRY 1: h, Rp, o, g given

SG tan-' • tar.ngc

E) 2: R

Ur~ -l-

(o sn) + h sin R

0c~ U tar U2 o 01+h o
IET~f - RROREO U 1 +U -2U2,s



L AT S

TMP(2)-W(1HP(1o

,T~~fPC2). 
q .,'5 SI(MC -RACD

FTk1 4 ,i(MW. TMP(S1 x COS (PHIC 0 RAD)

iu~f.) -cOSVTM *T) 2IN .2.

I.QftT(TWCG) 2 .(TMPCI,*t pS#2

~mpi~aUEU~EP,7F'CONTINUE)

MMh?- TWEZJYTliP( I TP()

ýPHI G "I ~G S ýDE G

I -I

E ND

289



79. ATMS and ATMS2 - Atmosphe:e Selector

To enable the user to select which atmosphere (1959 or the 1962 atmo-
sphere) that will be used by the program.

Usage:

CALL ATMS (HGCF)

HGC7F = The initial altitude that will be used by AThS59 or A1TM62.

INDATM= 2 selection of the 1962 atmosphere.

INDATM • 2 selection of the 1959 atmosphere.

Remarks

ATHS59 or ATMS62 is called only by DIFEQl. A flow chart for ATMS is
presented. ATMS2 is identical except for the use of vehicle 2
COMMON blocks and subroutines.

ATMS

ATS9HG7ý IAM6(G7)

I2

290



80. USP and GVSP2 - Gravitational Routijn

To compute the components of gravitational acceleration within a local
geocentric coordinate system.

CALL GVSP

The equations used were adapted from the gravity potential equation. The
number of spherical harmonics included in the ccmutation is determined by
inputing an integral value from 0 to 4 for INDMGT. The nominal value for
INDGVT is 4.

The equaticas pertain to the planet Earth; however, it is possible to use
these same equations for any other planet. For this reason, the values of the
coefficients are. -ad as an input to the program so that the applicable
coefficienti wmay be =nserted for the planet under consideration. The following
give the necessary planet change as well as the nominal values for the planet
F"-th.

mE77? = % = 20926428. ft. = equatorial radius

RP77F = = 20855965. ft. = polar ,adius

AMU = = 1.407698 x 10-6 fý/sec2 , gravity constant

AXG&IV = K = 6.37 7 10 -6 = 3rd spherical harmonic

HG = H = 6.04 x 10-6 = 2nd spherical harmonic

AJG = J = 1.62341 x 10-3 = ist spherical harmonic

Remarkis

A flow chart foz GVSP is presented. GVSP2 is identical except for
the use of vehicle 2 COMON blocks.

291



C.XG7F 0.
UGV7Ft 0.
GZG7F LO.

JINO0G VT

-i / 0 I_ _ _ _
kROR ;:RE77F/R7??F jGZG7F -(GZG1F+I.)- CORR
IW)R2 RORI - ROMiIUVFG7+LO
COR -M/ft77?F U174G7+.-

CORR zCOI5/it77F GXG7F8GXr7F-CORR.ROR2

S P I ' i 'P P 2__ al.-__ 3.__OS _PH I __I

CPHI -OS OLGXG7F &GXG7F - 2JOPS
PS SPI-CHIUGV7F ZtNMFy4.f*flRft3.PI

SPHI2'SPHI@eSPHI GZO7F GZGF+JoRORZ eP2I

929



81. ANITH and ANITR2 - Throttle Depen&ent Derivative and Thrust Vector
Calculation

Purpose:

ANITR and ANITR2 compute that portion of the Cerivative calculation
which directly depends on the th1'ottle setting and thrust angles.

Method:

Propulsion system effects are computed from TFFS and TFFS2. A thrust
vector transformation accounts for the possibility of thrust vector
control. Load factors are optionally computed. Heating and aerody-
namic routines HETS, HETS2, SACS, and SACS2 are called from ANITR and
ANITR2 in anticipation of subsequent requirements to account for
propulsion system interaction on aerodynamics and heating.

Remarks:

A flow chart for ANITR is provided. ANITR2 is identical except for
the use of vehicle 2 COMMON blocks and auxiliary subroutines.

AN=TI

1 I

Wy T af 0, k A

T.. - W*M.AT

tco-puID by ,,p

Q5

0~IA'TIA-

j4 -TV. 7 V]

Ia- VIA -

I2
SSN / F

/

~1~

293



82. BAITE and BAITR2 - Bank Angle Dependent Derivative Calculation

Purpose:

Tco carry out that portion of the derivative calculation which is
directly dependent on the bank angle.

Method:

Computes the (r,s,t) matrix through TMTX or TMTX2 then computes
total force components in the rotating earth-centered coordinate
system, (XE, YE' ZE)

Remarks:

A flow chart for BAITR is provided. BAITR2 is identical except
for the use of vehicle 2 COMMON blocks and auxiliary subroutines.

BAITR

CObiVE I[, it I I rIT:IXROTA~t

( *-IA I AIDOUT IAXIS

(-'A AOGWT - AXIV

k (*•*)A &OUTU AXIS

294



F&

83.ASRCH and ASRCH2 - Directory Search Routives for BCD Characters

To provide a BCD -word look up from a subscriprt.

Given a subscript the routine will search the directory for the BCD word
corresponding to that subscript. If the subscripts do not coqpare the
T.D name is set to blank and return to the Calling Program is made.

Entry is made to the routine with the following statement:

CALL ASRCH (wLI,SM1)

where,

I0C1 = subscript being searched.

SYMI = The variable n&'im into wtich the routine is to store the
corresponding BCD na=.

No other routines are called from this routine.

Remarks:

A flow chart for ASRCH is presented. ASRCH2 is identical except
for use of vehicle 2 COMMON blocks.

295



ASRCH

DO 2000 1 - 1, MAXT

RETURN

2000
CONTINUE

-A--
E~LLBLANKZ

RETURN

296



84. GFRIDXY - Paper Plot Grid Routine

Ptrpose:

To set up the grid for paper plots

Usage:

Call GRIDXY (PLOT, XMIN, XMAX, YMIN, YMAX, DX, DY)

Where

PLOT is an array into which the plot characters and
grid charactezrs are placed to produce the finished
plot. The finished plot will contain 51 lineF of
102 characters per line.

XMIN minimum x value for the grid

XAJX maximum x value for the grid

YMIN minimum y value for the grid

YMAX miximlin y value for the grid

DX number of divisions on x ayis

DY number of divisions on y axis

297



--- ~l1

S~o Cý-PAýLL P0j4jbTLH~C ~

~~'s fkLL PoU

Jr= UB4.10

IS . ?=-A -



85. PLCPTS - Paper Ploz Point Placing Program

Purose:

To place plotted points on the grid formed by GRIDXY.

Usage:

Call PLCPTS (PLOT, X, Y, NPTS, IPATH, IPLOT, NFRAME, IFLAT,
XMIN, YMAX, XP, YP)

Where

PLOT is an array into which the pic. characters and grid

characters are placed to produce the finished plot.
The finished plot will contain 51 lines of 102
characters per line.

x is the array that contains the values of the inde-

pendent variable to be plotted

Y is the array that contains the values of the
dependent variable to be plotted

VIFTS numb.:- of points to be plotted

IPATH not used

IPLOT subscript used to select plot symbol

NFRAME frame number to be printed at the bottom of the plot

IFLAG flag set equals 1 if points have falleýn off the
plotting area

XMIN minimua x value

XMAX maximuta y value

ArF x plt i4ncrement

I? y plot increment

I9

-'9



--~ o I , . P h

<0.

F-y
Vs4Oo (j>.

R~ru~or

r299 a



86. IPICK - Random Tactic Selector

Purpose:

Subroutine IPICK nominally fills both vehicle 1 and vehicle
2 role selection tables with random arrays ).' tactics.

Usage:

CALL IPICK(N)

where N is the number of random tactics to be selected.

2JýTc K (IV)

ri

JPCK XIRP ~r'l~'4T'I ~

300



87. DEFENII and DEFEN21 - First Defensive Tactic

To steer each vehicle along a path giving a naximum rate of turn.
The tactic is a hard turn in the vertical plane.

Remarks:

A flow chart for DEFENI1 is presented; DFENl2 is identical except for
use of vehicle 2 COMMON blocks.

DEFEN12 and DEFEN22 - Second Defensive Tactic

Purpose:

DEFEN12 and DEFEN22 are ENTRY points in DEFENII and DEFEN22, respec-
tively. The tactic is a hard turn into the opponent at an altitude
dependent bank-angle. A flow chart for DEFEN12 is presented. DEFEN22 is
identical except for use of vehicle 2 COMMON blocks.

DEFEN13 and DEFEN23 - Third Defensive Tactic

Purpose:

DEFEN13 and DEFEN23 are ENTRY points in DEFEN11 and DEFEN21, respectively.
The tactic restates the target's line-of-sight vector at a maximum
possible rate. Local angle-of-attack and bank-angle perturbations
determine control values which maximize the vector product magnitude,p 1'OST X TTI
where PT is the total force vector, and LOST is the target's line-of-
sight vector. A flow chart for DEFEN13 is presented. DEFEN23 is
identical except for the use of vehicle 2 COMMON blocks and auxiliary
routines.

DEFEN14 and DEFEN24 - Fourth Defensive Tactic

Purpose:

DEFEN14 and DFEN24 are W;TY points in DEFENll and DEFEN21, respectively.
The tactic rotates the target's lead-pcrsuit vector at a maximum rate.
Local angle-of-attack and bank-angle perturbations determine control
values which maximize the vector product magnitude

where FT is the total force vector, and LAT ib the target's >ead-pursuit
vector. A flow chart for DEFEN14 is presented. DEFEN24 is identical
except for use of vehicle 2 COMMON blocks and auxiliary subroutines.

301



DEFEN15 and DEFEN25 - Fifth Defensive Tactic

P se:

DEFENI5 and DEFEN25 are ENTRY points in DEFENII and DEFEN21, respectively.
The tactic rotates a proportional vector, VR, which is a linear combi-
nation of target's lead-pursuit angle and target's line-of-sight vectors
a-t a maximum possible rate. Local angle-of-attack and bank-angle pertur-
betions determine control values which maximize the vector produce

IVR X FTI

Here, PT is the total force, and VR is the target's reference vector.

Remarks:

A flow chart for DEFEN15 is presented. DEFEN25 is identical except for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

DEFEN16 and DEFEN26 - Sixth Defensive Tactic

Purpose:

DEFEN16 and DEFEN26 are ENTRY points in DEFENI1 and DEFEN21, respectively.
The tactic performs a "Split-S" under an opponent. The initial maneuver
through the vertical is a simple Split-S. Once through the vertical has
been accomplished, the reference vehicle maintains the Split-S but banks
underneath the opponent.

Remarks:

A flow chart for DEFEN16 is presented. DEFEN26 is identical except for
use of vehicle 2 COMMON blocks and auxiliary routines.

DEFENI7 and DEFEN27 - Seventh Defensive Tactic

Purpose:

DEFEN17 and DEFEN27 are EMIRY points in DEFENTll and DEFEN21, respectively.
The tactic develops a maximum specific energy path in a vertical plane.
Angle-of-attack,which maximizes E at time AT ahead along the predicted
flight path,is determined by local control perturbation. The tactic in-
cludes logic to force a transfer to supersonic conditions. A flow chart
forDEFENI7 is presented. DEFEN27 is identical except for use of vehicle
2 COYMON blocks and auxiliery routines.

302



Al 4MI4 X b -PCAe't (ig

L; 7tdb - :.(AD1AbjCA,4~tlB)

303



IWO:A A~iq~ wcPcoAiv(3o)

L)C(/-A( / V

30J4I E 
l



PCOAeP8l

4sir. Arcevze. ~ t

0.0J~

r~to FAD A J( AMA, xA PT)8P~~ x.

LvowM Z

305



Yes

NO NO

ytxI'S-a

APAb:AmAxbi

SPOD :, AL PAD/1z,

306



V

88 FIXEDR and FIXEDR2 - Fixed Role Selection Routine

Purpose:

To provide a means for overriding the combat role selection logic.

Method:

When the tactic selection indicator, MOFFENi is negative, the role
selection is overridden,and the role is selected on the basis of
MOFFENi as follows:

MOFFENi = -1, Passive
= -2, Defensive
=-3, Evasive
= -, Offensive
= -5, Attacking

Remarks:

A flow chart for FIXEDR is presented. FIXEDR2 is identical except for
the use of vehicle 2 COMMON blocks and auxiliary subroutines.

.s- _,'rw /-----Y -

307

!J l i II I Il I



89. EVADEll and EVADE21 - First Evasive Tactic

Purpose:

To steer each vehicle into a hard pull-up maneuver. A flow chart for
EVADIIl is presented. EVADE21 is identical except for use of vehicle
2 COMMON blocks.

EVADE12 and EVADE22 - Second Evasive Tactic

Purpose:

EVADE12 and EVADE22 are ENTRY points in EVADEll and EVADE21,respectively.
They steer each vehicle in a random weaving maneuver. A flow cbart for
EVADE12 is presented. EVADE22 is identical except Ccor use of vehicle 2
COMMON blocks.

EVADE13 and EVADE23 - Third Evasive Tactic

Purpose:

EVADE12 and EVADEK3 are EIoTRY points in EVADEll and EVADE21. They steer
each vehicle into a Split-S. A flow chart for EVADE13 is presented.
EVADE23 is identical except for the use of vehicle 2 COMMON blocks.

EVADEI4 and RWADE24 - Fourth Evasive Tactic

Purpose:

EVADE14 and EVIME24 are ENTRY points in EVADEll and EVADE2l. They steer
each vehicle in a random sequence of hard turns. The direction of the
turns is changed at intervals of TIEWBA. A flow chart for EVADE14 is
presented. EVADE24 is identical except for use of vehicle 2 COMMON
blocks.

EVADE15 and EVADE25 - Fifth Evasive Tactic

Purpose:

EVADE15 and EWADE25 are ENTRY points in EVADEll &ad EVADE21. They steer
each vehicle towards a vertical dive. At ' = 90 - %ax, the maneuvers
become zero lift dives. A flow chart for EVADE15 is presented. EVADE2r
is identical except for use of vehicle 2 COMMON blocks.

EVADEl6 and. EVADE26 - Sixth E-asive Tactic

EVADE16 and EVADE26 are entry points in EVADE11 and EVADE21, respectively.
They steer each vehicle into a raudam rolling maneuver with maximim angle-
of-attack and sideslip. A flow chart for EVADE16 is presented. EVADE26
is identical except for use of vehicle 2 CtOMMON blocks.

308



[MSG~ Oii

/4SVAoA'

AbA9L IV qX IA4)j

4 44D E Z/2

309



rz-YDC 34rvD

loqIZ /?/

1.10



F &'b6b/v('/Sh-O. S3A 77b)

At-b A~v'v74X

2~~rAzePv )

L~T~ _LPC 
NS'(~ 

)' dJA9

BaA,14 hi

fig.
(RE~T.'eA_

RE'TV//%

,-.& r

311



90. OFFEN1I and OFFEN21 - Lag-Pursuit Offensive Tactic

"Puose:

To steer each vehicle along a lag-pursuit course.

Method:

When the first offensive tactic is selected, a vehicle flies a lag-
purwsuit course determined by force maximization along the lag-pursuit
vector. Instantaneous bank-angle perturbation defines the desired
control variable values.

Remarks:

A flow chart for OFFENII is presented. OFFEN21 is identical except for
use of vehicle 2 COMMON blocks and auxiliary subrohutines.

S(o e, ) r

O/ Aru'A/I

312



91. OFFEN12 and OFF1N22 - LePd-Pursuit Offensive Tactic

Purpose:

To steer each vehicle along a lead-pursuit course.

Method:

When the secona offensive tactic is selected, a vehicle flies a lead-
pursuit course determined by force maximization along the lead-pursuit
vector. Instantaneous angle-of-attack and bank-angle perturbations
define the desired control variable values.

Remarks:

A flow chart for OFFEN21 is presented. OFFEN22 is identical except
for *xse of vehicle COMMON blocks and auxiliary subroutines

OFFEN12 and OFFEN22 are ENTRY points in OFFENll and OFFEN12.

1,9a'Ab :.,40AXD CPCOM4e'V)

, YES

~ ,P40 AoJi)

'J13



92. OFFEN1.3 and OFFFN23 - Reference Vector Offensive Tactic

Purpose:

To steer each vehicle along a reference vector course which is a linear
combination of the lead-angle and line-of-sight vectors.

Method:

When the first offensive tactic is selected, a vehicle flies a reference
vector pursuit course determined by forne maximization along the refer-
ence vector. Instantaneous angle-of-attack and bank-angle perturbations
define the desired control variable values.

Remarks:

A flow chart for OFFEN13 is presented. OFFEN23 is identical e:.ept for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

OFFEN13 and OFFEN23 are entry points in OFFENl a a OFFEN21.

P .00=-_Ab*AO

AL4 r ASefJRDI

314



93. ATTACh1 and ATTAC21 - First Attacking Tactic

Purpose:

To steer each vehicle along a path which simultaneously tracks the
firing point and eliminates any steering errors.

Method:

When the first attacking tactic is selected, a vehicle steers in a
manner calculated to eliminate steering errors and track the firing
point. Instantaneous bank-angle perturbations define the desired
bank-angle; angle-of-attack is determined by subsequent minimization
of the difference between force magnitude and force magnitude
required.

Remarks:

SA flow chart for ATTAC11 is presented; ATTAC21 is identical except
for the use of vehicle 2 COMMON blocks and auxiliary subroutines.

315



94. ATTACl12 and ATTAC22 - Second Attacking Tactic

Purpose:

ATTACl2 and ATTAC22 are ENTRY points in ATTAC11 &nd ATTAC21, respectively.
The second attacking tactic is identical to the 3econd offensive tactic.

ATTAC13 and ATTAC23 - Third Attacking Tactic

Purpose:

ATTAC13 and ATTAC23 are ENTRY points in ATTAC11 and ATTAC21, respectively.
The third attacking maneuver is identical to the third offensive
maneuver.

ATTAC14 and ATTAC24 - Fourth Attacking Tactic

Purpose:

ATTAC14 and ATTAC24 xre ENTRY points in ATTACll and ATTAC21, respectively.
The fourth attacking maneuver is identical to the first offensive
maneuver.

316



)TAC //

1,-2 1,4 ( Y I ./ k)lc A l4TfC 3

-~~~~~e T77x7IC~~/'Y

WCOS~(4c kf£J

F,4,7-/AC 
1?-

FI

-- 0-1

3177



95. CTLOPT - Internal AESOP Optimization Loop

Pupose:

To provide an internal parameter optimization capability independent
of the outer trajectory or design optimization loop.

Method:

A control program essentially identical to the AESOP control program
is created. The outer parameter optimization data base is preserved
on tape at trajectory commencement and is retrieved at trajectory
termination. During the trajectory CTLOPT through IMAINOP permits
independent access to the AESOP optimization rcutines. Optimization
functions are defined by a variety of control programs embodying com-
bat guidance laws and local inequality information. CTLOPT is used by
either vehicle.

318



Ar,1,4fA/Tg / JJ-

yes NS 9 S'

/T

J~zJs

&o jtL . X4A-Qi

NoF

NO ____ =

319



96. NPTLU- V~ - liMepsional Tabl Look-up Rouine

To provide a method of linearly interpolating in a table of n independent
variables.

Given the arguments X(i), X(2), X(3),.--, X(N-l), the ..tontine cornputes
T f(X(l)), X(2), X(3),..., X(N-l) r linear interpolation from a table.
Extrapolation beyond the upper and lower limits I's optional.

Entry is made via the statement:

CALL NDTLU (ND,NA,X,Z,XAZR,12E,NEXTR)

where

ND = Dimension of look-up when Y-f(X). ND =2
NA =An array of length ND-l. Numbere of values of each

table of X. The tables are listed by size, the largest being
first.

X =Tables of each X in order.
Z = Function values. If A =f(X,r,Z) the dependent variable array

imust be in the following order

Assume X 4, Y =3, Z 2

zMi Ml f( Yl,Zl) Z(13) f (nL, , z2)
7,(2) f(X2,fl.,Zl) Z(14) f(X2,fl.,Z2)
Z(3) f(X3,fl,Zl) Z(15) f(X3,fl.Z2)
Z(4) f(x4,n,zl) Z(16) f(X4,rl,Z2)
Z(5) =f(Xl,Y2,Zl) Z(17) F(l, T2, z2)
Z(6;' f(x2,r2,zl) z(l8) xTz2
Z(7) f(X3,T2,Zl) Z(19) f(X3,T2,Z2)
Z(8) -f(x4,12,Zl) Z(20) f(x4,Y2,Z2)
z(9) -f(XlY3,Zl) Z(21) f(Xl,Y3,Z2)

Z(11) -f(X3,T3,Zl) Z(23) =f(X3,T3,Z2)

ZR Results

NEiXTR =1 Extrapolate
=0 No extrapolation

IE - V~rror code
Ii no error
-1 X array too small
1 X array too large
2 array not in ascending order

3-00



Let n be number of independent variables, then the table in called .an "(n+l)
dimensional table."

Z = f(x.i..e,xn)

To use a table of dimension > 3 ard ! 5 a call to HIHO should be made with
the li-t of argunents in the calling sequence in thei same order as the independent
variables are numbered.

321



N OTLU S"a04rTINI

log DOI# -1 P LI.

DO3 WINZ

'DOd u.') I'*

IP(3(J.G.T.44.- 1)1 1 .1

KNIt ti.1

FOUNOtI.

.6 POIOPT

URN- EKA I.ti

wf".02L!

NIXTE

06N

M32



97. CHFNP and CHEI2 - Chemical State Computation

Purpose:

To provide the thermodynamic and transport properties of air downstream
of the shock.

Method:

Linkage to this subprogram is achieved by a statement of the general
form:

CALL CHE4P (P,H,T,RflO,AMU,SS,K)

K = 0: The pressure and temperature are assumed to be
defined. The enthaipy, density and coefficient of
viscosity are computed.

K - 1: The pressure and enthalpy are assumed to be defined.
The temperature, density and coefficient of viscosity
are computed.

K - -1: The same as the case where K - 1 except that the speed
of sound is also computed.

Remarks:

INDGAS - 1: Real gas effects considered.

INDGAS = -1, 0: Perfect gas assumed,

323



CHE MP ý1)

7ENT E

INGAS

0•

0 K

H 6 0 0 8 .* T

T = H/60 0 8 .

p = 1.232819

* P/T

2.27* 10-8

(TI-
T - 198.6

F Ž K

<0

SS 49.o222

RETURN

32)4



4

At

i-I

L: +

It iI 1 I it 11•1 I

a -5

- 92.1.



93. CONV - NonLplna.o_ l m:

To find . zero of the equation g(x) - 0 where g'(x) exists in the vicini-.y
of the zero

The method of false position is used with the Aitken 82 process to improve
the rate of convergence.

Let F(rs) - s( (False position)Let F~~s) = g(s) - gHr

D.'(r,s,t) = t -(L-.a)3 (82 -2 3rocess)
t-2s + r -

Given an estimate xl, of the zero, the following steps are execut.d:

1. x2 = (1.0001)x 1 or x2 - x1 + .0001, whichever is larger

2. x3 = F(x 1 , x2 )

3. Let x be the x1 or x2 which produces a g whose sign is opposite
that ýf g(x ). If there is no such x4, let x1 be the x, or x2
producing tRe smallest value of g. Let x 5 = ý(x3, x4 )

4. Let z = x1 or x2 which was not set equal to x4 . x6 = x 5
D(z1 ,x3,x5) x5 -2x 3 'z

5. Let x2 -x 6 and x, be the zl, x3, or x5 producing a g whose sign
is opposite that of g(x 6 ). If no such x exists, let x1 = x5 . Return
to Step 2.

'This procedure is repeated until Ijg(x)JI < e, e a given tolerance.

Given an x. and g(Xn), the routine computes a new value xn+l.

CALL CONV (MP1, MAX, GXN, XK, IND, K)

An initial call is made with K = 0. This is done only once in
the program, prior to the second entries first call, and
initializes EPS, MAX, anc indicators in the routine. EPS is
;hi convergence tolerance, e. MAX is the maximum number of
interations allowed before an error return is made.

After every calculation of g(xo), a r all is made with K = 1,
and the current values of gkxn) and xn. Return is mpde with
a new estimate xn+l, and a return indicator IND, wi'cre

326



1, Calculate g(x) again2, Successful convergence (i.e., 1g(x) l < e)

IND = 3, Error return, division by zero was
imminent, returns with old value of xn.

4, Allowed maximum number of iterations
sxceeded.

GXN = value of g(x,)

XN = current estimate of x. This is the value xn
corresponding to g(xn) when the call is made,
and is either a new estimatet+ on return
from CONV with IND = 1, or is he old value
xn on return with IND = 2,3,4.

The user first gives the call statement with K = 0 for initialization.
Then he establishes an initial guess, xn, evaluates g(xn), and gives the second
call, with K = 1. If convergence is not obtained, the routine returns with IND =

2 and a new x-guess in XN. The user must now re-evaluate GXN using the new x-
guess. The process continues until IND = 2, 3, or 4. For IND = 4, no con-
vergence in MAX tries.For IND = 3 a division by zero has occurred. For IND =2,
the correct x-value is. in XN. The following flow diagram is intended to cLcify
the.use of CONVRG.

[Begin

F CALL1t
CALLD

CONV
(E,MAX,O) Con

Inltialize 4
independent

Ivariable, x Convergence
has Allowed Max. No.
occurred Iterations

Exceeded

Comnpute
g W(x)

CALL 1 Error

CONV

\(F,,MAXg(x),x,1

3,27



x27i

II "IX~
-PM

xS

W 
11

"3 x

zz
0x

L

. Xx

XF X.U:-nx P
328



99. TFF( and TFFM2 - Miultiengine Thrust and Fuel Flow

Pur ose:

The multiengine thrust and fuel flow program provides the means of
introducing the data fo,: the various engines. It corrects the thrust
for atmospheric effects when appropriate and resolves the thrust
vectors into their components.

Linkage to TFFM is acaomplished via the general statement:

CALL TrFM (IENTIff)

where IENTRY is a fixed point variable.

IENTU - 1

This is the pre-data initialization. At this entry the subscripts
for all tables are computed and the following data is initialized:

INDTFF = 0 - thrust option indicator

Ni - 1. - throttle setting

CNVMi - 1. - mass rate units conversion factor

CNVTi - 1. - thrust units conversion factor

- 0 = engine option indicator

E Tli 1. - propellant mass flow rate factor

ET2i = 1. - specific impulse factor

'31 i1. - action time factor

6T4 '1 . - propellant loading factor

"T51 - 1. - petlrbation factor

6i= 1. - perturbation factor

=0 - ncesle rotation about x-axis

A 0 - nozzle swivel angle from x-axis

P - 0 = thrust reference p-essure

where i as used above is the set of integers 1, 2, 3 corresponding to
the three engines.

329



IENT! = 2

This is the post-data initialization. At this entry no computations
are performed if INDTFF - 0. If INDTFF ý 0 the number of engines is
determined from the indicator INDEN"C. If no INDENG has been loaded,
an error exit occurs.

IENTY = 3

At this entry the varioud computations are performed. If INDTFF - 0,
no computations are performed. When INDTFF is 10 or U and INDEG is
defined,for a given engine, the following computations are performed
for that engine:
INDTFF - 10 when INDENG - il give.; the Multiengine, Noncontrolled,
Perturbed Thrust Option. For this option the tabul ated data functional
relationships are:

TR - f( T)

Ap f(T)

and the computations performed for the engine are as follows:

7 - -- - reference time as a function of stage time
4T2 4 T3

m TM ( r ) fTI T4 . fuel flow rate + internal
EEG GWISPj ET 2 inert prcduct flow rate

T = (TVIT R( r) - (P - PR)Ae - total corrected thrust

"- (M + AP) -total mass flow rate

INDTFF - 10 when INDEG - i2 gires the Multiengine, Controlled,
Perturbed Thrust Option. For this option the tabulated data functional
relationships are:

Mf M f(N)

Ap = f(73)

and the computations performed for the engine are as follows:

mf - Mf tT5 - perturbed mass flow rate

T' - GWmISP RmfG perturbed thrust

T - TIET4T'-(P - P R)Ae - total corrected thrust

S- (m*f + A*) - total mass flow rate

330



II.ThFF = 10 when INDENG = i3 gives the Multiengine, Air Breather,
Perturbed Thrust Option. For this option the tabulated data
functional relationships are:

TR - f(Nh, a,MN)

Int = f(NVh, ,CMN)

anr t he computations performed for the engine are as follows:

=mt ET6  - perturbed mass flow rate

T - TR "T6 = perturbed thrust

mt == vehicle mass flow rate

INDTFF -11 when INDENC - il gives the Multiengirue, Noncontrolled,
Perturbed Thrust Having Alternate Table Format. For thLs option the
tabulated data functional relationships are:

p

The computation- are identical to the computations in the Multi engine,
Controlled, Perturbed Thrust Option, i.e. INDTFF = 10 when IN)DENG = i2.

NOTES:

'While it is possible to ;nar.g-e from the single engine option (TFFS) in
a given stage to the mu.tiengine option (TFFM) in a later stage, the
opposite is not possible.

A flc)' chart for TFFM is presented. TFFM2 is identical except
for tae use of vehicle 2 COMMO4 olocks and auxiliary subroutines.



*-- -3.-•

I.I

~~1II~ !

Ptt
>i~'~ 4

__ j 2



100.ATMS59 and ATMS592 - 1959 Atmosphere Calculation Rou:ine

To compute the atmosphere characteristics: density, speed of sound,
pressure, temperature and kinematic viscosity. All are a function of
altitude.

Method:

All atmosphere characteristics are computed using the 1959 A1d)C model
atmosphere. Values of the atmosphere are computed for positive altitudes.
If this alt_•tude i. negative, the sea level values will be obtained,

Linkage is affected by

CALL ATYS59 (HGCF)

where

HGC7F = altitude in feet.

Femarks :

? 3.9 ana ATMS592 are identical except for the use cf differing
ide 'cCMl- bocks,

333



4r?

I- 
L

I4!11z

ýS--

J a a~-,---~:~334r



1OL. kTWS62 and ATMS62;. - 1962 Atmosphere C,•Iculation Routfiue

Purp~ose:

To compute the atmosphere characteristics: density, speed of sound,
press'nre, temperature and kinmatic viscosity. All are a function
cf altitude.

Method:

All atmosphere chAr.+eristics are computed using the 1962 ARDC model
atmosphere. Values of the atmosphere are computed for positive altitudeb.
If this altitude is negative, the sea level values will be obtained.

Usag :

Linkage is affected by

CALL ATMS62 (HGC7F)

where,

HGC7F = altitude in feet.

Remt-"•-

US$622 is identicE.1 to ATMS62 except for the use of vehicle
2 COMON blocks.

335



i ' , •1

NJJ U

.A .-• i

I ,Ii

III I

336~



102.PUT - Character Manipulation Routine

Purpose:

To replace the Ith character of a string of characters with the
first character of another string of characters.

Usage:

Entry is made to this routin% by the following statement:

CALL PUT(P, I, L)

where the Ith character of string P will be replaced by the first
character of string L.

337



103. GET - Character Manipulation Routine

Purpose:

To replace the first character of a word with the Ith character
of a string of characters.

Usage:

Entry is made to the routine by the following statement:

CALL GET(P, I, L)

where the first character of the word L will be replaced by the
Ith character of string P. The remaining nine characters of word

L are replaced by blanks.

338



i04. OPTFA and O2TBA2 - Bank-Angle Iteration Routine

Purpose:

.0 define instantaneous bank-angl oo the basis of local optimization
criteria.

Method:

A local minimization criteria, (t), is created where

ý(t) = 4(BA)

An inner loop parameter optimization procedure, CTLOPT, is used to
define the bank-angle value which satisfies the resulting local
(t = constant) optimization problem. The local minimization criteria
is selected from one of several combat guidance laws. Final ,,teering
errors and force vector pointing errors are also computed.

Remarks:

A flow chart for OPTBA is presented. OPTBA2 is identical except for
the use of vehicle 2 COMMON blocks and auxiliary subroutines.

339



4at A-o0'vCA.
ani .tewA an e

C io

h*A~~~~fl~C7,1 
,07-A 1 _ _ _ _ _ _ _ _ _ _ _ m

B~~p~1 
-00~ 

4A

Aq~. 2A2Jol-jll 6)45Ve

eC4 7AW eb * A77
8,q 2X 7,00 4114

340-



105. IMAINOP - Internal Parameter Optimization Interface Routine

Purpose :

To act as an interface between the two vehicle trajectory equations
and the parameter optimization routines.

Method:

Core size requirements limit the internal optimization capability
to

a. Sectioning search

b. Creeping search

c Pattern search

IMAINO? interfaces the trajectory equations to these three search
optiorus.

341



Sooo

Je9A?-A 7;e 4/f4

,,y~7A,7/~y7'y

g~:34 4)o

azoo

ZOOA 400

cc r, 6-or



106. ISELECT - Interval Search Selection Routine

Pu~rpose:

To select either sectioning or creeping search in the internal
parameter optimization loop.

2V/, r c7 04

ii

34 3



107. MULT33 - A Matrix Multiplication Routine

Purpose:

To post multiply a 3 x 3 matrix by a 3 x 3 matrix.

Method:

The result of A B = C is computed us:ng single precision

The matrix multiplication is obtained by the statement:

CALL MULT33 (A, B, C)

where

A - array name of •he 3 x 3 matrix A

B = array name of the 3 x 3 matrix B

C = array name where results are tc be stored as the
3 x 3 matrix

Remarks:

This routine calls no other rootines.

MLILT33 -
DO I k = 1,3

DOl11=

SFCT = C i A BDO 1 J = 1,3 1 ij ij ik kj

c RETURN

3I44



SECTION VII
PROGRAM CTLq

Program CTLS nrs the variational optimization option. The
tr.sks perfo'rmed by the ý-LLS program include the following:

1. Print the CTLS sumary, which includes the values of ths optimiza-
tion functions. (E)

2. Evaluate the forward trajectory by considering the improvement or
deterioration of the optimization functions. (E)

3. Decide whether to accept a forward trajectory as a valid step, or
to reject it. (E)

4. To determine the C-per'urbation to use on the next forward trajectory.

5. To put together the a-perturbation that is desired by using the infor-
mation from REV on tape ILTAP, constructing the CTABLE and putting it
out on tape IATAP.

6. To output the restart cards for trajectories which are accepted as
valid steps. (E)

7. Housekeeping - e.g. updating the pass number and cycle number, PHBRST,
PSBRST, etc.

The CTIS segment is entered either from EXM or REV. The "E" designates
those tasks which pertain only to entry to CTLS from EXE.

CTLS proper allows the user to select which control systen vill be used in

the optimization program.

Usage

CALL CHAal (CTLS)

Remarks

LNDSEL is of the form iOj, i determines which control eystem will be
used with the optimization program. For i - 1, CTLS1 is used. For i = 3,
CTLS2 is used; i also determines which decision subprogram will be called.
Currently i = 1 and i = 3 are the only usable options. j determines which
equations subprogram will be used.

CTLS calls CTLS1 and CTLS2.

345



II

zz

- 0

Sz

I- w
U ti

uH

.I.

I---

U

Il) I



1. CTLS1 - Original Control 7steu

The control system is a predictor-corrector method of control over the
convergence of the end constraints and payoff function. A linear prediction
of the changes in end constraints and payoff function, due to a change in the
control variable(s), is made and attemp*ed. If the trial is near enough to
the linear prediction, the control variable is changed to give the best change
in end constraints and payoff function, and the final values of the functions
(for the cycle) are computed. If the trial is not near enough, the change in
the control variable(s) is reduced and another prediction and attempt are made.
If the ond points and payoff function are too near the linear prediction, the
amount of change is increased. Under normal circi-mstancos, the control will
never take more than six passes but if for some reason the INDERR is set
positive more passes can be taken. If six or more passes are made by the con-
trol system then MIDSIC is set to 0 and MY. and YTO are reset. On return

from the reverse integeration if DP2 - dfi I d8i is negative then DP2 = 1.1 DP2_I

and only the Ci corresponding to the constraints dhich are diverging are decreased.

There are two entries and two e.xdts in this program. One entry is from the
program which computes the functions and matrices of partial derivatives (DIFEQ);
,his entry is to the portion of the control system whi ch compares the linear

predictions to the actual values of the end poiAt and payoff function changes.
An exit is made, after each cycle is completed, to a program which computes the
[I matrices and other values needed to compute the mode shape of the change in
-he control variable(s) (REV).

Another entry is made from timL program (REV) to the portion which checks

for the conditions needed to terminate and computes the control variable change
for the first trial of a new cycle. The second exit is to the program which
computes t'e functions and matrices of partial derivatives (DIFEQ).

347



-7

'41

41-

34



vV

0U

141-

.- U4

Sz

I__ITU6;

34



-4 4

£/
I.I

Ui
.3's

4•;~ i- Ia-- .e

r 0

404o

* - -50



IdK

I * A

351



q 71

Itt 
0*

35



ILI
. IL a~m 0

Lt op0

a I
-. a.

czU

(129

ifbig

A'-

0 II L

353



.3
00 *
33 0

2 3.
I. -� - .0 1 -'

* -.

I - = nu..WuTJ

�v1d
Va �

V * WL�. 1W L�..

* - I�7 � �7T1 vIr�I�ni;rI
L�JLJ .�. * - a

- a C N
E *j IB!�'�

(0 00 - I*P*S*.Ij�

I �
I

-u -

I.

k -

�-Ij

35h



C¶TLS1 (8)

K

535 -- ~

(0.

L INDPMVT= 0T

INDFST I

ICHANE(2) =2

C AL L
CHAIN

(EX E)



CTLs1 (9)

s5 5 .c 7ojma

.j• ._ . .......

y-•6.• CALL

DII

, T 4 , ., I
s~as

-- MM U-.I

'CALL CALL
J!63 OPIUMN'ILINE

4,41
Wwe,?'

-- - CALL
OINOC; -C - -VL a STOP

'ITF



2. CT'S2 - Arbitr1, fq. System

To serve as a. "arbitrary" control system; namely, t,3 perform the routine
chores that must be done in the CTLS segment, but to defer the important decisions
to subprogram DECIDE.

The flow chart provides the best description of those tasks performed in
CTIS2. CTI-S2 may ke entered at two different parts of the program: when segment
CTLS is brought in after segent ME or when segment CTIS is brought in after
segment REV. At every point where a critical decision must be made, a call is
made to DECIDE with a particula., entry point.

There are four Primary decisions that must be made by DECIDE:

a. The 6a mode shape to use.

b. Whether to accept a pass as a valid step.

c. If the decision concerning (b) is negative, the step size to use
for the nert pass.

d. Whether to coupute rartials on the next pass.

357



Point for DECIDE Situation

1 20 passes have been made; decide whether to
terminate.

2 Initialize parameters on the nominal trajectory.

3 A pass for which partials were computed has missed
cutoff.

4 A pass for which partials were computed must be
accepted or rejected.

5 To output additional restart cards.

6 A pass for which partials were not computed has
missed cutoff.

7 A pass for whic.; partials were not computed must
be evaluated.

8 Initialize parameters for each cycle (after REV);
set d3.

9 The mode shape must be approved (if not, determine
a new dfl).

10 After a pass, to set the number of literal con-
straints, IADCON; this will be the same as INDWMT
if it is not set by DECIDE.

11 To print any information after the perturbation
has been made (i.e. after DALCAL).

12 DEROM - I -I I - I < 0 (This situation is
CM Yp TY Y

theoretically inpossible.)

13 To set INDCON (see 10) after the reverse inte-
£'ttion. Also, to invert I Y.

358



-ZLS2 takes care of the following important chores itself:

1. Updating indicators, e.g. INDFST, NCYCLE, NPASS, etc.

2. Outputting the CTLS Sumary print.

3. Outputting restart cards for CTABLE and DEIP2.

4. Updating PSSTAR, PHSTAR, PSBRST, and PHBRST t&bles. These tables
contain the values printed under "CTLS Summary".

5, Calling the next segment (either GRAPH or REV).

6. Computing DENOM = I - I T I ,TIP and SSIPH = I I and

SSIDS = do I -l

7. Recalculating parameters (e.g. do) to be compatible with the change
DP2 detormined by the value of COEFK which is set in DECIDE,

=jDf-,d% I't." do

S. Computing T'ADIC DP d
W -If IT -1 O

9. Calling DALCAL to either compute a new mode shape for 6* or to
change the amplitude of the existing mode shape.

10. Terminating the case when it is impossible to continue.

11. Making sume that DP2 - do I:jd0 is not negative. DECIDE will
be called repetitively with entry point 9 until this condition
is satisfied.

Communication between CTIS2 and DECIDE is accomplished through the
calling sequence, primarily. There are three indicators used here which
need clarification:

IN Decide sets INDAMP #0 if the desire is to change the amplitude of the
current perturbation (by multiplying the perturbation by COEFK).
INDAMP is set to 0 by DECIDE if a new mode shape is to be attempted.

ITBAL: ITBAL is updated by CTLS2; it is the number of calls male to DECIDE
(9) in orler to attempt to find a feasible mode shape.

IN_2AL: INDBAL is set ý0 by DECIDE(9) to inform CTLS2 that it is satisfied
with the mode shape.

,Remar-ks

Changes in the step size made by DECIDE, must be done by setting COEFK;
S2 will set DELP2 = COEFK2* DF.LP2.

359



CTL32 (1)

(d~anE
1

CORIP"(D PARTIALS

O1NAINI, *1

ijI.CtS 6 PIN

'NoY I T,,.. o

A .S.TN

lo IIPS NWNR

PuIWTh It

Ip TUPPRINIri
NPSYAT PAPGE

- T S-IN NAPO

S~IF- 06511IS -1 O DIP

, PQ TNLN Eii.lAIFI
AN NS-NN- N

me.PU N oCNiALI

N P O I N C S N $ILr II

-s-, ad360



CTLS2 (2*

A~~~~ R, A"AtT.A

S iCC tS A M E

ea. PfVia

Coli11 1.TIM II
T

0C nl(N INVERT I**
CUTI.. -1C upSIn

DECIDE (4) MPAWS *

C ICCAMP

** nating - 0

I.. Icow
** NCA

flS* ~ ~ ~ ~ ~ R -Too"-550M n~su

GAMINC RAC

9OfT Ap.- Ig..&A
= mpeyIOAIO

D a0-

A INCON ITEATE on ~ c 3611



3. DISPLAY - Console Display Rnutine

Purpose:

To output data to the display console on the 10-inch display tube.

Method:

By setting sense bwAitch 6 a peripheral processor is selected and the

CTLS suwmary is displayed on a 10-in: h lisplay tube

Usage-

Entry is made to the routine by the following statement

CALL DISPLAY (IPAY, IIIP)

where

IPAT is payoff function
IIIP4T is the number of constraints.

J62



4. SEARCH - Search Routine

Purpose:

Compute a nominal starting trajectory for the optimization program.

Method:

The search routine allows the user to vary a control parameter to
satisfy any single end constraint in the hope this is a better nominal
trajectory. Any parameter used in the initial condition optimization
or any half point in the CTABLE may be used by the search routine as
an adjusting variable. Any trajectory the search routine finds may or
may not be a good trajectory for the optimization program. In fact,
sometimes what appears to be a good starting trajectory by inspection
turns out not to be a good nominal trajectory for the optimization
prc7gram. Therefore, if one fails to get started with the first nominal,
A second attempt should be made with another nominal.

Assume the same test case as before but now set a half point in the

CTABLE as the adjusting parameter.

Example:

NPOINT 3
CTABLE O, iOO., 300., -1., 2., 0

If the above table is assumed to be a then it has the shape as follows:

2

0
-1
-2
-3

0 100. 2o0 300
Time

LIMDER BCD IQF)M0
DESIRE BCD lHGC7F
CONVAR 2.
SECLIM 1.
KPOINT 5
LIMIT 2000.
7M 270000.

A hLý&L point aipha at Lime 100. seconds is the control variable.
LIMDE2, VE3I1,, LIMIT, and QMXN are unchanged from the previous example.
CONVAR is set equal to 2. SECLIM is set to 1. and on the second tryThe a history -would appear as the dotted line. ADJUST is not needed
when working with the CTA3LE. KPOINT is set equal to 5 which is the
5th location in the CTABLE.

363



Assume that conditions exist such that one would like to have a trajec-
tory that, would terminate at 270,000 feet altitude + 2000 feet tolerance
by adjusting the initial Y

Entry is made to the search routine with one data card.

I1•M0D 1

Other data is expected if the above data card is included.

LINDER BCD 1QEXN
DESITE BCD 1HGC7F
ADJUST BCE) lGAM7D
CONVAR 0
SECLIM 2.
KPOINT 0
LIMIT 2000.
QEMN 270000.
GAM7D 0

LINDER contains the BCD word of some unused ,:ell in core. QEXN contains
the required end value of alt.,tude. DESIRE %-ontains the BCD word of the
end constraint. ADJUST contains the BCD word of the control parameter
being varied. CONVAR should imve the same iritial value as the control
variable. SECLfl is the value of the cont rol variable on the second
try. KPOINT is the location of the half point in CTABLE to be varied.
In this case Y is the control variable and KPOINT must be set to zero.
LIMIT is the tolerance on altitude. A + or - is assumed on the tolerance.

Ary location in CTABLE may be varied the same by changing the necessary
data.

Remarks:

All data for the search routine should be in DATAl.

The CTABLE mist be put in DATAM as a function of trajectory time
(INDCTA = 0).

364



0 20

44

Li~~

365



SEARCH (2)

-- ZýTABOS(4)C RCýONT

TILSTVR 'RCONT

ZTA605(4) TESTVRI

60'(~Z 
TABO 5(5)~ CONVA Rt

RCONTT 366V



5. CARDS - Restart Cards Ioutine;

Purpose:

To output information which may be Lsed to restart tht program.

usage:

CALL CARDS (SIM,VAR,N,ITAPE)

SM = symbol to be output or signal to rewind card tape.

VAR - location of values to be output.

N = number of values to be output.

ITAPE - tape on which printed output occurs or signal to place
end of file on card tape.

Restart cards for each cycle are output on the output tape ITAPE.
Restart cards for the last completed cycle are output on the card tape
KTAPE. ITAE=6 and KTAPE=15. All values are output in OITAL.

Remarks:

CTLS1 and CTLS2 call CARDS.
C)R)S calls LINES.

367



NE CARDS

"KTAPEI 15

001 sNLOOP +"L---• NO

ITAPE stSPACE (1)" BLANK

sipACE(KC3)*?OMM1

FILE
O It( I -I,) •LOOP

A

LEFN

CONTINUE)

CRLETU36

368



6. DALCAL - Delta Alpha Calculation

This subprogram of CTLS computes &-Y and 8 x, by combining the various
linearly independent solutions to the adjoint equations computed in REV.
It is necessary that this task be deferred until this time because the
coefficients in the lirear combinatio:i for c amputing 8'v and 8xo are
determined by the control syrten and hence are not available during REV.
Also, depending on the control system being used, it may be necessary
to change the coefficients from one pass to the next. The values of the
coefficients (T-1 dO = SSIDS) determine the mode shape of the perturba-
tion. This subprogram not only computes 6N (DEALPH) but it updates
(CTABLE) with thi. perturbation. Perturbations, 8Xo (DELI), to initial
conditions, xO, (VALINS), are computed and the initial conditions are
updated he-re in a manner analagous to the 6re computations.

Method:

There :ire two entry points to this subprogram. The first entry point is
for camputing the perturbation for the first pass of a cycle or for any
pass -*here the mode shape is being changed. The second entry point is
for changing the amplitude of the previous perturbation.

This subprogram will terminate the case, if, for any giien stage, the

history exceeds the limits of the dimension of CTABIL.

At entry point 1,8 a aiid 5xo are computed according to:

-1 D -I +W-1GXI 1-

6T W-IG, (!W-, 1 YT -1 1( -

-1~~R 1 do-1Pd

In the above expressions, the radical (RADIC) is available since it has

been computed in C1LS. Also IYY -1 dO= SSID3, and I.Y -1Iv =, SSIPH

have been computed in CTLS.

6N calculations will be made for each major stage. *sxo calculations are

made on'.y for the first stat-.

369



The outline of the subprogram follows:

Entry Point 1

(1) Get XGW-1 and WTOGW 1 , a, and W-1 for the ith major
stage from tape ILTAP (last stage comes first).

(2) Compute 6& from Xo1,GW- 1 , X. Gktl, RADIC,SSIDS, and SSIPH.

(3) Compute the newa : a -' + 6 a.

(4) Plot o, 6ty and W-' if requested.

(5) If more stages go to (10); otherwise go to (6).

(6) Get A,, RW-1I, R[J-I, and xo from tape ILTAP.

(7) Compute 6xo from X00 Rj, IX4U- 1-, RADIC, SSIDS, and
SSIPH.

(8) Compute the new xo: xo = + 8x,.

(9) Print the xo, Axo, U-1 if requested.

(10) put V, W-1, 61, Xo, U- 1 , 8P' on IATAP (all in one record).

(11) If there are more major stages to go (1); otherwise return.

Entry Point 2

(1) Get a, V-1 , 6(y, xo, U-1 , 6xo from tape IATAP.

(2) Recover to the last good a: a = a - 6Y

(3) Modify NY: 8a-k • Sa

(4) Compute the new a: a = a + 86

(5) If more major stages, go to (9); otherwise go to (6).

(6) Recover to the last good xo: xo - xo - 8x,

(7) Modify 8xo: 8xo - k • 6xo

(8) Compute the newx 0 : xo = xo + 8Xo

(9) Put a, W-1, 6o', xo, U-1, 6x, on tape ILTAP (all in one record).

(10) If more stages go to (1); otherwise go to (11).

(11) Switch IATAP and ILTAP and return.

370



Once entry point 2 has been called, entry point 1 may not be called
again until the next cycle because tIe information it needs on ILTAP
is gone.

The information from REV on ILTAP is blocked. Reading this tape
(entry point 1) is accomplished by calls to the ad-hoc unblocking
routine UNBLOK.

371



DALCAL (1)

c�)
Mm.t.. 90,)

*AT I '.�a,-inv..s.�;I�I7d, : -
ci*ttCIf*, *I't1
a,. *",

.4 ,.w...nw, a� �

71:1- - i-� -�i
0,-... sam.

I.. r7r

aewY' I. mrs. -.

& � .1 Ia,951 �7
Ct*AhY I.I�s 4.

'-*0,-

4* .s� ma.

- , .,--

9--
.411154 'Safl,

�n& *05,

.4

�o'�

372

I4



DALCAL (2)

-I

141%CV1 -- 0 101

cft4t

bimC~MU .- Mow
FCI ~SI'CI

- -TCCILtI , C i

L[LIVC

I*CL I.,

373-



7. KCAIC - Step Size IDoic Routine for Contr!l ytem

Purpose

This subroutine determines the "best" step siz,. coefficient based on the
given data, and is intended to be a part of the over-all logic necessary for
step size evaluation and control.

CALL KCALC (ARGI, ARG2,...,ARG14, ARG15)

where ARI = ARG = NL(1)

ARG2 = ARG9 = ()

A• 13 = At ARlO = Yte(l)

AF&4 = ;%L ARG11 = T FW(l)

ARG5 = V(l) ARG12 = C Y(1)

AR6 = Y*(l) AG1I3 = Ay(l)

ARC7 = '*(l) ARG14 = RADIC

ARGI5 = Variable name where K is to be stored.

This routine is designed for use with the "CTISl" control system. An
initial set of step siza coefficients (K*, KT2 ..:. K,*) is generated from
the given data. This initial set of coefficients is used to control the cal-
culation of a "new" set of step size coefficients. (K' 1 , K' 2 , ... , K'

The "best" value (K) is then calculated from the new set of coefficients
and an exit is made from the subroutine.

The initial set of step size coefficients is generated in the following
manner:

GIVEN P, At, Ly, - t - NLi, dYi

CA AtL); YNi .(Ai -. )%L AA ""

K L K NL1

where i= 1, 2,..., n.

374



The values ( K * K . are re-arranged into descending order
(K1, K2 , ".., P i" ° vae Kmi MUs" 1 be such that .5 5 -Kl.

If this condition is not met, then the "best" valiie (K) is defined to be
.5 and an exit is made from the subroutine.

If this condition is met, then a logic scheme is applied to calculate a
new set of coefficients.

The new set of step size coefficients (K'1 , K' 2 , ... , K'n) is calculated

as follows:

a) Tolerance check (only for Yi constraints)

GIVEN Ti = T;

THEN Yv IY k - fl*
where i = 1, 2, ... , n.

IGIV•i TI, i

THEN if , C . Test K1 ;

if K1 = Kq., then proceed to next i; (*), otherwise perform
(b), (c), and (d); where i = 1, 2, ... , n

b) Ed point movement (on3ly for .i -nstraints)

G- -4*GVEN Ti' Ti, Ayi' YFWDi'9 Tam. Cyj;

THEN a i * ;

y1ri
ifA a 90

TMOT, At.

otherwise,

MO T ,I A l
,•-hre i 1, 2, ... , n.

c) Cale roots Ki, K"' (only for Ti constraints)

GIVEN AYti Ai, YMO •
5Ti

375



THEN (KM', K." B±B -~.C(~

11 2A

where A = (AT- AT),

B =Ai,

C = HOT, and i = 1, 2, ... , n.

d) Test K,, K"' (only for Yi constraints)

For all i, (i = I, 2, ... , n), the value of K' must be chosen such
that K' = least positive value and such that :g KI i, where KL = KI.
If (K!'I K11") < 0, then no new Ki value is computed.

1 .1 1

The "best' value (K) then is defined as .5 1 K' i 2.0; and an exit is made
from the subr'- z #ine. n

(*)
It should be noted that recycling occurs if the T. constraint error is

within the prescribed tolerance (YER1.) and the controlling step size coefficient(KI) is Kyi. At the end of (d) the ontrolling step size coefficient is changed

to (K 2, K"•, ... , Kn+1 ) and the cycle restarted at (a). If recycling is necessary
tk pre seit "best" value (K' = K ) issaved and jhe recalculated "best" value

KL+I) must be such thit KtI t KZ

where f = 1, 2, ... , n.

If all constraint errors are within the prescribed tolerances, then K* i-
chosen to be the "best" value (K) and an exit is made from the subroutine.

If B2 - 4AC < 0, then no K" and K"'is comuted.
i i

Remarks

KCALC is called by CTLS1.

KCALC -alls DEF and LINES.

376



u 
I-

z E L

oa a - a
- - - - K ~ OZ

K + K ~_L=j
a. - 'co

*~~~~ L ~ - I

3Y70ir'



it1
vi !5t IJ

II--
Ui

Y. In4

378



8. INVFRT -_ I, 1,! Inversion

Purpose,

To invert the I $, matrix.

Usaje:

CALL TNVERT

From theoretical considerations, Iq$qi should be symetric. If a column

(row) of I$, is zero ar.d the corresponding row (column) is non-zero,

the program a terminated. If a column and corresponding row are

both zero, they are eliminated from the matrix. The resulting matrix

is inverted and any zero rowsv or columns are inserted into the inverse.

I tp is post-multiplied by I* aa a check.

Remarks:

CTLS1 and UPDK call NE1T.
INVERT calls MATINV and STOP.

379



INVERT (1)

'EFF

r(p(3121 10IWOPMST)

(D otti I~.,OPT

mg J+1010010107)

Y E S R IT t

YESA

38



INVERT (2)

r-'01220 .al,INDPMT)

N C(~) 

_____

m0

r*DO 1223 J-'.,INDPMT)

Lp- J:::5::M) SISII(:.Li

-----.(CONTINUE; -

W, tATIN

381



9
K

N -i.
-�
9 5a a-a, 0
-. 0 2 0

SM SM � -- 2 - 2
- U -

�>

L I L�J

Cf.'

U
w0

z ,�
z -

- - h
5* Z

-'-�-;

�

jLJ
L

I- Ub
* SM
&a 0 £

L� �
"� U)K o

�. :,
0
0

* U)
U)

�32



INVERT()

RITE

DO1166 1 1-1,!NDPMT)

RITE
S

1002

L -4cNT iINUE)

WRITE~

15oi64 I =I. INDPMT)

L 6

L-CON TI NIE)

RITE

RETURN



9. DECIDE- Driver for Decision Routines

PUrpo e

To allow the user to select the decision subprogram which will be used
with CTLM2 in the optimization program.

CALL DECIDE (IENTRY)

IENTRY = indicator which determines what decision must b-. made by the
decision subprogram.

INDSEL is of the form i0j. The decision subprogram is determined by i.
If i = 3, DECID3 is used. If i = 2, DECID2 is called. DECID2 is currently
a dummW routine. INDSEL is nomirally 101. j determines which set of dif-
ferential equations will be used.

DEC I D E

BEG IN•

T C A N ECD

F8



lo. OFFSW - Display Drop Routin2

Purpose:

To drop the on-line display from the console.

Usaize:

Type "DROP" at console.

Remark:

This is a spccial-purpose ASCENT routine. No flow chart is
included.

385



11. TLUU - Two DiLMnional Table Look-Up Routine

Given an argument X, to compute Y f(X) from a table of X and T values
by linear interpolation.

Method

Same as for TLU.

U§=

Same as for TLU.

Remarks

This subroutine is the same as TLU except the table is not given as a
common subscript.

386



TL UU

-. . . . . .. . 1C~ o l , - x, N )

'17,

J 2
I 2,

[ - 1)-= C(J 1)I

S~J= 4"

L - -CONT',NUE)

SC(J- 1) - 1* - (X-C(J-2))

C(J) - C(J -2)

V
RETURN

I



12. U)BLOCK - UnblockinR Hutine for A's

Purpose:

To read and decode the blocked tape (ILTAP) that has been prepared
in chain REV.

Method:

The values for the A change in the mode shape of a's hAve been stored
in a large array to decrease the rnmber of times an I/O device is
selected.

Entry is made to the routine by the statement:

CALL UNBLOCK (PHOLGW, TIMES, NDUMMY, INDPHT, MCONT, PSOLGW,

ALPHC, W;-, ILTAP)

where-

HOLGW = Mode shape change values

TIMES = Time from beginning stage

NDU!4MY = Control word

MCOUNT = Number of control variables

INDP1T = Number of end and puint constraints

PSOLGW = Mode shape change values

ALPHC = a's from previous valid step.

W2 = Weighting Matrix elements

ILTAP = I/O device

No initialization is necessary outside this routine and no output
occurs from thin routine. Only the normal I/O FORTRAN routines are
called.

:88



CL2

4C

0

-o4o 0

z t4
L +

V 4j ~
z1

* (fl~x

CL-K j 0XL4 i



13. SUMOLA - Linear Combination Routine for A's

Purpose:

To compute linear coabinations of sensitivities.

Miage:

CALL SUMOLA (PHISEN, PSISEN, C, NPSI, NVAR)

PHISEN = the linear combination to bc iomputed.

PSISEN the component sensitivities which are to
be combined.

C = weights to be applied to component
sensitivities.

NPSI number of components

NVAR = length of each component array.

NPSI

PHISENi PSISENj,i . Cj, i = 1, NVAR

Remarks:

This routine is used with the "CTLS2" control system.

390



SUMOLA

BEG IN

PHISEN( 1) CV-,p(D 0 10J iN PSI)

rHISEN(O) J

ICONT INUE)

RE TURN



14. PLOT - Point Plot Subrcutine

A point plot subroutine written by Mary Huff of McDonnell Automation
Center in December 1965.

Purpose:

To plot F_ graph of one or more curves from given sets of rectangular
coordinates using a minimum of storage

Method:

To avoid overlapping characters, the printer limits the characters which
can be printed on the plot to 109 per line and 51 pe:" column. To plot
a curve, it is therefore necessary for the routine to divice each page
of the plot into 109 intervals in the X direction and 51 intervals in
the Y direction. The width of the X intervals, called A X, is then
PXMAX - PXMIN where PXMAX and P1141N ar3 the maximum and minimum X values

108
wbich can be plotted on that page. If a search of the T coordinates of
the curves to be plotted then shows an X value falling within the range
of the n-th interval, that is PFMIN - ýX + (n-l)AX < X < PXMIN + A X

2 2
+ (n-l) AX, then a point will be plotted in the column representing the
n-th interval. The routine allows for a multipage option in which the Y
axis remaina constant but the X axis varies from XMIN to XMAX over a
range of several pages. The number of pages will equal XRANGE where XRANGE

PRANGE
is the range of X values over all the curves or XMAX - DUIN and PRANGE is
the range of X values which could be plotted on a single page or A X • 108.
The maximum X value on one page will becnme the minimum X value on the
succeeding page until XMAX is reached. A X, which is needed to determine
PXMAX for each page, must be determined before the plot is attempted. It
may be supplied to the routine by the user or left to the routine to cal-
culate before plotting the curves. If A X is left to the stbroutine to
calculate, a search of the curves to be plotted will find AX to be the
minimum distance between &-nv two points on any curve in the X direction.
If the multipage option was specified, then A X is accepted as calculated
by the routine or as-specified by the user, and the number of pages will
be XRANCE. If the single page option was specified, and JNX = XMAX-XMIN,

PRANGE 108
then A X is accepted as specified or calculated, otherwise A X is set to
XKAX-XXIN to allow the full range of X values to fit on exactly a single

108
page. In order to plot a graph of less than one page, th, multipage
option must be specified, even if A X is specified.

The log of y is plotted if the semilog option is used, and the log of X
and Y if the log-log option is used. If the value for which the log is to
be plotted is negative, the log of the positiva value will be plotted, but
an N will replace the specified character for that point on the curve. The



log of zero will not be attempted, but the zero will be plotted with the
character N.

Any number of curves may be plotted on th,3 same graph. The X (oordinates
of each curve must be stored as one column of the two dimensional X array
and Y coordinates of the curve as the corresponding column of the Y array.
The points need not be ordered, but the X and Y coordinates of a point
must be at corrcpondinq positions in their respective columns. The
curves may be distinguished from ea~h other by designating different plot-
ting symbols. Any Hollerith Character may be used; however, the subroutine
uses a plus sign for the border, a minus and an I for axes, and an N for
attempting the log of & negative or zero number. If a point is conmn to
more than one curvý-, the symbol of the last curve plotted will be show.

The subroutine will eject a page and print he title specified by the
user at the top of each page of the plot. The border option will outline
each page of the graph with + signs. The axis option will print the X and
Y axes (plot the curves Y = 0 and X =0). The X scale is printed at 2"
intervals and the Y scale at P" intervals.

Usage:

The routine is entered by the FORTRAN stateiient
CALL PLOT(X,Y,M,A,TC,B,MP T,XDELT,TITLE,IEW"

where

X is the name of a 2 dimensional array containing the X coordinates of all
the curves to be plotted. The X coordinates of the n-th curve, for example,
are stored from X(l,n) to X(m,n) where m is the number of points in the
curve.

Y has the same dimensions as X and contains the Y coordinates of the curves.

4 and A are the names of one dimensional arrays set up by the user. 1(n)
is the number of points in the n-th curve, whrce first point is at X (1, n)
and Y(l,n). A(N) is the character---lef6-adju!'ted in a 4 byte word--to
be used in plotting the n-th curve.

IC is the number of curves to be plotted and must be less than or equal
to the second dimension specified for the X and Y arrays in their DIMENSION
statement.

B=l no border, no axis
2 border, no axis
3 no border, X axis only
4 border, X axis only
5 no border, Y axis only
6 border. Y axis only
7 no border, both axes
8 border, both axes

393



MP 0 single pe.ge plot dfsired
1 multiple peqe or f-..action of -age plot desired

LL = 1 ploL given points
2 semilog (plot log3 of Y coordinates)
3 log-log (plot lot,i of X and Y coordinates)

XDELT - 0 indicates A X is c, ce cilculated
Otherwise specify A X "a. ,loati.ng point

TITLE is the name of the array in which t'-e title to head each page
is stored. Only one line may be printed. The array most be
at least 30 four byte words in length. Any words in excess of
30 will not be printed.

IDM is the first dimension specified for the X and Y arrays in their
DIMFSION statement. Tt must be at least equal to the number of
points in the curve which has the greatest number of points of
the curves to be plotted.

394



L z

a !

395 1~



a [I ýr 1-

f 1

r m

396



I ""

T--

1--- -°. "

397•



15. MATINV - Matrix Inversion Routine

Purpose:

FORTRAN subroutine solves the matrix equation AX = B, where As a square
coefficient matrix and B is a matrix of constant vectors. A- is also
obtained; indeed, inversion may be the sole aim in a particular usage.
Finally, the determinant of A is available.

Method:

Jordan's methoid is used to reduce a matrix A to tV.e identity matrix I
through a succession of elementary transformations; n-n-nl...ec, A I.
If these transformations are simultaneously apilied to I and to a
matrix B of constant vectors, the result i:i A- and X where AX - B.

Usage:

Entrance is made via the FORTRAN statement in the calling program:

CALL MATINV' (• N, B, M, DETEW)

where 1) N is the order of A; N > 1.
2) M is the number of column vectors in B.
3) DETER4 is the location in which the determinant is to be

placed.

Suitable variable names may replace the dummy variables listed above.

At the return to the calling program, A-1 is stored at A and X at B.

M = 0 or negative signals that the routine is to be used solely for
inversion; note, however, that in the CALL statement an entry corres-
ponding to B must still be present.

398



1

y -.
"- 0S - t

Iiii

LIZ

. 399

"I++

I --z

, Z J

399



16. DECID3 - Step Si'.e Routine for Control Sys',em

To determine when to accept a pass as a valid step, wher to compute
partials, the step size to use on the next trial and to invert the IT
matrix and make other decisions to determine the 5a mode shape.

CALL DECID3 (IENTRY. D2,D3,D4,D5,D6,D7, B,D9,DPHI,DB,DK,DE,DF,DG,
INDAMP, INDBAL, ITBAL)

CTIS2, DECID3, UP., and SUMOILA form a control system referred to in the

formulation as "CTLS2". To select this control system itiput INDSEL of iOJ (301).

Tasks are performed aý, each entry point as follows:

IENTRY = 1 is called when 20 or more passes have occurred on a cycle.
The program is terminated.

IENTRY = 2 is called for nominal ini.tialization.

IENTRY = 3 is callei when a trial missed cutoff and computed partials.
The step size is noted as a bad step. Partials are turned
off and the next trial step size is set to one-half the current
step size.

IENTRY = IV is called after a successful trial is made with partials on.
A parabolic prediction is performed. If a gain was made on
the trial and the predicted percentage goin for another trial
is less than 25% for another trial, the step is accepted. If
a gain was made but the predicted percentage gain for another
trial is 25% the step is not accepted innediately. Tests to
limit the number of passes are applied if the step is not
immediately accepted or no gain was made and trial may be
accepted if a gain was made or a new step size may be deter-
mined for another trial with partials taken.

IENTRY - 5 is called for output of restart cards. None are output.

IENTRY = 6 is called when a trial missed cutoff and did not compute
partials. The same action as IE*TRY - 3 is taken.

IENTRT = 7 is called after a successful trial is made w¢ith partials off.
A parabolic prediction is performed. If a &Ain was made on the
trial and the predicted percentage gain for another trial is less
thai 5% partials will be taken the next trial. Tests to limit
the number of pastes are applied. These tests may turn on partials
if a good step is available but no gain was made in the previous
trial. A new step size for another trial is determined.

400



IENTR' = 8 iL called for initialization each cycle.

1EJTRY = 9 • called tc make decisions for the 6a mode shape. If step
size is too small the program is terminated.

IENTRY = 10 is called to set INDOON for CTLS2 after a trial. INDCON is
se:t to zero.

IENTRY = 11 is called after DA-CAL is conputed following the reverse
integration. The only action is a 2ETURN.

IENTRY = 12 is called when DENOM is not positive. The program is term-
inated.

IFXTRY = 13 is called to set INDCON, invert the I matrix, and update
parameters for 6o, calculation after t e reverse integration.
INDCON is set to zero and UPEK is called to calculate para-
meters for 6cr calculation and to invert the Iyy matrix.

After each trial trajectory, a point is generated on the graph of change
in payoff (Acp) vs. step size, unless cutoff was missed. A point with positive
'ki is called a good point and the step size is celled a good step. A point

Lh negative Ac is called a bad point and the step size is called a bad step.
Tha step riize on a trial trajectory which misses cutoff iu also called a bad
step.

From the theoretical considerations the graph of Acp vs. stel: size must
rise to a peak from the origin and fall off. Our objective is tc arrive at a
good point with step size as close to this peak as possible. We attempt to
do this by a parabolic search procedure.

Aft.er each trial trajectory which has missed cutoff, partials are turned
off and another trial will be made with step size 1/2 the last trial step.

After each trial trajectory which has not missed cutoff, a parabolic fit
is raide to the last trial point and any previous good points. I:' no previous
good points are available, the fit is made to the origin, the la.it trial point,
and the slope at the origin. If only one previous good point is available the
fit is made to the origin, the previous good point, and the last trial point.
If two previous good points are available, one lying on either s~de of the last
trial point, the fit is made to those three points. If two such good points
are not available, but two good points have been found which lie on one side
of t.he last triil point, the fit is made to those three points.

After the fit has been made, a preliminary step size to use for another
triaL' pass is determined. If the parabola is not concave downward the pre-
limAiary step will be the smaller of 5 times the last trial step and 9/10 the
3hallp-t previous bad step. If the parabola is concave downward, the step

,e 45 set to the larger of 1/10 the last trial step and the smallest of 5
i the last trial step si7e coordinate of the maximum point on •he parabola,

a-l 9; the smallest previous bad step.

401



If lees than 10 pasnes have been made and the last trial step haf positi'te
Aq', the parabolic fit and the preliminary step size are used to f.nd the pre-
dicted change in payoff from the parabola. If partials were taken and the pre-
dicted gain is less than 25% the last trial is accepted as a valid step. Tf
partials were not taken and the predicted gain is less than 5% partials are
turned on and another trial trajectory is made using the prelimina.7 step size.

If 10 passes have been made and the peak has not been found the last step
will be taken if it is a good step and partials were taken. If it was a bad
step, the program will go to the best pood step size so far, take another pass
with partials on and accept that peas. If no trial so far has produced a good
step, the step size is halved and a trial made. Ralving will continue until
a good etep is found or 15 passes have been made and the program terminates.
If a good step io found one more pass at that step size will be made with
partials on and that pass will be accepted.

DECID3 is c&ll6 only by DECIDE which in turn is called only by CTLS2.

DECID3 calls UPDK, WONRM, and ITOP.



KGIN
DEC I D3

WASS < 15 INUAP"r-1
15 >

1. 12 -z I ENTRY 4.7

A DPHIN
STOP 3.6 S' ýP --DELP2

DELPS(21 - 0.

RETURN D E DPHI X < 0 SMAXJSTEP

-,T[P=DEiP2
SMAX-STEP
CO1FK %-5 DPHId -DPHIN >0. DELPBzSTEP
INDPAR 110 (1 :)-ý IDPAIB *DPHIN

SMAX 111 9 -0. C SO.
DELPTIý21 B--DPHLT

10 3 O.A. R
/,(CIO Sol 111, 5 Aj

I i I STEP
rRETURN )

SIFWD(Iy
SIOWD M,- DPHIN <0

0.
INDBALO I f !<

# CONTINUE DELP-r 2) Z ST EP
ITBAL 0 A-0. DPHIT 2) EOPHIN

- 4A- 0
820-Iý

IT

INDFST

A
TO LDELP2 =DELP2 -RAT[ 0

ýRf T R ýNý " MA

'= INDW

MC=NCYCLE-IWCYCL

RETURN mc
Q<

'AL

DELP2-DELP?, RETURN
WNEW 1014T

1103



DECID3 (2)

0 -~ DELPT(4) 'trrSTE j
Or1ITirr4)' OPHIN

G. DP I- 416 1-1.3DIE pT(WD>ELPT(3)? -.

(,O 413 Id,3 T

ELTIOELPT6ODELPTO)2>

CONTNU ECONTINUE

rDEIrDEkPT (4)
Gtfoi(LD PTbDPHIVf44)

DOE,.PTO -DELt( DELPTOA)' ILPT(L)
DELP rP4VJ.DNTL

upwC(2)DT M 4 I

"IT (3 OPHIN t ELPCJ) z ET

OYL -- LDELF - DELPT(4) IýDEP OfPft
OXR *ELPTM- DELT(~ P~

____"__44 1-1,

DK0L

il S Ll - A .fihLPTW+ CELPTN))

4o14



DECID3 (3)

CMIN,

I. • ~DELPS *

C 'E~MNOFCART.OE5 CONTIU

COK F 1~ K4 A Z-C

IT.
COE ~ ~ ~ INT0 ) OI TID

RNI

OFART~
14 5 5 [Tj



17 DECID2 - Arbitrary Decision PvUtije

TPhis is a dwoiW routine incl:Lied so the user may write his ovi decision
subprogram to be used with CTLS2 i, te optimization program.

Such a routine aust adhere to the entry poiný pattern established by
CTLS2 and make those decisions aseigned to it by C' .LS2.

406



18. PACK - Integer Word Conversion Routine

To insert the character to be plotted into the correct position in ar
integer type word.

Method:

PACK uses DECODE to break a word into 4 words, each containing one character.
Thp (IPOS+l)th word is then set equal to CHAR and ENCODE is used to place the 4
characters back into the word.

Usafe:

CALL PACK(WORD, CHAR, InOS)

where

WORD = the word in which the character is to be placed

CHAR = the Hollerith character to be inserted into WORD

IFOS = one less than the position in WORD into which CHAR will be
inserted

Subroutinel Called:

System functions ENCODE and DECODE.

h07



PACK

ENTER

DECODE

lSPLIT(IPOS+I)=CH 
W__

ENCOD E

RETU 
RN

4o8



19. WNOW - Weighting Matrix Norm Calculation

Purpose:

To compute the current weighting matrix norm when using OPTION 5.

CALL 1WNOR4 (WNEW)
1/2

!400NT 0o(i~-) INDIOP ~jVIPEW =(Wi,i-1)2 dt + (Uj-I) 2,
£i T I J =

MCONT number of control variables

INDIOP = number of initial control variables

T terminal trajectory time

.409



WNORM

WHEN r-•0.

B (DO 10 Is1.MCONT)

WHEN'-WHEN +ABS(STIN TEG()

(CONI NUE)

INDIOP

0

~-(oo 0IsNDIOP

WIMEN-WHEN + UMAkTX()2

LC ONTI NUE

i41o



20. UPIDK - Convergence Control Routine

fr2o.Le

To determine when and how to tighten constraint belts, and to perform
the tightening; to test for convergence of the optimizatioi• process*and termin-
ate the program if convergence is obtained, and to recompute I,,, cp , and the
coefficients for the augmented payoff function.

CALL UPDK

CTLS2, DECID3, UPDK, and SUMOLA are the routinr which implement the control
system referred to as "CTL32" in the formulation.

This routine makes those decisions which have most effect on the conver-
gence of the optimization process uncier "CTL.S2".

The philosophy of the routinj is given in the formulation manual. The
procedure by which SIERR is reduced is referred to as belt tightening. The
logic of the routine is given in the accompanying explanatory flowchart.

A tool for investigating the convergence effects of decisions other than
".>,ose made by the normal logic of this routine is provided. This tool is
referred to as "Analyst Control." Using this option, all decisions on
tighterdng and phase selection are superseded by data inputs which completely
pre-determine when and how tightening is done and what phase 'ill be entered.
This ib not intended for normal use.

The normal logic is referred to as "Program Control". Certain p.•oameters
used by this option may be modified by dat%.. Modification by data is rot
recommended.

Parameters for UPDK and their effect on tightening and phase selections
are listed under the two options. These parameters may be set to values other
than the nominal by input data.

See routine MENAL for a description of the augmented payoff function used
by this routine.

411



A'nalvst Control

Paramete Nominal Effect

INDi"'T 0 0 selects program control
1 selects analyst control

For Analyst Control Input A Value of 1

INICYC All 1000 When NCYCLE = I INTCYC(J )I where ? ! J t 8,
belts will he tightened. INTCYC is an array of
eight values.

IfTP1• All 0 INTPHZ(J) is the phase to be entered after belt.
tightening when NCYCLE = INTCYC(J)I where
1 ! J ! 8. INTPHZ is an array of eight values.

ITIT 0 If ITIT > 0 and NCYCLE = JINTCYC(J) I , wher-
1 ; J - 8, and INTCYC(J) > 0, INTCYC(J) will
be replaced by INTCYC(J) + ITIT after belt
tightening.

TTIT 0 Basic belt tightening factor. When belts are to
be tightened, all are multiplied by T1?IT. If all
constraint errors are still within their respective
belts, the belts are again multiplied by TTIT. This
continues until at least one error is outside its
belt. Then all belts less than 1/2 their respective
tolerances are increased to 1/2 those tolerances.
After belt tightening, if TTIT is C., it is set to
.1. TTIT may be modified before tightening by TINT
and TDUN.

TDUN 0. If NCYCLE = IINTCYC(J) I where 1 r J ! 8, and
INTCYC(J) < 0, TTIT is multiplied by TDUN before
belt tightening. Total tightening modification
fac+or.

TINT kll 1. Partial tightening modificati)n factor. If NCYCE=
I INTCYC(J I where 1 - J - 8, and INTCYC(J) > 0, TWIT

is multiplied by TINT(J) before belt tightening. TINT
is an array of eight values. TINT may be modified by
TMOD.

TMOD U. If NCYCLE I INTCYC(J) I where 1 5 J ! 8 and INTCYC(J)
> 0 and ITIT > 0, TINT(J) is replaced by TINT(J)-TMOD
after belt tightening.

h12



INDINT 0 0 selects program control
1 selects analyst control

INTEX 3 The ratios:

*_* * P* -*

pand ,i i = i, DiTN-I

0? INTK CINTEX

are checked against TTOL for tightening of belts.

TiOL .005 If all ratios specified by INTEX are less than or
equal to TTOL and belt tightening has not been
delayed by INTSTY, a check will be made for con-
vergence and belts will be tightened.

INTSTY 3 Belt tightening is delayed by the INTSTY number of
cycles after leaving phase 0 or-effecting a belt
tightening.

TTIT 0 Same as for Analyst Control.

ITIT 0 Same as for Analyst Control.

INTDUN 3 Total tightening cycle indicator. When ITIT =
INTDUN, TTIT is multiplied by TDUN before
tightening.

TDUN 0. Total tightening modification factor for TTIT.

TINT Ali 1. Same as for Analyst Control.

INTPHZ All 0 Same as for Analyst Control.

);i3



±AM!t and Program Control

Parameter Nominal Effect

ENDCON All blank Identifiers for payoff and constraints. ENDCON is an
array of ten words. The first is the payoff function,
the rest are constraint functions. MAXIM or MINIM
must be "FNALTY".

SIBAR All 0. Desired constraint values. SIBAR is an array of ten
values. The first is a dummy.

SITOL All 0. Allowable constraint erro). SITOL is an array of ten
valuv6. The first is a dunmy.

SIERR All .01 Belt sizes for constraints. SIERR is an array of ten
values. The first is a dumum. The rest are belt
values for the constraints.

INDTMY 4 Initial phase for CTLS2 control system.
4 is phase 0
3 is phase 1.

-P 1. Exponent used in determining phase 1 mode parameters.

RATIO 2. Step size multiplicative change factor between
successive cycles.

Remark.

UPDK is called by DECID3.

UFIK caMlls INVERT and STOP.

4~ 14



LOGIC OF TiPDK

Program ContoIx Type of Control nayst Control

Are we in phase 0? esC No ighten belts on this

No e

CTest for belt- Don't tighten_ D etermine phasetihtening 
to go into

Tighten

Tightening - Delay i Modify

in effect? Tightening

No 
L Parameters

Determine phase 0
to go into

Modify
oTightening i

Parameters

&-.
Test for Not converged.
Convergence

C onvergencf

obtained.

Set to terminate - :Taighten Belts



LOGIC OF UPDK (Cont.)

AT

P ase 0 Go to appropriate phase Phase 1
computations

Test to leave h Leave phase 0

Stay in

phase 0

C al~u late "Calculate
phase 0 phase pameters]
mode parai:Leters mode

Calculate

jAdditional Mode No Den Parameter'-" Parameters kBad?

YYese

Set to

Recalculate phase 0

I

Ki, i- = , INDPMT +1

(augmented payoff
coeff icients)

4l6



uPOK()

BEGIN

FNEW-MUY = WTMYI

F c 

ERR)t) 0.

ERR(S *

C CON T 1 N U

RITE

626

RITE

RWRI

RITES
SERRM() 9)

SITOL(I =0. - (O TN E

ALL
TOPJ



fUPO K (2)

CINTCYCM ) •0 TrTiT * TDUIN

I TIT=TTIT *TlINTMl

I TI
/ T Y~)-rIN CC TIIIT TNT T O

'nJ

(C N IN F-



UPDK (3)

INTSP =INTSTP- IK®
CN EWTMIY G

4

1,I1NT EX

0

UNDER -
l 1, INTEX

TEST 0 1 UNDER-1.

T

J~~EST TL

<

J E

0- -t-! DO507 I 1,J)

ST ; , UNDER - , I

(TEST-TT L -9

-- (C0-CONTIN UE)

4

"419



uPeDOK (4)

RITE
6

3200

I 0 U TTo

(DO 592 1 = 2, k.1 PMT1

S SI ERR (F=S I ERrc (1). T T IT

-- T

ERR (1)+< SIERR (I) ?

F

EoUT I OUT + I

0: OUT

*0

DO 593 1=2, IIIPMT)

SI TOL(I
SIERR (1): MAX OF SfERR (I), 2

CN4T I NU0E)

6

420



U PO0K (5)

0

(I NTSTP,

I'dTS TP& INTStY
I TIT= IT; T +

NEWTUY = 4 -- INdTPHZ(I TIT)j

TIT ITO INTDU II

T TI T s T T TI NT (I T I T)

L TTITRTTIT-TflUN

W R1 T E

TI OT T"

00*( O5201 1 2, 11PIlPMT)

1IIRN 11) ý< SI T O L (I) T

F

IOU T l OU T 4- 1i

W R IT E
6

0 U

ToJ-

OC
4 21



UPOK (6)

GG

RITE
6I

060000

DO 5401 1 2,11 IPMT)

SI(I E N O ,) T

E RONRINUE

RC I T F)

h210

FNEWTMY 
"3

I NTSTP 
I I NTSTY

-D O0 5 4 0 3 1 = 2 , 1 1 1 P M T )
• D~1 

ER R (1) T E Xj l
B(I)=-ERR 

(1) . MI N OF 1-,,• ERR(Ij

422



UPOK )

H

WRIT E
6

1849

.-- (DO5310 1=2,IIIPMT)

B(1) =-E RR(I) ; E I R RR(I)(1)

- ---------- ~(CONTINUE)

DEN

-~~~~ -- (o51 ~,IIPMT)F- 5 ,

-(CONTINUE)

(w~oiT INE)

F- tý(DO 5317 1 ;:2,1 1 1PMT)

-1~
RUM:-Z RUM-')B(I)- D DB(J)

-- (CO0N T INU E
L f~CO0N TINUE)

423



_p (e)

ECP (I): RUM

CP (1) >0.

<0."

_C P (1) 1 VE. PHISIG

P( DO 531, I: 2,IIIPMT)

CP,(l) =o

DO 5313J = 2, 111 PMT )

CP(I)=CP(I) - I I

{C 0 NT I N U E)

c P(I) C- c(i)cp1,)0

"-C ONTINUE)

i .,--°-ý 0

- 0 DO 5041 r Z,III PMT )

IC B (0)= 0.

---- 00 5 904J 2,IIIPMT T

C 8 (1) = C B (1) + I* 1, J .~ D 8B (J)

CONTINUE)
- CON TI NUE )

424



U P O K (9)

Y
1 0 5$901 -I1, IIIPMT)

7CS IN L (I)=C (1 + ýp ((-

CONT I N U'I

WRITE

2800)

(W RITE2 6

00 59051 1,1IIIPMT)

CS~z C 5+ C S I NL(I). C!I I

C 0 N T I N 1)E)

CS"Q--V'-
TS.1

-•• 00 59061 =1,1it PMT)

() CSINL(I)"IN,, L ý,) - cso

(CONTINUE

WRI 
TE

22020

WRITE
4%0 0//

425



U P D K (o

T
so(WO 5907 Im2,111PMT)

o PDI( (10)

WRITE

1 6
0.= 3300

flCSINL(IM WRITE

LM EERRRR (1
_____ _____ __1600

D SI N .0) •
T SINL(I) it SIERR(O? SNM 0

FDSitLM ) DSINL(I - MNAX OF .01,SER.)CPH5¶D3.IER

(CONTINUE)LU(CONTINUE)
CDSI N L(4) ~DSIs

1'-(OO 59903 1x2,111PMT)

f
-f(DOO 03 Iz2,IIIPMT)

4~26



UPDK )

OC I4 S INI (1

CIPSI(I) 2* DSINL(I) - ERR(IM

(CONTINUE)

(DO 5903 I I,IiIpMAT)

4 R ITU N

6
36.00

(CONTINUE)

-(--( ONTI NUr) (CONTINUE)

W R I T~ Eý kO*SINIW)EP()

34C

--Al(DO 590tl 1 2,11 1IPMT)

3-0 b; D SIWLM PHISIG



SECTION VIII

PROGRAM REV

This program is the program for calculating the solutions to the adjoint

equations. There is a striking similarity between the structure of the EXE
segment and the REV segment. In fact, REV proper was programmed by modifying
the same logic that was used in EXE.

The input to REV comes from three sources: value in CONMON, information
on TAPEI2 , and sometimes information on IATAP. The output from REV consists
of information on ILTAP and values in COMKON/2/ and values in COMMON.

Large arrays must be dealt with in REV. In order to conserve core, it

is assumed that COMMON/I/ and COMMON/5/ are available for use.

The Partial Tape

REV calls the routine UNPART to read the partial tape for everything
except the P matrix. To get the P matrix (if it exists) at the beginning of
a major stage REV itself reads the partial tape. (If the P matrix does not
-xist, REV constructs the identity matrix and puts it in P). The reading of
the partial tape is the most critical task of the reverse trajectory. The
trouble occurs because the information that is put on it, sequentially, in the
forward trajectory is needed in the opposite order in the reverse trajectory.
This means that the partial tape has to be read in the reverse direction by
beckspacing, reading, backspacing, etc. The F and G matrices are treated as
functions of stage time in the reverse trajectory. The F and G stage time
histories exist on the partial tape. Sinca the table of F and G's for an
entire stage would be too large to accommodate in the machine, the table of
F and G's which is actually used to do the interpolation is constructed from
the two adjacent poaits which bracket the current value of stage time in the
reverse trajectory. REV is responsible for updating the F and G tables as
the stage time changes; it does this Dy shifting the table values and reading
a new F and G point from the partial tape (via a call to UNPAIr) and putting
the respective values into the vacated spots of the F and G tables.

ng axd Time Points in REV

NID is an indicator set in EXE and transmitted to 1?EV on the partial tape.
It informs U-V when the end of a major stage (NDJI) has been reached (i.e., the
beginrdng of a major stage in the forward trajec~t.,y), and also 'ý±ether a P
matrix exists on tape at the stage point (ND=3) or if the stage point corres-
ponds t. the very first point of the forward trajectory (NDZO)

The NPT values in the array TIMESA are those values of stage time which
must be it during a stage of the reverse integration. These points are
determined during the integration of the forward trajectory; NPT and the
TINESA array go out on the last record written on the partial tc-pe at the end
of a major stage of the forward trajectory. Hence at the beginning of every
major stage of the reverse trajectory this array is read in from TAPE12

428



(via the call to UNPART). Every stage time value at which there is an F and
G matrix on TAPE 12 must appear in the TIHESA array. REV keeps track of the
next time point that mwst be hit in the cell TWIPT. When TIMPT i- hit (i.e.,
when TIMES=TINPT) this point is defined to be a stage point. The type of
stage point is reflected in the value given to INDSTG; this is done in the
area labeled "STGTST FOJTINE FOR REVERSE" in the listing. The meaning of the
respective values of INDSTG follow:

IDSTM = 0 not yet at a stage point
= 1 the end of the reverse trajectory
= 2 the end of a major stage of the reverse trajectory
= 3 the end of a minor st e of the reverse trajectory

(i.e., get new F and Q)
= 4 merely a time point (Throw away all points of the

TDMA array not needed by decrementing NPT by 1)

INTEPPOLATION

Before REV calls ADJEQ (3) to do the bulk of the calculation of the
derivatives, it computes the instantaneous approximation to the F and G
matrices by calls to the interpolation routine TLUREV. Also at this time,
PEV calls TLUWV to obtain the approximation to the instantaneous values of
ne control variables. (The control variables are put on TAPE12 at the

same time F and G are put on TAPE-12). This method of preserving the con-
trol variables ie not alimys exact. An alternate method which is better but
which involves more effort is available; it involves use of the CRVSR routine.

Integration

It is assumed that only fixed step integration is to be used in REV.
This is not too strong an assumption since the density of points of the
TIMESA artay will dictate the requirement of taking relatively small steps.
The integration step to be used in FfV is DELTSR. DELTSR is transmitted to
REV on the partial tape. Hence DELTSR may appear in major or minor stage
data of ECE. If DELTSR is not input EXE initializes DELTSR to DELTS at
every major stage.

N=mbered COMMON Usage

COMMON /A/ is assumed to be free. Many of the large arrays used in REV
are in the COMMON /i/ block. COMMON/2/ is for the matrices I*pj, Iq, I&.
COMhON/5/ is assumed to be free and will be used whenever any features of the
routine CTVSR are used. The core requirements of REV can be cut, down con-
siderably if appropriate arrays are eauiv-lencid to one another.

The following is a list of some of the variables used in REV which are
important and which may not be described elsewhere stice the7Y are not in

ALFHC(3,6) 2 point table of control variable values and the
interpolated values.

FMATX(3,15,15) 2 point table of F matrix valuaes and the interpolated
values.

429



GMATX(3,15,6) 2 point table of G matrix values and the interpolated
valuer.

TDMP(2) 2 point table of the stage times for the above
three tables.

NDUMMY an indicator which mimics the indicator ND and which
is put on tene ILTAP (by ADJEQ(8)) and which serves
the same purpose in DALCAL as ND does in REV.

TINESA (500) an array of stage time points which must be hit.
NPT the number of points in the IME-SA array.
TIlPT the next time point from the TIMESA array which

must be hit.

i430



z

u ~LU

c z
0 w

4- w

N 0

0 ~1

431



ICHENO1 4 "[111 FOR CAOJI UM A)

RE IN IA A ALL 1 U I NOWN

REA I
II 

C P A GP 

A K E

STAGINSTAG + A COUNT 
(UNPACKED)1

NO 6 3LINES 
LPNC1  

IASU

EEVEPSEX INTEPW lOA

CTVSR PAG1W
STAGE= ATEG I Ti " IME1 WTi SP

AD ILI E A MNO N P H CI C A M A X

INTCNLT:

-pfvERE INTEF TG10

ICCTS (1)(2

A0INEKSK = 64AAE

INTCAL= I

AOJEQ Cl

cy vvt () - U

h 3?S



00 O

.. .

~1K

4 UG0

-z

at

+

~ _Lim..

I F-- 'z NO ~

4i33



1. yTVSR - Control Variable Routine for REY

)uring the reverse trajectory, to obtain what is needed from tie Liforma-
tion on IATAP (prepared in DALCAL or MAINl).

To accomplish reading IATAP during the reverse trajectory, it is necessary

to request this in the data (DATAl):

INDAIF 0 IATAP is not read in REV.

INDALF 1 IATAP is read in REV on all cycles after '-he nominal.

INDAIF 2 IATAP is first prepared with all the information that
REV needs from it (on the nominal) in MAIN1. Then
IATAP is read in REY on every cycle including the
nominal.

CTVSR(2) reads IATAP if it is needed. If so, then CTVSR(3) comPutev the
.ontrol variable values from the CTABLE which was read from IATAP at CTVSR(2)

in the same manner that CTVS(3) does for the forward trajectory. One reason
for requesting that this be done is to preserve the CTABLE at time points
closer than those time points at which partials are computed. (the CTABLE is
an preserved at those time points where partials are computed without the

need for doing CTVSR calculations.) To request this optional type preservation
of CTABIX requires that DELTSA be input as well as INDALF (see CTVS). Another
reason for requesting that IATAP be read is to obtain the weighting matrix
table that was used on the previous cycle (this is needed if and only if fW =
5).

CTVSR is to REV as CTVS is to M.

434



zz

oIFL

0 "1

U 43c-



This is the basic subprogram of R]MV. ADJIQ is to REV as DIFEQ is to EXE.
ANEQ contains the equations for computing the derivatives of the adjoint
variables at ADJEQ3) and the transformation of the ad'ioint variable across
major stage points at ADJE(2). A description of the notiation used follows:

PHIO'.

PSIOLA To

PHIOIG 1 G

PSOIEWG G-
To

PHOLGW Girwl

PS0OLOW X OW1

fPHIOLl X =-F' A

PSIOLI \ -F'AI

IMATX F'

CKATX G

R(ATX P

RNATI R coRm from PARTS on TAPE12

PARIOM On
ax

PARTPH 1
ax

PARTPS (Y
ax

PSI771

IOKWA1
IS7771 J

PHJUKP P

PSJU1EP 7,U 1

436



sIsPT - . w-1 (k, 0 G) dt = Iy (+ K.Y)

FEFEI -JT X G W'- (X G)dt = I (+K

SIF9I -PT XyJG W-1 (X G)'dt I (+ K )

SISIK yU (,U- ) = K,,,

SIF IR U-1 (XyR) = K

FEFE X U- (), R)' = K
qPQ

PHIOLR X R (orX P)

PSIOLR XYR (or xyUP)

PHOLRU x RU- 1

PSOLAU 
xyi U-1

ALPSI X G1 dt or J 'dt
AT i CP

¶ALPSIl 1X G or WW'

ALPHC a

VALINS Xo

SISHII -XfG W-1 (XfG)'

FEFE1l -X G W-1 (X G)'

3•IFEII l@ W-I (X~,)Y

UMATX U-I

W v-1

TIMES t (stage time)

Method

ADJEQ(l): The integrated variables are initialized to 0. These variables
include X 0' X Ie Ig , 7o , and ALPSI. This point of the reverse trajectory
corresponds to the pbint of the forward trajectory.

37



AD!FW(2): Entry is made here at the first point of every major stage of
the reverse trajecto• ; this point corresponds to the last point of the
corresponding stage 'f the forward trajectory.

reverse trajectory

+

+

.+

stage j stage J + 1

forward trajectory ---

X and X 0 will, in general, be discontinuous at a major stage point. The
iAtial MLnditions for these variables at t he beginning of the new stage
( + Xy% are expressed in terms of their values at the end of the last stage
(Xý Xy.,) and the values z, , , A_., and P which have been computed at

ax 6x 8
the corresponding stage point of the forward trajectory and have been trans-
mitted on tape to the REV segment. The transformation is:

X+ rP++*

ADJEQ(3): At this entry point the derivatives of the integrated variables
are computed. In the process, XG W-I and X GW-I are computed; these wall be
put on tape at ADJEQ(8).

ADJEQ(4): This is entered at the beginning of every major stage, after
ADJEQ(2) has been called. At this entry point values of PIJUMP and PSJ'•MP are
output. These had been computed in the process of making the transformation at
ADJEQ(2).

ADJ,(5): Not used.

A.jEj(6): Code printing and value pr-;tn-ti. are do'ne for +.he following

variables: X X X G, X G. If the end of the trajectory is at hand,
e o t e n Y de (P Qo v

then code and Y-Alue printing are don~e also for the following variables : I
I I.., and XR, XOR, KCR, KYT K T (if they have beer computed). CM

ARE(7): This entry poir.t defines the variables that are t,ý be integrated

(see ADJ4(1)).

438



Al)YN : This entry point is galled inmediatel• after each integration
step. The purpose is to put XG W- and XpW-I, W-., t , and a on tape ILTAP
so that the information may be used later on to compute the perturbation to
make to the a history. In addition, it it is the last point of the reverse
trajectory (corresponds to first point cf forward trajectory), and if initial
conditions are being peiturbed, then X yd ,W, cpst U-1, yR U"I, KW, Kp,
Ky are computed. The K's are added to the corresponding I's then k,-ýR U-1 ,

XVR-J and xo are put on ILTAP. Except for the last record, ILTAP 1s prepared
by calling the ad-hoc blocking routine DALPACK.

_4 Alk.1

1. Any computations pertaining to the Y functions will not i. done if
ILNDPMT = 0. INDFMT is the number of Y - components in the various vectors and
matrices e.g., Xip, IYT, etc. (The Y-functions are those variables listed in
the ENDCON array).

2. Computations for initial condition perturbation e.g. , KA, Ky,
etc. are not done if INDIOP = 0.

3. It is assumed that MCONT > 0; i.e. there is at least one control
.Hiable.

4. The inf. rmation that ADJEQ needs froyw PARTS is available when AWEQ
is called. RUV proptr sees to it that the partial tape is read when it is
needed. Therm is one exception to this: ADJEQ(8) reads the partial tape to
obtain the R matrix (if it is neede!d).

1,39



2 
� 

�

S 
b� 

C 

-

��1�2=

-
5-- 

-=��

�r-�a 

F-i

� 
I' 

�

lAo

I

L



AOJEQ (2)

wj "i l Wii , FUSHl (ILuApi

I -1-0CON TI

WRITE ILTAP:
AoilG, t. NOUMMY RE!I ýNDp 1I

6. 0 .W'D REAO 12: 1
(VIA SkOC.(I I6 ROUTINE R

COMPUTE

8120
RETURN WPVA 8)

aI NCIOP

0OMPUTE

6,1I P U

K64 = A#,, RU
1  

A 1 R)

I"= ,+ K"

o INOPMT

COMPUTE
A~,fl R

A,'),,~ RU

WRITE ILTAP:

R LF'

0
INDPMT

MOVE I..V,
INTO COMMON

sa35

RETURN

441



3. UNPART - Unblocking Routine for Partials

Purpose:

To unpack TAPE12 which has been packed in large arrays to eliminate
unnecessary I/O device selection.

Method:

TAPE12 has been prepared in chain EKE. The records only contain non-
zero from the output values in cimain EXE.

Entry is made to the routine wilh the followf'ng statement:

CALL UNPART (MCONT, NSTATE,IFM,IGM, IT,ND, IALP, IDEL, IWA, IWAI,
CTABUBINDPrMT PARTPS,IK,IENTRY)

MCONT Number of control variables.
NSTATE Number of state variables.
IFM F from chain EXE.
IGM G from chain EXE.
IT Time.
ND = Control words.
IALP Control Variables.
IDEL Delt time used in reverse.
IWA Weighting Matrix indicator.
TWAI Weighting Matrix data.
CTABUB Control variable bounds data.
INDPMT Number of constraints.
IPARTPS Terminal partials.
IK Subscript used in storing data.
IENTRY Entry point to subroutine UNPART.

Subroutines called from this routine include IZUNPK and normal FORTRAN
i/0 routines.

442

I



/
I1

vf � -� U
, (k� N 4'

( - -- �
NJ � I-h.

�

� K -- C

-� H' �

.- b'i

t��L) AA� (
0�

U H
2 -.

5. 3* i U'

�VW-N-
______ �' - a"

N - *

���1

Is. -- �r;ta�4.�4 -
C -

'S 3 ± -a �) � >
:: (f;.
3K I4*� KU � 0 (�- (r

7 � j ZN U *

I�K �
4 �

e�
2

:� i� 4<, �

00 0

�4 )43



4. KUM - Integration Routine for REV

Purpose

This routine is essentially the same as !4lINF. MIMINR is used for the
reverse trajectory. It does not contain entry point 5 for truncation error
estimation and step vize control since it is assumed that fixed step integra-
tion will always be ube' in the reverse trajectory.

M~ethod

The relationship of MIMINR to REV is analogous to the relationship of
MIMINF and EME.

&marks

The MIMINP write-up should be consulted for more detailed information.

444



IEI
-- s.

445



5. WMA - Weizhtinyi Matrix Routine

PLupose

To provide optional methods for computing the inverse weighting matrices
(W-1 ) and (U-I1 )

Usage

CALL WA (IENTRY)

This routine follows tie entry point pattern of ADJEQ. Several options
are available. W-1 and U-1 are determined by the following inputs:

INDICATOR "TOMINAL DESCRIPTION

INDWMA 0 Basic option indicator.

IWCYCL 0 Starting matrix indicator.

IWDELT 0 Periodic matrix indicator.

WAI 0. Basic constant input array. WAI is an array of
six values.

WBI C. Basic constant input array. WBI is an array of
six values.

UMATX 1. Basic initial control variable input array UMATX
is an array of fifteen values.

In the following description:

The subscript i runs from 1 through MCONT.

The subscript j runs from 1 through INDIOP.

The subscript K runs from 1 thý'ough MCONT.

MCONT = number of control variables.

INDIOP = number of initial control variables.

SINTLGi = total integral of X G

t = time.

INDWIA = 0

(a) W-1l .
'ii

() j-1 UMATXj

446



INDWMA = 1

(a) when NCYCLE ! IWCYCL - 1

W.-=.

(b) when NCYCLE > IWCYOL - 1, the W-I matrix is time - varying:
W-1
W1 = WAI + WBI t

(c) U-1 = UMATXj

INDWKA = 2

(a) when NCYCLE ! IWCYCL - 1:

iii

(b) when NCYCLE > IWCYCL - I and IWDELT 1 0 and NCYCLE is not a multiple
of IWDELT:

Wi-I= I.
i,i

(c) whea NCYCLE > IWCYCL - 1 and IWDELT 0 or IWDELT 7 0 and NCYCLE is
a multiple of 1WDELT and no previous cycle has beer run:

i,i1

(d.) when NCYCLE > I OYCL - 1 and IWDELT 0 or IWDELT V 0 and NCYCLE is
a multiple of IWDELTr and a previous CYCIZ has been run:

WAI~ + WBI, -j ISINTEG.1 I SINTEGJJ

(MCOMNT"O

-where SINTEGK = oI'G t from the previous cycle.

(e) U-1 = UMATX

INDWMA = 3

(a) when NCYCLE ! IWCYCL - 1

w-1

(b) when NCYCLE > IWCYCL - 1 and IWDELT 7 0 and NCYCIE is not a multiple
of IWDELT:

w-l= 1.i,i

Y4'7



(c) when NCTCLE z IWCYCL - 1 and IWDELT = 0 or INDELT Y 0 and NCyCLE is
a multiple of IWDELT, the W"1 matrix is time-varying:

.-I.
W, - |

Wi1i 2. (MCON 771)

ivre W WAI3 + WAI• 4 * ,
h

Wi= WAIl+WAI 2  h

B = max value of X G on the previous cycle.
icpK

h = instantaneous value of X GT W

(d) U-1 =UMATX 
PK

INM• =4

(a) when NCYCLE !C IWM;L - 1

W.-l
l1,

(b) iven NCYCLE > INCYCL - 1
-i

W. . = 6i,

where 8i 0, inless i emainder upon division + 1, in which
caae 8• . f (NYCLE) by MCONT

This allows the user to work with one control variable at a time,
staying with each for IWDELT cycles at a time.

(c) U11 - UMATXj ci

(a) when NCYCLE ' IWCYCL - 1, or no previous cycle has been run, the W"

matrix is time-varying:

W.l- WAI. + WBI. - t

(b) wher. NCTCLE > IWCYCL - 1, and a previous cycle has been run, the W-1
matrix is time-varying:

The calculation of this W-1 matrix is somewhat complex.

For each new cycle a normalizing factor W' is computed by the formula:

tol¢< b I
W1 (W12 I + ý (U-1 2 } 1/2

1448



where W.-1 and U-1 are from the previous cycle.
, i JI

For each stage the quantities W are computed as an average value for
Wj•1 during the stage on the privious reverse.

At each point the quantity Wi-max {.2, min 5., i. is
* i th

computed, where X is the value of X at this time during the pre-
vious reverse. (If CTABJB or CTABLBS is being used to bound a control
v riable and it lies on its boundary and Xi and Aki agree in sign,;! is set to 1.). •

For the first point computed in the stage:

-l

W,. (w.)•/4
1

For the (j + 1)st point computed in the stage:

-I -W'
-1 = ~o. W

W. W + J + i

where Wi = lW1, at the Jth point computea.

(c) when NCTCIR < IWCYCL - 1

U1 is computed by a formula analogous to that for W.-I. at the first
phint in a stage. 1,1

IN2WNA = 6

(b) U 1 
- UMATX

3 3

The weighting matrices for INDWMA 5 are designed for use with the NGTLS2

control system only.

W1A is called by ADJEQ.

kMA calls CODES and VALUES..

449



z

0

u

-11lo.z w zd

0. 00
u 

u

-450

0•5



0

7 40



I
I-
2
0
U

F ��1

I
U

A I-1. z
I - 0

0 wIZI
b

U
U. .� II +
- U - ;i�i - - -.

- � -Ii - - -
- 4

B.: -l
- 4 �.-, a II -

o ,-, -

0-I At
U.

2
U

- --. *4
I- - -I
2 -.
o -

4 4
45- U U' U *- U I

U. � U' 05

- � .E
a z - 9 � a

o � 0 *
U U

AwY'ZiTL�j�J I-

U 5

I- �

L�- + aF�- �
Ug

452



6. DALPACK - Blocking Ebutine for As

Purpose:

To store data in large arrays to eliminate unnecessary I/0.

Method:

Data is stored in a large array until it has been filled before being
output on tape.

Linkage to this routine is accomplished via the statement

CALL DALPACK (IWGTFO,IT,NDUN4Y,INDPMT,1,ICONT, IWGTSO,IALPHA)

IWGTFO arrays used ir the control program.

IWGTSO arrays used in the control program.

IT TIME.

NDUMMY control word generated in reverse

INDPMT iumber of constraints.

MCONT number of control variables.

IALPHA alpha pcintt in CTABLE.

Remarks:

IW Weighting mati ix

ILTAP Tape being used

Normal I/O routines are called.

)153



PA L PACK

{ I(NNDPMT 0

[M:SA (MCONT) 2J

(IXA4MSA)> MAX

1202 _ _

3 001 I =1 MCONT ~ A31WWNT iCNT(INDPMT)+il

IACIXA IWG(O (I)F ((1XMNSADýMAý T

IA(JXA1) = IALPHA( 1.)
It (IXA+2J)V(I 1 ~-10

-~ ~~~~~ 302p2 CNTrIDP~~

IIXA= IXA+ 3 4~ _'A__ZIMC)T NP~ o:2I-

~0(1) [IN 0 2

IIA(IXA+I) =NOUMMY IAIA = IALPHA(l.I)

LIXA =IXA +2 jw( 141037

RETURN JLA

IA(IXA) =IT 1A
IAtXA+I) t40DUMMY P iA1

S 1 t2 __I-

ffOS 1I-IIN0PMT -

-DO$ K--IMCONT _

F xA(I IWGTSO(I K) I
- ~IXA* IXAtI

7

- ---------

14514



7. FLUSH - BUFFER FLUSH ROUTINE

Purpo~ e

To flush the ILTAP buffer at the end of the reverse trajectory.

CALL FTUSH(ILTAP)

FLUSH

E NTER )R

I! XA=l?' _CY•... > RiT-URN-

"°At

IA A



8. IZUNPK - Switch Testing Routine

Purpose:

The routine tests a set of switches to see if the argument
should be set to zero or a number should be pulled out of
an array.

Method:

A set of switches has been preset by another routine and
IZUNPK tests these switches and resets all arrays in proper
order.

Usage:

Entry is made to this routine by the following statement:

CALL IZUNPK(IA)

where

IA 'The argument to be se by the routine

No other routines are called by this subroutine



IZUNPK

F T
IA(KMK) >IswIT(LL)

IN IA(IXA)

IXA TXA + 1 IN(K LA0K ISWIT(LIJ)

T759

LL =LL + 1 ] =KY +1

LL I

RETURN



SECTION IX

PROGRAM GRAPH

A program has been set. up in the program as a data gathering chain for
plotting purposes. The CDC 280 plotting package set up at AFWL was used in
checking out the program. The basic part of the segment is still in the
program. To use the plotting equipment, it is only necessary to provide the
additional subroutines, normally available on the 6000 series computers,
which output information to the 280 for photographing and displaying at the
console. A preliminary report on the CDC280 has been included, which gives
detailed descriptions of the routines, including purpose, operation, usage
and examples.

1458



CDZ28U

PPRMDINARY REPORT

Some of the routines herein described were originally developed for use
at AFML. Most of the report was taken from "•RT Plotting Routines in use at
LRI-Livermore" written by Judith D. Ford and Marilyn J. Welsch (UCHL-14427-T),
sinc, many of the routines are the same in name, as well as effect, as iuhose
in use at LR.

ABSTRACT

This report describes a syste- of plotting routines. There FORTRAN
routines provide a flexible package for point, line, and character plotting
via a CDCZ30 display device.

INT'RODUCTiON

This paper describes the subroutines available on the 6600 which output
o the 280. These routines generate data in a buffer in the 6600 central

memory. A peripheral processing unit (PPU) clears the buffer and stores the
data on file named -FIIMFL-. At the completion of the run a PPU sends this
file to the CDC280. The information is then photographed at the recording
console (or displayed at the operators option). The film is then developed
and made ready ior distribution.

This report gives detailed descriptions of the 280 routines, including
purpose, operation usage, and examples. The routines are separated into the
following classes:

1. Mappin Routines:

These routines set up scale factors for converting the users coordinates
to the 280 raster point coordinates (Raster point defined later). These
routines may also draw scales with grid lines or short marks along the axes.

2. Arrow, Line. and Point Plottfnr Routines:

These routines provide the facility for plotting various types of curves.

3. Character Plotting Routines:

These routines provcide the facility for plotting alphanumeric information.

4. Absolute Plotting Routines:

These routines position the beam independent of the scaling defined by
the mapping routines.



5. Utility Routines:

These routines give the facilities for fr-ming, and initializing the
plot package.

6. Internal Routines:

Internal routines perform various functions necessary to the operation
of the system, and the user is normally not aware of their exi cenci.

The CDC280 plane is defined to be a (1024 by 1024) square of addressable
points on the face of a cathode ray tube (CRT). These points are called
raster points. Information is displayed by unblanking the CRT bees. The
beam may be moved to a new position without unblanking (i.e. without plotting
a line). Points may only be positioned at a raster point. Linea may only be
drawn between two raster points (i.e. the beam unblanked between these two
raster points may or may not intersect other raster points.

In the following description of the 280 routines, it is assumed that all
arguments are given in the same mode as the du=my arguments, using the standard
FORTRAN conventions for the names of integer and floating point variables.
The dummy arguments spelled -DUM- are not used by the routine. These arg-mente
are reserved in some cases for future options.

For the purposes of these routines this 280 plane is regarded as having
the usual X, Y cartesian coordinates, both of which range from 0. to 1. with
the origin at the lower left corner. If no mapping routine is called all
coordinates for the plotting routines are assumed to be between 0. and 1.

MAPPING B)TITESS

This group of routines makes it unnecessary for the user to scale his own
numbers for plotting on the 280. This is accomplished by establishing a map-
ping from the users cuordinate plane onto some portion of the 280 plane. This,
by the way, allows more than one graph to be plotted on a frame. CALL 1MAP
(LIN, XMAX, TMIN, YMAX, WI, MA, YM7[. mA).XMIN, XKAX, YMIN, YMAX are the
users maximum and minimum cartesian coordinates.

XMI, XMA, YMI, YNA are the maximum and minimum coordinates of the 280
plane desired. to be used.

This description encompasses a group of twelve routines, each of which
established a mapping from the rectangle in the users plane with corners
(XMIN,YMIN), (XMAX,IWX) onto tho rectangle in the 280 plane with corners
(XKI,YMI), (XDA,YMA). Unless reset, this mapping applies to all subsequent
plotting, except the absolute plotting routines.

Linear mappings are established by -MAP-,-MAPG-, and -MAPS-.

MAP established a mapping only



MAR; plots a grid with scale numbers.

MAPS plots a rectangle with scale numbers and short marks along the axes.

The suffixes -LL-, -SL- and -LS- may be used with any of -MAP-, -MAFG- or
-MAPS- to modify the mapping as follovs:

LL establishes a log-log mapping.

SL establishe- a semi-log mapping with the X-axis linear.

LS establishes a semi-log mapping with the Y-axis linear.

The cycles are determinmd automatically. Examples:

CALLI MAP (0.,io.0.,io.,io,0.,l.)
sets up a linear-linear mapping,

CALL MAPSLL (a.,iO.,l.,IO(OO., .l,.999,.1.999)
sets up a 1 cycle by 5 cycle scale, and

CALL MAPGSL (....00.,i0.,l.,iO0.,.l,.5,.!,.999)
sets up a linear by 2 cycle grid.

The mapping function is initially set

XMIN = YMIN - XMI = YMI = 0. and XMAX = YMAX = XWA = TMA 1.

The scale numbors will overplot the grid lines if SMI or 1MI is less than
.078125 for linear scaling or .043 for logarithmic scaling.

Plotting routines specifying point(s) out of the defined user domain are
handled in two ways:

1. if the scaled coordinate is within the 280 range then the routine is
executed at the scaled coordinate.

2. If the scaled coordinate is outside of the 280 range then this coordinate
is projected on the nearest extreme edge and the routine executed there.

An error message is printed whenever a mapping routine is called with XMIN
WAX, YMIN Z YRAX, XMI - XMA, YMI ! YMA oi' a log m&Dping is called with a non-
p.-sitive argume nt..

CALL MAPP(RiMAX, XMI, XMA, YMI),

RMAX is the maximum radius for the user's polar coordinates.

XMI, XMA, YMI are the same as in -MAP- above.

-MAPP- establishes a mapping from the circle of radius RMAX in the user's
polar coordinate plane into. the square in the 280 plane with corners (XMI,TMi),
(;kA,YNA) where YMA = TMI + 'X(W - xil).

!,• L



Vertical and h'.rizontal reference &xos will be plotted, with scale numbers
along the zero-degree axis, and with the origin at the neater of the square.
All (X,Y) pairs given in later plotting routines will be :Llterpreted as polar
coordinates (R,9) until another mapping routine is called.

CALL MAPX (XMIN, IMAX, YMIN, YMAX, XMI, XMA, YMI, YMA, I)

I is an integer 1 " I ! 13.

The remaining arguments are the same as in -MIP- above.

-MAPX- allows the mapping to be specified at execution time, according to
the value of I. A cal). to -.MAPX- is equivalent to a ce.1. to one of the above
mapping routines, with the integers 1-13 corresponding Lo these routines in
the following order:

MAP, MAPOSL, MAPLS, MAPLL, MAPG, MAPGSL, MPAGLS, MAPGLL, MAPS, MAPSSL,
MAPSLS, MAPSLL, MAPP.

When I - 13 the arguments in MAPX correspond to MAPP as follows: CALL
MtvX (DUl4,RMAX,DIfM,DUM,XMw,XMA,YMI,DUM,13).

ARROW, LINE AND POINT PLOTTING ROUTINES

Order Alphabetically

These rpl'tines may be used to display and/or photograph data in graphic
form. The user's (X,Y) coordinates in these plotting routines are scaling the
scale factore set up by a mapping routine. If no mapping routine has been
called, these coordinates are assumed to be in the range 0. to 1.

CALL S1TBEAM (X,Y)

X is the abscissa at which the beam is to be positioned.

Y is the, ordinate at which the beam is to be positioned.

-SErBEAM- causes the beam to be positioned at (X,Y) without unblanking.

CALL LINEOPT (DUM,IN TEN)

DUM is a dummV argument.

INTEN is the irtensity at which all arrows, lines, points. and vector!3 will
be plotted.

0 low intensity (fine line).

1 high intensiui (heavy line).

4161



-LINEOPT- is initially set to lcor intervity.

The mapping routines reset -LINEOPT- f oz witnin,

CALL POINT (X,Y)

X and Y are the coordinates of a point.

-POINT- will plot a point at (X,Y) with intensity set by -LINEOPT-.

CALL LINE (Xl,fl,x2,Y2)

(X1,Y1) and (X2,Y2) are the coordinates of two points. -LINE- will sweep

a line from (Xl,Yl) to (X2,12) with intensity set by -LINEOPT-.

CALL LINEP (Xl,YI,X2,Y2,K)

(Xl,Y1) and (X2,Y2) are the coordinates of two points.

K is an integer.

-LINEP- plots a line consisting of every Kth raster point between (Xl,Yl)
I (X2,Y2). Intensity is set by LINEOPT

CALL VECTOR (X2,Y2)

(X2,Y2) ir• the coordinate of a pyint.

-VECTOR- sweeps a line from the current beam posi'ion to (X2,Y2) with
intensity set by LINEOPT.

CALL POINTS (X,T,N)

X and T are the names (first word addresses) of arrays of the X and Y
coordinates of points.

N is the number of points.

-POINTS- plots the N points given by the arrays X and T. The intensity

is set by -LINEOPT-.

CALL ARROW (X1, TI, X2, Y2, I)

(Xl,nl) and (X2,Y2) are coordirates of two poits.

I is an integer 2 1.

-ARROW- sweeps a line from (X1,fl) to (X2,Y2) and draws an arrowhead at
(X2,T2). The arrowhead measures I raster points in length. I 1 10 is a

real size arrowhoad. The intensity is set by -LINEOPT-. The fina2, beam
position is (X2,Y2).

463



CALL L)XES (X,Y,'q)

X and I are the names (first word addressf 3) of arrays of the X and I
coordinates of points.

N is the number of points.

-LINES- connects the N points given by the arrays X and Y Wit- 15ne

segments. The final beam position is (X(N),Y(N)). The lines are swept vith
intensity as set by -LINEOPT-.

Order Alphabetically

CHARACTER PLOTTING ROUTINES

This group of routines allows the plotting of alphanumewic information,
either to label the various curres, Lines, etc., produced by the point and
line plotting routines, or as more vei'satile alternative to an off-line
printer (this is distinct from the -FILMPR- option. -FIIMPR- merely simulates
the printer). This versatility derires from:

i. The capability of positioning a lire of alphanumeric information any-
where on the current frame (vs. the top-to-bottom progression of a page printer).

2. The two orientations, two intensities and four character sizes that
are available, and

3. The expanded character set, which includes many nic i-key punchable
characters. (not immediately available)

CALL CHAROPT (DUN,Dm, IzSZEIOR,DDUM)

ISIZE = 0 miniature

1 small

2 medium

3 large

IIOR 0 horizontal (00)

1 vertical (90')

-CHABrPT- specifies the size (ISIZE) and orientation (IOR) of all characters
to be plotted. The option is changed by a second call to -CHAR)TPr-.

The maximum string length and line limits for the various sizes are:

464



Symbols/Line Lines/Frame

miniature 137 64

small 86 43

64 32

large 43 22

In the character plotting routines, the 280 plane is 7onsidered to )e a grid
of rectangles, each containing one character of the chosen size. The number and
dimensions of these rectangles depend on the character size and orientaticn.
Characters are drawn within the rectangle. The rectangle is positioned such that
the current beam position ie in the lower left corner of the rectangle. After
the character has been drawm the beam is positioned in the lower right corner of
the rectangle.

CALL SYMBOL (A) or CALL SYMBOjL (CH...$.)

A is the first word of BGD data. The end of string is designated by $.

MH.. .$. is a Hollerith text of M characters. The last two characters must
be $., which designates the end of string.

-SYMBOL- encodes BCD data into the 280 character set and plots it starting
at the current beam position with options as given by -CHAROPT-.

If $. does not appear at the end of string -SYMBOL- attempts to plot words
up to the field length.

CALL NUMBEP (X,F)

X is a variable (fixed or floating).

F is any ellowable FORTRAN format ' 10 characters.

-NUMBER- converts the variable X under the given format, determines the
field width and plots the resulting charactera as -SYMBOL- would.

Example:

X = 1.E5

CALL NUMBER (X,51ElO.2)

4 65



would plot

bbbl. OOE05

and

I =42

CALL NUMBER (1, 9H4HIN = ,13)

would plot

INb = b42

ABSOLUTE PLOTTING ROUTINES

Order Alphabetically

These routines position the beam independently of the defined mapping
function. The aiguments range from 0. to 1. Out of range points are projected
on the nearest extreme edge of the plotting areas.

CALL ABSBEAM (X,Y)

X,Y are coordinates of a point.

-ABSBEAM- causes the beam to be positioned at (X,Y) without unblanking.

CALL ABSVECT (X,Y)

X,J are coordinates of a point,

-ABSVECT- draws a vector from the last beam position to (X,Y).

CALL ABSLINE (Xl, Yl, X2, T2)

(XI,1!) , (X2,T2) are coordinates of two points.

-ABSLINE- draws a line from (XI,YI) to (X2,Y2).

CALL ABSP (X,Y)

X,Y are coorcinates of a point.

-ABSPT- plots a point at (X,T).

466



UTILITY ROUTINES

CALL INIT280

-IIIT280- initializes the 280 routinee and must. be called before any of
the plotting routines.

CALL FRAME

-FRAME- advatces the microfi.l to the next blank frame.

INTERNAL ROUTIN&S

These routinae arm esseutial to the plotting routines, but are not called
directly by the user, only by other routines in the system. -GRID8O- is called
by the mapping routines which draw scale marks or grid lines and label them
with scale nunbers.

-GTRF-• -GFQF-, -EQLF-, -SEQF-, -SHLF-, -UNQF-, and -ZGTRF- are functions
which are used in -GRID8O-. Each has two arguments and returns a value of 1
-f the first argument stands in the indicated relation to the second, a value

f 0 otherwise.

FUNCTION RELATION

GTRF greater than

GEQF greater than or equal to

EQLF equal to

SEQF less than or equal to

SMLF less than

UNQF not equal to

These fInctions call -ZGTRF- to establish the value.

-TEST-' is called by the mapping routines to establish legal arguments.

-ADJUST- is called by some of the plotting routines to convert non-linear
arguments to linear before scaling.

-LENGTH- is called by number to count the number of characters to be
plotted.

-STREND- called by symbol to test for end of string symbol.

-PSCALE- is called by the mapping routines to establish the scaling.

-PWDTQ- is called by the plotting routines and forms the 280 instructions.

4 67

L



')RGANIZAI'.ONAL CHART FOR GRAIM

GRAPH

PAPLT PRPLT

L PLTCUR

L

i CDC LIBRARY

468



This is the segment for plotting curves from the forward trajectory on
microfilm. GRAPH is called by CTLS before the call is made to REV. Therefore
when GRAPH is finised it calls REV. However CTLS calls GRAPH if and only if
there are plots to be made. The nuimber of core locations reserved for setting
up the tables for plotting may vary depending on the available core. In
general, this array (POINTS) should be dimensioned as large as possible, s
that GRAPH takes up almost as much core as the largest of the remaining segments.
YAYPOT is the value at which POINTS is dimensioned. To ;ary the dimension of
POINTS it is necessary only to change the dimension statement for POINTS and
the data statement for IAXPOT in GRAPH proper.

GRAPH drives the plotting computations by calling PAPLT to plot the
regular trajectory curves (those specified in the PLOTS array) and PRPLT to
plot the F and/or G time history.

I

F6



DATA FOR PLO7TTING

Two types of plotting are possible - prirting along with the normal
output, or by plotting on microfilm.

Printer Plottin&: (done in CTLS segment from DAICAL)

Example: INDPLT INT 39,39

The a and/or 8 ba stage time history are plotted for each major stage for the
respective cc .itrol variables if the corresponding two digit integer of the
INDPLT array is non-zero and if the second digit is a multiple of the cycle
nimber. The first digit may be either 1, 2, or 3:

1 - a history only (and - istoy if INDh*A 5)
2 - 8 a history only (and W histqry if INDW1 A - 5)
3 - both a and 8a history (and W-1 history if INDrA - 5)

Microfilm Plotting: (done in GRAPH SEGMENT)

PLOTS BCD 6 TJMbIHG77FbALpHDbAXAcIHbTMbbGAK7D

INDFAG 3

IGCONT 2

The definition of the abscissa and ordinate variable of each plot are listed
successively on the PLOTS card (abscissa, ordinate, abscissa, ordinate, etc.).
A plot of up to six passes of each cycle will be made for a given curve, all
passes for a cycle for a given curve will appear on the same graph. Values
are saved on tape for plotting at every (IGCONT+l)th valid integration step.

INDFAG 0 do not plot partials
1 plot the F wutrix vs. time
2 plot the G matrix vs. time
3 plot both the F matrix and the G matrix vs. time.

470



SEGMENT GRAPH)

R~EWIND 17

REWIND ILTAP

CALL PAPLT (MAXPOT, POINTS)

CALL PRPLT (MAXPOT, POINTS)J

CALL F~RAME

CALL CHAIN (REV)

END

4s71



7. PAPLT - Paramet•#r Collection Routine

Purpose:

To read TAPE17, assemble the points to be plottad into arrays and call
the routine to do the actual plotting (PLTCUR).

Method:

TAPE17 will be rewound and re-read if there is not enough room to
accommodate all the plots at one time. Hence, if there is room to
accommodate just one plotting array, all plots will eventually be made;
if there is not room for one plht then no plots will be made. PAPLT
must be compatible with PLTS of the EYE segment and with the initializa-
tion done in MAIN1 for the plotting variables. The format of' the POINTS
array appears on the flow crart; PAPLT fills this array as it reads TAPE
17 until the last point of tCe last pass of the rorwa-d trajectory is
reached. PAFLT does not fill up the POINTS array with those plots that
have already been mad-e i.e. on previous passes through TAPE17 ). Also,
PAPLT does not fill up the POINTS array with those plots for which it
does not have room on the currert pass through TAPE17.

The following is a description of the important variables that are used
internally to the PAPLT routine:

INDNTD the number of plots to be made on a given read through
TAPE17

JPLT an array of indicators; a function to the LPLT array
KIXOM the maximum number of plots that will fit into the

POINTS array
MMPT an array of base subscripts for each pa&s (for the points

array)
NPAST the pass number read from tape
IPOINT the point number read from tape
KPASS min (NPASQ,6)
NPLT an array to indicate if the i'th plot has been made
KPLT array of indicators; may change for each read through TAPE17
NPLTS the number of plots that have been made

For each plot that is made, there will be KPASS curves appearing on the
same graph, one for each pass of the forward trajectory. The plots to
be made are defined completely in the data ox, the :LOTS card.

SI.-



J

I--

TIL -j''

r~10
r~41 41L.

473- ..



8. P1WLT - Partials Collection Foutine

urpose:

To read ILTAP, assemble the point to be plotted into arrays, and call the
routine to do the actual plotting (PLTCUR). ILTAP contains the time
histories of the F and/or G matrices.

Method:

The organization of this routine is very similar to that of PAPLT. The
differences that do exist make this the less complicated routine. The
elements of the F and/or G matrices are always plotted as a function of
time. PRPRLT will make beveral passes through tape ILTAP in order to
get all the plots if it is necessary to do so. For each element or" the
F and G matrix one plot will be made (consisting of just one curve).
The format of the POINTS array appears on the flow chart; it is different
than that from the PAPLT routine.

In addition to the variables described for PAPLT, the following variable
definitions are important:

NF number of plots to make from the F matrix.

MG number of plots .'. make from the G matrix.

INL • respects •ly, the left and right limit subscripts for
INR the array that is rtad from tape; any variable whosE

subscript in the arraý- lies within the interval [INL,INR]
will be plotted for Vie current read through tape ILTAP.

474



- I
-�

___ I
V

I -�- I-- �

::�K� I� !� U

+ 4 U

I- I.
I Li

U j1Irj j�*.
uI� -1

�n t 2 �j]
�1

a 4

4 �

I'

� I

�

75



9. PLTCUR - Microfilm PlottinR Routine

Eurpse:

To plot a set of curves on one graph; the output is to be to microfilm.

CALL PLTCUR (wl,NaPmS,n,n, cODEX, CODEYA,CODEYB)

where

Ni Number of curves to be plotted on a graph.
N1PrS An array containing the number of points for the

respective curves.
X1 An array containing the abscissa values for each curve.
fl An array containing the ordinate values for each curve.
CODEX A Hollerith code word for identifying the abscissa; this

wl be placed under the abscissa axis on the graph.
CODEYA Hollerith code words for identifying the ordinate; these will
CODEYDJ be placed along the ordinate axis on the grarh

The format of the X1 and n1 arrays must conform to the following standard:

Points for first Points for Points for
curve second curve etc. last curve

Xflor Yl: _ _

flPTS NlPrS(2) NlPTS (Nl)

In addition to identifying each plot with the Hollerith code words from
the calling sequence, PLTCUR will put the cycle number, the pass number
and the case code in the lower left hand corner of the graph. PLTCUR
will put two graphs on a frame; for any given call to PLTCUR the graph
for that call will be put at one of these positions in the frame depend-
ing on the value of the variable SHIFT. If SWiFTM) the graph is placed
in the first half of a frame; if SHTIF.5 the graph is placed in the
second half. PLTCUR updates SHL" to the appropriate value and changes
frames when necessary just before the return is made to the calling
program.

All curves on a given graph will be made in low intensity =xcept the
last which will appear in high intensity.

PLTCUR calls a number of routines which must exist in the library
"microfilm plot package."

A graph will not be plotted by PLTCUR if the maimum deviation within the
X1 or fl arrays is less then 10-4.

476



XMAKN- .a

YMIN .1. E "FN

vý 1 NCALL 
M AP 

0.O01)I)COOEYAJ

MS ~~CALL LINEOPTIODJM.1) CL

DsIIN CALL CNIfoPT(DuoM. DUM. 0. 1. DUM) CALASSBEAM (G.. -1+ H

NS.NS N11PSUMIS'N(!)1

Do I I Ulms CALL ABSUEAM(t...624S I

CALLSYMBOL (PAS)

hI(XI(I)-LT.01M)X(M N-XI(I) CALL WUMBER(SMARPC. SHEIG

'CALL. ASUSBAN (e...o3+smiJ~r)

lIYWO.GT.YMAX)YMAX Y1l0) CL A

_______CALL SYMBOL fCYC)

Ii(vICI).LT.YMIN) Y MIN yl (I) [CALLCHAROPT.DM LMQ.D.)

DiL.(YMAYMIJ/l jI BS31AM (e.6. .03 SHIFT)

SMARI-Y MIN CALL NUMBERt(NCY 7LLI)

D034I-1,11 ALLADSIEAM( 14. .2 +SHIFT)

CALL SETS EAM( XMIN ý) CUNME(NPASS7TI

CALL ABSVECT(.W.S +SHIFT)
CALASOT1.SH .S4T) CALL NU MB'-R(SMA-K.S I.¶SCALL ABSVECT( I.,. .ISHIFT)CALNME AR.E13

CALL~~~~AL AEVC(.,-tSI~lDSBEAM . .08 ,SHIFT

CALL AOAVCT (.49, 00 tSlIFT) [,KCASE NCIASE

Lwx~)~C ~CALL. SYMBOL (COoX)

BC

4T77



PLTCUR (2)

C 0

CALL CHRP DMDU...)M

>IF(SI4IFT-dGT.O)GO -MO

CALL A13SBEAM (.,a,..z+SHIT

4 
SHIFT-8.

CALL SYMBOL (CODYBA)

C ALL SIMBOL (cooy,0) REND~

DO 50 I.I,NI

IF(,.EQ.NI) CALL LINEOPT(DUM.

[KPTSN NI PTS(I)

CALL ETBEAM (XI (JSUB o).YI(JSU8)'l))

CALL VýCTOR(X IJ)- YI()

478



10. Dummy Plot Routines

The following dunmiy routines are included in the deck so that it may
be compiled on a machine without attached CDC 280. When using a
machine with attached CDC 280 these routines should be replaced by the
library routines.

479



N' fn~t N fn. (\\jmN - "

000 0 000 000 CCC

co c Qo 00c0 00

444(~ ~~~ Z 4

L) a CL

w wu

4) 4 .)4
m - 0 oP a

)LAJ U'D)L Z D4 zDu

w) (x. Vwc nc ) ru )C

48o4



000 coo coo= c 00000a
C)O 00 0 0 C000 D00ý00

00 00 00 Q0 cc0cC00C

w LL Uj c(x 3 L L~L~JLLJ LA:
zzz c'r, ci f n(r Lh.LaL U.>>>>

a.-

LiJ

T.

< ai

m m 4 X

X: x U 0

LAJ Lii WL LL w
Z Z Z zZ-44

CL- a:) x I-xccýai
D uiz :DL&J D Wz :: LL. Z Z lr .- z

4~81



SECTION X

DIRECTORY

T1. • .vide a method of reading input eymbolically. This subroutine
(Blc )r:ed Data) has no executable instructions in it. It is designed
meIe-,ý, as a means of getting data symbols loaded with the progr~a.
No flow chart accompanies this write-up.

Method:

The format ;-f the directory is described here. The directory is divided
into two parts: (1) one list is a list of the BCD symbols. (2) the
second part is made up of a set of subscripts which corresponds to tie
BCD words.

For each variable name des1-d in the directory there must be a corrbs-
ponding subscript. Thus, each variable in the directory must be iL
CW'ON in order that a subscript may be assigned at assembly time.

Usage:

This subroutine may not be "USED" by the programmer. Rather, it is
referred to by subroutines.

482



i. CTAE - Parameter Optimization Control Program

Furpose:

To control trajectory and optimization calculation sequence when
the parameter optimization option is used.

Method:

The parameter optimization algc-rithms define a control parameter
vector. The control parameter vector elements are equated to
specific trajectory data input parameters which have been flagged
through the "PAR" input option in READA. A trajectory is generated
by a call to CRAIN(2), and the resulting trajectory payoff and
constraint functions are retrieved for use in the parameter opti-
mization procedure.

CTAE also controls a multiple extremal search procedure through
subroutine WARPS, and a saddle-point search procedure for solution
of "mini-max" problems through subroutine SADDLE.

Remarks:

All subroutines employed in the parameter optimization procedure
are separately documented in Volume IV of the present report.

I



F-7-,

pAL:C

YZ 17 ,YES

-,Let-

U-----s

ii..

c 0 -r

I A$ *

__2 V

I7T484-



7N SR ...9

/

.99

i 08lVT;, A1 (-)

ND

485



SECTION XI

ALPHABEIYIC INDEX OF SUBROUTINES

Subroutine Name Page No. Subroutine Name Pa"e No.

ABSBEAM 480 CRATE2 199

ABSVECT 480 CTAE 483

ACOS 167 CTLOPT 318

ADJEQ 436 CTLITR 219

ANGLES 196 CTLITR2 219

ANGLES2 196 
CTLS

AINITR 293 CTLS1 347

ANITR2 293 CTLS2 357

ASIN 16s CTVS 90

ASRCH 295 CTVS2 90

ASRCH2 295 CTVSR 434

ATAF2 172

ATMS 290 DALCAL 369

ATMS2 290 DALPACK 453

ATMS59 333 DECIDE 384

ATMS592 333 DECID2 406

ATMS62 335 DECID3 400

ATMS622 335 DEF 59

ATTAC1 255 DEF2 59

ATTAC2 255 DEFEN1 246

ATTAC11 315 DEFEN2 246

ATTAC21 315 DEFENIl 301

ATTAC12 316 DEFEN21 301

ATTAC22 316 DEQACI 220

DEQACI2 220

BAESOP 56 DEQBCI 214

BAITR 294 DEQBCI2 214

BAITR2 294 DEQCOD 225

BDATAI 29 DEQCOD2 225

3DATA2 29 DEQINI 213

BDATA3 29 DEQINI2 213

BDATA4 29 DEQHfT 228

BDATA5 29 DEQIHT2 228

BDATA6 29 DEQIV 227

BDATA7 29 DEQIV2 227

BIBLOCK 72 DEQPRE 206

DEQPRE2 206

CARDS 367 DEQSIP 224

CHAIN 30 tEQSTP2 224

CHAROPT 480 DEQVAL 226

CHIw 323 DEQVAL2 226

CHEMP2 323 DGAMES

CODES 131 DETECT 188

CODES2 131 DETECT2 188

COMBAT 135 DIFEQ 82

COMBAT2 135 DIFEQI 15 4

CONV 326 DIFEQ2 154

CRATE 199 DIFEQ3 164

486



Subroutine Name Page No. 3ubroutine Name Page No.

DIFEQ4 164 IFCS 93
DIFEQ5 164 IFCS2 '93

DIFEQ6 164 IMAINOP 341

DIPLAC 57 ISELECT 343

DISPLAY 362 IPICK 300

DORDER 45 ITEMS 133

DSERCH 47 ITEMS2 133

D3X3CH2- 47 IZERO 235
IZER02 235

E3ROR 229 INTGRT 128
7MRROR2 229 INTGRT2 128

6VADE1 249 INTGRTR 128

EVADE2 249 INVERT 379
EVADEll 308 IZUNPK 456

EVADE21 308
EXE 75 KCALC 374

EXE2 75
EXERR 51 LATS 288

EXTRAN 125 LATS2 288

EXT•RAN2 125 LINCOM lo4
LINCOM2 lo4

FILTER 120 LINEOPT 480

FILTER2 120 LINES 62

FIRfUN 207 LINES2 62

FIRFUN2 207
FIXEDR 307 MAIN 27

FIXETR2 307 MAIN2 27

FLUSH h55 MAIN1 33

FLUSHI i34 MAIN12 33

FLUSH12 184 MANTGT 84

FPPG 222 MANTGT2 84

FPPG2 222 MAP 480

FFPS 215 MATINV 396

FPPS2 215 MIM!NF 143

FRAME 481 MIMINF2 143
MIMINR 444

GAMA91 211 MISCUT 151

GAMA92 211 MISCUT2 151
GET 338 MSGONE 32

GRAPH b58 MSGTWO 32

GRIDXY 297 MULT31 268

GVSP 291 MUIT33 344

GVSP2 291
NDTLU 320

ErETS 269 NUMBER 481

HETS2 269

HIHO 262 GALPBA 258

HIH02 262 OALPBA2 258

HLIMIT 194 OBSFUN 115

HLIMIT2 194 OBSFUfl2 115

487



Subroutine Name Page No. Subroutine Name Pagc No.

OFFENI 252 SENSOR 239

OFFEN2 252 SENSOR2 239
OFFEN1I 312 SETBEAM 48

OFFEN21 312 SETGRD 186
OFFEN12 313 SHELL 74

OFFEN22 313 SLACK 107
OFFEN13 314 SLACK2 107

OFFEN23 314 SPRANG 29

OFFSW 385 STGTST 122

ONETWO 218 STGTST2 122

ONLINED 153 STOP1 49
OPTBA 339 SUMOLA 390

OPTBA2 339 SVI 70
SV12 70

PACBCD 64 SYMBOL 481

PACK 407
PACKL 46 TABRE 60

PACKR 66 TABRE2 60
PAPLT 472 TSRCH 52

PARTS 96 TSRCH2 52

PAPERP 187 TFFM 329

PASSV1 2)44 TFFM2 329

PASSV2 244 TFFS 276

PENAL 109 TFFS2 276

PENAL2 109 TIMvID 147
PLCPTS 299 TIMID2 147

PLOT 392 TIM001 204

PLTCUR 476 TIM0012 204

PLTS 112 "IMREV 177

PLTS2 112 TIMREV2 177

PPLNLN 237 TLU 170
PRP;CK 182 TLU2 170
PRPLT 474 TLUI 174

PSUBR 179 TLUI 386
PTBEQN 231 TI.TJREV 165

PTBEQN2 231 TM<X 264

PUT 337 TWOONE 234
TRNPOS 267

READA 37

READA2 37 UNBLOCK 388

READB 54 UNPART 1442

READB2 54 UPDK 411

READ31 68 VALUES 149

REV 428 VALUES2 149

ROLEI 190 VECTOR 481

ROLEP 190 VISION2 242

SACS 279 WMA 446

SACS2 279 WNORM ho9

SEARCH 363

488 oU.S.Governrent Printing Office: 1971 - 759-078/131


