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ABSTRACT

A family of generalized mcdels are presented for analyzing data or
systems with stochastic properties. Previous work in this field is pre-
sented as well as a new finite range frequency distribution function with
nomograms, tables, examples, and recent extensions to a generalized family
of methods and models. The analytical techniques are related to statistical
mechanics and were developed specifically for analyses of weapon systems.

Approved for public release; distribution
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SECTION I

INTRODUCTION

In solving problems involving stochastic processes, the systems analyst
and engineer often have to choose a probability distribution function that
will fit the experimental data. One method is to use one of the typical
"text-book" distributions. These are generally tabulated, with established
computational procedures for finding moments. This approach has proven useful,
especially when higher moments of the distribution are needed. However in
many cases, (a) only the first moment, or the first and second moments, are
needed in the analysis, (b) there may be obvious similarities to given data
and curves encountered in previous situations, and (c) there may be an ad-
vantage in using a standard distribution that will allow ease in some
predetermined calculations and tests. In such cases, it may be desirable to
devise distribution functions that fit the analysis, rather than encumbering
the analysis with unnecessarily complicated functions and fitting procedures.

In this report, a class of distribution functions is derived and it
is shown that the frequency function developed by Braswell and extended by
Manders, References 1 and 2 (see the Appendix), is a particular member of a
family of these distribution functions. Procedures and methods of finding
parameters of these distributions are presented. To show the simplicity and
usefulness of this method, the parameters of the distribution of Braswell and
Manders are re-derived, using the more general techniques. Finally an

example of application of these types of distributions is given.



SECTION II

CLASS OF FREQUENCY FUNCTIONS

Suppose there is given a function h(x), such that

dh(x)
= > 0 forxoixixl

Then the doubly truncated cumulative distribution function

0
for x :_xo

h(x) - h(xo)

F(x) = h(xl) — h(xo) for Xo < X < xl

‘ 1 for X <x

is a proper cummulative distribution function (cdf) with finite domain
associated with positive probability.

The corresponding probability distribution function is given by

0 for x ¢ [xo,xl]

e ;'_xg( ) for x ¢ [xo,xl]
*1 %o
The mean, u, is given by
*1
u = J xf(x) dx
*0
1 M
= xF(x) - j F(x) dx
¥ %o
Since F(xo) = 0 and F(xl) =1,
*1
W= oxy - j F(x) dx.
*n



Similarly, the second moment, Moo is given by,

x
2 1
Wy, = X F(x) -2 [ xF(x) dx
%o
Since
a4 [*
a‘;j F(t) dt = F(x), Equation 7 may be written,
%o x x
2 1 X 1 1
Hy = X F(x) -2x J F(t) dt +2[ J F(t) dtd¢
x X5 %, Xy * X

Therefore, a useful form for ' if F(x) is twice integrable is

X

2 1 1 (X
= x] -ZxIJ F(t)dt +2J J F(t) dtdx

*o0 *0o %o

H2

Using Equations 6 and 9,u, may be expressed by

2
X, Xy X
- - F(t)dtd
n 0
The absolute deviation, v, is given by -
*1
y-f |x—u|f(x) dx
*0
For xq > 0,
u u *1 *1
Y = - J xf(x) dx + uj f(x) dx+[ xf (x) dx—uf f(x) dx
Xq Xq u u
u u *1
= - xF(x) + f F(x) dx + u[F(u) - F(xy)] + xF(x)
X X, u

X1
- J F(x) dx - u[F(xl)-F(u)]
u
u xl
=J F(x)dx-j F(x) dAx - u + x
Xq u

1



To show the simplicity of use, the form and parameters of the

frequency function of Braswell and Manders are derived.

de3¥
Here, hi{x) = —-—£L~f; for Xy = 0 and X = 1
1 + be®

and, thus h'(x) > ~, for a >0, x¢ [0, 1] .

- - 4
Also, h(xo) = h(0) 1%
a
h(x)) = h(1) = —d&—
1 + be
Therefore,
-
0 forx <20
eax ) 1
ax 1+b
F(x) = < 1 + be = H(x) for 0 <x <1
1+ be? L+b
1 forx > 1.0

To get F(x) into the form previously used, we examine H(x).

2X

Heo = (&7 = DA+ be®)
0+ be®™)(e® - 1)

1+ e-a(1+26)] [1 - e—Zax] . 0 < -
- T2a a(1-2x-28), °or v IxZ
[1 -e ] [1+e ]
_ a | + 2nb
where 4 = - 5 and & = 72

ea(l—ZG)

Multiplying Fquation 17 by “—m—r—-
ea(1-25)

e-a(1+28)llea(1-26) _ ea(1-2x-26)
[eu(l—28) _ e-a(1+26)][l+ea(l-2x—26)]

H(x) = for 0 < x <1

which is the result obtained by Braswell and Manders.

15
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“he mean, u, is given by Equation 6, therefore

1 1
- J F(x) dx
0 0

p = xF(x)

Thus, u may be written as

u.1_(1+bea>J11-eax
1-e® /01 + e

dx

The integral in Equation 20 is evaluated in Reference 1.

Due to desired generalizations for the cdf of Braswell and Manders

19

20

presented latcr in this paper, it is desirable to be able to evaluate integrals

of the form

] 1 erdx
L= ax
xo b+e
ax
Thus, the transformation, n = e gives
ax
e -
L.l nc/a ldn
a ex b+n
e O
ax
For b > -e O ,
1 111 nc/a
- - +
nl c/a(b +n) b n1 c/a b (b+n)
Therefore,
axl axl
L e ax 1 [°® xc/aé!
ab axo xl"C;a ab ax (b + K)

e e

Evaluating the first integral,

e
( 1l c/a
be X ax
axy ¢ )
e e
I = -1—- ——-—dx -{
1 ab axg 1-c/a
e x e
i fn x
ab ax
~ e

for c # 0

forc =0

21
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Therefore;

axy axg

1
oo (e -e ] forc#0

1
L 5 [x1 - xO] for ¢ = 0

The second integral to be considered is,

axy

S U
2 ab | axg (b+x)
e
If ¢ = 0, then
ax]_
I = 1 ¢ dx
2 ab axo b+x
e
or
axy
I, = %‘ ‘n [ea—x '——}
e 0
If ¢/a = n, some positive integer, then Ilis given by Fquation 25, and
ax
e 1 n
I, = L X _ d4x
2 ab axo b+x
e
ax
1 e 1+b n
=y {xb)
axg x
e  +b
ax
L+ n n
1 J ( ) n-j dx
= x -b -
ab ax0+b Zj=0 i (-b) x
ax ax
n e b n n gq e l+b
1. = S'b) §§ + E-b) z (_b)-j j 1
2 b ab 3=1 X7 Tdx
a ax x b axg
e e 4

26
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“ axy n n axy Y3 [axy 3
1, =2 :“0::J+ b) 23‘_1(1,(-1))'3 [(e ) °j(e ) :} 33

1f c/a is not a positive integer or 0, then I, may be written in

the form
()2 = fel2 -3 e 3-1
+b

X
where( ) is defined for non-integral x as, k a non-negative integer, as
k

0 for k=0

- :

x(x - D...(x-k+1) fork >1

Therefore

ax 3
gt [t )

2 ab eax1.L 3 3 b 3

It should be noted 1in Fquation 36 that if b > 0 then the expression
c/

a has both real and imaginary components, but the imaginary part

(-b)
may be neglected in this case. The method may be used to evaluate inte-

grals such as.

xl )
sinh (ax
(2) J sinh (Bx) d

*0

{ *1 cosh(ax)
® | " Sien(en ™

X0

f *1 cosh (ax)
() jx cosh(Bx) dx
0

and many other similar forms. The evaluation of these integrals is sim-

plified when the ratio /B is a positive integer (the smaller the integer,

7



8
the fewer number of terms necessary in the evaluation).
An immediate result of the foregoing discussion is a method of
evaluating slightly more general integrals, those of the form
x
1 cX
1= J e dx 37
x ax)
0 (b+ed ]
Here
X
1
1 (€ xc/a
2 X0 x(b+x)
xl+b /a-1
e c/a-
-1 J Leb) gy 39
aJ a
o 0 +h x
/a-1 exl+b
-1 Zm > (_b)c/a—l-j J xj_a dx 46
a ~j=0 X0
3 e +b

Again, if c/a is a positive integer, there will be only c/a + 1 temms
in Equation 4N,

It is of interest to note that the foregoing integrals are generaliza-
tions of many of the tabulated integrals. Therefore,the evaluation of
these integrals is of some importance in itself.

Returning to the determination of the mean and absolute deviation of
the distrihurion 0f “raswell and Manders, the mean is obtained using Fqua-

tions 20, 26, and 31. The ahsolute deviation is obtained by use of Equa-

a+2 nb

tions 14, 24, and 31. When o = - 2 7

2 and § = , the results in
Reference 1 arc obtained.

For completeness, the frequencv function of Braswell and Manders should
be examined for the limiting cases:

(a) Lim  F(x) (b) Lim F(x)
an, b+—1+



9
For case (a)
Lim F(x) = Lim ( -1x1+be ) 41
a~>0+ e?-1 1+be?
If b # -1, then
Lim F(x) = Lim (eax-l) 42
a”0+ a—’0+ -1
Therefore, by L'Hospital's rule
Lig F(x) = x 43
a0
Thus F(x) tends to the cdf of a random variable uniformly
distributed in the interval {0,1}.
In case (b)
ax a
Lim F(x) = e_;l_) Il;gl (l-_tb_e_a) YA
b1, e?-1 +1+be?*
or
Lim F(x) = 1 45
b->—1+
Thus x is a variable associated with a deterministic process.
A useful extension of the frequency function of Braswell and Manders
given in Referznce 1 1is given by
ax
h(x) = -& ~ 46
b+ e X
with x, = o, X = 1, b > -1.
For monotonicity of F(x), d_‘;xﬂ must be greater than zero,
¥ x for x € [0,11].
Since dh(x) . ce* _ ae ¥ ¥ , the condition 47
dx b+e?X (b +eax) 2
dh(x) ax
ix > 0 will hold if c > 38 " Mx for x ¢+ [0,1]
bredX



ax
Since w(x)

1n
ax 1S momotone increasing for x € [0,1], the maximum
b+e
of w(x) occurs at x = 1
o > ae

¥

and thzrefore, monotonicity is insured if
b+e

(b >0 and ¢ > a will fnsure monotonicity)

It should be noted that h(x) given in Fquation 46 1s a generalization

of the energv distribution functions of statistical mechanics as given in
Reference 3. The Maxwell-Boltzmann distrihution is of the form,

f(x) = 1

x x/kt 48
e’e
The Bose-Einstein distribution is of the form
1 49
f(x) =
) a x/kt
e -
and finally, the Fermi-Dirac distribution is given by
= 1 . 50

f(x) =

) a x/kt

e
Using h(x) given in Equation 49, the cdf takes the form
K 0 for x < O
! (- 51
! e . kg%f for 0 < x < 1
| \b+e"'f1
F(x) =
-'l- 1

! ‘b+e i ib+l
|
\

N

1 forx > 1

The function given in Fquation 15 is a particular example of a family
of “unctions given hv

hix) = i2~_

. for Xn = 0 and X, = 1 52
(b+eax) '
Using this function, the corresponding cdf is given by

10



0 for x < 0
oSX ) i 1 )a
ax, o | b+l
(bte ) for 0 <

c 3 < x < 53
—e | _f 1
((b+e‘)a) ( b+1)

1 forx > O

F(x) =

To evaluate the parameters of this distribution, integrals of the form

Y

e ecx 54

=] 8 iy
e (b+e™)

must be evaluated and the evaluation of these integrals is greatly simplified

(thus increasing the usefulness of the distribution) if c/a = n, a positive

integer and a = k, some positive integer.

In this $ase, Fquation 54 becomes

e
I=1/a [ xn-l
of

dx 55
(b ¥
Y+b n-l)
e nl
1 _nyn-1-]
= 1a I S F Xj-o ) 0" e >8
Y+b
n-1 e
)1 Z“'l ( ) (-b)~3 J L 57
= 1——-L—a 3 B
1=0

There are four parameters associated with this distribution: a,
b,c, and k (n is determined by a and ¢) and formulae have been developed
earlier for evaluating the mean and absolute deviation. Therefore, if
any two of the purameters are fixed, the mean and absolute deviation
can be used to determine the other two. By doing this, six families of

distribution functions are generated.

11



For example, if b =1, a=1, x

0 for x <

_1_)
F(x) = ((1+e) (2“ fo

___) L)
(1l+e) %

1 for x >

0= 0, x

12

1

= 1, then

58



SECTION III
RANDOM NUMBERS

Often, it is necessary to use random numbers selected from a distribution,
The cdf of Braswell and Manders may be easily inverted to give random numbers from
that distribution if random variables uniformly distributed in {0,1}
are available.

If F(x) is monotone increasing cdf, and r is a variable from a
uniform {0,1} distribution, then

y = F—l(x)
is a random number from F(x).

For the FRPDF of Braswell and Manders, the cdf may be inverted in closed

form, thus making generation of corresponding random numbers easy.

Let
_a"__) |l
ax 1+
F(x) = 1+Ze
_e;__J (L
a
1+be 1+b
Then
a
r|&— - ll-b) + 11!:)
Fl) = x = % n ltbe
a
1 1
ey )
14hed  IFH] 11D

Random numbers using the function by Braswell and Manders are given in Tahle 1.
For the generalizations of the above function, the inverse cannot

be found in closed form. This presents no real problems, in that

"Monte-Carlo' techniques in Reference 4 mav he used to generate accurately

as many random numbers from these distributions as mav he needed in any

problem that is to be analyzed.

13



TABLE I. RANDOM NUMBERS USING THE FRPDF OF BRASWELL AND MANDERS

0.24158 0.60196 0.25900 0,97604 0.81010
0.32882 0.54244 0.02165 0.99494 0.35506
0.57602 0.21315 0.83320 0.37908 0,46429
0.46475 0.47708 0.07142 0.19321 0.46652
0.59312 0.59904 0.55056 0.37447 0.75369
0.74804 0.00798 0.53492 0.38361 0.84148
0.19745 0.96575 0.11968 0.55770 0.64208
0.42256 0.74125 0.65361 0.77012 0.59652
0.93307 0.38003 0.21965 0.22837 0.02158
0.32717 0.51644 0.43901 0.31461 0.38016
0.73331 0.88885 0.23166 0.54247 0.09798
0.58225 0.18766 0.31569 0.79382 0.04368
0.26919 0.25216 0.43510 0.26635 0.00619
0.50120 0.67743 0.35515 0.32886 0.48071
0.06026 0.04537 0.41694 0.79842 0.68748
0.37894 0.50911 0.43165 0.87127 0.67873
0.99545 0.18539 0.21373 0.58254 0.36961
0.74520 0.19261 0.47631 0.79148 0.19704
0.19635 0.29674 0.40224 0.36312 0.51801
0.75558 0.82781 0.99734 0.18026 0.00213
(A=0.10000, B=0,90000)

Example:

It is illustrative to show how the generalized class of frequency functions
can be used in systems analysis.

A sample of times to complete jobs on a computer was taken (Table II).
A useable empirical distribution was needed to fit such samples.

To handle this problem, the probability distribution associated with
the generalized cdf -vas analvzed,

It was noted that these jobs fell into two categories. The first
category was short jobs, i.e., jobs that took less than one minute to
complete. The other category was long Jjobs, i.e., those that used more

than one minute to complete.

14



The shorter jobs far outnumbered the longer jobs at the installation

from which the data was taken. Also, it was known that the longer jobs

were usually "production runs' of tested programs, so that they could

be handled differently than the short test jobs.
Thus the data of interest concerned the shorter running programs.
The associated pdf, f(x) may be written,

—-
ax ax
e c kae ]

(b+eax)k b+eafJ
f(x) = - 59

-
c 1
e

breHE (1)K

ax ax
e
Since Tk is an increasing function of x, and c- kae
(b+e™ ")

ax is a
b+e
decreasing function of x, it was seen that the important middle range
values of the sample could be fitted by varying some of the parameters.
Since, only means and absolute deviations were easily computed,

the cdf given by Equation 58 was adopted. Then

e 1
(+e)* 2K

A table of means and absolute deviations for various n and k is shown
in Table II and used to pick a value of n and k to agree with the estimated

mean and absolute deviation of the sample, which were ﬁ = ,2534, and v = .17.

15



TABLE II. u AND y AS A FINCTION OF n AND k
K n=1 " n=2
u Y u Y
0 0,577 0.235 0 0.652 0.219
1 0.475 0.242 1 0.598 0.235
2 0.640 0.201 2 0.506 0.240
3 0.494 0.238 3
4 | 0.429 0.227 4 0.624 0.200
5 0.378 0.217 5 0.497 0.229
6 | | 0.333 0.206 6 0.428 0.225
7 | 0.296 0.188 7 0.374 0.217
8 | 0.263 0.174 8 0.329 0.196
Y | L 0.236 0.156 9 0.291 0.189
n=3 n=4§
T
o || 0.174 0.189 0 0.764 0.161
1 ‘ 0.669 0.204 1 0.729 0.175
2 I 0.613 0.228 2 0.688 0.197
30, 0.536 0.237 3 0.635 0.218
4 ‘ 0.383 0.212 4 0.566 0.233
5 ‘ 5 0.457 0.228
6 1 | 0.608 0.197 6
7 0.494 0.228 7
8 | 0.423 0.224 8 0.592 0.204
9 l, n.369 0.207 9 0.487 0.220
n=25 n=26
i 0 0.802 0.138 0 0.831 0.119
b1 ] 0.776 0.151 1 0.811 0.132
2 0.744 0.171 2 0.787 0.146
3 0.705 0.190 3 0.758 0.159
4 | 0.657 0.208 4 0.722 0.183
5, 0.594 0.228 5 0.678 0.198
6 | 0.504 0.233 6 0.620 0.223
, 7 0.548 0.232
L 8 0.420 0.207

16
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For the given sample, n = 1 and k = 8 were chosen. To test the
goodness-of-fit of the fitted distribution, the data were divided
in five group and an x2 test performed. See raw data in Tahles IIT1 and 1IV.

The regions considered were (data in Table V).

I: 0=<x<0.1
II: 0.1 < x < 0.2
IIT: 0.2 < x < 0,3
IV: 0.3 < x < 0.4

V: 0.4 < x < 1.0

2 75 (y -g)>
Setting X" - Z 1 m °m , Where Ym = number of data points in interval
m=l

€n

m, and Bp = expected number of points in interval m. g, was found using
the tabulated value of F(x), and x2 was found to be 4.087. Since there
were five intervals, and two estimated parameters, the variable xz should
belong to a chi-squared distribution with two degrees of freedom. The
value of 4.087 indicates a significance level of ahout 85 percent.
Much higher values of xz are found if a normal distribution is
hypothesized, due to the fact that o? = ,044. This small value of o
causes g, and gs to be small, thus increasing the value of xz. The given
x2 for this problem could be greatly reduced if the restriction of integral
n and k were removed, or if larger values of integral n and k were considered.
CONCLUSION
The scheme presented in this paper may be extended to use for different
"basis" functions for distributions. To use this method the analyst should:
(a) Determine if there is something to be gained by using this
technique. If the problem under consideration is not made easier,

he should not pursue this technique.

17



TABLE III. SEQUENCE OF COLLECTED DATA
Observation, Time||Observation | Time |Observation { Time||Observation| Time
1 0.46 12 j. 0.05 23 0.14 34 0.04
2 0.23 13 . 0.22 24 0.02 35 0.08
3 0.35 14 . 0.39 25 0.36 36 0.02!
4 0.10 15 . 0.13 26 0.26 37 0.53
5 0.37;! 16 0.88 27 0.02 38 0.04 |
6 0.10]§ 17 0.31 28 0.08 39 0.40
7 0.07| 18 0.08 29 0.10 40 0.13
8 0.34! 19 1.00 30 0.05 41 0.23
9 0.09; 20 0.49 31 0.47 42 0.26
10 0.59, 21 0.15 32 0.39 43 0.30
11 0.32! 22 0.27 33 0.12 44 0.02
TABLE IV. ORDERED DATA
Order ! Time ’Order l Time !Order Time Order Time
1 0.02 12 0.02 23 0.02 34 0.02
2 0.04 13 0.04 24 0.05 35 0.05
3 0.07 14 0.08 25 0.08 36 0.08
4 0.09 15 0.10 26 0.10 37 0.10
5 0.12 16 0.13 27 0.13 38 0.14
6 0.15 17 0.22 28 0.23 39 0.23
7 0.26 18 0.26 29 0.27 40 .30
8 0.31 19 0.32 30 0.34 41 0.35.
9 0.36 20 0.37 31 0.39 42 0.39'
10 0.40 21 0.46 32 0.47 43 0.49
11 0.53 ! 22 0.59 33 0.88 4t 1.00
i J
TABLE V. CLUSTERED DATA
Interval No. of Observations

0 to 0.1 13

0.1 to 0.2 8

0.2 to 0.3 6

0.3 to 0.4 9

0.4 to 1.0 8

Parameter estimates:

A

A e0.25, §=0.17, % = 0.044

18



{b) Pick a family of functions that may be parameterized, and that
he can manipulate in some way.
(c) Determine the forms of the associated cdf's and pdf's. Of parti-
cular interest would be critical points of these functions.
(d) Establish a method (tables of means, deviations, etc.; explicit
formulas; etc.) of estimating the parameters of these distributions.
Once he has these tools he may then:
(e) Proceed to solve the problem at hand.
Objections to this type of use may be raised, and the analyst would
have to determine the appropriateness of applying this method in a particular
application. One point to be considered in this determination, is that, in
general problems that are presented for solution are so large or complicated
that a digital computer must be used. If a numerical approach is used for
parts of a problem, then the analyst should be able to use this method if it
makes some parts of the problem more manageable. But, since this i{s the
only case n which this method should be considered, most objections to the

technique can be overcome.
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APPENDIX

Much of the information in this report is based on mathematical
equations presented in References 1 and 2. Those papers were published
only in Japan and are not readily available in the United States. There-
fore, by special arrangement with the publisher, the papers are included
here as an appendix.
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A NEW FINITE RANGE PROBABILITY DISTRIBUTION FUNCTION
(FRPDF) WITH PARAMETERS-NOMOGRAM AND TABLES*

By Robert N. Braswiii

University of Floridu
Gainesville, Florida

Clara Fu-Mei MANDERS

Radiation, Incorporated Melbo.rne, Fiorida

The objective of this paper is to introduce a flexible finite range probability
distribution function, FRPDF. The emphasis is on flexibility of application
relative to its simplicity of use and its ability to fit varied experimental data
clusters.

The FRPDF, f(x). 0<{x<1, is strictly unimodal as shown in Figures 2
through 7. When §=0, the probability density function is always symmetrical
with respect to the vertical line x=0.5, and the distribution function is a
family of S-shaped curves. When §>>0, the peak of the probability density
function shifts toward the x=1 line and when §>0, it shifts to the x=0 line.
When a =0, the probability density function is identically uniform. For the
large value of @, @a=10 or more the peak of the probability density function
becomes narrower and higher at appropriate values of x for given values of
8. Then, § can be considered as the focation parameter, while a can be
considered as the shaping parameter and these parameters will give the desir-
able feature; namely, flexibility to the probability density function,

1. Imtroduction

The purpose of developing this new distribution function is to fulfill the need for a
flexible and easy-to-use finite range probability distribution function for many experimental
problems. Knowledge of the probability distribution of a random variable is required be-
fore statistical inferences can be made. All real random variables, by their very nature,
have a finite range. The function used as a siwarting point in this paper was originally used
by Pearl to approximate the population growth characteristic of the United States’':. Then
Braswell:2. reformulated it into Task Operating Characteristics (TOC) curves. This paper
transforms the TOC curve into hyperbolic expressions as shown in Equation (4) and into
the finite probability density function shown in Equation (5).

The developed FRPDF is like the beta distribution function in that it contains two
parameters, « and &, and that the admissible values of the variate X' lie between zero and
one. Unlike the beta distribution, it is flexible and simple to apply us illustrated in this
paper. In general, this distribution is useful in any application requiring statistical analysis
of collected experimental data. The computer was used 10 desclop tables, curves, and a

. Received 24, Feb., 1970.

This work was supported in Part by THEMIS Contract DAH (04 68C 0002.
(Reprinted from Rep. Stat. Appl. Res., JUSE, Vel 17, Ne. 2, 1970,
by permission of the publishen.)
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nomograph to relate the mean and the absolute deviation of the sample with the density
function parameters, a and 6.

2. Mathematical Basis

Pearl’s function for the population growth of ihe United States is defined as:

v 2 X0 time) (1)
where ) -=number of , cople; o, b, and ¢ are parameters; and e is the base for Naperian
logarithms. Braswell's first paper changed Pear!'s function into the following form:
L'|+(, nl'.:.;“_]l’_eal '_'Jr_ea«x—.:‘z.i»:] (‘,)
L‘ea bl e ade J[l +e‘“’““-""‘]
for 0=<¢=1, a0, and —0.5:=0-.-+0.5.

Since P(r) is not defined when «=0, it is necessary to define this function at this point
by use of L ‘Hospitals’ rule.

P(r) =

d N(a, 8, 1)

lim P(r)=lim ‘2“ =t
a-u a-u
da D(a, 0, 1)
where
N(a, 8, N=[1+e @i+ lex1-2 - gal-2t-23)]
and

) D(a, 6, )=[er' 20— a1 - 207][| 4x1-2t-287],
For more ‘completeness, Equation (2) becomes
= [l+e~a(h26>][eml—:d>__emx—:t—zm:]
P(l) [eau-zd:_e—ml*zd‘_][l +eml—-zt—:6)]
=t for =0 0=,

for a>0 (3)

3. Formulation of the FRPDF

For convenience change the notation of the independent variable from ¢ to x and P to
F, and let F(x) be a probability distribution function. When one rewrites these equations
more explicitly, one obtains the following result. For a>0, P(r) becomes:
-aile 24 11-28) __ pt(1-2%-28)
Fx)= Llte mimiodlent s—eximumin]
[eal W gl ‘°'_][l+e““ 2x .6)]
and for a=0 F(x)=x, for 0<x=1.0.
Equation (3) can be rewritten as follows:

_ cosh[a(d+0.5)] sinh wx
F(x) sinh « cosh [a(x+8-0.5)] for a>0 (4)

=X for a=0 0 x<1.
Since F(x) has the following properties, it is a valid probability distribution function-3::
(a) F@0)=0, F(1)=1
(b) It is a nonaczcreasing function of x:
F(x)) F(x.) for x <x;
(¢c) It is continuous from the right:
F(x')=F(x)
ie., if x,<xz, then P{x;< X: x:}—F(x.)—Fix).
For a continuous random ‘ariable, the probability density function is F'(x). For a>0,
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_ dF(x)
.’(-") - l[x
_ ( a cosh [[a(6+0.5)] cosh [a(5-0.5)] ) ( 1 )
sinh « JVcosh*{a(x i 6-—-0.5)] /"
Conscquently the complete form for the FRPDF is:
=G(a, 0) ! for « >0 0-Zx:21

cosh*[a(x+4d—-0.5)]
SN0 fora=0  0x-21.0
=0 elsewhere
where
a cosh [«(6+0.5)]) cosh[ «(3—0.5)]
sinh :
The useful parameter approximatic.is of the FRPDF are the mean and absolute deviation
of the samples. The mean and the absolute deviation as a function of @ and & is derived.
It will also be shown that the variance is finite and that the moment generating function exists.

Gla, 6)=

4. The Mean
The mean, s, is by definition:
n=E@={ xf(x)dx. (6)
Substitute the Equation (5) into Equation (6), for a>0, 0<<x <1,

! o 1
e, = x6t@, ) g oo dx

1 x
=G(a, 5)50 coshgfa;(x'f' 0—0.5)] dx.
Let z=a(x+46-0.5).

Then ;¢ becomes

2( ")——G( h)[‘a §+0.5 z dz + aaoo.m(o 5 o ] d:

M, 0)=0ka, 0| s acoshiz a Sm,;_c_s‘ 3=0) cosh?z a:]
PN A R L (0.5-8) («3 o5 1 ]
=Gla, o)[ a? [M-.o.-., cosh?z dz+ @ Sa.s»o,g) coshz z “J"

From integral tables [4],

a, 3)=G(a, 8) (lz [a tanh[a(8+0.5)]+log cosh [a(9-0.5)] ]

cosh [a(d+0.5)]
for @a>0 and

1
/z=‘ xdx=0.5 for a=0.
-N

The mean is therefore

_ Gla, 9) o , cosh [a(5 -0.5)] }
e, By = 6. D [« anh La(3+0.51 + log couh latoo 03] | fora=0 o
l=0.5 for a=0 ’
and G(¢, d) is defined in Equation (5).
5. Absolute Deviation [5]
The absolute deviation, denoted 7, is defined as
rla, -\ Ix s F(xndx (8)
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Table 1
-8 0.4 -0l
0.5696 0.5570 G.5e36
0.0872 0.06533 0.0u247
0./773% 73458 ¢, .73
U334 0.7a53 w7337
G.ould U.37u5 20,7508
U.&5a5 Gobsls Uu7iau
G.303i0 v dvnl u,lo3u
ool Qielud v 02
L0233 C.875e ULTI00
0.9.07 0,3/3 G.74%6
G.G3,0 v.8.30 0.7373
Cotwld2 Guvw?d U, 7150
0,945 6.5546 9.7757
Q.9585 06,0517 ©.7331
0.3538 5.8933 C.7u594
©.9567 0,500 ¢, 708
2.3592 0.89,7 0,1397
(.9015 0.8965 C.74558
0,9035 0,8572 €,7399
0.9553 0.8977 0.7839

Mean as a function of a

-0.2

6 U, 5295

0.587v
Doud.s
G.uusi
O,u807
[
Dowind
(SR D]
Cooads
U, 6usl
0.¢735
0,047
0.¢
Dovrud
0,7600
. /ued
G, 7oy
0.70.0
0. 0"

Q.74

=01 0.0 +0.1

0.5143 0.5000 0,4851
C.5uh5 0.5000 0.4555
U.5673 0.5uG0 0.6307
C.5545 G.9900 0,415
AN VIR IV VIR TUR 2Ty
Y505 0,5600 04055

S5)o% U.5ui0 0.4036
0.594% 0.5000 0,400/
Q.57 0,.L3¢0 0, k003
Q.5%99 0.%uG0 0,000l
0.54%3 0,50u8 0,.hu01
0.6vL0 0,5000 O, L4LOD
U,ntitd 9.5000 00,4000
Dot UL euY v, bGag
Coudr t TLBGL0 QL4000
O.ofu Laioud 0,4000
0. 0wl 0,5030 0.4000
0.6002 0,500 G, 4C00
9.6000 0,5000 0,4C00

.5000 0.5000 C.4000

cooo

and 9

+0.2

0.4705%
0.Li%0
0.3655
U.3359
0.2135
0.3105
0.5055
0.3030
0.3016
0.3009
0.3005
0.3003
0.260%
0.30601
Q.3000
9.3000
0.33%00
0,3000
v,3000
6.3000

Table 2 Absolute deviation as a function of @

Table 3 f(x) for 3=—0.5 and 3

=-0.5 -0.4
0.2361 0.2374
0,1210 ¢,197:
0.1439 1
0.1t
0.0:72
0.0744
0.7 08
0..5%3
C.Cuiy
O.(a5y
[HEE
e.u5%72
C.03u3
0.6319
0,02ug
0,827¢
0,620
0.0263 08,0351

L0235 0. 0345
0.02:3 ¢

0.0 0.1

0.551 0.639
0.147 0.215
0.030 0.054
G.005 0.012
U.G00 0.002
0,609 0,000
0.503 G.Co0
C.0L) 0.0
0.C30 0.000
0.000 wv.000

0.597 0.685
0.181 0.263
0,042 0.076
0,003 0.019
0,632 0.0G65
0.000 0.0G1
6,060 0.000
0.000 0.000
0.000 0.003
0,690 0.000

cumcDaecaca

-0.3

35

LY

w10

AN L3

[EORGI

TS A e s

0.2
0.734
0,312
0.098
0.027
0.607
0.002
0.000
0,00y
0.G00
0.000

0,778
0.373
0.156
6.Cu3
0.C1

0,006
0.6u0
0.039
v.0u0
0,000

-2.2

¢.2394
0.2101

g 0.1755

L1597
L1248
FREVESY
RV
Lol
RAT]
0.C.20

00526

cooooo

3 0.0576

€.05%22
0.Chan

0.0u62

i 0.C853
[N LY
0.033n U,0335
0.03u% 02,9368
L0330 0,0340 U, 0347

0.0408

0.3
0.833
0.443
0.170
0.059
0.018
0.0605
0.692
U.G00
0,300
0.400

0.872
0,533
0,242
e,u9%
0.G3%
6,012
0,004
¢.0vl
0.020
0.0uvd

§
-0.1 0.0 +0.1

9,2399 06.2401 0,2399
0.2139 0,215%2 90,2139
0.1226 0.1450 0.1826
€.1540 0,1554 0.1510
0.,1566 0.1324 0,1306
¢.1121 0,2132 0.1121
0.6975 0.0982 0.5Y75
6.0s00 0.0863 G.0860
0.0767 0.0769 0,0767
C.0662 0.06Y3 0,0092
0.0630 0.0630 0.0630
0,1%77 06,0578 0,0577
0,uS55 0.0533 0.0533
C.04Y5 U,0495 0.0KYS
C.04L2 D.0452 0.00062
U, a3 U.0453 0,035
0.0408 D,UNUB V.00
0,0335 0.0335 0.C3:5
0.n365 0,035 0.0365
0.0347 0.0347 D, U347

X

0.4 0.5 0.6
0.934 1,033 1.123
0,633 0,871 1,160
0.312 0,545 0,920
0,130 0,233 0.603
0.049 0,133 0,353
0.018 0.059 0,19%
0.L26 0,025 0,103
0.0u2 0,011 0,u53
0.000 0,004 0.027
9.000 0,002 0.013

§ = -0.5

0,9C% 1,089 1,122
.73 0,277 1.24%
n.423% 0,71 1,139
0,265 0,437 0.385
0.69F 0,202 0.018
0,033 0,126 0.404
0.01p 0,004 0.25%
0,036 0,032 6.i56
0.6u3 0.0i6 0.00%
0.603 0.00% 0.05¢0

+0.2

0.2394
0.2101
0.175¢8
0.14069
0.1249
0.1081
0.09L9
0,084k
0.075¢
0.00686
0.0626
0.0576
0.0532
0,0494
0.0u62
0.0433
0.0408
0.0385
0,0365
0.0347

=-0.4

J. 401

+0.3

0.4564
0.3743
0.3052
0.2663
6.3412
U.2260
0.2166
0.2107
0.207¢
0.20L6
0.2020
0.2020
0.2013
0.2009
0.2006
0,2004
0.2003
0.2002
0,2001
0.2001

and 9

+0.3

0.2385
0.204%
0.1658
0.1559
0.1148
0.0998
0.0838u
0.0735
0.0722
0.0660
0.0608
0.0563
0.0523
c,0us8
0.0157
0.0430
0.0406
0.0384
0.0364
0.0346

1.213
1.680
2.161
2,483
2.690
2.778
2,769
2,088
2,553
2.38%

+0.4

+0.5

0.4L30 0,4304
0.3407 0.3128
0,2615 0.2264
0.,2112 0.1726
0.1795 0.1385
0.1586 0.1155
0.1443 0.0990
0.1340 0.0Lub
U,1204 0.0770
06,1207 0.0v93
0.1164 0,0630
U,1130 0.0578
0,110% 0,0533
0.1083 0.0495
0.1067 0,04862
0,1054 G.UL33
0.10L3 0,0403
0.1035 0,0335
0.,1028 0.U365
0,1023 0,032

+0.4

+0.5

0.2374 0.2361
0,1978 0.1910
0,155 0.1439
0.1229 0,1109
0.1017 0,0892
0,0871 0,074k
0.07G7 0.0638
0.0G58 0.0558
0.0626 0.CuY6
0.057G6 0.0446
0.0534 0.0LUG
0.u4498 0.0372
9.046y¥ 0.0343
0.0442 0.0319
0.0418 0,0238
U.03497 0.0279
0,0378 0.0263
0.0361 0.0248
0.0345 0,0235
0.0330 3.0223

0.9
1,300
1.994
2.759
3.42F
3,933
4.270
4,443
4,472
4,382

1.0

1.313
2.075
3.015
4,003
$.000
6.000
7.000
8.000
9.000

4,200 10.000



Table 4 f(x) for 3=—-0.3 and 3= -0.2

X

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
6

1 0.649 0.737 0.826 0.913 0,993 1.9tz 1.136 1.i47 1.161 1,143 1.136
2 0,231 0.332 0.469 0,045 0.559 1.C93 1,515 1.w77 1.%37 1.477 1.5%
3 0,064 0.11% 0.204 0,550 0.0662 G.%0l 1.&06& 3.%¢5 1,973 1,004 Lobubs
4 0,016 0.035 0.073 0,170 0,3u3 0.735 1.387 2,00l 2,405 2.ucl 1,347
e 5 0,006 0.910 0.028 0.0/0 0.20i G.513 3.142 .05 2.b0n PRI A
6 0.000 0.003 ©.0I0 0.0352 0.1cu 0.330 O.u9wé 2,309 3.077 I. . sve
7 0.000 0.000 0.CGU3 0,014 0,0y 0,21b OU.pud 2,297 2.7.% 2,357 v.eul
8 0.060 0,06C 0.001 0.006 0.028 0.135 0.027 2.347 w.ivs 2,327 Sueld
9 0,000 0,060 0.000 0,092 G.014 WU..03 0L.L7Y 0291 WLLoued 2,050 L67y
10 0.000 ©0.000 0.06U0 ©.000 0.007 0.050 ©.360 2,138 5,072 2.ise U.3ui

£z -0.3
1 0,709 0.79% 0.373 9,955 1.022 1.067% 1,105 1.1i¢ 1.105 1.(73 1.022
2 0,304 0.429 0.591 0.786 1.001 1.203 1,351 1.40v 3.351 1,203 1.601
3 p.104 0.18% 0.321 0,542 0.3v5 1.26L 1.628 1.779 1.626 3.2.% 0.:iub
4 0,032 0.071 ©.155 6.330 0.603 1.22s 1.576 2.190 1.874 1.:2v G.cb8
e O ©6.010 0,026 0.070 G.185 0.4/5 3.103 2,006 2,027 2.0u6 i.iL3 U.s75
6 0.003 0.009 0.030 0,100 0,319 0.940 2.15& 3.9&3 2.154 G.340 U.319
7 0.000 0,003 €.013 0,052 8,207 0.768 2.255 3.583 2.2%5 G.l6s ©.207
8 0,000 0.001 0.005 9,027 0.i33 0.607 2.255 &.U33 2.255 GC.by/ o.i3i
9 0.000 0.000 0.602 0,013 0.08I O0.468 Z.201 4.520 2.201 G.swvbd .ol
10 0,000 0,000 0.000 0.0u7 0.049 0.354 2,105 5.0i2 2,105 0.3% 0.0u9

6= -0.2

Table 5§ f(x) for 3=—0.1 and 9=0.0
x
¢.c 0.1 0.2 0.3 0.4 0.5 0.6 9.7 0.8 0.9 1.0

1 0.776 0.858 0.933 0,998 1,048 1.086 1.091 1.050 1.048 $.958 C.933
2 0.407 0,561 0.747 0.950 1,163 1.2863 1.335 1,283 1.143 0,950 0.747
3 0.174 0.33% 0,14 0.820 1.199 1,542 1.685 1.542 1.199 0.820 0,Sis
4 0.068 0.1L8 0.3516 0.640 1.176 1.736 2.0399 ..796 1.176 0.0 0.318
a 5 0.025 0,063 0.130 0.461 1.072 2.£07 2.552 2.007 1.072 0.46l 0.1&0
6 0.009 0.030 0.098 0,313 0.923 2.154 3,027 2.154 G.923 0,313 C.C98
7 0.003 0.013 0.052 0.205 0.760 2.230 3.514 2,23G 0.760 0.2(5 9.G52
8 0.001 0.005 0.027 0,130 0.603 2.240 &.GO7 2,240 0.003 0.i33 9,027
9 0.000 0.002 0.0i3 0.08%1 0.466 2.193 4.505 2.193 0.4v6 0.Gsl C.013
10 0.000 0.000 0,007 0.048 0.353 2.101 5,002 2.1C1 0.353 0,04% 0.037

§ = -0.1
1 0.851 ©0.926 0.990 1.040 1,071 1.082 1.071 1,060 0.990 0.926 0.851
2 0,551 0.73% 0,934 1.125 1,262 1.313 1,262 1.123 0.93u 0.73¢ 0,551
3 0.299 9,505 0.807 1.173 1,517 1.657 1,517 1,173 0.8C7 0,505 ©.,229
4 0,147 0.312 0.633 1.160 1.775 2.075 1.775 1.160 0.633 0.312 6.147
e 5 0.067 0.179 0,458 1.064 1.993 2.53% 1,953 1.06k 0.458 0,179 0,607
6 0.030 0,008 0.312 0.920 2.14S 3,015 2,145 0,520 0.312 0.6us 0.030
7 0.013 0.051 G.20G 0.758 2.226 3.506 2,226 0.755 0,206 0O.uSl ©.013
g 0.605 0.027 0.130 0.663 2.235 4.033 2.238 0.L03 0.130 0.627 0.005
9 0.002 0.013 0.031 0.466 2.192 .01 2,152 0,466 u.681 0.013 6.602
10 0.000 0.007 0.049 0.35% 2,100 5.000 2.200 ©0.353 0.0%9 0.007 ©.000

where ;. is the mean. By removing the absolute sign from Equation (R), r can be written

as the sum of the two integrals,
7(a, 8)= Su (t—x) f(x)dx + ‘ ‘n(x—— O (x)dx. (9)

Nothing that . is independent of the variable x and using rclationships such as

S‘: _fx)dx=F(0

| rode=1-Fio

and

27



g\ S(dx - g; R Slxdx.

Equation (9) becomes

. 3):2#‘(,:)—:&"_‘ X f(¥)dx. (10)

Denote the integrat in Equation (10) by H(;:) and for a0,

H(p - \ X f(xX)dx

- S:.\'G(n’. 3)

=Gla, )\

1

cosh*[a(x+6—0.5)] dx

X

\, cosh: [a(x+3~0.5] 4

The integral is similar to the one in the derivation of the mean with one exception, the

upper limit is now ;¢ instead to 1.0.

Evaluating this integral with proper limits, H(s) becomes

H(= %, 9

for «>>0 and becomes

azetanh La(8—0.5+ x)]+log

cosh [a(6—0.5)]
cosh [a(6—0.5+ )]

0.5
H=\ xdx=0.125=0125  for a=0.

Therefore H{:) is

Fig. 1 Equi-mcan curves (dotted lines), and
egui-absolute deviation curves (solid
lines). The numbers in parenthesis
are the valucs of normalized absolute
deviation, y

28

aptanh[a(d—0.5+ )]

cosh [a(6—-0.5)]
cosh [a(8— 0.5+ u)]

for a>0 (11)
=0.125 for a=0.

The absolute deviation, 7, for the
FRPDF is therefore

r(a, O)=2nF(z)-2H(p) (12)
where the explicit expressions for z, F(u),
and H(u) are given in Equations (7), (4)
and (11) respectively.

By use of Equations (7), (12) and the
aid of the computer, the mean and the
a#bsolute deviation are computed for a=0,
1, -+, 20 afth9=—0.5, —0.4, ---, +0.4,
+0.5 and the equi-mean and equi-absolute
deviation curves for a=0, 1, ---, 10 are
given in the nomograph in Fig. 1.

By computing the mean and the ab-
solute deviation of sample data, one can
find the values of a« and ¢ directly from
the nomograph. Upon substituting these
values of « and § into Equation (4) one

_ G(a, 3
a?.

H(y), +log-

“Wwill obtain ‘‘the best fitted"” probability

distribution function for this particular



set of samples according to the criterion cited earlier (i.e., this set of samples has the same
mean and the same absolute deviation as that of the sample having the probability distribu-
tion function with the values of « and & taken from the nomograph).

6. The Variance and Moment Generating Function

From a practical viewpoint the variance and moment generating function are of little
use; however, they arc investigated for theoretical considerations to verify that the variance
is finite and that the moment ger.crating function exists.

By definition the variance, ¢2, is:

02=Vr(x—/t)2f(x)dx. (13)
Equation (13) ca.. be simplified as follows:
ot=\" xfCdx— e, (14)
When =0, f(x)=1, 0<x<1| and ;=0.5, therefore,
, 1
ag-= ]2 .

This is correct for the uniform distribution.

For a>0, the integrai in Equation (14) is difficult to evaluate and since it is shown
that 7 is used in lieu of o2, with the nomograph, for finding parameters & and &, only the
existence of the variance will be shown. Then from Equation (14)

-, . ot X2
S-,_" S(x)dx~ 112 =G(a, O)Sf’cosh? Ca(x+38—0.5)]
Let z=a(x+8—-0.5). Then
aig+0, 5 z? " 2(05_6) xa £+0. 5

V'x:j(x)dx=Glr { dz- -

dx— .

dz
. z

1
. @® lag-o.5 cOsh?z °° @
05_62 aid-0,5) ]
+ 0.5-4) 2 dz].
a ag-0.5 COsh? z
The first integrant can easily be shown to be integrable by use of the theorem: A func-
tion continuous on a closed interval is integrable there®). Also, since it is a proper distribu-

tion function, it has a unique characteristic function, by Levy's Theorem.
Let us denote the moment generating function for x by M«(60). By definition,

M=\ rixemdx (15)
When a=0, f(x)=1, 0<x<1, therefore

°1 n__
M.(0)=\ edx= "1

When a>0, Equation (15) becomes,

1
—_ 0 !
wa(o)-’ SOG(Q. 0) cosh® r([(,\‘—i-(')\** 05)]

1 (,nx
=Gla, ﬁ)sn cosh?[a(x+¢-~0.5)] dx.
Using the same argument of continuity and integrability of this integrant, it follows that the
moment generating function M.,(f) exists.
To facilitate application of the FRPDF, the following tables and a Nomogram is pro-
vided. Also, several figures showing the shape of the FRPDF with different values of param-
cters o and 4 are given. The attached Appendix will help the reader get a first-hand  fee!

cetdx
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of its case in application and goodness-of-fit.

7. Conclusions

The objective of this paper has been to present a finite range probability distribution
function which was developed by Braswell and further refined and applied by Manders.
The probability density function, f(x), is strictly unimodal as shown in Figs. 2 through 7.
When § - 0, the probabuity density function is always symmetrical with respect to the vertical
line x =0.5, and the distribution function is a family of S-shaped curves. When §<0, the
peak of the probability density function shifts toward the x=1 line and when §>>0, it shifts
to the x=0 line. When a =0, the FRPDF distribution is identically uniform; for the large
value of a, a=10 or more, the peak of the distribution becomes narrower and higher at
appropriate value of x for siven value of 4. Eventually, this peak will reach infinity in the
limit, and the function becomes an impulse function at a certain value of x, This is very con-
venient in practical cases.  Since this indicates that for a certain statistical sample, if the value
of a is large, this statistical sample can be treated approximately as a deterministic one.
Hence 8 can be considered as the location parameter, while @ can be considered as the
shape parameter.

The new FRPDF can be easily applied to almost any practical problems where experi-
mental data are easily collected. Once the necessary data are tabulated, one can easily compute
the mean and the absoluie deviation of that sample data. Then by use of the Nomogram in
Fig. 1 the values of the parameters,  and J, can be found directly. Substituting these

50 I $:0.0 60 - §:=-01
*=0
L0~ —-— =)
=5 /\‘
————— X2 10 i

4.0

foo

30 -

20

0.0 0.5 10 00
X

Fig. 2 f(x) for the FRPDF 34=-0.0 Fig. 3 f(x) for the FRPDF 3= -0.1
If 3= +0.1, replace x by 1-x
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Fig. 4 f(x) for the FRPDF 8=-0.2
If 3=+0.2, replace x by 1—x
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Fig. 5 f(x) for the FRPDF 3=-0.3
If 8=+0.3, replace x by 1--x

00

X
Fig. 6 f(x) for the FRPDF 9 0.4

If 2

+ 0.4, replace x by I —x

00
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Fig. 7 f(x) for the FRPDF 8 . -0.5
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values of a and ¢ into Equation (4) one can obtain *‘the best fitted" probability distribution
function.
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ON TESTING AND APPLICATION OF A NEW FINITE RANGE
PROBABIILITY DISTRIBUTION FUNCTION®

By Robert N. BRAswLLL

University of Florida
Gainesville, Florida

Clara Fu-Mei MANDERS

Radiation, Incorporated Melbourne, Florida

To demonstrate flexibility and sensitivity this paper will cover some aspects of iesting
and application. There have becen several other experiments using the new FRPDF and in
all cases it has proven superior in results and much easier to use. Even when the distribu-
tion of the data was known the FRPDF was preferable. The complex expression did not
deter new users from being attracted to further applications.

1. Testing and Application

An important problem in statistics is to find how well a sample taken from a population
agrees with some distribution function assumed for that population. Two such tests are
considered here.

The range of x is divided into M equal regions and the number of sample points falling
within each region is counted. Let Y, Y2, -+, Y be the result. From the assumed distribu-
tion and the size of the sample, the expected number of points in each region is computed:
g1, &: '+, gu. The deviation between this and the actual result is expressed by

V' (
)'m—gm)2
D=Z 1
2 (1)
m ]
where
Emn=Npa
=the number of expected points in the m-th interval
M
N= }:,l)',,.

=sample size
ym=the number of sample points in the m-th interval

pm=§:" SOdx=F(xa)=F(xn.;)  m=1, . M

«-Tm
F(xm.y)=0 for m=1
the probability of sample points falling in the m-th interval.
This deviation is used to ascertain the confidence level of the assumed distribution.

* Received 24, Feb., 1970.
[Reprinted 4rom Rep. Stat. Appl. Res., JUSE, Vol 17, Ne. 2, 1970, by
peamission o4 the pubfishen.)



As an application of the method described in this paper, consider a class grade distribu-
tion of 50 graduate engineering students.

Sree 1

NI R RV R W

—
o

Table 1 gives the grades for the students [1].

Compute an estimate of the normalized mean, s, and the absolute deviation,
;. from the data given in Table 1.

For convenience in analysis we will normalize the grade
range from [0, 100] to [0, 1]. They are found to be;

/i=0.829

7 =0.093.

Table 1 Class grades of a graduate cngineering class of 50 students

Gr.

81
86
78
85
79
85
92
83
96
89

i
11
12
13
14
15
16
17
18
19
20

Gr.

85
69
95
87
69
85
90
71
68
79

Gr. i Gr. i i Gr.
g0 | 31 67 41 78
9 3 89 . 4 95
9 33 77 i 43 86
63 34 95 . 44 75
92 35 63 ' 45 9%
6 36 100 ' 46 9%
52 37 8 | 47 98
79 , 38 97 48 83
9% 39 8 | 49 81
9% 40 % 50 91

t

Step I Locate the intersection of 4=0.829 curve with 7=0.093 curve on Fig. 1, and
estimate the coordinates of this intersection.

v

T.0

Fig. 1

The FRPDF F(x) with a=5.5,

8=-04.
class grade

Fitted to curve of

This is equivalent to the estimation of two
parameters « and ¢ in our F(x). Here
a=35.5
é=-0.4.

Step III  Substituting these values into
Equation (4), we obtain
_ cosh (0.55) sinh (5.5x)
FI= Gnh (5.5) cosh [5.5(x~0.9)]* ()

Step IV Divide the range of x into 10
equal regi»ns: M=10

1) Compute F(x.):

Flxn)= .cosh (0.55) sinh (5.5x.)
"7 sinh (5.5) cosh 5.5(xw —0.9)

m=1, ---, 10.

With the aid of the computer, the values
of F(x.) are, 0.000f, 0.0005, 0.0017, 0.0054,
0.0161, 0.0473, 0.1329, 0.3328, 0.6664, and
1.000.

2) Compute pu:
po=\"" Sz =F(xa) = Flxa-),
Tm-1
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m-1, 2, -, Al
Using the values for F(x,), the values of P are, 0.0001, 0.0004, 0.0012, 0.0037, 0.0107,
0.0312, 0.0856, 0.1999, ¢.3336, and 0.3336.

St1ir V. Prepare Table 2.

Table 2 Distribution of class grades

m Ve “m Npm (Km‘;,:"'): m Ym Y (o q: d
1 0 0.005 0.005 7 7 4.280 1.729
2 0 0.020 0.020 8 9 9.995 0.09y
3 0 0.060 0.060 9 17 16. 680 0.006
4 0 0.185 0.185 10 15 16. 680 0.i69
S 1 0.535 0.404 PR
6 1 1.560 0.201 Total 50 50 2.87%

2. The X3-Test [2, 3]

The purpose of the Z° test is to find the probability that the observed deviation between
the theoretical model and the empirical data is in fact due to the random nature of this set
of data.

If the y. are sufficiently large, say more than 10, the deviation we defined in (1), is
distributed according to the %~ distribution with M —1 degrees of freedom. This is K. Pear-
son’s test function which gives great weight to those deviation squares (3w —gw)° that cor-
respond to small p.. If the assumed parent distribution is not completely known and &
parameters defining it have been determined to fit the sample, the number of degrees of
freedom is reduced to M—1-—4,

Now we will apply the %*-test to our example.
M

£ = (gw — V)

LIRS
=2.878
and the degrees of freedom are 7 (10-1-2),
For 7 degrees of freedom, this deviation is exceeded about 90 percent of the time ..
The assumption of our FRPDF is therefore very good. There is thus nothing in the value
of x* to lead us to reject our hypothesis.

(3)

3. The Kolmogorov-Smirnov Test [ 3]

It is also desired to investigate how well our empirical data fits our theoretical distribu-
tion by A —stest. The A~ test allows us to place confidence level on the positive as well
as negative deviations, ie., it allows us to check the theoretical distribution for points of
excessive as well as inadequate probability.

Define the one-sided deviations as:

Dy =nsep‘[F(A\'..)—S,.(,\'..)] and D.- - sup‘[S,,(x..)— F(xa)] (4)
oo

where
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L]
AR

IR

i=1

S.xn) v

and  F(x.,)

are gnven in Swep 1V,
According to Smiurnov's asymiptotic distribution 3,

P.D. ~zi~e and  P{D. .~i;~e 2, (3)
Now we proceed to test the example.,
l)A\' criead -0.0014 and D,\ T empnnigal -=0.0471.

Table 3 Calculation of the one-sided deviations, D¥' and Dy~

m Fam) S xm) D\ D m F(xm) Smlxm) Dy~ Dy-
1 0. 0001 0.00 6 0.0473 0.04 0.0073

2 0.000% 0.00 7 0.1329 0.18 0.0471
3 0.0017 0.00 ¥ 0.3328 0.36

4 0.0054 0.00 9 0. 6664 0.70

3 0.0161 0.02 10 1. 0000 1.00

Sce big. 1 for comparisons.

4. The Glass Bottom Boat Problem

Consider the “"glass bottom boat problem™ which is similar to the well known **Newsboy
Problem.™" 4

Statement of the Problem :

A photographer must Jdecide how many pictures to print cach time after he takes a
picture of the passengers in the glass bottom boat at Silver Springs, Florida. Suppose that
the towl number of the passengers is fixed, say forty. The : ost of a picture is C and the
selling price is $.  Any pictures not sold at the end of the day are a total loss. Let p(y)
be the probability that » pictures will be demanded cach time.  Then his expected profit for
cach boat if he prints /1 pictures is

ELPUNY) SN ypy)+ SAL S p(y)]—Ch
Pt v onel

since the revenue received is Sy if 3o &, and is Sk if y>h.  The problem is 10 dete~mine
the value of 4 which maximizes his expected profit,

Often it is convenient to treat 4 and the demand variable » as continuous. Then if
fer) is the density function for demand and F()) is its distribution function, the expected
profit for cach boat when /i units are printed is

LLPtn] S\ xf(ady + S\ f(3)dy—Ch. (6)

The opumal 4 s then a solution to dELP(A)] dh=0.
Using Leibnitz’s Rule, we obtain

dE o -s-c-sk.
dh
Thus the optimal A, A, satisties the equation
F(ly= S;( . (7
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Let 8 S1.20 and ¢ S0.50. Then £(h) 712, or 0.583.

b quation (6) is a stricdy concave function of A This implies that any relative max-
imum of £ ] P] is the absoluic maximum and the absolute maximum is unigue.

Suppose the demands are normaldly distributed then Equation (7) becomes

fli(l!"‘ ) 5 .(’

S (%)

LN
where
v is the sample mean, and
a. is the standard deviation.
If the deminds follow the FRPDEF then Fquation (B.7) becomes
cosh | als-+-0.5)] sinh (al )y S C

FOQO- 7 o ta) coh[eth -6 03] S

(9)

where h, is normalized 4.

In order to determine the demand the photographer performs the following experiment.
For cach of ten successive boat loads he prints forty pictures (the masimum possible demand).
He then records the number of prints that he sells 1o each boat load of passengers.  In this
manner he obtains the following table:

Table 4 Number of pictures sold 1o cach boatload of people

Boat Number Number of Demands Bouat Number Nunmber of Demands

i " { i

1 36 6 30

2 34 7 25

3 39 8 37

4 20 9 23

5 17 10 13

Table 5 Calculation of y, y;-y and {p;- yF

. v Yisod, (yvo-2) i ¥i Vo (e V)
1 26 6.6 43.56 7 25 4.4 19. 2%
2 34 4.6 21.16 8 37 7.6 57.76
3 39 9.6 92.16 9 23 6.4 40.96
4 20 9.4 88.36 10 3 6 12.96
S 17 12.4 153.76
6 20 0.6 .36 Total 294 65.2 §20.40

We find that the estimator for s is the sample mean 1,

, )

= ; L2

= 10/." 29.4.
1 !

in

>y - y)
5,2 " - D . 3
7, 101 58.9

The estimator for 4,2 is:

and that for ». 8.
a0 458.93  7.68.
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The estimater for 7, is the sample absolute deviation |y —yi,

10
— 1 el 5o
b= IOZI"‘ ¥|=6.52.
P 1

Now we are in the position to calculate 2* by assuming that F(#) in Equation (7) is 1)
norma! Jistribution function and 2) FRPDF.
1) Assume F(h) is normal distribution function. Then A* is the solution to Equation
(8), or
h—-29.4
w( s )——=0.583.
Hence from the normal tables
h-29.4
7.68
Thus 31 pictures should be printed.
2) Assume F(#) is FRPDF. In this model the variable is normalized; we should make
a lincr transformation on each sample value.

We find the normalize 7, s to be:

=0.21 or Ah=3l.

-
;=—“%‘-"—=o.735
and the normalized |y—5|, 7 to_be
7= 652 _0.163
40 :

From Fig. 1, we can estimate the parameters of our FRPDF « and §. They are found
to be

Table 6 Calculation of the expected profit for three different decisions

Nﬁmﬁér of I;ictli}és; SAold__

' } ¥ . h=y=29 h=31 (Normal) | k=33 (FDPDF)

! 3 29 3 | 33

2 34 29 { 31 1 33

3 39 29 | 3l ( 33

4 ’ 20 20 | 20 | 20

5 17 17 , 17 ‘ 17

6 30 29 f 30 i 30

7 2 25 3 25 } 25

8 37 29 ' 31 : 33

9 23 23 23 i 23

10 33 29 31 | 33
Total sold 259 270 | 280
Totul printed 290 310 ; 330
Total return $310.80 | $324.00 | $336.00
Total cost 145.00 ; 155.00 ’ 165.00
Total profit 165.80 | 169.00 171.00
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Substituting these values into Equation (9) and rewriting it, we have
12 cosh (0.3)

7 cosh(—2.7)sinh(3)
12 (1.0453)

coth (3h,)= —tanh(-2.7)+

=0.99101+ 5° (5 4935410.018)
~1.01494
or
tanh (34,)=0.98528
3hy=2.46
b= 230 and h= 230 <403,

Thus 33 pictures should be printed in this case.

Of the three methods employed we sec that the new FRPDF gives the BEST decision
as to number of pictures to be printed. More involved experiments with the Newsboy
Problem, the Glass Bottom Boat Problem, etc., yield comparable results [6].
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