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ABSTRACT

A family of generalized models are presented for analyzing data or

systems with stochastic properties. Previous work in this field is pre-
sented as well as a new finite range frequency distribution function with
nomograms, tables, examples, and recent extensions to a generalized family
of methods and models. The analytical techniques are related to statistical

mechanics and were developed specifically for analyses of weapon systems.
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SECTION I

INTRODUCTION

In solving problems involving stochastic processes, the systems analyst

and engineer often have to choose a probability distribution function that

will fit the experimental data. One method is to use one of the typical

"Vext-book" distributions. These are generally tabulated, with established

computational procedures for finding moments. This approach has proven useful,

especially when higher moments of the distribution are needed. However in

many cases, (a) only the first moment, or the first and second moments, are

needed in the analysis, (b) there may be obvious similarities to given data

and curves encountered in previous situations, and (c) there may be an ad-

vantage in using a standard distribution that will allow ease in some

predetermined calculations and tests. In such cases, it may be desirable to

devise distribution functions that fit the analysis, rather than encumbering

the analysis with unnecessarily complicated functions and fitting procedures.

In this report, a class of distribution functions is derived and it

is shown that the frequency function developed by Braswell and extended by

Manders, References 1 and 2 (see the Appendix), is a particular member of a

family of these distribution functions. Procedures and methods of finding

parameters of these distributions are presented. To show the simplicity and

usefulness of this method, the parameters of the distribution of Braswell and

Manders are re-derived, using the more general techniques. Finally an

example of application of these types of distributions is given.
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SECTION II

CLASS OF FREQUENCY FUNCTIONS

Suppose there is given a function h(x), such that

dh(x) > 0 for x < x<x

dx 0 -- i1

Then the doubly truncated cumulative distribution function

0 for x < x0

F(x) = h(Xf) _h(xo0) for x0 < x < x 1  2

1 for xI < x

is a proper cummulative distribution function (edf) with finite domain

associated with positive probability.

The corresponding probability distribution function is given by

f(x) dF(x) = 0 for x i [xox 1 ]

dx =[ h'(x) for x E xlx]

h (x)- h (xO [X

The mean, u, is given by

xl

S= xf(x) dx 4
ix0

xl x1

= xF(x) - f F(x) dx 5
x 0 0

Since F(xO) = 0 and F(xI) = 1,

, -xI- F(x) dx. 6
x0

2



Similarly, the second moment, "2' is given by,

xl

2 = x 2 F(x) - 2 1:1 xF(x) dx 7
x0

Since

F(t) dt = F(x), Equation 7 may be written,
X 0

P2 = x2F(x) -2x J F(t) dt F+2 f f(t) dtd 8
x0 x0 x0 ox 0

Therefore, a useful form for P 2 if F(x) is twice integrable is

xl

P2 = X2 - 2x1  F(t)dt +2 F(t) dtdx 9
x 0 x 0 x 0

Using Equations 6 and 9,2 may be expressed by

.2 - X 11 -Xlj x0 F(t)dt + 2 j f F(t)dtdx 10
2) x0

The absolute deviation, y, is given by

x 1f Ix - ulf(x) dx 11

Kx0

For x 0 > 0,

y = -j xf(x) dx + p f(x) dx + j xf(x) dx - P f(x) dx 12
Xo ~0

- xF(x) + J F(x) dx + vj[F(F ) - F(xo)] + xF(x)

x0 x0

i F(x) dx - P[F(x1 )-F(p)] 13

j F(x) dx - 1 F(x) xx- 14

3



To show the simplicity of use, the form and parameters of the

frequency function of Braswell and Manders are derived.

Here, h(x) dea x for x0 = 0 and xI = 1 15
1+ be'Ix 1

and, thus h' (x) > -,,, for a > 0, x c [0, 1]

Also, h(x ) = h(0)
0 1+ b

h(x) = h(l) dea
1 + bea

Therefore,

0 forx < 0

F(x) = 1 + beax + b= H(x) for 0 x < 1 16

1 +be a) ( + b)

1 for x > 1.0

To get F(x) into the form previously used, we examine H(x).

H(x) = (eax - 1)(I + be )

(I + be a)(e - 1)

-ca(i+26)] -2nx]
l+ e i e- e - for 0 < x < 1 17

-e-2a e" (1-2x-26)][] -2e ] [1+ -

a a+ 2Zn b
where t = and 2 a2 . - 2a

ea(l-2•)

Multiplying Equation 17 by e
a(1-21)

e

[I + e- 1+ý jfea'(1-2 6) - e' o(1-2x-26)1H(x) = - for 0 < x < 1 18
[e'u(1-26)- e-a(l+26 ) 1[+e"(1-2x-26) -- -

which is the result obtained by Braswell and Manders.

4



The mean, u, is given by Equation 6, therefore

p =xF(x) - F(x) dx 19
1 00

Thus, • may be written as

1 +_ I _ fl 1 - e dx 20

1 -e' 01+ beax

The integral in Equation 20 is evaluated in Reference 1.

Due to desired generalizations for the cdf of Braswell and Manders

presented lattr in this paper, it is desirable to be able to evaluate integrals

of the form

i ecx dx 21
x0 b+eax

ax

Thus, the transformation, n = e gives

ax 
n

1 f !nc/
1 ld 22

a b+n

For b > - e

nc/a 2
1c/ ~ 1 1. 1 c/a3

1-c/a(b + n) b n-c/a b (b + )

Therefore,
axI ax1

. fe xl dx 1 e ax, xc/ad2
ab ax 1-c/a ab e (b + )24

Evaluating the first integral,
ax1

e
1 c/a

. x1 be Xc x eax0) for c 0 02zI 1 e dx --l 25
1 b e Ox1C/8x e axl

ea0 
eTac/

ab eaxo for c = 0

5



Therefore;
ax1  ax0

1 [e - e ax] for c 0 0

I1 = 26

1 [x, - x0 ] for c = 0

The second integral to be considered is,

axI1  C/

12 a ax 0  x---- dx 27
2 ab axo (b+x)

e

If c = 0, then

ax1

I = e dx 2812 a-b aob+---bax0

e
or

laxl

2 a e1 2 = a-b ;n e aXO -29

If c/a = n, some positive integer, then I is given by Equation 25, and

axI
I x e 3n

12 =ab j ax 0  b dx 30

e

ax1

1 rfe +baxI (x-b )n
ab] ax0 dx

e +b
eax 1 +b

e Ax+b
1 n n1  n-J dx
ab e axo + Jb xJ (-b 3e +X

ax 1 ax1

= ab eax x ab J. (-b) e +b xj-idx 32

e 6



1 rax1  in F(eAxi b)jaxo+ i1
e +b I j±X , -+b

2 bab f E iý -il 33~
L e axO+bJ

If c/a is not a positive integer or 0, then 12 may be written in

the form

12 (-b)C/a I0 /a (-b)- f" e +b xJ-1 dx 34
ab . ) -J ax 0

where ( ) is defined for non-integral x as, k a non-negative integer, as

0 fork= 3 0

I:) x(x - 1)...(x - k + 1) for k > 1

Therefore

(-)c/a Fax, + -bc/a E.- c/a\I.\ iax, +)ieax, +) 3
12 ab Lax [ ab Lj,\j b e b \e36

It should be noted in Equation 36 that if h > 0 then the expression

(-b)c/a has both real and imaginary components, but the imaginary part

may be neglected in this case. The method may be used to evaluate inte-

grals such as.

(a) x1 sinh(ax) dx
f sinh(Bx)

x0

(b) r X. cosh iX))(b) sinh (x)
x0

(c) ( xI cosh(ax) dx
x0 cosh(Sx)

and many other similar forms. The evaluation of these integrals is sim-

plified when the ratio ct/O is a positive integer (the smaller the integer,

7



8

the fewer number of terms necessary in the evaluation).

An immediate result of the foregoing discussion is a method of

evaluating slightly more general integrals, those of the form

S= X eCXdx 37

x0  (b+eaX}a

Here

1 f eX dx 38
a•J xO x(b+x) C3

e

e _ e+b (x-b) c/a-I

=11dx 39
e h x

c/a-lj ~x I ~+bx

= 1 -0 / (-b)C la-l-j x - dx 4C
a - exoa =f e 0+b

Again, if c/a is a positive integer, there will be only c/a + 1 terms

in Equation 4r).

It is of interest to note that the foregoing integrals are generaliza-

tions of many of the tbulated integrals. Therefore,the evaluation of

these integrals is of some importance in itself.

7eturning to the determination of the mean and absolute deviation of

rCio o '= "raswe~l and Manders, the mean is obtained using Fqua-

t'ons 20l, 26, and 31. The alsolute deviation is obtained by use of Equa-

a a+2 nmbtions 14, 26, and 31. When a = - and A, the results in
2 2a

Reference I are obtained.

For completeness, the frequency function of Braswell and Manders should

be examined for the limiting cases:

(a) Lim F(x) (b) Lim F(x)
a -() b.- l+

8



For case (a)

Lim F(x) - Lim (ea!-Il+bea 41
a-*O+ a-+O+ Iea_ I \l+beaxj

If b 0 -1, then

Lim F(x) - Lim ea-_l 42
a--O+ a-,-O+ e a_,

Therefore, by L'Hospital's rule

Lim F(x) - x 43
a-O+

Thus F(x) tends to the cdf of a random variable uniformly

distributed in the interval {0,11.

In case (b)

Lim F(x .- (ea-lý Lim (+be a

aea-I) b-•-l+l+beaxj

or

Lirm F(x) = 1 45
b-1-l+

Thus x is a variable associated with a deterministic process.

A useful extension of the frequency function of "Draswell and Manders

given in Reference 1 is given by

ex
h(x) - _e 46

b + eax

with x= 0, x1 = 1, b > -1.

For monotonicity of F(x), d() must be greater than zero,
dx

4V x for x e (0,1].
Since dh(x) - cx cx ax

Sce ae e ,the condition 47
dx b+eax (b+eax) 2

dh(x) > 0 will hold if c > aeax
dx - x for x r [0,i]

b+eax

9



10

ax

Since w(x) = a is monotone increasing for x f [0,i], the maximum
b+eax

of w(x) occurs at x = 1, and tharefore, monotonicitv is insured if
a

Sae (b ' 0 3nd c > a will insure monotonicity).
b+ea - _

It should be noted that h(x) given in Fquation 46 is a generalization

of the energy distribution functions of statistical mechanics as given in

Reference 3. The Vaxwell-Boltzmann distribution is of the form,

f(x) = 1
x x/kt 48e e

The Bose-Einstein distribution is of the form

f(x) = 1 49
a x/kt

and finally, the Fermi-Dirac distribution is given by

f(x) = 1 50
a x/kt+

Using h(x) given in Equation 49, the cdf takes the form

, 0 for x < 0
CX__ 51

I -I e a b fo r 0 < x < 1

F(x) r c ~ l

I.b+e aj

"1 for x >1

The function given in Equation 15 is a Particular example of a family

of 'unctlons given '"y

h(x) = W c:- for x0 . 0 and x1 1 52

(b+e ax)

Using this function, the corresponding cdf is given by

10



0 for x < 0

F(x) ((b+e-x) O -_( a for 0 < x < 1 53

1 for x > 0

To evaluate the parameters of this distribution, integrals of the form

ey cx dx 54

e (b+eax)u

must be evaluated and the evaluation of these integrals is greatly simplified

(thus increasing the usefulness of the distribution) if c/a = n, a positive

integer and a - k, some positive integer.

In this case, Equation 54 becomes

I - i/a xyn-I
= ea (b+x)k dx 55

e y+b ni { n-1\
- 1/a _ e•+b n- I xj (-b)n-l-Jdx 56
= ( feobn- xn-k n-10Y~

S L i-a (-b)- f +b xJ-k dx 57
a I .0I Ob

There are four parameters associated with this distribution: a,

b,c, and k (n is determined by a and c) and formulae have been developed

earlier for evaluating the mean and absolute deviation. Therefore, if

any two of the pdrameters are fixed, the mean and absolute deviation

can be used to determine the other two. By doing this, six families of

distribution functions are generated.

11



For example, if b = 1, a 1 1, x 0 = 0, xI = 1, then

Sfor x < 0

F(x) ____ _ k 58

i(+e) k ]-

I for x > 0

12



SECTION III

RANDOM NUMBERS

Often, it is necessary to use random numbers selected from a distribution.

The cdf of Braswell and Manders may be easily inverted to give random numbers from

that distributiou if random variables uniformly distributed in {0,i1

are available.

If F(x) is monotone increasing cdf, and r ip a variable from a

uniform {0,I1 distribution, then

y = F-l(x)

is a random number from F(x).

For the FRPDF of Braswell and Manders, the cdf may be inverted in closed

form, thus making generation of corresponding random numbers easy.

Let

l+be aX 1

F(x) - r a

Then

r ea+-ea l + (b
F (x) x = in n l+be a +b

a-b e a Irý +

[ lý +bea

Random numbers using the function by Braswell and Manders are given in Table I.

For the generalizations of the above function, the inverse cannot

be found in closed form. This presents no real problems, in that

"Monte-Carlo" techniques in Reference 4 may he used to generate accurately

as many random numbers from these distributions as may he needed in any

problem that is to be analyzed.

13



TABLE I. RANDOM NUTMBERS USING THE FRPDF OF BRASWELL AND MANDERS

0.24158 0.60196 0.25900 0,97604 0.81010
0.32882 0.54244 0.02165 0.99494 0.35506
0.57602 0.21315 0.83320 0.37908 0.46429
0.46475 0.47708 0.07142 0.19321 0.46652
0.59312 0.59904 0.55056 0.37447 0.75369
0.74804 0.00798 0.53492 0.38361 0.84148
0.19745 0.)6575 0.11968 0.55770 0.64208
0.42256 0.74125 0.65361 0.77012 0.59652
0.93307 0.38003 0.21965 0.22837 0.02158
0.32717 0.51644 0.43901 0.31461 0.38016
0.73331 0.88885 0.23166 0.54247 0.09798
0.58225 0.18766 0.31569 0.79382 0.04368
0.26919 0.25216 0.43510 0.26635 0.00619
0.50120 0.67743 0.35515 0.32886 0.48071
0.96026 0.04537 0.41694 0.79842 0.68748
0.37894 0.50911 0.43165 0.87127 0.67873
0.99545 0.08539 0.21373 0.58254 0.36961
0.74520 0.19261 0.47631 0.79148 0.19704
0.19635 0.29674 0.40224 0.36312 0.51801
0.75558 0.82781 0.99734 0.18026 0.00213

(A=0.10000, B=0.90000)

Example:

It is illustrative to show how the generalized class of frequency functions

can be used in systems analysis.

A sample of times to complete jobs on a computer was taken (Table II).

A useable empirical distribution was needed to fit such samples.

To handle this problem, the probability distribution associated with

the generalized cdf vas analyzed.

It was noted that these jobs fell into two categories. The first

category was short jobs, i.e., jobs that took less than one minute to

complete. The other category was long jobs, i.e., those that used more

than one minute to complete.

14



The shorter jobs far outnumbered the longer jobs at the installation

from which the data was taken. Also, it was known that the longer jobs

were usually "production runs" of tested programs, so that they could

be handled differently than the short test jobs.

Thus the data of interest concerned the shorter running programs.

The associated pdf, f(x) may be written,

ax axe kaeax
ax k ax

f(x) = L(b+e e 59

ax a

[T e7

a x__ __ k a e ax

Since is an increasing function of x, and c- k is a
(b+e ax)k b+eax

decreasing function of x, it was seen that the important middle range

values of the sample could be fitted by varying some of the parameters.

Since, only means and absolute deviations were easily computed,

the cdf given by Equation 58 was adopted. Then

1
enX kex]

(l+eX)k n l+eXj

f(x)

ýe 
n

(i+e )k 2 k

A table of means and absolute deviations for various n and k is shown

in Table Hland used to pick a value of n and k to agree with the estimated

mean and absolute deviation of the sample, which were I = .2534, and y = .17.

15



TABLE II. u AND y kS A FUNCTION OF n AND k

n=1i n=2
K n k n 2

0.577 0.235 0 0.652 0.219
1 0.475 0.242 1 0.598 0.235
2 0.640 0.201 2 0.506 0.240
3 0.494 0.238 3
4 0.429 0.227 4 0.624 0.200
5 0.378 0.217 5 0.497 0.229
6 0.333 0.206 6 0.428 0.225
7 0.296 0.188 7 0.374 0.217
8 0.263 0.174 8 0.329 0.196
9 0.236 0.156 9 0.291 0.189

n= 3 nf4

0 0.174 0.189 0 0.764 0.161

0.669 0.204 1 0.729 0.175
2 0.613 0.228 2 0.688 0.197
3 0.536 0.237 3 0.635 0.218
4 0.383 0.212 4 0.566 0.233
5 5 0.457 0.228
6 0.608 0.197 6

7 i 0.494 0.228 7
8 0.423 0.224 8 0.592 0.204
9 0.369 0.207 9 0.487 0.220

nf5 n 6

0 0.802 0.138 0 0.831 U.119
0.776 0.151 1 0.811 0.132

2 0.744 0.171 2 0.787 0.146
3 0.705 0.190 3 0.758 0.159
4 0.657 0.208 4 0.722 0.183
5 0.594 0.228 5 0.678 0.198
6 0.504 0.233 6 0.620 0.223

7 0.548 0.232

L 8 0.420 0.207

16



For the given sample, n = 1 and k = 8 were chosen. To test the

goodness-of-fit of the fitted distribution, the data were divided

in five group and an X2 test performed. See raw data in Tables III and IV.

The regions considered were (data in Table V).

I: 0 < x < 0.1

II: 0.1 < x < 0.2

III: 0.2 < x < 0.3

IV: 0.3 < x < 0.4

V: 0.4 < x < 1.0
Setting X2 =5 (y_gm__2

g = mm , where ym = number of data points in interval
M1 gm

m, and gm = expected number of points in interval m. gm was found using

the tabulated value of F(x), and X2 was found to be 4.087. Since there

were five intervals, and two estimated parameters, the variable X2 should

belong to a chi-squared distribution with two degrees of freedom. The

value of 4.087 indicates a significance level of about 85 percent.

Much higher values of X2 are found if a normal distribution is

hypothesized, due to the fact that a2 . .044. This small value of a2

causes g, and g5 to be small, thus increasing the value of X2 . The given

X2 for this problem could be greatly reduced if the restriction of integral

n and k were removed, or if larger values of integral n and k were considered.

CONCLUSION

The scheme presented in this paper may be extended to use for different

"basis" functions for distributions. To use this method the analyst should:

(a) Determine if there is something to be gained by using this

technique. If the problem under consideration is not made easier,

he should not pursue this technique.

17



TABLE III. SEQUENCE OF COLLECTED DATA

Observation. Time Observation Time Observation Time Observation rime

1 0.46 12 0.05 23 0.14 34 0.04
2 0.231 13 0.22 24 0.02 35 0.08
3 0.35 14 0.39 25 0.36 36 0.02
4 0.101 15 0.13 26 0.26 37 0.531
5 0. 3 7 1 16 0.88 27 0.02 38 0.04
6 0.1O0i 17 0.31 28 0.08 39 0.401
7 0.07" 18 0.08 29 0.10 40 0.131
8 O.341 19 1.00 30 0.05 41 0.23
9 0.09; 20 0.49 31 0.47 42 0.261
10 0.59: 21 0.15 32 0.39 43 0.30'
11 0.32! 22 0.27 33 0.12 44 0.021

TABLE IV. ORDERED DATA

Order Time Order Time Order Time Order Time

1 0.02 12 0.02 23 0.02 34 0.02
2 0.04 13 0.04 24 0.05 35 0.05
3 0.07 14 0.08 25 O.08 36 0.08
4 0.09 15 0.10 26 0.10 37 0.10
5 0.12 16 0.13 27 0.13 38 0.14
6 0.15 17 0.22 28 0.23 39 0.231
7 0.26 18 0.26 29 0.27 40 0.30
8 0.31 19 0.32 30 0.34 41 0.35
9 0.36 20 0.37 31 0.39 42 0.39

10 0.40 21 0.46 32 0.47 43 0.49
11 0.53 22 I 0.59 33 0.88 44 1.00Hi _____ I ____A___ ________

TABLE V. CLUSTERED DATA

Interval No. of Observations

0 to 0.1 13
0.1 to 0.2 8
0.2 to 0.3 6
0.3 to 0.4 9
0.4 to 1.0 8

A A A
Parameter estimates: w = 0.25, y= 0.17, a= 0.044

18



(b) Pick a family of functions that may be parameterized, and that

he can manipulate in some way.

(c) Determine the forms of the associated cdf's and pdf's. Of parti-

cular interest would be critical points of these functions.

(d) Establish a method (tables of means, deviations, etc.; explicit

formulas; etc.) of estimating the parameters of these distributions.

Once he has these tools he may then:

(e) Proceed to solve the problem at hand.

Objections to this type of use may be raised, and the analyst would

have to determine the appropriateness of applying this method in a particular

application. One point to be considered in this determination, is that, in

general problems that are presented for solution are so large or complicated

that a digital computer must be used. If a numerical approach is used for

parts of a problem, then the analyst should be able to use this method if it

makes some parts of the problem more manageable. But, since this is the

only case .n which this method should be considered, most objections to the

technique can be overcome.

19
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APPENDIX

Much of the information in this report is based on mathematical

equations presented in References 1 and 2. Those papers were published
only in Japan and are not readily available in the United States. There-
fore, by special arrangement with the publisher, the papers are included

here as an appendix.
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A NEW FINITE RANGE PROBABILITY DISTRIBUTION FUNCTION

(FRPDF) WITH PARAMETERS-NOMOGRAM AND TABLES*

By Robert N. BRASWIt.t.t

University of Florida
Gainesville, Florida

Clara Fu-Mei MANDLRS

Radiation, Incorporated Melbo:irne, Ftorida

The objective of this paper is to introduce a flexible finite range probability
distribution function, FRPDF. The emphasis is on flexibility of application
relative to its simplicity of use and its ability to fit varied experimental data
clusters.

The FRPDF, f(x), 0-'x-!i, is strictly unimodal as shown in Figures 2
through 7. When 8=0, the probability density function is always symmetrical
with respect to the vertical line x=0.5, and the distribution function is a
family of S-shaped curves. When 4>0, the peak of the probability density
function shifts toward the x=l line and when 8>0, it shifts to the x-0 line.
When a=0, the probability density function is identically uniform. For the
large value of a, a= 10 or more the peak of the probability density function
becomes narrower and higher at appropriate values of x for given values oc
8. Then. 8 can be considered as the location parameter, while a can be
considered as the shaping parameter and these parameters will give the desir-
able feature; namely, flexibility to the probability density function.

1. Introduction

The purpose of developing this new distribution function is to fulfill the need for a
flexible and easy-to-use finite range probability distribution function for many experimental
problems. Knowledge of the probability distribution of a random variable is required be-
fore statistical inferences can be made. All real random variables, by their very nature,
have a finite range. The function used as a starting point in this paper was originally used
by Pearl to approximate the population growth characteristic of the United States0. Then
Braswell:.2 ' reformulated it into Task Operating Characteristics (TOC) curves. This paper
transforms the TOC curve into hyperbolic expressions as shown in Equation (4) and into
the finite probability density function shown in Equation (5).

The developed FRPDF is like the beta distribution function in that it contains two
parameters, a and 8, and that the admissible values of the variate X lie between zero and
one. Unlike the beta distribution, it is flexible and simple to apply as illustrated in this
paper. In general, this distribution is useful in any application requiring statistical analysis
of collected experimental data. The computer was used to de\clop tables, cur\es. and a

* Received 24, Feb., 1970.
This work was supported in Part by THEMIS Contract I)AII ('04 68(' 0002.

(Repkiitted itomn Rep. Stat. Appl. Rez., JUSE, VeC 17, No. 2, 1970,
by pamiz6ion of the publi6hert.)
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aornograph to rdate the mean and the absolute de~iafion of the sample with the density
function parameters, a and J.

2. Mathematical Basis

Pearl's function for the population gro%%th of the United States is defined as:

be, x. 0 (time) (1)

where y•numbcr o.f auple; , b, and c are parameters; and e is the base for Naperian
logarithms. Braswell's first paper changed Pearl's function into the following form:

P(1)[I -e -"e" 2 "e''- - (2)e Le) -] . . .e ..... J~l +e• :-1- "'3)

for a•tzl, -0, and -0.5:.-._6-+0.5.
Since P(t) is not defined when t=O, it is necessary to define this function at this point

by use of L 'Hospitals' rule.
dd Aloa, 8, 0)

lim PWt)= lirn a =tali m .P d D(a, 8, t)
da

where
N(at, 8,t) -I+ '' ] e'-• -e t- --'l

and
D(a, 8, t)=[e" I-Z- __ I .2][I +e•'-t-zJ.

For more "completeness, Equation (2) becomes= [I +e- a"" "•)][eall' d- ea::' -e ' -2 :•'
Pil) [Ie a,1-_ ][62_ e-aj 1+eaI-**-'- for a>O (3 )

= for a=0 0:t: 1.

3. Formulation of the FRPDF

For convenience change the notation of the independent variable from t to x and P to
F, and let F(x) be a probability distribution function. When one rewrites these equations
more explicitly, one obtains the following result. For a>0, P(t) becomes:

F (x ) ý [I + e- aý" 2, a,[ea , -2,- : . _ec(I- 2.- 28,

and for a=0 F(r)=x, for 0•x•<1.0.
Equation (3) can be rewritten as follows:

- cosh [a(6+ 0.5)] sinh zx
F(x) sinh it cosh [a(x+8-0.5)] for a>0 (4)

L1.x for a=0 0-1x5l.
Since F(x) has the following properties, it is a valid probability distribution function[3]:

(a) F(O)=0, F(O)=I
(b) It is a nonuzý.reasing function of x:

fT(xr1)-F(x.,) for x <x2
(c) It is continuous from the right:

F(x ) FWx)
i.e., if x---.,2. then P{xl.':X:ixz) - F(x)- ".',O.

For a continuous random %.ariable, the probability density function is F'(x). For a>0,
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dF(x)dx
a+ cosh F{O + 0.5)-] cosh [a(i(i -0.5)1 1sinh ,) (cosh"it,(x i 6'--0.5)]

Consequently the complete form for the FRPDF is:I I
=G(a, 8) cosh2[a(x+_-0.5)] for (rp--0 0O:x'l (

" [=1.0 for a"=O O-'x: _.O (.0
=0 elsewhere

%here
a cosh [a(6+ 0.5)] cosh [t-6(8- 0.5)]

sinh a
The useful parameter approximatik .is of the FRPDF are the mean and absolute deviation

of the samples. The mean and the absolute deviation as a function of a and 8 is derived.
It will also be shown that the variance is finite and that the moment generating function exists.

4. The Mean

The mean, /e, is by definition:

x f(,)dx. (6)

Substitute the Equation (5) into Equation (6), for a>0, 0•x_<l,

l(a, G()= ,o G1 dx
) cosh 2 [a(x + a-0.5)]

, 1 cosh 2Ca(X+ - 0.5)] dx.
Let z=a(x+8-0.5).

Then It becomes
rca 6-0.5 z d-c dz + O. 5 3 8 1 d- 1

It(a, a)=G(ty, a)[lwa-0..5 acosh2 Z - '-+ 0 cosh 2 z, a
=G(a', 8) -1 z dz + (0.5-8) ,.0..• 5' z

L La -o. -., cosh" z a .a. )-0.3 cosh2 
z

From integral tables [4],
cosh [a(6- 0.5)]1

u(a, 8)=G(a, 8) 1, [a tanh [a(6+0.5)]+log cosh [a(6 +0.5)] j

for a>0 and

,=\'xdx=0.5 for a,=O.

The mean is therefore
K G(a, a) Ia tanh [a(,)+- 0.5)] i-log cosh [(8( -0.5)] for n'-0

0.5 a2) for -a cosh j-[.- 0.5)j- (7)1[= 0.5 for a =-0

and G(c', 8) is defined in Equation (5).

5. Absolute Deviation [5]

The absolute de~iation, denoted T, is defined as

r, vV-• ' Ix ,"! f(x)dx ( 8 )
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Table I ,Mean as a function of a and 4

-O.4 - -0. - 1 0.0 +0.1 +0.2 #0.3 +0.4 +0.5

0.5j,9O 0.5570 .5636 0 .o5vs 0.•,o3 0.5000 0.UhSl 0.4.705 0.4.5014 0.44130 0.4.304
0.LS72 0.0533 .,.",7 3.56; L..41.65 0.5360 0.4.555 0.4,.'U 0.3743 0.34.07 0.3128
C0. ,'3' - . ' ., 1 3 0 . .r, St IS 0.5U.60 0.137J7 0.3G55 0.30S2 0.2615 0.2261.

4 1.327. 0.7 1 ,'.71/ G.- i . 5545 0. ,Q300 0.155 0.353 9 0.26G3 0.2112 0.1726
1, V.t11 3.S S 3 .% ,.6 0 S ,, 3UO .51 U . INU u.04u70 0.1-35 0.2,012 0.17135 0.1505

b 6.33.5 .. 1ý- . 'U. -U 0 0.5 0O 0.4U55 0.31C U0.2260 0.1586 0.1155
7 0. 2,10 o..... - 3•. . 0.1j- U.5U. 0 0.4.016 0.)055 0.2166 0.1O 43 0.0990
8 0.1 ' ... 3 ). .2 o, ' 0.35.1ý 5 0.5 0 0.400 / 0.3U;0 0.2107 0.1340 0.0, b

', : ', J .8. 7 j. U,7 3 J C. -. 4 U. , -7 0. .,J, 0.L0305 0.3L16 0.2070 0,1204. 0.U770
1. 7. ' 00.3,, 3G.Ij(. ) . w , I o. 91 0.5uQQ 0.0ri01 0.30013 0.20U0 0.1207 0. 00J5
11 C. ,30 U. 8, 3, 0.7,73 0.0530 0.5,13 0.5373, 0.01,631 0.3005 0.20,0 0.1100 0.0530

1 C.u, 2 G. , j U. -0 0.6,?7 0. t, 0 0.3.00 0.1(.07 0.3003 0.2020 0.1130 0.0573
1 0.,o47 (,. 2Sz6 i.7nj 7 0.• t I ., Jd 0. 503 0. 000 .0.,L1, 1 0.2013 0.1104 0.0533

60.'.' 5 0. 'j17 V 7 J1 0.,. .3 , L f) U 0.;,UV u.0 0U 0.3051 0.2009 0.1083 0.01.95
0. 5508 0.S333 C.7,'1, 0. 7 3 0 C.-,, " Z.,.0 0.0400 0.3000 0.2006 0.1067 0.01.02
- .956 7 0.55.u -,.7 , 7 6. iu.0 0..( - U.3.UO 0.1,030 0.30uO 0.2000 0.1051. .01.35

-7 (.1592 O.09,7 0.7197 0.17,,3 0..s-jZ ;. s,23 0.,0000 0.3000 0.2003 0.1003 0.0400
qI r.5IS 0.80U5 0. 7'08 0.7C, 0 0. 63" 0U.5,0 0.1.00 0.3000 0.2002 0.1035 0.0335

:9 0.9635 0.8C72 0.7Y,3 0. ! " 9.b000 0.50. 0 O 0.1CO0 0.3000 0.2001 0.1028 0.0365
3 0.95•* 0.8977 0.79A9 0.70 .5000 0.5000 C.4.000 0.3000 0.2001 0.1023 0.0347

Table 2 Absolute deviation as a function of a and 40
6

-0.5 -0.4 -0.3 -0.2 -0.. 0.0 +0.1 +0.2 +0.3 +0.4 +0.5
1 0.2361 0.2374 0.23K5S 0.2394 0.2399 0.2401 0.2399 0.2394. 0.2385 0.2371. 0.2561
2 0.1910 0.197t 0.-. 0.2101 0.2 19 0.2152 0.2139 0.2101 0.20441 0.1978 0.1910
3 0.1.-.39 0.15A9 0.9% 0.1758 0.1'20 0.1S50 0.1826 0.1750 0.1G58 0.1545 0.1139
4 0.1,,2 I .123 U. , 5 '.1:.73 0.115;,0 0.1551. 0.1540 0.14G0 0.1359 0.1229 0.1109
5 0.0 .'!2 .1L'7 0.114i 0.1 ':,9 U.13rG 0.1324 0.1306 0.1269 0.1140 0.1017 0.0892
6 0.7,., .C•11 0.-35 0..N I 0.1121 0.1132 0.1121 0.1061 0.0990 0.0071 0.0744"7 U. ,,, : 0. , ;,7 %.' ;, 0..0V'4 0.0,05 0.0)'302 0.P975 0.0009 0.0801. 0.0717 0.0638
0 0... . .. ... ,. C. U /!5 0. G, . ,fO 0.0W63 G.080 0 0.001. 0.0705 0.0008 0.0558
9 C. 2, 0.-722' 0.3753 0.0707 0.0700 0.07G7 0.075B 0.0722 0.062G 0.04.96

13 0. , C . LS 7L, 0. -11 O.C O C.05Z 0.16O93 0.0692 0.000 0.0660 0.0570 0.01..6
1! 0. 0. d 0.0*,1:, 0. ¢-' 0.3,576 0.00t, 5 0.0030 0.0630 0.0026 0.0100 0.0534. 0.01.06
12 0. tS72 C. '01,i) 0. ý , 0',O.0•76 0. '1,77 0.0070 0.0577 0.0576 0.0503 0.0U99 0.0372
13 0.j , 0 .0 *1.'] 0.0S23 C.0532 O.U033 0.0533 0.0M33 0.0532 0.0523 0.0416 0.0343
14 0.10 31 .001,.2 C. C 6 .3 0. C1.9'. 0.0005 0.0495 0.01.95 0.0491 0.060 0.10442 0.0319
15 0.(20 U. '!',: o. 50.C 7 2. G , 2 0. 1)02 0.01,62 0.0402 0.04 62 0.0.57 0.0418 0.0248
36 0.1272 U. 6U3!1 0.0:J30; .0. C,3 -J.Q.,0,3 U.01i,3 0.01.33 0.04033 0.00,30 U.05J7 0.Q279
17 0.02•7 U.0971 *.Co4)6u 0.05 0.0m0%. .U1,00 0.01.08 0.01.08 0.04.06 0.0378 0.0263
i8 0. 1.3 0. 3 1 0.609. 3 .0U3a 0.0335 0.03S5 0.0363 0.0385 0.0381. 0.0361 0.0248

) .215 0.05. 0.)0. 0.13605 0. 0365 0.03b5 0.0305 0.0365 0.0361, 0.0345 0.0235
2- 0.02.3 0.0030 0.0'34G 0.0 347 0.03',7 0.03427 .U347 0.03¢10 0.0316 0.0330 0.0223

Table 3 f(x) for 4 =-0.5 and .=-0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 0.551 0.039 0.734 0.833 0.536 1.033 1.123 1.202 1.262 1.300 1.313
2 0.107 0.215 0.312 0.4.1.3 0.633 0.871 1.160 1.476 1.775 1.991 2.075
3 0.030 0.051. 0.090 0.170 0.312 0.51.5 0.920 1.1.68 2.1145 2.759 3.015
4 0.005 0.012 0.027 0.050 0.130 0.213 0.603 1.221 2.238 3.42F 4.003
5 0.000 0.^02 0.007 0.018 0.049 0.133 0.353 0.904 2.100 3.933 5.000
6 0.000 0.000 0.002 0.005 0.0o1 0.059 0.191 0.621 1.830 4.270 6.000
7 0.O3 0.0300 0.003 0.042 0.15) 0.025 0.103 0..08 1.513 4.1.3 7.000
8 0.2013 j .032 0.0u0 6.0G0 0.002 0.011 0.v53 0.259 1.204. 4.1.72 8.000
9 0.0,30 o.ojo 0.0oo 0.0o0 O.0O0 0.00. 0.027 0.161 0.932 4.392 9.000

10 0.000 0.o00 0.000 0.,,00 0.000 0.002 0.013 U.099 0.707 4.200 10.000

0 -0.5

1 0.537 0.G85 0.778 0.072 0.9C0 1.009 1.122 1.178 1.213 1.226 1.213
2 0.181 0.203 0.370 0.593 0.73D 0.77 1.241 1..96 1.680 1.748 1.680
3 0.002 0.070 0.136 0.262 0.423 0.714 1.139 1.665 2.11. 2.340 2.141
4 0.023 0.019 0.045, 0.093 0.2G5 0.437 0.805 1.622 2.48.3 2.902 2.91.3
5 0.032 0.0o5 0.C12 0.03'4 0.0911 0.24.2 0.010 1..43G 2.590 3.420 2.690
6 0.030 O.OG 0.004 0.012 o.r3. 0. 2G 0.4.04 1.191 2.778 3.901. 2.778
7 0.0;a0 0.00 0.0G0 0.001. 0.Olo 0.0 1. 0.251. 0.943 2.7.69 4.315 2.769
8 0.000 0.000 0.030 0.001 0.306 0.032 0.;56 0.724 2.608 4.808 2.688
9 0.003 0.003 0.040 0.050 0.006 0.016 0.054 0.,4.3 2.55) 5.244 2.55M

10 0.000 0.000 0. U00 0.OuO 0.c,01 0.000 0.05b 3.4.01 2.384 5.677 2.314

= - -0.4
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Table 4 f(x) for 6 -0.3 and 6 -0.2

x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.6k9 0.737 0.826 0.913 0.933 0.002 1.11b l.i4.!1. 161 1. 1V .: 0.6
2 0.231 0.332 0.412 0.145 0.5 15 1.95 1 .315 1.427 I . 57 I . ,7 1.25
3 O.Oo

1 .  
0.115 0.20 0 50 0 0.602 G.1-1 l.4A 2.4,5 1.975 1.-S !.-

4 0.016 0.0335 0.07. 0.170 0.3U3 D.7,5 1.307 2.U0 i 2.4- 2.-1 1.3.d

5 0.001 0.010 0.028 0.6 0/ ..21i b.15 1 .1'2 2.2"2 2. L 2 5
6 0.000 0.003 0.010 0.032 0. 1.. 3.3 59 . ,j. 6 2.2.j ; 3. 2 2 , .

7 0.000 0.00U 0.0C.u 0.310 .0.0 0. 21,. 0.6. 5.2. ' 5 .7 15 2.. 2.
8 0.200 0.000 ( 1.00 0.00(0 38 ,2 0 .1;5 U..2 

07 
2 5.,7 2..3. 1.I U 7

9 0.000 0.000 0.000 6.0,2 0.014 0. .o .47 4.21 5 2-51 C.;

10 0.000 0.000 0.000 0.000 0.07 0.050 0.500 2.130 5.02 . 0.3u

•-= -0.3

1 0.709 0.793 0.878 0.955 1.022 1.073 1.105 1.110 1.05 1.073 1.022
2 0.304 0.429 0.591 0.76 13.001 1.203 1.351 1.0Ob 1.351 1.20 3 1. 11
3 0.104 0.184 0.321 0.542 0..0G 1.26b 1.628 1.779 1.626 :.2. O.3.6
4 0.032 0.071 0.155 0.330 O.bS3 1.22- 1.S74 2.1 1 .D 1.674 1.22. C.,68
5 0.010 0.02G 0.070 0.180 0.415 i.I03 2.006 2.L27 2.00 !.;203 0..75
6 0.003 0.009 0.030 0.100 0.319 0.000 2.194 3. ')3 2.1104 0.1, U. 5!9
7 0.000 0.003 0.013 0.052 6.207 0.766 2.255 3.553 2.215 0.170. 0.267
8 0.000 0.001 0.005 0.027 0.031 0.607 2.255 4.L33 2.255 0.o,7 1.531
9 0.000 0.000 0.002 0.013 0.06I 0.408 2.201 4.520 2.201 0. ... U.301

10 0.000 0.000 0.000 0.007 0.009 0.3354 2.105 5.012 2.105 0.35. U.0ý.

6 - -0.2

Table S f(x) for = -0.1 and 6=0.0

x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 0.776 0.858 0.933 0.998 1.008 1.0 .1.051 1.032 2.008 0.916 0.933
2 0.407 0.561 0.747 0.950 1.11.3 1.2b.3 1.335 1.283 0. 143 0.950 0.707
3 0.174 0.3014 0.,1 0.820 1.199 1.502 1.685 1.542 1.199 0.820 0.510
4 0.060 0.108 0.316 0.600 1.170 1.796 2.099 .. 796 1.171 O. 0•.0 0.5310

5 0.025 0.060 0.130 0.000 1.072 2.r07 2.552 2.007 1.072 0. .61 0.16O
6 0.009 0.030 0.098 0.313 0.923 2.154 5.027 2.154. 0.923 0.313 0. ',0 S
7 0.003 0.013 0.052 0.205 0.760 2.230 3.3514 2.230 0.760 0.205 0.052
8 0.001 0.005 0.027 0.130 0.603 2.240 4.007 2.200 6.603 0.235 0.027

9 0.000 0.002 8.003 0.001 0.466 2.193 0.505 2.193 0.46 0.00i C.013
10 0.000 0.000 0.007 0.049 0.353 2.101 5.602 2.101 0.353 0.049 0.007

6 - -0.1

1 0.851 0.926 0.990 1.000 1.071 1.082 1.071 1.000 0.990 0.92t 0.851
2 0.551 0.731. 0.931 1.123 1.262 1.313 1.262 1.123 0.933 0.731. 0.551
3 0.299 0.505 0.807 1.179 1.517 1.657 1.517 1.179 0.807 0.505 0.239
4 0.147 0.312 0.G33 1.160 1.775 2.075 1.775 1.160 0.653 0.312 0.107
5 0.067 0.179 0.458 1.066 1.993 2.533 1.993 1.064. 0.4580.179 0.07

a 6 0.030 0.098 0.312 0.920 2.105 3.015 2.145 0.920 0.312 0. O0., 0.030
7 0.013 0.051 0.204 0.758 2.226 3.506 2.226 0.75b 0.204 O.51, 0.013
0 0.065 0.627 0.130 O.G03 2.236i .0073 2.236 O.b06 0.1.30 0.027 0.005
9 0.002 0.013 0.031 0.4G6 2.192 4.501 2.192 0.466 0.081 0.013 0.032

10 0.008 0.007 0.01.9 0.353 2.100 5.000 2.100 0.353 0.009 0.007 0.600

0 - 0.0

where It is the mean. By removing the absolute sign from Equation (), c"- n hbe written
as the sum of the two integrals,

r(a, 8) = (I - x)f(x)dx + (x - I).f(.)d. (9)

Nothing that It is independent of the variable x and using relationships such as

f(x)dx= F(/t)

\f(x)dx= I -F(/t)

and
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\xINJxOJ% "1' -- xf.wdx.

Equation (9) becomes
7(',•):/d(,)2 -x(,)d.,. (10)

Denote the integrat in Equation (10) by H(It) and for &,"-0,

H(10 x f(x)dx

cosh"[Ea(x+8-0.5)] dx

~=G(a, a)* cosh' [a(x+8-0.5)] dx.

The integral is similar to the one in the derivation of the mean with one exception, the

upper limit is now /L instead to 1.0.
Evaluating this integral with proper limits, H(fi) becomes

G(a, ) cosh Ea(8- 0.5)]
a'e tanh [a(2-0.5+ )]+log cosh [a(8 - 0.5+ 10)]

for n >0 and becomes

H(,t)=='xdx=0.125=0.125 for a =0.

Therefore H(It) is

.;G(a, 8) 05/l
a 2 at .tanh[a(6-0.5+8 )]

~j~/I Ii GO) + log osh Ea(8-6-0.5)
. I -/

:iII/ ] • i i N:',I• '''•' ] for a>0 (11)

' ! 7 L=0.125 for a=0.
• I •L-.-. ,--- --T--l ....... The absolute deviation, r, for the

S-i I . FRPDFis therefore

IIN -, (of 8)=21tF(1.t)-2H(1z) (12)
"I where the explicit expressions for p, F(a),
and H(p) are given in Equations (7), (4)

i ////., • •• \, .and (II) respectively.

By use of Equations (7), (12) and the
.L / ' ", .,, aid of the computer, the mean and the

./ -- , . absolute deviation are computed for er=O,
"/,1, 20 arld..= -0.5, -0.4, +0.4,

- /Q

. ..... "+0.5 and the equi-mean and equi-absolute

"-. •--• •. deviation curves for a=O, 1, ... , 10 are
given in the nomograph in Fig. I.

By computing the mean and the ab-
solute deviation of sample data, one can
find the values of a and 6 directly from

Fig. I Equi nean curves (dotted lines), and the nomograph. Upon substituting these
equi-ahsolute deviation curves (solid values of (r and 8 into Equation (4) one
lines). lhe numbers in parenthesis
are the values of normalized absolute will obtain "the best fitted" probability
devialion, distribution function for this particular
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set of samples according to the criterion cited earlier (i.e., this set of samples has the same
mean and the same absolute deviation as that of the sample ha% ing the probability distribu-
tion function with the values of cc and 8 taken from the nomograph).

6. The Variance and Moment Generating Function

From a practical viewpoint the variance and moment generating function are of little
use; however, they arc investigated for theoretical considerations to verify that the variance
is finite and that the moment gererating function exists.

By definition the variance, a-, is:

a"= x-/O f~xdx.(13)

Equation (13) ca.. be simplified as follows:

a2 - x2f(x)dx-/t. (14)

When a=0, f(x)= I, 0<x:<! and /L=0. 5 , therefore,

C 1 2

This is correct for the uniform distribution.
For a>0, the integral in Equation (14) is difficult to evaluate and since it is shown

that r is used in lieu of a 2, with the nomograph, for finding parameters a and 8, only the
existence of the variance will be shown. Then from Equation (14)

x 2f(x)dx- - = G(a. 8) ch x dx- /42

I_" O cosh2a(x + 8_0.5)]
Let z=a(x+8-0.5). Then

r2 0.5( - 8)x
2

fxWx ' ' dz+ G0.5-6) ýa': t dz-f• cosh-z a- . cosh"-z

+ (0.5 8)? ' I dz]a a, 3-0., 5)Cosh2Zz
The first integrant can easily be shown to be integrable by use of the theorem: A func-

tion continuous on a closed interval is integrable thereE61. Also, since it is a proper distribu-
tion function, it has a unique characteristic function, by Levy's Theorem.

Let us denote the moment generating function for x by MO(0). By definition,
MA(O)= !• f(-')e•ldx (15)

When a=0, f(x)=l, 0.<_x<l, therefore

MA(O)= ead.v e'-

When a>0, Equation (15) becomes,

MAO)= "G(n- 6) eI&( G' cosh r.(x + 6-- 0.5)]

-G(a, 8) \h e".G(I ).0 cosh-' (i •(v+ -3- 0.5)11 x

Using the same argument of continuity and integrability of this integrant, it follows that the
moment generating function M,(O) exists.

To facilitate application of the FRPDF, the follo'%ing tables and a .Nomogram is pro-
vided. Also, several figures showing the shape of the IRPIF ýitlh different \alues of param-
eters a and 6 are given. The attached Appendi\ ,ill hell, the reader get a first-hand fee,
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of its ease in application and goodness-of-fit.

7. Conclusions

The objcctise of" this paper has been to present a finite range probability distribution

function .s hich was developed by Bras%,ell and further refined and applied by Manders.

The probability density function, f(x), is strictly unimodal as shown in Figs. 2 through 7.

When 8 0, the probab,.ity density function is always symmetrical with respect to the vertical

line x -0.5, and the distribution function is a family of S-shaped curves. When 8<0, the

peak of the probability density function shifts toward the x= 1 line and when 8>0, it shifts
to the x : 0 line. When ct--0, the FRPDF distribution is identically uniform; for the large

value of ia, a= 10 or more, the peak of the distribution becomes narrower and higher at

appropriate value of x for ¶,iven value of 13. Eventually, this peak will reach infinity in the

limit, and the function becomes an impulse function at a certain value ofx. This is very con-
venient in practical cases. Since this indicates that for a certain statistical sample, if the value

of a is large, this statistical sample can be treated approximately as a deterministic one.

Hence a can be considered as the location parameter, while a can be considered as the
shape parameter.

"1 he new FRPDF can be easily applied to almost any practical problems where experi-

mental datj. are easily collected. Once the necessary data are tabulated, one can easily compute

the mean and the absolute deviation of that sample data. Then by use of the Nomogram in

Fig. I the values of the parameters, a and 8, can be found directly. Substituting these

609 0. .0o E" z-0.1

- .0 I

-- .•.. .5 t I .. . ',=10 t

4.: 4.0 -

3 30I

\20

I 2~~.0 _ _

0.0 0.5 I0 0.0 05 06 to

x x
Fig. 2 f(x) for the FRPDF 6-0.0 Fig. 3 f(x) for the FRPDF a= -0.1

If 6= +-0.1, replace x by I-x
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50 -K -

. . . If I - •. l I

S(X) (X;
I. \ /o \

30 - 1 /I \

2.0 -

\1 /

,D0 00
00 05 0.? 0 o0 05 08 to

X x

Fig. 4 f(x) for the FRPDF 6=-0.2 Fig. 5 f(x) for the FRPDF 6= -0.3
If 4= +0.2, replace x by 1-x If 3=+0.3, replace x by l--x

10.0

.60 T=-0.4 "=- 05/
9.0

-- - =- I•: I I -- = . 0
-8,0

I 70
I I/. •,0°(~O

4.0 / 4

f (Xl 16.0
_ I 5.0

040

. 3.0 /

2.0 -- -

00 00
00 os 09 -0 00 05 -0

X X

Fig. 6 f(x) for the FRPDF 8- -0.4 Fig. 7 f(x) for the FRPI)F a -0.5
If 8 -0.4. replace x by I-x If a • 0.5. replace x by I x

31



NalLtc, of It and 1 into EquIation (4) one can obtain "the best fitted" probability distribution
function.
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ON TESTING AND APPLICATION OF A NEW FINITE RANGE

PROBABIILITY DISTRIBUTION FUNCTION'

By Robert N. BRAS\%I[.L

Universi!y of Florida
Gainesille, Florida

Clara Fu-Mei MANDLRS
Radiation, Incorporated Melbourne, Florida

To demonstrate flexibility and sensitivity this paper will cover some aspects of testing
and application. There have been several other experiments using the new FRPDF and in
all cases it has proven superior in results and much easier to use. Even when the distribu-
tion of the data was known the FRPDF was preferable. The complex expression did not
deter new users from being attracted to further applications.

1. Testing and Application

An important problem in statistics is to find how well a sample taken from a population
agrees with some distribution function assumed for that population. Two such tests are
considered here.

The range of x is divided into M equal regions and the number of sample points falling
within each region is counted. Let Y1, Y2, -.. , Y, be the result. From the assumed distribu-
tion and the size of the sample, the expected number of points in each region is computed:

g1, g•, , g..u. The deviation between this and the actual result is expressed by
M

D= y()
m 1

"-where
g.= Np.

=the number of expected points in the m-th interval
V

N=•,,

=sample size
y-,,the number of sample points in the in-th interval

'"f(x)dx= F(x.,)- F(x.,j ) ,=I ,A

F(x._,_)ýO for II I
the probability of sample points falling in the m-th interval.

This deviation is used to ascertain the confidence level of the assumed distribution.

* Recci~ed 24. Fcb., 1970.

(Reptinted from Rep. Stat. Appe. Res., JUSE, Vok 17, No. 2, 1970, by
permLi6on oA the publishe_'t.)



As an application of the method described in this paper, consider a class grade distribu-
tion of 50 graduate engineering students. Table I gives the grades for the students [I].

Sri.P I Compute an estimate of the normalized mean, /1, and the absolute deviation,
from the data given in Table I. For convenience in analysis we will normalize the grade

range from [0, 100J to [0, 1]. They are found to be;
/i 0.829
1 0.093.

Table I Class grades of a graduate engineering class of 50 students

Gr. i Gr. i Gr. i Gr. i Gr.

i 81 11 85 21 80 31 67 41 78
2 86 12 69 22 49 32 89 42 95
3 78 13 95 23 96 33 77 43 86
4 85 14 87 24 63 34 95 44 75

5 79 15 69 25 92 35 63 45 96
6 85 16 85 26 66 36 100 46 96
7 92 17 90 27 52 37 85 47 98
8 83 18 71 28 79 38 97 48 83
9 96 19 68 29 94 39 85 49 81

10 89 20 79 30 96 40 90 50 91

STEP 11 Locate the intersection of /=0.829 curve with ;=0.093 curve on Fig. 1, and
estimate the coordinates of this intersection.

This is equivalent to the estimation of two

parameters a and 8 in our F(x). Here
5.5
--0.4.

STEP III Substituting these values into
Equation (4), we obtain

C.F(x)= 
cosh (0.55) sinh (5.5x)F'xb=sinh (5.5) cosh [5.5(x-0.9)] (2)

C., STEP IV Divide the range of x into 10

equal regi )ns: M= 10
C 4 1) Compute F(x.):

cosh (0.55) sinh (5.5x.)
F )sinh (5.5) cosh 5.5(x. -0.9)

With nr=l, ..', 10.
.With the aid of the computer, the values

of F(x.) are, 0.0001, 0.0005, 0.0017, 0.0054,
___. _____ 0.0161, 0.0473, 0.1329, 0.3328, 0.6664, and

1.000.

Fig. I The FRPDF F(x) with a=5.5, 2) Compute p.:
8= -0.4. Fitted to curve of f(x)dx=
class grade
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I, 2, ., Al.
Utsing the Nalues for F(x,,), the %alues of P are, 0.0001, 0.0004, 0.0012, 0.0037, 0.0107,

0.0312, 0.0856, 0.1999, 0.3336, and 0.3336.

S ip V Prepare Table 2.

Table 2 Distribution of class grades

0 0.005 0.005 7 7 4.2X0 1.729
2 0 0.020 0.020 8 9 9.995 0.099

3 0 0.060 0.060 9 17 16.680 0.OJ6
4 0 0. 185 0.185 10 15 16.680 0. i69

5 I 0.535 0.404

6 1 1.560 0.201 Total 50 50 2.878

2. The X2-Test [2, 3]

The purpose of the X7 test is to find the probability that the obscrved deiation bcteen
the theoretical model and the empirical data is in fact due to the random nature of this set
of data.

If the y. are sulficiently large, say more than 10, the deviation %%e defined in (I), is
distributed according to the X` distribution with Al- I degrees of freedom. This is K. Pear-
son's test function which gives great weight to those deviation squares (y,,-g.,)- that cor-
respond to small p._. If the assumed parent distribution is not completely known and k
parameters defining it ha~e been determined to fit the sample, the number of degrees of
freedom is reduced to M- 1-k.

Now we will apply the X--test to our example.

=2.878

and the degrees of freedom are 7 (10- 1-2).
For 7 degrees of freedom, this deviation is exceeded about 90 percent of the time

The assumption of our FRPDF is therefore %ery good. There is thus nothing in the %alue
of X2 to lead us to reject our hypothesis.

3. The Kolmogorov-Smirnov Test [3]

It is also desired to in~estigate how, xell our empirical data fits our theoretical distribu-
tion by A - s test. The k -% test allows us to place confidence le~cl on the positi~c as well
as negative deviations, i.e., it allows us to check the theoretical distribution for points of
excessive as well as inadequate probability.

Define the one-sided deviations as:
D.v=sup [F(x.)-S,.,x)] and D., sup[S..(x.)-F(x,)] (4)

0 v I • • 1

where
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t _ I i I II I II lip I I II I I I I I III

S,.{ x,,,i ::• and F(x.,)
.•'

art: green in Stt:p I\.

-\ccording t,• Snlirno•'s a,.•mptolic di•,lribution :• ,
I'.ID --:]-c-" and P:•D:..-),•-e :•': (5)

No• •c proct:cd lo [c,{ the cxampJcc.

D • . ,. .... i .0.0014 and D.• , • ....... I-=0.1M71.

l"-,ble 3 ('alcul.',lion of lhe one-sided devialions, D3," and DN-

m t:(•.) S,,(•.) D • • D', m F(x,,) Sdx,•) D.•" • D v-

I 0.0001 0.00 6 0.0473 0.04 0.0073

2 0.0005 0.00 7 O. 1329 O. 18 0.0471

3 0.0017 0.00 8 0.3328 0.36

4 O. 0054 O. O0 9 O. 6664 O. 70

5 0.0161 0.02 10 I. 0000 1.00

St:c tig. I lk•r ¢onlparison•.

4. The Glass Bottom Boat Problem

(_onsidcr tht: "'gla.;•, bottom boat problem'" which is similar to the well known "'Newsboy

Probl,:m.'"

SttHt'lllt'llt oJ t]l•." Probh'm ."

A photographer must dr:aide hov, many pictures to print each time after he takes a

pizturt: of tht: pa',',-ngcrs in tht: glass bottom boat at Silver Springs, Florida. Suppose that

the to:al m, mbcr of lilt: passzngt:rs is li.',t:d, say forty. The , ost of a picture is C and the

.',•lling prier: is S. .Any pictures not sold at the end of the day are a total loss. Let o(y)

be the i'robabilit.• that • picturt:s \\ill be dcmandzd each time. Then hisaxi•cted profit for

caeh boat it" hc prints It pi,;turt:s is

L l eth)_l :-s •'.,./,(.v) + ShE ",', p(.v)l- Ch

;, , y n .l

sinct: the rt:•t:nut: rcct:i•t:d is S.v if.v: h, ;•nd is Sh if.r>h. The problem is to date-mine

thcc •aluc ofh \•hich maximizes his expt:ctcd profit.

Often it is conxt:nicnt to treat h and the demand variable y as continuous. "l'han if
/t:• is flw density function for demand and F(y) is its distribution function, the expected

prolit Ibr t:ach bo;.lt \\ht:n /t units art: printed is

The oplimal h i,, then a >olution to dl:LP(!O_] dh=O.

Using l.cibnilz's Rult:, \\e obtain

tiE :O=S-C-SF{h).
dh

"lhus tht: optimal h. It'. ,atixlit:s the equation

S-CI.(10 = S ( 7 )
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Let .S 1..20 and ( SO.50. I hcn I (ki) 7 12, or 0.583.
I quation (h) is a si rictlN conca~ c function of hi. Ihsimplies that any rekltik 11max-

imum of /. I P I is [li absoluic MaXimnum and tlic absolute mla \jillUfll is Unique.
Suippose thle demands arc normially distribUted then Eiquation (7) hecOmles

%% hcre
iis the samplec mean, and
.. is the standard de~kiation.

If the demands follo\v thle FR PD thcn, Eq ation (B3.7) bce~omes

(. Cosh I el()- 0.5) 1 Ninh (ifr ) .5 (9)
"lb. 'inhia GO cosil 1 (0 - 0.511 S

\%here h, is normalized hi.
In order to determine thle demand the photographer perform,, thc iolloss ing cxperiment.

For each of tcn sueccessie boat loads hie prints flortv pictures (Ow. maximlum possible demand).
lieI thun rc,:ords thle number of prints that hie sells io each boat load of passengers. In this
manner hie obtains thle follow\ing table:

I able 4 Nun-.her of pictures sold to each boatload of people

Boat lNumnber 'Num-ber of Demnands Boat Numnber Number of Demands
i .1 i Y,

136 6 30
234 7 25

3 39 8 37
4 20 9 23
5 17 !0 33

Table 5 Calculation of y, yj -ý and ,yj- .

V 1 0 .- 1 Y . i, 0, .

1 36 6.6 41. 56 7 25 4.4 19. 2Y

2 34 4.6 21. 16 8 37 7.6 57.76
3 39 9.6 92. 16 9 23 6.4 40.96

4 20 9.4 88.36 10 33 3.6 12.96
5 17 12.4 153. 76
6 30 0.6 .36 Total 294 65.2 530. 40

We find that the estimator for It,~ is the sample mean i

Y 29.4.

The estimator for a7,' is:

~10 - I -58.93

and that for a. is.

*.58.9.3 7.68.
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The estimatr for T, is the sampl,: absolute deviation jy-YI,
10

I.-. I ' 0/ -• v, - l 6.52.

. 1

No%ý %e are in the position to calculate hI' by assuming that F(h) in Equation (7) is 1)
normal distribution function and 2) FRPDE.

I) Assume F(h) is normal distribution function. Then h* is the solution to Equation
(8), or

( h-.294 -583
7.68

Hence from the normal tables
h- 29:4

7.68 =0.21 or h=31.

Thus 31 pictures should be printed.
2) Assume F(h) is FRPDF. In this model the variable is normalized; we should make

a lin,.r transformation on each sample value.
We find the normalize y, /I to be:

=29.4

40* = 0.73540

and the normalized ly-Yl, j to~be
6.52
40 =0.163.

From Fig. 1, we can estimate the parameters of our FRPDF a and 6. They are found
to be

&:=3

S= -0.4.

Table 6 Calculation of the expected profit for three different decisions

Number of Pictures Sold
h=-v=29 h=31 (Normal) h=33 (FDPDF)

1 36 29 31 33
2 34 29 31 33
3 39 29 31 33
4 20 20 20 20
5 17 17 17 17
6 30 29 30 30
7 25 25 25 25
8 37 29 31 33
9 23 23 23 23

10 33 29 31 33

Total sold 259 270 280
Total printed 290 310 330

Total return $310.80 S324.00 S336.00
Total cost 145.00 155.00 165.00
Total profit 165.80 169.00 171.00
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Substituting these values into Equation (9) and rewriting it, we have
coth (3h) -tanh(-2.7)+ 12 cosh (0.3)

7 cosh (-2.7) sinh (3)

=0.99101+ 12 (1.0453)
7 (7.4735X 10.018)

1.01494

or

tanh (3hj = 0.98528
3h 0 = 2.46

2.46 2.46
h,, 2 and hý 2. 4 .40-- 33.

3 3
Thus 33 pictures should be printed in this case.

Of the three methods employed we see that the new FRPDF gives the BEST decision

as to number of pictures to be printed. More involved experiments with the Nev-sboy
Problem, the Glass Bottom Boat Problem, etc., yield comparable results F6].
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