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T?EFACE

The Rand program of strategic studies involves the
study of new concepts and doct- .e for the strategic forces.
As part of this study the effect of various methods of
preserving the land-based missile force on long-term force
posture stability is being considered. This report estab-
lishes certain mathematical theorems which will be of
assistance in calculating the stability properties of active
defense of missile silos. It should be of interest primarily

to weapon system analysts.
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SUMMARY

In this report, a theorem dealing with the purchase of
defensive weapon systems is proven. We assume the pur-
chaser's objective is to achieve an "assured destruction'
criterion at minimal cost. We show that under certain
circumstances it is optimal to purchase a uniform defen-
sive system. The applicability of the mathematical the-
orem to the ''real world" is then studied.

A second theorem gives a simple procedure for finding
an attacker's optimal firing rule under very general cir-
cumstances.

An example is given which illustrates the problems

in choosing a defensive weapons system.
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1. A THEOREM ON UNIFORM MISSILE BASING

Our model consists of two sides - Red and Blue. Both
sides place missiles in targets (which we may think of as
silos) which they may defend in various ways. Each side
must meet an "assured destruction" (AD) requirement. That
is, their position must be such that after an all-out attack
by the other side they expect to have a certain predetermined
number of missiles surviving. (This number is usually
defined as sufficiently large to inflict ''unacceptable"
losses on the enemy's cities. However, the calculation of
this number is of no concern to us in this note.) We shall
assume that Blue's posture is fixed. We assume that Red's
object is to meet its AD requirement at minimal cost. We
shall prove that under certain quite general conditions
Red should have uniform basing. That is, Red could, with-
out penalty, build a set of identically defended targets.

Let us suppose Red may purchase N different kinds of

targets. For 1 < i < N set ¢, = the cost of the ith type

i
target. (We may think intuitively of the ith type being

a missile and (i-1) interceptors.) Red's posture is then
given by an ordered N-tuple P = (nl, caoy nN) which repre-

sents the purchase of n; targets of type 1, i = 1, ..., N.

The cost to Red is c¢(P) = ¢ cyny.
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Blue may attack a target by sending a nonnegative
number of warheads at the target. For 1 < i < N set Pij =
the probability that a target of type i is destroyed when

attacked by j warheads. So Pio = 0, and 0 < Pij < 1. We
make no other conditions on the Pys-

An attack A by Blue is given by nonnegative Aij’
1 <i< N, j nonnegative. Here Aij represents the number
of targets of type i that have j missiles sent against them.

Thus an attack A on a position P must satisfy

(1.1) TA,,=n, forl<ic<N

Set @(P) = the set of possible attacks A on P (i.e., the

set of A satisfying (1)). Set

w(A) =T j A

y
i,j

= the number of warheads used in attack A, Set

(1.2) d&(P) = {A e a(P) : w(A) = W}.

In reality, the ng and Aij must be integral. However,

in this model, we allow them to range over the nonnegative
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reals. We return to this point in Section 2.
A Blue attack A ¢ @(P) against a Red position P will

leave an expected number

s(a,P) = T A;,(1-py,)
i,j

of Red targets surviving. Let Blue have a fixed number,
W, of warheads. Let D > 0O be fixed. A position P of Red

is said to meet an assured destruction requirement D if

for all A ¢ dw(P), s(A,P) > D. Set T = T(D,W) = the set

of positions that meet this requirement. T # @ as, for
example, W+ D, 0, ..., 0) ¢ T. Red wishes to find the
position P ¢ T of minimal cost.

We first show that such a P exists.* If P =

(nl, ceey nN) ¢ T has some n, > W + D then replacing that

i

n, by W+ D gives a P e T of less cost. Therefore, we

i

may restrict Pto T' = T n [(ni, cees nN) :n, <W+D for all i}.

i

¥*This paragraph shows that it is impossible that P ¢ R
exist with cost "infinitesimally" greater than some C,

without some P ¢ R existing with cost CO’ The reader un-

familiar with the topological concepts involved may assume
the results as obvious and continue.
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As s 1s a continuous function, T is a closed set.
Therefore T' is a compact set. The cost function is
continuous and therefore assumes its minimum on the compact
set T'.

Set L = L(D,W) = the set of positions of least cost.
L has at least one member. We call a position P uniform
if only one of the ng is nonzero. That is, P is uniform

if all targets are of the same type.
Theorem: There exists a uniform P in L.

Proof: We first note that if xi are nonnegative reals

and Ai € d(Pi) then T XiAi e (T kiPi) and s (T liAi, T liPi)

(nl, ceey nN) € L. Set C = c(P)

=% r.s(A,,P,). Fixa P
iTYid

=L c,n, and set S = {i: n, # 0}, For each i ¢ S let P,
ii i i

be the position with n, = C/ci and all other nj = 0. Then

C(Pi) = C and P, is uniform. If the theorem is not true
the Pimust all fail to meet the AD requirements. There

would exist attacks Ai € d(Pi) such that s(Ai, Pi) < D.

Setting A, = cini/C and A = T \A; we have P = g AP,

A e A(P) and s(A,P) =T xis(Ai,Pi) <Dz Xi < D as

Ty =2 cini/C = 1. But then P ¢ L, a contradiction.

Q.E.D.
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2. ASSUMPTIONS AND RESERVATIONS

In this section we delineate the assumptions upon
which Theorem 1 was proven. We also note some situations
in which the theorem does not apply.

(1) The theorem assumes there are no area defense
possibilities. By area defense we mean defensive strat-
agems that defend more than one of the targets simultaneously--
for example, as might occur with '"long range' interceptors.

(2) We have assumed that the targets contain identical
missiles. If, on the other hand, some targets contain more
powerful missiles than others it is likely that the more
power [ul missiles should receive more protection.

(3) We have allowed n, and A,., to assume nonintegral

i ij

values. The cheorem is false if we require n, and Aij to

i
be integral, as they must be in reality. Here is a counter-
example: Blue has W = 3 warheads and Red has AD requirement
D = 1. There are N = 2 options for Red. Pio ™ 0, Py 1,
Pyg = Ppp = Py = o, Pog = 1. Intuitively, Blue must use

1 warhead to knock out a target of type 1 and 3 warheads

to knock out a target of type 2. ¢y = 1, Cy = 2. The best
uniform positions that meet the AD requirement are (4, 0)
and (0, 2) both of cost 4. However, (1, 1) meets the AD

requirement with cost 3. Against (1, 1) Blue would like




to knock out the type 1 target with 1 warhead and 2/3 type
2 targets with 2 warheads. He is prevented by the inte-
grality of the targets.

We feel this is not an important flaw in the theorem.
We have in mind applications with hundreds (or more) of
missiles. If the optimal strategy calls for, say, 156.4
missiles it can easily be approximated by 156 or 157 mis-
siles with no serious loss.

It would be quite a more serious matter to allow the
number of warheads aimed at one target to be nonintegral.
An optimal strategy of 2.7 warheads/target might not easily
be approximated by a mix of 2 and 3 warheads/target. It
would be especially dangerous to approximate a strategy of
.5 warheads/target by a mix of 0 and 1 warhead/target.

Note that we have assumed that the number of warheads/
target is integral.

(4) The theorem assumes that Red starts from scratch.
If, for example, Red starts with a number of missiles in
unprotected silos the theorem does not apply. It might
then be best for Red to protect some of the missiles with
interceptors and leave the rest unprotected. If Red was
abie to instantaneously scrap what position he had and sell

it for full cost the theorem would hold. In reality,
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practically the complete opposite is true. When a weapon
system is discarded there is only a negligible return.
Full deposit, no return is closer to the truth.

(5) The previous point leads to an important model.
Let D be fixed and let Blue gradually increase his number
of warheads, W. For any fixed value of W Red should have
a uniform defense of type, say t(W). As the example in
Section 4 illustrates t(W) is not a constant function.
Thus Red might find he has all defenses of type 1 and sud-
denly type 2 is optimal. This gives an example of the
necessity of predicting the future value of your opponent's W.

(6) In the model we assume that the values of the pij
are known. 1In reality it is difficult, if not impossible,
to obtain reliable estimates of the pij' In reality, weap-
ons systems are put into operation for long periods of time.
Even if reasonable estimates of the pij are available for
the current time the effect of future research can only be
guessed at. This suggests a model based on Bayesian dis-
tributions.

In a Bayesian model we have, instead of a fixed value
of pij’ a probability distribution for the pij' We give
an extreme, though instructive, example. Suppose a type

1 defense is totally impregnable against the enemy's current
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warheads. However, you suspect the enemy is working on
countermeasures which, if successful, would enable him to
destroy your target with a single missile. You give him
a 507 chance of finding these countermeasures in the ap-
propriate time period. In our original model what would
P11 be? Setting Py - 0 or 1 is clearly wrong. Also,
setting P = .5 (the average) does not reflect the real-
ities. We instead give Py; @ distribution saying

Prob (p11 = 0) = Prob (p11 = 1) = .5.

In this model the expected value usage in the assured
destruction requirement would have to change. A reasonable
requirement would be that Red would have to have a 907
chance of meeting its AD requirement. For example, let
D = 100 and Blue have W = 1000 warheads. Suppose Red has
three options. Each option is currently impregnable. For
each option there is a 407 chance that some new technology
will leave them completely vulnerable--i.e., each target
could be knocked out with a single warhead. Assume these
40% probabilities are independent--that is, the target
defenses are so different that research that would enable
one kind of defense to be destroyed will not help destroy

other defenses. Say all defenses have unit cost. Then

a uniform position would cost Red 100. For if Red had



< 1100 targets there would be a 407% chance that 1000 of

his targets could be knocked out, leaving him with less

than his AD requirenent. However, Red can meet his require-
ment at cost 600 by buying 200 of each weapon. Red will

meet his AD requirement unless Blue can counter all three

of his defenses, which he can do with probability .4° .4° .4° =

.064, so Red meets his AD requirement with probability 93.6%.
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3. OPTIMAL ATTACK

In this section we assume that Red has n targets,
all identically defended. Blue has W warheads. We set
P; = the Kill Probability if i warheads are sent at a tar-
get. We want to know the optimal attack for Blue--that
is, the attack which maximizes the expected number of Red
losses.

It will help to consider an example. Let Py be given

by

W

|
|

olo
-

o (o
———
W

We place the points (i, pi) on a graph and draw the con-

vex hull of the points. (See Fig. 3.1.) Given Py» Pp»

we define the Attack Sequence as the sequence 0 = a5 < a; <
a, < ... of integers such that (ai, pa.) is in the convex
hull of {(n, pn)}. In the example, 0, 3, 4, 5, 6 is the
attack sequence. We have 'cut off" p; at i = 6 in the example

although, for theoretical purposes, it may be easier to

consider P defined for all integers i.

Proposition: 7Tir j is not in the attack sequence then Blue

should never (for anv W) attack any targets with j warheads.
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Proof: As (j, pj) is not on the convex hull there exist

i’ k’
(3.1) t<j<k, p;< Pi[——‘l: - i'] + ol i]'

Now suppose Blue attacks x targets at force level j. Blue
could instead attack x[%—f—%l targets with i warheads and
X [&—f—%} targets with k warheads. This replacement is
valid as we still have x targets being attacked by jx war-
heads. But now the expected number of targets destroyed

= k-] j -1 ;
x [pi(k ~ i) + pk(k — i)] > xpj, the previous number.
Thus any attack using force levels not in the attack

sequence is suboptimal.

Propcsition: If i < j < k are in the attack sequence and
(i, pi), G, pj), (k, pk) are not collinear then Blue should

never attack simultaneously at force levels i and k.

Proof: We have

(3.2) py > Pyl + p, (-

the strict inequality due to the noncollinearity. Say Blue

attacks X, > 0 targets at force level i and x> 0 targets
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at force level j. Set y = min[x,(k - 1)/(k - j),

xk(j - 1)/(k - i)]. Blue can replace the attack of
k
3
with k weapons with an attack of y targets with j weapons.

y[%—f—%l targets with i weapons and y {T— ;] targets

This new attack will, by (3.2), have a greater expecced
number of targets destroyed and thus the original attack
was suboptimal.

There is a remaining possibility that i < j < k are
in the attack sequence with (i, Pi)’ (i, pj), (i, pk)
collinear. In this case there may be a continuum of
optimal attacks as an attack at level j may be replaced
by attacks at level i, k with equal effect. 1If, for some
W, an optimal attack uses force level j it may be replaced
by an optimal attack that does not. We define the reduced
attack sequence by deleting j if there exist i, k in the
attack sequence i < j < k, (i, pi), G, pj), (k, pn) col-
linear. That is, i is in the reduced attack sequence
iff (4, pi) is a corner of the convex hull of [n, pn}.

In the example 0, 2, 4, 6 is the reduced attack sequence.

Optimal Attack Algorithm: Let the p; be fixed and let
0= a, < a; < ... be the reduced attack sequence. We

consider Blue's optimal attack as W increases from 0.
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At W = 0 all targets are attacked at level 0. As W in-
creases, targets are attacked at level a, until all have
been attacked (W = nal). Then the force level is increased
to a, on more and more targets until W = na, and all have
been so attacked. 1In general, for na;, <Wgma, all
targets are attacked by at least a, warheads and as many

as possible [ (W - nai)/(ai+1 - ai)] are attacked by a4
warheads.

We note that, using the optimal attack algorithm, if
the Red targets stay constant and W increases Blue never
needs to retarget his warheads.

We shall use the following two results in Section 4.

If p(i) = Py is (strictly) convex then the (reduced)
attack sequence is 0, 1, 2, 3, ... . In particular, if
p, =1 - al, 0 <o < 1 (which is the case with i warheads
each with independent kill probability 1 - a) the attack
sequence is 0, 1, 2, 3,

If p(i) = Py is (strictly) convex for i > 10 and

j 21y is in the (reduced) attack sequence then j, j + 1,

j+ 2, ... are in the attack sequence.
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4. AN ILLUSTRATIVE EXAMPLE

We assume that Red has N = 3 different kinds of tar-
gets he may purchase. The Kill Probabilities and Costs

are given by:

- - i -
Pyy = 1 .5 ¢y 1
-1 - i -
Py =1 - .75 ey = 1.5
=1-.9%, i=0,1 = 1.2
P3y > 1 ’ €3 :
1-.92.24°2 55

(See Table 4.1) We have thought of the first type target as
being a moderately strong silo, so that the Blue warheads
have KP = .5. The second type target is a hard rock silo so
that Blue KP = .25. The third type target is equipped with
two interceptors. The Blue KP = .1 when the Blue warhead

is attacked by an interceptor, but = .8 when the Red inter-
ceptors are depleted. Let us suppose Red must meet an
"Assured Destruction'" requirement of D = 100 targets.

We shall find the Red position of minimal cost that meets

this AD requirement for each number W of Blue warheads.
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Table 4.1

KILL PROBABILITIES AGAINST TARGETS

dissiles

Tarcet 1

OUOUU
« VUV
» 1500
87230
«9375
.9088
c1-L 2
9922
9901
«998V
99y
«d¥do
R EEE
<9994
1.,0000
1.,0000
1,0000
1.0000
1.,0000

Target ¢

«UUUU
« 2000
H375
+57481
6436
e 7027
.8220
+8065
«393Y
o924y
o937
.9578
. 9683
.9762
«94822
3800
«9900
J9auu
«99038

Tarzet 3

NVIVVIV
1000
+1900
8380
9670
«9935
9987
o 3937
«994Y9
1,0000
1,0000
1.0000
1,0000
1.,0000
1,0000
1,0000
1.0000
1.0000
1,0000
1,0000

-
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We know from convexity properties that against targets
1 and 2 the attack sequence is 0, 1, 2, 3, 4, ... whereas
against target 3 the attack sequence is 0, 3, 4, 5,
For each target type we graph in Fig. 4.1 the fraction of tar-
gets destroyed versus W/n. To do this, note that if W/n = a;
is in the attack sequence then the fraction of targets de-
stroyed is P;- T-e graph is then gotten by linear interpo-
lation.

Now for each target type i and each warhead number W
we ask for the minimal number of targets n so that D will
survive. We set qi(W/n) = the fraction of targets not
destroyed when W warheads attack n targets. So q is a

piecewise linear function and we need solve

nq; (W/n) = D.

The left-hand side is monotonically increasing in n so we

a, so that

find attack levels a Kk

k-1°
ak-lqi(W/ak-l) <D< akqi(W/ak).

Then we know
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W/a <n<Wa,.

k-1

In this region, qy is linear so we can solve for

(ak - ak_l)D - (qk = qk-l)w

" W-1% ~ %3*x-1
The cost is given by nc,. These calculations are very simply
done on the computer giving the results of Table 4.2.

Note how the optimal target type does change as a func-
tion of W. For 0 < W < 120, target defense 1 is optimal.
From W = 120 to W = 680 (approximately) target defense 3
is optimal. From W = 680 to W = 1000 (and beyond) target
defense 2 is optimal.

An interesting anomaly occurs if we ignore defense 2,
Then defense 3 is optimal for 120 < W < 920 whereas defense
1 is optimal for W < 120 and W > 920. That is, as W increases,
defense 1 loses its optimality and then later regains it.

There are a number of factors that must come into the
choice of target defense:

(1) The current and expected number of enemy warheads.
For as we have seen, the optimal defense depends on the num-

ber of enemy warheads.
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Table 4.2
UNIFORM DEFENSE COST AGAINST W WARHEADS

[} Target 1 Target 2 Tarpet 3
29 1310.0000 127,500 120,70w0
b 120,000uU los . 00UV 133,400
b0 130.,0000 172,5000 149,1120
30 149 ,0000 150,0000 146 ,43160
10 159,0000 18745000 153.5200
129 160 ,0000 145,0000 160,22u0
14V 170.9000 204,0000 lbo,928V
v 180,000V 204,0000 173.6320
140 190.90U0 214 ,0000 1dU,.3309
200 200 ,0U00 220,0000 147.0400
24U 2Ub,bbo7 226 ,0000 143,7440
240 213.3433 232,9000 200,u4u80
200 220.,0000 234,0000 207,1520
240 226,0607 244 ,0000 213,.8560
300 233,3333 250,0000 220,5600
320 240 ,UVUU 256,0000 227,26u0
340 46,6607 262.0000 233,9680
Ju0 23343343 207,7778 2840,6720
380 260,0000 2727774 247,3760
400 206,6607 277,7778 254,0800
420 273.3334 282,7774 260,7840
40 280,0000 287,777¢ 267,4880
460 286,6067 292,7773 274,1920
480 293,33343 297.7773 280,8960
50u 300,0000 302.77178 287,6000
520 IV6,6667 307,7773 294,3040
540 31343333 312.,7773 301,0080
560U 320 ,0000 317.7773 307,7120
5480 326,6667 322.7778 314,4160
600 333438333 327,777 321,1200
V1Y) KEIVRVI VIV 332,778 327,8240
64U 346 ,6667 337.7774 334,5280
660 353.3333 342,7778 341.2320
ooy 30U .,0000 347,7778 47,9360
700 366,6667 352,7774 354 ,6400
750 343,3333 363, gdyy 371.,4000
800 490 ,0900 374,6032 389,1600
459 12,5000 385,3175 404,9200
900 b3,2900 396,0317 421,6800
$50 437,5000 406, 7460 L438,4400
1000 450,0000 417,4603 455,2000
1050 462,5000 423,17u6 471,9600
1100 #75,0000 434,.8489 448,7200
1150 Kd7,5900 443,032 505,4800

17200 500,0000 460,3175 522,26400
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(2) The refundability and convertibility of different
defenses. As we have noted, the enemy warheads may increase
to a point where the current defense type is suboptimal.

It is usually impossible to get a sizeable fraction of the
target cost back when discarding it. It might be best to
keep the suboptimal defenses in place and build new defenses
of a different type. This greatly complicates the analysis

as now we must consider attacks on nonuniform targets. If,
for example, target i is a missile with i - 1 interceptors
then it may be possible to convert target i to target j

(1 < j) for the same total cost as buying target j initially.
This situation could be considered equivalent to total refund-
ability.

(3) The effect of your missiles on enemy plans. Thus
far we have considered targets as purely defensive. However,
in reality they contain warheads. Building targets will in-
duce the enemy to build more targets himself with more war-
heads and thus set off an arms race. 1t may prove better
to use a suboptimal defense which uses fewer targets so as
to dampen the arms race. The analogous situation for Decep-
tive Basing Postures was considered in {1].

The author hopes to discuss points (2) and (3) more

thoroughly in a future work.
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