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7"EFACE

The Rand program of strategic studies involves the

study of new concepts and doct .ae for the strategic forces.

As part of this study the effect of various methods of

preserving the land-based missile force on long-term force

posture stability is being considered. This report estab-

lishes certain mathematical theorems which will be of

assistance in calculating the stability properties of active

defense of missile silos. It should be of interest primarily

to weapon system analysts.



SUMMARY

In this report, a theorem dealing with the purchase of

defensive weapon systems is proven. We assume the pur-

chaser's objective is to achieve an "assured destruction"

criterion at minimal cost. We show that under certain

circumstances it is optimal to purchase a uniform defen-

sive system. The applicability of the mathematical the-

orem to the "real world" is then studied.

A second theorem gives a simple procedure for finding

an attacker's optimal firing rule under very general cir-

cumstances.

An example is given which illustrates the problems

in choosing a defensive weapons system.
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1. A THEOREM ON UNIFORM MISSILE BASING

Our model consists of two sides - Red and Blue. Both

sides place missiles in targets (which we may think of as

silos) which they may defend in various ways. Each side

must meet an "assured destruction" (AD) requirement. That

is, their position must be such that after an all-out attack

by the other side they expect to have a certain predetermined

number of missiles surviving. (This number is usually

defined as sufficiently large to inflict "unacceptable"

losses on the enemy's cities. However, the calculation of

this number is of no concern to us in this note.) We shall

assume that Blue's posture is fixed. We assume that Red's

object is to meet its AD requirement at minimal cost. We

shall prove that under certain quite general conditions

Red should have uniform basing. That is, Red could, with-

out penalty, build a set of identically defended targets.

Let us suppose Red may purchase N different kinds of

targets. For 1 < i < N set ci = the cost of the ith type

target. (We may think intuitively of the ith type being

a missile and (i-l) interceptors.) Red's posture is then

given by an ordered N-tuple P - (nl, ... , nN) which repre-

sents the purchase of ni targets of type i, i - 1, ... , N.

The cost to Red is c(P) - E cmni.
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Blue may attack a target by sending a nonnegative

number of warheads at the target. For 1 < i < N set pij =

the probability that a target of type i is destroyed when

attacked by j warheads. So Pio = 0, and 0 < pij < 1. We

make no other conditions on the pij.

An attack A by Blue is given by nonnegative A..,

1I< i< N, j nonnegative. Here Aij represents the number

of targets of type i that have j missiles sent against them.

Thus an attack A on a position P must satisfy

(1.1) Z Ai. = n. for 1 < i < N

Set a(P) = the set of possible attacks A on P (i.e., the

set of A satisfying (1)). Set

w(A) =Z j Aij

i,j

= the number of warheads used in attack A. Set

(1.2) aw(P) = (A E a'(P) : w(A) - W).

In reality, the ni and Aij must be integral. However,

in this model, we allow them to range over the nonnegative
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reals. We return to this point in Section 2.

A Blue attack A E LI(P) against a Red position P will

leave an expected number

s(A,P) = Z A.i (1-p..)

of Red targets surviving. Let Blue have a fixed number,

W, of warheads. Let D > 0 be fixed. A position P of Red

is said to meet an assured destruction requirement D if

for all A E a W(P), s(A,P) > D. Set T = T(D,W) = the set

of positions that meet this requirement. T 0 0 as, for

example, (W + D, 0, ... , 0) e T. Red wishes to find the

position P e T of minimal cost.

We first show that such a P exists.* If P

(nl, ... , n N) e T has some ni > W + D then replacing that

ni by W + D gives a P e T of less cost. Therefore, we

may restrict P to T' - T n ((ni, . N ni S W + D for all i].

*This paragraph shows that it is impossible that P c R

exist with cost "infinitesimally" greater than some C0
without some P c R existing with cost CO. The reader un-

familiar with the topological concepts involved may assumethe results as obvious and continue.



-4-

As s is a continuous function, T is a closed set.

Therefore T' is a compact set. The cost function is

continuous and therefore assumes its minimum on the compact

set T'.

Set L = L(DW) = the set of positions of least cost.

L has at least one member. We call a position P uniform

if only one of the ni is nonzero. That is, P is uniform

if all targets are of the same type.

Theorem: There exists a uniform P in L.

Proof: We first note that if X. are nonnegative reals1

and A. e a(Pi) then Z X.A. e E6(E X.P.) and s (Z kiAi, Z X iP)

Z Xis(Ai,Pi). Fix a P = (nl, ... , nN) e L. Set C = c(P)

= Z c.n. and set S = fi: n. 0 0). For each i e S let P.
1 1. 1

be the position with n. = C/c. and all other n. = 0. Then

c(Pi) = C and Pi is uniform. If the theorem is not true

the Pi must all fail to meet the AD requirements. There

would exist attacks A.i e 7(Pi) such that s(Ai, Pi) < D.

Setting K. = cini/C and A = Z iAi we have P = E XiPi,

A c A(P) and s(AP) = Z Xis(Ai,Pi) < D Z Xi < D as

r KX = Z cini/C 1 1. But then P 4 L, a contradiction.

Q.E.D.



-5-

2. ASSUMPTIONS AND RESERVATIONS

In this section we delineate the assumptions upon

which Theorem 1 was proven. We also note some situations

in which the theorem does not apply.

(1) The theorem assumes there are no area defense

possibilities. By area defense we mean defensive strat-

agems that defend more than one of the targets simultaneously--

for example, as might occur with "long range" interceptors.

(2) We have assumed that the target-s contain identical

missiles. If, on the other hand, some targets contain more

powerful missiles than others it is likely that the more

poweLful missiles should receive more protection.

(3) We have allowed ni and Aij to assume nonintegral

values. The zheorem is false if we require ni and Aij to

be integral, as they must be in reality. Here is a counter-

example: Blue has W = 3 warheads and Red has AD requirement

D - 1. There are N 2 options for Red. pI 0 - 0, Pll " 1,

P20 ' P2 1 ' P 2 2 ' 0, P 2 3  1 1. Intuitively, Blue must use

1 warhead to knock out a target of type 1 and 3 warheads

to knock out a target of type 2. cI - i, c 2 - 2. The best

uniform positions that meet the AD requirement ore (4, 0)

and (0, 2) both of cost 4. However, (1, 1) meets the AD

requirement with cost 3. Against (1, 1) Blue would like
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to knock out the type 1 target with 1 warhead and 2/3 type

2 targets with 2 warheads. He is prevented by the inte-

grality of the targets.

We feel this is not an important flaw in the theorem.

We have in mind applications with hundreds (or more) of

missiles. If the optimal strategy calls for, say, 156.4

missiles it can easily be approximated by 156 or 157 mis-

siles with no serious loss.

It would be quite a more serious matter to allow the

number of warheads aimed at one target to be nonintegral.

An optimal strategy of 2.5 warheads/target might not easily

be approximated by a mix of 2 and 3 warheads/target. It

would be especially dangerous to approximate a strategy of

.5 warheads/target by a mix of 0 and I warhead/target.

Note that we have assumed that the number of warheads/

target is integral.

(4) The theorem assumes that Red starts from scratch.

If, for example, Red starts with a number of missiles in

unprotected silos the theorem does not apply. It might

then be best for Red to protect some of the missiles with

interceptors and leave the rest unprotected. If Red was

able to instantaneously scrap what position he had and sell

it for full cost the theorem would hold. In reality,
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practically the complete opposite is true. When a weapon

system is discarded there is only a negligible return.

Full deposit, no return is closer to the truth.

(5) The previous point leads to an important model.

Let D be fixed and let Blue gradually increase his number

of warheads, W. For any fixed value of W Red should have

a uniform defense of type, say t(W). As the example in

Section 4 illustrates t(W) is not a constant function.

Thus Red might find he has all defenses of type 1 and sud-

denly type 2 is optimal. This gives an example of the

necessity of predicting the future value of your opponent's W.

(6) In the model we assume that the values of the p.ij

are known. In reality it is difficult, if not impossible,

to obtain reliable estimates of the pij" In reality, weap-

ons systems are put into operation for long periods of time.

Even if reasonable estimates of the pij are available for

the current time the effect of future research can only be

guessed at. This suggests a model based on Bayesian dis-

tributions.

In a Bayesian model we have, instead of a fixed value

of pj', a probability distribution for the pij. We give

an extreme, though instructive, example. Suppose a type

I defense is totally impregnable against the enemy's current



-8-

warheads. However, you suspect the enemy is working on

countermeasures which, if successful, would enable him to

destroy your target with a single missile. You give him

a 50% chance of finding these countermeasures in the ap-

propriate time period. In our original model what would

P11 be? Setting p11 , 0 or 1 is clearly wrong. Also,

setting pl1 - .5 (the average) does not reflect the real-

ities. We instead give p11 a distribution saying

Prob (p,, = 0) - Prob (p,1 - 1) - .5.

In this model the expected value usage in the assured

destruction requirement would have to change. A reasonable

requirement would be that Red would have to have a 90%

chance of meeting its AD requirement. For example, let

D - 100 and Blue have W 1 1000 warheads. Suppose Red has

three options. Each option is currently impregnable. For

each option there is a 40% chance that some new technology

will leave them completely vulnerable--i.e., each target

could be knocked out with a single warhead. Assume these

40% probabilities are independent--that is, the target

defenses are so different that research that would enable

one kind of defense to be destroyed will not help destroy

other defenses. Say all defenses have unit cost. Then

a uniform position would cost Red 100. For if Red had



< 1100 targets there would be a 40% chance that 1000 of

his targets could be knocked out, leaving him with less

than his AD requiretaent. However, Red can meet his require-

ment at cost 600 by buying 200 of each weapon. Red will

meet his AD requirement unless Blue can counter all three

of his defenses, which he can do with probability .4' .4' .4 =

.064, so Red meets his AD requirement with probability 93.6%.
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3. OPTIMAL ATTACK

In this section we assume that Red has n targets,

all identically defended. Blue has W warheads. We set

Pi = the Kill Probability if i warheads are sent at a tar-

get. We want to know the optimal attack for Blue--that

is, the attack which maximizes the expected number of Red

losses.

It will help to consider an example. Let pi be given

by

Pi 0"
pi 0 .1 .5 .6 .9 .95~ 1

We place the points (i, pi) on a graph and draw the con-

vex hull of the points. (See Fig. 3.1.) Given po' Pip ...

we define the Attack Sequence as the sequence 0 = a 0 < a 1 <

a < ... of integers such that (a., pa.) is in the convex
1

hull of (n, p)}. In the example, 0, 2, 4, 5, 6 is the

attack sequence. We have "cut off" pi at i - 6 in the example

although, for theoretical purposes, it may be easier to

consider pi defined for all integers i.

Proposition: It' j is not in the attack sequence then Blue

should never (for any W) attack any targets with j warheads.
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Proof: As (j, pj) is not on the convex hull there exist

i, k,

(3.1) i < j < k, pj < pi[•-_-4i + Ik k].

Now suppose Blue attacks x targets at force level j. Blue

could instead attack x[ k I targets with i warheads and

x k - targets with k warheads. This replacement isLk -i"

valid as we still have x targets being attacked by jx war-

heads. But now the expected number of targets destroyed

= x [pi(i_- ) + kk--i)] > xp., the previous number.
k - Vi kk-

Thus any attack using force levels not in the attack

sequence is suboptimal.

Propcsition: If i < j < k are in the attack sequence and

(i, pi), (j, pj), (k, pk) are not collinear then Blue should

never attack simultaneously at force levels i and k.

Proof: We have

(3.2) p > p [I k J I + k k-iI

the strict inequality due to the noncollinearity. Say Blue

attacks xI > 0 targets at force level i and xk > 0 targets
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at force level j. Set y - min[xi(k - i)/(k - j),

xk(j - i)/(k - i)]. Blue can replace the attack of
k-k-i

y•k--i targets with i weapons and y [j ---- i]I targets

with k weapons with an attack of y targets with j weapons.

This new attack will, by (3.2), have a greater expetced

number of targets destroyed and thus the original attack

was suboptimal.

There is a remaining possibility that i < j < k are

in the attack sequence with (i, pi), (j' pj), (i Pk)

collinear. In this case there may be a continuum of

optimal attacks as an attack at level j may be replaced

by attacks at level i, k with equal effect. If, for some

W, an optimal attack uses force level j it may be replaced

by an optimal attack that does not. We define the reduced

attack sequence by deleting j if there exist i, k in the

attack sequence i < j < k, (i, pi)o (j, pj), (k, pn) col-

linear. That is, i is in the reduced attack sequence

iff (i, pi) is a corner of the convex hull of (n, pn].

In the example 0, 2, 4, 6 is the reduced attack sequence.

Optimal Attack Algorithm: Let the p be fixed and let

0 - a 0 < a1 < ... be the reduced attack sequence. We

consider Blue's optimal attack as W increases from 0.
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At W 0 all targets are attacked at level 0. As W in-

creases, targets are attacked at level aI until all have

been attacked (W = na 1 ). Then the force level is increased

to a2 on more and more targets until W = na 2 and all have

been so attacked. In general, for na. < W < na+ all

targets are attacked by at least a. warheads and as many

as possible [(W - nai)/(ai+I - ai)] are attacked by ai+1

warheads.

We note that, using the optimal attack algorithm, if

the Red targets stay constant and W increases Blue never

needs to retarget his warheads.

We shall use the following two results in Section 4.

If p(i) = pi is (strictly) convex then the (reduced)

attack sequence is 0, 1, 2, 3, ..... In particular, if

Pi = I - a , 0 < a < I (which is the case with i warheads

each with independent kill probability I - a) the attack

sequence is 0, 1, 2, 3,....

If p(i) = pi is (strictly) convex for i > 1i0 and

j > i0 is in the (reduced) attack sequence then J, j + 1,

j + 2, ... are in the attack sequence.
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4. AN ILLUSTRATIVE EXAMPLE

We assume that Red has N = 3 different kinds of tar-

gets he may purchase. The Kill Probabilities and Costs

are given by:

pli = 1 - .5i cI = I

P2i = I - .75i c 2 = 1.5

= 1 - .9 , i = 0, 1 c 3 = 1.2

2 i-2
1 - .92.22 i > 2

(See Table 4.1) We have thought of the first type target as

being a moderately strong silo, so that the Blue warheads

have KP = .5. The second type target is a hard rock silo so

that Blue KP = .25. The third type target is equipped with

two interceptors. The Blue KP = .1 when the Blue warhead

is attacked by an interceptor, but = .8 when the Red inter-

ceptors are depleted. Let us suppose Red must meet an

"Assured Destruction" requirement of D = 100 targets.

We shall find the Red position of minimal cost that meets

this AD requirement for each number W of Blue warheads.
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Table 4. 1

KILL PROBABILITIES AGAINST TARGETS

Miss iieq Target I iarpet 2 Tfar~,et 3

u .OOuu UUOU *UUUU.

.,1500.,3: .1900
3 .0760 .5781 *didu
4 .9375 .udJb .9076
5 .966d .7627 .9935

v.9844 .822U .9987
7 .,3922 .8665 .3997

d 991.83999 .,4994,j
13 .99d0 Y924Y 1.0000

10 .99ju.9J7 1.0000
11 V93.957b 1.0000
12 .~99d6 .9683 1.0000
113 .99Y9 .9762 1.0000)
14 y9y9Y .9d22 1.0000
15 1.0000.66 1.0000

101.0000 .9900 1.0000U
17 1.0000 .YY2z) 1.0000
18 1.0000 .99L4 4 1.0000
193 1.0000 .99z8d 1. 0000
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We know from convexity properties that against targets

I and 2 the attack sequence is 0, 1, 2, 3, 4, ... whereas

against target 3 the attack sequence is 0, 3, 4, 5,

For each target type we graph in Fig. 4.1 the fraction of tar-

gets destroyed versus W/n. To do this, note that if W/n - a.

is in the attack sequence then the fraction of targets de-

stroyed is pi. ""-e graph is then gotten by linear interpo-

lation.

Now for each target type i and each warhead number W

we ask for the minimal number of targets n so that D will

survive. We set qi(W/n) - the fraction of targets not

destroyed when W warheads attack n targets. So qi is a

piecewise linear function and we need solve

nqi(W/n) = D.

The left-hand side is monotonically increasing in n so we

find attack levels ak-l, ak so that

Tkhlqn(W/akl) < D k akoq(W/awk)

Then we know

- __ -
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W/ak_1 < n < W/ak.

In this region, qi is linear so we can solve for

(ak - ak-l)D - (qk - qk-iW

q k-lak - q kak-I

The cost is given by nc.. These calculations are very simply

done on the computer giving the results of Table 4.2.

Note how the optimal target type does change as a func-

tion of W. For 0 < W < 120, target defense 1 is optimal.

From W = 120 to W - 680 (approximately) target defense 3

is optimal. From W = 680 to W = 1000 (and beyond) target

defense 2 is optimal.

An interesting anomaly occurs if we ignore defense 2.

Then defense 3 is optimal for 120 < W < 920 whereas defense

1 is optimal for W < 120 and W > 920. That is, as W increases,

defense I loses its optimality and then later regains it.

There are a number of factors that must come into the

choice of target defense:

(1) The current and expected number of enemy warheads.

For as we have seen, the optimal defense depends on the num-

ber of enemy warheads.
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Table 4.2

UNIFORM DEFENSE COST AGAINST W WARHEADS

w farget I Target 2 Target 3

20 110.uuoo 1i,1.5o 12o,704U
40 2U.UO0UU 1ý1.0ou0 133,400d
bO 13O.U000 172.5u00 140.1120
80 140.0000 idO.0000 146,d160

1U0 150.0000 187.two0 153.52u0
120 160.0000 19t.0jOo 160.2240
14U 17U.0000 202.0000 lbo.926U
lu ld80.0000 20,3.0000 17J.i 420
180 190.0000 214.0000 1d0.3J30
200 200.0000 220.0000 167.0400
2.0 20b.b667 22b.0000 lij.7440
240 213.3J33 232.0000 200.4480
260 220.0000 238.0000 207.1520
280 226.66b7 244.0000 213.85b0
300 2.3344 250.0000 220.5600
320 240.U0U0 256.0000 227.2640
340 24b.6607 262.0000 233.9bdU
300 253.J333 267.7778 240.6720
380 260.0000 272.777a 247.3760
400 266.6607 277.7778 254.0800
420 273.3334 262.7778 260.7840
440 280.U000 207.777d 267.4880
460 286.bb67 292.7771 274.1920
46U 293.333J 297.7776 280.8960
500 300.0000 302.7778 287.6000

520 306.6667 307.777d 294.3040
540 113,1133 312.7778 301.0080
560 320.0000 317.7778 307,7120
5dO 326.6667 322.7778 314,4160
600 333.J333 327.777d 321.1200
b20 340.0000 332.777d 327.8240
640 346.6667 3J7.777d 334,5280
6fi0 354.3333 342,7778 341.2320
b8 J6uU.0U00 347.7778 347.93bU
700 36b.6667 352.777d 354,6400
750 3d3.3433 363.d889 371.4000
800 400.0)00 374.6032 3u8.1600
d50 412.5000 385,3175 404*9200
900 1,&o3.))0 396.0317 421.6800
950 437.5000 40b,7460 43d.4400

1000 450.0000 417.4603 455,2000
1050 462.5000 426.1746 471.9600
1100 475.0000 438.8d89 4d8.7200
1150 407.i000 449.b032 505,4800
1200 500.00o0 460.3175 522.2400
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(2) The refundability and convertibility of different

defenses. As we have noted, the enemy warheads may increase

to a point where the current defense type is suboptimal.

It is usually impossible to get a sizeable fraction of the

target cost back when discarding it. It might be best to

keep the suboptimal defenses in place and build new defenses

of a different type. This greatly complicates the analysis

as now we must consider attacks on nonuniform targets. If,

for example, target i is a missile with i - 1 interceptors

then it may be possible to convert target i to target j

(i < j) for the same total cost as buying target j initially.

This situation could be considered equivalent to total refund-

ability.

(3) The effect of your missiles on enemy plans. Thus

far we have considered targets as purely defensive. However,

in reality they contain warheads. Building targets will in-

duce the enemy to build more targets himself with more war-

heads and thus set off an arms race. It may prove better

to use a suboptimal defense which uses fewer targets so as

to dampen the arms race. The analogous situation for Decep-

tive Basing Postures was considered in Ill.

The author hopes to discuss points (2) and (3) more

thoroughly in a future work.
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