AD735258

272

- .“:mum., [ ::.”': D Dﬂgﬂ
.. pec 27 W
ST

A CONTOUR ROUTINE WITH
AUTO-INTERPOLATION

M. WIRTH
SEISMIC DATA LABORATORY

AUGUST 24. 1971

Prepored for
AIR FORCE TECHNICAL APPLICATIONS CENTER
Washington, D.C.

Under
Project VELA UNIFORM

Spensorsd by

ADVANCED RESEARCH PROJECTS AGENCY
Nuclear Monitoring Research Office

ARPA Qrder No.1714

‘W TELEDYNE GEOTECH

NATIONAL TECHNICAL ALEXANDRIA LABORATORIES
INFORMATION SERVICE .

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

3|



THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




ynclassified
Security Classification

DOCUMENT CONTROL DATA - R&D

(Secunity classification of title. body of abstract and indening ennoialton musil be entered when the ovarall report 1a clesstfied;

28 REPORT SECURITY C LASS FICATION

b ORIGINATING ACTIVITY (Corporate suthor)
Unclassified

TELEDYNE GEOTECH
ALEXANDRIA, VIRGINIA

2b GrOUP

3 REPORY TITLE

A CONTOUR ROUTINE WITH AUTO-INTERPOLATION

4 DESCRIPTIVE NOTES (Typs of report and Incluaive detes)

Scientific

S AUTHOR(S) (Last name. tiret name. initial)

Wirth, Mark

6 REPORT DATE 78 YOTAL NO OF PaGES 15 NO QF REFS
(

24 August 1971 29 ]

B8 CONTRACY OR GRANT NO. s ORIGINATOR'S REPORTY NUMBER'S)

F33657=72=-C=0009
272

b PROJECT NO

VELA T/2706
9b OTHER nfnoin NO(S) (Any othar numbers that may be ssaigned

RRPA Order No. 1714 )
dARPA Program Code No. 2F=10

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY
Advanced Research Projects Agency
Nuclear Monitoring Research Office

Washington, D. C.

11 ABSTRACT

An efficient contour-plotting routine is discussed which
is based on a scanning algorithm of Cottafava and LeMoli and
employs bi-linear interpolation. An auto-interpolation scheme
is developed which automatically adjusts the number of inter-
polations in any data square to produce smooth line segments.
A program listing and examples are given.

14 XEY WORDS
Contour plotting
Plotting

Unclassified

Secunty Classification



|

V TEET. | AVAIL se0 o SPRCIAL
oAt *

'

|

Neithor the Advanced Research Prejects Agency ner the Air Ferce Technical Appiications Conter will be respensible for information
contained horsin which has been supplied by other srganirations or contracters, and this decument is subject to /ater revision as may bs
secessary. The views and conclusions presented ars thess of the hars and shouid net be interproted as mecesssrily rspresenting the
official palicies, sither exp d or implied, of the Advanced Ressarch Prejects Agancy. the Air Ferce Teckaica! Applications Conter,
or the U S Goverament.

.



A CONTOUR ROUTINE WITH AUTO-INTERPOLATION

SEISMIC DATA LABORATORY REPORT NO. 272

AFTAC Project No.:
Project Title:
ARPA Order No.:

ARPA Program Code No.:

Name of Contractor:

Contract No,:

Date of Contract:

Amount of Contract:
Contract Expiration Date:

Project Manager:

P. 0. Box 334,

VELA T/2706

Seismic Data Laboratory
1714

2F-10

TELEDYNE GEOTECH

F33657-72-C-0009
01 July 1971
$ 1,290,000

0 June 1872

(9]

Royal A, Hartenberger
(703) B36-7647

Alexandria, Virginia

APPROVEDR FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.



ABSTRACT

An efficient contour-plotting routine is discussed which
is based on a scanning algorithm of Cottafava and LeMoli and
employs bi-linear interpolation. An auto-interpolation scheme
is developed which automatically adjusts the number of inter-
polations in any data ¢ .are to produce smooth line segments.
A program listing and examples are given,
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INTRODUCTION

There are many approaches to producing contour maps on a
digital computer. Several of these are described by Cottafava
and LeMoli (1969). Ideally, a contour routine should be efficient
on both computer and plotter, but most seem to possess only one
kind of efficiency. For quite a number of reasons, including
plotting efficiency, algorithms of the "line-following" type
are preferable for use with mechanical plotters, Cottafava and
LeMoli present a scanning algorithm of this type which is also
very efficient on the computer.

In their program (Cottafava and LeMoli, private communica-
tion) they assumed a linear variation between points, but did
not do any interpolation in the interior of the data square
(defined by four contiguous data points as vertices). Thus a
plot produced with their routine consists entirely of straight
line segments joined together, the coarseness depending on the
spacing of data points., To remedy this, the author developed an
autointerpolation scheme employing bi-l1inear interpolation for
use in the interior of the data square, With this scheme,
described in the present paper, the number of interpolations
used in crossing the data square is automatically adjusted to
produce a smooth curve, the number required depending on the
curvature of the line segment. This method requires no additional
storage and is very fast.

While the interpolation does indeed produce smooth line
segments, slope discontinuities sometimes occur on the edges
(of the data squares). Tnis is a Jimitation of the bi-linear
interpolation law. An easy and economical solution to this
problem is to obtain a finer data mesh by performing a higher-
order interpolation before entering the contour routine. This




may also be done when the data are not given as a set of
equally-spaced points,
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SCANNING ALGORITHM

The scanning algorithm used is that of Cottafava and
LeMoli, with several modifications by this author. A more
complete discussion than will be given here can be found in
the paper cited. For each contour value, the procedure is to
scan the entire data array to find which line segments are
intersected by the level line and to store the information as
flags within the data words themselves. A horizontal and
vertical segment are associated with each data point as shown
in Figure 1 (the y-axis is given its normal sense here;
Cottafava and LeMoli reverse it).

\

Figure 1. Intersection flags

The flags are stored as bits in the upper part of the integer
word, the data being normalized to positive integers by a linear




transformation, {In deference to readers with machines which
cannot perform masks, the use of masks in the programs has
been limited to an inessential role, where they can easily be
replaced by a test and subtract. Where masking statements are
available, the flags can be conveniently stored as the least-
significant bits of the floating-point mantissa of each data
word., This results in a considerable simplification of the
program, )

The contours are traced in a second scanning operation,
each flag being erased as. it is found., This procedure makes it
easy to find all the branches of the contour level and is in
large part responsible for the efficiency of the program. Each
iine is traced square by square by a local scan which checks
all the edges of the data square in fixed order {(counter-
clockwise beginning with the right edge) to find the contin-
uation of the line. This procedure runs into trouble only in
the case of an interior saddle point (square crossed twice by
the same contour), and in this case there is an easy solution
based on the interpolation method,
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INTERPOLATION

In order to define the behavior of the contour line
inside each data square, we must make an assumption about the
behavior of the function inside the square. Lacking any special
information in the general case, we assume bi-linear variation
as the simplest general variation. (Using a higher order inter-
polation here would also cause seriocus difficulties with the
scanning procedure.) That is, we assume

F(x,y} = A+ Bx + ay + &xy (1)

referred to a local coordinate system with origin at A, as
shown in Figure 2,

y
4 Y
{0,1) ¢ — " ~ B
'8 Dx *
(
o
aﬁ d
\m.r}=v
\
*— -0 —» X
4 e ey B
(0.0} B (1.0)

Figure 2. Interpolation conventions



Equation (1) is the Lagrange 2 x 2 interpolation formula and
is also equivalent to a Taylor's series expansion, with the
assumption of constant first derivatives on each edge. Making
our square of unit dimensions, the derivatives are

a2 . C-A
S5 - B-A
(2)
Y = D-C
S I y=8

With these definitions, it is easy to see that (1) reduces to
the correct values at the corners and reduces to ordinary
linear interpolation on each edge. Our contour segment is
therefore the locus F{x,y) = v, the value of the contour,
From (1) we obtain either

. v-A-8x
Y SR (3)
or
_ vV=A-ay
X B+dy (4)

with O<x<1 and 0<y<l. These expressions are easily computed,
In practice, we choose the number of interpolations, subdivide



Ax or Ay, and use either (3) or {4), respectively. It is
convenient to use (3) for a line terminating on a vertical
edge, and (4) for a line terminating on a horizontal edge,



AUTO-INTERPOLATION

We approximate our ideally smooth curve by a series of
chords, If we choose the number of chords in each square so
that the maximum deviation from the ideal curve is on the
order of the basic plotter increment, then we obtain as smooth
a curve as we can with no wasted time. We take as our auto-
interpolation criterion, the maximum perpendicuiar distance
from the curve to the straight line between the end points,
The perpendicular distance from a point to a line is

x) = (y - mx-b)/¥Yml+1 (5)

from elementary geometry. We consider the case of a segment
terminating on the left ¢dge of the square, and for this case
there are just two distinct possibilities, as shown in Figures
3 and 4. All other possibilities can be found by reflections
and a rotation.

A 8

Figure 3. Case I Figure 4, Case II



For case 1 the slope is

For both cases the intercept is b
calculation of the maximum of (5)
simplifies the algebra. Define

N, = d{v-C)
| E

ay
N, = 5 a
) (v-C)/
n = i AX where Lx =
o
1, cas
(S
Then
S§(v-A) . L v-C .
5 + s[1 + - o+ i

= (v-A)/+«, The "brute force"
is messy, but a transformation

vy, case I

(1)
—
r—




which leads to the relation

my (14a,) = my(1en))

2

It can also be shown that

my(T+n,)
yop = R
]+12x
and
yoody o mim)
dx (1+n2X)2

The location of the maximum of (5) is given by the condition

3

—
>
~—
]
«©
]
«:
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>
~
]

(hats will be used to refer to the maximum), i,e.,

m](]+w])

(14 ,%)2
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Thus

«<>

and

or

(9)

where X is found from (8). For case I, m = my and

s _ 1
X; = H; \/1+n] - 1]

For case II, m = LW and using (7) in (8) gives

~ _ 1
X2 = E Vl"’ﬂz - ]]

which has the same form, Putting these results in (9) gives
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~ m 1 2
S = :— [w]*ﬂ - ]]
Vn12+1 2

for both cases. This is conveniently written in the form

LT -1 ) (10)

Since (10) is symmetric in x and y, it can be easily seen to
apply to the case of a segment terminating on the bottom edge
of the square also, provided that we define n = &Ay/B in this
case, Thus all possible cases are contained in (10). A bound
can be placed on £ by considering n»= and Ax+Ay>1, namely

~
<

=x1/+"2, which agrees with geometrical intuition.

Knowing how to calculate the maximum deviation of the curve
from the straight 1line between endpoints, we use this to estimate
the number of segments needed to approximate the curve to any
desired accuracy. To do this, we consider the case ¢f a circular
arc, Figure 5,

Figure 5. Deviation from a chord
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It is easily shown that d:L2/8r. provided L/r<<1, the important
point being the proportionality d « L2, Since L = 1/N, approximately,
where N is the number of segments needed in that square, we take

N=1H+ /|e|7a

where d equals the allowable deviation., For plotters with a 2.5 mil
increment, d = ,001" is satisfactory. This auto-interpolation
scheme appears to work quite well,
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SINGULARITIES AND SADDLE-POINTS

Evidently something peculiar happens with (10) if n+1<0,
This can be seen to be connected with a singularity in y or x,
equation (3) or (4). The existence of a singularity in y(x)
within the interval 0<x<l is implied by the condition that (D-B)
and « have opposite signs, and the existence of a singularity in
x(y) within the interval O0<y<l is implied by the condition that
y and £ have opposite signs. If both singularities exist, then
the square has an interior saddle point located at the inter-
section, An example is shown in Figure 6. A very convenient
criterion for making connections in a saddle square is that
contours should never cross a singularity. The condition

n+1<0 can be easily shown to imply a wrong connnection in a
saddle square. By far the easiest solution to this problem is
just to check for a wrong connection and to resume scanning
the square if it exists. At most three tries will be necessary
to make the correct connection, and since saddle-points should
be relatively rare, this is a small price to pay for such a
simple procedure that guarantees correct connections.

Xo: - 04/8 = /5
o= - /8=

Figure 6. Contours in a saddle square
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RECTANGULAR MESH

Should it be desired to plot data cells as rectangles
instead of squares, this is easily done by stretching one axis
in the calls to PLOT. Defining r as the ratio of x to y scale
factors, i.e. the rectangle has length r in the x-direction
and 1 in the y-direction, elementary trigcnometry gives for the

modified deviation

2 2 2.2, 2
- 1+r®m Ax“+r-A
€ —— = ¢ -——77——~%—
1+m Ax " +Ay

-15-




EXAMPLES

Two simple examples of plots produced by the routine
are shown in Figures 7 and 8. Figure 7 was produced from real,
deterministic, data, and Figure 8 from random numbers. Data
points are marked by ticks along the borders of the plots. Each
plot is based on only 24 data points, and the large number of
slope discontinuities indicates the need for a more refined
data mesh,

-16-
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APPENDIX
PROGRAM LISTING

Written in FORTRAN-63, a programming language of the

CDC 1604 computer,

Integer words assumed at least 33 bits long.
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