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ABSTRACT

An efficient contour-plotting routine is discussed which

is based on a scanning algorithm of Cottafava and LeMoli and

employs bi-linear interpolation. An auto-interpolation scheme

is developed which automatically adjusts the number of inter-

polations in any data s dre to produce smooth line segments.

A program listing and examples are given.
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INTRODUCTION

There are many approaches to producing contour maps on a

digital computer. Several of these are described by Cottafava

and LeMoli (1969). Ideally, a contour routine should be efficient

on both computer and plotter, but most seem to possess only one

kind of efficiency. For quite a number of reasons, including

plotting efficiency, algorithms of the "line-following" type

are preferable for use with mechanical plotters. Cottafava and

LeMoli present a scanning algorithm of this type which is also

very efficient on the computer.

In their program (Cottafava and LeMoli, private communica-

tion) they assumed a linear variation between points, but did

not do any interpolation in the interior of the data square

(defined by four contiguous data points as vertices). Thus a

plot produced with their routine consists entirely of straight

line segments joined together, the coarseness depending on the

spacing of data points. To remedy this, the author developed an

autointerpolation scheme employing bi-linear interpolation for

use in the interior of the data square. With this scheme,

described in the present paper, the number of interpolations

used in crossing the data square is automatically adjusted to

produce a smooth curve, the number required depending on the

curvature of the line segment. This method requires no additional

storage and is very fast.

While the interpolation does indeed produce smooth line

segments, slope discontinuities sometimes occur on the edges

(of the data squares). Tnis is a limitation of the bi-linear

interpolation law. An easy and economical solution to this

problem is to obtain a finer data mesh by performing a higher-

order interpolation before entering the contour routine. This
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may also be done when the data are not given as a set of
equally-spaced points.
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SCANNING ALGORITHM

The scanning algorithm used is that of Cottafava and

LeMoli, with several modifications by this author. A more

complete discussion than will be given here can be found in

the paper cited. For each contour value, the procedure is to

scan the entire data array to find which line segments are

intersected by the level line and to store the information as

flags within the data words themselves. A horizontal and

vertical segment are associated with each data point as shown

in Figure I (the y-axis is given its normal sense here;

Cottafava and LeMoli reverse it).

Figure 1. Intersection flags

The flags are stored as bits in the upper part of the integer

word, the data being normalized to positive integers by a linear
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transformation. (In deference to readers with machineýs which

cannot perform masks, the use of masks in the programs has

been limited to an inessential role, where they can easily be

replaced by a test and subtract. Where masking statements are

available, the flags can be conveniently stored as the least-

significant bits of the floating-point mantissa of each data

word. This results in a considerable simplification of the

program.)

The contours are traced in a second scanning operation,

each flag being erased as it is found. This procedure makes it

easy to find all the branches of the contour level and is in

large part responsible for the efficiency of the program. Each

line is traced square by square by a local scan which checks

all the edges of the data square in fixed order (counter-

clockwise beginning with the right edge) to find the contin-

uation of the line. This procedure runs into trouble only in

the case of an interior saddle point (square crossed twice by

the same contour), and in this case there is an easy solution

based on the interpolation method.
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INTERPOLATION

in order to define the behavior of the contour line

inside each data square, we must make an assumption about the

behavior of the function inside the square. Lacking any special

information in the general case, we assume bi-linear variation

as the simplest general variation. (Using a higher order inter-

polation here would also cause serious difficulties with the

scanning procedure.) That is, we assume

F(x,y) = A + ax + xy + 6xy (1)

referred to a local coordinate system with origin at A, as

shown in Figure 2.

Y

to,~y 1) C

0I

6 
x

A •

Figure 2. Interpolation conventions

-5-



Equation (1) is the Lagrange 2 x 2 interpolation formula and

is also equivalent to a Taylor's series expansion, with the

assumption of constant first derivatives on each edge. Making

our square of unit dimensions, the derivatives are

J C-A

B-A
(2)

-Y D-C

With these definitions, it is easy to see that (1) reduces to

the correct values at the corners and reduces to ordinary

linear interpolation on each edge. Our contour segment is

therefore the locus F(x,y) = v, the value of the contour.

From (1) we obtain either

y v-A-3x (3)

or

x v-A-c• y (4)

with Ox'l and Oy<l. These expressions are easily computed.

In practice, we choose the number of interpolations, subdivide
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Ax or Ay, and use either (3) or (4), respectively. It is

convenient to use (3) for a line terminating on a vertical

edge, and (4) for a line terminating on a horizontal edge.
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AUTO-INTERPOLATION

We approximate our ideally smooth curve by a series of

chords. If we choose the number of chords in each square so

that the maximum deviation from the ideal curve is on the

order of the basic plotter increment, then we obtain as smooth

a curve as we can with no wasted time. We take as our auto-

interpolation criterion, the maximum perpendicular distance

from the curve to the straight line between the end points.

The perpendicular distance from a point to a line is

(x) = (y - mx-b)/ m7'T+1 (5)

from elementary geometry. We consider the case of a segment

terminating on the left edge of the square, and for this case

there are just two distinct possibilities, as shown in Figures

3 and 4. All other possibilities can be found by reflections

and a rotation.

C 6x 0 C D

'nýx &Y

b loAr 7 AyZxT

A A B

Figure 3. Case I Figure 4. Case II
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For case I the slope is

v-C v-C1l C-A / C-D - - /

For case II,

v-A- _ v-_A (v-A) +
2 = C;+6 C( + )

For both cases the intercept is b = (v-A)/ x. The "brute force"

calculation of the maximum of (5) is messy, but a transformation

simplifies the algebra. Define

H 6v-C)

6,/a (6)

=I -x where Lx =

Ll case 1 !

Then

6(v-A) + v[l + vC
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which leads to the relation

m2 (l+"n2 ) = ml(+n 1 ) (7)

It can also be shown that

y-b I x
l+n 2 x

and

dy = m1 (1+nl)
x - (l+n x) 2

The location of the maximum of (5) is given by the condition

(hats will be used to refer to the maximum), i.e.,

r m 
(8)

(12 2
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Thus

;-b m(l"2x)x

and

+b - b m2 mr 2 2

or

S m 2
V 2 x (9)

where x is found from (8). For case I, m = ml, and

X1  -1ViT+-n 1]

=' 2

For case II, m = mi2 , and using (7) in (8) gives

^ 1 r+ -
n2 =22

which has the same form. Putting these results in (9) gives
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m 1 1---- 112

for both cases. This is conveniently written in the form

( -Axl -- ) } (10)

Since (10) is symmetric in x and y, it can be easily seen to

apply to the case of a segment terminating on the bottom edge

of the square also, provided that we define n - ýAy/l in this

case. Thus all possible cases are contained in (10). A bound

can be placed on c by considering n-- and Ax-Ay-l, namely

iI,-iT, which agrees with geometrical intuition.

Knowing how to calculate the maximum deviation of the curve

from the straight line between endpoints, we use this to estimate

the number of segments needed to approximate the curve to any
desired accuracy. To do this, we consider the case of a circular

arc, Figure 5.

d

Ir

Figure 5. Deviation from a chord
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It is easily shown that dzL 2/8r, provided L/r<<l, the important

point being the proportionality d L2 . Since L a1/N, approximately,

where N is the number of segments needed in that square, we take

N - 1 + /1TT

where d equals the allowable deviation. For plotters with a 2.5 mil

increment, d = .001" is satisfactory. This auto-interpolation

scheme appears to work quite well.
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SINGULARITIES AND SADDLE-POINTS

Evidently something peculiar happens with (10) if n+l<O.

This can be seen to he connected with a singularity in y or x,

equation (3) or (4). The existence of a singularity in y(x)

within the interval O<x<l is implied by the condition that (D-B)

and t have opposite signs, and the existence of a singularity in

x(y) within the interval O.y<l is implied by the condition that

y and 3 have opposite signs. If both singularities exist, then

the square has an interior saddle point located at the inter-

section. An example is shown in Figure 6. A very convenient

criterion for making connections in a saddle square is that

contours sholild never cross a singularity. The condition

7+1<0 can be easily shown to imply a wrong connnection in a

saddle square. By far the easiest solution to this problem is

just to check for a wrong connection and to resume scanning

the square if it exists. At most three tries will be necessary

to make the correct connection, and since saddle-points should

be relatively rare, this is a small price to pay for such a

simple procedure that guarantees correct connections.

Figure 6. Contours in a saddle square
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RECTANGULAR MESH

Should it be desired to plot data cells as rectangles

instead of squares, this is easily done by stretching one axis

in the calls to PLOT. Defining r as the ratio of x to y scale

factors, i.e. the rectangle has length r in the x-direction

and 1 in the y-direction, elementary trigonometry gives for the

modified deviation

S l+r 2 m2 
- x2 +r2 r 2SV

+m 2Lx 21-Ay
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EXAMPLES

Two simple examples of plots produced by the routine

are shown in Figures 7 and 8. Figure 7 was produced from real,

deterministic, data, and Figure 8 from random numbers. Data

points are marked by ticks along the borders of the plots. Each

plot is based on only 24 data points, and the large number of

slope discontinuities indicates the need for a more refined

data mesh.
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APPENDIX

PROGRAM LISTING

Written in FORTRAN-63, a programming lanS'uage of the

CDC 1604 computer. Integer words assumed at least 33 bits long.

l
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