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PREFACE 

Pronect MAC was begun as an interdepartmental ^oratory at the 
Massachusetts Institute of Technology in early 1963.  The initial 
research and development goals were concerned with Multiple- 
Access Computer systems, Machine-Aided Cognition, and, in 
general, the interaction between Men And Computers.  The name 
"MAC" is an acronym for each of these goals. 

In the year ending June, 1971, there were 320 persons associated 
with ^lAC.  They included:  21 faculty members mainly from the 
Departments of Electrical Engineering and Mathematics and from 
the Alfred P. Sloan School of Management; 105 staff members 
(DSR Staff ami Support Staff), 182 students (Undergraduate 
and Graduate) and 12 Guests. 

Early in its history, MAC conducted extensive experimentation 
with and development of the Compatible Time-Sharing System 
(CTSS), an early large-scale, multiple-access computer system 
More recently we have continued our research on the MULTICS 
system, which came into operation 2 years ago.  MULTICS is a 
conceptually advanced multiple-access system that is capable 
of straightforward and smooth expansion into an extremely large 
and capable facility. 

The second of MAC1s original objectives, machine-aided cognition, 
has recently made very significant progress.  We feel that 
recent MAC/AI research represents an enormous conceptual 
advance.  In December, 1970 the Artificial Intelligence group 
became an independent MIT laboratory; Professors Marvin Minsky 
and Seymour Papert are Co-directors.  Important and useful 
collaboration between MAC and the AI Laboratory is continuing. 

In May. 1971, Professor J. C. R. Licklider stepped-down from 
the Directorship of MAC to devote full time to his own research 
specialties - Dynamic Modeling, Computer Graphics, and Computer 
Networks - and Professor Edward Fredkin assumed the Directorship. 
Miss Dorothea Scanlon continued as Administrative Officer, and 
Mr. Gary Walker remained as Business Manager. 

In anticipation of a major research thrust in a new direction, 
MAC has consolidated and strengthened various groups. 
Educational Applications; MacAIMS; Programming Linguistics/ 
Extensible Languages; and Programming Linguistics/ Formal 
Systems have been terminated as separate groups.  A policy of 
more decentralized control by the group leaders has been 
instituted. 

Although the specific goals of MAC for the next few years 
are now the subject of much thought and discussion, an emerging 
consensus seems to be that we are interested in the problems of 
imbedding knowledge in the computer and in enabling that 
knowledgeable system to play a key role in generating programs 
and other forms of solutions to problems.  We feel that, armed 
with knowledge, a systen will be able to better communicate 
with its users.  We give this field the name "Automatic 

xiii 



Programming". 

This progress report outlines the research carried out in the 
year ending June, 1971.  The report is subdivided into 11 
sections corresponding to the research groups in Project MAC. 
The technical reports and memoranda of Project MAC are listed 
in Appendix A, and references to the external publications 
resulting from the research appear in the bibliographies at 
the end of each section. 

During the past year, the core program of Project MAC and the 
Artificial Intelligence Group were supported, as heretofore, by 
the Information Processing Techniques Directorate of the 
Advanced Research Projects Agency (ARPA).  Individual projects 
were funded by several other agencies:  research in extensible 
languages. National Aeronautics and Space Administration- 
interactive problem-solving and decision-making, Office of Naval 
Research; dynamic modeling. Behavioral Sciences Directorate of 
ARPA; programming generality. National Science Foundation. 

Edward Fredkin 

Cambridge, Massachusetts 
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II. AUTOMATA THEORY 

Abstract complexity theory, which has been a central topic of 
research xn the Automata Theory Group in the nas^ h-o K^« 
reasonably developed chapter in the ?heSry Sf^Autabilitr6 a 

^\HCOncribUti0nS fr0m nearly  three d^en authors in the S's 
Jhi.^1 OVlet Union- AS rePorted below, some father work*fi 
toral t^s^rarfstfn0"' dUring thiS laSt year' and two doc- 
ena associated wi?h iL1"!^0^653-• However' the basic phenom- 
S their ti^and^n™ clas?1fnation of computations according 
e+L^T  I ^      ?    space requirements are now rather well under- 
stood, and further refinements in the abstract theory are like!v 

inters0' within^9 ^^  t0 the ^Puter'sciJntLt3" M^or" 
and ItatistJca? Int^l^ ^  now.shifted toward combinatorial 
arisfn^ tn i   f^lyses of a variety of algorithms commonly 
arising in computation.  The goals of work in this are« »Üö%-« 
develop methods for designing^ood algorithms for p^oblems^of0 

on??^??i interest, and to devise techniques for verifying the 
optimality of algorithms.  The work described below on matrix 
multiplioation, polynomial evaluation, and sorting represents 
algori?^"1193 0f thiS "^ Practical approach to^^^tudy^f 

A. Abstract Complexity Theory 

One of the basic theorems about computable functions is that 
for every computable function t, there exists a zero-one valued 
computable function c that takes more than time t to evaluate 
More precisely, an^ program that evaluates c requires at least 
t(x) steps to compute c(x) for all but finitely^any values of 

In °rdef to appreciate the significance of such a theorem one 
about howltl0nal *nf0rinati0n (not Provided by the usuafp^oo?) about how many values of the function c are easy to compute 
It might be the case that the functions that are d?ff?cult from 
the point of view of complexity theory — i e  function« fJf? 

Zty'fTrTlT^ll t0  CCmPUte ^  the -erag":: a^ac^l^ 
?n L:?      mal1 arquments, say all arguments less than 10100 
In fact, any zero-one valued function can be computed rapidlv ' 
for any given finite set of arguments by simply sto?inq?heY 

pertinent values of the function in a table/ A genSnlly com- 
plex function should have the property that any program tha? 
computes it can run rapidly on only as many inputs as can 
be stored in a table whose size equals that of the program. 
Such functions are constructed and studied in a paper by 
Prof. A. Meyer (jointly with E. M. McCreight). 

Properties of program size are considered in several further 
papers written this year.  One of th.j motivations for the study 
of program size has been to provide a quantitative understanding 
of the relative convenience of different programming languages 
by comparing the sizes of the programs needed to implement the 
same computation in different languages. A fairly general 
theorem recently proved by Prof. Meyer shows that a slight in- 
crease in the set of instructions of certain kinds of program- 
ming languages can lead to enormous economies in program size 
A related study of formal grammars bv Meyer (jointly with Prof 
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AUTOMATA THEORY 

M. J. Fischer) derives quantitative bounds on the improvemeni- 
xn sxmpUcity of definition that can be achieved bJTstng Pow- 
erful grammars such as context-sensitive or context-free ar^J 
mars to define simple sets such as regular or even  Untie*stt's 

B. Algorithms on Graphs 

The results on matrix multiplication and transitive closure of 

When coupled with Meyer and Fischer's observation that Sa? 

filftr^ppiv^fBooL^1'^1^^ real -"rlSs^can^e Sdi- 
tra^Si^Ls^^llori^n^ ttSiLtee!Ult ^ the beSt 

multiol^^fo a ?r^h-theoretic approach to Boolean matrix 
?^S J   ?n u1?ht enable us to generalize fast matrix mul- 
tiplication techniques has not yet been fulfilled, but we 
continue to believe that this approach is promising 
c-  Polynomial Evaluation 

The evaluation of rational functions by sequences of alaebr^in 
operations represents one of the few areas^heS techniques 
have been developed for establishing the optimality of aloo- 

Me^er^ndT3! 'paS^^f ^ With ^fTsloll tLSlt, 
♦?ho « K   J'   Paterson' has derived a lower bound of J^T on 
the number of multiplications required to evaluate any äearee 
?his Cr^ W1th. ^tional coefficients, and has shown thlt 
this lower bound is nearly achievable. 

D.  Sorting 

of t;o-TnnuthaLoeen/nrStigating sorting networks  composed ot  two-input,   two-output  comparators.     Since  each  comparator 

s"tinamnfäeVS  * thfee-State  f-ite-state SacSine^Se 
IZlttl nJtwork fs  a whole can also be viewed as  a finite- 
state machine.     When  implemented  in hardware,   such networks 
vSes6 TlLrl ?igh:SPeed sorters  or message^UchJng de-' 
vices.     Alternatively,   a sorting network  can be  realized bv 

ation!      r Pr09ram that iS nat-^y -ited to pSal^f evLu- 

Lad ttiririL^^nirof comparators -™o^tsHif 
f il S(n,i) 

i = 0 

Shf n ^at S^ f?achablf froin ^e starting state, where 
hiV iV St:Lrling number of the second kind.  Furthermore 
nJtworic ^^-^ ^hat n0 tWO distinct reachable states Tn the 
network are equivalent.  These results suggest that a knowledge 
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AUTOMATA THEORY 

of the number of internal network configurations that cannot 
result from any network input may yield bounds on the number 
of states "wasted" in building a network and in this way yield 
bounds on the number of comparators required. 

E.  Papers 

During the year, several members of the group have prepared 
papers for forthcoming meetings and journals. 

For the Twelfth Annual Switching and Automata Theory Symposium 
(October 1971): 

1) Fischer, M. J. and A. R. Meyer, "Boolean Matrix Multi- 
plication and Transitive Closure". 

2) Meyer, A. R. and M. J. Fischer, "Economy of Description 
by Automata, Grammars, and Formal Systems". 

For the International Symposium on the Theory of Machines and 
Computations (August 1971): 

Meyer, A. R. and E. M. McCreight, "Computationally Com- 
plex and Pseudo-Random Zero-One Valued Functions". 

Accepted by the Journal of Symbolic Logic: 

Meyer, A. R. and P. C. Fischer, "Computational Speed-Up 
by Effective Operators". 

Accepted by Zeit, f. Math. Log, und Grund, der Math.; 

Meyer, A. R. and D. M. Ritchie, "A Classification of the 
Recursive Functions". 

Publication 1970-1971 

Ying, C. and A. K. Susskind,*"Building Blocks and Synthesis 
Techniques for the Realization of M-ary Combinational Switch- 
ing Functions", Proceedings of Symposium on Theory and Appli- 
cations of Multiple-Valued Logic Design, State University of 
New York at Buffalo, May 1971. 

* Non-MAC author. 
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III.  CELLULAR AUTOMATA 

A Ph.D. thesis by Roger Banks describes an investigation of a 
class of parallel processing computers called Cellular Automa- 
ta.  A cellular automaton consists of an array of simple, iden- 
tical finite-state machines called cells.  Each cell communica- 
tes with only its immediately surrounding cells. 

The chief results of the thesis include showing that a two- 
dimensional array of two-state cells, each of which communicates 
with its four-edge neighbors, can perform any (computable) com- 
putation, i.e., it can simulate a universal Turing machine. 

A configuration is a specification of the states of all the 
cells in some area of the iterative array.  Another result 
described in the thesis, is the existence of a self-reproducing 
configuration in an array of four-state cells with each cell 
communicating with its four-edge neighbors.  This was a reduc- 
tion of four states from the previously known eight-state case. 

Further work by Banks and more recently by William Mark has 
concerned the development of a programming system for the 
simulation and display of very general cellular automata in 
one, two and three dimensions with various neighborhoods, 
transition rules, numbers of states, etc. 

Publication 1970-1971 

Banks, Edwin R., "Information Processing and Transmission in 
Cellular Automata", Ph.D. Thesis, Dept. of Mechanical Engineer- 
ing, January 1971, also MAC TR-81, AD 717-951. 
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IV.  COMPUTATION STRUCTURES 

A.  Introduction 

The Computation Structures Group is concerned with the studv 
and analyse of fundamental issues arising in the design and 
construction of general-purpose computer systems.  The re- 
search encompasses hardware and software aspects of computer 
systems, and much of the work has contributed toward establish- 
ing a common conceptual basis for both aspects.  The accom- 
plishments of the past year are principally in two areas: 
One is the theoretical study of Petri nets as a model for 
asynchronous systems of interacting parts, and the realization 
of Petri nets in the form of speed-independent modular switch- 
ing systems.  The goal of this work is to build a sound theory 
to serve as the basis of a new methodology for the design of 
asynchronous digital systems.  The second area is the evolu- 
tion of a base program language.  This effort is expected to 
lead to a practical formal definition scheme for source pro- 
gramming languages and will provide a sound basis for the 
functional design of advanced computer systems. 

B.  Petri Nets 

As reported last year, we have found Petri nets to be an ele- 
gant formalism for representation of concurrency in processes 
and for studying asynchronous systems.  Petri nets stand out 

iLrif^VVH?^ schemes because of the preciseness and 
ease with which they can express parallel aciions, resolution 
of conflicts, and interaction among processes.  Moreover, they 
have the simple structure that .ä  essential for analytic 
study.  Simple as they are in their structure, study of the 
general class of Petri nets is difficult because of the var- 
iety of situations they can represent.  A study of subclasses 
of Petri nets which represent simpler situations is a necessary 
step toward understanding the general class of Petri nets, and 
such study has been an important objective of the group in the 
past year.  We have identified several subclasses of interest 
and have found useful results about them.  Before discussing 
these results, we present a brief introduction to Petri nets 
and the subclasses of interest. 

A Petri net [1,2] is a directed graph which can have two types 
of nodes, namely transitions and places, where the directed 
arcs can connect only transitions to places and places to trans- 
itions (Fig. 1.).  In drawing the graph, places are represented 
by circles and the transitions by bars.  The places from which 
arcs are incident on a transition are called input places of 
the transition, terminate are called the output places of the 
transition. Each place can have markers (sometimes called 
tokens) in them.  A transition having markers in all of its 
input places is said to be enabled.  Only enabled transitions 
can fire; in the act of firing, the transition picks one 
marker from each of its input places and puts a marker in each 
of its output places.  The marking distribution in the net 
changes as transitions fire, and each new marking distribution 
makes firing of other transitions possible.  With regard to 
the firing of transitions, an important situation is when 

rmim PAGE BUNK 
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FIG. I.  A PETRI NET. 

wM-J^Ki0118 Share SOme input Places-  When two transitions 
which have a common input place are both enabled but the 
common input place has only one marker, the transitions are 
said to be in conflict because the firing of any one of the 
transitions disables the other.  A net is  said to be safe if 

Tne^is saif to1^ T^ r^! more.than one m^ker aF^time. A net is said to be live if at no time in the operation of the 
?!LWiii T transitl™-be ruled out as a transition tha? may 
in t n~?VimVn tht fUtUre- Conflict, safety, and liveness 
in a net depend on the initial marking distribution.  There 
UlL  ^W!rr' SOme stPctural restrictions which can guarantee 
some of these properties.  By structural restrictions! we mein 
fnf ni   0nS With reHard t0 the ^rangements of transitions 
and places such as the restriction that transitions not have 
input places in common.  The restrictions we use below to 
define subclasses of Petri nets are purely syntactic as thev 
tn^^OCal %nStr^tS  0n the arrangements of trinsKionl7 and places.  The subclasses are: 

1) State Machines (SM) 
2) Marked Graphs (MG) 
3) Free Choice Petri Nets (FC) 
4) Simple Petri Nets (SN) 

The restrictions that define these subclasses are given b^low 
The Petri nets without any restrictions will be referSd to 
as general Petri nets to emphasize this fact.  The following 
text should be read together with Figures 2 and 3.  Fiaure 2 
shows what kind of local configurations of transition and 
places are permitted for each subclass of nets. 

whicH^lL^1"^ ■(SM)v," A State machine is a Petri net in wnich every transition has exactly one input place and exactly 
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LOCAL   CONFIGURATIONS 

STATE   MACHINES 
EVERY TRANSITION  HAS 
EXACTLY ONE INPUT PLACE 
AND  EXACTLY ONE 
OUTPUT  PLACE 

PERMITTED 

O 

MARKED   GRAPHS 
EVERY PLACE HAS 
EXACTLY ONE   INPUT 
PLACE AND EXACTLY ONE 
OUTPUT  PLACE 

FREE CHOICE  NETS 

EVERY ARC FROM A PLACE 
TO A TRANSITION IS EITHER 
THE ONLY OUTPUT OF THE 
PLACE OR THE ONLY INPUT 
TO THE TRANSITION 

SIMPLE    NETS 

EVERY TRANSITION HAS 
AT MOST ONE SHARED 
INPUT PLACE 

PETRI    NETS 

NO  SUCH 
RESTRICTION 

NOT PERMITTED 

< 

-< 

FIG. 2.     THE  SUBCLASSES  OF PETRI   NETS. 
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one output place.  The state machines being discussed here are 
identical to the state machines of automata theory in their 
structure, (Fig. 4). 

2.  Marked Graphs (MG) — A marked graph is a Petri net in 
which every place has exactly one input transition and exactly 
one output transition.  Thus the restriction in this case is 
similar to the one for state machines but it applies to places 
instead of transitions.  State machines have been studied ex- 
tensively but the recognition of marked graphs and the study 
of their properties is recent.  Genrich [3] started the study 
of marked graphs and his ideas led to a detailed study by 
Holt and Commoner [4].  The mathematics relating to marked 
graphs is fairly well understood now through these studies. 
In our previous report we showed a direct relationship between 
the elementary asynchronous modular control structures devel- 
oped by us and the marked graphs.  The study provided a simple 
way for obtaining hardware structures that mimic marked graphs, 
and also a ^thod for determining if a control structure is 
free of any hangups.  This year the study has been carried 
further to include a broader class of nets called free choice 
nets.  The free choice nets and results relating to them are 
described below. 

3.  Free Choice Nets — A Petri net in which every arc from a 
place to a transition is either the only output of the place 
or the only input to the transition is said to be a free choice 
Petri net.  This condition on Petri nets is the same as re- 
quiring that when an input place is shared by some transitions, 
those transitions have no input places other than the one 
which is common to them.  Thus when a marker arrives in the 
shared place, all of the transitions which share that place 
are enabled, and one of them may be freely chosen to fire. 
When the movement of a marker is regarded as flow of control, 
the situation just described represents a free choice with 
regard to where control flows from the shared place — thus 
the name free choice nets.  Free choice nets include both the 
state machines and the marked graphs. 

A free choice Petri net can be used to represent the flow of 
control in a program as shown in Fig. 5.  In this figure, the 
shared place x together with transitions T and F represent a 
decision element — the if statement in the program.  The 
direction in which control flows from place x is not arbitrary 
— it conforms to the outcome of evaluating the predicate 
associated with the if statement.  To the net considered alone 
the decision about the direction of flow is external to it be- 
cause it is based on information outside the net;  the infor- 
mation flows into the net by way of the interpretation which 
associates a certain if statement with the free choice trans- 
itions in the net.  In the study of Petri nets and also in the 
studv of comoutation schemata, it is important to distinguish 
what information is a part of the net and wl at is external to 
it. 

Some important results about free choice nets have been found 
recently by Commoner of Applied Data Research and Hack of the 
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FIG. 3.   THE   INCLUSION   RELATIONSHIP AMONG 
THE SUBCLASSES OF PETRI   NETS. 

STATE   MACHINE AS A 
PETRI  NET 

STATE  MACHINE AS A 
STATE DIAGRAM 

FIG. 4.    STATE   MACHINES, 
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BEGIN 

n*- 0 

m— I 

i — 4 

a: FORK ß 

n -— n + i 

BEGIN 
• 

y.joiN 

i -— i - I 

ß:   m '— mxi 

JOIN   / 

IF   i > j   THEN    GOTO a 

END END 

r 
FIG. 5.     FLOW   OF CONTROL   IN A PROGRAM. 
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Computation Structures Group.  Commoner has found necessary and 
sufficient conditions for liveness and safety of a free choice 
net, and Hack has found conditions for the existence of a live 
and safe marking for a net.  A live net is one in which the 
activity can continue indefinitely without any hangup.  Hangup 
is a condition in which a part of the net enters into a state 
of inactivity from which it cannot recover.  In our common 
experience a hangup for a machine is an unfortunate state in 
which its activity subsides and it fails to respond to stimu- 
lation because of some hopeless jam inside it.  Safety on the 
other hand means that no more than one token will be in any 
place at any time.  This is important where the places repre- 
sent objects that cannot hold more than one of the things 
represented by the tokens.  When places represent registers 
ma digital computer, safety means that a new piece of data 
will not be placed in a register until the previous one has 
been used up.  In that way mixup of data can be avoided.  Hack's 
work thus provides a way to determine if an uninterpreted 
parallel program which can be expressed as a flow diagram has 
a starting condition for which it will continue to operate 
without any hangups or mixups. 

4.  Simple Petri Nets - A Petri net in which no more than one 
input place of any transition is a shared input place is called 
a simple Petri net;  a transition in a simple Petri net may 
have any number of input places but at most one of those places 
may be an input place of some other transition.  The class of 
simple Petri nets properly contains the free choice nets 
There are situations which can be represented by simple Petri 

?f™ SK? £0t ^ ±r?e choice nets- Figure 6 shows such a situa- 
tion which arises in representing flow of control in coordin- 
ating processes.  An important aspect of simple nets is that 
they are able to represent interprocess coordination such as 
implemented by Dijkstra's semaphore primitives.  A study of 
simple Petri nets has led to an understanding of the limita- 
tion and capabilities of the semaphore primitives.  Details 
of this study are presented in the next section. 

5.  General Petri Nets — The class of Petri nets without any 
of the restrictions is called general Petri nets.  There are 
many Petri nets in the class of general Petri nets for which 
there are no equivalent nets in the subclasses defined,  in 
particular, a Petri net which cannot be transformed into a 
simple net arises in the study discussed below. 

Recent work by Patil [5] has shown some interesting facts 
cwout the semaphore primitives of Dijkstra [6] by establish- 
ing a correspondence between the flow of control in inter- 
acting processes and Petri nets.  In Fig. 6, three processes 
coordinate their activities with the help of semaphores. 
The Petri net for each individual process is obtained by 
representing each instruction by-a transition, connecting 
these transitions into a chain by means of places to indicate 
the flow of control in that process, and placing a token 
in the input place of a transition to indicate the present 
site of control.  The Petri net for a collection of inter- 
acting processes is obtained by interconnecting the nets 
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. 

H^) ^ 

PROCESS 

Pl P2 

1         X*-   XH -x           5 u ♦- u * u 

2   p [sy; 6 p[sy] 
3     y«- x 7 y *- u 
4      V [Sy. 8 V [sy." 

GOTC ) 1 GOTO 5 

<s> 

9 

10 
II 

p [Sy] 
z*-   z + y 

V[Sy] 
GOTO   9 

a) 

INITIALLY SEMAPHORE 
Sy=l AND    Sy.sQ 

4 ) 
r: _9 

JO 

\v ̂  

FIG. 6.   FLOW OF CONTROL IN PROCESSES  AND THE 
CORRESPONDING  SIMPLE  PETRI  NET. 
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tion Pfqi   10™,,?^^       transition that represents an ins true- 

the net that  the trlnsitlin ^ Y     '  ™.have  the Phenomenon in 

the  now S control?    Mo™    lZ£V'*t ^P1"«^ «"«ib. 
nets because  the only S^It^s^Lh^L^Lr^^sK^ 

place. transitions has only one shared input 

he represea"ergyC?^ittä^1
1
tJSnstr'lti°?;'  l^ V°M ha- to 

describes  the  flow o?coS?ol?n this case       "" "^ ^^ 

s?aSe0n1s9a?er0Sr^?tI^?Ld°nt^es0?nttfn aEy C0naitiOnal 

ä?ial?LPr0-" -- ^larlw^e^LT-rde0f ' 
thre" output^Les^lSd6; "fZf^iJ'11'*' ™k «reen? and 
erent messages wMoh oaf be'sin? to iheS^V16  three di«- 

can be thought to have three processes in«Id^!        The/ecoder 
message.     Process X waits  for meJsaae% 2nH '   .0ne  f0r eacft 
put wire X-     th^ n+h^r rZ message X and responds on out- 
will  be  coAcernJd with  ?he  abov^ ^ d*fi™*.snarly.     We 
in which signals  are represented thro,^H  ti  itS  80ftwa^  form 
each wire  is  reprJsJntJfbrfsemaShorfanS6^56 0f sen,aPh^es; 
semaphore count by  1  corre^pSnds^tf ^ding iTtlZTfl ^ 
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h 

FIG.7. THE 2-0UT-0F-3 NET. 
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signal is accepted by decrementing the semaphore count by 1. 
The question is:  Can the three processes which decode the 
messages be so coordinated by semaphore primitives that the 
decoder functions correctly?  Since each individual process 
just waits for the associated message to arrive, we insist 
that the processes not use any conditional instructions. 
Therefore, instead of asking the question in the form above, 
we ask:  Is there any finite collection of processes not using 
conditional instructions that can specify the operation of the 
decoder with the help of the semaphore primitives? The answer 
to this question is negative. 

The reason for the negative answer is that the decoder repre- 
sents a net called 2-out-of-3 net, which is not a simple Petri 
net, and it has been possible to show that this net cannot be 
transformed into an equivalent simple Petri net [5].  Thus it 
is clear that the semaphore primitives need the help of condi- 
tional statements to carry out coordination among processes, 
(Fig. 7.).  It should be recalled that the very purpose of 
introducing the semaphore primitives was to obtain a more 
direct means for coordinating processes and to do away with 
sneaky use of conditional statements to perform coordination. 
With the aid of conditional statements one can implement 
coordination of processes by such simple-minded schemes as 
repeated testing of a variable until it becomes,say, 1.  Such 
schemes can implement coordination, but the implementation is 
very wasteful of computer resource because there is no limit 
to the number of times the variable may have to be checked. 
The semaphore primitives rectify this defect, but they are not 
able to implement all coordinations by themselves.  Thus the 
question is, whether together with conditional statements they 
can express all conceivable coordinations without paying the 
price of unbounded computation.  The study has shown that the 
answer to this question is affirmative. 

At the root of the shortcomings of the semaphore primitives is 
the fact that a P[ ] instruction operates on only one semaphore, 
Unfortunately, a generalized instruction such as P[Si,...,Sk], 
which simultaneously operates on semaphores Sj., ..., S^, cannot 
be always expanded into a sequence of instructions PISJJ, ..., 
P[Sjj].  But the generalized instruction can be expanded in 
terms of PlSj, S2] instructions each of which operates on two 
semaphores. Even though PES,, S2] is adequate, one may wish 
to allow more arguments in instructions for the sake of effi- 
ciency. 

C.  Asynchronous Speed-Independent Circuits 

A digital system is often built as two interconnected parts -- 
a data flow structure containing registers, functional opera- 
tors and data paths, and a control structure that generates 
signals that initiate actions by operators in the data flow 
structure. 

In synchronous systems the operators may begin action only at 
certain time instants determined by a central generator of 
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clock signals.  The design of the control structure involves 
choosxng the appropriate number and duration of clSck Intervals 
and realizing a switching circuit that routes the clock sional«' 
to operators as required to implement the system's function? 

In an asynchronous control structure,each operator in the data 
flow structure sends an acknowledge signal to the control 
structure to indicate that action by the operato? has been 

dTSlfin It  caon?OW|edr Si^ls ^ o^rators^e^d 
ai«Jo S I uthe contro1 structure to initiate action by oper- 
ators that become eligible for execution.  In this way  initia- 
tion of an operator is delayed only until completion of those 
actions upon which correct functioning of the operator de- 
pends.  No special generator of timing signals is Ssed the 

If the control structure of an asynchronous system will func- 
ItTir illlTrÜ  re?ardless of ^lays in its components and 
their interconnecting wires, the control structure is called 
a speed-independent circuit. «uccure is called 

zationeofd?r^bKd^y a logic.dia^am for a synchronous reali- 
^^r?" ?f ^v,18 bot5 overspecified and underspecified.  The 
particular choice of clock instants is irrelevant to the func- 
tion performed by the system, but is essential for the diag?L 
InäZl^  raniKg-  Yet understandings between the spec mir 
nnli P  enter abOUt timin5 of actions are necessary for 
unambiguous interpretation of the description.  These under- 
standings are not usually represented in a logic diagram 
or lltellTa  i^T  T^V! oversPecified makes unders^nding 
or altering its function difficult;  that it is underspecified 
ÄnMe?ign verifi?ation impossible in the absence ^over- 
simplifying assumptions.  The description of a system as a 

paJts'of aPso^d fn*™*^t*  n0t SUffer these P-b!ems "TWO SSL? a
f
sPeed-lndependent circuit are interconnected if, 

and only if, some action by one part is dependent on comole- 
tion of some action by the otherf       «penaenr on comple- 

d^f^?aSOning ShOWS that sPeed-independent implementation of 
digital systems is of particular interest when one desires 

Inll^tl  ^  a.Paper deSign Wil1 yield  a  corrSStly  function- ing  system when  translated  into hardware.     Speed-inLn^li? 

s^fhf^ haS been s*udyin(3  schemes for representing systems 

onerous task of debugging the hardware (as opposed to debuuoino 
the system description) would be largely eliminated  ™uWin9 

I 
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'M 

particular the faults that appear in hardware systems because 

avoTded      ndingS abOUt the timing 0f Si*nals  would bS 

hL!5e coJs:Ldering two classes of speed-independent circuits 
based on two assumptions regarding the origin of delays which 
must not affect correctness of system operation.  Both classes 
ot circuits are interconnections of primitive modules which 
may be individual gates or specific circuits realized in turn 
by the interconnection of simpler modules or gates. 

In a type 1 circuit we assume that all interconnectinq wires 

onl  ^TW^11^ delays- Thus a  signal sent lut by one module to two others may reach one module arbitrarily 
m^in* J Ü" ^ other-  In a type 2 circuit we assume that the 
output of a module may be delayed arbitrarily, but when an 
bS *n ^.nm0dile ^ha^es, the change is observed immediately 
by all modules to which the output is connected.  The type 2 
assumption is less restrictive, and is appropriate for cir- 
cuits in which delays on interconnecting leads are negli- 
gible compared to delays within gates.  This is normally the 
case within a semiconductor chip, for example.  The more 
h^f!; «PV *ssuinPtion is appropriate for interconnections 
between standard parts where the designer does not know the 
mechanical arrangement of the parts. 

t^^fJ- 9oal °f °?r work ^ to find a finite set of prac- 
tical modules with which it is possible to implement any 
digital system as a type 1 speed-independent circuit.  In 
last year's report we described a collection of control 
modules adequate to implement any marked graph as a type 1 
circuit.  The complete set of control modules are also ade- 
quate for implementing free choice and simple Petri nets in 
won,-  r^0f ^Y?e 1 sPeed-independent circuits, and are con- 
sjstems    deflning control structures for complex digital 

The C-element of Müller [7] is a very important gate type for 
the construction of control modules.  We have shown that the 
nfeiNnenopCarT;L£e imPlemented as a type 1 interconnection 
of AND, OR and NOT gates.  In fact, there is very little 
that can be done by a type 1 speed-independent circuit usina 
only AND, OR and NOT gates.  These results are included in I 
paper by Dennis and Patil [8].  Since several basic control 
modules have type 1 realizations using NOT gates and C-elements 
these results emphasize the importancl of the C-element aH' 
fundamental gate type for speed-independent circuits. More 
recently,Fred Furtek has defined a complete set of basic 
modules for the realization of general Petri nets as type 1 
speed-independent circuits. 

Our success in applying speed-independent design to control 
structures for digital systems has led us to investigate ?he 
applicability of the concept to complete Jigital sys?ems  As 
an experiment, Dennis and Plummer developed a design for ; fast 
counter that could be sampled repeatedly without interfering 
with continuation of counting.  The design is a type 1 
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interconnection of as many identical stages as desired, each 
stage being a type 2 circuit using OR-gates, NOT-gates and C- 
elements.  Commands to 'count' or to 'sample' flow through the 
stages of the counter from the least significant end changing 
or reading the bit held by each stage.  In this way the speed 
of the counter is independent of the number of stages.  The 
details of the design have been reported [8].  Bill Plummer de- 
signed and constructed an arbiter module to resolve conflicts 
between 'count' and 'sample' commands, and has prepared a 
paper on his work [9]. 

D.  Base Language 

The Group is working toward the definition of a common base 
language that could serve as a target representation for pro- 
cedures translated from a variety of practical source languages, 
for example, FORTRAN, ALGOL and LISP.  By specifying a formal 
interpreter for the base language and giving a precise des- 
cription of the translation of source programs into base lan- 
guage programs , we would have a complete scheme for the formal 
definition of the semantics of programming languages in terms 
of a common set of semantic notions (those of the base lan- 
guage) . 

The motivation for this work is the design of computer systems 
in which the creation of correct programs is as convenient and 
easy as possible.  A major factor in the convenient synthesis 
of programs is the ability to build large programs by combin- 
ing simpler procedures or program modules, written independent- 
ly, and perhaps by different individuals using different source 
languages.  This ability of a computer system to support 
modular programming is called programming generality [10,11]. 
Programming generality requires the communication of data among 
independently specified procedures,and thus that the semantics 
of the languages in which these procedures are expressed must 
be defined in terms of a common collection of data types and a 
common concept of data structure. 

We have observed that the achievement of programming generality 
is very difficult in conventional computer systems, primarily 
because of the variety of data reference and access methods 
that must be used for the implementation of large programs 
with acceptable efficiency.  For example, data structures that 
vary in size and form during a computation are given different 
representations from those that are static;  data that reside 
in different storage media are accessed by different means of 
reference;  clashes of identifiers appearing in different 
blocks or procedures are prevented by design in some source 
languages, but similar consideration has not been given to the 
naming and referencing of cataloged files and procedures in the 
operating environment of programs.  These limitations, on the 
degree of generality possible in computer systems of convention- 
al architecture have led us to study new concepts of computer 
system organization through which these limitations on pro- 
gramming generality might be overcome. 

In this effort, we are working at the same time on developing 
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computer languages and systems. 

Our thoughts on the definition of programming languages in 
terms of a base language are closely related to the formal 
methods developed ac the IBM Vienna Laboratory [13] and which 
derive from the ideas of McCarthy [14] and Landin [15]. 

For the formal semantics of programming languages, a general 
model is required for the data on which programs act.  We re- 
gard data as consisting of elementary objects, and compound 
objects formed by combining elementary objects into data 
structures. Elementary objects are data items whose structure 
in terms of simpler objects is not relevant to the description 
of algorithms.  For the purposes of this discussion, the class 
E of elementary objects is 

E » Z U R U W 

where 

Z = the class of integers 
R = a set of representations for real numbers 
W = the set of all strings on some alphabet 

Data structures are often represented by directed graphs in 
which elementary objects are associated with nodes, and each 
arc is labelled by a member of a set S of selectors.  We will 
use integers and strings as selectors: 

S = Z U W 

In the class of objects used by the Vienna group, the graphs 
are restricted to be trees, and elementary objects are asso- 
ciated only with leaf nodes.  We have used a less restricted 
class so an object may have distinct component objects that 
share some third object as a common component. 

Let E be a class of elementary objects, and let S be 
a class of selectors.  An object is a directed acyclic 
graph having a single root node from which all other 
nodes may be reached over directed paths.  Each arc is 
labelled with one selector in S, and an elementary 
object in E may be associated with each leaf node. 

An example of an object is shown in Fig. 8.  Leaf nodes having 
associated elementary objects are represented by circles with 
the element of E written inside:  Integers are represented by 
numerals, strings are enclosed in single quotes, and reals 
have decimal points.  Other nodes are represented by solid 
dots, with a horizontal bar if there is more than one emanating 
arc. 

The node of an object reached by traversing an arc emanating 
from its root node is itself the root node of an object called 
a component of the original object.  The component object con- 
sists of all nodes and arcs that can be reached by directed 
paths from its root node. 
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Some of us prefer to generalize this class of objects in two 
ways : 

1)  by permitting data values to be associated with any 
node of the graph of a structure 

and 

2)  by permitting the graph to contain directed cycles 

Whether to permit cycles in the structured data objects of the 
base language is an important unresolved issue.  Some consider- 
ations bearing on this matter are discussed in a later para- 
graph of this report. 

Figure 9 shows how source languages would be defined in terms 
of a common base language.  Concrete programs in source languages 
(Ll and L2 in the Figure) are defined by translators into 
abstract programs of the base language.  For this to be 
effectively possible, the structure of abstract programs can- 
not reflect the peculiarities of any particular source lan- 
guage, but must provide a set of fundamental linguistic con- 
structs in terms of which the features of these source lan- 
guages may be realized.  The translators themselves should be 
specified in terms of the base language, probably by means of 
a specialized source language.  Formally, abstract programs in 
the base language, and states of interpreter are elements of 
the class of objects defined above. 

The structure of states of the interpreter for the base lan- 
guage is shown in Fig. 10.  Since we regard the interpreter for 
the base language as a complete specification for the func- 
tional operation of a computer system, a state of the interpre- 
ter represents the totality of programs, data, and control 
information present in the computer system.  The universe is 
an object that represents all information present in the com- 
puter system when the system is idle, that is, when no compu- 
tation is in progress.  The universe has data structures and 
procedure structures as constituent objects.  Any object is a 
legitimate data structure; for example, a data structure may 
have components that are procedure structures.  A procedure 
structure is an object that represents a procedure expressed 
in the base language.  It has components which are instructions 
of the base language, data structures, or other procedure struc- 
tures.  So that multiple activations of procedures may be ac- 
commodated, a procedure structure remains unaltered during its 
interpretation. 

The local structure of an interpreter state contains a local 
structure for each current activation of each base language 
procedure.  Each local structure has as components, the local 
structures of all procedure activations initiated within it. 
Thus the hierarchy of local structures represents the dynamic 
relationship of procedure activations. 

The control component of an interpreter state is an unordered 
set of sites of activity.  A typical site of activity is 
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represented in the figure by an asterisk at an instruction of 
procedure P and an arrow to the local structure L for som" 
activation of P  since several activations of a proceS mav 
exist concurrently, there may be two or more site! of activiJv 

ing0dlf?lren? loTJT'T'011  0f SOme P—dure^but Ses^aL 
o? * iSf?        structures.  Also, within one activation 
of a procedure, several instructions may be active concurrentlv■ 
thus asterisks on different instructions of a procedure mav 
have arrows to the same local structure.     Procedure may 

Tiln  ?ort^^anSitiSn 0f the interpreter executes one instruc- 
tion for some procedure activation, at a site of activii-v 
selected arbitrarily from the control of Se current staL 
^ulh
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aStiv!tv l«erfn?Ultin? fr0ra a tra^ition, the chosen siC of' 
accordiL to ^   d by Zer0 0r more new sites of activity according to the sequencing rules of the base language. 

dure^tructu^e ^and^n^^ involves two objects, the proce- aure structure P and an argument structure A.  The arcmment 

contain^ H  I?™**  ^ ^  Calling Pro^dure act^aMoHnd 
rem^^KaS.u0mp0nent ob^cts, all information (other than P) 
required by the activation of P.  m particular th* «^«»1 

L^thL'^Lro^6 Pr0rdUre -^vatLr^rcoSonents^^A 
nLfnifi   * 0f Procedure execution, no meaning is given to 
?hus no sidfef?^^0^11^1115/1^1" a P^eduL st?ucture? rnus no side effects of procedure executions are possible Un- 
less procedure P modifies part of its own procedure structure 
it defines an algebraic operation on the class of all objects.' 

A subject of major importance to us is the reoresenf«i-ion „f 

tl^lTcyVAltl'tl ä the baSe ^^uSe/^JSeJa^Sn^f 
h????^ fS ^ hrinVs  ln the issue of nondeterminacy — the possi- 
^a with whlTKted reSUltS Wil1 depend 0n the relatlvJ tiS- 
The abil^v nf e con^urren+- activities are carried forward. 
The ability of a computer user to direct the system to carrv 
oortan^ fT8 With a 9uarantee of  determinacy fs verjim- 
portant.  Most programs are intended to implement a functional 

^e^erilfca^on^o^h1^8' and ^terSinism'is3 iTslntt™1 
to cne verification of their correctness. 

Srusirof^ "aZLf  prOVidin9 a guarantee of determinacy to 
ir£ ^\  L     computer system.  They are distinguished accord- 
ing to whether or not the class of base language proarams is 
constrained through design of the interpreter ?o descrlhe only 
determinate computations.  If this is the case, thin any    Y 

in execution9^? r^ulting fr0m  ^P^ation will be deterministic in execution  Furthermore, if the compiler is itself a deter- 
minate procedure, then each translatable source program rtvtl- 
a?Sn8J deterininate Procedure.  On the other hand  if the de^ 
l^r-Jn*     *  lnterPr^ter does not guarantee determinacy ol 
abstract programs, determinacy of source programs, when de- 
sired, must be ensured by the translator. 
E-  Program Graphs 

We are considering two approaches to represent the relationships 
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among instructions of a procedure structure: 

1. A conventional form in which the instructions of each 
procedure structure are selected by successive integers, 
and instructions are executed sequentially except when a 
conditional transfer of control directs execution to a 
new instruction sequence. 

In this form,concurrency is represented by fork instructions 
where activity splits into two concurrent streams and join 
instructions where two streams of activity merge into one. 

2. A data flow form in which execution of an instruction 
is controlled by the availability of the data values re- 
quired for its execution.  For example, execution of an 
add instruction would be enabled as soon as the values of 
both operands have been computed. 

Concurrency is inherent in a data flow representation since 
the creation of a computed value may enable several instruc- 
tions.  The data flow representations we are investigating are 
variations and extensions of the program graphs introduced by 
Rodriguez [16].  We shall illustrate our present thoughts re- 
garding data flow representations by presenting program graphs 
for several programs.  Consider the program 

begin 

v:=t-x;w:=x-u 
if v > w then y := w - 2 else y := v + 3 
if y > 0 then z := y + 2 else z := 0 

end 

A conventional machine level representation would be: 

begin 

fork 9,1 

t - x -* v 

goto 12 

Als  x - u -»• w 

£2:  join 

it v > w goto £3   £6:   end 

v + 3 -> y 

goto 114 

13:       w - 2 -»■ y 

A4:   if y > 0 goto 15 

0 •*  z 

goto £6 

15:       y f 2 -* z 

A program graph for this program is shown in Fig. 11.  The 
nodes of the program graph include functional operators 
drawn as circles, predicate operators drawn as diamonds and 
two special node types, gate and merge, that perform control 
functions.  The links may be thought of as conveying tokens 
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between nodes of the diagram as in a Petri net.  Here the 
tokens have information associated with them.  Tokens arriving 
at or leaving functional operators, and those arriving at pre- 
dicate operators convey values (numbers for example); these 
links are drawn with small solid arrows.  Tokens leaving a pre- 
dicate operator convey decisions (true or false) to gate nodes 
of the diagram; these links are drawn with open arrowheais. 
We assume the net operates in a safe manner, that is, tokens 
do not overtake one another, nor do they accumulate at nodes. 
This may be ensured by acknowledge signals transmitted in the 
reverse direction over each link.  Thus a value link may be 
represented in a Petri net by a pair of places:  a place (drawn 
as a square box) through which tokens with attached values 
move from source node to destination, and an ordinary place 
through which "empty" tokens are returned to the source node. 
Decision links may be conveniently represented by three places 
through which ordinary tokens (not bearing values) move.  A 
token arriving at the place labeled t signals a true decision; 
a token arriving at the place labeled f signals a false deci- 
sion. 

When a link goes to two or more destinations, tokens are re- 
plicated at each branch point so that tokens with identical 
information are sent to each node.  The branch points act like 
wye modules, and await acknowledgment signals from each des- 
tination before returning an empty token to the source node. 

The gate and merge control nodes are needed so that decisions 
made by predicate operators may affect the pattern of data 
flow through functional operators of the program graph.  A 
T-gate node permits a value-bearing token to pass through for 
each true decision received on the decision link.  Whenever a 
false decision arrives the value-bearing token is not forwarded. 
In either case the gate node acknowledges both tokens received, 
and when a gate forwards a token, it waits for acknowledgment 
before forwarding another value-bearing token.  The behavior 
of a gate node is described in Fig. 12.  The arrival of a true 
decision leads to forwarding of a value token from link 1 to 
link 2.  Arrival of a false decision causes a value arriving 
on link 1 to be acknowledged and discarded.  An F-gate node 
is identical to the T-gate except that the sense of the de- 
cision is reversed. 

A merge node permits values sent over its output link to 
originate from different sources according to decisions made 
during computation.  The value sent over the output link is 
forwarded from the T- or F-labeled input value link according 
as the decision received is true or false.  A Petri net for 
the switch node is shown in Fig. 13. 

Next we give an example showing how iterative programs can 
be represented as program graphs: 
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begin 

y := x 

V := 0 

while p(w/v) do 

begin 

v := f(v) ; y 

end 

z := y 

g{y) 

end 

Noting that the two statements of the body of the iteration 
may be performed concurrently, a conventional representation 
would be similar to this: 

A data flow version of the program is provided in Fig. 14. 
Two of the merge nodes serve as the junctions through which 
initial values and intermediate values flow to the functional 
operators of the body of the while loop.  The predicate opera- 
tor requires one copy of the value of variable w for each 
test of the predicate p.  These copies are generated by the 
center merge node, and the associated gate node.  Initiation 
of operation of the program graph requires arrival of a false 
decision at the decision input link of each of the three   
merge nodes .  This is provided by the F-buff node which is a 
buffer for decisions that sends a false decision as its initial 
output, (Fig. 15.). 

An important result of Suhas Patil [17] concerning interconnec- 
tions of determinate systems can be applied to program graphs 
formed from the node types used in these two examples.  We 
conclude that any such program graph is a determinate repre- 
sentation of a program.  This class of program graphs is a 
revision of the class studied earlier by Rodriguez, and is 
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simpler as a result of our improved understanding of concurrent 
activities.  We expect that future developments in the theo- 
retical study of Petri nets will contribute significantly to 
the building of a satisfactory theory of program graphs. 

Jack Dennis has formulated a class 
for representing certain computati 
These program graphs were limited 
made for conditional execution of 
computation. We expect to combine 
this class with those of Rodriguez 
of program graphs encompassing,say 
final example illustrates the form 
graphs may take. 

of program graphs suitable 
ons on structured data [10]. 
in that no provisions were 
subgraphs or for iterative 
the concepts developed in 
to obtain a general class 
,all ALGOL 60 programs.  Our 
this class of program 

procedure (a,b,n) 

begin 

y :^ 0 

for i := 1 step 1 through n do 

y := y + a[i] x h[i] 

return y 
end 

The input data for this procedure will be represented by the 
argument structure shown in Fig. 16, having components for the 
three formal parameters of the procedure.  In the program 
graph shown in Fig. 18, a third kind of link is used and is 
drawn as a heavy line with a solid arrowhead.  Tokens passing 
on these links convey access to objects.  Execution is initiated 
by arrival of a token at the root node P of the program graph. 
This token carries access to an argument structure of the form 
shown.  Four new node types are used, (Fig. 17).  The select 
x node converts access to an object into access to the~x^  
component of the object.  These nodes are used to obtain 
access to the components of the argument structure.  The 
second form of select node uses the integer received on link 
3   to select the component object.  The value node converts 
access to an elementary object into the~^ÜIe of the object. 
Finally, the assign node receives a data value on link 2 and 
transforms the object conveyed on link 1 into an elementary 
object having that value. y 

The repeat nodes in this program graph generate multiple copies 
of tokens conveying access to the same object, in this case the 
actual parameters of the scalar product procedure.  One token 
is sent over the output link for each true decision received 
on the decision link.  Acknowledgment TFlTot given on the in- 
put data link until a false decision is received, whereupon 
the node resets and waits for the arrival of new data. 

This program graph is determinate, yet we cannot guarantee the 
determmacy of any program graph constructed from all node 
types introduced here.  We would like to find a set of program 
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graph node types and a condition on their interconnection, such 
that the program graphs satisfying the condition are deter- 
minate and include representations for a wide variety of pro- 
grams . r 

Certain computations are more naturally expressed in data flow 
terms than in conventional form.  A typical example is a situa- 
tion m which several independent activities generate and con- 
sume units of data exchanged among themselves.  Suppose a com- 
putation is performed by two interconnected modules, (Fig  19 ) 
Module 1 takes an initial value x from data cell a and gener-' 
ates a sequence of values y0, yj,... yn that are forwarded to 
module 2 through data cell b.  Module 2 processes these values 
as they become available, and, when all values have been pro- 
cessed, puts a cumulative result z in cell c.  Let the compu- 
tations performed by modules 1 and 2 be described by the 
following relations where f and g denote unspecified functions 

y0 = f(x) 

y1 = f(y0) 

w0 = 0 

w 1 =  ^yo'V 

yk = ^w wk= ^k-l'w 
z  = g(yk' V 

A program graph for this computation is shown in Fig. 20. 
The predicate p is applied to each value Yi  by both modules to 
determine when the last value of a sequence has been processed: 

p(yi) = true, i * 1, .,., k - 1 

P(yk) = false 

Note that this program graph allows the two modules to act 
concurrently and is formed simply by connecting together pro- 
gram graphs that represent the two modules.  Furthermore, the 
incorporation of a first in-first out queue in the connecting 
link would permit module 1 to continue generating values 
even when module 2 has not had enough time to use up the pre- 
vious values.  The addition of queues does not require any 
change in the representations of the modules.  These properties 
are not shared by other representations such as co-routines or 
processes inter-communicating by means of semaphores.  Further 
discussion of these points appears in a recent oaper by Jack 
Dennis [18]. 

Program graphs are an attractive representation for procedures 
expressed in the base language because the possibilities for 
concurrent execution of instructions are exhibited in a natural 
way.  Program graphs represent many procedures in their maxi- 
mum parallel form.  Also, it is easy to impose constraints on 
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program graphs such that determinate execution is assured with- 
out restricting the class of determinate procedures that can 
be expressed.  Finally, we have found that considering program 
graphs as a machine level representation leads to interesting 
concepts for the structure of highly parallel computers [10]. 

F. Translation of Block-structured Languages 

Many important programming languages for practical computation 
are block structured; the texts of blocks and procedures are 
nested, and identifiers appearing in one text may refer to vari- 
ables declared in other texts.  We do not plan to include in 
the base language provision for directly representing reference 
by a procedure to external objects.  Therefore, we must show how 
the execution of block-structured programs may be effected 
through translation into the base language and execution by the 
base language interpreter.  The following discussion outlines 
one way in which this may be accomplished — a way that seems 
attractive in view of the concepts of computer organization 
we are investigating. 

Consider the program shown in Fig. 21. This program has the 
block structure shown; the main block P encloses a procedure 
declaration P and a block Q. Upper case letters are used to 
identify the texts of blocks or procedures. 

If T is a text (block or procedure declaration) of a program, 
let B(T) be the set of identifiers occurring in T that are 
locally declared.  Let X(T) be the set of identifiers occurring 
in T, or any text nested within T, that refer to variables de- 
clared outside T.  For the above program we have 

B(P) = {y, z, f} B(F) = {x}  B(Q) = {y} 

X(P) = 0       X(F) = {y}  X(Q) = {f} 

Since non-local references are excluded in the base language, 
we need a scheme for making variables accessed by non-local 
reference in the block-structured program accessible through 
the argument structure in the base language representation. 
We will discuss one method of doing this, details of which are 
given in a recent paper by Jack Dennis [19].  To illustrate 
this scheme consider the computation of apply p (4).  As objects, 
the procedure structure P and the local structure L(P) at the 
beginning of the computation will be as shown in Fig. 22. 
Texts F and Q are represented as components of the object rep- 
resenting text P.  The local structure for the activation of 
P has one component for each identifier in the set B(F)UX(F). 

The first step is execution of the declaration of text F.  This 
gives the procedure identifier f a value called a closure of 
the text F  (Fig. 23 ).  The C'T-component of the closure is 
the text of procedure F and is shared with the procedure struc- 
ture P.  The C'E-component of the closure links identifiers in 
X(F) to the value these identifiers have in the current proced- 
ure activation.  Thus the identifier y shares the value 4 with 
y in L(P) . 
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Entering block Q may be treal-prl SQ ^V,™,^ ■: 4. 
without parameters/ fner^cfl structure L(0)rf.%PrOCJdUr! 
made inferior to L(P,, (Pig. tt^TTsn^locll stlutturT 
^!nf ^0mP0rnt f0r eaCh identifier in B(Q)Ux°Q) = {f v} 
f !f MPK ' 1S externa1' so ^ is given tke sani  meinin^as 

After y in L(Q) is assigned the value 1, the closure nf P i« 
appl.ed to an argument structure having'a ^component of ! and 

The meanings of identifiers x and y in text F are established 
as in the case of Text Q.  since y is in X(P) it is linked to 
the E.y - component of the argument structure.  Since x identi- 
fies the first formal parameter of text F, it is linked Jo ?he 
1-component of the argument structure.  In this way? execStion 
of the assignment in text F correctly updates the value of v in 
the local structure L(P), (Fig. 26.)! paates zne value  of *  in 

G-  Cycles in Structures 

cycled SccS^l^thf gf^ 1^^°^ n0t permit dire<*ed 
of this restriction on thfclafs of ^f^    ?* desi^ility 
ject of considerable study and discussion      ^ been the Sub- 
permitting cycles include these? Arguments against 

1.     Cyclic  structures  do not  seem essern-i^i   ^  4-v,^ 
sentation of the  struetur^ HaÜrV i       to the  rePre- 
source language!. data typeS of cu^ent important 

u;uanrbeCyconesSide?eUd pL^Sfln11^.StrUCtUreS'   th^ C™ 

lo e^r^—^- j? p^s-f^-,- ---- 
The principal  arguments  in  favor of permitting cycles are: 

restri«edUty ^ ^  """«"  should not be  arbitrarily 

lainTinät of^Ita"!" are important for "Presenting cer- 

^re^^f^se^'g^? ^SliSSty""9 ^ St— 
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p  : = PROCEDURE(u) 

BEGIN 

'"f := PROCEDURgU) ;   INTEGER x 

BEGIN 

IF  x = 0 THEN   RETURN   I 

x  := g (x) 

z   := APPLY f (x) 

RETURNz 

END 

APPLY   f (u) 
END 

FIG. 27. 
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One study [19] concerns how cycles can arise during execution 
of block-structured programs according to the scheme outlined 
earlier.  Consider the program shown in Fig. 27. 

This program consists of a procedure declaration F which con- 
tains an application of itself.  Interpretation of the declara- 
tion as described above assigns identifier f a value which is 

enc^'This .^ f^ ^ WhtCh.f appearS SS an external refer- ence.  This creates a cycle in the local structure L(P), (Fig. 

We have found that many block-structured programs can be re- 
out tS SO ^  ac^mPlish the original cLputation bSt ^th- 
sures to ^nf f0n 0f CyCleS.-     The PrinciPle is to convey clo- sures to and from a procedure activation by passing them a" 

examo^'^h0" reSUltS "^ than b^ eternal refeLnces. For example, the program given above becomes-. 

P := PROCEDURE(u) 

BEGIN 

P- 

F- 

END 

f   : =PMCEDyRE(h,x)PROCED.h, INTEGER x 

BEGIN 

IF x = 0 THEN   RETURN   I 

x : = g (x) 

z := APPLY h(h , x) 

RETURN   z 

END 

APPLY f (f,u) 

FIG. 29. 

This raises .ome interesting questions.  In particular, we 
would like to develop a general method for rewritina lock- 
ecution   Pro9rams so that cycles will not arise "^ringex- 

The second study by Ian Campbell-Grant [20] investiqated an 
execution model for multiprocess computations t't^perfte on 
ar^ ^ fu6 rePrfsented **  ^ arbitrary directed graph.  The 
f^fL  the.gfaPh represent structural relations among data 
items associated with the nodes.  In this model each process 
Sh nif several pointers by which it may access the data base 

on^orSe6^! ^^^  ^^  ^^  ^^  ^ing 
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R read access 
WD write data access 
WS write structure access 

If a pointer carries R-access to a node, the process may apply 
the pointer to read (but not alter) the data associated with 
the node.  The process may also obtain a pointer with R-access 
to any node that can be reached over a directed path in the 
data base from a node for which it holds R-access.  A pointer 
carrying WD-access to a node permits the process to alter the 
data associated with the node, and to obtain a pointer with 
WD-access to any node accessible from the given node.  A 
pointer carrying WS-access to a node permits a process to 
modify the graph of the data base by adding or deleting arcs 
within the subgraph formed by all arcs that can be traversed 
via directed paths starting from the given node.  The three 
kinds of access are cumulative, that is, WD-access includes 
the privileges of R-access, and WS-access includes the priv- 
ileges of R-access and WD-access. 

The objective of this study was to show how constraints can 
be implemented in an execution model so that any computation 
carried on by a set of interacting processes would be deter- 
minate.  For this purpose, a computation is regarded as deter- 
minate if it can never happen that two processes apply pointers 
to the same data base node concurrently, unless both processes 
possess only R-access. 

The scheme used to ensure determinism involves a set of con- 
straints. Each constraint is an ordered pair (A, B) where A 
and B are pointers held by distinct processes 1 and 2. The 
constraint (A, B) signifies that application of pointer B by 
process 2 must wait until process 1 reduces its access priv- 
ilege for pointer A. 

By executing certain instructions defined for the model, a 
process may:  access nodes by following directed paths in the 
data base; create and terminate subsidiary processes; and 
apply pointers to read and write the data associated with 
accessible nodes of the data base.  The execution rules for 
each instruction type includes specification of how the con- 
straint set must be modified.  Campbell-Grant has shown that 
the relation graph defined by the set of constraints will 
always be acyclic throughout any multiprocess computation by 
his model.  In consequence, the following condition will 
always be satisfied, where the predicate struct (X,Y) is true, 
if and only if, there is a node in the data base reachabli 
over directed paths from the nodes designated by pointers X 
and Y: 

I_f pointers A and B are held by distinct processes and 
struct (A,B) = true then access (Aj = R and access (B) = 
R or one of (A, B) or (B, A) is in the constraint set. 

This is sufficient to guarantee determinate computation. 
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H*  Computers and People 

When computers are used in anv far**-  ne ^ 
ety, the specific technical cL.5^!  . he 0Peration of soci- 
of the computer system em?lo?edcnn^1StlCS and caP^ilities 
influence the behavior S t£« 1^2  ain and si^^^^tlY 
ware, software and pJoP?f  We hf^^ SySte!? co^^^  hard- 
hardware should be desWd ^,have1 

learned by now that computer 
the software that provides the i n^^^^ ^  the context Of 
must now learn how^o deILn and ^«f^ With the USers-  We 

th^conte.t of the co^uni^ orpe^e-^r^fL^S^ ^ 

Jer^t^ b^Jn cha^ct^^t^f^f^0-  ^ ™ns the 
the individual and coUec^ive ]boW<° C°mP"ter systems and 
by their use.  The other conSerSsth2r/f-the peoPle effected 
possessing whatever characteristics Lf^f!" 0f COinPuter systems 
modes of operation that are at tS III  nfcessary to implement 
able from a human standpoint.        ry leaSt' not °bjection- 

thr^^ea^/a'^ouTa^: \lTli*rf**l ^^  the ^ 
papers by Prof. Robert M.Fano and L^ inte"sity-  A few 
listed below,  m addition! ™o?Pan0

S?«e 0f his students are 
monograph based on the CentenrH*! rl?t P5eParing a short 
Spring, l97o, at the Ste^n^st^^Tol^^n^?^

1^ the 

"r^^^L^gr^L^rie^e-^d^ 0f d0Ct0ral —ch 
tion structures and access-control ^V m0del 0f the Protec- 
computer system capable of o^venM neChaniSinS 0f a ^Iti-access 
of information.  The model incTn^ g iJnauthorized releases 
structed out of abiluJes to r^fj ^^  of Protection Con- 
ments.  Processes can mJke S.nf  ^ Pro^ams and data seg- 
sphere through inte?-sp?ere uJks " Tt6?^^ SPhere to 
appropriate conditions, calling ^ho      be shown that' under 
callees, nor the callus on tS!^P^ffS Cannot S^  on their 
also facilities for kjjping records if^^.-^f moCel   ^^es 
system programmers, forPinstance[ Ld fo^^^1 aCtions (by 
bxlity for whateve^ a process doLc^K flocating responsi- 
tial to implement and eJ?o?cl ^aw^ean^'faClliiies are esse"- 
agreements existing in the SLr ^ 9 !tl0nS and contractual 
some of this work is present^ •^UnitY-  A brief summary of 
below ("Surveillance MechlniSL ?nTc0f the Papers listed wecnamsms in a Secure Computer Utility"). 
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V.  COMPUTER SYSTEMS RESEARCH 

A.  Introduction 

The Computer Systems Research Group concentrates upon discover- 
ing ways to make engineering of complex information systems more 
methodical.  Its approach is to use the Multics system as a 
laboratory.  Thus, the work of the group must be classed as 
experimental, in contrast to the more theoretical attack fol- 
lowed by the Computation Structures Group.  Use of an operating 
computer utility as a laboratory has both advantages and diffi- 
culties.  The chief advantage is contact with reality and test- 
ing of new engineering ideas in a real operational environment, 
a test which is essential to achieve credibility for the ideas. 
The chief drawback lies in the unwillingness of live users to 
submit to arbitrary changes to their operating environment as 
a research group tries out ideas, not all of which are neces- 
sarily good ones. 

Taken in proper balance, these two considerations can lead to 
use of a live system as a laboratory, in which a substantial 
number of good research problems can be adequately attacked, 
by careful planning.  It is in such a laboratory that the 
group operates. 

In the last twelve months, research progress has been made in 
several areas: 

Dynamic Reconfiguration 
I/O Programming Language 
Automatically Managed Multilevel Memory 
Protection of Programs and Data 
System Programming Language 
Message Handling 

Each of these areas will be discussed in turn. 

B.  Dynamic Reconfiguration 

If the "computer utility" is ever to become as much of a 
reality as the electric power utility or the telephone com- 
munication service, its continued operation must not be de- 
pendent upon any single physical component, since individual 
components will eventually fail.  This observation leads an 
electric power utility to provide procedures whereby an idle 
generator may be dynamically added to the utility's generating 
capacity while another is removed for maintenance, all without 
any disruption of service to customers.  A similar scenario has 
long been proposed for multiprocessor, multimemory computer 
systems, in which one would dynamically switch processors and 
memory boxes in and out of the operating configuration as need- 
ed.  Unfortunately, though there have been demonstrated a few 
"special purpose" designs, it has not been apparent how to 
provide for such operations in a general purpose system.  In 
a doctoral thesis done in the CSR Group, Roger R. Schell pro- 
posed a general model for the dynamic binding and unbinding of 
computation and memory structures to and from ongoing computa- 

PRECEDING mi BLANK 
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tions.  Using this model as a basis, he also proposed a specific 
implementation of his model for a typical multiprocessor, mult;.- 
memory computing system.  One of the results of this work was 
the addition to the operating Multics system of the capability 
of dynamically adding and removing central processors and mem- 
ory boxes.  The usefulness of the idea may be gauged by observ- 
ing that five to ten such reconfigurations are now performed in 
a typical 24-hour operating day. 

The full impact of this piece of research should be felt far 
beyond the Multics system, since the thesis provides a general 
model for such operations, and it can provide the designer of a 
new system with the insight needed to allow him to include dyna- 
mic reconfiguration in his engineering plans. 

C.  I/O Programming Language 

An area of computer programming which has received too little 
attention is that of languages for specifying the detailed 
control of input and output devices.  In most cases, the 
programmer expresses such control in dynamically constructed 
channel instruction sequences, for which his programming tools 
are very meager.  Often, the nature of a channel program is 
hidden in the code of the CPU program which constructs it. 
Worse, the construction is usually in cerms of the individual 
bit string constants which happen to constitute operation codes, 
addresses, or control messages for the channel.  Thus, although 
the programmer may control the CPU with expressions in the PL/I 
language, he often controls the I/O channel with expressions in 
binary. 

Efforts to make progress in this area are frustrating, since 
the nature of I/O control is very different for different kinds 
of devices.  However, there is one class of device within which 
I/O control is fairly well constrained — the class of type- 
writer terminals.  Thus, as an experiment, a simple language 
was devised which permits quick and easy specification of the 
channel programs used for typewriter terminals.  The language 
includes primitives for synchronization between the I/O channel 
and the CPU program.  A translator for the language was con- 
structed, and the Multics typewriter control package was re- 
written using the language for all I/O channel control.  The 
new typewriter control package handles all I/O with Model 33, 
35, and 37 teletypes, IBM 2741 and 1050 terminals, and also 
static display consoles.  So far, the new control package has 
proven much more maintainable than earlier designs, thus pro- 
viding some basis for continued experimentation with I/O 
channel control languages. 

D.  Automatically Managed Multilevel Memory 

By now, it has become accepted lore in the computer system 
field that use cf automatic management algorithms for memory 
systems, constructed of several levels with different access 
times, can provide a significant simplification of programming 
effort.  Examples of such automatic management strategies in- 
clude the buffer memories of the IBM 370 models 155, 165, and 
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195, and the demand paging virtual memories of Multics, IBM's 
CP-6 7, and the Michigan Terminal System.  Unfortunately, behind 
the mask of acceptance hides a worrisome lack of knowledge about 
how to engineer a multilevel memory system with appropriate 
algorithms which are matched to the load and hardware charac- 
teristics.  One of the projects of the CSR Group is to instru- 
ment and experiment with the multilevel memory system of Multics, 
in order to learn better how to predict in advance the perfor- 
mance of proposed, new, automatically-managed, multilevel- 
memory-systems.  Several specific aspects of this goal have 
been explored recently: 

1. A strategy to treat core memory, drum, and disk as a true 
three-level memory system has been proposed, including a 
"least-recently-used" algorithm for moving things from drum 
to disk.  Such an algorithm is already in use to determine 
which pages should be removed from core memory.  The dynamics 
of interaction among two such algorithms operating at different 
levels are not understood, and some experimental work should 
provide much insight.  The proposed strategy will be imple- 
mented, and then compared with a simpler strategy which never 
moves things from drum to disk, but instead makes educated 
"guesses" as to which device is most appropriate for the per- 
manent residence of a given page.  If the automatic algorithm 
is at least as good as the older, static one, it would repre- 
sent an improvement in over-all design by itself, since it 
would automatically track changes in user behavior, while the 
static algorithm requires constant attention as to the validity 
of its guesses. 

2. A scheme to permit experimentation with predictive paging 
algorithms was devised.  The scheme provides for each process 
a list of pages to be preloaded whenever the process is run, 
and a second list to be immediately purged whenever the pro- 
cess stops.  The updating of these lists is controlled by a 
decision table exercised every time the process stops running. 

3. A series of hardware measurements were made to establish 
the effectiveness of a small associative memory used to hold 
recently accessed page descriptors.  These measurements es- 
tablished a profile of hit ratio (probability of finding a 
page descriptor in the associative memory) versus associative 
memory size which should be very useful to the designers of 
virtual memory systems. 

4. A set of models, both analytic and simulation, were con- 
structed to try to understand the behavior of a shared virtual 
memory.  The most important result of this line of work so far 
has been finding that a single parameter of load (the mean ex- 
ecution time between "missing" pages in the virtual memory) 
suffices to provide a quite accurate prediction of paging and 
idle overheads.  A doctoral thesis is in progress on this 
topic. 

As a sidelight, the measurements used to validate the models 
led to the discovery of an overloaded disk paging channel, the 
addition of a second hardware channel, and the invention of an 
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ingenious algorithm to maximize the effective capacity of the 
two channels.  In brief, the two channels both connect to three 
hardware disk controllers, each of which can process only one 
request at a time.  The heart of the algorithm is, when a 
channel comes available, to look ahead in the queue of work 
for the first outstanding request which is directed to one of 
the two unused disk controllers.  Although some requests are 
thereby processed out of order, the over-all multiprogramming 
performance is improved, since the average queuing for disk 
service is reduced. 

E.  Protection of Programs and Data 

A long-standing objective of the CSR Group has been to provide 
facilities for the protection of executing programs from one 
another, so that users of a public computer utility may, with 
confidence, place appropriate control on the release of their 
private information.  In 1967, a scheme was proposed which 
provided a generalization of the usual supervisor-user protec- 
tion relationship.  This scheme, called "rings of protection", 
provides user-written subsystems with the same protection from 
other users that the supervisor has, yet without requiring that 
the user-written subsystem be incorporated into the supervisor. 
This scheme was brought under intense review in the last year, 
with two results: 

1.  A hardware architecrure which implements the scheme was 
proposed.  One of the chief features of the proposed archi- 
tecture is that subroutine calls from one protection ring to 
another use exactly the same mechanisms as do subroutine calls 
among procedures within a protection area.  The proposal ap- 
pears sufficiently promising that it was included in the speci- 
fications for the next generation of hardware to be used for 
Multics. 

2.  As an experiment in the feasibility of a multilayered 
supervisor, several supervisor procedures which required pro- 
tection, but not all supervisor privileges, were moved into a 
ring of protection intermediate between the users and the main 
supervisor.  The success of this experiment established that 
such layering is a practical way of reducing the quantity of 
supervisor code which must be given all privileges. 

Both of these results are viewed as steps toward first, a more 
complete exploitation and understanding of rings of protection, 
and later, a less constrained "domain of protection" organiza- 
tion.  Two doctoral theses are underway in this area. 

F.  System Programming Languages 

Another technique of system engineering methodology being ex- 
plored by the CSR Group is that of higher level programming 
language for system implementation.  The initial step in this 
direction (which proved later to be a very big step) was the 
choice of the PL/I language for the implementation of Multics. 
By now, Multics offers an excellent case study in the viability 
of this concept.  Not only has the cost of using a higher level 
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language been proven acceptable, but increased maintainability 
of software has permitted much more rapid evolution of the 
system in response to research proposals as well as user needs. 

During the year, progress was made on several specific aspects 
of exploring higher level languages: 

1. The transition from an early PL/I subset compiler to a newer 
compiler which handles almost the entire language was completed. 
This transition was carried out with performance improvement in 
practically every module converted.  The significance of the 
transition is the demonstration that it is not necessary to 
narrow one's sights to a "simple" language for system program- 
ming.  If the language is thoroughly understood, even a language 
as complex as the full PL/I can be effectively used. 

2. Notwithstanding the observation just made, the time re- 
quired to implement a full PL/I compiler is still too great 
for many situations in which the compiler implementation cannot 
be started far enough in advance of system coding.  For this 
reason, there is considerable interest in defining a subset 
language which is easily compilable, yet retains the features 
most important for system implementation.  Such a language was 
defined, and a report has been prepared describing it. 

3. An implication of using higher-level languages for system 
programming is that programmers find it more convenient to 
construct large subparts of an operating system out of many 
small modules.  This modularity generally improves the struc- 
tural organization of the subsystem by making its various 
functions distinct.  However, when there are many modules to 
be assembled into a subsystem, the assembly itself requires a 
language to specify many otherwise tedious details of the 
binding which is to occur.  (For example, when several proce- 
dures are bound together, usually only a few of the total set 
of entry points are to remain as entry points from outside 
the bound subsystem.  Some method is needed to identify which 
entry points remain.)  The interface between the compiler and 
the binder is only beginning to be understood, as another iter- 
ation of the binding specification language design was com- 
pleted.  One of the results of this work has been the definition 
of a virtual machine interface which can be respected by the 
compiler and the binder, but which does not exercise all of the 
f xibility implied by the real machine.  It will take consid- 
erably more experimentation and study to determine if a real 
machine could be significantly simplified by removing the un- 
used flexibility. 

4. A census of Multics system modules was undertaken, to 
learn exactly how much of the system was actually coded in 
PL/I, and reasons for use of other languages.  Roughly, of 
the 1200 system modules, about 1000 were written in PL/I, 
and 200 in machine language.  About half of the 200 machine 
language modules were support routines for the early PL/I 
compiler providing, for example, string concatenation sub- 
routines.  Many of the rest represented tiny subroutines to 
execute this or that privileged instruction, etc.  (No attempt 
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was made to provide PL/I built-in functions for every con- 
ceivable hardware need.)  Significantly, only a half dozen 
modules (the traffic controller, the central page fault path, 
and interrupt handlers) which were originally written in PL/I 
have been receded in machine language for reasons of squeezing 
the utmost in performance.  Several programs, originally 
machine language, have been receded in PL/I to increase their 
maintainability. 

5.  Research in techniques of compiling complex languages was 
continued,* with a major result being a separation of the code 
generation phase which is sufficient to allow the same code 
generator to be used for both PL/I and FORTRAN.  Also, new 
code optimization strategies were explored. f 

G.  Message Handling 

The observation that Multics contained a large number of in- 
dependent mechanisms, all of which were solving different 
versions of the same problem, led to a proposal for general 
supervisor primitives for queuing messages.  It would appear 
that although one can in principle construct message queues 
in addressable memory, proper protection of previously posted 
messages requires a protection capability not expressable in 
terms of access to addressable memory.  Thus the function of 
providing protected mailboxes for messages seems to be a primi- 
tive one, which must be provided by the supervisor or the hard- 
ware.  Although message queues by themselves have been proposed 
and implemented in other systems, the trick is to embed them in 
the architecture in a natural way.  In the design developed here, 
message queues fit into the general operating system structure 
in a way similar to segments.  That is, they are catalogued 
with distinct names, and they appear in an address space as 
objects which act as FIFO queues.  In the long run, a message 
queue mechamism may be an appropriate object for direct hard- 
ware implementation.  To explore this area, a software message 
queue mechanism was designed, and added to the Multics system, 
and the various independent mechanisms are being scrapped. 

H.  Graphics Support 

The CSR Group does not carry out research on techniques of 
graphical display.  However, there are many very interesting 
and sophisticated ideas in the field of graphics, invented 
elsewhere, which have not received a true test of usefulness 
because they were implemented within some special purpose 
system.  The CSR Group is attempting to integrate some of 
these ideas into a Multics graphics system, in an attempt to 
show the feasibility of making sophisticated graphical display 
a property of the general purpose computer utility.  To this 
end, several development lines are in progress: 

*This work was actually carried out by our Honeywell counter- 
parts in the joint study. 
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1. An initial, reasonably simple, graphics display system has 
been designed and implemented.  Its purpose was principally to 
test certain strategies of coupling graphics to the virtual 
memory, and to gain some experience in graphics. 

2. Attachment and use of the ARDS (Advanced Reactive Display 
Station) storage tube display was accomplished. 

3. Design was started on a more sophisticated graphics system 
which would incorporate many of the test ideas developed at 
Lincoln Laboratory, Bell Telephone Laboratories, and the Rand 
Corporation.  The team doing this design is also responsible 
for interfacing to the graphics protocol of the ARPA network, 
so that the completed graphics system should be very widely 
usable. 

I.  Other Activities 

Several other activities, not all of which are classed as re- 
search, were carried out by the group: 

1. An interpreter for the LISP language which permits an es- 
sentially unlimited workspace within the virtual memory was 
implemented.  The effectiveness of demand paging for LISP-type 
applications has long been a topic of debate, and one purpose 
of this work is to help resolve the debate.  A LISP compiler 
is also being constructed. 

2. The exportation of already developed ideas was pursued in 
a variety of ways.  In January 1971, a symposium to discuss 
Multics was held at M.I.T., drawing about 90 attendees from 
industry and government.  The users' manuals of the system 
were upgraded, and a number of technical papers were prepared 
and presented.  A book by Elliott Organick, describing the 
Multics system, was accepted for publication by the M.I.T. 
Press, and is scheduled for Spring 1972 publication.  Finally, 
the operating Multics system itself was exported to two other 
sites, the Rome Air Development Center and Honeywell Informa- 
tion Systems, Waltham, Mass., technical computing center. 

3. In what amounts to a tour-de-force of focusing many ideas 
into one mechanism, a complete PL/I source language progräm 
debugging system was designed and implemented.  This system, 
which required cooperative modifications of the PL/I compiler, 
allows methodical exercise of essentially every feature which 
a programmer might use in the segmented virtual memory environ- 
ment of Multics.  Many previous systems have established the 
value of powerful program debugging tools in an interactive 
environment, but most have been designed primarily for the 
sophisticated machine language programmer. 

4. As mentioned in the introduction, the privilege of using 
a live system as a research laboratory is paid for partly by 
the necessity of being responsive to needs of a user community; 
a variety of tasks in this area were completed.  A facility 
for submission of absentee jobs to the system was installed. 
System down time following a crash was reduced from 25 minutes 
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to 5 minutes.  Hardware and software were modified to permit 
packing of page tables, to improve performance.  A subsystem 
which permits use of the entire Dartmouth 6 35 time-sharing 
system within Multics was implemented.  A better, faster text 
editor based on "QED" from the SDS 940 time-sharing system was 
developed.  Finally, at Honeywell, design was completed for an 
interpreter for the "API" language of Iverson. 

5.  A subgroup of the CSR Group devoted most of its enerqy to 
attaching the ARPA network to Multics.  This activity is re- 
ported in more detail elsewhere. 

J«  Acceptance of Multics 

Since the earliest proposals for the creation of the Multics 
system, there has been a healthy skepticism expressed by many 
observers that a system with so many ambitious objectives could 
be engineered with acceptable economic performance.  During the 
year, impressive evidence that the skeptics are wronq was 
amassed: 

1. Use of the system by people outside the Multics development 
group steadily climbed to the point that 2-CPU operation during 
the peak hours became necessary.  Even the 2-CPU system now 
operates at capacity for several hours per day. 

2. The M.I.T. Information Processing Center, which operates 
the system, found that revenue from paying customers crossed 
the break-even point, and began to repay the initial service 
underwriting investments made by M.I.T. and Honeywell. 

3. Revenue from paying customers exceeded that of each of 
the other three major computer systems at M.I.T. (these are 
a 360/65 running OS/MVT, a 360/67 running CP/67 and a 7094 
running CTSS). 

4. In addition to the 700 registered users, some 700 students 
used the Multics system in an "Educational Information Service" 
which provides a restricted service administered by a student 
committee. 

5.  A number of computer science subjects, including the in- 
troductory programming subject, found Multics sufficiently 
economical to use for at least part of their required home 
problems. 

6.  Enough long-term interest in Multics was apparent that the 
M.I.T. Information Processing Center requested from Honeywell 
a quotation for price and delivery of a new hardware base for 
the system.  At the close of the reporting period, engineering 
specifications were largely completed, tentative schedules for 
delivery were worked out, and final contract details were under 
negotiation. 

Thus, during the year Multics moved from a position of tenta- 
tive acceptance to that of being the primary time-sharing 
service of the M.I.T. community.  Initial estimates of the 
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price and performance of the proposed follow-on system suggest 
that questions of the economic viability of such a system need 
no longer be of concern. 

K, ARPA Network Status 

1.  Design Issues 

The technical context of the ARPA Network was described in 
last year's report.  At that time, it was anticipated that 
consensus would shortly be reached among the Network Working 
Group participants (representing the 15 to 20 sites that will 
be linked by the Network) on final designs for a "Host-to-Host" 
(or Network Control) protocol and a "Logger" protocol (to allow 
direct logins over the Network to the operating systems at the 
various sites).  However, the combined effects of the technical 
diversity of the systems involved and the inherent difficulty 
of multi-organizational design work (particularly when the 
sites are widely scattered geographically) resulted in a less 
clear-cut situation than was hoped for.  By the time of the 
19 71 SJCC meeting mentioned earlier, neither protocol had been 
formally enunciated although the technical content of the forth- 
coming documents was sufficiently agreed upon to enable imple- 
mentation to proceed.  (Indeed, the Logger protocol had been 
split into two areas, one covering initial connections and the 
other covering Teletypewriter issues.)  A considerable portion 
of the Group's directly Network-related effort during the re- 
porting period, then, was necessarily more concerned with parti- 
cipation in the design process than had been supposed last 
year. 

a) NCP: — The protocol for the Network Control Program 
which each Network "host" system must implement was found to 
need revision after publication of its formal statement in the 
Summer of 1970.  An important change introduced had to do with 
the association of byte sizes with connections and byte counts 
with messages.  This step will be useful for allowing the "Ter- 
minal IMP" to access the Network.  (A Terminal IMP is a special 
Interface Message Processor designed to be used alone — not, 
that is, in conjunction with a large-scale local host system. 
Thus, the Network will be available to a much broader community 
of users.  This is a very important aspect of the Network, in 
that general resource-sharing is the Network's major goal, and 
communication beyond the confines of host sites is a particularly 
desirable corollary.) 

b) ICP: — The first part of the projected Logger protocol, 
as noted last year, had to do with getting the attention of the 
remote ("server") system from the local ("user") system.  This 
aspect has been split off into a separate "Initial Connection" 
protocol (ICP).  Each server site agrees to listen to a desig- 
nated socket and route, any activity on it to whichever appro- 
priate process, local to it, that will manage Network logins. 
When a request for connection arrives on the "Logger" socket, 
by convention a message is sent to the user designating the 
number of a socket over which the login negotiations are to 
proceed.  (Actually, the designated socket and the next — con- 
secutively numbered — socket are used, as connections are de- 
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fined to be over socket pairs.) 
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dealing with future versions of the protocol.  The NCP will also 
take advantage of the expansion of the Multics protection ring 
structure, residing in Ring 1 rather than Ring 0.  Thus, alter- 
ations to the NCP will not require the production of new Multics 
System Tapes.  (The IMP DIM, on the other hand, does reside in 
Ring 0, since it must deal with wired-down buffers.  Therefore, 
the situation mentioned earlier in regard to the Development 
Machine's availability does have an impact on testing in this 
area.)  By the end of the reporting periol, the NCP was func- 
tioning successfully in the Ring 4 (user ring) environment, 
and awaiting Ring 1 installation. 

d) Logger; — The Multics process that will respond to 
the Initial Connection protocol is the standard Answering 
Service process.  Taking advantage of the fact that the Answer- 
ing Service was designed to allow various types of terminals to 
be connected through a common interface, the Logger implementa- 
tion adds to the Answering Service code which employs an exist- 
ing transfer vector-like arrangement to attach the Network I/O 
streams to the standard Multics process "user i/o" streams. 
With the I/O streams suitably attached, the processing of the 
login may then proceed in the same fashion as a locally initiated 
login.  By the end of the reporting period, the Logger was func- 
tioning in the Development Machine environment, but proved to 
require revision before being submitted for Service System in- 
stallation scheduled for late July 1971. 

e) Telnet and the Initial Conaection Protocol; — Although 
the design considerations involving the Telnet and Initial Con- 
nection protocols were complex, implementations are relatively 
straightforward.  The network command, which exercises both 
protocols, was made ready in a "stripped down" form for inte- 
gration with the other Multics Network modules as they went 
into final testing.  The test version of the network command 
was used to perform the Multics-to-Multics login and the logins 
to remote systems mentioned earlier.  It will be brought up to 
Standard Service System quality and installed by early August. 

3.  Experiments 

As a combination confidence test and checkout exercise of the 
then-current Network implementations on the respective systems, 
members of the Project MAC Computer Systems Research and Dynamic 
Modeling/Computer Graphics Groups performed an interesting ex- 
periment in December 1970.  Although it employed specifically 
tailored processes on each system, rather than the general- 
purpose mechanisms envisioned for the full-fledged Network, the 
experiment was of interest both as a demonstration of the utility 
of a large fraction of the underlying machinery of the full 
Network and as the first in a planned series of progressively 
more-sophisticated experiments which take advantage of the fact 
that Project MAC has two Network hosts on site, with actively 
cooperating staffs. 

The experiment involved a logged-in user on the Dynamic Model- 
ing/Computer Graphics Group's ITS system communicating via his 
console with a logged-in user on Multics.  ("Communicating" is 
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used in the sense of sending and receiving extemporaneous 
massages.)  It was called a "polite conversation" owing to 
certain constraints which were imposed in order to make the 
experiment straightforward to implement:  the conversation 
begins on a "speak only when you're spoken to" basis, and 
subsequently the participants may not interrupt when the 
other is "speaking".  To further simplify the impelementation, 
the conversation was performed over an agreed-on link, with 
conscious catering to the respective systems' end-of-line con- 
ventions .  For all its apparent triviality, the success of the 
polite-conversation experiment demonstrated the successful 
functioning of all the items then implemented.  (With a change 
of site number, of course, it could as well have been performed 
across the country as merely across the building.) 

The participants were so pleased with the success of the polite- 
conversation experiment that they decided to improvise a follow- 
on experiment on the spot.  This entailed rerouting the ITS I/O 
streams to the "user_i/o"  streams in the cooperating Multics 
process.  Although the resulting "pseudo-login" quickly en- 
countered difficulties, stemming from the line-at-a-time orien- 
tation of the polite conversation, several issues were exposed 
which proved to be quite fruitful in subsequent contributions 
to the Telnet protocol design.  The polite conversation was re- 
enacted when the INCP and IMP DIM had been installed on the 
Service Machine, but it was decided not to pursue login issues 
until a higher degree of Network-wide, consensus was reached on 
the protocols. 

Another experiment employing current implementations was per- 
formed during the reporting period, involving the transfer of 
files from ITS to Multics. 

Publications 1970-1971 

Saltzer, J. H. and J. W. Gintell^The Instrumentation of Mul- 
tics", Communications of the ACM, Vol. 13, No. 8, August 1970, 
PP- 495-500.  This paper dealt with the desirability of perfor- 
mance metering and described various Multics performance metering 
tools. 

Clark, D., R. M. Graham, J. H. Saltzer and M. D. Schroeder, "The 
Classroom Information and Computing Service", MAC TR-80, January 
1971, AD-717-857.  This report described an operating system de- 
signed for use in the M.I.T. Course 6.233, "Information Systems"; 
the system constitutes a simplified subset of Multics, and its 
implementation gave rise to many of the ideas proposed for the 
Multics follow-on hardware. 

Saltzer, J. H. and J. Ossanna,* "Technical and Human Engineering 
Problems in Connecting Terminals to a Time-Sharing System", Pro- 
ceedings of the AFIPS Fall Joint Computer Conference, Vol. 37, 
1970, pp. 355-362. 

*Non-MAC author, 
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Publications 1970-1971 (cont.) 

Workshop on System pTtl^Tc.'EllTultlor£,l%T l™*** University, pp. 227-245. ^uauxun, April 1971, Harvard 

MAC TR-86, AD-725-859. Engineering, June 1971, also 
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VII.  DYNAMIC MODELING, COMPUTER GRAPHICS, AND COMPUTER NETWORKS 

A.  Introduction 

The Dynamic Modeling Group, the Computer Graphics Group, and 
the Computer Networks Group of Project MAC were formed last 
year.  The efforts of the first two of those groups and about 
half of the third are strongly interrelated, focusing upon the 
design and development of a computer system specialized for high- 
ly interactive problem solving through modeling.  The goals of 
and plans for that work were described in a section of the Annual 
Report for 1969-70.  Progress toward the goals during the year 
1970-1971 will be reported upon now in this section.  The other 
part of the work in computer networks, also interrelated but 
mainly involving members of the Computer System Research Group, 
is reported upon in that group's section of this Annual Report. 

The main objective of the joint research program of the two-and- 
a-half groups is a hardware-software computer system that will 
go significantly far beyond conventional time-sharing systems 
in facilitating the formulation, understanding, and solution of 
difficult problems through modeling.  It is now widely recognized 
that the best medium in which to represent and experiment with 
the interdependencies within complex situations and processes 
is that of interactive computer programs.  In such programs, 
interrelations that are amenable to mathematical representation 
can be expressed mathematically, those that are not can be 
simulated empirically, and all can be brought together to 
yield a model that, when executed in a computer, "runs" and 
exhibits dynamic behavior.  The behavior, displayed to the 
modeler and his associates, reveals consequences of the facts 
and assumptions incorporated into the model and of their inter- 
relation and organization.  If the modeled situation or process 
is at all complex, most people can see "how it works" much more 
clearly by modeling it in programs and running, observing and 
experimenting with the model than by merely thinking about it 
or working on it with pencil and paper. 

Heretofore, there have been specialized programming languages 
(SIMSCRIPT, GPSS, DYNAMO, SIMULA, etc.) to facilitate the prep- 
aration of computer-program models, but not specialized computer 
systems in which to observe and experiment with such models. 
Ordinary computer systems will execute the programs all right, 
and good time-sharing systems will to some extent facilitate 
their preparation, but existing systems are lacking in important 
dimensions.   They do not provide a store room full of parts 
out of which to assemble models.  They do not provide some of the 
tools required in experimenting with and modifying models. 
They do not provide displays through which one can quickly select 
and observe various aspects of the behavior of models.  And 
they do not provide for progressive, accumulative augmentation 
of the sets of tools, techniques, parts, and models as the  sys- 
tem is used in successive modeling projects.  The aim of the 
program described here is to create a modeling system that will 
have strong capabilities in those dimensions as well as in the 
other dimensions of general-purpose interactive computing. 
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augmented.  It is at present operating in some processes, and 
we expect to incorporate it into most user-level processes dur- 
ing the fall and winter.* 

Much of the motivation behind mediation stems from the modeler's 
need to intervene in the operation of his model and experiment 
with it.  We shall discuss intervention shortly.  For the moment, 
merely note that the modeler cannot intervene and experiment 
conveniently if the parts of his model are linked together tight- 
ly, as by a compiler-loader or assembler-loader, when the model 
is introduced into the computer.  The mediator CARE effects the 
linking as the program is executed.  The modeler can therefore 
rearrange the parts without having to reload everything and be- 
gin over. 

In the system, several different kinds of subroutine calls are 
recognized.  They are graded in complexity and usefulness and 
also, of course, in cost.  At the time of each complex call, 
and again at the time of each corresponding return of control, 
CARE interposes itself between the caller and the callee.  CARE 
then handles several housekeeping chores, such as protecting the 
caller's information against disruption by the caller, and gives 
the user an opportunity to intervene.  The times of calling and 
returning are, of course auspicious for intervention because, at 
those times, the transitory complexities of looping, dispatch- 
ing, pushing, popping, and the like are momentarily suppressed 
and information is disposed in the computer memory in a relative- 
ly orderly way. 

CARE comes into play, also, each time a processing routine 
creates or activates or deactivates or purges a set of data. 
The data-related functions of CARE are presently being further 
developed.  At present the arrangement is as follows:  When a 
processing routine wishes to create or activate a data set, it 
issues an order to CARE, naming the data set and (especially 
in the case of creation) providing other essential information. 
CARE then creates and names an empty data set or activates the 
named existing data set of the specified type and sets up a 
pointer or pointers to it.  Thereafter, the processing routine 
operates upon the data set through the pointers — at arm's 
length, as it were — and in a sense never knows or cares exact- 
ly what data set it is processing.  That is to say, the process- 
ing routine is (was) written to process data sets of a specified 
type, and what it does is specialized for the type but not for 
the particular data set created or activated. 

*The word "process" is used here in the same sense as is under- 
stood among users of MULTICS:  an organization, in a computer 
memory, of routines and data with which is associated certain 
housekeeping information, the most essential items of which are 
a pointer to the current or pending instruction and the bound- 
aries of an address space.  The computer system lets each user 
employ several or many concurrent and intercommunicating pro- 
cesses. 
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A basic problem is inherent in the fact that the progranuner 
who prepared the processing routine did not know what data set 
later modelers would wish to have it process.  In conventional 
computing, the user feeds the data into a card reader, and th^ 
processing routine processes whatever data come in.  In the 
context of dynamic modeling, however, one assumes that there 
are several sets of data in the computer store, and the modeler 
may wish to substitute one of them for another during a single 
run of his model.  Indeed, the modeler may wish to go back to 
a critical point in the run and see what difference would be 
made by a substitution of data.  CARE handles this problem by 
letting the modeler interrupt the execution of the model at any 
call or return point and revise certain of CARE's bookkeeping 
tables. One table contains a list of translation tables.  Each 
translation table associates "programmers' names" of data sets 
with modelers' names" of data sets.  By revising the tables, 
the modeler can direct processing routines upon whatever data 
sets he likes. 

in order to intervene effectively, of course, the modeler must 
know where his model is in the course of its run.  He can tell 
something about that from displays of its behavior, but (in 
one of its modes) CARE gives him the detailed picture by display- 
ing, at each mediated call point and return point, the name of 
the subroutine that is being called or returning.  In a submode 
of this subroutine naming" mode, CARE pauses at each call and 
at each return and waits for the modeler to cause it to proceed 
by pressing the space bar on his keyboard.  The modeler can 
proceed step-by-step to a critical point and then intervene. 

To get CARE's attention, the modeler simply presses a predesig- 
nated key.  CARE then responds to commands given in a simple 
command language.  At present, this language is being augmented 
to cover the essential intervention interactions, and it is 
being "harmonized", insofar as possible, with the command lang- 
uages of other programs in the system.  In the interim, the 
modeler carries out most of his intervention functions through 
DDT (Dynamic Debugging Tool), a program we borrowed from the 
Artificial Intelligence Laboratory and have adapted to our sys- 
tem.  DDT often operates as a process superior to the model 
process(es).  CARE operates within each model process.  CARE 
can transfer the modeler's interaction channel(s) to DDT, and 
DDT can transfer it (them) back ~ with the state of the model 
preserved. 

A most important function of intervention is the selection of 
aspects of the model's behavior for display and the assignment 
of aspects to display areas. Work on that function was in mid- 
course at the end of the year.  The display part will be de- 
scribed in the section on Computer Graphics. 

2.  The Library of Subroutines and Data Sets 

A basic part of the system is a memory-resident address table 
that will hold address and related information about every sub- 
routine (except for subroutines of the simplest class) and every 
nonephemeral data set in the library.  Each such subroutine or 
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repoJt?Pto ama^rl Y^ neede(=l1. We still hope (cf. last year's report; to amass a library collection of at least- l nnn rri„Qv.,n 
useful subroutines and 100 generally usefSl da?f sets  ^^   y 

fSirra^hen116 T^H^  Part 0f that ^al ^as seemS 

?Utinriitont^ebUggr8-  When '^ " ll™ot  ^he^uro^tines ntltt i  lnt° the system, working with one another, and beina 
comprehensible to users, however, the situation at the end of the 
year was disappointing.  A major campaign to get the liS?frv 

- 

3.  The Library of Documents 

hLäV! hf  0Pfrational on MULTICS, for about a year, a computer- 
inat/5^'  devtl0ped  by Richard Bryan' for storing and retriev- 
ing information about the software of the modeling system  ^J 
££ ^SV1^ Srtem iS being rented and interfaced to "the 
as^f thfen^nf^NET-  The COrpUS of documentation includes, as of the end of the reporting year, one-page abstracts and 
aÄ'lik™'3 deSCribin* subroutine^^data s'ets^ma'cros. 

The main accomplishment of the year, insofar as documentation 
sLn£^nf' WaS the foi™"lation and description of Se se? of 
"cSnvJntion0!!^09^111 pr!Paration and documentation calLd convention II ,  Convention II is described in a series of 2n 
documents by David Burmaster, Martha Draper, PSUI Hu^hett 
Karolyn Martin, J. c. R. Licklider, Christopher ReevI and Albert 
Vezza.  Convention II deals with the various policy and tech- 
Jon^/^T! 0f Pr0gram Preparation and documentation  ?he 
glossLies (n^tatio-r^hh ^"^ f0r document^ three kanSard 
widf terms)  Jhefor,;^^^1^10!?8 and exPansions, and system- 
TiS .Jl   '^ uf £ormat of subroutine headers, data-set headers 
and address tables; data types; the naming of files; two kinds 

anV^u^io™^^^ 

;.i ?eideyr LTpSir-t-^ thtend ^ thry^,ronhvrntronTithem'- 

into accord with Convention II and to make it opera?! SiSln 
the context of the mediator CARE. operate within 

One Of the provisions of Convention II is that associai-erl „^i, 
each software entity, such as a subroutine a da?a set nr * 
macro, there must be an explanation of thJ'mnemonics of tL 
name, a meaningful expansion of the name an ab??r^ Ln^ • 
ing prescribed classes of informatton aAd ä set o? descript^s 

enlitllt^^l^T011105'. exPansio-.  and -- in the c'se'o? entities to which it is applicable - the calling and returning 
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sequence format will be available on-line through an information- 
retrieval system associated with CARE.  The abstracts, listings, 
and other lengthier documents about the software will be avail- 
able in a small ink-and-paper library at each console.  As indi- 
cated earlier, we set up a first version of part of such a system 
on MULTICS last year.  Now we are beginning to connect it to 
the PDP-10 system.  Effective information retrieval is an essen- 
tial part of the concept of the system we are developing. 

4.  An Extension of the LISP Language 

Our design objective of highly interactive experimentation with 
models is inconsistent with the classical organization of soft- 
ware based on compiling and loading monolithic masses of soft- 
ware in which all the parts are rigidly linked together.  The 
limitations of the classical organization have been broken in two 
main directions, on the one hand in the paradigm of MULTICS, 
in which linking is deferred until reference is actually made, 
during the execution of a program, to subordinate parts that 
should be linked to the parts already running, and on the other 
hand in the paradigm of LISP, in which editing, debugging, and 
other such activities are carried on within the coherent frame- 
work of the language implementation.  For our purposes, both 
MULTICS and LISP have many desirable features, but neither in 
and of itself provides the desired facility for the kind of 
modeling to which we aspire.  To mention the main shortcomings, 
MULTICS is not set up for use with a graphics processor operat- 
ing out of main memory, and LISP, while highly coherent internal- 
ly, is difficult to bring into relation with external software 
and is only weakly developed in the directions of data typology 
and graphical interaction.  We have therefore been exploring the 
problem of incorporating into our system the best of the two 
worlds.  Members of our groups have been working with the members 
of the Artificial Intelligence Laboratory on the design and imple- 
mentation of an extension of the LICP language that will provide 
a number of advantages over previous versions of LISP.  These 
will include data type checking, lexical scoping, recognition 
of a large number of elementary and compound data types, and the 
inclusion of primitives upon which to erect a graphical inter- 
action subsystem. 

The extension of LISP is known locally as "MUDDLE".  It was 
designed and has been implemented by Carl Hewitt and Gerald 
Sussman of the Artificial Intelligence Laboratory and Christopher 
Reeve, David Cressey, Bruce Daniels, and Gregory Pfister of 
Dynamic Modeling/Computer Graphics/Computer Networks.  MUDDLE 
is operational now as an interpreter. As implemented, it is 
rather separate and distinct from the other software of the 
system we are developing.  Wishing to bring MUDDLE into our 
system in such a way as to integrate its advantages coherently, 
we are studying the possibility of merging MUDDLE'S data types 
with the system's data types and MUDDLE'S implementation routines 
with the system's subroutine library. 

We hope to use MUDDLE as an interpreter for the upper levels of 
the subroutine-calling hierarchy.  The idea is to employ interpre- 
tation in the upper levels, where most of the changes are made 
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in the course of exploring a model, and to employ assembled or 
compiled subroutines at the lower levels, where the time effi- 
ciency of execution (as opposed to interpretation) is most im- 
portant.  It now seems likely that such an organization of soft- 
ware may be feasible.  On the other hand, it would not be good 
to cause our version of MUDDLE to diverge greatly from that of 
the Artificial Intelligence Laboratory because MUDDLE is envison- 
ed as the base for the implementation of PLANNER, and PLANNER 
seems likely to be very useful in modeling as well as in arti- 
ficial intelligence research. 

5.  Lexicontext 

■ 

Fundamental to the design of an integrated or coherent informa- 
tion system is the selection of a basic informational building 
block.  In most computer systems, as in ours at present, the 
basic atom of information is either a character (byte) or a 
computer word.  For substantive modeling applications, however, 
the character is too small a unit, and the computer word does 
not bear a direct enough relation to the words of natural lang- 
uages in terms of which people think.  Looking toward a future 
in which a good computer system will have, and be able to use 
knowledgeably, a vocabulary of tens or hundreds of thousands of 
words of natural language, we have developed a system, called 
"Lexicontext"*, that gives to the word — the word of natural 
language and/or the word of technical jargon — the role of basic 
building block.  In the Lexicontext system, a word is processed, 
not as a string of characters, but as a pointer to an argument 
in a lexicon of argument-function pairs.  The lexical function 
is divided into subfunctions.  The absolutely essential sub- 
function is the spelling of the word.  Other subfunctions can 
be added with apparatus provided by Lexicontext.  They will 
include additional morphological information, syntactic informa- 
tion, synonyms, definitions, and (hopefully eventually) programs 
that give the entries operational meaning in the paradigm of 
Winograd's PROGRAMMAR.  Most of these subfunctions can be imple- 
mented in terms of the basic Lexicontext element, the pointer 
to an entry in the lexicon. 

Lexicontext has been implemented by John Haverty.  In his imple- 
mentation, text files are composed of elements of uniform size. 
Each item of text (except for literals) occupies the same number 
of bits of storage (18 bits in half-word mode, 36 bits in full- 
word mode) and — as explained — each element represents a lexi- 
cal word by pointing to its location in the lexicon.  The uni- 
formity of representation makes it convenient for the computer to 
process text — e.g., to search for instances of a given word 
(type) or to parse sentences.  The primary lexicon, itself, 
consists of alphanumeric strings (spellings).  Associated with 
each primary entry there may be pointers into one or more data 
bases.  These data bases are to contain the subfunctions, other 
than the spelling/ mentioned earlier. 

*It has a lexicon and deals with text, and we hope that it will 
provide a lexical context for work in modeling. 
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Actually, Lexicontext provides for 32 separate lexicons, either 
"newri or "old".  (New lexicons can be updated on-line or off- 
line; old, only off-line.)  The current implementation has a 
provision for automatic construction of a new lexicon from a 
conventional text file; for adding words on-line to a new lexi- 
con, as new words, not already in any of its lexicons, arise; 
for merging a new lexicon into existing old lexicons, and for 
converting conventional text files into Lexicontext text files 
and vice versa.  Each lexicon allows for 21^ elements, i.e., 
a vocabulary of slightly over 32,000 lexical words. 

1       2 Like Hypertext and NLS , Lexicontext structures text in a hier- 
archy such as volume/chapter/paragraph/sentence/word.  There 
is a mechanism for representing extra-hierarchical items such 
as footnotes and references. 

Lexicontext text files are more compact than character-code 
files.  The compression ratio is not great, but it is good to 
gain something in compactness instead of having to trade off 
compactness for the efficiency of processing uniform tokens. 

C.  Computer Graphics 

The Computer Graphics group has made good progress, during the 
past year, in mastering the Evans and Sutherland display sub- 
system and in solving basic problems in the application of 
graphics to facilitate human understanding of, and modeling of, 
complex processes and organizations.  The Evans and Sutherland 
display subsystem (E&S) is a very powerful one, not easy to 
exploit fully (especially in a timG-sharing environment), and 
much of the effort in graphics has been devoted to bring the 
capabilities inherent in the E&S into the hands of users who 
are not display specialists. 

Some of the problems (as 
stem from the fact that 
in parallel with the PDP 
shares memory with them, 
by the operating system 
running concurrently in 
operating system to medi 
or to make corresponding 
it.  This has not been a 
have been using only one 
mediation approach with 
toward time-sharing the 
soles, and that move is 
signing the display time 

1.  "Picture Framing" 

well as the advantages) of the E&S 
it has its own processor, which operates 
-10 processor and the disk channel and 

Since memory is dynamically allocated 
to the several user processes that are 
the PDP-10, it is necessary for the 
ate the use of the display processor 
adjustments of memory allocation for 
difficult problem so far because we 
E&S display. We have followed the 
success.  However, we are now moving 
E&S display subsystem among four con- 
not trivial. Michael Brescia is de- 
-sharing system. 

One of the capabilities of the E&S display subsystem is to focus 
its efforts mainly upon any specified small area or areas of a 
very large surface on which there is a picture.  That capabili- 
ty is important because, without it, the processor would spend 
most of its time processing parts of the picture that lay out- 
side the areas of interest.  Accordingly, during the past year, 

82 



MODELING, GRAPHICS. NETWORKS 

James Michener and other members of the Computer Graphics and 
Computer Networks Groups devised a technique, a kind of "picture- 
framing service", in which the E&S processor eliminates the 
extraneous parts of the picture and constructs, in memory, a 
sub-picture limited to a specified area or areas, and then the 
PDP-10 processor reformats the delimited picture for transmis- 
sion to an Advanced Remote Display Station (ARDS) or an Imlac 
console.  That technique is used as a service inside our com- 
puter system, and is being made available through the ARPANET 
to users of ARDS and Imlac consoles at remote locations. 

2. Polyvision 

Within the general context of modeling, one of the main graphics 
problems is display management.  A modeler may have a dozen or 
more things to display but only a small display area — a ten 
inch square or at best a very few such squares — in which to 
display them.  Polyvision is a display-management subsystem, 
designed and programmed by James Michener, Edward Black, and 
others, that permits the modeler to assign the various aspects 
of his model, mainly dynamic aspects, to named display areas 
and then to move the areas about, magnifying some and causing 
others to contract, either under program control or under the 
control of a stylus in the modeler's hand.  Polyvision will be 
brought into interaction with the mediator CARE in due 
course, but it will not be necessary for the modeler to halt 
the execution of his model to adjust the configuration of his 
display.  The modeler can control the display subsystem while 
the model is running.  This is in line with our basic concept 
of graphical display as an aid to observation.  It should not 
be necessary to build a schedule of observation into the basic 
framework of the model itself.  The schedule of observation 
must be flexible and under the modeler's control throughout 
the course of observation. 

Eventually, it may be possible to make significant changes to 
the model while it is running.  However, the problem.of modify- 
ing the model "on the fly" is more difficult than the problem 
of modifying the observational procedure "on the fly"'.  The 
latter can be thought through and implemented once and then 
used with various models; the former seems, in the present, 
state of the art, to require model-specific operation. 

3. Graphical Debugging 

Computer Graphics offers promise of breaking through one of the 
most resistant barriers to human comprehension of complex com- 
puter programs.  The barrier is, figuratively speaking, the 
opaque integument of the computer, which deprives the observer 
of any global view of what is going on inside.  Even with the 
best conventional debugging aids, such as DDT, the observer 
can see into the inside workings of the machine only through 
a very small aperture.  At the operator's console, there are 
perhaps a few pilot lights, but they do not encode information 
in a very meaningful way. At a typewriter console, one can 
open and look inside one memory register at a time. With a 
graphic display, on the other hand, one can see a map of the 
computer memory (either in the literal space of memory registers 
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or in the symbolic space of source-language statements) and 
watch the behavior of the program on the surface of the map. 

During the past year, we made some progress toward realization 
of a meaningful, global display of program behavior.  Stuart 
Galley completed a graphical display of program behavior called 
"ESP", and Paul Hughett completed important portions of a graphi- 
cal debugging tool, called "GDT".  In both programs, selected 
registers and segments of program are represented schematically 
upon the display surface, and the flow of information is repre- 
sented by moving arrows, moving symbols, and other devices. 
These programs represent only small steps toward what should 
eventually be a very powerful aid to the understanding of pro- 
gram dynamics, but they will, themselves, find useful applica- 
tion in the computer system. 

4. Elucidations 

The difficulty of harnessing a powerful display subsystem in 
the interest of man-computer communication about complex pro*- 
cesses is balanced by the simplicity of getting such a sub- 
system to display mathematical functions.  It is easy to pro- 
duce all kinds of "graph paper" on the display screen, and it 
is easy to create all kinds of curves and surfaces.  It is re- 
markable how much one can learn from a few minutes of play at 
the graphics console — a few minutes spent in exploring mathe- 
matical functions through graphical display.  Obviously, the 
general problem of relating graphical and symbolic representa- 
tions to one another is very important in the understanding of 
mathematics. Obviously, a digital computer with a good graphics 
subsystem can greatly facilitate the development of such under- 
standing. 

During the year, several members of the laboratory developed 
graphics programs that provide insight into simple mathemati- 
cal phenomena.  These included two-dimensional and three- 
dimensional function plotters (Edward Black, Scott Cutler), a 
Fourier transformer (Robert Freedman) and a simulation of the 
interplay of gravitational forces in a galaxy (Paul Hughett). 

5. Visual Statistical Analysis 

Flowing from the general line of observation just mentioned was 
a major effort by Robert Fleischer called "Visual Statistics". 
This program brings together in a subsystem a collection of 
processing and display operations that facilitate visual analysis 
of the relations that exist within a collection of data.  The 
operations permit the selection of data on the basis of various 
criteria, the plotting of the data in various modes and formats, 
projection from a multidimensional space to a two-dimensional 
surface, curve fitting, and so on. We hope to incorporate the 
Visual Statistics subsystem into a larger system of data-analysis 
routines so that we can bring both intuitive and algorithmic 
analysis procedures into productive interaction. 

> 
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6.  Imlac Displays 

Although not as sophisticated as the E&S display subsystem, the 
Imlac consoles, which include minicomputers as well as cathode- 
ray-tube displays, are potentially very capable.  Our use of 
them thus far has been largely limited to alphanumeric process- 
ing and display, but we are beginning to exploit their potential 
for display of graphs, charts, and diagrams. 

David Lebling prepared a PDP-10 assembler for Imlac programs. 
Stephen Peltan prepared a loader that loads the Imlac from the 
PDP-10.  Lawrence Rubin and Stephen Peltan developed split-screen 
techniques for Imlac consoles and did the programming required 
to make the Imlac's control keys convenient to use in our appli- 
cations.  And John Haverty designed and implemented a program, 
IMEDIT, that makes it convenient to use the Imlac editor in 
conjunction with the PDP-10 file-handling system.  IMEDIT moves 
from the PDP-10 to the Imlac consoles much memory-space-consum- 
ing but trivial work.  All in all, the Imlac consoles are now 
quite convenient and effective for applications that are limited 
to alphanumeric information, and they are well on their way to 
supporting applications that involve line drawings, also. 

D.  Computer Networks 

The part of the Computer Networks Group to which this report 
pertains is the part concerned immediately with the PDP-10 compu- 
ter system.  Last year, the word "immediately" would not have had 
much significance, for the network program was just getting 
under way, and energies were focused mainly on getting MULTICS 
and the PDP-10 into communication with each other and other 
computers in the ARPANET.  At the end of this reporting year, 
however, one can sit at a PDP-10 and carry out his computing 
operations mainly in any one of several other ARPA network 
machines.  Most of the work to be reported upon here was aimed 
at creating the basis in computer communications, through com- 
puter programming in the PDP-10, for interaction between the 
PDP-10 and other network computers. 

1.  Network Control Program 

Robert Bressler and other members of the Computer Network Group 
developed several progressively improved versions of a Network 
Control Program (NCP) for the PDP-10 computer.  This program 
establishes and maintains connections between processes in the 
PDP-10 and other ARPANET computers.  The next step was to de- 
sign and implement programs that, using the NCP, would make the 
PDP-10 a part of an alphanumeric telecommunications network 
(TELNET) within the ARPANET.  The TELNET programs are of two 
kinds, "servers" and "users".  The first TELNET server program 
completed was a Logger, the function of which is to permit 
users of other network computers and users connected to the 
network via a TIP to log into the PDP-10 in the same way as 
local users.  The design of the logger involved Robert Bressler, 
Robert Metcalfe, and Arvola Chan, and most of the programming 
was done by Chan. 
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The next program in the logical hierarchy of network software 
was a TELNET user program, designed and prepared by Robert 
Metcalfe, the function of which is to permit a  user logged 
into the PDP-10 to log into another network computer.  It 
handles terminal communication to and from the püP-10, includ- 
ing communication with a remote TELNET server program, through 
the Network Control Program.  Together, the TELNET server 
and user programs and the NCP provide the basic means of 
communication with remote computers and/or terminals. 

Even before the basic means of communication were perfected, 
attention turned toward the design of yet higher levels of net- 
work software,  Abhay Bhushan became interested in the protocol 
for the transfer of data and for the transfer of files of data. 
His interest led him to the chairmanship of the Committee of 
Data and File Transfer Protocol for the ARPANET.  At the end of 
the reporting year, he was working on software implementations 
of the tentative protocols that had been thus far formulated. 
Members of the Computer Networks and Computer Graphics Groups 
turned their attention, jointly, to problems of graphical com- 
munication through the network. 

Rather early in the year, interesting explorations of graphical 
communication through the network were made in cooperation with 
members of the Aiken Computation Laboratory at Harvard.  Graphics 
programs were originated in the Harvard PDP-10 transmitted 
through the network to the Project MAC PDP-10, processed there 
by the E&S subsystem, transmitted back to a PDP-10 computer at 
Harvard, and displayed there on a Digital Equipment Model 340 
display.  The same pictures were displayed on the E&S display 
at M.I.T., and the characteristics of the network-mediated 
processing and display were compared with those of wholly local 
processing and display of the same program material.  It was 
found that there was almost no perceptible difference between 
network and local display of single frames.  in dynamic display 
of continuously moving pictures involving 10 to 100 lines, how- 
ever, there was a big difference.  The local display presented 
perceptibly continuous motion, whereas the network display 
jerked from one configuration to another 2 or 3 times per second. 
That was a rather preliminary test, made at an early stage of 
network development.  Improved means will provide improved per- 
formance. We shall make further tests to determine the ability 
of the network's programs. Interface Message processors, and 
50-kilobaud lines  to handle kinematic graphics. 

2.  The Network at the End of the Year 

At the end of the reporting year, the PDP-10 wing of the Computer 
Network group at Project MAC was in the process of consolidat- 
ing its basic software subsystems and pressing upward into he 
higher echelons of the hierarchy of network software.  The 
process of consolidation will be time-consuming because, through- 
out the year, the network effort was proceeding as rapidly as 
possible toward intermediate objectives, and the hurry to achieve 
them pushed aside such considerations as thorough testing and 
documentation.  There is still some testing to be done, and 
there is a large amount of documentation. 
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At the same time, there is a keen sense of anticipation within 
the group, a strong motivation to master the transfer of data 
sets and files and to proceed as rapidly as possible to the 
execution in remote computers of subprograms called by programs 
in our PDP-10.  We want to exploit network subprogram linking 
in order to bring functionally within the scope of our library 
several very useful collections of programs that exist in re- 
mote computers ~ collections that we need and that would be 
prohibitively expensive to reprogram for the PDP-10. 
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VIII.  EDUCATION 

The Project MAC Progress Report V (July 1967-July 1968, p. 98 
et se£.) describes the language, at the heart of the TEACH 
system, which then was called PL/2 but which since has been 
designated UNCL (UNconmonly Clean Language): 

"It is an interactive language that somewhat resembles 
JOSS, but differs from JOSS and other JOSS-like languages 
in several major respects:  for example, the presence of 
block structure, a context editor, and a function-tracing 
feature". 

During the year ending June 1971, the UNCL interpreter was 
completed.  A result of this effort was design of a novel 
means of implementing variables of label mode. 

Experiments were undertaken with a novel hardwired device which 
was designed to search for certain useful configurations of 
flip-flop circuits. 

Publications 1970-1971 

Fenichel, Robert R., "Design of Languages for Elementary 
Programming Instruction: Lessons of the Teach Project", 
Proceedings of IFIP Conference on Computer Education (August 
1970), III, pp. 175-177.   "   

Fenichel, Robert R., List-Tracing in Systems with Multiple 
Cell-Types", Proceedings of the Second Symposium on Symbolic 
and Algebraic Manipulation (March 1971). pp. 242-247. 

Fenichel, Robert R., "Comment on Cheney's List-Compaction 
Algorithm", Communications of the ACM, XIV, 6 (June 1971). 

Fenichel, Robert R, "On Implementation of Label Variables", 
Communications of the ACM, XIV, 5 (May 1971) . 
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Introduction 
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IMPLICIT COMPUTATION 

B-  Exact-Inexact Machines and Approaches 

In Progress Report VII, we described exact-inexact machines with 
analog inexact substructures.  We have investigated in consider- 
able detail one such machine for the solution of systems of 
linear equations.  We have found that the proposed approach is 
feasible and can handle fairly large problems.  One limitation* 
that we encountered is that, in the case of relatively ill- 
conditioned problems, the analog errors grow with increasing 
system size to the maximum acceptable error (for convergence 
of the exact-inexact cycle) of ± 50%.  We are currently at- 
tempting to find exactly where that limit is.  It seems to 
occur at system sizes of several hundred equations, for typi- 
cal problems. 

We have also initiated work on what seem to be promising exact- 
mexact approaches with a digitally computed inexact part. One 
such approach is presented in the remainder of this section, in 
terms of an example. 

Consider the structure of Fig. 1.  It is intended for the solu- 
tion of certain systems of linear equations.  Specifically, the 
system to be solved is Ax=^, where vector %  and matrix A are 
given, and vector x is the unknown.  For an initial explanation, 
let the scalar ki shown in Fig. 1 be unity.  The computing struc- 
ture consists of two parts — a relatively exact substructure 
(e.g., 32 bits) which checks if a suggested vector x^  satis- 
fies the above equation (to that accuracy); this substructure 
computes digitally the error ^ -Ax^  The other part of the 
system is a relatively inexact substructure (e.g., 4 bits) 
which computes digitally the correction variable. Ax- as 
follows:  AX-L = A*"  (Y_ - A xi)*, where the star subscript in- 
dicates inexact approximation (truncation) of the corresponding 
quantity to this reduced accuracy.  Execution of the computa- 
tion is iterative, each iteration consisting of first the com- 
putation of the error, then of the correction Ax^ and then of 
the next iterate xi+i as Xi+1 = xi + AXJ..  If tEe starred quan- 
tities were exact, then tEe exact solution would be obtained in 
one  iteration, since Xj^ + Ax^ can be easily verified as the solu- 
tion of the system A x = ^"Tfor any choice of Xj^  Because these 
quantities are not exact, each iteration brings X^+T closer than 
Xj^ to the solution, with contraction depending on the error be- 
tween their exact and inexact values. 

Observe that the idea that is illustrated by this example is 
the decomposition of the problem into exact and inexact sub- 
structures, not the issue of stability of the above feedback 
approach.  The stability of iterative algorithms for the 
solution of linear systems has been treated extensively in 
the literature.  It is expected that the exact-inexact ap- 
proach is applicable to the majority of these algorithms; 
indeed, a part of the proposed work is concerned with such 
applications. 

We return now to the role of the constant k. and cf the multi- 
plications of Fig. 1.  As 3^ approaches the1solution, with 

■ 
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, 

increasing i, the error y, ~ Ax. is computed exactly.  It is then 
multiplied by k. and converted1to an inexact value by trunca- 
tion of the undesirable least-significant bits.  This multi- 
plication is performed in order to increase (scale) the magni- 
tude of the error to as near as possible the full scale of the 
inexact subsystem, so that the inaccuracies of that subsystem 
are small compared to the values of its input variables.  Thus, 
the input to the inexact subsystem is the truncated value of 
the quantity k. (Y_ - Ax. ) .  The effect of constant k. is "can- 
celled", after the correction vector has been computed by the 
inexact subsystem, through multiplication of that vector by 
l/ki.  Naturally, the truncated correction vector is padded to 
the right with a sufficient number of zeros to offset trunca- 
tion, i.e., to match the word length of the exact process. 
Thus, as computation progresses (increasing i) and the exact 
error y - Ax. becomes progressively closer to zero, the con- 
stant k. is made progressively larger so as to keep the in- 
exact system inputs near full scale.  Observe also that these 
multiplication and division operations are performed to full 
accuracy. 

Observe next that, using straightforward techniques, the exact 
subsystem computes the error in time proportional to N2q2 for 
an N x N matrix A, at a word length of q bits.  This is the 
case, since the exact subsystem performs a matrix-vector mul- 
tiplication. 

The inexact subsystem, however, can invert the matrix in time 
of order N3z2, where z is the word length of the inexact com- 
putation.  This is the case since N3 operations are needed and, 
of these, multiplication is dominant, requiring time z2.  Once 
the matrix is inverted, the time expended per inexact cycle is 
N2z2since an N x N matrix multiplies an N-vector, at z bits. 
Finally, the number of exact-inexact cycles needed is of order 
q/z since, at each iteration, the exact error is reduced by 
roughly z bits (recall that the exact error is constantly 
scaled up by k^).  Thus, the total time for the entire process 
grows as: 

N3z2 + (N^ + Nzzz) 

For large N, this computing time grows essentially as N3z2. 
Thus, compared to an equally straightforward exact matrix in- 
version approach requiring time N3q2, the above approach is 
faster by a factor (q/z)2 

that factor is 64. 
For our example, q/z = 8, hence 

C.  Pressure-Flow Machines 

In this approach, the computing structures under consideration 
involve the spatial interconnection of computing elements which 
correspond to the individual relations (or equations) that make 
up the over-all problem.  These computing elements, in turn, 
process two types of variables, which we call "flows" and 
"pressures^". *  The flows correspond to the usual variables in 
any computing system, i.e., the unknowns and any intermediate 

i 

*These are simply names of variables motivated by physical sys- 
tems.  We are not referring here to any physical pressures or 
flows. 
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variables needed to compute these unknowns.  The pressures, on 
the other hand, denote the extent by which the flows do not 
satisfy the relations represented by each computing element. 
Each computing element treats the flows as inputs and the pres- 
sures as outputs.  Thus, ff the flows satisfy the intended re- 
lation of that element, then the pressures are zero.  If, 
instead, the flows do not satisfy the intended relation, then 
the pressures assume non-zero values which (1) denote the ex- 
tent by which the flows do not satisfy the relation, and (2) are 
related to the flows through a pseudo-energy constraint, similar 
to the relationship of variables and co-variables of physical 
energy-lossy elements.  These, as well as certain additional 
properties of the pressures and flows are retained under com- 
position of the computing elements into larger composite sys- 
tems — that is, the resultant systems have flows for inputs 
and pressures for outputs, which are related by the same type 
of pseudo-energy constraints.  The result of this organization 
is the ability to construct arbitrarily complex, spatially 
distributed structures that simulate large systems of equations 
and that are capable of converging asynchronously to desired 
solutions, in the same sense that aggregates of passive elec- 
trical network elements converge on their "solutions", under 
given excitations. 

In more detail, the organization of pressure-flow machines is 
as follows: 

1) Primitive digital computing elements are made to 
correspond to the desired primitive relations.  Each 
such element has as many inputs (flows) and as many 
outputs (pressures) as there are variables in the pri- 
mitive relation.  These pressures and fj.ows are re- 
lated through a pseudo-energy function, as follows: 

a) The flows are the variables of the primitive 
relation. 

b) The pseudo-energy function is defined on these 
variables, such that it is zero if and only if the 
values of these variables satisfy the corresponding 
relation.  Otherwise, the pseudo-energy function is 
positive. 

c) The pressures are defined as the gradient of the 
pseudo-energy, on the space of the flow variables. 

2) Composite pressure-flow machines are made up of prim- 
itive computing elements, and (recursively) of composite 
pressure-flow machines, in direct correspondence to com- 
posite relations, which are made up of primitive relations 
and (recursively) of composite relations. The rules are 
as follows: 

a) External variables, i.e., free variables of the 
composite relation, appear as flows and as pressures 
of the composite machine.  As flows, they are simply 
connected to the constituent machines, if the 
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corresponding free variables are related by consti- 
tuent relations.  As pressures, they are generated 
by summation of the corresponding pressures of all 
constituent machines which relate that free variable. 

b) Internal variables, i.e., variables bound by the 
composite relation, appear as neither flows nor pres- 
sures of the composite machine.  Instead, each such 
flow is generated (negatively) by digital integration 
of the sum of all corresponding pressures supplied by 
constituent machines, i.e., the machines correspona- 
ing to constituent relations that relate that bound 
variable. 

c) The pseudo-energy associated with a composite 
machine is the sum of the pseudo-energies of the 
constituent machines. 

3) Under these composition rules, it is the case that 

a) The flows of every composite nachine are the 
variables of the corresponding composite relations. 

b) The pseudo-energy of every composite machine is 
non-negative.  In particular, it is zero if and only 
if the pseudo-energy of every constituent machine is 
also zero, i.e., if every constituent relation is 
satisfied, which means that the corresponding com- 
posite relation is also satisfied. 

c) The pressures of the composite machine are the 
gradient of the pseudo-energy of the composite 
machine, since they are formed bv addition of the 
pressures of constituent machines, and since 
the pseudo-energy of the composite machine is the 
sum of the constituent-machine pseudo-energies. 

Observe that the properties of pressure, flow and pseudo- 
energy for composite machines (Items 3 (a), (b) and (c) 
above) are the same as the properties of the corresponding 
entities of primitive computing elements (Items 1 (a), (b) 
and (c) above).  This consistency under recursion is essential, 
for it insures that pressure-flow machines of arbitrary com- 
plexity, constructed by the above rules, obey a fixed set of 
properties.  These properties are, in turn, pivotal in the 
ability of pressure-flow machines to solve satisfactorily 
specific classes of problems. 

One of the principal results to date is that the pseudo-energy 
of every composite machine decreases or at worst remains con- 
stant if the flows of that composite machine are held constant. 
We have further shown that for linear problems (i.e., aggre- 
gates of linear primitive relations), which are not singular, 
the over-all pseudo-energy decreases, converging towards the 
solution.  These results make possible the application of the 
pressure-flow machines to problems of arbitrary complexity. 
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D,  Fundamental Work 

The pressure-flow approach and the inexact part of an exact- 
inexact machine are made up of spatially distributed systems. 
In order to probe the ultimate computing speed of spatially 
distributed systems, we have postulated a set of physico- 
mathematically based axioms.  These axioms concern the speed, 
packing density, and noise threshold of the energy wi i which 
any computing device detects or alters the physical represen- 
tation of information.  The principal result of our work to 
date is that th^ time needed by a spatially distributed system 
to compute any n-argument function grows with n at least as 
n1/3.  This result is based only on the above-mentioned axioms 
and on the fact that the computing function depends non- 
trivially on all its arguments.  Further results indicate 
that, regardless of the vay in which identical computing modu- 
les are "stacked" in space, they cannot compute a function of 
n arguments as fast as the above bound — in fact, they often 
compute such a function no faster than n1/2.     Finally, the 
above bound has been combined with certain other results, 
yielding a measure for the computational efficiency of a pro- 
cess distributed in time and space.  Through this measure, it 
is possible to assess the efficiency of a given space-time 
process.  The details of this development will appear in the 
Proceedings of the 19 71 Switching and Automata Theory Confer- 
ence in a paper by Dertouzos. 

Another area of fundamental work is motivated by the logical 
capabilities and limitations of the analog substructure of an 
exact-inexact machine.  Here, we have investigated the logical 
capabilities of certain dynamic analog structures made up of 
sample-holds and integrators.  This work has resulted in a 
wealth of interesting results, theorems, and constructive 
techniques for dynamic-system synthesis. They will appear in the 
doctoral dissertation of M. E. Kaliski, M.I.T. Department of 
Electrical Engineering, to be completed shortly. 

We have also investigated the logical capabilities of a class 
of Turing Machines which can store and process real numbers. 
Results of this work are related to computations on the real 
numbers.  They will appear in some detail in the Proceedings 
of the 1971 Switching and Automata Theory Conference in a 
paper by Abramson. 

Publications 1970-1971 

Abramson, F. G., Models for Continuous-Discrete Computation, 
S.M. Thesis, Dept. of Electrical Engineering, February 1971. 

Dertouzos, M. L., "Computer Graphics: Problems and Progress", 
Proceedings, Erlangen Symposium on Display Use for Man-Machine 
Dialog, Institut fur Mathematische Mashinen und Datenverarbei- 
tung, Erlangen, Germany, March 1971. 

Dertouzos, M. L., "Elements, Systems and Computation:  A Five 
Year Experiment in Combining Networks, Digital Systems and 
Numerical Techniques in the First Course", Proceedings, Purdue 
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Publications 1970-1971 (cont.) 

1971 Symposium on Applications of Computers to Electrical 
Engineering Education, Purdue University, Indiana, April 26-28, 
1971. 

Dickens, M. W. , Computer Graphics:  Central Problems and Their 
Treatment, S.M. Thesis, Dept. of Electrical Engineering, June 
1971. 

Lum, M., Computer-Aided Analysis of Nonlinear Networks, S.M. 
Thesis, Dept. of Electrical Engineering, January 1971. 

Lynn, C. W., Non-Linear Function Processing for Computer 
Analysis of Networks, S.M. Thesis, Dept. of Electrical Engineer- 
ing, June 1971. 

Weinberg, A., Computer-Aided Education in Subject 6.001, S.M. 
Thesis, Dept. of Electrical Engineering, January 1971. 
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X.  INTERACTIVE MANAGEMENT SYSTEMS 

ORGANIZATIONAL INFORMATION SYSTEMS 

A.  Introduction 

The Organizational Information Systems Group seeks to develop 
and understand how to use interactive information systems in 
the administration and operation of organizations.  The svs- 
^«^ K3 ^ are investigating incorporate a data base that 
describes the present and past state of the organization, 
models that can be used to predict future states, and procedures 
tnat assist in making planning and control decisions.  Also 
central to these systems are facilities that allow users to 
interact with this body of data, models and procedures.  To 
lend concreteness to our systems research, much of the work has 
been done in the context of specific applications - largely 
the administrative problems of Project MAC itself and of several 
of the academic departments at M.I.T.  During the comina vear 

ject attempted to integrate a number of interactive systems 
m^nJ^L°?era^ng ^ CTSS int0 a mana^nt system and to develop 
management information systems for Project MAC on CTSS.  Some 
SE«^ i0^* i? USeful interactive systems for personnel manage- 
ment, budgeting, inventory control and purchasing were derived 
from this work.  Since June 1970, our research has focused on 

M ?^ P"16^ of general-purpose data-manipulation facilities 
on Multics and on the application of these facilities in manage- 
ment systems for Project MAC.  During the last few months, we 
h*Zl  ^9U? Tf 0^ techniques for modeling organizations, and 
have started developing models for Project MAC.  This work has 

di?ectlPPO    ln Part ^ ARPA through 0NR and in Part ^ ONR 

The principal projects undertaken during the last year were: 

1) Design and implementation of a set-theoretic data- 
manipulation system on Multics. 

2) Development of management information systems for Pro- 
ject MAC end for the Sloan School. 

3) Studies of access control and privacy in computer data- 
base systems. -      «r     »■-« 

4) Studies of models and modeling of organizations. 

These research projects are discussed more fully below. 

B-  Set-Theoretic Data-Manipulation System 

mmm mi BLANK 
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I 

The initial version «^hls^s^1?^ °' data and ^rations, 
used  for  a Personnel Data iy^^pM^"»* "< *» "^"9 
the performance  of  i-hi c:  ini+■■! =i 1   cl-uJecj- MAC.     Studies  of 
for additions? modificatiSnsandS^r Wlll.be USed  as  a bas^ 
during  the next year      The  s4^m

PVementS  that wil1 be **** 
implemented  on MulUcs. y S  Pro5r^ed  in PL/1  and  is 

in Tältl^Te'cTns^Ts ofsets'of^^ ^f info^tio„ stored 
of relations among them that ar. ..?? J Elements   (DE)   and  sets 
(RDS) .     The  basic  set-theo^et^^-f3 Relational Data  Sets 
for manipulating the RDS? P^itive operations are used 

Given  the  Data Element Sets   (DES)   SI     ^ 
Data Sets  consist of n-tuples   rtunT«  tl'*'"   Sn'   the Re-ational 
has its  first element froS sit SlPf?«f de^ee^ '  ^^ of which 
and so on.     The Relation SeIcriptor?pnfnd-eleinent from S2' 
TnLo:tUPie COmpOSed 0f tSe nSL^of (thi se'ts's"^^'6^111?10^' Suppose,   for  examnlp     +-h=>-t-   4-i  sets  bi,   S2,   ...   Sn, 
sons'   n^mes,   lor^esses  and  LfL?"^ Element  SetS  for ***' 
construct  an RDS whic^wHl  represent  the0^!^^5'     We r',ight 

bers of these  sets.     The Rela??on  n2    ^e relations among mem- 
be  the  3-tuple   <person-Lmf       i^    Descriptor  for  this RDS will 
other tuples will  eJpresrtAer^^3'   telePh°ne-number>.     All 
these sets.     In our lmn?!n,!«J felatlon among the members of 

exclusively  in^L^^L^rNu^r^rS  are  '^ 

the6 fSs^/^tTEilmenfLls^arelf' ^ ^ ^ ^' ** 
assigned  to the Data Elemlnf«, Jtored,  Reference Numbers are 

the DES. m tL^^ond'p^t'of ^^ys^m^LL^-^^^^ 0n 

are created and stored, and basic LJ-Jh^ ^txon Data Sets 
ations are performed oA them? set-theoretic primitive oper- 

pÄpÄ^ Play an important role 
is  immediately  assigned  a ReflrLL S     K       

enters  the  system,   it 
all subsequent operSfons on tha^DE      Th'^J!;6.^ ^ USed  for 

ing and  assigning  RN to DE preserved'thJo^00 "***  for  Stor- 
guarantees  that a particular DSfrL^L0rd?ring of the DE and the system. Parncuiar DE is  stored only one time within 

C. Management Information Systems 

u^ertÄhL' yefartWO ZTITTJ^T^ S*St™S  has b-n 
tion of Project M^C  The o?her ff/3 ^  aid in the administra- 
Sloan School. 0ther 1S for the administration of the 

and6 ^r^l^/^r^iS!!^ n1—ted by A. J. strnad 
above,  m its initial v!.ofu1PUlatlon system described 
active data storage? retrleiaJ' S^^f^ Wil1 Provide int^- 
tion support for the personnel'^nPUlaJ10?' and ^port-genera- 
control, and ^0111^^=^^^^ 
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office.  The personnel function has been implemented and exper- 
iments are under way to evaluate its performance. 

The Sloan School system, under the direction of Prof. M. S. Scott- 
Morton and Prof.  J. F. Rockart, has focused on the analysis and 
design of a decision support system for budgeting.  The progress 
to date has been mainly in the initial decision analysis and tool 
building.  A model of the current budgetary methods in the Sloan 
School has been developed.  The budgetary decisions made by admin- 
istrative personnel have been identified, and the information 
required for these decisions has been determined. 

D.  Studies of Access Control and Privacy 

A Master's thesis by R. C. Owens, Jr., "Primary Access Control in 
Large-Scale Time-Shared Decision Systems", was completed in May 
1971.  The thesis identified four primary dimensions of the access 
control:  1) the physical level at which to apply control, 2) 
the fineness of distinction to the term "access", 3) the meaning 
of the term "user identification", and 4) the degree of sophisti- 
cation employed in automatically assigning restrictions to new 
data files. 

Within the context of MacAIMS, the Project MAC Advanced Inter- 
active Management System, the design of an access-control sys- 
tem is presented which takes positions along these four dimen- 
sions appropriate for controlling access in a Management Deci- 
sion System.  Support is provided for constraints specified as 
general logical restrictions based on 1) the characteristics 
of the entity requesting access, 2) the content of the sensitive 
data item, 3) the context in which the sensitive item appears, 
4) proper completion of an interactive procedure, and 5) com- 
binations of any of these.  The access levels that may be speci- 
fied are based on the logical (not the physical) nature of the 
interaction that the user requests. 

The system presented here is an interim system in that it does 
not solve all the access-control problems of MacAIMS. Among the 
unsolved problems is that of Truth:  in a data management sys- 
tem that provides a powerful set of operators, it is easy to 
create false information in very subtle ways.  Another problem 
is that of conflicts of privacy.  Solutions to these problems 
must be found before the access-control scheme will be complete. 

R. C. Goldstein has begun a doctoral thesis, "The Political Dyna- 
mics of Information and Privacy", in which he intends: 1) to in- 
vestigate the interaction between individual privacy and "quality 
of life" in a society, and 2) to explore techniques that can be 
used to protect privacy. 

E.  Modeling of Organizations 

P. Kleindorfer, M. Lenot, H. J. Siegel and Prof. J. I. Elkind 
have just begun a study of organizational models.  The opera- 
tions of Project MAC, as an example of a research and develop- 
ment organization, are being analyzed.  We are obtaining a des- 
cription of the principal activities of the Project and we shall 
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attempt to express this description in the form of a quantita- 
tive model. 

Publications 1970-1971 

Goldstein, Robert C, "Helping People Think", Naval Research 
Reviews, January 1971; also Project MAC Technical Memorandum 
25, April 1971, AD 721-998. 

Goldstein, Robert C, "The Substantive Use of Computers for 
Intellectual Activities", Project MAC Technical Memorandum 21, 
April 1971, AD 721-618. 

Goldstein, Robert C., and Strnad, Alois J., "The MacAIMS Data 
Management System", presented at the ACM SICFIDET Workshop on 
Data Description and Access, Houston, Texas, November 1970; 
also Project MAC Technical Memorandum 24, April 1971. AD 721- 
620. 

Goldstein, Robert C, "Position Paper on Computers, Data Banks 
and Bill of Rights", prepared for Subcommittee on Constitutional 
Rights, Committee on the Judiciary, U. S. Senate, March 1971; 
AD 721-670. 

Owens, Richard C., Jr., "Primary Access Control in Large-Scale 
Time-Shared Decision Systems", thesis. Master of Science, Sloan 
School, M.I.T., June 1971; also MAC TR-89, AD 728-036. 

Strnad, Alois J. , "The Relational Approach to the Management 
of Data Bases", Project MAC Technical Memorandum 23, April 1971, 
AD 721-619; material also accepted for presentation at IFIPS. 
August 1971. 

Wells, Douglas M., "Transmission of Information between a Man- 
Machine Decision System e .d its Environment", Project MAC Tech- 
nical Memorandum 22, April 1971, AD 722-837; material also 
accepted for presentation at IFIPS, August 1971. 
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SIMPL  PROJECT* 

of^sr^?? but^f harnotleln^ OPer
h

a?le ^ the be^^g 
of the advanced feature^o/llMPrSere^ot^lSlf a?d mOSt 

the  system was  used by  approximate!J?/™LS 5le*     In ku<3™*t' 
Sloan School Summer Session SlS,nJfT 20

c
me^bers of a special 

period we discoveJecl m^nj of th^ h,^    "  ^^'  dUring which 

first  system.     A users^manual 1* !?  ^  limitations of  that 
the  Sloan School. aS  alSO hurriedly prepared  for 

totyprs^f^L'^eirL^^vis^^119 ^^ifyin, that pro. 
documentation      The svstL wl« J?! expanding the descriptive 
School  simulation  cllss   MS  572^n   used^Xtensively by  the  Sloan 
continuous class  use  quiikl^reieSed^h^h  Fal1  Semester-     ^his 
system.     By the  end  of  the LmSSr     theq^M??  ^^^  in  the 

-  system,   and^me^ ^^^^e^L^e^de^^  ^ 

wL^^Lnl^^e^Lb^bul ir±?b?f f
6 "^ ^ nesses:       xeiiaciy, but it exhibited several major weak- 

iLT"ansUto? UselHaeM"" ^«w«" excessively slow. 

I^lS" WaS --"-- - -nrt^-lönTtLe^ -0- 

Ät,^ S^r SeUKr T^V ""^ t-»"P^t 

entire model "henSver he want^^81"^ and """»P"« his 
any part of the Si.      ed t0 make a s,,,a11 chan9e " 

Thus, the system has 
user an "incremental" 
to undertake the desi 
which would be more e 
easily accommodate al 
system. We felt that 
enable us to produce 
amount of time. 

not yet realized our goal of giving the 

an ai^™0? SyStem-  We therefore decided 
gn and implementation of a new system 
1 ihi:6^^/11 resPects, and which would 
1 the additional features of the full SIMPL 
our experience with the old system would 

the improved system in a relatively short 

1 

^he^f^ G1^.^ SIMPLE '-up decided to change Its name to 
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The new system (now called Version 2) was designed and programmed 
beginning in February 1971, and is now in the final stages of 
testing and debugging.  Besides being more efficient in trans- 
lation, compilation and execution, Version 2 includes a complete 
tracing capability, allows external activities, produces numer- 
SSr.?^! ?!: ^ 0^iented statistics, and supports the interactive 
SIMPL Monitor.  None of these features was available in the 
earlier Version 1.  The SIMPL Monitor itself is written and work- 
ing; it is a very flexible run-time system which allows the user 
almost complete freedom to inspect and modify his model, then 
to continue or restart the simulation. 

The SIMPL system has also been conscientiously documented.  At 
present, documentation comprises three manuals.  The SIMPL 
Primer is a short description of SIMPL, intended to give new 
users a quick introduction to the system.  The SIMPL Reference 
?4-an"al contains a complete description of all features of the 
system and their use.  The SIMPL Implementation Manual describes 
.he Multics implementation of SIMPL.(The latter currently 
describes only Version 1; several new chapters have yet to be 
added to bring it up to date.) 

Current plans call for finishing work on the SIMPL system by 
30 September 1971, and releasing it to the M.I.T. community for 

?o??rcJ USe; u™? SyStem Wil1 undergo a final test during the 
iy/i Sloan School Summer Session Simulation Seminar in late 
August.  Between now and then, we plan to implement a few new 
features (including process priorities, ranked sets, and inter- 
polation functions), to complete the implementation manua], and 
generally to streamline the system for release to the public. 

There will, no doubt, be a continuing need for maintenance 
throughout the 1971-1972 school year and plans are being made 
to provide that assistance.  Also, the installation of the Ver- 
sion 2 PL/1 compiler may necessitate some slight reprogramming. 

There are no present plans to add a well-integrated graphical 
facility to SIMPL, using something like the IMLAC PDS-1, although 
n^LV    Tf  ai3c

ex^lting thesis Project.  Also, we have com- 
pletely written off the idea of ever implementing a true inter- 
preter for the SIMPL language, deeming that far too big a job 
and not worth the effort now that we allow external activities 
to be separately compiled and debugged.  It is our hope that 
we can redirect our efforts from developers of SIMPL to users 
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XI.     MATHLAB 

During  the past year the Mathlab group has  continued to develop 
the MACSYMA system for  interactive  algebraic manipulation.     The 
principal modules  of MACSYMA are shown in Fig.   1.     Those  indi- 
cated by circles  are  complete. 

MANIPULATION 
OF 

POWER 
SERIES 

RISCH 
INTEGRATION 
ALGORITHM 

FIG.    1.      THE    MACSYMA   SYSTEM. 

113 PRECEDING PMC HANK 



i .ZliVmk'StZ.'.Tmmi.rt*^*.-- 

. 

I 
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Seven papers describing MACSYMA and related work of 
were presented at the Second Symposium on Symbolic 
Manipulation held in Los Angeles, 23-25 March 1971. 
now reached a point where it is both a useful tool' 
tion of real problems and a convenient base for res 
algorithm analysis, and development of advanced sys 
applied symbolic mathematics. We are beginning to 
for the solution of several problems of interest in 
and physics. 

our group 
and Algebraic 
MACSYMA has 

for the solu- 
earch in 
tems for 
use MACSYMA 
mathematics 

With Prof. Bers, of the M.I.T. Department of Electrical Engineer- 
ing, we are using MACSYMA to investigate the properties of the 
dispersion relation of a linear system. 

With Dr. Eytan Barouch, of the M.I.T. Department of Mathematics, 
we explored some problems in statistical mechanics. 

Quantum mechanical calculations for Mr. F. Heile's S. M. thesis 
(M.I.T., Physics) were done in MACSYMA. 

Within our own group, L. Rothschild and Prof. J. Moses have 
used MACSYMA for testing mathematical conjectures, and R. J. 
Fateman has used the system for solving a large number of sets 
of simultaneous linear equations arising in the analysis of 
MACSYMA's polynomial manipulation routines. 

New algebraic manipulation algorithms are also under investiga- 
tion.  Recently developed polynomial manipulation algorithms 
using modular arithmetic have been implemented.  General methods 
of obtaining simplification rules for functions, defined by 
differential equations, are also being developed. 

Publications 1970-1971 

Martin, William A. and Richard J. Fateman, "The MACSYMA System", 
in Second Symposium on Symbolic and Algebraic Manipulation, As- 
sociation for Computing Machinery, Los Angeles, California, 
March 23-25, 1971, pp. 59-75. 

Martin, William A., "Computer Input/Output of Mathematical 
Expressions", in Second Symposiuia on Symbolic and Algebraic 
Manipulation, Association for Computing Machinery, Los Ange 
California, March 23-25, 1971, pp. 78-89. 

Angeles, 

Moses, Joel, "Algebraic Simplification:  A Guide for the 
Perplexed", in Second Symposium on Symbolic and Algebraic 
Manipulation, Association for Computing Machinery, Los Angelas, 
California, March 23-25, 1971, pp. 282-304. 

Fateman, Richard J., "The User-Level Semantic Matching Capability 
in MACSYMA", in Second Symposium on Symbolic and Algebraic Mani- 
pulation, Association for Computing Machinery, Los Angeles'^  
California, March 23-25, 1971, pp. 311-323. 
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Publications  1970-1971   (cont.) 

Martin,  William A.,   "Determining the Equivalence of Algebraic 
Expressions by Hash Coding",   in Second Symposium on Symbolic  and 
Algebraic Manipulation,   Association  for Computing Machinery,   Los 
Angeles,  California,   March  23-25,   1971,   pp.   305-310. 

Moses,   üoel,   "Symbolic  Integration:     The Stormy  Decade",   in 
Second Symposium on  Symbolic  and Algebraic Manipulation,  As- 
sociation  for Computing Machinery,   Los Angeles,   California, 
March   23-25,   1971,   pp.   427-440. 

Wang,   Paul S.,   "Automatic Computation of Limits", in Second 
Symposium on Symbolic  and Algebraic Manipulation, Association 
for Computing Machinery,   Los Angeles,   California, March  2 3-25, 
1971,   pp.   458-464. 
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XII.  PROGRAMMING LANGUAGES 

A.  Introduction 

During 1970-1971, research in the Programming Languages Group 
focused on analysis of languages and their translators (compilers) 
and the environment in which they exist (operating systems). 

B. Canonic Systems 

A canonic system is a type of formal system that operates on 
several sets of strings over a finite alphabet.  Canonic systems, 
(equivalent to Smullyan's elementary formal systems) are a var- 
iant of Post's canonical syscems.  In canonic systems, the gen- 
eral framework of productions or string-transformation rules is 
replaced by a system of axioms (canons) and by the logical rules 
of substitution for variables and detachment (modus ponens). 
A canonic system defines a set of inter-related predicates, each 
of which i.' a set of strings. 

In particular: 

A canonic system is a sextuple 

£=(C,V,M,P,S,D) 

C is a finite set of canons 

V is an alphabet of terminal symbols used to form the 
strings generated (i.e., provable) by ^ 

M is a finite set of variable symbols (variables) 

P is a finite set of predicate symbols (predicates) used 
to name sets of n-tuples.  The number of components in 
the n-tuples denoted by a predicate is the degree of 
the predicate 

S is a finite set of punctuation signs used in writing 
canons 

D  (SP) is a set of sentence predicat-es, the union of 
which will be defined to be the language specified by 
the canonic system 

Canonic systems have been used to specify the syntax and the 
translation of programming languages.  They have served as a 
data base for a generalized translator for computer languages, 
for proving various theorems as to their mathematical power and 
their formal properties, and they have been used to study the 
complexity of translators and languages. 

C. Power of Canonic Systems 

We have proven a general theorem relating canonic systems to 
various types of formal grammars. 

PRECEDING PAGE BLANK 
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Theorem. For every type of grammar, there exists a cla«^ of 
canonxc systems with the property; that for evlry gra^ar of 
the type under consideration there exists a canonic avaJLJh^ 

cl^riurtLrtharr6 a?d that, belongsCtS0rcor^slond^ class.  Further, that class of canonic systems can be constructed. 

Many formal systems — for example, canonic systems «nH TWO n 
grammars - have inherent undecfdabilit? probllmsT Inaellral 

of^ime13 whetiL0rorth^o?Tble 0f ,tellin?' -"er a finltTlZunt UJL time, wnetner or not a given string is in the lancruacm n-F 

ItllollTslllS  oftUfieS 0f POWer help US t0 -SlrsJ^^ow0' characteristics of a grammar correspond to structural features 

Sfven lit^tion t^C^OSe the Weakest ^anonar suitablfto a given situation.  At the same time, by exploring restrictions 
we learn about the structure of language.       restrictions 

Figure 1 is an inclusion diagram of the relationships between 

D«  Canonic Systems and Recursive Sets 

dlfinlna^aH ^f ^"f Can eXist no class of c^onic systems 
sets SL tLt ^aSS)

1T
2r? recursive sets, all the recursive 

of Tvoe i define an *i%    w xa axso or lype 1 (2,3).  Grammars 
" 4. i.u   ael:i

i
ne all and only languages of Type i. but it i =; 

itL?*  CaSer  ihat .(f0r i ^V   2nlZ grammars of Ty^i define languages of:  Type i.   •"•JfF" J- ueime 

systems1'the Ncl^fo^ th\case  that a certain class of canonic systems, the NCS2 for instance, would correspond to recursive 
sets in the sense that it defines all and only recursive seH 
without claiming monopoly in definlH? recu?ilJe£filFt?-e^ot 
all canonic systems defining recursive sets are in thit clasj? 

In particu- lar mNCS2^Sp^ iSihat ^^ can be no such class.  . . ... F lru- 
able "rHi^f ^ rhe Proof is hy  ^agoniTI7atIoH-(after a sSu- able Gddelization" of canonic systems). \     ^r  a  suit 

E.  Generalized Translator 

^Jffi^iKnt al^orithm  which is capable of recognizinq strinas 
produced by a canonic system has been developed aaaS extension 

the input string ag^ins? t^SSence' p^ST^e^he^n^nlc 

imr)   ll~ril       femove? the inadequacies of Backus Naur Form 
BNf It H   Cat1^ 0f the Syntax of Programming languages  In 
BNF it is impossible to describe many of the constraintfthat 

^». 
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exist in programming languages, such as the restriction that a 
legal program" is not acceptable to a translator, even thoUg

h 

correct in form, if not all of the reference labels in the pro- 
gram correspond to statement labels (sometimes referred to as 
"context-sensitive features"). «J-i-eu to as 

F.  Canonic Reduction Generator 

The production language, as introduced by Floyd, affords the 
capability of implementing a one-pass, one-puL^down-stick re- 
cognizer for a computer language.  The powe? of the production 
language may be even further enhanced, however, by the intro- 
duction of action routines, to be called for the purpose of 
code generation upon the detection of a legal and complete 
syntactic form  These enhanced productions are referred to as 
reductions.  The problem exists, however, of getting from a 

?heCoroblai0Sf0f " la^Uage t0 the P^uctions or reductTons. 
Int  h^e  ? of generating productions has been solved by Barley, 
but his algorithm specifies the generation of productions given 
a BNF representation of a language.  However, BNF is incapable 
of representing the translation of a computed language? and 
thus reductions cannot be generated from a BNF specification. 

?Snot^SySte^S' 0n the 0ther hand' can be used to specify the 
h^ ^  ?n 05 a comPuter language as well as its syntax.  We 
have developed an algorithm of generating reductions give^ a 
canonic systems specification of a language.  The algorithm 

EarWs ^e WOS ^ Earley' ^ in fa°t' iS identica? to 
?emi Lv.Ji?  ^ f0r the CaSe 0f Si^le  level canonic sys- 
form iho ?P ' 0f course' that canonic systems rather than BNF 
mSnLS ^ Sn9S?ge sPfcificati°n) ■  The algorithm has been imple- 
mented to handle predicates of level one or two.  In the case 
of a level two predicate, the second element specifies the 
action routine associated with the given syntactic form 

G-  Undecidability of Programming Languages 

It is wel] known that in a language where conditional transfers 
of control are available, it is decidable that a progrS contains 
a loop but it is undecidable whether or not any par?i^lar 

thePprogramV^i?e entered' or "— generally-/wSSJe? «not the program will ever wind up in a loop.  Given an arbitrary 
Turing machine, this follows the impoisibility of deciding 

T^VattlrTr^^^1?  ^rUC?ion wil1 -- Sexe^ted. 
HAT? Jn^  Problenj is undecidable since we can replace all 

LT infurüCtl0ns by ^ust one' and if we could decide whether 
or not that instruction would ever be entered, we would havl 
a solution to the halting problem. 

PL/1 has a compile-time facility which enables the programmer: 

to direct the compiler to compile a certain group of 
source-language statements rather than some other group; 

to include source-language statements or data stored on 
some storage device; 

und so on. 
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A preprocessor performs these compile-time operations and gives 
as output, a stream of source-language statements from which it 
has determined that these and only these statements are to be 
included and compiled in the program.  In order to be able to 
!^   ^tS function' the Preprocessor recognizes and executes, 
among other compile-time statements, conditional transfers. 

f^nff^ 0f f^t^ents given as input to a PL/1 compiler con- 
tains statements to be compiled and statements addressed to  the 
preprocessor to be executed at compile time.  Confining our 
attention to these latter statements only, we see that thev 
satisfy the conditions that they constitute an [alleqedl pro- 
gram, written in a language which includes conditional trans- 
fers of control.  It is decidable whether there are any com- 

eJer'eitJr rio^^ ^ ^ Undec:Ldable that the P^gr^  will 

The compiler is presented with a stream of statements and is 

r«?!^6! V'W16 it' if ^ is syntactically correct, or to 
n?n^o   ^i  JS n0t'  SuPPose' however, that the stream in- 
cludes compile-time statements, and that these compile-time 
statements include loops;  if such a loop will ever be entered, 
the compiler will not halt (assuming an infinite scratch file) 
and the program will not be compiled (will not be accepted) 
Since it is undecidable whether or not such a loop will ever be 
iTtlrt^*   1S  Undecidable that the input stream of statements 
is accepted as a program.  In other words, the set of PL/1 
STnf5;^/6 Consider the compile-time fiSIlTty ii iTTTntegral 
part of the language (as customary), is not recursive- 

H*  Measure Function of Programming Languages Resource Usage 

L^!^? 0f comPlexity has been developed for algorithms imple- 
mented in typical programming languages.  The complexity of a 
program may be interpreted in many different ways;  a method 
for measuring a specific type of complexity is a complexity 
measure - some function of the amount of a particular resource 
used by a program in processing an input.  Typical resources 
would be execution time, core, I/O devices, and channels. 

An approach has been developed that analyzes the complexity of 
a program with respect to a valid set of inputs — a finite set 
?n iÜv-if*!' haltin(3  inputs.  A program equation is developed 
to make the transformations undergone by the inputs more expli- 
cit.  Using the equation, the input set is partitioned into 
classes of constant complexity.  The classes are used to compute 
maximum, minimum, and expected complexities of the program on 
tne input set. 

Several equivalence relations have been defined, relating dif- 
tr^fi/r^3"13 bVheir complexity. Complexity has also been 
treated m terms of concatenation and functional equivalence of 

I-  Programming Systems Environment 

As the interaction between programming languages and the 
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operating system in which the language finds itself becomes less 
„inni  ^ fl"d.ourselv^ studying operating systems in our 
tu  ?Plu mOSt imPortant aspect of the operating system is 
tnat the programming language must interact with the file svs- 
tem. y 

We have developed an approach to the design and study of file 
systems that allows the designer of a file system to systemat- 
ically implement and analyze the file system.  This approach 
has been used both for teaching file systems and for the  desiqn 
of file systems. =oj.yi* 

These ideas have beeen further developed by investigating the 
relationship of programming language requirements in the en- 
vironment of a real-time computer-based sensor system.  To this 

S^erforthe^IBM^lSo!11 ^^ ^ C™^™™  processing 

This included a software-assisted multilevel-priority interrupt 
mechanism, an on-line simulation language, optimizing compiler 
advanced binder, and generalized file system.        compiler, 

J'  Community Activities 

Members of the group were involved in two major community 

?h^i^S*-J?-!eel.tha^ M'1^-'3 greatness and more generally 
the responsibility of scientists throughout our country, will 
lie not only in the advancement of technical knowledge of 
achievements, but also in the dissemination of this knowledge 
to the communities and to the people that may use this know- 

lna9ft«f^
C^V^y,^We engaged in fcWO P^jectsf   each address- 

ing itself to the Qissermnation of knowledge to different arouos 
of people.  The first group was the community and its tndivfd-P 

uals.  This project was undertaken during the summer of 1971. 
We selected a community that is facing many technical problems, 
e.g., communications, sewerage disposal, power distribution, 
and mosquito control.  We sought support from the town's 
Sr^r" to suPPort students from the town to investigate 
the problem.  These students worked in conjunction with M.I.T. 
stuuGnts• 

The other group, to which we have addressed ourselves, is the 
w2 SfdUC^ed' u"derPrivileged people in the Boston community. 
ShnnT JH  KSSed our!elves to this group through the Lowell 
School, which is a school under the auspices of M.I.T. in the 
^"f; .ü6 haVe h?lped t0 ^structure the school to aSmit 
and teach these people and try to expose them to the process 
of learning and the rewards and satisfaction thereof.  We have 
centered the program around computers, using them as a tool 
for accomplishing our objectives. 

K.  Teaching 

Member, of our group have been involved in conceiving and teach- 
ing several courses whose activities are directly related to 

languages reSearCh ^^^ of this ^oup, namely, programming 

, 

1 
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Course 1 - Progranuning Languages in Formal Systems - 
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I. ARTIFICIAL INTELLIGENCE 

The A. I. Laboratory is concerned with understanding the orin- 
crples of intelligence.  Its goal is to develop a systematic 
approach to the areas that could be called Artificial Intelli- 
gence, Natural Intelligence, and Theory of Computation.  Here 
are its main current foci of attention! 

ARTIFICIAL INTELLIGENCE 

m^n-J
01"0^"'* visio"' mechanical manipulation, advanced auto- 

mation.  Models ror learning, induction, analogy.  Schemata for 
organizing bodies of knowledge.  Development of "hetera-chical" 
program control structures. "««jra^cmcai 

NATURAL INTELLIGENCE 

nn**  M°deis of structures involved in "common sense thinking". 
Understanding meanings, especially in natural language narra- 
thln^*™"  educaticial methodology, based on development of 
the child's abilities to describe processes. 

THEORY 

Computational trade-offs between time, memory size, and 
processor parallelism.  Study of computational geometry as a 
tool for comparing different structures and strategies.  Theory 

^languages   analYSiS 0f COI"Plexities of certain algorithms 

These subjects are all closely related.  The natural language 
project is intertwined with the common sense meaning and 
reasoning study, in turn essential to the other areas, includ- 
"h?^o   Ji810^' .0ur main exPerimental subject worlds, the 
blocks world" robotics environment and the children's story 
environment, are better suited to these studies than are the 
puzzle, game, and theorem-proving environments that became 
traditional in the early years of artificial intelligence re- 
search.  Our evolution of theories of intelligence has become 
closely bound to the study of development of intelligence in 
w^h ^n' Ihe e^ational  methodology project is symbiotic 
with the other studies, both in refining older theories and 
in stimulating new ones; we hope this project will develop 
into a center like that of Piaget in Geneva. 

tLil  hf crystallized over the past few years, the main ele- 
ments of our viewpoint can be summarized cryptically: 

Thinking is based on the use of SYMBOLIC DESCRIPTIONS and 
description-manipulating processes to represent a variety of 
kinds of KNOWLEDGE - about facts, about processes, about 
problem-solving, and about computation itself, in ways that 
are subject to HETERARCHICAL CONTROL STRUCTURES — systems in 
which control of the problem-solving programs is affected by 
heuristics that depend on the meanings of events. 
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The ability to solve new problems ultimately requires the in- 
telligent agent to conceive, debug, and execute new procedures 
Such an agent must know to a greater or lesser extent how to 
plan, produce, test, modify, and adapt procedures; in short, 
it must know a lot about computational processes.  We are not 
saying that an intelligent machine, or person, must have such 
knowledge available at the level of overt statements or con- 
sciousness, but we maintain that the equivalent of such knowl- 
s stem      represented in an effective way somewhere in the 

This report illustrates how these ideas can be embodied into 
effective approaches to many problems, into shaping new tools 
for research, and into new theories we believe important for 

anSPEducaUon?Ce ^ genera1' aS Wel1 aS f0r Robotics' Semantics, 

Much of the material in this report is also part of a draft of 
a book on Thinking.  For information about subsequent drafts 
and publication write to the authors at the A. I. Laboratory. 

The Laboratory is seeking young workers who believe they can 
do work of the quality described herein, as staff, graduate 
students, or post-doctoral fellows. 

1•0 Vision and Description 

When we enter a room, we feel we see the entire scene.  Actually, 
at each moment most of it is out of focus, and doubly imaged; our 
peripheral vision is weak in detail and color; one sees nothing 
in his blind spot; and there are many things in the scene we 
have not understood.  It takes a long time to find all the hid- 

?ira?
ni™«/üACÜild,S PUZZle Picture' yet one feels from the 

first moment that he sees everything.  People can tell us very 
little about how the visual system works, or what is really 
seen   One explanation might be that visual processes are 

so fast, automatic, and efficient that there is no place for 
introspective methods to operate effectively.  We think the 
problem is deeper.  In general, and not just in regard to vi- 
sion, people are not goo, at describing mental processes; even 
when their descriptions seem eloquent, they rarely agree either 
with one another or with objective performances.  The ability 
to analyse one's own mental processes, evidently, does not 
arise spontaneously or reliably; instead, suitable concepts 
for this must be developed or learned, through processes simi- 
lar to development of scientific theories. 

Most of this report presents ideas about the use of descriptions 
in mental processes.  These ideas suggest new ways to think 
about thinking in general, and about imagery and vision in par- 
ticular.  Furthermore, these ideas pass a fundamental test that 
rejects many traditional notions in psychology and philosophy; 
if a theory of Vision is to be taken seriously, one should be 
able to use it to make a Seeing Machine! 

1 • 1  Reasoning by Analogy 

To emphasize that we really mean "seeing" in the normal human 
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sense, we shall begin by showing how a computer program -- or 
a person -- might go about solving a problem of "reasoning by 
analogy".  This might seem far removed from questions about 
ordinary "sensory perception".  But as our thesis develops, it 
will become clear that there is little merit in trying to dis- 
tinguish "sensation" or "perception" as separate and different 
from other aspects of thought and knowledge. 

When we give an "educated person this kind of problem from an 
IQ test, he usually chooses the answer "Figure 3": 

A  is to  B 
is to whicli one. of ftas«? 

o 

/c K 
O 

as        C 

DA A0 

People do not usually consider such puzzles to be problems 
about "vision".  But neither do they regard them as simply 
matters of "logic".  They feel that other, very different 
mental activities must be involved.  Many people find it hard 
to imagine how a computer program could solve -chis sort of 
problem.  Such reservations stem from feelings we all share; 
that choosing an answer to such a question must come from an 
intuitive comprehension of shapes and geometric relations, 
rather than from the mechanical use of some rigid, formal 
rules. 

However, there is a way to convert the analogy problem to a 
much less mysterious kind of problem.  To find the secret, one 
has merely to ask any child to justify his choice of Figure 3. 
The answer will usually be something like this.' 

"You go from A to B by moving the big circle down. 
You go from C to 3 in the same way by moving the big triangle." 

On the surface this says little more than that something common 
was found in some transformations relating A with B AND C with 
3.  As a basis for a theory of the child's behavior it has at 
least three deficiencies: 

It ioes not say how the common structure was discovered. 

It appears to beg the question by relying on the listener 
to understand that the two sentences describe rules that are 
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identical in essence although they differ in details. 

It passes in silence over the possibility of many other 
such statements (some choosing different proposed answers). 
For example, the child might just as well have said: 

"You go from A TO B by putting the circle around the 
square..." 

or 

Aha, 

"You go from A TO B by moving the big figure down," etc. 

If that last statement were applied also to C and 3, the 
rules would in fact be identical!  This leads us to suggest a 
procedure for a computer and also a "mini-theory" for the child: 

Step 1.  Make up a description DA for Figure A and a de- 
scription DC for C. 

Step 2.  Change DA so that it now describes Figure B. 

Step 3.  Make up a description D for the way that DA was 
changed in Step 2. 

Step 4.  Use D TO CHANGE DC.  If the resulting description 
describes one of the answer choices much better than any of the 
others, we have our answer.  Otherwise, start over, but next 
time use different descriptions for DA, DC and (perhaps) for D. 

Notice that Step 3 asks for a description at a higher level: 
The descriptions in Steps .1 and 2 describe pictures, e.g., 
"There is a square below a circle."  The description in Step 3 
describes changes in descriptions, e.g., "The things around the 
upper figure in DA is around the lower figure in DB."  Our thesis 
is that one needs both of these kinds of description-handling 
mechanisms to solve even simple problems of vision.  And once 
we have such mechanisms, we can easily solve not only harder 
visual problems but. we can adapt them to use in other kinds of 
intellectual problems as well ~ for learning, for language, 
and even for kinesthetic coordination. 

This schematic plan was the main idea behind a computer program 
written in 1964 by T. G. Evans.  Its performance on "standard" 
geometric analogy tests was comparable to that of fifteen-year 
old children!  This came us a great surprise to many people, 
who had assumed that any such "mini-theory" would be so extreme 
an oversimplification that no such scheme could approach the 
complexity of human performance.  But experiment does not bear 
out this impression.  To be sure, Evans' program could handle 
only a certain kind of problem, and it does not become better 
at it with experience.  Certainly, we cannot propose it as a 
complete model of "general intelligence".  Nonetheless, analogi- 
cal thinking is a vital component of thinking, hence having this 
theory (Evans, 1964), or some equivalent, is a necessary and im- 
portant step. 

132 

■ - 



ARTIFICIAL INTELLIGENCE 

In developing our simple schematic outline into a concrete and 
complete computer program, one has to fill in a great deal of 
detail:  one must decide on ways to describe the pictures, ways 
to change descriptions, and ways to describe those changes.  One 
also has to define a policy for deciding when one description 
"fits much better" than another.  One might fear that the pos- 
sible variety of plausible descriptions is simply too huge to 
deal with; how can we decide which primitive terms and rela- 
tions should be used?  This is not really a serious problem. 
Try, yourself, to make a great many descriptions of the rela- 
tion between A and B that might be plausible (given the limited 
resources of a child) and you will see that it is hard to get 
beyond simple combinations of a few phrases like "inside of", 
"left of", "bigger than", "mirror-image of", and so on. 

But let us postpone details of how this might be done (see 
Evans, 1964) and continue to develop our central thesis:  by 
operating on descriptions (instead of on the things themselves), 
we can bring many problems that seem at first impossibly non- 
mechanical into the domain of ordinary computational processes. 

What do we mean by "description"? We do not mean to suggest 
that our descriptions must be made of strings of ordinary- 
language words (although they might be).  The simplest kind of 
description is a structure in which some features of a situa- 
tion are represented by single ("primitive") symbols, and rela- 
tions between those features are represented by other symbols 
— or by other features of the way the description is put to- 
gether.  Thus, the description is itself a MODEL — not merely 
a name — in which some features and relations of an object or 
situation are represented explicitly, some implicitly, and some 
not at all.  Detailed examples are presented in 4.3 for pictures, 
and in 5.5 for verbal descriptions of physical situations.  In 
5.6 there are some descriptions which resemble computer programs. 
If we were to elaborate our thesis in full detail we would put 
much more emphasis on procedural (program-like) descriptions 
because we believe that these are the most useful and versatile 
in mental processes. 

1.2  Children's Use of Descriptions 

The theory of analogy we have just proposed might seem both too 
simpleminded and too abstract to be plausible as a theory of 
how humans make analogies.  But there is other evidence for the 
idea that mental visual images are descriptive rather than 
iconic.  Paradoxically, it seems that even young children (who 
might be expected to be less abstract or formal than adults) 
use highly schematic descriptions to represent geometric informa- 
tion. 

We asked a little boy of 5 years 
to draw a cube.  This is what he 
drew.  "Very good," we said, and 
asked:  "How many sides has a 
cube?"  "Four, of course," he 
said. 

I 
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Of course,  we agreed, recognizing that he had understood 
the ordinary meaning of "side", as of a box, rather than the 
mathematicax sense in which top and bottom have no special 
status.  "How many boards to make a whole cube, then?" 
"Six," he said, after some thought.  We asked how many he had 
drawn.  "Five."  "Why?"  "Oh, you can't see the other one!" 

0 Then we drew our own conventional 
"isometric" representation of a 
cube,,  We asked his opinion of 
it.  "It's no good."  "Why not?" 
"Cubes aren't slanted!" 

Let us try to appreciate his side of the argument by consider- 
ing the relative merits of his "construction-paper" cube against 
the perspective drawing that adults usually prefer.  We conjec- 
ture that, in his mind, the central square face of the child's 
drawing, and the four vertexes around it, are supposed in some 
sense to be "typical" of all the faces of the cube.  Let us 
list some of the properties of a real three-dimensional cube: 

Each face is a square. 
Each face meets four others. 
All piano angles are right angles. 
Each vertex meets 3 faces. 
Opposite edges on faces are parallel. 
All trihedral angles are right angles, etc. 

Now, how well are these properties realized in the child's 
picture? 

Each face is a square. 
The "typical" face meets four others! 
All angles are right! 
Each typical vertex meets 3 faces. 
Opposite face edges are parallel! 
There are 3 right angles at each vertex! 

But in the grown-up's pseudo-perspective picture we find that: 

Only the "typical" face is square. 
Each face meets only two others. 
Most angles are not right. 
One trihedral angle is represented correctly in its 
topology, but only one of its angles is right. 
Opposite edges are parallel but only in "isometric", 
not in true perspective. 

And so on.  In the balance, one has to agree that the geometric 
properties of the cube are better depicted in the child's draw- 
ing than in the adult's!  Or, perhaps, one should say that the 
properties depicted symbolically in the child's drawing are 
more directly useful, without the intervention of a great deal 
more knowledge. 

One could argue that in the adult's drawing, the square face 
and the central vertex are understood to be "typical".  We 
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?hln ^^ hTefit  0f the doubt-  Also' °ne never sees more 
or^eel ih^ "5 a CUbe' bUt chil^en  can't seem to know tMs 
'•LuT-LTs^^i;  Sin^S!-  The P-allelisms and the g^e^al 

Incidentally, we do not mean to suqqest that our ^hiln h-*   ■ 
rll^LST1?  "^ the Sraphlcl? iLge'ofhf/drawing' bSt 

experience.  Pr0gram that learns new concepts as a result of 

Not all children will draw a cube just this way.  Thev uauallv 
draw some arrangement of squares, however and this so^^7 

presentation is typical of children's dryings, wMchreanv^' 

Tat
ntLlPfTJreS"  %  a11' bUt attemPtS to «et'dowi graphically 

their partf?  are ^ lmportant relationso between things and 
y 

Thus "a ring of children holding 
hands around the pond" is drawn 
like this, perhaps because the 
correct perspective view would 
put some of the children in the 
water. 

to5?heiSro^d?hhld;L?rsaÄt£ee:PeOPle ™ *lAt  ^ht "*** 

For the same reason, perhaps, 
"trees on the mountain" is drawn 
this way because trees usually 
grow straight out of the ground. 
It doesn't matter if an actual scene 
is right in front of the child; he 
will still draw the trees sideways! 

A person is often drawn this 
way, perhaps partly because the 
body that is so important to 
the adult doesn't really do 
much for the child except get 
in his way, partly because it 
does not have an easily-described 
shape. 

From all this we are led to a new view of what children's dr^w- 

m  h?« ? trying to makt a drawing whose description is close 

in accord wltft?^ that .thing " or' PerhaP*' ** cSns^Scted 
the^^logy^roble^ are^efateS: ThUS ^ draWing Pr°hU* ™* 

We hope no reader will be offended by the schematic simoli-ii-v 
of our discussion of "typical children's drawings"? tTtttnly 
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2, 
\ ■ 

we are focusing ■ n some conunon phenomena, and neglecting the 
fantastic variety and plasticity of what children do and learn, 
Yet even in that plasticity we see the dominance of symbolic 
description over iconic imitation. 

Most children before 5 or 6 years 
old draw pr.ople like this.  Find 
such a child and ask him, "Where is 
his hair?" and driW feme, or 
say, "Why doesn't lis nose stick 
out?" and dravv an angular line in 
the middle of -he- face. 

Chances are that if the child 
pays any attention at all and 
likes your idea, these features 
will appear in every face he 
draws for the next few months. 
The hair is obviously symbolic. 
The new nose is no better, 
optically, than the old, but 
the child is delighted to learn 
a symbolism to depict protusion. 

There is a vast literature describing phenomena and theories 
of "learning" in terms of the gradual modification of behavior 
(or behavioral "dispositions") over long sequences of repeti- 
tion and tedious "schedules" of reward, deprivation and punish- 
ment.  There is only a minute amount of attention to the kind 
of "one-trail" experience in which you tell a child something, 
or in which he asks you what some word means.  If you tell a 
child, just once, that the elephants in Brazil have two trunks, 
and meet him again a year later, he may tell you indignantly 
that they do not. 

The success of Evans' program for solving analogy problems does 
not prove anything, in a strict sense, about the mechanisms of 
human intelligence.  But such programs certainly do provide 
the simplest (indeed, today the only) models of this kind of 
thinking that work well enough to justify serious study. 

It is natural to ask whether human brains "really" use symbolic 
descriptions or, instead, manage somehow to work more "directly" 
with something closer to the original optical image.  It would 
be hard to design any direct experiment to decide such a ques- 
tion in view of today's limited understanding of how brains 
work.  Nevertheless, the formalistic tendencies shown in the 
children's drawings point clearly toward the symbolic side. 
The phenomena in the drawings suggest that they are based on a 
rather small variety of elementary object-symbols, positioned 
in accord with a few kinds of relations involving those symbols, 
perhaps taken only one or two at a time.  These phenomena are 
not seen so clearly in the pictures of sophisticated artists, 
but even so we think the difference is only a matter of degree. 
While it is possible to train oneself to draw with quantitative 
accuracy, some aspects of the "true" visual image, the very 
difficulty of learning this is itself an indicator that the 
symbolic mode is the more normal manner of performance.  Even 

• 
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sophisticated adults often show a preference for unreal but 
tidy "isometric" drawings over more "realistic" perspective 
drawings: 

even though a cube is never seen exactly as in (1).  In any 
case, all this suggests that "graphic" visual mechanisms be- 
come operative later (if at all) in human intellectual develop- 
ment than do methods based on structural descriptions.  This 
conclusion seems surprising because in our culture we are prone 
to think of symbolic description as advanced, abstract, and 
intellectual, hence characteristic of more advanced stages of 
maturation. 

2.1 Appearance and Illusion 

Now consider some phenomena that might seem to be more visual, 
less intellectual.  These two figures show the same rectangle. 

^^ 

^ 

< 

^ 

But on the right, the diagonal stripes affect its appearance so 
that (to most people) the sides appear to lean out and no longer 
seem perfectly parallel.  Such phenomena have been studies with 
great intensity by psychologists.  In the next two figures, 
the central squares actually have the same grey color, but 
everyone sees the one at the left as darker. 

mi 

A good deal is known about the effects of nearby figures or 
backgrounds on another figure.  Perhaps most familiar is the 
phenomenon in which the directions of the oblique segments 
make the horizontal line in the left figure appear shorter 
than that in the right figure. 

< >    > < 
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But the strangest illusion of all is this:  to many psycholo- 
gists these phenomena of small perceptual distortions have come 
to seem more important than the question of why we see the 
figures at all, as "rectangle", or "square", or as "double- 
headed arrows!".  Surely this problem of how we analyze scenes 
familiar objects is a more central issue. 

Thus one finds much 
more discussion why 
the smaller figure 
looks larger in 
pictures like this 
than about why one 
sees the figures as 
people at all. 

We agree that the study of distortions, ambiguities, and other 
illusions" can give valuable clues about visual and other mech- 

anisms.  To resolve two or more competing theories of vision, 
such evidence might become particularly useful.  First, how- 
ever, we need to develop at least one satisfactory theory of 
how "normal" visual problems might be handled, particularly 
scenes that are complicated but not especially pathological. 

Let us look at a few more visual pheno- 
mena.  Both of these figures appear at 
first sight to be reasonable pictures of 
pyramid-bases — that is, of simple flat- 
surfaced, five-faced bodies that could be 
pyramids with their tops cut off.  But in 
fact. Figure B cannot be a picture of such 
a body.  For its three ascending edges 
(if extended) would not meet at a single 
point, whereas those of Figure A do form a 
vertex for a pyramid. 

So here we have a sort of negative illusion; Figure B would 
not "match" a real photograph of any pyramid-vase.  However, 
it could match quite well an abstract description of a pyramid 
base   say, one that describes how its faces and edges fit 
together (qualitatively, but not quantitatively). 

Another topic concerns "camou- 
flaged" figures. The figure 
"4" embedded in this drawing 
is not normally seen as such 
because, we presume, one des- 
cribes the scene as a square 
and parallelogram. 

Study of this kind of concealment can tell us something about 
the "principles" according to which our visual system "usually" 
describes scenes as made up of objects.  But once the "4" has 
been pointed out or discovered, it is then "seen" quite clearly.' 
A good theory must also account for phenomena in which it is 
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possible to change and elaborate one's "image" of the same 
scene in ways that depend on changes in his interpretation 
and understanding of the structure "shown" in the picture. 

A simpler 7- and more interesting — example of a figure with 
two competitive descriptions is the ordinary square.'9 Joung 
children know the square and the diamond as two quite distinct 
shapes, and the ambiguity persists in adults, as seen here 
(See Attneave, 19 68.) nere. 

The four objects at the left are ^  — 
usually seen as diamonds, while B  S 
those on the right are seen as 
squares.  How can we explain 
this?  Since the individual objects    m^ 
are in fact identical, the effect      HI        mm 
must have something to do with      mm BB 
their arrangement.  it is tempting  " _ 
to incant the phrase — "the whole | 
is more than the sum of the parts". 

Now consider a descriptive theory.  if one is asked to describe 
Sih !??? ^ he "u11 Say something like:  "There are two rows, 
each with four objects.  One is a horizontal row of — etc " 
We ignore details here, but suggest that the description is 
dominated by the grouping into rows, as indicated by their pri- 
ority in the verbal presentation of the description.  In Sec- 
tion 4.6 we discuss a program that does something of this sort. 

By "description" we do not usually mean "verbal des- 
cription"; we mean an abstract data structure in which 
are represented features, relations, functions, 
references to processes, and other information.  Be- 
sides representing things and relations between things, 
descriptions often contain information about the 
relative importance of features to one another, e.g., 
commitments about which features are to be regarded 
as essential and which are merely ornamental.  For 
example, much of linguistic structure is concerned 
with the ability to embed hierarchies of detail into 
descriptions:  subordinate clause formation and other 
word-order choices often reflect priorities and 
progressions of structural detail in the descriptions 
that are "meant".  We will return to this in Section 
5. 

Once commited to describing a row of things, the choice between 
seeing squares and diamonds begins to make more sense.  Which 
description does one choose? Apparently, the way one describes 
a square figure depends very much on how one chooses (in one's 
mind) the axis of symmetry.  Consider the differences in the 
figures descriptions in each of the two obvious choices of 
orientation shown in the next figure. 
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points on axis 
one point on each side 
made of two triangles 
unstable on ground 
hurts when squeezed 

sides parallel to axis 
two points on each side 
made of two rectangles 
stable — flat bottom 
safe to pick up 

These two descriptions could hardly be more different!  No 
wonder that most 3 year olds do not believe that they are the 
same.  In fact, children's drawings of diamonds often come out 
cLS 

indicating that their descriptive image is a composition of 
two triangles, or at least that the most important features are 
the points on the symmetry axes, 
solved:  whatever process set 
up the description in terms of 
rows set up also a spatial frame 
of reference for each group. 

Our mystery is then almost 

Since one has to choose an axis for each square and "other 
things being equal" there is no strong reason locally for 
either choice, one tends to use the axis inherited from the 
direction of its "row".  The fact that you can, if you want, 
choose to see any of the objects as either diamond or square 
only confirms this theoretical suggestion - the choice is by 
default only, and hence would be expected to carry little 
force. 

Once this door is opened, it suggests that other choices one 
has to make in visual description also can depend on other alien 
elements in one's thoughts — as well as on other things in the 
picture.  Every simple figure is highly ambiguous.  In a face, 
a circle can be an eye, a mouth, an ear, or the whole head. 
There should be no difficulty in admitting this to our theory 
— or to the computer programs that demonstrate its consistency 
and performance.  Traditional theories directed toward physical 
(rather than on computational, or symbolic) mechanisms were 
inherently unable to account for the influence of other know- 
ledge and ideas upon "perception". 
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2.2  Sensation, Perception and Cognition 

Our discussion of how images depend on states of mind is part 
of a broader attack on the conventional view of the structure 
of mind.  In today's culture we grow up to believe that mental 
activity operates according to some scheme in which informa- 
tion is transformed through a sequence of stages like: 

^ORL^^ENSATIO^-^ERCEPTIÖ^-W^E^OGNITIO^-^OGNITIOI^»'. . . 

Although it is hard to explain exactly what these stages or 
levels are, everyone comes to believe that they exist.  The 
"new look" in ideas about thinking rejects the idea that there 
are separate activities like "perception" that precede and are 
basically independent of "higher" intellectual activities. 
What one "sees" depends very much on one's current motives, 
intentions, memories, and acquired processes.  We do not mean 
to say either that the old layer-cake scheme is entirely wrong 
or that it is useless.  Rather, it represents an early concept 
that was once a clarification but is ncv a source of obscurity, 
for it is technically inadequate against the background of 
today's more intricate and ambitious ideas about mechanisms. 

The higher nervous system is embryologically, and 
anatomically divided into stages of some sort and 
this might suggest a basis for the popular-science 
hierarchy.  This makes sense for the most peripheral 
sensory and motor systems, in which transmission 
between anatomical stages is chiefly unidirectional. 
But (presumably) when we go further in the central 
direction this is no longer true, and one should 
not expect the geometrical parts of a cybernetic 
machine to correspond very well to its "computational 
parts". 

Indeed, the very concept of "part", as in a machine, must be 
rebuilt when discussing programs and processes.  For example, 
it is quite common in computer programs — and,, we presume, in 
thought processes ~ to find that two different procedures use 
each other as subprocedures1  We shall see this happening 
throughout Section 5.  In such a case, one can hardly think of 
either process as a proper part of the other.  So the tradi- 
tional view of a mechanism as a HIERARCHY of parts, subassemblies 
and sub-sub-assemblies (e.g., the main bearing of the fuel pump 
of the pitch vernier rocket of the second ascent stage) must 
give way to a HETERARCHif of computational ingredients. 

It is unfortunate that technical theories, and even practical 
guidelines, for such heterarchies are still in their infancies. 
The rest of this chapter discusses some aspects of this problem. 

2.3  Parts and Wholes 

A recurrent theme in the history of psychological thinking in- 
volves recognizing an irrportant distinction without having the 
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technical means to give it the appropriate degree of precision 
Consequently, the dividing line becomes prematurely entrenched 
in the wrong place.  An influential example was the concept of 
Gestalt".  This word is used in attempts to differentiate 

between the simplest immediate and local effects of stimuli, 
and those effects that depend on a much more "global" influence 
of the whole stimulus "field". 
Here is a visual example in 
which this kind of distinction 
might be considered to operate: 
In one sense, this arch is 
"nothing but" three blocks. 

But the arch has properties — as a single whole ~ that are 
not inherited directly from properties of its parts in any 
simple way.  Some of those arch properties are shared also by 
these structures: 

r  D 
- - * M 

t 

Bt 
T-rrr 

MORE  ARCHES 

Obviously the properties one has in mind do not reside in the 
individual building blocks, they "emerge" from the arrangements 
of those parts.  And one finds this in even simpler situations. 
Obviously we react to a simple outline square in a way that is 
very different from our reactions to four separate lines, and 
rather similar to how we react to such graphically different, 
figures as these: 

o o o o o 

o o 

o o 

o o 

o o o o o 

/^ 

<   > 

SQUARES 

The question "whence comes the square if not from its parts" 
is not really very serious here, for it is easy to make theories 
about how one might "perceive" a shape if there are enough 
easily-detected features to approximately delineate its 
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m 

geometric form.  But there is no similarly easy solution to the 
kinds of problems that arise when one looks at three-dimen- 
sional scenes. 

The next two figures are "locally identical" in the following 
precise sense:  Imagine innumerable experiments, in each of 
which we choose a different point of the picture to look at, 
and record what we see only within a very small circle around 
that point. 

Both pictures would produce 
identical collections of data I 
— provided that we keep no 
records of the locations of 
the viewpoints.  So in this 
sense both pictures have the 
same "parts".  They are 
obviously very different, how- 
ever. 

CONNECTED DISCONNECTED 

One particularly outstanding difference is that one picture is 
all in one piece ~ it is CONNECTED ~ while the other is not. 
In fact, both pictures are composed of just these kinds of 
"micro-scenes": 

©  (D  ®   O 
o © © e G 

In our book Perceptrons we prove that,in general, one cannot 
use statistics about such,local evidence to distinguish between 
figures that are "connected" and those that are not. 

From this, one might conclude that one can tell very little 
about a picture from such "spatially local" evidence.  But this 
is not true.  For example, we can completely define the pro- 
perty of being "m ^e-entirely-of-separate,-solid,-rectangles" 
by requiring that all very small parts of the scene look like 
one or another of these micro-scenes: 

o €) e & Q 
that is, every micro-scene must be either homogeneous, a simple 
edge, or a convex right-angle corner. 
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It is not hard to see that this definition will accept any pic- 
ture that contains only solid rectangles, but no other kind of 
picture.  So in this sense, "rectangle-ness" can be defined in 
terms of local properties, while connectedness cannot.  Try to 
define, "composed-of-a-single-solid-rectangle" in this way. 
It cannot be done I  So we see a difference between two kinds 
of categories of pictures, in regard to the relations between 
their parts and their wholes I 

The question, "Is the whole more than the sum of its parts?" 
is certainly provocative and insightful. But it must be re- 
cognized also as vague, relative, and metaphorical. What is 
meant by "parts" and, more important, what is meant by "sum"? 

In the case of the rectangles a trivial sense of "sum" will 
suffice: not even adding up evidence is necessary, for we can 
make the decision in favor of rectangle, and let any single 
exception to our condition on the local "micro-scenes" have 
absolute veto power.  So the"sum of the parts" is simply the 
agreement of all local evidence.  For connectedness we seem to 
need something more complicated, computationally.  We have 
studied this situation rather deeply in Perceptrons:  connect- 
edness is a property that is quite important and very thoroughly 
understood in classical mathematics;  it is in fact the central 
concern of the entire subject of Topology. 

For example, here are several quite different-looking condi- 
tions, each of which can be used to define the same concept of 
connectedness: 

PATH-CONNECTION.  For any two black points of the 
picture, there is a path connecting them that lies 
entirely in black points. 

PATH-SEPARATION.  There is no closed path, entirely 
in white points, such that there are some black points 
inside the path and some black points outside the 
path. 

SET-SEPARATION.  The black points cannot be divided 
into two non-empty sets which are separated by a . 
non-zero distance — that is,, no pair of points, one 
from each set, are closer than a certain distance. 

TOTAL-CURVATURE.  Assume that there are no "holes" 
in the black set — that is, white points that are 
cut off from the outside by a barrier of black points. 
Then compute the sum of all the boundary curvatures 
(direction-changes at all edges of the figure), taking 
convex curves as positive and concave curves as nega- 
tive.  The picture is connected if this sum is exactly 
360 degrees.  If it is a multiple of 360, this gives 
the number of objects I 

Each of these suggests different computational approaches. De- 
pending upon what resources are available, one or another will . 
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be more efficient, use more or less memory, time, hardware, 
etc.  Each definition involves very large calculations in any 
case, except the fourth, in which one computes simply a sum of 
what one observes in each small neighborhood.  However, the 
fourth definition does not work in general, but only for figures 
without holes.  And, to be sure that condition is satisfied one 
must have another source of information (e.g., if one knows he 
is counting pennies) or else the definition is somewhat circu- 
lar, because to be able to see that there are no holes is really 
equivalent to being able to see that the background is connected! 

We know exactly what it means for the number seven to be the 
sum of the numbers three and four.  But when we ask whether a 
house is just the sum of its bricks, we are in a more compli- 
cated situation.  One might answer: 

"Yes, there is nothing but bricks there." 

But another kind of answer could be 

"No, for the same bricks arranged differently would 
have made a very different house." 

The answer must depend on the purpose of the question.  If we 
admit only "yes" or "no",, there is no room for refinement and 
subtlety of discussion.  We do not really want either of the 
answers "Yes, it is nothing but the sum" or "No, it is a 
Gestalt, a totally different and new thing".  We really want to 
know exactly how the response, image, or interpretation of the 
situation is produced:  we want an explanation of the phenomenon. 
And the terms of the explanation must be appropriate to the 
kind of technical question we have in mind.  Sometimes one wants 
the result in terms of a particular set of psychological con- 
cepts , sometimes in terms of the interconnections of some per- 
haps hypothetical neural pathways, and sometimes in terms of 
some purely computational schemata. 

Thus one might ask, about some aspect of a person's behavior: 

COMPONENTS:  Can the phenomenon be produced in a 
certain kind of theoretical neural network? 

LEARNING:  Can it be learned by a certain kind of 
reinforcement schedule according to certain proposed 
laws of conditioning? 

COMPUTATIONAL STRUCTURE:  Can this iesult be computed' 
by a computer-like system subject to certain restric- 
tions, say, on the amount of memory, or on the 
exclusion of certain kinds of loops interconnecting 
its components? 

COMPUTATIONAL SCHEMATA:  Can the outer behavior of 
this individual reasonably be imitated by a program 
containing such-and-such a data-structure and such-and- 
such a syntactic analyser and synthesizer? 
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The way in which the whole depends upon its parts, for any 
phenomenon, has a direct bearing on how suchquestions can be 
answered.  But to supply sensible answers, on? needs I slock 
lfted^SP' PreC1Se' ldeas  about how Pa^s and wholes may be re- 

notiL^?^tJnt t0 ;fe^nize that these kinds of problems are 
not special to psychology. Water has properties that are not 
properties either of hydrogen or oxygen, yet chemlsJry is no 

ir-Ge^ft"' b?hf
ightS b!tWeen ^ca.n/s  -  say/"AtomLJ" vs.  Gestalt .  This is not at all because the problem is un- 

lo^T:  eXaCtly the 0PPosit^  The reason the?e are no 
IZf ^ ^P? ln chemist^ is because all workers recognize 

romantic but irrelevant philosophical overviews.  But in psy- 
chology and biology, there remains a widespread belief that 
there are phenomena of mind or of cell that are not "reducible" 
to properties and interactions of the parts.  They are savina 
in essence, that there can be no adequate theory of the Ste?! 
actions. J j-in-ci. 

Consider a concrete example. 
It is relatively easy to bend 
a thin rod, but much harder 
to bend this structure made of 
several such rods.  Where does 
the extra stiffness come from? 

SUPPORTED ROD ^k 

The answer, in this case, is 
that the "new property" is indeed 
inherited from the parts, because 
of the arrangement, but in a 
peculiar way.  in the truss, a 
force at the middle is resisted 
— not by bending-forces across 
the rods — but by compression 
and tension forces along the rods. 

TRUSS 

The resistance of a thm rod to forces along it is much greater 
than the resistance to forces across it.  So the increases 
strength is indeed "reduced", in the Theory of Static Mechanics 
to the interactions of stresses between members of the struc- 
ture.  Even the properties of a single rod itself can be ex- 
plained in terms of more microscopic interactions of the tensile 
and compressive forces between its own (!) "parts", when it is 
strained.  By imagining the rod itself to be a truss (a heuris- 
tic planning step that helps one to write down the correct 
differential equation) we can analyze stress-strain relations 
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inside the rod.  Thus one obtains such a beautiful and accurate 
model that there remains no mysterious "Gestalt" problem at all. 

This is not to say that special arrangements have no special 
properties.  In some of Buckminster Fuller's work, the dode- 
cahedral sphere yields a kind of structural stiffness rather 
different than that in the triangular truss.  Here the rigidity 
does not come directly from that of small or "local" triangular 
substructures, and it takes a different kind of mathematical 
analysis to see why it is hard to distort it.  Even so, there 
remains no mysterious "emergent" property here that cannot be 
deduced from the classical theory of statics. 

Of course, our real concern is with problems of intelligence, 
rather than with engineering mechanics.  But many problems 
that seem at first to be "purely psychological" often turn out 
to center around just such problems of wholes and parts.  And 
with such an interpretation, we may replace an elusively ill- 
defined psychological puzzle by a much sharper problem within 
the theory of computation. 

The computer is the example par excellence of mechanisms in 
which one gets complex results from simple interactions of 
simple components.  In asking how thought-like activity could 
be embedded in computer programs, scientists for the first 
time really came to grips with understanding how intelligent 
behavior could be made to emerge from simple interactions. 

The issue seems really to be fundamentally one of assessing 
the complexity of processes.  The content of the Gestalt 
discoveries is that certain psychological phenomena require 
forms of computation that lie outside the scopes of certain 
models of the brain — and outside certain conjectures about 
the "elementary" units of which behavior is supposed to be 
composed.  So, the whole discussion must be considered in 
relation to some overt or covert committment about what units 
of behavior, or of brain-anatomy, or of computational capacity, 
are supposed to be "atomic". 

To illustrate extreme versions of atomism vs. Gest Itism one 
might consider these caricatures: 

EXTREME ATOMISM:  All behavior can be understood in 
terms of simple functions of neural paths that run 
from single receptors, through internuncials, to 
effectors. 

EXTREME GESTALTISM:  The essence in this is the 
whole pattern.  Many simple examples show that the 
response is made to the whole stimulus and cannot 
be represented as simple sums or products of simple 
local stimulations. 

Clearly one does not want to set a threshold between these; 
one wants to classify intermediate varieties of interactions 
that might be involved, arranged if possible in some natural 
order of complexity. 
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Thus in Perceptrons we studied a variety of simple Schemas 
such as these: 

EXTREMELY ATOMIC ALGORITHM:  One of the input wires 
is connected to the output, the others to nothing. 

VETO ALGORITHM:  If every input says "yes", the 
output is "yes".  if any input says "no", the output 
is "no". 

MAJORITY ALGORITHM:  If M or more of N inputs say 
"yes", output is "yes". 

LINEAR SUM ALGORITHM: To each input is assigned a 
"weight". Add together the weights for just those 
inputs that say "yes".  The output is just this sum. 

LINEAR THRESHOLD ALGORITHM:  Use the LINEAR SUM al- 
gorithm, except, make the output "yes" if the sum 
is greater than a certain "threshold", otherwise the 
output is "no". 

Exercise:  the reader should convince himself that "extremely 
atomic", "veto", and "majority" are special cases of "linear 
threshold". 

EQUIVALENT-PAIR ALGORITHM:  The input is considered 
to be grouped in pairs.  The output is "yes" only 
when, for every pair, the two members have the same 
input values. 

The reader should convince himself that this is not a special 
case of "linear threshold"! 

SYMMETRICAL ALGORITHM:  The response is "yes" if 
the pattern of inputs is symmetrical about some 
particular center, or about some particular linear axis. 

This is a special case of the equivalent-pair algorithm.  They 
are both examples of perceptrons in which the global function 
can be expressed as a linear threshold function of intermediate 
functions of two variables.  Here the whole is only trivially 
more than the sum of the parts. 

PERCEPTRON ALGORITHM:  First some computationally 
very simple functions of the inputs are computed, 
then one applies a linear threshold algorithm to 
the values of these functions. 

Many different classes of perceptrons have been studied; such 
a class is defined by choosing a meaning for the phrase "very 
simple function".  For example, one might specify that such a 
function can depend on no more than five of the stimulus 
points.  This would result in what is called an order-five 
perceptron.  All of the examples above had order one or two. 
The next example has no "order restriction", but the functions 
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are 
one 

very simple in another sense; they are themselves "order 
or linear-threshold functions. 

GAMBA PERCEPTRON:  A number of linear threshold 
systems have their outputs connected to the in- 
puts of a linear threshold system.  Thus we have 
a linear threshold function of many linear threshold 
functions. 

Virtually nothing is known about the computational capabilities 
of this latter kind of machine.  We believe that it can do 
little more than can a low order perceptron.  (This, in turn 
would mean roughly, that although they could recognize some' 
relations between the points of a picture, they could not handle 
relations between such r-lations to any significant extent.) 
That we cannot understand mathematically the Gamba perceptroj 
very well is, we feel, symptomatic of the early state of develop- 
ment of elementary computational theories. 

ül^?? 05KtheSu areu
atomic and which Gestaltist?  Rather than 

muddle through a philosophical discussion of which cases "reallv" 
do more than add the parts, we should try tc classify the kinds 
of mechanisms needed to realize each in certain "hardware- 
frameworks, chosen for good mathematical reasons.  Then for 
each such framework, we might try to see which admit simple 
reinforcement mechanisms for learning, which admit efficient 
descriptive teaching (see Section 4), which admit the possi- 
bility of the cognitive machinery "figuring out for itself" 
what are the important aspects of a situation! 

To supply such ideas, we have to make theoretical models and 
systems.  One should not expect to handle complex systems until 
one thoroughly understands the phenomena that may emerge from 
their simpler subsystems.  This is why we focused so much at- 
tention on the behavior of perceptrons in problems of computa- 
tional geometry.  It is important to emphasize that we want to 
understand such systems for the reasons explained above, rather 
than as possible mechanisms for practical use.  When a mathema- 
"iCai Psychoiogist uses terms like "linear", "independent", or 
Markoff Process", etc., he is not (we hope!) proposing that a 

human memory is one of those things; he is using it as part of 
a well-developed technical vocabulary for describing the struc- 
ture of more complicated schemata.  But until recently there 
was a serious shortage of ways to describe more procedural as- 
pects of behavior. 

The community of ideas in the area of computer science makes a 
real change in the range of available concepts.  Before this 
we haa too feeble a family of concepts to support effective 
theories of intelligence, learning, and development.  Neither 
the finite-state and stimulus-response catalogs of the Behavior- 
ists, the hydraulic and economic analogies of the Freudians, or 
the holistic insights of the Gestaltists supplied enough tech- 
nical ingredients to develop such an intricate subject.  It 
neeas a substrate of debugged theories and solutions to related 
out simpler problems.  Computer science has brought a flood of 
such ideas, well defined and experimentally implemented, for 
thinking about thinking; only a fraction of them have distin- 
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guishable representations in traditional psychology: 

symbol table 
pure procedure 
time-sharing 
calling sequence 
functional argument 
memory protection 
dispatch table 
error message 
function-call trace 
breakpoint 
formal language 
compiler 
indirect address 
macro language 
property list 
data type 
hash coding 
micro-program 
format matching 
syntax-direction 

closed subroutine 
pushdown list 
interrupt 
communication cell 
common storage 
decision tree 
hardware-software trade-off 
serial-parallel trade-off 
time-memory trade-off 
conditional breakpoint 
asynchronous processing 
interpreter 
garbage collection 
list structure 
block structure 
look-ahead 
look-behind (cache) 
diagnostic program 
executive program 
operating system 

These are only a few ideas from the environment of general 
"systems programming" and debugging; we have mentioned none 
of the much larger set of concepts specifically relevant to 
programming languages, artificial intelligence research, com- 
puter hardware and design, or other advanced and specialized 
areas.  All these serve today as tools of a curious and intri- 
cate craft, programming.  But just as astronomy succeeded 
astrology, following Kepler's discovery of planetary regulari- 
ties, the discoveries of these many principles in empirical 
explorations of intellectual processes in machines should lead 
to a science, eventually. 

3.  Analysis of Visual Scenes 

No one could have any doubt about what this picture is supposed 
to show:   Four blocks, three forming a bridge with the fourth 
lying across it."  We would like 
to program a machine to be able to 
understand scenes to at least this 
level of comprehension.  Notice 
that our description involves 
recognizing the "bridge" as well 
as the blocks that comprise it, and 
that the phrase "lying across it" 
indicates knowing -chat the block 
is actually resting on the bridge.      „, ,,     p...,„.,.,. 
reference to the bridge, rather than to the top block of the 
bridge, there is implied a further level of functional analy- 
sis. J 

FOUR BLOCK BRIDGE 
Indeed, in the pronoun 

In our earlier progress reports we described the SEE program 
(Guzman 1968) which was able to assemble the thirty vertices, 
forty segments and thirteen regions of this picture into four 
objects, using a variety of relatively local "linkage" cues 
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three dSe^T' (^nSton 1970) ^s  ^rther in the analysis of 
three-dimensional support and can recognize groups of obiects 
as special structures (such as "bridge") to yield iust the 
kind of functional description we are discussing  ^nston's 
program is even able to LEARN to recognize such^onfigurations 

ChapLrr"6"06 ^^  eXampleS ^ non-e^mples, as sK in  ' 

Before discussing scene-analysis in detail, we have a few re- 
marks about the nature of problems in this area.  In the earlv 
fTt  that^eTT iMcCul^-Pitts 1943, Wiener 1949) it was 
felt that the hardest problems in apprehending a visual scene 
were concerned with questions like "why do things look the sLe 
haJe dfS ^T different viewpoints", when thei? opUcal ima^I have different sizes and positions. J-»idges 

A A 
-Y i 

all  Se oarHnnf e t^, ,,abstraction" or "concept" common to 
all the particular examples.  For two-dimensional character- 
^o0^ltl0n' thls.kind of Problem is usually handled by a 
two-step process in which the image is first "normalized" to 
standard position and then "matched" - by a correlation or 

fliefln? PrOCeJS "T t0 0ne 0f a Set of ^andard represSnta- 
ina" ^f^n ?Jf? ^K  en5lneering applications, the "normaliz- 
ing often failed because it could not disarticulate parts of 
images that touch together, and "matching" often failed because 

Portant-'oa^/of'VH0^61^10":11^ P™*****  attend to "im^6 poitant paits of the figures instead of to ornaments  Even 

s'y^ls meth0dS WOrk Wel1 enOUgh for reasonablymstanAardIzed 

If, however one wants the machine to read the full variety of 
typography that a literate person can, the problem is harder! 
and if one wants to deal with hand-printing, quite different 
methods are needed.  One is absolutely forc^to use exterior 

th^^XS^r,^)^-^5' CO—' in situations^Se 

THE     CMT 

language.  An early program that could do this vJas described 
tL J?f?He fd

h
Browing 1959-  But we will not stop to review 

aV?J fi *.? character-recognition, for its technology is quite 
alien to the problems of three-dimensional scenes.  This is 
oh^tt  ^e Problfms that concern us most, like how to" separate 
anv h ^  V^13^ 0r hOW t0 recognize objects that arS parti- 
ally hidden (either by other objects or by occluding parts of 
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their own surfaces), simply do not occur at all in the two- 
dimensional case.  Some more interesting two-dimensional problems 
require description when geometric matching fails; a conceptual 
A is not simply a particular geometric shape; it is 

"Two lines of comparable length that meet at an 
acute angle, connected near their middles bv a 
third line." 

3*1 Programs for Finding Bodies in Scenes 

Let us review quickly how Guzman's SEE program works.  First a 
collection of "lower level" programs are made to operate dir- 
ectly on the optical data.  Their job is to find geometric ' 
fu^^u3   the Plcture — regions, edges and vertices ~ so 
that the scene can be described in a simple way in the program's 
data-structure.  Next, the vertices are classified into "tjpes"! 
The most important kinds are these: i-Ypes . 

ARROW FORK TEE ELL TRANS 

The main^goal of the program is to divide the scene into 
objects   and its basic method is to group together regions 

that probably belong to the same object.  Each type of vertex 
is considered to provide some evidence about such groupings, 
and can be used to create "links" between regions. 

For example, the ARROW type of vertex 
usually is caused by an exterior corner 
of an object, where two of its plane 
surfaces form an edge.  So we insert 
a "link" between the two regions that 
are bounded by the two smaller angles: 

Similarly, the FORK type of 
vertex, which is usually due to 
three planes of one object, 
causes three links between those 
regions. 
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Using these clues, and representing the resulting relations by 
simple abstract networks, many scenes are "correctly" analyzed 
into obiects. J 

-> 

If two TEE vertices have their stems in the same line then we 
create two more links:  This often does just the right thing 
for an object whose picture is divided into two separate parts 
by another object in front. f«*uo 

fO 
;B 

^ C3 
Many scenes are handled correctly by just these simple rules, 

POR*
1
"?"^

6
 
n?t,.uFOr examPle' the basic assumption about the 

^JTVK  M  2 u S thre€r regions is not true of concave corners, 
t^^t  „T^^l  PT assumption may be false by coincidence 
so that  false links" may be produced in such cases as these- 

dfib 
/o2b 

6-0 
: 

Guzman introduced several methods for correcting such errors. 
One method involves a conservative procedure in which groupings 
are considered to have different qualities of connectedness. 
Two high-quality groups that are connected together by only a 
single link are broken apart — the link is deleted. 

A second error-correction method is more interesting.  Here we 
observe that the TEE vertex really has a special character, quite 
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opposed to that of the FORK and the ARROW.  The most usual 
physical cause of a TEE is that an edge of one object has dis- 
appeared under an edge of another object. Hence, we should re- 
gard the TEE joint as evidence against linking the correspond- 
ing regions:  Guzman's implementation of this was to recognize 
certain kinds of configurations as special situations in which 
the existence of one kind of vertex-type causes inhibition or 
cancellation of a link that would otherwise be produced by the 
other vertex-type.  That would happen, for example, in these 
figures: 

Thir technique corrects many errors that the more "naive" sys- 
tem makes, especially in objects with concavities.  Note that 
it attempts to compute Connectedness:  — for is not the notion 
of "object" as we are using it,exactly that idea? — by extremely 
local methods, while the (better) system with cancellation is 
less local because of the effects of vertex-types of contiguous 
or closely-related geometric features. 

Guzman's method might seem devoid of the normalization and match- 
ing operations.  Indeed, in a sense it has nothing to do with 
"recognizing" at all;  it is concerned with the separation of 
bodies rather than with their shapes.  But both normalization 
and matching are more or less inherent in the descriptive lan- 
guage itself, since the very idea of vertex-type is that of a 
micro-scene which is invariant of orientation, scale, and posi- 
tion.  This scheme of Guzman's is very much in accord with the 
Gestaltists' conceptual scheme in which the separation of fig- 
ure from background is considered prior to,and more primitive 
than, the percoption of form. 

The "cancellation" scheme has a more intelligible physical mean- 
ing.  It has been pointed out by D. Huffman (1970) that each 
line in a line-drawing may be interpreted as a physical edge 
formed (we assume) by the intersection of two planes, at least 
locally.  In some cases, one can see parts of both planes, but 
in other cases, only one.  A T-joint is good evidence that the 
edge involved is of the latter kind,and once one assigns such 
an interpretation to an edge, then it follows immediately that 
the adjacent Guzman links to the alien surface ought to be re- 
jected.  Accordingly, Huffman developed a number of procedures 
for making detailed global interpretations from local edge- 
region assignments. 

We will not give further details of the SEE program here. As 
an example of its performance, it correctly separates all the 
objects in this scene. 

' 

i 

1 

154 

-1  ■   '   I..M!.ll.|l|l|i|. iWHHWUMHImiiiMiiiMii 



"■■•'• 

ARTIFICIAL   INTELLIGENCE 

But  SEE  has  faults,   among which are: 
' 

ORDINARY "MISTAKES":  Certain 
simple figures are not handled 
"correctly".  To be sure, all 
figures are inherently ambiguous 
(any scene with n regions could 
conceivably arise from a picture 
of n objects). Our real goal is 
to find an analysis that makes 
sense in everyday situations. 
Normally one would not suppose 
that this is a single body, but 
SEE says it is, because all re- 
gions get linked together. 

INFLEXIBILITY:  If its very first 
proposal is not acceptable, the 
body-aggregation program ought 
to be able to respond to com- 
plaints from other higher- 
lower-level programs and thus 
generate some alternative "parsings" 
of the scene.  For example, SEE 
finds a single body in the top 
one of these figures, but it should 
be able to produce the two other 
alternatives shown below it. 
(It is interesting how difficult 
it is for some humans to see the 
third parsing.) 

IGNORANCE:  It has no way to use knowledge about common or 
plausible shapes.  While it is a virtue to be able to go so far 
without using such exterior information, it is a fault to insist 
on this I 
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Following Guzman's work, Martin Rattner has described a proce- 
dure, called SEEMORE, that can handle some of these problems. 
[Rattner 1970]  While it uses linking heuristics much as did 
Guzman, SEEMORE puts more emphasis on local evidence that ah 
edge might separate two bodies.  These "splitting heuristics" 
operate initially at certain kinds of vertices, notably TEE- 
vertices and vertices with more than three edges (which were 
not much used in earlier programs).  When there is more than 
one plausible alternative, SEEMORE uses other evidence to make 
tentative choices of how to continue a splitting line, but stores 
these choices on back-up lists that can later be used to gen- 
erate alternative parsings. 

Here is a simple example.  In 
this figure, one might imagine 
splitting either along the line 
a-b-c or along the line d-b-e. 
The central vertex 'b' suggests 
(locally) either of these; on 
the other hand, such splits as 
a-b-d or a-b-e are considered 
much less likely. 

The vertex 'a' strongly suggests a split along a-b, while neither 
'c', 'd', nor 'e' have much in their favor.  Thus SEEMORE starts 
a split at 'a' and continues at 'b' toward 'c'.  Generally, 
splits originate at TEE's, propagate through L's and matching 
TEE's, and avoid the sharpest turns through the multiple-edge 
vertices. 

f 

Degenerate situations like this, in which a small^change in 

a   b 

(B) 

viewing angle produces a different topology, are likely to lead 
to "incorrect" analyses.  Rattner uses a rather conservative 
linking phase, in which links are placed more cautiously than 
in SEE, but using similar "inhibiting" rules.  Regions that are 
doubly-linked to one another by these are considered, "strongly" 
bound;  then the heuristic rule is to attempt to split around 
these "nucleii", and to avoid splitting through them. 

It would be tedious to give full details here, partly because 
the subject is so specialized, but primarily because the pro- 
cedure has not been tested and debugged in a wide enough variety 
of situations.  A few examples follow. 

' 
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An initial split is made :long 
e-d, extended to d-c.  Then, 
between the possible splits 
g-a-f and c-a-b, the latter is 
preferred because it completes 
the unfinished split ending at 

In this situation, B is the procedure's first choice, C its 
second: 

In A below, we get three bodies, (4-6-7), and (1-2-3).  SEE does 
not split between regions 7 and 8.  In B, one gets the plausible 
three-body analysis.  If there is any complaint, SEEMORE will 
propose to separate (4-6-7) and (5-8).  In C, all the bricks 
are properly separated.  While SEE would h^ve to put in many 
spurious links because of the Coincidentally matching TEE's 
SEEMORE inhibits these on the basis of other splitting evi- 
dence. 

(A) 

\t% ^—JV«—?i ^ n S i^A 
-*^ 

-i0^ 

^•i ' r * ■J^s 

(C) 
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The procedure divides these into the "n 
atural" parts; 

^•^rZ^^^^*^*  1^-3, 5-7.8-9, and 
see it.  And the procedure cannot *  rSt Way a person ^^ 
of the larger cube irfigLeTbec^sT??^. "^ ■ ^"^ Segments 
process is so conservati?e.  Clea??v ., h iniJf-al grouping 
must be gathered together in a "^'   Ch Problems eventually 
the multiple T-joinS all iSuld ^TTfX^3^^  Syste^ 
way as to suggest the propersplU and thl ended  in SUch a realize this. ^  spuz,   and the program ought to 

4. DESCRIPTION AND LEARNING 

vJtarL^u^dersta-ndlnrLE^^ ^TZsT If^  ^  ^ " 
account   for  learning  in  terms  of  ^nnh        •tradltl0nal  to  try to 
reflex"  or   "stimulul-responsj bond"       ?^einnht'VeS  aS   ,,conditioned 
become much more  intelligible when  se J ?nP?    0mena  0f  le^ning 
tion"  and  "procedure" en ln  terms of  "descrip- 
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But even the temporary structures one obviously 
uses in imagining and understanding have to be 
set up and maintained for a time.  We feel that 
the differences in degree of permanence are of 
small importance compared to the problems of 
deciding what to remember.  It is not the details 
of how recording is done, but the details of how 
one solves the problem of what to record, that 
must be understood first. 

As we develop this idea, we find ourselves forced to question 
the whole tradition in which one distinguishes a special sub-set 
of mental or behavioral processes called "learning".  Nothing 
but disaster can come from looking for three separate theories 
to explain (for example) 

and 

How one learns mathematics, 
How one thinks mathematically once he has learned to. 

What mathematics is, anyway. 

We are not alone in trying to replace such subdividions ~ but 
perhaps more radical and thorough-going.   In this chapter we 
shall argue that many problems about "learning" really are 
concerned with the problem of finding a description that satis- 
fies some goal.  Gestalt psychologists also often emphasized' 
the similarity between solving apparently abstract problems and 
situations that intuitively feel like simple perception;  the 
same relation that is dimly reflected in ordinary language by 
expressions like y  y^ ^y 

"I suddently saw the solution!" 

We thoroughly agree about bringing these phenomena together, 
but we have a very different way of dealing with the newly 
united couple.  We might caricature this difference by sayinq 
that the Gestaltists might look for simple and fundamental 
principles about how perception is organized, and then attempt 
to show how symbolic reasoning can be seen as following the 
same principles, while we might construct a complex theory of 

^J";°Wi gf iSvaPPJied t0 SOlve intellectual problems and then 
attempt to show how the symbolic description that li what one 
sees  is constructed according to similar such processes.  In- 

deed,we think that ideas that have come from the study of sym- 
bolic reasoning have done more to elucidate visual perception 
than ideas about perception have clarified our thoughts about 
abstract thinking — but the whole comparison is too dialecti- 
cal to try to develop technically. 

In any case, we differ from the Gestaltists more deeply in 
problems of learning, which they neglected almost entirely — 
behavior?^VSeT ^ WaS the f™orite subject of the abominable 
behaviorists! Let us now explain why we feel that learning, 
technically, cannot usefully be separated from other aspects 
either of preception or of symbolic reasoning. As usual, we 
present first a caricature; then point to where the extreme 
positions might be softened. 
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Learning — or "Keeping track" 

Everyone would agree that getting to know one's way around a 
city is "learning".  Similarly, we see solving a problem often 
as getting to know one's way around a "micro-world" in which 
the problem exists.  Think, for example, of what it is like to 
work on a chess problem (or on a geometry puzzle,or trying to 
fix something).  Here the micro-world consists of the network 
of situations on the chessboards that arise when one moves the 
pieces.  Solving the chess problem consists largely of getting 
to know the relations between the pieces, and how the moves 
affect things.  One naturally uses words like "explore" in this 
context.  As the exploring goes on, one experiences events in 
which one suddenly "sees" certain relations.  A grouping first 
seen as three pieces playing different roles is now described 
in terms of a single relation between the three, such as "pin", 
"fork", or "defense".  The experience of re-description can be 
as "vivid" as if the pieces involved suddenly changed color or 
position. 

One might object that the difference between getting to know the 
city and solving the chess problem is that one remembers the 
city and forgets the chess situation (assuming that one does). 
Isn't that what brings one into the domain of learning and ex- 
cludes the other? Only to a degree!  The chess analysis has 
to be remembered long enough, within the rest of the analysis. 
To take an extreme form of the argument, one would repeat one's 
first steps forever unless one remembered which positions had 
been analyzed, what relations were observed, and how their des- 
criptions were summarized.  What is stored within problem- 
solving is as vital to the immediate solution as what is re- 
tained afterwards is to the solution of the presumably larger- 
scale problems one is embedded in throughout life.  Of course 
there is a problem about how long one retains what one learns 
— but perhaps that belongs to the theory of forgetting rather 
than of learning! 

In our laboratory the chess program written by R. Greenblatt 
plays fairly good chess, but amateur tournament standards.  But 
visitors are always disappointed to find that this program does 
not "learn", in the sense that it carries no permanent change 
away from the games it plays.  They are even more disappointed 
in our attempts to explain why this does not distarb us very 
much.  We claim that there is indeed an important kind of learn- 
ing within the program;  this is in the position-description 
summaries that are constructed and used as it analyzes the posi- 
tions it is playing.  But because board positions do not often 
repeat exactly in subsequent games (except for opening positions 
and end-games) and because the kinds of descriptions the program 
now uses do not have good qualities for dealing with broader 
classes of positions, there would be no point in keeping such 
records permanently. 

We do not yet understand how to make the higher-level strategy- 
oriented descriptions that would make sense in the context of 
learning to improve.  When we, ourselves, learn how to construct 
the right kind of descriptions, then we can make programs 
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in favor of studying systems that could deal with limited     ' 
fragments of meaning, and we avoided "creative" systems baaed 
on unmterpreted stochastic processes in flint  JVSte"s based 

In the rest of this chapter we will discuss some systems th^ 

programsülearnS'thS^e/eadrS-mi?ht 0bjeCt that though  these programs learn, they do not significantly "learn to learn" 

so today „e have little rLl knowledge about SuShn,ftt«s
0n' 

gBrLue?h
telyinr?iire^oii„o?ron„1ä?jig

teo
nr^ärsowco"piex 

that oould develop as   rapidly as hCman ZSs  AthirthZ «-' 
quiring  evolutionary epochs.     We oarta-inlC „.      T 
we know  that  the   "innate struotur" r?oSi?es mu?t  hf',^  from what 

SSP
P
 ^  "E^n^lhe'o^^8?*h

Pr09"^      " "i9htbLVS  ^^ 
linL/Th ^"irpSLS eenofu hTLn^i^llen-t^rSJuItiS- 
SoÄL^^t1?^?^ XrrM PrSenar ^ °- «^ 

instead,   to disouss our present undemanding?    «e beaL^^Jh' 
some experiments  on natural  intelligence. 
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4.1 An example of Learning:  Pjaaef s Conservation Experiment. 

years) to Question« ^«„Z .K.! ___".(ln. the a5e range of 4-7 

0 0 oooooooooo 

Question:  "Are there more eggs or more eaq-cuDS^" 
Typical Answer:  "No, the same."        gg  P ? 

oooooooo ooo 

mmmYYY 
Question:  "Are there more eggs or more eaa-cun^" 
Typical Five Year Old's AnswL:  "MorJ eq?s "P 

Typical Seven Year Old's Answer:  "Of course  not!" 

tracted any, so the number must still be the same. 

make rival thJoJies  L?» ?= P ^ and' aInon9st other things, 

experiment. thS„°erise^ws
H:h

r
e

e chifrthre'e1^?^"^ ^^ 

He agrees that the first two 
contain the same amount of 
liquid.  Then, before his eyes, 
we pour the second jar into 
the third and ask again about 
the amounts.  Usually, the 
younger child will say that the 
tall jar contains more;  the 
older child says "Of course 
they have the same amount.  It 
is the same water so it could 
not have changed." 
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4-1  A" example of Learning:  Pjaget's Conservation Experiments 

A classical experiment of Jean Piaget shows remarkably repeat- 
able patterns of response of children (in the age range of 4-7 
years) to questions about this sort of material: 

oooooooooooo 

Question:     "Are  there more  eggs or more  egg-cups'?" 
Typical Answer:      "No,   the   same." 

oooooooo 0     0     0 

YYYYYYYYYYYY 
Question:  "Are there more eggs or more egg-cups?" 
Typical Five Year Old's Answer:  "More eggs." 
Typical Seven Year Old's Answer:  "Of course not!" 

Furthering questioning makes it perfectly clear that the younger 
child s comparison is based on the greater "spread" or space 
occupied by the eggs.  The older child ignores or rejects this 
aspect of tho situation and is carried along by the "conserva- 
tionist  argument:  before we spread them out there were the 
same number of eggs and egg-cups;  we neither added or sub- 
tracted any, so the number must still be the same. 

Before constructing a theory of this we describe some other 
situations that are similar;  nothing is more dangerous than 
to base a theory on just one example and we want the reader to 
have enough material to participate and, amongst other things, 
make rival theories.  Here is another relatively repeatable 
experiment.  One shows the child three jars. 

He agrees that the first two 
contain the same amount of 
liquid.  Then, before his eyes, 
we pour the second jar into 
the third and ask again about 
the amounts.  Usually, the 
younger child will say that the 
tall jar contains more;  the 
older child says "Of course 
they have the same amount.  It 
is the same water so it could 
not have changed." 
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construct and remember them, too, and the problem of "learninq" 
will vanish.  in the past, our laboratory avoidad experiments 

we di.  T09 T^ that Seemed theoretically unsoSnd, aJthough 
we did not avoid studying them theoretically.  This was be- 
cause we believed that learning itself was not the real problem- 
what was needed was more knowledge about the intelligent shao- 

;egavoidLSClipti0n"handling P--—-  For thelame'reason^ 
we avoided linguistic exercises such as Mechanical Translation 
in favor of studying systems that could deal with limSed    ' 
fragments of meaning, and we avoided "creative" systems based 
on umnterpreted stochastic processes in favor of analjzinq 
the interactions of design goals and constraints.  NowSe think 
we know enough to begin such experiments. 

^ thK-K^t 0f this chaPter we will discuss some systems that 
do exhibit some non-trivial learning functions.  It should be 

as "sel?0nr^^ ^ ^^ ^ ^^  are not to be ^Ight  of 
stantiafln?^1!111? Syftems '  They are equipped with very sub- 
built-ti '^Jl  ^ructures; - they are provided with many DUiit:-in  innate ideas . 

Because of this, some readers might object that although these 
programs learn, they do not significantly "learn to lelrn" 
Is this a serious objection? We do not think so, but the aues- 

Ibou/f/^ iV"6 ^ de?ree and We are sti11 much to° uncertain about it to take a decisive position.  In one view learning to 
learn would be an extremely advanced problem compared to what 
we now understand  In another view,it is just one more problem 
about certain kinds of program-writing processes, not strikinalv 
tl treT flZm  the Static st^tural Situations ie already ^ 
t^lTttTetlnT.11-     0Ur P0Siti0n iS int—ediate betweL^ 

ÜL^1^ that learning to learn is very much like debugging 
complex computer programs.  To be good at it requires III  to 
know a lot about describing processes and manipulating such 
descriptions.  Unfortunately, work in Artificial Intelligence 
has not, up to now, been pointed very much in that direction 
so today we have little real knowledge about such matters 

^fe2Ue^ly! we.alie in a Poor position to estimate how complex 
^ f   the initial endowment of intelligent learners --ones 

qu^ing" o S^nLrepSSfy ^ ^^ ^ ^ ^ -" 
we know that the "Sna^^ruc^^elS&s^Ss^ baeSSvU^yfr?2r?hat 
complex as compared to present program!.  It might be much   y 

simpler  Even m the case of humans we have no useful guide- 
lines.  There is probably enough potential genetic structirl 
to supply large innate behavioral programs but no one reallv 

insteaSUCto
ad?^ thiS' either'  at present-  So let - proceed, 

^Ü   '    dlscuss our present understanding.  We begin with 
some experiments on natural intelligence. 
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If we perform the pouring behind a screen, telling him what we 
are doing without his seeing it, the younger child also may 
say the amounts are the same, but may change his mind when he 
sees it. 

In this experiment, 
younger children agree 
the rods are equal at 
first, but when dis- 
placed as shown at the 
right, the "upper" one 
is usually said to be 
longer. 

1 
How can we explain the difference between the less and more 
mature children.  We see two problems here from the point of 
view of learning.  First, hoy is the pre-conservationist view 
acquired (and executed); thea how is it replaced by a con- 
servationist one? To many psychologists only the second seems 
interesting.  This is because it is tempting to explain the 
earlier response in terms like "the child is carried away by 
appearances," or"the child is dominated by its perception," 
that is, instead of logic.  The usual interpretation, then, is 
that the transition requires the development of some sort of 
reasoning capacity that allows it to "ignore the appearance" 
in favor of reasoning about "the thing itself". 

There are serious problems with this view, we feel • First, the 
"appearance" theory is too incomplete; the notion of appearance 
is not structured enough.  Second, we know that much younger 
children are quite secure (in other circumstances) about the 
properties of "permanent objects"; they are sufficiently sur- 
prised by magic that there is no  reason to suppose they lack 
the required "logic".  We do not think they lack any really 
basic or primitive intellectual ingredients; rather,they lack 
some particular kinds of knowledge and/or procedures that are 
appropriate here.  Our view is most easily explained by pro- 
posing a more detailed mini-theory for the performcnce of the 
non-conservation child. 

Behind the "appearance" theory lies some sort of assumption 
that the water in the tall jar, the upper one of the rods, and 
the spread-out eggs appear to be "more" than their counterparts, 
because of some basic law of perception.  We think things are 
more complicated than that, and postulate that the younger child 
when asked to make a quantitative comparison, choose  to des- 
cribe t-he things being compared in terms of 'how far they reach, 
preferably upwards or in some other direction if necessary". 
That this description comes from a choice is clear from the 
fact that he can realiably tell which is "wider" or "taller", 
when it is not a question of which is "more".  Indeed, if we 
asked the younger child to describe the situation in detail 
before asking which has more, he might say something like this: 
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(A) "There is a tall, thin column of water in the 
tall, thin jar and a short, wide column in the 
short, wide jar." 

four year old will not say anything of the sort, 
c structure will not be so elaborate, but more im- 
is unlikely to produce that many descriptive ele- 
one description.  If we ask him "what is this", 
any of "high g\jLSs" ,   "almost full", "high water", 

depending on what he imagines at the moment as 

Actually, a 
His syntacti 
portant, he 
ments in any 
he might say 
"round", etc 
a purpose for the question or the object.  In any case, if we 
ask him for 
which has mo 

a description after telling him v,re want to know 
)re, he will probably say the equivalent of: 

(B) "There is a high column of water in the tall 
jar and a low column of water in the short jar." 

To answer the question "which has more" one has to apply some 
process to the description of the situation.  Once we have the 
second description (B) almost any process would choose the "high 
column of water".  We still need a theory of what symbolic rules 
delete preferentially the horizontal descriptive elements from 
the first description (A) . 

Another possibility is that perhaps the child is misinterpre- 
ting "more";  if he were strongly "motivated" by being thirsty 
or hungry he might give better answers.  The experiments are, 
however, always careful about this, and one gets similar re- 
sults if the eggs are replaced by candy actually to be eaten, 
or the water by a delicious beverage. 

In suggesting that the child converts description "A" to des- 
cription "B" we are proposing an analogy with analogy '•     Is 
this too neat?  Are we inventing this process for the childc 
who does not really do anything so simple? Certainly, we are 
making a mini-theory much simpler than what really happens.  But 
what really happens is, we believe, correspondingly simpler 
than what most observers of children imagine is happening I  The 
following kind of dialog is typical of what goes on in another 
situation that Piaget and his colleagues have studied, and 
illustrates explicitly the same striking kind of transformation 
of descriptions: 

INTERVIEWER: 
CHILD: 

INTERVIEWER: 
CHILD: 

How many animals are there? 
Five.  Three horses and Two cows. 
Are there more horses or more animals? 
More horses.  Three horses and two animals, 

I:  Now listen carefully: 
ARE THERE MORE HORSES OR MORE ANIMALS? 

What did I ask you? 
Are there more horses or more animals? 
What is the answer? 
More horses. 
What was the question again? 
Are there more horses or more cows? 
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We explain this phenomenon on a similar basis; again the child 
has to make a comparison of quantity.  He has learned that it 
is generally correct to do this by counting mutually exclusive 
classes and the worst thing is to count anything more than once. 
So he proceeds to describe the situation "correctly" for such 
purposes, and (in this frame) gets the correct answer. 

It is often said that the pre-conservation child gets the answer 
wrong to "inclusion" questions.  No.  He gets the answer right. 
He gets the question wrong I  Inclusion comparisons are never 
natural, so we can agree with the child that these are silly 
"trick" questions, anyway. 

Returning to judging "amount" by height alone, we must ask what 
"learning" process could cause a child to acquire this "false" 
idea? Our mini-theory begins not by trying to explain the 
particular fact (why the child says this about water or that 
about eggs) but to look for a general rule for comparing quan- 
tities that combines simplicity with widespread utility.  Who 
is bigger;  the child or his cousin?  Stand back to back!  How 
do you divide a bottle of coke between two glasses? By the 
level -- and generally this is fine because the glasses are 
identical.  Finally, the child can afford to be wrong some of 
the time;  this rule serves very well for many purposes and 
it would be hard to find a better one without taking a giant 
step. 

A confirmation of this is 
given by the children who 
judge that the thinner 
container of this pair 
could hold more water. 

Although fewer children 
will say this, the fact 
that there are any who 
do disproves the "appear- 
ance" theory, for one can 
hardly maintain that an 
unalterable law of percep- 
tion is operating here. 

Clearly the (heuristic) symbolic rule of vertical extent 
here overrides "perception" of dimensions. 

One could make a case for the "appearance"  heory, in the 
water-jar experiment as follows:  The water .s much higher 
where it is high, but only somewhat wider whej.e it is wide 
The most plausible kind of comparison algorithm 
would look first for a unique term or quality 
upon which to base its decision — as is 
easily found in (B).  If there is none — 
as in (A) — then a subprocess has to make a 
"quantitative" comparison.  But even this 
seems less symbolic than quantitative, for 
if we compare "much higher" with "somewhat 
thinner", the former will surely win!  In 
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any case, even adults can hardly believe that these two solids 
could have the same volume.  So, if the child were really faced 
with the problem of comparing quantitative dinensions, this 
would be almost impossible for him. 

We next have to ask, how was this rule acquired, and how can we 
explain the transition to conservationist thinking? The sim- 
plest theory would assert that the child specifically learns 
each conservation (and, earlier, each comparison technique) as 
isolated pieces of knowledge.  However, this theory is incomplete 
because it postulates some agent or specific circumstance re- 
sponsible for the specific act of learning. A more satisfactory 
kind of theory would let the child himself play the part of the 
"teaching agent" in the weak theory, and find his own strategies 
for making descriptions adequate for his problems. 

Consider again the original conservation-of-number experiment. 
Suppose that we wanted to TELL the child how to behave.  An 
authoritarian approach would shout at him:  no, no, no, they 
are equal.  But most teachers would prefer the gentler approach 
of explaining what he is doing wrong.  One could say:  "Yes, 
you are right, the eggs take up more space than the egg-cups 
so you could say that SPATIALLY there are more eggs;  but 
NUMERICALLY there are still as many eggs as egg-cups." 

We hope readers are objecting that no child of five will under- 
stand this little speech.  Indeed,one can go a step further and 
say that the attempted lesson begs the entire question.  The 
non-conservation child seems to lack a sharp distinction between 
"numerical" and "spatial".  That's his problem!  If ha knew how 
to use the distinction well enough he would not need us to 
teach him about conservation.  Our child has already a variety 
of concepts about quantities;  we maintain that his problem is 
in knowing which to use when (instead of, or combined with others) 
in describing situations.  His real problem is that he does not 
yet know good enough ways to describe his descriptors!  If he 
learned how to describe his descriptors — for example, to label 
some as "spatial" and some as "numerical" — and if he could 
use these descriptions of descriptors to choose J:he  appropriate 
ones, then the specific problem of learning conservations would 
dissolve away.  As it should!  For "conservation" is not a single 
thing, and "it's development is typically spread out over 
several years as a child learns to deal with number, mass, volume, 
and other descriptive concepts. 

Assuming a structure for classifying descriptions we can imagine 
an internal scenario, for the egg experiment, in which many des- 
criptions are considered by a supervising process: 

(1)  Choose a kind of rule, 
QUANTITATIVE RULES 
HISTORICAL RULES 

Choices are 

(2) QUANTATIVE is chosen. 
SPATIAL 
NUMERICAL 

Select a kind.  Choices are 
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(3) SPATIAL is chosen.  Select a kind.  Choices are 
EXTENT implies more 
SPARSENESS implies less 

(4) Try EXTENT.  The spread out eggs have more 
extent. 

This means MORE. 
(5) Test for coherence with other SPATIAL 
rules? Try SPARSENESS.  The eggs are 
sparser. 

This means LESSl 
An inconsistency.  Reject or explain. 

Reject method 
(3') Try NUMERICAL. 
Try COUNTING 
Too many to count. 

Reject method 
(2') Reject choice of quantitative rules! 
Try the next choice, HISTORICAL 

When HISTORICAL is tried, one might first choose 
IDENTITY.  Some eggs were moved, but none added 
or taken away „..  me-ns SAME. 
Test for coherence with other HISTORICAL rules.  ■LS mean8:, ':'Ail£'- 
Try REVERSIBILITY.  The operation SPREADING- 
OUT is reversible. This means SAME I 

We conclude that HISTORICAL seems consistent. 

The same sort of scenario could be constructed for the water 
experiment; there the counting descriptions cannot be invoked, 
but instead other quantitative descriptions must be available. 
In each attempt, the description of the scene takes on a differ- 
ent form:  the successful historical form will resemble 

"The water that was in the second jar is now in 
the third jar" 

and "of course" it has the same amount as the first jar I  WellI 
This gives the right answer, because he has obtained an adequate 
description.  What kinds of processes must he have in order to 
do this.  We have already proposed that he has a procedure for 
selecting descriptions;  in what kind of environment could this 
operate? One kind of model would assume that the mature child's 
description is at first more elaborate, including both geometric 
and historical elements, 

"The amounts of water in the first and second jars 
were equal.  The water that was in the second jar is 
now in the third jar.  The water in the third jar is 
higher and thinner than that in the first jar." 

The mature child, we might theorize, will eliminate elements 
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from his description until there are no serious conflicts.  This 
will yield a tentative answer, which he can maintain if he can 
explain away any problems that arise from reconsidering other 
details.  Alternatively, one might imagine a process that begins 
with a very primitive description and elaborates it.  But in 
any case, the process must have facilities for such functions 
as: 

Choosing among the most plausible methods for 
answering the question.  To apply a method he must 
bring the description into a useable form.  For 
example, when he chooses a "history" method he 
suppresses some features of the spatial appearance. 
This means he must have a good classification of 
the different kinds of description elements. 

The selection of the description involves common- 
sense knowledge.  This, in a word, means that his 
entire cognitive structure is potentially engaged 
-- language, goals, logic, even interpersonal 
situational processes. 

If the situation is at all novel,then any committment 
to "ignore" a class of elements may require a reason 
or "excuse", for conflicts in the original description 
that remain unexplained.  A standard strategy is 
"compensation" — knowing when it is reasonable to 
propose tradeoff between such pairs as height and 
width when manipulating fluids. 

One cannot balance an arbitrary pair of dimensions, 
and particular pairs compensate only under suitable 
conditions.  Ideas like "geometric property" are 
necessary, so that one isn't tempted to trade 
height with color, for example.  What ieatures 
of histories might correspond to such static 
properties as "spatial" and "numerical"? 

Most important, the directing process in which 
the history of the situation wins out over the 
unusable geometric features,must exist and be 
debugged well enough that is can be relied upon: 
The child needs to have and trust the higher- 
order knowledge about which kinds of knowledge 
should have priority in each situation. 

We have intentionally not specified the time scale of this 
scenario; some of it occurs over long periods, while some in 
the course of solving a particular problem.  Furthermore, th^se 
conditions are still incomplete, yet our structure is already 
quite complicated.  But so is the situation!  Remember, our 
child can already carry on an intelligent conversation.  This 
is not a good place to encourage the use of Occam's Razor.  The 
time for that is when one has several good competing theories 
not before one has any!  It takes the child several years to ' 
work out all of this, and a theory that explained it away on 
too simple a basis might be therefore suspect. 
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We do not, we repeat, want to explain the different conserva- 
tions either on completely separate bases or by one unifying 
principle.  We want to see it as the outcome of an improvement 
in the child's procedures for dealing with the variety of des- 
criptions that he comes into possession of. 

In the traditional "theories of learning" there was a tendency 
to ask 

"How does such-and-such a "response become 
connected to such-and-such a "stimulus". 

We now see that the proper questions are much more like 

"How can such-and-such a procedure be added to 
the descriptive or deductive systems" 

4.2  Learninq 

A serious complaint about the heuristic programs of the past 
was their very limited ability to learn.  This made them too 
inflexible to be useful except in very special situations. 
Over the years many direct attempts to construct "learning 
programs" led to very indifferent results.  There is a close 
analogy, we feel, between this and the similar situation in 
the history of constructing psychological theories of learning. 

If a child were to learn that 7+5 
one hundred other such "responses 
learned to add. What is required 
priate procedure and how to apply 
used before. Another side of thi 
just as in the Analogy situation, 
lies in the discovery of descript 
tial" aspects of things or events 
"accidental" features. It would 
that some particular thing happen 
tion, since identical conditions 

=12 and 39+54=93 and, say, 
", we would not agree he had 
is that he learn an appro- 
it to numbers he has never 

s "stimulus-response" problem: 
the secret of learning often 

ions that emphasize the "essen- 
, and omit or subjugate the 
do us little good to remember 
ed in exactly a certain situa- 
never recur. 

We do not need,or want, to 
remember the precise details of 
a broken chair, but we do want 
to remember that bad things 
happen when chairs have broken 
rungs — for that is an essen- 
tial difference between this 
and a usable chair.  Indeed, 
the greater our knowledge and 
powers of observation, the more 
selective must be our choice of 
descriptions, because of the 
magnified problem of becoming 
lost in searching through net- 
works of irrelevant details. 
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learning while playing by himself ^^ anC3 between a child 
shrewd guidance of an attentTvf ans^rucJn^109 thingS Under the 
of a mediocre textbook, and haJinS ?? f f'■PrYlng a theory out 
concisely by a superb expSsitor  *   exPlained directly and 

ent'Jhenomena! ^hfappearancfo?916 thiS meSS*  web ^  ^iffer- 
blem in science is o??S the resuirolT!fib1^ ref"ctory pro- 
different problems (each of wMch mav h5  ?9.fUndamenta1^ 
there is no common solution to SP *h ? relatively simple) when 
is true of the many different J^* whole set.  We think this 
said to learn.  Bu? desplSth?^^in WhlCh P^^ms can be 
common themes.  Most important of Jh"51^ there are important 
for enough descriptive ItruTtlrt\n t     '  We fee1' is th^ need 
tween learning situations ^T^   represent the relation be- 
Another theme comes from noJLina S*^3  learned ^^ them? 
we have found most dIf?Tcult to limula^^ kindS 0f le^ning 
a large stock of prior knowledge and ^ ^  wf6 tnat in^^ 
leads us to propose for s?udj vlrv ourS f7 1C ah

c
iliti^-     This 

of handling diverse kinds of knowLd^f  ^ 0f the ^°^em 
about the problems of acquirinSs^h9? " Pflor to worrying 
out these strands we wm consider ^ed9e'  To seP^a?e 
entirely-separable ideas'of ^llSi^-^'^se'?1^8 ^ n0t- 

Learning by development or maturation 

Änin^ ^^^l^^^^*  adaptation) 
Learning by being taught in0dlfyin5 description 
Learning by Analogy 
Learning by being told 

LjJrnln9 K7 being Pro^ammed Learning by understanding 

4.3 Learning Without Desciption — "T„ 
Bciption — Incremental Adaptation" 

"here is a large lit-p.-;,<-,^^ 
paling, facto? analyse LdSn^"e? ^ith cluste^ng methods, 
which one finds pr?polals ?or n? mal decision theories, in 
modifications of^Sj^ÄJT ^  "l**™"  ^  --essive 
of this is seen in one of the well knA,    0utsending example 
that plays a good game of ChJcklrs  n^h programs ^  A Samuel, 
all perceptron-like "adaptivJ" michin^116"", fXainPles abound; 
optimization programs, most "c^h  ? S' a11 hill-climbing" 
reinforcement^ Some details can bf f1C ieariii^"  models uling 
of our book, PERCEPTRONS e fOUnd ln the iater chapters 

The conclusions drawn in PERrpPTooMc 
view here in detail but wf S  ? NS are t00 technical to re- 
that emerges.  Within^he cl^ses'or^6 ^ 9eneral P^u" 
machines can represent th*t *      .       concepts that these 
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and crippling limitatiors that they can be used only in soecial 
ways.  For example, we can construct, by special methods  a 
perceptron that could learn either t^ recognize squares!'or to 
recognize circles.  But the same machine would probably not be 
able to learn the class of "circles or squares"'  It certainlv 
pouid ^/--^e ^ence learn to recognize) ^'relational^oL 
pound like "a circle inside a square". 

These limitations are very confining.  It is true that such 
methods can be useful in "decision-making" and diagnostic 
situations where things are understood so poorly that a 
weighted decision" is better than nothing.'  But we think it 

might be useful to put this in perspectivl by assigning it as 
an example of a new concept of TERMINAL LEARNING.  The basic 

lloalZ  h^hHthiS kind 0f "learning Program" is that once tSe 
program has been run, we end up only with numerical values of 
tTL9^^^3'     Th! information in such an array of numbers 
is so homogeneous and unstructured — the "weight" of each "factor- 
defends so much on what other factors are also involved S the 
process - that each number itself has no separate meaning. 
We are convinced that the results of experience, to be uslful 
to higher level processes", must be summarized in forms that 
are convertible to structures that have at least some of the 
fraai^n^1^103 0f ^P"^ Programs - that is, something like 
fragments of program or descriptions of ways to modify programs 

^learn" so^ t^^t'   the Siinple "Captive" systems cS 
u !f ", S°ue thln9s' to be sure, but they cannot learn to learn 
Sonder ^1

are
h
COrfined t0 ^-Peningwhatever "linear separa- 

A term?L? TU* /yPOtKeSeS they are initially set to evaluate. A terminal learning scheme can often be useful at the fina^ 
stage of a performance or an application, but it is potentially 

to^ve^p^urther? "^  *  ^^ ^ ^  be **^  lat- 

One could make similar criticisms of another aspect of the 

? a^rJh""? and bOUnd,, Proced^es found in most game-play- 
mg and other heuristic programs that follow the "look-ahead 
and mimmax" tradition.  Suppose that in analyzing a chess 
position we discovered that the KB-2 square is vulnerable to a 
rook-queen fork by moving a knight to that square.  The tradi- 
wi^ ^^f" r^tufns a low numerical value for that position. 
What it really should do is return a description of wh? the posi- 
tion is bad.  Then the previous plausible-move generator can 
be given a constructive suggestion:  look for moves that add a 
defense to that square,or threaten one of the attacking pieces 

Ive^tually^thes'e^1?^1011 ^ diSCoVer m0re «-h Sug^'tSns. Eventually, these conditions may come to conflict logically. 
hA?;'! y re<3uiring a Piece to attack two squares that cannot 
couJd sJe^hat5^90'  At ^ POint' a d^uctive program 
tlon  ^m^ T   is necessary to think back to an earlier posi- 
tion.  Similarly, a description of that situation, in turn 
could be carried further back, so that eventually't^e move gen- 

8"a?ea?cnD^J0 W?rk rth.a knowledgeable analysis S? the strategic problem.  Surely this is the sort of thina aood 
Players must do, but no programs yet do anything mucHike it. 

This argument, if translated into technical specification, would 
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say that if a chess program is to "really" analyze positions 
it must first have descriptive methods to modify or "update" 
its state of knowledge.  Then it needs ways to "understand" this 
knowledge in the sense of being able to make inferences or de- 
ductions that help decide what experiments next to try.  Here 
again, we encounter the problem of "common sense" knowledge 
since»although some of this structure will be specific to chess, 
much also belongs to more general principles of strategy and 
planning. 

People working on these homogeneous "adaptive learning" Schemas 
(either in heuristic programming or in psychology) are not un- 
aware of this kind of problem.  Unfortunately, most approaches 
to it take the form of attempting to generalize the coefficient- 
optimizing schema directly to multi-level structures of the 
same kind, such as n-layer perceptrons.  In doing so, one 
immediately runs into mathematical problems:  no one has found 
suitably attractive generalizations (for n levels) of the kinds 
of convergence theorems that, at the first level, make percep- 
trons (for example) seem so tempting.  We are inclined to sus- 
pect that this difficulty is fundamental — that there simply 
do not exist algorithms for finding solutions in such spaces 
that operate by successive local approximations.  Unfortunately 
we do not know how to prove anything about this or, for that 
matter, to formulate it in a respectably technical manner. 

We could make similar remarks about most of the traditional 
"theories of learning" studied in Psychology courses.  Almost 
all of these are involved with the equivalent of setting up 
connections with the equivalent of numerical coefficients be- 
tween "nodes" all of the same general character.  Some of 
these models have a limited capacity to form "chains of responses" 
or to cause some classes of events to acquire some control over 
the establishment of other kinds of connections.  But none of 
these theories, from Pavlov on, seem to have adequate ability 
to build up processes that can alter in interesting ways ehe 
manner in which other kinds of data are handled.  These theories 
are therefore so inadequate, from a modern computation-theory 
view, that today we find it difficult to discuss them seriously. 

Trial and Error 

Why, then,have such theories been so persistently pursued? The 
followers were certainly not naive afcout these difficulties. 
One influence, we think, has been a pervasive misconception 
about the role of multiple trials, and of "practice", in learn- 
ing.  The supposition that repeated experiences are necessary 
for permanent learning certainly tempts one to look for "quan- 
titative" models in which each experience has a small but 
cumulative effect on some quantity, say, "strength-of-connection". 

In the so-called "stimulus-sampling" theories we do see 
an attempt to show how certain kinds of one-trail learn- 
ing processes could yield an external appearance of 
slow improvement.  In this kind of theory, a response 
can become connected with many different combinations 
of stimulus features or elements as a result of a 
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sampling processes.  In each learning event a new 
combination can be tried and tested.  This is 
certainly closer to the direction we are pointing. 
However, we are less interested in why it takes so 
many trials to train an animal to perform a simple 
sequence of acts, and more interested in why a child 
can learn what a word means (in many instances) with 
only a single never-repeated explanation. 

What is the basis for the multiple-trial belief? When a person 
is "memorizing" something he may repeat it over and over. When 
he practices a piece of music he plays it over and over.  When 
we want him to learn to add we give him thousands of "exercises" 
When he learns tennis he hits thousands of balls. 

Consider two extreme views of this.  In the NUMERICAL theory 
he moves,in each trail, a little way toward the goal, strength- 
ening the desired and weakening the undesired components of the 
behavior.  In the SYMBOLIC view, in each trial there is a qual- 
itative change in the structure of the activity — in its pro- 
gram.  Many small changes are involved in debugging a new pro- 
gram, especially if one is not good at debugging!  It is not 
a matter of strengthening components already weakly present so 
much as proposing and testing new ones. 

The external appearance of slow improvement, in the SYMBOLIC 
view, is an illusion due to our lack of discernment.  Even 
practicing scales, we would conjecture, involves distirct changes 
in one's strategies or plans for linking the many motor acts 
to already existing sequential process-schema in different ways, 
or altering the internal structures of those Schemas.  The im- 
provement comes from definite, albeit many, moments of con- 
scious or unconscious analysis, conjecture, and structural 
experiment.  "Thoughtless" trials are essentially wasted. 

To be sure, this is an extreme view.  There are, no doubt, 
physiological aspects of motor and other learning which really 
do require some repetition and/or persistenca for reliable per- 
formance.  Our point is that the extent of this is really 
quite unknown and one should not make it the main focus of 
theory-making, because that path may never lead to insight into 
the important structural aspects of the problem.  In motor- 
skilj learning, for example, it is quite possible one needs 
much less practice than is popularly supposed.  It takes a 
child perhaps fifteen minutes to learn to walk on stilts.  But 
if you tell him to be sure to keep pulling them up, it takes 
only five minutes.  Could we develop new linguistic skills so 
that we could explain the whole thing? We might conjecture 
that the "natural athlete" has no magical, global, coordination 
faculty but only (or should we say "only"!) has worked out for 
himself an unusually expressive abstract scheme for manipulating 
representations of physical activities. 

4.4  Learning by Building Descriptions 

We can illustrate much more powerful concepts of learning in 
the context of a procedure developed by P. Winston to learn to 
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recognize simple kinds of structures from examples.  Like the 
SEE program of Guzman (which it uses as a sub-process) it 
works in the environment of childrens' building blocks.  When 
presented with a scene, it first observes relations between 
features and regions,  then groups these to find proposed 
structures and objects, and then attempts to identify them 
(using description-matching methods and the results of earlier 
learning experiences).  Thus, the simple scene on the left is 
described by a network of abstract objects, relations, and 
relations between relations. 

SCENE 

/L 

m 3 

SUPPORTEO-BY 
SCENE 1 = AN ARCH 

PART-OF 

KIND-OF 

BRICK 

In this diagram, the heavy circles represent particular physical 
objects, the other circles represent other kinds of concepts, 
and the labels on the arrows represent relations.  The program 
is equipped from the start to recognize certain spatial rela- 
tions such as contact, support, and some other properties of 
relative position.  We tell the machine that this is (an example 
of) an ARCH, and it stores the description-network away under 
that title. 

Note that since these properties describe only relative spatial 
relations, the very same network serves to describe both of 
these figures, which are visually quite different but geometric- 
ally the same. 

/ 
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Next we present SCENE 3, to the left below, and the machine 
constructs the network shown to its right. 

L 
1 
D CONTACT PART-OF 

SCENE 2 : NOT AN ARCH 
SUPPORTED-BY 

KIND-OF 

\ 

This differs from the network of SCENE 1 in only a few respects, 
If the program is asked what this structure "is", it will com- 
pare this description with others stored in its memory. 

It has already networks for 
tables, towers, and a few other 
structures but, as one might 
expect, the structure it finds 
most similar is the ARCH des- 
cription stored just a moment 
ago.  So it tentatively identi- 
fies this as an arch.  In doing 
this, it also builds a descrip- 
tive network that describes the 
difference between scene 1 and 
scene 2, and the difference is 
represented somewhat like this. 

ORIGIN 

DIFFERENCE 

KINO-OF 
'DESTINATION^    / 

ADDmONAL/*V_V/"N . fl„ RELATION (J *-\J CürJ l AC1 

Now we tell the machine that 
scene 2 is NOT an example of 
an ARCH.  It must therefore 
modify its description of 
"ARCH" so that structure 2 
will no longer match the 
description, hence will no 
longer be "seen" as an ARCH. 
The method is to add a 
"rejection pointer" for the 
contact relation. 

CONTACT 

MUST-NOT 

SUPPORTED-BY 

Now for the next example:  we present scene 3 and assert that 
this, too, is not a ARCH.  The most prominent difference, in 
this case, is that the new structure lacks the support relations 
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CONTACT 

MUST-NOT 

SCENE 3 : NOT AN ARCH 

MUST-BE 

SUPPORTED-BY 

and the program for modifying "ARCH" now adds an "enforcement 
pointer" to the supnort relations.  Finally, we present another 
example, scene 4, and assert that this is an acceptable example 
of an ARCH. * 

CONTACT 

MUST-NOT 
PART-OF 

SCENE  4: AN ARCH 

MUST-BE 

SUPPORTED-BY 

KIND-OF 

BRICK 

The most important difference, now, is the shape of the top 
block.  The machine has to modify the description of "ARCH" so 
that the top block can be either a brick or a wedge.  One 
strategy for this would be simply to invent a new class of 
objects — "brick-or-wedge".  This would be extremely "conser- 
vative", as a generalization or explanation.  Winston's 
strategy is to look in memory for the smallest class that con- 
tains both bricks and wedges.  In the machine's present state the 
only existing such classes are "prism" and "object" — the 
latter is the class of all bodies, and includes the "prism" 
category, so the new description will say that the top object 
is a kind of prism.  If we replaced the wedge by a pyramid, and 
told it that this, too, is an arch, it would have to change the 
top object-description to "object", because this is the smallest 
class containing "brick" and "pyramid".  Now we can summarize 
the program's conclusion:  an arch is 

"A structure in which a prismatic body is supported 
by two upright blocks that do not touch one another." 
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We have just seen how the program learns to identify correctly 
the membership of scenes 1-4  as to whether they are ARCHES or 
not.  As a consequence, it will probably "generalize" automatic- 
ally to decide that 

,0 
Q 

AND AND 

are also arches, because there are no "must-be-a..." enforce- 
ment pointers to either the supports or the top.  Of course this 
judgement really depends on the machine's entire experience, 
i.e., on what concepts are already learned, and upon details of 
the comparison programs. 

We have suppressed many interesting details of the behavior of 
Winston's program, especially about how it decides which diff- 
erences are "most important".  For example, the final form of 
the network for "ARCH" is more like: 

MODIFICATION-OF 

ONE-PART-IS 

6R0UP-0F 

HAS-PROPERTY-OF 

than  the  simple  schemata  shown earlier, 
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tha? ?hf H?f^ 'u  If  the  comParison program can  be  told that the difference between "IN-FRONT-OF" and "BFHTNn" -« in 
as that between "LEFT-OF" and "RirHT-np" T w lu ? ' aS Wel1 

in terms of "vertical axis symmetry" then S can h deSCribed 

scenefln!  ^  ^   ^~^   dlffences^wee'n  ^twT^ 

^a^I^fi^"^"  0n  thiS  basis'   hence differ only  in  respect 

rec^Itructionr^irhr1^031^ ComPlic^ed pr^b^^in till 

£eHe      ^ ^ ^l~l* -u^o^L^e^^i^it. 
ab!e  toeiearn'   /OW "^ T^  struct^e would one  neeS,9?o be 
diflicSlt wni'   f. K ^^i65'   such concepts  as  symmetr^?    How 
procedures     ^ /  1° fapt SUCh a system to Earning new procedures     ^^ead of  structures?    At  first  this migh? seem 
™, ^P'   but.the  ldeas  in  the  next section,   on  describina 
^lier?^  repetiUve  structures,  make the gap's^L t^Ä 

< 

We 
"concept"6 (ra?L^HadVantageS  0f having  a ascription  for 

irther  progress. 

The  ability  to compare  and  contrast des 
shall  see  in section  4 6) 

criptions (as we 

The ability to make deductions involving the concent 
to adapt it to new situations. concept. 

Combining several descriptions to make new concepts. 

An example of the latter:  Every structural "concept" that 

compiex and almost useless network of "LLS's betten SrblY 
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nine blocks.  But after learning ARCH, it will nov describe it 
in a much more intelligent way: 

SCENE 
PART-OF 

LEFT-OF 
KIND-OF 

ARCH 

because its descriptive mechanisms proceed from local to global 
aggregates using as much available knowledge as it can apply. 
In doing this we encounter, now on a higher level, grouping pro- 

ni^J6^ !rCh llke thOSe We SaW in our sketch of Guzman'I SEE 
program, and in many cases one can adopt analogous strategies. 

4.5  Learning by Being Taught 

Jo £;??/.     ? Paying with a toy car and his blocks.  He wants 
w?nS ? ^ lnteresting structure to play with.  If the use of 
Winston s program were present, he could teach the child how to 
make an arch by the process just described, for it is not hard 
to convert the above description into a procedure for building 

^^S; ^faCt' ^ Chapter 5' We sha11 give a ^etch of ex-9 
nroiLÜ^ thls

u
canbe done' This is precisely what Winograd's 

program does when it translates from the semantic analysis of 
fn^f? K?eS!:r!blng noun-Phrase into a robot program for build- ing with blocks:  See Chapter 5. 

in iLn™  neces^^i
for the child to have a teacher, however, 

and tL ^^ 0J y1^1^    he can ^y  experiments with the blocks 
and the car, .nd he can recognize "success" in either of these 
cases, among others: tnese 

a) He knows how to recognize an "ARCH" once it is built — but 
does not know how to describe or to build it. 

b) h?m^?f\HUI?Cti0nal Play-goal:  construct a road-problem for 
himself that is not too easy and not too hard - such as an 
obstacle that requires two hands to overcome, but cannot be 
negotiated trivially with one hand. ^nnoT: oe 

class38 Tn^L^Sr huV0 tell.which structures are in the 
S!! i ? (b)l Whlle exPerimenting he will indeed find 
easv tT^ 1S !0^' SCene 2 iS ^Posssihle, Scene 3 is too 
easy, an Scene 4 (discovered as the simplest variant of the 

"fecr^th^ViH13 alSO g00d-  Here Se get the'samfoverall 
thl hthZil.       ^AU*  !aine mechanism - Yet in humanistic terms 
of "^o^  "ld be((

dfsc^bed much more naturally in terms 
finJ Pi^l    K'.0r    ^aY ' 0r "^directed" activity.  The 
final  esult, if described in structural terms, is again 
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"a structure in which an object is supported by 
two upright bricks that do not touch one another." 

This is certainly not a perfect logical equivalent of the adult's 
idea of an arch;  nor does it contain explicitly the idea of a 
surrounded passage or hole.  Still, for the playing child's 
?o^nf ?' ^ ^Uld rePresent Perhaps an important Itep toward formulation and acquisition of such concepts. tovvara 

Again we have left alone some very important loose ends.  We 
have concealed in the catch-all expressions "play" or "explora- 
tion  some supremely important conditions that must be fulfilled 
-- and at early stages of child development they won't be and 
the things that are learned during "play" will be different 

The child must already be equipped with procedures that 
have a decent chance of generating plausible structures. 

To do this, he must be able to describe to some extent 
why an experiment is unsatisfactory. If he cannot get 
his car between the supports, he must be able to think 

^n~VlnVhe SUPPorts aPart-  This is not very hard, 
since pushing against the obstacle will sometimes do 

Since most experiments not carefully planned lead to 
useless structures, he has to have some ability to 
reconstruct a usable version of earlier and better 
situations after a disaster. 

Without the teacher, it is unlikely that he will get good results 
after just four trials:  He must have enough persistence in his 
goal-structure to carry through.  To do this consistency would 

coursed? ?h?00d aSSessment of the Problem's difficulty! Of 
no?*?;  f     1S ™lssin(3'   he will ^nd something else to do; not all play is productive! >= uu uu, 

Winston's program seems to be a reasonable model for kinds of 

The'-conceat" IZ't ^  P1*^1* in' if "Ot typical of "f child. The  concept the program will develop, after seeing a sequence 
of examples chosen, on the order in which they are presented 
and of course on the set of concepts the program has acquired 
previously.  In many cases the experimenter may not ge^the 
result he wants;  presenting examples in the wrong o?der could 
get the program (or child) irrepairably off the track and he 
might have to back up - or perhaps restart at an eariiS staac 
We cannot expect our concept-learning programs to blfoolproof 
any more than a teacher can expect his instructional technique 
always to work.  The teacher always risks failure until he 
acquires correct insights into what has happened in the student's 

Of course there are many small but important details of how the 
program decides what to do at each step, which differences to 

shonlH^^Vn1^' WhiCh Parts of the description networks 
should be matched, what explanations it should assign to the 
differences that are noticed. 
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(o. machine's) mastery of mechanical s?ru?tareswni be ^ml 

S-a^Sl^S 
pe^^\e-Lv°f Ki^^^ri^e^r^^Ji^s t0 b F?^"^ 

4.6 Analogy, Again 

in" !:i^nanr:icg
rLst0 ^ ^io'^fl4^10' SOlVing Pr°ble- 

learned'concepS/^SEoS r.fLj ^Jt^plalnlrL^eJ^r*- 
o? o™^  1S d?ne'   "  is  »P°"ant to mention Sa? the res^t 
dlsc?SSon? ^sic^r^ir3'   "  thls  s**t™'   ** Use" ä oesoriptlon.     Basically,   the comparison works  this way: 

v^iThe K"° ,?esoriPtions  are   "matched together"     usino 
corrre0sUponde?rlSt10 rUleS t0 ^^ "h-h nodefprobab^ 

were 

3.     We  associate with each node  of  this  skeleton     a 
comparison  note"  describing  the  correspondence       ?f  th* 

descriptions   immediately  local  to  two   "corresSo^dinf" 

irthe^raä^HS^e^s-Trr30^"0"  S ^i?3 But 
other  a wedge)   the^^arl^'Aotf-^scrihe^hls3110  ^ 

^Srarhy  ^^S^l^nl^-rSr SnTc^  ^ 
SorS^.UPOn  thT W:Lth the  Same  Programs       lA particular 
any otherrpairofSS'1Pti0;S  Can  be  COinpared as^ndny'as any  otner pair of descriptions. 
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Now we can apply this idea to the analogy problem.  The machine 
must select that scene X (from a small collection of alter- 
natives) which best completes the statement 

A is to B as C is to X 

That is, one must find how B relates to A and find an X 
that relates to C in the same way.  Using the terminology 

Diff [A:B] 

to denote the difference-description-network resulting from 
comparing A with B, we simply compare the structures resulting 
from: r 

Diff [ Diff [A: B] : Diff[C:XlJ ], 

Diff [ Diff |A:B] : Diff\C:X2] ] , 

Diff C Diff [A :B] : Diff[C:X3] J ,  etc. 

Each of these summarizes the discrepancies within the "ana- 
logical explanations" for each corresponding possible answer. 
So to make the decision, we have to choose the "best" or "sim- 
plest" of these.  We will not give details of how this is done; 
it is described in Chapter 7 of Winston's thesis.  But note that 
some such device was needed already for the basic ability to 
identify a presented scene most closely with one of the des- 
criptive models in memory.  Thus the program must incorporate, 
in its comparison mechanism, conventions and priorities about 
such matters as whether the difference between Right and Left 
is to be considered simpler than the difference between Right 
and Above. 

In this example 

"IJ    IS TO SL^ AS IS TO 

fl! ZS^ So 
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the machine chooses THREE as its answer, ONE as its second 
choice.  In the slightly altered problem 

IS TO fl) ^S> AS IS TO 

(same 5 figures) 

It chooses FOUR as its answer. 

4.7  Grr iping and Induction 

The problem of recognizing or discerning grouping or clusterings 
of related things is another recurrent concern not only in 
Psychology, but also in statistics, artificial intelligence, 
theory of inductive inference; indeed, of science and art in 
general.  Most studies of "clustering" have centered around 
attempts to adapt numerical methods from the theory of multi- 
variate statistics to group data into subsets that minimize 
some formula which compares selected inter- and intra-group 
measures of relatedness.  But such theories are not easily 
adaptable to such important and interesting^ßroblems as discern- 
ing that 

sMfi^ 
sh'ows, not VA  + fa + 20 = 38 objects, but "a row of arches, a 
tower of cubes, and a brick wall." More subtly, how do we 
"know" that one of these is three wedges while the other is 
three blocks? Visually, the lower objects in each tower are 
the same.  These problems, too, can be treated by the same 
general methodology used in our approach to Analogy and to 
Learning of structures in scene-analysis. 
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On many occasions we have been asked why the A I 
Laboratory is so concerned with special problems' 
like machine vision, rather than more general 
approaches and problems about intelligence.  in 
the early stages of a new science one proceeds 
best by gaining a very deep and thorough understand- 
ing of a few particular problems; that way one 
discovers important phenomena, difficulties, and 
insights, without which one risks fruitless periods 
of speculations and generalities.  if the reader 
can see the present discussion in terms of general 
problems about induction and learning, the fruit- 
fulness of the approach should speak for itself- 
we cannot imagine anyone believing the usefulness 
of these ideas is in any important way confined to 
description of visual or mechanical structures! 

"ShL^6 ?r0upin^ ^ the Preceding firures and ask: 
What qualities of the scene-descriptions characterize the 
intuitively acceptable groups."  m some groups, like those 
shown above, it seems clear that the impo?tan? feature is a 
CHAIN, say, of supported-by or in-front-of relations.  in 
other cases it seems obvious that several objects show a 

aTsit^t?ons?ShlP t0 an0ther'  BUt n0 Sim^e rules wo*k in 

In this scene one does not 
usually see a single group or 
tower of seven blocks.  Whether 
it is appropriate to describe 
this as "a seven-block stack," 
or as "a three-block stack 
supporting a plate that in turn 
supports a three-block stack," 
or as yet something else, depends 
on one's current purposes, orien- 
tations, or specifically on what 
grouping criteria are currently 
activated for whatever reason. 

'ri *0™  fu^1™3 the discrepancies in the individual proper- 
ties of the bxocks should cause the grouping procedure to 
separate out the three-block stacks in spite of the fact 

support-relation chain continues through all seven that the 
blocks. 
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We next sunmarize some expe 

ston's 

For example,  when  several 
objects  have  the  same  or 
very nearly the  same  des- 
cription,   they are   immedia\ 
tely  taken  as  candidates  for 
a  group.     The blocks  on  this 
table  are  typical.     All  are 
polyhedra,   all  are  standing 
and  all  are  supported by 
the board. 

sS SS ^ntilVSTTV0 ^^ 0b^ts ^ich 
do  thisf a proc^am lists  al ^^ ?In^eneeUS  Set  remains.     To 
more than h^^Tth^^^didatls^^Ilt!^^1^0 ^ 

loop reieSsl^d ?Perate?'   the  first P^  trough  the 

is norSdLTi^tMs^pLrbec^riH8 0f-Shape-      (Si2e 
too heterogenous   for   "size"   to tt^t    th*six objects  are 
ships  list:)     m a secoil nJ«    t P^ 0n the co^on-relation- 
remaining objects  share  the   "T^

OW"Ver'  m0re than half  ^ 
D is  rejlcted? mainly Lcanc  ^T    S1Ze ProPerty,   and block 

so,   finely,  ^r^oLdurTalcepts^in fa^d ChintPr?h
Perty- 

n^ro^hers:10^^ thiS  iS ^riX l^^** 

SL^k^th^rTc^fbe^^^ff  int0  the  ascription 
for other'pro2lemsSfbL^t?:nedTH"df

eXCiting ^Lquences 
shows   the  network  representa^oA  J^   -^T™ 0n  the next P^ge 
Process  operaces  on  ^^^^^^^^ 

i 
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KIND-OF 

(MEMBERS) 

Into the description is 
introduced a "typical 
member" to which is 
attributed the common 
properties discerned by 
the grouping procedure. 
In this case, chaining was 
used to form the group and 
the description includes 
the fact that there were 
three elements in the 
chain. 

■KIND-OF in a learning experiment, 
the program is presented 
with the depicted 
sequence of scenes shown 
below and is told that the 
first, third, and sixth 
are instances of "column" 
while the others are not. 

SUPPORTED-BY 

NUMBER-OF- 
MEMBERS 

o 

COLUMN NOT A COLUMN 
COLUMN        NOT A COLUMN   NOT A COLUMN      COLUMN 

"^TSPH" 
exainPle causes the enforcement of a new pointer 

J^« ? \u concePt already available to the progr^ ?hat 
refers  to the neat parallel alignment of edges^  T^third 
Sf ^r a brick8 SStem ^ ^ tyPical ^ 'an be a 
"PRISM- so noi ^?"     ? sm*llest common generalization here is PRISM    so now  a  "column"  can be  any neatly piled  stack  of 
prisms.     The  fourth example  changes   " suppor ted-by "to  "muf 1- 
be-supported-by";   the fifth, whilh is no? sein as a group 
because  it has only two elements,   changes  "one-part-is-a 
group"  to  "one-part-must-be a group". 
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The sixth and final example 
is of particular interest 
with respect to traditional 
induction questions. 
Comparison of it with 
the current concept of 
"column" yields a 
difference-description 
whose highest-priority 
feature is the occurrence 
of "FOUR" instead of 
"THREE," in the number- 
of-members property of 
the main group.  What is 
the smallest class that 
contains both "THREE" and 
"FOUR?"  In the program's 
present state, the only 
available superset is 
"INTEGER.,:  Thus we obtain 
this description of "column" 
which permits a column to 
have any number of 
elements! 

KIND-OF 

KIND-OF 

M U ST-BE-SUPPOKTED-BY 
AND ALIGNED 

NUMBER-OF- 
MEMBERS 

Is this too rash a generalization to make from so few examples? 
The answer depends on too many other things for the question 
to make much sense.  If the program had already some concept 
of "small integer," it could call upon that.  On a higher level 
we could imagine a program that supervised the application of 
any generalization about integers, and attaches an auxiliary 
"warning" pointer label to conclusions based on marginally 
weak evidence.  We are still far from knowing how to design 
a powerful yet subtle and sensitive inductive learning program, 
but the schemata developed in Winston's work should take us 
a substantial part of the way. 

Finally, we note that in describing a sequential group in 
terms of a typical member and its relations with the adjacent 
members of the chain, we have come to something not too un- 
like that in programming languages that use "loops," entry, 
and exit conditions.  Again, a structure developed in the 
context of visual scene-analysis suggests points of contact 
with more widely applicable notions. 

-»■«■«„, 
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5.0 Knowledge and Generality 

We now turn to another set of questions connected with our 
long-range goal of understanding "general intelligence". 
An intelligent person, even a young child, is vastly more 
versatile than the "toy" programs we have described.  He 
can do many things; each program can do only one kind of thing. 
When one of our programs fails to do what we want, we may 
be able to change it, but this almost always requires major 
revisions and redisign.  An intelligent human is much more 
autonomous.  He can often solve a new kind of problem himself, 
or find how to proceed by asking someone else or by reading 
a book. 

One might try to explain this by supposing that we have 
"better thinking processes" than do our programs.  But it 
is premature, we think, to propose a sharp boundary between 
any of these: 

Having knowledge about how to solve a problem. 

Having a procedure that can solve the problem. 

Knowing a procedure that can solve the problem! 

In any case, we think that much of that a person can do is 
picked up from his culture in various ways, and the "secrets" 
of how knowledge is organized lie largely outside the 
individuals Therefore, we have to find adequate models of 
how knowledge systems work, how they are acquired by individuals, 
and how they interact both in the culture and within the 
individuals. 

How can we build programs that need not be rebuilt whenever 
the problems we want to solve are slightly changed?  One 
wants something less like ordinary computer "programming" 
and more like "telling" someone how to do something, by informal 
explanations and examples. 

In effect, we want larger effects while specifying less.  We 
do not want to be bothered with "trivial" details.  The 
missing information has to be supplied from the machine's 
internal knowledge.  This in turn requires the machine itself 
to solve the kinds of easy problems we expect people to 
handle routinely — even unconsciously — in everyday life. 
The machine must have both the kinds of information and the 
kinds of reasoning abilities that we associate with the ex- 
pression "common sense". 
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There are differences of opinion about such questions, and 
we digress to discuss the situation.  Artificial Intelligence, 
as a field of inquiry has been passing through a serious 
crisis of identity.  As we see it, the problem stems from the 
tendency for the pursuit of technical methods to become 
detached from their original goals so that they follow a 
developmental pattern of their own.  This is not necessarily 
a bad thing; many productive areas of research were born of 
such splits.  Every discipline has had to deal with such 
situations and it has happened often in the study of human 
intelligence.  Nevertheless, if one is interested in the par- 
ticular goal of building a science of intelligence, one 
has to be concerned with the use of resources both on the 
local scale of conserving one's own time and energy and on 
a global scale of watching to see whether the scientific 
community seems to be directing itself effectively.  We 
suspect that there is now such a problem in connection with 
the studies of Mechanical Theorem Proving. 

5.1  Uniform Procedures Vs. Heuristic Knowledge 

As a first approximation to formulating the issues, consider 
a typical research project working on "automatic theorem 
proving".  Schematically, the project has the form of a large 
computer program which can accept a body of knowledge or "data 
base," such as a set of axioms for group theory, or a set 
of statements about pencils being at desks, desks being in 
houses, and so on.  Given this, the program is asked to prove 
or disprove various assertions.  What normally happens is 
that if the problem is sufficiently simple, and if the 
body of knowledge is sufficiently restricted in size, or in 
content or in formulation, the program does a presentable 
job.  But as the restrictions are relaxed it grinds to an 
exponential stop of one sort or another. 

There are two kinds of strategy for how to improve the program. 
Although no one actually holds either policy in its extreme 
form and although we encounter theoretical difficulties when 
we try to formalize them, it nevertheless is useful to 
identify their extreme forms. 

The POWER strategy seeks a generalized increase in computational 
power.  It may look toward new kinds of computers ("parallel" 
or "fuzzy" or "associative" or whatever) or it may look 
toward extensions of deductive generality, or information 
retrieval, or search algorithms — things like better "re- 
solution" methods, better methods for exploring trees and 
nets, hash-coded triplets, etc. In each case the improvement 
sought is intended to be "uniform" — independent of the 
particular data base. 
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The KNOWLEDGE strategy sees progress as coming from better 
ways to express, recognize, and use diverse and particular 
forms of knowledge.  This theory sees the problem as episte- 
mological rather than as a matter of computational power or 
mathematical generality.  It supposes, for example, that 
when a scientist solves a new problem, he engages a highly 
organized structure of especially appropriate facts, models, 
analogies, planning mechanisms, self-discipline procedures, 
etc.  To be sure, he also engages "general" problem-solving 
schemata but it is by no means obvious that very smart people 
are that way directly because of the superior power of their 
general methods — as compared with average people.  Indirectly, 
perhaps, but that is another matter:  a very intelligent 
person might be that way because of specific local features 
of his knowledge-organizing knowledge rather than because 
of global qualities of his "thinking" which, except for the 
effects of his self-applied knowledge, might be little 
different from a child's. 

This distinction between procedural power and organization 
of knowledge is surely a caricature of a more sophisticated 
kind of "trade-off" that we do not yet know how to discuss. 
A smart person is not that way, surely, either because he 
has luckily got a lot of his information well organized or 
because he has a very efficient deductive scheme.  His intelli- 
gence is surely more dynamic in that he has (somehow) acquired 
a body of procedures that guide the organization of more 
knowledge and the formation of new procedures, to permit 
bootstrapping.  In particular, he learns many ways to keep 
his "general" methods from taking elaborate but irrelevant 
deductions and inferences. 

5.1.1 Successive Approximations and Plans 

The mechanical theorem-proving programs fail unless provided 
with carefully formulated diets of data; either if given to 
little knowledge and asked advanced theorems, or given too 
much knowledge and asked easy questions.  In any case', the 
contrast witu a good mathematician's behavior is striking; 
the programs 3eem to have no "global" strategies.  If a 
human mathematician is asked to find the volume of some object 
of unusual shape he will probably try to use some heuristic 
technique like: 

1. cutting it into a sum of familiar shapes; or 

2. enclosing it "tightly" in a familiar shape and 
try to find the difference-volume; or 

3. transform, metrically, the space so that the shape 
becomes more familiar; 

4. etc. 
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Thus, one would transform: 

7 

crucial.  The three kinds of information in 

1. 

2. 

3. 

The knowledge exhibited in the proof; 

The knowledge used to find the proof; 

The knowledge required to "understand" or 
explain the proof so that one can put it 
to other uses, 

are not necessarily the same in extent or in content  Th^ 

knowledge can be used. yp 

storv^blt1^ °£ knowled9e is exemplified by the following 

"The system has perfectly rigid bodies, 

i«anrtT. !.treated aS purely ^o^tric.  There 
iL?" friCtl0n' and the forces obey Hooke's 

inf?n^0
SOlVeS.his ew^ons.     He finds the system offers 

infinite resistance to disturbance at a neZ*-*^  e    oxters 
He has used a standard plan; cSrit u^^SIMPLE^Sr-i^' 
produced an absurdity.  But he does nni- ^o^ !^ •   ,. 
completely!  Instead, he says:  "I know thlfnh  S abs?rdity' 
tells me that the "real" ZvltL™  K Know.thls phenomenon!  It 

damping and coupling terms. J-"ciuaes certain 
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Next, he studies this system near the interesting frequencv 
that was uncovered by plan ÜLTRASIMPLE.  He know? that his 
new model is probably very bad at other  far-lSaf, V      • 
at which he will geJfals^ phenomena because TlteZnlTtTrlT 
hfr^Ki0nS tuOUt. ri^dity^  he has reason to believe ?hese 
harmless in the frequency band now being studied.  Then hj 

One cannot overemphasize the importance of this kinr- of 

that we plan to assign a large portion o?Suref?o?t to 

Intelligence  ^^ " ^ " Central problem in Artificial 

5.2 Micro-worlds and understanding 

In order to study such problems, we would like to havo 
collections of knowledge for several "micro-worlds" ulti- 

"uld'like^trmakr'^'111' ^ t0gether-  ^pe'ciaily ^e 
kn«i?Qi  u   t e  SUch a system able to extend its owA 
knowledge base by understanding the kinds of information 
found in books.  One might begin by studying the probJems 
one encounters in trying to understand the stories alv^n%o 
young children in schoolbooks.  Any six-vLr-old «nl«^ 2 
much more about each of such cru^l^nd^riois ttt^lT* 

time 
causing 
failing 
owning 

space 
doing 
knowing 
giving 

planning 
preventing 
intending 
breaking 

explaining 
allowing 
wanting 
hurrying 

than do any of our current- hon»--! c4--i~ ^_„       „ 

a graduat/student,   is^Sw weeu1|lcng
P^9deaveiopi„Urs:meCharniak' 
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Although we might describe this project as concerned with 
"Understanding Narrative", — of comprehending a story as 
a sequence ot statements as read from a book ■— that image 
does not quite do justice to the generality of the task.  One 
has the same kinds of problems in: 

1. making sense of a sequence of events one has seen 
or otherwise experienced (what caused what?) 

2. watching something being built (why was that 
done first?) 

3. understanding a mathematical proof (what was 
the real point, what were mere technical details?) 

Many mental activities usually considered to be non-sequential 
have similar qualities, as in seeing a scene:  why is there 
a shadow here?  — What is that?  — Oh, it must be the 
bracket for that shelf. 

In any case, we do not yet know enough about this problem 
of common sense.  One can fill a small book just describing 
the commonsense knowledge needed to solve an ordinary problem 
like how to get to the airport,  or how to change a tire. 
Each new problem area fills a new catalogue.  Eventually, no 
doubt, after one accumulates enough knowledge, many new 
problems can be understood with just a few additional pieces 
of information.  But we have no right to expect this to 
happen before the system contains the kind of breadth of 
knowledge a young person attains in his elementary school 
years I 

We do not believe that his knowledge can be dumped into 
a massive data base without organization, nor do we see how 
embedding it in a uniformly structured network would do 
much good.  We see competence as emerging from processes in 
which some kinds of knowledge direct the application of other 
kinds in which retrieval is not primarily the result of 
linked associations but rather is computed by heuristic and 
logical processes that embed specific knowledge about what 
kinds of information are usually appropriate to the 
particular goal that is current. 

We already know some effective ways to structure logically 
deep but. epistemologically narrow bodies of knowledge, as 
the result of research on special purpose heuristic programs 
like MACSYMA, DENDRAL, CHESS, or the Vision System to get 
experience with broader, if shallower, systems we plan to 
build up small models or real world situations; each should 
be a small but complete heuristic problem solving system, 
organized so that its functions are openly represented in 
forms that can be understood not only by programmers but 
also by other programs.  Then the simple-minded solutions 
proposed by these mini-theories may be used as plans for more 
sophisticated systems, and their programs can be used as 
starting points for learning programs that intend to improve 
them. 
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In the next section we will describe a micro-world whose 
subject matter has a close relation to the vision world 
already described.  Its objects are geometric solids such as 
rectangular blocks, wedges, pyramids, and the like.  They 
are moved and assembled into structures by ACTIONS, which 
are taken on the basis of deductions about such prpperties 
as shape, spatial relations, support, etc.  These interact 
with a base of knowledge that is partly permanent and partly 
contingent on external commands and recent events. 

5.3 Winograd's BLOCKS World 
Note:  Sections 5.3 through 5.6 are largely adapted 
from Terry Winograd's Thesis, but he is not responsible 
for the oversimplifications and reinterpretations. 

For developing and demonstrating his ideas about understanding 
natural language, Terry Winograd needed a micro-world in 
which to carry on a discourse containing statements, questions 
and commands.  In this world we pretend we are talking to 
a very simple type of robot, like the ones being developed 
in AI projects at Stanford and MIT.  The robot has an 
arm and an eye.  It can look at a scene containing toy 
objects and can move them with its hand.  Winograd did not 
try to use an actual robot or to simulate it in great 
physical detail.  His "robot" exists only as a display on 
the CRT scope attached to the computer. 

A subject for such a discourse needs a certain amount of 
structure to support interesting description and manipulation 
problems.  The BLOCKS WORLD has OBJECTS, RELATIONS (and 
properties) of the objects, ACTIONS that can be performed, 
and GOALS — descriptions of states of the world that one 
might want to achieve. 

5.3.1 Objects 

In Winograd's model, the robot (named :SHRDLU) has a hand 
(:HAND) which manipulates objects on a table (f:TABLE) that 
has on it a box (:BOX).  The rest of the physical objects 
are toys — mainly blocks and pyramids.  We give them the names 
:B1, :B2, "B3, etc.  Any symbol beginning with ":" represents 
a specific object. 

Built into this world are some concepts we will use to 
describe these objects and their properties.  We represent 
them in a tree: 

|TABLE 
| BOX 

I PHYSOB j MANIP- 
I ROBOT        |HAND 
|PERSON       j STACK 
|PROPERTY  

I BLOCK 
j BALL 
j PYRAMID 

j COLOR 
|SHAPE 
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The symbol PHYSOB stands for "physical object" and MANIP 
for "manipulable object" (i.e. something the robot can pick 
up).  Using the concept IS to mean "has as its basic des- 
cription," we can write assertions like 

(IS rSHRDLU ROBOT) (IS :HAND HAND) (IS :B5 PYRAMDD) 

For other, less basic properties we can write attribute- 
value statements like (MANIP :B5) and (PHYSOB :TABLE). 
Shape and color are handled with possible shapes are 
ROUND, POINTED, and RECTANGULAR, and the colors are 
BLACK, RED, WHITE, GREEN and BLUE.  The property names 
themselves can be treated as objects, so we can make such 
assertions as (IS BLUE COLOR) and (IS RECTANGULAR SHAPE). 

Size and location are more complex, as they depend on the 
way we choose to represent physical space.  We adopted a 
standard three-dimensional coordinate system and make the 
simplifying assumption that objects are not allowed to 
rotate, and therefore always keep their orientation aligned 
with the coordinate axes.  We can represent the position of 
an object by giving the coordinates of its front lower left- 
hand corner, and its size by giving three dimensions, as 
in (AT :B5 (400 600 200)), and (SIZE :B5 (100 100 300)). 

5.3.2  Relations 

Since we are interested in building structures with the 
objects around in the scene, one of the most important relations 
is SUPPORT.  The initial data base contains assertions about 
all of the support relations in the intial scene, like (SUPPORT 
iBl :B2).  Every time an object is moved, a PLANNER "ante- 
cedent theorem: removes the old assertion about what was 
supporting it, and puts in the correct new one.  See 5.3.3. 
An "antecedent theorem" can be regarded as a sort of demon 
that watches for some sort of event to happen, and then takes 
a suitably programmed action.  The Blocks World uses a 
notion of "support" in which an object is supported by whatever 
is directly below its center of gravity, at the level of its 
bottom face.  Therefore, one object can support several 
others, but there is only one thing supporting it.  Of 
course this is an extreme simplification since it does not 
recognize that a simple bridge is supported. 

The assertion (CLEARTOP X) will be in the data base if and 
only if there is no assertion (SUPPORT X Y) for any object 
Y.  Whenever an object is moved, a procedure checks to see 
if the CLEARTOP status of any object has changed, and if so 
the necessary erasures and assertions are made. 

Information about what is contained in the box is also kept 
current by an antecedent theorem concerned with the property 
CONTAIN.  The property GRASPING is used to indicate what 
object (if any) the robot's hand is currently grasping. 
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Another relation is the PART relation between an object and 
a stack.  We can give a name to a stack, such as :S1, and 
assert (PART :B2 :S1).  Relations using the symbols RIGHT 
BEHIND and ABOVE represent the difference in coordinate axes 
for X, Y and Z respectively.  The symbol ON is used to represent 
the transitive closure of SUPPORT.  That is, Z is ON A if A 
supports B, B supports C, ... supports Z. 

The measurements of LENGTH, WIDTH and HEIGHT are contained in 
the SIZE assertions and (HEIGHT X) evaluates to the height of 
whatever object the variable X is bound to.  SIZE is 
used for comparisons like "bigger."  Currently, it returns 
the sum of the X, Y and Z coordinates, but it could be easily 
changed to be more in accord with human psychology.  In 
order to compare measurements, we have the relation MORE  The 
sentence ":B1 is shorter than "B2" is equivalent to the asser- 
tion (MORE HEIGHT :B2 :B1) . 

OWN relates a person to any object.  Knowledge about what the 
human user owns is gathered from his statements.  The semantic 
programs can use statements about owning to generate further 
P
^T1^ ^u0rfmS Which are used to answer questions about what 
:FRIEND (the human operator) owns and make deductions needed 
to carry out commands involving owning.  The current system 
contains only token examples of such properties unrelated to 
the microworld of blocks. 

5.3.3  Actions 

The only events that can take place in our world are actions 
taken by the robot in moving its hand and manipulating objects. 
At the most basic level, the only actions which "really" 
occur are IMOVETOI, IGRASPI and lUNGRASPl.  These are the 
actual commands sent to the display routines and, theoretically, 
to a physical robot system. y 

To explain how the actions are programmed, 
in Winograd's system, we need to know a little 
about the PLANNER language of Carl Hewitt. 
Briefly, PLANNER has several ways for handling 
information of the form "A implies B", custom- 
arily called "theorems",  m one form, the 
"consequent" form, it is interpreted roughly 
as "If you want something of the form B, 
make A a subgoal".  in another, the "ante- 
cedent" form, it means "if something of the 
form A occurs, then deduce B and add it to 
the data base".  Still another form of theorem 
can erase statements, such as support assertions 
that ought to be excised automatically when one 
of the participating objects is moved. 

' 
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The result of calling a consequent theorem to achieve a qoal 
requiring motion, like (PUTON :B3 :B4), is a plan - a list 

ZLlT^UCui0T  U*inH the three elementary functions.  IMOVETOI 
moves the hand and whatever it is grasping to a specified 
position.  I GRASP! sets an indicator that the grasped object 
is to be moved along with the hand, and lUNGRASPl unsets it 

of%h?^-gr?SPS ^ rnOVing itS hand directly over the cente^ 
of the object on its top surface, and turning on a "magnet." 
nLCfMn0 ?1S ^0 any maniPulable object, but can only grasp 
n.n H»^      va tlme:  Using these elementary actions, wl  P 

^n"^    a hierarchy of actions, including goals that may 
wlrlut \    ule  sec3uence of deductions and actions, like 
blocks^      CaUSeS the constldCtion of a whole s(ack of 

Inside the system are another sat of "conceotual actionc:" 
MOVEHAND GRASP and UNGRASP, and correspondingaconseqSent 
theorems to achieve them.  There is a significant difference 
between these and the functions listed above.  Calling the 
function :MOVETO: actually causes the hand to move.  On the 
other hand, when PLANNER evaluates u statement like: 

(GOAL(MOVEHAND (600 200 300))(USE to-MOVEHAND)) 

nothing is actually moved.  Translation:  if your goal is to 

MOVPHAMH ^ t0 (600' 200' 300)' use the advice iTlhelc- 
MOVEHAND theorem to achieve this goal.  The "USE" clause is a 
feature in PLANNER to allow the insertion of advice on ho^ 
tu  af f/6 g0als' etc" in any assertion or theorem.  Here 
the tc-MOVEHAND theorem creates a plan to do the motion b^t 
if this move would cause us to be unable to achieve a goal 

?L«?Tv      ^^t' th! PLANNER backup mechanism will automa- 
tically erase it from the plan.  The robot plans its entire 
sequence of actions before actually moving anything, tryinq 
if necessary all of the recommended means it has to achievl 
its goal.  We do not have space to explain PLANNER'S backup 
system in complete detail; it is described in Hewitt's 
tnesis, and the following sections show roughly how it 
provides automatic tree searching when necessary, under the 

in^he data^asl"^" reconmendations attached to'the theorems 

■' 

These theorems also do some checking to see if we are tryinq 
to do something impossible.  For example, MOVEHAND makes 
sure the action would not place one block where there is 
already an other, and UNGRASP fails unless something will 
support the object it wants to let go of. 

hwLT S6 briC ohiects'  relations and actions in the 
blocks world.  But a micro-worid also needs concepts about in- 
tentions, processes, strategies, etc.  We next describe the 
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performanL anl^lu? fts  InS'Ss! qUeStionS about "" 

5.3.4    Carrying Out Commands 

definitions of various PÜSERÄ 
pr0grain ?ives  simplified 

nitions,  we will be able to  ?o^      f^8-     Using  these defi- 
complex action in detau       (vn. the System through a 
Program may be  fSunfol^he ^^x^^^f.0^^^^   ^he 
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tc-CLEARTOP X 
GO 

tc-GET-RID-OF X 

tc-GRASP X 

tc-PUT X 

(COND ((GOAL (SUPPORT X _Y)) 
(GOAL (GET-RID-OF Y) (USE tc-GET-RID-OF)) 
(GO GO)) 

((ASSERT (CLEARTOP X)))) 

(OR 
(GOAL (PUTON X :TABLE}(USE tc-PUTON)) 
(GOAL (PUTON X Y)(USE tc-PUTON))) 

(Gv. ^(MANIP X) ) 
(COND ((GOAL (GRASPING X))) 

((GOAL (GRASPING _Y)) 
(GOAL (GET-RID-OF Y) (USE tc-GET-RID-OF))) 

(T)) 
(GOAL (CLEARTOP X) (USE tc-CLEARTOP)) 
(SETQ _Y (TOPCENTER X)) 
(GOAL (MOVEHAND Y) 

(USE tc-MOVEHAND)) 
(ASSERT (GRASPING X)) 

(CLEAR Y (SIZE X) X) 
(SUPPORT Y (SIZE X) X) 
(GOAL (GRASP X) (USE tc-GRASP)) 
(SETQ _Z (TCENT Y (SIZE X))) 
(GOAL (MOVEHAND Z)  (USE tc-MOVEHAND)) 
(GOAL (UNGRASP)  (USE tc-UNGRASP))) 

(NOT EQ X Y)) 
(GOAL (FINDSPACE Y $E (SIZE X) X _Z) 

(USE tc-FINDSPACE tc~MAKESPACE)) 
(GOAL (PUT X Z)  (USE tc-PUT)) 

Let us trace, for example, the meaning of PUTON.  The first clause 

(PUTON X Y) 

it  Se "Patern" of the goal.  X and Y are variables to be matched. 
If the goal has this form, then these variables are bound to what 
they matched and 

(NOT (EQ X Y)) 

checks for the (impossible) situation of trying to put a block 
on itself.  If this "failure" occurs then the current goal will 
be abandoned.  This means that PLANNER will back up ~ reconstruct 
the situation at the most recent previous variable-binding de- 
cision.  For example, in this case, the system must have been 
looking for a place to put the block X, and stupidly decided to 
put it on x:  Now it must make another choice, and presumably 
this time Y will be found to a different, more sensible location. 
So this time tc-PUTON will pass the (NOT (EQ X Y)) test and go 

tc-PUTON X Y 
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on to the next step, which is to create a subgoal: 

(GOAL (FINDSPACE Y $E (SIZE X) X  Z) 
(USE tc-FINDSPACE tc-MAKESPACE)) 

which says to try to find a space on Y big enough for X ianor- 
xng space currently occupied (possibly) by X.  ?he location 
resulting from success of this goal is then bounS to z! Again, 
if the goal fails, we would back up, but the prograir- makes ?wo 

llytTotr^Tf^  ^ t0 ^ SUCh a Place-  tc-™SsptSE 
I^-LKESIAIF  .Ji  .  VPar alfeadl   there; if this fails ^en tc MAKESPACE says to try to make such a space. 

(GOAL (PUT X Z) (USE tc-PUT))) 

putTi;! Sat l^tioUnTdS' ^^ ^ t0 USe tC-PUT t0 aCtuallV 

tries^je goSir^10" ^ ^  f0ll0W What haPPens ^ PLANNER 

(GOAL (GRASP :Bl)(USE tc-GRASP)) 

ohwÜT6? tc:GRASP  checks to "ake sure :B1 is a graspabl^ 
object by looking in the data base for (MANIP :B1).     if  the 
hand is already grasping the object, it has nothing more to 
do.  If not, it must first get the hand to the object.  This 
may involve complications - the hand may already be holdi^J 
something, or there may be objects sitting on top of the onl  it 
wants to grasp.  m the first case, it must get ?id of wha?- 
ever is in the hand, using the command GET-RID-OF. 

The easiest way to get rid of something is to set it on the 
wSi!'^ tc-GE*-RID-0F creates the goal (PUTON X :TABLE) , 

Sen tc-PüTON'musf X Xl  ^^ i0 the 0bjeCt the hand is Elding. Then  tc-PUTON must in turn find a big erouqh emptv olace to ^^? 
down its burden using the command F?NDSPACE, whichperforms 
the necessary calculations, using informatioi about ?he sizes 
and locations of all the objects.  tc-PUTON then creates a aoal 

thin^PUT; WhiCh calculates ^ere the hand must be moved to*alt 
lv n^neS lnt0 ^ 2eSired Place' then calls MOVEHAND to ac?ual- 
ly plan the move.  If we look at the logical structure of our 

but wL!0^8 £t thiS p0int' assuming that  we want to grasp :B1, but were already grasping :B2, we see: ^ -^r 

(GRASP :B1) 
(GET-RID-OF :B2) 

(PUTON :B2 :TABLE) 
(PUT :B2 (453 101 0)) 
(MOVEHAND (553 301 100)) 

After moving, tc-PUTON calls UNGRASP, and we have achieved the 
first part of our original goal - emptying the hand.  Now we 
must clear off the block we want to grasp.  tc-GRASP sets up 
the goal: 1 

(GOAL(CLEARTOP :B2)(USE tc-CLEARTOP)) 
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This is a good example of the double use of PLANNER goals to 
both search the data base and carry out actions.  If the asser- 
tion (CLEARTOP :B1) is present, it satisfies this goal immedi- 
ately without calling the theorem.  However if :B1 is not already 
clear, this GOAL statement calls tc-CLEARTOP which takes the 
necessary actions.  Then tc-CLEARTOP will try to GET-RID-OF 

0^CtS 0n t0p of :B1- This wil1 in turn use PUTON, which 
uses PUT. But tc-PUT may have more to do this time, siAce the 
hand is not already grasping the object is has to move.  It 

^r^0r*aco
tS ^ a g0al t0 GRASP the obiect, recursively call- mg tc-GRASP again. 

And so on!  To answer questions about the past, the BLOCKS pro- 
grams remember parts of their subgoal tree by creating objects 
called events.  The system does not remember small, specific 

nn695^  !-M0VEHAND' bUt 0nly lar9är goals like PUTON and STACK- 
UP.  The time of events is measured by a clock ^'hich starts at 
0.  It is incremented by 1 every time any motio- occurs, creat- 
ing a new event that combines the original goal statement with 
an arbitrary name, the starting time, ending time, and "reason- 
tor each event.  The reason is the name of the event nearest 
up in the subgoal tree which  is being remembered.  (The reason 
for goals called by the linguistic part of the system is "be- 
cause you asked me to"). 

A second kind of memory keeps track of the actual physical 
motions of objects, noting each time one is moved, and record- 
ing its name and the location it went to.  This list can be 
used to establish where any object was at any past time. 

When we want to pick up block :B1, we can say:  (GOAL (PICKUP -Bin 
and it is interpreted as a command.  We can also ask "Did you' 
pick up :B1? , since when the robot picked it up an assprtion 
like (PICKUP E2 :B1) was stored in the data base.  If PLANNER 
evaluates PICKUP X :B1)) it will find the assertion, binding 
the variable X to the event name E2.  Since the property list 
of E2 gives its starting and ending times, and its reason, this 
is sufficient information to answer most questions. 

5.4  Sample Dialog with Winograd's Language Understanding System 

To make a useful micro-world one needs not only objects, proo- 
erties and actions, but also goals, processes, and simplified 
TZ

S
^\    Je^ral  c°ncePts like time, space, and intention. 

The Blocks World was designed by Terry Winograd to serve as a 
l^rCt    ^ain f0r the develoPment of a language understanding 
system  This system is radically more ambitious than earlier 
attempts to deal with natural language in several respects. 
It is as much, or more, concerned with the problem of represent- 
ing S-1"63"1^3 tu  a.discourse than with the grammatical struc- 
ture; Winograd s thesis asserts that the interactions between 
meanings and syntactic structures are so intimate that it is a 
^   ^uVi? t0 ?raW a definite boundary between the pro- 
cedures that "parse" a sentence and the procedures that are to 
Hn ^e ^   raW lo5lcal inferences about the meanings carried 
in the discourse. 
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Winograd's system is described in his thesi- at several levels 
of detail and it is impossible to do justice to it in any short 
summary.  Our strategy will be first to present an example of 
its performance in the blocks world context, and then to discuss 
some of the mechanisms that are involved in attaining this per- 
formance.  In the following dialog the system carries out actions 
and answers questions about a simple scene containing a table, 
hand, and box, and several blocks and pyramids, as shown in 
Fig. 1.  The lines in lower case were typed in by a person, and 
the lines in upper case are the computer's response.  Indented 
lines are comments describing some of the features beinq ex- 
hibited. ' 

The dialog was carried out in real time with the response of 
the "robot" displayed on a CRT screen.  Figures are included 
to show the state of the scene at various points.  it is im- 
portant to read the dialog with some skepticism.  While the 
apparent linguistic fluency is to an extent genuine, the vocabu- 
lary and semantic base is very thin, and the conversation works 
because the human operator stays closely within the boundaries 
of the system's understanding. 

1. pick up a big red block. 
======== OK. 

The system answers "OK" when it carries 
out a command.  In order to pick up the 
red block, it had to clear it off by 
finding a space for the green one and 
moving the green one away. 

2. grasp the pyramid. 
======= ! DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. 

There are three pyramids in the scene, 
so the program does nothing. 

3. find a block which is taller than the one you are 
holding and put it into the box. 

The system has to figure out what is 
meant by "one" and "it", as well as 
using deduction to decide which block 
it is holding. 

======= BY"IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER 
THAN THE ONE I AM HOLDING.  (Printed out to keep us informed. 
  0K'      The hand has to set down the red block 

to pick up the taller blue one.  Figure 1 
shows the result of the system's manipu- 
lations so far. 

4. what does the box contain? 
======.= THE BLUE PYRAMID AND THE BLUE BLOCK. 

5. what is the pyramid supported by? 
Earlier the system responded to "the 
pyramid" by saying "I don't understand 
which pyramid you mean." Now, it assumes 

 ~ THE BOX.  that we mean the one just mentioned. 
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6.  how many blocks are not in the box? 
Negatives such as "not" and "no" are 
handled whether they appear in clauses 

======= F0UR 0F TH^.
nOUn grOUpS (sach as n™  boxes"). ' 

t^ld'yofto'pick^p?0' ^^ narrOWer. than the 0ne Which I 

The phrase "at least one of them" must 
be analyzed to refer back to the previ- 
ous question, and "the one which" must 
also refer to blocks.  Noun groups can 
have complicated numbers such as "at 
least^one", "more than three", "exactly 
seven", etc.  The memory of past events 
is used to deduce which block is "the 
one which I told you to pick up".  Notice 
the complicated grammatical structure in 
which "the one" is actually the object 
of a clause embedded two levels deeper. 

=======  YES, THE RED CUBE. «eper. 

8.'.   ,,iShiaseUPPClted? Passives  can be used without a "by 
=======  YES, BY THE TABLE. 

9^ can the table pick up blocks? 
== NO.      The semantic rules make this a nonsensi- 

cal question which therefore must be 
false. 

i°l__^n a pyrai:nid be supported by a block? 
:— YES.     The deductive system finds an actual 

example, so it knows this is possible. 

11. can a pyramid support a pyramid? 
=======   I   DON'T KNOW. 

The question makes sense, but there is 
no example in the scene, so there is no 
easy way to tell without being able to 
examine the robot's programs. 

12. stack up two pyramids. 
=======  I CAN'T  The robot tries and fails. 

13. the blue pyramid is nice. 
======= I UNDERSTAND. 

This data is added to the data base. 

l^r.r,\ °wnK
blocks which are not red, but i don't own any- 

thing which supports a pyramid. y 

======= i   UNDERSTAND. 

Two new theorems are created for provinq 
things about "owning". 

15.  do i own the box? 
======= NO.      The box supports whatever it contains, 

including a pyramid. 
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16. do i own anything in the box? 
======= YES, TWO THINGS:  THE BLUE BLOCK AND THE BLUE PYRAMID, 

17. will you please stack up both of the red blocks and 
wither a green cube or a pyramid? 
=======  OK.      Logical connectives such as "and" "or" 

"either" etc. are handled in both the 
grammar and semantics,, A command is 
executed even if it looks like a question. 
The command is carried out by the follow- 
ing series of steps:  It puts a green 
cube on the large red block (note that 
it chooses the green cube with nothing 
on it), then removes the small pyramid 
from the little red cube, so that it can 
use that cube to complete the stack as 
specified, resulting in the situation 
of Figure 2. 

18. which cube is sitting on the table? « 
======= THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID: 

Ordinarily the system would be satisfied 
with calling this "a big green cube", 
but since we asked "which cube" it has 
to be more specific in naming it.  The 
use of substitute nouns (such as "one") 
and pronouns in answers makes the dis- 
coursf more natural. 

19. is there a large block behind a pyramid? 
======= YES, THREE OF THEM:  A LARGE RED ONE, 

A LARGE GREEN CUBE AND THE BLUE ONE. 

20. put a small one onto the green cube which supports a 
pyramid. 
======= OK.      "A small one" most contrast with the 

earlier phrase "a large block", so this 
means "a small block". 

21. put the littlest pyramid on top of it. 
======= OK. Words like "littlest" are not in the 

dictionary but are interpreted from the 
root forms like "little". 

22. how many things are on top of green cubes? 
======= J'M  NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE 
PHRASE "ON TOP OF GREEN CUBES".  DO YOU MEAN: 
1 - DIRECTLY ON THE SURFACE  2 - ANYWHERE ON TOP OF ? 

When there are several interpretations 
and none is clearly better, the system 
has to ask the user for more information 
The paraphrases were included with the 
dictionary definition of "on", and the 
request for more information occurs 
automatically when the heuristics for 
resolving ambiguities aren't sufficient. 
A request like this can also occur when 
the meaning of a pronoun such as "it" or 
"they" is unclear. 
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^PuJ^ up a, dig rtd bhcfc. 

/       \   \ 

Fig.   2, 
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2 ====== THREE OF THEM. 

23. had you touched any pyramid before you put the green 
one on the little cube? 
======= YES, THE GREEN ONE. 

The system deduces from its memory what 
event is being referred to, and can re- 
late other events to it in time.  The 
analysis includes complex tenses of verb 
groups, and there are special facilities 
for keeping track of the various forms 
of irregular verbs like "have". 

24. when did you pick it up? 
======= WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED 
BLOCK AND A LARGE GREEN CUBE. 

A time is described by naming the main 
goal which was being worked on. 

25. why?        The system remembers immediately previous 
sentences to understand questions like 
this and the following ones. 

======= TO GET RID OF IT. 
By keeping track of selected parts of the 
original subgoal tree, the system has 
some understanding of its own motives. 

26. why did you do that? 
======= TO CLEAN OFF THE RED CUBE. 

"That" refers to the action mentioned 
in the answer. 

27. why did you clear off that cube? 
Here, "that" means the one just referred 
to. 

======= TO PUT IT ON A LARGE GREEN CUBE. 

28. why did you do that? 
======= TO STACK UP THE RED CUBE, A LARGE RED BLOCK AND A 
LARGE GREEN CUBE. 

29 .  why did you do that? 
======= BECAUSE YOU ASKED ME TO. 

It remembers what it did, not how the 
request was worded. 

30.  how did you do it? 
"It" refers to the action mentioned in 
the last question, rather than the answer. 

======= BY PUTTING A LARGE RED BLOCK ON THE TABLE; THEN 
LETTING GO OF IT: THEN PUTTING A LARGE GREEN CUBE ON IT- 
THEN LETTING GO OF THAT CUBE: THEN PUTTING THE RED CUBE 
ON THAT CUBE: THEN LETTING GO OF THAT CUBE. 

This is a description of the top-level 
subgoals used to achieve the goal. 
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31.  how many objects did you touch while you were doing it? 
Time references can refer to a time span,' 
using words like "while", 

======= FOUR OF THEM. 

cLan^f o?f? the red CUbe SUpPort before you started to 
======= THE GREEN PYRAMID. 

By remembering what has been moved, it 
is possible to deduce things about earlier 
states of the scene.  We can use complex ' 
nestings of clauses like "before you 
started to clean it off". 

of the box then, 
the time mentioned 

CUBE, TWO LARGE 

, information about 
at face value.  But 
it has complete 
basic properties 
location.  it checks 

location or other 
e whether it agrees 

33.  there were five blocks to the left 
"Then" must refer to 
in the last sentence. 

  NO, ONLY FOUR OF THEM:  THE RED 
GREEN CUBES AND A LARGE RED BLOCK. 

Earlier in the dialog 
"owning" was accepted 
the system knows that 
information about the 
of objects, including 
any statements about 
such properties to se 
or disagrees. 

34.  put the blue pyramid on the block in the box. 
This is syntactically ambiguous] but is 
understood without ambiguity since the 
parsing corresponding to "put the blue 
pyramid which is on the block in the box" 
does not make sense in the current scene, 
while put the blue pyramid on the block 
whlch is in the box" does. 

OK. 

bu; i^no^^ any.thin<3  which is bigger than every pyramid 
but is not as Wide as the thing that supports it? 

The system understands quantifiers such 
as every", "any", "some", etc., and 
structures such as "bigger than", "as 
wide as", etc.  Here "it" refers to a 
noun group within the same sentence but 

„„„      two levels up in the parsing tree 
======= YES, THE BLUE BLOCK. 9 

36.  does a steeple SORRY, I DON'T KNOW THE WORD "STEEPLE" 
The system interrupts immediately when it 
sees a word it can't figure out. 

Ilk  .^Ä6" iS a StaCk "hiCh COnt"- ^ 9-e„ cubes 

The quote marks indicate we are definino 
a new word. y 

======= i UNDERSTAND 
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38. are there any steeples now? 
======= NO. 

39. build one. 

  OK.      The description given in the definition 
is enough to deduce a plan for building 
new objects as well as recognizing them. 
The word "one" means "a steeple", and the 
plan is carried out.  First, one of the 
large green cubes is cleared off by remov- 
ing the red cube and two pyramids.  Then 
the two green cubes and the tall red 
pyramid are stacked up to fit the descrip- 
tion. 

40. call the biggest block "superblock". 
=======  OK.      We can also give objects names. 

41. have you picked up superblock since we began? 
======= YES. 

42. why did you drop it? 
=======  BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK. 
=======   1   CAN"T EXPLAIN A NON-EXISTENT EVENT. 

There is no record in memory of any block 
being dropped. 

43. is there anything to the right of the red pyramid' 
=======  YES, FOUR THINGS:  THE BOX, THE RED CUBE, THE BLUE 
PYRAMID AND THE BLOCK NAMED SUPERBLOCK. 

Once an object has a name, the name is 
used to help identify it in responses. 

44. thank you. 
======= YOU'RE WELCOME: 

Idioms can be defined without modifying 
the grammar. 

5.5.1  Syntax and meaning 

What concepts are involved in the dialog example? From the 
performance, it is clear that the system embodies a certain 
amount of knowledge about blocks, about building, about goals, 
time, space, words, semantics, syntax, idioms, and common sense 
about questions, logical inference, tolerance of false assertions, 
inconsistencies, failure? to achieve goals, etc.  Each such 
problem could perhaps be handled, in any particular situation, 
by appropriate tricks, special case detectors, reduction to 
standardized schematic situations, etc.  but such a system 
would become more and more limited, unwieldy, and finally in- 
comprehensible and incapable of extension, as situations appear 
m which special cases interact.  In fear of this, perhaps, 
construction of theories involving meaning has generally been 
put aside or postponed in favor of attempts to construct syn- 
tactic rules that would generate exactly the "grammatical•• 
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ITtt^l at  ««^S^'tMs^i^? W0^ 0f Ch°raS^ ^ «hers 
more and more re"iläeaSi J^lWOrJ OUt, bUt as one "tempted 
turned out to rlguirj a o-ea? S,     JS1Ve ^^'   ^eSe too 
to systems that^errunwfeMy^Sdlo^x^d "tSI*' ^ led 

a^Sr^^^pT^^en^iir^-5^ ?'- "^ =-    Lo1"- 
frSm semantils aotüaUrmakS milt*9    t0 Split Syntax completely 
better by facing ^^1^ pr^tSs-o^^ean^?"6 "i9ht d0 

syUSacatLr0^^sI^^ow0n^emr:a1i:r
0h "Z* t^^  ^ 

turned out to be so dSflSt Sd ^J?rtiY beCaUSe the  latter 

heuristic Progra^ng mfdrmeaning
Pso"LheiLUsen,f rnCeS  in 

now appears  that even a m^^Tt       so much  less mysterious,     it 
simplify understan^g'sy^a" """""^ COmPle">e"t "■> neatly 

p'arsTM^e^ l^XTlT^Ztl^V^^ teU us ^ *° following two sentences:       anin9 must be studied,  consider  the 

Sr ÄnTÄ Ssl Sef L%^ ^n? -»" 

Le ä-SS L~ K?-tr^Är 
tl ^infthe'geSr ItTe^trf^ i'*^" meanS'   f« —P^- 
the infor^tir^feL^ng6 p^erl^^Luze 1™^™™*. 
men are usually staunch defenders of  i.^J      lhat 01ty 0°unoil- 
likely to be revolutionaries       T^ ?!Ja".ana °rder'  but are hardly 
one avoids  this oroblem hi f™       tra<iitional syntactic analysis 
are interested  irSndS?stand?nrhown?h

b0!:h parsin?s-  but if we 
we have to be aWe^o SaIhe'cholce^ sHn^ldJ:^0 t* USea' 
grammar of a  language,  our Droo™ nfli.     ,,     addltl°n to a 
about the subjecl i? is disSsIlS,^ «e aWlitvl kn0"led^ 
reasoning to combine  fact«?  in ml   1-   t?^ ability to use 
sentence one haTtS cSSlL „ lght Ways"     To understand a 
in^very ^Z^TZlÄ^^A^ ^J^I 

knowledge can be a procedure    1?«« ™??      Ch pieCe of 

type of knowledge.     ThSsthJ'"parser"cai ^n^ 0thfr 

programs  to see  if  the Dhr-L FJ f J a11 seniantic 
and the semantic programs can call  on^r^^ makeS  Sense' 
grams  to see whether Jh-I ™       • 2n the deductive pro- 
L the currJnf re'alfwo'rld' coSex? ^wM ^f  ^^ 
a pronoun-s assignment depends onVhl ^        Jhe C501Ce of 

or on detailed k^ow^gf ^e^^f ^^ ^-ourse 
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While Winograd's system can be described as divided into three 
parts — syntax, semantics, and inference — it is the richness 
of interplay permitted between these that makes it an advance 
over previous language-understanding programming attempts.  In 
the following sections we will describe enough of these three 
"sections" to see how the whole system can handle just the 
first line in the sample dialog: 

pick up a big red block 

To fit the type of syntactic analysis he chose to use, Winograd 
developed a programming language (named PROGRAMMAR) that differs 
from other parsers in that the grammar is written in the form 
of a collection of programs.  The grammer itself, as we shall 
explain, is highly suited for semantic analysis since from the 
start it views the "rules of grammar" as connected with the 
decisions one nakes about conveying meaning rather than about 
putting words into acceptable orderings. 

At the other end of the system we have the knowledge and the 
reasoning power of a problem-solver system, written in the 
PLANNER language, to give the system detailed knowledge about 
its universe — in this case the BLOCKS WORLD we described in 
section 5.3.  This makes it possible for the system to discuss 
not only physical happenings but also the robot's own goals 
and actions. 

Interposed between these is the semantic system which contains 
processes that deduce, from the syntactic constructions, and 
from the programs that define the meanings of words and other 
constructions in terms of PLANNER programs, new procedures for 
the deductive system to use in answering questions, obeying 
commands, and acquiring new knowledge in the course of the 
dialog.  This system is described in section 5.6.  The full 
system contains some token knowledge also about communication 
between persons, so that if we say: "There is a block on a 
green table.  What color is it?" the system will assume that 
"it" refers to the block (rather tha-i the table) since one 
would not normally ask a question whose answer one knows. 

5.5.2 Systemic Grammar 

The following sections might seem unusually 
detailed for a progress report.  But we feel that 
this system represents a major advance and should 
be presented in enough detail to see really how 
it works. 

The decision to consider syntax as a proper study devoid of 
semantics is a basic tenet of most current linguistic theories. 
Language is viewed as a way of organizing strings of abstract 
symbols, and tries to explain linguistic competence in terms of 
symbol-manipulating rules.  But although this approach has 
worked rather well in accounting for which sentences can be 
formed, it has been unable to shed much light on the basic 
problem: how does a sentence convey meaning beyond the meanings 
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of individual words? Meanings of words depend on other parts of 
the discourse and intentions depend on one's general orientation 
and state of knowledge.  We can attack the problem in the usual 
way, by constructing a "mini-theory" as a first approximation, 
then apply it to see what problems remain. 

The structure of a sentence can be viewed as the result of a 
series of grammatical choices made in generating it.  This is 
not a novel idea in itself; it underlies the most standard 
notion of generative grammar.  But it is not so usual to proceed 
on to say: the speaker encodes meaning into the sentence by 
these choices, through choosing to build the sentence with 
certain "features"; the problem of the hearer is to recognize 
the presence of those features and interpret their meaning. 
Of course, we use "feature" to include elements of structural 
description as well as simple lexicographic terms. 

Winograd's system is based on a theory called Systemic Grammar 
(Halliday, 1967, 1970) which these choices of features are 
primary.  Instead of placing emphasis on a "deep structure" 
tree, it describes the way different features interact and 
depend on each other.  In other forms of grammar, syntactic 
structures are usually represented as a binary tree, with many 
levels of branching and few branches at any node.  For example, 
the sentence "The three big red dogs ate a raw steak." would  ' 
be parsed-with something like this: 

Sentence 

Noun phrase Verb phrase 

DET 
the 

NPl VB 
ate 

NP 

NUM  NP2 
three 

DET 
a 

NPl 

ADJ 
big 

NP2 ADJ 
raw 

NPl 
NOUN 

ADJ 
red 

NP2 
NOUN 
dogs 

steak 

>. 

Systemic grammar pays more attention to the way language is 
organized into units, each of which has a special role in 
conveying meaning.   In English we can distinguish three basic 
ranks of units, the CLAUSE, the GROUP, and the WORD.  In 
systemic grammar, the same sentence might be viewed as having 
this structure. 

CLAUSE 

Noun group 

DET NUM ADJ 

I 
ADJ   NOUN 

Verb group Noun group 

VB 

the three big  red  dogs ate 

DET 

a 

ADJ 

raw 

NOUN 
I 

steak 
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In this analysis, the WORD is the basic building block.  There 
are vord classes like "adjective", "noun", "verhk  Th^ word 
dogs  is the same basic vocabulary item as "dog", but has the 
"t^n"  eiUJal"..inStead of Singular".  "Took"? "take" 
wSh S^f taking", etc., are all the same basic word, but 
"-in*"Üo g features such as "P^t participle", "infinitive". 

The next unit above the WORD is the GROUP.  Noun groups (NG) 

about^L0^0'3'/^ grOUpS (VG) carry  comPlex messages 
Son H     me andmodal   (logical) status of an event or rela- 
tionship, preposition groups (PREPG) describe certain simole 
relationships, while adjective groups (ADJG) convey other Kinds 
of relationships and descriptions of objects. 

Each GROUP can have "slots" for the words of which it is 
<;^£?Sen-  As we Sha11 see' a NG has slots for "determiner'! 

?LISF) "a^fLr^; "^^™*"   (ADJ), "classifies" 
\?^t li' *  N0UN*  Each group can also exhibit features, 
just as a word can.  A NG can be "singular" (NS) or "nlnr*T" 

S/ffin^fsS ^ ^ "t$e S^6 ^s("SL0"inSfSite" 
MF-rVL Li     u ak ' and SO forth-  A VG can be "negative" 
have^a^Lx^^.'0^ (aS ^ ^^^ ^ —"> ' and - 

The CLAUSE is the most complex and diverse unit of the lanouaoe 
and is used to express relationships and events, involvinftimJ' 
place, manner and many other aspects of meaning  it can Li 
or'-ac^e" D™TIVE, or an ?MPERATIVE:a?tn^n be "passive" 
nii,     *rle   '   ^ Can be a YES-NO question or a WH- question 
(like "Why...?" or "Which...?")/ Our second parsing tree 
showed how a clause may be composed of groups, which arlin 
tur.> made up of words.  Also, groups often coAtai^ other SOUPS- 

til  iREpf-Af S: ZlW^K^t  Wild" iS an NG' which contains P' 
wild"  ri^nL«    id WhlCn ln turn contains the NG "the 
HW:     Ciauses can be Parts of other clauses, as in "Join 
the Navy to see the world.", and can be used as parts of 

?or0dUfnnS"moa?yth ^P^'-L^fl aS in.^ NG "the^an^who came uAiuier or cne FREPG by leaving the country". 

If the units can appear anywhere in the tree, what is the 
advantage of grouping constituents into "units" instead of 
having a detailed structure like the one shJwn in our ?i«t 
ItT^VlTL  The ans^r.is that each unit has associftld with 
it a set of meaning-carrying features, related by definite 
logical structures.  The choice between YES-NO and WH- is 
SuEST^tlT1^ the Cla^e iS a QÜESTION, bu? i/it is a guESTiON, the choice must be made. 

DF^ARAT^vp^6 Ch0iCf between QUESTION, IMPERATIVE, and 
^ta^^Ionf A  ma"aatory for a MAJOR clause (one which could 
;«S? i      d sentence) but is not possible for a "secondarv" 
(SEC) clause such as "the country which possesses ?he bomb " Y 

Ind AC?iCe b"TWHen ltSVr  "the bal1 was ^tended by John" - and ACTV -- John attended the ball" - is on a totally 
different dimension, since it can be made regardless of which 
of these other features are present. 
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A set of mutually exclusive features like QUESTION, DECLARATIVE 
and IMPERATIVE is called a system, and will be diagrammed^   ' 
connecting them with a vertical bar.  Each system has an entry 
condition which can be an arbitrary boolean condition on the 
llt^Ttu       0t?er f^atures- v°*  example, in the diagram below, 
one of the systems has the feature MAJOR as its entry conditioA 
since only MAJOR clauses make the choice between DECLARATIVE 
IMPERATIVE, and QUESTION.  We can diagram some Sf our SSE' 
teatures as: 

CLAUSE- 

I DECLARATIVE 
MAJOR | IMPERATIVE 

I        [QUESTION  
iSEC 
I 
PASV 

YES-NO 
I 
IWH- 

|   |ACTV 

Inrt apwCK ^T**  !E?.and MAJ0R and the choice between PASV and ACTV both depend directly on the presence of CLAUSE.  This 

ofPt  ?frtical IT    Wil1 ^ indicated ^ a bracket in place 

In addition, a syntactic "unit" can have different functions 
nn^J^Vf Aiarfer U"it-  A transitive clause must have 
units to fill the functions of SUBJECT and OBJECT, and a 
WH- question has to have a constituent to play the role of 
show?"10n element,, like "which ^g" in "Which dog stole the 

fL^L^T ^f0^6?' «»ere is no explicit mention of these 
features and functions in the syntactic rules, but the rules are 
designed in such a way that every sentence will in fact be one 
?n f~<- £ree ypeS ^Sted above' and every WH" question will 
in fact have a question element.  The difficulty is that there 
is no attempt in such a grammar to distinguish meaninq- 
conveying features such as these from the many other features 

the^ulfs?0^ ^^ a Sentence' and which are also'Lpfled by 

5.5.3 The Noun Group 

I!nim1rpnrmate these
J
id^s  by presenting the structure of the 

iHino^rad^s IZTsit*^1'  ^^ fo11^ ^  Presentation 

?SfJ tu  the str!fcturf of the typical NG, using a "*" to indicate 
that the same element can occur more than once.  Most of these 
slots are optional, and may or may not be filled in anv 

particular NG. y 

T T ~r —i r 
DET ORD NUM ADJ* CLASF* NOUN Q* 

■ 
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the meaning of »ords according to their word ^„= K 
Y 9  S 

nouns often have a specie! »easing^hen Itlt llTcJSt™* 

T^.S%^l^l^^l^  ^P^"'' *  CMS?? not 

FK^FG like the man in the moon" or an ADJG likP "a ni^ 
darker than doom" or a CLAUSE RSO U\cl   "^ a night 
the orchestra".       ^^ubE RSQ like the woman who conducts 

The first few elements in the NG work together to aive Its 
logical description — whether i^ raf^t* 7    ?    ts 

^rLlhe^Jls^roFa^^ "a",   or   "that"     nr-\  ^ ■ '   and  can be  a word such  as 

others  such as   "last"  and   "nexf"       vh^tt fu   '     f ew 

^ Se^tXe^ d^^    i      t  "^ ^ V^/af In 

fit irsXe'^i :^s SiLi^tnr" -is ^"^ 
DET ORD  NUM ADJ ADJ CLASF CLASF NOUN   Q (PREPG) 
the first three old red city fire hydrants without 
Q(CLAUSE) 
covers you can find 

With these basic components in mind let  n« i^v -* ..u 
network for NG. '    US look at the system 
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NG-- 

I PRONG— 
I 
ITPRONG 
I 
PROPNG 

The symbol *** is used for deciding 
between the presence of a feature 

I QUEST     and its absence 
IDEM 

|DEF  I POSES 

SUBJ- 

OBJ- 

COMP 

i 
j TIME 

POSS- 

INS 
'NPL 
N^S 

*** 

DET- 

ISUBJT 
I 
i *** 

lOBJl 
IOBJ2 
I 
OFOB J 
PREPOBJ 

j DEFPOSS 
i 
I *** 

I *** 

(■ 

INDEF- 

QNTFR- 

INUMD 
l 
i 

I *** 

I QUEST 

*** 
OF 

(- | *** 

INCOM 

*** 

I NEC 

*** 

SYSTEM NETWORK FOR NOUN 
GROUPS 

■v 

At the top of the diagram are some special cases which do not 

is 1 PRSNS'rUitUcLdbSCri^d abOVe-  An NG made up of a prSnoun is a PRONG.  It can be either a question, like "who" or "what" 
or a non-question (the unmarked clase) like "I"  "them"  "It«  ' 
etc.  The feature TPRONG marks a NG whose head is a soecial ' 
TPRON, like "something", "everything", "anything"  which cL 
folfL^H0 K P;cUliar const^ction in'which an IdjectlSe caS 
Se moon"6 ffhaf^2 "^thing green which is bigger than 
marks an NC ItJl I  OWn sPecial syntax.  The feature PROPNG 
"?he UnLn Of f P.0c Pr0?er nOUnS' SUch as "Oklahoma", or rne Union Of Soviet Socialist Republics". 

The rest of the noun groups are the normal type, discussed 

Skr-a" S? "fn"Can ^ definite (like ,,the,, or-that"! indefinite 
0t\j    O^o

a2 '.0r,a quantifier (QNTFR) like "some"  "everj" 
rthis"'   "th^" ^J^f dete5miners can ^ either demonstrative ( this ,  that , etc.) or the word "the" (the unmarked case) 
or a possessive NG.  The NG "the farmer's son" has the NG  ' 

inSicf^this?3 ^ ^^'   ™*  ^s the feature POSES to 

NUMDET, or it can use 11  INDEF determiner, suSh as "a"t^ir 

216 



ARTIFICIAL INTELLIGENCE 

Finally an NG can be determined by a quantifier (ONTFR^ 
Although quantifiers could be subclassified alono varioi; "Mn^ 
we do so in the semantics rather than the syntax  She onW    ' 

piSra^'and'b"? ***  s^-tic^y areb^en'sing^Ur^ plural, and between negative and non-negative. 

mfrkefoF3 H^t* "T */  QNTFR' ^ Can be of a s^^  type marked OF, as in all of your dreams", but can also choose to 

"I iantTone"' ^r^^0^ the N0UN' as in "^ve m^ th?eJ" or 
wJiTcan^; th^fLture3 ^^n^Jh^r ^T™ ^  CaSeS 

we cannot say either^Srofihem" S^Gi^e^e I™** l™™*   I 
are an exception, we can say "Give me Jean's" but n^ A's 
of them", and are handled separately. 

nnL?i?dl? Paf ■ 0f the NG Netw°^ describes the different 

OF NG, it is called an OFOBJ: "none of your tricks"  An Nf 

When a PRONG is used as a pnqq n-  ^„^4. 
pronoun,   Uke  ■my"3.^"^^.",,^1'^«/^!^""81™ 
mSd°mPl?h^NG'   "^  "ShOW me ^Urs"  or%Z4 is coiSreS with ^UPS i^iiaMfi^,0^ :i m^: sei? -r "- 

tne verb (if the NG is the subject and the determiner- *„ 
avoid oombinations like "these kangaroo" or "th= womJn'J^" 

seconS Cand tL^*0™'   the^ are 'p-cial pron^nH« Srst' second, and third person, singular and plural.  The fiature 

"me"OC"mv? XU*?  ^ fir"-P?"0" angular pro^Ss ("I", 
persöns^since^hel-ha^ nS e««?0^^^^ between.ither 

no distinction is made between "we"  "vou"  "^hfJ^ 

^e^Tie^JL^?---— "<=-«-•' 0- -rse 
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5.5.4  The Parser in Action 

"Pick up a big red block." 

"ÄI JSloRK   SE PrOSram With an initial  feat—  l-^of 

WG   IMPER?     LEV?918; With   tee  lnJtial  VG   feature   i^t
Pr°gram 

S^^^s^
kfon?In

fo0^hrv°r
f
b
t'!j8..ty

0
P
r

e-wiSi^mUSt-eith^ 

(CLAUSE MAJOR) 

(VG IMPER) 

(VB MVB INF TRANS VPRT  pick 

3^nSu
and iT^ C?ne from the definition of the word "pick" 

when we called the function PARSE for a word?       P 

I^ln ^r^  ^- ^ °nf th^^LAuSE^^^list 
?nH^ ?•  e^S-t0 See whether the MVB has the feature VPRT 
indicating it is a special kind of verb which takes a n^rf^io 
It discovers that "nlrk-" i «= e„^v. ,   iT W"-L<:" taj«es a particle. 
if the next word "u^ is ,%M ^iÄ and neXt CheckS to see 
in the diotionarv aL ff„L  Z ^t fh lt ls-  It then checks 
is defin^rrS le^s'^^'pSr^dd00^8^?1* UP" 
fo?8; PRI t9ttita::ouLevhe VG

 A™*™ tS ä^; ai 
Uke8^^ Z rltT^™.™ ;hiShdihfe£i^tLeSdIsio; SeSten088 
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As soon as it has parsed the PRT, the CLAUSE program marks 
the feature PRT on its own feature list.  It ?hen looks at the 

trttter?  ^^ ^ ■■piCk UP" t0 See What transiti^itj features 
Innk 5^     K1S transitive, which indicates that we should 
look for one object -- 0BJ1.  The dictionary entry shows that 
the object must be either an NG or a WHRS clause ^which would 

to9"" Sin^%helatir Prr?Un' like "Pick UP what I told yoi 
r?M,c;r     then

ne^t word ^ "a", this is not the case, so the 

OBJl)     SSlirV^r f0r ^ 0bJeCt by Calli^ (PARSE NG OBJ 
an 0BJ1  Th! ^  ? Program to find an NG which can serve as 
an UBJi.  The structure is now 

(CLAUSE MAJOR IMPER PRT) 
(VG IMPER) 
vVB MVB INF TRANS PRT) Diei, 

(PRT)     P1CK 

(NG OBJ OBJl) UP 

The NG program notices that the upcoming word is a determiner, 
a .  It calls (PARSE DET) to add it to the parsing tree  th^n 

transfers the relevant features from the DET to thl en?ire NS 
IL *SO*  fds.the  feature DET to the NG to indicate that I? 
has a determiner.  The feature list for the NG is nowf 

(NG OBJ OBJl DET INDEF NS) 

since "a" is a singular indefinite determiner.  The NG orooram 
then notices the feature INDEF, and decides not to look fo? a 

or^or lL*™0?in? ".^  Can,t say ,,a next ?hree b?ockf" -! or for the OF construction — "a of them" is impossible  It 
goes on immediately to look for an ad-iective by callina (PARSE 
ADJ).  When this succeeds with the next word "big", a Lmplf 

^gL^rwith^red"11^ V** (PARSE ADJ) stat-en?, 'whiS^cceeds ^•gain with red .  On the next trip it fails, and sends the 

AD?graBur"b?^"k-f0^aClaSSifie?' Since "block'.'iSn't'an V? MO    block" isn't a CLASF either in our dIctionarv so 
lnfJG  P^?ram goes on to look for a NOUN, by calling ^PARIE 
NOUN)   This succeeds with the NOUN "block", which JI sinaular 
and the program checks to s^e if it agrees with the „uSe? 
features already present from the determiner to ellSiSale 

aie s'iLS^^NS)0^1^ "theSe ^"^  In ^  ^""bo^h ?;««„??    (NS), so the program is satisfied.  Ordinarilv 
it would go on to look for qualifiers, but in this case thL« 
is nothing left in the sentence.  Since we have fouSd all of 

returrsSccesf'^rwe Z*™** ^ ^ hG'   th*  NG PrSgr^'sSould 

notices ^hat'th^Jn.^09^ returns' ™*  ^e CLAUSE program 
Snly Sne obiect ItTt^t ^  ended-  Since a TRAN£ verb needs 
proaram markr^o ?  ^ at 0h3PCt  haS been found' the CLAUSE 
In IcSL? u«     eat^re TRA1'S' and returns, ending the parsing, 
stand ^ o  ' f st™antlc  Program would be called now to under- 
stand and execute the command - in fact, semantic programs 
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Se^in^result^s:^ ^ VariOUS POintS thro^hout th- P^ess. 

(CLAUSE MAJOR IMPER PRT TRANS) 
(VG IMPER) 
(VB MVB INF TRANS VPRT) nink 

(PRT   u 

(NG OBJ OBJ1 DET INDEF NS) 
(DET INDEF NS) a 
(ADJ) bi 

ADJ) re| 
(NOUN NS) block 

5.6 Semantic Structures 

In 5.5 we described some of the operation of the systemic 
nofT?r £arS1og Program-  For the semantic system we again will 
use the Noun Group as an example, to present the general idea. 
As one hears or reads linguistic sequences, one extracts 
meanings and uses them to modify one's model of the world or 
in some other way to organize one's behavior.  In Winoqrad's 
system, the meanings are usually represented by procedures ' 
written in the Planner language.  There are a number of ways 
in which these procedures are used to build up meanings by 
cooperation between the systemic-grammar analyzer and other 
processes called "semantic specialists". 

One of the most obvious semantic functions of expressions is 
to describe objects, and the "noun group" is most commonly 
used for this.  It contains a noun which indicates the kind of 
oüject, adjectives and classifiers which describe further 
^PHr!leS-0f ^ ob^ect'- and a complex system of quantifiers 
and determiners describing its logical status - whether it is 
ov.?^*   ar ob:|ect' a class of objects, a particular set of 
objects, or even an unspecified set containing a specified 
number of objects ("three bananas"), etc. Thl  syntactic 
Kr^V  *dI-diSCUSSed Provides a systematic framework 
fnS ?w ^scriPtlonsi:  

0ne might object that this is too rigid 
and that there are other ways to describe objects.  Indeed, 
PROrRAiLp"! hfldles a1V

ide range of ordinary cases and WiAograd's 
PROGRAMMAR system supplies an unprecedented flexibility for 

for^f^t119 0-^r "f**10**  and even complex heuristic programs for dealing with other situations. y « '=> 

The semantic system is built around a dozen or so programs, 
"semantic specialists" which are experts at interpreting 
particular syntactic structures.  These are called by 
PROGRAMMAR when the parsing system believes that a certain 
K fSCrI?re' ^ * noun gro"P. has been parsed.  They look at 
both the syntactic structures and the meanings of the words 
(which are also represented by programs), and build up PLANNER 
theorems which can be used either by the deductive mechanisms 
(for performing actions in, or for answering questions about, 
the Blocks World) or by the syntactic system itself to decide 
whether the proposed noun group is meaningful. 
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A Noun Group like "a red cube" can be described as: 

(GOAL (IS X BLOCK)) 
(EQDIM X) 
(GOAL (COLOR X RED)) 

The variable "X" represents the object, and this description 
says that the object X should be a block, it should have equal 
dimensions, and it should be red.  A phrase such as "a red cube 
which supports three pyramids bui. is not contained in a box" 
would be built up from the descriptions for the various 
objects, and would end up as 

(GOAL (IS X BLOCK)) 
(EQDIM X) 
(GOAL (COLOR X RED)) 
(FIND 3X2 (GOAL (IS X2 PYRAMID)) 

(GOAL (SUPPORT X X2))) 
(NOT (PROG X3 

(GOAL (IS X3 BOX)) 
(GOAL (CONTAIN X3 X)))) 

This "meaning" is a procedure.  A larger deductive system could 
use it 

to find such an object; 

to say whether one exists; 

to list relations in which it does, or could, participate; 

to answer more abstract questions about whether such an 
object could exist or (as in the BLOCKS program) to plan 
a sequence of actions that will cause it to exist. 

Furthermore, the "theorem" that embodies the meaning could be 
used within the parsing process itself, for if the deductive 
system finds that there could be no such object then the 
alleged noun group would be suspect and one could search for 
an alternative parsing.  One could imagine a much more sophisti- 
cated system that would suspend this strategy if t,he  discourse 
concerns a subject, like language itself, in which normally 
unacceptable expressions are sometimes permitted. 

How do the semantic specialists build this structure? Consider 
the simple expression "a red cube".  First the noun group is 
parsed, then the PLANNER description is built up backwards by 
the specialists, starting with the noun, and continuing in 
right-to-left order through the classifiers and adjectives. 

Part of the definition for a noun uses semantic markers to 
filter out meaningless interpretations of a phrase.  The 
BLOCKS world uses this tree of semantic markers: 
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THING  

I NAME 
I PLACE (SHAPE 
I PROPERTY— [SIZE 
! lLOCATION 

ICOLOR IROBOT 
[ANIMATE     | 

(HUMAN 
(BLUE 
JRED 

(     IBLACK 
( JWHITE 
(                     IGREEN I cTArif 

PHYSOB— (       ICONSTRUCT      piLE 

(~   TABLE [PYRAMID 
MANIP     IBLOCK 

'BOX IBALL 
(EVENT 

RELATION    ( 

ITIMELESS 

noun  "cube"  ist '       ndS that the aefinition of the 

(NMEANS    (CUBE)    ( (IS  X  BLOCK) (EQDIM  X))) 

accepts a li't^f a?««™« ««n^" ^alin9 with nouns' "»"h 

SlLTtoViS Te^t™^1™ -s" - P- o^L BANNER 

Next,   SMNG1 calls the definition for the adjective   "red". 

(NMEANS((PHYSOB) ( (COLOR  X  RED)))) 

Physic^f'objects!11'10^63  ^ the ^^ **"" only to 

"Mgefiea"0isbsS?ilieno?f'niHi0n for. "b^" or   "little";  a 
elenhan?"       L "0t much comPetition  for a  "littl4 
elephant   .     The meaning of the adjective  is relative fo ♦•», 
it modifies,  and it may also be relativ^  Jo JKI    ^    J? the noun 

•to  tu tne rignt.     Since each definition is a 
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program, it can just as well examine the description (hn*h 
the semantic markers and the PLANNER descriotlonf -J   * 
an appropriate meaning relative f«^^fSfP!? ! ' and Produce 

This mayPbe an absolve^eLurLent (J g ^a "b^Il^"^6?' 
more than 12 feet tal]) nr- » t-iT*?  A?:'   blg e^Phant" is 
the form "the n^Ler of objLJs Jittina thf .R deSCriPtion ** 
smaller than the one being deslrfbedJI more than1?^0" T 
of suitable objects bigae? than it is." nuMier 

z^^iiAn^^P^^ - - -r8t 
we allow each^redLaS   Uike IS or^Lim^ "?* th±S  Cholce 

with it a progLn wh?ch knows hlw lo evaluate ^r^8?00^^ 

rs?^ie
9^sr^rr?r^ghrLpro'raT^?t be - ^^- 

Here is the structure which would be built up by the program. 

(GOAL {IS X BLOCK)) 
(GOAL (COLOR X RED)) 

(BLo5QSiP,;ä;sÖB"THiNG);::-P™k
Re?roription 

(T^T-0?.™1!0!: ™ 
determiner 

^iol|SsS^orSVny^d"y Z6 CO,"P"cateä "=' "a red cube 
here  Firs? %LPS   ' t  We can only summarize what happens 

."a^, idj; ^^(^^"-d^n-Sbiv'1^-^?^ 

plannarthPePorem/foTt^dmea^nro|0"atp
r
y

Ur^id
a..00rLe^0nthdr9 

ufan'a'sle^jfon^hirth?^0";  ".""^    ^'-^ tot^ild 
SUPPORT? he subject and object are related by 

py^id" ?s    ^ desc"Pt10" °f "a red cube which supports a 

(GOAL (IS X BLOCK)) 
(GOAL (COLOR X RED)) 
(EQDIM X) 
(GOAL (IS X2 PYRAMID)) 

<BLo^KG0^i(fpp^BX
THXi2i^:::::!^r\^rrlption 

determiner 
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iusf irÄi-^o ^V^1 caPability to use semantic markers Dust as objects do, and at an early stage of construction a 
relation structure contians a PLANNER description, markers 
^his^T ^ f0rmS identical to those for object struStu^es 
(this is to share some of the programs, such as those which 
check for conflicts between markers).  We can classKy different 
types of events and relationships (for example, those which 
are changeable, those which involve physical motion, etcJ and 
use the markers to help filter out interpretations of clause 
modifiers.  For example, the modifying PLPG "w?Sout JÜ shopping 

"He left the house without the shopping list." 

has a different interpretation from "without a hammer" in 

"He built the house without a hammer.". 

If we had a classification of activities which included those 

co^rL^Sta^!1086 using toois'we couid choos" ^ 

' 
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PROJECT MAC TECHNICAL REPORTS* 

t TR-1 Bobrow, Daniel G. 
Natural Language Input for A Computer 

Problem Solving System, Ph.D. Thesis, 
Math. Dept. 

September 1964 

t TR-2  Raphael, Bertran 
SIR:  A Computer Program for Semantic 

Information Retrieval, Ph.D. Thesis, 
Math. Dept. 

June 1964 

TR-3  Corbato', Fernando J. 
System Requirements for Multiple-Access, 

Time-Shared Computers 
May 1964 

t TR-4  Ross, Douglas T., and Clarence G. Feldman 
Verbal and Graphical Language for the AED 

System:  A Progress Report 
May 6, 1964 

t TR-6  Biggs, John M. and Robert D. Logcher 
STRESS:  A Problem-Oriented Language for 

Structural Engineering 
May 6, 1964 

t TR-7 Weizenbaum, Joseph 
OPL-1:  An Open Ended Programming System 
Within CTSS 

April 30, 1964 

t TR-8  Greenberger, Martin 
The OPS-1 Manual 
May 1964 

t TR-11 Dennis, Jack B. 
Program Structure in a Multi-Access Computer 

AD 604-730 

AD 608-499 

AD 608-501 

AD 604-6:8 

AD 604-679 

AD 604-680 

AD 604-681 

May 1964 

TR-12 Fano, Robert M. 
The MAC System:  A Progress Report 
October 9, 1964 

AD 608-500 

AD 609-296 

t TR-13 Greenberger, Martin 
A New Methodology for Computer Simulation 
October 19, 1964 AD 609-288 

TR-14 Roos, Daniel 
Use of CTSS in a Teaching Environment 
November 19 «"4 AD  661-807 
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TR-16 Saltzer, Jerome H. 
CTSS Technical Notes 
March 1965 

TR-17 Samuel, Arthur L. 
Time-Sharing on a Multiconsole Computer 
March 1965 

t TR-18 Scherr, Allan Lee 
An Analysis of Time-Shared Computer 

Systems, Ph.D. Thesis, EE Dept. 
June 13 6 5 

TR-19 Russo, Francis John 
A Heuristic Approach to Alternate 

Routine in a Job Shop, S.B. & s.M. 
Thesis, Aloan School 

June 1965 

TR-20 Wantman, Mayer Elihu 
CALCULAID:  An On-Line System for 
Algebraic Computation and Analysis, 
S.M. Thesis, Sloan School 

September 15, 1965 

TR-21 Denning, Peter James 
Queueing Models for File Memory Operation, 

S.M. Thesis, EE Dept. 
October 1965 

t TR-22 Greenberger, Martin 
The Priority Problem 
November 1965 

TR-23 Dennis, Jack B. and Earl C. Van Horn 
Programming Semantics for Multiprogrammed " 

Computations 
December 1965 

t TR-24 

AD 612-702 

AD 462-158 

AD 470-715 

AD 474-018 

AD 474-019 

AD 624-943 

AD 625-728 

AD 627-537 

TR-25 

Kaplow, Roy, Stephen Strong and John Brackett 
MAP:  A System for On-Line Mathematical 

Analysis 
January 1966 AD 476-443 

Stratton, William David 
Investigation of an Analog Technique to 

Decrease Pen-Tracking Time in Computer 
Displays, S.M. Thesis, EE Dept. 

March 7, 1966 AD 631_386 

TR-26 Cheek, Thomas Burrell 
Design of a Low-Cost Character Generator 

for Remote Computer Displays, S.M. Thesis, 
EE Dept. 

-March 8, 1966 AD 631.269 
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TR-27 Edwards, Daniel James 
OCAS - On-Line Cryptanalytic Aid System 

S.M. Thesis, EE Dept. 
May 1966 

TR-28 Smith, Arthur Anshel 
Input/Output in Time-Shared, Segmented, 
Multiprocessor Systems, S.M. Thesis, 
EE Dept. 

June 1966 

TR-29 Ivie, Evan Leon 
Search Procedures Based on Measures of 

Relatedness Between Documents, Ph.D. 
Thesis, EE Dept. 

June 1966 

TR-30 Saltzer, Jerome Howard 
Traffic Control in a Multiplexed Computer 

System, Sc.D. Thesis, EE Dept. 
July 1966 

TR-31 Smith Donald L. 
Models and Data Structures for Digital 

Logic Simulation, S.M. Thesis, EE Dept. 
August 19 66 

TR-32 Teitelman, Warren 
PILOT:  A Step Toward Man-Computer 

Symbiosis, Ph.D. Thesis, Math. Dept. 
September 1966 

TR-33 Norton, Lewis M. 
ADEPT - A Heuristic Program for Proving 

Theorems of Group Theory, Ph.D. Thesis, 
Math. Dept. 

October 19 66 

TR-34 Van Horn, Earl C. 
Computer Design for Asynchronously 

Reproducible Multiprocessing, Ph.D. 
Thesis, EE Dept. 

November 1966 
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AD 633-678 

AD 637-215 

AD 636-275 

AD 635-966 

AD 637-192 

AD 638-446 

AD 645-660 

AD 650-407 

TR-35 Fenichel, Robert R. 
An On-Line System for Algebraic Manipulation 

Ph.D. Thesis, Appl. Math. (Harvard) 
December 1966 AD 657-282 

t TR-36 Martin, Willaim A. 
Symbolic Mathematical Laboratory, 

Ph.D. Thesis, EE Dept. 
January 1967 AD 657-283 

TR-37 Guzman-Arenas, Adolfo 
Some Aspects of Pattern Recognition by 

Computer, S.M. Thesis, EE Dept. 
February 19 67 
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TR-38 Rosenberg, Ronald C., Daniel W. Kennedy 
and Roger A. Humphrey 

A Low-Cost Output Terminal for Time-Shared 
Computers 

March 19 67 AD 562-027 

TR-39 Forte, Allen 
Syntax-Based Analytic Reading of Musical 

Scores 
April 1967 AD 661-806 

TR-40 Miller, James R. 
On-Line Analysis for Social Scientists 
May 1967 AD 668-009 

TR-41 Coons, Steven A. 
Surfaces for Computer-Aided Design of 

Space Forms 
June 1967 AD 663-504 

TR-42 Liu, Chung L., Gabriel D. Chang and 
Richard E. Marks 

Design and Implementation of a Table- 
Driven Compiler System 

July 1967 AD 668-960 

TR-4 3 Wilde, Daniel U. 
Program Analysis By Digital Computer, 

Ph.D. Thesis, EE Dept. 
August 1967 AD 662-224 

TR-44 Gorry, G. Anthony 
A System for Computer-Aided Diagnosis, 

Ph.D. Thesis, Sloan School 
September 1967 AD 662-665 

TR-45 Leal-Cantu, Nestor 
On the Simulation of Dynamic Systems with 

Lumped Parameters and Time Displays, S.M. 
Thesis, ME Dept. 

October 1967 AD 663-502 

TR-46 Alsop, Joseph W. 
A Canonic Translator, S.B. Thesis, EE Dept, 
November 1967 AD 663-503 

t TR-47 Moses, Joel 
Symbolic Integration, Ph.D. Thesis, 
Math Dept. 

December 1967 AD 662-666 

TR-48 Jones, Malcolm M. 
Incremental Simulation on a Time-Shared 

Computer, Ph.D. Thesis, Sloan School 
January 1968 AD  662-225 
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TR-49 Luconi, Fred L, 
Asynchronous Computational Structures, 

Ph.D. Thesis, EE Dept. 
February 1968 

t TR-50 Denning, Peter J. 
Resource Allocation in Multiprocess 
Computer Systems, Ph.D. Thesis, EE Dept. 

May 1968 

t TR-51 Charniak, Eugene 
CARPS, A Program which Solves Calculus 
Word Problems, S.M. Thesis, EE Dept. 

July 1968 

TR-52 Deitel, Harvey M. 
Absentee Computations in a Multiple-Access 

Computer System, S.M. Thesis. EE Dept. 
August 1968 ' 

TR-53 Slutz, Donald R. 
The Flow Graph Schemata Model of Parallel 

Computation, Ph.D. Thesis, EE Dept. 
September 1968 

TR-54 Grochow, Jerrold M. 
The Graphic Display as an Aid in the 
Monitoring of a Time-Shared Computer 
System, S.M. Thesis, EE Dept. 

October 19 68 

AD 677-602 

AD 675-554 

AD 673-670 

AD 684-738 

AD 683-393 

AD 689-468 

TR-55 Rappaport, Robert L. 
Implementing Multi-Process Primitives in 

a Multiplexed Computer System, S.M. Thesis, 
EE Dept. 

November 1968 

t TR-56 Thornhill, D. E., R. H. Stotz, D. T. Ross 
and J. E. Ward (ESL-R-356) 

An Integrated Hardware-Software System for 
Computer Graphics in Time-Sharing 

December 1968 

AD 689-469 

AD 685-202 

TR-57 Morris, James H. 
Lambda-Calculus Models of Programming 

Languages, Ph.D. Thesis, Sloan School 
December 19 68 

TR-58 Greenbaum, Howard J. 
A Simulator of Multiple Interactive Users 

to Drive a Time-Shared Computer System, 
S.M. Thesis, EE Dept. 

January 1969 

TR-59 Guzman, Adolfo 
Computer Recognition of Three-Dimensional 

Objects in a Visual Scene, Ph.D. Thesis, 
EE Dept. 

December 1968 
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t TR-60 Ledgard, Henry F. 
A Formal System for Defining the Syntax 

and Semantics of Computer Languages, 
Ph.D. Thesis, EE Dept. 

April 1969 

TR-61 Baecker, Ronald M. 
Interactive Computer-Mediated Animation, 

Ph.D. Thesis, EE Dept, 
June 1969 

t TR-62 Tillman, Coyt C. (ESL-R-395) 
EPS:  An Interactive System for Solving 

Elliptic Boundary-Value Problems with 
Facilities for Data Manipulation and 
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June 1969 

TR-63 Brackett, John W., Michael Hammer, and 
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case Study in Interactive Graphics Program- 
ming:  A Circuit Drawing and Editing 
Program for Use with a Storage-Tube 
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October 19 69 

t TR-64 Rodriguez, Jorge E. (ESL-R-398) 
A Graph Model for Parallel Computations, 

Sc.D. Thesis, EE Dept. 
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t TR-65 DeRemer, Franklin L. 
Practical Translators for LR(k) Languages, 

Ph.D. Thesis, EE Dept. 
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TR-66 Beyer, Wendell T. 
Recognition of Topological Invariants by 

Iterative Arrays, Ph.D. Thesis, Math. 
Dept. 

October 1969 

t TR-67 Vanderbilt, Dean H. 
Controlled Information Sharing in a 
Computer Utility, Ph.D. Thesis, EE Dept. 

October 1969 

t TR-68 Selwyn, Lee L. 
Economies of Scale in Computer Use:  Initial 

Tests and Implications for the Computer 
Utility, Ph.D. Thesis, Sloan School 
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t TR-69 Gertz, Jeffrey L. 
Hierarchical Associative Memories for 

Parallel Computation, Ph.D. Thesis, 
EE Dept. 
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t TR-70 Fillat, Andrew I. and Leslie A. Kraning 
Generalized Organization cf Large Data- 

Bases:  A Set-Theoretic Approach to 
Relations, S.B. & S.M. Thesis, EE Dept. 

June 1970 

t TR-71 Fiascanaro, James G. 
A Computer-Controlled Graphical Display 

Processor, S.M. Thesis, EE Dept. 
June 1970 

t TR-72 Patil, Suhas S. 
Coordination of Asynchronous Events, 

Ph.D. Thesis, EE Dept. 
June 1970 

TR-73 Griffith, Arnold K. 
Computer Recognition of Prismatic Solids, 

Ph.D. Thesis, Math. Dept. 
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AD 710-479 

AD 711-763 

AD 712-069 

TR-74 Edelberg, Murray 
Integral Convex Polyhedra and an Approach 

to Integralization, Sc.D. Thesis, EE Dept. 
August 1970 AD 712-070 

TR-75 Hebalkar, Prakash G. 
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Asynchronous Systems, Sc.D. Thesis, EE Dept. 
September 19 70 
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Learning Structural Descriptions from 
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the Shape of a Smooth Opaque Object from 
One View, Ph.D. Thesis, EE Dept. 
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Computer Analysis of Visual Properties of 
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TR-a3 Lewin, Donald E. 
In-Process Manufacturing Quality Control, 

Ph.D. Thesis, Sloan School 
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Procedures as a Representation for Data in 
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EE Dept. 
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EE Dept. 

June 1971 

AD 725-859 

AD 726-049 

AD 725-429 

TR-89 Owens, Richard C., Jr. 
Primary Access Control in Large-scale 
Time-Shared Decision Systems, S.M. Thesis, 
Sloan School 

May 1971 AD 728-036 
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APPENDIX A 

t TM-10 Jackson, James N. 
Interactive Design Coordination for the 
Building Industry 

June 1970 

t TM-11 Ward, Philip W. 
Description and Flow Chart of the PDP-7/9 

Communication Package 
July 1970 

I TM-12 Graham, Robert M. 
File Management and Related Topics 

(Formerly Programming Linguistics Group 
Memo No. 6, June 12, 19 70) 

September 1970 

t TM-13 Graham, Pobert M. 
Use of High Level Languages for Systems 

Programming 
(Formerly Programming Linguistics Group 
Memo No. 2, November 20, 1969) 

September 1970 

AD 708-400 

AD 711-379 

AD 712-068 

AD 711-965 

t TM-14 Vogt, Carla M. 
Suspension of Processes in a Multiprocessing 

Computer System 
(Based on S.M. Thesis, EE Dept., February 
1970) 

September 1970 AD 713-989 

t TM-15 Zilles, Stephen N. 
An Expansion of the Data Structuring 

Capabilities of PAL 
October 1970 AD 720-761 

t TM-16 Bruere-Dawson, Gerard 
Pseudo-Random Sequences 

(Based on S.M, Thesis, EE Dept., June 1970) 
October 1970 AD 713-852 

f TM-17 Goodman, Leonard I. 
Complexity Measures for Programming Languages 

(Based on S.M. Thesis, EE Dept., September 
1971) 

September 1971 AD 729-011 

f TM-18 Replaced by TR-85 

t TM 19 Fenichel, Robert R. 
A New List-Tracing Algorithm 
October 1970 AD 714-522 
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APPENDIX A 

t TM-20 Jones, Thomas L. 
A Computer Model of Simple Forms of 

Learning 
January 1971 

t TM-21 Goldstein, Robert C. 
The Substantive Use of Computers for 

Intellectual Activities 
April 1971 

t TM-22 Wells, Douglas M. 
Transmission of Information Between a Man- 
Machine Decision System and Its 
Environment 

April 19'/1 

t TM-23 Strnad, Alois J. 
The Relational Approach to the Management 

of Data Bases 
April 1971 

t TM-24 Goldstein, Robert C. and Alois J. Strnad 
The MacAIMS Data Management System 
April 1971 

t TM-25 Goldstein, Robert C. 
Helping People Think 
April 1971 

AD 720-337 

AD 721-618 

AD 722-837 

AD 721-619 

AD 721-620 

AD 721-998 

*********** 

t Project MAC Progress Report I 
to July 1964 

Project MAC Progress Report II 
July 1964-July 1965 

t Project MAC Progress Report III 
July 1965-July 1966 

Project MAC Progress Report IV 
July 1966-July 1967 

Project MAC Progress Report V 
July 1967-July 1968 

AD 465-088 

AD 629-494 

AD 648-346 

AD 681-342 

AD 687-770 
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APPENDIX A 

Project MAC Progress Report VI 
July 1968-July 1969 

Project MAC Progress Report VII 
July 1969-July 1970 

AD 705-434 

AD 732-767 I 

* Copies of all MAC reports listed in Appendix A, as well as 
earlier Progress Reports, have been deposited with DDC; 
using the appended AD number, a report may be secured from 
the Mational Technical Information Service, Operations Division, 
Springfield, Virginia, 22151.  The prices from NTIS are: 
microfilm $0.9 5; hard copies:  reports more than two years 
old $6.00, all others are $3.00 except TR-83 which is also 
$6.00. 

t Out-of-print, may be obtained from NTIS (see above). 
+ 
I All TMs have been deposited with DDC and are available only 
from NTIS, using the AD number appended; the cost is $0.95 
for microfilm and $3.00 for hard copy. 
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3. 

ARTIFICIAL  INTELLIGENCE 

AUTOMATA  THEORY 

CELLULAR AUTOMATA 

-W/M 
m I 

COMPUTATION STRUCTURES 

COMPUTER SYSTEMS RESEARCH 

DYNAMIC MODELING, GRAPHICS AND NETWORKS 

EDUCATION 

IMPLICIT COMPUTATION 

INTERACTIVE MANAGEMENT SYSTEMS 

MATHLAB 

PROGRAMMING LANG» AGES 
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