- O

Massachusetts = - Project MAC - .
Institute St Progress-Report VIii
of Technology i July 1970 to

o S ' July 1971

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

The work reported here was carried out within Project MAC, an
M.I.T. interdepartmental laboratory. Support was provided by:

The Advanced Research Projects Agency of the
Department of Defense, under Office of Naval
Research Contracts N00014-70-A-0362-0001,
-0002, and Defense Supply Service Contract
DAHC15 69 C-0347;

The Office of Naval Research under Contract
N00014-69-A-0276-0002;

The National Aeronautics and Space Adminis-
tration under Contracts NGR 22-009-393 and
NAS 12-2093;

The National Science Foundation, under
Contracts GJ-432 and GJ-1049.

The support for some of this work came from the M.I.T. Depart-
ments and laboratories that participate in Project MAC and
whose research programs are, in turn, sponsored by Government
and private agencies.

Reproduction of this report, in whole or in part, is permitted
for any purpose of the United States Government. Distribution
of this document is unlimited.

The cover and above pictures show displays of the
states of a three-dimensional cellular automaton.

(A cellular automaton is a type of parallel pro-
cessing computer compused of an array of identical,
simple processing units called cells.) 1In these
simulations of an array of three-state cells, state
2 is represented by an incomplete triangle, state 1
by a 1 and state 0 by the absence of a symbol. Such
generalized tessellation automata have been studied
at Project MAC and are described on page 9.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classilication of title, body of abetraci and indexing annotetion muet be entered when the overall report ie claesilied)

1. ORIGINATING ACTIVITY (Cororate author) 20. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
roject MAC 2b. GRcuP

None

3. REPORT TITLE

Project MAC Progress Report VIII July 1970 to July 1971

4. DESCRIPTIVE NOTES (Type of report and inciualve detes)

[Ahnual Progress

S. AUTHORIS) (Laet name, liret name, initiai)

Collection of reports from Project MAC participants
Profs. J. C. R. Licklider and Edward Fredkin

6. REPORT OATE 7e. TOTAL NO. OF PAGES 7b. NO. OF REFS

1 July 1971 235 (In Text)

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

N00014-70-A-0362-0001, -0002; DAHC 69
C-0347; N00014-69-A-0276-0002; NGR 22- MAC Progress Report VIIL
009~-393 and NAS 12-2093; GJ-432 and 9b. OTHER REPORT NO(S) (Any other numbers that may be
GJ_ 1 0 4 9 aseigned thie report)

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distri-
bution is unlimited.

12, SPONSORING MIiLITARY ACTIVITY

| None Advanced Research Projects Agency
3D-200 Pentagon

Washington, D.C. 20301

11, SUPPLEMENTARY NOTES

: »
Ad13. AesTRaCT

The broad goal of Project MAC is experimental investigation of new ways
in which on-line use of computers can aid people in their individual work
whether research, engineering design, management, or education.

This is the eighth annual Progress Report summarizing the research carrie
out under the sponsorship of Project MAC. Details of this research may
be found in the publications listed at the end of each section and in

Appendix A.

4 X§Y; wonos gellulﬁr Automata Education \

n—-Line Computers ime-Sharing Dynamic Modeling
Multiple-Access Computers Information Systems Programming Languages
Real-Time Computers Artificial Intelligence Computation Structures
Computer Networks Machine-Aided Cognition Automata Theory
Interactive Management Graphics Implicit Computation

DD .3 1473 (M.LT.) UNCLASSIFIED

Security Classification

R PO A st R OGS S v

R —— - s

/ i
. ¥
¥ i
7' ARTIFICIAL INTELLIGENCE'
AUTOMATA ' THEORY
=)
" CELLULAR AUTOMATA'
PROJECT MAC T, oy
PROGRESS REPORT VIII ey
JULY 1970 to ‘
JULY 1971 * COMPUTATION STRUCTURES

-

- - ’

COMPUTER SYSTEMS RESEARCH ’

e —

DYNAMIC MODELING, GRAPHICS AND NETWORKS

-

EDUCATION

¢ IMPLICIT COMPUTATIO&;_

-y

- INTERACTIVE MANAGEMENT SYSTEMS *

> MATHLAB |

t

| PROGRAMMING LANGUAGES

.

ST

TABLE OF CONTENTS

PERSONNEL ' iv
PREFACE Xi
I ARTIFICIAL INTELLIGENCE 129
A. Vision and Description 130
B. Appearance and Illusion 137
C. Analysis of Visual Scenes 148
D. Description and Learning 156
E. Knowledge and Generality 186
S
IT AUTOMATA THEORY 1l
A. Abstract Complexity Theory 3
B. Algorithms 4
C. Polynomial Evaluation 4
D. Sorting 4
E. Papers 5
III CELLULAR AUTOMATA 7
IV COMPUTATION STRUCTURES 11
A. Introduction 13
B. Petri Nets 13
1. State Machines 14
2. Marked Grapas 16
3. Free Choice Nets 16
4. Simple Petri Nets 19
5. General Petri Nets 19
C. Asynchronous cpeed-Independent Circuits 23
D. Base Language 26
E. Program Graphs 32
F. Translation of Block-Structured
Languages 44
G. Cycles in Structures 46
H. Computers and People 52
\Y COMPUTER SYSTEMS RESEARCH GROUP 57
A. Introduction 59
B. Dynamic Reconfiguration 59
c. 1I/0 Programming Language 60
D. Automatically Managed Multilevel Memory 60
E. Protection of Programs and Data 62
F. System Programming Language 62
G. Message Handling 64
H. Graphics Support 64
I. Other Activities 65
i
2 ik -

VI

VII

VIII

IX

TABLE OF CONTENTS (continued)

J. Acceptance of Multics
K. ARPA Network Status
1. Design Issues
2. Implementation
3. Experiments

DYNAMIC MODELING, COMPUTER GRAPHICS AND
COMPUTER NETWORKS
A. Introduction
B. Dynamic Modeling
1. Mediation and Intervention

2. The Library of Subroutines
3. The Library of Documents
4. An Extension of the LISP Language
5. Lexicontext
C. Computer Graphics
1. "Picture Framing"
2. Polyvision
3. Graphical Debugging
4. Elucidations
5. Visual Statistical Analysis
6. Imlac Displays
D. Computer Networks
l. Network Control Program
2. The Network at the End of the Year
EDUCATION

IMPLICIT COMPUTATION

A. Introduction

B. Exact-Inexact Machines and Approaches
C. Pressure-Flow Machines

D. Fundamental Work

INTERACTIVE MANAGEMENT SYSTEMS,
Introduction ‘

Set-Theoretic Data-Manipulation System

Management Information Systems

Studies of Access Control and Privacy

. Modeling of Organizations

SIMPL Project

HE OO

ii

66
67
67
68
69

73
75
76
76
78
79
80
81

82
82
83
83
84
84
85

85
85
86

89

93
95
96
98
99

103
105
105
106
107
107
109

g

R <. e

TABLE OF CONTENTS (continued)

X MATHALB

XI PROGRAMMING LANGUAGES

A.
B.
C.
D.
E.
F.
G.
H.
I.
J.
K.

APPENDIX
L3

Introduction

Canonic Systems

Power of Canonic Systems

Canonic Systems and Recursive Sets
Generalized Translator

Canonic Reduction Generator
Undecidability of Programming Languages
Measure Function of Programming Languages
Programming Systems Environment
Community Activities

Teaching

A
Project MAC Publications

iii

111

117
119
119
119
120
120
122
122
123
123
124
124

223
223

PROJECT MAC PERSONNEIL

JULY 1970 to JULY 1971

Administration
Prof. J. C. R. Licklider Director (to June 1971)
Prof. E. Fredkin Director
Prof. M. M. Jones Assistant Director (to June 1971)
D. C. Scanlon Administrative Officer
D. E. Burmaster Assistant Director for Student

Activities (to June 1971) and
Business Manager (to December

1970)
G. B. Walker Business Manager
P. Brandler Assistant Business Manager

(to September 1970)

R. J. Harman Assistant to the Director

M. S. Draper Administrative Assistant (to
June 1971)

M. K. Hadley Librarian (to December 1970)

B. H. Kohl Librarian

Academic Staff

Prof. F. J. Corbato’ Prof. J. C. R. Licklider
Prof. J. B. Dennis Prof. C. L. Liu

Prof. M. L. Dertouzos Prof. W. A. Martin

Prof. J. J. Donovan Prof. A. Meyer

Prof. A. Evans, Jr. Prof. J. Moses

Prof. R. M. Fano Prof. N. P. Negroponte
Prof. R. R. Fenichel Prof. S. S. Patil

Prof. E. Fredkin Prof. J. H. Saltzer
Prof. G. A. Gorry, Jr. Prof. J. F. Shapiro
Prof. F. C. Hennie, III Prof. J. Weizenbaum

Prof. M. M. Jones

Sl

b
Ek

T AN P 514D o TR Tl RN S T mf b o R o

Instructors, Research Associates, Research Assistants, and Others

R. G. Abramson F. E. Guertin W. C. Michels
V. Altman M. Hack P. L. Miller

D. Asthana M. Hammer R. N, Moll

A. Bagchi J. F. Haverty A. R. Monroe-Davies
R. Barquin I. T. Hawryszkiewycz M. L. Morgenstern
R. D. Bressler P. G. Hebalkar S. Murthy

D. Brown D. A. Henderson, Jr. B. G. Ong

G. G. Bruere-Dawson G. Holt H. F. Okrent

R. H. Bryan P. M. Hutchins P. Olson

R. Bryant J. Johnson R. C. Owens,

I. R. Campbell-Grant R. Johnston G. Pfister

D. D. Clark M. E. Kaliski K. T. Pogran

J. Coffman J. Kaplan D. H. Porges

J. D. DeTreville D. J. Kfoury C. Ramchandani
M. W. Dixon P. A. King L. J. Rotenberg
G. T. Dixon W. J. Klos J. E. Rumbaugh
R. S. Eanes D. Konig R. R. Schell

R. Earle B. Lester M. D. Schroeder
M. Edelberg J. P. Linderman J. I. Seiferas
R. J. Fateman M. P. Lum A. Sekino

R. J. Fleischer N. A. Lynch W. G. Shaw

J. Fosseen C. W. Lynn D. G. Sitler

P. J. Fox S. E. Madnick J. R. Sloan

F. Furtek R. Mandl B. J. Smith

R. C. Goldstein F. Manning J. R. Stinger
A. Gonzales M. J. Marcus R. H. Thomas

L. I. Goodman S. P. Mason H. M. Toong

I. G. Greif D. T. McDonald L. E. Travis

vi

c r» w w

o)

Instructors, Research Associates, Research Assistanis,
and Others (cont.)

J. Vilfan P. S. Wang T. A. Welch

M. Vogt S. A. Ward C. Ying

C. Walker A. S. Weinberg D. Yun

Undergraduate Students

F. Bauer R. M. Elkin N. V. Kohn

J. Baum R. Frankston D. M. Krackhardt

B. Bishop R. A. Freedman P. B. Kurnik

M. Berman D. E. Geer R. S. Lamson

H. Black M. R. Genesereth P. J. Leach

G. Bras R. S. Goldhor P. D. Lebling

A. Brenfleck P. A. Green C. K. Leung

Bricklin R. A. Guida J. C. Lind

Brodie P. H. Guldberg M. Liu

L. Brooks R. H. Gumpertz W. S. Mark

S. Broos J. H. Harris J. R. McCauley
. M. Brown C. A. Hatvany D. Misunas

H. Brown B. Hubbard S. Morrow

Carlson P. W. Hughett S. G. Morton

Y. Chan W. F. Hui W. Y. Ng

J. Chang J. E. Jagodnik P. A. Pangaro

M. Christie E. Kant G. Pavel

S. Cohen P. A. Karger R. Pincus

R. Cone R. M. Katz R. L. Prakken

G. Curley C. A. Kessel J. Quimby

E. Cutler H. J. Kim D. P. Reed

K. Daniels R. N. King J. L. Reuss

Davis E. Kohn K. Rhoades

vii
e

J.

L.

N.

Undergraduate Students (cont.)

Rondio

C. Rosen
L. Rosenberg
M. Rubin
D. Ryan
Saunders

J. Siegel

J. Ablowitz
J. Bailin

R. Banks

K. Bhushan
R. S. Bingham
Brandler

L. Brown

E. Burmaster
Byer

H. Campbell
0. Capps

A. Cohen

G. Cressey
C. Daley

D. Dunten

c. Englaﬁd
J. Feiexrilag

A. Friel

R.

N.

A.

J.

P. Silberstein
Singer

M. Solish
Stern

M. Stoney

M. Strayhorn

D. Tavares

DSR Staff

W. Galley

L. Gardner

C. Garman

P. Goldberg
P. Golden

M. Gunkel

J. Harman

P. Jarvis, III
K. Kanodia

H. Kohl

Lenot

F. Mabee

J. Martin

M. Metcalfe
W. Meyer, Jr.
C. Michener
I. Morris

E. Niles

viii

W.

E.

H.

L.

H. Thrasher

Tsiang

Tucker

E. wWidman

J.

Zak

E. Zippel

C.

Padlipsky
Peltan
Plummer
Reeve
Rothschild

Scanlon

Schroeppel

P.

J.

J.

Skinner
Spier

Strnad

Taggart

C.

Thurber, Jr.

Vezza

Voydock
Walker
Weaver
Webber

Wells

] S gy~

Support Staff
M. C. Amyot A. M. Garrity J. E. Pinella
M. E. Baker R. E. Golden, III R. Pinsley
V. M. Berardinelli D. Goldthrope R. Queens
M. A. Bizot M. J. Grano E. M. Roderick
M. F. Brescia M. K. Hadley A. Rubin
O. D. Carey J. A. Haley T. H, Seymore
L. S. Cavallaro L. J. Haron K. K. Simpson
N. Chen A, J. Hicks A. H, Speare
M. T. Cheney R. F. Hill J. Stavrinos
S. J. Cohn M. A. Hoer M. K. Stephens
M. J. Connell D. L. Jones J. E. Tamayo
J. Considine D. Kontrimus A. G. Testa
S. Daise E. T. Moore E. B. Ulman
L. K. Denison B. A. Morneault M. W. Webber
C. P. Doyle E. F. Nangle L. E. Yaple
C. Falls L. G. Pantalone F. L. Yost
L. L. Gammell K. W. Pierce K. Young

Guests

H. Adler P. Eisenberg Prof. A. Fleisher

Prof. J. Berger Prof. J. I. Elkind Prof. G. Iazeolla

ix

184 T s e e E e =

e—— TR RPN AP,

ADMINISTRATION

Academic Staff

Prof. J. C. R. Licklider Director (to June 1971)
Prof. E. Fredkin Director
Prof. M. M. Jones Assistant Director (to June 1971)

Administrative Staff

D. C. Scanlon Administrative Officer

D. E. Burmaster Assistant Director for Student
Activities (to June 1971) and
Business Manager (to December

1970)
G. B. Walker Bustiness Manager
P. Brandler Assistant Business Manager (to
September 1970) 7
R. J. Harman Assistant to the Director
M. S. Draper Administrative Assistant (to
June 1971)
M. K. Hadley Librarian (to December 1970)
B. H. Kohl Librarian

Research Staff

P. M. Gunkel

Research Assistant

F. Manning

Support Staff

M. C. Amyot E. T. Moore

L. S. Cavallaro L. G. Patanlone
M. J. Connell K. W. Pierce

J. Considine R. Pinsley

L. K. Denison E. M. Roderick
L. L. Gammell K. K. Simpson
J. E. Goss A. H. Speare

N. P. Greeley J. Stavrinos

D. Kontrimus E. B. Ulman

Xi

P | e B 5 o By s

PREFACE

Project MAC was begun as an interdepartmental laboratory at the
Massachusetts Institute of Technology in early 1963. The initial
research and development goals were concerned with Multiple- 3
Access Computer systems, Machine-Aided Cognition, and, in 1
general, the interaction between Men And Computers. The name ;
"MAC" is an acronym for each of these goals. 4

In the year ending June, 1971, there were 320 persons associated
with MAC. They included: 21 faculty members mainly from the
Departments of Electrical Engineering and Mathematics and from
the Alfred P. Sioan School of Management; 105 staff members

(DSR staff and Support Staff), 182 students (Undergraduvate

and Graduate) and 12 Guests.

Early in its history, MAC conducted extensive experimentation
with and development of the Compatible Time-Sharing System
(cTSsS), an early large-scale, multiple-access computer system.
More recently we have continued our research on the MULTICS
system, which came into operation 2 years ago. MULTICS is a
conceptually advanced multiple-access system that is capable

of straightforward and smooth expansion into an extremely large
and capable facility.

The second of MAC's original objectives, machine-aided cognition,
has recently made very significant progress. We feel that
recent MAC/AI research represents an enormous conceptual

advance. In December, 1970 the Artificial Intelligence group
pecame an independent MIT laboratory; Professors Marvin Minsky

and Seymour Papert are Co-directors. Important and useful L
collaboration between MAC and the AI Laboratory is continuing.

In May, 1971, Professor J. C. R. Licklider stepped-down from

the Directorship of MAC to devote full time to his own research
specialties - Dynamic Modeling, Computer Graphics, and Computer
Networks ~ and Professor Edward Fredkin assumed the Directorship.
Miss Dorothea Scanlon continued as Administrative Officer, and
Mr. Gary Walker remained as Business Manager.

In anticipation of a major research thrust in a new direction,
MAC has consolidated and strengthened various groups.
Educational Applications; MacAIMS; Programming Linguistics/
Extensible Languages; and Programming Linguistics/ Formal
Systems have been terminated as separate groups. A policy of
more decentralized control by the group leaders has been
instituted.

Although the specific goals of MAC for the next few years

are now the subject of much thought and discussion, an emerging
consensus seems to be that we are interested in the problems of
imbedding knowledge in the computer and in enabling that
knowledgeable system to play a key role in generating programs
and other forms of solutions to problems. We feel that, armed
with knowledge, a system will be able to better communicate
with its users. We give this field the name "Automatic

xiii

Programming".

This progress report outlines the research carried out in the
year ending June, 1971. The report is subdivided into 11
sections corresponding to the research groups in Project MAC.
The technical reports and memoranda of Project MAC are listed
in Appendix A, and references to the exXternal publications
resulting from the research appear in the bibliographies at
the end of each section.

During the past year, the core program of Project MAC and the
Artificial Intelligence Group were supported, as heretofore, by
the Information Processing Techniques Directorate of the
Advanced Research Projects Agency (ARPA). Individual projects
were funded by several other agencies: research in extensible
languages, National Aeronautics and Space Administration;
interactive problem-solving and decision-making, Office of Naval
Research; dynamic modeling, Behavioral Sciences Directorate of
ARPA; programming generality, National Science Foundation.

Edward Fredkin

Cambridge, Massachusetts

Xiv

AUTOMATA THEORY

Prof. F. C. Hennie, III

Academic Staff

Prof. C. L. Liu
Prof. A. Meyer

Instructors, Research Assoclates, Research Assistants and Others

A. Bagchi N. A. Lynch

D. Brown R. Mandl

G. G. Bruere-Dawson R. N. Moll

M. ZEdelberg B. G. Ong

M. M. Hammer B. J. Smith

P. M. Hutchins B. J. Vilfan

D. J. Kfoury C. Ying
Support Staff

M. E. Baker

V. M. Berardinelli

S. J. Cohn

II. AUTOMATA THEORY

Abstract complexity theory, which has been a central topic of
research in the Automata Theory Group in the past, has become a

with contributions from nearly three dozen authors in the U.s.
and the Soviet Union. As reported belcw, some further work in
this area was carried out during this last year, and two doc-
toral theses are still in progress. However, the basic phenom-
ena associated with the classification of computations according
to their time and space requirements are now rather well under-
stood, and further refinements in the abstract theory are likely
to be of diminishing interest to the computer scientist. Major
interest within the group has now shifted toward combinatorial
and statistical analyses of a variety of algorithms commonly
arising in computation. The goals of work in this area are to
develop methods for designing good algorithms for problems of
practical interest, and to devise techniques for verifying the
optimality of algorithms. The work described below on matrix
multiplication, polynomial evaluation, and sorting represents
the beginnings of this more practical approach to the study of
algorithms.

A. Abstract Complexity Theory

One of the basic theorems about computable functions is that,
for every computable function t, there exists a zero-one valued
computable function ¢ that takes more than time t to evaluate.
More precisely, any program that evaluates c requires at least
t(x) steps to compute c(x) for all but finitely many values of
Xt

In order to appreciate the significance of such a theorem, one
needs additional information (not provided by the usual proof)
about how many values of the function ¢ are easy to compute,

It might be the case that the functions that are difficult from
the point of view of complexity theory -- i.e., functions that
are time-consuming to cempute on the average -- are actually
easy for all small arguments, say all arguments less than 10100,
In fact, any zero-one valued function can be computed rapidly
for any given finite set of arguments by simply storing the
pertinent values of the function in a table. A genuinely com-
plex function should have the property that any program that
computes it can run rapidly on only as many inputs as can

be stored in a table whose size equals that of the program.
Such functions are constructed and studied in a paper by

Prof. A. Meyer (jointly with E. M. McCreight) .

Properties of program size are considered in several further
papers written this year. One of th.: motivations for the study
of program size has been to provide a quantitative understanding
of the relative convenience of different programming languages
by comparing the sizes of the programs needed to implement the
same computation in different languages. A fairly general
theorem recently proved by Prof. Meyer shows that a slight in-
crease in the set of instructions of certain kinds of program-
ming languages can lead to enormous economies in program size.

A related study of formal grammars by Meyer (jointly with Prof.

PRECEGING FASE BLANK

AUTOMATA THEORY

M. J. Fischer) derives quantitative bounds on the improvement

in simplicity of definition that can be achieved by using pow-
erful grammars such as context-sensitive or context-free gram-
mars to define simple sets such as reqular or even finite sets.

B. Algorithms on Graphs

The results on matrix multiplication and transitive closure of
graphs mentioned in last year's report have been strengthened.
Robert Mandl has shown that the time required to find the tran-
sitive closure of a directed n-node graph is within a constant

algebraic methods for multiplying real matrices can be modi -
fied to apply to Boolean matrices, this result yields the best
transitive closure algorithm known to date.

Our hope that a graph-theoretic approach to Boolean matrix
multiplication might enable us to generalize fast matrix mul-

tiplication techniques has not yet been fulfilled, but we
continue to believe that this approach is promising.

C. Polynomial Evaluation

The evaluation of rational functions by sequences of algebraic
operations represents one of the few areas where techniques
have been developed for establishing the optimality of algo-
rithms. Larry Stockmeyer, together with Professors Fischer,
Meyer and M. S. Paterson, has derived a lower bound of;ﬂn on
the number of multiplications required to evaluate any degree
n polynomial with rational coefficients, and has shown that
this lower bound is nearly achievable.

D. Sorting

B. J. Smith has been investigating sorting networks composed
of two-input, two-output comparators. Since each comparator
can be modeled as a three-state finite-state machine, the
sorting network as a whole can also be viewed as a finite-
state machine. When implemented in hardware, such networks
can be used as high-speed sorters Or message-switching de-
vices. Alternatively, a sorting network can be realized by

a computer program that is naturally suited to parallel evalu-
ation.

Smith has been studying the minimum number of comparators re-
quired to construct an n-input, n-output sorting network. He
has discovered that a network of comparators actually sorts if
and only if the network has

n
> il S(n,1i)
i=0

States that are reachable from the starting state, where

S(n,i) is & Stirling number of the second kind. Furthermore,
he has determined that no two distinct reachable states in the
network are equivalent. These results suggest that a knowledge

- »o“ﬁdm:x_

AUTOMATA THEORY |

of the number of internal network configurations that cannot
result from any network input may yield bounds on the number
of states "wasted" in building a network and in this way yield
bounds on the number of comparators required.

E. PaEers

During the year, several members of the group have prepared
papers for forthcoming meetings and journals.

For the Twelfth Annual Switching and Automata Theory Symposium
(October 1971):

1) Fischer, M. J. and A. R. Meyer, "Boolean Matrix Multi-
plication and Transitive Closure".

2) Meyer, A. R. and M. J. Fischer, "Economy of Description
by Automata, Grammars, and Formal Systems".

For the International Symposium on the Theory of Machines and
Computations (August 1971):

Meyer, A. R. and E. M. McCreight, "Computationally Com-
plex and Pseudo-Random Zero-One Valued Functions".

Accepted by the Journal of Symbolic Logic:

Meyer, A. R. and P, C. Fischer, "Computational Speed-Up
by Effective Operators".

Accepted by Zeit. f. Math. Log. und Grund. der Math.:

Meyex, A. R, and D. M. Ritchie, "A Classification of the
Recursive Functions".

Publication 1970-1971

Ying, C. and A. K. Susskind, *"Building Blocks and Synthesis
Techniques for the Realization of M-ary Combinational Switch-
ing Functions", Proceedings of Symposium on Theory and Appli-
cations of Multiple-Valued Logic Design, State University of
New York at Buffalo, May 1971.

* Non-MAC author.

RN (UGS W A A N SR A TR e N - -

CELLULAR AUTOMATA

Prof. E. Fredkin

DSR Staff
E. R. Banks

Undergraduate Students

W. S. Mark

PRECEDING PASE BLAMK

DA X S S L5 e

III. CELLULAR AUTOMATA

A Ph.D. thesis by Roger Banks describes an investigation of a
class of parallel processing computers called Cellular Automa- .
ta. A cellular automaton consists of an array of simple, iden-
tical finite-state machines called cells. Each cell communica- !
tes with only its immediately surrounding cells.

The chief results of the thesis include showing that a two-
dimensional array of two-state cells, each of which communicates
with its four-edge neighbors, can perform any (computable) com-
putation, i.e., it can simulate a universal Turing machine.

A configuration is a specification of the states of all the
cells in some area of the iterative array. Another result
described in the thesis, is the existence of a self-reproducing
configuration in an array of four-state cells with each cell
communicating with its four-edge neighbors. This was a reduc-
tion of four states from the previously known eight-state case.

Further work by Banks and more recently by William Mark has
concerned the development of a programming system for the
simulation and display of very general cellular automata in
one, two and three dimensions with various neighborhoods,
transition rules, numbers of states, etc.

Publication 1970-1971

Banks, Edwin R., "Information Processing and Transmission in
Cellular Automata", Ph.D. Thesis, Dept. of Mechanical Engineer-
ing, January 1971, also MAC TR-81, AD 717-951.

PRECEDING PAGE BLANK

e N Iy LI I ey S— e i e = PRI NG PRI g T T IR T

COMPUTATION STRUCTURES

Prof. J. B. Dennis

Academic Staff

Prof. R. M. Fano Prof. S. S. Patil

Instructors, Research Associates, Research Assistants and Others

I. R. Campbell-Grant B. Lester

J. Coffman J. P. Linderman
J. Fosseen M. J. Marcus

P. J. Fox C. Ramchandani

F. Furtek L. J. Rotenberg
I. G. Grief J. E. Rumbaugh

M. Hack D. G.Sitler

I. T. Hawryszkiewycz W. C. Walker

P. G. Hebalkar
Undergraduate Students

H. J. Kim
DSR Staff

W. W. Plummer

Support Staff

B. A. Morneault A. Rubin

- PRECEGING PAGE BLANK |

Ll

e e s e RSO
A e - .

IV. COMPUTATION STRUCTURES

A. Introduction

The Computation Structures Group is concerned with the study
and analysis of fundamental issues arising in the design and
construction of general-purpose computer systems. The re-
search enccmpasscs hardware and software aspects of computer
systems, and much of the work has contributed toward establish-
ing a common conceptual basis for both aspects. The accom-
pPlishments of the past year are pPrincipally in two areas:

One is the theoretical study of Petri nets as a model for
asynchronous systems of interacting parts, and the realization
of Petri nets in the form of speed-independent modular switch-
ing systems. The goal of this work is to build a sound theory
to serve as the basis of a new methodology for the design of
asynchrorous digital systems. The second area is the evolu-
tion of a base program language. This effort is expected to
lead to a practical formal definition scheme for source pro-
gramming languages and will provide a sound basis for the
functional design of advanced computer systems.

B. Petri Nets

As reported last year, we have found Petri nets to be an ele-
gant formalism for representation of concurrencCy in processes
and for studying asynchronous systems. Petri nets stand out
in relation to other schemes because of the preciseness and
ease with which they can express parallel acitions, resolution
of conflicts, and interaction among processes. Moreover, they
have the simple structure that .s essential for analytic
study. Simple as they are in their structure, study of the
general class of Petri nets is difficult because of the var-
iety of situations they can represent. A study of subclasses
of Petri nets which represent simpler situations is a necessary
step toward understanding the general class of Petri nets, and
such study has been an important objective of the group in the
past year. We have identified several subclasses of interest
and have found useful results about them. Before discussing
these results, we present a brief introduction to Petri nets
and the subclasses of interest.

A Petri net [1,2] is a directed graph which can have two types
of nodes, namely transitions and places, where the directed
arcs can connect only transitions to places and places to trans-
itions (Fig. 1l.). 1In drawing the graph, places are represented
by circles and the transitions by bars. The places from which
arcs are incident on a transition are called input places of
the transition, terminate are called the output places of the
transition. Each place can have markers (sometimes called
tokens) in them. A transition having markers in all of its
input places is said to be enabled. Only enabled transitions
can fire; in the act of firing, the transition picks one

marker from each of its input places and puts a marker in each
of its output places. The marking distribution in the net
changes as transitions fire, and each new marhing distribution
makes firing of other transitions possible. With regard to

the firing of transitions, an important situation is when

PRECEDING PAGE BLANK

13

P =

COMPUTATION STRUCTURES

JENG

N

r .
. g

FIG.1. A PETRI NET.

transitions share some input places. When two transitions
which have a common input place are both enabled but the
common input place has only one marker, the transitions are
said to be in conflict because the firing of any one of the
transitions disables the other. A net is said to be safe if
no plece in it will ever have more than one marker at a time.
A net is said to be live if at no time in the operation of the
net will any transition be ruled out as a transition that may
fire some time in the future. Conflict, safety, and liveness
in a net depend on the initial marking distribution. There
are, however, some structural restrictions which can guarantee
some of these properties. By structural restrictions, we mean
restrictions with regard to the arrangements of transitions
and places such as the restriction that transitions not have
input places in common. The restrictions we use below to
define subclasses of Petri nets are purely syntactic as they
define local constraints on the arrangements of transitions
and places. The subclasses are:

1) State Machines (SM)
2) Marked Graphs (MG)
3) Free Choice Petri Nets (FC)
4) Simple Petri Nets (SN)

The restrictions that define these subclasses are given below.
The Petri nets without any restrictions will be referred to
as general Petri nets to emphasize this fact. The following
text should be read together with Figures 2 and 3. Figure 2
shows what kind of local configurations of transition and
Places are permitted for each subclass of nets.

l. State Machines (SM) -- A state machine is a Petri net in
which every transition has exactly one input place and exactly

14

TITRrTewR

&y

——

L

COMPUTATION STRUCTURES

LOCAL CONFIGURATIONS

STATE MACHINES

EVERY TRANSITION HAS
EXACTLY ONE INPUT PLACE
AND EXACTLY ONE
OUTPUT PLACE

f PERMITTED

NOT PERMITTED

MARKED GRAPHS

EVERY PLACE HAS
EXACTLY ONE INPUT
PLACE AND EXACTLY ONE
OUTPUT PLACE

<

FREE CHOICE NETS

EVERY ARC FROM APLACE
TO ATRANSITION IS EITHER
THE ONLY OUTPUT OF THE

PLACE OR THE ONLY INPUT
TO THE TRANSITION

o LAY | AY

SIMPLE NETS

EVERY TRANSITION HAS
AT MOST ONE SHARED
INPUT PLACE

PETRI NETS

NO SUCH
RESTRICTION

9,
W
F9¢

FIG. 2.

THE SUBCLASSES OF PETRI

15

NETS.

COMPUTATION STRUCTURES

one output place. The state machines being discussed here are
identical to the state machines of automata theory in their
structure, (Fig. 4).

2. Marked Graphs (MG) -- A marked graph is a Petri net in
which every place has exactly one input transition and exactly
one output transition. Thus the restriction in this case is
similar to the one for state machines but it applies to places
instead of transitions. State machines have been studied ex-
tensively but the recognition of marked graphs and the study
of their properties is recent. Genrich [3] started the study
of marked graphs and his ideas led to a detailed study by

Holt and Commoner [4]. The mathematics relating to marked
graphs is fairly well understood now through these studies.

In our previous report we showed a direct relationship between
the elementary asynchronous modular control structures devel-
oped by us and the marked graphs. The study provided a simple
way for obti.ning hardware structures that mimic marked graphs,
and also a m=thod for determining if a control structure is
free of any hangups. This year the study has been carried
further to include a broader class of nets called free choice
nets. The free choice nets and results relating to them are
described below.

3. Free Choice Nets -- A Petri net in which every arc from a
place to a transition is either the only output of the place
or the only input to the transition is said to be a free choice
Petri net. This condition on Petri nets is the same as re-
quiring that when an input place is shared by some transitions,
those transitions have no input places other than the one
which is common to them. Thus when a marker arrives in the
shared place, all of the transitions which share that place

are enabled, and one of them may be freely chosen to fire.

When the movement of a marker is regarded as flow of control,
the situation just described represents a free choice with
regard to where control flows from the shared place -- thus

the name free choice nets. Free choice nets include both the
state machines and the marked graphs.

A free choice Petri net can be used to represent the flow of
control in a program as shown in Fig. 5. Ir this figure, the
shared place x together with transitions T and F represent a
decision element -- the if statement in the program. The
direction in which control flows from place X is not arbitrary
-- it conforms to the outcome of evaluating the predicate
associated with the if statement. To the net considered alone
the decision about the direction of flow is external to it be-
cause it is based on information outside the net; the infor-
mation flows into the net by way of the interpretation which
associates a certain if statement with the free choice trans-
itions in the net. 1In the study of Petri nets and also in the
studv of cocmputation schemata, it is important to distinguish
what information is a part of the net and wlat is external to
it.

Some important results about free choice nets have been found
recently by Commoner of Applied Data Research and Hack of the

16

FIG. 3.

COMPUTATION STRUCTURES

FC

PN

THE INCLUSION RELATIONSHIP AMONG
THE SUBCLASSES OF PETR! NETS.

STATE MACHINE AS A STATE MACHINE AS A

PETR! NET

s /B S e A O LSO i == R e

STATE DIAGRAM

FIG.4. STATE MACHINES,

17

T —— i

COMPUTATION STRUCTURES [

CHAS G E AT HER

BEGIN

a: FORK

nNe—n+i B: m=— mxi

y:JOIN JOIN y

i -— -]

IF i>1 THEN GOTO q

EN

FIG. 5. FLOW OF CONTROL IN A PROGRAM. 3/

18

COMPUTATIUN STRUCTURES

Computation Structures Group. Commoner has found necessary and
sufficient conditions for liveness and safety of a free choice 1
net, and Hack has found conditions for the existence of a live
and safe marking for a net. A live net is one in which the
activity can continue indefinitely without any hangup. Hangup
is a condition in which a part of the net enters into a state

of inactivity from which it cannot recover. In our common
experience a hangup for a machine is an unfortunate state in
which its activity subsides and it fails to respond to stimu-
lation because of some hopeless jam inside it. Safety on the
other hand means that no more than one token will be in any
place at any time. This is important where the places repre-
sent objects that cannot hold more than one of the things
represented by the tokens. When places represent registers

in a digital computer, safety means that a new piece of data
will not be placed in a register until the previous one has

been used up. In that way mixup of data can be avoided. Hack's
work thus provides a way to determine if an uninterpreted
parallel program which can be expressed as a flow diagram has

a starting condition for which it will continue to operate
without any hangups or mixups.

cenw

4. Simple Petri Nets -- A Petri net in which no more than one
input place of any transition is a shared input place is called
a simple Petri net; a transition in a simple Petri net may
have any number of input places but at most one of those places
may be an input place of some other transition. The class of
simple Petri nets properly contains the free choice nets.

There are cituations which can be represented by simple Petri
nets but not by ftree choice nets. Figure 6 shows such a situa-
tion which arises in representing flow of control in coordin-
atirg processes. An important aspect of simple nets is that
they are able to represent interprocess coordination such as
implemented by Dijkstra's semaphore primitives. A study of
simple Petri nets has led to an understanding of the limita-
tion and capabilities of the semaphore primitives. Details

of this study are presented in the next section.

5. General Petri Nets -- The class of Petri nets without any
of the restrictions is called general Petri nets. There are
many Petri nets in the class of general Petri nets for which
there are no equivalent nets in the subclasses defined. 1In
Particular, a Petri net which cannot be transformed into a
Simple net arises in the study discussed below.

Recent work by Patil [5] has shown some interesting facts
about the semaphore primitives of Dijkstra [6] by establish-
ing a correspondence between the flow of control in inter-
acting processes and Petri nets. 1In Fig. 6, three processes
coordinate their activities with the help of semaphores.

The Petri net for each individual p.rocess is obtained by
representing each instruction by-a transition, connecting
these transitions into a chain by means of places to indicate
the flow of control in that process, and placing a token

in the input place of a transition to indicate the present
site of control. The Petri net for a collection of inter-
acting processes is obtained by interconnecting the nets

19

COMPUTATION STRUCTURES

PROCESS
P Py P3
| x=— x4+ x 5 u=—uxu 9 P[Sy.]
2 P[sy] 6 P[s,] 10 z= z+y
3 yex 7 y-—u I v [sy]
4 VvI[s,] 8 Vv [Sy] GOTO 9
GOTO | GOTO 5 INITIALLY SEMAPHORE
Syl AND S,i=0
a)

b)

FIG.6. FLOW OF CONTROL IN PROCESSES AND THE
CORRESPONDING SIMPLE PETRI NET.

20

_ﬂ; e *—W "

SR i vy - ’ o . A~ ——h =

COMPUTATION STRUCTURES

for individual Processes by means of places which repre-

sent the semaphores: a transition that represents an instruc-
tion P[S] is provided an input from the blace that represents
semaphore variable S, and each transition that represents an
instruction V([S] feeds into the place representing the sema-

corresponding to the fact that the control in a process can

The above method of obtaining Petri nets for flow of control
applies only to processes which do not have conditional state-
ments. The Petri nets for such processes completely describe
the flow of control. Moreover, these nets are simple Petri
nets because the only transitions which can have any shared
input places are the ones which correspond to the P[] instruc-
tions and each of these transitions has only one shared input
place.

If there are any conditional instructions, they would have to
be represented by two transitions, one for the outcome true

and the other false, and these transitions would share the
input place so that for any particular execution of the con-~
ditional instruction, only one of the transitions would fire.
Which of the two transitions fires depends on the value of the
Predicate associated with the conditional instruction. Since
this information is external to the net, the net only partially
describes the flow of control in this case.

cribing their interaction, but our study has uncovered the
surprising fact that the semaphore primitives are inadequate
for this purpose. This fact is brought out by a study of a
problem called the 2-out-of-3 problem which is discussed be-
low.

The 2-out-of-3 problem can be explained in the framework of a
message decoder. When viewed as a hardware device, the de-
coder has three input wires colored red, yellow and green, and
three output wires called X, Y and Z. There are three diff-
erent messages which can be sent to the decoder. Message X
consists of signals on the red and yellow wires; message Y
consists of signals on the red and green wires; and message 32
consists of signals on the yellow and green wires. The decoder
can be thought to have three processes inside it, one for each
meéssage. Process X waits for message X and responds on out-
put wire X; the other processes are defined similarly. We

21

COMPUTATION STRUCTURES

s

oo

FIG.7. THE 2-OUT-OF-3 NET.

22

T DAY oo

COMPUTATION STRUCTURES

signal is accepted by decrementing the semaphore count by 1.
The question is: Can the three processes which decode the
messages be so coordinated by semaphore primitives that the
decoder functions correctly? Since each individual process
just waits for the associated message to arrive, we insist
that the processes not use any conditional instructions.
Therefore, instead of asking the question in the form above,
we ask: Is there any finite collection of processes not using
conditional instructions that can specify the operation of the
decoder with the help of the semaphore primitives? The answer
to this question is negative.

The reason for the negative answer is that the decoder repre-
sents a net called 2-out-of-3 net, which is not a simple Petri
net, and it has been possible to show that this net cannot be
transformed into an equivalent simple Petri net [5]. Thus it
is clear that the semaphore primitives need the help of condi-
tional statements to carry out coordination among processes,
(Fig. 7.). It should be recalled that the very purpose of
introducing the semaphore primitives was to obtain a more
direct means for coordinating processes and to do away with
sneaky use of conditional statements to perform cocrdination.
With the aid of conditional statements one can implement
coordination of processes by such simple-minded schemes as
repeated testing of a variable until it becomes,say, 1. Such
schemes can implement coordination, but the implementation is
very wasteful of computer resource because there is no limit
to the number of times the variable may have to be checked.
‘The semaphore primitives rectify this defect, but they are not
able to implement all coordinations by themselves. Thus the
question is, whether together with conditional statements they
can express all conceivable coordinations without paying the
price of unbounded computation. The study has shown that the
answer to this question is affirmative. i

At the root of the shortcomings of the semaphore primitives is
the fact that a P[] instruction operates on only one semaphore.
Unfortunately, a generalized instruction such as P[S1,...,Sk],
which simultaneously operates on semaphores S1s «++, Sk, cannot
be always expanded into a sequence of instructions Plshl ; saan
P[Skl. But the generalized instruction can be expanded in

terms of P[S;, S2] instructions each of which ouperates on two

semaphores. Even though P[S,, S,] is adequate, one may wish
to allow more arguments in i%Str ctions for the sake of effi-

ciency.

C. Asyrchronous Speed-Independent Circuits

A digital system is often built as two interconnected parts --
a data flow structure containing registers, functional opera-
tors and data paths, and a control structure that generates
signals that initiate actions by operators in the data flow
structure. :

In synchronous systems the operators may begin action only at
certain time instants determined by a central generator of

23

W T P ———

COMPUTATION STRUCTURES

clock signals. The design of the control structure involves
choosing the appropriate number and duration of clock intervals,
and realizing a switching circuit that routes the clock signals
to operators as required to implement the system's function.

In an asynchronous control structure,each operator in the data
flow structure sends an acknowledge signal to the control
structure to indicate that action by the operator has been
completed. The acknowledge signals from operators are used
directly in the control structure to initiate action by oper-~
ators that become eligible for execution. In this way, initia-
tion of an operator is delayed only until completion of those
actions upon which correct functioning of the operator de-
pends. No special generator of timing signals is used, the
timing of system operation being determined by the durations
of actions by the operators.

If the control structure of an asynchronous system will func-~
tion correctly regardless of delays in its componerits and
their interconnecting wires, the control structure is called
a speed-~independent circuit.

A system described by a logic diagram for a synchronous reali-
zation of it is both overspecified and underspecified. The
particular choice of clock instants is irrelevant to the func-
tion performed by the system, but is essential for the diagram
to have any meaning. vYet understandings between the specifier
and implementer about timing of actions are necessary for
unambiguous interpretation of the description. These under-
standings are not usually represented in a logic diagram.

That a synchronous system is overspecified makes understanding
or altering its function difficult; that it is underspecified
makes design verification impossible in the absence of over-
simplifying assumptions. The description of a system as a
speed-indepedent circuit does not suffer these problems. Two
parts of a speed-independent circuit are interconnected if,
and only if, some action by one part is dependent on comple-
tion of some action by the other.

This reasoning shows that speed-independent implementation of
digital systems is of particular interest when one desires
assurance that a paper design will yield a correctly function-
ing system when translated into hardware. Speed-independent
implementation is also attractive where a system is built from
several interacting parts (there are no clocks in the subsys~
tems to be synchronized), or where a system has much concurrent
activity (which could only be slowed up by synchronizing action
to common clock signals). Computer systems developed in the
future are likely to have all of these characteristics.

The group has been studying schemes for representing systems

so that conversion of the description into a speed~independent
realization may be accomplished by a mechanical procedure

with a quarantee that the resulting hardware will function
correctly according to the description. In this way, the
onerous task of debugging the hardware (as opposed to debugging
the system description) would be largely eliminated. 1In

24

COMPUTATION STRUCTURES

particular the faults that appear in hardware systems because
of misunderstandings about the timing of signals would be
avoided.

We are considering two classes of speed-independent circuits
based on two assumptions regarding the origin of delays which
must not affect correctness of system operation. Both classes
of circuits are interconnections of primitive modules which
may be individual gates or specific circuits realized in turn
by the interconnection of simpler modules or gates.

In a type 1 circuit we assume that all interconnecting wires
are sources of arbitrary delays. Thus a signal sent out by
one module to two others may reach one module arbitrarily
earlier than the other. 1In a type 2 circuit we assume that the
output of a module may be delayed arbitrarily, but when an
output of a module changes, the change is observed immediately
by all modules to which the output is connected. The type 2
assumption is less restrictive, and is appropriate for cir-
cuits in which delays on interconnecting leads are negli-
gible compared to delays within gates. This is normally the
case within a semiconductor chip, for example. The more
general type 1 assumption is appropriate for interconnections
between standard parts where the designer does not know the
mechanical arrangement of the parts.

A principal goal of our work is to find a finite set of prac-
tical modules with which it is possible to implement any
digital system as a type 1 speed-independent circuit. In
last year's report we described a collection of control
modules adequate to implement any marked graph as a type 1
circuit. The complete set of control modules are also ade-
quate for implementing free choice and simple Petri nets in
the form of type 1 speed-independent circuits, and are con-
venient for defining control structures for complex digital
systems.

The C-element of Muller [7] is a very important gate type for
the construction of control modules. We have shown that the
C-element cannot be implemented as a type 1 interconnection
of AND, OR and NOT gates. 1In fact, there is very little

that can be done by a type 1 speed-independent circuit using
only AND, OR and NOT gates. These results are inciuded in a
paper by Dennis and Patil [8). Since several basic control
modules have type 1 realizations using NOT gates and C-elements,
these results emphasize the importance of the C-element as a
fundamental gate type for speed-independent circuits. More
recently, Fred Furtek has defined a complete set of basic
modules for the realization of general Petri nets as type 1
speed-independent circuits.

Our success in applying speed-independent design to control
Sstructures for digital systems has led us to investigate the
applicability of the concept to complete Jigital systems. As
an experiment: Dennis and Plummer developed a design for a fast
counter that could be sampled repeatedly without interfering
with continuation of counting. The design is a type 1

25

COMPUTATION STRUCTURES

interconnection of as many identical stages as desired, each
stage being a type 2 circuit using OR-gates, NOT-gates and C-
elements. Commands to 'count' or to 'sample’' flow through the
stages of the counter from the least significant end changing
or reading the bit held by each stage. In this way the speed
of the counter is independent of the number of stages. The
details of the design have been reported [8]. Bill Plummer de-
signed and constructed an arbiter module to resolve conflicts
between 'count' and 'sample' commands, and has prepared a
paper on his work [9].

D. Base Language

The Group is working toward the definition of a common base
language that could serve as a target representation for pro-
cedures translated from a variety of practical source languages,
for example, FORTRAN, ALGOL and LISP. By specifying a formal
interprete: for the base language and giving a precise des-
cription of the translation of source programs into base lan-
guage programs, we would have a complete scheme for the formal
definition of the semantics of programming languages in terms
of a common set of semantic notions (those of the base lan-

guage) .

The motivation for this work is the design of computer systems
in which the creation of correct programs is as convenient and
easy as possible. A major factor in the convenient synthesis
of programs is the ability to build large programs by combin-
ing simpler procedures or program modules, written independent-
ly, and perhaps by different individuals using different source
languages. This ability of a computer system to support
modular programming is called programming generality [10,11].
Programming generality requires the communication of data among
independently specified procedures,and thus that the semantics
of the languages in which these procedures are expressed must
be defined in terms of a common collection of data types and a
common concept of data structure.

We have observed that the achievement of programming generality
is very difficult in conventional computer systems, primarily
because of the variety of data reference and access methods
that must be used for the implementation of large programs

with acceptable efficiency. For example, data structures that
vary in size and form during a computation are given different
representations from those that are static; data that reside
in different storage media are accessed by different means of
reference; clashes of identifiers appearing in different
blocks or procedures are prevented by design in some source
languages, but similar consideration has not been given to the
naming and referencing of cataloged files and procedures in the
operating environment of programs. These limitations, on the
degree of generality possible in computer systems of convention-
al architecture have led us to study new concepts of computer
System organization through which these limitations on pro-
gramming generality might be overcome.

In this effort, we are working at the same time cn developing

26

COMPUTATION STRUCTURES

the base language and on developing concepts of computer arch-
itecture suited to the execution of computations specified by
base language programs. Thus our work on the base language is
strongly influenced by hardware concepts derived from the re-
quirements of programming generality [10].

We have chosen trees with shared substructures as our univer-
sal representation for information structures because we have
found attractive hardware realizations of memory systems for
tree-structured data. Jeffery Gertz [12] has considered how
such a memory system might be designed as a hierarchy of asso-
ciative memories. Also, the base language is intended to re-
present the concurrency of parts of computations in a way that
permits their execution in parallel. One reason for emphasizing
concurrency is that it is essential to the description of cer-
tain computations; for example, when a response is required to
whichever one of several independent events ig first to occur.
Furthermore, we believe that exploiting the potential con-
currency in programs will be important in realizing efficient
computer systems that offer programming generality. This is
because concurrent execution of program parts increases the
utilization of processing hardware by providing many activities
that can be carried forward while other activities are blocked,
pending retrieval of information from slower parts of the com-
puter system memory.

When the meaning of algorithms, expressed in some programming
language, has been specified in precise terms, we say that a
formal semantics for the language has been given. A formal
semantics for a programming language generally takes the form
of two sets of rules; one set being a translator, and the
second set being an interpreter. The translator specifies a
transformation of any well-formed program expressed in the

gram expressed in a second language -- the abstract language

of the definition. The interpreter eéxpresses the meaning of
programs in the abstract language by giving explicit directions
for carrying out the computation specified by any well-formed
abstract program.

It would be possible to specify the formal semantics of a pro-
gramming language by giving an interpreter for the concrete
programs of the source language; the translator is then the
identity transformation. Yet the inclusion of a translator in
the definition scheme has important advantages. For one, the
phrase structure of a programming language,viewed as a set of
strings on some alphabet,usually does not correspond well with
the semantic structure of programs. Thus, it is desirable to
give the semantic rules of interpretation for a representa-
tion of the program that more naturally represents its seman-
tic structure. Furthermore, lmany constructs present in source
languages are provided for convenience rather than as funda-
mental linguistic features. By arranging the translator to re-
place occurrences of these constructs with more basic con-
structs, a simpler abstract language is possible, and its inter-
preter can be made more readily understandable and, therefore,
more useful as a tool for the design and specification of

27

oL F N S e e Y

COMPUTATION STRUCTURES

computer languages and systems.

Our thoughts on the definition of programming languages in
terms of a base language are closely related to the formal
methods developed ac the IBM Vienna Labcratory [13] and which
derive from the ideas of McCarthy [14] and Landin [15].

For the formal semantics of programming languages, a general
model is required for the data on which programs act. We re-
gard data as consisting of elementary objects, and compound
objects formed by combining elementary objects into data
structures. Elementary objects are data items whose structure
in terms of simpler objects is not relevant to the description
of algorithms. For the purposes of this discussion, the class
E of elementary objects is

E=2zURUW
where
Z = the class of integers
R = a set of representations for real numbers
W = the set of all strings on some alphabet

Data structures are often represented by directed graphs in
which elementary objects are associated with nodes, and each
arc is labelled by a member of a set S of selectors. We will
use integers and strings as selectors:

s=zUW

In the class of objects used by the Vienna group, the graphs
are restricted to be trees, and elementary objects are asso-
ciated only with leaf nodes. We have used a less restricted
class so an object may have distinct component objects that
share some third object as a common component.

Let E be a class of elementary objects, and let S be

a class of selectors. An object 1s a directed acyclic
graph having a single root node from which all other
nodes may be reached over directed paths. Each arc is
labelled with one selector in S, and an elementary
object in E may be associated with each leaf node.

An example of an object is shown in Fig. 8. Leaf nodes having
associated elementary objects are represented by circles with
the element of E written inside: Iutegers are represented by
numerals, strings are enclosed in single quotes, and reals

have decimal points. Other nodes are represented by solid
dots, with a horizontal bar if there is more than one emanating
arc.

The node of an object reached by traversing an arc emanating
from its root node is itself the root node of an object called
a component of the original object. The component object con-
sists of all nodes and arcs that can be reached by directed
paths from its root node.

28

e

e

} i o
L e

COMPUTATION STRUCTURES

e W

FIG, 8.

29

Rl s ST R AT e A A SR e MR I e - e T G AR

COMPUTATION STRUCTURES

Some of us prefer to generalize this class of objects in two
ways:

1) by permitting data values to be associated with any
node of the graph of a structure

and
2) by permitting the graph to contain directed cycles.

Whether to permit cycles in the structured data objects of the
base language is an important unresolved issue. Some consider-
ations bearing on this matter are discussed in a later para-
graph of this report.

Figure 9 shows how source languages would be defined in terms
of a common base language. Concrete programs in source languages
(L1 and L2 in the Figure) are defined by translators into
abstract programs of the base language. For this to be
effectively possible, the structure of abstract programs can-
not reflect the peculiarities of any particular source lan-
guage, but must provide a set of fundamental linguistic con-
structs in terms of which the features of these source lan-
guages may be realized. The translators themselves should be
specified in terms of the base language, probably by means of
a specialized source language. Formally, abstract programs in
the base language, and states of interpreter are elements of
the class of objects defined above.

The structure of states of the interpreter for the base lan-
guage is shown in Fig. 10. Since we regard the interpreter for
the base language as a complete specification for the func-
tional operation of a computer system, a state of the interpre-
ter represents the totality of programs, data, and control
information present in the computer system. The universe is

an object that represents all information present in the com-
puter system when the system is idle, that is, when no compu-
tation is in progress. The universe has data structures and
procedure structures as constituent objects. Any object is a
legitimate data structure; for example, a data structure may
have components that are procedure structures. A procedure
structure is an object that represents a procedure expressed

in the base language. It has components which are instructions
of the base language, data structures, or other procedure struc-
tures. So that multiple activations of procedures may be ac-
commodated, a procedure structure remains unaltered during its
interpretation.

The local structure of an interpreter state contains a local
structure for each current activation of each base language
procedure. Each local structure has as components, the local
structures of all procedure activations initiated within it.
Thus the hierarchy of local structures represents the dynamic
relationship of procedure activations.

The control component of an interpreter state is an unordered
set of sites of activity. A typical site of activity is

30

COMPUTATION STRUCTURES

ABSTRACT PROGRAMS
ONCRETE PROGRAMS
¢ IN LI IN BASE LANGUAGE

TRANS _ATOR
FOR L |

~.,

CONCRETE PROGRAMS
IN L2

STATES
INTERPRETER

TRANSLATOR
FOR L2

FIG. 9.

I]
'UNIVERSE' 'LOCAL STRUCTURE' 'CONTROL'

e— -

: \ " SITES OF
= \
,__I_\ | i ACTIVITY
DATA
STRUCTURE

; INSTRUCTION \

PROCEDYRE LOCAL
STRUCTURE P STRUCTURE L

,
|
r
\.

FI1G. 10.

31

COMPUTATION STRUCTURES

represented in the figure by an asterisk at an instruction of
procedure P and an arrow to the local structure I for some
activation of P. Since several activations of a procedure may
exist concurrently, there may be two or more sites of activity
involving the same instruction of some procedure, but designat-
ing different local structures. Also, within one activation

of a procedure, several instructions may be active concurrently;
thus asterisks on different instructions of a procedure may

have arrows to the same local structure.

Each state transition of the interpreter executes one instruc-
tion for some procedure activation, at a site of activity
selected arbitrarily from the control of the current state.
Thus the interpreter is a nondeterministic transition system.
In the state resulting from a transition, the chosen site of
activity is replaced by zero or more new sites of activity
according to the sequencing rules of the base language.

Interpretation of a procedure involves two objects, the proce-
dure structure P and an argument structure A. The argument
structure is formed by the calling procedure activation and
contains, as component objects, all information (other than P)
required by the activation of P. In particular, the actual
parameters of the procedure activation are components of A.
In this view of procedure execution, no meaning is given to
nonlocal references occurring within a procedure structure.
Thus no side effects of procedure executions are possible. Un-
less procedure P modifies part of its own procedure structure,
it defines an algebraic operation on the class of all objects.

A subject of major importance to us is the representation of
concurrent activities in the base language. Consideration of
concurrency brings in the issue of nondeterminacy -- the possi-
bility that computed results will depend on the relative tim-
ing with which the concurrent. activities are carried forward.
The ability of a computer user to direct the system to carry
out computations with a guarantee of determinacy is very im-
portant. Most programs are intended to implement a functional
dependence of results on inputs, and determinism is essential
to the verification of their correctness.

There are two ways of providing a guarantee of determinacy to
the user of a computer system. They are distinguished accord-
ing to whether or not the class of base language programs is
constrained through design of the interpreter to describe only
determinate computations. If this is the case, then any
abstract program resulting from compilation will be deterministic
in execution. Furthermore, if the compiler is itself a deter-
minate procedure, then each translatable source program repre-
sents a determinate procedure. On the other hand, if the de~
sign of the interpreter does not guarantee determinacy of
abstract programs, determinacy of source programs, when de-
sired, must be ensured by the translator.

E. Program Graphs

We are considering two approaches to represent the relationships

32

T R i gan o » oo Ry 2 P oo SRR R S e 2

COMPUTATION STRUCTURES

among instructions of a procedure structure:

1. A conventional form in which the instructions of each
procedure structure are selected by successive integers,
and instructions are executed sequentially except when a
conditional transfer of control directs execution to a
new instruction sequence.

In this form,concurrency is represented by fork instructions
where activity splits into twe concurrent streams and join
instructions where two streams of activity merge into one.

2. A data flow form in which execution of an instruction
is controlled by the availability of the data values re-
quired for its execution. For example, execution of an
add instruction would be enabled as soon as the values of
both operands have been computed.

Concurrency is inherent in a data flow representation since
the creation of a computed value may enable several instruc-
tions. The data flow representations we are investigating are
variations and extensiones of the program graphs introduced Ly
Rodriguez [16]. We shall illustrate our present thoughts re-
garding data flow representations by presenting program graphs
for several programs. Consider the program

begin
vVi=t-X; w:i=Xx-u
if v>wtheny :=w -2e¢elsey :=v + 3
if y >0 then z :=y 4+ 2 else z := 0

end

A conventional machine level representation would be:

begin
fork 41 23: W=-2 >y
t-x-+v 14: if y > 0 goto £5
goto 12 0+ 2z

L1: x = v »+w goto 26

22: join 5: y + 2 >z
it v > w goto 13 L16: end
v+3-+>y
goto 24

A program graph for this program is shown in Fig. 11. The
nodes ox the program graph include functional operators
drawn as circles, predicate operators drawn as diamonds and
two special node types, gate and merge, that perform control
functions. The links may be thought of as conveying tokens

33

COMPUTATION STRUCTURES

sareK]

774

+3

GATE

Fo MerGge L é:-.)
o
>0

y

!

GATE

F. MERGE |t t2
Yz
FIG. 11.

34

O T N P T) 2 TR T e ST E e IR 5 e o S O o Sy e

COMPUTATION STRUCTURES

between nodes of the diagram as in a Petri net. Here the
tokens have information associated with them. Tokens arriving
at or leaving functional operators, and those arriving at pre-
dicate operators convey values (numbers for example); these
links are drawn with small solid arrows. Tokens leaving a pre-
dicate operator convey decisions (true or false) to gate nodes
of the diagram; these links are drawn with open arrowheaus.

We assume the net operatws in a safe manner, that is, tokens

do not overtake one another, nor do they accumulate at nodes.
This may be ensured by acknowledge signals transmitted in the
reverse direction over each link. Thus a value link may be
represented in a Petri net by a pair of places: a place (drawn
as a square box) through which tokens with attached values

move from source node to destination, and an ordinary place
through which "empty" tokens are returned to the source node.
Decision links may be conveniently represented by three places
through which ordinary tokens (not bearing values) move. A
token arriving at the place labeled t signals a true decision;
a token arriving at the place labeled f signals a false deci-
sion.

When a link goes to two or more destinations, tokens are re-
plicated at each branch point so that tokens with identical
information are sent to each node. The branch points act like
wye modules, and await acknowledgment signals from each des-
tination hefore returning an empty token to the source node.

The gate and merge control nodes are needed so that decisions
made by predicate operators may affect the pattern of data

flow through functional operators of the program graph. A
T-gate node permits a value-bearing token to pass through for
each true decision received on the decision link. Whenever a
false decision arrives the value-bearing token is not forwarded.
In either case the gate node acknowledges both tokens received,
and when a gate forwards a token, it waits for acknowledgment
before forwarding another value-bearing token. The behavior
of a gate node is described in Fig. 12. The arrival of a true
decision leads to forwarding of a value token from link 1 to
link 2. Arrival of a false decision causes a value arriving
on link 1 to be acknowledged and discarded. An F-gate node

is identical to the T-gate except that the sense of the de-
cision is reversed.

A merge node permits values sent over its output link to
originate from different sources according to decisions made
during computation. The value sent over the output link is
forwarded from the T- or F-labeled input value link according
as the decision received is true or false. A Petri net for
the switch node is shown in Fig. 13.

Next we give an example showing how iterative programs can
be represented as program graphs:

35

i e e Ry g

COMPUTATION STRUCTURES

v a
S
2
FIG. 2.
-
fi a ot

FI1G, 13.

36

COMPUTATION STRUCTURES

y = X
v =0
while p(w,v) do
begin
vi= £(v); y = gly)
end
zZ =y
end
Noting that the two statements of the body of the iteration

may be performed concurrently, a conventional representation
would be similar to this:

begin
X >y
0+ vy
£1: if p(w,v)goto 24
fork 22
f(v) + v
goto 43
L2: gly) + v
£3: join
goto £l
24: y » z
end

A data flow version of the program is provided in Fig. 14,

Two of the merge nodes serve as the junctions through which
initial values and intermediate values flow to the functional
operators of the body of the whileé loop. The predicate opera-
tor requires one copy of the value of variable w for each

test of the predicate p. These copies are generated by the
center merge node, and the associated gate node. Initiation
of operation of the program graph requires arrival of a false
decision at the decision input link of each of the three
merge nodes, This is provided by the F-buff node which is a
buffer for decisions that sends a false decision as its initial
output, (Fig. 15.).

An important result of Suhas Patil [17]) concerning interconnec-
tions of determinate systems can be applied to program graphs
formed from the node types used in these two examples. We
conclude that any such program graph is a determinate repre-
sentation of a program. This class of program graphs is a
revision of the class studied earlier by Rodriguez, and is

37

COMPUTATION STRUCTURES

3943NW

31v9o
il

17914

—= 394H3W

(H TI_ 3943
4 . 1

L

38

COMPUTATION STRUCTURES

simpler as a result of our improved understanding of concurrent
activities. We expect that future developments in the theo-
retical study of Petri nets will contribute significantly to
the building of a satisfactory theory of program graphs.

Jack Dennis has formulated a class of program graphs suitable
for representing certain computations on structured data [10].
These program graphs were limited in that no provisions were
made for conditional execution of subgraphs or for iterative
computation. We expect to combine the concepts developed in
this class with those of Rodriguez to obtain a general class
of program graphs encompassing,say,all ALGOL 60 programs. Our
final example illustrates the form this class of program
graphs may take.

procedure (a,b,n)
beqin

step 1 through n do

i 1
y :=y + ali] x b[i]

The input data for this procedure will be represented by the
argument structure shown in Fig. 16, having components for the
three formal parameters of the procedure. In the program
graph shown in Fig. 18, a third kind of link is used and is
drawn as a heavy line with a solid arrowhead. Tokens passing
on these links convey access to objects. Execution is initiated
by arrival of a token at the root node P of the program graph.
This token carries access to an argument structure of the form
shown. Fcur new node types are used, (Fig. 17). The select

X node converts access to an object into access to the x-
component of the object. These nodes are used to obtain
access to the components of the argument structure. The
second form of select node uses the integer received on link

3 to select the componert object. The value node converts
access to an elementary object into the value of the object.
Finally, the assign node receives a data value on link 2 and
transforms the object conveyed on link 1 into an elementary
object having that value.

The repeat nodes in this program graph generate multiple copies
of tokens conveying access to the same object, in this case the
actual parameters of the scalar product procedure. One token
is sent over the output link for each true decision received

on the decision 1link. Acknowledgment is not given on the in-
put data link until a false decision is received, whereupon

the node resets and waits for the arrival of new data.

This program graph is determinate, yet we cannot guarantee the

determinacy of any program graph constructed from all node
types introduced here. We would like to find a set of program

39

COMPUTATION STRUCTURES

| F |2
— surr (o aye

FIG. 15,

FIG. 16.

[[[[

SELECT SELECT |e—om VALUE

ASSIGN

FIG. 17.

40

R:1

‘O14

COMPUTATION STRUCTURES

39¥3NW

! 'Ja [1o
| 394 3N OM@ 3INTVA 3INIvA
4 _ |
12373s -+ 1237138
_,V lv3id3ay e—{ 1V 3d3Yy
qd — od —
.D. -O.
123713s 12313s

|

|

e NG L i it

P

41

i > W

COMPUTATION STRUCTURES

graph node types and a condition on their interconnection, such
that the program graphs satisfying the condition are deter-
minate and include representations for a wide variety of pro-
grams.

Certain computations are more naturally expressed in data flow
terms than in conventional form. A typical example is a situa-
tion in which several independent activities generate and con-
sume units of data exchanged among themselves. Suppose a com-
putation is performed by two interconnected modules, (Fig. 19.).
Module 1 takes an initial value x from data cell a and gener-
ates a sequence of values y,, Y1r--+. ¥Yn that are forwarded to
module 2 through data cell b. Module 2 processes these values
as they become available, and, when all values have been pro-
cessed, puts a cumulative result z in cell c. Let the compu-
tations performed by modules 1 and 2 be described by the
following relations where f and g denote unspecified functions.

Yo = f(x) wy =10
¥, =ty Wy = 9(¥gswg)
Yk = f(Yk_l) Wk = g(yk_l,wk_l)

A program graph for this computation is shown in Fig. 20.

The predicate p is applied to each value Yi by both modules to
determine when the last value of a sequence has been processed:

]

ply;) = true, i =1, ..., k - 1

plyy) = false

Note that this program graph allows the two modules to act
concurrently and is formed simply by connecting together pro-
gram graphs that represent the two modules. Furthermore, the
incorporation of a first in-first out queue in the connecting
link would permit module 1 to continue generating values

even when module 2 has not had enough time to use up the pre-
vious values. The addition of queues does not require any
change in the representations of the modules. These properties
are not shared by other representations such as co-routines or
processes inter-communicating by means of semaphores. Further
discussion of these points appears in a recent paper by Jack
Dennis [18].

Program graphs are an attractive representation for procedures
expressed in the base language because the possibilities for
concurrent execution of instructions are exhibited in a natural
way. Program graphs represent many procedures in their maxi-
mum parallel form. Also, it is easy to impose constraints on

42

COMPUTATION STRUCTURES

- ———-

T T T T

4
Vi
=
-

m————

_— e e e e e e e e e e e — e — — — —

RS |
I
\
\

_-

— — — — — — — — m— — e e — e S e — — e e e e E— S — o m—

.._
I

!

_

ﬂ

_

_

ENCARIERE E— T@ F _
3 _

_

!

|

_

_

.

61 Old

d 31vO al
AV 1 N J943N ...u_|‘|:

43

COMPUTATION STRUCTURES

program graphs such that determinate execution is assured with-
out restricting the class of determinate procedures that can
be expressed. Finally, we have found that considering program
graphs as a machine level representation leads to interesting
concepts for the structure of highly parallel computers [10].

F. Translation of Block-Structured Languages

Many important programming languages for practical computation
are block structured; the texts of blocks and procedures are
nested, and identifiers appearing in one text may refer to vari-
ables declared in other texts. We do not plan to include in

the base language provision for directly representing reference
by a procedure to external objects. Therefore, we must show how
the execution of block-structured programs may be effected
through translation into the base language and execution by the
base language interpreter. The following discussion outlines
one way in which this may be accomplished -- a way that seems
attractive in view of the concepts of computer organization

we are investigating.

Consider the program shown in Fig. 21. This program has the
block structure shown; the main block P encloses a procedure
declaration P and a block Q. Upper case letters are used to
identify the texts of blocks or procedures.

If T is a text (block or procedure declaration) of a program,
let B(T) be the set of identifiers occurring in T that are
locally declared. Let X(T) be the set of identifiers occurring
in T, or any text nested within T, that refer to variables de-
clared outside T. For the above program we have

{y}
{f}

{x} B(Q)
{y} X(Q)

{y, z, £} B(F)
@ X(F)

B(P)
X(P)

Since non-local references are excluded in the base language,
we need a scheme for making variables a~zcessed by non-local
reference in the block-structured program accessible through
the argument structure in the base language representation.

We will discuss one method of doing this, details of which are
given in a recent paper by Jack Dennis [19]. To illustrate
this scheme consider the computation of apply p (4). As objects,
the procedure structure P and the local structure L(P) at the
beginning of the computation will be as shown in Fig. 22.
Texts F and Q are represented as components of the object rep-
resenting text P. The local structure for the activation of

P has one component for each identifier in the set B(F)QU X(F).

The first step is execution of the declaration of text F. This
gives the procedure identifier f a value called a closure of
the text F (Fig. 23). The C*T-component of the closure is
the text of procedure F and is shared with the procedure struc-
ture P. The C.E-component of the closure links identifiers in
X(F) to the value these identifiers have in the current proced-
ure activation. Thus the identifier y shares the value 4 with
y in L(P).

44

COMPUTATION STRUCTURES

P— p:= PROCEDURE(y)
BEGIN REAL v,z
FTF f == PROCEDURE(x)
BEGIN REAL x
y*=y+x
- END
P
Q4 gq: BEGIN REAL y F
y = |
APPLY f(y)
B END
2= y¢2
RETURN 2
e END
FIG. 2I.

IP | IL(P)

TEXT P | ! |

| i

[]
TEXT Q ! TEXT F

FIG.22.

45

COMPUTATION STRUCTURES

Entering block Q may be treated as though it were a procedure
without parameters. A new local structure L(Q) is formed and
made inferior to L(P), (Fig. 24.). This new local structure
has a component for each identifier in B(QUX(Q) = {f, yv}.

Identifier f is external, so it is given the same meaning as
f in L(P).

After y in L(Q) is assigned the value 1, the closure of F ig
applied to an argument structure having a l-component of 1 and

The meanings of identifiers x and y in text F are established
as in the case of Text Q. Since Y is in X(F) it is linked to
the E-y - component of the argument structure. Since x identi-
fies the first formal parameter of text F, it is linked to the
l-component of the argument structure. In this way, execution
of the assignment in text F correctly updates the value of Y in
the local structure L(P), (Fig. 26.).

G. Cycles in Structures

The class of objects defined earlier does not permit directed
cycles to occur in the graph of an object. The desirability
of this restriction on the class of objects has been the sub-
ject of considerable Study and discussion. Arguments against

1. Cyclic structures do not seem essential to the repre-

sentation of the structured data types of current important
source languages.

2. When cycles occur in linked 1list structures, they can
usually be considered part of an implementation rather

represented.

3. The presence of cycles in objects makes it difficult
to exploit the concurrency of parts of an algorithm.

The principal arguments in favor of permitting cycles are:

l. Generality of data structures should not be arbitrarily
restricted.

2. Cyclic structures are important for representing cer-
tain kinds of data.

3. Implementation of a base language using cyclic struc-
tures will not present great difficulty.

We have studied two definitive questions to develop better

understanding of the importance of cyclic data structures to
the base language.

46

COMPUTATION STRUCTURES

TP

[TexT P
q

|

;

C
TEXT Q y—J—;
£

o*—N

O —0— = —
-—r—

5

TEXT F

FIG. 24.

47

COMPUTATION STRUCTURES

?L(P)
T L@
| T L(F)
f z y | I
A
S f y |

y
FIG. 25.
¢ L(P) TL(F)
I 1
z y A y

O ———— - —
-

r
%E
|

s
Q)/ - L

sl

FIG. 26.

48

COMPUTATION STRUCTURES

—
p :=PROCEDURE(u)
8

EGIN
P-— f:= PROCEDURE(x); INTEGER «x
BEGIN
F— IF x =0 THEN RETURN |
x :=g(x)
z 1= APPLY f(x)
RETURN 2
END
—APPLY f(u)
END
F1G. 27.
?L(P)
r
lul lxl lfl
L
Ci
“’(E
r_"‘f—-\ ltl
TEXT F +
C
|
FIG.28.
49

COMPUTATION STRUCTURES

One study [19] concerns how cycles can arise during execution
of block-structured programs according to the scheme outlined
earlier. Consider the program shown in Fig. 27.

This program consists of a procedure declaration F which con-
tains an application of itself. Interpretation of the declara-
tion as described above assigns identifier f a value which is

a closure of F, and in which f aprears as an external refer-

ence. This creates a cycle in the local structure L(P), (Fig.
28).

We have found that many block=-structured programs can be re- !
written so they accomplish the original computation, but with- !
out the creation of cycles. The principle is to convey clo-
Sures to and from a procedure activation by passing them as
parameters or results rather than by external references. For
example, the program given above becomes:

P 1= PROCEDURE (u)
BEGIN

r-f : =PROCEDURE(h,x) PROCED h, INTEGER x
BEGIN
ie= IF x= 0 THEN RETURN |

X =g (x)
z ;= APPLY h(h,x)
RETURN 2z

END

APPLY f (f,u)

END
== FIG. 29.

This raises -ome interesting questions. In particular, we
would like to develop a general method for rewriting lock-
Structured programs so that cycles will not arise auring ex-
ecution.

The second study by Ian Campbell-Grant [20]) investigated an
eéxecution mcdel for multiprocess computations that operate on
a data base represented as an arbitrary directed graph. The
arcs of the graph represent structural relations among data
items associated with the nodes. In this model each process
may hold several pointers by which it may access the data base.
Each pointer has an associated access control indicator having
one of the three values:

50

COMPUTATION STRUCTURES

R read access
WD write data access
WS write structure access }

If a pointer carries R-access to a node, the process may apply

the pointer to read (but not alter) the data associated with

the node. The process may also obtain a pointer with R-access

to any node that can be reached over a directed path in the

data base from a node for which it holds R-access. A pointer

carrying WD-access to a node permits the process to alter the

data associated with the node, and to obtain a pointer with

WD-access to any node accessible from the given node. A

pointer carrying WS-access to a node permits a process to '
modify the graph of the data base by adding or deleting arcs

within the subgraph formed by all arcs that can be traversed {
via directed paths starting from the given node. The three

kinds of access are cumulative, that is, WD-access includes l
the privileges of R-access, and WS-access includes the priv- ‘
ileges of R-access and WD-access.

The objective of this study was to show how constraints can

be implemented in an execution model so that any computation
carried on by a set of interacting processes would be deter-
minate. For this purpose, a computation is regarded as deter-
minate if it can never happen that two processes apply pointers
to the same data base node concurrently, unless both processes
possess only R-access.

The scheme used to ensure determinism involves a set of con-
straints. Each constraint is an ordered pair (A, B) where A
and B are pointers held by distinct processes 1 and 2. The

constraint (A, B) signifies that application of pointer B by
process 2 must wait until process 1 reduces its access priv-
ilege for pointer A.

By executing certain instructions defined for the model, a
process may: access nodes by following directed paths in the
data base; create and terminate subsidiary processes; and
apply pointers to read and write the data associated with
accessible nodes of the data base. The execution rules for
each instruction type includes specification of how the con-
straint set must be modified. Campbell-Grant has shown that
the relation graph defined by the set of constraints will
always be acyclic throughout any multiprocess computation by
his model. In consequence, the following condition will
always be satisfied, where the predicate struct (X,Y) is true,
if and only if, there is a node in the data base reachable
over directed paths from the nodes designated by pointers X
and Y:

If pointers A and B are held by distinct processes and
struct (A,B) = true then access (A) = R and access (B) =
R or one of (A, B) or (B, A) is in the constraint set.

This is sufficient to guarantee determinate computation.

51

COMPUTATION STRUCTURES

H. Computers and People

hardware should be designed and evaluated in the context of
the software that provides the interface with the users. we
must now learn how to design and evaluate computer systems in
the context of the community of people that is affected by

by their use. The other concerns the design of computer systems
pPossessing whatever Ccharacteristics are necessary to implement
modes of operation that are, at the very least, not objection-
able from a human standpoint,

three years, although at a low level of intensity. A few
papers by Prof. Robert M. Fano and by some of his students are
listed below. 1n addition, Prof. Fano is preparing a short
monograph based on the Centennial Lectures he gave during the
Spring, 1970, at the Stevens Institute of Technology.

ments. Processes can make calls and return from sphere to
sphere through inter-sphere links. It can be shown that, under
appropriate conditions, calling spheres cannot spy on their
callees, nor the callees on their callers. The mocel includes
also facilities for keeping records of Ccritical actions (by
system programmers, for instance) and for allocating responsi-~
bility for whatever a process does. Such facilities are essen-~
tial to implement and enforce law regulations and contractual
agreements existing in the user community. A brief Summary of
Some of this work is presented in one of the papers listed
below ("Surveillance Mechanisms in & Secure Computer Utility").

52

COMPUTATION STRUCTURES

References
Z=-srences

l. A. W. Holt and F. Commoner, Events and Conditions, Record
of the Project MAC Conference on Concurrent Systems and Paralliel
Computation, ACM, N-w York (1970), pp 3-52.

2. C. A. Petri, Communication With Automata, Supplement 1 to
Technical Report RADC-TR-65-377, Vol. 1, Griffiss Air Force
Base, New York 1966. [Originally published in German: Kommuni-
kation mit Automaten, University of Bonn, 1962.]

3. H. J. Genrich, Simple Nonsequential Processes,
Gesellschaft fur Mathematik und Datenverarbeitung, Bonn, 1971.

4. A. W. Holt and F. Commoner, Events and Conditions, Part 2,
Applied Data Research, Inc., New York, N. Y.

5. S. S. Patil, Limitations and Capabilities of Dijkstra's
Semaphore Primitives for Coordination Among Processes, Computa-
tion Structures Group Memo 57, Project MAC, M.I.T., Cambridge,
Mass., February 1971.

6. E. W. Dijkstra, Co-operating Sequential Processes, Program-
ming Languages, F. Genuys, Ed., Academic Press, New York, 1968.

7. D. E. Muller, Asynchronous Logics and Application to Informa-
tion Processing, Switching Theory in Space Technology, Stanford
University Press, Stanford, California, 1963.

8. J. B. Dennis and S. §. Patil, Speed Independent Asynchronous
Circuits, Proceedings cof the Fourth Hawaii International Con-
ference on System Sciences, 1971.

9. W. W. Plummer, Asynchronous Arbiters, Computation Structures
Group Memo 56, Project MAC, M.I.T., Cambridge, Mass., February
1971.

10. J. B. Dennis, Programming Generality, Parallelism and Com-
puter Architecture, Information Processiing 68, North-Holland,
Amsterdam 1959, pp 484-497.

11. J. B. Dennis, Future Trends in Time Sharing Systems, Time-

Sharing Innovation for O erations Research and Decision-Makinq,
ashington ouncil] r PP - .

12. J. L. Gertz, Hierarchical Associative Memories for Parallel
Computation, Report MAC-TR-69, Project MAC, M.I.T., Cambridge,
Mass, June 1970.

13. P. Lucas and K. Walk, On the Formal Description of pL/T,
Annual Review in Automatic Programming, Vol. 6, Part 3, Pergamon
Press 1969, pp 105-182.

14. J. McCarthy, A Formal Description of a Subset of Algol,
Formal Language Description Languages for Computer Programming,
North-Holland, Amsterdam, 1966, pp 1-1I7.

53

CCMPUTATION STRUCTURES

References (cont.)

15. P. J. Landin, The Mechanical Evaluation of Expressions,
The Computer Journal, Vol. 6, No. 4 (January 1964), pp. 308-320.

16. J. E. Rodriguez, A Graph Model for Parallel Computations,
Report MAC-TR-64, Project MAC, M.I.T., Cambridge, Mass.,
September 1969.

17. s. s. Patil, Closure Properties of Interconnections of
Determinate System, Record of the Project MAC Conference on
Concurrent Systems and Parallel Computation, ACM, New York,
1970, pp. 107-116.

18. J. B. Dennis, Coroutines and Parallel Computation,
Princeton Conference on Information Sciences and Systems,
Princeton, N.J., March 1971.

19. J. B. Dennis, On the Design and Specification of a Common
Bane Language, Proceedings of a Symposium on Computers and
Avtomata, Polytechnic Institute of Brooklyn. To be published.

20. I. Campbell-Grant, "The Controlled Execution of Parallel
Programs Operating on Structured Data", S.M. Thesis, Dept.
of Electrical Engineering, January 1971.

Publications 1970-1971

Campbell-Grant, I., "The Controlled Execution of Parallel
Programs Operating on Structured Data", S.M. Thesis, Dept.
of Electrical Engineering, January 1971.

Dennis, J. B., Coroutines and Parallel Computation, Princeton
Conference on Information Sciences and Systems, Princeton,
N. J., March 1971.

Dennis, J.B., On the Design and Specification of a Common
Base Language, Proceedings of a Symposium on Computers and
Automata, Polytechnic Institute of Brooklyn. To be published.

Pennis, J. B., and Patil, S. S., Speed Independent Asynchronous
Circuits, Proceedings of the Fourth Hawaii International Con-
ference on System Sciences, 1971.

Fano, R. M., "Computers in Human Society =- For Good or I112",
Technology Review, March 1970, pp. 25-31.

54

COMPUTATION STRUCTURES

Publications (cont.)

Fano, R. M., "Computers in Society", to be published in the

Proceedings of the Symposium "L'Informatica, La Cultura e La
Societa <taliana", held at the Fcndazione Giovanni Agnelli,

Torino, Italy, December 9-11, 1970.

Patil, S. S., Limitations and Capabilities of Dijkstra's
Semaphore Primitives for Coordination Among Processes, Computa-
tion Structures Group Memo 57, Project MAC, M.I.T., Cambridge,
Mass., February 1971.

Plummer, W.W., Asynchronous Arbiters, Computation Structures
Group Memo 56, Project MAC, M.T.T., Cambridge, Mass., February
1971.

Rotenberg, Leo J., "Surveillance Mechanisms in a Secure Com-
puter Utility", Computers and Society, Vol. 2, No. 1, April
1971, ACM Special Interest Group on Computers and Society.

Vogt, Carla, "Making Computerized Knowledge Safe for People”,
Technology Review, March 1970, pp. 33-39.

55

" 3 L " e

COMPUTER SYSTEMS RESEARCH

Prof. F. J. Corbato”

Academic Staff

Prof. J. H. Saltzer

Instructors, Research Associates, Research Assistants and Others

D. D. Clark R. R. Schell
J. Coffman M. D. Schroeder
K. T. Pogran A. Sekino

Undergraduate Students

P. B. Bishop R. S. Lamson
D. Bricklin M. Liu
B. Carlson D. Misunas
J. R. Cone D. P. Reed
R. Frankston K. Rhoades i
P. A. Green J. Stern T :
R. H. Gumpertz J. M. Strayhor
P. A. Karger C. D. Tavares
DSR Staff
R. H. Campbell E. W. Meyer, Jr.
R. C. Daley N. I. Morris
S. D. Dunten M. A. Padlipsky
R. J. Feiertag T. P. Skinner
R. L. Gardner M. J. Spier
C. C. Garman V. L. Voydock
R. K. Kanodia M. B. Weaver
R. F. Mabee S. H. Webber

Support Staff

0. D. Carey D. L. Jones

S. Daise T. H. Seymour

C. P. Doyle A. G. Testa

L. J. Haron M. W. Webber
Guest

Prof. G. lazeolla

PRECEDING PASE BLANK

57

V. COMPUTER SYSTEMS RESEARCH

A. Introduction

The Computer Systems Research Group concentrates upon discover-
ing ways to make engineering of complex information systems more
methodical. Its approach is to use the Multics system as a
laboratory. Thus, the work of the group must be classed as
experimental, in contrast to the more theoretical attack fol-
lowed by the Computation Structures Group. Use of an operating
computer utility as a laboratory has both advantages and diffi-
culties. The chief advantage is contact with reality and test-
ing of new engineering ideas in a real operational environment,
a test which is essential to achieve credibility for the ideas.
The chief drawback lies in the unwillingness of live users to
submit to arbitrary changes to their operating environment as

a research group tries out ideas, not all of which are neces-
sarily good ones.

Taker in proper balance, these two considerations can lead to
use of a live system as a laboratory, in which a substantial
number of good research problems can be adequately attacked,
by careful planning. It is in such a laboratory that the
group operates.

In the last twelve months, research progress has been made in
several areas:

Dynamic Reconfiguration

I/0 Programming Language

Automatically Managed Multilevel Memory
Protection of Programs and Data

System Programming Language

Message Handling

Each of these areas will be discussed in turn.

B. Dynamic Reconfiguration

If the "computer utility" is ever tc become as much of a
reality as the electric power utility or the telephone com-
munication service, its continued operation must not be de-
pendent upon any single physical component, since individual
components will eventually fail. This observation leads an
electric power utility to provide procedures whereby an idle
generator may be dynamically added to the utility's generating
capacity while another is removed for maintenance, all without
any disruption of service to customers. A similar scenario has
long been proposed for multiprocessor, multimemory computer
systems, in which one would dynamically switch processors and
memory boxes in and out of the operating configuration as need-
ed. Unfortunately, though there have been demonstrated a few
"special purpose" designs, it has not been apparent how to
provide for such operations in a general purpose system. In

a doctoral thesis done in the CSR Group, Roger R. Schell pro-
posed a general model for the dynamic binding and unbinding of
computation and memory structures to and from ongoing computa-

PRECEDING PAGE BLANK

59

COMPUTER SYSTEMS RESEARCH

tions. Using this mcdel as a basis, he also proposed a specific
implementation of his model for a typical multiprocessor, multi-
memory computing system. One of the results of this work was
the addition to the operating Multics system of the capability
of dynamically adding and removing central processors and mem-
ory boxes. The usefulness of the idea may be gauged by observ-
ing that five to ten such reconfigurations are now performed in
a typical 24-hour operating day.

The full impact of this piece of research should be felt far
beyond the Multics system, since the thesis provides a general
model for such operations, and it can provide the designer of a
new system with the insight needed to allow him to include dyna-
mic reconfiguration in his engineering plans.

C. 1I/0 Programming Language

An area of computer programming which has received too little
attention is that of languages for specifying the detailed i
control of input and output devices. In most cases, the
programmer expresses such control in dynamically constructed
channel instruction sequences, for which his programming tools
are very meager. Often, the nature of a channel program is
hidden in the code of the CPU program which constructs it.
Worse, the construction is usually in terms of the individual
bit string constants which happen to constitute operation codes,
addresses, or control messages for the channel. Thus, although
the programmer may control the CPU with expressions in the PL/I
language, he often controls the I/O channel with expressions in
binary.

Efforts to make progress in this area are frustrating, since
the nature of I/O control is very different for different kinds
of devices. However, there is one class of device within which
I/0 control is fairly well constrained -- the class of type-
writer terminals. Thus, as an experiment, a simple language
was devised which permits quick and easy specification of the
channel programs used for typewriter terminals. The language
includes primitives for synchronization between the 1/0 channel
and the CPU program. A translator for the language was con-
structed, and the Multics typewriter control package was re-
written using the language for all I/0 channel control. The
new typewriter control package handles all I/0 with Model 33,
35, and 37 teletypes, IBM 2741 and 1050 terminals, and also
static display consoles. So far, the new control package has
proven much more maintainable than earlier designs, thus pro-
viding some basis for continued experimentation with I/O }

e g g N G TR A

channel control languages.

D. Automatically Managed Multilevel Memory |

By now, it has become accepted lore in the computer system
field that use ¢f automatic management algorithms for memory
systems, constructed of several levels with different access
times, can provide a significant simplification of programming
effort. Examples of such automatic management strategies in-
clude the buffer memories of the IBM 370 models 155, 165, and

L

60

COMPUTER SYSTEMS RESEARCH

195, and the demand paging virtual memories of Multics, IBM's
CP-67, and the Michigan Terminal System. Unfortunately, behind
the mask of acceptance hides a worrisome lack of knowledge about
how to engineer a multilevel memory system with appropriate
algorithms which are matched to the load and hardware charac-
teristics. One of the projects of the CSR Group is to instru-
ment and experiment with the multilevel memory system of Multics,
in order to learn better how to predict in advance the perfor-
mance of proposed, new, automatically-managed, multilevel-
memory-systems. Several specific aspects of this goal have

been explored recently:

l. A strategy to treat core memory, drum, and disk as a true
three-level memory system has been proposed, including a
"least-recently-used" algorithm for moving things from drum

to disk. Such an algorithm is already in use to determine
which pages should be removed from core memory. The dynamics
of interaction among two such algorithms operating at different
levels are not understood, and some experimental work should
prcvide much insight. The proposed strateqgy will be imple-
mented, and then compared with a simpler strategy which never
moves things from drum to disk, but instead makes educated
"guesses" as to which device is most appropriate for the per-
manent residence of a given page. If the automatic algorithm
is at least as good as the older, static one, it would repre-
sent an improvement in over-all design by itself, since it
would automatically track changes in user behavior, while the
static algorithm requires constant attention as to the validity
of its gquesses.

2. A scheme to permit experimentation with predictive paging
algorithms was devised. The scheme provides for each process
a list of pages to be preloaded whenever the process is run,
and a second list to be immediately purged whenever the pro-
cess stops. The updating of these lists is controlled by a
decision table exercised every time the process stops running.

3. A series of hardware measurements were made to establish
the effectiveness of a small associative memory used to hold
recently accessed page descriptors. These measurements es-
tablished a profile of hit ratio (probability of finding a
page descriptor in the associative memory) versus associative
memory size which should be very useful to the designers of
virtual memory systems.

4. A set of models, both analytic and simulation, were con-
structed to try to understand the behavior of a shared virtual
memory. The most important result of this line of work so far
has been finding that a single parameter of load (the mean ex-
ecution time between "missing" pages in the virtual memory)
suffices to provide a quite accurate prediction of paging and
idle overheads. A doctoral thesis is in progress on this
topic.

As a sidelight, the measurements used to validate the models

led to the discovery of an overloaded disk paging channel, the
addition of a second hardware channel, and the jinvertion of an

61

COMPUTER SYSTEMS RESEARCH

ingenious algorithm to maximize the effective capacity of the
two channels. 1In brief, the two channels both connect to three
hardware disk controllers, each of which can process only one
request at a time. The heart of the algorithm is, when a
channel comes available, to look ahead in the queue of work

for the first outstanding request which is directed to one of
the two unused disk controllers. Although some requests are
thereby processed out of order, the over-all multiprogramming
performance is improved, since the average queuing for disk
service is reduced.

E. Protection of Programs and Data

A long-standing objective of the CSR Group has been to provide
facilities for the protection of executing programs from one
another, so that users of a public computer utility may, with
confidence, place appropriate control on the release of their
private information. 1In 1967, a scheme was proposed which
provided a generalization of the usual supervisor-uyser protec-
tion relationship. This scheme, called "rings of protection",
provides user-written subsystems with the same protection from
other users that the supervisor has, yet without requiring that
the user-written subsystem be incorporated into the supervisor.
This scheme was brought under intense review in the last year,
with two results:

1. A hardware architecture which implements the scheme was
proposed. One of the chief features of the proposed archi-
tecture is that subroutine calls from one protection ring to
another use exactly the same mechanisms as do subroutine calls
among procedures within a protection area. The proposal ap-
pears sufficiently promising that it was included in the speci-
fications for the next generation of hardware to be used for
Multics.

2. As an experiment in the feasibility of a multilayered
supervisor, several supervisor procedures which required pro-
tection, but not all supervisor privileges, were moved into a
ring of protection intermediate between the users and the main
supervisor. The success of this experiment established that
such layering is a practical way of reducing the quantity of
supervisor code which must be given all privileges.

Both of these results are viewed as steps toward first, a more
complete exploitation and understanding of rings of protection,
and later, a less constrained "domain of protection" organiza-
tion. Two doctoral theses are underway in this area.

F. System Programming Languages

Another technique of system engineering methodology being ex-
plored by the CSR Group is that of higher level programming
language for system implementation. The initial step in this
direction (which proved later to be a very big step) was the
choice of the PL/I language for the implementation of Multics.
By now, Multics offers an excellent case study in the viability
of this concept. Not only has the cost of using a higher level

62

COMPUTER SYSTEMS RESEARCH

language been proven acceptable, but increased maintainability
of software has permitted much more rapid evolution of the
system in response to research proposals as well as user needs.

During the year, progress was made on several specific aspects
of exploring higher level languages:

l. The transition from an early PL/I subset compiler to a newer
compiler which handles almost the entire language was completed.
This transition was carried out with performance improvement in
practically every module converted. The significance of the
transition is the demonstration that it is not necessary to
narrow one's sights to a "simple" language for system program-
ming. If the language is thoroughly understood, even a language
as complex as the full PL/I can be effectively used.

2. Notwithstanding the observation just made, the time re-
quired to implement a full PL/I compiler is still too great

for many situations in which the compiler implementation cannot
be started far enough in advance of system coding. For this
reason, there is considerable interest in defining a subset
language which is easily compilable, yet retains the features
most important for system implementation. Such a language was
defined, and a report has been prepared describing it.

3. An implication of using higher-level languages for system
programming is that programmers find it more convenient to
construct large subparts of an operating system out of many
small modules. This modularity generally improves the struc-
tural organization of the subsystem by making its various
functions distinct. However, when therz are many modules to

be assembled into a subsystem, the assembly itself requires a
language to specify many otherwise tedious details of the
binding which is to occur. (For example, when several proce-
dures are bound together, usually only a few of the total set
of entry points are *o remain as entry points from outside

the bound subsystem. Some method is needed to identify which
entry points remain.) The interface between the compiler and
the binder is only beginning to be understood, as another iter-
ation of the binding specification language design was com-
pleted. One of the results of this work has been the definition
of a virtual machine interface which can be respected by the
compiler and the binder, but which does not exercise all of the
f’ xibility implied by the real machine. It will take consid-
erably more experimentation and study to determine if a real
machine could be significantly simplified by removing the un-
used flexibility.

4. A census of Multics system modules was undertaken, to
learn exactly how much of the system was actually coded in
PL/I, and reasonns for use of other languages. Roughly, of

the 1200 system modules, about 1000 were written in PL/I,

and 200 in machine language. About half of the 200 machine
language modules were support routines for the early PL/I
compiler providing, for example, string concatenation sub-
routines. Many of the rest represented tiny subroutines to
execute this or that privileged instruction, etc. (No attempt

63

COMPUTER SYSTEMS RESEARCH

was made to provide PL/I built-in functions for every con-
ceivable hardware neec¢.) Significantly, only a half dozen
modules (the traffic controller, the central page fault path,
and interrupt handlers) which were originally written in PL/I
have been recoded in machine language for reasons of squeezing
the utmost in performance. Several programs, originally
machine language, have been recoded in PL/I to increase their
maintainability.

5. Research in techniques of compiling complex languages was
continued,* with a major result being a separation of the code
generation phase which is sufficient to allow the same code
generator to be used for both PL/I and FORTRAN. Also, new
code optimization strategies were explored.

G. Message Handling

The observation that Multics contained a large number of in-
dependent mechanisms, all of which were solving different
versions of the same problem, led to a proposal for general
supervisor primitives for queuing messages. It would appear
that although one can in principle construct message queues

in addressable memory, proper protection of previously posted
messages requires a protection capability not expressable in
terms of access to addressable memory. Thus the function of
providing protected mailboxes for messages seems to be a primi-
tive one, which must be provided by the supervisor or the hard-
ware. Although message queues by themselves have been proposed
and implemented in other systems, the trick is to embed them in

the architecture in a natural way. In the design developed here,

message queues fit into the general operating system structure
in a way similar to segments. That is, they are catalogued
with distinct names, and they appear in an address space as
objects which act as FIFO queues. In the long run, a message
queue mechamism may be an appropriate object for direct hard-
ware implementation. To explore this area, a software message
queue mechanism was designed, and added to the Multics system,
and the various independent mechanisms are being scrapped.

H. Graphics Support

The CSR Group does not carry out research on techniques of
graphical display. However, there are many very interesting
and sophisticated ideas in the field of graphics, invented
elsewhere, which have not received a true test of usefulness
because they were implemented within some special purpose
system. The CSR Group is attempting to integrate some of
these ideas into a Multics graphics system, in an attempt to
show the feasibility of making sophisticated graphical display
a property of the general purpose computer utility. To this
end, several development lines are in progress:

*This work was actually carried out by our Honeywell counter-
parts in the joint study.

64

e

e 58

COMPUTER SYSTEMS RESEARCH

1. An initial, reasonably simple, graphics display system has
been designed and implemented. Its purpose was principally to
test certain strategies of coupling graphics to the virtual
memory, and to gain some experience in graphics.

2. Attachment and use of the ARDS (Advanced Reactive Display
Station) storage tube display was accomplished.

3. Design was started on a more sophisticated graphics system
which would incorporate many of the test ideas developed at
Lincoln Laboratory, Bell Telephone Laboratories, and the Rand
Corporation. The team doing this design is also responsible
for interfacing to the graphics protocol of the ARPA network,
so that the completed graphics system should be very widely
usable.

I. Other Activities

Several other activities, not all of which are classed as re-
search, were carried out by the group:

1. An interpreter for the LISP language which permits an es-
sentially unlimited workspace within the virtual memory was
implemented. The effectiveness of demand paging for LISP-type
applications has long been a topic of debate, and one purpose
of this work is to help resolve the debate. A LISP compiler
is also being constructed.

2. The exportation of already developed ideas was pursued in
a variety of ways. In January 1971, a symposium to discuss
Multics was held at M.I.T., drawing about 90 attendees from
industry and government. The users' manuals of the system
were upgraded, and a number of technical papers were prepared
and presented. A book by Elliott Organick, describing the
Multics system, was accepted for publication by the M.I.T.
Press, and is scheduled for Spring 1972 publication. Finally,
the operating Multics system itself was exported to two other
sites, the Rome Air Development Center and Honeywell Informa-
tion Systems, Waltham, Mass., technical computing center.

3. In what amounts to a tour-de-force of focusing many ideas
into one mechanism, a complete PL/I source language program
debugging system was designed and implemented. This system,
which required cooperative modifications of the PL/I compiler,
allows methodical exercise of essentially every feature which
a programmer might use in the segmented virtual memory environ-
ment of Multics. Many previous systems have established the
value of powerful program debugging tools in an interactive
environment, but most have been designed primarily for the
sophisticated machine language programmer.

4. As mentioned in the introduction, the privilege of using

a live system as a research laboratory is paid for partly by
the necessity of being responsive to needs of a user community;
a variety of tasks in this area were completed. A facility
for submission of absentee jobs to the system was installed.
System down time following a crash was reduced from 25 minutes

65

COMPUTER SYSTEMS RESEARCH

to 5 minutes. Hardware and software were modified to permit
packing of page tables, to improve performance. A subsystem
which permits use of the entire Dartmouth 635 time-sharing
system within Multics was implemented. A better, faster, text
editor based on "QED" from the SDS 940 time-sharing system was
developed. Finally, at Honeywell, design was completed for an
interpreter for the "APL" language of Iverson.

5. A subgroup of the CSR Group devoted most of its energy to
attaching the ARPA network to Multics. This activity is re-
ported in more detail elsewhere.

J. Acceptance of Multics

Since the earliest proposals for the creation of the Multics
system, there has been a healthy skepticism expressed by many
observers that a system with so many ambitious objectives could
be engineered with acceptable economic performance. During the
year, impressive evidence that the skeptics are wrong was
amassed:

1. Use of the system by people outside the Multics development
group steadily climbed to the point that 2-CPU operation during
the peak hours became necessary. Even the 2-CPU system now
operates at capacity for several hours per day.

2. The M.I.T. Information Processing Center, which operates
the system, found that revenue from paying customers crossed
the break-even point, and began to repay the initial service
underwriting investments made by M.I.T. and Honeywell.

3. Revenue from paying customers exceeded that of each of
the other three major computer systems at M.I.T. (these are
a 360/65 running 0S/MVT, a 360/67 running CP/67 and a 7094
running CTSS).

4. 1In addition to the 700 registered users, some 700 students
used the Multics system in an "Educational Information Service"
which provides a restricted service administered by a student
committee.

5. A number of computer science subjects, including the in-
troductory programming subject, found Multics sufficiently
economical to use for at least part of their required home
problems.

6. Enough long-term interest in Multics was apparent that the
M.I.T. Information Processing Center requested from Honeywell

a quotation for price and delivery of a new hardware base for
the system. At the close of the reporting period, engineering
specifications were largely completed, tentative schedules for
delivery were worked out, and final contraci details were under
negotiation.

Thus, during the year Multics moved from a position of tenta-

tive acceptance to that of being the primary time-sharing
service of the M.I.T. community. Initial estimates of the

66

o —

FEORNE 7 e

CCMPUTER SYSTEMS RESEARCH

price and performance of the proposed follow-on system suggest
that questions of the economic viability of such a system need
no longer be of concern,

K. ARPA Network Status

1. Design Issues

The technical context of the ARPA Network was described in

last year's report. At that time, it was anticipated that
consensus would shortly be reached among the Network Working
Group participants (representing the 15 to 20 sites that will
be linked by the Network) on final designs for a "Host-to-Host"
(or Network Control) protocol and a "Logger" protocol (to allow
direct logins over the Network to the operating systems at the
various sites). However, the combined effects of the technical
diversity of the systems involved and the inherent difficulty
of multi-organizational design work (particularly wlien the
sites are widely scattered geographically) resulted in a less
~lear-cut situation than was hoped for. By the time of the
1971 SJCC meeting mentioned earlier, neither protocol had been
formally enunciated although the technical content of the forth-
coming documents was sufficiently agreed upon to enable imple-
mentation to proceed. (Indeed, the Logger protocol had been
split into two areas, one covering initial connections and the
cther covering Teletypewriter issues.) A considerable portion
of the Group's directly Network-related effort during the re-
porting period, then, was necessarily more concerned with parti-
cipation in the design process than had been supposed last
year.

a) NCP: -- The protocol for the Network Control Program
which each Network "host" system must implement was found to
need revision after publication of its formal statement in the
Summer of 1970. An important change introduced had to do with
the association of byte sizes with connections and byte counts
with messages. This step will be useful for allowing the "Ter-
minal IMP" to access the Network. (A Terminal IMP is a special
Interface Message Processor designed to be used alone -- not,
that is, in conjunction with a large-scale local host system.
Thus, the Network will be available to a much broader community
of users. This is a very important aspect of the Network, in
that general resource-sharing is the Network's major goal, and
communication beyond the confines of host sites is a particularly
desirable corollary.)

b) ICP: -- The first part of the projected Logger protocol,
as noted last year, had to do with getting the attention of the
remote ("server") system from the local ("user") system. This
aspect has been split off into a separate "Initial Connection"
protocol (ICP). Each server site agrees to listen to a desig-
nated socket and route. any activity on it to whichever appro-
priate process, local to it, that will manage Network logins.
When a request for connection arrives on the "Logger" socket,
by convention a message is sent to the user designating the
number of a socket over which the login negotiations are to
proceed. (Actually, the designated socket and the next -- con-
secutively numbered -- socket are used, as connections are de-

67

L

Y

M-qm aeo

COMPUTER SYSTEMS RESEARCH

fined to be over socket pairs.)

c) Telnet: -- The second separable aspect of the previously
conceived Logger protocol was recognized to be that of common
conventions for Teletypewriter use by logged-in users. A "Telnet"
protocol was evolved to satisfy the perceived need for a Network-
wide "virtual terminal". Again, nearly formal specifications
were settled on at the Spring Network Group meeting., By con-
vention, the Telnet processor (which may be either a separate
process or simply a subroutine, depending upon particular host
systems' organizations) will be invoked by the Logger at the
server's site and by whatever routine manages the ICP at the
user's site.

was also designed and initially implemented during the report-
ing period. Given the server system's name, it will execute

the ICP and, if successful, direct user input and output over
the Network, through a Telnet subroutine. It is also exteusible
for management of file transfer operations and other "indirect"
use of remote systems (as well as the "direct" use represented
by a login on 3 remote system) as such protocols are specified.

during Summer 1971, for its role as the prime Multics user
interface to the Network.

2. Implementation

Toward the end of the reporting period, an intensive effort
was being mounted to complete the implementation of the above-
mentioned designs in conformance with ARPA's 1 July target date.

a) INCP and Version I IMP DIM: —-- Prior to the emergence
of the NCP redesign, implementation had proceeded on the "Version
I" protocol. The software to manage the IMP (including buffer-
ing and process wakeups, as well as link allocation and physical
message formatting) was successfully installed in the Standard
Service System. An Interim Network Control Program (INCP) was
also implemented. The INCP, in the interests of allowing early
experiments to be performed, and in order to facilitate checkout
of the lower levels of software and hardware, did not implement
the Host-to-Host control message aspects of the full NCP. It
did, however, furnish the environment for the experiments de-
scribed below.

b) Version II IMP DIM: -- By late May 1971, a revised IMP
DIM which implements the Version II NCP protocol had been suc-
cessfully checked out on the Development Machine and was submitted
for Standard Service System installation. The installation took
Place in early June.

C) NCP: -- The full-scale, Version II Network Control
Program being readied for installation possesses certain tech-
nical interest that is worth noting. It is essentially a finite
state machine, managing sockets on the basis of state table
guided transitions. This approach is expected to facilitate

68

[7 e

COMPUTER SYSTEMS RESEARCH

dealing with future versions of the protocol. The NCP will also
take advantage of the expansion of the Multics protection ring
structure, residing in Ring 1 rather than Ring 0. Thus, alter-
ations to the NCP will not require the production of new Multics
System Tapes. (The IMP DIM, on the other hand, does reside in
Ring 0, since it must deal with wired-down buffers. Therefore,
the situation mentioned earlier in regard to the Development
Machine's availability does have an impact on testing in this
area.) By the end of the reporting periol, the NCP was func-
tioning successfully in the Ring 4 (user ring) environment,

and awaiting Ring 1 installation.

d) Logger: -- The Multics process that will respond to
the Initial Connection protocol is the standard Answering
Service process. Taking advantage of the fact that the Answer-
ing Service was designed to allow various types of terminals to
be connected through a common interface, the Logger implementa-
tion adds to the Answering Service code which employs an exist-
ing transfer vector-like arrangement to attach the Network I/O
streams to the standard Multics process "user i/o" streams.
With the I/O streams suitably attached, the processing of the
login may then proceed in the same fashion as a locally initiated
login. By the end of the reporting period, the Logger was func-
tioning in the Development Machine environment, but proved to
require revision before being submitted for Service System in-
stallation scheduled for late July 1971.

e) Telnet and the Initial Comnection Protocol: -- Although
the design considerations involving the Telnet and Initial Con-
nection protocols were complex, implementations are relatively
straightforward. The network command, which exercises both
protocols, was made ready in a "stripped down" form for inte-
gration with the other Multics Network modules as they went
into final testing. The test version of the network command
was used to perform the Multics-to-Multics login and the logins
to remote systems mentioned earlier. It will be brought up to
Standard Service System quality and installed by early August.

3. EXxperiments

As a combination confidence test and checkout exercise of the
then-current Network implementations on the respective systems,
members of the Project MAC Computer Systems Research and Dynamic
Modeling/Computer Graphics Groups performed an interesting ex-
periment in December 1970. Although it employed specifically
tailored processes on each system, rather than the general-
purpose mechanisms envisioned for the full-fledged Network, the
experiment was of interest both as a demonstration of the utility
of a large fraction of the underlying machinery of the full
Network and as the first in a planned series of progressively
more-sophisticated experiments which take advantage of the fact
that Project MAC has two Network hosts on site, with actively
cooperating staffs.

The experiment involved a logged-in user on the Dynamic Model-

ing/Computer Graphics Group's ITS system communicating via his
console with a logged-in user on Multics. ("Communicating" is

e W »r

COMPUTER SYSTEMS RESEARCH

used in the sense of sending and receiving extemporaneous
messages.) It was called a "polite conversation" owing to
certain constraints which were imposed in order to make the
experiment straightforward to implement: the conversation
begins on a "speak only when you're spoken to" basis, and
subsequently the participants may not interrupt when the

other is "speaking". To further simplify the impelementation,
the conversation was performed over an agreed-on link, with
conscious catering to the respective systems' end-of-line con-
ventions. For all its apparent triviality, the success of the
polite-conversation experiment demonstrated the successful
functioning of all the items then implemented. (With a change
of site number, of course, it could as well have been performed
across the country as merely across the building.)

The participants were so pleased with the success of the polite-
conversation experiment that they decided to improvise a follow-
on experiment on the spot. This entailed rerouting the ITS 1/0
streams to the "user_i/o" streams in the cooperating Multics
process. Although the resulting "pseudo-login" quickly en-
countered difficulties, stemming from the line-at-a-time orien-
tation of the polite conversation, several issues were exposed
which proved to be quite fruitful in subsequent contributions

to the Telnet protocol design. The polite conversation was re-
enacted when the INCP and IMP DIM had been installed on the
Service Machine, but it was decided not to pursue login issues
until a higher degree of Network-wide consensus was reached on
the protocols.

Another experiment employing current implementations was per-

formed during the reporting period, involving the transfer of
files from ITS to Multics.

Publications 1970-1971

Saltzer, J. H. and J. W. Gintell,*"The Instrumentation of Mul-
tics", Communications of the ACM, Vol. 13, No. 8, August 1970,
pp. 495-500. This paper dealt with the desirability of perfor-

mance metering and described various Multics performance metering

tools.

Clark, D., R. M. Graham, J. H. Saltzer and M. D. Schroeder, "The
Classroom Information and Computing Service", MAC TR-80, January
1971, AD-717-857. This report described an operating system de-
signed for use in the M.I.T. Course 6.233, "Information Systems"
the system constitutes a simplified subset of Multics, and its
implementation gave rise to many of the ideas proposed for the
Multics follow-on hardware.

Saltzer, J. H. and J. Ossanna,* "Technical and Human Engineering
Problems in Connecting Terminals to a Time-Sharing System", Pro-
ceedings of the AFIPS Fall Joint Computer Conference, Vol. 37,
1970, pp. 355-362.

*Non-MAC author.

7¢C

~e

COMPUTER SYSTEMS RESEARCH

Publications 1970-1971 (cont.)

Schroeder, M. D., "Performance of the GE-645 Associative Memory
while Multics is in Operation", Proceedings of the AcM SIGOPS
Workshop on System Performance Evaluation, April 1971, Harvard
University, Pp. 227-245,

Schell, R. R., "Dynamic Reconfiguration in Multics", Ph.D.
Thesis, Department of Electrical Engineering, June 1971, also
MAC TR-86, AD-725-859.

71

= e st : e s L L T — AP HTR -2 g B iombone aeaie, . it o an o o

DYNAMIC MODELING/COMPUTER GRAPHICS/COMPUTER NETWORKS

Prof. J. C. R.

Instructors, Research Associates,

Licklider

Research Assistants and Others

R. D. Bressler D. T. McDonald

R. H. Bryan P. L. Miller

R. J. Fleischer H. F. Okrent

F. E. Guertin G. F. Pfister

J. F. Haverty W. G. Shaw

R. Johnston J. R. Sloan
Undergraduate Students

W. F. Bauer E. I. Katz

A. J. Baum R. M. Katz

E. H. Black R. N. King

H. R. Brodie P. B. Kurnik

M. S. Broos P. J. Leach

K. M. Brown P. D. Lebling

A. Y. Chan C. K. Leung

R. G. Curley R. T. Lindsay

S. E. Cutler S. G. Morton

B. K. Daniels P. A. Pangaro
R. A. Freedman G. Pavel
D. E. Geer, Jr. R. L. Prakken
R. A. Guida M. A. Rondio
J. H. Harris L. M. Rubin
P. W. Hughett N. D. Ryan
W. F. Hui H. E. Tucker
E. Kant B. J. Zak

DSR Staff
B. J. Bailin J. P. Jarvis, III
A. K. Bhushan K. J. Martin
G. R. S. Bingham R. M. Metcalfe
A. L. Brown J. C. Michener
M. A. Cohen S. G. Peltan
D. G. Cressey C. L. Reeve
S. W. Galley J. R. Taggart
R. P. Goldberg A. Vezza

Support Staff

M. A. Bizot M.
M. F. Brescia J.
J. C. Cheney A.
M. T. Cheney R.
M. S. Draper F.
C. T. Falls

Guest

Prof. A. Fleisher

J. Grano
A. Haley
J. Hicks
F. Hill
L. Yost

PRECEDING PAGE BLANK

73

A i " o ol 1, A

VII. DYNAMIC MODELING, COMPUTER GRAPHICS, AND COMPUTER NETWORKS

A. Introduction

The Dynamic Modeling Group, tue Computer Graphics Group, and

the Computer Networks Group of Project MAC were formed last

year. The efforts of the first two of those groups and about
half of the third are strongly interrelated, focusing upon the
design and development of a computer system specialized for high-
ly interactive problem solving through modeling. The goals of
and plans for that work were described in a section of the Annual
Report for 1969-70. Progress toward the goals during the year
1970~-1971 will be reported upon now in this section. The other
part of the work in computer networks, also interrelated but
mainly involving members of the Computer System Research Group,
is reported upon in that group's section of this Annual Report.

The main objective of the joint research program of the two-and-
a-half groups is a hardware-software computer system that will
go significantly far beyond conventional time-sharing systems

in facilitating the formulation, understanding, and solution of
difficult problems through modeling. It is now widely recognized
that the best medium in which to represent and experiment with
the interdependencies within complex situations and processes

is that of interactive computer programs. In such programs,
interrelations that are amenable to mathematical representation
can be expressed mathematically, those that are not can be
simulated empirically, and all can be brought together to

yield a model that, when executed in a computer, "runs" and
exhibits dynamic behavior. The behavior, displayed to the
modeler and his associates, reveals consequences of the facts
and assumptions incorporated into the model and of their inter-
relation and organization. If the modeled cituation or process
is at all complex, most people can see "how it works" much more
clearly by modeling it in proygrams and running, observing and
experimenting with the model than by merely thinking about it

or working on it with pencil and paper.

Heretofore, there have been specialized programming languages
(SIMSCRIPT, GPSS, DYNAMO, SIMULA, etc.) to facilitate the prep-
aration of computer-program models, but not specialized computer
systems in which to observe and experiment with such models.
Ordinary computer systems will execute the programs a}l‘rlght,
and good time-sharing systems will to some extent faqll%tate
their preparation, but existing systems are lacking in important
dimensions. They do not provide a store room full of parts

out of which to assemble models. They do not provide some of the
tools required in experimenting with and modifying mo@els.

They do not provide displays through which one can quickly select
and observe various aspects of the behavior of models. And

they do not provide for progressive, accumulative augmentation

of the sets of tools, techniques, parts, and models as the sys-
tem is used in successive modeling projects. The aim of the
program described here is to create a modeling system thgt will
have strong capabilities in those dimensions as well as in the
other dimensions of general-purpose interactive computing.

PRECEBING PASE BLANK

75

L I

M

MODELING, GRAPHICS, NETWORKS

The Dynamic Modeling Group's part of the joint effort is mainly
to create and assemble an array of tools and techniques, exclus-
ive of graphics, that will facilitate modeling. The Computer
Graphics Group's part, of course, is mainly to develop and pro-
vide the tools and techniques of graphic control and graphic
display. The Computer Networks Group's part is to advance the
art of networking and, in particular, the ARPA Network, in such
a way as (a) to make remote resources (e.q., pProcessing programs,
data collections) available to the system, almost as though they
were locally resident parts of it, and (b) to make it possible
to use the system, with little degradation of service, from re-
mote consoles.

programs to serve the needs of modeling, graphics, and network-
ing. There has been, and there continues *o be, much of this
work. It often seems to be a diversion from efforts that would
contribute more directly and more visibly to the development

and understanding of modeling, graphics, and networks, but it

1s essential and innovative work involving new concepts in sys-
tem organization for highly interactive and predominately graph-
ical man-computer interaction.

Because three basic themes are involved in the joint program,

it has been difficult to find an expressive name for the Dynamic
Modeling/Computer Graphics/Computer Networks (PDP-10) system.
Despite experimentation with permutations of "dyna", "graph",
"cogni", "net", and other such combinable forms, we do not yet
have a name that satisfies us. In this report we shall refer

to the computer system -- hardware plus software plus extension
into the ARPA Network -- simply as "the computer system" or "the
system".

B. Dynamic Modeling

During the year, our ideas about the kit of tools and techniques
and the system organization required for dynamic modeling took
more definite shape, and good progress was made toward implement-
ing some of them. Among the implementations having or approach-
ing initial operational Capability at the end of the year were
those relating to mediation, intervention, the library of sub-
routines and data sets, the library of documentation, a program-
ming language based or LISP but extended to handle diverse data
types and to exploit graphics, and a word-oriented system for
representing text.

1. Mediation and Intervention

"Mediation", as the term is used here, is the function of 3 pro-
gram that interposes itself, in order to organize and facilitate
their intercommunications, between other programs or between
routines and the sets of data upon which they operate. The
mediator of the computer system is a collection of programs
called "CARE" ("CAll and REturn") prepared by Jeffery Harris,
Paul Hughe“t, and J. C. R. Licklider. CARE is intended to oper-
ate within each process in the system. CARE is continually being
it &

Nt

76

MODELING, GRAPHICS, NETWORKS

augmented. It is at present operating in some processes, and
we expect to incorporate it into most user-level processes dur-
ing the fall and winter.¥

Much of the motivation behind mediation stems from the modeler's
need to intervene in the operation of his model and experiment
with it. We shall discuss intervention shortly. For the moment,
merely note that the modeler cannot intervene and experiment
conveniently if the parts of his model are linked together tight-
ly, as by a compiler-loader or assembler-loader, when the model
is .introduced into the computer. The mediator CARE effects the
linking as the program is executed. The modeler can therefore
rearrange the parts without having to reload everything and be-
gin over.

In the system, several different kinds of subroutine calls are
recognized. They are graded in complexity and usefulness and
also, of course, in cost. At the time of each complex call,

and again at the time of each corresponding return of control,
CARE interposes itself between the caller and the callee. CARE
then handles several housekeeping chores, such as protecting the
caller's information against disruption by the caller, and gives
the user an opportunity to intervene. The times of calling and
returning are, of course auspicious for intervention because, at
those times, the transitory complexities of looping, dispatch-
ing, pushing, popping, and the like are momentarily suppressed
and information is disposed in the computer memory in a relative-
ly orderly way.

CARE comes into play, also, each time a processing routine
creates or activates or deactivates or purges a set of data.

The data-related functions of CARE are presently being further
developed. At present the arrangement is as follows: When a
processing routine wishes to create or activate a data set, it
issues an order to CARE, naming the data set and (especially

in the case of creation) providing other essential information.
CARE then creates and names an empty data set or activates the
named existing data set of the specified type and sets up a
pointer or pointers to it. Thereafter, the processing routine
operates upon the data set through the pointers -- at arm's
length, as it were -- and in a sense never knows or cares exact-
ly what data set it is processing. That is to say, the process-
ing routine is (was) written to process data sets of a specified
type, and what it does is specialized for the type but not for
the particular data set created or activated.

*The word "process" is used here in the same sense as is under-
stood among users of MULTICS: an organization, in a computer
memory, of routines and data with which is associated certain
housekeeping information, the most essential items of which are
a pointer to the current or pending instruction and the bound-
aries of an address space. The computer system lets each user
employ several or many concurrent and intercommunicating pro-
cesses.

77

AN - i e = S

MODELING, GRAPHICS, NETWORKS

A basic problem is inherent in the fact that the programmer

who prepared the processing routine did not know what data set
later modelers would wish to have it process. In conventional
computing, the user feeds the data into a card reader, and the
processing routine processes whatever data come in. In the
context of dynamic modeling, however, one assumes that there
are several sets of data in the computer store, and the modeler
may wish to substitute one of them for another during a single
run of his model. 1Indeed, the modeler may wish to go back to

a critical point in the run and see what difference would be
made by a substitution of data. CARE handles this problem by
letting the modeler interrupt the execution of the model at any
call or return point and revise certain of CARE's bookkeeping
tables. One table contains a list of translation tables. Each
translation table associates "programmers' names" of data setsg
with "modelers' names" of data sets. By revising the tables,
the modeler can direct processing routines upon whatever data
sets he likes.

In order to intervene effectively, of course, the modeler must
know where his model is in the course of its run. He can tell
something about that from displays of its behavior, but (in

one of its modes) CARE gives him the detailed picture by display-
ing, at each mediated call point and return point, the name of
the subroutine that is being called or returning. 1In a submode
of this "subroutine naming" mode, CARE pauses at each call and

at each return and waits for the modeler to cause it to proceed
by pressing the space bar on his keyboard. The modeler can
proceed step-by-step to a critical point and then intervene.

To get CARE's attention, the modeler simply presses a predesig-
nated key. CARE then responds to commands given in a simple
command language. At present, this language is being augmented
to cover the essential intervention interactions, and it is
being "harmonized", insofar as possible, with the command lang-
uages of other programs in the system. In the interim, the
modeler carries out most of his intervention functions through
DDT (Dynamic Debugging Tool), a program we borrowed from the
Artificial Intelligence Laboratory and have adapted to our sys-
tem. DDT often operates as a process superior to the model
process(es). CARE operates within each model process. CARE
can transfer the modeler's interaction channel(s) to DDT, and
DDT can transfer it (them) back ~- with the state of the model
preserved.

A most important function of intervention is the selection of
aspects of the model's behavior for display and the assignment
of aspects to display areas. Work on that function was in mid-
course at the end of the year. The display part will be de~
scribed in the section on Computer Graphics.

2. The Library of Subroutines and Data Sets

A basic part of the system is a memory-resident address table
that will hold address and related information about every sub-
routine (except for subroutines of the simplest class) and every
nonephemeral data set in the library. Each such subroutine or

78

e

et s
o

PR ,_:_

MODELING, GRAPHICS, NETWORKS

data set, if not already in memory, will be automatically brought
into memory (by DYNAL, a dynamic loader designed and implemented by
Christopher Reeve) when needed. We still hope (cf. last year's
report) to amass a library collection of at least 1,000 generally
useful subroutines and 100 gererally useful data sets. Our
progress toward the subroutine part of that goal has seemed

fairly rapid when judged without reference to interrelation and
documentation. Members of the group are prolific programmers

and excellent debuggers. When judged in terms of the subroutines
fitting into the system, working with one another, and being
comprehensible to users, however, the situation at the end of the
yYear was disappointing. A major campaign to get the library
organized and documented is in the offing. The library of source
programs will be maintained in a compact form by ARCHIV, a file-
compressing program designed and implemented by Allen Brown, Robert
Bressler, John Haverty and Christopher Reeve. The corresponding
object programs will be maintained by ATTACH, designed and imple-
nented by Bruce Daniels. Both ARCHIV and ATTACH are now Operat-
ing.

3. The Library of Documents

We have had operational on MULTICS, for about a Year, a computer-
based system, developed by Richard Bryan, for storing and retriev-
ing information about the software of the modeling system. At
present, that system is being augmented and interfaced to the
PDP-10 via the ARPANET. The corpus of documentation includes,

as of the end of the reporting year, one-page abstracts and
multipage documents describing subroutines, data sets, macros,

and the like.

The main accomplishment of the year, insofar as documentation

is concerned, was the formulation and description of the set of
standards for program Preparation and documentation called
"Convention II". Convention IT is described in a series of 20
documents by David Burmaster, Martha Draper, Paul Hughett,
Karolyn Martin, J. C. R. Licklider, Christopher Reeve and Albert
Vezza. Convention II deals with the various policy and tech-
nical aspects of program preparation and documentation. The
topics include a standard format for documents, three standard
glossaries (notation, abbreviations and expansions, and system-
wide terms), the format of subroutine headers, data-set headers,
and address tables; data types; the naming of files; two kinds
of abstracts; organization and format of listings; the mediator
and its functions; a set of system-wide macros and how to use them;
and other such topics. At the end of the year, Convention IT
was ready for promulgation. A significant part of the ensuing
effort will be to bring all of our software that "has a future"
into accord with Convention II and to make it operate within

the context of the mediator CARE.

One of the provisions of Convention IT is that, associated with
each software entity, such as a subroutine, a data set, or a
macro, there must be an explanation of the mnemonics of the
nhame, a meaningful expansion of the hame, an abstract contain-
ing prescribed classes of information, and a set of descriptors.
The descriptors, mnemonics, expansions, and -- in the case of
entities to which it is applicable -- the calling and returning

79

MODELING, GRAPHICS, NETWORKS

sequence format will be available on-line through an information-
retrieval system associated with CARE. The abstracts, listings,
and other lengthier documents about the software will be avail-
able in a small ink-and-paper library at each console. As indi-
cated earlier, we set up a first version of part of such a system
on MULTICS last year. Now we are beginning to connect it to

the PDP-10 system. Effective information retrieval is an essen-
tial part of the concept of the system we are developing.

4. An Extension of the LISP Language

Our design objective of highly interactive experimentation with
models is inconsistent with the classical organizatiion of soft-
ware based on compiling and loading monolithic masses of soft-
ware in which all the parts are rigidly linked together. The
limitations of the classical organization have been broken in two
main directions, on the one hand in the paradigm of MULTICS,

in which linking is deferred until reference is actually made,
during the execution of a program, to subordinate parts that
should be linked to the parts already running, and on the other
hand in the paradigm of LISP, in which editing, debugging, and
other such activities are carried on within the coherent frame-
work of the language implementation. For our purposes, both
MULTICS and LISP have many desirable features, but neither in
and of itself provides the desired facility for the kind of
modeling to which we aspire. To mention the main shortcomings,
MULTICS is not set up for use with a graphics processor operat-
ing out of main memory, and LISP, while highly coherent internal-
ly, is difficult to bring into relation with external software
and is only weakly developed in the directions of data typology
and graphical interaction. We have therefore been exploring the
problem of incorporating into our system the best of the two
worlds. Members of our groups have been working with the members
of the Artificial Intelligence Laboratory on the design and imple-~
mentation of an extension of the LICP language that will provide
a number of advantages over previous versionz of LISP. These
will include data type checking, lexical scoping, recognition

of a large number of elementary and compound data types, and the
inclusion of primitives upon which to erect a graphical inter-
action subsystem.

The extension of LISP is known locally as "MUDDLE". It was
designed and has been implemented by Carl Hewitt and Gerald
Sussman of the Artificial Intelligence Laboratory and Christopher
Reeve, David Cressey, Bruce Daniels, and Gregory Pfister of
Dynamic Modeling/Computer Graphics/Computer Networks. MUDDLE

is operational now as an interpreter. As implemented, it is
rather separate and distinct from the other software of the
system we are developing. Wishing to bring MUDDLE into our
system in such a way as to integrate its advantages coherently,
we are studying the possibility of merging MUDDLE's data types
with the system's data types and MUDDLE's implementation routines
with the system's subroutine library.

We hope to use MUDDLE as an interpreter for the upper levels of

the subroutine-calling hierarchy. The idea is to employ interpre-
tation in the upper levels, where most of the changes are made

80

MODELING, GRAPHICS, NETWORKS

in the course of exploring a model, and to employ assembled or
compiled subroutines at the lower levels, where the time effi-
ciency of execution (as opposed to interpretation) is most im-
portant. It now seems likely that such an organization of soft-
ware may be feasible. On the other hand, it would not be good

to cause our version of MUDDLZ to diverge greatly from that of
the Artificial Intelligence Laboratory because MUDDLE is envison-
ed as the base for the implementation of PLANNER, and PLANNER
seems likely to be very useful in modeling as well as in arti-
ficial intelligence research.

5. Lexicontext

Fundamental to the design of an integrated or coherent informa-
tion system is the selection of a basic informational building
block. In most computer systems, as in ours at present, the
basic atom of information is either a character (byte) or a
computer word. For substantive modeling applications, however,
the character is too small a unit, and the computer word does
not bear a direct enough relation to the words of natural lang-
uages in terms of which people think. Looking toward a future
in which a good computer system will have, and be able to use
knowledgeably, a vocabulary of tens or hundreds of thousands of
words of natural language, we have developed a system, called
"Lexicontext"*, that gives to the word -- the word of natural
language and/or the word of technical jargon -- the role of basic
building block. In the Lexicontext system, a word is processed,
not as a string of characters, but as a pointer to an argument
in a lexicon of argument-function pairs. The lexical function
is divided into subfunctions. The absolutely essential sub-
function is the spelling of the word. Other subfunctions can

be added with apparatus provided by Lexicontext. They will
include additional morphological information, syntactic informa-
tion, synonyms, definitions, and (hopefully eventually) programs
that give the entries operational meaning in the paradigm of
Winograd's PROGRAMMAR. Most of these subfunctions can be imple-
mented in terms of the basic Lexicontext element, the pointer

to an entry in the lexicon.

Lexicontext has been implemented by John Haverty. 1In his imple-
mentation, text files are composed of elements of uniform size.
Each item of text (except for literals) occupies the same number
of bits of storage (18 bits in half-word mode, 36 bits in full-
word mode) and -- as explained -- each element represents a lexi-
cal word by pointing to its location in the lexicon. The uni-
formity of representation makes it convenient for the computer to
process text -- e.g., to search for instances of a given word
(type) or to parse sentences. The primary lexicon, itself,
consists of alphanumeric strings (spellings). Associated with
each primary entry there may be pointers into one or more data
bases. These data bases are to contain the subfunctions, other
than the spelling mentioned earlier.

*It has a lexicon and deals with text, and we hope that it will
provide a lexical context for work in modeling.

81

MODELING, GRAPHICS, NETWORKS

Actually, Lexicontext provides for 32 separate lexicons, either
"new"” or "old". (New lexicons can be updated on-line or off-
line; old, only off-line.) The current implementation has a
provision for automatic construction of a new lexicon frorm a
conventional text file; for adding words on-line to a new lexi~
con, as new words, not already in any of its lexicons, arise;
for merging a new lexicon into existing old lexicons, and for
converting conventional text files into Lexicontext text files
and vice versa. Each lexicon allows for 215 elements, i.e.,

a vocabulary of slightly over 32,000 lexical words.

Like Hypertextl and NLSZ, Lexicontext structures text in a hier-
archy such as volume/chapter/paragraph/sentence/word. There

is a mechanism for representing extra-hierarchical items such

as footnotes and references.

Lexicontext text files are moxre compact than character-code
files. The compression ratio is not great, but it is good to
gain something in compactness instead of having to trade off
compactness for the efficiency of processing uniform tokens.

C. Computer Graphics

The Computer Graphics group has made good progress, during the
past year, in mastering the Evans and Sutherland display sub-
system and in solving basic problems in the application of
graphics to facilitate human understanding of, and modeling of,
complex processes and organizations. The Evans and Sutherland
display subsystem (E&S) is a very powerful one, not easy to
exploit fully (especially in a time-sharing environment), and
much of the effort in graphics has been devoted to bring the
capabilities inherent in the E&S into the hands of users who
are not display specialists.

Some of the problems (as well as the advantages) of the E&S
stem from the fact that it has its own processor, which operates
in parallel with the PDP-10 processor and the disk channel and
shares memory with them. Since memory is dynamically allocated
by the operating system to the several user processes that are
running concurrently in the PDP-10, it is necessary for the
operating system to mediate the use of the display processor

or to make corresponding adjustments of memory allocation for
it. This has not been a difficult problem so far because we
have been using only one E&S display. We have followed the
mediation approach with success. However, we are now moving
toward time-sharing the E&S display subsystem among four con-
soles, and that move is not trivial. Michael Brescia is de-
signing the display time-sharing system.

1. "Picture Framing"

One of the capabilities of the E&S display subsystem is to focus
its efforts mainly upon any specified small area or areas of a
very large surface on which there is a picture. That capabili-
ty is important hecause, without it, the processor would spend
most of its time processing parts of the picture that lay out-
side the areas of interest. Accordingly, during the past year,

82

B

Y
2

'3
i o ot 503

MODELING, GRAPHICS, NETWORKS

James Michener and other members of the Computer Graphics and
Computer Networks Groups devised a technique, a kind of "picture-
framing service", in which the E&S processor eliminates the
extraneous parts of the picture and constructs, in memory, a
sub-picture limited to a specified area or areas, and then the
PDP-10 processor reformats the delimited picture for transmis-
sion to an Advanced Remote Display Station (ARDS) or an Imlac
console. That technique is used as a service inside our com-
puter system, and is being made available through the ARPANET

to users of ARDS and Imlac consoles at remote locations.

2. Polyvision

Within the general context of modeling, one of the main graphics
problems is display management. A modeler may have a dozen or
more things to display but only a small display area -- a ten
inch square or at best a very few such squares -- in which to
display them. Polyvision is a display-management subsystem,
designed and programmed by James Michener, Edward Black, and
others, that permits the modeler to assign the various aspects
of his model, mainly dynamic aspects, to named display areas
and then to move the areas about, magnifying some and causing
others to contract, either under program control or under the
control of a stylus in the modeler's hand. Polyvision will be
brought into interaction with the mediator CARE in due

course, but it will not be necessary for the modeler to halt
the execution of his model to adjust the configuration of his
display. The modeler can control the display subsystem while
the model is running. This is in line with our basic concept
of graphical display as an aid to observation. It should not
be necessary to build a schedule of observation irto the basic
framework of the model itself. The schedule of cbservation
must be flexible and under the modeler's control throughout
the course of observation.

Eventually, it may be possible to make sigunificant changes to
the model while it is running. However, the problem_of modify-
ing the model "on the fly" is more difficult than the problem
of modifying the observational procedure "on the fly™. The
latter can be thought through and implemented once and then
used with various models; the former seems, in the present,
state of the art, to require model-specific operation.

3. Graphical Debugging

Computer Graphics offers promise of breaking through one of the
most resistant barriers to human comprehension of complex com-
puter programs. The barrier is, figuratively speaking, the
opaque integument of the computer, which deprives the observer
of any global view of what is going on inside. Even with the
best conventional debugging aids, such as DDT, the observer

can see into the inside workings of the machine only through

a very small aperture. At the operator's console, there are
perhaps a few pilot lights, but they do not encode information
in a very meaningful way. At a typewriter console, one can
open and look inside one memory register at a time. With a
graphic display, on the other hand, one can see a map of the
computer memory (either in the literal space of memory registers

83

R RS

MODELING, GRAPHICS, NETWORKS

or in the symbolic space of source-language statements) and
watch the behavior of the program on the surface of the map.

During the past year, we made some progress toward realization
of a meaningful, global display of program behavior. Stuart
Galley completed a graphical display of program behavior called
"ESP", and Paul Hughett completed important portions of a graphi-
cal debugging tool, called "GDT". In both programs, selected
registers and segments of program are represented schematically
upon the display surface, and the flow of information is repre-
sented by moving arrows, moving symbols, and other devices.
These programs represent only small steps toward what should
eventually be a very powerful aid to the understanding of pro-
gram dynamics, but they will, themselves, find useful applica-
tion in the computer system.

4, Elucidations

The difficulty of harnessing a powerful display subsystem in
the interest of man-computer communication about complex pro<«
cesses is balanced by the simplicity of getting such a sub-
system to display mathematical functions. It is easy to pro-
duce all kinds of "graph paper" on the display screen, and it
is easy to create all kinds of curves and surfaces. It is re-
markable how much one can learn from a few minutes of play at
the graphics console -- a few minutes spent in exploring mathe-
matical functions through graphical display. Obviously, the
general problem of relating graphical and symbolic representa-
tions to one another is very important in the understanding of
mathematics. Obviously, a digital computer with a good graphics
subsystem can greatly facilitate the development of such under-
standing.

During the year, several members of the laboratory developed
graphics programs that provide insight into simple mathemati-
cal phenomena. These included two-dimensional and three-

dimensional function plotters (Edward Black, Scott Cutler), a
Fourier transformer (Robert Freedman) and a simulation of the
interplay of gravitational forces in a galaxy (Paul Hughett).

5. Visual Statistical Analysis

Flowing from the general line of observation just mentioned was

a major effort by Robert Fleischer called "Visual Statistics".
This program brings together in a subsystem a collection of
processing and display operations that facilitate visual analysis
of the relations that exist within a collection of data. The
operations permit the selection of data on the basis of various
criteria, the plotting of the data in various modes and formats,
projection from a multidimensional space to a two-dimensional
surface, curve fitting, and so on. We hope to incorporate the
Visual Statistics subsystem into a larger system of data-analysis
routines so that we can bring both intuitive and algorithmic
analysis procedures into productive interaction.

84

e

B e N H—

B e Coana TN

MODELING, GRAPHICS, NETWORKS

6. Imlac Displays

Although not as sophisticated as the E&S display subsystem, the
Imlac consoles, which include minicomputers as well as cathode-
ray-tube displays, are potentially very capable. Our use of
them thus far has been largely limited to alphanumeric process-
ing and display, but we are beginning to exploit their potential
for display of graphs, charts, and diagrams.

David Lebling prepared a PDP-10 assembler for Imlac programs.
Stephen Peltan prepared a loader that loads the Imlac from the
PDP-10. Lawrence Rubin and Stephen Peltan developed split-screen
techniques for Imlac consoles and did the programming required
to make the Imlac's control keys convenient to use in our appli-
cations. And John Haverty designed and implemented a program,
IMEDIT, that makes it convenient to use the Imlac editor in
conjunction with the PDP-10 file-handling system. IMEDIT moves
from the PDP-10 to the Imlac consoles much memory-space-consum-
ing but trivial work. All in all, the Imlac consoles are now
quite convenient and effective for applications that are limited
to alphanumeric information, and they are well on their way to
supporting applications that involve line drawings, also.

D. Computer Networks

The part of the Computer Networks Group to which this report
pertains is the part concerned immediately with the PDP-10 compu-
ter system. Last year, the word "immediately" would not have had
much significance, for the network program was just getting

under way, and energies were focused mainly on getting MULTICS
and the PDP-10 into communication with each other and other
computers in the ARPANET. At the end of this reporting year,
however, one can sit at a PDP-10 and carry out his computing
operations mainly in any one of several other ARPA network
machines. Most of the work to be reported upon here was aimed

at creating the basis in computer communications, through com-
puter programming in the PDP-10, for interaction between the
PDP-10 and other network computers.

l. Network Control Program

Robert Bressler and other members of the Computer Network Group
developed several progressively improved versions of a Network
Control Program (NCP) for the PDP-10 computer. This program
establishes and maintains connections between processes in the
PDP-10 and other ARPANET computers. The next step was to de-
Sign and implement programs that, using the NCP, would make the
PDP-10 a part of an alphanumeric telecommunications network
(TELNET) within the ARPANET. The TELNET programs are of two
kinds, "servers" and "users". The first TELNET server program
completed was a Logger, the function of which is to permit
users of other network computers and users connected to the
network via a TIP to log into the PDP-10 in the same way as
local users. The design of the logger involved Robert Bressler,
Robert Metcalfe, and Arvola Chan, and most of the programming
was done by Chan.

85

MODELING, GRAPHICS, NETWORKS

The next program in the logical hierarchy of network software
was a TELNET user program, designed and prepared by Robert
Metcalfe, the function of which is to permit & user logged
into the PDP-10 to log into another network computer. It
handles terminal communication to and from the EDP-10, includ-
ing communication with a remote TELNET server program, through
the Network Control Program. Together, the TELNET server

and user programs and the NCP provide the basic means of
communication with remote computers and/or terminals.

Even before the basic means of communication were perfected,
attention turned toward the design cf yet higher levels of net-
work software, Abhay Bhushan became interested in the protccol
for the transfer of data and for the transfer of files of data.
His interest led him to the chairmanship of the Committee of
Data and File Transfer Protocol for the ARPANET. At the end of
the reporting year, he was working on software implementations
of the tentative protocols that had been thus far formulated.
Members of the Computer Networks and Computer Graphics Groups
turned their attention, jointly, to problems of graphical com-
munication through the network.

Rather early in the year, interesting explorations of graphical
communication through the network were made in cooperation with
members of the Aiken Computation Laboratory at Harvard. Graphics
programs were originated in the Harvard PDP-10 transmitted
through the network to the Project MAC PDP-10, processed there
by the E&S subsystem, transmitted back to a PDP-10 computer at
Harvard, and displayed there on a Digital Equipment Model 340
display. The same pictures were displayed on the E&S display
at M.I.T., and the characteristics of the network-mediated
processing and display were compared with those of wholly local
processing and display of the same program material. It was
found that there was almost no perceptible difference between
network and local display of single frames. In dynamic display
of continuvously moving pictures involving 10 to 100 lines, how-
ever, there was a big difference. The local display presented
perceptibly continuous motion, whereas the network display
jerked from one configuration to another 2 or 3 times per second.
That was a rather preliminary test, made at an early stage of
network development. Improved means will provide improved per-
formance. We shall make further tests to determine the ability
of the network's programs, Interface Message processors, and
50-kilobaud lines to handle kinematic graphics.

2. The Network at the End of the Year

At the end of the reporting year, the PDP-10 wing of the Computer
Network group at Froject MAC was in the process of consolidat-
ing its basic software subsystems and pressing upward into he
higher echelons of the hierarchy of network software. The
process of consolidation will be time-consuming because, through-
out the year, the network effort was proceeding as rapidly as
possible toward intermediate objectives, and the hurry to achieve
them pushed aside such considerations as thorough testing and
documentation. There is still some testing to be done, and

there is a large amount of documentation.

86

s - - g e ——— o

MODELING, GRAPHICS, NETWORKS

At the same time, there is a keen sense of anticipation within
the group, a strong motivation to master the transfer of data
sets and files and to proceed as rapidly as possible to the
execution in remote computers of subprograms called by programs
in our PDP-10. We want to exploit network subprogram linking
in order to bring functionally within the scope of our library
several very useful collections of programs that exist in re-
mote computers -- collections that we need and that would be
prohibitively expensive to reprogram for the PDP-10.

References

l. Carmody, Steven, Walter Gross, Theodore H. Nelson, David
Rice and Andries van Dam, A Hypertext Editing System for the
/360, Pertinent Concepts in Computer Graphics, M. Faiman and
J. Nievergelt (Eds.), pp. 291-329, University of Illinois
Press, Urbana, 1949.

2, Engelbart, Douglas C., and William K. English, A Research
Center for Augmenting Human Intellect, Proceedings 1968 Fall
Joint Computer Conference, Vol. 33, part one, pp. 395-410, The
Thompson Book Company, Washington, D.C., 1968.

Publications 1970-1971

Baum, Allen J., Minicomputers: Status and Architecture, Tech
Engineering News, 52, No. 8, pp. 25-30, January 1971.

Black, Edward H., A Data Structure Dumper, S.B. Thesis, Dept.
of Electrical Engineering, June 1971.

Bressler, Robert D., Interprocess Communication on the ARPA
Computer Network, S.B. and S.M. Thesis, Dept. of Civil Engineer-
ing, June 1971.

Cutler, Scott E., Computer Graphics, Tech Engineering News, 52,
No. 8, pp. 17-21, January 1971.

Goldberg, Robert P., Hardware Requirements for Virtual Machine
Systems, Proceedings Fourth Hawaii International Conference on
System Sciences, January 1971.

Licklider, J. C. R., Libraries and Information, reprinted from
Libraries of the Future, M.I.T. Press, 1965, in The Computer
Impact, 260-270, Irene Traviss (Ed.), Prentice Hall, Inc., New
York 1970.

Licklider, J. C. R., Social Prospects for Information Utilities,
The Information Utility and Social Choice, Sackman and Nie (Eds.)
AFIPS Press, Montvale, N.J., 1970.

87 ;
|

MODELING, GRAPHICS, NETWORKS

Publications (cont'd)

Licklider, J. C. R., The Role of Computer Graphics, The Com-

puter Utility: Implications for Higher Education, Michael A.
Duggan, Edward F. McCartan, and Manley R. Irwin (Eds.), Heath
Lexington Books, Lexington, Mass., pp. 11-16, 1970

Lindsay, Robert Thomsom, Jr., A Design for a Graphical
Compiler, M. I. T., S. B. Thesis, Dept. of Electrical Engineer-
ing, June 1971.

Vezza, A., anl Knudson, Donald R., Remote Computer Display
Terminals, Computer Handling of Graphical Information, SPSE,
R. D. Murray (Ed.), July 1970.

88

SO e

EDUCATION

Prof. R. R. Fenichel
Prof. J. Weizenbaum

Instructors, Research Associates, Research Assistants and Others

J. Kaplan
S. A. Ward

Undergraduate Students

R. H. Brown
D. M. Christie
R. P. Silberstein

Support Staff

Chen
Garrity
A. Hoer
Young

RI2PZ

Guests

J. Berger, Prof.
P. Eisenbert

89

s %mmq&ﬂﬁi_Q

e T e - ¥ Sy — T T L s e L . e i e T

VIII. EDUCATION

The Project MAC Progress Report V (July 1967-July 1968, p. 98
et seq.) describes the language, at the heart of the TEACH
system, which then was called PL/2 but which since has been
designated UNCL (UNcommonly Clean Language):

"It is an interactive language that somewhat resembles
JOSS, but differs from JOSS and other JOSS-like languages
in several major respects: for example, the presence of
block structure, a context editor, and a function-tracing
feature".

During the year ending June 1971, the UNCL interpreter was
completed. A result of this effort was design of a novel
means of implementing variables of label mode.

Experiments were undertaken with a novel hardwired device which
was designed to search for certain useful configurations of
flip-flop circuits.

Publications 1970-1971

Fenichel, Robert R., "Design of Languages for Elementary
Programming Instruction: Lessons of the Teach Project",
Proceedings of IFIP Conference on Computer Education (August
1970), 111, pp. 175-177.

Fenichel, Robert R., List-Tracing in Systems with Multiple
Cell-Types", Proceedings of the Second Symposium on Symbolic
and Algebraic Manipulation (March 1971), pp. 242-247.

Fenichel, Robert R., "Comment on Cheney's List-Compaction
Algorithm", Communications of the ACM, XIV, 6 (June 1971).

Fenichel, Robert R, "On Implementation of Label Variables",
Communications of the ACM, XIV, 5 {(May 1971).

PRECEDIRG PASL CLAHK

B

IMPLICIT COMPUTATION

Prof. M. L. Dertouzos

Instructors, Research Associates, Research Assistants and Others

F. G. Abramson M. P. Lum

M. W. Dickens C. W. Lynn

M. E. Kaliski J. R. Stinger

P. A, King A. S. Weinberg
Support Staff

L. E. Yaple

PRECEDING PAGE BLANK

93

IX. IMPLICIT COMPUTATION

A. Introduction

This research concerns novel machines and algorithms for the
solution of large-scale problems, e.g., linear and non-linear
systems of equations. Two approaches are taken. 1In the first,
the problem is separated into two parts, one of which is com-
puted exactly (i.e., digitally with a large number of bits),
and an interrelated second part which is computed inexactly
(either digitally with fewer bits, or by analog means). The
exact part checks whether a proposed solution is indeed a
solution, while the inexact part revises the proposed solution
on the basis of results of the exact computation. We have
developed decompositions which compute an exact solution to
linear systems of eéquations via iteration of the above exact-
inexact computing cycles.

In the second approach, the system of equations to be solved

is simulated by a spatial interconnection of computing elements.
Each such element processes two types of variables called
"pressures" and "flows". The flows correspond to the usual
variables (including the unknowns) which are to be processed by
the computing element, while the pressures signify the extent
by which the flows do not satisfy the intended computation of
that element. When several such computing elements are inter-
connected into a composite system, the pressures are used to
Steer the flows toward soluti: values, Moreover, the com-
posite system is, by construction, of the same form as the
constituent elements, i.e., it brocesses pressures and flows,
and may therefore be used to build up larger systems. The
pressures and flows are constrained by each computing element
and composite system to obey a pseu:do-energy constraint analo-
gous to that obeyed by variables and co-variables of "energy
lossy" physical systems. This, in turn, guarantees stability

of the over-all computation.

In addition to these specific approaches, we have investigated
some related fundamental issues. These concern the space-time
and time-accuracy trade-offs in computation, as well as the
logical capabilities of continuous (or analog) computing sys-
tems. Two basic results in this area have given rise to two
papers (one by Abramson on Turing Machines for the real numbers,
and one by Dertouzos on time bounds of space computations) .

Both papers have been accepted for presentation at the 1971
Switching and Automata Theory Conference of the IEEE.

The machines and approaches that we are investigating have ap-’
plications as special-purpose computers for the rapid solution
of large problems (e.g., weather forecasting, space navigation,
and process control), as companions to general-purpose machines,

and as algorithms that can run on conventional digital computers .

These applications are briefly discussed, along with the funda-
mental-research activities, in the following sections.

PRECEDING PAGE BLANK

95

IMPLICIT COMPUTATION

B. Exact-Inexact Machines and Approaches

In Progress Report VII, we described exact-inexact machines with
analog inexact substructures. We have investigated in consider-
able detail one such machine for the solution of systems of
linear equations. We have found that the proposed approach is
feasible and can handle fairly large problems. One limitation
that we encountered is that, in the case of relatively ill-
conditioned problems, the analog errors grow with increasing
system size to the maximum acceptable error (for convergence

of the exact-inexact cycle) of £ 50%. We are currently at-
tempting to find exactly where that limit is. It seems to

occur at system sizes of several hundred equations, for typi-
cal problems.

We have also initiated work on what seem to be promising exact-
inexact approaches with a digitally computed inexact part. One
such approach is presented in the remainder of this section, in
terms of an example.

Consider the structure of Fig. 1. It is interded for the solu-
tion of certain systems of linear equations. Specifically, the
system to be solved is Ax=y, where vector y and matrix A are
given, and vector X is the unknown. For an initial explanation,
let the scalar k., shown in Fig. 1 be unity. The computing struc-
ture consists ofltwo parts =-- a relatively exact substructure
(e.g., 32 bits) which checks if a suggested vector x; satis-
fies the above equation (to that accuracy); this substructure
computes digitally the error Y -Ax;. The other part of the
system is a relatively inexact substructure (e.g., 4 bits)

which computes digitally the correction variable, Ax; as
follows: Ax; = Ax~! (y = A xj)*, where the star subscript in-
dicates inexact approximation (truncation) of the corresponding
quantity to this reduced accuracy. Execution of the computa-
tion is iterative, each iteration consisting of first the com-
putation of the error, then of the correction Ax; and then of
the next iterate Xxj+) as Xj4)] = xi + Axj. If the starred quan-
tities were exact, then the exact solution would be obtained in
one iteration, since xj + Axj; can be easily verified as the solu-
tion of the system Ax= z;_%or any choice of x;. Because these
quantities are not exact, each iteration brings xj,; closer than
¥j to the solution, with contraction depending on t%e error be-
tween their exact and inexact values.

Observe that the idea that is illustrated by this example is
the decomposition of the problem into exact and inexact sub-
structures, not the issue of stability of the above feedback
approach. The stability of iterative algorithms for the
solution of linear systems has been treated extensively in
the literature. It is expected that the exact-inexact ap-
proach is applicable to the majority of these algorithms;
indeed, a part of the proposed work is concerned with such
applications.

We return now to the role of the constant ki and cf the multi-
plications of Fig. 1. As X4 approaches the solution, with

96

R

P YRS ikl

IMPLICIT COMPUTATION

"HOVOYddVY 1OVX3NI - 1OVX3 40 3 1dWYX3 17914

NOILVWHOLNI 1OVYX3NI SNVIN «-—
NOILVAHO4NI LOVX3 SNVIW <=
NOILVIITHILINW 10VX3 V1191 SNV3IW L

NOILVAWWNS 10vX3 vLIoid SNvaw <

(S118 &) M
34N12NyY1sans 1OVX3NI Iv1i91Q

<

— — — —— —

(sl1li8 2¢)
38N1ONYLSANS 10VX3 v1ioIg

A

L

g NPT Y

97

IMPLICIT COMPUTATION

increasing i, the error y - Ax. is computed exactly. It is then

multiplied by k. and convertedlto an inexact value by trunca-
tion of the uﬂdéslrable least-51gn1f1cant bits. This multi-
plication is performed in order to 1ncrease (scale) the magni-
tude of the error to as near as possible the full scale of the
inexact subsystem, so that the inaccuracies of that subsystem
are small compared to the values of its input variables. Thus,
the input to the inexact subsystem is the truncated value of
the quantity k. (y - éﬁi). The effect of constant k., is "can-
celled", after the correction vector has been compu%ed by the
inexact subsystem, through multiplication of that vector by
1/k.. Naturally, the truncated correction vector is padded to
the right with a sufficient number of zeros to offset trunca-
tion, i.e., to match the word length of the exact process.
Thus, as computation progresses (increasing i) and the exact
error y - Ax. becomes progressively closer to zero, the con-
stant k. is made progressively larger so as to keep the in-
exact s§stem inputs near full scale. Observe also that these
multiplication and division operations are performed to full
accuracy.

Observe next that, using straightforward techniques, the exact
subsystem computes the error in time proportional to N2?q? for
an N x N matrix A, at a word length of q bits. This is the
case, since the exact subsystem performs a matrix-vector mul-
tiplication.

The LHEdet subsystem, however, can invert the matrix in time
of order N3%z?, where z is the word length of the inexact com-
putation. This is the case since N? operations are needed and,
of these, multiplication is dominant, requiring time z2 Once
the matrlx is inverted, the time expended per inexact cycle is
N?z2since an N x N matrix multiplies an N-vector, at z bits.
Finally, the number of exact-inexact cycles needed is of order
q/z since, at each iteration, the exact error is reduced by
roughly z bits (recall that the exact error is constantly
scaled up by ki). Thus, the total time for the entire process
grows as:

N'z2 + 3 (n2q? + N%z?)

For large N, this computing time grows essentially as N3¥z?
Thus, compared to an equally stralghtforward exact matrix in-
version approach requiring time N3q?, the above approach is
faster by a factor (q/z)2?. For our example, q/z = 8, hence
that factor is 64.

C. Pressure-Flow Machines

In this approach, the computing structures under consideration
involve the spatial interconnection of computing elements which
correspond to the individual relations (or equations) that make
up the over-all problem. These computing elements, in turn,
process two types of variables, which we call "flows" and
"pressures". The flows correspond to the usual variables in
any computing system, i.e., the unknowns and any intermediate

*These are simply names of variables motivated by physical sys-
tems. We are not referring here to any physical pressures or
flows.

98

T

&-—iA@»}: e

IMPLICIT COMPUTATION

variables needed to compute these unknowns. The pressures, on
the other hand, denote the extent by which the flows do not
satisfy the relations represented by each computing element.
Each computing element treats the flows as inputs and the pres-
sures as outputs. Thus, T'f the flows satisfy the intended re-
lation of that element, then the pressures are zero. I1f,
instead, the flows do not satisfy the intended relation, then
the pressures assume non-zero values which (1) denote the ex-
tent by which the flows do not satisfy the relation, and (2) are
related to the flows through a pseudo-energy constraint, similar
to the relationship of variables and co-variables of physical
energy—-lossy elements. These, as well as certain additional
properties of the pressures and flows are retained under com-
position of the computing elements into larger composite sys-—
tems -- that is, the resultant systems have flows for inputs
and pressures for outputs, which are related by the same type
of pseudo-energy constraints. The result of this organization
is the ability to construct arbitrarily complex, spatially
distributed structures that simulate large systems of equations
and that are capable of converging asynchronously to desired
solutions, in the same sense that aggregates of passive elec-
trical network elements converge on their "solutions", under
given excitations.

In more detail, the organization of pressure-flow machines is
as follows:

1) Primitive digital computing elements are made to
correspond to the desired primitive relations. Each
such element has as many inputs (flows) and as many
outputs (pressures) as there are variables in the pri-
mitive relation. These pressures and flows are re-
lated through a pseudo-energy function, as follows:

a) The flows are the variables of the primitive
relation.

b) The pseudo-energy function is defined on these
variables, such that it is zero if and only if the
values of these variables satisfy the corresponding
relation. Otherwise, the pseudo-energy function is
positive.

c) The pressures are defined as the gradient of the
pseudo-energy, on the space of the flow variables.

2) Composite pressure-flow machines are made up of prim-
itive computing elements, and (recursively) of composite
pressure-flow machines, in direct correspondence to com-
posite relations, which are made up of primitive relations
and (recursively) of composite relations. The rules are
as follows:

a) External variables, i.e., free variables of the
composite relation, appear as flows and as pressures
of the composite machine. As flows, they are simply
connected to the constituent machines, if the

99

SR ——

I

IMPLICIT COMPUTATION

corresponding free variables are related by consti-
tuent relations. As pressures, they are generated
by summation of the corresponding pressures of all
constituent machines which relate that free variable.

b) Internal variables, i.e., variables bound by the
composite relation, appear as neither flows nor pres-
sures of the composite machine. Instead, each such
flow is generated (negatively) by digital integration
of the sum of all corresponding pressures supplied by
constituent machines, i.e., the machines correspond-
ing to constituent relations that relate that bound
variable.

c) The pseudo-energy associated with a composite
machine is the sum of the pseudo-enerdgies of the
constituent machines.

3) Under these composition rules, it is the case that

a) The flows of every composite nachine are the
variables of the corresponding composite relations.

b) The pseudo-energy of every composite machine is
non-negative. In particular, it is zero if and only
if the pseudo-energy of every constituent machine is
also zero, i.e., if every constituent relation is
satisfied, which means that the corresponding com-
posite relation is also satisfied.

c) The pressures of the composite machine are the
gradient of the pseudo-energy of the composite
machine, since they are formed by addition of the
pressures of constituent machines, and since

the pseudo-energy of the composite machine is the
sum of the constituent-machine pseudo-energies.

Observe that the properties of pressure, flow and pseudo-
energy for composite machines (Items 3 (a), (b) and (c)

above) are the same as the properties of the corresponding
entities of primitive computing elements (Items 1 (a), (b)

and (c) above). This consistency under recursion is essential,
for it insures that pressure-flow machines of arbitrary com-
plexity, constructed by the above rules, obey a fixed set of
properties. These properties are, in turn, pivotal in the
ability of pressure-flow machines to solve satisfactorily
specific classes of problems.

One of the principal results to date is that the pseudo-energy
of every composite machine decreases or at worst remains con-
stant if the flows of that composite machine are held constant.
e have further shown that for linear problems (i.e., aggre-
gates of linear primitive relations), which are not singular,
the over-all pseudo-energy decreases, converging towards the
solution. These results make possible the application nf the
pressure-flow machines to problems of arbitrary complexity.

100

Rl 1 e =

IMPLICIT COMPUTATION

D. Fundamental Work

The pressure-flow approach and the inexact part of an exact-
inexact machine are made up of spatially distributed systems.
In order to probe the ultimate computing speed of spatially
distributed systems, we have postulated a set of physico-
mathematically based axioms. These axioms concern the speed,
packing density, and noise threshold of the energy wi. 1 which
any computing device detects or alters the physical represen-
tation of information. The principal result of our work to
date is that the time needed by a spatially distributed system
to compute any n-argument function grows with n at least as
n!'/?, This result is based only on the above-mentioned axioms
and on the fact that the computing function depends non-
trivially on all its arguments. Further results indicate
that, regardless of the viay in which identical computing modu-
les are "stacked" in space, they cannot compute a function of
n arguments as fast as the above bound -- in fact, they often
compute such a function no faster than n!'/%, Finally, the
above bound has been combined with certain other results,
yielding a measure for the computational efficiency of a pro-
cess distributed in time and space. Through this measure, it
is possible to assess the efficiency of a given space-time
process. The details of this development will appear in the
Proceedings of the 1971 Switching and Automata Theory Confer-
ence in a paper by Dertouzos.

Another area of fundamental work is motivated by the logical
capabilities and limitations of the analog substructure of an
exact-inexact machine. Here, we have investigated the logical
capabilities of certain dynamic analog structures made up of
sample—~holds and integrators. This work has resulted in a
wealth of interesting results, theorems, and constructive
techniques for dynamic-system synthesis. They will appear in the
doctoral dissertation of M. E. Kaliski, M.I.T. Department of
Electrical Engineering, to be completed shortly.

We have also investigated the logical capabilities of a class
of Turing Machines which can store and process real numbers.
Results of this work are related to computations on the real
numbers. They will appear in some detail in the Proceedings
of the 1971 Switching and Automata Theory Conference 1in a
paper by Abramson.

Publications 1970-1971

Abramson, F. G., Models for Continuous-Discrete Computation,
S.M. Thesis, Dept. of Electrical Engineering, February 1971.

Dertouzos, M. L., "Computer Graphics: Problems and Progress",
Proceedings, Erlangen Symposium on Display Use for Man-Machine
Dialog, Institut fur Mathematische Mashinen und Datenverarbei-
tung, Erlangen, Germany, March 1971.

Dertouzos, M. L., "Elements, Systems and Computation: A Five
Year Experiment in Combining Networks, Digital Systems and
Numerical Techniques in the First Course", Proceedings, Purdue

101

I

IMPLICIT COMPUTATION

Publications 1970-1971 (cont.)

1971 Symposium on Applications of Computers to Electrical
Engineering Education, Purdue University, Indiana, April 26-28,
1971.

Dickens, M. W., Computer Graphics: Central Problems and Their
Treatment, S.M. Thesis, Dept. of Electrical Engineering, June
1971.

Lum, M., Computer-Aided Analysis of Nonlinear Networks, S.M.
Thesis, Dept. of Electrical Engineering, January 1971.

Lynn, C. W., Non-Linear Function Processing for Computer
Analysis of Networks, S.M. Thesis, Dept. of Electrical Engineer-
ing, June 1971.

Weinberg, A., Computer-Aided Education in Subject 6.001, S.M.
Thesis, Dept. of Electrical Engineering, January 1971.

102

E 7 —

B e e e e T s o e s

INTERACTIVE MANAGEMENT SYSTEMS
ORGANIZATIONAL INFORMATION SYSTEMS

Prof. M. M. Jones

Instructors, Research Associates, Research Assistants and Others

D. Asthana A. R. Monroe-Davies
G. T. Dixon R. C. Owens

R. C. Goldstein D. H. Porges

S. P. Mason

Undergraduate Students

R. L. Brooks C. A. Hatvany S. Pincus
R. M. Elkin D. M. Krackhardt J. L. Rosenberg
R. S. Goldhor W. Y. Ng H. J. Siegel
P. H. Guldberg
DSR Staff
J. A. Friel A. J. Strnad
M. Lenot D. M. Wells

S. E. Niles
Support Staff

E. T. Moore
R. Queens

Guest
Prof. J. I. Elkind
* % % * % % % %
SIMPL PROJECT

Prof. M. M. Jones

Instructors, Research Associates, Research Assistants and Others

R. Bryant S. Murthy
A. Gonzales

Undergraduate Students

R. M. Berman J. E. Jagodnik
D. J. Chang S. M. Stoney
S. S. Cohen
DSR Staff
R. C. Thurber, Jr.
103
e A et A s B R S el . i

X. INTERACTIVE MANAGEMENT SYSTEMS

ORGANIZATIONAL INFORMATION SYSTEMS

A. Introduction

The Organizational Information Systems Group seeks to develop
and understand how to use interactive information systems in

the administration and operation of organizations. The sys-
tems that we are investigating incorporate a data base that
describes the present and past state of the organization,
models that can be used to predict future states, and procedures
that assist in making planning and control decisions. Also
central to these systems are facilities that allow users to
interact with this body of data, models and procedures. To
lend concreteness to our systems research, much of the work has
been done in the context of specific applications -- largely
the administrative problems of Project MAC itself and of several
of the academic departments at M.I.T. During the coming year,
we expect to broaden considerably the set of applications with
which we shall deal.

Work on organizational information systems began in 1968 with
the start of the MacAIM" Project. 1In the beginning, that pro-
ject attempted to integi~te a number of interactive systems
already operating on CTSS into a management system and to develop
management information systems for Project MAC on CTSS. Some
operationally useful interactive systems for personnel manage-
ment, budgeting, inventory control and purchasing were derived
from this work. Since June 1970, our research has focused on
the development of general-purpose data-manipulation facilities
on Multics and on the application of these facilities in manage-
ment systems for Project MAC. During the last few months, we
have begun work on techniques for modeling organizations, and
have started developing models for Project MAC. This work has
been supported in part by ARPA through ONR and in part by ONR
directly.

The principal projects undertaken during the last year were:

1) Design and implementation of a set-theoretic data-
manipulation system on Multics.

2) Development of management information systems for Pro-
ject MAC z2nd for the Sloan School.

3) Studies of access control and pPrivacy in computer data-
base systems.

4) Studies of models and modeling of organizations.
These research projects are discussed more fully below.

B. Set=-Theoretic Data-Manipulation System

During the past year, R. C. Goldstein, A. J. Strnad, D. M. Wells
and S. E. Niles, with the aid of a number of stu ents, have

PRECEDING PAGE BLANK

105 .

L

INTERACTIVE MANAGEMENT SYSTEMS

designed and implemented a data-manipulation system that is
based on a set-theoretic organization of data and operations.
The initial version of this system is now operating and is being
used for a Personnel Data System for Project MAC. Studies of
the performance of this initial system will be used as a basis
for additions, modifications and improvements that will be made
during the next year. The system is programmed in PL/1 and is
implemented on Multics.

In this system, we have taken the view that information stored
in a data base consists of sets of Data Elements (DE) and sets
of relations among them that are called Relational Data Sets
(RDS). The basic set-theoretic primitive operations are used
for manipulating the RDS.

Given the Data Element Sets (DES) s1, sz, ... Sn, the Re’ational
Data Sets consist of n-tuples (tuples of degree n), each of which
has its first element from set Sl, its second element from s2,
and so on. The Relation Descriptor (RD) is, in our terminology,
the n-tuple composed of the names of the sets s1, S2, ... Sn.
Suppose, for example, that there are Data Element Sets for per-
sons' names, for addresses and for telephone numbers. We night
construct an RDS which will represent the relations among mem-
bers of these sets. The Relation Descriptor for this RDS will
be the 3-tuple <person-name, address, telephone-number>. Aal1l
other tuples will express the relation among the members of
these sets. 1In our implementation, the relations are stored
exclusively in terms of Reference Numbers (RN) .

The whole system is logically divided into two major parts. In

the first, Data Element Sets are stored, Reference Numbers are

assigned to the Data Elements, and operations are performed on

the DES. 1In the second part of the System, Relation Data Sets

are created and stored, and basic set-theoretic Primitive oper-
ations are performed on them.

Reference Numbers (identification numbers) play an important role
in our implementation. Whenever a new DE enters the system, it
is immediately assigned a Reference Number. The RN is used for
all subsequent operations on that DE. The method used for stor-

C. Management Information Systems

The development of two lanagement information Systems has been
undertaken this year. One of these is to aid in the administra-
tion of Project MaC. The other is for the administration of the
Sloan School.

The Project MAC system, designed and implemented by A. J. Strnad
and S. E. Niles, uses the data-manipulation system described
above. 1In its initial version, the system will provide inter-
active data storage, retrieval, manipulation, and report-genera-~
tion support for the personnel-management, budgeting, inventory-
control, andg facilities-management func:ions of the business

106

INTERACTIVE MANAGEMENT SYSTEMS

office. The personnel function has been implemented and exper-
iments are under way to evaluate its performance.

The Sloan School system, under the direction of Prof. M. S. Scott-
Morton and Prof. J. F. Rockart, has focused on the analysis and
design of a decision support system for budgeting. The progrnss
to date has been mainly in the initial decision analysis and tool
building. A model of the current budgetary methods in the Sloan
School has been developed. The budgetary decisions made by admin-
istrative personnel have been identified, and the information
required for these decisions has been determined.

D. Studies of Access Control and Privacy

A Master's thesis by R. C. Owens, Jr., "Primary Access Control in
Large-Scale Time-Shared Decision Systems", was completed in May
1971. The thesis identified four primary dimensions of the access
control: 1) the physical level at which to apply control, 2)

the fineness of distinction to the term "access", 3) the meaning
of the term "user identification", and 4) the degree of sophisti-
cation employed in automatically assigning restrictions to new
data files.

Within the context of MacAIMS, the Project MAC Advanced Inter-
active Management System, the design of an access-control sys-
tem is presented which takes positions along these four dimen-
sions appropriate for controlling access in a Management Deci-
sion System. Support is provided for constraints specified as
general logical restrictions based on 1) the characteristics

of the entity requesting access, 2) the content of the sensitive
data item, 3) the context in which the sensitive item appears,
4) proper completion of an interactive procedure, and 5) com-
binations of any of these. The access levels that may be speci-
fied are based on the logical (not the physical) nature of the
interaction that the user requests.

The system presented here is an interim system in that it does \
not solve all the access-control problems of MacAIMS. Among the
unsolved problems is that of Truth: in a data management sys-

tem that provides a powerful set of operators, it is -easy to

create false information in very subtle ways. Another problem

is that of conflicts of privacy. Solutions to these problems

must be found before the access-control scheme will be complete.

R. C. Goldstein has begun a doctoral thesis, "The Political Dyna-
mics of Information and Privacy", in which he intends: 1) to in-
vestigate the interaction between individual privacy and "quality
of life" in a society, and 2) to explore techniques that can be
used to protect privacy.

E. Modeling of Organizations

P. Kleindorfer, M. Lenot, H. J. Siegel and Prof. J. I. Elkind
have just begun a study of organizational models. The opera-
tions of Project MAC, as an example of a research and develop-
ment organization, are being analyzed. We are obtaining a des-
cription of the principal activities of the Project and we shall

107

INTERACTIVE MANAGEMENT SYSTEMS

attempt to express this description in the form of a guantita-
tive model.

Publications 1970-1971

Goldstein, Robert C., "Helping People Think", Naval Research
Reviews, January 1971; also Project MAC Technical Memorandum
25, April 1971, AD 721-998.

Goldstein, Robert C., "The Substantive Use of Computers for
Intellectual Activities", Project MAC Technical Memorandum 21,
April 1971, AD 721-618.

Goldstein, Robert C., and Strnad, Alois J., "The MacAIMS Data
Management System", presented at the ACM SICFIDET Workshop on
Data Description and Access, Houston, Texas, November 1970;
also Project MAC Technical Memorandum 24, April 1071, AD 721-
620.

Goldstein, Robert C., "Position Paper on Computers, Data Banks
and Bill of Rights", prepared for Subcommittee on Constitutional
Rights, Committee on the Judiciary, U. S. Senate, March 1971;

AD 721-670.

Owens, Richard C., Jr., "Primary Access Control in Large-Scale
Time-Shared Decision Systems", thesis, Master of Science, Sloan
School, M.I.T., June 1971; also MAC TR-89, AD 728-036.

Strnad, Alois J., "The Relational Approach to the Management

of Data Bases", Project MAC Technical Memorandum 23, April 1971,
AD 721-619; material also accepted for presentation at IFIPS,
August 1971.

Wells, Douglas M., "Transmission of Information between a Man-
Machine Decision System ¢'d its Environment", Project MAC Tech-
nical Memorandum 22, April 1971, AD 722-837: material also
accepted for presentation at IFIPS, August 1971.

108

INTERACTIVE MANAGEMENT SYSTEMS

SIMPL PROJECT*

A crude version of SIMPL was initially operable by the beginning
of August 1970, but it had not been thoroughly tested and most
of the advanced features of sIiMPI, were not available. 1In August,
the system was used by approximately 20 members of a special
Sloan School Summer Session Simulation Seminar, during which
period we discovered many of the bugs and limitations of that
first system. A users' manual was also hurriedly prepared for
the Sloan School.

The next few months were spent debugging and modifying that pro-
totype system, as weli as revising and expanding the descriptive
documentation. The System was then used extensively by the Sloan

System. By the end of the semester, the SIMPL translator and
run-time support System was relatively stable and bug-free.
Queuing statistics and a limted form of tracing were added to
the system, and numerous minor improvements were made.

By January 1971, the enhanced version of the original system
was functioning reliabl » but it exhibited several major weak-
nesses:

1) Translation and compilation times were excessively slow.
The translator itself was slow, and it pProduced a PL/1 pro-
gram that was very large and hence took a long time to
compile.

2) External activities (similar to external subroutines)
Were not implemented, and were very difficult to implement
under that system. The user was thus forced to use large

any part of the model.

3) The advanced interactive features were not implemented,
and the system design made them difficult to implement.
Even more important, the implementation of those features
would have significantly worsened the already-slow trans-
lation and comrilation times.

Thus, the system has not yet realized our goal of giving the
user an "incremental" simulation system. We therefore decided
to undertake the design and implementation of a new system
which would be more efficient in all respects, and which would
easily accommodate all the additional features of the full SIMPL
System. We felt that our experience with the old system would

amount of time.

*In August 1970, the SIMPLE Group decided to change its name to
the SIMPL Group.

109

INTERACTIVE MANAGEMENT SYSTEMS

The new system {(now called Version 2) was designed and programmed
beginning in February 1971, and is now in the final stages of
testing and debugging. Besides being more efficient in trans-
lation, compilation and execution, Version 2 includes a complete
tracing capability, allows external activities, produces numer-
ous simulatior oriented statistics, and supports the interactive
SIMPL Monitor. None of these features was available in the
earlier Version 1. The SIMPL Monitor itself is written and work-
ing; it is a very flexible run-time system which allows the user
almost complete freedom to inspect and modify his model, then

to continue or restart the simulation.

The SIMPL system has also been conscientiously documented. At
present, documentation comprises three manuals. The SIMPL
Primer is a short description of SIMPL, intended to give new
users a quick introduction to the system. The SIMPL Reference
Manual contains a complete description of all features of the
system and their use. The SIMPL Implementation Manual describes
the Multics implementation of SIMPL. (The latter currently
describes only Version 1; several new chapters have yet to be
added to bring it up to date.)

Current plans call for finishing work on the SIMPL system by

30 September 1971, and releasing it to the M.I.T. community for
general use. The system will undergo a final test during the
1971 Sloan School Summer Session Simulation Seminar in late
August. Between now and then, we plan to implement a few new
features (including process priorities, ranked sets, and inter-
polation functions), to complete the implementation manual, and
generally to streamline the system for release to the public.

There will, no doubt, be a continuing need for maintenance
throughout the 1971-1972 school year and plans are being made
to provide that assistance. Also, the installation of the Ver-
sion 2 PL/1 compiler may necessitate some slight reprogramming.

There are no present plans to add a well-integrated graphical
facility to SIMPL, using something like the IMLAC PDS-1, although
that would make an exciting thesis project. Also, we have com-
pletely written off the idea of ever implementing a true inter-
preter for the SIMPL language, deeming that far too big a job

and not worth the effort now that we allow external activities

to be separately compiled and debugged. It is our hope that

we can redirect our efforts from developers of SIMPL to users.

110

i W

M .

e e i

MATHLAB

Prof. W. A. Martin
Prof. J. Moses

Instructors, Research Associates, Research Assistants and Others

R. J. Fateman

P. S. Wang
Undergraduate Students
M. R. Genesereth E. Tsiang
E. Kohn L. E. Widman
E. C. Rosen R. E. Zippel
S. E. Saunders
DSR Staff
M. J. Ablowitz L. P, Rothschild
H. O. Capps R. C. Schroeppel
J. P. Golden
Support Staff
K. Young

XI. MATHLAB

During che past year the Mathlab group has continued to develop
the MACSYMA system for interactive algebraic manipulation. The
principal modules of MACSYMA are shown in Fig. 1. Those indi-

cated by circles are complete.

MACSYMA
SUPERVISOR

TWO

INPUT
DIMENSIONAL
PARSER LISP EXPRESSION
DISPLAY
STRING
EDITOR

PROGRAMMING
LANGUAGE

EVALUATOR

GENERAL
SIMPLIFIER

GRAPHICAL
DISPLAY OF
FUNCTIONS

COMMANDS:
EXPAND
DIFF
etc.

VARIABLE

DIMENSION
ARRAYS

PATTERN S—
INFINITE MATCH ROUTINES :
PRECISION | \SUBSYSTEM INTEGRATION| (geTs oF LINEAR
INTEGER 'SUBSYSTEM EQUATIONS
ARITHMETIC
LIMITS
POLYNOMIAL DEFINITE
MAN'PgtAT'ON RATIONAL INTEGRATION
FUNCTION
POWER
e s SUBSYSTEM
RISCH
POLYNOM IAL ALGORITHM

SYSTEM

FIG. 1. THE MACSYMA SYSTEM.

115 PRECEDING PAGE BLANK

MATHLAB

Seven papers describing MACSYMA and related work of our group
were presented at the Second Symposium on Symbolic and Algebraic
Manipulation held in Los Angeles, 23-25 March 1971. MACSYMA has
now reached a point where it is both a useful tool for the solu-
tion of real problems and a convenient base for research in
algorithm analysis, and development of advanced systems for
applied symbolic mathematics. We are beginning to use MACSYMA
for the solution of several problems of interes- in mathematics
and physics.

With Prof. Bers, of the M.I.T. Department of Electrical Engineer-
ing, we are using MACSYMA to investigate the properties of the
dispersion relation of a linear system.

With Dr. Eytan Barouch, of the M.I.T. Department of Mathematics,
we explored some problems in statistical mechanics.

Quantum mechanical calculations for Mr. F. Heile's S. M. thesis
(M.I.T., Physics) were done in MACSYMA.

Within our own group, L. Rothschild and Prof. J. Moses have
used MACSYMA for testing mathematical conjectures, and R. J.
Fateman has used the system for solving a large number of sets
of simultaneous linear equations arising in the analysis of
MACSYMA's polynomial manipulation routines.

New algebraic manipulation algorithms are also under investiga~-
tion. Recently developed polynomial manipulation algorithms
using modular arithmetic have been implemented. General methods
of obtaining simplification rules for functions, defined by
differential equations, are also being developed.

Publications 1970-1971

Martin, William A. and Richard J. Fateman, "The MACSYMA System",
in Second Symposium on Symbolic and Algebraic Manipulation, As-
sociation for Computing Machinery, Los Angeles, California,
March 23-25, 1971, pp. 59-75.

Martin, William A., "Computer Input/Output of Mathematical
Expressions", in Second Symposius on Symbolic and Algebraic
Manipulation, Association for Computing Machinery, Los Angeles,
California, March 23-25, 1971, pp. 78-89.

Moses, Joel, "Algebraic Simplification: A Guide for the
Perplexed", in Second Symposium on Symbolic and Algebraic
Manipulation, Association for Computing Machinery, Los Angeleas,
California, March 23-25, 1971, pp. 282-304,.

Fateman, Richard J., "The User-Level Semantic Matching Capability
in MACSYMA", in Second Symposium on Symbolic and Algebraic Mani-
pulation, Association for Computing Machinery, Los Angeles,
California, March 23-25, 1971, pp. 311-323.

" 1 q
o8 114

MATHLAB

Publications 1970-1971 (cont.)

Martin, William A., "Determining the Equivalence of Algebraic
Expressions by Hash Coding", in Second Symposium on Symbolic and
Algebraic Manipulation, Association for Computing Machinery, Los
Angeles, California, March 23-25, 1971, pp. 305-310.

Moses, Joel, "Symbolic Integration: The Stormy Decade", in

Second Symposium on Symbolic and Algebraic Manipulation, As-
Sociation for Computing Machinery, Los Angeles, California,

March 23-25, 1971, pp. 427-440.

Wang, Paul S., "Automatic Computation of Limits", in Second
Symposium on Symbolic and Algebraic Manipulation, Association
for Computing Machinery, Los Angeles, California, March 23-25,
1971, pp. 458-464.

115

. Los . Rl = i e $ LA
nn—— . et - el L

PROGRAMMING LANGUAGES

Prof. J. J. Donovan

Instructors, Research Associates, Research Assistants and Others

2Q=x

| o

FTauntbmag

. Altman
D. DeTreville

Earle

I. Goodman
Holt
Johnson

J. Klos

G. Bras
Davis

. A.Kessel
. V. Kohn

Goldthorpe
F. Nangle

. Adler

D. Konig

S. E. Madnick

W. C. Michels

P. Olson

H. M. Toong

L. E. Travis
Undergraduate Students

J. C. Lind

J. Quimby

J. L. Reuss

A. M. Solish

Support Staff

Guest

PREGELING PAGE BLANK

117

T b T T T R [T S LA N STy T T

XII. PROGRAMMING LANGUAGES

A. Introduction

During 1970-1971, research in the Programming Languages Group
focused on analysis of languages and their translators (compilers)
and the environment in which they exist (operating systems).

B. Canonic Systems

A canonic system is a type of formal system that operates on
several sets of strings over a finite alphabet. Canonic systems,
(equivalent to Smullyan's elementary formal systems) are a var-
iant of Post's canonical systems. In canonic systems, the gen-
eral framework of productions or string-transformation rules is
replaced by a system of axioms (canons) and by the logical rules
of substitution for variables and detachment (modus ponens) .

A canonic system defines a set of inter-related predicates, each
of which i: a set of strings.

In particular:
A canonic system is a sextuple

€-(c,v,M,P,S,D)

C 1is a finite set of canons

V is an alphabet of terminal symbols used to form the
strings generated (i.e., provable) by‘j?

M is a finite set of variable symbols (variables)

P is a finite set of predicate symbols (predicates) used
to name sets of n-tuples. The number of components in
the n-tuples denoted by a predicate is the degree of
the predicate

S 1is a finite set of punctuation signs used in writing
canons

D (EP) is a set of sentence predicates, the union of
which will be defined to be the language specified by
the canonic system

Canonic systems have been used to specify the syntax and the
translation of programming languages. They have served as a
data base for a generalized translator for computer languages,
for proving various theorems as to their mathematical power and
their formal properties, and they have been used to study the
complexity of translators and languages.

C. Power of Canonic Systems

We have proven a general theorem relating canonic systems to
various types of formal grammars.

PRECEDING PAGE BLANK

119

PROGRAMMING LANGUAGES

Theorem. For every type of grammar, there exists a class of
canonic systems with the property; that for every grammar of

the type under consideration there exists a canonic system that
generates the same language and that belongs to a corresponding
class. Further, that class of canonic systems can be constructed.

Many formal systems -- for example, canonic systems and Type 0
grammars ~-- have inherent undecidability problems: in general,
there is no algorithm capable of telling, after a finite amount
of time, whether or not a given string is in the language of
these grammars. Studies of power help us to understand how
characteristics of a grammar correspond to structural features
of languages and to choose the weakest grammar suitable to a
given situation. At the same time, by exploring restrictions
we learn about the structure of language.

Figure 1 is an inclusion diagram of the relationships between
Certain classes of grammars. Classes of systems in the diagram
include all classes below them (that is, at nodes below them in
the tree). The diverging branches represent classes for which
inclusion either does not exist or is not presently known.

D. Canonic Systems and Recursive Sets

We have proven that there can exist no class of canonic systems
defining (as a class) only recursive sets, all the recursive
sets, and including all the canonic systems which define recur-
sive sets. Likewise, it is recursively undecidable whether a
language of Type 0 is also of Type 1 (2,3); but it is decidable
whether a grammar of Type 0 is also of Type 1 (2,3). Grammars
of Type i define all and only languages of Type i, but it is
not the case that (for i > 0) only grammars of Type i define
languages of Type i.

A priori, it might be the case that a certain class of canonic
systems, the NCS2 for instance, would correspond to recursive
sets in the sense that it defines all and only recursive sets
without claiming monopoly in defining recursive sets (i.e., not
all canonic systems defining recursive sets are in that class).

The main result is that there can be no such class. In particu-
lar, NCS2 € Rec. The proof is by dlagonalization (after a suit-
able "GWdelization" of canonic systems) .

E. Generalized Translator

of an earlier alqgorithm presented by Cheatham and Sattley. The
algorithm is principally Lop-down; it attempts first to match
the input string against the sentence predicate of the canonic
system (e.g., program), and it arrives only through recursion
at a lower-level predicate (e.g., integer or digit).

This algorithm removes the inadequacies of Backus Naur Form
(BNF) specification of the syrntax of programming languages. 1In
BNF it is impossible to describe many of the constraints that

120

e ramars

o B

i R RO ——

PROGRAMMING LANGUAGES

(sestTweag srduts

pue auc 9sabsp zO saj3eoTpaad)
ws3siAs oTuoued dAewni-ordr3Tnw
burppsqus-uou ‘sueysis oﬂmocmo

SHIHDAVYIIH ODNIANOASTIJYOD

JIUWDI-2UO IeSUTT (3F97) ybty - - - ¢ =diy

(sesTwaxd ofduwTs

pue 2uo0 921b69p JO s°3ROIPDII)
SO jIrWSI-oTdI3Tnw ‘swolsis
DTUOURD N IPWSI-OMI WIOF [BWION

(1LSON)
oM} ooxbop 3o sajeorp@ad yY3lTM

sws3sAs OTuOURD DBUTTFORIJUODUON -

om3 o9d@absp JO
S93eOoTpai1d Y3 TM Sswo3sAs OTuoued
‘swo3sAs OTUOURD PO3IDTIFSDIUN

SuWa3sSAS JTUOuUR)

-z adAg

T odiL

-0 =adAig

me!H.
Ayyswoyn

wnI3oadsg

T

e Vi
ke e

*brg

BIRUWOGNE 23TUTH

- sabenbuel pue saeumrexb sje3s 83 TUTI

- - pue ‘Ieaur] peprs-suc ‘aernbay
- - -sabenbuetl puer sieumeib Ieautr

sabenbueT
- = = = - -pue sieuwexb Terjuanbag

sabenbuet
- = = = = =pur sIvunue b IEaUTTEl 2N

sobenbueT pue sIeumeIb
= = @aInjonIijs-aseiyd a=II-3Ixa;IUC)

sabenbuerT pue IPuME1b
2IN30NI3S ISBIYd SATITSUSS-IXIIUCD

- - 5335 2[qepTo2ap ‘s3as aaTsINOAY

swaasdAsTwes anyl

‘swajsds bur3iTamsa pajosTIjsaaun
‘gwajzsds 3sod ‘saurtyorw butang

- = = ‘sja2s argeiaunua ATaaATsanoay

sabenbueT pue
sJieunexs TewIiod

121

PROGRAMMING LANGUAGES

exist in programming languages, such as the restriction that a
"legal program" is not acceptable to a translator, even though
correct in form, if not all of the reference labels in the pro-
gram correspond to statement labels (sometimes referred to as
"context-sensitive features").

F. Canonic Reduction Generator

The production language, as introduced by Floyd, affords the
capability of implementing a one-pass, one-push-down-stack re-
cognizer for a computer language. The power of the production
language may be even further enhanced, however, by the intro-
duction of action routines, to be called for the purpose of
code generation upon the detection of a legal and complete
syntactic form. These enhanced productions are referred to as
reductions. The problem exists, however, of getting from a
specification of a language to the productions or reductions.
The problem of generating productions has been solved by Earley,
but his algorithm specifies the generation of productions given
a BNF representation of a language. However, BNF is incapable
of representing the translation of a computer language, and
thus reductions cannot be generated from a BNF specification.

Canonic systems, on the other hand, can be used to specify the
translation of a computer language as well as its syntax. We
have developed an algorithm of generating reductions given a
canonic systems specification of a language. The algorithm
draws on the work of Earley, and in fact, is identical to
Earley's algorithm for the case of single level canonic sys-
tems (except, of course, that canonic systems rather than BNF
form the language specification). The algorithm has been imple-
mented to handle predicates of level one or two. In the case
of a level two predicate, the second element specifies the
action routine associated with the given syntactic form.

G. Undecidability of Programming Languages

It is well known that in a language where conditional transfers
of control are available, it is decidable that a program contains
a loop, but it is undecidable whether or not any particular
loop will ever be entered, or "more generally", whether or not
the program will ever wind up in a loop. Given an arbitrary
Turing machine, this follows the impossibility of deciding
whether or not a particular instruction will ever be executed.
This latter problem is undecidable since we can replace all
HALT instructions by just one, and if we could decide whether
or not that instruction would ever be entered, we would have

a solution to the halting problem,

PL/1 has a compile-time facility which enables the prdgrammer:

to direct the compiler to compile a certain group of
source-language statements rather than some other group;

to include source-language statements or data stored on
some storage device;

and so on.

122

EOPORE-¥ 2

PROGRAMMING LANGUAGES

A preprocessor performs these compile-time operations and gives
as output, a stream of source-language statements from which it
has determined that these and only these statements are to be
included and compiled in the program. In order to be able to
perform its functior, the preprocessor recognizes and executes,
among other compile-time statements, conditional transfers.

The stream of statements given as input to a PL/1 compiler con-
tains statements to be compiled and statements addressed to the
preprocessor to be executed at compile time. Confining our
attention to these latter statements only, we see that they
satisfy the conditions that they constitute an [alleged] pro-
gram, written in a language which includes conditional trans-
fers of control. It is decidable whether there are any com-
pile-time loops, but it is undecidable that the program will
ever enter a loop.

The compiler is presented with a stream of statements and is
expected to compile it, if it is syntactically correct, or to
reject it if it is not. Suppose, however, that the stream in-
cludes compile-time statements, and that these compile-time
statements include loops; if such a loop will ever be entered,
the compiler will not halt (assuming an infinite scratch file),
and the program will not be compiled (will not be accepted) .
Since it is undecidable whether or not such a loop will ever be
entered, it is undecidable that the input stream of statements
is accepted as a program. In other words, the set of PL/1
rograms, if we consider the compile-time facility as an integral
part of the language (as customary), is not recursive-.

H. Measure Function of Programming Languages Resource Usage

A theory of complexity has been developed for algorithms imple-
mented in typical programming languages. The complexity of a
program may be interpreted in many different ways; a method
for measuring a specific type of complexity is a complexit
measure -- some function of the amount of a particular resource
used by a program in processing an input. Typical resources
would be execution time, core, 1/0 devices, and channels.

An approach has been developed that analyzes the complexity of

a pregram with respect to a valid set of inputs -- a finite set
of legitimate, halting inputs. A program gquation is developed
to make the transformations undergone by the inputs more expli-
cit. Using the equation, the input set is partitioned into
classes of constant complexity. The classes are used to compute
maximum, minimum, and expected complexities of the program on
the input set.

Several equivalence relations have been defined, relating dif-
ferent programs by their complexity. Complexity has also been
treated in terms of concatenation and functional equivalence of
programs.

I. Programming Systems Environment

As the interaction between programming languages and the

123

i

PROGRAMMING LANGUAGES

operating system in which the language finds itself becomes less
distinct, we find ourselves studying operating systems in our
group. The most important aspect of the operating system is
that the programming language must interact with the file sys-
tem.

We have developed an approach to the design and study of file
systems that allows the designer of a file system to systemat-
ically implement and analyze the file system. This approach
has been used both for teaching file systems and for the design
of file systems.

These ideas have beeen fur‘her developed by investigating the
relationship of programming language requirements in the en-
vironment of a real-time computer-based sensor system. To this
end, we have developed an advanced and comprehensive processing
system for the IBM 1130.

This included a software~ussisted multilevel-priority interrupt
mechanism, an on-line simulation language, optimizing compiler,
advanced binder, and generalized file system.

J. Community Activities

Members of the group were involved in two major community
activities. We feel that M.I.T.'s greatness and more generally
the responsibility of scientists throughout our country, will
lie not only in the advancement of technical knowledge of
achievements, but also in the dissemination of this knowledge
to the communities and to the people that may use this know-
ledge effectively. We engaged in two projects, each address-
ing itself to the dissemination of knowledge to different groups
of people. The first group was the community and its individ-
uals. This project was undertaken during the summer of 1971.
We selected a community that is facing many technical problems,
€.g., communications, sewerage disposal, power distribution,
and mosquito control. We sought support from the town's
businessmen o support students from the town to investigate
the problem. These students worked in conjunction with M.I.T.
students.

The other group, to which we have addressed ourselves, is the
undereducated, underprivileged people in the Boston community.
We have addressed ourselves to this group through the Lowell
School, which is a school under the auspices of M.I.T. in the
evenings. We have helped to restructure the school to admit
and teach these people and try to expose them to the process
of learning and the rewards and satisfaction thereof. We have
centered the program around computers, using them as a tool
for accomplishing our objectives.

K. Teaching

Member. of our group have been involved in conceiving and teach-
ino several courses whose activities are directly related to

the major research activity of this group, namely, programming
languages.

124

PR e

PROGRAMMING LANGUAGES

Course 1 - Programming Languages in Formal Systems -
A Graduate Credit Course

Course 2 - Operating Systems - Independent Activities
Period Seminar

Lo s i o

Course 3 - Digital Computer Programming Systems - Under-
graduate

Publications 1970-1971

Altman, Vernon, "A Canonic Reduction Generator", S. B. Thesis,
Department of Electrical Engineering, August 1970.

Donovan, John J., Preliminary Edition of Systems Programming,
McGraw-Hill, 1971, New York.

Earle, Roy, "Global Optimization in Algebraic Language Compilers",
S.M. Thesis, Department of Electrical Engineering, May 1971.

Holt, George, "Semantic Models for Data Description", S.M.
Thesis, Alfred P. Sloan School of Management, June 1971.

Johnson, Jerry, "File System to Support Time Sharing in a Multi-
Programming Environment", S. M. Thesis, Department of Electrical
Engineering, June 1970.

Klos, Walter J., "A Program Capable of Printing Aggregate Data",
S. B. Thesis, Department of Electrical Engineering, October
1970.

Madnick, Stuart E., "Development of Computer-Based Sensor Sys-
tems", Proceedings of Third Hawaii International Conference on
System Sciences, University of Honolulu, Honolulu, Hawaii,
January 1970.

Madnick, Stuart E., "Design and Construction of a Pedagogical
Micro-Programmable Computer", Proceedings of Third Annual Work-
shop on Microprogramming, University of Buffalo, New York,
October 1970.

Madnick, Stuart E., "Program Parallelism Based upon Computation
Schemata", Proceedings of the VI International Congress on
Cybernetics, Namur, Belgium, September 1970.

Ramchandani, Chander, "Debugging Scheme to Run Interpretively
in Virtual Memory", S. M. Thesis, Department of Electrical
Engineering, January 1970.

Travis, Leon E., "A Cobol Interpretive System", S. M. Thesis,
Department of Electrical Engineering, August 1970.

Zilles, Stephen, "Synchronization of Resource Usage in a Small
Information System", Proceedings of Third Hawaii International
Conference on System Sciences, University of Honolulu, Honolulu,
Hawaii, January 1970.

125

Prot.

T T P T g TR

Papert

M. J. Fischer
Prof. P. E. O'Neil
Prof. S.

R b b et ST

ARTIFICIAL INTELLIGENCE

July 1969 to December 1970

Prof. M. Minsky
S. Papert

Prof.

Academic Staff

T TRt T e T T e P LA o e e, T e S e T L e

Prof. M. S. Paterson
Prof.

Instructors, Research Associates,

P. Winston

Research Assistants and Others

TR wHEHEOED

Abelson
Charniak

J. Donaghey
Dowson
Freuder
Goldstein
K. P. Horn
Krakauer
LeCompte

T. Dalton
Freeman
Freiberg
Gagner
Gaschnig
Glazer
Goodman
C. Holzer
Jensen

Beeler

H. Freyberg

W. Gosper, Jr.
Greenblatt

K. Griffith
Henneman

F. Knight
Neely
Noftsker

S. Roe

J. Lerman

S. Lothes

R. B. Roberts

M. Speciner

D. Spencer

G. J. Sussman

D. Waltz

T. A. Winograd
Undergraduate Students

R. F. Mohl

J. Rubin

J. C. Shockey

M. N. Slusarczuk

B. M. Trager

E. D. Trautman

N. S. Weinstein

J. Whitbeck

L. F. Yeager

DSR Staff

L. P. Rothschild

P. R. Samson

R. Schroeppel

J. Shah

S. W. Smoliar

C. Solomon

G. L. Wallace

J. L. White

R. W. Williams

L. R. Wilson

127

PRECEBINE PAGE BLANK

BT Lot SR

ARTIFICIAL INTELLIGENCE

Support Staff

T. F. Callahan R. J. Lebel
T. Carlton G. H. H. Mitchell
P. DeCoriolis G. Roe
F. J. Drenckhahn L. A. Sands
D. E. Eastlake D. Silver
J. L. Fowler N. F. Stone
M. Harpole C. T. Waldrop
P. Holloway J. B. Weiss
E. I. Kampits
Guests

R. April J. Cohen
Prof. W. W. Bledsoe J. Jaroslav
R. Boyer

lt\,,‘. W@

128

L LS SR 1

I. ARTIFICIAL INTELLIGENCE

The A. I. Laboratory is concerned with understanding the prin-
ciples of Intelligence. 1Its goal is to develop a systematic
approach to the areas that could be called Artificial Intelli-
gence, Natural Intelligence, and Theory of Computation. Here
are its main current foci of attention:

ARTIFICIAL INTELLIGENCE

Robotics; Vision, mechanical manipulation, advanced auto-
mation. Models ior learning, induction, analogy. Schemata for
organizing bodies of knowledge. Development of "heterarchical"
program control structures.

NATURAL INTELLIGENCE

Models of structures involved in "common sense thinking".
Understanding meanings, especially in natural language narra-
tive. A new educatioial methodology, based on development of
the child's abilities to describe processes.

THEORY

Computational trade-offs between time, memory size, and
processor parallelism. Study of computational geometry as a
tool for comparing different structures and strategies. Theory
of schemata, for analysis of complexities of certain algorithms
and languages.

These subjects are all closely related. The natural language
project is intertwined with the common sense meaning and
reasoning study, in turn essential to the other areas, includ-
ing machine vision. Our main experimental subject worlds, the
"blocks world" robotics environment and the children's story
environment, are better suited to these studies than are the
puzzle, game, and theorem-proving environments that became
traditional in the early years of art:ificial intelligence re-
search. Our evolution of theories of intelligence has become
closely bound to the study of development of intelligence in
children. The educational methodology project is symbiotic
with the other studies, both in refining older theories and

in stimulating new ones; we hope this project will develop
into a center like that of Piaget in Geneva.

As it has crystallized over the past few years, the main ele-
ments of our viewpoint can be summarized cryptically:

Thinking is based on the use of SYMBOLIC DESCRIPTIONS and
description-manipulating processes to represent a variety of
kinds of KNOWLEDGE -- about facts, about processes, about
problem-solving, and about computation itself, in ways that
are subject to HETERARCHICAL CONTROL STRUCTURES -- systems in
which control of the problem-solving programs is affected by
heuristics that depend on the meanings of events.

129

ARTIFICIAL INTELLIGENCE

The ability to solve new problems ultimately requires the in-
telligent agent to conceive, debug, and execute new procedures.
Such an agent must know to a greater or lesser extent how to
plan, produce, test, modify, and adapt procedures; in short,

it must know = lot about computational processes. We are not
saying that an intelligent machine, or person, must have such
knowledge available at the level of overt statements or con-
sciousness, but we maintain that the equivalent of such knowl-
edge must be represented in an effective way somewhere in the
system.

This report illustrates how these ideas can be embodied into
effective approaches to many problems, into shaping new tools
for research, and into new theories we believe important for
Computer Science in general, as well as for Robotics, Semantics,
and Education.

Much of the material in this report is also part of a draft of
a book on Thinking. For information about subsequent drafts
and publication write to the authors at the A. I. Laboratory.

The Laboratory is seeking young workers who believe they can
do work of the quality described herein, as staff, graduate
students, or post-doctoral fellows.

1.0 Vision and Description

When we enter a room, we feel we see the entire scene. Actually,
at each moment most of it is out of focus, and doubly imaged; our
peripheral vision is weak in detail and color; one sees nothing
in his blind spot; and there are many things in the scene we

have not understood. It takes a long time to find all the hid-
den animals in a child's puzzle picture, yet one feels from the
first moment that he sees everything. People can tell us very
little about how the visual system works, or what is really
"seen". One explanation might be that visual processes are

so fast, automatic, and efficient that there is no place for
introspective methods to operate effectively. We think the
problem is deeper. 1In general, and not just in regard to vi-
sion, people are not goc. at describing mental processes; even
wben their descriptions seem eioquent, they rarely agree either
with one another or with objective performances. The ability

to analyse one's own mental processes, evidently, does not

arise spontaneously or reliably; instead, suitable concepts

for this must be developed or learned, through processes simi-
lar to development of scientific theories.

Most of this report presents ideas about the use of descriptions
in mental processes. These ideas suggest new ways to think
about thinking in general, and about imagery and vision in par-
ticular. Furthermore, these ideas pass a fundamental test that
rejects many traditional notions in psychology and philosophy;
if a theory of Vision is to be taken seriously, one should be
able to use it to make a Seeing Machine!

1.1 Reasoning by Analogy

To emphasize that we really mean "seeing" in the normal human

130

e o e

e P

RESEERC Ay ’

ARTIFICIAL INTELLIGENCE

sense, we shall begin by showing how a computer program -- or i
a person -- might go about solving a problem of "reasoning by J
analogy". This might seem far removed from questions about 1
ordinary "sensory perceontion". But as our thesis develops, it [§

:

will become clear that there is litt!e merit in trying to dis-
tinguish "sensation" or "perception" as separate and different
from other aspects of thought and knowledge.

When we give an "educated person this kind of problem from an
IQ test, he usually chooses the answer "Figure 3":

O O AN
: © O
A 15 to B as C

is to which one of these?

ONEVAS
o || ©

1 Z

| | oY

o+ 5

o E;$>D

People do not usually consider such puzzles to be problems
about "vision". But neither do they regard them as simply
matters of "logic". They feel that other, very different
mental activities must be involved. Many people find it hard
to imagine how a computer program could solve this sort of
problem. Such reservations stem from feelings we all share;
that choosing an answer to such a question must come from an
intuitive comprehension of shapes and geometric relations,
rather than from the mechanical use of some rigid, formal
rules.

However, there is a way to convert the analogy problem to a
much less mysterious kind of problem. To find the secret, one
has merely to ask any child to justify his choice of Figure 3.
The answer will usually be something like this!

"You go from A to B by moving the big circle down.
You go from C to 3 in the same way by moving the big triangle."

On the surface this says little more than that something common
was found in some transformations relating A with B AND C with
3. As a basis for a theory of the child's behavior it has at
least three deficiencies:

It loes not say how the common structure was discovered.

It appears to beg the question by relying on the listener
to understand that the two sentences describe rules that are

131

ARTIFICIAL INTELLIGENCE

identical in essence although they differ in details.

It passes in silence over the possibility of many other
such statements (some choosing different proposed answers).
For example, the child might just as well have said:

"You go from A TO B by putting the circle around the
square..."

or
"You go from A TO B by moving the big figure down," etc.

Aha: If that last statement were applied also to C and 3, the

rules would in fact be identical! This leads us to suggest a

procedure for a computer and also a "mini-theory" for the child:

Step 1. Make up a description DA for Figure A and a de-
scription DC for C.

Step 2. Change DA so that it now describes Figure B.

Step 3. Make up a description D for tihe way that DA was
changed in Step 2.

Step 4. Use D TO CHANGE DC. If the resulting description
describes one of the answer choices much better than any of the
others, we have our answer. Otherwise, start over, but next
time use different descriptions for DA, DC and (perhaps) for D.

Notice that Step 3 asks for a description at a higher level!
The descriptions in Steps 1 and 2 describe pictures, e.g.,

"There is a square below a circle." The description in Step 3
describes changes in descriptions, e.g., "The things around the
upper figure in DA is around the lower figure in DB." Our thesis

is that one needs both of these kinds of description-handling
mechanisms to solve even simple problems of vision. And once
we have such mechanisms, we can easily solve not only harder
visual problems but we can adapt them to use in other kinds of
intellectual problems as well -~ for learning, for language,
and even for kinesthetic coordination.

This schematic plan was the main idea behind a computer program
written in 1964 by T. G. Evans. 1Its performance on "standard"
geometric analogy tests vas comparable to that of fifteen~-year
old children! This came us a great surprise to many people,

who had assumed that any such "mini-theory" would be so extreme
an oversimplification that no such scheme could approach the
complexity of human performance. But experiment does not bear
out this impression. To be sure, Evans' program could handle
only a certain kind of problem, and it does not become better

at it with experience. Certainly, we cannot propose it as a
complete model of "general intelligence". Nonetheless, analogi-
cal thinking is a vital component of thinking, hence having this
theory (Evans, 1964), or some equivalent, is a necessary and im-
portant step. -

132

ARTIFICIAL INTELLIGENCE

In developing our simple schematic outline into a concrete and
complete computer program, one has to fill in a great deal of
detail: one must decide on ways to describe the pictures, ways
to change descriptions, and ways to describe those changes. One
also has to define a policy for deciding when one description
"fits much better" than another. One might fear that the pos-
sible variety of plausible descriptions is simply too huge to
deal with; how can we decide which primitive terms and rela-
tions should be used? This is not really a serious problem.
Try, yourself, to make a great mary descriptions of the rela-
tion between A and B that might be plausible (given the limited
resources of a child) and you will see that it is hard to get
beyond simple combinations of a few phrases like "inside of",
"left of", "bigger than", "mirror-image of", and so on.

But let us postpone details of how this might be done (see
Evans, 1964) and continue to develop our central thesis: by
operating on descriptions (instead of on the things themselves),
we can bring many problems that seem at first impossibly non-
mechanical into the domain of ordinary computational processes.

What do we mean by "description"? We do not mean to suggest
that our descriptions must be made of strings of ordinary-
language words (although they might be). The simplest kind of
description is a structure in which some features of a situa-
tion are represented by single ("primitive") symbols, and rela-
tions between those features are represented by other symbols

-- or by other features of the way the description is put to-
gether. Thus, the description is itself a MODEL -- not merely

a name -- in which some features and relations of an object or
situation are represented explicitly, some implicitly, and some
not at all. Detailed examples are presented in 4.3 for pictures,
and in 5.5 for verbal descriptions of physical situations. In
5.6 there are some descriptions which resemble computer programs.
If we were to elaborate our thesis in full detail we would put
much more emphasis on procedural (program-like) descriptions
because we believe that these are the most useful and versatile
in mental processes.

1.2 Children's Use of Descriptions

The theory of analogy we have just proposed might seem both too
simpleminded and too abstract to be plausible as a theory of

how humans make analogies. But there is other evidence for the
idea that mental visual images are descriptive rather than
iconic. Paradoxically, it seems that even young children (who
might be expected to be less abstract or formal than adults)

use highly schematic descriptions to represent geometric informa-
tion.

We asked a little boy of 5 years
to draw a cube. This is what he

drew. "Very good," we said, and
asked: "How many sides has a
cube?" "Four, of course," he
said.

133

e

ARTIFICIAL INTELLIGENCE

"Of course," we agreed, recognizing that he had understood
the ordinary meaning of "side", as of a box, rather than the
mathematicai sense in which top and bottom have no special

status. "How many boards to make a whole cube, then?"
"Six," he said, after some thought. We asked how many he had
drawn. "Five." "Why?" "Oh, you can't see the other one!"

Then we drew our own conventional
"isometric" representation of a
cube. We asked his opinion of
it. "It's no good." "Why not?"
"Cubes aren't slanted!"

-

Let us try to apprcciate his side of the argument by consider-
ing the relative merits of his "construction-paper" cube against
the perspective drawing that adults usually prefer. We conjec-
ture that, in his mind, the central square face of the child's
drawing, and the four vertexes around it, are supposed in some
sense to be "typical" of all the faces of the cube. Let us

list some of the properties of a real three-dimensional cube:

Each face is a square.

Each face meets four others.

All planc angles are right angles.

Each vertex meets 3 faces.

Opposite edges on faces are parallel.

All trihedral angles are right angles, etc.

Now, how well are these properties realized in the child's
picture?

Each face is a square.

The "typical" face meets four others!
All angles are right!

Each typical vertex meets 3 faces.
Opposite face edges are parallel!

There are 3 right angles at each vertex!

But in the grown-up's pseudo-perspective picture we find that:

Only the "typical" face is square.

Each face meets only two others.

Most angles are not right.

One trihedral angle is represented correctly in its
topology, but only one of its angles is right.
Opposite edges are parallel but only in "isometric",
not in true perspective.

And so on. In the balance. one has to agree that the geometric
properties of the cube are botter depicted in the child's draw-
ing than in the adult's! oOr, perhaps, one should say that the
properties depicted symbolically in the child's drawing are
more directly useful, without the intervention of a great deal
more knowledge.

One could argue that in the adult's drawing, the square face
and the central vertex are understood to be "typical". We

134

ARTIFICIAL INTELLIGENCE

gave him the benefit of the doubt. Also, one never sees more
than 3 sides of a Ccube, but children can't seem to know this,
or feel that it is important. The parallelisms and the general
"four-ness" surely dominate.

Incidentally, we do not mean to suggest that our child had in
his mind anything like the graphical image of his drawing, but
rather that he has a structural network o: Properties, features,
and relations of aspects of the cube, and that what he drew
matches this structure better than does the adult's more iconic
picture. In 4.4 we will show how such structural networks can
be used as a program that learns new concepts as a result of
experience.

Not all children will draw a cube just this way. They usually
draw some arrangement of squares, however, and this sort of re-
presentation is typical of children's drawings, which really
are not "pictures" at all, but attempts to set down graphically
what they feel are the important relations between things and
their parts. ¥

Thus "a ring of children holding
hands around the pond" is drawn
like this, perhaps because the
correct perspective view would
put some of the children in the
water.

Also, in the child's drawing the people are all%t right angles
to the ground, as they should be!

For the same reason, perhaps,

"trees on the mountain" is drawn

this way because trees usually

grow straight out of the ground.

It doesn't matter if an actual scene

is right in front of the child; he

will still draw the trees sideways! \

A person is often drawn this
wWay, perhaps partly because the
0 > body that is so important to
ans the adult doesn't really do
much for the child except get
in his way, partly because it
does not have an easily-described
shape.

From all this we are led to a new view of what children's draw-
ings mean. The child is not trying to draw "the thing itself"

-- he is trying to make a drawing whose description is close

to his description of that thing -- or, perhaps, is constructed
in accord with that description. Thus the drawing problem and

the analogy problem are related.

We hope no reader will be offended by the schematic simplicity
of our discussion of "typical children's drawings". Certainly

135

o
&

ARTIFICIAL INTELLIGENCE
v

Qe are focusing ©n some common phenomena, and neglecting the
fantastic variety and plasticity of what children do and learn.
vat even in that plasticity we see the dominance of symbclic
description over iconic imitation.

Most children before 5 or 6 years

old draw pcople like this. Find o0
such a child and ask him, "Where is o
his hair?" and driw some, or e’

say, "Why doesn't a1is nose stick
out?" and draw an angular line in
the middle of _he face.

Chances are that if the child
pays any attention at all and
likes your idea, these features
will appear in every face he
dravws for the next few months.
The hair is obviously symbolic.
The new nose is no better,
optically, than the old, but
the child is delighted to learn
a symbolism to depict protusion.

There is a vast literature describing phenomena and theories

of "learning" in terms of the gradual modification of behavior
(or behavioral "dispositions") over long sequences of repeti-
tion and tedious "schedules" of reward, deprivation and punish-
ment. There is only a minute amount of attention to the kind
of "one-trail" experience in which you tell a child something,
or in which he asks you what some word means. If you tell a
child, just once, that the elephants in Brazil have two trunks,
and meet him acain a year later, he may tell you indignantly
that they do not.

The success of Evans' program for solving analogy problems does
not prove anything, in a strict sense, about the mechanisms of
human intelligence. But such programs certainly do provide

the simplest (indeed, today the only) models of this kind of
thinking that work well enough to justify serious study.

It is natural to ask whether human brains "really" use symbolic
descriptions or, instead, manage somehow to work more "directly"
with something closer to the original optical image. It would
be hard to design any direct experiment to decide such a gques-
tion in view of today's limited understanding of how brains
work. Nevertheless, the formalistic tendencies shown in the
children's drawings point clearly toward the symbolic side.

The phenomena in the drawings suggest that they are based on a
rather small variety of elementary object-symbols, positioned

in accord with a few kinds of relations involving those symbols,
perhaps taken only one or two at a time. These phenomena are
not seen so clearly in the pictures of sophisticated artists,
but even so we think the difference is only a matter of degree.
While it is possible to train oneself to draw with quantitative
accuracy, some aspects of the "true" visual image, the very
difficulty of learning this is itself an indicator that the
symbolic mode is the more normal manner of performance. Even

136

=

ARTIFICIAL INTELLIGENCE

sophisticated adults often show a preference for unreal but
tidy "isometric" drawings over more "realistic" perspective
drawings:

(1)

even though a cube is never seen exactly as in (l1). In any
case, all this suggests that "graphic" visual mechanisms be-
come operative later (if at all) in human intellectual develop-
ment than do methods based on structural descriptions. This
cuenclusion seems surprising because in our culture we are prone
to thirk of symbolic description as advanced, abstract, and
intellectual, hence characteristic of more advanced stages of
maturation.

2.1 Appearance and Illusion

Now consider some phenomena that might seem to be more visual,
less intellectual. These two figures show the same rectangle.

\/ 77
>b XLILK
. =

But on the right, the diagonal stripes affect its appearance so
that (to most people) the sides appear to lean out and no longer
seem perfectly parallel. Such phenomena have been studies with
great intensity by psychologists. In the next two figures,

the central squares actually have the same grey color, but
everyone sees the one at the left as darker.

A good deal is known about the effects of nearby figures or
backgrounds on another figure. Perhaps most familiar is the
phenomenon in which the directions of the oblique segments
make the horizontal line in the left figure appear shorter
than that in the right figure.

<> > <

137

e e i~ TR

3
o R

ARTIFICIAL INTELLIGENCE

But the strangest illusion of all is this: to many psycholo-
gists these phenomena of small perceptual distortions have come
to seem more important than the question of why we see the
figures at all, as "rectangle", or "square", or as "double-
headed arrows!". Surely this problem of how we analyze scenes
familiar objects is a more central issue.

Thus one finds much

more discussion why l“hh““‘mahﬁhﬁ:fh“mﬁh:\\\k
the smaller figure ﬁ:\%

looks larger in "
pictures like this P

than about why one
--_-___________.-
—
#HHH!‘ z’ff //’

sees the figures as

people at all.

We agree that the study of distortions, ambiguities, and other
"illusions" can give valuable clues about visual and other mech-
anisms. To resolve two or more competing theories of vision,
such evidence might become particularly useful. First, how-
ever, we need to develop at least one satisfactory theory of

how "normal" visual problems might be handled, particularly
scenes that are complicated but not especially pathological.

Let us look at a few more visual pheno-
mena. Both of these figures appear at
first sight to be reasonable pictures of
pyramid-bases -- that is, of simple flat-
surfaced, five-faced bodies that could be
pyramids with their tops cut off. But in
v fact, Figure B cannot be a picture of such
a body. For its three ascending edges
(if extended) would not meet at a single
point, whereas those of Figure A do form a
vertex for a pyramnid.

So here we have a sort of negative illusion; Figure B would
not "match" a real photograph of any pyramid-vase. However,
it could match quite well an abstract description of a pyramid
base -- say, one that describes how its faces and edges fit
together (qualitatively, but not quantitatively).

/ Another topic concerns "camou-
flaged" figures. The figure
//{ "4" embedded in this drawing
is not normally seen as such

because, we presume, one des-
cribes the scene as a square
and parallelogram.

Study of this kind of concealment can tell us something about
the "principles" according to which our visual system "usually"
describes scenes as made up of objects. But once the "4" has
been pointed out or discovered, it is then "seen" quite clearly!
A good theury must also account for phenomena in which it is

138

ARTIFICIAL INTELLIGENCE

possible to change and elaborate one's "image" of the same
scene in ways that depend on changes in his interpretation
and understanding of the structure "shown" in the picture.

A simpler -- and more interesting -- example of a figure with
two competitive descriptions is the ordinary square! Young
children know the square and the diamond as two quite distinct
shapes, and the ambiguity persists in adults, as seen here.
(See Attneave, 1968.)

The four objects at the left are .
usually seen as diamonds, while .
those on the right are seen as .
Squares. How can we exylain .
this? Since the individual objects .

are ir fact identical, the effect .
must have something to do with .

their arrangement. It is tempting .
to incant the phrase -- "the whole

is more than the sum of the parts",

Now consider a descriptive theory. If one is asked to describe
this scene, he will say something like: "There are two rows,
each with four objects. Orne is a horizontal row of -- etc."

We ignore details here, but suggest that the description is
dominated by the grouping into rows, as indicated by their pri-
ority in the verbal presentation of the description. In Sec-
tion 4.6 we discuss a program that does something of this sort.

By "description" we do not usually mean "verbal des-
cription"; we mean an abstract data structure in which
are represented features, relations, functions,
references to processes, and other information. Be-
sides representing things and relations between things,
descriptions often contain information about the
relative importance of features to one another, e.q.,
commitments about which features are to be regarded

as essential and which are merely ornamental. For
example, much of linguistic structure is concerned
with the ability to embed hierarchies of detail into
descriptions: subordinate clause formation and other
werd-order choices often reflect priorities and
progressions of structural detail in the descriptions
that are "meant". We will return to this in Section
5.

Once commited to describing a row of things, the choice between
seeing squares and diamonds begins to make more sense. Which
description does one choose? Apparently, the way one describes
a square figure depends very much on how one chooses (in one's
mind) the axis of symmetry. Consider the differences in the
figures' descriptions in each of the two obvious choices of
orientation shown in the next figure.

139

ARTIFICIAL INTELLIGENCE

«— ——t > ¢ ———d——p—1 >
v i
i
|
points on axis sides parallel to axis {
one point on each side two points on each side
made of two triangles made of two rectangles
unstable on ground stable ~-- flat bottom
hurts when squeezed safe to pick up

These two descriptions could hardly be more different! No
wonder that most 3 year olds do not believe that they are the
same. In fact, children's drawings of diamonds often come out

- .

indicating that their descriptive image is a composition of

two triangles, or at least that the most important features are
the points on the symmetry axes. Our mystery is then almost |
solved: whatever process set o «<>»4<>»

up the description in terms of <:>'<€>" =

rows set up also a spatial frame ‘?sy |

of reference for each group. zS;
&
QR

Since one has to choose an axis for each square and "other
things being equal" there is no strong reason locally for
either choice, one tends to use the axis inherited from the
direction of its "row". The fact that you can, if you want,
choose to see any of the objects as either diamond or square
only confirms this theoretical suggestion -- the choice is by
default only, and hence would be expected to carry little
force.

§
4
1
1;

Once this door is owvened, it suggests that other choices one
has to make in visual description also can depend on other alien
elements in one's thoughts -- as well as on other things in the
picture! Every simple figure is highly ambiguous. In a face,
a circle can be an eye, a mouth, an ear, or the whole head.
There should be no difficulty in admitting this to our theory
-= or to the computer programs that demonstrate its consistency
and performance. Traditional theories directed toward physical
(rather than on computational, or symbolic) mechanisms were
inherently unable to account for the influence of other know-
ledge and ideas upon "perception".

-

140

ARTIFICIAL INTELLIGENCE

2.2 Sensation, Perception and Cognition

Our discussion of how images depend on states of mind is part
of a broader attack on the conventional view of the structure
of mind. In today's culture we grow up to believe that mental
activity operates according to some scheme in which informa-
tion is transformed through a sequence of stages like:

(ORLD=-E ENS AT 10N ERCEPTTON=aRECOGNIT ION=#~COGN IT IO . .

Although it is hard to explain exactly what these stages or
levels are, everyone comes to believe that they exist. The
"new look" in ideas about thinking rejects the idea that there
are separate activities like "perception" that precede and are
basically independent of "higher" intellectual activities.
What one "sees" depends very much on one's current motives,
intentions, memories, and acquired processes. We do not mean
to say either that the old layer-cake scheme is entirely wrong
or that it is useless. Rather, it represents an early concept
that was once a clarification but is ncw a source of obscurity,
for it is technically inadequate against the background of
today's more intricate and ambitious ideas about mechanisms.

The higher nervous system is embryologically, and
anatomically divided into stages of some sort and
this might sugcest a basis for the popular-science
hierarchy. This makes sense for the most peripheral
sensory and motor systems, in which transmission
between anatomical stages is chiefly unidirectional.
But (presumably) when we go further in the central
direction this is no longer true, and one should

not expect the geometrical parts of & cybernetic
machine to correspond very well to its "computational
parts".

Indeed, the very concept of "part", as in a machine, must be
rebuilt when discussing programs and processes. For example,
it is quite common in computer programs -- ancd, we presume, in
thought processes -- to find that two different procedures use
each other as subprocedures! We shall see this happening
throughout Section 5. 1In such a case, one can hardly think of
either process as a proper part of the other. So the tradi-
tional view of a mechonism as a HIERARCHY cof parts, subassemblies
and sub-sub-assemblies (e.g., the main bearing of the fuel pump
of the pitch vernier rocket of the second ascent stage) must
give way to a HETERARCHY of computational ingredients.

It is unfortunate that technical theories, and cven practical
guidelines, for such heterarchies are still in their infancies.
The rest of this chapter discusses some aspects of this problem.

2.3 Parts and Wholes

A recurrent theme in the history of psychological thinking in-
volves recognizing an important distinction without having the

141

ARTIFICIAL INTELLIGENCE

technical means to give it the appropriate degree of precision.
Consequently, the dividing line becomes prematurely entrenched
in the wrong place. An influential example was the concept of
"Gestalt". This word is used in attempts to differentiate
between the simplest immediate and local effects of stimulai,
and those effects that depend on a much more "global" influence
of the whole stimulus "field".
Here is a visual example in
which this kind of distinction
might be considered to operate:
In one sense, this arch is
"nothing but" three blocks.

But the arch has properties -- as a single whole -- that are
not inherited directly from properties of its parts in any
simple way. Some of those arch properties are shared also by
these structures:

78 B8 WY £

MORE ARCHES

Obviously the properties one has in mind do not reside in the
individual building blocks, they "emerge" from the arrangements
of those parts. And one finds this in even simpler situations.
Obviously we react to a simple outline square in a way that is
very different from our reactions to four separate lines, and
rather similar to how we react to such graphically different
figures as these:

0o 0 0 0 0 A

SQUARES

The question "whence comes the square if not from its parts"

is not really very serious here, for it is easy to make theories
about how one might "perceive" a shape if there are enough
easily-detected features to approximately delineate its

142

LTy

(RN ¥

ARTIFICIAL INGELLIGENCE

geometric form. But there is no similarly easy solution to the
kinds of problems that arise when one looks at three-dimen-
sional scenes.

The next two figures are "locally identical"™ in the following
precise sense: Imagine innumerable experiments, in each of
which we choose a different point of the picture to look at,
and record what we see only within a very small circle around
that point.

Both pictures would produce
identical collections of data!
-- provided that we keep no
records of the lo-ations of
the viewpoints. 8o in this

= sense both pictures have the

CONNECTED DISCONNECTED same "parts". They are
obviously very different, how-
ever.

One particularly outstanding difference is that one picture is
all in one piece -- it is CONNECTED -- while the other is not.
In fact, both pictures are composed of just these kinds of

O O D O
0 © G o O

In our book Perceptrons we prove that,in general, one cannot
use statistics about such local evidence to distinguish between
figures that are "connected" and those that are not.

From this, one might conclude that one can tell very little
about a picture from such "spatially local" evidence. But this
is not true. For example, we can completely define the pro-
perty of being "m .e-entirely-of-separate,-solid,-rectangles"
by requiring that all very small parts of the scene look like
one or another of these micro-scenes:

OO0 06 @@

that is, every micro-scene must be either homogeneous, a simple
edge, or a convex right-angle corner.

% 143

ARTIFICIAL INTELLIGENCE

It is not hard to see that this definition will accept any pic-
ture that contains only solid rectangles, but no other kind of
picture. So in this sense, "rectangle-ness" can be defined in
terms of local properties, while connectedness cannot. Try to
define, "composed-of-a-single-solid-rectangle" in this way.

It cannot be done! So we see a difference between two kinds

of categories of pictures, in regard to the relations between
their parts and their wholes!

The question, "Is the whole more than the sum of its parts?"
is certainly provocative and insightful. But it must be re-
cognized also as vague, relative, and metaphorical. What is
meant by "parts" and, more important, what is meant by "sum"?

In the case of the rectargles a trivial sense of "sum" will
suffice: not even adding up evidence is necessary, for we can
make the decision in favor of rectangle, and let any single
exception to our condition on the local "micro-scenes" have
absolute veto power. So the"sum of the parts" is simply the
agreement of all local evidence. For connectedness we seem to
need something more complicated, computationally. We have
studied this situation rather deeply in Perceptrons: connect-

edness is a property that is quite important and very thoroughly

understood in classical mathematics; it is in fact the central
concern of the entire subject of Topology.

For example, here are several quite different-looking condi-
tions,each of which can be used to define the same concept of
connectedness:

PATH-CONNECTION. For any two klack points of the
picture, there is a path connecting them that lies
entirely in black points.

PATH-SEPARATION. There is no closed path, entirely

in white points, such that there are some black points
inside the path and some black points outside the
path.

SET-SEPARATION. The black points cannot be divided
into two non-empty sets which are separated by a .
non-zero distance -- that is, no pair of points, one
from each set, are closer than a certain distance.

TOTAL-CURVATURE. Assume that there are no "holes"

in the black set -- that is, white points that are

cut off from the outside by a barrier of black points.
Then compute the sum of all the boundary curvatures
(direction-changes at all edges of the figure), taking
convex curves as positive and concave curves as nega-
tive. The picture is connected if this sum is exactly
360 degrees. If it is a multiple of 360, this gives
the number of objects!

Each of these suggests different computational approaches. De-
pending upon what resources are available, one or another will

144

g

[P R

ARTIFICIAL INTELLIGENCE

be more efficient, use more or less memory, time, hardware,

etc. Each definition involves very large calculations in any
case, except the fourth, in which one computes simply a sum of
what one observes in each small neighborhood. However, the
fourth definition does not work in general, but only for figures
without holes. And, to be sure that condition is satisfied one
must have another source of information (e.g., if one knows he

is counting pennies) or else the definition is somewhat circu-
lar, because to be able to see that there are no holes is really
equivalent to being able to see that the background is connected!

We know exactly what it means for the number seven to be the
sum of the numbers three and four. But when we ask whether a
house is just the sum of its bricks, we are in a more compli-
cated situation. One might answer:

"Yes, there is nothing but bricks there."
But another kind of answer could be

"No, for the same bricks arranged differently would
have made a very different house."

The answer must depend on the purpose of the question. If we
admit only "yes" or "no", there is no room for refinement and
subtlety of discussion. We do not really want either of the
answers "Yes, it is nothing but the sum" or "No, it is a
Gestalt, a totally different and new thing". We really want to
know exactly how the response, image, or interpretation of the
situation is produced: we want an explanation of the phenomenon.
And the terms of the explanation must be appropriate to the

kind of technical question we have in mind. Sometimes one wants
the result in terms of a particular set of psychological con-
cepts, sometimes in terms of the interconnections of some per-
haps hypothetical neural pathways, and sometimes in teims of
some purely computational schemata.

Thus one might ask, about some aspect of a person's behavior:

COMPONENTS: Can the phenomenon be produced in a
certain kind of theoretical neural network?

LEARNING: Can it be learned by a certain kind of
reinforcement schedule according to certain proposed
laws of conditioning?

COMPUTATIONAL STRUCTURE: Can this result be computed'
by a computer-1like system subject to certain restric-
tions, say, on the amount of memory, or on the
exclusion of certain kinds of loops interconnecting
its components?

COMPUTATIONAL SCHEMATA: Can the outer behavior of

this individual reasonably be imitated by a »rogram
containing such-and-such a data-structure and such-and-
such a syntactic analyser and synthesizer?

145

TN

ARTIFICIAL INTELLIGENCE

The way in which the whole depends upon its parts, for any
phenomenon, has a direct bearing on how such questions can be
answered. But to supply sensible answers, one needs a stock
of crisp, precise, ideas about how parts and wholes may be re-
lated!

It is important to recognize that these kinds of problems are
not special to psychology. Water has properties that are not
properties either of hydrogen or oxygen, yet chemistrv is no
longer plagued by fights between two camps -- say, "Atomist"
vs. "Gestalt". This is not at all because the problem is un-
important: exactly the opposite! The reason there are no
longer two camps in Chemistry is because all workers recognize
that the central problems of the field lie in developing good
theories of the different kinds of interactions involved, and
that the solution of such problems lie in constructing adequate
scientific and mathematical models rather than in defending
romantic but irrelevant philosophical overviews. But in psy-
chology and biology, there remains a widespread belief that
there are phenomena of mind or of cell that are not "reducible"
to properties and interactions of the parts. They are saying,
in essence, that there can be no adequate theory of the inter-
actions.

Consider a concrete example.
It is relatively easy to bend
a thin rod, but much harder

to bend this structure made of
several such rods. Where does
the extra stiffness come from?

SUPPORTED ROD w kG
JI
The answer, in this case, is ” W #
that the "new property" is indeed Vs JT /3
inherited from the parts, because
of the arrangement, but in a
peculiar way. In the truss, a - W —3W
force at the middle is resisted /3 /3
== not by bending-forces across
the rods -- but by compression
and tension forces along the rods.
TRUSS

The resistance of a thin rod to forces along it is much greater
than the resistance to forces across it. So the increases
strength is indeed "reduced", in the Theory of Static Mechanics,
to the interactions of stresses between members of the struc-
ture. Even the properties of a single rod itself can be ex-
plained in terms of more microscopic interactions of the tensile
and compressive forces between its own (:) "parts", when it is
strained. By imagining the rod itself to be a truss (a heuris-
tic planning step that helps one to write down the correct
differential equation) we can analyze stress-strain relations

146

e

e —
.

:k.-‘v&Iﬁ

ARTIFICIAL INTELLIGENCE

inside the rod. Thus one obtains such a beautiful and accurate
model that there remains no mysterious "Gestalt" problem at all.

This is not to say that special arrangements have no special
properties. In some of Buckminster Fuller's work, the dode-
cahedral sphere yields a kind of structural stiffness rather
different than that in the triangular truss. Here the rigidity
does not come directly from that of small or "local" triangular
substructures, and it takes a different kind of mathematical
analysis to see why it is hard to distort it. Even so, there
remains no mysterious "emergent" property here that cannot be
deduced from the classical theory of statics.

Of course, our real concern is with problems of intelligence,
rather than with engineering mechanics. But many problems
that seem at first to be "purely psychological" often turn out
to center around just such problems of wholes and parts. And
with such an interpretation, we may replace an elusively ill-
defined psychological puzzle by a much sharper problem within
the theory of computation.

The computer is the example par excellence of mechanisms in
which one gets complex results from simple interactions of
simple components. In asking how thought-1like activity could
be embedded in computer programs, scientists for the first
time really came to grips with understanding how intelligent
behavior could be made to emerge from simple interactions.

The issue seems really to be fundamentally one of assessing
the complexity of processes. The content of the Gestalt
discoveries is that certain psychological phenomena require
forms of computation that lie outside the scopes of certain
models of the brain -- and outside certain conjectures about
the "elementary" units of which behavior is supposed to be
composed. So, the whole discussion must be considered in
relation to some overt or covert committment about what units
of behavior, or of brain-anatomy, or of computational capacity,
are supposed to be "atomic".

To illustrate extreme Versions of atomism vs. Gest. .ltism one
mignt consider these caricatures:

EXTREME ATOMISM: All behavior can be understood in
terms of simple functions of neural paths that run
from single receptors, through internuncials, to
effectors.

EXTREME GESTALTISM: The essence in this is the
whole pattern. Many simple examples show that the
response is made to the whole stimulus and cannot
be represented as simple sums or products of simple
local stimulations.

Clearly one does not want to set a threshold between these;
one wants to classify intermediate varieties of interactions
that might be involved, arranged if possible in some natural
order of complexity.

147

ARTIFICIAL INTELLIGENCE

%

Thus in Perceptrons we studied a variety of simple schemas
such as these:

EXTREMELY ATOMIC ALGORITHM: One of the input wires
is connected to the output, the others to nothing.

VETO ALGORITHM: If every input says "yes", the
output is "yes". If any input says "no", the output
is "no".

MAJORITY ALGORITHM: If M or more of N inputs say
"yes", output is "yes".

LINEAR SUM ALGORITHM: To each input is assigned a
"weight". Add together the weights for just those
inputs that say "yes". The output is just this sum.

LINEAR THRESHOLD ALGORITHM: Use the LINEAR SUM al-
gorithm, except, make the output "yes" if the sum

1s greater than a certain "threshold", otherwise the
output is "no".

Exercise: the reader should convince himself that "extremely
atomic", "veto", and "majority" are special cases of "linear
threshold".

EQUIVALENT-PAIR ALGORITHM: The input is considered
to be grouped in pairs. The output is "yes" only
when, for every pair, the two members have the same
input values.

The reader should convince himself that this is not a special
case of "linear threshold"!

SYMMETRICAL ALGORITHM: The response is "yes" if
the pattern of inputs is symmetrical about some
particular center, or about some particular linear axis.

This is a special case of the equivalent-pair algorithm. They
are both examples of perceptrons in which the global function
can be expressed as a linear threshold function of intermediate
functions of two variables. Here the whole is only trivially
more than the sum of the parts.

PERCEPTRON ALGORITHM: First some computationally
very simple functions of the inputs are computed,
then one applies a linear threshold algorithm to
the values of these functions.

Many different classes of perceptrons have been studied; such
a class is defined by choosing a meaning for the phrase "very
simple function". For example, one might specify that such a
function can depend on no more than five of the stimulus
points. This would result in what is called an order-five
perceptron. All of the examples above had order one or two.
The next example has no "order restriction", but the functions

148

ARTIFICIAL INTELLIGENCE

are very simple in another sense; they are themselves "order
one" or linear-threshold functions.

GAMBA PERCEPTRON: A number of linear threshold
systems have their outputs conrected to the in-

puts of a linear threshold system. Thus we have

a linear threshold function of many linear threshold
functions.

Virtually nothing is known about the computational capabilities
of this latter kind of machine. We believe that it can do

little more than can a low order perceptron. (This, in turn,
would mean, roughly, that although they could recognize some
relations between the points of a picture, they could not handle
relations between such rolations to any significant extent.)

That we cannot understand mathematically the Gamba perceptron
very well is, we feel, symptomatic of the early state of develop-
ment of elementary computational theories.

Which of these are atomic and which Gestaltist? Rather than
muddle through a philosophical discussion of which cases "really"
do more than add the parts, we should try tc classify the kinds
of mechanisms needed to realize each in certain "hardware"
frameworks, chosen for good mathematical reasons. Then for

each such framework, we might try to see which admit simple
reinforcement mechanisms for learning, which admit efficient
descriptive teaching (see Section 4) , which admit the possi-
bility of the cognitive machinery "figuring out for itself"

what are the important aspects of a situation!

To supply such ideas, we have to make theoretical models and
systems. One should not expect to handle complex systems until
one thoroughly understands the phenomena that may emerge from
their simpler subsystems. This is why we focused so much at-
tention on the behavior of perceptrons in problems of computa-
tional geometry. It is important to emphasize that we want to
understand such systems for the reasons explained above, rather
than as possible mechanisms for practical use. When a mathema-
tical psychologist uses terms like "linear", "independent", or
"Markoff Process", etc., he is not (we hope!) proposing that a
human memory is one of those things; he is using it as part of
a well-developed technical vocabulary for describing the struc-
ture of more complicated schemata. But until recently there
was a serious shortage of ways to describe more procedural as-
pects of behavior.

The community of ideas in the area of computer science makes a
real change in the range of available concepts. Before this,
we had too feeble a family of concepts to support effective
theories of intelligence, learning, and development. Neither
the finite-state and stimulus-response catalogs of the Behavior-
ists, the hydraulic and economic analogies of the Freudians, or
the holistic insights of the Gestaltists supplied enough tech-
nical ingredients to develop such an intricate subject. It
needs a substrate of debugged theories and solutions to related
but simpler problems. Computer science has brought a flood of
such ideas, well defined and experimentally implemented, for
thinking about thinking; only a fraction of them have distin-

149

ARTIFICIAL INTELLIGENCE

guishable representations in traditional psychology:

symbol table

pure procedure
time-sharing
calling sequence
functional argument
memory protection
dispatch table
error message
function-call trace
breakpoint

formal language
compiler

indirect address
macro language
property list

data type

hash coding
micro-program
format matching
syntax-direction

closed subroutine
pushdown list

interrupt

communication cell

common storage

decision tree
hardware-software trade-off
serial-parallel trade-off
time-memory trade-off
conditional breakpoint
asynchronous prucessing
interpreter

garbage collection

list structure

block structure
look-ahead

look-behind (cache)
diagnostic program
executive program
operating system

These are only a few ideas from the environment of general
"systems programming" and debugging; we have mentioned none
of the much larger set of concepts specifically relevant to
programming languages, artificial intelligence research, com-
puter hardware and design, or other advanced and specialized

areas.,
cate craft, programming.

All these serve today as tools of a curious and intri-
But just as astronomy succeeded

astrology, following Kepler's discovery of planetary regulari-
ties, the discoveries of these many principles in empirical
explorations of intellectual processes in machines should lead

to a science, eventually.

3. Analysis of Visual Scenes

No one could have any doubt about what thi

to show: "Four blocks,
lying across it."

S picture is supposed

three forming a bridge with the fourth
We would 1like

to program a machine to be able to
understand scenes to at least this

level of comprehension.
that our description involves

recognizing the "bridge" as well
as the blocks that comprise it, and

Notice

\U

that the phrase "lying across it"

indicates knowing that the block

is actually resting on the bridge.
rather than to the top block of the
there is implied a further level of functional analy-

reference to the bridge,
bridge,
sis.

FOUR BLOCK BRIDGE
Indeed, in the pronoun

In our earlier progress reports we described the SEE program
(Guzman 1968) which was able to assemble the thirty vertices,
forty segments and thirteen regions of this picture into four
objects, using a variety of relatively local "linkage" cues.

150

ARTIFICIAL INTELLIGENCE

A new program, (Winston 1970) goes further in the analysis of
three-dimensional support and can recognize groups of objects
as special structures (!such as "bridge") to yield just the
kind of functional description we are discussing. Winston's
program is even able to LEARN to recognize such configurations,
using experience with examples and non-examples, as shown in
Chapter 4.

Before discussing Scene-analysis in detail, we have a few re-
marks about the nature of problems in this area. 1In the early
days of cybernetics (McCulloch-Pitts 1943, Wiener 1949) it was
felt that the hardest problems in apprehending a visual scene
were concerned with questions like "why do things look the same
when seen from different viewpoints", when their optical images
have different sizes and positions.

AnT I

How does one capture the "abstraction" or "concept" common to
all the particular examples. For two-dimensional character-
recognition, this kind of problem is usually handled by a
two-step process in which the image is first "normalized" to
Standard position and then "maiched" -- by a correlation or
filtering process -- to one of a set of standard representa-
tives. In practical engineering applications, the "normaliz-
ing" often failed because it could not disarticulate parts of
images that touch together, and "matching" often failed because
it is hard to make correlation-like processes attend to "im-
portant” par*s of the figures instead of to ornaments. Even
$O, such methods work well enough for reasonably standardized
symbols.

If, however, one wants the machine to read the full variety of
typography that a literate person can, the problem is harder,
and if one wants to deal with hand-printing, quite different
methods are needed. One is absolutely forced to use exterior
knowledge involving the pictures' contexts, in situations like
this. (Selfridge, 1955)

THE AT

Here the distinction between the "H" and the "A" is not geo-
metric at all, but exists only in one's knowledge about the
language. An early program that could do this was described

in Bledsoe and Browing 1959. But we will not stop to review

the field of character-recognition, for its technology is quite
alien to the problems of three-dimensional scenes. This is
because the problems that concern us most, like how to separate
objects that overlap, or how to recognize objects that are parti-
ally hidden (either by other objects or by occluding parts of

151

ARTIFICIAL INTELLIGENCE

their own surfaces), simply do not occur at all in the two-
dimensional case. Some more interesting two-dimensional problems
require description when geometric matching fails; a conceptual
"A" is not simply a particular geometric shape; it is

"Two lines of comparable length that meet at an
acute angle, connected near their middles by a
third line."

3.1 Programs for Finding Bodies in Scenes

Let us review quickly how Guzman's SEE program works. First a
collection of "lower level" programs are made to operate dir-
ectly on the optical data. Their job is to find geometric
features of the picture -- regions, edges and vertices -- so
that the scene can be described in a simple way in the program's
data-structure. Next, the vertices are classified into "types".
The most important kinds are these:

D =

ARROW FORK TEE TRANS

The main goal of the program is to divide the scene into
"objects", and its basic method is to grovp together regions
that probably belong to the same object. Each type of vertex
is considered to provide some evidence about such groupings,
and can be used to create "links" between regions.

For example, the ARROW type of vertex
usually is caused by an exterior corner
of an object, where two of its plane
surfaces form an edge. So we insert

a "link" between the two regions that
are bounded by the two smaller angles:

Similarly, the FORK type of
vertex, which is usually due to
three planes of one object,
Causes three links between those
regions.

152

ARTIFICIAL INTELLIGENCE

Using these clues, and representing the resulting relations by
simple abstract networks, many scenes are "correctly" analyzed
into objects.

0%) A
S

If two TEE vertices have their stems in the same line then we
Create two more links: This often does just the right thing
for an object whose picture is divided into two separate parts
by another object in front.

;lii"'
;l
LAY
A
‘\
a)

LI P

Many scenes are handled correctly by just these simple rules,
but many are not. For example, the basic assumption about the
FORK linking its three regions is not true of concave corners,
and the "matching TEE" assumption may be false by coincidence,
sO that "false links" may be produced in such cases as these:

Guzman introduced several methods for correcting such errors.
One method involves a conservative procedure in which groupings
are considered to have different qualities of connectedness.
Two high-quality groups that are connected together by only a
single link are broken apart =-- the link is deleted.

A second error-correction method is more interesting. Here we
observe that the TEE vertex really has a special character, quite

153

[OREE 1

ARTIFICIAL INTELLIGENCE

opposed to that of the FORK and the ARROW. The most usual
physical cause of a TEE is that an edge of one object has dis-
appeared under an edge of another object. Hence, we should re-
gard the TEE joint as evidence against linking the correspond-
ing regions! Guzman's implementation of this was to recognize
certain kinds of confiqurations as special situations in which
the existence of one kind of vertex-type causes inhibition or
cancellation of « link that would otherwise be produced by the
other vertex-type. That would happen, for example, in these
figures:

This technique corrects many errors that the more "naive" sys-
tem mikes, especially in objects with concavities. Note that

it wctempts to compute Connectedness: -- for is not the notion
of "object" as we are using it,exactly that idea? -- by extremely
local methods, while the (better) system with cancellation is
less local because of the effects of vertex-types of contiguous
or closely-related geometric features.

Guzman's method might seem devoid of the normalization and match-
ing operations. Indeed, in a sense it has nothing to do with
"recognizing" at all; it is concerned with the separation of
bodies rather than with their shapes. But both normalization
and matching are more or less inherent in the descriptive lan-
guage itself, since the very idea of vertex-type is that of a
micro-scene which is invariant of orientation, scale, and posi-
tion. This scheme of Guzman's is very much in accord with the
Gestaltists' conceptual scheme in which the separation of fig-
ure from backgrcund is considered prior to,and more primitive
than, the percoption of form.

The "cancellation" scheme has a more intelligible physical mean-
ing. It has been pointed out by D. Huffman (1970) that each
line in a line-drawing may be interpreted as a physical edge
formed (we assume) by the intersection of two planes, at least
locally. In some cases, one can see parts of both planes, but
in other cases, only one. A T-joint is good evidence that the
edge involved is of the latter kind,and once one assigns such
an interpretation to an edge, then it follows immediately that
the adjacent Guzman links to the alien surface ought to be re-
jected. Accordingly, Huffman developed a number of procedures
for making detailed global interpretations from local edge-
region assignments.

We will not give further details of the SEE program here. As

an example of its performance, it correctly separates all the
objects in this scene.

154

ARTIFICIAL INTELLIGENCE

But SEE has faults, among which are:

ORDINARY "MISTAKES": Certain
simple figures are not handled
"correctly". To be sure, all
figures are inherently ambiguous
(any scene with n regions could
conCeivably arise from a picture
of n objects). Our real goal is
to find an analysis that makes
sense in everyday situatiors.
Normally one would not suppose
that this is a single body, but
SEE says it is, because all re-
gions get linked together.

INFLEXIBILITY: If its very first
proposal is not acceptable, the
body-aggregation program ought

to be able to respond to com-
plaints from other higher-
lower-level programs and thus
generate some alternative "parsings
of the scene. For example, SEE
finds a single body in the top

one of these figures, but it should {
be able to produce the two other
alternatives shown below it.

(It is interesting how difficult
it is for some humans to see the
third parsing.)

“STRTTrTY

FUEE -

IGNORANCE: It has no way to use knowledge about common or
plausible shapes. While it is a virtue to be able to go so far
without using such exterior information, it is a fault to insist
on this!

155

ARTIFICIAL INTELLIGENCE

Following Guzman's work, Martin Rattner has described a proce-
dure, called SEEMORE, that can handle some of these problems.
[Rattner 1970] While it uses linking heuristics much as did
Guzman, SEEMORE puts more emphasis on local evidence that ah
edge might separate two bodies. These "splitting heuristics"
operate initially at certain kinds of vertices, notably TEE=
vertices and vertices with more than three edges (which were
not much used in earlier programs). When there is more taan
one plausible alternative, SEEMORE uses other evidence to make
tentative choices of how to continue a splitting line, but stores
these choices on back-up lists that can later be used to gen-
erate alternative parsings.
L
Here is a simple example. 1In
a this figure, one might imagine
splitting either along the line
a-b-c or along the line d-b-e.
The central vertex 'b' suggests
b (locally) either of these; on
c the other hand, such splits as
a-b-d or a-b-e are considered
much less likely.

d

The vertex 'a' strongly suggests a split along a-b, while neither
‘c', 'd', nor 'e' have much in their favor. Thus SEEMORE starts
a split at 'a' and continues at 'b' toward 'c'. Generally,
splits originate at TEE's, propagate through L's and matching
TEE's, and avoid the sharpest turns through the multiple-edge
vertices.

Degenerate situations like this, in which a small change in

(A) (8)

viewing angle produces a different topology, are likely to lead
to "incorrect" analyses. Rattner uses a rather conservative
linking phase, in which links are placed more cautiously than

in SEE, but using similar "inhibiting" rules. Regions that are
doubly-linked to one another by these are considered, "strongly"
bound; then the heuristic rule is to attempt to split around
these "pucleii", and to avoid splitting through them.

It would be tedious to give full details here, partly because
the subject is so specialized, but primarily because the pro-
cedure has not been tested and debugged in a wide enough variety
of situations. A few examples follcw.

156

[ORR | Sppy .

ARTIFICIAL INTELLIGENCE

An initial split is made :long
e-d, extended to d-c¢. Then,
between the possible splirs
g-a-f and c-a-b, the latter is
preferred because it completes
=y Q the unfinished split ending at

e ‘c!

In this situation, B is the procedure's first choice, C its

second: f{ffﬂ

(C)

In A below, we get three bodies, (4-6-7), and (l1-2-3). SEE does
not split between regions 7 and 8. 1In B, one gets the plausible
three-body analysis. If there is any complaint, SEEMORE will
propose to separate (4-6-7) and (5-8). 1In C, all the bricks

are properly separated. While SEE would huve to put in many
spurious links because of the Coincidentally matching TEE's
SEEMORE inhibits these on the basis of other splitting evi-
dence.

(B)
(A) 1
1 2
2 4 5
& 5 1 L
> — 3 H—t
} ":L 6 L
6 L T 8
T 8 3
9
-,
10
Ad
00O 'ﬁ

[T

e

ARTIFICIAL INTELLIGENCE

The procedure divides these into the "natural® parts:

But in figure A below it finds three bodies 1-2-3, 5-7-8-9, and
4-6. The latter is perhaps not the first way a person would
see it. And the procedure cannot aggregate the outer segnments
of the larger cube in figure B because its initial grouping
process is so conservative. Clearly, such problems eventually
must be gathered together in a "commonsense" reasoning system;
the multiple T-joints all would meet, if "extended" in such a
wWay as to suggest the proper split, and the program ought to
realize this.

4. DESCRIPTION AND LEARNING

The concepts we used to analyze ANALOGY and SEEING are just as
vital in understanding LEARNING. It was traditional to try to
account for learning in terms of such pPrimitives as "conditioned
reflex" or "stimulus-response bond". The phenomena of learning
become much more intelligible when seen in terms of "descrip-
tion" and "procedure",

There might seem g world of difference between

activities involving peérmanent changes in behavior
== and the rest of thinking and problem-solving.

158

ARTIFICIAL INTELLIGENCE

But even the temporary structures one obviously
uses in imagining and understanding have to be
set up and maintained for a time. We feel that
the differences in degree of permanence are of
small importance compared to the problems of
deciding what to remember. It is not the details
of how recording is done, but tke details of how
one solves the problem of what to record, that
must be understcod first.

As we develop this idea, we find ourselves forced to question
the whole tradition in which one distinguishes a special sub-set
of mental or behavioral processes called "learning". Nothing
but disaster can come from looking for three separate theories
to explain (for example)

How one learns mathematics,
How one thinks mathematically once he has learned to,

and

What mathematics is, anyway.
We are not alone in trying to replace such subdividions -- but
perhaps more radical and thorough-going. In this chapter we

shall argue that many problems about "learning" really are
concerned with the problem of finding a description that satis-
fies some goal. Gestalt psychologists also often emphasized
the similarity between solving apparently abstract problems and
situations that intuitively feel 1like simple perception; the
same relation that is dimly reflected in ordinary language by
expressions like

"I suddently saw the solution!"

We thoroughly agree about bringing these phenomena together,
but we have a very different way of dealing with the newly
united couple. We might caricature this difference by saying
that the Gestaltists might look for simple and fundamental
principles about how perception is organized, and then attempt
to show how symbolic reasoning can be seen as following the
same principles, while we might construct a complex theory of
how knowledge is applied to solve intellectual problems and then
attempt to show how the symbolic description that is what one
"sees" is constructed according to similar such processes. In-
deed,we think that ideas that have come from the study of sym-
bolic reasoning have done more to elur~idate visual perception
than ideas about perception have clarified our thoughts about
abstract thinking -- but the whole comparison is too dialecti-
cal to try to develop technically.

In any case, we differ from the Gestaltists more deeply in
problems of learning, which they neglected almost entirely --
perhaps because that was the favorite subject of the abominable
behaviorists! Let us now expiain why we feel that learning,
technically, cannot usefully be Separated from other aspects
either of preception or of symbolic reasoning. As usual, we
present first a caricature; then point to where the extreme
positions might be softened.

159

ARTIFICIAL INTELLIGENCE

Learning -- or "Keeping track"

Everyone would agree that getting to know one's way around a |
city is "learning". Similarly, we see solving a problem often
as getting to know one's way around a "micro-world" in which

the problem exists. Think, for example, of what it is like to
work on a chess problem (or on a geometry puzzle,or trying to
fix something). Here the micro-world consists of the network

of situations on the chessboards that arise when one moves the
pieces. Solving the chess problem consists largely of getting
to know the relations between the pieces, and how the moves
affect things. One naturally uses words like "explore" in this
context. As the exploring goes on, one experiences events in
which one suddenly "sees" certain relations. A grouping first
seen as three pieces playing different roles is now described

in terms of a single relation between the three, such as "pin",
"fork", or "defense". The experience of re-description can be
as "vivid" as if the pieces involved suddenly changed color or
position.

One might object that the difference between getting to know the
city and solving the chess problem is that one remembers the
city and forgets the chess situation (assuming that one does).
Isn't that what brings one into the domain of learning and ex-
cludes the other? Only to a degree! The chess analysis has

to be remembered long enough, within the rest of the analysis.
To take an extreme form of the argument, one would repeat one's
first steps forever unless one remembered which positions had
been analyzed, what relations were observed, and how their des-
criptions were summarized. What is stored within problem-
solving is as vital to the immediate solution as what is re-
tained afterwards is to the solution of the presumably larger-
scale problems one is embedded in throughout life. Of course
there is a problem about how long one retains what one learns
-- but perhaps that belongs to the theory of forgetting rather
than of learning!

In our laboratory the chess program written by R. Greenblatt
plays fairly good chess, but amateur tournament standards. But
visitors are always disappointed to find that this program does
not "learn", in the sense that it carries no permanent change
away from the games it plays. They are even more disappointed
in our attempts to explain why this does not disturb us very
much. We claim that there is indeed an important kind of learn-
ing within the program; this is in the position-description
summaries that are constructed and used as it analyzes the posi-
tions it is playing. But because board positions do not often
repeat exactly in subsequent games (except for opening positions
and end-games) and because the kinds of descriptions the program
now uses do not have good qualities for dealing with broader
classes of positions, there would be no point in keeping such
records permanently.

We do not yet understand how to make the higher-level strategy-
oriented descriptions that would make sense in the context of
learning to improve. When we, ourselves, learn how to construct
the right kind of descriptions, then we can make programs

160

ARTIFICIAL INTELLIGENCE

construct and remember them, too, and the problem of "learning"
will vanish. In the past, our laboratory avoided experiments
with learning systems that seemed theoretically unsound, although
we did not avoid studying them theoretically. This was be-

cause we believed that learning itself was not the real problem;
what was needed was more knowledge about the intelligent shap-
ing of description-handling processes. For the same reasons

we avoided linguistic exercises such as Mechanical Translation,
in favor of studying systems that could deal with limited
fragments of meaning, and we avoided "creative" svstems based

on uninterpreted stochastic processes in favor of analyzing

the interactions of design goals and constraints. Now we think
we know enough to begin such experiments. 1

In the rest of this Chapter we will discuss some systems that

do exhibit some non-trivial learning functions. It should be
understood from the start that these are not to be thought of
as "self-organizing systems". They are equipped with very sub-
stantial initial structures; -- they are provided with many
built-in "innate ideas".

Because of this, some readers might object that although these
programs learn, they do not significantly "learn to learn".

Is this a serious objection? We do not think so, but the ques-
tion is really one of degree and we are still much too uncertain
about it to take a decisive position. 1In one view learning to
learn would be an extremely advanced problem compared to what

We now understand. In another view,it is just one more problem
about certain kinds of program-writing processes, not strikingly
different from the static structural situations we already un-
derstand rather well. Our position is intermediate between
these, at present.

We think that learning to learn is very much like debugging
complex computer programs. To be good at it requires one to
know a lot about describing processes and manipulating such
descriptions. Unfortunately, work in Artificial Intelligence
has not, up to now, been pointed very much in that direction,
8O today we have little real knowledge about such matters.

Consequently, we are in a poor position to estimate how complex
must be the initial endowment of intelligent learners -- ones

quiring evolutionary epochs. we certainly cannot assume from what
we know that the "innate structure" requires must be very, very
complex as compared to present programs. It might be much
simpler. Even in the case of humans we have no useful guide-
lines. There is probably enough potential genetic structure

to supply large innate behavioral programs but no one really

knows much about this, either, at present. So let us proceed,
instead, to discuss our present understanding. We begin with

Some experiments on natural intelligence.

161

—
A

o

ARTIFICIAL INTELLIGENCE

4.1 An example of Learning: Piaget's Conservation Experiments

Question:

Typical Answer:

0000

TYYY

"Are there mo
"NO, th

0O 0 ©

0.0 00

TYYY

re eggs or more e
e same."

TYYY

gg-cups?"

0O 0©

0O 0 0 O

0O 0 O©

TYYYYYYYYYYY

Question: "Are there more €ggs or more egg-cups?"
Typical Five Year 0ld's Answer: "More eggs."
Typical Seven Year 01d's Answer: "Of course not'"

Furthering questioning makes it perfectly clear that the younger
child's comparison is based on the greater "spread" or space
occupied by the €ggs. The older child ignores or rejects this
aspect of the situation and is carried along by the "conserva-
tionist" argument: before we spread them out there were the
same number of eggs and €gg-cups; we neither added or sub-
tracted any, so the number must still be the same.

Before constructing a theory of this we describe some other
situations that are similar; nothing is more dangerous than
to base a theory on just one example and we want the reader to
have c¢nough material to participate and, amongst other things,
make rival theories. Here is another relatively repeatable
experiment. One shows the child three jars.

He agrees that the first two
contain the same amount of
liquid. Then, before his eyes,
weé pour the second jar into
the third and ask again about
the amounts. Usually, the
younger child will say that the
tall jar contains more; the
older child says "Of course
they have the same amount. It
is the same water so it could
not have changed."

162

O,

ARTIFICIAL INTELLIGENCE

4.1 An example of Learning: Piaget's Conservation Experiments

A classical experiment of Jean Piaget shows remarkably repeat-
able patterns of response of children (in the age range of 4-7
years) to questions about this sort of material:

YTYYYYYYYYYY

Question: "Are there more €ggs or more egg-cups?"
Typical Answer: "No, the same."

O 0 0 0O 0O OO O 0 0 O

TYYYYYYYYYYY

Question: "Are there more €ggs or more egg-cups?"
Typical Five Year 0ld's Answer: "More eggs."
Typical Seven Year 0l1d's Answer: "Of course not'"

Furthering questioning makes it perfectly clear that the younger
child's comparison is based on the greater "spread" or space
cccupied by the eggs. The older child ignores or rejects this
aspect of the situation and is carried along by the "conserva-
tionist" argument: before we spread them out there were the
same number of eggs and egg-cups; we neither added or sub-
tracted any, so the number must still be the same.

Before constructing a theory of this we describe some other
situations that are similar; nothing is more dangerous than
to base a theory on just one example and we want the reader to
have enough material to participate and, amongst other things,
make rival theories. Here is another relatively repeatable
experiment. One shows the child three jars.

He agrees that the first two

contain the same amount of
F::: liquid. Then, before his eyes,
we pour the second jar into
the third and ask again about
the amounts. Usually, the
younger child will say that the

tall jar contains more; the
- older child says "Of course
they have the same amount. It
is the same water so it could
not have changed."

162

E‘-“«l;&‘ W, ..

ARTIFICIAL INTELLIGENCE

construct and remember them, too, and the problem of "learning"
will vanish. 1In the past, our laboratory avoided experiments
with learning systems that seemed theoretically unsound, although
we did not avoid studying them theoretically. This was be-
cause we believed that learning itself was not the real problem;
what was needed was more knowledge about the intelligent shap-
ing of description-handling processes. For the same reasons

we avoided linguistic exercises such as Mechanical Translation,
in favor of studying systems that could deal with limited
fragments of meaning, and we avoided "creative" svstems based
on uninterpreted stochastic processes in favor of analyzing

the interactions of design goals and constraints. Now we think
we know enough to begin such experiments.

In the rest of this chapter we will discuss some systems that
do exhibit some non-trivial learning functions. It should be
understood from the start that these are not to be thought of
as "self-organizing systems". They are equipped with very sub-
stantial initial structures; -- they are provided with many
built-in "innate ideas".

Because of this, some readers might object that although these
programs learn, they do not significantly "learn to learn".

Is this a serious objection? We do not think so, but the ques-
tion is really one of degree and we are still much too uncertain
about it to take a decisive position. 1In one view learning to
learn would be an extremely advanced problem compared to what

we now understand. In another view,it is just one more problem
about certain kinds of program-writing processes, not strikingly
different from the static Structural situations we already un-
derstand rather well. Our position is intermediate between
these, at present.

We think that learning to learn is very much like debugging
complex computer programs. To be good at it requires one to
know a lot about describing processes and manipulating such
descriptions. Unfortunately, work in Artificial Intelligence
has not, up to now, been pointed very much in that direction,
so today we have little real knowledge about such matters.

Corsequently, we are in a poor position to estimate how complex
must be the initial endowment of intelligent learners -- ones
that could develop as rapidly as human minds rather than re-
quiring evolutionary epochs. We certainly cannot assume from what
we know that the "innate structure" requires must be very, very
complex as compared to present programs. It might be much
simpler. Even in the case of humans we have no useful guide-
lines. There is probably enough potential genetic structure

to supply large innate behavioral programs but no one really
knows much about this, either, at present. So let us proceed,
instead, to discuss our present understanding. We begin with
Some experiments on natural intelligence.

lel

ARTIFICIAL INTELLIGENCE

1f we perform the pouring behind a screen, telling him what we
are doing without his seeing it, the younger child also may
say the amounts are the same, but may change his mind when he
sees it.

In this experiment,
younger children agree
the rods are equal at
first, but when dis-
placed as shown at the
right, the "upper" one
is usually said to be
longer.

How can we explain the difference between the less and more
mature children. We see two problems here from the point of
view of learning. First, how is the pre-conservationist view
acquired (and executed); then how is it replaced by a con-
servationist one? To many psychologists only the second seems
interesting. This is because it is tempting to explain the
earlier response in terms like "the child is carried away by
appearances," or"the child is dominated by its perception,"
that is, instead of logic. The usual interpretation, then, is
that the transition requires the development of some sort of
reasoning capacity that allows it to "ignore the appearance"
in favor of reasoning about "the thing itself".

There are serious problems with this view, we feel . First, the
"appearance" theory is too incomplete; the notion of appearance
is not structured enough. Second, we know that much younger
children are quite secure (in other circumstances) about the
properties of "permanent cbjects"; they are sufficiently sur-
prised by magic that there is no reason to suppose they lack
the required "logic". We do not think they lack any really
basic or primitive intellectual ingredients; rather,they lack
some particular kinds of knowledge and/or procedures that are
appropriate here. Our view is most easily explained by pro-
posing a more detailed mini-theory for the performznce of the
non-conservation child.

Behind the "appearance" theory lies some sort of assumption

that the water in the tall jar, the upper one of the rods, and
the spread-out 2ggs appear to be "more" than their counterparts,
because of some basic law of perception. We think things are
more complicated than that, and postulate that the younger child
when asked to make a quantitative comparison, choose to des-
cribe the things being compared in terms of “how far they reach,
preferably upwards or in some other direction if necessary".
That this description comes from a choice is clear from the

fact that he can realiably tell which is "wider" or "taller",
when it is not a question of which is "more". Indeed, if we
asked the younger child to describe the situation in detail
before asking which has more, he might say something like this:

163

ARTIFICIAL INTELLIGENCE

(A) "There is a tall, thin column of water in the
tall, thin jar and a short, wide column in the
short, wide jar."

Actually, a four year old will not say anything of the sort.
His syntactic structure will not be so elaborate, but more im-
portant, he is unlikely to produce that many descriptive ele-
ments in any one description. If we ask him "what is this",
he might say any of "high g'ass", "almost full", "high water",
"round", etc., depending on what he imagines at the moment as
a purpose for the question or the object. In any case, if we
ask him for a description after telling him we want to know
which has more, he will probably say the equivalent of:

(B) "There is a high coiumn of water in the tall
jar and a low column of water in the short jar."

To answer the question "which has more" one has to apply some
process to the description of the situation. Once we have the
second description (B) almost any process would choose the "high
column of water". We still need a theory of what symbolic rules
delete preferentially the horizontal descriptive elements from
the first description (A).

Another possibility is that perhaps the child is misinterpre-
ting "more"; if he were strongly "motivated" by being thirsty
or hungry he might give better answers. The experiments are,
however, always careful about this, and one gets similar re-
sults if the eggs are replaced by candy actually to be eaten,
or the water by a delicious beverage.

In suggesting that the child converts description "A" to des-
cription "B" we are proposing an analogy with analogy: IS

this too neat? Are we inventing this process for the child;
who does not really do anything so simple? Certainly, we are
making a mini-theory much simpler than what really happens. But
what really happens is, we believe, correspondingly simpler
than what most observers of children imagine is happening! The
following kind of dialog is typical of what goes on in another
situation that Piaget and his colleagues have studied, and
illustrates explicitly the same striking kind of transformation
of descriptions:

INTERVIEWER: How many animals are there?
CHILD: Five. Three horses and Two cows.
INTERVIEWER: Are there more horses or more animals?
CHILD: More horses. Three horses and two animals.

I: Now listen carefully:
ARE THERE MORE HORSES OR MORE ANIMALS?

I: What did I ask you?

C: Are there more horses or more animals?
I: What is the answer?

C: More horses.

I: What was the question again?

C: Are there more horses or more Ccows?

164

ARTIFICIAL INTELLIGENCE

We explain this phenomenon on a similar basis; again the child
has to make a comparison of quantity. He has learned that it
is generally correct to do this by counting mutually exclusive
classes and the worst thing is to count anything more than once.
So he proceeds to describe the situation "correctly" for such
pnrposes, and (in this frame) gets the correct answer.

It is often said that the pre-conservation child gets the answer
wrong to "inclusion" questions. No. He gets the answer right.
He gets the question wrong! Inclusion comparisons are never
natural, so we can agree with the child that these are silly
"trick" questions, anyway.

Returning to judging "amount" by height alone, we must ask what
"learning" process could cause a child to acquire this "false"
idea? Our mini-theory begins not by trying to explain the
particular fact (why the child says this about water or that
about eggs) but to look for a general rule for comparing quan-
tities that combines simplicity with widespread utility. Who
is bigger; the child or his cousin? Stand back to back! How
do you divide a bottle of coke between two glasses? By the
level =--- and generally this is fine because the glasses are
identical. Finally, the child can afford to be wrong some of
the time; this rule serves very well for many purposes and

it would be hard to find a better one without taking a giant
step.

A confirmation of this is A

given by the children who
C::D judge that the thinner
container of this pair
could hold more water.

Although fewer children |
will say this, the fact
that there are any who

do disproves the "appear-
ance" theory, for one can
hardly maintain that an
unalterable law of percep- |
tion is operating here.

Clearly the (heuristic) symbolic rule of vertical extent
here overrides "perception" of dimensions.

One could make a case for the "appearance" 'heory, in the
water-jar experiment as follows: The water .s much higher
where it is high, but only somewhat wider wheie it is wide.
The most plausible kind of comparison algorithm

would look first for a unique term or quality

upon which to base its decision -- as is
easily found in (B). If there is none --
as in (A) -- then a subprocess has to make a

"quantitative" comparison. But even this
seems less symbolic than quantitative, for
if we compare "much higher" with "somewhat
thinner", the former will surely win! 1In

165

ARTIFICIAL INTELLIGFNCE

any case, even adults can hardly believe that these two solids
could have the same volume. So, if the child were really faced
with the problem of comparing quantitative dinensions, this
would be almost impossible for him.

We next have to ask, how was this rule acquired, and how can we
explzain the transition to conservationist thinking? The sim-
plest theory would assert that the child specifically learns

each conservation (and, earlier, each comparison technique) as
isolated pieces of knowledge. However, this theory is incomplete
because it postulates some agent or specific circumstance re-
sponsible for the specific act of learning. A more satisfactory
kind of theory would let the child himself play the part of the
"teaching agent" in the weak theory, and find his own strategies
for making descriptions adequate for his problems.

Consider again the original conservation-of-number experiment.
Suppose that we wanted to TELL the child how to behave. An
authoritarian approach would shout at him: no, no, no, they
are equal. But most teachers would prefer the gentler approach
of explaining what he is doing wrong. One could say: "Yes,
you are right, the eggs take up more space than the egg-cups

so you could say that SPATIALLY there are more eggs; but
NUMERICALLY there are still as many eggs as egg--cups."

We hope readers are objecting that no child of five will under-
stand this little speech. Indeed,one can go a step further and
say that the attempted lesson begs the entire question. The
non-conservation child seems to lack a sharp distinction between
"numerical" and "spatial". That's his problem! If hz knew how
to use the distinction well enough he would not need us to

teach him about conservation. Our child has already a variety

of concepts about quantities; we maintain that his problem is

in knowing vhich to use when (instead of, or combined with others)
in describing situations. His real problem is that he does not
yet know good enough ways to describe his descriptors! If he
learned how to describe his descriptors -- for example, to label
some as "spatial" and some as "numerical" -- and if he could

use these descriptions of descriptors to choose ‘“he appropriate
ones, then the specific problem of learning conse¢rvations would
dissolve away. As it should! For "conservation" is not a single
thing, and "it's development is typically spread out over

several years as a child learns to deal with number, mass, volume,
and other descriptive concepts.

Assuming a structure for classifying descriptions we can imagine
an internal scenario, for the egg experiment, in which many des-
criptions are considered by a supervising process:

(1) Choose a kind of rule. Choices are
QUANTITATIVE RULES
HISTORICAL RULES

(2) QUANTATIVE is chosen. Select a kind. Choices are
SPATIAL
NUMERICAL

166

ARTIFICIAL INTELLIGENCE

(3) SPATIAL is chosen. Select a kind. Choices are
EXTENT implies more
SPARSENESS implies less

(4) Try EXTENT. The spread out eggs have more
extent.
This means MORE.
(5) Test for coherence with other SPATIAL
rules? Try SPARSENESS. The eggs are
sparser.
This means LESS!
An inconsistency. Reject or explain.
Reject method
(3') Try NUMERICAL.
Try COUNTING
Too many to count.
Reject method
(2') Reject choice of quantitative rules!
Try the next choice, HISTORICAL

When HISTORICAL is tried, one might first choose
IDENTITY. Some eggs were moved, but none added
or taken away

Test for coherence with other HISTORICAL rules.
Try REVERSIBILITY. The operation SPREADING-
OUT is reversible. This means SAME!

This means SAME!

We conclude that HISTORICAL seems consistent.

The same sort of scenario could be constructed for the water
experiment; there the counting descriptions cannot be invoked,
but instead other quantitative descriptions must be available.
In each attempt, the description of the scene takes on a differ-
ent form: the successful historical form will resemble

"The water that was in the second jar is now in
the third jar"

and "of course" it has the same amount as the first jar! Well!
This gives the right answer, because he has obtained an adequate
description. What kinds of processes must he have in order to
do this. We have already proposed that he has a procedure for
selecting descriptions; in what kind of environment could this
operate? One kind of model would assume that the mature child's
description is at first more elaborate, including both geometric
and historical elements,

"The amounts of water in the first and second jars
were equal. The water that was in the second jar is
now in the third jar. The water in the third jar is
higher and thinner than that in the first jar."

The mature child, we might theorize, will eliminate elements

167

ARTIFICIAL INTELLIGENCE

from his description until there are no serious conflicts. This
will yield a tentative answer, which he can maintain if he can
explain away any problems that arise from reconsidering other
details. Alternatively, one might imagine a process that begins
with a very primitive description and elaborates it. But in

any case, the process must have facilities for such functions
as:

Choosing among the most plausible methods for
answering the question. To apply a method he must
bring the description into a useable form. For
example, when he chooses a "history" method he
suppresses some features of the spatial appearance.
This means he must have a good classification of
the different kinds of description elements.

The selection of the description involves common-
sense knowledge. This, in a word, means that his
entire cognitive structure is potentially engaged
-- language, goals, logic, even interpersonal
situational processes.

If the situation is at all novel,then any committment
to "ignore" a class of elements may require a reason
or "excuse", for conflicts in the original description
that remain unexplained. A standard strategy is
"compensation" -- knowing when it is reasonable to
propose tradeoff between such pairs as height and
width when manipulating fluids.

One cannot balance an arbitrary pair of dimensions,
and particular pairs compensate only under suitable
conditions. Ideas like "geometric property" are
necessary, so that one isn't tempted to trade
height with color, for example. What features

of histories might correspond to such static
properties as "spatial" and "numerical"?

Most important, the directing process in which
the history of the situation wins out over the
unusable geometric features,must exist and be
debugged well enough that is can be relied upon!
The child needs to have and trust the higher-
order knowledge about which kinds of knowledge
should have priority in each situation.

We have intentionally not specified the time scale of this
scenario; some of it occurs over long periods, while some in
the course of solving a particular problem. Furthermore, these
conditions are still incomplete, yet our stiructure is already
quite complicated. But so is the situation! Remember, our
child can already carry on an intelligent conversation. This
is not a good place to encourage the use of Occam's Razor. The
time for that is when one has several good competing theories,
not before one has any! It takes the child severai years to
work out all of this, and a theory that explained it away on
too simple a basis might be therefore suspect.

lé8

ARTIFICIAL INTELLIGENCE

We do not, we repcat, want to explain the different conserva-
tions either on completely separate bases or by one unifying
principle. We want to see it as the outcome of an improvement
in the child's procedures for dealing with the variety of des-
criptions that he comes into possession of.

In the traditional "theories of learning" there was a tendency
to ask

"How does such-and-such a "response become
connected to such-and-such a "stimulus".

We now see that the proper questions are much more like

"How can such-and-such a procedure be added to
the descriptive or deductive systems"

4,2 Learning

A serious complaint about the heuristic programs of the past
was their very limited ability to learn. This made them too
inflexible to be useful except in very special situations.

Over the years many direct attempts to construct "learning
programs" led to very indifferent results. There is a close
analogy, we feel, between this and the similar situation in
the history of conctructing psychological theories of learning.

If a child were to learn that 7+5=12 and 39+54=93 and, say,

one hundred other such "responses"”, we would not agree he had
learned to add. What is required is that he learn an appro-
priate procedure and how to apply it to numbers he has never
used before. Another side of this "stimulus-response" problem:
just as in the Analogy situation, the secret of learning often
lies in the discovery of descriptions that emphasize the "essen-
tial" aspects of things or events, and omit or subjugate the
"accidental" features. It would do us little good to remember
that some particular thing happened in exactly a certain situa-
tion, since identical conditions never recur.

We do not need,or want, to
remember the precise details of
a broken chair, but we do want
to remember that bad things
happen when chairs have broken
rungs -- for that is an essen-
tial difference between this
and a usable chair. Indeed, -
the greater our knowledge and
powers cof observation, the more
selective must be our choice of
descriptions, because of the
magnified problem of becoming
lost in searching through net-
works of irrelevant details.

[P~ S

169

ARTIFICIAL INTELLIGENCE

Finally, one hears complaints of the form "You programmed it to
do that! It didn't learn it by itself!". There is a spectrum
of degrees of autonomy in learning activities, and one wonders
what are the distinctive features of importanc: between a child
learning while playing by himself, discovering things under the
shrewd guidance of an attentive instructor, prying a theory out
of a mediocre textbook, and having it explained directly and
concisely by a Superb expositor.

different problems (each of which may be relatively simple) when
there is no common solution to the whole set. We think this

Learning by development or maturation

Learning without description (by quantitative adaptation)
Learning by building ang modifying description

Learning by being taught

Learning by Analogy

Learning by being told

Learning by being programmed

Learning by understanding

4.3 Learning Without Desciption -- "Incremental Adaptation"

There is a large literature concerned with Clustering methods,
Scaling, factor analysis, and optimal decision theories, in

which one finds Proposals for programs that "learn" by successive
modifications of numerical parameters, An outs.anding example

of this is seen in one of the well-known programs of A Samuel,
that plays a good game of Checkers. Other examples abound;

all perceptron-like "adaptive" machines, all "hill-climbing"
optimization pPrograms, most "stochastic learning" models using
reinforcement, Some details can be found in the later chapters
of our book, PERCEPTRONS.

The conclusions drawn in PERCEPTRONS are too technical to re-
view here in detail, but we can describe the general picture
that emerges. Within the classes of concepts that these
machines can represent, that is, describe as rather literal
"sums" of already brogrammed "parts" -- the learning abilities
are effective ang interesting. However, the descriptive

powers c¢f these quasi-linear learning schemes have such peculiar

170

ARTIFICIAL INTELLIGENCE

and crippling limitatiors that they can be used only in special
ways. For example, we can construct, by special methods, a
perceptron that could learn either to recognize squares, or to
recognize circles. But the same machine would probably not be
able to learn the class of "circles or squares"! It certainly
could rnot describe (hence learn to recognize) a relational com-
pound like "a circle inside a square".

These limitations are very confining. It is true that such
methods can be useful in "decision-making" and diagnostic
situations where things are understood so poorly that a
"weighted decision" is better than nothing! But we think it
night be useful to put this in perspective by assigning it as
an example of a new concept of TERMINAL LEARNING. The basic
problem with this kind of "learning program" is that once the
program has been run, we end up only with numerical values of
Some parameters. The information in such an array of numbers

is so homogeneous and unstructured -- the "weight" of each "factor"

deRends SO0 much on what other factors are also involved in the
process -- that each number itself has no separate meaning.

We are convinced that the results of experience, to be useful
to “higher level processes", must be summarized in forms that
are convertible to structures that have at least some of the
characteristics of computer programs -- that is, something like
fragments of program or descriptions of ways to modify programs.
Without such capabilities, the simple "adaptive" systems can
"learn" some things, to be sure, but they cannot learn to learn
better! They are corfined to sharpening whatever "linear separa-
tion" or similar hypotheses they are initially set tc evaluate.
A terminal learning scheme can often be useful at the final
stage of a performance or an application, but it is potentially
crippling to use it within a system that may be expected later
to develop further.

One could make similar criticisms of another aspect of the
adaptive "branch and bound" procedures found in most game-play-
ing and other heuristic programs that follow the "look-ahead

and minimax" tradition. Suppose that in analyzing a chess
position we discovered that the KB-2 square is vulnerable to a
rook-queen fork by moving a knight to that square. The tradi-
tional program returns a low numerical value for that position.
What it really should do is return a description of why the posi-
tion is bad. Then the previous plausible-move generator can

be given a constructive suggestion: look for moves that add a
defense to that square,or threaten one of the attacking pieces,
etc. Subsequent exploration will discover more such suggestions.
Eventually, these conditions may come to conflict logically,
€.9., by requiring a piece to attack two squares that cannot
both lie in its range. At this point, a deductive program
could see that it is necessary to think back to an earlier posi-
tion. Similarly, a description of that situation, in turn,
could be carried further back, so that eventually the move gen-
erator can come to work with a knowledgeable analysis of the
Strategic problem. Surely this is the sort of thing good
players must do, but no programs yet do anything much like it.

This argument, if translated into technical specification, would

171

¥

Rl

ARTIFICIAL INTELLIGENCE

say that if a chess program is to "really" analyze positions

it must first have descriptive methods to modify or "update"

its state of knowledge. Then it needs ways to "understand" this
knowledge in the sense of being able to make inferences or de-
ductions that help decide what experiments next %o try. Here
again, we encounter the problem of "common sense" knowledge
since,although some of this structure will be specific to chess,
much also belongs to more general principles of strategy and
planning.

People working on these homogeneous "adaptive learning" schemas
(either in heuristic programming or in psychology) are not un-
aware of this kind of problem. Unfortunately, most approaches
to it take the form of attempting to generalize the coefficient-
optimizing schema directly to multi-level structures of the
same kind, such as n-layer perceptrons. 1In doing so, one
immediately runs into mathematical problems: no one has found
suitably attractive generalizations (for n levels) of the kinds
of convergence theorems that, at the first level, make percep-
trons (for example) seem so tempting. We are inclined to sus-
pect that this difficulty is fundamental -~ that there simply
do not exist algorithms for finding solutions in such spaces
that operate by successive local approximations. Unfortunately
we do not know how to prove anything about this or, for that
matter, to formulate it in a respectably technical manner.

We could make similar remarks about most of the traditional
"theories of learning" studied in Psychology courses. Almost
all of these are involved with the equivalent of setting up
connections with the equivalent of numerical coefficients be-
tween "nodes" all of the same general character. Some of

these models have a limited capacity to form "chains of responses",
or to cause some classes of events to acquire some control over
the establishment of other kinds of connections. But none of
these theories, from Pavlov on, seem to have adequate ability

to build up processes that can alter in interesting ways the
manner in which other kinds of data are handled. These theories
are therefore so inedequate, from a modern computation-theory
view, that today we find it difficult to discuss them seriously.

Trial and Error

Why, then,have such theoriesz been so persistently pursued? The
followers were certainly not naive apout these difficulties.

One influence, we think, has been a pervasive misconception

about the role of multiple trials, and of "practice", in learn-
ing. The supposition that repeated experiences are necessary

for permanent learning certainly tempts one to look for "quan-
titative" models in which each experience has a small but
cumulative effect on some quantity, say, "strength-of-connection".

In the so-called "stimulus-sampling" theories we do see
an attempt to show how certain kinds of one-trail learn-
ing processes could yield an external appearance of

slow improvement. In this kind of theory, a response
can become connected with many different combinations

of stimulus features or elements as a result of a

172

ARTIFICIAL INTELLIGENCE

sampling processes. In each learning event a new
combination can be tried and tested. This is
certainly closer to the direction we are pointing.
However, we are less interested in why it takes so
many trials to train an animal to perform a simple
sequence of acts, and more interested in why a child
can learn what a word means (in many instances) with
only a single never-repeated explanation.

What is the basis for the multiple-trial belief? When a person
is "memorizing" something he may repeat it over and over. When
he practices a piece of music he plays it over and over. When
we want him to learn to add we give him thousands of "exetrcises"
When he learns tennis he hits thousands of balls.

Consider two extreme views of this. In the NUMERICAL theory

he moves,in each trail, a little way toward the goal, strength-
ening the desired and weakening the undesired components of the
behavior. In the SYMBOLIC view, in each trial there is a qual-
itative change in the structure of the activity -- in its pro-

gram. Many small changes are involved in debugging a new pro-

gram, especially if one is not good at debugging! It is not

a matter of strengthening components already weakly present so

much as proposing and testing new ones.

The externai appearance of slow improvement, in the SYMBOLIC
view, is an illusion due to our lack of discernment. Even

practicing scales, we would conjecture, involves distirct changes

in one's strategies or plans for linking the many motor acts

to already existing sequential process-schema in different ways,
or altering the internal structures of those schemas. The im-
provement comes from definite, albeit many, moments of con-
Scious or unconscious analysis, conjecture, and structural
experiment. "Thoughtless" trials are essentially wasted.

To be sure, this is an extreme view. There are, no doubt,
physiological aspects of motor and other learning which really
do require some repeiition and/or persistencz for reliable pexr-
formance. Our point is that the extent of this is really

quite unknown and one should not make it the main focus of
theory-making, because that path may never lead to insight into
the important structural aspects of the problem. In motor-
skill learning, for example, it is quite possible one needs
much less practice than is popularly supposed. It takes a
child perhaps fifteen minutes to learn to walk on stilts. But
if you tell him to be sure to keep pulling them up, it takes
only five minutes. Could we develop new linguistic skills so
that we could explain the whole thing? We might conjecture
that the "natural athlete" has no magical, global, coordination
faculty but only (or should we say "only"!) has worked out for
himself an unusually expressive abstract scheme for manipulating
representations of physical activities.

4.4 Learning by Building Descriptions

We can illustrate much more powerful concepts of learning in
the context of a procedure developed by P. Winston to learn to

173

L

ARTIFICIAL INTELLIGENCE

recognize simple kinds of structures from examples. Like the
SEE program of Guzman (which it uses as a sub-process) it
works in the environment of childrens' building blocks. When
presented with a scene, it first observes relations between
features and regions, then groups these to find proposed
structures and objects, and then attempts to identify them
(using description-matching methods and the results of earlier
learning experiences). Thus, the simple scene on the left is
described by a network of abstract objects, relations, and
relations between relations.

SCENE
PART -OF

e, N
P

SCENE 1 : AN ARCH

KIND-OF
SUPPORTED-BY

BRICK

In this diagram, the heavy circles represent particular physical
objects, the other circles reprasent other kinds of concepts,
and the labels on the arrows represent relations. The program
is equipped from the start to recognize certain spatial rela-
tions such as contact, support, and some other properties of
relative position. We tell the machine that this is (an example
of) an ARCH, and it stores the description-network away under
that title.

Note that since these properties describe only relative spatial
relations, the very same networ serves to describe both of
these figures, which are visually quite different but geometric-
ally the same.

174

ARTIFICIAL INTELLIGENCE

Next we present SCENE 3, to the left below, and the machine
constructs the network shown to its right.

/ & CONTACT EAROF

KIND-OF

SUPPORTED- BY
SCENE 2 : NOT AN ARCH

This differs from the network of SCENE 1 in only a few respects.
If the program is asked what this structure "is", it will com-
pare this description with others stored in its memory.

™ It has already networks for
}‘ i tables, towers, and a few other
P Structures but, as one might
2L N expect, the structure it finds
4 ! N most similar is the ARCH des-

cription stored just a moment
ago. So it tentatively identi~
fies this as an arch. In doing
this, it also builds a descrip-
tive network that describes the
DIFFERENC) difference between scene 1 and
scene 2, and the difference is
represented somewhat like this.

ADDITIONAL CONTACT

RELLATION

Now we tell the machine that

scene 2 is NOT an example of CONTACT ’ N\
an ARCH. It must therefore MUST-NOT:

modify its description of
"ARCH" so that structure 2
will no longer match the
description, hence will no
longer be "seen" as an ARCH.

The method is to add a SUPPORTED-BY ~o . !
"rejection pointer" for the "-..,b
contact relation.

Now for the next example: we present scene 3 and assert that
this, too, is not a ARCH. The most prominent difference, in
this case, is that the new structure lacks the support relations

175

ARTIFICIAL INTELLIGENCE

CONTACT
' i | @ MUST -NOT
l /

S5

SCENE 3 : NOT AN ARCH SUPPORTED-BY

and the program for modifying "ARCH" now adds an "enforcement
pointer" to the supnort relations. Finally, we present another
example, scene 4, and assert that this is an acceptable example
of an ARCH.

CONTACT
MUST-NOT

SCENE 4: AN ARCH SUPPORTED-BY 4 BRICK

The most important difference, now, is the shape of the top
block. The machine has to modify the description of "ARCH" so
that the top block can be either a brick or a wedge. One
strategy for this would be simply to invent a new class of
objects -- "brick-or-wedge". This would be extremely "conser-
vative", as a generalization or explanation. Winston's

strategy is to look in memory for the smallest class that con-
tains both bricks and wedges. 1In the machine's present state the
only existing such classes are "prism" and "object" -- the
latter is the class of all bodies, and includes the "prism"
category, so the new description will say that the top object

is a kind of prism. If we replaced the wedge by a pyramid, and
told it that this, too, is an arch, it would have to change the
top object-description to "object", because this is the smallest
class containing "brick" and "pyramid". Now we can summarize
the program's conclusion: an arch is

"A structure in which a prismatic body is supported
by two upright blocks that do not touch one another."

176

ARTIFICIAL INTELLIGENCE

We have just seen how the program learns to identify correctly
the membership of scenes 1-4 as to whether they are ARCHES or
not. As a consequence, it will probably "generalize" automatic-
ally to decide that

g~ W~ FT~

are also arches, because there are no "must-be-a..." enforce-
ment pointers to either the supports or the top. Of course this
judgement really depends on the machine's entire experience,
i.e., on what concepts are already learned, and upon details of
the comparison programs.

We have suppressed many interesting details of the behavior of
Winston's program, especially about how it decides which diff-
erences are "most important". For example, the final form of
the network for "ARCH" is more like:

MODIFICATION -OF
ONE-PART-IS

GROUP-OF

HAS-PROPERTY-OFl

MUST-BE-SATELLITE

MODIFICATION - OF

ORIENTATION

MUST-NQT=-
SATELLITE

SPATIAL -RELATION

A-KIND-OF

than the simple schemata shown earlier.

177

ST

T o

ARTIFICIAL INTELLIGENCE

While on the subject, it should be noticed that within the
network are represented relations between relations, as well

as objects, properties and simple relations. There are important
advantages to this when it comes to construction of the diff-
erence-descriptions. If the comparison program can be told

that the difference between "IN-FRONT-OF" and "BEHIND", as well
as that between "LEFT-OF" and "RIGHT-OF", can both be described
in terms of "vertical axis symmetry", then it can be programmed
to observe that all (high-level) differences between the two
scenes 1in:

Z

/
A

can be"expiained" on this basis, hence differ only in respect
to a vertical axis rotation. This is an example of a beauti-
fully abstract form of description manipulation that, psych-
logically, would traditionally be attributed to something much
more like an imaginary graphical rccation of the scene -- (as
through there were no critically complicated problems in that 1
reconstruction). 1In his thesis, Winston has only initiatedq
such studies, and we know little about how far one can go with
these methods. How much more structure would one need, to be
able to learn, from examples, such concepts as symmetry? How
difficult will it be to adapt such a system to learning new
procedures, instead of structures? At first this might seem

a hu. . step, but the ideas in the next section, on describing
groL, . and repeti'.ive structures, make the gap seem to become
smaller.

We shall see that the advantages of having a description for
a "concept" (rather than just a competence) are absolutely cru-
cial for further progress. These advantages include:

The ability to compare and contrast descriptions (as we
shall see in section 4.6)

The ability to make deductions involving the concept,
to adapt it to new situations.

Combining several descriptions to make new concepts.

An example of the latter: Every structural "concept" that
Winston's program acquires is automatically incorporated within
its own internal descriptive mechanisms. Thus, if the machine
were presented with the nine-block scene following, before
learning a concept of ARCH, it would have produced an impossibly
complex and almost useless network of relations between the

178

ARTIFICIAL INTELLIGENCE

nine blocks. But after learning ARCH, it will now describe it
in a much more intelligent way:

SCENE
PART-OF
KIND -OF
LEFT-OF
ARCH

because its descriptive mechanisms proceed from local to global

aggregates using as much available knowledge as it can apply.

In doing this we encounter, now on a higher level, grouping pro-
blems very much like those we saw in our sketch of Guzman's SEE

program, and in many cases one can adopt analogous strategies.

4.5 Learning by Being Taught

Imagine a child playing with a toy car and his blocks. He wants
to build an interesting structure to play with. If the use of
Winston's program were present, he could teach the child how to
make an arch by the process just described, for it is not hard
to convert the above description into a procedure for building
arches. In fact, in Chapter 5, we shall give a sketch of ex-
actly how this can be done! This is precisely what Winograd's
program does when it translates from the semantic analysis of

an object-describing noun-phrase into a robot program for build-
ing with blocks! See Chapter 5.

It is not necessary for the child to have a teacher, however.

In the course of "playing" he can try experiments with the blocks
and the car, snd he can recognize “success" in either of these
Cases, among others:

a) He knows how to recognize an "ARCH" once it is built -- but
does not know how to describe or to build it.

b) He has a functional play-goal: construct a road-problem for
himself that is not too easy and not too hard -- such as an
obstacle that requires two hands to overcome, but cannot be
negotiated trivially with one hand.

In case (a) he knows how to tell which structures are in the
class. In case (b), while experimenting he will indeed find
that Scene 1 is good, Scene 2 is imposssible, Scene 3 is too
easy, an Scene 4 (discovered as the simplest variant of the
successful Scene 1) is also good. Here we get the same overall
effect -- through the same mechanism -- yet in humanistic terms
the behavior would be described much more naturally in terms

of "exploratory", or "play", or "undirected" activity. The
final _esult, if described in structural terms, is again

179

-

L.-‘.Rj =

ARTIFICIAL INTELLIGENCE

"a structure in which an object is supported by
two upright bricks that do not touch one another."

This is certainly not a perfect logical equivalent of the adult's
idea of an arch; nor does it contain explicitly the idea of a
surrounded passage or hole. Still, for the playing child's
purposes, it would represent perhaps an important step toward
formulation and acquisition of such concepts.

Again we have left alone some very important loose ends. We
have concealed in the catch-all expressions "play" or "explora-
tion" some supremely important conditions that must be fulfilled
-- and at early stages of child development they won't be, and
the things that are learneq during "play" will be different'

The child must already be equipped with procedures that
have a decent chance of generating plausible structures.

To do this, he must be able to describe to some extent
why an experiment is unsatisfactory. If he cannot get
his car between the supports, he must be able to think
of moving the supports apart. This is not very hard,
since pushing against the obstacle will sometimes do
this.

Since most experiments not carefully planned lead to
useless structures, he has to have some ability to
reconstruct a usable version of earlier and better
situations after a disaster.

Without the teacher, it is unlikely that he will get good results
after just four trials! He must have encugh persistence in his
goal-structure to carry through. To do this consistently would
presuppose a good assessment of the problem's difficulty. Of
course, if this is missing, he will find something else to do;
not all play is productive!

Winston's program seems to be a reasonable model for kinds of
behavior that would be plausible in, if not typical of, a child.
The "concept" the program will develop, after seeing a sequence
of examples chosen, on the order in which they are presented,
and of course on the set of concepts the program has acquired
previously. 1In many cases the experimenter may not get the
result he wants; presenting examples in the wrong order could
get the program (or child) irrepairably off the track, and he
might have to back up -- or perhaps restart at an earlier stage.
We cannot expect our concept-learning programs to be foolproof
any more than a teacher can expect his instructional technique
always to work. The teacher always risks failure until he
acquires correct insights into what has happened in the student's
mind.

Of course there are many small but important details of how the
program decides what to do at each step, which differences to
give highest priority, which parts of the description networks
should be matched, what explanations it should assign to the
differences that are noticed.

180

T e e e T

fa— B

ARTIFICIAL INTELLIGENCE

Thus, in building with blocks, the relations "support" and
"contact" ought to dominate properties of color, particular
shapes and even other spatial relations like "in front of"
or "to the right of."

In a different realm of activity, a different set of priorities
might be essential, lest learning be slow or simply wrong.

So, one can conclude that we must a.so develop intermediate
structures in "learning to learn" a prerequisite to a child's
(c. machine's) mastery of mechanical structures will be some
breparation in acquiring, Jrouping, and interrelating the more
elementary descriptive structures to be used in assembling,
comparing and modifying the representations to be used in the
performance-level learning itself. This is eXactly the conclu-
sion we reached, in 4.1, about the requirements implicit in
"maturation".

4.6 Analogy, Again

Now we can return to our very first topic, solving problems
invelving analogies. 1In section 1.1 we proposed that the key

idea would 1lie in finding ways to describe changes in descriptions.

But this is exactly what happens in the program we have just
described. When asked to describe a new scene situation,
Winston's program makes use of the other descriptions it re-
members, so that it can decscvibe the scene in terms of already-
learned concepts. Although we have not explained in detail

how this is done, it is important to mention that the result

of comparing two descriptions, in this system, is itself a
description! Basically, the comparison works this way :

1. The two descriptions are "matched together", using
various heuristic rules to decide which nodes probably
correspond.

2. We create a new network, whose nodes are associated
with pairs of nodes from the two descriptions that were
matched. This is the skeleton of the comparison-
description.

3. We associate with each node of thisg skeleton, a
"comparison note" describing the correspondence. If the
descriptions immediately local to two "corresponding"
nodes are the same, the comparison-note is trivial. But
if there are differences, (e.g., if one is a brick and the
other a wedge) the "comparison note" describes this
difference. Since these descriptive elements have the same
format as by the original scene descriptions, one can
operate upon them with the same programs. In particular,
two difference-descriptions can be compared as handily as
any other pair of descriptions.

181

B W

ARTIFICIAL INTELLIGENCE i

Now we can apply this idea to the analogy problem. The machine
must. select that scene X (from a small collection of alter-
natives) which best completes the statement

A is to B as C is to X

That is, one must find how B relates to A and find an X
that relates to C in the same way. Using the terminology

Diff[A:B]

to denote the difference-description-network resulting from
comparing A with B, we simply compare the structures resulting
from:

Diff[Diff[A:B] : Diff[c:x1] 7,
Diff[Diff[A:B] : Diff[c:x2] 7],
Diff[Diff[A:B] : piff[c:x3]], etc.

Each of these summarizes the discrepancies within the "ana-
logical explanations"” for each corvesponding possible answer.
So to make the decision, we have to choose the "best" or "sim-
plest" of these. We will not give details of how this is done;
it is described in Chapter 7 of Winston's thesis. But note that
some such device was needed already for the basic ability to
identify a presented scene most closely with one of the des-
criptive models in memory. Thus the program must incorporate,
in its comparison mechanism, conventions and priorities about
such matters as whether the difference between Right and Left
is to be considered simpler than the difference between Right
and Above.

In this example

ﬁ? IS TO mA AS IS TO

T s e = S

1 2 3 &4 5

182

ARTIFICIAL INTELLIGENCE

the machine chooses THREE as its answer, ONE as its second
chuice. In the slightly altered problem

1S TO @ 5 s) 1s 1O

(same 5 figures)

It chooses FOUR as its answer.
4.7 Greuping and Induction

The prcblem of recognizing or discerning grouping or clusterings
of related things is another recurrent concern not only in
Psychology, but also in statistics, artificial intelligence,
theory of inductive inference; indeed, of science and art in
general. Most studies cf "clustering" have centered around
attempts to adapt numerical methods from the theory of multi-
variate statistics to group data into subsets that minimize

some formula which compares selected inter- and intra-group
measures of relatedness. But such theories are not easily
adaptable to such important and interesting problems as discern-

e

shows, not 12 + 6 + 20 = 38 objects, but "a row of arches, a
tower of cubes, and a brick wall." More subtly, how do we
"know" that one of these is three wedges while the other is
three blocks? Visually, the lower objects in each tower are
the same. These problems, too, can be treated by the same
general methodology used in our approach to Analogy and to
Learning of structures in scene-analysis.

Y ¥

183

ARTIFICIAL INTELLIGENCE

On many occasions we have been asked why the A.I.

Laboratory is so concerned w
like machine vision, rather
approaches and problems abou
the early stages of a new sc
best by gaining a very deep
ing of & few particular prob
discovers important phenomen
insights, without which one
of speculations and generali

can see the present discussio

problems about induction anA
fulness of the approach shou
we cannot imagine anyone bel

of these ideas is in any impo
description of visual or mech

Take the groupings in the precedi
"What qualities of the scene-desc
intuitively acceptable groups."
shown above, it seems clear that
CHAIN, say, of supported-by or in
other cases it seems obvious that
common relationship to another.

ith special problems
than more general

t intelligence. 1In
ience one proceeds

and thorough understand-
lems; that way one

a, difficulties, and
risks fruitless periods
ties. 1If the reader

n in terms of general
learning, the fruit-

d speak for itself;
eving the usefulness
rtant way confined to
anical structures!

1
i

ng firures and ask:

riptions characterize the
In some groups, like those
the important feature is a
-front-of relations. 1In
several objects show a

But no simple rules work in

all situations.

In this scene one does not
usually see a single group or
tower of seven blocks. Whether
it is appropriate to describe
this as "a seven-block stack,"

or as "a three-block stack
supporting a plate that in turn

Supports a three-block stack,"

or as yet something else, depends
on one's current purposes, orien-
tations, or specifically on what
grouping criteria are currently
activated for whatever reason.

In some situations the discrepancies in the individual proper-
ties of the blocks should cause the grouping procedure to
separate out the three-block stacks in spite of the fact

that the support-relation chain continues through all seven
blocks.

184

b

ARTIFICIAL INTELLIGENCE

We next summarize some experiments along this line, again
reporting results from P, Winston's dissertation. In Winston's
grouping program, a generous hypothesis is followed by a

series of criticisms and modifications.

For example, when several R
ok jects have the same or
Véry nearly the same des- A D
cription, they are immedia
tely taken as candidates for B

N
a group. The blocks on this @ E c

table are typical. a1l are
polyhedra, all are standing
and all are Supported by
the board.

This proposal is then examined to eliminate objects which
seem atypical, until a fairly homogeneous set remains. To
do this, a program lists all relationships exhibited by
more than half of the candidates in the set.

When the procedure operates, the first pass through the

loop rejects E and F, mainly on the basis of shape. (Size

is not considered in this pass because the six objects are
too heterogenous for "sigze" to be put on the common-relation-
ships list.) 1In a second pass, however, more than half the
remaining objects share the "medium" size property, and block
D is rejected, mainly because it does not share this property.
So, finally, the procedure accepts only A B and (! into the
group. Obviously this is appropriate for some gcals, but

not others.

When grouping concepts are injected into the description
framework, there can be unexpected and exciting consequences
for other problems of induction. The figure on the next page
shows the network representation obtained when the grouping
process operates on the description of this 3-block column.

s

PR =)

E]

185

ARTIFICIAL INTELLIGENCE

(MEMBERS)

TYPICAL-MEMBER

-KIND -OF

NUMBER~OF -
SUPPORTED-BY ~ MEMBERS
NS
N1 L
N ey L =
coLumn NOT A COLUMN COLUMN

The second example causes the enforcement of
a roncept already available to the
refers to the neat parallel alignment of edges.
example tells the system that the typical member can be a
brick; the smallest common generalization here is
can be any neatly piled stack of

"ALIGNED",

wedge or a
"PRISM" so now a "column"
prisms. The fourth example changes
be-supported-by";
because it has only two elements,

186

NOT A COLUMN NOT A COLUMN

the fifth, which i
changes "one-part-is-a
group" to "one-part-must-be a group".

Into the description is
introduced a "typical
member" to which is
attributed the common
properties discerned by
the grouping procedure.

In this case, chaining was
used to form the group and
the description includes
the fact that there were
three elements in the
chain.

In a learning experiment,
the program is presented
with the depicted

sequence of scenes shown
below and is told that the
first, third, and sixth
are instances of "column"
while the others are not.

P |

COLUMN

a new pointer,
program that
The third

"supported-by" to "must-
S not seen as a group

ARTIFICIAL INTELLIGENCE

KIND~OF

The sixth and final example
is of particular interest
with respect to traditional
induction questions.
Comparison of it with

the current cracept of
"column" vields a
difference-description
whose highest-priority
feature is the occurrence
of "FOUR" instead of
"THREE," in the number-
of-members property of

the main group. What is
the smallest class that
contains both "THREE" and
"FOUR?" 1In the program's
present state, the only
available superset is
"INTEGER."” Thus we obtain
this description of "column"

TYPICAL-MEMBER

KIND-OF

ANOTHER'
MEMBER

which permits a column to MUMBER-OF -
have any number of MUST-BE-SUPPOKTED-8Y MEMBERS
elements! AND ALIGNED

Is this too rash a generalization to make from so few examples?
The answer depends on too many other things for the question

to make much sense. If the program had already some concept
of "small integer," it could call upon that. On a higher level
we could imagine a program that supervised the application of
any generalization about integers, and attaches an auxiliary
"warning" pointer label to conclusions based on marginally
weak evidence. We are still far from knowing how to design

a powerful yet subtle and sensitive inductive learning program,
but the schemata developed in Winston's work should take us

a substantial part of the way.

Finally, we note that in describing a sequential group in
terms of a typical member and its relations with the adjacent
members of the chain, we have come to something not too un-
like that in programming languages that use "loops," entry,
and exit conditions. Again, a structure cdeveloped in the
context of visual scene-analysis suggests points of contact
with more widely applicable notions.

187

ARTIFICIAL INTELLIGENCE

5.0 Knowledge and Generality

We now turn to another set of questions connected with our
long-range goal of understanding "general intelligence".

An intelligent person, even a young child, is vastly more
versatile than the "toy" programs we have described. He

can do many things; each program can do only one kind of thing.
When one of our programs fails to do what we want, we may

be able to change it, but this almost always requires major
revisions and redisign. An intelligent human is much more
autonomous. He can often solve a new kind of problem himself,
or find how to proceed by asking someone else or by reading

a book.

One might try to explain this by supposing that we have
"better thinking processes" than do our programs. But it
is premature, we think, to propose a sharp boundary between
any of these:

Having knowledge about how to solve a problem,
Having a procedure that can solve the problem,
Knowing a procedure that can solve the problem!

In any case, we think that much of that a person can do is

picked up from his culture in various ways, and the "secrets"

of how knowledge is organized lie largely outside the

individd¢ali, Therefore, we have to find adequate models of

how knowledge systems work, how they are acquired by individuals,
and how they interact both in the culture and within the
individuals.

How can we build programs that need not be rebuilt whenever

the problems we want to solve are slightly changed? One

wants something less like ordinary computer "programming"

and more like "telling" someone how to do something, by informal
explanations and examples.

In effect, we want larger effects while specifying less. We
do not want to be bothered with "trivial" details. The
missing information has to be supplied from the machine's
internal knowledge. This in turn requires the machine itself
to solve the kinds of easy problems we expect people to
handle routinely -- even unconsciously -- in everyday life.
The machine must have both the kinds of information and the
kinds of reasoning abilities that we associate with the ex-
pression "common sense".

1¢8

ARTIFICTAL INTELLIGENCE

There are differences of opinion about such questions, and

we digress to discuss the situation. Artificial Intelligence,
as a field of inquiry has been passing through a serious
crisis of identity. As we see it, the problem stems from the
tendency for the pursuit of technical methods to become
detached from their original goals so that they follow a
developmental pattern of their own. This is not necessarily
a bad thing; many productive areas of research were born of
such splits. Every discipline has had to deal with such
situations and it has happened often in the study of human
intelligence. Nevertheless, if one is interested in the par-
ticular goal of building a science of intelligence, one

has to be concerned with the use of resources both on the
local scale of conserving one's own time and energy and on

a global scale of watching to see whether the scientific
community seems to be directing itself effectively. We
suspect that there is now such a problem in connection with
the studies of Mechanical Theorem Proving.

5.1 Uniform Procedures Vs. Heuristic Knowledge

As a first approxiration to formulating the issues, consider
a typical research project working on "automatic theorem
proving". Schematically, the project has the form of a large
computer program which can accept a body of knowledge or "data
base," such as a set of axioms for group theory, or a set

of statements about pencils being at desks, desks being in
houses, and zo0 on. Given this, the program is asked to prove
or disprove various assertions. What normally happens is
that if the probhlem is sufficiently simple, and if the

body of knowledge is sufficiently restricted in size, or in
content or in formulation, the program does a presentable
job. But as the restrictions are relaxed it grinds to an
exponential stop of one sort or another.

There are two kinds of strategy for how to improve the program.
Although no one actually holds either policy in its extreme
form and although we encounter theoretical difficulties when
we try to formalize them, it nevertheless is useful to
identify their extreme forms.

The POWER strategy seeks a generalized increase in computational
power. It may look toward new kinds of computers {("parallel"

or "fuzzy" or "associative" or whatever) or it may look

toward extensions of deductive generality, or information
retrieval, or search algorithms -- things like better "re-
solution" methods, better methods for exploring trees and

nets, hash-coded triplets, etc. In each case the improvement
sought is intended to be "uniform" -- independent of the
particular data base.

189

ARTIFICIAL INTELLIGENCE

The KNOWLEDGE strategy sees progress as coming from better
ways to express, recognize, and use diverse and particular
forms of knowledge. This theory sees the problem as episte-
mological rather than as a matter of computational power or
mathemavical generality. It supposes, for example, that
when a scientist solves a new problem, he engages a highly
organized structure of especially appropriate facts, models,
analogies, planning mechanisms, self-discipline procedures,
etc. To be sure, he also engages "general" problem-solving
schemata but it is by no means obvious that very smart people
are that way directly because of the superior power of their
general methods -- as compared with average people. Indirectly,
perhaps, but that is another matter: a very intelligent
person might be that way because of specific local features
of his knowledge-organizing knowledge rather than because

of global qualities of his "thinking" which, except for the
effects of his self-applied knowledge, might be little
different from a child's.

This distinction between procedural power and organization

of knowledge is surely a caricature of a more sophisticated
kind of "trade-off" that we do not yet know how to discuss.

A smart person is not that way, surely, either because he

has luckily got a lot of his information well organized or
because he has a very efficient deductive scheme. His intelli-
gence is surely more dynamic in that he has (somehow) acquired
a body of procedures that guide the organization of more
knowledge and the formation of new procedures, to permit
bootstrapping. 1In particular, he learns many ways to keep

his "general" methods from taking elaborate but irrelevant
deductions and inferences.

5.1.1 Successive Approximations and Plans

The mechanical theorem-proving programs fail unless provided
with carefully formulated diets of data; either if given to
little knowledge and asked advanced theorems, or given too
much knowledge and asked easy questions. 1In any case, the
contrast witi a good mathematician's behavior is striking;

the programs seem to have no "global" strategies. 1If a

human mathematician is asked to find the volume of some object
of unusual shape he will probably try to use some heuristic’
technique like:

l. cutting it into a sum of familiar shapes; or

2. enclosing it "tightly" in a familiar shape and
try to find the difference-volume; or

3. transform, metrically, the space so that the chape
becomes more familiar;

4, etc.

190

B

ARTIFICIAL INTELLIGENCE

Thus, one would transform:

—

/== --_—

Now, in his final "proof" the heuristic principle that was
used will not appear explicitly, even though its use was
crucial. The three kinds of information in

1. The knowledge exhibited in the proof;
2. The knowledge used to find the proof;

3. The knowledge required to "understand" or
explain the proof so that one can put it
to other uses,

are not necessarily the same in extent or in content. The
"Theorem Prover" systems have not been oriented toward making
it easy to employ the second and the third kinds of knowledge.
We have just given an example of how the second type of
knowledge can be used.

The third kind of knowledge is exemplified by the following
story about an engineer or physicist analyzing a physical
system. First, he will make up a fairy-tale:

“"The system has perfectly rigid bodies,

that can be treated as purely geometric. There
is no friction, and the forces obey Hooke's
law."

Then he solves his equations. He finds the cystem offers
infinite resistance to disturbance at a certain frequency.

He has used a standard plan; call it ULTRASIMPLE; and it
produced an absurdity. But he does not reject this absurdity,
completely! 1Instead, he says: "I know this phenomenon! It
tells me that the "real" system has an interesting resonance
near this frequency". Next, he calls upon some of his higher-
order knowledge abouvt the behavior of plan ULTRASIMPLE.,
Accordingly, this tells him next to call upon another plan,
LINEAR, to help make a new model which includes certain
damping and coupling terms.

.

o W T

191

ARTIFICIAL INTELLIGENCE

Next, he studies this system near the interesting frequency
that was uncovered by plan ULTRASIMPLE. He knows that his

new model is probably very bad at other, far-away, frequencies
at which he will get false phenomena because of the unaltered
assumptions about rigidity; he has reason to believe these
harmless in the frequency band now being studied. Then he
solves the new second-order equations. This time he might
obtain a pair of finite, close-together resonances of opposite
phase. That "explains" the singularity in the simpler model.
We abandoned one simple "micro-world" and adopted another,
slightly more complicated and better adapted to the better-
understood situation. This too may serve only temporarily

and then be replaced by a more specialized set of assumptions
for studying how nonlinearities affect the fine-structure of
the resonances; a new plan, NONLINEAR or INELASTIC or THIRD-
ORDER or DISCRETE, or whatever his third-type knowledge
suggests.

One cannot overemphasize the importance of this kind of
scenario both in technical and in everyday thinking. We are
absolutely dependent on having simple but highly-developed
models of many phenomena. Each model-- or "micro-world"

as we shall call it -- ig very schematic; in either our
first-order or second-order models, we talk about a fairyland in
which things are so simplified that almost every statement
about them would be literally false if asserted about the
real world. Nevertheless, we feel they are so important

that we plan to assign a large portion of our effort to
developing a collection of these micro-worlds and finding how
to embed their suggestive and predictive powers in larger
systems without being misled by their incompatibility with

literal truth. We see this problem -- of using schematic
heuristic knowledge -- as a central problem in Artificial
Intelligence.

5.2 Micro-worlds and Understanding

In order to study such problems, we would like to have
collections of knowledge for several "micro-worlds", ulti-
mately to learn how to knit them together. Especially, we
would like to make such a system able to extend its own
knowledge base by understanding the kinds of information
found in books. One might begin by studying the problems
c¢ne encounters in trying to understand the stories given to
young children in schoolbooks. Any six-year-old understands
much more about each of such crucial and various things as

time space planning exXplaining
causing doing preventing allowing
failing knowing intending wanting
owning ' giving breaking hurryineo

than do any of our current heuristic programs. Eugene Charniak,
a graduate student, is now well along in developing some

such models, and part of the following discussion is based

on his experiences.

192

.-fnk_r

e

ARTIFICIAL INTELLIGENCE

Although we might describe this project as concerned with
"Understanding Narrative", -- of comprehending a story as

a sequence of statements as read from a book -- that image
does not quite do justice to the generality of the task. One
has the same kinds of problems in:

1. making sense of a sequence of events one has seen
or otherwise experienced (what caused what?)

2. watching something being built (why was that
done first?)

3. understanding a mathematical proof (what was
the real point, what were mere technical details?)

Many mental activities usually considered to be non-sequential
have similar qualities, as in seeing a scene: why is there

a shadow here? -- What is that? -- Oh, it must be the
bracket for that shelf.

In any case, we do not yet know enough about this problem
of common sense. One can fill a small book just describing
the commonsense knowledge needed to solve an ordinary problem
like how to get to the airport, or how to change a tire.
Eacli new problem area fills a new catalogue. Eventually, no
doubt, arter one accumulates enough knowledge, many new
problems can be understood with just a few additional pieces
of information. But we have no right to expect this to
happen before the system contains the kind of breadth of
knowledge a young person attains in his elementary schooul
years.

We do not believe that his knowledge can be dumped into

a massive data base without organization, nor do we see how
embedding it in a uniformly structured network would do

much good. We see competence as emerging from processes in
which some kinds of knowledge direct the application of other
kinds in which retrieval is not primarily the result of
linked associations but rather is computed by heuristic and
logical processes that embed specific knowledge about what
kinds of information are usually appropriate to the
particular goal that is current.

We already know some effective ways to structure logically
deep hut epistemologically narrow bodies of knowledge, as
the result of research on special purpose heuristic programs
like MACSYMA, DENDRAL, CHESS, or the Vision System to get
experience with broader, if shallower, systems we plan to
build up small models or real world situations; each should
be a small but complete heuristic problem solving system,
organized so that its functions are openly represented in
forms that can be understood not only by programmers but
also by other prog.ams. Then the simple-minded solutions
proposed by these mini-theories may be used as plans for more
sophisticated systems, and their programs can be used as
starting points for learning programs that intend to improve
them.

193

ARTIFICIAL INTELLIGENCE

In the next section we will describe a micro-world whose
subject matter has a close relation to the vision world
already described. 1Its objects are geometric solids such as
rectangular blocks, wedges, pyramids, and the like. They
are moved and assembled into structures by ACTIONS, which
are taken on the basis of deductions about such prpperties
as shape, spatial relations, support, etc. These interact
with a base of knowledge that is partly permanent and partly
contingent on external commands and recent events.

5.3 Winograd's BLOCKS World
Note: Sections 5.3 through 5.6 are largely adapted
from Terry Winograd's Thesis, but he is not responsible
for the oversimplifications and reinterpretations.

For developing and demonstrating his ideas about understanding
natural language, Terry Winograd needed a micro-world in

which to carry on a discourse containing statements, questions
and commands. In this world we pretend we are talking to

a very simple type of robot, like the ones being developed

in AI projects at Stanford and MIT. The robot has an

arm and an eye. It can look at a scene containing toy

objects and can move them with its hand. Winograd did not

try to use an actual robot or to simulate it in great

physical detail. His "robot" exists only as a display on

the CRT scope attached to the computer.

A subject for such a discourse needs a certain amount of
structure to support interesting description and manipulation
problems. The BLOCKS WORLD has OBJECTS, RELATIONS (and
properties) of the objects, ACTIONS that can be performed,
and GOALS -- descriptions of states of the world that one
might want to achieve.

5.3.1 Objects

In Winograd's model, the robot (named :SHRDLU) has a hand
(:HAND) which manipulates objects on a table (:TABLE) that

has on it a box (:BOX). The rest of the physical objects

are toys -- mainly blocks and pyramids. We give them the names
:Bl, :B2, "B3, etc. Any symbol beginning with ":" represents

a specific object.

Built into this world are some concepts we will use to
describe these objects and their properties. We represent
them in a tree:

| TABLE
| BOX | BLOCK
| PHYSOB------- | MANIP-------- | BALL
| ROBOT | HAND | PYRAMID
| PERSON | STACK
| PROPERTY-========——eeeeo | coLoRrR

194

ARTIFICIAL INTELLIGENCE

The symbol PHYSOB stands for "physical object" and MANIP
for "manipulable object" (i.e. something the robot can pick
up). Using the concept IS to mean "has as its basic des-
cription,” we can write assertions like

(IS :SHRDLU ROBOT) (IS :HAND HAND) (IS :B5 PYRAMDD)

For other, less basic properties we can write attribute-
value statements like (MANIP :B5) and (PHYSOB :TABLE).
Shape and color are handled with possible shapes are
ROUND, POINTED, and RECTANGULAR, and the colors are
BLACK, RED, WHITE, GREEN and BLUE. The property names
themselves can be treated as objects, so we can make such
assertions as (IS BLUE COLOR) and (IS RECTANGULAR SHAPE) .

Size and location are more complex, as they depend on the
way we choose tc represent physical space. We adopted a
standard three-dimensional coordinate system and make the
simplifying assumption that objects are not allowed to
rotate, and therefore always keep their orientation aligned
with the coordinate axes. We can represent the position of
an object by giving the coordinates of its front lower left-
hand corner, and its size by giving three dimensions, as

in (AT :B5 (400 600 200)), and (SIZE :B5 (100 100 300)).

5.3.2 Relations

Since we are interested in building structures with the

objects around in the scene, one of the most important relations
is SUPPORT. The initial data base contains assertions about
all of the support relations in the intial scene, like (SUPPORT
:Bl :B2). Every time an object is moved, a PLANNER "ante-
cedent theorem: removes the old assertion about what was
supporting it, and puts in the correct new one. See 5.3.3.

An "antecedent theorem" can be regarded as a sort of demon

that watches for some sort of event to happen, and then takes

a suitably programmed action. The Blocks World uses a

notion of "support" in which an object is supported by whatever
is directly below its center of gravity, at the level of its
bottom face. Therefore, one object can support several

others, but there is only one thing supporting it. Of

course this is an extreme simplification since it does not
recognize that a simple bridge is supported.

The assertion (CLEARTOP X) will be in the data base if and
only if there is no assertion (SUPPORT X Y) for any object
Y. Whenever an object is moved, a procedure checks to see
if the CLEARTOP status of any object has changed, and if so
the necessary erasures and assertions are made.

Information aboul what is contained in the box is also kept
current by an antecedent theorem concerned with the property
CONTAIN. The property GRASPING is used to indicate v/hat
object (if any) the robot's hand is currently grasping.

195

ARTIFICIAL INTELLIGENCE

Another relation is the PART relation between an object and

a stack. We can give a name to a stack, such as :51, and

assert (PART :B2 :S1). Relations using the symbols RIGHT,
BEHIND and ABOVE represent the difference in coordinate axes

for X, Y and Z respectively. The symbol ON is used to represent
the transitive closure of SUPPORT. That is, 2 is ON A if A
supports B, B supports C, ... supports Z.

The measurements of LENGTH, WIDTH and HEIGHT are contained in
the SIZE assertions and (HEIGHT X) evaluates to the height of
whatever object the variable X is bound to. SIZE is

used for comparisons like "bigger." Currently, it returns

the sum of the X, Y and 2 coordinates, but it could be easily
changed to be more in accord with human psychology. 1In

order to compare measurements, we have the relation MORE. The
sentence ":Bl is shorter than "B2" is equivalent to the asser-
tion (MORE HEIGHT :B2 :Bl).

OWN relates a person to any object. Knowledge about what the
human user owns is gathered from his statements. The semantic
programs can use statements about owning to generate further
PLANNER theorems which are used to answer questions about what
:FRIEND (the human operator) owns and make deductions needed
to carry out commands involving owning. The current system
contains only token examples of such properties unrelated to
the microworld of blocks.

5.3.3 Actions

The only events that can take place in our world are actions
taken by the robot in moving its hand and manipulating objects.
At the most basic level, the only actions which "really"

occur are .MOVETO!, !GRASP! and !UNGRASP!. These are the
actual commands sent to the display routines and, theoretically,
to a physical robot system.

To explain how the actions are programmed,

in Winograd's system, we need to know a little
about the PLANNER language of Carl Hewitt.
Briefly, PLANNER has several ways for handling
information of the form "A implies B", custom-
arily called "theorems". 1In one form, the
"consequent" form, it is interpreted roughly

as "If you want something of the form B,

make A a subgoal". In another, the "ante-
cedent" form, it means "if something of the
form A occurs, then deduce B and add it to

the data base", Still another form of theorem
can erase statements, such as support assertions
that ought to be excised automatically when one
of the participating objects is moved.

196

ARTIFICIAL INTELLIGENCE

The result of calling a consequent theorem to achieve a goal
requiring motion, like (PUTON :B3 :B4), is a plan -- a list
of instructions using the three elementary functions. !MOVETO!
moves the hand and whatever it is grasping to a specified
position. [!GRASP! sets an indicator that the grasped object
is to be moved along with the hand, and 'UNGRASP' unsets it.
The robot grasps by moving its hand directly over the center
of the object on its top surface, and turning on a "magnet."
It can do this to any manipulable object, but can only grasp
one thing at a time. Using these elementary actions, we

can build a hierarchy of actions, including goals that may
involve a whole sequence of deductions and actions, like
STACKUP which causes the construction of a whole stack of
blocks).

Inside the system are another set of "conceptual actions"
MOVEHAND, GRASP and UNGRASP, and corresponding consequent
theorems to achieve them. There is a significant difference
between these and the functions listed above. Calling the
function !MOVETO! actually causes the hand to move. On the
other hand, when PLANNER evaluates statement like:

(GOAL (MOVEHAND (600 200 300)) (USE tc-MOVEHAND))

nothing is actually moved. Translation: If your goal is to
move the hand to (600, 200, 300) , use the advice in the te-
MOVEHAND theorem to achieve this goal. The "USE" clause is a
feature in PLANNER to allow the insertion of advice on how

to achieve goals, etc., in any assertion or theorem. Here,
the tc-MOVEHAND theorem creates a plan to do the motion, but
if this move would cause us to be unable to achieve a goal

at some later point, the PLANNER backup mechanism will automa-
tically erase it from the pPlan. The robot plans its entire
sequence of actions before actually moving anything, trying
if necessary all of the recommended means it has to achieve
its goal. We do not have Space to explain PLANNER's backup
system in complete detail; it is described in Hewitt's
thesis, and the following sections show roughly how it
provides automatic tree searching when necessary, under the
control of the "USE" recommendations attached to the theorems
in the data base.

These theorems also do some checking to see if we are trying
to do something impossible. For example, MOVEHAND makes
sure the action would not place one block where there is
already an other, and UNGRASP fails unless something will
support the object it wants to let go of.

These are the basic objects, relations and actions in the

blocks world. But a micro-worid also needs concepts about in-
tentions, processes, strategies, etc. We next describe the

197

] *

ARTIFICIAL INTELLI GENCE

t
about complex goals and for answering questions about its
performance and about its intentions.

5.3.4 Carrying Out Commands

Some theorems, like tc-GRASP, are complex, as they can cause
a series of actions. The following Program gives simplified
definitions of various PLANNER theorems. Using these defi-
nitions, we will be able to follow the system through a
complex action in detail. (For purposes of clarity, the
Program may be found on the following page).

198

oo

'i.-s-»iﬂxl 52

ARTIFICIAL INTELLIGENCE

tc-CLEARTOP X

GO (COND ((GOAL (SUPPORT X _Y))
(GOAL (GET-RID-OF Y) (USE tc-GET-RID-0OF))
(GO GO))

((ASSERT (CLEARTOP X))))

tc-GET-RID-OF X
(OR
(GOAL (PUTON X :TABLE) (USE tc-PUTON))
(GOAL (PUTON X Y) (USE tc-PUTON)))

tc-GRASP X
(GOAL (MANIP X))
(COND ((GOAL (GRASPING X)))
((GOAL (GRASPING _Y))
(GOAL (GET-RID-OF Y) (USE tc-GET-RID-OF))) §
(T)) ”
(GOAL (CLEARTOP X) (USE tc-CLEARTOP))
(SETQ _Y (TCPCENTER X))
(GOAL (MOVEHAND Y)
(USE tc-MOVEHAND))
(ASSERT (GRASPING X))
tc-PUT X

(CLEAR Y (SIZE X) X)

(SUPPORT Y (SIZE X) X)

(GOAL (GRASP X) (USE tc-GRASP))

(SETQ _Z (TCENT Y (SIZE X)))

(GOAL (MOVEHAND 2) (USE tc-MOVEHAND))
(GOAL (UNGRASP) (USE tc-UNGRASP)))

tc-PUTON X Y
(NOT EQ X Y))
(GOAL (FINDSPACE Y SE (SIZE X) X Z)
(USE tc-FINDSPACE tc~MAKESPACE))
(GOAL (PUT X Zz) (USE tc-PUT))

Let us trace, for example, the meaning of PUTON. The first clause
(PUTON X Y)

is the "pattern" of the goal. X and Y are variables to be matched.
If the goal has this form, then these variables are bound to what
they matched and

(NOT (EQ X Y))

checks for the (impossible) situation of trying to put a block

on itself. 1If this "failure" occurs then the current goal will

be abandoned. This means that PLANNER will back up -- reconstruct
the situation at the most recent previous variable-binding de-
cision. For example, in this case, the system must have been
looking for a place to put the block X, and stupidly decided to
put it on X! Now it must make another choice, and presumably

this time Y will be found to a different, more sensible location.
So this time tc-PUTON will pass the (NOT (EQ X Y)) test and go

199

A

e &

e

ARTIFICIAL INTELLIGENCE

on to the next step, which is to Create a subgoal:

{(GOAL (FINDSPACE Y S$& (SIZE X) X _2)
(USE tc-FINDSPACE tc-MAKESPACE)) I

which says to try to find a space on Y big enough for X, ignor- !
ing space currently occupied (possibly) by X. The location

resulting from success of this goal is then bound to Z. Again,

if the goal fails, we would back up, but the program makes two
recommendaticns for how to find such a place. tc-FINDSPACE

Says to try to find a space alread; there; if this fails then
tc-MAKESPACE says ton try to make such a space.

(GOAL (PUT X Z) (USE tc-PUT)))

Assuming that this succeeds, then try to use tc-PUT to actually
put X in that location 2.

With this explanation we can follow what happens if PLANNER
tries the goal:

(GOAL (GRASP :Bl) (USE tc~-GRASP))

The theorem tc-GRASP checks to make sure :Bl is a graspablns
object by looking in the data base for (MANIP :Bl). 1If the
hand is already grasping the object, it has nothing more to

do. If not, it must first get the hand to the object. This
may involve complications -- the hand may already be holding
something, or there may be objects sitting on top of the one it
wants to grasp. 1In the first case, it must get rid of what-
ever is in the hand, using the command GET-RID-OF.

i
L 4

The easiest way to get rid of something is to set it on the
table, so tc-GET-RID-OF Creates the goal (PUTON X :TABLE) ,

where the variable X is bound to the object the hand is holding.
Then tc-PUTON mus% in turn find a big erough empty place to set
down its burden, using the command FINDSPACE, which performs

the necessary calculations, using information about the sizes
and locations of all the objects. tc-PUTON then creates a goal
using PUT, which calculates where the hand must be moved to get
the object into the desired place, then calls MOVEHAND to actual-
ly plan the move. If we look at the logical structure of our
active goals &t this point, assuming that we want to grasp :Bl,
but were alreacy grasping :B2, we see:

(GRASP :Bl)
(GET-RID-OF :B2)
(PUTON :B2 :TABLE)
(PUT :B2 (453 101 0))
(MOVEHAND (553 301 100))

After moving, tc-PUTON calls UNGRASP, and we have achieved the
first part of our original goal -- emptying the hand. Now we
must clear off the block we want to grasp. tc-GRASP sets up
the goal:

(GOAL (CLEARTOP :B2) (USE tc~CLEARTOP))

200

ARTIFICIAL INTELLIGENCE

This is a good example of the double use of PLANNER goals to
both search the data base and carry out actions. If the asser-
tion (CLEARTOP :Bl) is present, it satisfies this goal immedi-
ately without calling the theorem. However if :Bl is not already
clear, this GOAL statement calls tc-CLEARTOP which takes the
necessary actions. Then tc~CLEARTOP will try tc GET-RID-OF

the objects on top of :Bl. This will in turn use PUTON, which
uses PUT. But tc~PUT may have more to do this time, since the
hand is not already grasping the object is has to move. It
therefore sets up a goal to GRASP the object, recursively call-
ing tc-GRASP again.

And so on! To answer questions about the past, the BLOCKS pro-
grams remember parts of their subgoal tree by creating objects
called events. The system does not remember small, specific
steps like MOVEHAND, but only larger goals like PUTON and STACK-
UP. The time of events is measured by a cloclk v'hich starts at
0. It is incremented by 1 every time any motior occurs. creat-
ing a new event that combines the original goal statement with
an arbitrary name, the starting time, ending time, and "reason"
for each event. The reason is the name of the event nearest
up in the subgoal tree which is being remembered. (The reason
for goals called by the linguistic part of the system is "be-
cause you asked me to").

A second kind of memory keeps track of the actual physical
motions of objects, noting each time one is moved, and record-
ing its name and the location it went to. This list can be
used to establish where any object was at any past time.

When we want to pick up block :Bl, we can say: (GOAL (PICKUP :Bl)),
and it is interpreted as a command. We can also ask "Did you

pick up :B1l?", since when the robot picked it up an assertion

like (PICKUP E2 :Bl) was stored in the data base. If PLANNER
evaluates PICKUP X :Bl)) it will find the assertion, binding

the variable X to the event name E2. Since the property 1list

of E2 gives its starting and ending times, and its reason, this

is sufficient information to answer most questions.

5.4 Sample Dialog with Winograd's Language Understanding System

To make a useful micro-world one needs not only objects, prop-
erties and actions, but also goals, processes, and simplified
versions of general concepts like time, space, and intention.
The Blocks World was designed by Terry Winograd to serve as a
subject domain for the development of a language understanding
System. This system is radically more ambitious than earlier
attempts to deal with natural language in several respects.

It is as much, or more, concerned with the problem of represent-
ing the meanings in a discourse than with the grammatical struc-
ture; Winograd's thesis asserts that the interactions between
meanings and syntactic structures are so intimate that it is a
bad idea to try to draw a definite boundary between the pro-
cedures that "parse" a sentence and the Frocedures that are to
be used to draw logical inferences about the meanings carried

in the discourse.

S

P - 3

201

ARTIFICIAL INTELLIGENCE

Winograd's system is described in his thesic at several levels

of detail and it is impossibie to do justice to it in any short
summary. Our strategy will be first to present an example of

its performance in the blocks world context, and then to discuss
some of the mechanisms that are involved in attaining this per-
formance. 1In the followira dialog the system carries out actions
and answers questions about a simple scene containing a table,
hand, and box, and several blocks and pyramids, as shown in

Fig. 1. The lines in lower case were typed in by a person, and
the lines in upper case are the computer's response. Indented
lines are comments describing some of the features being ex- |
hibited.

The dialog was carried out in real time with the response of

the "robot" displayed on a CRT screen. Figures are included

to show the state of the scene at various points., It is im-
portant to read the dialog with some skepticism: While the
apparent linguistic fluency is to an extent genuine, the vocabu-
lary and semantic base is very thin, and the conversation works
because the human operator stays closely within the boundaries
of the system's understanding.

l. pick up a big red block.

======== QK.
The system answers "OK" when it carries
out a command. 1In order to pick up the
red block, it had to clear it off by
finding a space for the green one and
noving the green one away.

2. grasp the pyramid.

======= T DON'T UNDERSTAND WHICH PYRAMID YOU MEAN,
There are three pyramids in the scene,
so the program does nothing.

3. find a block which is taller than the one you are

holding and put it into the box.
The system has to figure out what is
meant by "one" and "it", as well as
using deduction to decide which block
it is holding.

======= BY"IT", I 2SSUME YOU MEAN THE BLOCK WHICH IS TALLEL
THAN THE ONE I AM HOLDING. (Printed out to keep us informed.)
======= QK. The hand has to set down the red block
to pick up the taller blue one. Figure 1
shows the result of the system's manipu-
lations so far.

4. what does the box contain?
======= THE BLUE PYRAMID AND THE BLUE BLOCK.

5. what is the pyramid supported by?
Earlier the system responded to "the
pyramid" by saying "I don't understand
which pyramid you mean.” Now, it assumes
======= THE BOX. that we mean the one just mentioned.

202

ARTIFICIAL INTELLIGENC

red A ™ e

Biga elw

a
B

203

-

ARTIFICIAL INTELLIGENCE

6. how many blecks are not in the box? .
Negatives such as "not" and "no" are
handled whether they appear in clauses
Or noun groups (such as "no boxes").
======= FQUR OF THEM.

7. 1is at least one of them narrower than the one which I
told you to pick up? 2
The phrase "at least one of them" must
be analyzed tc refer back to the previ-
ous question, and "the one which" must
aiso refer *o blocks. Noun groups can
have complicated numbers such as "at
least one", "more than three", "exactly
seven", etc. The memory of past events
' .. 1s used to deduce which block is "the
one which I told you to pick up". Notice
the complicated grammatical structure in
which "the one" is actually the object
of a clause embedded two levels deeper.
======= YES, THE RED CUBE.

8. 1is it suppcited? Passives can be used without a "by
" phrase.

======= YES, BY THE TABLE.

9. can the table pick up blocks?
======= NO. The semantic rules make this a nonsensi-
cal question which therefore must be

false.

10. can a pyramid be supported by a block?
======= YES. The deductive system finds an actual
example, so it knows this is possible.

11. can a pyramid support a pyramid?

======= I DON'T KNOW.
The question makes sense, but there is
no example in the scene, so there is no
easy way to tell without being able to
examine the robot's programs.

12. stack up two pyramids.
=======] CAN'T The robot tries and fails.

13. the blue pyramid is nice.
======= 1 UNDERSTAND.
This data is added to the data rase.

1l4. i own blocks which are not red, but i don't own any-
thing which supports a pyramid.
=======] UNDERSTAND.

Two new theorems are created for proving
things about "owning".

15. do i own the box?

======= NQO. The box supports whatever it contains,
including a pyramid.

204

ARTIFICIAL INTELLIGENCE

16. do i own anything in the box?
======= YES, TWO THINGS: THE BLUE BLOCK AND THE BLUE PYRAMID.

17. will you please stack up both of the red blocks and

wither a green cube or a pyramid?

======= QK. Logical connectives such as "and" "or"
"either" etc. are handled in both the
grammar and semantics, A command is
executed even if it lcoks like a question.
The command is carried out by the follow-
ing series of steps: It puts a green
cube on the large red block (note that
it chooses the green cube with nothing
on it), then removes the small pyramid
from the little red cube, so that it can

, use that cube to complete the stack as ‘

specified, resulting in the situation '
of Figure 2.

18. which cube is sitting on the table?

======= THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID
Ordinarily the system would be satisfied
with calling this "a big green cube",
but since we asked "which cube" it has
to be more specific in naming it. The
use of substitute nouns (such as "one")
and pronouns in answers makes the dis-

| coursc more natural.

]
.

19. is there a large block behind a pyramid?
======= YES, THREE OF THEM: A LARGE RED ONE,
A LARGE GREEN CUBE AND THE BLUE ONE.

20. put a small one onto the green cube which supports a
pyramid.

——————— OK. "A small one" most contrast with the
earlier phrase "a large block", so this
means "a small block".

21. put the littlest pyramié on top of it.

======= QK. Words like "littlest" are not in the
dictionary but are interpreted from the
root forms like "little".

22. how many things are on top of green cubes?

======= I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE

PHRASE "ON TOP OF GREEN CUBES". DO YOU MEAN: f

1l - DIRECTLY ON THE SURFACE 2 - ANYWHERE ON TOP QF ? [
When there are several interpretations
and none is clearly better, the system
has to ask the user for more information.
The paraphrases were included with the

r dictionary definition of "on", and the

| request for more information occurs

automatically when the heuristics for

resolving ambiguities aren't sufficient.

A request like this can also occur when

the neaning of a pronoun such as "it" or

"they" is unclear.

-p-n.ik_-;

205

ARTIFICIAL INTELLIGENCE

- I
|
i
=
/
|
|‘
wd /AN
—— /N
/ \ N

VN
’26_1"1&__&’/ /

Fig. 2.

206

ARTIFICIAL INTELLIGENCE

2 ====== THREE OF THEM.

23. had you touched any pyramid before you put the green

one on the little cube?

======= YES, THE GREEN ONE.
The system deduces from its memory what
event is being referred to, and can re-
late other events to it in time. The
analysis includes complex tenses of verb
groups, and there are special facilities
for keeping track of the various forms
of irregular verbs like "have".

24. when did you pick it up?
======= WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED
BLOCK AND A LARGE GREEN CUBE.
A time is described by naming the main
goal which was being worked on.

25. why? The system remembers immediately previous
sentences to understand questions like
this and the following ones.

======= TO GET RID OF IT.

By keeping track of selected parts of the
original subgoal tree, the system has
some understanding of its own motives.

26. why did you do that?

======= TO0 CLEAN OFF THE RED CUBE.
"That" refers to the action mentioned
in the answer.

27. why did you clear off that cube?
Here, "that" means the one just referred
to.

======= TO PUT IT ON A LARGE GREEN CUBE.

28. why did you do that?
======= TO STACK UP THE RED CUBE, A LARGE RED BIOCK AND A
LARGE GREEN CUBE.

29. why did you do that?

======= BECAUSE YOU ASKED ME TO.
It remembers what it did, not how the
request was worded.

30. how did you do it?
"It" refers to the action mentioned in
the last question, rather than the answer.
======= BY PUTTING A LARGE RED BLOCK ON THE TABLE; THEN
LETTING GO OF IT: THEN PUTTING A LARGE GREEN CUBE ON IT:
THEN LETTING GO OF THAT CUBE: THEN PUTTING THE RED CUBE
ON THAT CUBE: THEN LETTING GO OF THAT CUBE.
This is a description of the top-level
subgoals used to achieve the goal.

207

—
o s I

ARTIFICIAL INTELLIGENCE

3l. how many objects did you touch while you were doing it?
Time references can refer to a time span,
using words like "while",

======= FOUR OF THEM.

32. what did the red cube support before you started to
clean it off? :

By remembering what has been moved, it

is possible to deduce things about earlier
states of the scene. We can use complex
nestings of clauses like "before you
started to clean it off".

33. there were five blocks to the left of the box then.
"Then" must refer to the time mentioned
in the last sentence.

======= NO, ONLY FOUR OF THEM: THE RED CUBE, TWO LARGE

GREEN CUBES AND A LARGE RED BLOCK.

Earlier in the dialog, information about
"owning" was accepted at face value. But
the system knows that it has complete
information about the basic properties

of objects, including location. Tt checks
any statements about location or other
such properties to see whether it agrees
or disagrees.

34. put the blue pyramid on the block in the box.
This is syntactically ambiguous, but is
understood without ambiguity since the
parsing corresponding to "put the blue
pyramid which is on the block in the box".
does not make sense in the current scene,
while "put the blue pyramid on the block
which is in the box" does.

35. 1is there any thing which is bigger than every pyramid

but is not as wide as the thing that supports it?
The system understands quantifiers such
as "every",'"any", "some", etc., and
structures such as "bigger than", "as
wide as", etc. Here "it" refers to a
houn group within the same sentence but
two levels up in the parsing tree.

======= YES, THE BLUE BLOCK.

36. does a steeple SORRY, I DON'T KNOW THE WORD "STEEPLE".
The system interrupts immedjately when it
Sees a word it can't figure out.

37. a "steeple" is a stack which contains two green cubes
and a pyramid.
The quote marks indicate we are defining
a new word.
======= T UNDERSTAND

208

PO & &

o BN P g

ARTIFICIAL INTELLIGENCE

38. are there any steeples now?
======= NO.

======= QK. The description given in the definition
is enough to deduce a plan for building
new objects as well as recognizing them.
The word "one" means "a steeple”, and the
plan is carried out. First, one of the
large green cubes is cleared off by remov-
ing the red cube and two pyramids. Then
the two green cubes and the tall red
pyramid are stacked up to fit the descrip-

tion.
40. call the biggest block "superblock".
======= QK. We can also give objects names.

41. have you picked up superblock since we began?
======= YES.

42. why did you drop it?

======= BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK.

======= 1 CAN"T EXPLAIN A NON-EXISTENT EVENT.
There is no record in memory of any block
being dropped.

43. 1is there anything to the right of the red pyramid?
======= YES, FOUR THINGS: THE BOX, THE RED CUBE, THE BLUE
PYRAMID AND THE BLOCK NAMED SUPERBLOCK.
Cnce an object has a name, the name is
used to help identify it in responses.

44. thank you.

======= YQOU'RE WELCOME'
Idicms can be defined without modifying
the grammar.

5.5.1 Syntax and meaning

What concepts are involved in the dialog example? From the
performance, it is clear that the system embodies a certain
amount of knowledge about blocks, about building, about goals,
time, space, words, semantics, syntax, idioms, and common sense
about questions, logical inference, tolerance of false assertions,
inconsistencies, failures to achieve goals, etc. Each such
problem could perhaps be handled, in any particular situation,
by appropriate tricks, special case detectors, reduction to
standardized schematic situations, etc. but such a system
would become more and more limited, unwieldy, and finally in-
comprehensible and incapable of extension, as situations appear
in which special cases interact. 1In fear of this, perhaps,
construction of theories involving meaning has generally been
put aside or po:tponed in favor of attempts to construct syn-
tactic rules that would generate exactly the "grammatical"

209

e R g

ARTIFICIAL INTELLIGENCE

sentences of the language. 1In the work of Chomsky and others

it seemed at first that this might work out, but as one attempted
more and more realistically comprehensive models, these too
turned out to require a great body of special methods, and led

to systems that were unwieldy, hard to extend, and finally in-
comprehensibly complex, just as was feared from the semantic
approach. Perhaps, then, the attempt to split Syntax completely
from semantics actually makes matters worse, and one might do
better by facing squarely the problems of meaning!

Such a proposal which once seemed much more difficult than
syntactic analysis, now seems easier partly because the latter

To emphasize why purely syntactic methods cannot tell us how to
parse a sentence and why meaning must be studied, consider the
following two sentences:

The city councilmen refused to give the women a permit
for a demonstration because they feared violence.

The city councilmen refused to give the women a permit
for a demonstration because they advocated revolution.

If we have to make a choice of who "they" means, for example,

to find the gender if we were translating into French, we need
the information and reasoning power to realize that city council-
meén are usually staunch defenders of law and order, but are hardly
likely to be revolutionaries. 1In traditional syntactic analysis
one avoids this problem by announcing both parsings, but if we
are interested in understanding how the language is to be used,
we have to be able to make the choice. So in addition to a
grammar of a language, our program needs all sorts of knowledge
about the subject it is discussing, and the ability to use
reasoning to combine facts in the right ways. To understand a
sentence one has to combine grammar, semantics, and reasoning

in a very intimate way, calling on each part to help with the
others.

In earlier computer programs lerstanding language,
such attempts as were made & information took
the form of lists of rules, pa . and formulas. 1In

Winograd's System, knowledge is vapressed as PROGRAMS in
special languages designed to gain the flexibility and
vower of programs while retaining much of the regularity
of traditional simpler rule forms. Since each piece of
knowledge can be a Procedure, it can call on any other
type of knowledge. Thus the "parser" can call semantic
programs to see if the phrase it is proposing makes sense,
and the semantic programs can call on the deductive pro-
grams to see whether that meaning of a phrase makes sense
in the current real-world context, as when the choice of
a pronoun's assignment depends on the Ppreceding discourse
or on detailed knowledge of the Subject matter.

210

ARTIFICIAL INTELLIGENCE

While Winograd's system can be described as divided into three
parts -- syntax, semantics, and inference -- it is the richness
of interplay permitted between these that makes it an advance
over previous language-understanding programming attempts. In
the following sections we will describe enough of these three
"sections" to see how the whole system can handle just the
first line in the sample dialog:

pick up a big red block

To fit the type of syntactic analysis he chose to use, Winograd
developed a programming language (named PROGRAMMAR) that differs
from other parscers in that the grammar is written in the form
of a collection of programs. The grammer itself, as we shall
explain, is highly suited for semantic analysis since from the
start it views the "rules of grammar" as connected wi*h the
decisions one mkes about conveying meaning rather than about
putting words into acceptable orderings.

At the other end of the system we have the knowledge and the
reasoning power of a problem-solver system, written in the
PLANNER language, to give the system detailed knowledge about
its universe -- in this case the BLOCKS WORLD we described in
section 5.3. This makes it possible for the system to discuss
not only physical happenings but also the robot's own goals
and actions.

Interposed between these is the semantic system which contains
processes that deduce, from the syntactic constructions, and
from the programs that define the meanings of words and other
constructions in terms of PLANNER programs, new procedures for
the deductive system to use in answering questions, obeying
commands, and acquiring new knowledge in the course of the
dialog. This system is described in section 5.6. The full
system contains some token knowledge also about communication
between persons, so that if we say: "There is a block on a
green table. What color is it?" the system will assume that
"it" refers to the block (rather thaa the table) since one
would not normally ask a question whose answer one knows.

5.5.2 Systemic Grammar

The following sections might seem unusually
detailed for a progress report. But we feel that
| this system represents a major advance and should
be presented in enough detail to see really how
it works.

i The decision to consider syntax as a proper study devoid of
semantics is a basic tenet of most current linguistic theories.
Language is viewed as a way of organizing strings of abstract
symbols, and tries to explain linguistic competence in terms of
symbol-manipulating rules. But although this approach has

r worked rather well in accounting for which sentences can be

| formed, it has been unable to shed much light on the basic

| problem: how does a sentence convey meaning beyond the meanings

211

ARTIFICIAL INTELLIGENCE /

of individual words? Meanings of words depend on other parts of {
the discourse and intentions depend on one's general orientation !
and state of knowledge. We can attack the problem in the usual
way, by constructing a "mini-theory" as a first approximation,
then apply it to see what problems remain.

The structure of a sentence can be viewed as the result of a
series of grammatical choices made in generating it. This is
not a novel idea in itself; it underlies the most standard
notion of generative grammar. But it is not so usual to proceed
on to say: the speaker encudes meaning into the sentence by
these choices, through choosing to build the sentence with
certain "features"; the problem of the hearer is to recognize
the presence of those features and interpret their meaning.

Of course, we use "feature" to include elements of structural
description as well as simple lexicographic terms.

Winograd's system is based on a theory called Systemic Grammar
(Halliday, 1967, 1970) which these choices of features are
primary. Instead of placing emphasis on a "deep structure"
tree, it describes the way different features interact and
depend on each other. In other forms of grammar, syntactic
structures are usually represented as a binary tree, with many
levels of branching and few branches at any node. For example,
the sentence "The three big red dogs ate a raw steak." would

be parsed -with something like this:

Seittence

Noun phrase

Verb phrase

DET NP1 VB NP
the ate
NUM NP2 DET NP1
three a
ADJ NP2 ADJ NP1
big raw NOUN
ADJ NP2 steak
red NOUN
dogs

Systemic grammar pays more attention to the way language is
organized into units, each of which has a special role in

conveying meaning.

In English we can distinguish three basic

ranks of units, the CLAUSE, the GROUP, and the WORD. In
systemic grammar, the same sentence might be viewed as having

this structure.

CLAUSE

Noun group

Verb group Noun group

l

" DET NUM ADJ ADJ

| l

l
the three big red dogs

212

NOUN VB DET ADJ

l

atl:e a raw

NOUN

steak

v

ARTIFICIAL INTELLIGENCE

In this analysis, the WORD is the basic building hlock. There

are word classes like "adjective", "noun", "verb". The word
"dogs" is the same basic vocabulary item as "dog", but has the
feature "plural" instead of "singular". "Took", "take",

"taken", "taking", etc., are all the same basic word, but
with differing features such as "past participle", "infinitive",
"-ing", etc.

The next unit above the WORD is the GROUP. Noun groups (NG)
describe objects, verb groups (VG) carry complex messages

about the time and modal (logical) status of an event or rela-
tionship, preposition groups (PREPG) describe certain simple
relationships, while adjective groups (ADJC) convey other kinds
of relatiornships and descriptions of objects.

Each GROUP can have "slots" for the words of which it is
composed. As we shall see, a NG has slots for "determiner”
(DET), "numbers" (NUM), "adjectives" (ADJ), "classifiers”
(CLASF), and a NOUN. Each group can also exhibit features,
just as a word can. A NG can be "singular" (NS) or "plural”
(NPL) , "definite" (DEF) as in "the three dogs" or "indefinite"
(INDEF) as in "a steak", and so forth. A VG can be "negative™"
(NEG) or not. can be MODAL (as in "could have seen"), and can
have a complex tense.

The CLAUSE is the most complex and diverse unit of the language,
and is used to express relationships and events, involving time,
place, manner and many other aspects of meaning. It can be a
QUESTION, a DECLARATIVE, or an IMPERATIVE, it can be "passive"

or "active", it can be a YES-NO question or a WH- question

(like "Why...?" or "Which...?"). Our second parsing tree
showed how a clause may be composed of groups, which are in
tur.y made up of words. Also, groups often contain other groups;
for example, "the call of the wild" is an NG, which contains
the PREPG "of the wild" which in turn contains the NG "the
wild". Clauses can be parts of other clauses, as in "Join

the Navy to see the worid.", and can be used as parts of

groups in many different ways, as in the NG "the man who came
to dinner" or the PREPG "by leaving the country"”,

If the units can appear anywhere in the tree, what is the
advantage of grouping constituents into "units" instead of
having a detailed structure like the one shown in our first
parsing tree? The answer is that each unit has associated with
it a set of meaning-carrying features, related by definite
logical structures. The choice between YES-NO and WH- is
meaningless unless the clause is a QUESTION, but if it is a
QUESTION, the choice must be made.

Similarly, the choice between QUESTION, IMPERATIVE, and
DECLARATIVE is mandatory for a MAJOR clzuse (one which could
stand alone as a sentence) but is not possible for a "secondary"”
(SEC) clause, such as "the country which possesseg the bomb, "
The choice between PASV -~ "the ball was attended by John" --
and ACTV -- "John attended the ball" -- is on a totally
different dimension, since it can be made regardless of which

of these other features are present.

213

ARTIFICIAL INTELLIGENCE

A set of mutually exclusive features like QUESTION, DECLARATIVE,
and IMPERATIVE is called a system, and will be diagrammed by
connecting them with a vertical bar. Each system has an entry
condition which can be an arbitrary boolean condition on the
presence of other features. Ior example, in the diagram below,
one of the systems has the feature MAJOR as its entry condition,
since only MAJOR clauses make the choice between DECLARATIVE,
IMPERATIVE, and QUESTION. We can diagram some of our CLAUSE
features as:

| DECLARATIVE
| MAJOR--- | IMPERATIVE | YES-NO
leme | QUESTION-==—-==- |
| |SEC | WH-
CLAUSE-
; | PASY
-
i |actv

The choice between SEC and MAJOR and the choice between PASV
and ACTV both depend directly on the presence of CLAUSE. This
type of relationship will be indicated by a bracket in place
of a vertical bar.

In addition, a syntactic "unit" can have different functions
as a part of a larger unit. A transitive clause must have
units to fill the functions of SUBJECT and OBJECT, and a

WH- question has to have a constituent to play the role of
"question element" like "which dog" in "Which dog stole the
show?".

In most current theories, there is no explicit mention of these
features and functions in the syntactic rules, but the rules are
designed in such a way that every sentence will in fact be one
of the three types listed above, and every WH- question will

in fact have a question element. The difficulty is that there
is no attempt in such a grammar to distinguish meaning-
conveying features such as these from the many other features
we could note about a sentence, and which are also implied by
the rules.

5.5.3 The Noun Group

We illustrate these ideas by presenting the structure of the
NOUN GROUP in some detail, closely following the presentation
in Winograd's thesis.

Here is the structure of the typicai NG, using a "*" to indicate
that the same element can occur more than once. Most of these
"slots" are optional, and may or may not be filled in any
particular NG.

f) T T Y ¥ N
DET ORD NUM ADJ* CLASF* NOUN Q*

214

FRppa. ¥

——

————

ARTIFICIAL INTELLIGENCE

The most important ingredient is the NOUN, which gives the basic

information about the object or objects being referred to by
the NG. Immediately preceding the NOUN, there are an arbitrary
number of "classifiers", like "plant life" or "water meter
cover and adjustment screw". The same class of words can

serve as CLASF and NOUN, in English, and our dictionary gives
the meaning of words according to their word class, because
nouns often have a special meaning when used as a CLASF.

Preceding the classifiers we have adjectives (ADJ) such as
"big beautiful soft red". Adjectives can be used as the
complement of a BE CLAUSE, but classifiers cannot. We can say
"red hair", or "horse hair", or, "That hair is red.", but we
cannot say "That hair is horse.”, since "horse" is a CLASF, not
an ADJ. Adjectives can also take on the comparative, super-
lative forms ("red, reder, and reddest"), while classifiers
cannot ("horse, horser, and horses:"?). Immediately follewing
the NOUN we can have various qualifiers (Q), which can be a
PREPG like "the man in the moon" Oor an ADJG like "a night
darker than doom" or a CLAUSE RSQ like "the woman who conducts
the orchestra”.

The first few elements in the NG work together to give its
logical description -- whether i%t refers to a single object,
a class of objects, a group of objects, etc. The determiner
(DET) is the rormal start for a NG, and can be a word such as
"a", or "that", or a possessive. It may be followed by an
"ordinal" (ORD), as "first, second, third", etc., or a few
others such as "last" and "next". These are the only words
that can appear between a DET like "the" and a number, as in
"the next three days". Finally there is a number (NUM), like
"one", "two", etc. or a more complex construction such as

"at least three", or "more than a thousand". 1It is possible
for a NG to have all slots filled, as in:

DET ORD NUM ADJ ADJ CLASF CLASF NOUN Q (PREPG)
the first three o0ld red city fire hydrants without
Q (CLAUSE)

covers you can find

With these basic components in mind, let us look at the system
network for NG.

215

-..-d:(r. *

ARTIFICIAL INTELLIGENCE

| **% The symbol *** js used for deciding

| PRONG--=- | between the presence of a feature i
! | QUEST and its absence |
| TPRONG | DEM f
| DEF--———--— | POSES | NUMD

(m—=mv | PROPNG | | S

(I * % % ! (______________ l***

(| =mmmm e ! { ;

(o INDEF=- (=== —memmo | QUEST

(| (l

(| (| *%*

((| OF

((|

f (m==—- E-_ I***

(|STETeE e j SUBTT |ONTFR- (-—--= (-- | INCOM

(| l*** (

E | 5 *kKk
| lOBJ1

NG-~- ((

(,OBJ ;OBJZ I ’NEC

(

(==——- fcomp | oFoBa e

(IPREPOBJ

(| TIME l

(, | DEFPOSS

(PUSS----- i

(| | %% % SYSTEM NETWORK FOR NOUN

(INS GROUPS

(-==-- INPL
;NTS

At the top of the diagram are some special cases which do not
have the structure described above. An NG made up of a pronoun
is a PRONG. It can be either a question, like "who" or "what",
Or a non-question (the unmarked case) like "I", "them", "it",
etc. The feature TPRONG marks a NG whose head is a special
TPRON, like "something", "everything", "anything", which can
enter into a peculiar construction in which an adjective can
follow the head, as in "anything green which is bigger than

the moon". 1t has its own special syntax. The feature PROPNG
marks an NG made up of proper nouns, such as "Oklahoma", or
"The Union Of Soviet Socialist Republics".

The rest of the noun groups are the normal type, discussed

above. The DET can be definite (like "the" or "that", indefinite
like "a" or "an", or a quantifier (QNTFR) like "some", "every",
or "no". The definite determiners can be either demonstrative
("this", "that", etc.) or the word "the" (the unmarked case),

Oor a possessive NG. The NG "the farmer's son" has the NG

"the farmer" as its determiner, and has the feature POSES to

indicate this,
Ar. INDEF NG can have a number as a determiner: "five gold rings",

or "at least a dozen eggs”, in which case it has the feature
NUMDET, or it can use an INDEF determiner, such as "a". 1In

216

.

ARTIFICIAL INTELLIGENCE

either case it has the choice of being a question. The question
form of a NUMDET is "how many", while for other cases it is
"which" or "what".

Finally, an NG can be determined by a quantifier (QONTFR) .
Although quantifiers could be subclassified along various lines,
we do so in the semantics rather than the syntax. The only
classifications wsed syntactically are between singular and
plural, and between negative and non-negative.

If a NG is either NUMD or ONTFR, it can be of a special type
marked OF, as in "all of your dreams", but can also choose to

be incomplete, leaving out the NOUN, as in "Give me three" or

"I want none". There is a correspondence between the cases
which can take the feature OF, and those which can be INCOM.

We cannot say either "the of them" or "Give me the". Possessives
are an exception, we can say "Give me Juan's" but not "Juan's

of them", and are handled Separately.

The middle part of the NG Network describes the different
possible functions an NG can serve. In the CLAUSE, one can use
an NG as a SUBJ, COMP, or objects OBJ of various types. 1In
addition, it can serve as the object of a PREPG (PREPOBJ), in:
"the rape of the lock". If it is the object of "of" in an

OF NG, it is called an OFOBJ: "none of your tricks". An NG

can also be used to indicate TIME, as in: "Yesterday the world
ended" or "The day she left, all work stopped".

Finally, an NG can be the possessive determiner for another NG.
In: "the cook's kettle" the NG "the cook" has the feature POSS,
indicating that it is the determiner for the NG "the cook's
kettle", which has the feature POSES.

When a PRONG is used as a POSS, it must use a special possessive
pronoun, like "my", "your", etc. We can use a POSS in an
incomplete NG, like "Show me yours" or "John's is covered with
mud". There is a special class of pronouns used in these noun
groups (labelled DEFPOSS), such as "yours", "mine", etc.

Continuing to the last part of the NG Network, we see features
of person and number. These are used to match the noun to
the verb (if the NG is the subject) and the determiner, to
avoid combinations like "these kangaroo" or "the women wins".
In the case of a PRONG, there are special pronouns for first,
second, and third person, singular and plural. The feature
NFS occurs only with the first-person singular pronouns (=T,
"me", "my", "mine"), and no distinction is made between other
persons, since they have no effect on the parsing. a singular
pronoun or other singular NG is marked with the feature NS.
The pronoun "you" is always treated as if it were plural and
no distinction is made between "we", "you", "they", or any
plural (NPL) NG as far as the grammar is concerned. Of course
there is a semantic difference.

217

—

ARTIFICIAL INTELLIGENCE

5.5.4 The Parser in Action

With this sketch of some of the ingredients, we can now follow
the parser through an example to get a feeling for the way

the grammar works, and the way it interacts with the different
features described above. Consider the first sentence of our
sample dialog.

"Pick up a big red block."

The system begins trying to parse a sentence, which means
looking for a MAJOR CLAUSE. It activates the grammar by
calling the CLAUSE bprogram with an initial feature list of
(CLAUSE MAJOR).

The CLAUSE program looks at the first word, to decide what unit
the CLAUSE begins with. If it sees an adverb, it assumes the
sentence begins with a single-word modifier; if it sees a
Preposition, it looks for an initial PREPG. If it sees a
preposition, it looks for an initial PREPG. 1If it sees a
BINDER, it calls the CLAUSE program to look for a BOUND CLAUSE.
In English (and possibly all languages) the first word of a
construction often gives a very good clue as to what that
construction will be. 1In this case, "pick" is a verb, and
indicates that we lmay have an IMPERATIVE CLAUSE. The program
starts the VG program with the initial VG feature list

(VG IMPER), looking for a VG of this type. This must either
begin with some form of the verb "do", or with the main verb
itself. Since the next word is not "do", it checks the next
word in the input (in this case still the first word) to see
whether it is the infinitive form of a verb. If so, it is to
be attached to the parsing tree, and given the additional
feature MVB (main verb). The current structure can be diagrammed
as

(CLAUSE MAJOR)
(VG IMDZR)
(VB MVB INF TRANS VPRT === mmm e pick

TRANS and VPRT came from the definition of the word "pick"
when we called the function PARSE for a word.

When the VG pProgram succeeds, CLAUSE takes over again.
Since it has found the right kind of VG for an imperative

It then checks to see whether the MVB has the feature VPRT,
indicating it is a special kind of verb which takes a particle.
It discovers that "pick" is such a verb, and next checks to see
if the next word "up" is a PRT, which it is. It then checks

in the dictionary and finds out that the combination "pick up"
is defined, so it calls (PARSE PRT) to add "up" to the parsing
tree. We might have let the VG program do the work of looking
for a PRT, but it would have run into difficulties with sentences
like "Pick the red block up." in which the PRT is displaced.

By letting the CLAUSE program do the looking, the problem is
simplified.

218

ARTIFICIAL INTELLIGENCE

As soon as it has parsed the PRT, the CLAUSE program marks

the feature PRT on its own feature list. It then looks at the
dictionary entry for "pick up" to see what transitivity features
are there. It is transitive, which indicates that we should
look for one object -- OBJ1. The dicticnary entry shows that
the object must be either an NG or a WHRS clause (which would
begin with a relative pronoun, like "Pick up what I told you
to." Since the next word is "a", this is not the case, so the
CLAUSL program looks for an object by calling (PARSE NG OBRJ
OBJ1), asking the NG program to find an NG which can serve as
an OBJl. The structure is now

(CLAUSE MAJOR IMPER PRT)

(VG IMPER)
\VB MVB INF TRANS PRT) -===m e pick
(PRT) == = e e e up

(NG OBJ OBJ1)

The NG program notices that the upcoming word is a determiner,
"a". It calls (PARSE DET) to add it to the parsing tree, then
transfers the relevant features from the DET to the entire NG.
It also adds the feature DET to the NG to indicate that it

has a determiner. The feature list for the NG is now:

(NG OBJ OBJ1 DET INDEF NS)
since "a" is a singular indefinite determiner. The NG program
then notices the feature INDEF, and decides not to look for a
number or an ordinal -- we can't say "a next three blocks" --
or for the OF construction -- "a of them" is impossible. It
goes on immediately to look for an adjective by calling (PARSE
ADJ). When this succeeds with the next word "big", a simple
program loop returns to the (PARSE ADJ) statement, which succeeds
again with "red". On the next trip it fails, and sends the
brogram on to look for a classifier, since "block" isn't an
ADJ. But "block" isn't a CLASF either in our dictionary, so
the NG program goes on to look for a NOUN, by celling (PARSE
NOUN). This succeeds with the NOUN "block", which is singular,
and the program checks to s.e if it agrees with the number
features already present from the determiner (to eliminate
illegal combinations like "these boy"). 1In this case, both
are singular (NS), so the program is satisfied. Ordinarily
it would go on to look for qualifiers, but in this case there
is nothing left in the sentence. Since we have found all of
the basic constituents we need for an NG, the NG program should
return success. If we had run out after the determiner, it
would have checked for an incomplete NG, while if we had run
out after an ADJ it would have entered a backup program which
would check to see whether it had misinterpreted a NOUN as
an ADJ.

In this case, the NG program returns, and the CLAUSE program
notices that the sentence has ended. Since a TRANS verb needs
only one object, and that object has been found, the CLAUSE
program marks the feature TRAKNS, and returns, ending the parsing.
In actual use, a semantic program would be called now to under-
stand and execute the command -- in fact, semantic programs

219

e
S R

e

ARTIFICIAL INTELLIGENCE

would have been called at various points throughout the process.
The final result is:

(CLAUSE MAJOR IMPER PRT TRANS)

(VG IMPER)

(VB MVB INF TRANS VPRT) - ===== e ~pick
(PRI === e e e~ up
(NG OBJ OBJ1 DET INDEF NS)

(DET INDEF NS)--==-me-emmmmeoooo__ a

(ADJ) === === e e big

(ADJ) === == e e e e red

(NOUN NS) ====mm e o block

5.6 Semantic Structures

In 5.5 we described some of the operation of the systemic
grammar parsing program. For the semantic system we again will
use the Noun Group as an example, to present the general idea.
As one hears or reads linguistic sequences, one extracts
meanings and uses them to modify one's model of the world or
in some other way to organize one's behavior. 1In Winograd's
system, the meanings are usually represented by procedures
written in the Planner language. There are a number of ways
in which these procedures are used to build up meanings by
cooperation between the systemic-grammar analyzer and other
processes called "semantic specialists".

One of the most obvious semantic functions of expressions is
to describe objects, and the "noun group" is most commonly
used for this. It contains a noun which indicates the kind of
cbject, adjectives and classifiers which describe further
properties of the object; and a complex system of quantifiers
and determiners describing its logical status -- whether it is
a particular object, a class of objects, a particular set of
objecks, or even an unspecified set containing a specified
number of objects ("three bananas"), etc. The syntactic
structure already discussed provides a systematic framework
for such descriptions. One might object that this is too rigid
and that there are other ways to describe objects. Indeed,
but this one handles a wide range of ordinary cases and Winograd's
PROGRAMMAR system supplies an unprecedented flexibility for
introducing other methods and even complex heuristic programs
for dealing with other situations.

The semantic system is built around a dozen or so programs,
"semantic specialists" which are experts at interpreting
particular syntactic structures. These are called by
PROGRAMMAR when the parsing system believes that a certain
structure, say, a noun group, has been parsed. They look at
both the syntactic structures and the meanings of the words
(which are also represented by programs), and build up PLANNER
theorems which can be used either by the deductive mechanisms
(for performing actions in, or for answering questions about,
the Blocks World) or by the syntactic system itself to decide
whether the proposed noun group is meaningful.

220

ARTIFICIAL INTELLIGENCE

A Noun Group like "a red cube" can be described as:

(GOAL (IS X BLOCK))
(EQDIM X)
(GOAL (COLOR X RED))

The variable "X" represents the object, and this description
says that the object X should be a block, it should have equal
dimensions, and it should be red. A phrase such as "a red cube
which supports three pyramids bui is not contained in a box"
would be built up from the descriptions for the various
objects, and would end up as

(GOAL (IS X BLOCK))
(EQDIM X)
(GOAL (COLOR X RED))
(FIND 3 X 2 (GOAL (IS X2 PYRAMID))
(GOAL (SUPPORT X X2)))
(NOT (PROG X3
(GOAL (IS X3 BOX))
(GOAL (CONTAIN X3 X))))

This "meaning" is a procedure. A larger deductive system could
use it

to find such an object;
to say whether one exists:
to list relations in which it does, or could, participate;

to answer more abstract questions about whether such an
object could exist or (as in the BLOCKS program) to plan
a sequence of actions that will cause it to exist.

Furthermore, the "theorem" that embodies the meaning could be
used within the parsing process itself, for if the deductive
system finds that there could be no such object then the

alleged noun group would be suspect and one could search for

an alternative parsing. One could imagine a much more sophisti-
cated system that would suspend this strategy if she discourse
concerns a subject, like language itself, in which normally
unacceptable expressions are sometimes permitted.

How do the semantic specialists build this structure? Consider
the simple expression "a red cube". First the noun group is
parsed, then the PLANNER description is built up backwards by
the specialists, starting with the noun, and continuing in
right-to-left order through the classifiers and adjectives.

Part of the definition for a noun uses semantic markers to

filter out meaningless interpretations of a phrase. The
BLOCKS world uses this tree of semantic markers:

221

P -

v

%

ARTIFICIAL INTELLIGENCE

| NAME
| PLACE |[SHAPE
| PROPERTY-~ |SIZE
| [LOCATION
| IcOLOR |ROBOT
| ANIMATE= === m e __ |
| [HUMAN
| |IBLUE
] |RED
THING----- | (====—-- |IBLACK
| ([WHITE
I (IGREEN |STACK
[PHYSOB-- (|CONSTRUCT—=—mm e e —_ |PILE
| (|uaND | ROW
| (-- |TABLE I[PYRAMID
| IMANIP-———-- |IBLOCK
I IBOX IBALL
I |EVENT
| RELATION===————eeel |
ITIMELESS

Again, vertical bars represent exclusive choices, while
horizontal lines represent logical dependency. "PHYSOB"

means "physical object", and "MANIP" means "manipulable object".
The first Specialist, SMNG1l, finds that the definition of the
noun "cube" is: .

(NMEANS (CUBE) "((IS X BLOCK) (EQDIM X)))

which says that a cube is a block with equal dimensions.
NMEANS is the name of a function for dealing with nouns, which
accepts a list of different meanings for a word. In this case,
there is only one Mmeaning. When NMEANS is executed, it puts
information onto the semantic structure which is being built
for the object. It takes care of finding out what markers

are implied by the tree, here (THING PHYSOB MANIP BLOCK),
deciding which predicates need to be in a GOAL statement

(like 1S), and which are LISP bredicates (like EQDIMj. It
also can decide on recommendation lists to put onto the PLANNER
goals, to guide deductions.

Next, SMNG1 calls the definition for the adjective "req".
(NMEANS((PHYSOB)((COLOR X RED))))

This definition indicates that the property applies only to
physical objects.

There is no absolute definition for "big" or "little"; a

"big flea" is still not much competition for a "little
elephant". The meaning of the adjective is relative to the noun
it modifies, and it may also be relative to the adjectives fol-
lowing it as well, as in a "big toy elephant." Asg the system
analyzes the NG from right to left, the meaning of each
adjective is added to the description already built up for the
head and modifiers to the right. Since each definition is a

222

"

ARTIFICIAL INTELLIGENCE

program, it can just as well examine the description (both

the semantic markers and the PLANNER description), and produce
an appropriate meaning relative to the object being described.
This may be an absolute measurement (e.g., a "big elephant" is
more than 12 feet tall) or a relative PLANNER description of
the form "the number of objects fitting the description and
smaller than the one being described is more than the number
of suitable objects bigger than it is."

In adding the meaning of "red" to the semantic structure, the
specialist must make a choice in ordering the PLANNER expres-
sions. 1In the robot's tiny world, this isn't of much importance,
but if the data base took phrases like "a man in this room",
we certainly would be better off looking around the room first
to see what was a man, than looking through all the men in

the world to see if one was in the room. "To make this choice
we allow each predicate (like IS or COLOR) to have associated
with it a program which knows how to evaluate its "priority"
in any given environment. The program might be as simple as

a single number, or it might be a complex heuristic program
which takes into account the current state of the world and
the discourse.

|
Here is the structure which would be built up by the program.

(GOAL (IS X BLOCK))
(GOAL (COLOR X RED))

(EQDIM X)==mommme oo __ PLANNER description
(BLOCK MANIP PHYSOB THING) - —==-- markers
(MANIP PHYSOB THING) ~===e e systems
(NS INDEF)===emeemm o ____ determiner

Let us now take a slightly more complicated NG, "a red cube
which supports a pyramid}. We can only summarize what happens
here. First, the NG parsing program finds the determiner
("a"), adjective ("red"), and noun ("cube") . Then, after
further analysis a CLAUSE specialist is called to deal with
"which supports a pyramid" and it constructs a corresponding
plannar theorem, for the meaning of "a pyramid". Next the
definition of the verb "support" is called, and used to build
up an assertion that the subject and object are related by
SUPPORT.

The clause is now finished, and the specialist on relative
clauses (SMRSQ) is called to take the PLANNER descriptions of
the objects involved in the relation, along with the relation
itself, and put the information onto the PLANNER description
of the object to which the clause is being related. The
result, for the description of "a red cube which supports a
pyramid" is

(GOAL (1s x BLOCK))
(GOAL (COLOR X RELD))

(EQDIM X)

(GOAL (Is x2 PYRAMID))

(GOAL (SUPPORT X X2))=-=---- PLANNER description
(BLOCK MANIP PHYSOB THING) ===—==uu- markers
(MANIP PHYSOB THING) ===-cemmee . Systems
(NS INDEF)=-eommmme e ____ determiner

B

ol o B pane e S .

ARTIFICIAL INTELLIGENCE

Relationships have the full capability to use semantic markers
just as objects do, and at an early stage of construction, a
relation structure contians a PLANNER description, markers,

and systems in forms identical to those for object structures
(this is to share some of the programs, such as those which
check for conflicts between markers). We can classify different
types of events and relationships (for example, those which

are changeable, those which involve physical motion, etc.) and
use the markers to help filter out interpretations of clause
modifiers. For example, the modifying PREPG "without the shopping
list" in

"He left the house without the shopping list."
has a different interpretation from "without a hammer" in
"He built the house without a hammer.",
If we had a classification of activities which included those

involving motion and those using tools, we could choose the
correct interpretation.

224

f -Mﬁ s

=

TR-1

TR-2

TR-3

TR-4

TR-6

TR~7

TR-8

TR-11

TR-12

TR-13

TR-14

APPENDIX A
PROJECT MAC TECHNICAL REPORTS¥*

Bobrow, Daniel G.
Natural Language Input for A Computer
Problem Sclving System, Ph.D. Thesis,
Math. Dept.
September 1964 AD

Raphael, Bertran

SIR: A Computer Program for Semantic
Information Retrieval, Ph.D. Thesis,
Math. Dept. '

June 1964 AD

Corbato? Fernando J.

System Requirements for Multiple-Access,
Time-Shared Computers

May 1964 AD

Ross, Douglas T., and Clarence G. Feldman

Verbal and Graphical Language for the AED
System: A Progress Report

May 6, 1964 AD

Biggs, John M. and Robert D. Logcher

STRESS: A Problem-Oriented Language for
Structural Engineering

May 6, 19¢4 ' AD

Weizenbaum, Joseph

OPL-1l: An Open Ended Programming System
Within CTSS

April 30, 1964 AD

Greenberger, Martin
The OPS-1 Manual
May 1964 AD

Dennis, Jack B.
Program Structure in a Multi-Access Computer
May 1964 AD

Fano, Robert M.
The MAC System: A Progress Report
October 9, 1964 AD

Greenberger, Martin
A New Methodology for Computer Simulation
October 19, 1964 AD

Roos, Daniel
Use of CTSS in a Teaching Environment
November 194 AD

225

604-730

608-499

608-501

604-6"8

604-679

604-680
604-681
608-500
609-296
609-288

661-807

i

APPENDIX A

TR-16

TR-17

TR-18

TR-19

TR-20

TR-21

TR-22

TR-23

TR-24

TR-25

TR-26

Saltzer, Jerome H.
CTSS Technical Notes
March 1965 AD

Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer
March 1965 AD

Scherr, Allan Lee '
An Analysis of Time-Shared Computer
Systems, Ph.D. Thesis, EE Dept.
June 1265 AD

Russo, Francis John
A Heuristic Approach to Alternate
Routine in a Job Shop, S.B. & S.M.
Thesis, Aloan School
June 13265 AD

Wantisan, Mayer Elihu
CALCULAID: An On-Line System for
Algebraic Computation and Analysis,
S.M. Thesis, -Sloan School
September 15, 1965 AD

Denning, Peter James

Queueing Models for File Memoxry Operation,
S.M. Thesis, EE Dept. %

October 1965 AD

Greenberger, Martin
The Priority Problem
November 1965 AD

Dennis, Jack B. and Earl C. Van Horn

Programming Semantics for Multiprogrammed '
Computations

December 1965 AD

Kaplow, Roy, Stephen Strong and John Brackett

MAP: A System for On-Line Mathematical
Analysis

January 1966 AD

Stratton, William David

Investigation of an Analog Technique to
Decrease Pen-Tracking Time in Computer
Displays, S.M. Thesis, EE Dept.

March 7, 1966 AD

Cheek, Thomas Burrell

Design of a Low-Cost Character Generator
for Remote Computer Displays, S.M. Thesis,
EE Dept.

- March 8, 1966 AD

226

612-702

462-158

470-715

474-018

474-019

624-943

625-728

627-537

476-443

631-386

631-269

I g s

A

Ba R b

TR-27

TR-28

TR-29

TR-30

TR-31

TR-32

TR-33

TR-34

TR-35

TR-36

TR-37

Edwards, Daniel James

OCAS - On-Line Cryptanalytic Aid System
S.M. Thesis, EE Dept. -

May 1966

Smith, Arthur Anshel

Input/Output in Time-Shared, Segmented,
Multiprocessor Systems, S.M. Thesis,
EE Dept.

June 1966

Ivie, Evan Leon

Search Procedures Based on Measures of
Relatedness Between Documents, Ph.D.
Thesis, EE Dept.

June 1966

Saltzer, Jerome Howard

Traffic Control in a Multiplexed Computer
System, Sc.D. Thesis, EE Dept.

July 1966

Smith Donald L.

Models and Data Structures for Digital
Logic Simulation, S.M. Thesis, EE Dept.

August 1966

Teitelman, Warren

PILOT: A Step Toward Man-Computer
Symbiosis, Ph.D. Thesis, Math. Dept.

September 1966

Norton, Lewis M.

ADEPT - A Heuristic Program for Proving
Theorems of Group Theory, Ph.D. Thesis,
Math. Dept.

October 1966

Van Horn, Earl C.

Computer Design for Asynchronously
Reproducible Multiprocessing, Ph.D.
Thesis, EE Dept.

November 1966

Fenichel, Robert R.

APPENDIX A

AD

AD

AD

AD

AD

AD

AD

An On-Line System for Algebraic¢ Manipulation

Ph.D. Thesis, Appl. Math. (Harvard)
December 1966

Martin, Willaim A.

Symbolic Mathematical Laboratory,
Ph.D. Thesis, EE Dept.

January 1967

Guzman-Arenas, Adolfo

Some Aspects of Pattern Recognition by
Computer, S.M. Thesis, EE Dept.

February 1967

227

AD

AD

633-678

637-215

636-275

635-966

637-192

638-446

645-660

650-407

657-282

657-283

656-041

APPENDIX A

TR-38

TR-39

TR-40

TR-41

TR-42

TR-43

TR-44

TR-45

TR-46

TR-47

TR-48

Rosenberg, Ronald C., Daniel W. Kennedy
and Roger A. Humphrey

A Low-Cost Output Terminal for Time-Shared
Computers

March 1967

Forte, Allen

Syntax-Based Analytic Reading of Musical
Scores

April 1967

Miller, James R.
On-Line Analysis for Social Scientists
May 1967

Coons, Steven A.

Surfaces for Computer-Aided Design of
Space Forms

June 1967

Liu, Chung L., Gabriel D. Chang and
Richard E. Marks

Design and Implementation of a Table-
Driven Compiler System

July 1967

Wilde, Daniel U.

Program Analysis By Digital Computer,
Ph.D. Thesis, EE Dept.

August 1967

Gorry, G. Anthony

A System for Computer-Aided Diagnosis,
Ph.D. Thesis, Sloan School

September 1967

Leal-Cantu, Nestor

On the Simulation of Dynamic Systems with
Lumped Parameters and Time Displays, S.M.
Thesis, ME Dept.

October 1967

Alsop, Joseph W.
A Canonic Translator, S.B. Thesis, EE Dept.
November 1967

Moses, Joel

Symbolic Integration, Ph.D. Thesis,
Math Dept.

December 1967

Jones, Malcolm M.

Incremental Simulation on a Time-Shared
Computer, Ph.D. Thesis, Sloan School

January 1968

228

AD

AD

AD

AD

AD

AD

662-027

661-806

668-009

663-504

668-960

662-224

662-665

663-502

663-503

662-666

662-225

TR-49

+ TR-50

+ TR-51

TR-52

TR-53

] TR-54

TR-55

+ TR-56

TR-57

TR-58

TR-59

APPENDIX A

Luconi, Fred L.
Asynchronous Computational Structures,
Ph.D. Thesis, EE Dept.
February 1968 AD

Denning, Peter J.
Resource Allocation in Multiprocess
Computer Systems, Ph.D. Thesis, EE Dept.
May 1968 AD

Charniak, Eugene
CARPS, A Program which Solves Calculus
Word Problems, S.M. Thesis, EE Dept.
July 1968 AD

Deitel, Harvey M.

Absentee Computations in a Multiple-Access
Computer System, S.M. Thesis, EE Dept.

August 1968 AD

Slutz, Donald R.

The Flow Graph Schemata Model of Parallel
Computation, Ph.D. Thesis, EE Dept.

September 1968 AD

Grochow, Jerrold M.

The Graphic Display as an Aid in the
Monitoring of a Time-Shared Computer
System, S.M. Thesis, EE Dept.

October 1968 AD

Rappaport, Robert L.

Implementing Multi-Process Primitives in
a Multiplexed Computer System, S.M. Thesis,
EE Dept.

November 1968 AD

Thornhill, D. E., R. H. Stotz, D. T. Ross
and J. E. Ward (ESL-R-356)

An Integrated Hardware-Software System for
Computer Graphics in Time-Sharing

December 1968 AD

Morris, James H.

Lambda-Calculus Models of Programming
Languages, Ph.D. Thesis, Sloan School

December 1968 AD

Greenbaum, Howard J.
A Simulator of Multiple Interactive Users
to Drive a Time-Shared Computer System,
S.M. Thesis, EE Dept.
January 1969 AD

Guzman, Adolfo

Computer Recognition of Three-Dimensional
Objects in a Visual Scene, Ph.D. Thesis,
EE Dept.

December 1968 AD

229

677-602

675-554

673-670

684-738

683-393

689-468

689-469

685-202

683-394

686-988

692-200

-

APPENDIX A

TR-60

TR-61

TR-62

TR-63

TR-64

TR-65

TR-66

TR-67

TR-68

TR-69

Ledgard, Henry F.
A Formal System for Defining the Syntax
and Semantics of Computer Languages,
Ph.D. Thesis, EE Dept.
April 1969 AD

Baecker, Ronald M.
Interactive Computer-Mediated Animation,
Ph.D. Thesis, EE Degt.
June 1969 AD

Tillman, Coyt C. (ESL-R-395)

EPS: An interactive System for Solving
Elliptic Boundary-Value Problems with
Facilities for Data Manipulation and
General-Purpose Computation

June 1969 AD

Brackett, John W., Michael Hammer, and
Daniel E. Thornhill

Case Study in Interactive Graphics Program-
ming: A Circuit Drawing and Editing
Program for Use with a Storage-Tube
Display Terminal

October 1969 AD

Rodriguez, Jorge E. (ESL-R-398)
A Graph Model for Parallel Computations,
Sc.D. Thesis, EE Dept.
September 1969 AD

DeRemer, Franklin L.

Practical Translators for LR(k) Languages,
Ph.D. Thesis, EE Dept.

October 1969 AD

Beyer, Wendell T.

Recognition of Topological Invariants by
Iterative Arrays, Ph.D. Thesis, Math.
Dept.

October 1969 AD

Vanderbilt, Dean H.
Controlled Information Sharing in a

Computer Utility, Ph.D. Thesis, EE Dept.
October 1969 AD

Selwyn, Lee L,

Economies of Scale in Computer Use: Initial
Tests and Implications for the Computer
Utility, Ph.D. Thesis, Sloan School

June 1970 AD

Gertz, Jeffrey L.
Hierarchical Associative Memories for
Parallel Computation, Ph.D. Thesis,
EE Dept.
June 1970 AD

230

689-305

690-887

692-462

699-930

697-759

699-501

699-502

699-503

710-011

711-091

+ TR-70

+ TR-71

t TR-72

TR-73

TR-74

TR-75

t TR-76

TR-77

TR-78

TR-79

TR-80

APPENDIX A

Fillat, Andrew I. and Leslie A. Kraning
Generalized Organization cf Large Data-
Bases: A Set-Theoretic Approach to
Relations, S.B. & S.M. Thesis, EE Dept.
June 1970 AD

Fiascanaro, James G.

A Computer-Controlled Graphical Display
Processor, S.M. Thesis, EE Dept.

June 1970 AD

Patil, Suhas S.
Coordination of Asynchronous Events,
Ph.D. Thesis, EE Dept.
June 1970 AD

Griffith, Arnold K.

Computer Recognition of Prismatic Solids,
Ph.D. Thesis, Math. Dept.

August 1970 aAD

Edelberg, Murray
Integral Convex Polyhedra and an Approach

to Integralization, Sc.D. Thesis, EE Dept.
August 1970 AD

Hebalkar, Prakash G.

Deadlock-Free Sharing of Resources in
Asynchronous Systems, Sc.D. Thesis, EE Dept.

September 1970 AD

Winston, Patrick H.

Learning Structural Descriptions from
Examples, Ph.D. Thesis, EE Dept.

September 1970 AD

Haggerty, Joseph P.
Complexity Measures for Language
Recognition, S.M. Thesis, EE Dept.
October 1970 AD

Madnick, Stuart E.
Design Strategies for File Systems,
S.M. Thesis, EE Dept. & Sloan School
October 1970 AD

Horn, Berthold K.

Shape from Shading: A Method for Obtaining
the Shape of a Smooth Opaque Object from
One View, Ph.D. Thesis, EE Cept.

November 1970 AD

Clark, David D., Robert M. Graham,
Jerome H. Saltzer and Michael D. Schroeder
The Classroom Information and Computing
Service
January 1971 AD

231

711-060

710-479

711-763

712-069

712-070

713-139

713-988

715-134

714-269

717-336

717-857

APPENDIX A

TR-81

TR-82

TR-83

TR-84

TR-85

TR-86

TR-87

TR-88

TR-89

Banks, Edwin R.
Information Processing. and Transmission

in Cellular Automata, Ph.D. Thesis, ME Dept.
January 1971 AD

Krakauer, Lawrence J.
Computer Analysis of Visual Properties of
Curved Objects, Ph.D. Thesis, EE Dept.

May 1971 AD

Lewin, Donald E.

In-Process Manufacturing Quality Control,
Ph.D. Thesis, Sloan School

January 1971 AD

Winograd, Terry

Procedures as a Representation for Data in
A Computer Program for Understanding
Natural Language, Ph.D. Thesis, Math Dept.

February 1971 AD

Miller, Perry L.

Automatic Creation of a Code Generator
from a Machine Description, EE Degree,

EE Dept.

May 1971 ' AD

Schell, Roger R.

Dynamic Reconfiguration in a Modular
Computer System, Ph.D. Thesis, EE Dept.

June 1971 AD

Thomas, Robert H.

A Model for Process Representation and
Synthesis, Ph.D., EE Dept.

June 1971 AD

Welch, Terry A.

Bounds on Information Retrieval Efficiency
in Static File Structures, Ph.D. Thesis,

EE Dept.

June 1971 AD

Owens, Richard C., Jr.

Primary Access Control in Large-Scale
Time-Shared Decision Sys*tems, S.M. Thesis,
Sloan School

May 1971 AD

232

717-951

723-647

720-098

721-399

724-730

725-859

726-049

725-429

728-036

T™-10

T™™-11

- TM-12

T™-13

T™~14

T™-15

T™M-16

- TM~17

T™M-18

T™-19

APPENDIX A

.l.

TECHNICAL MEMORNANDA+

Jackson, James N.

Interactive Design Coordination for the
Building Industry

June 1970 AD

Ward, Philip W.

Description and Flow Chart of the PDP-7/9
Communication Package

July 1970 AD

Graham, Robert M.

File Management and Related Topics
(Formerly Programming Linguistics Group
Memo No. 6, June 12, 1970)

September 1970 AD

Graham, FRobert M.

Use of High Level Languages for Systems
Programming
(Formerly Programming Linguistics Group
Memo No. 2, November 20, 1969)

September 1970 AD

Vogt, Carla M.

Suspension of Processes in a Multiprocessing
Computer System
(Based on S.M. Thesis, EE Dept., February
1970)

September 1970 AD

Zilles, Stephen N.

An Expansion of the Data Structuring
Capabilities of PAL

October 1970 AD

Bruere-~Dawson, Gerard
Pseudo-Random Sequences

(Based on S.M. Thesis, EE Dept., June 1970)
October 1970 AD

Goodman, Leonard I.

Complexity Measures for Programming Languages
(Based on S.M. Thesis, EE Dept., September
1971)

September 1971 AD

Replaced by TR-85
Fenichel, Robert R.

A New List-Tracing Algorithm ‘
October 1970 AD

233

708-400

711-379

712-068

711-965

713-989

720-761

713-852

729-011

714-522

APPENDIX A

T™-20

™-21

T™M-23

TM-24

TM-25

Jones, Thomas L.

A Cormputer Model of Simple Forms of
Learning

January 1971

Goldstein, Robert C.

The Substantive Use of Computers for
Intellectual Activities

April 1971

Wells, Douglas M.

Transmission of Information Between a Man-
Machine Decision System and Its
Environment

April 191

Strnad, Alois J.

The Relational Approach to the Management
of Data Bases

April 1971

Goldstein, Robert C. and Alois J. Strnad
The MacAIMS Data Management System
April 1971

Goldstein, Robert C.

Helping People Think
April 1971

* k& % % % % %k % % % *

Project MAC Progress Report I

to July 1964

Project MAC Progress Report II

July 1964-July 1965

Project MAC Progress Report III

July 1965-July 1966

Project MAC Progress Report IV

July 1966~-July 1967

Project MAC Progress Report V

July 1967-July 1968

234

AD

AD

AD

AD

AD

AD

AD

720-337

721-618

722-837

721-619

721-620

721-998

465-088

629-494

648-346

681-342

687-770

-
IR ¥ (- .

APPENDIX A

Project MAC Progress Report VI
July 1968-July 1969 AD 705-434

Project MAC Progress Report VII AD 732-767
July 1969-July 1970

—“+ 4+ —+

Copies of all MAC reports listed in Appendix A, as well as
earlier Progress Reports, have been deposited with DDC;

using the appended AD number, a report may be secured from

the Mational Technical Information Service, Operations Division,
Springfield, Virginia, 22151. The prices from NTIS are:
microfilm $0.95; hard copies: reports more than two years

0old $6.00, all others are $3.00 ex. ept TR-83 which is also
$6.00.

Out-of-print, may be obtained from NTIS (see above).
All TMs have been deposited with DDC and are available only

from NTIS, using the AD number appended; the cost is $0.95
for microfilm and $3.00 for hard copy.

235

N,

i’m‘i’a

s |

Lo

ARTIFICIAL INTELLIGENCE

AUTOMATA THEORY

CELLULAR AUTOMATA

COMPUTATION STRUCTURES

COMPUTER SYSTEMS RESEARCH

DYNAMIC MODELING, GRAPHICS AND NETWORKS

EDUCATION

IMPLICIT COMPUTATION

INTERACTIVE MANAGEMENT SYSTEMS

MATHLAB

PROGRAMMING LANGUAGES

