
Massachusetts
Institute
of Technology

Project MAG
Prögresa-Report VIII
July 1970 to
July 1971

T '.

*v

V I
^ / y

w

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

3

UNCLASSIFIKD
Security Classification

I
DOCUMENT CONTROL DATA - R&D

fS»cu^ly clmt»IHcmllon ol ml; body ol mbtlrmel «nd Indttlnj mtnolmHon mu«t 6» »nlmrtd wh»n thm ovmrall rtporl la clattllfd)

I. ORIOINATINO ACTIVITY (Corrwf aulhot)
Massachusetts Institute of Technology
Project MAC

2«. »EPORT SECURITY CLASSIFICATION
UNCLASSIFIED

Zb. GROUP
None

3. REPORT TITLE

Project MAC Progress Report VIII July 1970 to July 1971

4. DESCRIPTIVE NOTES fTyp.olf.porl «id <nelu»*v»d«(»«J

(Annual Progress
| ». AUTHORISI (Laal nama, titalnmna. Initial) '

Collection of reports from Project MAC participants
Profs. J. C. R. Licklider and Edward Fredkin

«. REPORT DATE

1 July 1971
»a. CONTRACT OR GRANT NO.

N00014-70-A-0362-0001, -0002; DAHC 69
C-0347; N00014-69-A-0276-0002; NCR 22-
009-393 and NAS 12-2093; GJ-432 and
GJ-1049

7a. TOTAL NO. OF PAGES lb. NO. OP REPS

221. (.In Text)
»a. ORIGINATOR'S REPORT NUMBER(S)

MAC Progress Report VIII

M. OTHER REPORT NOiS) (Any olhat nianbata lhal may ba
aaalgnad Ihla taperl)

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distri-
bution is unlimited.

II. SUPPLEMENTARY NOTES

None
14. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
3D-200 Pentagon
Washingtonf P.C. 20301

IS. ABSTRACT

The broad goal of Project MAC is experimental investigation of new ways
in which on-line use of computers can aid people in their individual work
whether research, engineering design, management, or education.

This is the eighth annual Progress Report summarizing the research carriei
out under the sponsorship of Project MAC. Details of this research may
be found in the publications listed at the end of each section and in
Appendix A.

14. KEY. WORDS
'irTe^omnn^r-o S?i;iuiSr Äutomata Education *, i^ ? computers Time-Sharing Dynamic Modeling

po^1?-8"^0638.0011115^613 Information Systems Programming Languages
r^i'rraeMC2mpUJer3 Artificial Intelligence Computation Structures
Computer Networks Machine-Aided Cognition Automata Theory
Interactive Management Graphics Implicit Computation

Df\ FORM
*«' I NOW «t 1473 (M.I.T.) UNCLASSIFIED

Security Classification

—'""''"rrni^TiitnrTiiriiiiiiiiiii'wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiMM
" , |IIIHIIIIIIIIIII

.1 [\

PROJECT MAC

PROGRESS REPORT VIII

JULY 19 70 to

JULY 1971

47 ARTIFICIAL INTELLIGENCE

':■.

AUTOMATA THEORY

J

CELLULAR AUTOMATA *,

COMPUTATION STRUCTURES"

COMPUTER SYSTEMS RESEARCH '

.^

DYNAMIC MODELING, GRAPHICS AND NETWORKS

.

EDUCATION

/ IMPLICIT COMPUTATION
J

INTERACTIVE MANAGEMENT SYSTEMS

y

MATHLAE
U

PROGRAMMING LANGUAGES

0
^•W..'''

IIWiWli>*liWiWip^ilWI<iiSW||ajMM|M^

.-■

TABLE OF CONTENTS

PERSONNEL
PREFACE

IV
xi

ARTIFICIAL INTELLIGENCE
A. Vision and Description
B. Appeeirance and Illusion
C. Analysis of Visual Scenes
D. Description and Learning
E. Knowledge and Generality

129
130
137
148
156
186

II AUTOMATA THEORY
A. Abstract Complexity Theory
B. Algorithms
C. Polynomial Evaluation
D. Sorting
E. Papers

1
3
4
4
4
5

III CELLULAR AUTOMATA

IV COMPUTATION STRUCTURES
A. Introduction
B. Petri Nets

1. State Machines
2. Marked Graphs
3. Free Choice Nets
4. Simple Petri Nets
5. General Petri Nets

C. Asynchronous Speed-Independent Circuits
D. Base Language
E. Program Graphs
F. Translation of Block-structured

Languages
G. Cycles in Structures
H. Computers and People

11
13
13
14
16
16
19
19

23
26
32

44
46
52

COMPUTER SYSTEMS RESEARCH GROUP
A. Introduction
B. Dynamic Reconfiguration
C. I/O Programming Language
D. Automatically Managed Multilevel Memory
E. Protection of Programs and Data
F. System Programming Language
G. Message Handling
H. Graphics Support
I. Other Activities

57
59
59
60
60
62
62
64
64
65

TABLE OF CONTENTS (continued)

J. Acceptance of Multics
K. ARPA Network Status

1. Design Issues
2. Implementation
3. Experiments

66
67
67
68
69

VI DYNAMIC MODELING, COMPUTER GRAPHICS AND
COMPUTER NETWORKS 73

A. Introduction 75
B. Dynamic Modeling 76

1. Mediation and Intervention 76
2. The Library of Subroutines 78
3. The Library of Documents 79
4. An Extension of the LISP Language 80
5. Lexicontext 81

C. Computer Graphics 82
1. "Picture Framing" 82
2. Polyvision 83
3. Graphical Debugging 8 3
4. Elucidations 84
5. Visual Statistical Analysis 84
6. Imlac Displays 85

D. Computer Networks 85
1. Network Control Program 85
2. The Network at the End of the Year 86

VII EDUCATION 89

VIII IMPLICIT COMPUTATION 93
A. Introduction 95
B. Exact-Inexact Machines and Approaches 96
C. Pressure-Flow Machines 98
D. Fundamental Work 99

IX INTERACTIVE MANAGEMENT SYSTEMS/ 103
A. Introduction ' 105
B. Set-Theoretic Data-Manipulation System 105
C. Management Information Systems 106
D. Studies of Access Control and Privacy 107
E. Modeling of Organizations 107
F. SIMPL Project 109

ii

TABLE OF CONTENTS (continued)

MATHALB 111

XI PROGRAMMING LANGUAGES 117
A. Introduction 119
B. Canonic Systems 119
C. Power of Canonic Systems 119
D. Canonic Systems and Recursive Sets 120
E. Generalized Translator 120
F. Canonic Reduction Generator 122
G. Undecidability of Programming Languages 122
H. Measure Function of Programming Languages 12 3
I. Programming Systems Environment 12 3
J. Community Activities 124
K. Teaching 124

APPENDIX A 223
1. Project MAC Publications 223

in

PROJECT MAC PERSONNEL

JULY 1970 to JULY 1971

Administration

Prof. J. C. R. Licklider

Prof. E. Fredkin

Prof. M. M. Jones

D. C. Scanlon

D. E. Burmaster

G. B. Walker

P. Brandler

R. J. Harman

M. S. Draper

M. K. Hadley

B. H. Kohl

Prof. F. J. Corbato

Prof. J. B. Dennis

Prof. M. L. Dertouzos

Prof. J. J. Donovan

Prof. A. Evans, Jr.

Prof. R. M. Fano

Prof. R. R. Fenichel

Prof. E. Fredkin

Prof. G. A. Gorry, Jr.

Prof. F. C. Hennie, III

Prof. M. M. Jones

Director (to June 1971)

Director

Assistant director (to June 1971)

Administrative Officer

Assistant Director for Student
Activities (to June 1971) and
Business Manager (to December
1970)

Business Manager

Assistant Business Manager
(to September 1970)

Assistant to the Director

Administrative Assistant (to
June 1971)

Librarian (to December 1970)

Librarian

Academic Staff

Prof. J. C. R. Licklider

Prof. C. L. Liu

Prof. W. A. Martin

Prof. A. Meyer

Prof. J. Moses

Prof. N. P. Negroponte

Prof. S. S„ Patil

Prof. J. H. Saltzer

Prof. J. F. Shapiro

Prof. J. Weizenbaum

mmm

Instructors, Research Associates, Research Assistants, and Others

W. C. Michels R. G. Abramson

V. Altman

D. Asthana

A. Bagchi

R. Barquin

R. D. Bressler

D. Brown

G. G. Bruere-Dawson

R. H. Bryan

R. Bryant

I. R. Campbell-Grant

D. D. Clark

J. Coffman

J. D. DeTreville

M. W. Dixon

G. T. Dixon

R. S. Eanes

R. Earle

M. Edelberg

R. J. Fateman

R. J. Fleischer

J. Fosseen

P. J. Fox

F. Furtek

R. C. Goldstein

A. Gonzales

L. I. Goodman

I. G. Greif

F. E. Guertin

M. Hack

M. Hammer

J. F. Haverty

P. L. Miller

R. N. Moll

A. R. Monroe-Davies

I. T. Hawryszkiewycz M. L. Morgenstern

P. G. Hebalkar

D. A. Henderson, Jr

G. Holt

P. M. Hutchins

J. Johnson

R. Johnston

M. E. Kaliski

J. Kaplan

D. J. Kfoury

P. A. King

W. J. Klos

D. König

B. Lester

J. P. Linderman

M. P. Lum

N. A. Lynch

C. W. Lynn

S, E, Madnick

R. Mandl

F. Manning

M. J. Marcus

S. P. Mason

D. T. McDonald

S. Murthy

B. G. Ong

H. F. Okrent

P. Olson

R. C. Owens, Jr.

G, Pfister

K. T. Pogran

D. H. Porges

C. Ramchandani

L. J. Rotenberg

J. E. Rumbaugh

R. R. Schell

M. D. Schroeder

J. I. Seiferas

A. Sekino

W. G. Shaw

D. G. Sitler

J. R. Sloan

B. J. Smith

J. R. Stinger

R. H. Thomas

H. M. Toong

L. E. Travis

vi

Instructors, Research Associates, Research Assistams^
and Others (cont.)

B. J. Vilfan

C. M. Vogt

W. C. Walker

W. F. Bauer

A. J. Baum

P. B. Bishop

R. M. Berman

E. H. Black

P. G. Bras

J. A. Brenfleck

D. Bricklin

H. Brodie

R. L. Brooks

M. S. Broos

K. M. Brown

R. H. Brown

B. Carlson

A. Y. Chan

D. J. Chang

D. M. Christie

S. S Cohen

J. R. Cone

R. G. Curley

S. E. Cutler

B. K. Daniels

R. Davis

P• S. Wang

S. A. Ward

A. S. Weinberg

Undergraduate Students

R. M. Elkin

R. Frankston

R. A. Freedman

D. E. Geer

M. R. Genesereth

R. S. Goldhor

P. A. Green

R. A. Guida

P. H. Guldberg

R. H. Gumpertz

J. H. Harris

C. A. Hatvany

B. Hubbard

P. W. Hughett

W. F. Hui

J. E. Jagodnik

E. Kant

P. A. Karger

R. M. Katz

C. A. Kessel

H. J. Kim

R. N. King

E. Kohn

T. A. Welch

C. Ying

D. Yun

N. V. Kohn

D. M. Krackhardt

P. B. Kurnik

R. S. Lamson

P. J. Leach

P. D. Lebling

C. K. Leung

J. C. Lind

M. Liu

W. S. Mark

J. R. McCauley

D. Misunas

S. Morrow

S. G. Morton

W. Y. Ng

P. A. Pangaro

G. Pavel

R. Pincus

R. L. Prakken

J. Quimby

D. P. Reed

J. L. Reuss

K. Rhoades

Vll

M. A. Rondio

E. C. Rosen

J. L. Rosenberg

L. M. Rubin

N. D. Ryan

S. Saunders

H. J. Siegel

Undergraduate Students (cont.)

R. P. Silberstein

N. Singer

A. M. Solish

J. Stern

S. M. Stoney

J. M. Strayhorn

C. D. Tavares

W. H. Thrasher

E. Tsiang

H. Tucker

L. E. Widman

B. j. Zak

R. E. Zippel

M. J. Ablowitz

G. J. Bailin

E. R. Banks

A. K. Bhushan

G. R. S. Bingham

P. Brandler

A. L. Brown

D. E. Burmaster

B. Byer

R. H. Campbell

H. 0. Capps

M, A. Cohen

D. G. Cressey

R. C. Daley

S. D. Dunten

A. C. England

R. J. FeierLag

J. A. Frxel

DSR Staff

S. W. Galley

R. L. Gardner

C. C. Garman

R. P. Goldberg

J. P. Golden

P. M. Gunkel

R. J. Harman

J. P. Jarvis, III

R. K. Kanodia

B. H. Kohl

M. Lenot

R. F. Mabee

K. J. Martin

R. M. Metealfe

E. W. Meyer, Jr.

J. C. Miebener

N. I, Morris

S. E. Niles

M. A. Padlipsky

S. G. Peltan

W. W. Plummer

C. L. Reeve

L. P. Rothschild

D. C. Scanlon

R. Schroeppel

T. P. Skinner

M. J. Spier

A. J. Strnad

J. Taggart

R. C. Thurber, Jr.

A. Vezza

V. L. Voydock

G. B. Walker

M. B. Weaver

S. H. Webber

D. M. Wells

Vlll

"fmmm

M. C. Amyot

M. E. Baker

V. M. Berardinelli

M. A. Bizot

M. F. Brescia

0. D. Carey

L. S. Cavallaro

N. Chen

M. T. Cheney

S. J. Cohn

M. J. Connell

J. Considine

S. Dalse

L. K. Denison

C. P. Doyle

C. Falls

L. L. Gammell

Support Staff

A. M. Garrity

R. E. Golden, III

D. Goldthrope

M. J. Grano

M. K. Hadley

J. A. Haley

L. J. Haron

A. J. Hicks

R. F. Hill

M. A. Hoer

D. L. Jones

D. Kontrimus

E. T, Moore

B. A. Morneault

E. F. Nangle

L. G. Pantalone

K. W. Pierce

J. E. Pinella

R. Pinsley

R. Queens

E. M. Roderick

A. Rubin

T. H. Seymore

K. K. Simpson

A. H. Speare

J. Stavrinos

M. K. Stephens

J. E. Tamayo

A. G. Testa

E. B. Ulman

M. W. Webber

L. E. Yaple

F. L. Yost

K. Young

H. Adler

Prof. J. Berger

Guests

P. Eisenberg

Prof. J. I. Elkind

Prof. A. Fleisher

Prof. G. lazeolla

IX

 ——i wmmmtm

ADMINISTRATION

Academic Staff

Prof. J, C. R. Licklider
Prof. E. Fredkin
Prof. M. M. Jones

Director (to June 1971)
Director
Assistant Director (to June 1971)

D. C. Scanlon
D. E. Burmaster

G. B. Walker
P. Brandler

R. J. Harman
M. S. Draper

M. K. Hadley
B. H. Kohl

P. M. Gunkel

Administrative Staff

Administrative Officer
Assistant Director for Student
Activities (to June 1971) and
Business Manager (to December
1970)
Business Manager
Assistant Business Manager (to
September 1970)
Assistant to the Director
Administrative Assistant (to
June 1971)
Librarian (to December 1970)
Librarian

Research Staff

F. Manning

M. C. Amyot
L. S. Cavallaro
M. J. Connell
J. Considine
L. K. Denison
L. L. Gammell
J. E. Goss
N. P. Greeley
D. Kontrimus

Research Assistant

Support Staff

E. T. Moore
L. G. Patanlone
K. W. Pierce
R. Pinsley
E. M. Roderick
K. K. Simpson
A. H. Speare
J. Stavrinos
E. B. Ulman

XI

- *M

PREFACE

Pronect MAC was begun as an interdepartmental ^oratory at the
Massachusetts Institute of Technology in early 1963. The initial
research and development goals were concerned with Multiple-
Access Computer systems, Machine-Aided Cognition, and, in
general, the interaction between Men And Computers. The name
"MAC" is an acronym for each of these goals.

In the year ending June, 1971, there were 320 persons associated
with ^lAC. They included: 21 faculty members mainly from the
Departments of Electrical Engineering and Mathematics and from
the Alfred P. Sloan School of Management; 105 staff members
(DSR Staff ami Support Staff), 182 students (Undergraduate
and Graduate) and 12 Guests.

Early in its history, MAC conducted extensive experimentation
with and development of the Compatible Time-Sharing System
(CTSS), an early large-scale, multiple-access computer system
More recently we have continued our research on the MULTICS
system, which came into operation 2 years ago. MULTICS is a
conceptually advanced multiple-access system that is capable
of straightforward and smooth expansion into an extremely large
and capable facility.

The second of MAC1s original objectives, machine-aided cognition,
has recently made very significant progress. We feel that
recent MAC/AI research represents an enormous conceptual
advance. In December, 1970 the Artificial Intelligence group
became an independent MIT laboratory; Professors Marvin Minsky
and Seymour Papert are Co-directors. Important and useful
collaboration between MAC and the AI Laboratory is continuing.

In May. 1971, Professor J. C. R. Licklider stepped-down from
the Directorship of MAC to devote full time to his own research
specialties - Dynamic Modeling, Computer Graphics, and Computer
Networks - and Professor Edward Fredkin assumed the Directorship.
Miss Dorothea Scanlon continued as Administrative Officer, and
Mr. Gary Walker remained as Business Manager.

In anticipation of a major research thrust in a new direction,
MAC has consolidated and strengthened various groups.
Educational Applications; MacAIMS; Programming Linguistics/
Extensible Languages; and Programming Linguistics/ Formal
Systems have been terminated as separate groups. A policy of
more decentralized control by the group leaders has been
instituted.

Although the specific goals of MAC for the next few years
are now the subject of much thought and discussion, an emerging
consensus seems to be that we are interested in the problems of
imbedding knowledge in the computer and in enabling that
knowledgeable system to play a key role in generating programs
and other forms of solutions to problems. We feel that, armed
with knowledge, a systen will be able to better communicate
with its users. We give this field the name "Automatic

xiii

Programming".

This progress report outlines the research carried out in the
year ending June, 1971. The report is subdivided into 11
sections corresponding to the research groups in Project MAC.
The technical reports and memoranda of Project MAC are listed
in Appendix A, and references to the external publications
resulting from the research appear in the bibliographies at
the end of each section.

During the past year, the core program of Project MAC and the
Artificial Intelligence Group were supported, as heretofore, by
the Information Processing Techniques Directorate of the
Advanced Research Projects Agency (ARPA). Individual projects
were funded by several other agencies: research in extensible
languages. National Aeronautics and Space Administration-
interactive problem-solving and decision-making, Office of Naval
Research; dynamic modeling. Behavioral Sciences Directorate of
ARPA; programming generality. National Science Foundation.

Edward Fredkin

Cambridge, Massachusetts

xi v

91

AUTOMATA THEORY

Prof. F. C. Hennie, III

Academic Staff

Prof. C. L. Liu
Prof. A. Meyer

Instructorsy Research Associates, Research Assistants and Others

A. Bagchi
D. Brown
G. G. Bruere^Dawson
M. Sdelberg
M. M. Hammer
P. M. Hutchins
D. J. Kfoury

M. E. Baker
V. M. Berardinelli
S. J. Cohn

N. A. Lynch
R. Mandl
R. N. Moll
B. G. Ong
B. J. Smith
B. J. Vilfan
C. Ying

Support Staff

II. AUTOMATA THEORY

Abstract complexity theory, which has been a central topic of
research xn the Automata Theory Group in the nas^ h-o K^«
reasonably developed chapter in the ?heSry Sf^Autabilitr6 a

^\HCOncribUti0nS fr0m nearly three d^en authors in the S's
Jhi.^1 OVlet Union- AS rePorted below, some father work*fi
toral t^s^rarfstfn0"' dUring thiS laSt year' and two doc-
ena associated wi?h iL1"!^0^653-• However' the basic phenom-
S their ti^and^n™ clas?1fnation of computations according
e+L^T I ^ ? space requirements are now rather well under-
stood, and further refinements in the abstract theory are like!v

inters0' within^9 ^^ t0 the ^Puter'sciJntLt3" M^or"
and ItatistJca? Int^l^ ^ now.shifted toward combinatorial
arisfn^ tn i f^lyses of a variety of algorithms commonly
arising in computation. The goals of work in this are« »Üö%-«
develop methods for designing^ood algorithms for p^oblems^of0

on??^??i interest, and to devise techniques for verifying the
optimality of algorithms. The work described below on matrix
multiplioation, polynomial evaluation, and sorting represents
algori?^"1193 0f thiS "^ Practical approach to^^^tudy^f

A. Abstract Complexity Theory

One of the basic theorems about computable functions is that
for every computable function t, there exists a zero-one valued
computable function c that takes more than time t to evaluate
More precisely, an^ program that evaluates c requires at least
t(x) steps to compute c(x) for all but finitely^any values of

In °rdef to appreciate the significance of such a theorem one
about howltl0nal *nf0rinati0n (not Provided by the usuafp^oo?) about how many values of the function c are easy to compute
It might be the case that the functions that are d?ff?cult from
the point of view of complexity theory — i e function« fJf?

Zty'fTrTlT^ll t0 CCmPUte ^ the -erag":: a^ac^l^
?n L:? mal1 arquments, say all arguments less than 10100
In fact, any zero-one valued function can be computed rapidlv '
for any given finite set of arguments by simply sto?inq?heY

pertinent values of the function in a table/ A genSnlly com-
plex function should have the property that any program tha?
computes it can run rapidly on only as many inputs as can
be stored in a table whose size equals that of the program.
Such functions are constructed and studied in a paper by
Prof. A. Meyer (jointly with E. M. McCreight).

Properties of program size are considered in several further
papers written this year. One of th.j motivations for the study
of program size has been to provide a quantitative understanding
of the relative convenience of different programming languages
by comparing the sizes of the programs needed to implement the
same computation in different languages. A fairly general
theorem recently proved by Prof. Meyer shows that a slight in-
crease in the set of instructions of certain kinds of program-
ming languages can lead to enormous economies in program size
A related study of formal grammars bv Meyer (jointly with Prof

mum mi BLANK

AUTOMATA THEORY

M. J. Fischer) derives quantitative bounds on the improvemeni-
xn sxmpUcity of definition that can be achieved bJTstng Pow-
erful grammars such as context-sensitive or context-free ar^J
mars to define simple sets such as regular or even Untie*stt's

B. Algorithms on Graphs

The results on matrix multiplication and transitive closure of

When coupled with Meyer and Fischer's observation that Sa?

filftr^ppiv^fBooL^1'^1^^ real -"rlSs^can^e Sdi-
tra^Si^Ls^^llori^n^ ttSiLtee!Ult ^ the beSt

multiol^^fo a ?r^h-theoretic approach to Boolean matrix
?^S J ?n u1?ht enable us to generalize fast matrix mul-
tiplication techniques has not yet been fulfilled, but we
continue to believe that this approach is promising
c- Polynomial Evaluation

The evaluation of rational functions by sequences of alaebr^in
operations represents one of the few areas^heS techniques
have been developed for establishing the optimality of aloo-

Me^er^ndT3! 'paS^^f ^ With ^fTsloll tLSlt,
♦?ho « K J' Paterson' has derived a lower bound of J^T on
the number of multiplications required to evaluate any äearee
?his Cr^ W1th. ^tional coefficients, and has shown thlt
this lower bound is nearly achievable.

D. Sorting

of t;o-TnnuthaLoeen/nrStigating sorting networks composed ot two-input, two-output comparators. Since each comparator

s"tinamnfäeVS * thfee-State f-ite-state SacSine^Se
IZlttl nJtwork fs a whole can also be viewed as a finite-
state machine. When implemented in hardware, such networks
vSes6 TlLrl ?igh:SPeed sorters or message^UchJng de-'
vices. Alternatively, a sorting network can be realized bv

ation! r Pr09ram that iS nat-^y -ited to pSal^f evLu-

Lad ttiririL^^nirof comparators -™o^tsHif
f il S(n,i)

i = 0

Shf n ^at S^ f?achablf froin ^e starting state, where
hiV iV St:Lrling number of the second kind. Furthermore
nJtworic ^^-^ ^hat n0 tWO distinct reachable states Tn the
network are equivalent. These results suggest that a knowledge

,

AUTOMATA THEORY

of the number of internal network configurations that cannot
result from any network input may yield bounds on the number
of states "wasted" in building a network and in this way yield
bounds on the number of comparators required.

E. Papers

During the year, several members of the group have prepared
papers for forthcoming meetings and journals.

For the Twelfth Annual Switching and Automata Theory Symposium
(October 1971):

1) Fischer, M. J. and A. R. Meyer, "Boolean Matrix Multi-
plication and Transitive Closure".

2) Meyer, A. R. and M. J. Fischer, "Economy of Description
by Automata, Grammars, and Formal Systems".

For the International Symposium on the Theory of Machines and
Computations (August 1971):

Meyer, A. R. and E. M. McCreight, "Computationally Com-
plex and Pseudo-Random Zero-One Valued Functions".

Accepted by the Journal of Symbolic Logic:

Meyer, A. R. and P. C. Fischer, "Computational Speed-Up
by Effective Operators".

Accepted by Zeit, f. Math. Log, und Grund, der Math.;

Meyer, A. R. and D. M. Ritchie, "A Classification of the
Recursive Functions".

Publication 1970-1971

Ying, C. and A. K. Susskind,*"Building Blocks and Synthesis
Techniques for the Realization of M-ary Combinational Switch-
ing Functions", Proceedings of Symposium on Theory and Appli-
cations of Multiple-Valued Logic Design, State University of
New York at Buffalo, May 1971.

* Non-MAC author.

"»mn

CELLULAR AUTOMATA

Prof. E. Fredkin

DSR Staff

E. R. Banks

Undergraduate Students

W. S. Mark

PRECEDINB PASE UM

MM

III. CELLULAR AUTOMATA

A Ph.D. thesis by Roger Banks describes an investigation of a
class of parallel processing computers called Cellular Automa-
ta. A cellular automaton consists of an array of simple, iden-
tical finite-state machines called cells. Each cell communica-
tes with only its immediately surrounding cells.

The chief results of the thesis include showing that a two-
dimensional array of two-state cells, each of which communicates
with its four-edge neighbors, can perform any (computable) com-
putation, i.e., it can simulate a universal Turing machine.

A configuration is a specification of the states of all the
cells in some area of the iterative array. Another result
described in the thesis, is the existence of a self-reproducing
configuration in an array of four-state cells with each cell
communicating with its four-edge neighbors. This was a reduc-
tion of four states from the previously known eight-state case.

Further work by Banks and more recently by William Mark has
concerned the development of a programming system for the
simulation and display of very general cellular automata in
one, two and three dimensions with various neighborhoods,
transition rules, numbers of states, etc.

Publication 1970-1971

Banks, Edwin R., "Information Processing and Transmission in
Cellular Automata", Ph.D. Thesis, Dept. of Mechanical Engineer-
ing, January 1971, also MAC TR-81, AD 717-951.

PRECEDING PAGE BLANK

COMPUTATION STRUCTURES

Prof. J. B. Dennis

Academic Staff

Prof. R. M. Fano Prof. S. S. Patil

Instructors/ Research Associates, Research Assistants and Others

I. R. Campbell-Grant
J. Coffman
J. Fosseen
P. J. Fox
F. Furtek
I. G. Grief
M. Hack
I. T. Hawryszkiewycz
P. G. Hebalkar

Undergraduate Students

B. Lester
J. P. Linderman
M. J. Marcus
C. Ramchandani
L. J. Rotenberg
J. E. Rumbaugh
D. G.Sitler
W. C. Walker

H. J. Kim

W. W. Plummer

B. A. Morneault

DSR Staff

Support Staff

A. Rubin

mmm PASE BLANK

11

IV. COMPUTATION STRUCTURES

A. Introduction

The Computation Structures Group is concerned with the studv
and analyse of fundamental issues arising in the design and
construction of general-purpose computer systems. The re-
search encompasses hardware and software aspects of computer
systems, and much of the work has contributed toward establish-
ing a common conceptual basis for both aspects. The accom-
plishments of the past year are principally in two areas:
One is the theoretical study of Petri nets as a model for
asynchronous systems of interacting parts, and the realization
of Petri nets in the form of speed-independent modular switch-
ing systems. The goal of this work is to build a sound theory
to serve as the basis of a new methodology for the design of
asynchronous digital systems. The second area is the evolu-
tion of a base program language. This effort is expected to
lead to a practical formal definition scheme for source pro-
gramming languages and will provide a sound basis for the
functional design of advanced computer systems.

B. Petri Nets

As reported last year, we have found Petri nets to be an ele-
gant formalism for representation of concurrency in processes
and for studying asynchronous systems. Petri nets stand out

iLrif^VVH?^ schemes because of the preciseness and
ease with which they can express parallel aciions, resolution
of conflicts, and interaction among processes. Moreover, they
have the simple structure that .ä essential for analytic
study. Simple as they are in their structure, study of the
general class of Petri nets is difficult because of the var-
iety of situations they can represent. A study of subclasses
of Petri nets which represent simpler situations is a necessary
step toward understanding the general class of Petri nets, and
such study has been an important objective of the group in the
past year. We have identified several subclasses of interest
and have found useful results about them. Before discussing
these results, we present a brief introduction to Petri nets
and the subclasses of interest.

A Petri net [1,2] is a directed graph which can have two types
of nodes, namely transitions and places, where the directed
arcs can connect only transitions to places and places to trans-
itions (Fig. 1.). In drawing the graph, places are represented
by circles and the transitions by bars. The places from which
arcs are incident on a transition are called input places of
the transition, terminate are called the output places of the
transition. Each place can have markers (sometimes called
tokens) in them. A transition having markers in all of its
input places is said to be enabled. Only enabled transitions
can fire; in the act of firing, the transition picks one
marker from each of its input places and puts a marker in each
of its output places. The marking distribution in the net
changes as transitions fire, and each new marking distribution
makes firing of other transitions possible. With regard to
the firing of transitions, an important situation is when

rmim PAGE BUNK
13

mmmewmmmmmmmiim Ktmrnmammmammmmmmimm

COMPUTATION STRUCTURES

FIG. I. A PETRI NET.

wM-J^Ki0118 Share SOme input Places- When two transitions
which have a common input place are both enabled but the
common input place has only one marker, the transitions are
said to be in conflict because the firing of any one of the
transitions disables the other. A net is said to be safe if

Tne^is saif to1^ T^ r^! more.than one m^ker aF^time. A net is said to be live if at no time in the operation of the
?!LWiii T transitl™-be ruled out as a transition tha? may
in t n~?VimVn tht fUtUre- Conflict, safety, and liveness
in a net depend on the initial marking distribution. There
UlL ^W!rr' SOme stPctural restrictions which can guarantee
some of these properties. By structural restrictions! we mein
fnf ni 0nS With reHard t0 the ^rangements of transitions
and places such as the restriction that transitions not have
input places in common. The restrictions we use below to
define subclasses of Petri nets are purely syntactic as thev
tn^^OCal %nStr^tS 0n the arrangements of trinsKionl7 and places. The subclasses are:

1) State Machines (SM)
2) Marked Graphs (MG)
3) Free Choice Petri Nets (FC)
4) Simple Petri Nets (SN)

The restrictions that define these subclasses are given b^low
The Petri nets without any restrictions will be referSd to
as general Petri nets to emphasize this fact. The following
text should be read together with Figures 2 and 3. Fiaure 2
shows what kind of local configurations of transition and
places are permitted for each subclass of nets.

whicH^lL^1"^ ■(SM)v," A State machine is a Petri net in wnich every transition has exactly one input place and exactly

14

COMPUTATION STRUCTURES

LOCAL CONFIGURATIONS

STATE MACHINES
EVERY TRANSITION HAS
EXACTLY ONE INPUT PLACE
AND EXACTLY ONE
OUTPUT PLACE

PERMITTED

O

MARKED GRAPHS
EVERY PLACE HAS
EXACTLY ONE INPUT
PLACE AND EXACTLY ONE
OUTPUT PLACE

FREE CHOICE NETS

EVERY ARC FROM A PLACE
TO A TRANSITION IS EITHER
THE ONLY OUTPUT OF THE
PLACE OR THE ONLY INPUT
TO THE TRANSITION

SIMPLE NETS

EVERY TRANSITION HAS
AT MOST ONE SHARED
INPUT PLACE

PETRI NETS

NO SUCH
RESTRICTION

NOT PERMITTED

<

-<

FIG. 2. THE SUBCLASSES OF PETRI NETS.

15

m. iiiiinii pin i i myinj ■Wnri .hi I

COMPUTATION STRUCTURES

one output place. The state machines being discussed here are
identical to the state machines of automata theory in their
structure, (Fig. 4).

2. Marked Graphs (MG) — A marked graph is a Petri net in
which every place has exactly one input transition and exactly
one output transition. Thus the restriction in this case is
similar to the one for state machines but it applies to places
instead of transitions. State machines have been studied ex-
tensively but the recognition of marked graphs and the study
of their properties is recent. Genrich [3] started the study
of marked graphs and his ideas led to a detailed study by
Holt and Commoner [4]. The mathematics relating to marked
graphs is fairly well understood now through these studies.
In our previous report we showed a direct relationship between
the elementary asynchronous modular control structures devel-
oped by us and the marked graphs. The study provided a simple
way for obtaining hardware structures that mimic marked graphs,
and also a ^thod for determining if a control structure is
free of any hangups. This year the study has been carried
further to include a broader class of nets called free choice
nets. The free choice nets and results relating to them are
described below.

3. Free Choice Nets — A Petri net in which every arc from a
place to a transition is either the only output of the place
or the only input to the transition is said to be a free choice
Petri net. This condition on Petri nets is the same as re-
quiring that when an input place is shared by some transitions,
those transitions have no input places other than the one
which is common to them. Thus when a marker arrives in the
shared place, all of the transitions which share that place
are enabled, and one of them may be freely chosen to fire.
When the movement of a marker is regarded as flow of control,
the situation just described represents a free choice with
regard to where control flows from the shared place — thus
the name free choice nets. Free choice nets include both the
state machines and the marked graphs.

A free choice Petri net can be used to represent the flow of
control in a program as shown in Fig. 5. In this figure, the
shared place x together with transitions T and F represent a
decision element — the if statement in the program. The
direction in which control flows from place x is not arbitrary
— it conforms to the outcome of evaluating the predicate
associated with the if statement. To the net considered alone
the decision about the direction of flow is external to it be-
cause it is based on information outside the net; the infor-
mation flows into the net by way of the interpretation which
associates a certain if statement with the free choice trans-
itions in the net. In the study of Petri nets and also in the
studv of comoutation schemata, it is important to distinguish
what information is a part of the net and wl at is external to
it.

Some important results about free choice nets have been found
recently by Commoner of Applied Data Research and Hack of the

16

mmmim

COMPUTATION STRUCTURES

FIG. 3. THE INCLUSION RELATIONSHIP AMONG
THE SUBCLASSES OF PETRI NETS.

STATE MACHINE AS A
PETRI NET

STATE MACHINE AS A
STATE DIAGRAM

FIG. 4. STATE MACHINES,

17

"""•""'"-"—irn—Tnnrwflfiiiwii>;.MWiwMi|—mmuj

COMPUTATION STRUCTURES

BEGIN

n*- 0

m— I

i — 4

a: FORK ß

n -— n + i

BEGIN
•

y.joiN

i -— i - I

ß: m '— mxi

JOIN /

IF i > j THEN GOTO a

END END

r
FIG. 5. FLOW OF CONTROL IN A PROGRAM.

■I I

18

COMPUTATION STRUCTURES

Computation Structures Group. Commoner has found necessary and
sufficient conditions for liveness and safety of a free choice
net, and Hack has found conditions for the existence of a live
and safe marking for a net. A live net is one in which the
activity can continue indefinitely without any hangup. Hangup
is a condition in which a part of the net enters into a state
of inactivity from which it cannot recover. In our common
experience a hangup for a machine is an unfortunate state in
which its activity subsides and it fails to respond to stimu-
lation because of some hopeless jam inside it. Safety on the
other hand means that no more than one token will be in any
place at any time. This is important where the places repre-
sent objects that cannot hold more than one of the things
represented by the tokens. When places represent registers
ma digital computer, safety means that a new piece of data
will not be placed in a register until the previous one has
been used up. In that way mixup of data can be avoided. Hack's
work thus provides a way to determine if an uninterpreted
parallel program which can be expressed as a flow diagram has
a starting condition for which it will continue to operate
without any hangups or mixups.

4. Simple Petri Nets - A Petri net in which no more than one
input place of any transition is a shared input place is called
a simple Petri net; a transition in a simple Petri net may
have any number of input places but at most one of those places
may be an input place of some other transition. The class of
simple Petri nets properly contains the free choice nets
There are situations which can be represented by simple Petri

?f™ SK? £0t ^ ±r?e choice nets- Figure 6 shows such a situa-
tion which arises in representing flow of control in coordin-
ating processes. An important aspect of simple nets is that
they are able to represent interprocess coordination such as
implemented by Dijkstra's semaphore primitives. A study of
simple Petri nets has led to an understanding of the limita-
tion and capabilities of the semaphore primitives. Details
of this study are presented in the next section.

5. General Petri Nets — The class of Petri nets without any
of the restrictions is called general Petri nets. There are
many Petri nets in the class of general Petri nets for which
there are no equivalent nets in the subclasses defined, in
particular, a Petri net which cannot be transformed into a
simple net arises in the study discussed below.

Recent work by Patil [5] has shown some interesting facts
cwout the semaphore primitives of Dijkstra [6] by establish-
ing a correspondence between the flow of control in inter-
acting processes and Petri nets. In Fig. 6, three processes
coordinate their activities with the help of semaphores.
The Petri net for each individual process is obtained by
representing each instruction by-a transition, connecting
these transitions into a chain by means of places to indicate
the flow of control in that process, and placing a token
in the input place of a transition to indicate the present
site of control. The Petri net for a collection of inter-
acting processes is obtained by interconnecting the nets

19

:..- -.■;,

COMPUTATION STRUCTURES

.

H^) ^

PROCESS

Pl P2

1 X*- XH -x 5 u ♦- u * u

2 p [sy; 6 p[sy]
3 y«- x 7 y *- u
4 V [Sy. 8 V [sy."

GOTC) 1 GOTO 5

<s>

9

10
II

p [Sy]
z*- z + y

V[Sy]
GOTO 9

a)

INITIALLY SEMAPHORE
Sy=l AND Sy.sQ

4)
r: _9

JO

\v ̂

FIG. 6. FLOW OF CONTROL IN PROCESSES AND THE
CORRESPONDING SIMPLE PETRI NET.

20

m

COMPUTATION STRUCTURES

tion Pfqi 10™,,?^^ transition that represents an ins true-

the net that the trlnsitlin ^ Y ' ™.have the Phenomenon in

the now S control? Mo™ lZ£V'*t ^P1"«^ «"«ib.
nets because the only S^It^s^Lh^L^Lr^^sK^

place. transitions has only one shared input

he represea"ergyC?^ittä^1
1
tJSnstr'lti°?;' l^ V°M ha- to

describes the flow o?coS?ol?n this case "" "^ ^^

s?aSe0n1s9a?er0Sr^?tI^?Ld°nt^es0?nttfn aEy C0naitiOnal

ä?ial?LPr0-" -- ^larlw^e^LT-rde0f '
thre" output^Les^lSd6; "fZf^iJ'11'*' ™k «reen? and
erent messages wMoh oaf be'sin? to iheS^V16 three di«-

can be thought to have three processes in«Id^! The/ecoder
message. Process X waits for meJsaae% 2nH ' .0ne f0r eacft
put wire X- th^ n+h^r rZ message X and responds on out-
will be coAcernJd with ?he abov^ ^ d*fi™*.snarly. We
in which signals are represented thro,^H ti itS 80ftwa^ form
each wire is reprJsJntJfbrfsemaShorfanS6^56 0f sen,aPh^es;
semaphore count by 1 corre^pSnds^tf ^ding iTtlZTfl ^

21

.

COMPUTATION STRUCTURES

h

FIG.7. THE 2-0UT-0F-3 NET.

22

—M*

COMPUTATION STRUCTURES

signal is accepted by decrementing the semaphore count by 1.
The question is: Can the three processes which decode the
messages be so coordinated by semaphore primitives that the
decoder functions correctly? Since each individual process
just waits for the associated message to arrive, we insist
that the processes not use any conditional instructions.
Therefore, instead of asking the question in the form above,
we ask: Is there any finite collection of processes not using
conditional instructions that can specify the operation of the
decoder with the help of the semaphore primitives? The answer
to this question is negative.

The reason for the negative answer is that the decoder repre-
sents a net called 2-out-of-3 net, which is not a simple Petri
net, and it has been possible to show that this net cannot be
transformed into an equivalent simple Petri net [5]. Thus it
is clear that the semaphore primitives need the help of condi-
tional statements to carry out coordination among processes,
(Fig. 7.). It should be recalled that the very purpose of
introducing the semaphore primitives was to obtain a more
direct means for coordinating processes and to do away with
sneaky use of conditional statements to perform coordination.
With the aid of conditional statements one can implement
coordination of processes by such simple-minded schemes as
repeated testing of a variable until it becomes,say, 1. Such
schemes can implement coordination, but the implementation is
very wasteful of computer resource because there is no limit
to the number of times the variable may have to be checked.
The semaphore primitives rectify this defect, but they are not
able to implement all coordinations by themselves. Thus the
question is, whether together with conditional statements they
can express all conceivable coordinations without paying the
price of unbounded computation. The study has shown that the
answer to this question is affirmative.

At the root of the shortcomings of the semaphore primitives is
the fact that a P[] instruction operates on only one semaphore,
Unfortunately, a generalized instruction such as P[Si,...,Sk],
which simultaneously operates on semaphores Sj., ..., S^, cannot
be always expanded into a sequence of instructions PISJJ, ...,
P[Sjj]. But the generalized instruction can be expanded in
terms of PlSj, S2] instructions each of which operates on two
semaphores. Even though PES,, S2] is adequate, one may wish
to allow more arguments in instructions for the sake of effi-
ciency.

C. Asynchronous Speed-Independent Circuits

A digital system is often built as two interconnected parts --
a data flow structure containing registers, functional opera-
tors and data paths, and a control structure that generates
signals that initiate actions by operators in the data flow
structure.

In synchronous systems the operators may begin action only at
certain time instants determined by a central generator of

23

■ ■ HHM MK

COMPUTATION STRUCTURES

clock signals. The design of the control structure involves
choosxng the appropriate number and duration of clSck Intervals
and realizing a switching circuit that routes the clock sional«'
to operators as required to implement the system's function?

In an asynchronous control structure,each operator in the data
flow structure sends an acknowledge signal to the control
structure to indicate that action by the operato? has been

dTSlfin It caon?OW|edr Si^ls ^ o^rators^e^d
ai«Jo S I uthe contro1 structure to initiate action by oper-
ators that become eligible for execution. In this way initia-
tion of an operator is delayed only until completion of those
actions upon which correct functioning of the operator de-
pends. No special generator of timing signals is Ssed the

If the control structure of an asynchronous system will func-
ItTir illlTrÜ re?ardless of ^lays in its components and
their interconnecting wires, the control structure is called
a speed-independent circuit. «uccure is called

zationeofd?r^bKd^y a logic.dia^am for a synchronous reali-
^^r?" ?f ^v,18 bot5 overspecified and underspecified. The
particular choice of clock instants is irrelevant to the func-
tion performed by the system, but is essential for the diag?L
InäZl^ raniKg- Yet understandings between the spec mir
nnli P enter abOUt timin5 of actions are necessary for
unambiguous interpretation of the description. These under-
standings are not usually represented in a logic diagram
or lltellTa i^T T^V! oversPecified makes unders^nding
or altering its function difficult; that it is underspecified
ÄnMe?ign verifi?ation impossible in the absence ^over-
simplifying assumptions. The description of a system as a

paJts'of aPso^d fn*™*^t* n0t SUffer these P-b!ems "TWO SSL? a
f
sPeed-lndependent circuit are interconnected if,

and only if, some action by one part is dependent on comole-
tion of some action by the otherf «penaenr on comple-

d^f^?aSOning ShOWS that sPeed-independent implementation of
digital systems is of particular interest when one desires

Inll^tl ^ a.Paper deSign Wil1 yield a corrSStly function- ing system when translated into hardware. Speed-inLn^li?

s^fhf^ haS been s*udyin(3 schemes for representing systems

onerous task of debugging the hardware (as opposed to debuuoino
the system description) would be largely eliminated ™uWin9

I

1

24

m-".:i<\' i. i , ■

COMPUTATION STRUCTURES

'M

particular the faults that appear in hardware systems because

avoTded ndingS abOUt the timing 0f Si*nals would bS

hL!5e coJs:Ldering two classes of speed-independent circuits
based on two assumptions regarding the origin of delays which
must not affect correctness of system operation. Both classes
ot circuits are interconnections of primitive modules which
may be individual gates or specific circuits realized in turn
by the interconnection of simpler modules or gates.

In a type 1 circuit we assume that all interconnectinq wires

onl ^TW^11^ delays- Thus a signal sent lut by one module to two others may reach one module arbitrarily
m^in* J Ü" ^ other- In a type 2 circuit we assume that the
output of a module may be delayed arbitrarily, but when an
bS *n ^.nm0dile ^ha^es, the change is observed immediately
by all modules to which the output is connected. The type 2
assumption is less restrictive, and is appropriate for cir-
cuits in which delays on interconnecting leads are negli-
gible compared to delays within gates. This is normally the
case within a semiconductor chip, for example. The more
h^f!; «PV *ssuinPtion is appropriate for interconnections
between standard parts where the designer does not know the
mechanical arrangement of the parts.

t^^fJ- 9oal °f °?r work ^ to find a finite set of prac-
tical modules with which it is possible to implement any
digital system as a type 1 speed-independent circuit. In
last year's report we described a collection of control
modules adequate to implement any marked graph as a type 1
circuit. The complete set of control modules are also ade-
quate for implementing free choice and simple Petri nets in
won,- r^0f ^Y?e 1 sPeed-independent circuits, and are con-
sjstems deflning control structures for complex digital

The C-element of Müller [7] is a very important gate type for
the construction of control modules. We have shown that the
nfeiNnenopCarT;L£e imPlemented as a type 1 interconnection
of AND, OR and NOT gates. In fact, there is very little
that can be done by a type 1 speed-independent circuit usina
only AND, OR and NOT gates. These results are included in I
paper by Dennis and Patil [8]. Since several basic control
modules have type 1 realizations using NOT gates and C-elements
these results emphasize the importancl of the C-element aH'
fundamental gate type for speed-independent circuits. More
recently,Fred Furtek has defined a complete set of basic
modules for the realization of general Petri nets as type 1
speed-independent circuits.

Our success in applying speed-independent design to control
structures for digital systems has led us to investigate ?he
applicability of the concept to complete Jigital sys?ems As
an experiment, Dennis and Plummer developed a design for ; fast
counter that could be sampled repeatedly without interfering
with continuation of counting. The design is a type 1

^ i

i

25

'M"*"""", iiairn u IHJUMIIU«^«,,

C0:4PUTATI0N STRUCTURES

interconnection of as many identical stages as desired, each
stage being a type 2 circuit using OR-gates, NOT-gates and C-
elements. Commands to 'count' or to 'sample' flow through the
stages of the counter from the least significant end changing
or reading the bit held by each stage. In this way the speed
of the counter is independent of the number of stages. The
details of the design have been reported [8]. Bill Plummer de-
signed and constructed an arbiter module to resolve conflicts
between 'count' and 'sample' commands, and has prepared a
paper on his work [9].

D. Base Language

The Group is working toward the definition of a common base
language that could serve as a target representation for pro-
cedures translated from a variety of practical source languages,
for example, FORTRAN, ALGOL and LISP. By specifying a formal
interpreter for the base language and giving a precise des-
cription of the translation of source programs into base lan-
guage programs , we would have a complete scheme for the formal
definition of the semantics of programming languages in terms
of a common set of semantic notions (those of the base lan-
guage) .

The motivation for this work is the design of computer systems
in which the creation of correct programs is as convenient and
easy as possible. A major factor in the convenient synthesis
of programs is the ability to build large programs by combin-
ing simpler procedures or program modules, written independent-
ly, and perhaps by different individuals using different source
languages. This ability of a computer system to support
modular programming is called programming generality [10,11].
Programming generality requires the communication of data among
independently specified procedures,and thus that the semantics
of the languages in which these procedures are expressed must
be defined in terms of a common collection of data types and a
common concept of data structure.

We have observed that the achievement of programming generality
is very difficult in conventional computer systems, primarily
because of the variety of data reference and access methods
that must be used for the implementation of large programs
with acceptable efficiency. For example, data structures that
vary in size and form during a computation are given different
representations from those that are static; data that reside
in different storage media are accessed by different means of
reference; clashes of identifiers appearing in different
blocks or procedures are prevented by design in some source
languages, but similar consideration has not been given to the
naming and referencing of cataloged files and procedures in the
operating environment of programs. These limitations, on the
degree of generality possible in computer systems of convention-
al architecture have led us to study new concepts of computer
system organization through which these limitations on pro-
gramming generality might be overcome.

In this effort, we are working at the same time on developing

26

COMPUTATION STRUCTURES

itectuS suJ?edgtoath.0n de™loVinV concepts of computer arch- itecture suited to the execution of computations specified bv
base language programs. Thus our work on the ht*l i ?
strongly influenced by hardware concepts derived IroHhe^e13
quirements of programming generality [10]. re"

We have chosen trees with shared substructures as our univer-
founrP^Sen^ati0!? f0r info^tion structures became we have

tr^s^^rd^j^fS^i-irujf zriiniiPl P
ciuaiiv\m^L:rt^^g\\rfde-ri -' ^-^ - ^o.
pPer^%€C^™
coSrrenc? L^hfft?11-111 parallel- 0^ reason for emphasizing concurrency is that it is essential to the descriotion nf ™r

rnZf?CY ^ Pr0gramS Wil1 be ^Portant in realizing efficient
computer systems that offer programming generality This is
utilizati°nCofrent execution of Pro-am ^arts Inc^ases the
utilization of processing hardware by providing many activitip«,

secon. stl\tLr.TL^^b^La
t^^-^t£t a

sourceTSr °,LTl ^^^ P^ram .xpSssedln thJ *
g«m 6««lsld III ^nnff ^nSHäse) into an equivalent pro-

It would be possible to specify the formal c^n^ni-i^o „.P

gramming language by giving an^nterp^eter ?or the concreter0"
identi^ ?f '^ SOUrCe la^^-' the translator L^Se^the
the definition JT^0^ Yet the incl^ion of a translator in tne definition scheme has important advantages For on« Jhl
Phrase structure of a programming language^-ed as a set o?

2t™ "8 semantic rules of interpretation for a reoresenta-
tic s?ruotu,ir09ram^hat ""^ natu"lly represents itrseman-

^asr^ee-prÄ^oT=o^i.
o„osr^r

p^nLi?uTJce

"ao^o^r j^s ollh— By «"^-"the1 SSsllto^lrre-

27

COMPUTATION STRUCTURES

computer languages and systems.

Our thoughts on the definition of programming languages in
terms of a base language are closely related to the formal
methods developed ac the IBM Vienna Laboratory [13] and which
derive from the ideas of McCarthy [14] and Landin [15].

For the formal semantics of programming languages, a general
model is required for the data on which programs act. We re-
gard data as consisting of elementary objects, and compound
objects formed by combining elementary objects into data
structures. Elementary objects are data items whose structure
in terms of simpler objects is not relevant to the description
of algorithms. For the purposes of this discussion, the class
E of elementary objects is

E » Z U R U W

where

Z = the class of integers
R = a set of representations for real numbers
W = the set of all strings on some alphabet

Data structures are often represented by directed graphs in
which elementary objects are associated with nodes, and each
arc is labelled by a member of a set S of selectors. We will
use integers and strings as selectors:

S = Z U W

In the class of objects used by the Vienna group, the graphs
are restricted to be trees, and elementary objects are asso-
ciated only with leaf nodes. We have used a less restricted
class so an object may have distinct component objects that
share some third object as a common component.

Let E be a class of elementary objects, and let S be
a class of selectors. An object is a directed acyclic
graph having a single root node from which all other
nodes may be reached over directed paths. Each arc is
labelled with one selector in S, and an elementary
object in E may be associated with each leaf node.

An example of an object is shown in Fig. 8. Leaf nodes having
associated elementary objects are represented by circles with
the element of E written inside: Integers are represented by
numerals, strings are enclosed in single quotes, and reals
have decimal points. Other nodes are represented by solid
dots, with a horizontal bar if there is more than one emanating
arc.

The node of an object reached by traversing an arc emanating
from its root node is itself the root node of an object called
a component of the original object. The component object con-
sists of all nodes and arcs that can be reached by directed
paths from its root node.

28

COMPUTATION STRUCTURES

0

{Zi

IT
a

4-
2

.5]

n

I'I

g

i.

I 6
@

■pf' i
n

V

FIG. 8.

29

■IB" mMiriiiiii..iii«iiin»i|i!pj|||

■

COMPUTATION STRUCTURES

Some of us prefer to generalize this class of objects in two
ways :

1) by permitting data values to be associated with any
node of the graph of a structure

and

2) by permitting the graph to contain directed cycles

Whether to permit cycles in the structured data objects of the
base language is an important unresolved issue. Some consider-
ations bearing on this matter are discussed in a later para-
graph of this report.

Figure 9 shows how source languages would be defined in terms
of a common base language. Concrete programs in source languages
(Ll and L2 in the Figure) are defined by translators into
abstract programs of the base language. For this to be
effectively possible, the structure of abstract programs can-
not reflect the peculiarities of any particular source lan-
guage, but must provide a set of fundamental linguistic con-
structs in terms of which the features of these source lan-
guages may be realized. The translators themselves should be
specified in terms of the base language, probably by means of
a specialized source language. Formally, abstract programs in
the base language, and states of interpreter are elements of
the class of objects defined above.

The structure of states of the interpreter for the base lan-
guage is shown in Fig. 10. Since we regard the interpreter for
the base language as a complete specification for the func-
tional operation of a computer system, a state of the interpre-
ter represents the totality of programs, data, and control
information present in the computer system. The universe is
an object that represents all information present in the com-
puter system when the system is idle, that is, when no compu-
tation is in progress. The universe has data structures and
procedure structures as constituent objects. Any object is a
legitimate data structure; for example, a data structure may
have components that are procedure structures. A procedure
structure is an object that represents a procedure expressed
in the base language. It has components which are instructions
of the base language, data structures, or other procedure struc-
tures. So that multiple activations of procedures may be ac-
commodated, a procedure structure remains unaltered during its
interpretation.

The local structure of an interpreter state contains a local
structure for each current activation of each base language
procedure. Each local structure has as components, the local
structures of all procedure activations initiated within it.
Thus the hierarchy of local structures represents the dynamic
relationship of procedure activations.

The control component of an interpreter state is an unordered
set of sites of activity. A typical site of activity is

30

COMPUTATION STRUCTURES

CONCRETE PROGRAMS
IN LI

ABSTRACT PROGRAMS
IN BASE LANGUAGE

TRANSLATOR
FOR L

CONCRETE PROGRAMS
IN L2 INTERPRETER

FIG. 9.

1 T

1
DATA

STRUCTURE

'UNIVERSE' 'LOCAL STRUCTURE' 'CONTROL'
r— 1 i / * i i i ' 1

SITES OF
ACTIVITY

/ INSTRUCTION\
j <-

PROCEDURE
STRUCTURE P

LOCAL
STRUCTURE L

FIG. 10.

31

COMPUTATION STRUCTURES

represented in the figure by an asterisk at an instruction of
procedure P and an arrow to the local structure L for som"
activation of P since several activations of a proceS mav
exist concurrently, there may be two or more site! of activiJv

ing0dlf?lren? loTJT'T'011 0f SOme P—dure^but Ses^aL
o? * iSf? structures. Also, within one activation
of a procedure, several instructions may be active concurrentlv■
thus asterisks on different instructions of a procedure mav
have arrows to the same local structure. Procedure may

Tiln ?ort^^anSitiSn 0f the interpreter executes one instruc-
tion for some procedure activation, at a site of activii-v
selected arbitrarily from the control of Se current staL
^ulh

the^^rPreter is a nondeterministic transition system
aStiv!tv l«erfn?Ultin? fr0ra a tra^ition, the chosen siC of'
accordiL to ^ d by Zer0 0r more new sites of activity according to the sequencing rules of the base language.

dure^tructu^e ^and^n^^ involves two objects, the proce- aure structure P and an argument structure A. The arcmment

contain^ H I?™** ^ ^ Calling Pro^dure act^aMoHnd
rem^^KaS.u0mp0nent ob^cts, all information (other than P)
required by the activation of P. m particular th* «^«»1

L^thL'^Lro^6 Pr0rdUre -^vatLr^rcoSonents^^A
nLfnifi * 0f Procedure execution, no meaning is given to
?hus no sidfef?^^0^11^1115/1^1" a P^eduL st?ucture? rnus no side effects of procedure executions are possible Un-
less procedure P modifies part of its own procedure structure
it defines an algebraic operation on the class of all objects.'

A subject of major importance to us is the reoresenf«i-ion „f

tl^lTcyVAltl'tl ä the baSe ^^uSe/^JSeJa^Sn^f
h????^ fS ^ hrinVs ln the issue of nondeterminacy — the possi-
^a with whlTKted reSUltS Wil1 depend 0n the relatlvJ tiS-
The abil^v nf e con^urren+- activities are carried forward.
The ability of a computer user to direct the system to carrv
oortan^ fT8 With a 9uarantee of determinacy fs verjim-
portant. Most programs are intended to implement a functional

^e^erilfca^on^o^h1^8' and ^terSinism'is3 iTslntt™1
to cne verification of their correctness.

Srusirof^ "aZLf prOVidin9 a guarantee of determinacy to
ir£ ^\ L computer system. They are distinguished accord-
ing to whether or not the class of base language proarams is
constrained through design of the interpreter ?o descrlhe only
determinate computations. If this is the case, thin any Y

in execution9^? r^ulting fr0m ^P^ation will be deterministic in execution Furthermore, if the compiler is itself a deter-
minate procedure, then each translatable source program rtvtl-
a?Sn8J deterininate Procedure. On the other hand if the de^
l^r-Jn* * lnterPr^ter does not guarantee determinacy ol
abstract programs, determinacy of source programs, when de-
sired, must be ensured by the translator.
E- Program Graphs

We are considering two approaches to represent the relationships

32

~—1?r~.

COMPUTATION STRUCTURES

among instructions of a procedure structure:

1. A conventional form in which the instructions of each
procedure structure are selected by successive integers,
and instructions are executed sequentially except when a
conditional transfer of control directs execution to a
new instruction sequence.

In this form,concurrency is represented by fork instructions
where activity splits into two concurrent streams and join
instructions where two streams of activity merge into one.

2. A data flow form in which execution of an instruction
is controlled by the availability of the data values re-
quired for its execution. For example, execution of an
add instruction would be enabled as soon as the values of
both operands have been computed.

Concurrency is inherent in a data flow representation since
the creation of a computed value may enable several instruc-
tions. The data flow representations we are investigating are
variations and extensions of the program graphs introduced by
Rodriguez [16]. We shall illustrate our present thoughts re-
garding data flow representations by presenting program graphs
for several programs. Consider the program

begin

v:=t-x;w:=x-u
if v > w then y := w - 2 else y := v + 3
if y > 0 then z := y + 2 else z := 0

end

A conventional machine level representation would be:

begin

fork 9,1

t - x -* v

goto 12

Als x - u -»• w

£2: join

it v > w goto £3 £6: end

v + 3 -> y

goto 114

13: w - 2 -»■ y

A4: if y > 0 goto 15

0 •* z

goto £6

15: y f 2 -* z

A program graph for this program is shown in Fig. 11. The
nodes of the program graph include functional operators
drawn as circles, predicate operators drawn as diamonds and
two special node types, gate and merge, that perform control
functions. The links may be thought of as conveying tokens

33

•

COMPUTATION STRUCTURES

FIG. 11.

34

■

■

COMPUTATION STRUCTURES

between nodes of the diagram as in a Petri net. Here the
tokens have information associated with them. Tokens arriving
at or leaving functional operators, and those arriving at pre-
dicate operators convey values (numbers for example); these
links are drawn with small solid arrows. Tokens leaving a pre-
dicate operator convey decisions (true or false) to gate nodes
of the diagram; these links are drawn with open arrowheais.
We assume the net operates in a safe manner, that is, tokens
do not overtake one another, nor do they accumulate at nodes.
This may be ensured by acknowledge signals transmitted in the
reverse direction over each link. Thus a value link may be
represented in a Petri net by a pair of places: a place (drawn
as a square box) through which tokens with attached values
move from source node to destination, and an ordinary place
through which "empty" tokens are returned to the source node.
Decision links may be conveniently represented by three places
through which ordinary tokens (not bearing values) move. A
token arriving at the place labeled t signals a true decision;
a token arriving at the place labeled f signals a false deci-
sion.

When a link goes to two or more destinations, tokens are re-
plicated at each branch point so that tokens with identical
information are sent to each node. The branch points act like
wye modules, and await acknowledgment signals from each des-
tination before returning an empty token to the source node.

The gate and merge control nodes are needed so that decisions
made by predicate operators may affect the pattern of data
flow through functional operators of the program graph. A
T-gate node permits a value-bearing token to pass through for
each true decision received on the decision link. Whenever a
false decision arrives the value-bearing token is not forwarded.
In either case the gate node acknowledges both tokens received,
and when a gate forwards a token, it waits for acknowledgment
before forwarding another value-bearing token. The behavior
of a gate node is described in Fig. 12. The arrival of a true
decision leads to forwarding of a value token from link 1 to
link 2. Arrival of a false decision causes a value arriving
on link 1 to be acknowledged and discarded. An F-gate node
is identical to the T-gate except that the sense of the de-
cision is reversed.

A merge node permits values sent over its output link to
originate from different sources according to decisions made
during computation. The value sent over the output link is
forwarded from the T- or F-labeled input value link according
as the decision received is true or false. A Petri net for
the switch node is shown in Fig. 13.

Next we give an example showing how iterative programs can
be represented as program graphs:

35

COMPUTATION STRUCTURES

GATE tt-2-

SI
MERGE

o-1

FIG. 13.

36

tr0!?
0

v a

4

O MDoJ

I

COMPUTATION STRUCTURES

begin

y := x

V := 0

while p(w/v) do

begin

v := f(v) ; y

end

z := y

g{y)

end

Noting that the two statements of the body of the iteration
may be performed concurrently, a conventional representation
would be similar to this:

A data flow version of the program is provided in Fig. 14.
Two of the merge nodes serve as the junctions through which
initial values and intermediate values flow to the functional
operators of the body of the while loop. The predicate opera-
tor requires one copy of the value of variable w for each
test of the predicate p. These copies are generated by the
center merge node, and the associated gate node. Initiation
of operation of the program graph requires arrival of a false
decision at the decision input link of each of the three
merge nodes . This is provided by the F-buff node which is a
buffer for decisions that sends a false decision as its initial
output, (Fig. 15.).

An important result of Suhas Patil [17] concerning interconnec-
tions of determinate systems can be applied to program graphs
formed from the node types used in these two examples. We
conclude that any such program graph is a determinate repre-
sentation of a program. This class of program graphs is a
revision of the class studied earlier by Rodriguez, and is

37

■

COMPUTATION STRUCTURES

.

'

38

■

COMPUTATION STRUCTURES

simpler as a result of our improved understanding of concurrent
activities. We expect that future developments in the theo-
retical study of Petri nets will contribute significantly to
the building of a satisfactory theory of program graphs.

Jack Dennis has formulated a class
for representing certain computati
These program graphs were limited
made for conditional execution of
computation. We expect to combine
this class with those of Rodriguez
of program graphs encompassing,say
final example illustrates the form
graphs may take.

of program graphs suitable
ons on structured data [10].
in that no provisions were
subgraphs or for iterative
the concepts developed in
to obtain a general class
,all ALGOL 60 programs. Our
this class of program

procedure (a,b,n)

begin

y :^ 0

for i := 1 step 1 through n do

y := y + a[i] x h[i]

return y
end

The input data for this procedure will be represented by the
argument structure shown in Fig. 16, having components for the
three formal parameters of the procedure. In the program
graph shown in Fig. 18, a third kind of link is used and is
drawn as a heavy line with a solid arrowhead. Tokens passing
on these links convey access to objects. Execution is initiated
by arrival of a token at the root node P of the program graph.
This token carries access to an argument structure of the form
shown. Four new node types are used, (Fig. 17). The select
x node converts access to an object into access to the~x^
component of the object. These nodes are used to obtain
access to the components of the argument structure. The
second form of select node uses the integer received on link
3 to select the component object. The value node converts
access to an elementary object into the~^ÜIe of the object.
Finally, the assign node receives a data value on link 2 and
transforms the object conveyed on link 1 into an elementary
object having that value. y

The repeat nodes in this program graph generate multiple copies
of tokens conveying access to the same object, in this case the
actual parameters of the scalar product procedure. One token
is sent over the output link for each true decision received
on the decision link. Acknowledgment TFlTot given on the in-
put data link until a false decision is received, whereupon
the node resets and waits for the arrival of new data.

This program graph is determinate, yet we cannot guarantee the
determmacy of any program graph constructed from all node
types introduced here. We would like to find a set of program

39

COMPUTATION STRUCTURES

/

■

F
BUFF a \2

FIG. 15.

• • • n

11
V

• •

ö ö ö 6

"i
n

FI6. 16.

SELECT SELECT VALUE ASSIGN

FIG. 17.

40

COMPUTATION STRUCTURES

z o _
V)
<

0*—
UJ

s*

1 A
I- r
UJ

-Si o
<h- -1

^^ m

UJ

^ UJ s
1 1

u.

(k

^ 1 ■

u „_
)

^3
00 (? h--

UJ
sy

i
UJ

UJ

•i

(A.)—c
V -

1

^)

S
E

L
E

C
T

V

c
<
UJ a.
UJ
ac

UJ

* -I
<
>

c _y
/s/

1
1
4

1. UJ 1

(9

4...
V 1 • •1 '

»- o a
UJ
a.
UJ

o
* UJ

-I
UJ

UJ
D

► _l

UJüJ

UJ
CO 1

■

I
— A s ̂

1- \ u o a <
UJ
a.
UJ
ac

1-
o

» UJ
UJ

—
UJ

<
>

O

(

00

CD

41

COMPUTATION STRUCTURES

graph node types and a condition on their interconnection, such
that the program graphs satisfying the condition are deter-
minate and include representations for a wide variety of pro-
grams . r

Certain computations are more naturally expressed in data flow
terms than in conventional form. A typical example is a situa-
tion m which several independent activities generate and con-
sume units of data exchanged among themselves. Suppose a com-
putation is performed by two interconnected modules, (Fig 19)
Module 1 takes an initial value x from data cell a and gener-'
ates a sequence of values y0, yj,... yn that are forwarded to
module 2 through data cell b. Module 2 processes these values
as they become available, and, when all values have been pro-
cessed, puts a cumulative result z in cell c. Let the compu-
tations performed by modules 1 and 2 be described by the
following relations where f and g denote unspecified functions

y0 = f(x)

y1 = f(y0)

w0 = 0

w 1 = ^yo'V

yk = ^w wk= ^k-l'w
z = g(yk' V

A program graph for this computation is shown in Fig. 20.
The predicate p is applied to each value Yi by both modules to
determine when the last value of a sequence has been processed:

p(yi) = true, i * 1, .,., k - 1

P(yk) = false

Note that this program graph allows the two modules to act
concurrently and is formed simply by connecting together pro-
gram graphs that represent the two modules. Furthermore, the
incorporation of a first in-first out queue in the connecting
link would permit module 1 to continue generating values
even when module 2 has not had enough time to use up the pre-
vious values. The addition of queues does not require any
change in the representations of the modules. These properties
are not shared by other representations such as co-routines or
processes inter-communicating by means of semaphores. Further
discussion of these points appears in a recent oaper by Jack
Dennis [18].

Program graphs are an attractive representation for procedures
expressed in the base language because the possibilities for
concurrent execution of instructions are exhibited in a natural
way. Program graphs represent many procedures in their maxi-
mum parallel form. Also, it is easy to impose constraints on

42

COMPUTATION STRUCTURES

91

Ö

O
CM

6

43

COMPUTATION STRUCTURES

program graphs such that determinate execution is assured with-
out restricting the class of determinate procedures that can
be expressed. Finally, we have found that considering program
graphs as a machine level representation leads to interesting
concepts for the structure of highly parallel computers [10].

F. Translation of Block-structured Languages

Many important programming languages for practical computation
are block structured; the texts of blocks and procedures are
nested, and identifiers appearing in one text may refer to vari-
ables declared in other texts. We do not plan to include in
the base language provision for directly representing reference
by a procedure to external objects. Therefore, we must show how
the execution of block-structured programs may be effected
through translation into the base language and execution by the
base language interpreter. The following discussion outlines
one way in which this may be accomplished — a way that seems
attractive in view of the concepts of computer organization
we are investigating.

Consider the program shown in Fig. 21. This program has the
block structure shown; the main block P encloses a procedure
declaration P and a block Q. Upper case letters are used to
identify the texts of blocks or procedures.

If T is a text (block or procedure declaration) of a program,
let B(T) be the set of identifiers occurring in T that are
locally declared. Let X(T) be the set of identifiers occurring
in T, or any text nested within T, that refer to variables de-
clared outside T. For the above program we have

B(P) = {y, z, f} B(F) = {x} B(Q) = {y}

X(P) = 0 X(F) = {y} X(Q) = {f}

Since non-local references are excluded in the base language,
we need a scheme for making variables accessed by non-local
reference in the block-structured program accessible through
the argument structure in the base language representation.
We will discuss one method of doing this, details of which are
given in a recent paper by Jack Dennis [19]. To illustrate
this scheme consider the computation of apply p (4). As objects,
the procedure structure P and the local structure L(P) at the
beginning of the computation will be as shown in Fig. 22.
Texts F and Q are represented as components of the object rep-
resenting text P. The local structure for the activation of
P has one component for each identifier in the set B(F)UX(F).

The first step is execution of the declaration of text F. This
gives the procedure identifier f a value called a closure of
the text F (Fig. 23). The C'T-component of the closure is
the text of procedure F and is shared with the procedure struc-
ture P. The C'E-component of the closure links identifiers in
X(F) to the value these identifiers have in the current proced-
ure activation. Thus the identifier y shares the value 4 with
y in L(P) .

44

COMPUTATION STRUCTURES

P- P '=

F-{

Q-

PROCEDURE(v)
BEGIN REAL y.z

f '= PROCEDURECx)
BEGIN REALx
y'= y + x
END

q ' BEGIN REAL v
y- 1
APPLY f(v)
END

z >= y f 2
RETURN z
END

FIG. 21

t P

TEXT P

TEXTQ l ' TEXT F

t L(P)

y

i
~\

z

1

FIG.22.

45

• .

•

COMPUTATION STRUCTURES

Entering block Q may be treal-prl SQ ^V,™,^ ■: 4.
without parameters/ fner^cfl structure L(0)rf.%PrOCJdUr!
made inferior to L(P,, (Pig. tt^TTsn^locll stlutturT
^!nf ^0mP0rnt f0r eaCh identifier in B(Q)Ux°Q) = {f v}
f !f MPK ' 1S externa1' so ^ is given tke sani meinin^as

After y in L(Q) is assigned the value 1, the closure nf P i«
appl.ed to an argument structure having'a ^component of ! and

The meanings of identifiers x and y in text F are established
as in the case of Text Q. since y is in X(P) it is linked to
the E.y - component of the argument structure. Since x identi-
fies the first formal parameter of text F, it is linked Jo ?he
1-component of the argument structure. In this way? execStion
of the assignment in text F correctly updates the value of v in
the local structure L(P), (Fig. 26.)! paates zne value of * in

G- Cycles in Structures

cycled SccS^l^thf gf^ 1^^°^ n0t permit dire<*ed
of this restriction on thfclafs of ^f^ ?* desi^ility
ject of considerable study and discussion ^ been the Sub-
permitting cycles include these? Arguments against

1. Cyclic structures do not seem essern-i^i ^ 4-v,^
sentation of the struetur^ HaÜrV i to the rePre-
source language!. data typeS of cu^ent important

u;uanrbeCyconesSide?eUd pL^Sfln11^.StrUCtUreS' th^ C™

lo e^r^—^- j? p^s-f^-,- ----
The principal arguments in favor of permitting cycles are:

restri«edUty ^ ^ """«" should not be arbitrarily

lainTinät of^Ita"!" are important for "Presenting cer-

^re^^f^se^'g^? ^SliSSty""9 ^ St—

46

T*m

t p

TEXT P
q

(I

TEXT Q i

TEXT F

FIG. 23.

L(P)

COMPUTATION STRUCTURES

L(P)

<5>

FIG. 24.

47

.

COMPUTATION STRUCTURES

I
T

L(P)

1 1
f L(Q)

W

L(F)

FIG. 25.

L(P) f L(F)

FIG. 26.

48

COMPUTATION STRUCTURES

p : = PROCEDURE(u)

BEGIN

'"f := PROCEDURgU) ; INTEGER x

BEGIN

IF x = 0 THEN RETURN I

x := g (x)

z := APPLY f (x)

RETURNz

END

APPLY f (u)
END

FIG. 27.

u

UP)

x

i i l
t-i
r

TEXTF
1

i
E
o

FIG.28.

49

-v' *" ■ '\:-Mä:

COMPUTATION STRUCTURES

One study [19] concerns how cycles can arise during execution
of block-structured programs according to the scheme outlined
earlier. Consider the program shown in Fig. 27.

This program consists of a procedure declaration F which con-
tains an application of itself. Interpretation of the declara-
tion as described above assigns identifier f a value which is

enc^'This .^ f^ ^ WhtCh.f appearS SS an external refer- ence. This creates a cycle in the local structure L(P), (Fig.

We have found that many block-structured programs can be re-
out tS SO ^ ac^mPlish the original cLputation bSt ^th-
sures to ^nf f0n 0f CyCleS.- The PrinciPle is to convey clo- sures to and from a procedure activation by passing them a"

examo^'^h0" reSUltS "^ than b^ eternal refeLnces. For example, the program given above becomes-.

P := PROCEDURE(u)

BEGIN

P-

F-

END

f : =PMCEDyRE(h,x)PROCED.h, INTEGER x

BEGIN

IF x = 0 THEN RETURN I

x : = g (x)

z := APPLY h(h , x)

RETURN z

END

APPLY f (f,u)

FIG. 29.

This raises .ome interesting questions. In particular, we
would like to develop a general method for rewritina lock-
ecution Pro9rams so that cycles will not arise "^ringex-

The second study by Ian Campbell-Grant [20] investiqated an
execution model for multiprocess computations t't^perfte on
ar^ ^ fu6 rePrfsented ** ^ arbitrary directed graph. The
f^fL the.gfaPh represent structural relations among data
items associated with the nodes. In this model each process
Sh nif several pointers by which it may access the data base

on^orSe6^! ^^^ ^^ ^^ ^^ ^ing

50

.«.

COMPUTATION STRUCTURES

R read access
WD write data access
WS write structure access

If a pointer carries R-access to a node, the process may apply
the pointer to read (but not alter) the data associated with
the node. The process may also obtain a pointer with R-access
to any node that can be reached over a directed path in the
data base from a node for which it holds R-access. A pointer
carrying WD-access to a node permits the process to alter the
data associated with the node, and to obtain a pointer with
WD-access to any node accessible from the given node. A
pointer carrying WS-access to a node permits a process to
modify the graph of the data base by adding or deleting arcs
within the subgraph formed by all arcs that can be traversed
via directed paths starting from the given node. The three
kinds of access are cumulative, that is, WD-access includes
the privileges of R-access, and WS-access includes the priv-
ileges of R-access and WD-access.

The objective of this study was to show how constraints can
be implemented in an execution model so that any computation
carried on by a set of interacting processes would be deter-
minate. For this purpose, a computation is regarded as deter-
minate if it can never happen that two processes apply pointers
to the same data base node concurrently, unless both processes
possess only R-access.

The scheme used to ensure determinism involves a set of con-
straints. Each constraint is an ordered pair (A, B) where A
and B are pointers held by distinct processes 1 and 2. The
constraint (A, B) signifies that application of pointer B by
process 2 must wait until process 1 reduces its access priv-
ilege for pointer A.

By executing certain instructions defined for the model, a
process may: access nodes by following directed paths in the
data base; create and terminate subsidiary processes; and
apply pointers to read and write the data associated with
accessible nodes of the data base. The execution rules for
each instruction type includes specification of how the con-
straint set must be modified. Campbell-Grant has shown that
the relation graph defined by the set of constraints will
always be acyclic throughout any multiprocess computation by
his model. In consequence, the following condition will
always be satisfied, where the predicate struct (X,Y) is true,
if and only if, there is a node in the data base reachabli
over directed paths from the nodes designated by pointers X
and Y:

I_f pointers A and B are held by distinct processes and
struct (A,B) = true then access (Aj = R and access (B) =
R or one of (A, B) or (B, A) is in the constraint set.

This is sufficient to guarantee determinate computation.

51

mmmm

COMPUTATION STRUCTURES

H* Computers and People

When computers are used in anv far**- ne ^
ety, the specific technical cL.5^! . he 0Peration of soci-
of the computer system em?lo?edcnn^1StlCS and caP^ilities
influence the behavior S t£« 1^2 ain and si^^^^tlY
ware, software and pJoP?f We hf^^ SySte!? co^^^ hard-
hardware should be desWd ^,have1

learned by now that computer
the software that provides the i n^^^^ ^ the context Of
must now learn how^o deILn and ^«f^ With the USers- We

th^conte.t of the co^uni^ orpe^e-^r^fL^S^ ^

Jer^t^ b^Jn cha^ct^^t^f^f^0- ^ ™ns the
the individual and coUec^ive]boW<° C°mP"ter systems and
by their use. The other conSerSsth2r/f-the peoPle effected
possessing whatever characteristics Lf^f!" 0f COinPuter systems
modes of operation that are at tS III nfcessary to implement
able from a human standpoint. ry leaSt' not °bjection-

thr^^ea^/a'^ouTa^: \lTli*rf**l ^^ the ^
papers by Prof. Robert M.Fano and L^ inte"sity- A few
listed below, m addition! ™o?Pan0

S?«e 0f his students are
monograph based on the CentenrH*! rl?t P5eParing a short
Spring, l97o, at the Ste^n^st^^Tol^^n^?^

1^ the

"r^^^L^gr^L^rie^e-^d^ 0f d0Ct0ral —ch
tion structures and access-control ^V m0del 0f the Protec-
computer system capable of o^venM neChaniSinS 0f a ^Iti-access
of information. The model incTn^ g iJnauthorized releases
structed out of abiluJes to r^fj ^^ of Protection Con-
ments. Processes can mJke S.nf ^ Pro^ams and data seg-
sphere through inte?-sp?ere uJks " Tt6?^^ SPhere to
appropriate conditions, calling ^ho be shown that' under
callees, nor the callus on tS!^P^ffS Cannot S^ on their
also facilities for kjjping records if^^.-^f moCel ^^es
system programmers, forPinstance[Ld fo^^^1 aCtions (by
bxlity for whateve^ a process doLc^K flocating responsi-
tial to implement and eJ?o?cl ^aw^ean^'faClliiies are esse"-
agreements existing in the SLr ^ 9 !tl0nS and contractual
some of this work is present^ •^UnitY- A brief summary of
below ("Surveillance MechlniSL ?nTc0f the Papers listed wecnamsms in a Secure Computer Utility").

52

COMPUTATION STRUCTURES

References

1. A. W. Holt and F. Commoner, Events and Conditions, Record
of the Pro-iect MAC Conference on Concurrent Systems and PSTTTII
Computation. ACM,-N^w York (1970), pp 3-IT. SyStemS and Parallel

iLnJ^i Ai letri' Communication With Automata. Supplement 1 to
Technical Report RADC-TR-65-377-; Vol. 1, Griffiss Air Fn^o

4. A- W. Holt and F. Commoner, Events and Conditions Part- ■>
Applied Data Research, Inc., New York, M. Y""'aitlons' Part 2.

Sema^^^^iti^f^^o^rliL^^^riro^e^Jf^^ta

^B'^r-Gen^^^^^^^1^-!^'^^^???!--

Ma

6. E. W.

ming Lanquaqes, F. Genuys, EdVi^cldemlc^ressT^lör^2^'.

7. DE. Muller, Asynchronous Logics and Application to Tnfo™.

ference on System Sciences. 197T: " lonal Lon

^oup-MemolrJrojeor^C0"" ^l^T*^™ St™""- 1971. r-iujecc MAC, H.I.T., Cambridge, Mass., February

10. J. B.
puter Arch:
Amsterdam

\ittcttie ^nfoJr^ Gf,nerali^' Parallelism and Com-
lltf, pl^lf-m*^0* Proces£'1»T ™> North-Holland,

11. J. B. Dennis, Future Trends in Time Sharing Systems, Time-

12. j. L. Gertz, Hierarchical Associative Memories for PA^II^I
Computation, Report MAC-TR-69, Project MAC MI J r*L f* Mass, June 1970. rioject MAL, M.I.T., Cambridge,

13. P. T.ucas and K. Walk, On the Formal Description of PL/T
Annual Review in Automatic Programming. Vol 6 Part 3 P^ '
Press 1969, pp 105-182. LJiii ' Perganion

14. J. McCarthy, A Formal Description of a Subset of Alqol
Formal Language Description Languages for Computer Proaramrli™
North-Holland, Amsterdam, 1966, pp l-Pi comput:er Programm! ng.

53

*^mmm

COMPUTATION STRUCTURES

References (com..)

15. P J. Landin, The Mechanical Evaluation of Expressions,
The Computer Journal, Vol. 6, No. 4 (January 1964), pp. 308-320

16. J. E. Rodriguez, A Graph Model for Parallel Computations,
Report MAC-TR-64, Project MAC, M.I.T., Cambridge, Mass.,
September 1969.

17. S. S. Patil, Closure Properties of Interconnections of
Determinate System, Record of the Project MAC Conference on
Concurrent Systems and Parallel Computation. ACM, New YorkT
1970, pp. 107-116.

18. J. B. Dennis, Coroutines and Parallel Computation,
Princeton Conference on Information Sciences and Systems,
Princeton, N.J., March 1971.

19. J. B. Dennis, On the Design and Specification of a Common
Base Language, Proceedings of a Symposium on Computers and
Automata, Polytecnnic Institute of Brooklyn. To be published.

20. I. Campbell-Grant, "The Controlled Execution of Parallel
Programs Operating on Structured Data", S.M. Thesis, Dept.
of Electrical Engineering, January 1971.

Publications 1970-1971

Campbell-Grant, I., "The Controlled Execution of Parallel
Programs Operating on Structured Data", S.M. Thesis, Dept.
of Electrical Engineering, January 1971.

Dennis, J. B. , Coroutines and Parallel Computation, Princeton
Conference on Information Sciences and Systems, Princeton.
N. J., March 1971;^ ^ '

Dennis, J.B. , On the Design and Specification of a Common
Base Language, Proceedings of a Symposium on Computers and
Automata, Polytechnic Institute of Brooklyn" To be published.

Dennis, J. B., and Patil, S. S. , Speed Independent Asynchronous
Circuits, Proceedings of the Fourth Hawaii International Con-
ference on System Sciences. 1971"^ ~ —

Fano, R. M., "Computers in Human Society — For Good or 111?"
Technology Review. March 1970, pp. 25-31,

,

54

f

COMPUTATION STRUCTURES

Publications (cont.)

PrSceedina^'of^hr^3 ^ ^^f^"' to be published in the
Soc?etf ?^?Jn!" symposium "L-Informatica, La Cultura e La
societa .taliana", held at the Fcndazione Giovanni ^anelli
Torino, Italy, December 9-11, 1970:^ ^ovanni Agnelli,

Patil, S. S., Limitations and Capabilities of Diikstra'-
Semaphore Primitives for Coordination Among Processes Comvut*
tion Structures Group Memo 57, Project MAC MJrkJ, A Mass., February 197lT ^ojecr MAC, M.I.T., Cambridge,

Gior^o^' ^nchr°™™ Arbiters, Computation Structu
Group Memo 56, Project MAC, M.I.T., Cambridge, res

Mass., February

nn^fn^'• ^n J;' ,,Surveillance Mechanisms in a Secure Com-
puter Utility", Computers and Society. Vol 2 No 1 LinV
1971, ACM Special interest Group on gomp^rs'ang'socieg

Vogt, Carla, "Making Computerized Knowledge Safe for People"
Technology Review. March 1970, pp. 33-39. People ,

'

55

COMPUTER SYSTEMS RESEARCH

Prof. F. J. Corbato''

Academic Staff

Prof. J. H. Saltzer

Instructors, Research Associates, Research Assistants and Others

R. R. Schell
M. D. Schroeder
A. Sekino

Undergraduate Students

R. S. Lamson
M. Liu
D. Misunas
D. P. Reed
K. Rhoades
J. Stern ^--"-"
J. M. Strayhorn
C. D. Tavares

D. D. Clark
J. Coffman
K. T. Pogran

P. B. Bishop
D. Bricklin
B. Carlson
J. R. Cone
R. Frankston
P. A. Green
R. H. Gumpertz
P. A. Karger

DSR Staff

R. H. Campbell
R. c. Daley
S. D. Dunten
R. J. Feiertag
R. L. Gardner
C. c. Garman
R. K. Kanodia
R. F. Mabee

0. D. Carey
S. Daise
c. P. Doyle
L. J. Haron

E. W. Meyer, Jr.
N. I. Morris
M. A. Padlipsky
T. P. Skinner
M. J. Spier
V. L. Voydock
M. B. Weaver
S. H. Webber

Support Staff

D. L. Jones
T. H. Seymour
A. G. Testa
M. W. Webber

Guest

Prof. G. lazeolla

mmm mi BIM
57

,:„ „,v" ■ •■ .;,-.■■■ »ipiiiiii!iii>pi«il>iwiy«>i»«"r""''"^m- ;■—-"-«»».^jiBmgi

V. COMPUTER SYSTEMS RESEARCH

A. Introduction

The Computer Systems Research Group concentrates upon discover-
ing ways to make engineering of complex information systems more
methodical. Its approach is to use the Multics system as a
laboratory. Thus, the work of the group must be classed as
experimental, in contrast to the more theoretical attack fol-
lowed by the Computation Structures Group. Use of an operating
computer utility as a laboratory has both advantages and diffi-
culties. The chief advantage is contact with reality and test-
ing of new engineering ideas in a real operational environment,
a test which is essential to achieve credibility for the ideas.
The chief drawback lies in the unwillingness of live users to
submit to arbitrary changes to their operating environment as
a research group tries out ideas, not all of which are neces-
sarily good ones.

Taken in proper balance, these two considerations can lead to
use of a live system as a laboratory, in which a substantial
number of good research problems can be adequately attacked,
by careful planning. It is in such a laboratory that the
group operates.

In the last twelve months, research progress has been made in
several areas:

Dynamic Reconfiguration
I/O Programming Language
Automatically Managed Multilevel Memory
Protection of Programs and Data
System Programming Language
Message Handling

Each of these areas will be discussed in turn.

B. Dynamic Reconfiguration

If the "computer utility" is ever to become as much of a
reality as the electric power utility or the telephone com-
munication service, its continued operation must not be de-
pendent upon any single physical component, since individual
components will eventually fail. This observation leads an
electric power utility to provide procedures whereby an idle
generator may be dynamically added to the utility's generating
capacity while another is removed for maintenance, all without
any disruption of service to customers. A similar scenario has
long been proposed for multiprocessor, multimemory computer
systems, in which one would dynamically switch processors and
memory boxes in and out of the operating configuration as need-
ed. Unfortunately, though there have been demonstrated a few
"special purpose" designs, it has not been apparent how to
provide for such operations in a general purpose system. In
a doctoral thesis done in the CSR Group, Roger R. Schell pro-
posed a general model for the dynamic binding and unbinding of
computation and memory structures to and from ongoing computa-

PRECEDING mi BLANK
59

:■• ■ ■ ■■-■■ ■■ ..-■:. ■ ■■ • .,>■--•-..,

COMPUTER SYSTEMS RESEARCH

tions. Using this model as a basis, he also proposed a specific
implementation of his model for a typical multiprocessor, mult;.-
memory computing system. One of the results of this work was
the addition to the operating Multics system of the capability
of dynamically adding and removing central processors and mem-
ory boxes. The usefulness of the idea may be gauged by observ-
ing that five to ten such reconfigurations are now performed in
a typical 24-hour operating day.

The full impact of this piece of research should be felt far
beyond the Multics system, since the thesis provides a general
model for such operations, and it can provide the designer of a
new system with the insight needed to allow him to include dyna-
mic reconfiguration in his engineering plans.

C. I/O Programming Language

An area of computer programming which has received too little
attention is that of languages for specifying the detailed
control of input and output devices. In most cases, the
programmer expresses such control in dynamically constructed
channel instruction sequences, for which his programming tools
are very meager. Often, the nature of a channel program is
hidden in the code of the CPU program which constructs it.
Worse, the construction is usually in cerms of the individual
bit string constants which happen to constitute operation codes,
addresses, or control messages for the channel. Thus, although
the programmer may control the CPU with expressions in the PL/I
language, he often controls the I/O channel with expressions in
binary.

Efforts to make progress in this area are frustrating, since
the nature of I/O control is very different for different kinds
of devices. However, there is one class of device within which
I/O control is fairly well constrained — the class of type-
writer terminals. Thus, as an experiment, a simple language
was devised which permits quick and easy specification of the
channel programs used for typewriter terminals. The language
includes primitives for synchronization between the I/O channel
and the CPU program. A translator for the language was con-
structed, and the Multics typewriter control package was re-
written using the language for all I/O channel control. The
new typewriter control package handles all I/O with Model 33,
35, and 37 teletypes, IBM 2741 and 1050 terminals, and also
static display consoles. So far, the new control package has
proven much more maintainable than earlier designs, thus pro-
viding some basis for continued experimentation with I/O
channel control languages.

D. Automatically Managed Multilevel Memory

By now, it has become accepted lore in the computer system
field that use cf automatic management algorithms for memory
systems, constructed of several levels with different access
times, can provide a significant simplification of programming
effort. Examples of such automatic management strategies in-
clude the buffer memories of the IBM 370 models 155, 165, and

60

. ^^^^^«jgMMBIHMU.1 i-niii»».iF.i<pWiiMiIiMKlDji;w

COMPUTER SYSTEMS RESEARCH

195, and the demand paging virtual memories of Multics, IBM's
CP-6 7, and the Michigan Terminal System. Unfortunately, behind
the mask of acceptance hides a worrisome lack of knowledge about
how to engineer a multilevel memory system with appropriate
algorithms which are matched to the load and hardware charac-
teristics. One of the projects of the CSR Group is to instru-
ment and experiment with the multilevel memory system of Multics,
in order to learn better how to predict in advance the perfor-
mance of proposed, new, automatically-managed, multilevel-
memory-systems. Several specific aspects of this goal have
been explored recently:

1. A strategy to treat core memory, drum, and disk as a true
three-level memory system has been proposed, including a
"least-recently-used" algorithm for moving things from drum
to disk. Such an algorithm is already in use to determine
which pages should be removed from core memory. The dynamics
of interaction among two such algorithms operating at different
levels are not understood, and some experimental work should
provide much insight. The proposed strategy will be imple-
mented, and then compared with a simpler strategy which never
moves things from drum to disk, but instead makes educated
"guesses" as to which device is most appropriate for the per-
manent residence of a given page. If the automatic algorithm
is at least as good as the older, static one, it would repre-
sent an improvement in over-all design by itself, since it
would automatically track changes in user behavior, while the
static algorithm requires constant attention as to the validity
of its guesses.

2. A scheme to permit experimentation with predictive paging
algorithms was devised. The scheme provides for each process
a list of pages to be preloaded whenever the process is run,
and a second list to be immediately purged whenever the pro-
cess stops. The updating of these lists is controlled by a
decision table exercised every time the process stops running.

3. A series of hardware measurements were made to establish
the effectiveness of a small associative memory used to hold
recently accessed page descriptors. These measurements es-
tablished a profile of hit ratio (probability of finding a
page descriptor in the associative memory) versus associative
memory size which should be very useful to the designers of
virtual memory systems.

4. A set of models, both analytic and simulation, were con-
structed to try to understand the behavior of a shared virtual
memory. The most important result of this line of work so far
has been finding that a single parameter of load (the mean ex-
ecution time between "missing" pages in the virtual memory)
suffices to provide a quite accurate prediction of paging and
idle overheads. A doctoral thesis is in progress on this
topic.

As a sidelight, the measurements used to validate the models
led to the discovery of an overloaded disk paging channel, the
addition of a second hardware channel, and the invention of an

61

COMPUTER SYSTEMS RESEARCH

ingenious algorithm to maximize the effective capacity of the
two channels. In brief, the two channels both connect to three
hardware disk controllers, each of which can process only one
request at a time. The heart of the algorithm is, when a
channel comes available, to look ahead in the queue of work
for the first outstanding request which is directed to one of
the two unused disk controllers. Although some requests are
thereby processed out of order, the over-all multiprogramming
performance is improved, since the average queuing for disk
service is reduced.

E. Protection of Programs and Data

A long-standing objective of the CSR Group has been to provide
facilities for the protection of executing programs from one
another, so that users of a public computer utility may, with
confidence, place appropriate control on the release of their
private information. In 1967, a scheme was proposed which
provided a generalization of the usual supervisor-user protec-
tion relationship. This scheme, called "rings of protection",
provides user-written subsystems with the same protection from
other users that the supervisor has, yet without requiring that
the user-written subsystem be incorporated into the supervisor.
This scheme was brought under intense review in the last year,
with two results:

1. A hardware architecrure which implements the scheme was
proposed. One of the chief features of the proposed archi-
tecture is that subroutine calls from one protection ring to
another use exactly the same mechanisms as do subroutine calls
among procedures within a protection area. The proposal ap-
pears sufficiently promising that it was included in the speci-
fications for the next generation of hardware to be used for
Multics.

2. As an experiment in the feasibility of a multilayered
supervisor, several supervisor procedures which required pro-
tection, but not all supervisor privileges, were moved into a
ring of protection intermediate between the users and the main
supervisor. The success of this experiment established that
such layering is a practical way of reducing the quantity of
supervisor code which must be given all privileges.

Both of these results are viewed as steps toward first, a more
complete exploitation and understanding of rings of protection,
and later, a less constrained "domain of protection" organiza-
tion. Two doctoral theses are underway in this area.

F. System Programming Languages

Another technique of system engineering methodology being ex-
plored by the CSR Group is that of higher level programming
language for system implementation. The initial step in this
direction (which proved later to be a very big step) was the
choice of the PL/I language for the implementation of Multics.
By now, Multics offers an excellent case study in the viability
of this concept. Not only has the cost of using a higher level

62

mm •«••w«"

COMPUTER SYSTEMS RESEARCH

i

•

language been proven acceptable, but increased maintainability
of software has permitted much more rapid evolution of the
system in response to research proposals as well as user needs.

During the year, progress was made on several specific aspects
of exploring higher level languages:

1. The transition from an early PL/I subset compiler to a newer
compiler which handles almost the entire language was completed.
This transition was carried out with performance improvement in
practically every module converted. The significance of the
transition is the demonstration that it is not necessary to
narrow one's sights to a "simple" language for system program-
ming. If the language is thoroughly understood, even a language
as complex as the full PL/I can be effectively used.

2. Notwithstanding the observation just made, the time re-
quired to implement a full PL/I compiler is still too great
for many situations in which the compiler implementation cannot
be started far enough in advance of system coding. For this
reason, there is considerable interest in defining a subset
language which is easily compilable, yet retains the features
most important for system implementation. Such a language was
defined, and a report has been prepared describing it.

3. An implication of using higher-level languages for system
programming is that programmers find it more convenient to
construct large subparts of an operating system out of many
small modules. This modularity generally improves the struc-
tural organization of the subsystem by making its various
functions distinct. However, when there are many modules to
be assembled into a subsystem, the assembly itself requires a
language to specify many otherwise tedious details of the
binding which is to occur. (For example, when several proce-
dures are bound together, usually only a few of the total set
of entry points are to remain as entry points from outside
the bound subsystem. Some method is needed to identify which
entry points remain.) The interface between the compiler and
the binder is only beginning to be understood, as another iter-
ation of the binding specification language design was com-
pleted. One of the results of this work has been the definition
of a virtual machine interface which can be respected by the
compiler and the binder, but which does not exercise all of the
f xibility implied by the real machine. It will take consid-
erably more experimentation and study to determine if a real
machine could be significantly simplified by removing the un-
used flexibility.

4. A census of Multics system modules was undertaken, to
learn exactly how much of the system was actually coded in
PL/I, and reasons for use of other languages. Roughly, of
the 1200 system modules, about 1000 were written in PL/I,
and 200 in machine language. About half of the 200 machine
language modules were support routines for the early PL/I
compiler providing, for example, string concatenation sub-
routines. Many of the rest represented tiny subroutines to
execute this or that privileged instruction, etc. (No attempt

63

COMPUTER SYSTEMS RESEARCH

was made to provide PL/I built-in functions for every con-
ceivable hardware need.) Significantly, only a half dozen
modules (the traffic controller, the central page fault path,
and interrupt handlers) which were originally written in PL/I
have been receded in machine language for reasons of squeezing
the utmost in performance. Several programs, originally
machine language, have been receded in PL/I to increase their
maintainability.

5. Research in techniques of compiling complex languages was
continued,* with a major result being a separation of the code
generation phase which is sufficient to allow the same code
generator to be used for both PL/I and FORTRAN. Also, new
code optimization strategies were explored. f

G. Message Handling

The observation that Multics contained a large number of in-
dependent mechanisms, all of which were solving different
versions of the same problem, led to a proposal for general
supervisor primitives for queuing messages. It would appear
that although one can in principle construct message queues
in addressable memory, proper protection of previously posted
messages requires a protection capability not expressable in
terms of access to addressable memory. Thus the function of
providing protected mailboxes for messages seems to be a primi-
tive one, which must be provided by the supervisor or the hard-
ware. Although message queues by themselves have been proposed
and implemented in other systems, the trick is to embed them in
the architecture in a natural way. In the design developed here,
message queues fit into the general operating system structure
in a way similar to segments. That is, they are catalogued
with distinct names, and they appear in an address space as
objects which act as FIFO queues. In the long run, a message
queue mechamism may be an appropriate object for direct hard-
ware implementation. To explore this area, a software message
queue mechanism was designed, and added to the Multics system,
and the various independent mechanisms are being scrapped.

H. Graphics Support

The CSR Group does not carry out research on techniques of
graphical display. However, there are many very interesting
and sophisticated ideas in the field of graphics, invented
elsewhere, which have not received a true test of usefulness
because they were implemented within some special purpose
system. The CSR Group is attempting to integrate some of
these ideas into a Multics graphics system, in an attempt to
show the feasibility of making sophisticated graphical display
a property of the general purpose computer utility. To this
end, several development lines are in progress:

*This work was actually carried out by our Honeywell counter-
parts in the joint study.

64

COMPUTER SYSTEMS RESEARCH

1. An initial, reasonably simple, graphics display system has
been designed and implemented. Its purpose was principally to
test certain strategies of coupling graphics to the virtual
memory, and to gain some experience in graphics.

2. Attachment and use of the ARDS (Advanced Reactive Display
Station) storage tube display was accomplished.

3. Design was started on a more sophisticated graphics system
which would incorporate many of the test ideas developed at
Lincoln Laboratory, Bell Telephone Laboratories, and the Rand
Corporation. The team doing this design is also responsible
for interfacing to the graphics protocol of the ARPA network,
so that the completed graphics system should be very widely
usable.

I. Other Activities

Several other activities, not all of which are classed as re-
search, were carried out by the group:

1. An interpreter for the LISP language which permits an es-
sentially unlimited workspace within the virtual memory was
implemented. The effectiveness of demand paging for LISP-type
applications has long been a topic of debate, and one purpose
of this work is to help resolve the debate. A LISP compiler
is also being constructed.

2. The exportation of already developed ideas was pursued in
a variety of ways. In January 1971, a symposium to discuss
Multics was held at M.I.T., drawing about 90 attendees from
industry and government. The users' manuals of the system
were upgraded, and a number of technical papers were prepared
and presented. A book by Elliott Organick, describing the
Multics system, was accepted for publication by the M.I.T.
Press, and is scheduled for Spring 1972 publication. Finally,
the operating Multics system itself was exported to two other
sites, the Rome Air Development Center and Honeywell Informa-
tion Systems, Waltham, Mass., technical computing center.

3. In what amounts to a tour-de-force of focusing many ideas
into one mechanism, a complete PL/I source language progräm
debugging system was designed and implemented. This system,
which required cooperative modifications of the PL/I compiler,
allows methodical exercise of essentially every feature which
a programmer might use in the segmented virtual memory environ-
ment of Multics. Many previous systems have established the
value of powerful program debugging tools in an interactive
environment, but most have been designed primarily for the
sophisticated machine language programmer.

4. As mentioned in the introduction, the privilege of using
a live system as a research laboratory is paid for partly by
the necessity of being responsive to needs of a user community;
a variety of tasks in this area were completed. A facility
for submission of absentee jobs to the system was installed.
System down time following a crash was reduced from 25 minutes

65

~~^

COMPUTER SYSTEMS RESEARCH

to 5 minutes. Hardware and software were modified to permit
packing of page tables, to improve performance. A subsystem
which permits use of the entire Dartmouth 6 35 time-sharing
system within Multics was implemented. A better, faster text
editor based on "QED" from the SDS 940 time-sharing system was
developed. Finally, at Honeywell, design was completed for an
interpreter for the "API" language of Iverson.

5. A subgroup of the CSR Group devoted most of its enerqy to
attaching the ARPA network to Multics. This activity is re-
ported in more detail elsewhere.

J« Acceptance of Multics

Since the earliest proposals for the creation of the Multics
system, there has been a healthy skepticism expressed by many
observers that a system with so many ambitious objectives could
be engineered with acceptable economic performance. During the
year, impressive evidence that the skeptics are wronq was
amassed:

1. Use of the system by people outside the Multics development
group steadily climbed to the point that 2-CPU operation during
the peak hours became necessary. Even the 2-CPU system now
operates at capacity for several hours per day.

2. The M.I.T. Information Processing Center, which operates
the system, found that revenue from paying customers crossed
the break-even point, and began to repay the initial service
underwriting investments made by M.I.T. and Honeywell.

3. Revenue from paying customers exceeded that of each of
the other three major computer systems at M.I.T. (these are
a 360/65 running OS/MVT, a 360/67 running CP/67 and a 7094
running CTSS).

4. In addition to the 700 registered users, some 700 students
used the Multics system in an "Educational Information Service"
which provides a restricted service administered by a student
committee.

5. A number of computer science subjects, including the in-
troductory programming subject, found Multics sufficiently
economical to use for at least part of their required home
problems.

6. Enough long-term interest in Multics was apparent that the
M.I.T. Information Processing Center requested from Honeywell
a quotation for price and delivery of a new hardware base for
the system. At the close of the reporting period, engineering
specifications were largely completed, tentative schedules for
delivery were worked out, and final contract details were under
negotiation.

Thus, during the year Multics moved from a position of tenta-
tive acceptance to that of being the primary time-sharing
service of the M.I.T. community. Initial estimates of the

i

66

COMPUTER SYSTEMS RESEARCH

price and performance of the proposed follow-on system suggest
that questions of the economic viability of such a system need
no longer be of concern.

K, ARPA Network Status

1. Design Issues

The technical context of the ARPA Network was described in
last year's report. At that time, it was anticipated that
consensus would shortly be reached among the Network Working
Group participants (representing the 15 to 20 sites that will
be linked by the Network) on final designs for a "Host-to-Host"
(or Network Control) protocol and a "Logger" protocol (to allow
direct logins over the Network to the operating systems at the
various sites). However, the combined effects of the technical
diversity of the systems involved and the inherent difficulty
of multi-organizational design work (particularly when the
sites are widely scattered geographically) resulted in a less
clear-cut situation than was hoped for. By the time of the
19 71 SJCC meeting mentioned earlier, neither protocol had been
formally enunciated although the technical content of the forth-
coming documents was sufficiently agreed upon to enable imple-
mentation to proceed. (Indeed, the Logger protocol had been
split into two areas, one covering initial connections and the
other covering Teletypewriter issues.) A considerable portion
of the Group's directly Network-related effort during the re-
porting period, then, was necessarily more concerned with parti-
cipation in the design process than had been supposed last
year.

a) NCP: — The protocol for the Network Control Program
which each Network "host" system must implement was found to
need revision after publication of its formal statement in the
Summer of 1970. An important change introduced had to do with
the association of byte sizes with connections and byte counts
with messages. This step will be useful for allowing the "Ter-
minal IMP" to access the Network. (A Terminal IMP is a special
Interface Message Processor designed to be used alone — not,
that is, in conjunction with a large-scale local host system.
Thus, the Network will be available to a much broader community
of users. This is a very important aspect of the Network, in
that general resource-sharing is the Network's major goal, and
communication beyond the confines of host sites is a particularly
desirable corollary.)

b) ICP: — The first part of the projected Logger protocol,
as noted last year, had to do with getting the attention of the
remote ("server") system from the local ("user") system. This
aspect has been split off into a separate "Initial Connection"
protocol (ICP). Each server site agrees to listen to a desig-
nated socket and route, any activity on it to whichever appro-
priate process, local to it, that will manage Network logins.
When a request for connection arrives on the "Logger" socket,
by convention a message is sent to the user designating the
number of a socket over which the login negotiations are to
proceed. (Actually, the designated socket and the next — con-
secutively numbered — socket are used, as connections are de-

i

67

COMPUTER SYSTEMS RESEARCH

fined to be over socket pairs.)

wide »virtual terminal?. Sal"g "neaJlv'for^f, "^ *? * ^^^

uSr" si^?6 ^ by Whatever "utiS
eL^9ÄS at thJ

for management of file transferlperatiSns Sd otSer "Äc^
use of remote systems (as well as the "direct" Sse represented

2• Implementation

ing and process wakeups, as well as link ili^illfi f b"ff?r-
message formatting) wL sScc^sfu?ly'instail^rirjhrst^nSrd91

Service System. An rnterim Network Control Program UNC?fwaf also implemented The TKK-T) •:« J-U ■ ^ ^j-uyicim t±ryn,F; was

the „ost^H^t^onJLr^s^e3^ c^ "oTthfluJf^1^"
s£behdOW

b
eeVS.fUrniSh the -^—t for the^elL^^s £

Xes?£Sr«Ä

c) NCP: — The full-scale, Version II Network Control
Program being readied for installation possesses certain L.h

gu.ded transitions. This approaoh is explcled to ?aoill"te

68

COMPUTER SYSTEMS RESEARCH

dealing with future versions of the protocol. The NCP will also
take advantage of the expansion of the Multics protection ring
structure, residing in Ring 1 rather than Ring 0. Thus, alter-
ations to the NCP will not require the production of new Multics
System Tapes. (The IMP DIM, on the other hand, does reside in
Ring 0, since it must deal with wired-down buffers. Therefore,
the situation mentioned earlier in regard to the Development
Machine's availability does have an impact on testing in this
area.) By the end of the reporting periol, the NCP was func-
tioning successfully in the Ring 4 (user ring) environment,
and awaiting Ring 1 installation.

d) Logger; — The Multics process that will respond to
the Initial Connection protocol is the standard Answering
Service process. Taking advantage of the fact that the Answer-
ing Service was designed to allow various types of terminals to
be connected through a common interface, the Logger implementa-
tion adds to the Answering Service code which employs an exist-
ing transfer vector-like arrangement to attach the Network I/O
streams to the standard Multics process "user i/o" streams.
With the I/O streams suitably attached, the processing of the
login may then proceed in the same fashion as a locally initiated
login. By the end of the reporting period, the Logger was func-
tioning in the Development Machine environment, but proved to
require revision before being submitted for Service System in-
stallation scheduled for late July 1971.

e) Telnet and the Initial Conaection Protocol; — Although
the design considerations involving the Telnet and Initial Con-
nection protocols were complex, implementations are relatively
straightforward. The network command, which exercises both
protocols, was made ready in a "stripped down" form for inte-
gration with the other Multics Network modules as they went
into final testing. The test version of the network command
was used to perform the Multics-to-Multics login and the logins
to remote systems mentioned earlier. It will be brought up to
Standard Service System quality and installed by early August.

3. Experiments

As a combination confidence test and checkout exercise of the
then-current Network implementations on the respective systems,
members of the Project MAC Computer Systems Research and Dynamic
Modeling/Computer Graphics Groups performed an interesting ex-
periment in December 1970. Although it employed specifically
tailored processes on each system, rather than the general-
purpose mechanisms envisioned for the full-fledged Network, the
experiment was of interest both as a demonstration of the utility
of a large fraction of the underlying machinery of the full
Network and as the first in a planned series of progressively
more-sophisticated experiments which take advantage of the fact
that Project MAC has two Network hosts on site, with actively
cooperating staffs.

The experiment involved a logged-in user on the Dynamic Model-
ing/Computer Graphics Group's ITS system communicating via his
console with a logged-in user on Multics. ("Communicating" is

69

■

COMPUTER SYSTEMS RESEARCH

used in the sense of sending and receiving extemporaneous
massages.) It was called a "polite conversation" owing to
certain constraints which were imposed in order to make the
experiment straightforward to implement: the conversation
begins on a "speak only when you're spoken to" basis, and
subsequently the participants may not interrupt when the
other is "speaking". To further simplify the impelementation,
the conversation was performed over an agreed-on link, with
conscious catering to the respective systems' end-of-line con-
ventions . For all its apparent triviality, the success of the
polite-conversation experiment demonstrated the successful
functioning of all the items then implemented. (With a change
of site number, of course, it could as well have been performed
across the country as merely across the building.)

The participants were so pleased with the success of the polite-
conversation experiment that they decided to improvise a follow-
on experiment on the spot. This entailed rerouting the ITS I/O
streams to the "user_i/o" streams in the cooperating Multics
process. Although the resulting "pseudo-login" quickly en-
countered difficulties, stemming from the line-at-a-time orien-
tation of the polite conversation, several issues were exposed
which proved to be quite fruitful in subsequent contributions
to the Telnet protocol design. The polite conversation was re-
enacted when the INCP and IMP DIM had been installed on the
Service Machine, but it was decided not to pursue login issues
until a higher degree of Network-wide, consensus was reached on
the protocols.

Another experiment employing current implementations was per-
formed during the reporting period, involving the transfer of
files from ITS to Multics.

Publications 1970-1971

Saltzer, J. H. and J. W. Gintell^The Instrumentation of Mul-
tics", Communications of the ACM, Vol. 13, No. 8, August 1970,
PP- 495-500. This paper dealt with the desirability of perfor-
mance metering and described various Multics performance metering
tools.

Clark, D., R. M. Graham, J. H. Saltzer and M. D. Schroeder, "The
Classroom Information and Computing Service", MAC TR-80, January
1971, AD-717-857. This report described an operating system de-
signed for use in the M.I.T. Course 6.233, "Information Systems";
the system constitutes a simplified subset of Multics, and its
implementation gave rise to many of the ideas proposed for the
Multics follow-on hardware.

Saltzer, J. H. and J. Ossanna,* "Technical and Human Engineering
Problems in Connecting Terminals to a Time-Sharing System", Pro-
ceedings of the AFIPS Fall Joint Computer Conference, Vol. 37,
1970, pp. 355-362.

*Non-MAC author,

70

„.«[«»«»»••■•»«•«i

COMPUTER SYSTEMS RESEARCH

Publications 1970-1971 (cont.)

Workshop on System pTtl^Tc.'EllTultlor£,l%T l™*** University, pp. 227-245. ^uauxun, April 1971, Harvard

MAC TR-86, AD-725-859. Engineering, June 1971, also

'

71

DYNAMIC MODELING/COMPUTER GKAPHICS/COMPUTER NETWORKS

Prof. J. C. R. Licklider

Instructors, Research Associates, Research Assistants and Others

D. T. McDonald
P. L. Miller
H. F. Okrent
G. F. Pfister
W. G. Shaw
J. R. Sloan

Undergraduate Students

E. I. Katz
R. M. Katz
R. N. King
P. B. Kurnik
P. J. Leach
P. D. Lebling
C. K. Leung
R. T. Lindsay
S. G. Morton
P. A. Pangaro
G. Pavel
R. L. Prakken
M. A. Rondio
L. M. Rubin
N. D. Ryan
H. E. Tucker
B. J. Zak

DSR Staff

J. P. Jarvis, III
K. J. Martin
R. M. Metcalfe
J. C. Michener
S. G. Peltan
C. L. Reeve
J. R. Taggart
A. Vezza

R. D. Bressler
R. H. Bryan
R. J. Fleischer
F. E. Guertin
J. F. Haverty
R. Johnston

W. F. Bauer
A. J. Baum
E. H. Black
H. R. Erodie
M. S. Broos
K. M. Brown
A. Y. Chan
R. G. Curley
S. E. Cutler
B. K. Daniels
R. A. Freedman
D. E. Geer, Jr.
R. A. Guida
J. H. Harris
P. W. Hughett
W. F. Hui
E. Kant

B. j. Bailin
A. K. Bhushan
G. R. s. Bingham
A. L. Brown
M. A. Cohen
D. G. Cressey
S. W. Galley
R. P. Goldberg

M. A. Bizot
M. F. Brescia
J. C. Cheney
M. T. Cheney
M. s. Draper
C. T. Falls

Support Staff

M. J. Grano
J. A. Haley
A. J. Hicks
R. F. Hill
F. L. Yost

/

Prof. A. Fleisher

Guest

PRECEDING mi BLANK
73

iyiiMimimym mummmmm WiijH

VII. DYNAMIC MODELING, COMPUTER GRAPHICS, AND COMPUTER NETWORKS

A. Introduction

The Dynamic Modeling Group, the Computer Graphics Group, and
the Computer Networks Group of Project MAC were formed last
year. The efforts of the first two of those groups and about
half of the third are strongly interrelated, focusing upon the
design and development of a computer system specialized for high-
ly interactive problem solving through modeling. The goals of
and plans for that work were described in a section of the Annual
Report for 1969-70. Progress toward the goals during the year
1970-1971 will be reported upon now in this section. The other
part of the work in computer networks, also interrelated but
mainly involving members of the Computer System Research Group,
is reported upon in that group's section of this Annual Report.

The main objective of the joint research program of the two-and-
a-half groups is a hardware-software computer system that will
go significantly far beyond conventional time-sharing systems
in facilitating the formulation, understanding, and solution of
difficult problems through modeling. It is now widely recognized
that the best medium in which to represent and experiment with
the interdependencies within complex situations and processes
is that of interactive computer programs. In such programs,
interrelations that are amenable to mathematical representation
can be expressed mathematically, those that are not can be
simulated empirically, and all can be brought together to
yield a model that, when executed in a computer, "runs" and
exhibits dynamic behavior. The behavior, displayed to the
modeler and his associates, reveals consequences of the facts
and assumptions incorporated into the model and of their inter-
relation and organization. If the modeled situation or process
is at all complex, most people can see "how it works" much more
clearly by modeling it in programs and running, observing and
experimenting with the model than by merely thinking about it
or working on it with pencil and paper.

Heretofore, there have been specialized programming languages
(SIMSCRIPT, GPSS, DYNAMO, SIMULA, etc.) to facilitate the prep-
aration of computer-program models, but not specialized computer
systems in which to observe and experiment with such models.
Ordinary computer systems will execute the programs all right,
and good time-sharing systems will to some extent facilitate
their preparation, but existing systems are lacking in important
dimensions. They do not provide a store room full of parts
out of which to assemble models. They do not provide some of the
tools required in experimenting with and modifying models.
They do not provide displays through which one can quickly select
and observe various aspects of the behavior of models. And
they do not provide for progressive, accumulative augmentation
of the sets of tools, techniques, parts, and models as the sys-
tem is used in successive modeling projects. The aim of the
program described here is to create a modeling system that will
have strong capabilities in those dimensions as well as in the
other dimensions of general-purpose interactive computing.

nmm PASE BLANK
75

MODELING, GRAPHICS, NETWORKS

The Dynamic Modeling Group's part of the -io-ini- ^P« *. •
to create and asse^le .n^rrlToftolTs Äeltal^ee' Hclul-

display. The Computer Networks Group's part is to adSnS2 L

to use the systJm Sith Stt?' i*' "f 'b) to ma,te " Possible
mote consoles! e de5radatlon of service, fron re-

S: hard:a?I0c^puterefatcilT?f 05 "s"*"n9 and augmenting

Sr *er1 EH1 "? - -eiln-r^^^d^Sr.-
wo^C 1^re^Jas been' and there continues to be, much of thi*

system". rework simply as "the computer system" or "the

B. Dynamic Modeling

SnSS
tjpIs^feXC" 3i^^^^ representing text graphics, and a word-oriented system for

!• Mediation and Intervention

"Mediation", as the term is used here, is the function of

cau"dt0.^4-th
(
e..c0ÄTr

Uat„edr ^r a -l^ctLn^flrigra'ms caiiua CARE (CA11 and REturn") prepared by Jefferv Harri«*

aS w?S^ I' rd J- C- R- Licklider. CARE is intended S oper-
ate within each process in the system. CARE is continually bJing

■ ai. , •
76

MODELING, GRAPHICS, NETWORKS

augmented. It is at present operating in some processes, and
we expect to incorporate it into most user-level processes dur-
ing the fall and winter.*

Much of the motivation behind mediation stems from the modeler's
need to intervene in the operation of his model and experiment
with it. We shall discuss intervention shortly. For the moment,
merely note that the modeler cannot intervene and experiment
conveniently if the parts of his model are linked together tight-
ly, as by a compiler-loader or assembler-loader, when the model
is introduced into the computer. The mediator CARE effects the
linking as the program is executed. The modeler can therefore
rearrange the parts without having to reload everything and be-
gin over.

In the system, several different kinds of subroutine calls are
recognized. They are graded in complexity and usefulness and
also, of course, in cost. At the time of each complex call,
and again at the time of each corresponding return of control,
CARE interposes itself between the caller and the callee. CARE
then handles several housekeeping chores, such as protecting the
caller's information against disruption by the caller, and gives
the user an opportunity to intervene. The times of calling and
returning are, of course auspicious for intervention because, at
those times, the transitory complexities of looping, dispatch-
ing, pushing, popping, and the like are momentarily suppressed
and information is disposed in the computer memory in a relative-
ly orderly way.

CARE comes into play, also, each time a processing routine
creates or activates or deactivates or purges a set of data.
The data-related functions of CARE are presently being further
developed. At present the arrangement is as follows: When a
processing routine wishes to create or activate a data set, it
issues an order to CARE, naming the data set and (especially
in the case of creation) providing other essential information.
CARE then creates and names an empty data set or activates the
named existing data set of the specified type and sets up a
pointer or pointers to it. Thereafter, the processing routine
operates upon the data set through the pointers — at arm's
length, as it were — and in a sense never knows or cares exact-
ly what data set it is processing. That is to say, the process-
ing routine is (was) written to process data sets of a specified
type, and what it does is specialized for the type but not for
the particular data set created or activated.

*The word "process" is used here in the same sense as is under-
stood among users of MULTICS: an organization, in a computer
memory, of routines and data with which is associated certain
housekeeping information, the most essential items of which are
a pointer to the current or pending instruction and the bound-
aries of an address space. The computer system lets each user
employ several or many concurrent and intercommunicating pro-
cesses.

77

. -. . mmmmmmmm

MODELING, GRAPHICS, NETWORKS

A basic problem is inherent in the fact that the progranuner
who prepared the processing routine did not know what data set
later modelers would wish to have it process. In conventional
computing, the user feeds the data into a card reader, and th^
processing routine processes whatever data come in. In the
context of dynamic modeling, however, one assumes that there
are several sets of data in the computer store, and the modeler
may wish to substitute one of them for another during a single
run of his model. Indeed, the modeler may wish to go back to
a critical point in the run and see what difference would be
made by a substitution of data. CARE handles this problem by
letting the modeler interrupt the execution of the model at any
call or return point and revise certain of CARE's bookkeeping
tables. One table contains a list of translation tables. Each
translation table associates "programmers' names" of data sets
with modelers' names" of data sets. By revising the tables,
the modeler can direct processing routines upon whatever data
sets he likes.

in order to intervene effectively, of course, the modeler must
know where his model is in the course of its run. He can tell
something about that from displays of its behavior, but (in
one of its modes) CARE gives him the detailed picture by display-
ing, at each mediated call point and return point, the name of
the subroutine that is being called or returning. In a submode
of this subroutine naming" mode, CARE pauses at each call and
at each return and waits for the modeler to cause it to proceed
by pressing the space bar on his keyboard. The modeler can
proceed step-by-step to a critical point and then intervene.

To get CARE's attention, the modeler simply presses a predesig-
nated key. CARE then responds to commands given in a simple
command language. At present, this language is being augmented
to cover the essential intervention interactions, and it is
being "harmonized", insofar as possible, with the command lang-
uages of other programs in the system. In the interim, the
modeler carries out most of his intervention functions through
DDT (Dynamic Debugging Tool), a program we borrowed from the
Artificial Intelligence Laboratory and have adapted to our sys-
tem. DDT often operates as a process superior to the model
process(es). CARE operates within each model process. CARE
can transfer the modeler's interaction channel(s) to DDT, and
DDT can transfer it (them) back ~ with the state of the model
preserved.

A most important function of intervention is the selection of
aspects of the model's behavior for display and the assignment
of aspects to display areas. Work on that function was in mid-
course at the end of the year. The display part will be de-
scribed in the section on Computer Graphics.

2. The Library of Subroutines and Data Sets

A basic part of the system is a memory-resident address table
that will hold address and related information about every sub-
routine (except for subroutines of the simplest class) and every
nonephemeral data set in the library. Each such subroutine or

78

MODELING, GRAPHICS, NETWORKS

repoJt?Pto ama^rl Y^ neede(=l1. We still hope (cf. last year's report; to amass a library collection of at least- l nnn rri„Qv.,n
useful subroutines and 100 generally usefSl da?f sets ^^ y

fSirra^hen116 T^H^ Part 0f that ^al ^as seemS

?Utinriitont^ebUggr8- When '^ " ll™ot ^he^uro^tines ntltt i lnt° the system, working with one another, and beina
comprehensible to users, however, the situation at the end of the
year was disappointing. A major campaign to get the liS?frv

-

3. The Library of Documents

hLäV! hf 0Pfrational on MULTICS, for about a year, a computer-
inat/5^' devtl0ped by Richard Bryan' for storing and retriev-
ing information about the software of the modeling system ^J
££ ^SV1^ Srtem iS being rented and interfaced to "the
as^f thfen^nf^NET- The COrpUS of documentation includes, as of the end of the reporting year, one-page abstracts and
aÄ'lik™'3 deSCribin* subroutine^^data s'ets^ma'cros.

The main accomplishment of the year, insofar as documentation
sLn£^nf' WaS the foi™"lation and description of Se se? of
"cSnvJntion0!!^09^111 pr!Paration and documentation calLd convention II , Convention II is described in a series of 2n
documents by David Burmaster, Martha Draper, PSUI Hu^hett
Karolyn Martin, J. c. R. Licklider, Christopher ReevI and Albert
Vezza. Convention II deals with the various policy and tech-
Jon^/^T! 0f Pr0gram Preparation and documentation ?he
glossLies (n^tatio-r^hh ^"^ f0r document^ three kanSard
widf terms) Jhefor,;^^^1^10!?8 and exPansions, and system-
TiS .Jl '^ uf £ormat of subroutine headers, data-set headers
and address tables; data types; the naming of files; two kinds

anV^u^io™^^^

;.i ?eideyr LTpSir-t-^ thtend ^ thry^,ronhvrntronTithem'-

into accord with Convention II and to make it opera?! SiSln
the context of the mediator CARE. operate within

One Of the provisions of Convention II is that associai-erl „^i,
each software entity, such as a subroutine a da?a set nr *
macro, there must be an explanation of thJ'mnemonics of tL
name, a meaningful expansion of the name an ab??r^ Ln^ •
ing prescribed classes of informatton aAd ä set o? descript^s

enlitllt^^l^T011105'. exPansio-. and -- in the c'se'o? entities to which it is applicable - the calling and returning

79

mmm ****

HI

MODELING, GRAPHICS, NETWORKS

sequence format will be available on-line through an information-
retrieval system associated with CARE. The abstracts, listings,
and other lengthier documents about the software will be avail-
able in a small ink-and-paper library at each console. As indi-
cated earlier, we set up a first version of part of such a system
on MULTICS last year. Now we are beginning to connect it to
the PDP-10 system. Effective information retrieval is an essen-
tial part of the concept of the system we are developing.

4. An Extension of the LISP Language

Our design objective of highly interactive experimentation with
models is inconsistent with the classical organization of soft-
ware based on compiling and loading monolithic masses of soft-
ware in which all the parts are rigidly linked together. The
limitations of the classical organization have been broken in two
main directions, on the one hand in the paradigm of MULTICS,
in which linking is deferred until reference is actually made,
during the execution of a program, to subordinate parts that
should be linked to the parts already running, and on the other
hand in the paradigm of LISP, in which editing, debugging, and
other such activities are carried on within the coherent frame-
work of the language implementation. For our purposes, both
MULTICS and LISP have many desirable features, but neither in
and of itself provides the desired facility for the kind of
modeling to which we aspire. To mention the main shortcomings,
MULTICS is not set up for use with a graphics processor operat-
ing out of main memory, and LISP, while highly coherent internal-
ly, is difficult to bring into relation with external software
and is only weakly developed in the directions of data typology
and graphical interaction. We have therefore been exploring the
problem of incorporating into our system the best of the two
worlds. Members of our groups have been working with the members
of the Artificial Intelligence Laboratory on the design and imple-
mentation of an extension of the LICP language that will provide
a number of advantages over previous versions of LISP. These
will include data type checking, lexical scoping, recognition
of a large number of elementary and compound data types, and the
inclusion of primitives upon which to erect a graphical inter-
action subsystem.

The extension of LISP is known locally as "MUDDLE". It was
designed and has been implemented by Carl Hewitt and Gerald
Sussman of the Artificial Intelligence Laboratory and Christopher
Reeve, David Cressey, Bruce Daniels, and Gregory Pfister of
Dynamic Modeling/Computer Graphics/Computer Networks. MUDDLE
is operational now as an interpreter. As implemented, it is
rather separate and distinct from the other software of the
system we are developing. Wishing to bring MUDDLE into our
system in such a way as to integrate its advantages coherently,
we are studying the possibility of merging MUDDLE'S data types
with the system's data types and MUDDLE'S implementation routines
with the system's subroutine library.

We hope to use MUDDLE as an interpreter for the upper levels of
the subroutine-calling hierarchy. The idea is to employ interpre-
tation in the upper levels, where most of the changes are made

80

MODELING, GRAPHICS, NETWORKS

in the course of exploring a model, and to employ assembled or
compiled subroutines at the lower levels, where the time effi-
ciency of execution (as opposed to interpretation) is most im-
portant. It now seems likely that such an organization of soft-
ware may be feasible. On the other hand, it would not be good
to cause our version of MUDDLE to diverge greatly from that of
the Artificial Intelligence Laboratory because MUDDLE is envison-
ed as the base for the implementation of PLANNER, and PLANNER
seems likely to be very useful in modeling as well as in arti-
ficial intelligence research.

5. Lexicontext

■

Fundamental to the design of an integrated or coherent informa-
tion system is the selection of a basic informational building
block. In most computer systems, as in ours at present, the
basic atom of information is either a character (byte) or a
computer word. For substantive modeling applications, however,
the character is too small a unit, and the computer word does
not bear a direct enough relation to the words of natural lang-
uages in terms of which people think. Looking toward a future
in which a good computer system will have, and be able to use
knowledgeably, a vocabulary of tens or hundreds of thousands of
words of natural language, we have developed a system, called
"Lexicontext"*, that gives to the word — the word of natural
language and/or the word of technical jargon — the role of basic
building block. In the Lexicontext system, a word is processed,
not as a string of characters, but as a pointer to an argument
in a lexicon of argument-function pairs. The lexical function
is divided into subfunctions. The absolutely essential sub-
function is the spelling of the word. Other subfunctions can
be added with apparatus provided by Lexicontext. They will
include additional morphological information, syntactic informa-
tion, synonyms, definitions, and (hopefully eventually) programs
that give the entries operational meaning in the paradigm of
Winograd's PROGRAMMAR. Most of these subfunctions can be imple-
mented in terms of the basic Lexicontext element, the pointer
to an entry in the lexicon.

Lexicontext has been implemented by John Haverty. In his imple-
mentation, text files are composed of elements of uniform size.
Each item of text (except for literals) occupies the same number
of bits of storage (18 bits in half-word mode, 36 bits in full-
word mode) and — as explained — each element represents a lexi-
cal word by pointing to its location in the lexicon. The uni-
formity of representation makes it convenient for the computer to
process text — e.g., to search for instances of a given word
(type) or to parse sentences. The primary lexicon, itself,
consists of alphanumeric strings (spellings). Associated with
each primary entry there may be pointers into one or more data
bases. These data bases are to contain the subfunctions, other
than the spelling/ mentioned earlier.

*It has a lexicon and deals with text, and we hope that it will
provide a lexical context for work in modeling.

81

MODELING, GRAPHICS, NETWORKS

Actually, Lexicontext provides for 32 separate lexicons, either
"newri or "old". (New lexicons can be updated on-line or off-
line; old, only off-line.) The current implementation has a
provision for automatic construction of a new lexicon from a
conventional text file; for adding words on-line to a new lexi-
con, as new words, not already in any of its lexicons, arise;
for merging a new lexicon into existing old lexicons, and for
converting conventional text files into Lexicontext text files
and vice versa. Each lexicon allows for 21^ elements, i.e.,
a vocabulary of slightly over 32,000 lexical words.

1 2 Like Hypertext and NLS , Lexicontext structures text in a hier-
archy such as volume/chapter/paragraph/sentence/word. There
is a mechanism for representing extra-hierarchical items such
as footnotes and references.

Lexicontext text files are more compact than character-code
files. The compression ratio is not great, but it is good to
gain something in compactness instead of having to trade off
compactness for the efficiency of processing uniform tokens.

C. Computer Graphics

The Computer Graphics group has made good progress, during the
past year, in mastering the Evans and Sutherland display sub-
system and in solving basic problems in the application of
graphics to facilitate human understanding of, and modeling of,
complex processes and organizations. The Evans and Sutherland
display subsystem (E&S) is a very powerful one, not easy to
exploit fully (especially in a timG-sharing environment), and
much of the effort in graphics has been devoted to bring the
capabilities inherent in the E&S into the hands of users who
are not display specialists.

Some of the problems (as
stem from the fact that
in parallel with the PDP
shares memory with them,
by the operating system
running concurrently in
operating system to medi
or to make corresponding
it. This has not been a
have been using only one
mediation approach with
toward time-sharing the
soles, and that move is
signing the display time

1. "Picture Framing"

well as the advantages) of the E&S
it has its own processor, which operates
-10 processor and the disk channel and

Since memory is dynamically allocated
to the several user processes that are
the PDP-10, it is necessary for the
ate the use of the display processor
adjustments of memory allocation for
difficult problem so far because we
E&S display. We have followed the
success. However, we are now moving
E&S display subsystem among four con-
not trivial. Michael Brescia is de-
-sharing system.

One of the capabilities of the E&S display subsystem is to focus
its efforts mainly upon any specified small area or areas of a
very large surface on which there is a picture. That capabili-
ty is important because, without it, the processor would spend
most of its time processing parts of the picture that lay out-
side the areas of interest. Accordingly, during the past year,

82

MODELING, GRAPHICS. NETWORKS

James Michener and other members of the Computer Graphics and
Computer Networks Groups devised a technique, a kind of "picture-
framing service", in which the E&S processor eliminates the
extraneous parts of the picture and constructs, in memory, a
sub-picture limited to a specified area or areas, and then the
PDP-10 processor reformats the delimited picture for transmis-
sion to an Advanced Remote Display Station (ARDS) or an Imlac
console. That technique is used as a service inside our com-
puter system, and is being made available through the ARPANET
to users of ARDS and Imlac consoles at remote locations.

2. Polyvision

Within the general context of modeling, one of the main graphics
problems is display management. A modeler may have a dozen or
more things to display but only a small display area — a ten
inch square or at best a very few such squares — in which to
display them. Polyvision is a display-management subsystem,
designed and programmed by James Michener, Edward Black, and
others, that permits the modeler to assign the various aspects
of his model, mainly dynamic aspects, to named display areas
and then to move the areas about, magnifying some and causing
others to contract, either under program control or under the
control of a stylus in the modeler's hand. Polyvision will be
brought into interaction with the mediator CARE in due
course, but it will not be necessary for the modeler to halt
the execution of his model to adjust the configuration of his
display. The modeler can control the display subsystem while
the model is running. This is in line with our basic concept
of graphical display as an aid to observation. It should not
be necessary to build a schedule of observation into the basic
framework of the model itself. The schedule of observation
must be flexible and under the modeler's control throughout
the course of observation.

Eventually, it may be possible to make significant changes to
the model while it is running. However, the problem.of modify-
ing the model "on the fly" is more difficult than the problem
of modifying the observational procedure "on the fly"'. The
latter can be thought through and implemented once and then
used with various models; the former seems, in the present,
state of the art, to require model-specific operation.

3. Graphical Debugging

Computer Graphics offers promise of breaking through one of the
most resistant barriers to human comprehension of complex com-
puter programs. The barrier is, figuratively speaking, the
opaque integument of the computer, which deprives the observer
of any global view of what is going on inside. Even with the
best conventional debugging aids, such as DDT, the observer
can see into the inside workings of the machine only through
a very small aperture. At the operator's console, there are
perhaps a few pilot lights, but they do not encode information
in a very meaningful way. At a typewriter console, one can
open and look inside one memory register at a time. With a
graphic display, on the other hand, one can see a map of the
computer memory (either in the literal space of memory registers

83

mam

MODELING, GPAPHICS, NETWORKS

or in the symbolic space of source-language statements) and
watch the behavior of the program on the surface of the map.

During the past year, we made some progress toward realization
of a meaningful, global display of program behavior. Stuart
Galley completed a graphical display of program behavior called
"ESP", and Paul Hughett completed important portions of a graphi-
cal debugging tool, called "GDT". In both programs, selected
registers and segments of program are represented schematically
upon the display surface, and the flow of information is repre-
sented by moving arrows, moving symbols, and other devices.
These programs represent only small steps toward what should
eventually be a very powerful aid to the understanding of pro-
gram dynamics, but they will, themselves, find useful applica-
tion in the computer system.

4. Elucidations

The difficulty of harnessing a powerful display subsystem in
the interest of man-computer communication about complex pro*-
cesses is balanced by the simplicity of getting such a sub-
system to display mathematical functions. It is easy to pro-
duce all kinds of "graph paper" on the display screen, and it
is easy to create all kinds of curves and surfaces. It is re-
markable how much one can learn from a few minutes of play at
the graphics console — a few minutes spent in exploring mathe-
matical functions through graphical display. Obviously, the
general problem of relating graphical and symbolic representa-
tions to one another is very important in the understanding of
mathematics. Obviously, a digital computer with a good graphics
subsystem can greatly facilitate the development of such under-
standing.

During the year, several members of the laboratory developed
graphics programs that provide insight into simple mathemati-
cal phenomena. These included two-dimensional and three-
dimensional function plotters (Edward Black, Scott Cutler), a
Fourier transformer (Robert Freedman) and a simulation of the
interplay of gravitational forces in a galaxy (Paul Hughett).

5. Visual Statistical Analysis

Flowing from the general line of observation just mentioned was
a major effort by Robert Fleischer called "Visual Statistics".
This program brings together in a subsystem a collection of
processing and display operations that facilitate visual analysis
of the relations that exist within a collection of data. The
operations permit the selection of data on the basis of various
criteria, the plotting of the data in various modes and formats,
projection from a multidimensional space to a two-dimensional
surface, curve fitting, and so on. We hope to incorporate the
Visual Statistics subsystem into a larger system of data-analysis
routines so that we can bring both intuitive and algorithmic
analysis procedures into productive interaction.

>

84

MODELING, GRAPHICS, NETWORKS

6. Imlac Displays

Although not as sophisticated as the E&S display subsystem, the
Imlac consoles, which include minicomputers as well as cathode-
ray-tube displays, are potentially very capable. Our use of
them thus far has been largely limited to alphanumeric process-
ing and display, but we are beginning to exploit their potential
for display of graphs, charts, and diagrams.

David Lebling prepared a PDP-10 assembler for Imlac programs.
Stephen Peltan prepared a loader that loads the Imlac from the
PDP-10. Lawrence Rubin and Stephen Peltan developed split-screen
techniques for Imlac consoles and did the programming required
to make the Imlac's control keys convenient to use in our appli-
cations. And John Haverty designed and implemented a program,
IMEDIT, that makes it convenient to use the Imlac editor in
conjunction with the PDP-10 file-handling system. IMEDIT moves
from the PDP-10 to the Imlac consoles much memory-space-consum-
ing but trivial work. All in all, the Imlac consoles are now
quite convenient and effective for applications that are limited
to alphanumeric information, and they are well on their way to
supporting applications that involve line drawings, also.

D. Computer Networks

The part of the Computer Networks Group to which this report
pertains is the part concerned immediately with the PDP-10 compu-
ter system. Last year, the word "immediately" would not have had
much significance, for the network program was just getting
under way, and energies were focused mainly on getting MULTICS
and the PDP-10 into communication with each other and other
computers in the ARPANET. At the end of this reporting year,
however, one can sit at a PDP-10 and carry out his computing
operations mainly in any one of several other ARPA network
machines. Most of the work to be reported upon here was aimed
at creating the basis in computer communications, through com-
puter programming in the PDP-10, for interaction between the
PDP-10 and other network computers.

1. Network Control Program

Robert Bressler and other members of the Computer Network Group
developed several progressively improved versions of a Network
Control Program (NCP) for the PDP-10 computer. This program
establishes and maintains connections between processes in the
PDP-10 and other ARPANET computers. The next step was to de-
sign and implement programs that, using the NCP, would make the
PDP-10 a part of an alphanumeric telecommunications network
(TELNET) within the ARPANET. The TELNET programs are of two
kinds, "servers" and "users". The first TELNET server program
completed was a Logger, the function of which is to permit
users of other network computers and users connected to the
network via a TIP to log into the PDP-10 in the same way as
local users. The design of the logger involved Robert Bressler,
Robert Metcalfe, and Arvola Chan, and most of the programming
was done by Chan.

85

MODELING, GRAPHICS, NETWORKS

The next program in the logical hierarchy of network software
was a TELNET user program, designed and prepared by Robert
Metcalfe, the function of which is to permit a user logged
into the PDP-10 to log into another network computer. It
handles terminal communication to and from the püP-10, includ-
ing communication with a remote TELNET server program, through
the Network Control Program. Together, the TELNET server
and user programs and the NCP provide the basic means of
communication with remote computers and/or terminals.

Even before the basic means of communication were perfected,
attention turned toward the design of yet higher levels of net-
work software, Abhay Bhushan became interested in the protocol
for the transfer of data and for the transfer of files of data.
His interest led him to the chairmanship of the Committee of
Data and File Transfer Protocol for the ARPANET. At the end of
the reporting year, he was working on software implementations
of the tentative protocols that had been thus far formulated.
Members of the Computer Networks and Computer Graphics Groups
turned their attention, jointly, to problems of graphical com-
munication through the network.

Rather early in the year, interesting explorations of graphical
communication through the network were made in cooperation with
members of the Aiken Computation Laboratory at Harvard. Graphics
programs were originated in the Harvard PDP-10 transmitted
through the network to the Project MAC PDP-10, processed there
by the E&S subsystem, transmitted back to a PDP-10 computer at
Harvard, and displayed there on a Digital Equipment Model 340
display. The same pictures were displayed on the E&S display
at M.I.T., and the characteristics of the network-mediated
processing and display were compared with those of wholly local
processing and display of the same program material. It was
found that there was almost no perceptible difference between
network and local display of single frames. in dynamic display
of continuously moving pictures involving 10 to 100 lines, how-
ever, there was a big difference. The local display presented
perceptibly continuous motion, whereas the network display
jerked from one configuration to another 2 or 3 times per second.
That was a rather preliminary test, made at an early stage of
network development. Improved means will provide improved per-
formance. We shall make further tests to determine the ability
of the network's programs. Interface Message processors, and
50-kilobaud lines to handle kinematic graphics.

2. The Network at the End of the Year

At the end of the reporting year, the PDP-10 wing of the Computer
Network group at Project MAC was in the process of consolidat-
ing its basic software subsystems and pressing upward into he
higher echelons of the hierarchy of network software. The
process of consolidation will be time-consuming because, through-
out the year, the network effort was proceeding as rapidly as
possible toward intermediate objectives, and the hurry to achieve
them pushed aside such considerations as thorough testing and
documentation. There is still some testing to be done, and
there is a large amount of documentation.

86

MODELING, GRAPHICS, NETWORKS

At the same time, there is a keen sense of anticipation within
the group, a strong motivation to master the transfer of data
sets and files and to proceed as rapidly as possible to the
execution in remote computers of subprograms called by programs
in our PDP-10. We want to exploit network subprogram linking
in order to bring functionally within the scope of our library
several very useful collections of programs that exist in re-
mote computers ~ collections that we need and that would be
prohibitively expensive to reprogram for the PDP-10.

References

1. Carmody, Steven, Walter Gross, Theodore H. Nelson, David
Rice and Andries van Dam, A Hypertext Editing System for the
/360, Pertinent Concepts in Computer Graphics, M. Faiman and
J. Nievergelt (Eds.), pp. 291-329, University of Illinois
Press, Urbana, 19S9.

2. Engelbart, Douglas C, and William K. English, A Research
Center for Augmenting Human Intellect, Proceedings 196 8 Fall
Joint Computer Conference, Vol. 33, part one, pp. 395-410, The
Thompson Book Company, Washington, D.C., 1968.

Publications 1970-1971

Baum, Allen J., Minicomputers: Status and Architecture, Tech
Engineering News, 52^, No. 8, pp. 25-30, January 1971.

Black, Edward H., A Data Structure Dumper, S.B. Thesis, Dept.
of Electrical Engineering, June 1971.

Dressier, Robert D., Interprocess Communication on the ARPA
Computer Network, S.B. and S.M. Thesis, Dept. of Civil Engineer-
ing, June 1971.

Cutler, Scott E., Computer Graphics, Tech Engineering News, 52,
No. 8, pp. 17-21, January 1971. —

Goldberg, Robert P., Hardware Requirements for Virtual Machine
Systems, Proceedings Fourth Hawaii International Conference on
System Sciences, January 1971. " ~

Licklider, J. C. R., Libraries and Information, reprinted from
Libraries of the Future, M.I.T. Press, 1965, in The Computer
Impact, 260-270, Irene Traviss (Ed.), Prentice Hall, Inc., New
York 1970.

Licklider, J. C. R., Social Prospects for Information Utilities,
The Information Utility and Social Choice. Sackman and Nie (Eds.)
AFIPS Press, Montvale, N.J., 1970.

87

""""""" "iwiiniim

MODELING, GRAPHICS, NETWORKS

Publications (cont'd)

Licklider, J. C. R., The Role of Computer Graphics, The Com-
puter Utility: Implications for Higher Education, Michael A.
Duggan, Edward F. McCartan, and Manley R. Irwin (Eds.), Heath
Lexington Books, Lexington, Mass., pp. 11-16, 1970

Lindsay, Robert Thomsom, Jr., A Design for a Graphical
Compiler, M. I. T., S. B. Thesis, Dept. of Electrical Engineer-
ing, June 19 71.

Vezza, A., an! Knudson, Donald R., Remote Computer Display
Terminals, Computer Handling of Graphical Information, SPSE,
R. D. Murray (Ed.), July 1970.

88

EDUCATION

Prof. R. R. Fenichel
Prof. J. Weizenbaum

Instructors, Research Associates, Research Assistants and Others

J. Kaplan
S. A. Ward

Undergraduate Students

R. H. Brown
D. M. Christie
R. P. Silberstein

Support Staff

N. Chen
A. Garrity
M. A. Hoer
K. Young

Guests

J. Berger, Prof,
P. Eisenbert

89

"^MMHIMM •rrrniaiiiiBiiiiiimi.iinnimii n-

,.. -,

VIII. EDUCATION

The Project MAC Progress Report V (July 1967-July 1968, p. 98
et se£.) describes the language, at the heart of the TEACH
system, which then was called PL/2 but which since has been
designated UNCL (UNconmonly Clean Language):

"It is an interactive language that somewhat resembles
JOSS, but differs from JOSS and other JOSS-like languages
in several major respects: for example, the presence of
block structure, a context editor, and a function-tracing
feature".

During the year ending June 1971, the UNCL interpreter was
completed. A result of this effort was design of a novel
means of implementing variables of label mode.

Experiments were undertaken with a novel hardwired device which
was designed to search for certain useful configurations of
flip-flop circuits.

Publications 1970-1971

Fenichel, Robert R., "Design of Languages for Elementary
Programming Instruction: Lessons of the Teach Project",
Proceedings of IFIP Conference on Computer Education (August
1970), III, pp. 175-177. "

Fenichel, Robert R., List-Tracing in Systems with Multiple
Cell-Types", Proceedings of the Second Symposium on Symbolic
and Algebraic Manipulation (March 1971). pp. 242-247.

Fenichel, Robert R., "Comment on Cheney's List-Compaction
Algorithm", Communications of the ACM, XIV, 6 (June 1971).

Fenichel, Robert R, "On Implementation of Label Variables",
Communications of the ACM, XIV, 5 (May 1971) .

mzm& PASE E1ÄSK

31

"',' .i iimmiim

'

IMPLICIT COMPUTATION

Prof. M. L. Dertouzos

Instructors, Research Associates, Research Assistants and Others

F. G. Abramson
M. W. Dickens
M. E. Kaliski
P. A. King

L. E. Yaple

M. P. Lum
C. W. Lynn
J. R. Stinger
A. S. Weinberg

Support Staff

PRECEDING PAGE BLANK

93

IX. IMPLICIT COMPUTATION

Introduction

^utfonenfC? COncern^ novel machines and algorithms for fhe

exact pax t checki whether a proposed soLSS^L""!^^ a

developed decompositions which compute an exact soln^on L

Each such element processes two types of variables called

connected J^o TT ^^ SUCh comPuting elements are inter-
steer thf f^L\ PT^ sYstem' th^ Pressures are used to

e^

jo^^^a^un^^^rL^Ser^elröo-^lhrs^ä-^S
and trme-aoouraoy trade-offs in computation, „ „eU a! the

ni%«(r^t^oT^?jÄ-^i^^^^

n^n^^1"63 and aPProaches that we are investigacing have ap-
plications as special-purpose computers for the raoid soTntfnn

mmm PAGE BLANK
95

■MB

IMPLICIT COMPUTATION

B- Exact-Inexact Machines and Approaches

In Progress Report VII, we described exact-inexact machines with
analog inexact substructures. We have investigated in consider-
able detail one such machine for the solution of systems of
linear equations. We have found that the proposed approach is
feasible and can handle fairly large problems. One limitation*
that we encountered is that, in the case of relatively ill-
conditioned problems, the analog errors grow with increasing
system size to the maximum acceptable error (for convergence
of the exact-inexact cycle) of ± 50%. We are currently at-
tempting to find exactly where that limit is. It seems to
occur at system sizes of several hundred equations, for typi-
cal problems.

We have also initiated work on what seem to be promising exact-
mexact approaches with a digitally computed inexact part. One
such approach is presented in the remainder of this section, in
terms of an example.

Consider the structure of Fig. 1. It is intended for the solu-
tion of certain systems of linear equations. Specifically, the
system to be solved is Ax=^, where vector % and matrix A are
given, and vector x is the unknown. For an initial explanation,
let the scalar ki shown in Fig. 1 be unity. The computing struc-
ture consists of two parts — a relatively exact substructure
(e.g., 32 bits) which checks if a suggested vector x^ satis-
fies the above equation (to that accuracy); this substructure
computes digitally the error ^ -Ax^ The other part of the
system is a relatively inexact substructure (e.g., 4 bits)
which computes digitally the correction variable. Ax- as
follows: AX-L = A*" (Y_ - A xi)*, where the star subscript in-
dicates inexact approximation (truncation) of the corresponding
quantity to this reduced accuracy. Execution of the computa-
tion is iterative, each iteration consisting of first the com-
putation of the error, then of the correction Ax^ and then of
the next iterate xi+i as Xi+1 = xi + AXJ.. If tEe starred quan-
tities were exact, then tEe exact solution would be obtained in
one iteration, since Xj^ + Ax^ can be easily verified as the solu-
tion of the system A x = ^"Tfor any choice of Xj^ Because these
quantities are not exact, each iteration brings X^+T closer than
Xj^ to the solution, with contraction depending on the error be-
tween their exact and inexact values.

Observe that the idea that is illustrated by this example is
the decomposition of the problem into exact and inexact sub-
structures, not the issue of stability of the above feedback
approach. The stability of iterative algorithms for the
solution of linear systems has been treated extensively in
the literature. It is expected that the exact-inexact ap-
proach is applicable to the majority of these algorithms;
indeed, a part of the proposed work is concerned with such
applications.

We return now to the role of the constant k. and cf the multi-
plications of Fig. 1. As 3^ approaches the1solution, with

■

■ « i

96

■

IMPLICIT COMPUTATION

LiJ

3

O

cr
\-

cow
St
h-m

o w
< rO

Lü

£

UJ
tr

I-
Ü
3
cr
f-
(O
CD
3
(/)'■*

ot:
< OQ

UJ v

CD

Q

^ r ^

o

ü

b
3

<

3

I- I-
ü Ü
< <
X X
ÜJ UJ

-J _J

o
3 z

\c , Q
Q
<
0.

(0 */>
z z
< <
UJ UJ
5 2

W N

z VJ
Ü K

fe
<

s cr
rr o
s u.
^
— I-

o
<
X
UJ

o
<
X
UJ
z

</) to
z z
< <
UJ UJ
s s

ft

X o
<
o
cr
ü.
Q.
<

o
<
X
UJ
z

I

o
<
X
UJ

u.
o
UJ
_l
CL

<
X
UJ

o
u.

97

1.HWIIIIIIIIW
"^^—Trnfflinill imilllim

IMPLICIT COMPUTATION

,

increasing i, the error y, ~ Ax. is computed exactly. It is then
multiplied by k. and converted1to an inexact value by trunca-
tion of the undesirable least-significant bits. This multi-
plication is performed in order to increase (scale) the magni-
tude of the error to as near as possible the full scale of the
inexact subsystem, so that the inaccuracies of that subsystem
are small compared to the values of its input variables. Thus,
the input to the inexact subsystem is the truncated value of
the quantity k. (Y_ - Ax.) . The effect of constant k. is "can-
celled", after the correction vector has been computed by the
inexact subsystem, through multiplication of that vector by
l/ki. Naturally, the truncated correction vector is padded to
the right with a sufficient number of zeros to offset trunca-
tion, i.e., to match the word length of the exact process.
Thus, as computation progresses (increasing i) and the exact
error y - Ax. becomes progressively closer to zero, the con-
stant k. is made progressively larger so as to keep the in-
exact system inputs near full scale. Observe also that these
multiplication and division operations are performed to full
accuracy.

Observe next that, using straightforward techniques, the exact
subsystem computes the error in time proportional to N2q2 for
an N x N matrix A, at a word length of q bits. This is the
case, since the exact subsystem performs a matrix-vector mul-
tiplication.

The inexact subsystem, however, can invert the matrix in time
of order N3z2, where z is the word length of the inexact com-
putation. This is the case since N3 operations are needed and,
of these, multiplication is dominant, requiring time z2. Once
the matrix is inverted, the time expended per inexact cycle is
N2z2since an N x N matrix multiplies an N-vector, at z bits.
Finally, the number of exact-inexact cycles needed is of order
q/z since, at each iteration, the exact error is reduced by
roughly z bits (recall that the exact error is constantly
scaled up by k^). Thus, the total time for the entire process
grows as:

N3z2 + (N^ + Nzzz)

For large N, this computing time grows essentially as N3z2.
Thus, compared to an equally straightforward exact matrix in-
version approach requiring time N3q2, the above approach is
faster by a factor (q/z)2

that factor is 64.
For our example, q/z = 8, hence

C. Pressure-Flow Machines

In this approach, the computing structures under consideration
involve the spatial interconnection of computing elements which
correspond to the individual relations (or equations) that make
up the over-all problem. These computing elements, in turn,
process two types of variables, which we call "flows" and
"pressures^". * The flows correspond to the usual variables in
any computing system, i.e., the unknowns and any intermediate

i

*These are simply names of variables motivated by physical sys-
tems. We are not referring here to any physical pressures or
flows.

98

;.'' ~-r;r "^Tr,"~v.~/;i:;;,r"'

I

IMPLICIT COMPUTATION

variables needed to compute these unknowns. The pressures, on
the other hand, denote the extent by which the flows do not
satisfy the relations represented by each computing element.
Each computing element treats the flows as inputs and the pres-
sures as outputs. Thus, ff the flows satisfy the intended re-
lation of that element, then the pressures are zero. If,
instead, the flows do not satisfy the intended relation, then
the pressures assume non-zero values which (1) denote the ex-
tent by which the flows do not satisfy the relation, and (2) are
related to the flows through a pseudo-energy constraint, similar
to the relationship of variables and co-variables of physical
energy-lossy elements. These, as well as certain additional
properties of the pressures and flows are retained under com-
position of the computing elements into larger composite sys-
tems — that is, the resultant systems have flows for inputs
and pressures for outputs, which are related by the same type
of pseudo-energy constraints. The result of this organization
is the ability to construct arbitrarily complex, spatially
distributed structures that simulate large systems of equations
and that are capable of converging asynchronously to desired
solutions, in the same sense that aggregates of passive elec-
trical network elements converge on their "solutions", under
given excitations.

In more detail, the organization of pressure-flow machines is
as follows:

1) Primitive digital computing elements are made to
correspond to the desired primitive relations. Each
such element has as many inputs (flows) and as many
outputs (pressures) as there are variables in the pri-
mitive relation. These pressures and fj.ows are re-
lated through a pseudo-energy function, as follows:

a) The flows are the variables of the primitive
relation.

b) The pseudo-energy function is defined on these
variables, such that it is zero if and only if the
values of these variables satisfy the corresponding
relation. Otherwise, the pseudo-energy function is
positive.

c) The pressures are defined as the gradient of the
pseudo-energy, on the space of the flow variables.

2) Composite pressure-flow machines are made up of prim-
itive computing elements, and (recursively) of composite
pressure-flow machines, in direct correspondence to com-
posite relations, which are made up of primitive relations
and (recursively) of composite relations. The rules are
as follows:

a) External variables, i.e., free variables of the
composite relation, appear as flows and as pressures
of the composite machine. As flows, they are simply
connected to the constituent machines, if the

99

IMPLICIT COMPUTATION

corresponding free variables are related by consti-
tuent relations. As pressures, they are generated
by summation of the corresponding pressures of all
constituent machines which relate that free variable.

b) Internal variables, i.e., variables bound by the
composite relation, appear as neither flows nor pres-
sures of the composite machine. Instead, each such
flow is generated (negatively) by digital integration
of the sum of all corresponding pressures supplied by
constituent machines, i.e., the machines correspona-
ing to constituent relations that relate that bound
variable.

c) The pseudo-energy associated with a composite
machine is the sum of the pseudo-energies of the
constituent machines.

3) Under these composition rules, it is the case that

a) The flows of every composite nachine are the
variables of the corresponding composite relations.

b) The pseudo-energy of every composite machine is
non-negative. In particular, it is zero if and only
if the pseudo-energy of every constituent machine is
also zero, i.e., if every constituent relation is
satisfied, which means that the corresponding com-
posite relation is also satisfied.

c) The pressures of the composite machine are the
gradient of the pseudo-energy of the composite
machine, since they are formed bv addition of the
pressures of constituent machines, and since
the pseudo-energy of the composite machine is the
sum of the constituent-machine pseudo-energies.

Observe that the properties of pressure, flow and pseudo-
energy for composite machines (Items 3 (a), (b) and (c)
above) are the same as the properties of the corresponding
entities of primitive computing elements (Items 1 (a), (b)
and (c) above). This consistency under recursion is essential,
for it insures that pressure-flow machines of arbitrary com-
plexity, constructed by the above rules, obey a fixed set of
properties. These properties are, in turn, pivotal in the
ability of pressure-flow machines to solve satisfactorily
specific classes of problems.

One of the principal results to date is that the pseudo-energy
of every composite machine decreases or at worst remains con-
stant if the flows of that composite machine are held constant.
We have further shown that for linear problems (i.e., aggre-
gates of linear primitive relations), which are not singular,
the over-all pseudo-energy decreases, converging towards the
solution. These results make possible the application of the
pressure-flow machines to problems of arbitrary complexity.

100

■ ■ ■ .^.^.::.: - ■

»i

IMPLICIT COMPUTATION

D, Fundamental Work

The pressure-flow approach and the inexact part of an exact-
inexact machine are made up of spatially distributed systems.
In order to probe the ultimate computing speed of spatially
distributed systems, we have postulated a set of physico-
mathematically based axioms. These axioms concern the speed,
packing density, and noise threshold of the energy wi i which
any computing device detects or alters the physical represen-
tation of information. The principal result of our work to
date is that th^ time needed by a spatially distributed system
to compute any n-argument function grows with n at least as
n1/3. This result is based only on the above-mentioned axioms
and on the fact that the computing function depends non-
trivially on all its arguments. Further results indicate
that, regardless of the vay in which identical computing modu-
les are "stacked" in space, they cannot compute a function of
n arguments as fast as the above bound — in fact, they often
compute such a function no faster than n1/2. Finally, the
above bound has been combined with certain other results,
yielding a measure for the computational efficiency of a pro-
cess distributed in time and space. Through this measure, it
is possible to assess the efficiency of a given space-time
process. The details of this development will appear in the
Proceedings of the 19 71 Switching and Automata Theory Confer-
ence in a paper by Dertouzos.

Another area of fundamental work is motivated by the logical
capabilities and limitations of the analog substructure of an
exact-inexact machine. Here, we have investigated the logical
capabilities of certain dynamic analog structures made up of
sample-holds and integrators. This work has resulted in a
wealth of interesting results, theorems, and constructive
techniques for dynamic-system synthesis. They will appear in the
doctoral dissertation of M. E. Kaliski, M.I.T. Department of
Electrical Engineering, to be completed shortly.

We have also investigated the logical capabilities of a class
of Turing Machines which can store and process real numbers.
Results of this work are related to computations on the real
numbers. They will appear in some detail in the Proceedings
of the 1971 Switching and Automata Theory Conference in a
paper by Abramson.

Publications 1970-1971

Abramson, F. G., Models for Continuous-Discrete Computation,
S.M. Thesis, Dept. of Electrical Engineering, February 1971.

Dertouzos, M. L., "Computer Graphics: Problems and Progress",
Proceedings, Erlangen Symposium on Display Use for Man-Machine
Dialog, Institut fur Mathematische Mashinen und Datenverarbei-
tung, Erlangen, Germany, March 1971.

Dertouzos, M. L., "Elements, Systems and Computation: A Five
Year Experiment in Combining Networks, Digital Systems and
Numerical Techniques in the First Course", Proceedings, Purdue

101

"^mmmmm

■

IMPLICIT COMPUTATION

Publications 1970-1971 (cont.)

1971 Symposium on Applications of Computers to Electrical
Engineering Education, Purdue University, Indiana, April 26-28,
1971.

Dickens, M. W. , Computer Graphics: Central Problems and Their
Treatment, S.M. Thesis, Dept. of Electrical Engineering, June
1971.

Lum, M., Computer-Aided Analysis of Nonlinear Networks, S.M.
Thesis, Dept. of Electrical Engineering, January 1971.

Lynn, C. W., Non-Linear Function Processing for Computer
Analysis of Networks, S.M. Thesis, Dept. of Electrical Engineer-
ing, June 1971.

Weinberg, A., Computer-Aided Education in Subject 6.001, S.M.
Thesis, Dept. of Electrical Engineering, January 1971.

102

-•TV^i

INTERACTIVE MANAGEMENT SYSTEMS

ORGANIZATIONAL INFORMATION SYSTEMS

Prof. M. M. Jones

Instructors, Research Associates, Research Assistants and Others

D. Asthana
G. T. Dixon
R. C. Goldstein
S. P. Mason

R. L. Brooks
R. M. Elkin
R. S. Goldhor
P. H. Guldberg

J. A. Friel
M. Lenot
S. E. Niles

E. T. Moore
R. Queens

Prof. J. I. Elkind

A. R. Monroe-Davies
R. C. Owens
D. H. Porges

Undergraduate Students

C. A. Hatvany
D. M. Krackhardt
W. Y. Ng

DSR Staff

A. J. Strnad
D. M. Wells

Support Staff

Guest

SIMPL PROJECT

Prof. M. M. Jones

S. Pincus
J. L. Rosenberg
H. J. Siegel

Instructors, Research Associates, Research Assistants and Others

R. Bryant
A. Gonzales

R. M. Berman
D. J. Chang
S. S. Cohen

R. C. Thurber, Jr,

S. Murthy

Undergraduate Students

J. E. Jagodnik
S. M. Stoney

DSR Staff

103

.A

X. INTERACTIVE MANAGEMENT SYSTEMS

ORGANIZATIONAL INFORMATION SYSTEMS

A. Introduction

The Organizational Information Systems Group seeks to develop
and understand how to use interactive information systems in
the administration and operation of organizations. The svs-
^«^ K3 ^ are investigating incorporate a data base that
describes the present and past state of the organization,
models that can be used to predict future states, and procedures
tnat assist in making planning and control decisions. Also
central to these systems are facilities that allow users to
interact with this body of data, models and procedures. To
lend concreteness to our systems research, much of the work has
been done in the context of specific applications - largely
the administrative problems of Project MAC itself and of several
of the academic departments at M.I.T. During the comina vear

ject attempted to integrate a number of interactive systems
m^nJ^L°?era^ng ^ CTSS int0 a mana^nt system and to develop
management information systems for Project MAC on CTSS. Some
SE«^ i0^* i? USeful interactive systems for personnel manage-
ment, budgeting, inventory control and purchasing were derived
from this work. Since June 1970, our research has focused on

M ?^ P"16^ of general-purpose data-manipulation facilities
on Multics and on the application of these facilities in manage-
ment systems for Project MAC. During the last few months, we
h*Zl ^9U? Tf 0^ techniques for modeling organizations, and
have started developing models for Project MAC. This work has

di?ectlPPO ln Part ^ ARPA through 0NR and in Part ^ ONR

The principal projects undertaken during the last year were:

1) Design and implementation of a set-theoretic data-
manipulation system on Multics.

2) Development of management information systems for Pro-
ject MAC end for the Sloan School.

3) Studies of access control and privacy in computer data-
base systems. - «r »■-«

4) Studies of models and modeling of organizations.

These research projects are discussed more fully below.

B- Set-Theoretic Data-Manipulation System

mmm mi BLANK
105

INTERACTIVE MANAGEMENT SYSTEMS

I

The initial version «^hls^s^1?^ °' data and ^rations,
used for a Personnel Data iy^^pM^"»* "< *» "^"9
the performance of i-hi c: ini+■■! =i 1 cl-uJecj- MAC. Studies of
for additions? modificatiSnsandS^r Wlll.be USed as a bas^
during the next year The s4^m

PVementS that wil1 be ****
implemented on MulUcs. y S Pro5r^ed in PL/1 and is

in Tältl^Te'cTns^Ts ofsets'of^^ ^f info^tio„ stored
of relations among them that ar. ..?? J Elements (DE) and sets
(RDS) . The basic set-theo^et^^-f3 Relational Data Sets
for manipulating the RDS? P^itive operations are used

Given the Data Element Sets (DES) SI ^
Data Sets consist of n-tuples rtunT« tl'*'" Sn' the Re-ational
has its first element froS sit SlPf?«f de^ee^ ' ^^ of which
and so on. The Relation SeIcriptor?pnfnd-eleinent from S2'
TnLo:tUPie COmpOSed 0f tSe nSL^of (thi se'ts's"^^'6^111?10^' Suppose, for examnlp +-h=>-t- 4-i sets bi, S2, ... Sn,
sons' n^mes, lor^esses and LfL?"^ Element SetS for ***'
construct an RDS whic^wHl represent the0^!^^5' We r',ight

bers of these sets. The Rela??on n2 ^e relations among mem-
be the 3-tuple <person-Lmf i^ Descriptor for this RDS will
other tuples will eJpresrtAer^^3' telePh°ne-number>. All
these sets. In our lmn?!n,!«J felatlon among the members of

exclusively in^L^^L^rNu^r^rS are '^

the6 fSs^/^tTEilmenfLls^arelf' ^ ^ ^ ^' **
assigned to the Data Elemlnf«, Jtored, Reference Numbers are

the DES. m tL^^ond'p^t'of ^^ys^m^LL^-^^^^ 0n

are created and stored, and basic LJ-Jh^ ^txon Data Sets
ations are performed oA them? set-theoretic primitive oper-

pÄpÄ^ Play an important role
is immediately assigned a ReflrLL S K

enters the system, it
all subsequent operSfons on tha^DE Th'^J!;6.^ ^ USed for

ing and assigning RN to DE preserved'thJo^00 "*** for Stor-
guarantees that a particular DSfrL^L0rd?ring of the DE and the system. Parncuiar DE is stored only one time within

C. Management Information Systems

u^ertÄhL' yefartWO ZTITTJ^T^ S*St™S has b-n
tion of Project M^C The o?her ff/3 ^ aid in the administra-
Sloan School. 0ther 1S for the administration of the

and6 ^r^l^/^r^iS!!^ n1—ted by A. J. strnad
above, m its initial v!.ofu1PUlatlon system described
active data storage? retrleiaJ' S^^f^ Wil1 Provide int^-
tion support for the personnel'^nPUlaJ10?' and ^port-genera-
control, and ^0111^^=^^^^

106

INTERACTIVE MANAGEMENT SYSTEMS

office. The personnel function has been implemented and exper-
iments are under way to evaluate its performance.

The Sloan School system, under the direction of Prof. M. S. Scott-
Morton and Prof. J. F. Rockart, has focused on the analysis and
design of a decision support system for budgeting. The progress
to date has been mainly in the initial decision analysis and tool
building. A model of the current budgetary methods in the Sloan
School has been developed. The budgetary decisions made by admin-
istrative personnel have been identified, and the information
required for these decisions has been determined.

D. Studies of Access Control and Privacy

A Master's thesis by R. C. Owens, Jr., "Primary Access Control in
Large-Scale Time-Shared Decision Systems", was completed in May
1971. The thesis identified four primary dimensions of the access
control: 1) the physical level at which to apply control, 2)
the fineness of distinction to the term "access", 3) the meaning
of the term "user identification", and 4) the degree of sophisti-
cation employed in automatically assigning restrictions to new
data files.

Within the context of MacAIMS, the Project MAC Advanced Inter-
active Management System, the design of an access-control sys-
tem is presented which takes positions along these four dimen-
sions appropriate for controlling access in a Management Deci-
sion System. Support is provided for constraints specified as
general logical restrictions based on 1) the characteristics
of the entity requesting access, 2) the content of the sensitive
data item, 3) the context in which the sensitive item appears,
4) proper completion of an interactive procedure, and 5) com-
binations of any of these. The access levels that may be speci-
fied are based on the logical (not the physical) nature of the
interaction that the user requests.

The system presented here is an interim system in that it does
not solve all the access-control problems of MacAIMS. Among the
unsolved problems is that of Truth: in a data management sys-
tem that provides a powerful set of operators, it is easy to
create false information in very subtle ways. Another problem
is that of conflicts of privacy. Solutions to these problems
must be found before the access-control scheme will be complete.

R. C. Goldstein has begun a doctoral thesis, "The Political Dyna-
mics of Information and Privacy", in which he intends: 1) to in-
vestigate the interaction between individual privacy and "quality
of life" in a society, and 2) to explore techniques that can be
used to protect privacy.

E. Modeling of Organizations

P. Kleindorfer, M. Lenot, H. J. Siegel and Prof. J. I. Elkind
have just begun a study of organizational models. The opera-
tions of Project MAC, as an example of a research and develop-
ment organization, are being analyzed. We are obtaining a des-
cription of the principal activities of the Project and we shall

107

v

INTERACTIVE MANAGEMENT SYSTEMS

attempt to express this description in the form of a quantita-
tive model.

Publications 1970-1971

Goldstein, Robert C, "Helping People Think", Naval Research
Reviews, January 1971; also Project MAC Technical Memorandum
25, April 1971, AD 721-998.

Goldstein, Robert C, "The Substantive Use of Computers for
Intellectual Activities", Project MAC Technical Memorandum 21,
April 1971, AD 721-618.

Goldstein, Robert C., and Strnad, Alois J., "The MacAIMS Data
Management System", presented at the ACM SICFIDET Workshop on
Data Description and Access, Houston, Texas, November 1970;
also Project MAC Technical Memorandum 24, April 1971. AD 721-
620.

Goldstein, Robert C, "Position Paper on Computers, Data Banks
and Bill of Rights", prepared for Subcommittee on Constitutional
Rights, Committee on the Judiciary, U. S. Senate, March 1971;
AD 721-670.

Owens, Richard C., Jr., "Primary Access Control in Large-Scale
Time-Shared Decision Systems", thesis. Master of Science, Sloan
School, M.I.T., June 1971; also MAC TR-89, AD 728-036.

Strnad, Alois J. , "The Relational Approach to the Management
of Data Bases", Project MAC Technical Memorandum 23, April 1971,
AD 721-619; material also accepted for presentation at IFIPS.
August 1971.

Wells, Douglas M., "Transmission of Information between a Man-
Machine Decision System e .d its Environment", Project MAC Tech-
nical Memorandum 22, April 1971, AD 722-837; material also
accepted for presentation at IFIPS, August 1971.

\
108

-■■ ™.- ■

INTERACTIVE MANAGEMENT SYSTEMS

SIMPL PROJECT*

of^sr^?? but^f harnotleln^ OPer
h

a?le ^ the be^^g
of the advanced feature^o/llMPrSere^ot^lSlf a?d mOSt

the system was used by approximate!J?/™LS 5le* In ku<3™*t'
Sloan School Summer Session SlS,nJfT 20

c
me^bers of a special

period we discoveJecl m^nj of th^ h,^ " ^^' dUring which

first system. A users^manual 1* !? ^ limitations of that
the Sloan School. aS alSO hurriedly prepared for

totyprs^f^L'^eirL^^vis^^119 ^^ifyin, that pro.
documentation The svstL wl« J?! expanding the descriptive
School simulation cllss MS 572^n used^Xtensively by the Sloan
continuous class use quiikl^reieSed^h^h Fal1 Semester- ^his
system. By the end of the LmSSr theq^M?? ^^^ in the

- system, and^me^ ^^^^e^L^e^de^^ ^

wL^^Lnl^^e^Lb^bul ir±?b?f f
6 "^ ^ nesses: xeiiaciy, but it exhibited several major weak-

iLT"ansUto? UselHaeM"" ^«w«" excessively slow.

I^lS" WaS --"-- - -nrt^-lönTtLe^ -0-

Ät,^ S^r SeUKr T^V ""^ t-»"P^t

entire model "henSver he want^^81"^ and """»P"« his
any part of the Si. ed t0 make a s,,,a11 chan9e "

Thus, the system has
user an "incremental"
to undertake the desi
which would be more e
easily accommodate al
system. We felt that
enable us to produce
amount of time.

not yet realized our goal of giving the

an ai^™0? SyStem- We therefore decided
gn and implementation of a new system
1 ihi:6^^/11 resPects, and which would
1 the additional features of the full SIMPL
our experience with the old system would

the improved system in a relatively short

1

^he^f^ G1^.^ SIMPLE '-up decided to change Its name to

109

■

INTERACTIVE MANAGEMENT SYSTEMS

The new system (now called Version 2) was designed and programmed
beginning in February 1971, and is now in the final stages of
testing and debugging. Besides being more efficient in trans-
lation, compilation and execution, Version 2 includes a complete
tracing capability, allows external activities, produces numer-
SSr.?^! ?!: ^ 0^iented statistics, and supports the interactive
SIMPL Monitor. None of these features was available in the
earlier Version 1. The SIMPL Monitor itself is written and work-
ing; it is a very flexible run-time system which allows the user
almost complete freedom to inspect and modify his model, then
to continue or restart the simulation.

The SIMPL system has also been conscientiously documented. At
present, documentation comprises three manuals. The SIMPL
Primer is a short description of SIMPL, intended to give new
users a quick introduction to the system. The SIMPL Reference
?4-an"al contains a complete description of all features of the
system and their use. The SIMPL Implementation Manual describes
.he Multics implementation of SIMPL.(The latter currently
describes only Version 1; several new chapters have yet to be
added to bring it up to date.)

Current plans call for finishing work on the SIMPL system by
30 September 1971, and releasing it to the M.I.T. community for

?o??rcJ USe; u™? SyStem Wil1 undergo a final test during the
iy/i Sloan School Summer Session Simulation Seminar in late
August. Between now and then, we plan to implement a few new
features (including process priorities, ranked sets, and inter-
polation functions), to complete the implementation manua], and
generally to streamline the system for release to the public.

There will, no doubt, be a continuing need for maintenance
throughout the 1971-1972 school year and plans are being made
to provide that assistance. Also, the installation of the Ver-
sion 2 PL/1 compiler may necessitate some slight reprogramming.

There are no present plans to add a well-integrated graphical
facility to SIMPL, using something like the IMLAC PDS-1, although
n^LV Tf ai3c

ex^lting thesis Project. Also, we have com-
pletely written off the idea of ever implementing a true inter-
preter for the SIMPL language, deeming that far too big a job
and not worth the effort now that we allow external activities
to be separately compiled and debugged. It is our hope that
we can redirect our efforts from developers of SIMPL to users

110

■ J ■ : ,

I

mmmam wtmm

MATHLAB

Prof. W. A. Martin
Prof. J. Moses

Instructors, Research Associates, Research Assistants and Others

R. J. Fateman
P. S. Wang

M. R. Genesereth
E. Kohn
E. C. Rosen
S. E. Saunders

Undergraduate Students

E. Tsiang
L. E. Widman
R. E. Zippel

DSR Staff

J

\

M. J. Ablowitz
H. 0. Capps
J. P. Golden

K. Young

L. P. Rothschild
R. C. Schroeppel

Support Staff

111

MM

mm

XI. MATHLAB

During the past year the Mathlab group has continued to develop
the MACSYMA system for interactive algebraic manipulation. The
principal modules of MACSYMA are shown in Fig. 1. Those indi-
cated by circles are complete.

MANIPULATION
OF

POWER
SERIES

RISCH
INTEGRATION
ALGORITHM

FIG. 1. THE MACSYMA SYSTEM.

113 PRECEDING PMC HANK

i .ZliVmk'StZ.'.Tmmi.rt*^*.--

.

I

MATHLAB

Seven papers describing MACSYMA and related work of
were presented at the Second Symposium on Symbolic
Manipulation held in Los Angeles, 23-25 March 1971.
now reached a point where it is both a useful tool'
tion of real problems and a convenient base for res
algorithm analysis, and development of advanced sys
applied symbolic mathematics. We are beginning to
for the solution of several problems of interest in
and physics.

our group
and Algebraic
MACSYMA has

for the solu-
earch in
tems for
use MACSYMA
mathematics

With Prof. Bers, of the M.I.T. Department of Electrical Engineer-
ing, we are using MACSYMA to investigate the properties of the
dispersion relation of a linear system.

With Dr. Eytan Barouch, of the M.I.T. Department of Mathematics,
we explored some problems in statistical mechanics.

Quantum mechanical calculations for Mr. F. Heile's S. M. thesis
(M.I.T., Physics) were done in MACSYMA.

Within our own group, L. Rothschild and Prof. J. Moses have
used MACSYMA for testing mathematical conjectures, and R. J.
Fateman has used the system for solving a large number of sets
of simultaneous linear equations arising in the analysis of
MACSYMA's polynomial manipulation routines.

New algebraic manipulation algorithms are also under investiga-
tion. Recently developed polynomial manipulation algorithms
using modular arithmetic have been implemented. General methods
of obtaining simplification rules for functions, defined by
differential equations, are also being developed.

Publications 1970-1971

Martin, William A. and Richard J. Fateman, "The MACSYMA System",
in Second Symposium on Symbolic and Algebraic Manipulation, As-
sociation for Computing Machinery, Los Angeles, California,
March 23-25, 1971, pp. 59-75.

Martin, William A., "Computer Input/Output of Mathematical
Expressions", in Second Symposiuia on Symbolic and Algebraic
Manipulation, Association for Computing Machinery, Los Ange
California, March 23-25, 1971, pp. 78-89.

Angeles,

Moses, Joel, "Algebraic Simplification: A Guide for the
Perplexed", in Second Symposium on Symbolic and Algebraic
Manipulation, Association for Computing Machinery, Los Angelas,
California, March 23-25, 1971, pp. 282-304.

Fateman, Richard J., "The User-Level Semantic Matching Capability
in MACSYMA", in Second Symposium on Symbolic and Algebraic Mani-
pulation, Association for Computing Machinery, Los Angeles'^
California, March 23-25, 1971, pp. 311-323.

114

,

I

MATHLAB

Publications 1970-1971 (cont.)

Martin, William A., "Determining the Equivalence of Algebraic
Expressions by Hash Coding", in Second Symposium on Symbolic and
Algebraic Manipulation, Association for Computing Machinery, Los
Angeles, California, March 23-25, 1971, pp. 305-310.

Moses, üoel, "Symbolic Integration: The Stormy Decade", in
Second Symposium on Symbolic and Algebraic Manipulation, As-
sociation for Computing Machinery, Los Angeles, California,
March 23-25, 1971, pp. 427-440.

Wang, Paul S., "Automatic Computation of Limits", in Second
Symposium on Symbolic and Algebraic Manipulation, Association
for Computing Machinery, Los Angeles, California, March 2 3-25,
1971, pp. 458-464.

115

PROGRAMMING LANGUAGES

Prof. J. J. Donovan

Instructors, Research Associatesy Research Assistants and Others

V. Altman
J. D. DeTreville
R. Earle
L. I. Goodman
G. Holt
J. Johnson
W. J. Klos

D. König
S. E. Madnick
W. C. Michels
P. Olson
H. M. Toong
L. E. Travis

P. G. Bras
R. Davis
C. A.Kessel
N. V. Kohn

Undergraduate Students

J. C. Lind
J. Quimby
J. L. Reuss
A. M. Solish

D. Goldthorpe
E. F. Nangle

H. Adler

Support Staff

Guest

mmm PACE BLANK

117

mm

i

XII. PROGRAMMING LANGUAGES

A. Introduction

During 1970-1971, research in the Programming Languages Group
focused on analysis of languages and their translators (compilers)
and the environment in which they exist (operating systems).

B. Canonic Systems

A canonic system is a type of formal system that operates on
several sets of strings over a finite alphabet. Canonic systems,
(equivalent to Smullyan's elementary formal systems) are a var-
iant of Post's canonical syscems. In canonic systems, the gen-
eral framework of productions or string-transformation rules is
replaced by a system of axioms (canons) and by the logical rules
of substitution for variables and detachment (modus ponens).
A canonic system defines a set of inter-related predicates, each
of which i.' a set of strings.

In particular:

A canonic system is a sextuple

£=(C,V,M,P,S,D)

C is a finite set of canons

V is an alphabet of terminal symbols used to form the
strings generated (i.e., provable) by ^

M is a finite set of variable symbols (variables)

P is a finite set of predicate symbols (predicates) used
to name sets of n-tuples. The number of components in
the n-tuples denoted by a predicate is the degree of
the predicate

S is a finite set of punctuation signs used in writing
canons

D (SP) is a set of sentence predicat-es, the union of
which will be defined to be the language specified by
the canonic system

Canonic systems have been used to specify the syntax and the
translation of programming languages. They have served as a
data base for a generalized translator for computer languages,
for proving various theorems as to their mathematical power and
their formal properties, and they have been used to study the
complexity of translators and languages.

C. Power of Canonic Systems

We have proven a general theorem relating canonic systems to
various types of formal grammars.

PRECEDING PAGE BLANK
119

■ :. ,. , ■ m

PROGRAMMING LANGUAGES

Theorem. For every type of grammar, there exists a cla«^ of
canonxc systems with the property; that for evlry gra^ar of
the type under consideration there exists a canonic avaJLJh^

cl^riurtLrtharr6 a?d that, belongsCtS0rcor^slond^ class. Further, that class of canonic systems can be constructed.

Many formal systems — for example, canonic systems «nH TWO n
grammars - have inherent undecfdabilit? probllmsT Inaellral

of^ime13 whetiL0rorth^o?Tble 0f ,tellin?' -"er a finltTlZunt UJL time, wnetner or not a given string is in the lancruacm n-F

ItllollTslllS oftUfieS 0f POWer help US t0 -SlrsJ^^ow0' characteristics of a grammar correspond to structural features

Sfven lit^tion t^C^OSe the Weakest ^anonar suitablfto a given situation. At the same time, by exploring restrictions
we learn about the structure of language. restrictions

Figure 1 is an inclusion diagram of the relationships between

D« Canonic Systems and Recursive Sets

dlfinlna^aH ^f ^"f Can eXist no class of c^onic systems
sets SL tLt ^aSS)

1T
2r? recursive sets, all the recursive

of Tvoe i define an *i% w xa axso or lype 1 (2,3). Grammars
" 4. i.u ael:i

i
ne all and only languages of Type i. but it i =;

itL?* CaSer ihat .(f0r i ^V 2nlZ grammars of Ty^i define languages of: Type i. •"•JfF" J- ueime

systems1'the Ncl^fo^ th\case that a certain class of canonic systems, the NCS2 for instance, would correspond to recursive
sets in the sense that it defines all and only recursive seH
without claiming monopoly in definlH? recu?ilJe£filFt?-e^ot
all canonic systems defining recursive sets are in thit clasj?

In particu- lar mNCS2^Sp^ iSihat ^^ can be no such class. F lru-
able "rHi^f ^ rhe Proof is hy ^agoniTI7atIoH-(after a sSu- able Gddelization" of canonic systems). \ ^r a suit

E. Generalized Translator

^Jffi^iKnt al^orithm which is capable of recognizinq strinas
produced by a canonic system has been developed aaaS extension

the input string ag^ins? t^SSence' p^ST^e^he^n^nlc

imr) ll~ril femove? the inadequacies of Backus Naur Form
BNf It H Cat1^ 0f the Syntax of Programming languages In
BNF it is impossible to describe many of the constraintfthat

^».

120

.

■ i.^

PROGRAMMING LANGUAGES

m
k
S
-P
in
>i
w
ü

■H
Ö
o
c
(0
u

X
m

I
Xi u

0)
ft

10
ü

•>+J 0] •H -d
rn nJ 6 o o w ro S ü 0) s
QJ -H -p -p c u

■P -Ö (0 (Ö cu
0) 0) >n(U ü>; c
>i U Ul (1) , h0
(0 O, M ^ (0

u tn u e a)
ux; •H 0) (0 tu cu

•H -P C Tl ß M M
G -H O a) i cn
0 > ß 4-1 M a) a)

3 m
(0 O 1 H T3 -^
ü o a w

u g m > -H ip 0)
(U 0 cn 0) -P -P o tn

■d -P s C -P H -H
o) m 4J ■H (d e 2 w e
■p >i ■p u U e Q) Q)
ü en a* ü -H O V u

•H (U rö -a M-l ■> (0 CU
M o ^ M (ü M U
+J-H tr -P u r-1 g-H 0)
w d (U c & ̂ ^ (Ö (ü -Ö H
<ü O tJ 0 tH S -P (ü a
^ c ü £! CO ö m M g
c (ö m C -P U O >.H<-H
o ü 0 O -H 2 S en — m

SS s

I
o iH

1

0) QJ
0, a
>i S

EH EH

Ai Dig
H C QJ -O

g TJ t0 fö
(U T3 >i
M cu tn o)

<U £3 U O
C OJ-H
O 1 C 0)
, G O tu
H O ß M
(8 p 3 &
(U ü 0)
C ^ -0^

•H t0 Ai t0
H g ^ in <U

(U f0 0 to
— ■P g -H
-P t0 0) to g
m >i M tu tu
<D to 1 +> M
M tu to eu
^ ÜH U

■H ft-H 0)
■P Ö -H -Ö H
ä o -p tu a

•H S 3 ft-H
« ü g— ra

1

Ui
W

1 H
ffi

rn u
«

w

g

p
u
0)

CO

(0
M
Ü

tn
cu
cn
(0

tr
c
cd

c
(0

-H
UM

K EH

121

.

PROGRAMMING LANGUAGES

exist in programming languages, such as the restriction that a
legal program" is not acceptable to a translator, even thoUg

h

correct in form, if not all of the reference labels in the pro-
gram correspond to statement labels (sometimes referred to as
"context-sensitive features"). «J-i-eu to as

F. Canonic Reduction Generator

The production language, as introduced by Floyd, affords the
capability of implementing a one-pass, one-puL^down-stick re-
cognizer for a computer language. The powe? of the production
language may be even further enhanced, however, by the intro-
duction of action routines, to be called for the purpose of
code generation upon the detection of a legal and complete
syntactic form These enhanced productions are referred to as
reductions. The problem exists, however, of getting from a

?heCoroblai0Sf0f " la^Uage t0 the P^uctions or reductTons.
Int h^e ? of generating productions has been solved by Barley,
but his algorithm specifies the generation of productions given
a BNF representation of a language. However, BNF is incapable
of representing the translation of a computed language? and
thus reductions cannot be generated from a BNF specification.

?Snot^SySte^S' 0n the 0ther hand' can be used to specify the
h^ ^ ?n 05 a comPuter language as well as its syntax. We
have developed an algorithm of generating reductions give^ a
canonic systems specification of a language. The algorithm

EarWs ^e WOS ^ Earley' ^ in fa°t' iS identica? to
?emi Lv.Ji? ^ f0r the CaSe 0f Si^le level canonic sys-
form iho ?P ' 0f course' that canonic systems rather than BNF
mSnLS ^ Sn9S?ge sPfcificati°n) ■ The algorithm has been imple-
mented to handle predicates of level one or two. In the case
of a level two predicate, the second element specifies the
action routine associated with the given syntactic form

G- Undecidability of Programming Languages

It is wel] known that in a language where conditional transfers
of control are available, it is decidable that a progrS contains
a loop but it is undecidable whether or not any par?i^lar

thePprogramV^i?e entered' or "— generally-/wSSJe? «not the program will ever wind up in a loop. Given an arbitrary
Turing machine, this follows the impoisibility of deciding

T^VattlrTr^^^1? ^rUC?ion wil1 -- Sexe^ted.
HAT? Jn^ Problenj is undecidable since we can replace all

LT infurüCtl0ns by ^ust one' and if we could decide whether
or not that instruction would ever be entered, we would havl
a solution to the halting problem.

PL/1 has a compile-time facility which enables the programmer:

to direct the compiler to compile a certain group of
source-language statements rather than some other group;

to include source-language statements or data stored on
some storage device;

und so on.

122

■ ■

PROGRAMMING LANGUAGES

A preprocessor performs these compile-time operations and gives
as output, a stream of source-language statements from which it
has determined that these and only these statements are to be
included and compiled in the program. In order to be able to
!^ ^tS function' the Preprocessor recognizes and executes,
among other compile-time statements, conditional transfers.

f^nff^ 0f f^t^ents given as input to a PL/1 compiler con-
tains statements to be compiled and statements addressed to the
preprocessor to be executed at compile time. Confining our
attention to these latter statements only, we see that thev
satisfy the conditions that they constitute an [alleqedl pro-
gram, written in a language which includes conditional trans-
fers of control. It is decidable whether there are any com-

eJer'eitJr rio^^ ^ ^ Undec:Ldable that the P^gr^ will

The compiler is presented with a stream of statements and is

r«?!^6! V'W16 it' if ^ is syntactically correct, or to
n?n^o ^i JS n0t' SuPPose' however, that the stream in-
cludes compile-time statements, and that these compile-time
statements include loops; if such a loop will ever be entered,
the compiler will not halt (assuming an infinite scratch file)
and the program will not be compiled (will not be accepted)
Since it is undecidable whether or not such a loop will ever be
iTtlrt^* 1S Undecidable that the input stream of statements
is accepted as a program. In other words, the set of PL/1
STnf5;^/6 Consider the compile-time fiSIlTty ii iTTTntegral
part of the language (as customary), is not recursive-

H* Measure Function of Programming Languages Resource Usage

L^!^? 0f comPlexity has been developed for algorithms imple-
mented in typical programming languages. The complexity of a
program may be interpreted in many different ways; a method
for measuring a specific type of complexity is a complexity
measure - some function of the amount of a particular resource
used by a program in processing an input. Typical resources
would be execution time, core, I/O devices, and channels.

An approach has been developed that analyzes the complexity of
a program with respect to a valid set of inputs — a finite set
?n iÜv-if*!' haltin(3 inputs. A program equation is developed
to make the transformations undergone by the inputs more expli-
cit. Using the equation, the input set is partitioned into
classes of constant complexity. The classes are used to compute
maximum, minimum, and expected complexities of the program on
tne input set.

Several equivalence relations have been defined, relating dif-
tr^fi/r^3"13 bVheir complexity. Complexity has also been
treated m terms of concatenation and functional equivalence of

I- Programming Systems Environment

As the interaction between programming languages and the

123

. . ■■ . : ■

PROGRAMMING LANGUAGES

operating system in which the language finds itself becomes less
„inni ^ fl"d.ourselv^ studying operating systems in our
tu ?Plu mOSt imPortant aspect of the operating system is
tnat the programming language must interact with the file svs-
tem. y

We have developed an approach to the design and study of file
systems that allows the designer of a file system to systemat-
ically implement and analyze the file system. This approach
has been used both for teaching file systems and for the desiqn
of file systems. =oj.yi*

These ideas have beeen further developed by investigating the
relationship of programming language requirements in the en-
vironment of a real-time computer-based sensor system. To this

S^erforthe^IBM^lSo!11 ^^ ^ C™^™™ processing

This included a software-assisted multilevel-priority interrupt
mechanism, an on-line simulation language, optimizing compiler
advanced binder, and generalized file system. compiler,

J' Community Activities

Members of the group were involved in two major community

?h^i^S*-J?-!eel.tha^ M'1^-'3 greatness and more generally
the responsibility of scientists throughout our country, will
lie not only in the advancement of technical knowledge of
achievements, but also in the dissemination of this knowledge
to the communities and to the people that may use this know-

lna9ft«f^
C^V^y,^We engaged in fcWO P^jectsf each address-

ing itself to the Qissermnation of knowledge to different arouos
of people. The first group was the community and its tndivfd-P

uals. This project was undertaken during the summer of 1971.
We selected a community that is facing many technical problems,
e.g., communications, sewerage disposal, power distribution,
and mosquito control. We sought support from the town's
Sr^r" to suPPort students from the town to investigate
the problem. These students worked in conjunction with M.I.T.
stuuGnts•

The other group, to which we have addressed ourselves, is the
w2 SfdUC^ed' u"derPrivileged people in the Boston community.
ShnnT JH KSSed our!elves to this group through the Lowell
School, which is a school under the auspices of M.I.T. in the
^"f; .ü6 haVe h?lped t0 ^structure the school to aSmit
and teach these people and try to expose them to the process
of learning and the rewards and satisfaction thereof. We have
centered the program around computers, using them as a tool
for accomplishing our objectives.

K. Teaching

Member, of our group have been involved in conceiving and teach-
ing several courses whose activities are directly related to

languages reSearCh ^^^ of this ^oup, namely, programming

,

1

124

■

PROGRAMMING LANGUAGES

Course 1 - Progranuning Languages in Formal Systems -
A Graduate Credit Course

Course 2 - Operating Systems - Independent Activities
Period Seminar

Course 3 - Digital Computer Programming Systems - Under-
graduate

Publications 1970-1971

Altman, Vernon, "A Canonic Reduction Generator", S. B. Thesis,
Department of Electrical Engineering, August 1970.

Donovan, John J., Preliminary Edition of Systems Programming,
McGraw-Hill, 1971, New York.

Earle, Roy, "Global Optimization in Algebraic Language Compilers",
S.M. Thesis, Department of Electrical Engineering, May 1971.

Holt, George, "Semantic Models for Data Description", S.M.
Thesis, Alfred P. Sloan School of Management, June 1971.

Johnson, Jerry, "File System to Support Time Sharing in a Multi-
Programming Environment", S. M. Thesis, Department of Electrical
Engineering, June 1970.

Klos, Walter J., "A Program Capable of Printing Aggregate Data",
S. B. Thesis, Department of Electrical Engineering, October
1970.

Madnick, Stuart E., "Development of Computer-Based Sensor Sys-
tems", Proceedings of Third Hawaii International Conference on
System Sciences, University of Honolulu, Honolulu, Hawaii,
January 1970.

Madnick, Stuart E., "Design and Construction of a Pedagogical
Micro-Programmable Computer", Proceedings of Third Annual Work-
shop on Microprogramming, University of Buffalo, New York
October 1970.

Madnick, Stuart E., "Program Parallelism Based upon Computation
Schemata", Proceedings of the VI International Congress on
Cybernetics, Namur, Belgium, September 1970.

Ramchandani, Chander, "Debugging Scheme to Run Interpretively
in Virtual Memory", S. M. Thesis, Department of Electrical
Engineering, January 1970.

Travis, Leon E., "A Cobol Interpretive System", S. M. Thesis,
Department of Electrical Engineering, August 1970.

Zilles, Stephen, "Synchronization of Resource Usage in a Small
Information System", Proceedings of Third Hawaii International
Conference on System Sciences, University of Honolulu, Honolulu,
Hawaii, January 1970.

125

.-v-,*jigli*3*m*'. -- M

ARTIFICIAL INTELLIGENCE

July 1969 to December 1970

Prof. M. Minsky
Prof. S. Papert

Academic Staff

Prof. M. J. Fischer
Prof. P. E. O'Neil
Prof. S. Papert

Prof. M. S. Paterson
Prof. P. Winston

Instructorsy Research Associates, Research Assistants and Others

H. Abelson
E. Charniak
R. J. Donaghey
M. Dowson
E. Freuder
I. Goldstein
B. K. P. Horn
L. Krakauer
R. LeCompte

D. T. Dalton
w. Freeman
J. Freiberg
p. Gagner
J. Gaschnig
s. Glazer
N. Goodman
D. C. Hölzer
P. Jensen

M. Beeler
R. H. Freyberg
R. W. Gosper, Jr.
R. Greenblatt
A. K. Griffith
W. Henneman
T. F. Knight
W. Neely
R. Noftsker
J. S. Roe

J. Lerman
S. Lothes
R. B. Roberts
M. Speciner
D. Spencer
G. J. Sussman
D. Waltz
T. A. Winograd

Undergraduate Students

R. F. Mohl
J. Rubin
J. C. Shockey
M. N. Slusarczuk
B. M. Träger
E. D. Trautman
N. S. Weinstein
J. Whitbeck
L. F. Yeager

DSR St aff

L. P. Rothschild
P. R. Samson
R. Schroeppel
J. Shah
S. W. Smoliar
C. Solomon
G. L. Wallace
J. L. Whit.^
R. W. Williams
L. R. Wilson

PREtaiNS PAGE BUNK

127

■

mmB&piw&imMimniimtii'wm

ARTIFICIAL INTELLIGENCE

-

T. F. Callahan
T. Carlton
P. DeCoriolis
F. J. Drenckhahn
D. E. Eastlake
J. L. Fowler
M. Harpole
P. Holloway
E. I. Kampits

Support Staff

R. J. Lebel
G. H. H. Mitchell
G. Roe
L. A. Sands
D. Silver
N. F. Stone
C. T. Waldrop
J. B. Weiss

I

R. April
Prof. W. W. Bledsoe
R. Boyer

Guests

J. Cohen
J. Jaroslav

vi

Mi
v t

128

,™._.,.,„.-r,; r,_

I. ARTIFICIAL INTELLIGENCE

The A. I. Laboratory is concerned with understanding the orin-
crples of intelligence. Its goal is to develop a systematic
approach to the areas that could be called Artificial Intelli-
gence, Natural Intelligence, and Theory of Computation. Here
are its main current foci of attention!

ARTIFICIAL INTELLIGENCE

m^n-J
01"0^"'* visio"' mechanical manipulation, advanced auto-

mation. Models ror learning, induction, analogy. Schemata for
organizing bodies of knowledge. Development of "hetera-chical"
program control structures. "««jra^cmcai

NATURAL INTELLIGENCE

nn** M°deis of structures involved in "common sense thinking".
Understanding meanings, especially in natural language narra-
thln^*™" educaticial methodology, based on development of
the child's abilities to describe processes.

THEORY

Computational trade-offs between time, memory size, and
processor parallelism. Study of computational geometry as a
tool for comparing different structures and strategies. Theory

^languages analYSiS 0f COI"Plexities of certain algorithms

These subjects are all closely related. The natural language
project is intertwined with the common sense meaning and
reasoning study, in turn essential to the other areas, includ-
"h?^o Ji810^' .0ur main exPerimental subject worlds, the
blocks world" robotics environment and the children's story
environment, are better suited to these studies than are the
puzzle, game, and theorem-proving environments that became
traditional in the early years of artificial intelligence re-
search. Our evolution of theories of intelligence has become
closely bound to the study of development of intelligence in
w^h ^n' Ihe e^ational methodology project is symbiotic
with the other studies, both in refining older theories and
in stimulating new ones; we hope this project will develop
into a center like that of Piaget in Geneva.

tLil hf crystallized over the past few years, the main ele-
ments of our viewpoint can be summarized cryptically:

Thinking is based on the use of SYMBOLIC DESCRIPTIONS and
description-manipulating processes to represent a variety of
kinds of KNOWLEDGE - about facts, about processes, about
problem-solving, and about computation itself, in ways that
are subject to HETERARCHICAL CONTROL STRUCTURES — systems in
which control of the problem-solving programs is affected by
heuristics that depend on the meanings of events.

129

WWWfMHIi«WW|U».

I

ARTIFICIAL INTELLIGENCE

The ability to solve new problems ultimately requires the in-
telligent agent to conceive, debug, and execute new procedures
Such an agent must know to a greater or lesser extent how to
plan, produce, test, modify, and adapt procedures; in short,
it must know a lot about computational processes. We are not
saying that an intelligent machine, or person, must have such
knowledge available at the level of overt statements or con-
sciousness, but we maintain that the equivalent of such knowl-
s stem represented in an effective way somewhere in the

This report illustrates how these ideas can be embodied into
effective approaches to many problems, into shaping new tools
for research, and into new theories we believe important for

anSPEducaUon?Ce ^ genera1' aS Wel1 aS f0r Robotics' Semantics,

Much of the material in this report is also part of a draft of
a book on Thinking. For information about subsequent drafts
and publication write to the authors at the A. I. Laboratory.

The Laboratory is seeking young workers who believe they can
do work of the quality described herein, as staff, graduate
students, or post-doctoral fellows.

1•0 Vision and Description

When we enter a room, we feel we see the entire scene. Actually,
at each moment most of it is out of focus, and doubly imaged; our
peripheral vision is weak in detail and color; one sees nothing
in his blind spot; and there are many things in the scene we
have not understood. It takes a long time to find all the hid-

?ira?
ni™«/üACÜild,S PUZZle Picture' yet one feels from the

first moment that he sees everything. People can tell us very
little about how the visual system works, or what is really
seen One explanation might be that visual processes are

so fast, automatic, and efficient that there is no place for
introspective methods to operate effectively. We think the
problem is deeper. In general, and not just in regard to vi-
sion, people are not goo, at describing mental processes; even
when their descriptions seem eloquent, they rarely agree either
with one another or with objective performances. The ability
to analyse one's own mental processes, evidently, does not
arise spontaneously or reliably; instead, suitable concepts
for this must be developed or learned, through processes simi-
lar to development of scientific theories.

Most of this report presents ideas about the use of descriptions
in mental processes. These ideas suggest new ways to think
about thinking in general, and about imagery and vision in par-
ticular. Furthermore, these ideas pass a fundamental test that
rejects many traditional notions in psychology and philosophy;
if a theory of Vision is to be taken seriously, one should be
able to use it to make a Seeing Machine!

1 • 1 Reasoning by Analogy

To emphasize that we really mean "seeing" in the normal human

130

■, v^\'^****m*l****&»*&&mm

■■■ ■

ARTIFICIAL INTELLIGENCE

sense, we shall begin by showing how a computer program -- or
a person -- might go about solving a problem of "reasoning by
analogy". This might seem far removed from questions about
ordinary "sensory perception". But as our thesis develops, it
will become clear that there is little merit in trying to dis-
tinguish "sensation" or "perception" as separate and different
from other aspects of thought and knowledge.

When we give an "educated person this kind of problem from an
IQ test, he usually chooses the answer "Figure 3":

A is to B
is to whicli one. of ftas«?

o

/c K
O

as C

DA A0

People do not usually consider such puzzles to be problems
about "vision". But neither do they regard them as simply
matters of "logic". They feel that other, very different
mental activities must be involved. Many people find it hard
to imagine how a computer program could solve -chis sort of
problem. Such reservations stem from feelings we all share;
that choosing an answer to such a question must come from an
intuitive comprehension of shapes and geometric relations,
rather than from the mechanical use of some rigid, formal
rules.

However, there is a way to convert the analogy problem to a
much less mysterious kind of problem. To find the secret, one
has merely to ask any child to justify his choice of Figure 3.
The answer will usually be something like this.'

"You go from A to B by moving the big circle down.
You go from C to 3 in the same way by moving the big triangle."

On the surface this says little more than that something common
was found in some transformations relating A with B AND C with
3. As a basis for a theory of the child's behavior it has at
least three deficiencies:

It ioes not say how the common structure was discovered.

It appears to beg the question by relying on the listener
to understand that the two sentences describe rules that are

131

ARTIFICIAL INTELLIGENCE

identical in essence although they differ in details.

It passes in silence over the possibility of many other
such statements (some choosing different proposed answers).
For example, the child might just as well have said:

"You go from A TO B by putting the circle around the
square..."

or

Aha,

"You go from A TO B by moving the big figure down," etc.

If that last statement were applied also to C and 3, the
rules would in fact be identical! This leads us to suggest a
procedure for a computer and also a "mini-theory" for the child:

Step 1. Make up a description DA for Figure A and a de-
scription DC for C.

Step 2. Change DA so that it now describes Figure B.

Step 3. Make up a description D for the way that DA was
changed in Step 2.

Step 4. Use D TO CHANGE DC. If the resulting description
describes one of the answer choices much better than any of the
others, we have our answer. Otherwise, start over, but next
time use different descriptions for DA, DC and (perhaps) for D.

Notice that Step 3 asks for a description at a higher level:
The descriptions in Steps .1 and 2 describe pictures, e.g.,
"There is a square below a circle." The description in Step 3
describes changes in descriptions, e.g., "The things around the
upper figure in DA is around the lower figure in DB." Our thesis
is that one needs both of these kinds of description-handling
mechanisms to solve even simple problems of vision. And once
we have such mechanisms, we can easily solve not only harder
visual problems but. we can adapt them to use in other kinds of
intellectual problems as well ~ for learning, for language,
and even for kinesthetic coordination.

This schematic plan was the main idea behind a computer program
written in 1964 by T. G. Evans. Its performance on "standard"
geometric analogy tests was comparable to that of fifteen-year
old children! This came us a great surprise to many people,
who had assumed that any such "mini-theory" would be so extreme
an oversimplification that no such scheme could approach the
complexity of human performance. But experiment does not bear
out this impression. To be sure, Evans' program could handle
only a certain kind of problem, and it does not become better
at it with experience. Certainly, we cannot propose it as a
complete model of "general intelligence". Nonetheless, analogi-
cal thinking is a vital component of thinking, hence having this
theory (Evans, 1964), or some equivalent, is a necessary and im-
portant step.

132

■ -

ARTIFICIAL INTELLIGENCE

In developing our simple schematic outline into a concrete and
complete computer program, one has to fill in a great deal of
detail: one must decide on ways to describe the pictures, ways
to change descriptions, and ways to describe those changes. One
also has to define a policy for deciding when one description
"fits much better" than another. One might fear that the pos-
sible variety of plausible descriptions is simply too huge to
deal with; how can we decide which primitive terms and rela-
tions should be used? This is not really a serious problem.
Try, yourself, to make a great many descriptions of the rela-
tion between A and B that might be plausible (given the limited
resources of a child) and you will see that it is hard to get
beyond simple combinations of a few phrases like "inside of",
"left of", "bigger than", "mirror-image of", and so on.

But let us postpone details of how this might be done (see
Evans, 1964) and continue to develop our central thesis: by
operating on descriptions (instead of on the things themselves),
we can bring many problems that seem at first impossibly non-
mechanical into the domain of ordinary computational processes.

What do we mean by "description"? We do not mean to suggest
that our descriptions must be made of strings of ordinary-
language words (although they might be). The simplest kind of
description is a structure in which some features of a situa-
tion are represented by single ("primitive") symbols, and rela-
tions between those features are represented by other symbols
— or by other features of the way the description is put to-
gether. Thus, the description is itself a MODEL — not merely
a name — in which some features and relations of an object or
situation are represented explicitly, some implicitly, and some
not at all. Detailed examples are presented in 4.3 for pictures,
and in 5.5 for verbal descriptions of physical situations. In
5.6 there are some descriptions which resemble computer programs.
If we were to elaborate our thesis in full detail we would put
much more emphasis on procedural (program-like) descriptions
because we believe that these are the most useful and versatile
in mental processes.

1.2 Children's Use of Descriptions

The theory of analogy we have just proposed might seem both too
simpleminded and too abstract to be plausible as a theory of
how humans make analogies. But there is other evidence for the
idea that mental visual images are descriptive rather than
iconic. Paradoxically, it seems that even young children (who
might be expected to be less abstract or formal than adults)
use highly schematic descriptions to represent geometric informa-
tion.

We asked a little boy of 5 years
to draw a cube. This is what he
drew. "Very good," we said, and
asked: "How many sides has a
cube?" "Four, of course," he
said.

I

133

■^^&wmmm»<tmimitii^*-■■■:■■-:

■

ARTIFICIAL INTELLIGENCE

Of course, we agreed, recognizing that he had understood
the ordinary meaning of "side", as of a box, rather than the
mathematicax sense in which top and bottom have no special
status. "How many boards to make a whole cube, then?"
"Six," he said, after some thought. We asked how many he had
drawn. "Five." "Why?" "Oh, you can't see the other one!"

0 Then we drew our own conventional
"isometric" representation of a
cube,, We asked his opinion of
it. "It's no good." "Why not?"
"Cubes aren't slanted!"

Let us try to appreciate his side of the argument by consider-
ing the relative merits of his "construction-paper" cube against
the perspective drawing that adults usually prefer. We conjec-
ture that, in his mind, the central square face of the child's
drawing, and the four vertexes around it, are supposed in some
sense to be "typical" of all the faces of the cube. Let us
list some of the properties of a real three-dimensional cube:

Each face is a square.
Each face meets four others.
All piano angles are right angles.
Each vertex meets 3 faces.
Opposite edges on faces are parallel.
All trihedral angles are right angles, etc.

Now, how well are these properties realized in the child's
picture?

Each face is a square.
The "typical" face meets four others!
All angles are right!
Each typical vertex meets 3 faces.
Opposite face edges are parallel!
There are 3 right angles at each vertex!

But in the grown-up's pseudo-perspective picture we find that:

Only the "typical" face is square.
Each face meets only two others.
Most angles are not right.
One trihedral angle is represented correctly in its
topology, but only one of its angles is right.
Opposite edges are parallel but only in "isometric",
not in true perspective.

And so on. In the balance, one has to agree that the geometric
properties of the cube are better depicted in the child's draw-
ing than in the adult's! Or, perhaps, one should say that the
properties depicted symbolically in the child's drawing are
more directly useful, without the intervention of a great deal
more knowledge.

One could argue that in the adult's drawing, the square face
and the central vertex are understood to be "typical". We

134

ARTIFICIAL INTELLIGENCE

?hln ^^ hTefit 0f the doubt- Also' °ne never sees more
or^eel ih^ "5 a CUbe' bUt chil^en can't seem to know tMs
'•LuT-LTs^^i; Sin^S!- The P-allelisms and the g^e^al

Incidentally, we do not mean to suqqest that our ^hiln h-* ■
rll^LST1? "^ the Sraphlcl? iLge'ofhf/drawing' bSt

experience. Pr0gram that learns new concepts as a result of

Not all children will draw a cube just this way. Thev uauallv
draw some arrangement of squares, however and this so^^7

presentation is typical of children's dryings, wMchreanv^'

Tat
ntLlPfTJreS" % a11' bUt attemPtS to «et'dowi graphically

their partf? are ^ lmportant relationso between things and
y

Thus "a ring of children holding
hands around the pond" is drawn
like this, perhaps because the
correct perspective view would
put some of the children in the
water.

to5?heiSro^d?hhld;L?rsaÄt£ee:PeOPle ™ *lAt ^ht "***

For the same reason, perhaps,
"trees on the mountain" is drawn
this way because trees usually
grow straight out of the ground.
It doesn't matter if an actual scene
is right in front of the child; he
will still draw the trees sideways!

A person is often drawn this
way, perhaps partly because the
body that is so important to
the adult doesn't really do
much for the child except get
in his way, partly because it
does not have an easily-described
shape.

From all this we are led to a new view of what children's dr^w-

m h?« ? trying to makt a drawing whose description is close

in accord wltft?^ that .thing " or' PerhaP*' ** cSns^Scted
the^^logy^roble^ are^efateS: ThUS ^ draWing Pr°hU* ™*

We hope no reader will be offended by the schematic simoli-ii-v
of our discussion of "typical children's drawings"? tTtttnly

135

■■,..:,

ARTIFICIAL INTELLIGENCE

2,
\ ■

we are focusing ■ n some conunon phenomena, and neglecting the
fantastic variety and plasticity of what children do and learn,
Yet even in that plasticity we see the dominance of symbolic
description over iconic imitation.

Most children before 5 or 6 years
old draw pr.ople like this. Find
such a child and ask him, "Where is
his hair?" and driW feme, or
say, "Why doesn't lis nose stick
out?" and dravv an angular line in
the middle of -he- face.

Chances are that if the child
pays any attention at all and
likes your idea, these features
will appear in every face he
draws for the next few months.
The hair is obviously symbolic.
The new nose is no better,
optically, than the old, but
the child is delighted to learn
a symbolism to depict protusion.

There is a vast literature describing phenomena and theories
of "learning" in terms of the gradual modification of behavior
(or behavioral "dispositions") over long sequences of repeti-
tion and tedious "schedules" of reward, deprivation and punish-
ment. There is only a minute amount of attention to the kind
of "one-trail" experience in which you tell a child something,
or in which he asks you what some word means. If you tell a
child, just once, that the elephants in Brazil have two trunks,
and meet him again a year later, he may tell you indignantly
that they do not.

The success of Evans' program for solving analogy problems does
not prove anything, in a strict sense, about the mechanisms of
human intelligence. But such programs certainly do provide
the simplest (indeed, today the only) models of this kind of
thinking that work well enough to justify serious study.

It is natural to ask whether human brains "really" use symbolic
descriptions or, instead, manage somehow to work more "directly"
with something closer to the original optical image. It would
be hard to design any direct experiment to decide such a ques-
tion in view of today's limited understanding of how brains
work. Nevertheless, the formalistic tendencies shown in the
children's drawings point clearly toward the symbolic side.
The phenomena in the drawings suggest that they are based on a
rather small variety of elementary object-symbols, positioned
in accord with a few kinds of relations involving those symbols,
perhaps taken only one or two at a time. These phenomena are
not seen so clearly in the pictures of sophisticated artists,
but even so we think the difference is only a matter of degree.
While it is possible to train oneself to draw with quantitative
accuracy, some aspects of the "true" visual image, the very
difficulty of learning this is itself an indicator that the
symbolic mode is the more normal manner of performance. Even

•

136

.

ARTIFICIAL INTELLIGENCE

sophisticated adults often show a preference for unreal but
tidy "isometric" drawings over more "realistic" perspective
drawings:

even though a cube is never seen exactly as in (1). In any
case, all this suggests that "graphic" visual mechanisms be-
come operative later (if at all) in human intellectual develop-
ment than do methods based on structural descriptions. This
conclusion seems surprising because in our culture we are prone
to think of symbolic description as advanced, abstract, and
intellectual, hence characteristic of more advanced stages of
maturation.

2.1 Appearance and Illusion

Now consider some phenomena that might seem to be more visual,
less intellectual. These two figures show the same rectangle.

^^

^

<

^

But on the right, the diagonal stripes affect its appearance so
that (to most people) the sides appear to lean out and no longer
seem perfectly parallel. Such phenomena have been studies with
great intensity by psychologists. In the next two figures,
the central squares actually have the same grey color, but
everyone sees the one at the left as darker.

mi

A good deal is known about the effects of nearby figures or
backgrounds on another figure. Perhaps most familiar is the
phenomenon in which the directions of the oblique segments
make the horizontal line in the left figure appear shorter
than that in the right figure.

< > > <

137

*mngtgmim*mmm

ARTIFICIAL INTELLIGENCE

But the strangest illusion of all is this: to many psycholo-
gists these phenomena of small perceptual distortions have come
to seem more important than the question of why we see the
figures at all, as "rectangle", or "square", or as "double-
headed arrows!". Surely this problem of how we analyze scenes
familiar objects is a more central issue.

Thus one finds much
more discussion why
the smaller figure
looks larger in
pictures like this
than about why one
sees the figures as
people at all.

We agree that the study of distortions, ambiguities, and other
illusions" can give valuable clues about visual and other mech-

anisms. To resolve two or more competing theories of vision,
such evidence might become particularly useful. First, how-
ever, we need to develop at least one satisfactory theory of
how "normal" visual problems might be handled, particularly
scenes that are complicated but not especially pathological.

Let us look at a few more visual pheno-
mena. Both of these figures appear at
first sight to be reasonable pictures of
pyramid-bases — that is, of simple flat-
surfaced, five-faced bodies that could be
pyramids with their tops cut off. But in
fact. Figure B cannot be a picture of such
a body. For its three ascending edges
(if extended) would not meet at a single
point, whereas those of Figure A do form a
vertex for a pyramid.

So here we have a sort of negative illusion; Figure B would
not "match" a real photograph of any pyramid-vase. However,
it could match quite well an abstract description of a pyramid
base say, one that describes how its faces and edges fit
together (qualitatively, but not quantitatively).

Another topic concerns "camou-
flaged" figures. The figure
"4" embedded in this drawing
is not normally seen as such
because, we presume, one des-
cribes the scene as a square
and parallelogram.

Study of this kind of concealment can tell us something about
the "principles" according to which our visual system "usually"
describes scenes as made up of objects. But once the "4" has
been pointed out or discovered, it is then "seen" quite clearly.'
A good theory must also account for phenomena in which it is

138

ARTIFICIAL INTELLIGENCE

possible to change and elaborate one's "image" of the same
scene in ways that depend on changes in his interpretation
and understanding of the structure "shown" in the picture.

A simpler 7- and more interesting — example of a figure with
two competitive descriptions is the ordinary square.'9 Joung
children know the square and the diamond as two quite distinct
shapes, and the ambiguity persists in adults, as seen here
(See Attneave, 19 68.) nere.

The four objects at the left are ^ —
usually seen as diamonds, while B S
those on the right are seen as
squares. How can we explain
this? Since the individual objects m^
are in fact identical, the effect HI mm
must have something to do with mm BB
their arrangement. it is tempting " _
to incant the phrase — "the whole |
is more than the sum of the parts".

Now consider a descriptive theory. if one is asked to describe
Sih !??? ^ he "u11 Say something like: "There are two rows,
each with four objects. One is a horizontal row of — etc "
We ignore details here, but suggest that the description is
dominated by the grouping into rows, as indicated by their pri-
ority in the verbal presentation of the description. In Sec-
tion 4.6 we discuss a program that does something of this sort.

By "description" we do not usually mean "verbal des-
cription"; we mean an abstract data structure in which
are represented features, relations, functions,
references to processes, and other information. Be-
sides representing things and relations between things,
descriptions often contain information about the
relative importance of features to one another, e.g.,
commitments about which features are to be regarded
as essential and which are merely ornamental. For
example, much of linguistic structure is concerned
with the ability to embed hierarchies of detail into
descriptions: subordinate clause formation and other
word-order choices often reflect priorities and
progressions of structural detail in the descriptions
that are "meant". We will return to this in Section
5.

Once commited to describing a row of things, the choice between
seeing squares and diamonds begins to make more sense. Which
description does one choose? Apparently, the way one describes
a square figure depends very much on how one chooses (in one's
mind) the axis of symmetry. Consider the differences in the
figures descriptions in each of the two obvious choices of
orientation shown in the next figure.

139

■■■ ■. ■ ...

ARTIFICIAL INTELLIGENCE

points on axis
one point on each side
made of two triangles
unstable on ground
hurts when squeezed

sides parallel to axis
two points on each side
made of two rectangles
stable — flat bottom
safe to pick up

These two descriptions could hardly be more different! No
wonder that most 3 year olds do not believe that they are the
same. In fact, children's drawings of diamonds often come out
cLS

indicating that their descriptive image is a composition of
two triangles, or at least that the most important features are
the points on the symmetry axes,
solved: whatever process set
up the description in terms of
rows set up also a spatial frame
of reference for each group.

Our mystery is then almost

Since one has to choose an axis for each square and "other
things being equal" there is no strong reason locally for
either choice, one tends to use the axis inherited from the
direction of its "row". The fact that you can, if you want,
choose to see any of the objects as either diamond or square
only confirms this theoretical suggestion - the choice is by
default only, and hence would be expected to carry little
force.

Once this door is opened, it suggests that other choices one
has to make in visual description also can depend on other alien
elements in one's thoughts — as well as on other things in the
picture. Every simple figure is highly ambiguous. In a face,
a circle can be an eye, a mouth, an ear, or the whole head.
There should be no difficulty in admitting this to our theory
— or to the computer programs that demonstrate its consistency
and performance. Traditional theories directed toward physical
(rather than on computational, or symbolic) mechanisms were
inherently unable to account for the influence of other know-
ledge and ideas upon "perception".

140

ARTIFICIAL INTELLIGENCE

2.2 Sensation, Perception and Cognition

Our discussion of how images depend on states of mind is part
of a broader attack on the conventional view of the structure
of mind. In today's culture we grow up to believe that mental
activity operates according to some scheme in which informa-
tion is transformed through a sequence of stages like:

^ORL^^ENSATIO^-^ERCEPTIÖ^-W^E^OGNITIO^-^OGNITIOI^»'. . .

Although it is hard to explain exactly what these stages or
levels are, everyone comes to believe that they exist. The
"new look" in ideas about thinking rejects the idea that there
are separate activities like "perception" that precede and are
basically independent of "higher" intellectual activities.
What one "sees" depends very much on one's current motives,
intentions, memories, and acquired processes. We do not mean
to say either that the old layer-cake scheme is entirely wrong
or that it is useless. Rather, it represents an early concept
that was once a clarification but is ncv a source of obscurity,
for it is technically inadequate against the background of
today's more intricate and ambitious ideas about mechanisms.

The higher nervous system is embryologically, and
anatomically divided into stages of some sort and
this might suggest a basis for the popular-science
hierarchy. This makes sense for the most peripheral
sensory and motor systems, in which transmission
between anatomical stages is chiefly unidirectional.
But (presumably) when we go further in the central
direction this is no longer true, and one should
not expect the geometrical parts of a cybernetic
machine to correspond very well to its "computational
parts".

Indeed, the very concept of "part", as in a machine, must be
rebuilt when discussing programs and processes. For example,
it is quite common in computer programs — and,, we presume, in
thought processes ~ to find that two different procedures use
each other as subprocedures1 We shall see this happening
throughout Section 5. In such a case, one can hardly think of
either process as a proper part of the other. So the tradi-
tional view of a mechanism as a HIERARCHY of parts, subassemblies
and sub-sub-assemblies (e.g., the main bearing of the fuel pump
of the pitch vernier rocket of the second ascent stage) must
give way to a HETERARCHif of computational ingredients.

It is unfortunate that technical theories, and even practical
guidelines, for such heterarchies are still in their infancies.
The rest of this chapter discusses some aspects of this problem.

2.3 Parts and Wholes

A recurrent theme in the history of psychological thinking in-
volves recognizing an irrportant distinction without having the

141

ARTIFICIAL INTELLIGENCE

technical means to give it the appropriate degree of precision
Consequently, the dividing line becomes prematurely entrenched
in the wrong place. An influential example was the concept of
Gestalt". This word is used in attempts to differentiate

between the simplest immediate and local effects of stimuli,
and those effects that depend on a much more "global" influence
of the whole stimulus "field".
Here is a visual example in
which this kind of distinction
might be considered to operate:
In one sense, this arch is
"nothing but" three blocks.

But the arch has properties — as a single whole ~ that are
not inherited directly from properties of its parts in any
simple way. Some of those arch properties are shared also by
these structures:

r D
- - * M

t

Bt
T-rrr

MORE ARCHES

Obviously the properties one has in mind do not reside in the
individual building blocks, they "emerge" from the arrangements
of those parts. And one finds this in even simpler situations.
Obviously we react to a simple outline square in a way that is
very different from our reactions to four separate lines, and
rather similar to how we react to such graphically different,
figures as these:

o o o o o

o o

o o

o o

o o o o o

/^

< >

SQUARES

The question "whence comes the square if not from its parts"
is not really very serious here, for it is easy to make theories
about how one might "perceive" a shape if there are enough
easily-detected features to approximately delineate its

142

ARTIFICIAL INGELLIGENCE

m

geometric form. But there is no similarly easy solution to the
kinds of problems that arise when one looks at three-dimen-
sional scenes.

The next two figures are "locally identical" in the following
precise sense: Imagine innumerable experiments, in each of
which we choose a different point of the picture to look at,
and record what we see only within a very small circle around
that point.

Both pictures would produce
identical collections of data I
— provided that we keep no
records of the locations of
the viewpoints. So in this
sense both pictures have the
same "parts". They are
obviously very different, how-
ever.

CONNECTED DISCONNECTED

One particularly outstanding difference is that one picture is
all in one piece ~ it is CONNECTED ~ while the other is not.
In fact, both pictures are composed of just these kinds of
"micro-scenes":

© (D ® O
o © © e G

In our book Perceptrons we prove that,in general, one cannot
use statistics about such,local evidence to distinguish between
figures that are "connected" and those that are not.

From this, one might conclude that one can tell very little
about a picture from such "spatially local" evidence. But this
is not true. For example, we can completely define the pro-
perty of being "m ^e-entirely-of-separate,-solid,-rectangles"
by requiring that all very small parts of the scene look like
one or another of these micro-scenes:

o €) e & Q
that is, every micro-scene must be either homogeneous, a simple
edge, or a convex right-angle corner.

143

ARTIFICIAL INTELLIGENCE

It is not hard to see that this definition will accept any pic-
ture that contains only solid rectangles, but no other kind of
picture. So in this sense, "rectangle-ness" can be defined in
terms of local properties, while connectedness cannot. Try to
define, "composed-of-a-single-solid-rectangle" in this way.
It cannot be done I So we see a difference between two kinds
of categories of pictures, in regard to the relations between
their parts and their wholes I

The question, "Is the whole more than the sum of its parts?"
is certainly provocative and insightful. But it must be re-
cognized also as vague, relative, and metaphorical. What is
meant by "parts" and, more important, what is meant by "sum"?

In the case of the rectangles a trivial sense of "sum" will
suffice: not even adding up evidence is necessary, for we can
make the decision in favor of rectangle, and let any single
exception to our condition on the local "micro-scenes" have
absolute veto power. So the"sum of the parts" is simply the
agreement of all local evidence. For connectedness we seem to
need something more complicated, computationally. We have
studied this situation rather deeply in Perceptrons: connect-
edness is a property that is quite important and very thoroughly
understood in classical mathematics; it is in fact the central
concern of the entire subject of Topology.

For example, here are several quite different-looking condi-
tions, each of which can be used to define the same concept of
connectedness:

PATH-CONNECTION. For any two black points of the
picture, there is a path connecting them that lies
entirely in black points.

PATH-SEPARATION. There is no closed path, entirely
in white points, such that there are some black points
inside the path and some black points outside the
path.

SET-SEPARATION. The black points cannot be divided
into two non-empty sets which are separated by a .
non-zero distance — that is,, no pair of points, one
from each set, are closer than a certain distance.

TOTAL-CURVATURE. Assume that there are no "holes"
in the black set — that is, white points that are
cut off from the outside by a barrier of black points.
Then compute the sum of all the boundary curvatures
(direction-changes at all edges of the figure), taking
convex curves as positive and concave curves as nega-
tive. The picture is connected if this sum is exactly
360 degrees. If it is a multiple of 360, this gives
the number of objects I

Each of these suggests different computational approaches. De-
pending upon what resources are available, one or another will .

144

. . .■^.IKWlt»«»«.-.

ARTIFICIAL INTELLIGENCE

be more efficient, use more or less memory, time, hardware,
etc. Each definition involves very large calculations in any
case, except the fourth, in which one computes simply a sum of
what one observes in each small neighborhood. However, the
fourth definition does not work in general, but only for figures
without holes. And, to be sure that condition is satisfied one
must have another source of information (e.g., if one knows he
is counting pennies) or else the definition is somewhat circu-
lar, because to be able to see that there are no holes is really
equivalent to being able to see that the background is connected!

We know exactly what it means for the number seven to be the
sum of the numbers three and four. But when we ask whether a
house is just the sum of its bricks, we are in a more compli-
cated situation. One might answer:

"Yes, there is nothing but bricks there."

But another kind of answer could be

"No, for the same bricks arranged differently would
have made a very different house."

The answer must depend on the purpose of the question. If we
admit only "yes" or "no",, there is no room for refinement and
subtlety of discussion. We do not really want either of the
answers "Yes, it is nothing but the sum" or "No, it is a
Gestalt, a totally different and new thing". We really want to
know exactly how the response, image, or interpretation of the
situation is produced: we want an explanation of the phenomenon.
And the terms of the explanation must be appropriate to the
kind of technical question we have in mind. Sometimes one wants
the result in terms of a particular set of psychological con-
cepts , sometimes in terms of the interconnections of some per-
haps hypothetical neural pathways, and sometimes in terms of
some purely computational schemata.

Thus one might ask, about some aspect of a person's behavior:

COMPONENTS: Can the phenomenon be produced in a
certain kind of theoretical neural network?

LEARNING: Can it be learned by a certain kind of
reinforcement schedule according to certain proposed
laws of conditioning?

COMPUTATIONAL STRUCTURE: Can this iesult be computed'
by a computer-like system subject to certain restric-
tions, say, on the amount of memory, or on the
exclusion of certain kinds of loops interconnecting
its components?

COMPUTATIONAL SCHEMATA: Can the outer behavior of
this individual reasonably be imitated by a program
containing such-and-such a data-structure and such-and-
such a syntactic analyser and synthesizer?

145

ARTIFICIAL INTELLIGENCE

The way in which the whole depends upon its parts, for any
phenomenon, has a direct bearing on how suchquestions can be
answered. But to supply sensible answers, on? needs I slock
lfted^SP' PreC1Se' ldeas about how Pa^s and wholes may be re-

notiL^?^tJnt t0 ;fe^nize that these kinds of problems are
not special to psychology. Water has properties that are not
properties either of hydrogen or oxygen, yet chemlsJry is no

ir-Ge^ft"' b?hf
ightS b!tWeen ^ca.n/s - say/"AtomLJ" vs. Gestalt . This is not at all because the problem is un-

lo^T: eXaCtly the 0PPosit^ The reason the?e are no
IZf ^ ^P? ln chemist^ is because all workers recognize

romantic but irrelevant philosophical overviews. But in psy-
chology and biology, there remains a widespread belief that
there are phenomena of mind or of cell that are not "reducible"
to properties and interactions of the parts. They are savina
in essence, that there can be no adequate theory of the Ste?!
actions. J j-in-ci.

Consider a concrete example.
It is relatively easy to bend
a thin rod, but much harder
to bend this structure made of
several such rods. Where does
the extra stiffness come from?

SUPPORTED ROD ^k

The answer, in this case, is
that the "new property" is indeed
inherited from the parts, because
of the arrangement, but in a
peculiar way. in the truss, a
force at the middle is resisted
— not by bending-forces across
the rods — but by compression
and tension forces along the rods.

TRUSS

The resistance of a thm rod to forces along it is much greater
than the resistance to forces across it. So the increases
strength is indeed "reduced", in the Theory of Static Mechanics
to the interactions of stresses between members of the struc-
ture. Even the properties of a single rod itself can be ex-
plained in terms of more microscopic interactions of the tensile
and compressive forces between its own (!) "parts", when it is
strained. By imagining the rod itself to be a truss (a heuris-
tic planning step that helps one to write down the correct
differential equation) we can analyze stress-strain relations

146

.
!:'... • ;....;..■

ARTIFICIAL INTELLIGENCE

inside the rod. Thus one obtains such a beautiful and accurate
model that there remains no mysterious "Gestalt" problem at all.

This is not to say that special arrangements have no special
properties. In some of Buckminster Fuller's work, the dode-
cahedral sphere yields a kind of structural stiffness rather
different than that in the triangular truss. Here the rigidity
does not come directly from that of small or "local" triangular
substructures, and it takes a different kind of mathematical
analysis to see why it is hard to distort it. Even so, there
remains no mysterious "emergent" property here that cannot be
deduced from the classical theory of statics.

Of course, our real concern is with problems of intelligence,
rather than with engineering mechanics. But many problems
that seem at first to be "purely psychological" often turn out
to center around just such problems of wholes and parts. And
with such an interpretation, we may replace an elusively ill-
defined psychological puzzle by a much sharper problem within
the theory of computation.

The computer is the example par excellence of mechanisms in
which one gets complex results from simple interactions of
simple components. In asking how thought-like activity could
be embedded in computer programs, scientists for the first
time really came to grips with understanding how intelligent
behavior could be made to emerge from simple interactions.

The issue seems really to be fundamentally one of assessing
the complexity of processes. The content of the Gestalt
discoveries is that certain psychological phenomena require
forms of computation that lie outside the scopes of certain
models of the brain — and outside certain conjectures about
the "elementary" units of which behavior is supposed to be
composed. So, the whole discussion must be considered in
relation to some overt or covert committment about what units
of behavior, or of brain-anatomy, or of computational capacity,
are supposed to be "atomic".

To illustrate extreme versions of atomism vs. Gest Itism one
might consider these caricatures:

EXTREME ATOMISM: All behavior can be understood in
terms of simple functions of neural paths that run
from single receptors, through internuncials, to
effectors.

EXTREME GESTALTISM: The essence in this is the
whole pattern. Many simple examples show that the
response is made to the whole stimulus and cannot
be represented as simple sums or products of simple
local stimulations.

Clearly one does not want to set a threshold between these;
one wants to classify intermediate varieties of interactions
that might be involved, arranged if possible in some natural
order of complexity.

147

ARTIFICIAL INTELLIGENCE

Thus in Perceptrons we studied a variety of simple Schemas
such as these:

EXTREMELY ATOMIC ALGORITHM: One of the input wires
is connected to the output, the others to nothing.

VETO ALGORITHM: If every input says "yes", the
output is "yes". if any input says "no", the output
is "no".

MAJORITY ALGORITHM: If M or more of N inputs say
"yes", output is "yes".

LINEAR SUM ALGORITHM: To each input is assigned a
"weight". Add together the weights for just those
inputs that say "yes". The output is just this sum.

LINEAR THRESHOLD ALGORITHM: Use the LINEAR SUM al-
gorithm, except, make the output "yes" if the sum
is greater than a certain "threshold", otherwise the
output is "no".

Exercise: the reader should convince himself that "extremely
atomic", "veto", and "majority" are special cases of "linear
threshold".

EQUIVALENT-PAIR ALGORITHM: The input is considered
to be grouped in pairs. The output is "yes" only
when, for every pair, the two members have the same
input values.

The reader should convince himself that this is not a special
case of "linear threshold"!

SYMMETRICAL ALGORITHM: The response is "yes" if
the pattern of inputs is symmetrical about some
particular center, or about some particular linear axis.

This is a special case of the equivalent-pair algorithm. They
are both examples of perceptrons in which the global function
can be expressed as a linear threshold function of intermediate
functions of two variables. Here the whole is only trivially
more than the sum of the parts.

PERCEPTRON ALGORITHM: First some computationally
very simple functions of the inputs are computed,
then one applies a linear threshold algorithm to
the values of these functions.

Many different classes of perceptrons have been studied; such
a class is defined by choosing a meaning for the phrase "very
simple function". For example, one might specify that such a
function can depend on no more than five of the stimulus
points. This would result in what is called an order-five
perceptron. All of the examples above had order one or two.
The next example has no "order restriction", but the functions

148

ARTIFICIAL INTELLIGENCE

are
one

very simple in another sense; they are themselves "order
or linear-threshold functions.

GAMBA PERCEPTRON: A number of linear threshold
systems have their outputs connected to the in-
puts of a linear threshold system. Thus we have
a linear threshold function of many linear threshold
functions.

Virtually nothing is known about the computational capabilities
of this latter kind of machine. We believe that it can do
little more than can a low order perceptron. (This, in turn
would mean roughly, that although they could recognize some'
relations between the points of a picture, they could not handle
relations between such r-lations to any significant extent.)
That we cannot understand mathematically the Gamba perceptroj
very well is, we feel, symptomatic of the early state of develop-
ment of elementary computational theories.

ül^?? 05KtheSu areu
atomic and which Gestaltist? Rather than

muddle through a philosophical discussion of which cases "reallv"
do more than add the parts, we should try tc classify the kinds
of mechanisms needed to realize each in certain "hardware-
frameworks, chosen for good mathematical reasons. Then for
each such framework, we might try to see which admit simple
reinforcement mechanisms for learning, which admit efficient
descriptive teaching (see Section 4), which admit the possi-
bility of the cognitive machinery "figuring out for itself"
what are the important aspects of a situation!

To supply such ideas, we have to make theoretical models and
systems. One should not expect to handle complex systems until
one thoroughly understands the phenomena that may emerge from
their simpler subsystems. This is why we focused so much at-
tention on the behavior of perceptrons in problems of computa-
tional geometry. It is important to emphasize that we want to
understand such systems for the reasons explained above, rather
than as possible mechanisms for practical use. When a mathema-
"iCai Psychoiogist uses terms like "linear", "independent", or
Markoff Process", etc., he is not (we hope!) proposing that a

human memory is one of those things; he is using it as part of
a well-developed technical vocabulary for describing the struc-
ture of more complicated schemata. But until recently there
was a serious shortage of ways to describe more procedural as-
pects of behavior.

The community of ideas in the area of computer science makes a
real change in the range of available concepts. Before this
we haa too feeble a family of concepts to support effective
theories of intelligence, learning, and development. Neither
the finite-state and stimulus-response catalogs of the Behavior-
ists, the hydraulic and economic analogies of the Freudians, or
the holistic insights of the Gestaltists supplied enough tech-
nical ingredients to develop such an intricate subject. It
neeas a substrate of debugged theories and solutions to related
out simpler problems. Computer science has brought a flood of
such ideas, well defined and experimentally implemented, for
thinking about thinking; only a fraction of them have distin-

149

^''BARPMHHHHHiWiHBVMW'8B,M|||Ma

ARTIFICIAL INTELLIGENCE

guishable representations in traditional psychology:

symbol table
pure procedure
time-sharing
calling sequence
functional argument
memory protection
dispatch table
error message
function-call trace
breakpoint
formal language
compiler
indirect address
macro language
property list
data type
hash coding
micro-program
format matching
syntax-direction

closed subroutine
pushdown list
interrupt
communication cell
common storage
decision tree
hardware-software trade-off
serial-parallel trade-off
time-memory trade-off
conditional breakpoint
asynchronous processing
interpreter
garbage collection
list structure
block structure
look-ahead
look-behind (cache)
diagnostic program
executive program
operating system

These are only a few ideas from the environment of general
"systems programming" and debugging; we have mentioned none
of the much larger set of concepts specifically relevant to
programming languages, artificial intelligence research, com-
puter hardware and design, or other advanced and specialized
areas. All these serve today as tools of a curious and intri-
cate craft, programming. But just as astronomy succeeded
astrology, following Kepler's discovery of planetary regulari-
ties, the discoveries of these many principles in empirical
explorations of intellectual processes in machines should lead
to a science, eventually.

3. Analysis of Visual Scenes

No one could have any doubt about what this picture is supposed
to show: Four blocks, three forming a bridge with the fourth
lying across it." We would like
to program a machine to be able to
understand scenes to at least this
level of comprehension. Notice
that our description involves
recognizing the "bridge" as well
as the blocks that comprise it, and
that the phrase "lying across it"
indicates knowing -chat the block
is actually resting on the bridge. „, ,, p...,„.,.,.
reference to the bridge, rather than to the top block of the
bridge, there is implied a further level of functional analy-
sis. J

FOUR BLOCK BRIDGE
Indeed, in the pronoun

In our earlier progress reports we described the SEE program
(Guzman 1968) which was able to assemble the thirty vertices,
forty segments and thirteen regions of this picture into four
objects, using a variety of relatively local "linkage" cues

150

ARTIFICIAL INTELLIGENCE

three dSe^T' (^nSton 1970) ^s ^rther in the analysis of
three-dimensional support and can recognize groups of obiects
as special structures (such as "bridge") to yield iust the
kind of functional description we are discussing ^nston's
program is even able to LEARN to recognize such^onfigurations

ChapLrr"6"06 ^^ eXampleS ^ non-e^mples, as sK in '

Before discussing scene-analysis in detail, we have a few re-
marks about the nature of problems in this area. In the earlv
fTt that^eTT iMcCul^-Pitts 1943, Wiener 1949) it was
felt that the hardest problems in apprehending a visual scene
were concerned with questions like "why do things look the sLe
haJe dfS ^T different viewpoints", when thei? opUcal ima^I have different sizes and positions. J-»idges

A A
-Y i

all Se oarHnnf e t^, ,,abstraction" or "concept" common to
all the particular examples. For two-dimensional character-
^o0^ltl0n' thls.kind of Problem is usually handled by a
two-step process in which the image is first "normalized" to
standard position and then "matched" - by a correlation or

fliefln? PrOCeJS "T t0 0ne 0f a Set of ^andard represSnta-
ina" ^f^n ?Jf? ^K en5lneering applications, the "normaliz-
ing often failed because it could not disarticulate parts of
images that touch together, and "matching" often failed because

Portant-'oa^/of'VH0^61^10":11^ P™***** attend to "im^6 poitant paits of the figures instead of to ornaments Even

s'y^ls meth0dS WOrk Wel1 enOUgh for reasonablymstanAardIzed

If, however one wants the machine to read the full variety of
typography that a literate person can, the problem is harder!
and if one wants to deal with hand-printing, quite different
methods are needed. One is absolutely forc^to use exterior

th^^XS^r,^)^-^5' CO—' in situations^Se

THE CMT

language. An early program that could do this vJas described
tL J?f?He fd

h
Browing 1959- But we will not stop to review

aV?J fi *.? character-recognition, for its technology is quite
alien to the problems of three-dimensional scenes. This is
oh^tt ^e Problfms that concern us most, like how to" separate
anv h ^ V^13^ 0r hOW t0 recognize objects that arS parti-
ally hidden (either by other objects or by occluding parts of

151

mmm

ARTIFICIAL INTELLIGENCE

their own surfaces), simply do not occur at all in the two-
dimensional case. Some more interesting two-dimensional problems
require description when geometric matching fails; a conceptual
A is not simply a particular geometric shape; it is

"Two lines of comparable length that meet at an
acute angle, connected near their middles bv a
third line."

3*1 Programs for Finding Bodies in Scenes

Let us review quickly how Guzman's SEE program works. First a
collection of "lower level" programs are made to operate dir-
ectly on the optical data. Their job is to find geometric '
fu^^u3 the Plcture — regions, edges and vertices ~ so
that the scene can be described in a simple way in the program's
data-structure. Next, the vertices are classified into "tjpes"!
The most important kinds are these: i-Ypes .

ARROW FORK TEE ELL TRANS

The main^goal of the program is to divide the scene into
objects and its basic method is to group together regions

that probably belong to the same object. Each type of vertex
is considered to provide some evidence about such groupings,
and can be used to create "links" between regions.

For example, the ARROW type of vertex
usually is caused by an exterior corner
of an object, where two of its plane
surfaces form an edge. So we insert
a "link" between the two regions that
are bounded by the two smaller angles:

Similarly, the FORK type of
vertex, which is usually due to
three planes of one object,
causes three links between those
regions.

152

ARTIFICIAL INTELLIGENCE

Using these clues, and representing the resulting relations by
simple abstract networks, many scenes are "correctly" analyzed
into obiects. J

->

If two TEE vertices have their stems in the same line then we
create two more links: This often does just the right thing
for an object whose picture is divided into two separate parts
by another object in front. f«*uo

fO
;B

^ C3
Many scenes are handled correctly by just these simple rules,

POR*
1
"?"^

6

n?t,.uFOr examPle' the basic assumption about the

^JTVK M 2 u S thre€r regions is not true of concave corners,
t^^t „T^^l PT assumption may be false by coincidence
so that false links" may be produced in such cases as these-

dfib
/o2b

6-0
:

Guzman introduced several methods for correcting such errors.
One method involves a conservative procedure in which groupings
are considered to have different qualities of connectedness.
Two high-quality groups that are connected together by only a
single link are broken apart — the link is deleted.

A second error-correction method is more interesting. Here we
observe that the TEE vertex really has a special character, quite

153

ARTIFICIAL INTELLIGENCE

opposed to that of the FORK and the ARROW. The most usual
physical cause of a TEE is that an edge of one object has dis-
appeared under an edge of another object. Hence, we should re-
gard the TEE joint as evidence against linking the correspond-
ing regions: Guzman's implementation of this was to recognize
certain kinds of configurations as special situations in which
the existence of one kind of vertex-type causes inhibition or
cancellation of a link that would otherwise be produced by the
other vertex-type. That would happen, for example, in these
figures:

Thir technique corrects many errors that the more "naive" sys-
tem makes, especially in objects with concavities. Note that
it attempts to compute Connectedness: — for is not the notion
of "object" as we are using it,exactly that idea? — by extremely
local methods, while the (better) system with cancellation is
less local because of the effects of vertex-types of contiguous
or closely-related geometric features.

Guzman's method might seem devoid of the normalization and match-
ing operations. Indeed, in a sense it has nothing to do with
"recognizing" at all; it is concerned with the separation of
bodies rather than with their shapes. But both normalization
and matching are more or less inherent in the descriptive lan-
guage itself, since the very idea of vertex-type is that of a
micro-scene which is invariant of orientation, scale, and posi-
tion. This scheme of Guzman's is very much in accord with the
Gestaltists' conceptual scheme in which the separation of fig-
ure from background is considered prior to,and more primitive
than, the percoption of form.

The "cancellation" scheme has a more intelligible physical mean-
ing. It has been pointed out by D. Huffman (1970) that each
line in a line-drawing may be interpreted as a physical edge
formed (we assume) by the intersection of two planes, at least
locally. In some cases, one can see parts of both planes, but
in other cases, only one. A T-joint is good evidence that the
edge involved is of the latter kind,and once one assigns such
an interpretation to an edge, then it follows immediately that
the adjacent Guzman links to the alien surface ought to be re-
jected. Accordingly, Huffman developed a number of procedures
for making detailed global interpretations from local edge-
region assignments.

We will not give further details of the SEE program here. As
an example of its performance, it correctly separates all the
objects in this scene.

'

i

1

154

-1 ■ ' I..M!.ll.|l|l|i|. iWHHWUMHImiiiMiiiMii

"■■•'•

ARTIFICIAL INTELLIGENCE

But SEE has faults, among which are:
'

ORDINARY "MISTAKES": Certain
simple figures are not handled
"correctly". To be sure, all
figures are inherently ambiguous
(any scene with n regions could
conceivably arise from a picture
of n objects). Our real goal is
to find an analysis that makes
sense in everyday situations.
Normally one would not suppose
that this is a single body, but
SEE says it is, because all re-
gions get linked together.

INFLEXIBILITY: If its very first
proposal is not acceptable, the
body-aggregation program ought
to be able to respond to com-
plaints from other higher-
lower-level programs and thus
generate some alternative "parsings"
of the scene. For example, SEE
finds a single body in the top
one of these figures, but it should
be able to produce the two other
alternatives shown below it.
(It is interesting how difficult
it is for some humans to see the
third parsing.)

IGNORANCE: It has no way to use knowledge about common or
plausible shapes. While it is a virtue to be able to go so far
without using such exterior information, it is a fault to insist
on this I

155

ARTIFICIAL INTELLIGENCE

Following Guzman's work, Martin Rattner has described a proce-
dure, called SEEMORE, that can handle some of these problems.
[Rattner 1970] While it uses linking heuristics much as did
Guzman, SEEMORE puts more emphasis on local evidence that ah
edge might separate two bodies. These "splitting heuristics"
operate initially at certain kinds of vertices, notably TEE-
vertices and vertices with more than three edges (which were
not much used in earlier programs). When there is more than
one plausible alternative, SEEMORE uses other evidence to make
tentative choices of how to continue a splitting line, but stores
these choices on back-up lists that can later be used to gen-
erate alternative parsings.

Here is a simple example. In
this figure, one might imagine
splitting either along the line
a-b-c or along the line d-b-e.
The central vertex 'b' suggests
(locally) either of these; on
the other hand, such splits as
a-b-d or a-b-e are considered
much less likely.

The vertex 'a' strongly suggests a split along a-b, while neither
'c', 'd', nor 'e' have much in their favor. Thus SEEMORE starts
a split at 'a' and continues at 'b' toward 'c'. Generally,
splits originate at TEE's, propagate through L's and matching
TEE's, and avoid the sharpest turns through the multiple-edge
vertices.

f

Degenerate situations like this, in which a small^change in

a b

(B)

viewing angle produces a different topology, are likely to lead
to "incorrect" analyses. Rattner uses a rather conservative
linking phase, in which links are placed more cautiously than
in SEE, but using similar "inhibiting" rules. Regions that are
doubly-linked to one another by these are considered, "strongly"
bound; then the heuristic rule is to attempt to split around
these "nucleii", and to avoid splitting through them.

It would be tedious to give full details here, partly because
the subject is so specialized, but primarily because the pro-
cedure has not been tested and debugged in a wide enough variety
of situations. A few examples follow.

'

156

ARTIFICIAL INTELLIGENCE

An initial split is made :long
e-d, extended to d-c. Then,
between the possible splits
g-a-f and c-a-b, the latter is
preferred because it completes
the unfinished split ending at

In this situation, B is the procedure's first choice, C its
second:

In A below, we get three bodies, (4-6-7), and (1-2-3). SEE does
not split between regions 7 and 8. In B, one gets the plausible
three-body analysis. If there is any complaint, SEEMORE will
propose to separate (4-6-7) and (5-8). In C, all the bricks
are properly separated. While SEE would h^ve to put in many
spurious links because of the Coincidentally matching TEE's
SEEMORE inhibits these on the basis of other splitting evi-
dence.

(A)

\t% ^—JV«—?i ^ n S i^A
-*^

-i0^

^•i ' r * ■J^s

(C)

157

ARTIFICIAL INTELLIGENCE

The procedure divides these into the "n
atural" parts;

^•^rZ^^^^*^* 1^-3, 5-7.8-9, and
see it. And the procedure cannot * rSt Way a person ^^
of the larger cube irfigLeTbec^sT??^. "^ ■ ^"^ Segments
process is so conservati?e. Clea??v ., h iniJf-al grouping
must be gathered together in a "^' Ch Problems eventually
the multiple T-joinS all iSuld ^TTfX^3^^ Syste^
way as to suggest the propersplU and thl ended in SUch a realize this. ^ spuz, and the program ought to

4. DESCRIPTION AND LEARNING

vJtarL^u^dersta-ndlnrLE^^ ^TZsT If^ ^ ^ "
account for learning in terms of ^nnh •tradltl0nal to try to
reflex" or "stimulul-responsj bond" ?^einnht'VeS aS ,,conditioned
become much more intelligible when se J ?nP? 0mena 0f le^ning
tion" and "procedure" en ln terms of "descrip-

158

ARTIFICIAL INTELLIGENCE

But even the temporary structures one obviously
uses in imagining and understanding have to be
set up and maintained for a time. We feel that
the differences in degree of permanence are of
small importance compared to the problems of
deciding what to remember. It is not the details
of how recording is done, but the details of how
one solves the problem of what to record, that
must be understood first.

As we develop this idea, we find ourselves forced to question
the whole tradition in which one distinguishes a special sub-set
of mental or behavioral processes called "learning". Nothing
but disaster can come from looking for three separate theories
to explain (for example)

and

How one learns mathematics,
How one thinks mathematically once he has learned to.

What mathematics is, anyway.

We are not alone in trying to replace such subdividions ~ but
perhaps more radical and thorough-going. In this chapter we
shall argue that many problems about "learning" really are
concerned with the problem of finding a description that satis-
fies some goal. Gestalt psychologists also often emphasized'
the similarity between solving apparently abstract problems and
situations that intuitively feel like simple perception; the
same relation that is dimly reflected in ordinary language by
expressions like y y^ ^y

"I suddently saw the solution!"

We thoroughly agree about bringing these phenomena together,
but we have a very different way of dealing with the newly
united couple. We might caricature this difference by sayinq
that the Gestaltists might look for simple and fundamental
principles about how perception is organized, and then attempt
to show how symbolic reasoning can be seen as following the
same principles, while we might construct a complex theory of

^J";°Wi gf iSvaPPJied t0 SOlve intellectual problems and then
attempt to show how the symbolic description that li what one
sees is constructed according to similar such processes. In-

deed,we think that ideas that have come from the study of sym-
bolic reasoning have done more to elucidate visual perception
than ideas about perception have clarified our thoughts about
abstract thinking — but the whole comparison is too dialecti-
cal to try to develop technically.

In any case, we differ from the Gestaltists more deeply in
problems of learning, which they neglected almost entirely —
behavior?^VSeT ^ WaS the f™orite subject of the abominable
behaviorists! Let us now explain why we feel that learning,
technically, cannot usefully be separated from other aspects
either of preception or of symbolic reasoning. As usual, we
present first a caricature; then point to where the extreme
positions might be softened.

159

ARTIFICIAL INTELLIGENCE

Learning — or "Keeping track"

Everyone would agree that getting to know one's way around a
city is "learning". Similarly, we see solving a problem often
as getting to know one's way around a "micro-world" in which
the problem exists. Think, for example, of what it is like to
work on a chess problem (or on a geometry puzzle,or trying to
fix something). Here the micro-world consists of the network
of situations on the chessboards that arise when one moves the
pieces. Solving the chess problem consists largely of getting
to know the relations between the pieces, and how the moves
affect things. One naturally uses words like "explore" in this
context. As the exploring goes on, one experiences events in
which one suddenly "sees" certain relations. A grouping first
seen as three pieces playing different roles is now described
in terms of a single relation between the three, such as "pin",
"fork", or "defense". The experience of re-description can be
as "vivid" as if the pieces involved suddenly changed color or
position.

One might object that the difference between getting to know the
city and solving the chess problem is that one remembers the
city and forgets the chess situation (assuming that one does).
Isn't that what brings one into the domain of learning and ex-
cludes the other? Only to a degree! The chess analysis has
to be remembered long enough, within the rest of the analysis.
To take an extreme form of the argument, one would repeat one's
first steps forever unless one remembered which positions had
been analyzed, what relations were observed, and how their des-
criptions were summarized. What is stored within problem-
solving is as vital to the immediate solution as what is re-
tained afterwards is to the solution of the presumably larger-
scale problems one is embedded in throughout life. Of course
there is a problem about how long one retains what one learns
— but perhaps that belongs to the theory of forgetting rather
than of learning!

In our laboratory the chess program written by R. Greenblatt
plays fairly good chess, but amateur tournament standards. But
visitors are always disappointed to find that this program does
not "learn", in the sense that it carries no permanent change
away from the games it plays. They are even more disappointed
in our attempts to explain why this does not distarb us very
much. We claim that there is indeed an important kind of learn-
ing within the program; this is in the position-description
summaries that are constructed and used as it analyzes the posi-
tions it is playing. But because board positions do not often
repeat exactly in subsequent games (except for opening positions
and end-games) and because the kinds of descriptions the program
now uses do not have good qualities for dealing with broader
classes of positions, there would be no point in keeping such
records permanently.

We do not yet understand how to make the higher-level strategy-
oriented descriptions that would make sense in the context of
learning to improve. When we, ourselves, learn how to construct
the right kind of descriptions, then we can make programs

160

ARTIFICIAL INTELLIGENCE

in favor of studying systems that could deal with limited '
fragments of meaning, and we avoided "creative" systems baaed
on unmterpreted stochastic processes in flint JVSte"s based

In the rest of this chapter we will discuss some systems th^

programsülearnS'thS^e/eadrS-mi?ht 0bjeCt that though these programs learn, they do not significantly "learn to learn"

so today „e have little rLl knowledge about SuShn,ftt«s
0n'

gBrLue?h
telyinr?iire^oii„o?ron„1ä?jig

teo
nr^ärsowco"piex

that oould develop as rapidly as hCman ZSs AthirthZ «-'
quiring evolutionary epochs. We oarta-inlC „. T
we know that the "innate struotur" r?oSi?es mu?t hf',^ from what

SSP
P
 ^ "E^n^lhe'o^^8?*h

Pr09"^ " "i9htbLVS ^^
linL/Th ^"irpSLS eenofu hTLn^i^llen-t^rSJuItiS-
SoÄL^^t1?^?^ XrrM PrSenar ^ °- «^

instead, to disouss our present undemanding? «e beaL^^Jh'
some experiments on natural intelligence.

161

ARTIFICIAL INTELLIGENCE

4.1 An example of Learning: Pjaaef s Conservation Experiment.

years) to Question« ^«„Z .K.! ___".(ln. the a5e range of 4-7

0 0 oooooooooo

Question: "Are there more eggs or more eaq-cuDS^"
Typical Answer: "No, the same." gg P ?

oooooooo ooo

mmmYYY
Question: "Are there more eggs or more eaa-cun^"
Typical Five Year Old's AnswL: "MorJ eq?s "P

Typical Seven Year Old's Answer: "Of course not!"

tracted any, so the number must still be the same.

make rival thJoJies L?» ?= P ^ and' aInon9st other things,

experiment. thS„°erise^ws
H:h

r
e

e chifrthre'e1^?^"^ ^^

He agrees that the first two
contain the same amount of
liquid. Then, before his eyes,
we pour the second jar into
the third and ask again about
the amounts. Usually, the
younger child will say that the
tall jar contains more; the
older child says "Of course
they have the same amount. It
is the same water so it could
not have changed."

162

ARTIFICIAL INTELLIGENCE

4-1 A" example of Learning: Pjaget's Conservation Experiments

A classical experiment of Jean Piaget shows remarkably repeat-
able patterns of response of children (in the age range of 4-7
years) to questions about this sort of material:

oooooooooooo

Question: "Are there more eggs or more egg-cups'?"
Typical Answer: "No, the same."

oooooooo 0 0 0

YYYYYYYYYYYY
Question: "Are there more eggs or more egg-cups?"
Typical Five Year Old's Answer: "More eggs."
Typical Seven Year Old's Answer: "Of course not!"

Furthering questioning makes it perfectly clear that the younger
child s comparison is based on the greater "spread" or space
occupied by the eggs. The older child ignores or rejects this
aspect of tho situation and is carried along by the "conserva-
tionist argument: before we spread them out there were the
same number of eggs and egg-cups; we neither added or sub-
tracted any, so the number must still be the same.

Before constructing a theory of this we describe some other
situations that are similar; nothing is more dangerous than
to base a theory on just one example and we want the reader to
have enough material to participate and, amongst other things,
make rival theories. Here is another relatively repeatable
experiment. One shows the child three jars.

He agrees that the first two
contain the same amount of
liquid. Then, before his eyes,
we pour the second jar into
the third and ask again about
the amounts. Usually, the
younger child will say that the
tall jar contains more; the
older child says "Of course
they have the same amount. It
is the same water so it could
not have changed."

162

■ ■■A^fmt.K ■■■■ "■':i--- ■■■ " ■ -' «

ARTIFICIAL INTELLIGENCE

construct and remember them, too, and the problem of "learninq"
will vanish. in the past, our laboratory avoidad experiments

we di. T09 T^ that Seemed theoretically unsoSnd, aJthough
we did not avoid studying them theoretically. This was be-
cause we believed that learning itself was not the real problem-
what was needed was more knowledge about the intelligent shao-

;egavoidLSClipti0n"handling P--—- For thelame'reason^
we avoided linguistic exercises such as Mechanical Translation
in favor of studying systems that could deal with limSed '
fragments of meaning, and we avoided "creative" systems based
on umnterpreted stochastic processes in favor of analjzinq
the interactions of design goals and constraints. NowSe think
we know enough to begin such experiments.

^ thK-K^t 0f this chaPter we will discuss some systems that
do exhibit some non-trivial learning functions. It should be

as "sel?0nr^^ ^ ^^ ^ ^^ are not to be ^Ight of
stantiafln?^1!111? Syftems ' They are equipped with very sub-
built-ti '^Jl ^ructures; - they are provided with many DUiit:-in innate ideas .

Because of this, some readers might object that although these
programs learn, they do not significantly "learn to lelrn"
Is this a serious objection? We do not think so, but the aues-

Ibou/f/^ iV"6 ^ de?ree and We are sti11 much to° uncertain about it to take a decisive position. In one view learning to
learn would be an extremely advanced problem compared to what
we now understand In another view,it is just one more problem
about certain kinds of program-writing processes, not strikinalv
tl treT flZm the Static st^tural Situations ie already ^
t^lTttTetlnT.11- 0Ur P0Siti0n iS int—ediate betweL^

ÜL^1^ that learning to learn is very much like debugging
complex computer programs. To be good at it requires III to
know a lot about describing processes and manipulating such
descriptions. Unfortunately, work in Artificial Intelligence
has not, up to now, been pointed very much in that direction
so today we have little real knowledge about such matters

^fe2Ue^ly! we.alie in a Poor position to estimate how complex
^ f the initial endowment of intelligent learners --ones

qu^ing" o S^nLrepSSfy ^ ^^ ^ ^ ^ -"
we know that the "Sna^^ruc^^elS&s^Ss^ baeSSvU^yfr?2r?hat
complex as compared to present program!. It might be much y

simpler Even m the case of humans we have no useful guide-
lines. There is probably enough potential genetic structirl
to supply large innate behavioral programs but no one reallv

insteaSUCto
ad?^ thiS' either' at present- So let - proceed,

^Ü ' dlscuss our present understanding. We begin with
some experiments on natural intelligence.

161

ARTIFICIAL INTELLIGENCE

If we perform the pouring behind a screen, telling him what we
are doing without his seeing it, the younger child also may
say the amounts are the same, but may change his mind when he
sees it.

In this experiment,
younger children agree
the rods are equal at
first, but when dis-
placed as shown at the
right, the "upper" one
is usually said to be
longer.

1
How can we explain the difference between the less and more
mature children. We see two problems here from the point of
view of learning. First, hoy is the pre-conservationist view
acquired (and executed); thea how is it replaced by a con-
servationist one? To many psychologists only the second seems
interesting. This is because it is tempting to explain the
earlier response in terms like "the child is carried away by
appearances," or"the child is dominated by its perception,"
that is, instead of logic. The usual interpretation, then, is
that the transition requires the development of some sort of
reasoning capacity that allows it to "ignore the appearance"
in favor of reasoning about "the thing itself".

There are serious problems with this view, we feel • First, the
"appearance" theory is too incomplete; the notion of appearance
is not structured enough. Second, we know that much younger
children are quite secure (in other circumstances) about the
properties of "permanent objects"; they are sufficiently sur-
prised by magic that there is no reason to suppose they lack
the required "logic". We do not think they lack any really
basic or primitive intellectual ingredients; rather,they lack
some particular kinds of knowledge and/or procedures that are
appropriate here. Our view is most easily explained by pro-
posing a more detailed mini-theory for the performcnce of the
non-conservation child.

Behind the "appearance" theory lies some sort of assumption
that the water in the tall jar, the upper one of the rods, and
the spread-out eggs appear to be "more" than their counterparts,
because of some basic law of perception. We think things are
more complicated than that, and postulate that the younger child
when asked to make a quantitative comparison, choose to des-
cribe t-he things being compared in terms of 'how far they reach,
preferably upwards or in some other direction if necessary".
That this description comes from a choice is clear from the
fact that he can realiably tell which is "wider" or "taller",
when it is not a question of which is "more". Indeed, if we
asked the younger child to describe the situation in detail
before asking which has more, he might say something like this:

163

ARTIFICIAL INTELLIGENCE

(A) "There is a tall, thin column of water in the
tall, thin jar and a short, wide column in the
short, wide jar."

four year old will not say anything of the sort,
c structure will not be so elaborate, but more im-
is unlikely to produce that many descriptive ele-
one description. If we ask him "what is this",
any of "high g\jLSs" , "almost full", "high water",

depending on what he imagines at the moment as

Actually, a
His syntacti
portant, he
ments in any
he might say
"round", etc
a purpose for the question or the object. In any case, if we
ask him for
which has mo

a description after telling him v,re want to know
)re, he will probably say the equivalent of:

(B) "There is a high column of water in the tall
jar and a low column of water in the short jar."

To answer the question "which has more" one has to apply some
process to the description of the situation. Once we have the
second description (B) almost any process would choose the "high
column of water". We still need a theory of what symbolic rules
delete preferentially the horizontal descriptive elements from
the first description (A) .

Another possibility is that perhaps the child is misinterpre-
ting "more"; if he were strongly "motivated" by being thirsty
or hungry he might give better answers. The experiments are,
however, always careful about this, and one gets similar re-
sults if the eggs are replaced by candy actually to be eaten,
or the water by a delicious beverage.

In suggesting that the child converts description "A" to des-
cription "B" we are proposing an analogy with analogy '• Is
this too neat? Are we inventing this process for the childc
who does not really do anything so simple? Certainly, we are
making a mini-theory much simpler than what really happens. But
what really happens is, we believe, correspondingly simpler
than what most observers of children imagine is happening I The
following kind of dialog is typical of what goes on in another
situation that Piaget and his colleagues have studied, and
illustrates explicitly the same striking kind of transformation
of descriptions:

INTERVIEWER:
CHILD:

INTERVIEWER:
CHILD:

How many animals are there?
Five. Three horses and Two cows.
Are there more horses or more animals?
More horses. Three horses and two animals,

I: Now listen carefully:
ARE THERE MORE HORSES OR MORE ANIMALS?

What did I ask you?
Are there more horses or more animals?
What is the answer?
More horses.
What was the question again?
Are there more horses or more cows?

164

■... :_. , . -;-:„..:^- ■.....^-■- ,.,t,.

ARTIFICIAL INTELLIGENCE

We explain this phenomenon on a similar basis; again the child
has to make a comparison of quantity. He has learned that it
is generally correct to do this by counting mutually exclusive
classes and the worst thing is to count anything more than once.
So he proceeds to describe the situation "correctly" for such
purposes, and (in this frame) gets the correct answer.

It is often said that the pre-conservation child gets the answer
wrong to "inclusion" questions. No. He gets the answer right.
He gets the question wrong I Inclusion comparisons are never
natural, so we can agree with the child that these are silly
"trick" questions, anyway.

Returning to judging "amount" by height alone, we must ask what
"learning" process could cause a child to acquire this "false"
idea? Our mini-theory begins not by trying to explain the
particular fact (why the child says this about water or that
about eggs) but to look for a general rule for comparing quan-
tities that combines simplicity with widespread utility. Who
is bigger; the child or his cousin? Stand back to back! How
do you divide a bottle of coke between two glasses? By the
level -- and generally this is fine because the glasses are
identical. Finally, the child can afford to be wrong some of
the time; this rule serves very well for many purposes and
it would be hard to find a better one without taking a giant
step.

A confirmation of this is
given by the children who
judge that the thinner
container of this pair
could hold more water.

Although fewer children
will say this, the fact
that there are any who
do disproves the "appear-
ance" theory, for one can
hardly maintain that an
unalterable law of percep-
tion is operating here.

Clearly the (heuristic) symbolic rule of vertical extent
here overrides "perception" of dimensions.

One could make a case for the "appearance" heory, in the
water-jar experiment as follows: The water .s much higher
where it is high, but only somewhat wider whej.e it is wide
The most plausible kind of comparison algorithm
would look first for a unique term or quality
upon which to base its decision — as is
easily found in (B). If there is none —
as in (A) — then a subprocess has to make a
"quantitative" comparison. But even this
seems less symbolic than quantitative, for
if we compare "much higher" with "somewhat
thinner", the former will surely win! In

165

ARTIFICIAL INTELLIGFNCE

any case, even adults can hardly believe that these two solids
could have the same volume. So, if the child were really faced
with the problem of comparing quantitative dinensions, this
would be almost impossible for him.

We next have to ask, how was this rule acquired, and how can we
explain the transition to conservationist thinking? The sim-
plest theory would assert that the child specifically learns
each conservation (and, earlier, each comparison technique) as
isolated pieces of knowledge. However, this theory is incomplete
because it postulates some agent or specific circumstance re-
sponsible for the specific act of learning. A more satisfactory
kind of theory would let the child himself play the part of the
"teaching agent" in the weak theory, and find his own strategies
for making descriptions adequate for his problems.

Consider again the original conservation-of-number experiment.
Suppose that we wanted to TELL the child how to behave. An
authoritarian approach would shout at him: no, no, no, they
are equal. But most teachers would prefer the gentler approach
of explaining what he is doing wrong. One could say: "Yes,
you are right, the eggs take up more space than the egg-cups
so you could say that SPATIALLY there are more eggs; but
NUMERICALLY there are still as many eggs as egg-cups."

We hope readers are objecting that no child of five will under-
stand this little speech. Indeed,one can go a step further and
say that the attempted lesson begs the entire question. The
non-conservation child seems to lack a sharp distinction between
"numerical" and "spatial". That's his problem! If ha knew how
to use the distinction well enough he would not need us to
teach him about conservation. Our child has already a variety
of concepts about quantities; we maintain that his problem is
in knowing which to use when (instead of, or combined with others)
in describing situations. His real problem is that he does not
yet know good enough ways to describe his descriptors! If he
learned how to describe his descriptors — for example, to label
some as "spatial" and some as "numerical" — and if he could
use these descriptions of descriptors to choose J:he appropriate
ones, then the specific problem of learning conservations would
dissolve away. As it should! For "conservation" is not a single
thing, and "it's development is typically spread out over
several years as a child learns to deal with number, mass, volume,
and other descriptive concepts.

Assuming a structure for classifying descriptions we can imagine
an internal scenario, for the egg experiment, in which many des-
criptions are considered by a supervising process:

(1) Choose a kind of rule,
QUANTITATIVE RULES
HISTORICAL RULES

Choices are

(2) QUANTATIVE is chosen.
SPATIAL
NUMERICAL

Select a kind. Choices are

166

*.-'= mmmmmmm»

ARTIFICIAL INTELLIGENCE

(3) SPATIAL is chosen. Select a kind. Choices are
EXTENT implies more
SPARSENESS implies less

(4) Try EXTENT. The spread out eggs have more
extent.

This means MORE.
(5) Test for coherence with other SPATIAL
rules? Try SPARSENESS. The eggs are
sparser.

This means LESSl
An inconsistency. Reject or explain.

Reject method
(3') Try NUMERICAL.
Try COUNTING
Too many to count.

Reject method
(2') Reject choice of quantitative rules!
Try the next choice, HISTORICAL

When HISTORICAL is tried, one might first choose
IDENTITY. Some eggs were moved, but none added
or taken away „.. me-ns SAME.
Test for coherence with other HISTORICAL rules. ■LS mean8:, ':'Ail£'-
Try REVERSIBILITY. The operation SPREADING-
OUT is reversible. This means SAME I

We conclude that HISTORICAL seems consistent.

The same sort of scenario could be constructed for the water
experiment; there the counting descriptions cannot be invoked,
but instead other quantitative descriptions must be available.
In each attempt, the description of the scene takes on a differ-
ent form: the successful historical form will resemble

"The water that was in the second jar is now in
the third jar"

and "of course" it has the same amount as the first jar I WellI
This gives the right answer, because he has obtained an adequate
description. What kinds of processes must he have in order to
do this. We have already proposed that he has a procedure for
selecting descriptions; in what kind of environment could this
operate? One kind of model would assume that the mature child's
description is at first more elaborate, including both geometric
and historical elements,

"The amounts of water in the first and second jars
were equal. The water that was in the second jar is
now in the third jar. The water in the third jar is
higher and thinner than that in the first jar."

The mature child, we might theorize, will eliminate elements

167

ARTIFICIAL INTELLIGENCE

from his description until there are no serious conflicts. This
will yield a tentative answer, which he can maintain if he can
explain away any problems that arise from reconsidering other
details. Alternatively, one might imagine a process that begins
with a very primitive description and elaborates it. But in
any case, the process must have facilities for such functions
as:

Choosing among the most plausible methods for
answering the question. To apply a method he must
bring the description into a useable form. For
example, when he chooses a "history" method he
suppresses some features of the spatial appearance.
This means he must have a good classification of
the different kinds of description elements.

The selection of the description involves common-
sense knowledge. This, in a word, means that his
entire cognitive structure is potentially engaged
-- language, goals, logic, even interpersonal
situational processes.

If the situation is at all novel,then any committment
to "ignore" a class of elements may require a reason
or "excuse", for conflicts in the original description
that remain unexplained. A standard strategy is
"compensation" — knowing when it is reasonable to
propose tradeoff between such pairs as height and
width when manipulating fluids.

One cannot balance an arbitrary pair of dimensions,
and particular pairs compensate only under suitable
conditions. Ideas like "geometric property" are
necessary, so that one isn't tempted to trade
height with color, for example. What ieatures
of histories might correspond to such static
properties as "spatial" and "numerical"?

Most important, the directing process in which
the history of the situation wins out over the
unusable geometric features,must exist and be
debugged well enough that is can be relied upon:
The child needs to have and trust the higher-
order knowledge about which kinds of knowledge
should have priority in each situation.

We have intentionally not specified the time scale of this
scenario; some of it occurs over long periods, while some in
the course of solving a particular problem. Furthermore, th^se
conditions are still incomplete, yet our structure is already
quite complicated. But so is the situation! Remember, our
child can already carry on an intelligent conversation. This
is not a good place to encourage the use of Occam's Razor. The
time for that is when one has several good competing theories
not before one has any! It takes the child several years to '
work out all of this, and a theory that explained it away on
too simple a basis might be therefore suspect.

168

ARTIFICIAL INTELLIGENCE

We do not, we repeat, want to explain the different conserva-
tions either on completely separate bases or by one unifying
principle. We want to see it as the outcome of an improvement
in the child's procedures for dealing with the variety of des-
criptions that he comes into possession of.

In the traditional "theories of learning" there was a tendency
to ask

"How does such-and-such a "response become
connected to such-and-such a "stimulus".

We now see that the proper questions are much more like

"How can such-and-such a procedure be added to
the descriptive or deductive systems"

4.2 Learninq

A serious complaint about the heuristic programs of the past
was their very limited ability to learn. This made them too
inflexible to be useful except in very special situations.
Over the years many direct attempts to construct "learning
programs" led to very indifferent results. There is a close
analogy, we feel, between this and the similar situation in
the history of constructing psychological theories of learning.

If a child were to learn that 7+5
one hundred other such "responses
learned to add. What is required
priate procedure and how to apply
used before. Another side of thi
just as in the Analogy situation,
lies in the discovery of descript
tial" aspects of things or events
"accidental" features. It would
that some particular thing happen
tion, since identical conditions

=12 and 39+54=93 and, say,
", we would not agree he had
is that he learn an appro-
it to numbers he has never

s "stimulus-response" problem:
the secret of learning often

ions that emphasize the "essen-
, and omit or subjugate the
do us little good to remember
ed in exactly a certain situa-
never recur.

We do not need,or want, to
remember the precise details of
a broken chair, but we do want
to remember that bad things
happen when chairs have broken
rungs — for that is an essen-
tial difference between this
and a usable chair. Indeed,
the greater our knowledge and
powers of observation, the more
selective must be our choice of
descriptions, because of the
magnified problem of becoming
lost in searching through net-
works of irrelevant details.

169

ARTIFICIAL INTELLIGENCE

learning while playing by himself ^^ anC3 between a child
shrewd guidance of an attentTvf ans^rucJn^109 thingS Under the
of a mediocre textbook, and haJinS ?? f f'■PrYlng a theory out
concisely by a superb expSsitor * exPlained directly and

ent'Jhenomena! ^hfappearancfo?916 thiS meSS* web ^ ^iffer-
blem in science is o??S the resuirolT!fib1^ ref"ctory pro-
different problems (each of wMch mav h5 ?9.fUndamenta1^
there is no common solution to SP *h ? relatively simple) when
is true of the many different J^* whole set. We think this
said to learn. Bu? desplSth?^^in WhlCh P^^ms can be
common themes. Most important of Jh"51^ there are important
for enough descriptive ItruTtlrt\n t ' We fee1' is th^ need
tween learning situations ^T^ represent the relation be-
Another theme comes from noJLina S*^3 learned ^^ them?
we have found most dIf?Tcult to limula^^ kindS 0f le^ning
a large stock of prior knowledge and ^ ^ wf6 tnat in^^
leads us to propose for s?udj vlrv ourS f7 1C ah

c
iliti^- This

of handling diverse kinds of knowLd^f ^ 0f the ^°^em
about the problems of acquirinSs^h9? " Pflor to worrying
out these strands we wm consider ^ed9e' To seP^a?e
entirely-separable ideas'of ^llSi^-^'^se'?1^8 ^ n0t-

Learning by development or maturation

Änin^ ^^^l^^^^* adaptation)
Learning by being taught in0dlfyin5 description
Learning by Analogy
Learning by being told

LjJrnln9 K7 being Pro^ammed Learning by understanding

4.3 Learning Without Desciption — "T„
Bciption — Incremental Adaptation"

"here is a large lit-p.-;,<-,^^
paling, facto? analyse LdSn^"e? ^ith cluste^ng methods,
which one finds pr?polals ?or n? mal decision theories, in
modifications of^Sj^ÄJT ^ "l**™" ^ --essive
of this is seen in one of the well knA, 0utsending example
that plays a good game of ChJcklrs n^h programs ^ A Samuel,
all perceptron-like "adaptivJ" michin^116"", fXainPles abound;
optimization programs, most "c^h ? S' a11 hill-climbing"
reinforcement^ Some details can bf f1C ieariii^" models uling
of our book, PERCEPTRONS e fOUnd ln the iater chapters

The conclusions drawn in PERrpPTooMc
view here in detail but wf S ? NS are t00 technical to re-
that emerges. Within^he cl^ses'or^6 ^ 9eneral P^u"
machines can represent th*t * . concepts that these

170

mm

ARTIFICIAL INTELLIGENCE

and crippling limitatiors that they can be used only in soecial
ways. For example, we can construct, by special methods a
perceptron that could learn either t^ recognize squares!'or to
recognize circles. But the same machine would probably not be
able to learn the class of "circles or squares"' It certainlv
pouid ^/--^e ^ence learn to recognize) ^'relational^oL
pound like "a circle inside a square".

These limitations are very confining. It is true that such
methods can be useful in "decision-making" and diagnostic
situations where things are understood so poorly that a
weighted decision" is better than nothing.' But we think it

might be useful to put this in perspectivl by assigning it as
an example of a new concept of TERMINAL LEARNING. The basic

lloalZ h^hHthiS kind 0f "learning Program" is that once tSe
program has been run, we end up only with numerical values of
tTL9^^^3' Th! information in such an array of numbers
is so homogeneous and unstructured — the "weight" of each "factor-
defends so much on what other factors are also involved S the
process - that each number itself has no separate meaning.
We are convinced that the results of experience, to be uslful
to higher level processes", must be summarized in forms that
are convertible to structures that have at least some of the
fraai^n^1^103 0f ^P"^ Programs - that is, something like
fragments of program or descriptions of ways to modify programs

^learn" so^ t^^t' the Siinple "Captive" systems cS
u !f ", S°ue thln9s' to be sure, but they cannot learn to learn
Sonder ^1

are
h
COrfined t0 ^-Peningwhatever "linear separa-

A term?L? TU* /yPOtKeSeS they are initially set to evaluate. A terminal learning scheme can often be useful at the fina^
stage of a performance or an application, but it is potentially

to^ve^p^urther? "^ * ^^ ^ ^ be **^ lat-

One could make similar criticisms of another aspect of the

? a^rJh""? and bOUnd,, Proced^es found in most game-play-
mg and other heuristic programs that follow the "look-ahead
and mimmax" tradition. Suppose that in analyzing a chess
position we discovered that the KB-2 square is vulnerable to a
rook-queen fork by moving a knight to that square. The tradi-
wi^ ^^f" r^tufns a low numerical value for that position.
What it really should do is return a description of wh? the posi-
tion is bad. Then the previous plausible-move generator can
be given a constructive suggestion: look for moves that add a
defense to that square,or threaten one of the attacking pieces

Ive^tually^thes'e^1?^1011 ^ diSCoVer m0re «-h Sug^'tSns. Eventually, these conditions may come to conflict logically.
hA?;'! y re<3uiring a Piece to attack two squares that cannot
couJd sJe^hat5^90' At ^ POint' a d^uctive program
tlon ^m^ T is necessary to think back to an earlier posi-
tion. Similarly, a description of that situation, in turn
could be carried further back, so that eventually't^e move gen-

8"a?ea?cnD^J0 W?rk rth.a knowledgeable analysis S? the strategic problem. Surely this is the sort of thina aood
Players must do, but no programs yet do anything mucHike it.

This argument, if translated into technical specification, would

171

"'"■*«———--1W

ARTIFICIAL INTELLIGENCE

say that if a chess program is to "really" analyze positions
it must first have descriptive methods to modify or "update"
its state of knowledge. Then it needs ways to "understand" this
knowledge in the sense of being able to make inferences or de-
ductions that help decide what experiments next to try. Here
again, we encounter the problem of "common sense" knowledge
since»although some of this structure will be specific to chess,
much also belongs to more general principles of strategy and
planning.

People working on these homogeneous "adaptive learning" Schemas
(either in heuristic programming or in psychology) are not un-
aware of this kind of problem. Unfortunately, most approaches
to it take the form of attempting to generalize the coefficient-
optimizing schema directly to multi-level structures of the
same kind, such as n-layer perceptrons. In doing so, one
immediately runs into mathematical problems: no one has found
suitably attractive generalizations (for n levels) of the kinds
of convergence theorems that, at the first level, make percep-
trons (for example) seem so tempting. We are inclined to sus-
pect that this difficulty is fundamental — that there simply
do not exist algorithms for finding solutions in such spaces
that operate by successive local approximations. Unfortunately
we do not know how to prove anything about this or, for that
matter, to formulate it in a respectably technical manner.

We could make similar remarks about most of the traditional
"theories of learning" studied in Psychology courses. Almost
all of these are involved with the equivalent of setting up
connections with the equivalent of numerical coefficients be-
tween "nodes" all of the same general character. Some of
these models have a limited capacity to form "chains of responses"
or to cause some classes of events to acquire some control over
the establishment of other kinds of connections. But none of
these theories, from Pavlov on, seem to have adequate ability
to build up processes that can alter in interesting ways ehe
manner in which other kinds of data are handled. These theories
are therefore so inadequate, from a modern computation-theory
view, that today we find it difficult to discuss them seriously.

Trial and Error

Why, then,have such theories been so persistently pursued? The
followers were certainly not naive afcout these difficulties.
One influence, we think, has been a pervasive misconception
about the role of multiple trials, and of "practice", in learn-
ing. The supposition that repeated experiences are necessary
for permanent learning certainly tempts one to look for "quan-
titative" models in which each experience has a small but
cumulative effect on some quantity, say, "strength-of-connection".

In the so-called "stimulus-sampling" theories we do see
an attempt to show how certain kinds of one-trail learn-
ing processes could yield an external appearance of
slow improvement. In this kind of theory, a response
can become connected with many different combinations
of stimulus features or elements as a result of a

172

amwam „™„„.^ ..-^

ARTIFICIAL INTELLIGENCE

sampling processes. In each learning event a new
combination can be tried and tested. This is
certainly closer to the direction we are pointing.
However, we are less interested in why it takes so
many trials to train an animal to perform a simple
sequence of acts, and more interested in why a child
can learn what a word means (in many instances) with
only a single never-repeated explanation.

What is the basis for the multiple-trial belief? When a person
is "memorizing" something he may repeat it over and over. When
he practices a piece of music he plays it over and over. When
we want him to learn to add we give him thousands of "exercises"
When he learns tennis he hits thousands of balls.

Consider two extreme views of this. In the NUMERICAL theory
he moves,in each trail, a little way toward the goal, strength-
ening the desired and weakening the undesired components of the
behavior. In the SYMBOLIC view, in each trial there is a qual-
itative change in the structure of the activity — in its pro-
gram. Many small changes are involved in debugging a new pro-
gram, especially if one is not good at debugging! It is not
a matter of strengthening components already weakly present so
much as proposing and testing new ones.

The external appearance of slow improvement, in the SYMBOLIC
view, is an illusion due to our lack of discernment. Even
practicing scales, we would conjecture, involves distirct changes
in one's strategies or plans for linking the many motor acts
to already existing sequential process-schema in different ways,
or altering the internal structures of those Schemas. The im-
provement comes from definite, albeit many, moments of con-
scious or unconscious analysis, conjecture, and structural
experiment. "Thoughtless" trials are essentially wasted.

To be sure, this is an extreme view. There are, no doubt,
physiological aspects of motor and other learning which really
do require some repetition and/or persistenca for reliable per-
formance. Our point is that the extent of this is really
quite unknown and one should not make it the main focus of
theory-making, because that path may never lead to insight into
the important structural aspects of the problem. In motor-
skilj learning, for example, it is quite possible one needs
much less practice than is popularly supposed. It takes a
child perhaps fifteen minutes to learn to walk on stilts. But
if you tell him to be sure to keep pulling them up, it takes
only five minutes. Could we develop new linguistic skills so
that we could explain the whole thing? We might conjecture
that the "natural athlete" has no magical, global, coordination
faculty but only (or should we say "only"!) has worked out for
himself an unusually expressive abstract scheme for manipulating
representations of physical activities.

4.4 Learning by Building Descriptions

We can illustrate much more powerful concepts of learning in
the context of a procedure developed by P. Winston to learn to

173

1:;
.

HMPHM »IWMIMMiMMWBI

ARTIFICIAL INTELLIGENCE

recognize simple kinds of structures from examples. Like the
SEE program of Guzman (which it uses as a sub-process) it
works in the environment of childrens' building blocks. When
presented with a scene, it first observes relations between
features and regions, then groups these to find proposed
structures and objects, and then attempts to identify them
(using description-matching methods and the results of earlier
learning experiences). Thus, the simple scene on the left is
described by a network of abstract objects, relations, and
relations between relations.

SCENE

/L

m 3

SUPPORTEO-BY
SCENE 1 = AN ARCH

PART-OF

KIND-OF

BRICK

In this diagram, the heavy circles represent particular physical
objects, the other circles represent other kinds of concepts,
and the labels on the arrows represent relations. The program
is equipped from the start to recognize certain spatial rela-
tions such as contact, support, and some other properties of
relative position. We tell the machine that this is (an example
of) an ARCH, and it stores the description-network away under
that title.

Note that since these properties describe only relative spatial
relations, the very same network serves to describe both of
these figures, which are visually quite different but geometric-
ally the same.

/

■

174

ARTIFICIAL INTELLIGENCE

Next we present SCENE 3, to the left below, and the machine
constructs the network shown to its right.

L
1
D CONTACT PART-OF

SCENE 2 : NOT AN ARCH
SUPPORTED-BY

KIND-OF

\

This differs from the network of SCENE 1 in only a few respects,
If the program is asked what this structure "is", it will com-
pare this description with others stored in its memory.

It has already networks for
tables, towers, and a few other
structures but, as one might
expect, the structure it finds
most similar is the ARCH des-
cription stored just a moment
ago. So it tentatively identi-
fies this as an arch. In doing
this, it also builds a descrip-
tive network that describes the
difference between scene 1 and
scene 2, and the difference is
represented somewhat like this.

ORIGIN

DIFFERENCE

KINO-OF
'DESTINATION^ /

ADDmONAL/*V_V/"N . fl„ RELATION (J *-\J CürJ l AC1

Now we tell the machine that
scene 2 is NOT an example of
an ARCH. It must therefore
modify its description of
"ARCH" so that structure 2
will no longer match the
description, hence will no
longer be "seen" as an ARCH.
The method is to add a
"rejection pointer" for the
contact relation.

CONTACT

MUST-NOT

SUPPORTED-BY

Now for the next example: we present scene 3 and assert that
this, too, is not a ARCH. The most prominent difference, in
this case, is that the new structure lacks the support relations

175

mi • ■*■

ARTIFICIAL INTELLIGENCE

CONTACT

MUST-NOT

SCENE 3 : NOT AN ARCH

MUST-BE

SUPPORTED-BY

and the program for modifying "ARCH" now adds an "enforcement
pointer" to the supnort relations. Finally, we present another
example, scene 4, and assert that this is an acceptable example
of an ARCH. *

CONTACT

MUST-NOT
PART-OF

SCENE 4: AN ARCH

MUST-BE

SUPPORTED-BY

KIND-OF

BRICK

The most important difference, now, is the shape of the top
block. The machine has to modify the description of "ARCH" so
that the top block can be either a brick or a wedge. One
strategy for this would be simply to invent a new class of
objects — "brick-or-wedge". This would be extremely "conser-
vative", as a generalization or explanation. Winston's
strategy is to look in memory for the smallest class that con-
tains both bricks and wedges. In the machine's present state the
only existing such classes are "prism" and "object" — the
latter is the class of all bodies, and includes the "prism"
category, so the new description will say that the top object
is a kind of prism. If we replaced the wedge by a pyramid, and
told it that this, too, is an arch, it would have to change the
top object-description to "object", because this is the smallest
class containing "brick" and "pyramid". Now we can summarize
the program's conclusion: an arch is

"A structure in which a prismatic body is supported
by two upright blocks that do not touch one another."

176

ARTIFICIAL INTELLIGENCE

We have just seen how the program learns to identify correctly
the membership of scenes 1-4 as to whether they are ARCHES or
not. As a consequence, it will probably "generalize" automatic-
ally to decide that

,0
Q

AND AND

are also arches, because there are no "must-be-a..." enforce-
ment pointers to either the supports or the top. Of course this
judgement really depends on the machine's entire experience,
i.e., on what concepts are already learned, and upon details of
the comparison programs.

We have suppressed many interesting details of the behavior of
Winston's program, especially about how it decides which diff-
erences are "most important". For example, the final form of
the network for "ARCH" is more like:

MODIFICATION-OF

ONE-PART-IS

6R0UP-0F

HAS-PROPERTY-OF

than the simple schemata shown earlier,

177

ARTIFICIAL INTELLIGENCE

tha? ?hf H?f^ 'u If the comParison program can be told that the difference between "IN-FRONT-OF" and "BFHTNn" -« in
as that between "LEFT-OF" and "RirHT-np" T w lu ? ' aS Wel1

in terms of "vertical axis symmetry" then S can h deSCribed

scenefln! ^ ^ ^~^ dlffences^wee'n ^twT^

^a^I^fi^"^" 0n thiS basis' hence differ only in respect

rec^Itructionr^irhr1^031^ ComPlic^ed pr^b^^in till

£eHe ^ ^ ^l~l* -u^o^L^e^^i^it.
ab!e toeiearn' /OW "^ T^ struct^e would one neeS,9?o be
diflicSlt wni' f. K ^^i65' such concepts as symmetr^? How
procedures ^ / 1° fapt SUCh a system to Earning new procedures ^^ead of structures? At first this migh? seem
™, ^P' but.the ldeas in the next section, on describina
^lier?^ repetiUve structures, make the gap's^L t^Ä

<

We
"concept"6 (ra?L^HadVantageS 0f having a ascription for

irther progress.

The ability to compare and contrast des
shall see in section 4 6)

criptions (as we

The ability to make deductions involving the concent
to adapt it to new situations. concept.

Combining several descriptions to make new concepts.

An example of the latter: Every structural "concept" that

compiex and almost useless network of "LLS's betten SrblY

178

ARTIFICIAL INTELLIGENCE

nine blocks. But after learning ARCH, it will nov describe it
in a much more intelligent way:

SCENE
PART-OF

LEFT-OF
KIND-OF

ARCH

because its descriptive mechanisms proceed from local to global
aggregates using as much available knowledge as it can apply.
In doing this we encounter, now on a higher level, grouping pro-

ni^J6^ !rCh llke thOSe We SaW in our sketch of Guzman'I SEE
program, and in many cases one can adopt analogous strategies.

4.5 Learning by Being Taught

Jo £;??/. ? Paying with a toy car and his blocks. He wants
w?nS ? ^ lnteresting structure to play with. If the use of
Winston s program were present, he could teach the child how to
make an arch by the process just described, for it is not hard
to convert the above description into a procedure for building

^^S; ^faCt' ^ Chapter 5' We sha11 give a ^etch of ex-9
nroiLÜ^ thls

u
canbe done' This is precisely what Winograd's

program does when it translates from the semantic analysis of
fn^f? K?eS!:r!blng noun-Phrase into a robot program for build- ing with blocks: See Chapter 5.

in iLn™ neces^^i
for the child to have a teacher, however,

and tL ^^ 0J y1^1^ he can ^y experiments with the blocks
and the car, .nd he can recognize "success" in either of these
cases, among others: tnese

a) He knows how to recognize an "ARCH" once it is built — but
does not know how to describe or to build it.

b) h?m^?f\HUI?Cti0nal Play-goal: construct a road-problem for
himself that is not too easy and not too hard - such as an
obstacle that requires two hands to overcome, but cannot be
negotiated trivially with one hand. ^nnoT: oe

class38 Tn^L^Sr huV0 tell.which structures are in the
S!! i ? (b)l Whlle exPerimenting he will indeed find
easv tT^ 1S !0^' SCene 2 iS ^Posssihle, Scene 3 is too
easy, an Scene 4 (discovered as the simplest variant of the

"fecr^th^ViH13 alSO g00d- Here Se get the'samfoverall
thl hthZil. ^AU* !aine mechanism - Yet in humanistic terms
of "^o^ "ld be((

dfsc^bed much more naturally in terms
finJ Pi^l K'.0r ^aY ' 0r "^directed" activity. The
final esult, if described in structural terms, is again

179

ARTIFICIAL INTELLIGENCE

"a structure in which an object is supported by
two upright bricks that do not touch one another."

This is certainly not a perfect logical equivalent of the adult's
idea of an arch; nor does it contain explicitly the idea of a
surrounded passage or hole. Still, for the playing child's
?o^nf ?' ^ ^Uld rePresent Perhaps an important Itep toward formulation and acquisition of such concepts. tovvara

Again we have left alone some very important loose ends. We
have concealed in the catch-all expressions "play" or "explora-
tion some supremely important conditions that must be fulfilled
-- and at early stages of child development they won't be and
the things that are learned during "play" will be different

The child must already be equipped with procedures that
have a decent chance of generating plausible structures.

To do this, he must be able to describe to some extent
why an experiment is unsatisfactory. If he cannot get
his car between the supports, he must be able to think

^n~VlnVhe SUPPorts aPart- This is not very hard,
since pushing against the obstacle will sometimes do

Since most experiments not carefully planned lead to
useless structures, he has to have some ability to
reconstruct a usable version of earlier and better
situations after a disaster.

Without the teacher, it is unlikely that he will get good results
after just four trials: He must have enough persistence in his
goal-structure to carry through. To do this consistency would

coursed? ?h?00d aSSessment of the Problem's difficulty! Of
no?*?; f 1S ™lssin(3' he will ^nd something else to do; not all play is productive! >= uu uu,

Winston's program seems to be a reasonable model for kinds of

The'-conceat" IZ't ^ P1*^1* in' if "Ot typical of "f child. The concept the program will develop, after seeing a sequence
of examples chosen, on the order in which they are presented
and of course on the set of concepts the program has acquired
previously. In many cases the experimenter may not ge^the
result he wants; presenting examples in the wrong o?der could
get the program (or child) irrepairably off the track and he
might have to back up - or perhaps restart at an eariiS staac
We cannot expect our concept-learning programs to blfoolproof
any more than a teacher can expect his instructional technique
always to work. The teacher always risks failure until he
acquires correct insights into what has happened in the student's

Of course there are many small but important details of how the
program decides what to do at each step, which differences to

shonlH^^Vn1^' WhiCh Parts of the description networks
should be matched, what explanations it should assign to the
differences that are noticed.

180

ARTIFICIAL INTELLIGENCE

(o. machine's) mastery of mechanical s?ru?tareswni be ^ml

S-a^Sl^S
pe^^\e-Lv°f Ki^^^ri^e^r^^Ji^s t0 b F?^"^

4.6 Analogy, Again

in" !:i^nanr:icg
rLst0 ^ ^io'^fl4^10' SOlVing Pr°ble-

learned'concepS/^SEoS r.fLj ^Jt^plalnlrL^eJ^r*-
o? o™^ 1S d?ne' " is »P°"ant to mention Sa? the res^t
dlsc?SSon? ^sic^r^ir3' " thls s**t™' ** Use" ä oesoriptlon. Basically, the comparison works this way:

v^iThe K"° ,?esoriPtions are "matched together" usino
corrre0sUponde?rlSt10 rUleS t0 ^^ "h-h nodefprobab^

were

3. We associate with each node of this skeleton a
comparison note" describing the correspondence ?f th*

descriptions immediately local to two "corresSo^dinf"

irthe^raä^HS^e^s-Trr30^"0" S ^i?3 But
other a wedge) the^^arl^'Aotf-^scrihe^hls3110 ^

^Srarhy ^^S^l^nl^-rSr SnTc^ ^
SorS^.UPOn thT W:Lth the Same Programs lA particular
any otherrpairofSS'1Pti0;S Can be COinpared as^ndny'as any otner pair of descriptions.

181

ARTIFICIAL INTELLIGENCE

Now we can apply this idea to the analogy problem. The machine
must select that scene X (from a small collection of alter-
natives) which best completes the statement

A is to B as C is to X

That is, one must find how B relates to A and find an X
that relates to C in the same way. Using the terminology

Diff [A:B]

to denote the difference-description-network resulting from
comparing A with B, we simply compare the structures resulting
from: r

Diff [Diff [A: B] : Diff[C:XlJ],

Diff [Diff |A:B] : Diff\C:X2]] ,

Diff C Diff [A :B] : Diff[C:X3] J , etc.

Each of these summarizes the discrepancies within the "ana-
logical explanations" for each corresponding possible answer.
So to make the decision, we have to choose the "best" or "sim-
plest" of these. We will not give details of how this is done;
it is described in Chapter 7 of Winston's thesis. But note that
some such device was needed already for the basic ability to
identify a presented scene most closely with one of the des-
criptive models in memory. Thus the program must incorporate,
in its comparison mechanism, conventions and priorities about
such matters as whether the difference between Right and Left
is to be considered simpler than the difference between Right
and Above.

In this example

"IJ IS TO SL^ AS IS TO

fl! ZS^ So

162

■■wimaiiwwtiwiiiii HKI» iimiiiimn

ARTIFICIAL INTELLIGENCE

the machine chooses THREE as its answer, ONE as its second
choice. In the slightly altered problem

IS TO fl) ^S> AS IS TO

(same 5 figures)

It chooses FOUR as its answer.

4.7 Grr iping and Induction

The problem of recognizing or discerning grouping or clusterings
of related things is another recurrent concern not only in
Psychology, but also in statistics, artificial intelligence,
theory of inductive inference; indeed, of science and art in
general. Most studies of "clustering" have centered around
attempts to adapt numerical methods from the theory of multi-
variate statistics to group data into subsets that minimize
some formula which compares selected inter- and intra-group
measures of relatedness. But such theories are not easily
adaptable to such important and interesting^ßroblems as discern-
ing that

sMfi^
sh'ows, not VA + fa + 20 = 38 objects, but "a row of arches, a
tower of cubes, and a brick wall." More subtly, how do we
"know" that one of these is three wedges while the other is
three blocks? Visually, the lower objects in each tower are
the same. These problems, too, can be treated by the same
general methodology used in our approach to Analogy and to
Learning of structures in scene-analysis.

183

,,.«fggggfKHIK *■■J■*■-.^il--■. mmimfimfm wm m pfpMHM mw*®***'

ARTIFICIAL INTELLIGENCE

On many occasions we have been asked why the A I
Laboratory is so concerned with special problems'
like machine vision, rather than more general
approaches and problems about intelligence. in
the early stages of a new science one proceeds
best by gaining a very deep and thorough understand-
ing of a few particular problems; that way one
discovers important phenomena, difficulties, and
insights, without which one risks fruitless periods
of speculations and generalities. if the reader
can see the present discussion in terms of general
problems about induction and learning, the fruit-
fulness of the approach should speak for itself-
we cannot imagine anyone believing the usefulness
of these ideas is in any important way confined to
description of visual or mechanical structures!

"ShL^6 ?r0upin^ ^ the Preceding firures and ask:
What qualities of the scene-descriptions characterize the
intuitively acceptable groups." m some groups, like those
shown above, it seems clear that the impo?tan? feature is a
CHAIN, say, of supported-by or in-front-of relations. in
other cases it seems obvious that several objects show a

aTsit^t?ons?ShlP t0 an0ther' BUt n0 Sim^e rules wo*k in

In this scene one does not
usually see a single group or
tower of seven blocks. Whether
it is appropriate to describe
this as "a seven-block stack,"
or as "a three-block stack
supporting a plate that in turn
supports a three-block stack,"
or as yet something else, depends
on one's current purposes, orien-
tations, or specifically on what
grouping criteria are currently
activated for whatever reason.

'ri *0™ fu^1™3 the discrepancies in the individual proper-
ties of the bxocks should cause the grouping procedure to
separate out the three-block stacks in spite of the fact

support-relation chain continues through all seven that the
blocks.

184

ARTIFICIAL INTELLIGENCE

We next sunmarize some expe

ston's

For example, when several
objects have the same or
very nearly the same des-
cription, they are immedia\
tely taken as candidates for
a group. The blocks on this
table are typical. All are
polyhedra, all are standing
and all are supported by
the board.

sS SS ^ntilVSTTV0 ^^ 0b^ts ^ich
do thisf a proc^am lists al ^^ ?In^eneeUS Set remains. To
more than h^^Tth^^^didatls^^Ilt!^^1^0 ^

loop reieSsl^d ?Perate?' the first P^ trough the

is norSdLTi^tMs^pLrbec^riH8 0f-Shape- (Si2e
too heterogenous for "size" to tt^t th*six objects are
ships list:) m a secoil nJ« t P^ 0n the co^on-relation-
remaining objects share the "T^

OW"Ver' m0re than half ^
D is rejlcted? mainly Lcanc ^T S1Ze ProPerty, and block

so, finely, ^r^oLdurTalcepts^in fa^d ChintPr?h
Perty-

n^ro^hers:10^^ thiS iS ^riX l^^**

SL^k^th^rTc^fbe^^^ff int0 the ascription
for other'pro2lemsSfbL^t?:nedTH"df

eXCiting ^Lquences
shows the network representa^oA J^ -^T™ 0n the next P^ge
Process operaces on ^^^^^^^^

i

185

'lm^*ii'¥»immimmsm! '■-.■'mm ■-^^mmmmmmm

ARTIFICIAL INTELLIGENCE

KIND-OF

(MEMBERS)

Into the description is
introduced a "typical
member" to which is
attributed the common
properties discerned by
the grouping procedure.
In this case, chaining was
used to form the group and
the description includes
the fact that there were
three elements in the
chain.

■KIND-OF in a learning experiment,
the program is presented
with the depicted
sequence of scenes shown
below and is told that the
first, third, and sixth
are instances of "column"
while the others are not.

SUPPORTED-BY

NUMBER-OF-
MEMBERS

o

COLUMN NOT A COLUMN
COLUMN NOT A COLUMN NOT A COLUMN COLUMN

"^TSPH"
exainPle causes the enforcement of a new pointer

J^« ? \u concePt already available to the progr^ ?hat
refers to the neat parallel alignment of edges^ T^third
Sf ^r a brick8 SStem ^ ^ tyPical ^ 'an be a
"PRISM- so noi ^?" ? sm*llest common generalization here is PRISM so now a "column" can be any neatly piled stack of
prisms. The fourth example changes " suppor ted-by "to "muf 1-
be-supported-by"; the fifth, whilh is no? sein as a group
because it has only two elements, changes "one-part-is-a
group" to "one-part-must-be a group".

186

ARTIFICIAL INTELLIGENCE

The sixth and final example
is of particular interest
with respect to traditional
induction questions.
Comparison of it with
the current concept of
"column" yields a
difference-description
whose highest-priority
feature is the occurrence
of "FOUR" instead of
"THREE," in the number-
of-members property of
the main group. What is
the smallest class that
contains both "THREE" and
"FOUR?" In the program's
present state, the only
available superset is
"INTEGER.,: Thus we obtain
this description of "column"
which permits a column to
have any number of
elements!

KIND-OF

KIND-OF

M U ST-BE-SUPPOKTED-BY
AND ALIGNED

NUMBER-OF-
MEMBERS

Is this too rash a generalization to make from so few examples?
The answer depends on too many other things for the question
to make much sense. If the program had already some concept
of "small integer," it could call upon that. On a higher level
we could imagine a program that supervised the application of
any generalization about integers, and attaches an auxiliary
"warning" pointer label to conclusions based on marginally
weak evidence. We are still far from knowing how to design
a powerful yet subtle and sensitive inductive learning program,
but the schemata developed in Winston's work should take us
a substantial part of the way.

Finally, we note that in describing a sequential group in
terms of a typical member and its relations with the adjacent
members of the chain, we have come to something not too un-
like that in programming languages that use "loops," entry,
and exit conditions. Again, a structure developed in the
context of visual scene-analysis suggests points of contact
with more widely applicable notions.

-»■«■«„,

187

' ■ ■ ' • ,:'■ „a-.V..; •

ARTIFICIAL INTELLIGENCE

5.0 Knowledge and Generality

We now turn to another set of questions connected with our
long-range goal of understanding "general intelligence".
An intelligent person, even a young child, is vastly more
versatile than the "toy" programs we have described. He
can do many things; each program can do only one kind of thing.
When one of our programs fails to do what we want, we may
be able to change it, but this almost always requires major
revisions and redisign. An intelligent human is much more
autonomous. He can often solve a new kind of problem himself,
or find how to proceed by asking someone else or by reading
a book.

One might try to explain this by supposing that we have
"better thinking processes" than do our programs. But it
is premature, we think, to propose a sharp boundary between
any of these:

Having knowledge about how to solve a problem.

Having a procedure that can solve the problem.

Knowing a procedure that can solve the problem!

In any case, we think that much of that a person can do is
picked up from his culture in various ways, and the "secrets"
of how knowledge is organized lie largely outside the
individuals Therefore, we have to find adequate models of
how knowledge systems work, how they are acquired by individuals,
and how they interact both in the culture and within the
individuals.

How can we build programs that need not be rebuilt whenever
the problems we want to solve are slightly changed? One
wants something less like ordinary computer "programming"
and more like "telling" someone how to do something, by informal
explanations and examples.

In effect, we want larger effects while specifying less. We
do not want to be bothered with "trivial" details. The
missing information has to be supplied from the machine's
internal knowledge. This in turn requires the machine itself
to solve the kinds of easy problems we expect people to
handle routinely — even unconsciously — in everyday life.
The machine must have both the kinds of information and the
kinds of reasoning abilities that we associate with the ex-
pression "common sense".

188

'' h'
.

ARTIFICTAL INTELLIGENCE

There are differences of opinion about such questions, and
we digress to discuss the situation. Artificial Intelligence,
as a field of inquiry has been passing through a serious
crisis of identity. As we see it, the problem stems from the
tendency for the pursuit of technical methods to become
detached from their original goals so that they follow a
developmental pattern of their own. This is not necessarily
a bad thing; many productive areas of research were born of
such splits. Every discipline has had to deal with such
situations and it has happened often in the study of human
intelligence. Nevertheless, if one is interested in the par-
ticular goal of building a science of intelligence, one
has to be concerned with the use of resources both on the
local scale of conserving one's own time and energy and on
a global scale of watching to see whether the scientific
community seems to be directing itself effectively. We
suspect that there is now such a problem in connection with
the studies of Mechanical Theorem Proving.

5.1 Uniform Procedures Vs. Heuristic Knowledge

As a first approximation to formulating the issues, consider
a typical research project working on "automatic theorem
proving". Schematically, the project has the form of a large
computer program which can accept a body of knowledge or "data
base," such as a set of axioms for group theory, or a set
of statements about pencils being at desks, desks being in
houses, and so on. Given this, the program is asked to prove
or disprove various assertions. What normally happens is
that if the problem is sufficiently simple, and if the
body of knowledge is sufficiently restricted in size, or in
content or in formulation, the program does a presentable
job. But as the restrictions are relaxed it grinds to an
exponential stop of one sort or another.

There are two kinds of strategy for how to improve the program.
Although no one actually holds either policy in its extreme
form and although we encounter theoretical difficulties when
we try to formalize them, it nevertheless is useful to
identify their extreme forms.

The POWER strategy seeks a generalized increase in computational
power. It may look toward new kinds of computers ("parallel"
or "fuzzy" or "associative" or whatever) or it may look
toward extensions of deductive generality, or information
retrieval, or search algorithms — things like better "re-
solution" methods, better methods for exploring trees and
nets, hash-coded triplets, etc. In each case the improvement
sought is intended to be "uniform" — independent of the
particular data base.

189

.

■■■-■ ■ ■,.. ; ..

ARTIFICIAL INTELLIGENCE

The KNOWLEDGE strategy sees progress as coming from better
ways to express, recognize, and use diverse and particular
forms of knowledge. This theory sees the problem as episte-
mological rather than as a matter of computational power or
mathematical generality. It supposes, for example, that
when a scientist solves a new problem, he engages a highly
organized structure of especially appropriate facts, models,
analogies, planning mechanisms, self-discipline procedures,
etc. To be sure, he also engages "general" problem-solving
schemata but it is by no means obvious that very smart people
are that way directly because of the superior power of their
general methods — as compared with average people. Indirectly,
perhaps, but that is another matter: a very intelligent
person might be that way because of specific local features
of his knowledge-organizing knowledge rather than because
of global qualities of his "thinking" which, except for the
effects of his self-applied knowledge, might be little
different from a child's.

This distinction between procedural power and organization
of knowledge is surely a caricature of a more sophisticated
kind of "trade-off" that we do not yet know how to discuss.
A smart person is not that way, surely, either because he
has luckily got a lot of his information well organized or
because he has a very efficient deductive scheme. His intelli-
gence is surely more dynamic in that he has (somehow) acquired
a body of procedures that guide the organization of more
knowledge and the formation of new procedures, to permit
bootstrapping. In particular, he learns many ways to keep
his "general" methods from taking elaborate but irrelevant
deductions and inferences.

5.1.1 Successive Approximations and Plans

The mechanical theorem-proving programs fail unless provided
with carefully formulated diets of data; either if given to
little knowledge and asked advanced theorems, or given too
much knowledge and asked easy questions. In any case', the
contrast witu a good mathematician's behavior is striking;
the programs 3eem to have no "global" strategies. If a
human mathematician is asked to find the volume of some object
of unusual shape he will probably try to use some heuristic
technique like:

1. cutting it into a sum of familiar shapes; or

2. enclosing it "tightly" in a familiar shape and
try to find the difference-volume; or

3. transform, metrically, the space so that the shape
becomes more familiar;

4. etc.

190

ARTIFICIAL INTELLIGENCE

Thus, one would transform:

7

crucial. The three kinds of information in

1.

2.

3.

The knowledge exhibited in the proof;

The knowledge used to find the proof;

The knowledge required to "understand" or
explain the proof so that one can put it
to other uses,

are not necessarily the same in extent or in content Th^

knowledge can be used. yp

storv^blt1^ °£ knowled9e is exemplified by the following

"The system has perfectly rigid bodies,

i«anrtT. !.treated aS purely ^o^tric. There
iL?" friCtl0n' and the forces obey Hooke's

inf?n^0
SOlVeS.his ew^ons. He finds the system offers

infinite resistance to disturbance at a neZ*-*^ e oxters
He has used a standard plan; cSrit u^^SIMPLE^Sr-i^'
produced an absurdity. But he does nni- ^o^ !^ • ,.
completely! Instead, he says: "I know thlfnh S abs?rdity'
tells me that the "real" ZvltL™ K Know.thls phenomenon! It

damping and coupling terms. J-"ciuaes certain

191

' . . ■ . . m*mmm .

i

,,,«•. o,--

ARTIFICIAL INTELLIGENCE

Next, he studies this system near the interesting frequencv
that was uncovered by plan ÜLTRASIMPLE. He know? that his
new model is probably very bad at other far-lSaf, V •
at which he will geJfals^ phenomena because TlteZnlTtTrlT
hfr^Ki0nS tuOUt. ri^dity^ he has reason to believe ?hese
harmless in the frequency band now being studied. Then hj

One cannot overemphasize the importance of this kinr- of

that we plan to assign a large portion o?Suref?o?t to

Intelligence ^^ " ^ " Central problem in Artificial

5.2 Micro-worlds and understanding

In order to study such problems, we would like to havo
collections of knowledge for several "micro-worlds" ulti-

"uld'like^trmakr'^'111' ^ t0gether- ^pe'ciaily ^e
kn«i?Qi u t e SUch a system able to extend its owA
knowledge base by understanding the kinds of information
found in books. One might begin by studying the probJems
one encounters in trying to understand the stories alv^n%o
young children in schoolbooks. Any six-vLr-old «nl«^ 2
much more about each of such cru^l^nd^riois ttt^lT*

time
causing
failing
owning

space
doing
knowing
giving

planning
preventing
intending
breaking

explaining
allowing
wanting
hurrying

than do any of our current- hon»--! c4--i~ ^_„ „

a graduat/student, is^Sw weeu1|lcng
P^9deaveiopi„Urs:meCharniak'

192

_

ARTIFICIAL INTELLIGENCE

Although we might describe this project as concerned with
"Understanding Narrative", — of comprehending a story as
a sequence ot statements as read from a book ■— that image
does not quite do justice to the generality of the task. One
has the same kinds of problems in:

1. making sense of a sequence of events one has seen
or otherwise experienced (what caused what?)

2. watching something being built (why was that
done first?)

3. understanding a mathematical proof (what was
the real point, what were mere technical details?)

Many mental activities usually considered to be non-sequential
have similar qualities, as in seeing a scene: why is there
a shadow here? — What is that? — Oh, it must be the
bracket for that shelf.

In any case, we do not yet know enough about this problem
of common sense. One can fill a small book just describing
the commonsense knowledge needed to solve an ordinary problem
like how to get to the airport, or how to change a tire.
Each new problem area fills a new catalogue. Eventually, no
doubt, after one accumulates enough knowledge, many new
problems can be understood with just a few additional pieces
of information. But we have no right to expect this to
happen before the system contains the kind of breadth of
knowledge a young person attains in his elementary school
years I

We do not believe that his knowledge can be dumped into
a massive data base without organization, nor do we see how
embedding it in a uniformly structured network would do
much good. We see competence as emerging from processes in
which some kinds of knowledge direct the application of other
kinds in which retrieval is not primarily the result of
linked associations but rather is computed by heuristic and
logical processes that embed specific knowledge about what
kinds of information are usually appropriate to the
particular goal that is current.

We already know some effective ways to structure logically
deep but. epistemologically narrow bodies of knowledge, as
the result of research on special purpose heuristic programs
like MACSYMA, DENDRAL, CHESS, or the Vision System to get
experience with broader, if shallower, systems we plan to
build up small models or real world situations; each should
be a small but complete heuristic problem solving system,
organized so that its functions are openly represented in
forms that can be understood not only by programmers but
also by other programs. Then the simple-minded solutions
proposed by these mini-theories may be used as plans for more
sophisticated systems, and their programs can be used as
starting points for learning programs that intend to improve
them.

193

j ■ , ■

ARTIFICIAL INTELLIGENCE

In the next section we will describe a micro-world whose
subject matter has a close relation to the vision world
already described. Its objects are geometric solids such as
rectangular blocks, wedges, pyramids, and the like. They
are moved and assembled into structures by ACTIONS, which
are taken on the basis of deductions about such prpperties
as shape, spatial relations, support, etc. These interact
with a base of knowledge that is partly permanent and partly
contingent on external commands and recent events.

5.3 Winograd's BLOCKS World
Note: Sections 5.3 through 5.6 are largely adapted
from Terry Winograd's Thesis, but he is not responsible
for the oversimplifications and reinterpretations.

For developing and demonstrating his ideas about understanding
natural language, Terry Winograd needed a micro-world in
which to carry on a discourse containing statements, questions
and commands. In this world we pretend we are talking to
a very simple type of robot, like the ones being developed
in AI projects at Stanford and MIT. The robot has an
arm and an eye. It can look at a scene containing toy
objects and can move them with its hand. Winograd did not
try to use an actual robot or to simulate it in great
physical detail. His "robot" exists only as a display on
the CRT scope attached to the computer.

A subject for such a discourse needs a certain amount of
structure to support interesting description and manipulation
problems. The BLOCKS WORLD has OBJECTS, RELATIONS (and
properties) of the objects, ACTIONS that can be performed,
and GOALS — descriptions of states of the world that one
might want to achieve.

5.3.1 Objects

In Winograd's model, the robot (named :SHRDLU) has a hand
(:HAND) which manipulates objects on a table (f:TABLE) that
has on it a box (:BOX). The rest of the physical objects
are toys — mainly blocks and pyramids. We give them the names
:B1, :B2, "B3, etc. Any symbol beginning with ":" represents
a specific object.

Built into this world are some concepts we will use to
describe these objects and their properties. We represent
them in a tree:

|TABLE
| BOX

I PHYSOB j MANIP-
I ROBOT |HAND
|PERSON j STACK
|PROPERTY

I BLOCK
j BALL
j PYRAMID

j COLOR
|SHAPE

194

„..v? -' ■ ■-"

ARTIFICIAL INTELLIGENCE

The symbol PHYSOB stands for "physical object" and MANIP
for "manipulable object" (i.e. something the robot can pick
up). Using the concept IS to mean "has as its basic des-
cription," we can write assertions like

(IS rSHRDLU ROBOT) (IS :HAND HAND) (IS :B5 PYRAMDD)

For other, less basic properties we can write attribute-
value statements like (MANIP :B5) and (PHYSOB :TABLE).
Shape and color are handled with possible shapes are
ROUND, POINTED, and RECTANGULAR, and the colors are
BLACK, RED, WHITE, GREEN and BLUE. The property names
themselves can be treated as objects, so we can make such
assertions as (IS BLUE COLOR) and (IS RECTANGULAR SHAPE).

Size and location are more complex, as they depend on the
way we choose to represent physical space. We adopted a
standard three-dimensional coordinate system and make the
simplifying assumption that objects are not allowed to
rotate, and therefore always keep their orientation aligned
with the coordinate axes. We can represent the position of
an object by giving the coordinates of its front lower left-
hand corner, and its size by giving three dimensions, as
in (AT :B5 (400 600 200)), and (SIZE :B5 (100 100 300)).

5.3.2 Relations

Since we are interested in building structures with the
objects around in the scene, one of the most important relations
is SUPPORT. The initial data base contains assertions about
all of the support relations in the intial scene, like (SUPPORT
iBl :B2). Every time an object is moved, a PLANNER "ante-
cedent theorem: removes the old assertion about what was
supporting it, and puts in the correct new one. See 5.3.3.
An "antecedent theorem" can be regarded as a sort of demon
that watches for some sort of event to happen, and then takes
a suitably programmed action. The Blocks World uses a
notion of "support" in which an object is supported by whatever
is directly below its center of gravity, at the level of its
bottom face. Therefore, one object can support several
others, but there is only one thing supporting it. Of
course this is an extreme simplification since it does not
recognize that a simple bridge is supported.

The assertion (CLEARTOP X) will be in the data base if and
only if there is no assertion (SUPPORT X Y) for any object
Y. Whenever an object is moved, a procedure checks to see
if the CLEARTOP status of any object has changed, and if so
the necessary erasures and assertions are made.

Information about what is contained in the box is also kept
current by an antecedent theorem concerned with the property
CONTAIN. The property GRASPING is used to indicate what
object (if any) the robot's hand is currently grasping.

195

i
' « ;;-,i -. K *""*V?*^m^.*C :

-«KB..«-
.

ARTIFICIAL INTELLIGENCE

Another relation is the PART relation between an object and
a stack. We can give a name to a stack, such as :S1, and
assert (PART :B2 :S1). Relations using the symbols RIGHT
BEHIND and ABOVE represent the difference in coordinate axes
for X, Y and Z respectively. The symbol ON is used to represent
the transitive closure of SUPPORT. That is, Z is ON A if A
supports B, B supports C, ... supports Z.

The measurements of LENGTH, WIDTH and HEIGHT are contained in
the SIZE assertions and (HEIGHT X) evaluates to the height of
whatever object the variable X is bound to. SIZE is
used for comparisons like "bigger." Currently, it returns
the sum of the X, Y and Z coordinates, but it could be easily
changed to be more in accord with human psychology. In
order to compare measurements, we have the relation MORE The
sentence ":B1 is shorter than "B2" is equivalent to the asser-
tion (MORE HEIGHT :B2 :B1) .

OWN relates a person to any object. Knowledge about what the
human user owns is gathered from his statements. The semantic
programs can use statements about owning to generate further
P
^T1^ ^u0rfmS Which are used to answer questions about what
:FRIEND (the human operator) owns and make deductions needed
to carry out commands involving owning. The current system
contains only token examples of such properties unrelated to
the microworld of blocks.

5.3.3 Actions

The only events that can take place in our world are actions
taken by the robot in moving its hand and manipulating objects.
At the most basic level, the only actions which "really"
occur are IMOVETOI, IGRASPI and lUNGRASPl. These are the
actual commands sent to the display routines and, theoretically,
to a physical robot system. y

To explain how the actions are programmed,
in Winograd's system, we need to know a little
about the PLANNER language of Carl Hewitt.
Briefly, PLANNER has several ways for handling
information of the form "A implies B", custom-
arily called "theorems", m one form, the
"consequent" form, it is interpreted roughly
as "If you want something of the form B,
make A a subgoal". in another, the "ante-
cedent" form, it means "if something of the
form A occurs, then deduce B and add it to
the data base". Still another form of theorem
can erase statements, such as support assertions
that ought to be excised automatically when one
of the participating objects is moved.

'

196

'.*»«'r» *'.■:' Äv

ARTIFICIAL INTELLIGENCE

The result of calling a consequent theorem to achieve a qoal
requiring motion, like (PUTON :B3 :B4), is a plan - a list

ZLlT^UCui0T U*inH the three elementary functions. IMOVETOI
moves the hand and whatever it is grasping to a specified
position. I GRASP! sets an indicator that the grasped object
is to be moved along with the hand, and lUNGRASPl unsets it

of%h?^-gr?SPS ^ rnOVing itS hand directly over the cente^
of the object on its top surface, and turning on a "magnet."
nLCfMn0 ?1S ^0 any maniPulable object, but can only grasp
n.n H»^ va tlme: Using these elementary actions, wl P

^n"^ a hierarchy of actions, including goals that may
wlrlut \ ule sec3uence of deductions and actions, like
blocks^ CaUSeS the constldCtion of a whole s(ack of

Inside the system are another sat of "conceotual actionc:"
MOVEHAND GRASP and UNGRASP, and correspondingaconseqSent
theorems to achieve them. There is a significant difference
between these and the functions listed above. Calling the
function :MOVETO: actually causes the hand to move. On the
other hand, when PLANNER evaluates u statement like:

(GOAL(MOVEHAND (600 200 300))(USE to-MOVEHAND))

nothing is actually moved. Translation: if your goal is to

MOVPHAMH ^ t0 (600' 200' 300)' use the advice iTlhelc-
MOVEHAND theorem to achieve this goal. The "USE" clause is a
feature in PLANNER to allow the insertion of advice on ho^
tu af f/6 g0als' etc" in any assertion or theorem. Here
the tc-MOVEHAND theorem creates a plan to do the motion b^t
if this move would cause us to be unable to achieve a goal

?L«?Tv ^^t' th! PLANNER backup mechanism will automa-
tically erase it from the plan. The robot plans its entire
sequence of actions before actually moving anything, tryinq
if necessary all of the recommended means it has to achievl
its goal. We do not have space to explain PLANNER'S backup
system in complete detail; it is described in Hewitt's
tnesis, and the following sections show roughly how it
provides automatic tree searching when necessary, under the

in^he data^asl"^" reconmendations attached to'the theorems

■'

These theorems also do some checking to see if we are tryinq
to do something impossible. For example, MOVEHAND makes
sure the action would not place one block where there is
already an other, and UNGRASP fails unless something will
support the object it wants to let go of.

hwLT S6 briC ohiects' relations and actions in the
blocks world. But a micro-worid also needs concepts about in-
tentions, processes, strategies, etc. We next describe the

197

. -

ARTIFICIAL INTELLIGENCE

performanL anl^lu? fts InS'Ss! qUeStionS about ""

5.3.4 Carrying Out Commands

definitions of various PÜSERÄ
pr0grain ?ives simplified

nitions, we will be able to ?o^ f^8- Using these defi-
complex action in detau (vn. the System through a
Program may be fSunfol^he ^^x^^^f.0^^^^ ^he

198

**m*an

ARTIFICIAL INTELLIGENCE

tc-CLEARTOP X
GO

tc-GET-RID-OF X

tc-GRASP X

tc-PUT X

(COND ((GOAL (SUPPORT X _Y))
(GOAL (GET-RID-OF Y) (USE tc-GET-RID-OF))
(GO GO))

((ASSERT (CLEARTOP X))))

(OR
(GOAL (PUTON X :TABLE}(USE tc-PUTON))
(GOAL (PUTON X Y)(USE tc-PUTON)))

(Gv. ^(MANIP X))
(COND ((GOAL (GRASPING X)))

((GOAL (GRASPING _Y))
(GOAL (GET-RID-OF Y) (USE tc-GET-RID-OF)))

(T))
(GOAL (CLEARTOP X) (USE tc-CLEARTOP))
(SETQ _Y (TOPCENTER X))
(GOAL (MOVEHAND Y)

(USE tc-MOVEHAND))
(ASSERT (GRASPING X))

(CLEAR Y (SIZE X) X)
(SUPPORT Y (SIZE X) X)
(GOAL (GRASP X) (USE tc-GRASP))
(SETQ _Z (TCENT Y (SIZE X)))
(GOAL (MOVEHAND Z) (USE tc-MOVEHAND))
(GOAL (UNGRASP) (USE tc-UNGRASP)))

(NOT EQ X Y))
(GOAL (FINDSPACE Y $E (SIZE X) X _Z)

(USE tc-FINDSPACE tc~MAKESPACE))
(GOAL (PUT X Z) (USE tc-PUT))

Let us trace, for example, the meaning of PUTON. The first clause

(PUTON X Y)

it Se "Patern" of the goal. X and Y are variables to be matched.
If the goal has this form, then these variables are bound to what
they matched and

(NOT (EQ X Y))

checks for the (impossible) situation of trying to put a block
on itself. If this "failure" occurs then the current goal will
be abandoned. This means that PLANNER will back up ~ reconstruct
the situation at the most recent previous variable-binding de-
cision. For example, in this case, the system must have been
looking for a place to put the block X, and stupidly decided to
put it on x: Now it must make another choice, and presumably
this time Y will be found to a different, more sensible location.
So this time tc-PUTON will pass the (NOT (EQ X Y)) test and go

tc-PUTON X Y

199

ARTIFICIAL INTELLIGENCE

on to the next step, which is to create a subgoal:

(GOAL (FINDSPACE Y $E (SIZE X) X Z)
(USE tc-FINDSPACE tc-MAKESPACE))

which says to try to find a space on Y big enough for X ianor-
xng space currently occupied (possibly) by X. ?he location
resulting from success of this goal is then bounS to z! Again,
if the goal fails, we would back up, but the prograir- makes ?wo

llytTotr^Tf^ ^ t0 ^ SUCh a Place- tc-™SsptSE
I^-LKESIAIF .Ji . VPar alfeadl there; if this fails ^en tc MAKESPACE says to try to make such a space.

(GOAL (PUT X Z) (USE tc-PUT)))

putTi;! Sat l^tioUnTdS' ^^ ^ t0 USe tC-PUT t0 aCtuallV

tries^je goSir^10" ^ ^ f0ll0W What haPPens ^ PLANNER

(GOAL (GRASP :Bl)(USE tc-GRASP))

ohwÜT6? tc:GRASP checks to "ake sure :B1 is a graspabl^
object by looking in the data base for (MANIP :B1). if the
hand is already grasping the object, it has nothing more to
do. If not, it must first get the hand to the object. This
may involve complications - the hand may already be holdi^J
something, or there may be objects sitting on top of the onl it
wants to grasp. m the first case, it must get ?id of wha?-
ever is in the hand, using the command GET-RID-OF.

The easiest way to get rid of something is to set it on the
wSi!'^ tc-GE*-RID-0F creates the goal (PUTON X :TABLE) ,

Sen tc-PüTON'musf X Xl ^^ i0 the 0bjeCt the hand is Elding. Then tc-PUTON must in turn find a big erouqh emptv olace to ^^?
down its burden using the command F?NDSPACE, whichperforms
the necessary calculations, using informatioi about ?he sizes
and locations of all the objects. tc-PUTON then creates a aoal

thin^PUT; WhiCh calculates ^ere the hand must be moved to*alt
lv n^neS lnt0 ^ 2eSired Place' then calls MOVEHAND to ac?ual-
ly plan the move. If we look at the logical structure of our

but wL!0^8 £t thiS p0int' assuming that we want to grasp :B1, but were already grasping :B2, we see: ^ -^r

(GRASP :B1)
(GET-RID-OF :B2)

(PUTON :B2 :TABLE)
(PUT :B2 (453 101 0))
(MOVEHAND (553 301 100))

After moving, tc-PUTON calls UNGRASP, and we have achieved the
first part of our original goal - emptying the hand. Now we
must clear off the block we want to grasp. tc-GRASP sets up
the goal: 1

(GOAL(CLEARTOP :B2)(USE tc-CLEARTOP))

200

^ommmmmm

ARTIFICIAL INTELLIGENCE

This is a good example of the double use of PLANNER goals to
both search the data base and carry out actions. If the asser-
tion (CLEARTOP :B1) is present, it satisfies this goal immedi-
ately without calling the theorem. However if :B1 is not already
clear, this GOAL statement calls tc-CLEARTOP which takes the
necessary actions. Then tc-CLEARTOP will try to GET-RID-OF

0^CtS 0n t0p of :B1- This wil1 in turn use PUTON, which
uses PUT. But tc-PUT may have more to do this time, siAce the
hand is not already grasping the object is has to move. It

^r^0r*aco
tS ^ a g0al t0 GRASP the obiect, recursively call- mg tc-GRASP again.

And so on! To answer questions about the past, the BLOCKS pro-
grams remember parts of their subgoal tree by creating objects
called events. The system does not remember small, specific

nn695^ !-M0VEHAND' bUt 0nly lar9är goals like PUTON and STACK-
UP. The time of events is measured by a clock ^'hich starts at
0. It is incremented by 1 every time any motio- occurs, creat-
ing a new event that combines the original goal statement with
an arbitrary name, the starting time, ending time, and "reason-
tor each event. The reason is the name of the event nearest
up in the subgoal tree which is being remembered. (The reason
for goals called by the linguistic part of the system is "be-
cause you asked me to").

A second kind of memory keeps track of the actual physical
motions of objects, noting each time one is moved, and record-
ing its name and the location it went to. This list can be
used to establish where any object was at any past time.

When we want to pick up block :B1, we can say: (GOAL (PICKUP -Bin
and it is interpreted as a command. We can also ask "Did you'
pick up :B1? , since when the robot picked it up an assprtion
like (PICKUP E2 :B1) was stored in the data base. If PLANNER
evaluates PICKUP X :B1)) it will find the assertion, binding
the variable X to the event name E2. Since the property list
of E2 gives its starting and ending times, and its reason, this
is sufficient information to answer most questions.

5.4 Sample Dialog with Winograd's Language Understanding System

To make a useful micro-world one needs not only objects, proo-
erties and actions, but also goals, processes, and simplified
TZ

S
^\ Je^ral c°ncePts like time, space, and intention.

The Blocks World was designed by Terry Winograd to serve as a
l^rCt ^ain f0r the develoPment of a language understanding
system This system is radically more ambitious than earlier
attempts to deal with natural language in several respects.
It is as much, or more, concerned with the problem of represent-
ing S-1"63"1^3 tu a.discourse than with the grammatical struc-
ture; Winograd s thesis asserts that the interactions between
meanings and syntactic structures are so intimate that it is a
^ ^uVi? t0 ?raW a definite boundary between the pro-
cedures that "parse" a sentence and the procedures that are to
Hn ^e ^ raW lo5lcal inferences about the meanings carried
in the discourse.

201

ARTIFICIAL INTELLIGENCE

Winograd's system is described in his thesi- at several levels
of detail and it is impossible to do justice to it in any short
summary. Our strategy will be first to present an example of
its performance in the blocks world context, and then to discuss
some of the mechanisms that are involved in attaining this per-
formance. In the following dialog the system carries out actions
and answers questions about a simple scene containing a table,
hand, and box, and several blocks and pyramids, as shown in
Fig. 1. The lines in lower case were typed in by a person, and
the lines in upper case are the computer's response. Indented
lines are comments describing some of the features beinq ex-
hibited. '

The dialog was carried out in real time with the response of
the "robot" displayed on a CRT screen. Figures are included
to show the state of the scene at various points. it is im-
portant to read the dialog with some skepticism. While the
apparent linguistic fluency is to an extent genuine, the vocabu-
lary and semantic base is very thin, and the conversation works
because the human operator stays closely within the boundaries
of the system's understanding.

1. pick up a big red block.
======== OK.

The system answers "OK" when it carries
out a command. In order to pick up the
red block, it had to clear it off by
finding a space for the green one and
moving the green one away.

2. grasp the pyramid.
======= ! DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

There are three pyramids in the scene,
so the program does nothing.

3. find a block which is taller than the one you are
holding and put it into the box.

The system has to figure out what is
meant by "one" and "it", as well as
using deduction to decide which block
it is holding.

======= BY"IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER
THAN THE ONE I AM HOLDING. (Printed out to keep us informed.
 0K' The hand has to set down the red block

to pick up the taller blue one. Figure 1
shows the result of the system's manipu-
lations so far.

4. what does the box contain?
======.= THE BLUE PYRAMID AND THE BLUE BLOCK.

5. what is the pyramid supported by?
Earlier the system responded to "the
pyramid" by saying "I don't understand
which pyramid you mean." Now, it assumes

 ~ THE BOX. that we mean the one just mentioned.

202

'•r- ■■■■■■ ■

ARTIFICIAL INTELLIGENC

T^C^-up A 6ig yTzd SüxL

Fig. 1,
,

■■

203

ARTIFICIAL INTELLIGENCE

6. how many blocks are not in the box?
Negatives such as "not" and "no" are
handled whether they appear in clauses

======= F0UR 0F TH^.
nOUn grOUpS (sach as n™ boxes"). '

t^ld'yofto'pick^p?0' ^^ narrOWer. than the 0ne Which I

The phrase "at least one of them" must
be analyzed to refer back to the previ-
ous question, and "the one which" must
also refer to blocks. Noun groups can
have complicated numbers such as "at
least^one", "more than three", "exactly
seven", etc. The memory of past events
is used to deduce which block is "the
one which I told you to pick up". Notice
the complicated grammatical structure in
which "the one" is actually the object
of a clause embedded two levels deeper.

======= YES, THE RED CUBE. «eper.

8.'. ,,iShiaseUPPClted? Passives can be used without a "by
======= YES, BY THE TABLE.

9^ can the table pick up blocks?
== NO. The semantic rules make this a nonsensi-

cal question which therefore must be
false.

i°l__^n a pyrai:nid be supported by a block?
:— YES. The deductive system finds an actual

example, so it knows this is possible.

11. can a pyramid support a pyramid?
======= I DON'T KNOW.

The question makes sense, but there is
no example in the scene, so there is no
easy way to tell without being able to
examine the robot's programs.

12. stack up two pyramids.
======= I CAN'T The robot tries and fails.

13. the blue pyramid is nice.
======= I UNDERSTAND.

This data is added to the data base.

l^r.r,\ °wnK
blocks which are not red, but i don't own any-

thing which supports a pyramid. y

======= i UNDERSTAND.

Two new theorems are created for provinq
things about "owning".

15. do i own the box?
======= NO. The box supports whatever it contains,

including a pyramid.

204

I

ARTIFICIAL INTELLIGENCE

16. do i own anything in the box?
======= YES, TWO THINGS: THE BLUE BLOCK AND THE BLUE PYRAMID,

17. will you please stack up both of the red blocks and
wither a green cube or a pyramid?
======= OK. Logical connectives such as "and" "or"

"either" etc. are handled in both the
grammar and semantics,, A command is
executed even if it looks like a question.
The command is carried out by the follow-
ing series of steps: It puts a green
cube on the large red block (note that
it chooses the green cube with nothing
on it), then removes the small pyramid
from the little red cube, so that it can
use that cube to complete the stack as
specified, resulting in the situation
of Figure 2.

18. which cube is sitting on the table? «
======= THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID:

Ordinarily the system would be satisfied
with calling this "a big green cube",
but since we asked "which cube" it has
to be more specific in naming it. The
use of substitute nouns (such as "one")
and pronouns in answers makes the dis-
coursf more natural.

19. is there a large block behind a pyramid?
======= YES, THREE OF THEM: A LARGE RED ONE,

A LARGE GREEN CUBE AND THE BLUE ONE.

20. put a small one onto the green cube which supports a
pyramid.
======= OK. "A small one" most contrast with the

earlier phrase "a large block", so this
means "a small block".

21. put the littlest pyramid on top of it.
======= OK. Words like "littlest" are not in the

dictionary but are interpreted from the
root forms like "little".

22. how many things are on top of green cubes?
======= J'M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE
PHRASE "ON TOP OF GREEN CUBES". DO YOU MEAN:
1 - DIRECTLY ON THE SURFACE 2 - ANYWHERE ON TOP OF ?

When there are several interpretations
and none is clearly better, the system
has to ask the user for more information
The paraphrases were included with the
dictionary definition of "on", and the
request for more information occurs
automatically when the heuristics for
resolving ambiguities aren't sufficient.
A request like this can also occur when
the meaning of a pronoun such as "it" or
"they" is unclear.

205

..-.; , ..■■.-■*.■■

ARTIFICIAL INTELLIGENCE

^PuJ^ up a, dig rtd bhcfc.

/ \ \

Fig. 2,

206

ARTIFICIAL INTELLIGENCE

2 ====== THREE OF THEM.

23. had you touched any pyramid before you put the green
one on the little cube?
======= YES, THE GREEN ONE.

The system deduces from its memory what
event is being referred to, and can re-
late other events to it in time. The
analysis includes complex tenses of verb
groups, and there are special facilities
for keeping track of the various forms
of irregular verbs like "have".

24. when did you pick it up?
======= WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED
BLOCK AND A LARGE GREEN CUBE.

A time is described by naming the main
goal which was being worked on.

25. why? The system remembers immediately previous
sentences to understand questions like
this and the following ones.

======= TO GET RID OF IT.
By keeping track of selected parts of the
original subgoal tree, the system has
some understanding of its own motives.

26. why did you do that?
======= TO CLEAN OFF THE RED CUBE.

"That" refers to the action mentioned
in the answer.

27. why did you clear off that cube?
Here, "that" means the one just referred
to.

======= TO PUT IT ON A LARGE GREEN CUBE.

28. why did you do that?
======= TO STACK UP THE RED CUBE, A LARGE RED BLOCK AND A
LARGE GREEN CUBE.

29 . why did you do that?
======= BECAUSE YOU ASKED ME TO.

It remembers what it did, not how the
request was worded.

30. how did you do it?
"It" refers to the action mentioned in
the last question, rather than the answer.

======= BY PUTTING A LARGE RED BLOCK ON THE TABLE; THEN
LETTING GO OF IT: THEN PUTTING A LARGE GREEN CUBE ON IT-
THEN LETTING GO OF THAT CUBE: THEN PUTTING THE RED CUBE
ON THAT CUBE: THEN LETTING GO OF THAT CUBE.

This is a description of the top-level
subgoals used to achieve the goal.

207

-■■ü*-.NfciVai
,,.,,:..:■

ARTIFICIAL INTELLIGENCE

31. how many objects did you touch while you were doing it?
Time references can refer to a time span,'
using words like "while",

======= FOUR OF THEM.

cLan^f o?f? the red CUbe SUpPort before you started to
======= THE GREEN PYRAMID.

By remembering what has been moved, it
is possible to deduce things about earlier
states of the scene. We can use complex '
nestings of clauses like "before you
started to clean it off".

of the box then,
the time mentioned

CUBE, TWO LARGE

, information about
at face value. But
it has complete
basic properties
location. it checks

location or other
e whether it agrees

33. there were five blocks to the left
"Then" must refer to
in the last sentence.

 NO, ONLY FOUR OF THEM: THE RED
GREEN CUBES AND A LARGE RED BLOCK.

Earlier in the dialog
"owning" was accepted
the system knows that
information about the
of objects, including
any statements about
such properties to se
or disagrees.

34. put the blue pyramid on the block in the box.
This is syntactically ambiguous] but is
understood without ambiguity since the
parsing corresponding to "put the blue
pyramid which is on the block in the box"
does not make sense in the current scene,
while put the blue pyramid on the block
whlch is in the box" does.

OK.

bu; i^no^^ any.thin<3 which is bigger than every pyramid
but is not as Wide as the thing that supports it?

The system understands quantifiers such
as every", "any", "some", etc., and
structures such as "bigger than", "as
wide as", etc. Here "it" refers to a
noun group within the same sentence but

„„„ two levels up in the parsing tree
======= YES, THE BLUE BLOCK. 9

36. does a steeple SORRY, I DON'T KNOW THE WORD "STEEPLE"
The system interrupts immediately when it
sees a word it can't figure out.

Ilk .^Ä6" iS a StaCk "hiCh COnt"- ^ 9-e„ cubes

The quote marks indicate we are definino
a new word. y

======= i UNDERSTAND

208

ARTIFICIAL INTELLIGENCE

38. are there any steeples now?
======= NO.

39. build one.

 OK. The description given in the definition
is enough to deduce a plan for building
new objects as well as recognizing them.
The word "one" means "a steeple", and the
plan is carried out. First, one of the
large green cubes is cleared off by remov-
ing the red cube and two pyramids. Then
the two green cubes and the tall red
pyramid are stacked up to fit the descrip-
tion.

40. call the biggest block "superblock".
======= OK. We can also give objects names.

41. have you picked up superblock since we began?
======= YES.

42. why did you drop it?
======= BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK.
======= 1 CAN"T EXPLAIN A NON-EXISTENT EVENT.

There is no record in memory of any block
being dropped.

43. is there anything to the right of the red pyramid'
======= YES, FOUR THINGS: THE BOX, THE RED CUBE, THE BLUE
PYRAMID AND THE BLOCK NAMED SUPERBLOCK.

Once an object has a name, the name is
used to help identify it in responses.

44. thank you.
======= YOU'RE WELCOME:

Idioms can be defined without modifying
the grammar.

5.5.1 Syntax and meaning

What concepts are involved in the dialog example? From the
performance, it is clear that the system embodies a certain
amount of knowledge about blocks, about building, about goals,
time, space, words, semantics, syntax, idioms, and common sense
about questions, logical inference, tolerance of false assertions,
inconsistencies, failure? to achieve goals, etc. Each such
problem could perhaps be handled, in any particular situation,
by appropriate tricks, special case detectors, reduction to
standardized schematic situations, etc. but such a system
would become more and more limited, unwieldy, and finally in-
comprehensible and incapable of extension, as situations appear
m which special cases interact. In fear of this, perhaps,
construction of theories involving meaning has generally been
put aside or postponed in favor of attempts to construct syn-
tactic rules that would generate exactly the "grammatical••

209

ARTIFICIAL INTELLIGENCE

ITtt^l at ««^S^'tMs^i^? W0^ 0f Ch°raS^ ^ «hers
more and more re"iläeaSi J^lWOrJ OUt, bUt as one "tempted
turned out to rlguirj a o-ea? S, JS1Ve ^^' ^eSe too
to systems that^errunwfeMy^Sdlo^x^d "tSI*' ^ led

a^Sr^^^pT^^en^iir^-5^ ?'- "^ =- Lo1"-
frSm semantils aotüaUrmakS milt*9 t0 Split Syntax completely
better by facing ^^1^ pr^tSs-o^^ean^?"6 "i9ht d0

syUSacatLr0^^sI^^ow0n^emr:a1i:r
0h "Z* t^^ ^

turned out to be so dSflSt Sd ^J?rtiY beCaUSe the latter

heuristic Progra^ng mfdrmeaning
Pso"LheiLUsen,f rnCeS in

now appears that even a m^^Tt so much less mysterious, it
simplify understan^g'sy^a" """""^ COmPle">e"t "■> neatly

p'arsTM^e^ l^XTlT^Ztl^V^^ teU us ^ *° following two sentences: anin9 must be studied, consider the

Sr ÄnTÄ Ssl Sef L%^ ^n? -»"

Le ä-SS L~ K?-tr^Är
tl ^infthe'geSr ItTe^trf^ i'*^" meanS' f« —P^-
the infor^tir^feL^ng6 p^erl^^Luze 1™^™™*.
men are usually staunch defenders of i.^J lhat 01ty 0°unoil-
likely to be revolutionaries T^ ?!Ja".ana °rder' but are hardly
one avoids this oroblem hi f™ tra<iitional syntactic analysis
are interested irSndS?stand?nrhown?h

b0!:h parsin?s- but if we
we have to be aWe^o SaIhe'cholce^ sHn^ldJ:^0 t* USea'
grammar of a language, our Droo™ nfli. ,, addltl°n to a
about the subjecl i? is disSsIlS,^ «e aWlitvl kn0"led^
reasoning to combine fact«? in ml 1- t?^ ability to use
sentence one haTtS cSSlL „ lght Ways" To understand a
in^very ^Z^TZlÄ^^A^ ^J^I

knowledge can be a procedure 1?«« ™?? Ch pieCe of

type of knowledge. ThSsthJ'"parser"cai ^n^ 0thfr

programs to see if the Dhr-L FJ f J a11 seniantic
and the semantic programs can call on^r^^ makeS Sense'
grams to see whether Jh-I ™ • 2n the deductive pro-
L the currJnf re'alfwo'rld' coSex? ^wM ^f ^^
a pronoun-s assignment depends onVhl ^ Jhe C501Ce of

or on detailed k^ow^gf ^e^^f ^^ ^-ourse

210

ARTIFICIAL INTELLIGENCE

While Winograd's system can be described as divided into three
parts — syntax, semantics, and inference — it is the richness
of interplay permitted between these that makes it an advance
over previous language-understanding programming attempts. In
the following sections we will describe enough of these three
"sections" to see how the whole system can handle just the
first line in the sample dialog:

pick up a big red block

To fit the type of syntactic analysis he chose to use, Winograd
developed a programming language (named PROGRAMMAR) that differs
from other parsers in that the grammar is written in the form
of a collection of programs. The grammer itself, as we shall
explain, is highly suited for semantic analysis since from the
start it views the "rules of grammar" as connected with the
decisions one nakes about conveying meaning rather than about
putting words into acceptable orderings.

At the other end of the system we have the knowledge and the
reasoning power of a problem-solver system, written in the
PLANNER language, to give the system detailed knowledge about
its universe — in this case the BLOCKS WORLD we described in
section 5.3. This makes it possible for the system to discuss
not only physical happenings but also the robot's own goals
and actions.

Interposed between these is the semantic system which contains
processes that deduce, from the syntactic constructions, and
from the programs that define the meanings of words and other
constructions in terms of PLANNER programs, new procedures for
the deductive system to use in answering questions, obeying
commands, and acquiring new knowledge in the course of the
dialog. This system is described in section 5.6. The full
system contains some token knowledge also about communication
between persons, so that if we say: "There is a block on a
green table. What color is it?" the system will assume that
"it" refers to the block (rather tha-i the table) since one
would not normally ask a question whose answer one knows.

5.5.2 Systemic Grammar

The following sections might seem unusually
detailed for a progress report. But we feel that
this system represents a major advance and should
be presented in enough detail to see really how
it works.

The decision to consider syntax as a proper study devoid of
semantics is a basic tenet of most current linguistic theories.
Language is viewed as a way of organizing strings of abstract
symbols, and tries to explain linguistic competence in terms of
symbol-manipulating rules. But although this approach has
worked rather well in accounting for which sentences can be
formed, it has been unable to shed much light on the basic
problem: how does a sentence convey meaning beyond the meanings

211

ARTIFICIAL INTELLIGENCE

of individual words? Meanings of words depend on other parts of
the discourse and intentions depend on one's general orientation
and state of knowledge. We can attack the problem in the usual
way, by constructing a "mini-theory" as a first approximation,
then apply it to see what problems remain.

The structure of a sentence can be viewed as the result of a
series of grammatical choices made in generating it. This is
not a novel idea in itself; it underlies the most standard
notion of generative grammar. But it is not so usual to proceed
on to say: the speaker encodes meaning into the sentence by
these choices, through choosing to build the sentence with
certain "features"; the problem of the hearer is to recognize
the presence of those features and interpret their meaning.
Of course, we use "feature" to include elements of structural
description as well as simple lexicographic terms.

Winograd's system is based on a theory called Systemic Grammar
(Halliday, 1967, 1970) which these choices of features are
primary. Instead of placing emphasis on a "deep structure"
tree, it describes the way different features interact and
depend on each other. In other forms of grammar, syntactic
structures are usually represented as a binary tree, with many
levels of branching and few branches at any node. For example,
the sentence "The three big red dogs ate a raw steak." would '
be parsed-with something like this:

Sentence

Noun phrase Verb phrase

DET
the

NPl VB
ate

NP

NUM NP2
three

DET
a

NPl

ADJ
big

NP2 ADJ
raw

NPl
NOUN

ADJ
red

NP2
NOUN
dogs

steak

>.

Systemic grammar pays more attention to the way language is
organized into units, each of which has a special role in
conveying meaning. In English we can distinguish three basic
ranks of units, the CLAUSE, the GROUP, and the WORD. In
systemic grammar, the same sentence might be viewed as having
this structure.

CLAUSE

Noun group

DET NUM ADJ

I
ADJ NOUN

Verb group Noun group

VB

the three big red dogs ate

DET

a

ADJ

raw

NOUN
I

steak

212

""»mmammux

ARTIFICIAL INTELLIGENCE

In this analysis, the WORD is the basic building block. There
are vord classes like "adjective", "noun", "verhk Th^ word
dogs is the same basic vocabulary item as "dog", but has the
"t^n" eiUJal"..inStead of Singular". "Took"? "take"
wSh S^f taking", etc., are all the same basic word, but
"-in*"Üo g features such as "P^t participle", "infinitive".

The next unit above the WORD is the GROUP. Noun groups (NG)

about^L0^0'3'/^ grOUpS (VG) carry comPlex messages
Son H me andmodal (logical) status of an event or rela-
tionship, preposition groups (PREPG) describe certain simole
relationships, while adjective groups (ADJG) convey other Kinds
of relationships and descriptions of objects.

Each GROUP can have "slots" for the words of which it is
<;^£?Sen- As we Sha11 see' a NG has slots for "determiner'!

?LISF) "a^fLr^; "^^™*" (ADJ), "classifies"
\?^t li' * N0UN* Each group can also exhibit features,
just as a word can. A NG can be "singular" (NS) or "nlnr*T"

S/ffin^fsS ^ ^ "t$e S^6 ^s("SL0"inSfSite"
MF-rVL Li u ak ' and SO forth- A VG can be "negative"
have^a^Lx^^.'0^ (aS ^ ^^^ ^ —"> ' and -

The CLAUSE is the most complex and diverse unit of the lanouaoe
and is used to express relationships and events, involvinftimJ'
place, manner and many other aspects of meaning it can Li
or'-ac^e" D™TIVE, or an ?MPERATIVE:a?tn^n be "passive"
nii, *rle ' ^ Can be a YES-NO question or a WH- question
(like "Why...?" or "Which...?")/ Our second parsing tree
showed how a clause may be composed of groups, which arlin
tur.> made up of words. Also, groups often coAtai^ other SOUPS-

til iREpf-Af S: ZlW^K^t Wild" iS an NG' which contains P'
wild" ri^nL« id WhlCn ln turn contains the NG "the
HW: Ciauses can be Parts of other clauses, as in "Join
the Navy to see the world.", and can be used as parts of

?or0dUfnnS"moa?yth ^P^'-L^fl aS in.^ NG "the^an^who came uAiuier or cne FREPG by leaving the country".

If the units can appear anywhere in the tree, what is the
advantage of grouping constituents into "units" instead of
having a detailed structure like the one shJwn in our ?i«t
ItT^VlTL The ans^r.is that each unit has associftld with
it a set of meaning-carrying features, related by definite
logical structures. The choice between YES-NO and WH- is
SuEST^tlT1^ the Cla^e iS a QÜESTION, bu? i/it is a guESTiON, the choice must be made.

DF^ARAT^vp^6 Ch0iCf between QUESTION, IMPERATIVE, and
^ta^^Ionf A ma"aatory for a MAJOR clause (one which could
;«S? i d sentence) but is not possible for a "secondarv"
(SEC) clause such as "the country which possesses ?he bomb " Y

Ind AC?iCe b"TWHen ltSVr "the bal1 was ^tended by John" - and ACTV -- John attended the ball" - is on a totally
different dimension, since it can be made regardless of which
of these other features are present.

213

:■ ■ .-■ . ., ■ .,.-, ■;..

ARTIFICIAL INTELLIGENCE

A set of mutually exclusive features like QUESTION, DECLARATIVE
and IMPERATIVE is called a system, and will be diagrammed^ '
connecting them with a vertical bar. Each system has an entry
condition which can be an arbitrary boolean condition on the
llt^Ttu 0t?er f^atures- v°* example, in the diagram below,
one of the systems has the feature MAJOR as its entry conditioA
since only MAJOR clauses make the choice between DECLARATIVE
IMPERATIVE, and QUESTION. We can diagram some Sf our SSE'
teatures as:

CLAUSE-

I DECLARATIVE
MAJOR | IMPERATIVE

I [QUESTION
iSEC
I
PASV

YES-NO
I
IWH-

| |ACTV

Inrt apwCK ^T** !E?.and MAJ0R and the choice between PASV and ACTV both depend directly on the presence of CLAUSE. This

ofPt ?frtical IT Wil1 ^ indicated ^ a bracket in place

In addition, a syntactic "unit" can have different functions
nn^J^Vf Aiarfer U"it- A transitive clause must have
units to fill the functions of SUBJECT and OBJECT, and a
WH- question has to have a constituent to play the role of
show?"10n element,, like "which ^g" in "Which dog stole the

fL^L^T ^f0^6?' «»ere is no explicit mention of these
features and functions in the syntactic rules, but the rules are
designed in such a way that every sentence will in fact be one
?n f~<- £ree ypeS ^Sted above' and every WH" question will
in fact have a question element. The difficulty is that there
is no attempt in such a grammar to distinguish meaninq-
conveying features such as these from the many other features

the^ulfs?0^ ^^ a Sentence' and which are also'Lpfled by

5.5.3 The Noun Group

I!nim1rpnrmate these
J
id^s by presenting the structure of the

iHino^rad^s IZTsit*^1' ^^ fo11^ ^ Presentation

?SfJ tu the str!fcturf of the typical NG, using a "*" to indicate
that the same element can occur more than once. Most of these
slots are optional, and may or may not be filled in anv

particular NG. y

T T ~r —i r
DET ORD NUM ADJ* CLASF* NOUN Q*

■

214

■

ARTIFICIAL INTELLIGENCE

the meaning of »ords according to their word ^„= K
Y 9 S

nouns often have a specie! »easing^hen Itlt llTcJSt™*

T^.S%^l^l^^l^ ^P^"'' * CMS?? not

FK^FG like the man in the moon" or an ADJG likP "a ni^
darker than doom" or a CLAUSE RSO U\cl "^ a night
the orchestra". ^^ubE RSQ like the woman who conducts

The first few elements in the NG work together to aive Its
logical description — whether i^ raf^t* 7 ? ts

^rLlhe^Jls^roFa^^ "a", or "that" nr-\ ^ ■ ' and can be a word such as

others such as "last" and "nexf" vh^tt fu ' f ew

^ Se^tXe^ d^^ i t "^ ^ V^/af In

fit irsXe'^i :^s SiLi^tnr" -is ^"^
DET ORD NUM ADJ ADJ CLASF CLASF NOUN Q (PREPG)
the first three old red city fire hydrants without
Q(CLAUSE)
covers you can find

With these basic components in mind let n« i^v -* ..u
network for NG. ' US look at the system

215

mum

ARTIFICIAL INTELLIGENCE

NG--

I PRONG—
I
ITPRONG
I
PROPNG

The symbol *** is used for deciding
between the presence of a feature

I QUEST and its absence
IDEM

|DEF I POSES

SUBJ-

OBJ-

COMP

i
j TIME

POSS-

INS
'NPL
N^S

DET-

ISUBJT
I
i ***

lOBJl
IOBJ2
I
OFOB J
PREPOBJ

j DEFPOSS
i
I ***

I ***

(■

INDEF-

QNTFR-

INUMD
l
i

I ***

I QUEST

OF

(- | ***

INCOM

I NEC

SYSTEM NETWORK FOR NOUN
GROUPS

■v

At the top of the diagram are some special cases which do not

is 1 PRSNS'rUitUcLdbSCri^d abOVe- An NG made up of a prSnoun is a PRONG. It can be either a question, like "who" or "what"
or a non-question (the unmarked clase) like "I" "them" "It« '
etc. The feature TPRONG marks a NG whose head is a soecial '
TPRON, like "something", "everything", "anything" which cL
folfL^H0 K P;cUliar const^ction in'which an IdjectlSe caS
Se moon"6 ffhaf^2 "^thing green which is bigger than
marks an NC ItJl I OWn sPecial syntax. The feature PROPNG
"?he UnLn Of f P.0c Pr0?er nOUnS' SUch as "Oklahoma", or rne Union Of Soviet Socialist Republics".

The rest of the noun groups are the normal type, discussed

Skr-a" S? "fn"Can ^ definite (like ,,the,, or-that"! indefinite
0t\j O^o

a2 '.0r,a quantifier (QNTFR) like "some" "everj"
rthis"' "th^" ^J^f dete5miners can ^ either demonstrative (this , that , etc.) or the word "the" (the unmarked case)
or a possessive NG. The NG "the farmer's son" has the NG '

inSicf^this?3 ^ ^^' ™* ^s the feature POSES to

NUMDET, or it can use 11 INDEF determiner, suSh as "a"t^ir

216

ARTIFICIAL INTELLIGENCE

Finally an NG can be determined by a quantifier (ONTFR^
Although quantifiers could be subclassified alono varioi; "Mn^
we do so in the semantics rather than the syntax She onW '

piSra^'and'b"? *** s^-tic^y areb^en'sing^Ur^ plural, and between negative and non-negative.

mfrkefoF3 H^t* "T */ QNTFR' ^ Can be of a s^^ type marked OF, as in all of your dreams", but can also choose to

"I iantTone"' ^r^^0^ the N0UN' as in "^ve m^ th?eJ" or
wJiTcan^; th^fLture3 ^^n^Jh^r ^T™ ^ CaSeS

we cannot say either^Srofihem" S^Gi^e^e I™** l™™* I
are an exception, we can say "Give me Jean's" but n^ A's
of them", and are handled separately.

nnL?i?dl? Paf ■ 0f the NG Netw°^ describes the different

OF NG, it is called an OFOBJ: "none of your tricks" An Nf

When a PRONG is used as a pnqq n- ^„^4.
pronoun, Uke ■my"3.^"^^.",,^1'^«/^!^""81™
mSd°mPl?h^NG' "^ "ShOW me ^Urs" or%Z4 is coiSreS with ^UPS i^iiaMfi^,0^ :i m^: sei? -r "-

tne verb (if the NG is the subject and the determiner- *„
avoid oombinations like "these kangaroo" or "th= womJn'J^"

seconS Cand tL^*0™' the^ are 'p-cial pron^nH« Srst' second, and third person, singular and plural. The fiature

"me"OC"mv? XU*? ^ fir"-P?"0" angular pro^Ss ("I",
persöns^since^hel-ha^ nS e««?0^^^^ between.ither

no distinction is made between "we" "vou" "^hfJ^

^e^Tie^JL^?---— "<=-«-•' 0- -rse

217

HIWBjiai

ARTIFICIAL INTELLIGENCE

5.5.4 The Parser in Action

"Pick up a big red block."

"ÄI JSloRK SE PrOSram With an initial feat— l-^of

WG IMPER? LEV?918; With tee lnJtial VG feature i^t
Pr°gram

S^^^s^
kfon?In

fo0^hrv°r
f
b
t'!j8..ty

0
P
r

e-wiSi^mUSt-eith^

(CLAUSE MAJOR)

(VG IMPER)

(VB MVB INF TRANS VPRT pick

3^nSu
and iT^ C?ne from the definition of the word "pick"

when we called the function PARSE for a word? P

I^ln ^r^ ^- ^ °nf th^^LAuSE^^^list
?nH^ ?• e^S-t0 See whether the MVB has the feature VPRT
indicating it is a special kind of verb which takes a n^rf^io
It discovers that "nlrk-" i «= e„^v. , iT W"-L<:" taj«es a particle.
if the next word "u^ is ,%M ^iÄ and neXt CheckS to see
in the diotionarv aL ff„L Z ^t fh lt ls- It then checks
is defin^rrS le^s'^^'pSr^dd00^8^?1* UP"
fo?8; PRI t9ttita::ouLevhe VG

 A™*™ tS ä^; ai
Uke8^^ Z rltT^™.™ ;hiShdihfe£i^tLeSdIsio; SeSten088

218

ARTIFICIAL INTELLIGENCE

As soon as it has parsed the PRT, the CLAUSE program marks
the feature PRT on its own feature list. It ?hen looks at the

trttter? ^^ ^ ■■piCk UP" t0 See What transiti^itj features
Innk 5^ K1S transitive, which indicates that we should
look for one object -- 0BJ1. The dictionary entry shows that
the object must be either an NG or a WHRS clause ^which would

to9"" Sin^%helatir Prr?Un' like "Pick UP what I told yoi
r?M,c;r then

ne^t word ^ "a", this is not the case, so the

OBJl) SSlirV^r f0r ^ 0bJeCt by Calli^ (PARSE NG OBJ
an 0BJ1 Th! ^ ? Program to find an NG which can serve as
an UBJi. The structure is now

(CLAUSE MAJOR IMPER PRT)
(VG IMPER)
vVB MVB INF TRANS PRT) Diei,

(PRT) P1CK

(NG OBJ OBJl) UP

The NG program notices that the upcoming word is a determiner,
a . It calls (PARSE DET) to add it to the parsing tree th^n

transfers the relevant features from the DET to thl en?ire NS
IL *SO* fds.the feature DET to the NG to indicate that I?
has a determiner. The feature list for the NG is nowf

(NG OBJ OBJl DET INDEF NS)

since "a" is a singular indefinite determiner. The NG orooram
then notices the feature INDEF, and decides not to look fo? a

or^or lL*™0?in? ".^ Can,t say ,,a next ?hree b?ockf" -! or for the OF construction — "a of them" is impossible It
goes on immediately to look for an ad-iective by callina (PARSE
ADJ). When this succeeds with the next word "big", a Lmplf

^gL^rwith^red"11^ V** (PARSE ADJ) stat-en?, 'whiS^cceeds ^•gain with red . On the next trip it fails, and sends the

AD?graBur"b?^"k-f0^aClaSSifie?' Since "block'.'iSn't'an V? MO block" isn't a CLASF either in our dIctionarv so
lnfJG P^?ram goes on to look for a NOUN, by calling ^PARIE
NOUN) This succeeds with the NOUN "block", which JI sinaular
and the program checks to s^e if it agrees with the „uSe?
features already present from the determiner to ellSiSale

aie s'iLS^^NS)0^1^ "theSe ^"^ In ^ ^""bo^h ?;««„?? (NS), so the program is satisfied. Ordinarilv
it would go on to look for qualifiers, but in this case thL«
is nothing left in the sentence. Since we have fouSd all of

returrsSccesf'^rwe Z*™** ^ ^ hG' th* NG PrSgr^'sSould

notices ^hat'th^Jn.^09^ returns' ™* ^e CLAUSE program
Snly Sne obiect ItTt^t ^ ended- Since a TRAN£ verb needs
proaram markr^o ? ^ at 0h3PCt haS been found' the CLAUSE
In IcSL? u« eat^re TRA1'S' and returns, ending the parsing,
stand ^ o ' f st™antlc Program would be called now to under-
stand and execute the command - in fact, semantic programs

219

WHM

ARTIFICIAL INTELLIGENCE

Se^in^result^s:^ ^ VariOUS POintS thro^hout th- P^ess.

(CLAUSE MAJOR IMPER PRT TRANS)
(VG IMPER)
(VB MVB INF TRANS VPRT) nink

(PRT u

(NG OBJ OBJ1 DET INDEF NS)
(DET INDEF NS) a
(ADJ) bi

ADJ) re|
(NOUN NS) block

5.6 Semantic Structures

In 5.5 we described some of the operation of the systemic
nofT?r £arS1og Program- For the semantic system we again will
use the Noun Group as an example, to present the general idea.
As one hears or reads linguistic sequences, one extracts
meanings and uses them to modify one's model of the world or
in some other way to organize one's behavior. In Winoqrad's
system, the meanings are usually represented by procedures '
written in the Planner language. There are a number of ways
in which these procedures are used to build up meanings by
cooperation between the systemic-grammar analyzer and other
processes called "semantic specialists".

One of the most obvious semantic functions of expressions is
to describe objects, and the "noun group" is most commonly
used for this. It contains a noun which indicates the kind of
oüject, adjectives and classifiers which describe further
^PHr!leS-0f ^ ob^ect'- and a complex system of quantifiers
and determiners describing its logical status - whether it is
ov.?^* ar ob:|ect' a class of objects, a particular set of
objects, or even an unspecified set containing a specified
number of objects ("three bananas"), etc. Thl syntactic
Kr^V *dI-diSCUSSed Provides a systematic framework
fnS ?w ^scriPtlonsi:

0ne might object that this is too rigid
and that there are other ways to describe objects. Indeed,
PROrRAiLp"! hfldles a1V

ide range of ordinary cases and WiAograd's
PROGRAMMAR system supplies an unprecedented flexibility for

for^f^t119 0-^r "f**10** and even complex heuristic programs for dealing with other situations. y « '=>

The semantic system is built around a dozen or so programs,
"semantic specialists" which are experts at interpreting
particular syntactic structures. These are called by
PROGRAMMAR when the parsing system believes that a certain
K fSCrI?re' ^ * noun gro"P. has been parsed. They look at
both the syntactic structures and the meanings of the words
(which are also represented by programs), and build up PLANNER
theorems which can be used either by the deductive mechanisms
(for performing actions in, or for answering questions about,
the Blocks World) or by the syntactic system itself to decide
whether the proposed noun group is meaningful.

220

ARTIFICIAL INTELLIGENCE

A Noun Group like "a red cube" can be described as:

(GOAL (IS X BLOCK))
(EQDIM X)
(GOAL (COLOR X RED))

The variable "X" represents the object, and this description
says that the object X should be a block, it should have equal
dimensions, and it should be red. A phrase such as "a red cube
which supports three pyramids bui. is not contained in a box"
would be built up from the descriptions for the various
objects, and would end up as

(GOAL (IS X BLOCK))
(EQDIM X)
(GOAL (COLOR X RED))
(FIND 3X2 (GOAL (IS X2 PYRAMID))

(GOAL (SUPPORT X X2)))
(NOT (PROG X3

(GOAL (IS X3 BOX))
(GOAL (CONTAIN X3 X))))

This "meaning" is a procedure. A larger deductive system could
use it

to find such an object;

to say whether one exists;

to list relations in which it does, or could, participate;

to answer more abstract questions about whether such an
object could exist or (as in the BLOCKS program) to plan
a sequence of actions that will cause it to exist.

Furthermore, the "theorem" that embodies the meaning could be
used within the parsing process itself, for if the deductive
system finds that there could be no such object then the
alleged noun group would be suspect and one could search for
an alternative parsing. One could imagine a much more sophisti-
cated system that would suspend this strategy if t,he discourse
concerns a subject, like language itself, in which normally
unacceptable expressions are sometimes permitted.

How do the semantic specialists build this structure? Consider
the simple expression "a red cube". First the noun group is
parsed, then the PLANNER description is built up backwards by
the specialists, starting with the noun, and continuing in
right-to-left order through the classifiers and adjectives.

Part of the definition for a noun uses semantic markers to
filter out meaningless interpretations of a phrase. The
BLOCKS world uses this tree of semantic markers:

221

■

_» I -

ARTIFICIAL INTELLIGENCE

THING

I NAME
I PLACE (SHAPE
I PROPERTY— [SIZE
! lLOCATION

ICOLOR IROBOT
[ANIMATE |

(HUMAN
(BLUE
JRED

(IBLACK
(JWHITE
(IGREEN I cTArif

PHYSOB— (ICONSTRUCT piLE

(~ TABLE [PYRAMID
MANIP IBLOCK

'BOX IBALL
(EVENT

RELATION (

ITIMELESS

noun "cube" ist ' ndS that the aefinition of the

(NMEANS (CUBE) ((IS X BLOCK) (EQDIM X)))

accepts a li't^f a?««™« ««n^" ^alin9 with nouns' "»"h

SlLTtoViS Te^t™^1™ -s" - P- o^L BANNER

Next, SMNG1 calls the definition for the adjective "red".

(NMEANS((PHYSOB) ((COLOR X RED))))

Physic^f'objects!11'10^63 ^ the ^^ **"" only to

"Mgefiea"0isbsS?ilieno?f'niHi0n for. "b^" or "little"; a
elenhan?" L "0t much comPetition for a "littl4
elephant . The meaning of the adjective is relative fo ♦•»,
it modifies, and it may also be relativ^ Jo JKI ^ J? the noun

•to tu tne rignt. Since each definition is a

222

ARTIFICIAL INTELLIGENCE

program, it can just as well examine the description (hn*h
the semantic markers and the PLANNER descriotlonf -J *
an appropriate meaning relative f«^^fSfP!? ! ' and Produce

This mayPbe an absolve^eLurLent (J g ^a "b^Il^"^6?'
more than 12 feet tal]) nr- » t-iT*? A?:' blg e^Phant" is
the form "the n^Ler of objLJs Jittina thf .R deSCriPtion **
smaller than the one being deslrfbedJI more than1?^0" T
of suitable objects bigae? than it is." nuMier

z^^iiAn^^P^^ - - -r8t
we allow each^redLaS Uike IS or^Lim^ "?* th±S Cholce

with it a progLn wh?ch knows hlw lo evaluate ^r^8?00^^

rs?^ie
9^sr^rr?r^ghrLpro'raT^?t be - ^^-

Here is the structure which would be built up by the program.

(GOAL {IS X BLOCK))
(GOAL (COLOR X RED))

(BLo5QSiP,;ä;sÖB"THiNG);::-P™k
Re?roription

(T^T-0?.™1!0!: ™
determiner

^iol|SsS^orSVny^d"y Z6 CO,"P"cateä "=' "a red cube
here Firs? %LPS ' t We can only summarize what happens

."a^, idj; ^^(^^"-d^n-Sbiv'1^-^?^

plannarthPePorem/foTt^dmea^nro|0"atp
r
y

Ur^id
a..00rLe^0nthdr9

ufan'a'sle^jfon^hirth?^0"; ".""^ ^'-^ tot^ild
SUPPORT? he subject and object are related by

py^id" ?s ^ desc"Pt10" °f "a red cube which supports a

(GOAL (IS X BLOCK))
(GOAL (COLOR X RED))
(EQDIM X)
(GOAL (IS X2 PYRAMID))

<BLo^KG0^i(fpp^BX
THXi2i^:::::!^r\^rrlption

determiner

223

■. „

ARTIFICIAL INTELLIGENCE

iusf irÄi-^o ^V^1 caPability to use semantic markers Dust as objects do, and at an early stage of construction a
relation structure contians a PLANNER description, markers
^his^T ^ f0rmS identical to those for object struStu^es
(this is to share some of the programs, such as those which
check for conflicts between markers). We can classKy different
types of events and relationships (for example, those which
are changeable, those which involve physical motion, etcJ and
use the markers to help filter out interpretations of clause
modifiers. For example, the modifying PLPG "w?Sout JÜ shopping

"He left the house without the shopping list."

has a different interpretation from "without a hammer" in

"He built the house without a hammer.".

If we had a classification of activities which included those

co^rL^Sta^!1086 using toois'we couid choos" ^

'

224

APPENDIX A

PROJECT MAC TECHNICAL REPORTS*

t TR-1 Bobrow, Daniel G.
Natural Language Input for A Computer

Problem Solving System, Ph.D. Thesis,
Math. Dept.

September 1964

t TR-2 Raphael, Bertran
SIR: A Computer Program for Semantic

Information Retrieval, Ph.D. Thesis,
Math. Dept.

June 1964

TR-3 Corbato', Fernando J.
System Requirements for Multiple-Access,

Time-Shared Computers
May 1964

t TR-4 Ross, Douglas T., and Clarence G. Feldman
Verbal and Graphical Language for the AED

System: A Progress Report
May 6, 1964

t TR-6 Biggs, John M. and Robert D. Logcher
STRESS: A Problem-Oriented Language for

Structural Engineering
May 6, 1964

t TR-7 Weizenbaum, Joseph
OPL-1: An Open Ended Programming System
Within CTSS

April 30, 1964

t TR-8 Greenberger, Martin
The OPS-1 Manual
May 1964

t TR-11 Dennis, Jack B.
Program Structure in a Multi-Access Computer

AD 604-730

AD 608-499

AD 608-501

AD 604-6:8

AD 604-679

AD 604-680

AD 604-681

May 1964

TR-12 Fano, Robert M.
The MAC System: A Progress Report
October 9, 1964

AD 608-500

AD 609-296

t TR-13 Greenberger, Martin
A New Methodology for Computer Simulation
October 19, 1964 AD 609-288

TR-14 Roos, Daniel
Use of CTSS in a Teaching Environment
November 19 «"4 AD 661-807

225

-.„.■.i..,-.,.,— . „..I.I.I ..UP j, n im MN'l1" —-*"••■,— ^ «I li.•IM W—r~-~

APPENDIX A

TR-16 Saltzer, Jerome H.
CTSS Technical Notes
March 1965

TR-17 Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer
March 1965

t TR-18 Scherr, Allan Lee
An Analysis of Time-Shared Computer

Systems, Ph.D. Thesis, EE Dept.
June 13 6 5

TR-19 Russo, Francis John
A Heuristic Approach to Alternate

Routine in a Job Shop, S.B. & s.M.
Thesis, Aloan School

June 1965

TR-20 Wantman, Mayer Elihu
CALCULAID: An On-Line System for
Algebraic Computation and Analysis,
S.M. Thesis, Sloan School

September 15, 1965

TR-21 Denning, Peter James
Queueing Models for File Memory Operation,

S.M. Thesis, EE Dept.
October 1965

t TR-22 Greenberger, Martin
The Priority Problem
November 1965

TR-23 Dennis, Jack B. and Earl C. Van Horn
Programming Semantics for Multiprogrammed "

Computations
December 1965

t TR-24

AD 612-702

AD 462-158

AD 470-715

AD 474-018

AD 474-019

AD 624-943

AD 625-728

AD 627-537

TR-25

Kaplow, Roy, Stephen Strong and John Brackett
MAP: A System for On-Line Mathematical

Analysis
January 1966 AD 476-443

Stratton, William David
Investigation of an Analog Technique to

Decrease Pen-Tracking Time in Computer
Displays, S.M. Thesis, EE Dept.

March 7, 1966 AD 631_386

TR-26 Cheek, Thomas Burrell
Design of a Low-Cost Character Generator

for Remote Computer Displays, S.M. Thesis,
EE Dept.

-March 8, 1966 AD 631.269

226

•«**mmmmmm

TR-27 Edwards, Daniel James
OCAS - On-Line Cryptanalytic Aid System

S.M. Thesis, EE Dept.
May 1966

TR-28 Smith, Arthur Anshel
Input/Output in Time-Shared, Segmented,
Multiprocessor Systems, S.M. Thesis,
EE Dept.

June 1966

TR-29 Ivie, Evan Leon
Search Procedures Based on Measures of

Relatedness Between Documents, Ph.D.
Thesis, EE Dept.

June 1966

TR-30 Saltzer, Jerome Howard
Traffic Control in a Multiplexed Computer

System, Sc.D. Thesis, EE Dept.
July 1966

TR-31 Smith Donald L.
Models and Data Structures for Digital

Logic Simulation, S.M. Thesis, EE Dept.
August 19 66

TR-32 Teitelman, Warren
PILOT: A Step Toward Man-Computer

Symbiosis, Ph.D. Thesis, Math. Dept.
September 1966

TR-33 Norton, Lewis M.
ADEPT - A Heuristic Program for Proving

Theorems of Group Theory, Ph.D. Thesis,
Math. Dept.

October 19 66

TR-34 Van Horn, Earl C.
Computer Design for Asynchronously

Reproducible Multiprocessing, Ph.D.
Thesis, EE Dept.

November 1966

APPENDIX A

AD 633-678

AD 637-215

AD 636-275

AD 635-966

AD 637-192

AD 638-446

AD 645-660

AD 650-407

TR-35 Fenichel, Robert R.
An On-Line System for Algebraic Manipulation

Ph.D. Thesis, Appl. Math. (Harvard)
December 1966 AD 657-282

t TR-36 Martin, Willaim A.
Symbolic Mathematical Laboratory,

Ph.D. Thesis, EE Dept.
January 1967 AD 657-283

TR-37 Guzman-Arenas, Adolfo
Some Aspects of Pattern Recognition by

Computer, S.M. Thesis, EE Dept.
February 19 67

227

AD 656-041

-.,. !■•.■■

APPENDIX A

TR-38 Rosenberg, Ronald C., Daniel W. Kennedy
and Roger A. Humphrey

A Low-Cost Output Terminal for Time-Shared
Computers

March 19 67 AD 562-027

TR-39 Forte, Allen
Syntax-Based Analytic Reading of Musical

Scores
April 1967 AD 661-806

TR-40 Miller, James R.
On-Line Analysis for Social Scientists
May 1967 AD 668-009

TR-41 Coons, Steven A.
Surfaces for Computer-Aided Design of

Space Forms
June 1967 AD 663-504

TR-42 Liu, Chung L., Gabriel D. Chang and
Richard E. Marks

Design and Implementation of a Table-
Driven Compiler System

July 1967 AD 668-960

TR-4 3 Wilde, Daniel U.
Program Analysis By Digital Computer,

Ph.D. Thesis, EE Dept.
August 1967 AD 662-224

TR-44 Gorry, G. Anthony
A System for Computer-Aided Diagnosis,

Ph.D. Thesis, Sloan School
September 1967 AD 662-665

TR-45 Leal-Cantu, Nestor
On the Simulation of Dynamic Systems with

Lumped Parameters and Time Displays, S.M.
Thesis, ME Dept.

October 1967 AD 663-502

TR-46 Alsop, Joseph W.
A Canonic Translator, S.B. Thesis, EE Dept,
November 1967 AD 663-503

t TR-47 Moses, Joel
Symbolic Integration, Ph.D. Thesis,
Math Dept.

December 1967 AD 662-666

TR-48 Jones, Malcolm M.
Incremental Simulation on a Time-Shared

Computer, Ph.D. Thesis, Sloan School
January 1968 AD 662-225

228

pfMRP ■PMWI ■MM

APPENDIX A

TR-49 Luconi, Fred L,
Asynchronous Computational Structures,

Ph.D. Thesis, EE Dept.
February 1968

t TR-50 Denning, Peter J.
Resource Allocation in Multiprocess
Computer Systems, Ph.D. Thesis, EE Dept.

May 1968

t TR-51 Charniak, Eugene
CARPS, A Program which Solves Calculus
Word Problems, S.M. Thesis, EE Dept.

July 1968

TR-52 Deitel, Harvey M.
Absentee Computations in a Multiple-Access

Computer System, S.M. Thesis. EE Dept.
August 1968 '

TR-53 Slutz, Donald R.
The Flow Graph Schemata Model of Parallel

Computation, Ph.D. Thesis, EE Dept.
September 1968

TR-54 Grochow, Jerrold M.
The Graphic Display as an Aid in the
Monitoring of a Time-Shared Computer
System, S.M. Thesis, EE Dept.

October 19 68

AD 677-602

AD 675-554

AD 673-670

AD 684-738

AD 683-393

AD 689-468

TR-55 Rappaport, Robert L.
Implementing Multi-Process Primitives in

a Multiplexed Computer System, S.M. Thesis,
EE Dept.

November 1968

t TR-56 Thornhill, D. E., R. H. Stotz, D. T. Ross
and J. E. Ward (ESL-R-356)

An Integrated Hardware-Software System for
Computer Graphics in Time-Sharing

December 1968

AD 689-469

AD 685-202

TR-57 Morris, James H.
Lambda-Calculus Models of Programming

Languages, Ph.D. Thesis, Sloan School
December 19 68

TR-58 Greenbaum, Howard J.
A Simulator of Multiple Interactive Users

to Drive a Time-Shared Computer System,
S.M. Thesis, EE Dept.

January 1969

TR-59 Guzman, Adolfo
Computer Recognition of Three-Dimensional

Objects in a Visual Scene, Ph.D. Thesis,
EE Dept.

December 1968

229

AD 683-394

AD 686-988

AD 692-200

mnmmm,., III^»W.I»W»*» '■'^wmmmm

APPENDIX A

t TR-60 Ledgard, Henry F.
A Formal System for Defining the Syntax

and Semantics of Computer Languages,
Ph.D. Thesis, EE Dept.

April 1969

TR-61 Baecker, Ronald M.
Interactive Computer-Mediated Animation,

Ph.D. Thesis, EE Dept,
June 1969

t TR-62 Tillman, Coyt C. (ESL-R-395)
EPS: An Interactive System for Solving

Elliptic Boundary-Value Problems with
Facilities for Data Manipulation and
General-Purpose Computation

June 1969

TR-63 Brackett, John W., Michael Hammer, and
Daniel E. Thornhill

case Study in Interactive Graphics Program-
ming: A Circuit Drawing and Editing
Program for Use with a Storage-Tube
Display Terminal

October 19 69

t TR-64 Rodriguez, Jorge E. (ESL-R-398)
A Graph Model for Parallel Computations,

Sc.D. Thesis, EE Dept.
September 1969

t TR-65 DeRemer, Franklin L.
Practical Translators for LR(k) Languages,

Ph.D. Thesis, EE Dept.
October 1969

TR-66 Beyer, Wendell T.
Recognition of Topological Invariants by

Iterative Arrays, Ph.D. Thesis, Math.
Dept.

October 1969

t TR-67 Vanderbilt, Dean H.
Controlled Information Sharing in a
Computer Utility, Ph.D. Thesis, EE Dept.

October 1969

t TR-68 Selwyn, Lee L.
Economies of Scale in Computer Use: Initial

Tests and Implications for the Computer
Utility, Ph.D. Thesis, Sloan School

June 1970

t TR-69 Gertz, Jeffrey L.
Hierarchical Associative Memories for

Parallel Computation, Ph.D. Thesis,
EE Dept.

June 1970

AD 689-305

AD 690-887

AD 692-462

AD 699-930

AD 697-759

AD 699-501

AD 699-502

AD 699-503

AD 710-011

AD 711-091

230

'^''WMI

APPENDIX A

t TR-70 Fillat, Andrew I. and Leslie A. Kraning
Generalized Organization cf Large Data-

Bases: A Set-Theoretic Approach to
Relations, S.B. & S.M. Thesis, EE Dept.

June 1970

t TR-71 Fiascanaro, James G.
A Computer-Controlled Graphical Display

Processor, S.M. Thesis, EE Dept.
June 1970

t TR-72 Patil, Suhas S.
Coordination of Asynchronous Events,

Ph.D. Thesis, EE Dept.
June 1970

TR-73 Griffith, Arnold K.
Computer Recognition of Prismatic Solids,

Ph.D. Thesis, Math. Dept.
August 1970

AD 711-060

AD 710-479

AD 711-763

AD 712-069

TR-74 Edelberg, Murray
Integral Convex Polyhedra and an Approach

to Integralization, Sc.D. Thesis, EE Dept.
August 1970 AD 712-070

TR-75 Hebalkar, Prakash G.
Deadlock-Free Sharing of Resources in

Asynchronous Systems, Sc.D. Thesis, EE Dept.
September 19 70

t TR-76 Winston, Patrick H.
Learning Structural Descriptions from

Examples, Ph.D. Thesis, EE Dept.
September 1970

TR-77 Haggerty, Joseph P.
Complexity Measures for Language

Recognition, S.M. Thesis, EE Dept.
October 1970

TR-78 Madnick, Stuart E.
Design Strategies for File Systems,

S.M. Thesis, EE Dept. & Sloan School
October 1970

AD 713-139

AD 713-988

AD 715-134

AD 714-269

TR-79 Horn, Berthold K.
Shape from Shading: A Method for Obtaining

the Shape of a Smooth Opaque Object from
One View, Ph.D. Thesis, EE Dept.

November 1970 AD 717-336

TR-80 Clark, David D., Robert M. Graham,
Jerome H. Saltzer and Michael D. Schroeder

The Classroom Information and Computing
Service

i>

January 1971 AD 717-857

231

-■■^».n ii,..ii,|,w,fc

«IWIliir^WHWIHMl

APPENDIX A

TR-81 Banks, Edwin R.
Information Processing,and Transmission

in Cellular Automata, Ph.D. Thesis, ME Dept.
January 1971 AD 717-951

TR-82 Krakauer, Lawrence J.
Computer Analysis of Visual Properties of

Curved Objects, Ph.D. Thesis, EE Dept.
May 1971

TR-a3 Lewin, Donald E.
In-Process Manufacturing Quality Control,

Ph.D. Thesis, Sloan School
January 19 71

AD 723-647

AD 720-098

TR-84 Winograd, Terry
Procedures as a Representation for Data in
A Computer Program for Understanding
Natural Language, Ph.D. Thesis, Math Dept.

February 1971 AD 721-399

'

TR-85 Miller, Perry L.
Automatic Creation of a Code Generator

from a Machine Description, EE Degree,
EE Dept.

May 19 71 N
AD 724-730

TR-86 Schell, Roger R.
Dynamic Reconfiguration in a Modular
Computer System, Ph.D. Thesis, EE Dept.

June 1971

TR-87 Thomas, Robert H.
A Model for Process Representation and

Synthesis, Ph.D., EE Dept.
June 1971

TR-88 Welch, Terry A.
Bounds on Information Retrieval Efficiency

in Static File Structures, Ph.D. Thesis,
EE Dept.

June 1971

AD 725-859

AD 726-049

AD 725-429

TR-89 Owens, Richard C., Jr.
Primary Access Control in Large-scale
Time-Shared Decision Systems, S.M. Thesis,
Sloan School

May 1971 AD 728-036

232

TECHNICAL MEMORNANDA!

APPENDIX A

t TM-10 Jackson, James N.
Interactive Design Coordination for the
Building Industry

June 1970

t TM-11 Ward, Philip W.
Description and Flow Chart of the PDP-7/9

Communication Package
July 1970

I TM-12 Graham, Robert M.
File Management and Related Topics

(Formerly Programming Linguistics Group
Memo No. 6, June 12, 19 70)

September 1970

t TM-13 Graham, Pobert M.
Use of High Level Languages for Systems

Programming
(Formerly Programming Linguistics Group
Memo No. 2, November 20, 1969)

September 1970

AD 708-400

AD 711-379

AD 712-068

AD 711-965

t TM-14 Vogt, Carla M.
Suspension of Processes in a Multiprocessing

Computer System
(Based on S.M. Thesis, EE Dept., February
1970)

September 1970 AD 713-989

t TM-15 Zilles, Stephen N.
An Expansion of the Data Structuring

Capabilities of PAL
October 1970 AD 720-761

t TM-16 Bruere-Dawson, Gerard
Pseudo-Random Sequences

(Based on S.M, Thesis, EE Dept., June 1970)
October 1970 AD 713-852

f TM-17 Goodman, Leonard I.
Complexity Measures for Programming Languages

(Based on S.M. Thesis, EE Dept., September
1971)

September 1971 AD 729-011

f TM-18 Replaced by TR-85

t TM 19 Fenichel, Robert R.
A New List-Tracing Algorithm
October 1970 AD 714-522

233

:~~r"'™^T; -"*'■"■" «"-y

APPENDIX A

t TM-20 Jones, Thomas L.
A Computer Model of Simple Forms of

Learning
January 1971

t TM-21 Goldstein, Robert C.
The Substantive Use of Computers for

Intellectual Activities
April 1971

t TM-22 Wells, Douglas M.
Transmission of Information Between a Man-
Machine Decision System and Its
Environment

April 19'/1

t TM-23 Strnad, Alois J.
The Relational Approach to the Management

of Data Bases
April 1971

t TM-24 Goldstein, Robert C. and Alois J. Strnad
The MacAIMS Data Management System
April 1971

t TM-25 Goldstein, Robert C.
Helping People Think
April 1971

AD 720-337

AD 721-618

AD 722-837

AD 721-619

AD 721-620

AD 721-998

t Project MAC Progress Report I
to July 1964

Project MAC Progress Report II
July 1964-July 1965

t Project MAC Progress Report III
July 1965-July 1966

Project MAC Progress Report IV
July 1966-July 1967

Project MAC Progress Report V
July 1967-July 1968

AD 465-088

AD 629-494

AD 648-346

AD 681-342

AD 687-770

234

1
i

,,.-.- :■ ■:-

. - .-.-.

APPENDIX A

Project MAC Progress Report VI
July 1968-July 1969

Project MAC Progress Report VII
July 1969-July 1970

AD 705-434

AD 732-767 I

* Copies of all MAC reports listed in Appendix A, as well as
earlier Progress Reports, have been deposited with DDC;
using the appended AD number, a report may be secured from
the Mational Technical Information Service, Operations Division,
Springfield, Virginia, 22151. The prices from NTIS are:
microfilm $0.9 5; hard copies: reports more than two years
old $6.00, all others are $3.00 except TR-83 which is also
$6.00.

t Out-of-print, may be obtained from NTIS (see above).
+
I All TMs have been deposited with DDC and are available only
from NTIS, using the AD number appended; the cost is $0.95
for microfilm and $3.00 for hard copy.

235

3.

ARTIFICIAL INTELLIGENCE

AUTOMATA THEORY

CELLULAR AUTOMATA

-W/M
m I

COMPUTATION STRUCTURES

COMPUTER SYSTEMS RESEARCH

DYNAMIC MODELING, GRAPHICS AND NETWORKS

EDUCATION

IMPLICIT COMPUTATION

INTERACTIVE MANAGEMENT SYSTEMS

MATHLAB

PROGRAMMING LANG» AGES

tt»'***0"'

