Security Charosification	. 17 72.	CILL C
		2182
DOCUMEN Security classification of this bade at statistication		No
CHIGHANING ACTIVITY (Corporate author)	20. REPOR	SECURITY CLASSIFICATION
<u>·</u>	Unc	lassified
University of Georgia	26. GHOUP	
	. Unc	lassified
INTERACTIVE QUANTAL ANALYSIS	•••	
DESCRIPTIVE NOTES (Type of report and, inclusive dates)	,	, , , , , , , , , , , , , , , , , , ,
AUTHOR(5) (First name, middle initial, last nome)		
JUDITH H ISHEE	• • •	
obbith h. ISHEE		
REPORT DATE	78, TOTAL NO. OF PAGES	76. NO. OF REFS
September, 1971	107	10
CONTRACT OR GRANT NO.	14. ORIGINATOR'S REPORT N	UMBER(3)
N00014-69-A-042-261	Technical Report N	No. 74
PROJECT NO. DADY	Dept. of Statistic	s and Computer Science
NK U42-261	90. OTHER REPORT NO(5) /An	y other numbers that may be assidned
	this report) No. 16 Thomic	· · · · · · · · · · · · · · · · · · ·
	No. 10 memts	·
DISTRIBUTION STATEMENT		· · · · · · · · · · · · · · · · · · ·
United States Government.	sare is permitted for any p	surpose of the
SUPPLEMENTARY NOTES	12. SPONSORING MILITARY AC	
	UITICE OF Naval Re	search
	"asningcon, D. C.	۰.
ABSTRACT		•
This nonant describes James		
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog ogram is designed for use a elementary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog ogram is designed for use a elementary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog ogram is designed for use elementary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog rogram is designed for use a el_mentary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog ogram is designed for use a el mentary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog ogram is designed for use a elementary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog rogram is designed for use a el_mentary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog rogram is designed for use a el_mentary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog ogram is designed for use a elementary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog rogram is designed for use a el_mentary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog rogram is designed for use a el_mentary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog rogram is designed for use a el_mentary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and
This report describes develop computer program for the stat related quantal data. The pr need not possess more than an computation. A graphics cons keyboard) serves as the mediu to the user. On the basis of analysis is performed and res numerically.	ment and implementation of istical analysis of biolog rogram is designed for use a el_mentary knowledge of s sole (CRT display, typewrit m of conversation. Questi data supplied by him, the sults are displayed graphic	a conversational ical assays and by scientists who tatistics or er, function ons are displayed appropriate ally and

.

8-31408

المتكر ويستعلم المستخذ الأرادي ويبرج ويريني منهيهم والمربوبين المتعاد والمربو		L 114	н. А	LIN	KU	LIN	۴¢
KIY NOR	0.5	ROLL	N T	ROLE	<i>e</i> ()	1.01.1	<i>.</i>
				1			
STATISTICS							
REGRESSION	- *						
BIO-ASSAY							
QUANTAL ANALYSIS							
INTERACTIVE COMPUTATI	ON						
COMPUTER GRAPHICS							
NONLINEAR ESTIMATION							
PROBIT ANALYSIS	-						
GROWTH CURVES							
LEARNING MODELS							
· ·							
	•						
•							
					Ì		
	• .						
			1				
						1	

utot+#07+0+21

Security Classification

A-31409

THEMIS REPORT NUMBER 16 TECHNICAL REPORT NUMBER 74 INTERACTIVE QUANTAL ANALYSIS

· JUDITH H. ISHEE

Reproduction in whole or in part is permitted for any purpose of the United States Government. This Research was supported, in part, by the Office of Naval Research, Contract Number N00014-69-A-0423, NR 042-261.

> ROLF BARGMANN PRINCIPAL INVESTIGATOR

200000 JAN 19 1972 տհուլ B

THE UNIVERSITY OF GEORGIA DEPARTMENT OF STATISTICS AND COMPUTER SCIENCE ATHENS, GEORGIA 30601

SEPTEMBER 1971

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

ABSTRACT

Several programs are in existence which perform quantal analysis, but such programs were designed for batch processing. The following report is a package of computer programs for the IBM 2250, with documentation, which enables the layman to interact with the system. The program, entitled "QUANTAL" is written in FORTRAN IV with extensive use of the GRAF (Graphics Addition to FORTRAN) routines. QUANTAL is written in subroutine form within an overlay structure which retains the entire program size to within 64K bytes. Communication between subroutines is attained by extensive use of COMMON variables and direct disk storage. The method of analysis follows the usual techniques of maximum-likelihood iteration, with an approximate Newton technique.

TABLE OF CONTENTS

۰.

. . • .

4

\$

CHAPTER		PAGE
I	INTRODUCTION	1
II	COMPUTATIONAL ALGORITHMS	3
111	THE INTERACTIVE PROGRAM	ž1
IV	PROGRAM DOCUMENTATION	36
REFERENCE	S	90
APPENDIX.		91

LIST OF FIGURES

FIGURE		PAGE
3,1	Data Input Statements	20
3.2	Tabular Display of Data	22
3,3	The Estimated Cumulative Distribution	24
3.4	Numerical Results of the Analysis	26
3,5	Analysis of Variance Table	28
3.6	Graphic Display	30
3.7	Numerical Results of the Analysis	32
3.8	Analysis of Variance Table	34
4.1	Program Control Cards	· 82
4.2	Diagram of Overlay Structure	89

CHAPTER I

INTRODUCTION

I great variety of experiments, especially those in biological assay, establish a relationship between dosage (a concomitant variable) and a quantal response. The latter consists of records of successes or failures under a given dosage. The quantal response is often "death," but may be any other easily recognized change in an experimental subject. For example, insecticides may be assayed by assigning batches to doses of a test preparation -- here the quantal response is the number of insects killed in each batch. In the physical or social sciences, the concomitant variable is usually "time." At specific intervals a record is kept about the number of subjects that completed a task, or the number of experimental runs that have proceeded to completion in a reaction. These are the quantal responses.

This thesis first summarizes a few of the well known basic results for the analysis of quantal response data. Essentially, the approach presented by Finney [3], [4] is followed, including the notation, somewhat peculiar for statisticians, which uses capital letters for parameters. Chapter II also includes a discussion of the various algorithms as they apply to a few preferred growth functions (Probit, Logistic, Arc Sine, Log-Log, Weibull -- see [1], [3]).

The implementation, including user's guide, description, and illustration, is contained in Chapter III. This is an example of an interactive program designed for the user whose expert knowledge in Statistics or Computations may be limited. In fact, the present program has been used in the research work of entomologists at the University of Georgia. This part of the work is directed toward the implementation of the University of Georgia's development of Statistical Programs for Lay Users, under the THEMIS program.

かったというかななななななななななない。

Detailed documentation of the various computer programs, the communication with the Graphics Monitor System, and the overlay structure, are presented in the last chapter.

A statistician desiring to use the computer for the analysis of experimental data has a variety of programs, procedures, and languages at his disposal. The majority of these programs (BMD [2], GENSTAT [9], OMNITAB [6], and SSP [8], to name a few) require some degree of technical understanding. Often a user must even supply a complete function program or a subroutine. Thus, unless the statistician possesses enough experience in programming and data processing to prepare his input data, he must seek the advice of one with such experience.

The interactive console programs, on the other hand, are designed so that by merely answering questions and filling in blanks a layman, who possesses little or no knowledge in the fields of Statistics or Computation, may perform the analysis on his particular data. The QUANTAL program also affords the layman the opportunity to change his data input (by adding or deleting batches, or performing some transformation on the x-dosage) and immediately see the results. This eliminates the necessity of re-submission of the job deck under the batch mode and thus increases the overall effectiveness of turnaround.

CHAPTER II COMPUTATIONAL ALGORITHMS

In a biological assay, a stimulus (for example a vitamin, a drug, a physical force) is applied to a subject (for example an animal, a plant, or a single cell) at an intensity specified in units of concentration, weight, time or other appropriate measure and under environmental conditions as carefully controlled as is practicable, as a result of which a response is produced by the subject.

The derivation of iterative maximum-likelihood estimates follows familiar lines (see, e.g., Finney [3]). Let us assume that there are k classes of subjects and n_i is the size of class i. Suppose r_i denotes the number of "successful" individuals in class i and P_i denotes the probability that a subject in class i has made the transition. The probability of exactly r_i responding is, the Binomial Distribution of probabilities

$$n_i!/r_i!(n_i - r_i)! \qquad P_i^{r_i} Q_i^{n_j-r_i}$$

where $Q_i = 1 - P_i$. Then the logarithm of the likelihood function of $(r_1, r_2, \dots r_k)$ is

$$\log L = \sum_{i=1}^{k} [\log {\binom{n_i}{r_i}} + r_i \log r_i + (n_i - r_i) \log(1 - r_i)] \quad (2.1)$$

If we let p_i denote the observed proportion of successes in class i $(p_i = r_i/n_i)$, we find that

$$\partial \log L/\partial P_{i} = n_{i}(p_{i} - P_{i})/P_{i}(1 - P_{i})$$
 (2.2)

As is customary in bio-assay analysis, we use capital letters to denote expected values and small letters to denote observed values.

The dosage-response analysis proceeds as follows. A monotonic (growth) function is defined

$$P_{i} = \Phi(Y_{i}) \tag{2.3}$$

which is frequently a cumulative distribution function. It is then assumed that Y_i follows a linear regression model

$$Y_{i} = \alpha + \beta x_{i}, \qquad (2.4a)$$

where x_i is the dosage (or some convenient transform).

Let

 $Y_{i} = \Phi^{-1}(P_{i})$

. is a "percentage point" under this c.d.f. It is a linear function of x_i .

 $Z_{i} = dP_{i}/dY_{i}$ (2.5)

Let \overline{x} denote a conveniently chosen constant (usually a weighted mean of the x_i) and let

$$\mu = \alpha + \beta \overline{x}, \quad \text{so that} \quad Y_i = \mu + \beta (x_i - \overline{x}). \quad (2.4b)$$

Then

$$\partial \log L/\partial \mu = \sum_{i=1}^{k} [\partial \log L/\partial P_i] [dP_i/dY_i] [\partial Y_i/\partial \mu]$$

$$= \sum_{i=1}^{k} [n_{i}(p_{i} - P_{i})Z_{i}]/[P_{i}(1 - P_{i})]$$
(2.6a)

and, similarly,

$$\partial \log L/\partial \beta = \sum_{i=1}^{k} [n_i(p_i - P_i)Z_i(x_i - \overline{x})]/[P_i(1 - P_i)]$$
 (2.6b)

Expressions (2.6a) and (2.6b) must be equated to zero and solved for μ and β (involved in each Y_i , hence in each P_i and Z_i). This is customarily done by an approximate Newton iteration where $y_i = \phi^{-1}(p_i)$ is used as the first approximation to Y_i .

If we define

$$I_{i} = Z_{i}^{2} / [P_{i}(1 - P_{i})], \qquad (2.7)$$

(2.6a) and (2.6b) can be rewritten

$$\partial \log L/\partial \mu = \sum_{i=1}^{k} n_i W_i [(p_i - P_i)/Z_i]$$
 (2.8a)

and

$$\partial \log L/\partial \beta = \sum_{i=1}^{k} n_i W_i [(p_i - P_i)/Z_i](x_i - \overline{x})$$
 (2.8b)

Now,

$$\partial^2 \log L/\partial \mu^2 = \sum_{i=1}^{k} \{ [\partial(\partial \log L/\partial \mu)/\partial P_i] [\partial P_i/\partial Y_i] [\partial Y_i/\partial \mu] \}$$

+ $[\partial(\partial \log L/\partial \mu)/\partial Z_i][\partial Z_i/\partial Y_i][\partial Y_i/\partial \mu]\}.$

Now

$$\partial (\log L/\partial \mu)/\partial P_{i} = -(n_{i}Z_{i})/[P_{i}(1 - P_{i})]$$

- $[n_{i}(p_{i} - P_{i})Z_{i}(1 - 2P_{i})]/[P_{i}(1 - P_{i})]^{2}$

The essential trick in the approximate Newton iteration (see Fisher [5]) consists of ignoring small terms in the second derivative. Thereby the iterative procedure is, admittedly, slower than the complete Newton procedure. However, since no approximation is employed in the first derivatives, the final result will still be exact when the process has converged. In the above example, $(p_i - P_i)$ is a relatively small term and will be disregarded in the second derivative. Also,

∂(∂log L/∂µ)/∂Z_i

involves such a difference $(p_i - P_i)$ and hence will be disregarded. With this simplification one obtains the approximate value

$$\partial^2 \log L/\partial \mu^2 = -\sum_{i=1}^k n_i \{Z_i^2 / [P_i(1 - P_i)]\} = -\sum_{i=1}^k n_i W_i.$$
 (2.9a)

Similarly,

$$\partial^2 \log L/\partial \beta^2 \simeq -\sum_{i=1}^{k} n_i W_i (x_i - \overline{x})^2$$
 (2.9b)

and

$$\partial^2 \log L/\partial \mu \partial \beta \simeq -\sum_{i=1}^k n_i W_i (x_i - \overline{x})$$
 (2.9c)

• 0 if \overline{x} is chosen as

 $\sum_{i=1}^{k} a_i W_i x_i / \sum_{i=1}^{k} n_i W_i.$

With this simplification, the Hessian matrix of second derivatives is diagonal. Hence corrections can be made on each of the two unknowns separately, by substitution into the customary Newton formula.

$$\mu_{1} = \mu_{0} + \sum_{i=1}^{k} n_{i} W_{i} [(p_{i} - P_{i})/Z_{i}] / \sum_{i=1}^{k} n_{i} W_{i}$$

and

$$\beta_{1} = \beta_{0} + \sum_{i=1}^{k} n_{i} W_{i} [(p_{i} - P_{i})/Z_{i}] (x_{i} - \overline{x}) / \sum_{i=1}^{k} n_{i} W_{i} (x_{i} - \overline{x})^{2}.$$

If we estimated μ_0 and β_0 by weighted regression on Y_i given x_i , with the weights nW, we could combine the μ_0 and the sum into a single sum

$$\mu_{1} = \sum_{i=1}^{k} n_{i} W_{i} [Y_{i} + (p_{i} - P_{i})/Z_{i}] (x_{i} - \overline{x}) / \sum_{i=1}^{k} n_{i} W_{i} (x_{i} - \overline{x})^{2},$$

and, analogously

$$B_{1} = \sum_{i=1}^{k} n_{i} W_{i} [Y_{i} + (p_{i} - P_{i})/Z_{i}] (x_{i} - \overline{x}) / \sum_{i=1}^{k} n_{i} W_{i} (x_{i} - \overline{x})^{2}$$

But these are estimates of μ_1 and β_1 of a weighted regression analysis, between the x_i and the quantities $[Y_i + (p_i - P_i)/Z_i]$. The latter are called "working" quantities. Thus, the approximate Newton iteration employs the same technique as the iterated (weighted regression) method, with y_i replaced by the working quantities, $y_i + (p_i - P_i)/Z_i$. The c.d.f. most frequently employed in the analysis of such data is the Normal distribution function, often with the mean placed at 5 to avoid negative numbers. This is called the Probit transformation. In detail, the following steps are required:

Data for the analysis are, for each of k batches, x_i , the stimulus or dosage applied; n_i , the number of subjects tested at each dose; and r_i , the number of subjects who responded at each dose.

The first cycle proceeds as follows:

- (a) Compute the proportion of subjects responding to various levels of a stimulus $p_i = r_i/n_i$ where i = 1, 2, ... k levels of a stimulus.
- (b) Obtain y_i , the empirical probit for each dosage level; $y_i = \Phi^{-1}(p_i)$, where $\Phi^{-1}(p_i)$ is the inverse normal distribution (e.g., $\Phi^{-1}(.975)$ = 1.96 or 6.96 if 5 is added).
 - (c) Initialize the working probit by setting $y_i^* = y_i$ and the weighting coefficient for the probit analysis, by using $W_i = n_i$.
 - (d) From the weighted regression scheme, obtain a and b, estimates of α and β in the equation $y_i = \alpha + \beta x_i$.

$$b = S_{xy}^{(w)} / S_{xx}^{(w)} \text{ where}$$

$$S_{xy}^{(w)} = \sum_{i=1}^{k} w_i x_i y_i^* - [(\sum_{i=1}^{k} w_i x_i)(\sum_{i=1}^{k} w_i y_i^*)] / \sum_{i=1}^{k} w_i$$

and

$$S_{xx}^{(w)} = \sum_{i=1}^{k} w_i x_i^2 - (\sum_{i=1}^{k} w_i x_i)^2 / \sum_{i=1}^{k} w_i.$$

a = \overline{y} - $b\overline{x}$ where $\overline{y} = \sum_{i=1}^{k} w_i y_i / \sum_{i=1}^{k} w_i$ and $\overline{x} = \sum_{i=1}^{k} w_i x_i / \sum_{i=1}^{k} w_i$.

(Note that w_i is $n_i W_i$ here).

- (e) Compute values of expected probit using the initial estimates of a and b: $Y_i = a + b x_i$ where i = 1, 2, ..., k.
- (f) Calculate P_i , the predicted proportion of success at each dose. Here, $P_i = \Phi(Y_i)$ [or, possibly, $Y_i - 5$], is the cumulative normal distribution value corresponding to Y_i .
- (g) Obtain $Z_i = \phi(Y_i)$, the ordinate under the normal distribution curve, for each Y_i .
- (h) Corresponding to each value of Y, compute the following:

$$W_i = Z_i^2 / [P_i(1 - P_i)]$$
 and $y_i^* = Y_i + (p_i - P_i) / Z_i$.

(i) Return to step (d) and begin a new iteration with $a = \alpha$ and $b = \beta$ until the relative difference between two consecutive values of α or β are small. Relative error of 10⁻⁴, or 5 iterations, are employed in this program.

Other models may be substituted in this analysis. The following equations for P, y, and Z should be substituted in steps (b), (f), and (g):

The logistic function, $dn/dt = \lambda n(c - n)$, where c is the ceiling and n is some population size, is widely used to represent such phenomena as population growth. $\bar{P} = e^{Y}/(1 + e^{Y}) = 1/(1 + e^{-Y})$ gives the metametric equation and Y' = log[P/(1 - P)]. So that Z = dP/dY = $e^{Y}/(1 + e^{Y})^{2}$.

The <u>log-log</u> or "Gumpertz" function is used when reproduction inhibits itself. The metametric equation is $P = e^{-e^{-Y}}$ and Y = -log(-logP). Also $Z = dP/dY = -P \log P$.

For the Arc Sine function, $P = \frac{1}{2}(1 + \sin Y)$, $Y = Arc \sin (2P - 1)$, and $Z = \frac{1}{2}\cos Y$.

Finally, for the <u>Weibull</u> function, $P = 1 - e^{-Y^{T}}$, $Y = [-log (1 - P)]^{1/r}$, $Z = r Y^{T-1}e^{-Y^{T}}$.

CHAPTER III THE INTERACTIVE PROGRAM

The diagram above displays the position of the IBM 2250 screen, the programmed function keyboard, and the alphameric keyboard.

The first message on the screen, given by the GMS monitor, states that the user must depress any one of the programmed function keys.

The second message lists several options. The user should first type \$NAMES, then depress the "Altn Coding" key and while it is held down, depress the "5" key on the alphameric keyboard. The list of programs should be examined carefully to ascertain that the QUANTAL program is listed. Next, one should type \$LINK QUANTAL, followed by the "Altn Coding" and "5" key.

Once the QUANTAL program has been successfully obtained, a message will be displayed and the user, if entering for the first time, should depress programmed function key 1. If the user is entering the program following a departure to the CALCG program (see below), he should depress programmed function key 2 to return to his point of departure. Next, the general instructions of the program will be listed. These instructions are important. They state:

- At any point in the program you may restart by depressing programmed function key 30 or terminate by depressing programmed function key 31.
- Your answers should be typed from the typewriter keyboard directly in front of you (unless you are asked differently).
- All numbers are to be typed as real numbers -- decimal point must follow the number.
- 4. After each statement you should cause an "End of Block (EOB)" signal, by first depressing the "Altn Coding" key and, while it is held down, depressing the "5" key.
- 5. If there is more than one blank to be filled in a line, depress the "JUMP" key located on the left side of the typewriter keyboard to proceed from blank to blank.

The programmed function key 1, employed throughout the program to relate the normal flow of the program, should be depressed when the user is ready to continue.

Now the user will be asked to enter his first piece of data: the number of classes or batches on which he wishes to perform the analysis. This number must be greater than zero and less than one hundred. The number of classes or batches will ordinarily range between 5 and 25. With fewer than 4 classes the results are probably meaningless; more than 25 classes would be meaningful only if the total sample were very large. In the event that a number is entered which is not in the required range, an error message will be displayed and the user must re-enter a correct

number. The user must note that each number must be entered as a <u>real</u> number (with a decimal point actuall, typed, even if the number is an integer).

The next 'sequence of statements will request information on the concomitant variable or x-dosage which was administered to each batch, the number of individuals or subjects in each batch, and the number of subjects in each batch which responded. These three values will be filled into the blanks of the sentence: In batch xx where the concomitant variable (dosage) _____ was given to subjects, there were subjects that responded (successes). The user may proceed from blank to blank by depressing the "JUMP" key. The "End of Block" should be caused only when the entire sentence has been completed. In the first blank, the x-dosare (the mean x-score) for each batch may be entered as a real number in F or E (scientific notation) field specification. The width of the field is 14, thus data may be entered with maximums F14.7 or E14.7. If E format is used, the exponent (decimal point shift) must have two digits. For example, 1.62×10^{-8} would be entered as 1.62E-08. The x-dosage may be either negative or positive. However, since one of the important aspects of this program is to permit transformations on x - in order to assure better fit - the dosages should, as a rule, be positive (log and square-root are frequently used transformations).

In the second blank, the number of subjects or individuals in each batch is requested. It must be greater than two and must be entered as a real number.

The number of subjects which responded in each class occupies the third blank. It must be zerc or greater and must not exceed the number of individuals in each batch.

If any of these requirements are not fulfilled, an error message will be displayed and the user must complete the statement again.

When the last statement of input has been successfully entered, the data will be displayed in an array. The user should examine his data carefully to ascertain that all data have been entered correctly. The user will then be given the opportunity to change data of any of the batches, to eliminate a batch, to add a new batch, or to continue with the analysis.

If the user wishes to correct any of the batches (more than one batch may be altered), he should depress programmed function key 2. At this time a message will appear that asks which batch the user desires to alter. If the number typed in by the user is not in the correct range, an error message will appear and the user must state the correct batch number. When this number has been entered satisfactorily, a statement to obtain input will be displayed on the screen. The user must complete this statement just as when he entered it the first time. However, he may eliminate this batch by simply refusing to fill in any of the blanks (responding EOB at once).

If the user wishes to add another batch to his data, he should depress programmed function key 5. It will then be necessary to complete the input statement according to the requirements pertaining to it.

After an addition or alteration has been made by the user, the entire data will again be displayed -- including corrections and addi-

tions -- and the user has the option once again to add or alter a batch or to continue.

When the data completely satisfy the user, he should depress programmed function key 1. At this time the analysis will be initiated and the user must decide which transformation he desires for his data. He may choose the PROBIT, LOGIT, LOG-LOG, ARC SIN, or WEIBULL by depressing programmed function key 6, 7, 8, 9, or 10 respectively. In the WEIBULL case he will also need to supply the exponent by depressing the appropriate key.

At this stage in QUANTAL, an alarm will be sounded and the screen will be blank for a few seconds. It is somewhat unpredictable how long this will take. The GMS monitor is time-shared. If the processor queue is very long, a minute or two may pass. If there is little batch activity, a few seconds may be all that is needed.

The first display of the output section will be the graph of the observed and predicted proportion of successes for each class. The x-dosages have been arranged in ascending order and are depicted on the horizontal axis. The batch numbers are written directly below this axis and the minimum and maximum x-dosage levels are written below the respective batch numbers. The vertical axis has the proportion of successes. The lined histogram is the predicted proportion of successes and the observed proportions of success are denoted by asterisks. The user should depress programmed function key 1 when he wishes to continue.

The next display (or series of displays) contains numerical answers (ten batches per display). On the final "page," the user may return to

"page 1" by depressing programmed function key 4. Displayed for each of the batches is the size of the batch, P(OBS) -- the observed proportion of successes, P(PRED) -- the predicted proportion of successes, Y(PRED) -- the predicted y-scores, Y(OBS) -- the observed y-scores, Y(WORK) -the "working" quantities, the weights, X-DOSAGE -- the observed x-scores, and Y-ERROR -- the error of prediction in the y's.

The next display in the output section is an analysis of variance table. The sum-of-squares, degrees of freedom, and mean-squares are given for the regression and error. Also the calculated F = mean-squares regression/mean-squares error is displayed. The user then has the option to leave the QUANTAL in order to call the CALCG program, e.g., to find whether or not his F value is significant.

Upon returning to the QUANTAL program, if the user chose to call the CALCG program, he is reminded to return to this point by depressing programmed function key 2.

If the user does not wish to leave the QUANTAL program, he should depress programmed function key 1 when he wishes to continue.

Next there is a graph of the regression line $Y = a + \beta x$ where a and $\hat{\beta}$ have been estimated by the appropriate quantal analysis, and x is the dosage. The horizontal axis is the dosage-axis and the vertical axis is the y-axis. The observed y-values are denoted on the graph by asterisks. Programmed function key 1 is depressed to continue.

In the next section the user may alter his x-dosage by one of the following functions: sine, cosine, tangent, arc sine, arc cosine, arc tangent, exponential, natural logarithm, common logarithm, square root, absolute value and x-squared. To use one of the functions, he

depresses programmed function key 3 and then types in the number corresponding to the function desired. If a function is chosen which is incompatible with the data, e.g., square-root and negative x-dosages, an error message is displayed and the user must give correct answers.

If a function is chosen to alter the x-dosages, then the next section will be a display of the final (regression line) section with the x-scale altered. In fact the line itself will not be displayed -- only the asterisks. If the user likes this new plot he may perform reanalysis by continuing (depressing programmed function key 1). If he does not like it he will be given a chance, in the next display, to call the inverse of the first function and then, after yet another return, try a different function.

At the stage where the user is asked to supply the transformation he has an option to depress programmed function key 1 and thus obtain a new analysis (starting with the Summary) of the data in accordance with the last chosen transformation.

ILLUSTRATION

The QUANTAL program is called by the user and the instructions as outlined in the User's Guide are followed.

The data for the analysis are typed in by the user by his completing the sentences as shown in figure 3.1.

When all data have been entered, a tabular display of the data is exhibited (figure 3.2).

In this illustration, the probit transformation has been chosen by the user's depressing programmed function key 6.

After a short delay, for the calculations, there appears, on the screen, a step function indicating the estimated cumulative distribution function (proportion vs. dosage). The asterisks show the observed values. If the fit were perfect, they would appear coincident with the upper corner of each step. Figure 3.3 shows this display.

Next there appears a detailed numerical display (figure 3.4). Notice here that the greatest y-error is -.25310 in batch 4.

The next display (figure 3.5) is an analysis of variance table.

Next, the graph of the straight line $Y = \alpha + \beta x$ (as shown in figure 3.6) is displayed. It will be noted here that the analysis produces a very good fit for all but one of the data points.

In the second stage of this presentation, the user does not alter the x-dosages but chooses the logit transformation.

Figures 3.7 and 3.8 display the numerical results and the analysis of variance for the logistic transformation. As a comparison of the closeness of fit one could calculate $R^2 = sum-of-squares$ regression/ sum-of-squares Total which is .9881 for the Probit and .9866 for the logistic. This is an example of the (usual) closeness of the normal and logistic transformations. Note that no other base for comparison would be possible, since the dispersion of probits and logits are different (.975 corresponds to a probit of 1.96 (6.96) but to a logit of 3.66).

3

FIGURE 3.1

DATA INPUT STATEMENTS

20

 $\omega_{i},$

DATENDES. AN EXCRETE THE FOLLOWING STATENENT FOR EACH OF THE RACHART VAULADES. MATENDES. AN EXCRETES IS, IN DATCH 12. UNERS THE CUNCUMITANT VAULADES. MATELEDOUDED (SUCCESSED). VARIABLE (DOSAGE) 5.5 43.___SUCJECTS THAT RESPONDED VARIABLE (DUSAGE) 4.5 26. SUDJECTS THAT RESPONDED VARIABLE (DESAGE) 4. 30. SUBJECTS THAT RESPONDED VARIABLE (DOSAGE) 3.5 12. SUBJECTS THAT RESPONDED CONCOMITANT VARIABLE (DOBAGE) 3. THERE LERE 10. SUBJECTS THAT RESPONDED VARIADLE (DDRACE) 2. T. SUBJECTS THAT RESPONDED CONCOMITANT VARIABLE (DOSACE) 1.5 THERE DERE 5. SUBJECTS THAT RESPONDED VARIABLE (PDEACE) 1. 2. SUBJECTS THAT RESPONDED **e**i THE RUNDER OF SUBJECTS IN EACH BATCH MUST BE GREATER THAN CONCONITANT THERE REGE CONCOMITANT THERE SERE BREAT THE CONCOMITANT SUBJECTS, THERE WERE CORCOMITANT THERE REGE CONCON TANT THERE HERE CONCOUSTANT TUERE VERE WREAS THE SUBJECTS. UNERE THE SUBJECTS, NHERE THE SUBJECTS. WHERE THE SUBJECTS. RNERE THE SUBJECTS. RUSSE THE SUBJECTS. NHERE THE SUBJECTS, CD S ~ 2 M T 30. 40. 20°. 30. 50. 40. 65 59. 59. IN BATCH MAS GIVEN TO : CUCCEDEES) . NAS GIVEN TO A SUCCESSES). RAS GIVEN TO ... IN BATCH HAS GIVEN TO 2 (SUCCESSES). IN CATCH MAS GIVEN TO ... 11 04764 445 01781 19 5 (265620623) . HAS GIVEN TO KAS GIVEN TO (SUCCEDEES). IN DATCH UNS GIVEN TO CSUCEDUSS?.

NOT REPRODUCIBLE

FIGURE 3.2

TABULAR DISPLAY OF DATA

÷.,

201 SUCCESSES UNC NUNC C A C **P***N*(0-000-00) ũ NUMBER ろい C **SUBJECTS** õ NUNBER CORRECT J ADD AN U HISH **0000** 00 00 Q งงเลส **เ**ป วิตราติเมเม • HOH S BATCH RUNDER っちちら ør • CÓ

FIGURE 3.3

THE ESTIMATED CUMULATIVE DISTRIBUTION

.

•

24

 $\dot{\mathbf{x}}_{i}$

•				
- 1 .			0	
ä		0	14	
		17		
<u>2</u>	- Z.(7 ኛ 🗌	-	•
- 6	-	•		-
		57	_	
- Ann	02		1.110	
- 62	1.11	ίΞ	5.54	Ē
- 8			- <u> </u>	- 52
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Ä	20		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	72
2	60	2	- 5.1	- 8
	1.10	<u>م</u>		
-			5.2	- 53
	-		27	- X
2	- <b></b>		<u> </u>	-
	-			
	0	1.2	012	-
	-			
9	- <b></b>		<i></i>	- 5
<u>n</u>	- Cai -		era	- 2
ų artistas		(1)		
<b>G.</b>	- <b>Z</b> ( )	1.1	<u> </u>	- 0
	QC.		0	- 0
9	~~Q		2210	્ય
z	LU _	U.	しっしり	<b>6</b>
-		-		•
	E CO	<b>L</b>	1.62	nn
•	04		CUL	us (4
تفا	19	~	່ U	i, i <b>Li</b>
	121	1:1	2713	1 da 🛊
Ř	Cree	-	(2:2)	11155
ũ			-	س ب
Ĩ	1. 5	3		ũa
	0	-	6	5-
	20	~	0.00	
	11.		1000 and 1	ິດັ
4.4		2	2.00	
	- <b>~</b> !:	~		
<b>_</b>		*		
· · ·		~		~X
		-	100 1 1 m 10	
- 75 4	<u>.</u>	~		
_ AL 4	INC	Ç <u>ş</u>	1-0-1	
ہ لیے ۔	<b></b>	14	1.1	
<u> </u>		4	(1): : :	31-
_ (A ~	າທເລ			ц <u>ь</u> .
-		(7 -		
- <b>Q</b> 1	2268/3		na	шa
<b>(</b>	<b>)~</b> ~:::	26		ih 44
- <b>33</b> F	. Jac	<	201	1.1
0	L.)		AU.	au
6	שב	UJ –	eres (	i ut
LUS .	"pa e		·(3)	:- W
60 3	17.00	1-12	142/13	213
Ē	165 :	Ċ,	12:21	214
- II è	21.21	re el	1-0-	11
Ö.L	. : شیل	1.20%	, <b>i</b> i,	13
-	~~:/·	1.1.1	1.1.1	ыÖ
េណ៍	SELL I	11 L C	11.1.2	- <del>7</del>
0	222	23 4		LI
	570	<u>ک</u>		
14	โมว์ :	<b>`</b> `	1.010	- i/i
5.1	a			
	à la c	1		LI 53
- 7	A	115		
	5 13		- ²	ä
2	5 6		: 2	12
3	5 7		1 1	14
	Т			

And Andrews and the second state of the second of the second second second second second second second second s

## FIGURE 3.4

# NUMERICAL RESULTS OF THE ANALYSIS

<b>7000-000</b> 00000-000 00000-000 00000-000 00000-00-	
2000000 2000000 20000000 20000000 2000000	NOT REPRODUCIBLE
	44 46 47 47 47 47 47 47 47 47 47 47
111 100 100 100 100 100 100 100	88 760 760 760 760 760 760 760 760 760 760
	Y C C C C C C C C C C C C C C C C C C C

00 00 1

LA LA

00

KEY

OUTPUT.

YOUR ( DGRAH

Č1

Ou-

Shidx Cum Tomm Tomm

CF TH SECTI FUNCT

PAGO PAGO FAGO FAGO FAGO FAGO

เกเมล 20

IS THE LA I TO REVI DEPRESS

YOU UISH '

11

and the state

Sinter Contract

14.00 Ř,

- Shine wat

- 23 (2

ด

ÛÌ

**V**E

C LA Ī •

PAGE

000 ្រំដោយកា 27

ά.

### FIGURE 3.5

1

### ANALYSIS OF VARIANCE TABLE

. 28

÷.,

, 84 You DETEGNINE TIQN KEY 1 U FUN ) - U WISH CAL CONT THE CALLING 1

0.25201923E 00 0.12601657E 03 0.500003665 03 DEGREES OF FREEDON .11 CALCULATED F 0.12752269E 03 0.12601057E 03 0.15121155E 01 SUN DF SQUARES REGRESSION

SOURCE

52203

TOTAL

ANALYSIS OF VARIANCE TABLE

NE AN SQUARE

PROBIT ANALYSIS

### FIGURE 3.6

### GRAPHIC DISPLAY

30

 $2_{\rm O}$


### FIGURE 3.7

NUMERICAL RESULTS OF THE ANALYSIS

÷.,

4	ا للالالالالالالالال	1111		
1.1 5	0 mm or N	() 900 () - 440		
iii iii	noo on com	1.3 (7 <b>1</b> ) 1.3 (7 <b>1</b> )		
¥Υ	NG5 NG 000	L'S EN		
с. –				
ő	- <b>D</b> DNG224	M3 (3.		
e jund	•			BLE
		0 -	anuci	v
dž	စစ္ပံပံုပံုပံ (	ပစ္	REPRU-	
23		Ernen	NOT KE	
2 2 1		1.11	<i>N</i> °	
	CON-SPIC-SO	i se J		
01A	MMO GOULD	C, 2 C, s∎ C la min∎		
2%				
	MANJOR (	man 🖌		
22		ŧ		
u.a.		69 🕶	$\phi = \phi \circ \circ \circ \phi$	001
0,,	ത്രംപ്പായ	Co -	လိုင္ရဲလင္ရမင္ရ	$(\Box \dot{\Omega})$
210 .	11		00 6 # 5 # 13 # 8 0 # 5 9 # 9 # 5	Derteng.
Сій-	CULTUR CURVES		€3€3€%£229€6°±0°≠0°#0°#0° €3€3€%€€€€€35%®	( 6.3
		()042	Control 1 That the	6.762
	Creater Cot AST 61	()( <b>**</b> *		
NHOX	PB-B-B-W	୍ଟ		ور) دریا • •
		£1.100	Co co co co co co	(j) O
		<b></b>		
AIL	<b>କର୍</b> ମ୍ବର୍ଭୁ କରୁ			ÓÖ
オートン				Ũ
A OZ	LAREARASTER AND	LADR 68	<b>ELERCIABENTIATES</b>	
	GOUSCOM .	< 3000		()()
<b>,</b>	NOCULE	C (Mess) 2 - 1640		630
QMNE		Case	-2011-C.3C.3F.3	6-2013
		• •		
DID	<b>–</b> ฌที่ห์ที่พ	<b>du</b> ()		
0			· · ·	
	NNOOOO	0		୍ରୁର୍
<	ଡ଼ିଭୂତ୍ତ୍ତ୍ତ	လတ္	မီဗီဝဝဝဝ	
シトト	· · · · · · · · · · · · · · · · · · ·	8 + 5 1 + 5	249245248CA1045849	6.00.0
		()43	0000000	() [ma
T C	-00000-0	()()	600000°000	
F-00-1	nowrer	()=3 ()()	モンドリアス アンモンモンテント	636.
ш Ц				· · ·
	A CLUMMAN O	4ma 4m	آمیل بین دی مد میا میا	<b>Q</b> , <b>Q</b> ,
- N		0		
<b>5</b>		1 45 TO #		1:10
		0.5		69.03
Far	លាកលាការកាត់ដោ	< ; ( ?	MINIMULIU ( ACTE	KG F12
<b>O</b> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	NNGSCREEDED	6.4.0.2		663 1 (C
<b>ア</b> に エ		E. 153 1 € CD		6.3
· 4 F	0 44×××	24.20	U QAXXXX	~~~
	_		-	

00 

Θ 6

Ĩ 1 l

33

х,

### FIGURE 3.8

### ANALYSIS OF VARIANCE TABLE

34

.

•		MEAN SQUARE	0.97694717E 02	0.22056067E 00			11NE F(1, 6),8Y (EY 11, 1F YOU
ANALYSIS	ARIANCE TABLE	DEGREES OF FREEDOM	· <b>-</b>	e.		0.44293199£ 03	NL PROGRAM TO DETERN S PROGRAM FUNCTION & SNCTION KEY 1.
L1001	ANALYSIS OF Y	SUM DF SQUARES	0.97694717E 02	0.13233643E 61	0.99012032E 02	CALCULATED F =	N TO LEAVE THE QUANTA LCG" Program, depress 2, depress program fu
		SOURCE	REGRESSION	ERROR	TDTAL		IF YOU WIS Calling the "Ca WISH TO CONTINU

NOT REPRODUCIBLE

### CHAPTER IV PROGRAM DOCUMENTATION

The QUANTAL program has been written in FORTRAN IV. The listing is presented in Appendix A. Inasmuch as execution of the program must use no more than 64 K bytes of core (16 K words), an overlay structure is required. The exposition (figure 4.1) shows the job control cards for this overlay.

As may be seen in figure 4.2, the overlay structure for the QUANTAL program is relatively simple. The controlling segment, or root segment contains the MAIN program and several basic GRAF (<u>Graphics Addition to FORTRAN</u>) routines. This segment remains in storage throughout execution of the QUANTAL program and branches off into two separate segments. One of the segments contains the FORTRAN routines that are necessary for the mathematical calculations of the program and also the subroutines CALCG and FNS. The other branch of QUANTAL contains the GRAF routines and the subroutines which, through use of these routines, obtain the data from the user and display the results of the analysis. The three subroutines, OUTPUT, CHNGTR, and GRACDF, require the GRAF routines, CORDCALL, LINE\$\$, SIZE, \$CORD\$, and POINT\$, to present various graphical displays. Only one subroutine, with the necessary FORTRAN or GRAF routines provided by the structure resides in storage with the root segment at any one time and thus the total size of the program is appropriately restricted.

### THE MAIN PROGRAM

The reader is referred to reference [7] for an explanation of the meaning of each of the GRAF (Graphics Addition to FORTRAN) subroutines.

The main program of the QUANTAL program is designed to call various subroutines, in an order primarily designated by the user. The flow of the program is determined by the value of KEY, a fixed point value which is stored in COMMON.

VALUE OF KEY

#### 1 Restart the program 2 Proceed to display data 3 Proceed to choose transformation Proceed to change function 4 5 Proceed to display data 6 Proceed to alter x-dosage Same as 3 7 10 Alter one class of data 50 Terminate the program

COMMENT

The COMMON set

NDET: An array required by GRAF

X(100): Reserved for x-dosage

N(100): Number of subjects per batch

NR(100): Number of successes per batch

DV1 to DVB inclusive: DV (display-variable) names required by GRAF

NCL: Number of batches

KEY: Control of program flow (see above)

KK: Designation for batch to be changed

IFUN: Indicates function on x-dosage

ITRAN: Indicates tranformation on P (Probit, Logistic, etc.)

IREC: Index for random access I/O.

### SUBROUTINE INPUTA

Purpose: The purpose of subroutine INPUTA is to obtain the number of

classes in the analysis.

Procedure:

Procedure:	•	
STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
3	•	The Graphics Data Control Block (GDCB) is opened
		and the display variables DV1, DV2, DV3, DV4,
		and DVE are established, thereby initializing
		the 2250 for I/O.
4		The lights of programmed function keys 1-11 and
		30 and 31 are turned on.
6-8		The scope and display variables are cleared from
		previous commands.
9-12		The message in FORMAT 400 is plotted on the screen
		to enable the user, if returning from the CALCG
		program to proceed directly to his point of
		departure in the QUANTAL program.
13	402	Procedure is detained until the user responds.
14		If programmed function key 2 has been depressed,
		(NDET(4) equals 2), indicating a return from
		the CALCG program, proceed to FORTRAN statement
		401.
15		If programmed function key 1 has been depressed,
		proceed to FORTRAN statement 66.
16		If neither of these programmed function keys
· .		has been depressed, return to statement 402
		•

38

# SUBROUTINE INPUTA (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
	•	(await proper reply).
17	66	The scope is cleared of all existing displays.
18	•	Display variable DV1 is reinitialized.
19-25		The messages in FORMAT statements 100 and 1000,
		the general instructions of the program, are
		displayed on the screen.
26	201	Procedure is detained until user has finished
		reading the display.
27		If programmed function key 31 has been depressed
		(NDET(4) equals 31), indicating the user wishes
		to terminate the program, proceed to FORTRAN
·		statement 750 (go out).
28		If programmed function key 30 has been depressed
		(NDFT(4) equals 30), indicating the user wishes
	·	to restart the program, proceed to FORTRAN
		statement 67.
29		If an interrupt has been given by the user from
		any other device except the programmed function
		keyboard (I is not equal to 1), return to detain
		statement 201.
30		The scope is cleared of all existing displays.
31-34	25	The message in FORMAT statement 101, asking
		the user to type in the number of batches in
		the analysis is plotted on the screen

### SUBROUTINE INPUTA (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
35	•	A cursor is placed in the first unprotected
. •	•	position of FORMAT statement 101 so that the
	•	user can type in the number of batches.
36	200	Procedure is detained until user types in
		number of batches.
. 37		If programmed function key 31 has been depressed,
		indicating the user wishes to terminate the pro-
		gram, proceed to FORTRAN statement 750.
38		If programmed function key 30 has been depressed,
	•	indicating the user wishes to restart the pro-
		gram, proceed to FORTRAN statement 67.
39	69	If an interrupt has been given by the user from
•	•	any device except the alphameric keyboard (I is
		not equal to 2) return to detain statement 200.
40-43	ι.	XNUM is NCL, floated.
44		The pointers for dummy unit 4 are reset.
45-47		The cursor is removed from the screen.
48		The integer variable NCL is equal to XNUM.
49		If the number of classes (NCL) is less than zero
		or greater than 100, proceed to FORIRAN state-
		ment 30 where an error message is displayed.
50	50	When the statement has been completed correctly
		all error messages are erased.

の第一次で

### SUBROUTINE INPUTA (Continued)

·	STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
	52-55	<b>3</b> 0	The error message in FORMAT statement 114 is
		•	displayed on the screen.
	56-57		The incorrect statement 101 is removed from the
		·	Buffer Table and display variable DV2 is re-
		•	initialized.
	58	•	Display variable DVE is re-initialized.
	60	401	KEY is set equal to 25.
	61		The screen is cleared of all existing displays.
•	64	21	Display variables DV1, DV2, DV3, DV4, and DVE
		•	are re-initialized.

#### SUBROUTINE DATA

 Purpose:
 The purpose of this subroutine is to obtain the data from the user by his completing the sentence: In batch XX where the concomitant variable (dosage) ______ was given to ______ subjects, there were _____ subjects that responded (successes).

#### Procedure:

STATEMENT	
NUMBER	

3

7

8

9-12

FORTRAN STATEMENT

NUMBER

#### COMMENT

The display variables DV3, DV4, and DVE are established.

The scope is cleared of all existing displays. If KEY is equal to 10, indicating data is to be obtained from only one batch (when changes are made), proceed to FORTRAN statement 75. NL, the number of times FORMAT statement 103 is to be written is initialized equal to NCL. JEY is a flag = 0 for all but the last page,

= 1 for the last page.

NI, the increment of loop 500 is initialized. The message in FORMAT 102 to obtain data from a batch is plotted on the screen.

13-19

Only eight statements are to appear on the screen at a time. NN is the delimiter of loop 500.

20-23

The statement to obtain data from the user is plotted on the screen.

### SUBROUTINE DATA (Continued)

FORTRAN **STATEMENT** STATEMENT COMMENT NUMBER NUMBER 24 A cursor is placed in the first unprotected position of FORMAT statement 103 so that the user can type in data. 25 201 Procedure is detained until the user has entered data for a batch. If programmed function key (PFK) 31 has been 26 depressed (NDET(4) equals 31), indicating the user wishes to terminate the program, proceed to FORTRAN statement 750 (exit). 27 If PFK 30 has been depressed (NDET(4) equals 30), indicating the user wishes to begin the program again, proceed to FORTRAN statement 67. • 28 If an interrupt has been given by the user from any device except the alphameric keyboard (I is not equal to 2) return to detain statement 201. 29-32 X(KK), the x-dosage; and XX and XY, the real values for the number of individuals in batch KK and the number of successes in batch KK. are read according to FORMAT 301. The pointers for dummy unit 4 are reset. 33 N(KK) is defined equal to XX. 34 35 NR(KK) is defined equal to XY.

STATEMENT NUMBER	STATEMENT NUMBER	COMMENT
37	.22	If the number of individuals in each batch is
	•	less than 3, proceed to FORTRAN statement 11 to
	•	write an error message.
38	12	If the number of individuals who responded is
		negative, proceed to FORTRAN statement 13 to
		write an error message. If the number of
		individuals is positive, proceed to next state-
		ment.
39	15	If the number of individuals who responded is
	•	greater than the number of individuals in that
		batch, proceed to FORTRAN statement 45 to write
		an error message.
41-43	20-21	The beam is placed in the upper left-hand corner
		of the screen.
45-48	11	The error message in FORMAT statement 117 is
		displayed on the screen.
49-50		The incorrect statement 103 is removed from
		the Buffer Table and display variables DV4 and
		DVE are re-initialized.
52-55	13	The error message in FORMAT statement 118 is
		plotted on the screen.
56-57		The incorrect statement 103 is removed from
		the Buffer Table and display variables DV4 and
× •		DVE are re-initialized.

### SUBROUTINE DATA (Continued)

STATEME NUMBER	FORTRAN ENT STATEMENT NUMBER	COMMENT
59-62	45	The error message in FORMAT statement 120 is
		displayed on the screen.
63		Incorrect statement 103 is removed from the BT.
64		The cursor is removed from the screen.
65		Display variables DV4 and DVE are re-initialized.
67-69	501	The cursor is removed from the screen.
70		Display variable DV4 is re-initialized.
71	500	End of loop 500 - All error messages are erased
		from the screen.
72	•	The scope is cleared of all existing displays.
73-74	L .	NI and NL - the increment and decrement of loop
		500 are up-dated.
`75		If JEY is equal to 1, indicating all data has
		been obtained, exit; otherwise, proceed to
		FORTRAN statement 4.
76-77	75	When subroutine DATA has been called with KEY=10,
		the increment and delimiter of loop 500 are set
		to the desired batch KK.
78		JEY is set equal to 1.
79-82	2	FORMAT statement 192 is displayed on the screen.
84	750	KEY is set equal to 50.
86	67	KEY is set equal to 1.
87	99	Display variables DV3, DV4, and DVE are re-ini-
		tialized.

### SUBROUTINE INPUTB

Purpose: The purpose of this subroutine is to display the summary of the data obtained in subroutine DATA and to allow the user to . alter any data or to add or remove one or more classes to the analysis.

Procedure:

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
3		The display variables DV5, DV6, DV7, DVD, DVA,
		and DVE are established.
4	502	The scope is cleared of all existing displays.
5-7		The title message, FORMAT statement 104, is
		written onto display variable DV5.
8		K, the number of batches to be displayed on the
		screen at one time, is initialized equal to 0.
9		Loop 21 - One class of individuals at a time,
		and the corresponding x-value, N-value, and
		NR-value are to be plotted on the screen at a
		time.
10-13		The number of the class, the x-value, N-value,
		and NR-value are plotted on the screen according
		to FORMAT statement 105.
14		Display variables DV5, and DV7 are re-initialized
15		K is incremented by one.
15		A statement to insure that no more than 25 rows
		appear on a single display.

46

ŧ.

SUBROUTINE INPUTB (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
17		The screen is cleared of all existing displays.
18		K is re-initialized equal to 0.
19-20	•	The title message, FORMAT statement 104, is
		written onto display variable DV5.
22-25		A message which gives the user the ability to
		correct any data or to add another class to his
		analysis is displayed on the screen.
26	202	Procedure is detained until user decides whether
		or not he wishes to change data.
27	•	If an interrupt has been given by the user from
		any device except the programmed function key-
		board (J is not equal to 1) return to detain
•		statement 202.
28	7	All error messages are cleared from the screen.
29		If programmed function key (PFK) 31 has been
		depressed (NDET(4) equals 31), indicating the
		user wishes to terminate the program, proceed
		to FORTRAN statement 750 (exit).
30	8	If PFK 30 has been depressed (NDET(4) equals 30),
		indicating the user wishes to restart the program,
		proceed to FORTRAN statement 67.
31		If PFK 1 has been depressed (NDET(4) equals 1),
		indicating the user does not wish to alter any
·· .		data, proceed to FORTRAN statement 76.

### SUBROUTINE INPUTB (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
32	•	If PFK 2 has been depressed (NDET(4) equals 2),
	•	indicating the user wishes to make a correction
	•	to his data, proceed to FORTRAN statement 68.
33		If PFK 5 has been depressed (NDET(4) equals 5),
		indicating the user wishes to add another batch
•		to his analysis, proceed to FORTRAN statement 300.
34		If none of PFK 31,30, 1, 2, or 5 have been
		depressed, return to detain statement 202.
35	300	The number of classes in the analysis, NCL, is
	•	increased by one ( a batch is to be added).
36		The scope is cleared of all existing displays.
37		KK, the number of the batch to be odded is set
•		equal to NCL.
38		The variable KEY is set equal to 10, to indicate
		subroutine DATA should be called again.
40	68	The scope is cleared of all existing displays.
41		Display variable DVA is re-initialized.
42-45		The message in FORMAT statement 203, which
		determines in which batch the user wishes to
		change the data, is displayed on the screen.
46		A cursor is placed in the first unprotected
		position of FORMAT statement 203 so that the user
•		can type in the batch number to be corrected.

48

· · ·

Ę

ά.

## SUBROUTINE INPUTE (Continued)

STATEMI NUMBER	FORT ENT STAT NUMB	'RAN 'EMENT 'ER	COMMENT
47	20	6	Procedure is detained until the user decides
	•		which batch he wants to change.
48			If PFK 31 has been depressed (NDET(4) equals
	•		31), indicating the user wishes to terminate the
			program, proceed to FORTRAN statement 750.
49		•	If PFK 30 has been depressed (NDET(4) equals
·			30), indicating the user wishes to restart the
			program, proceed to FORTRAN statement 67.
50			If an interrupt has been given by any other de-
			vice than the alphameric keyboard (I does not
			equal 2), return to detain statement 206.
51-5	4		The floated value XK of KK is read according to
		·	FORMAT statement 207.
55			The pointers for dummy unit 4 are reset.
56			KK is defined equal to XK.
57			If the number of the batch which is to be correct-
			ed is less than 0 or greater than NCL, proceed to
			FORTRAN statement 209 to write an error message.
58-6	0		The cursor is removed from the screen.
61			KEY is set equal to 10, to indicate subroutine
			DATA should be called again.
63-6	6 20	09	The error message in FORMAT statement 211 is
			displayed on the screen.

### SUBROUTINE INPUTB (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
67		Incorrect statement 203 is cleared from the screen.
68		Display variable DVE is re-initialized.
70	750	KEY is equated to 50.
72	76	KEY is equated to 7.
74	67	KEY is equated to 1.
75	. <b>74</b>	The screen is cleared of all existing displays.
76		Display variables DV1, DV2, DV3, DV4, DV5, DV6,
		DV7, DVD, and DVE are re-initialized.

50

۰,

### SUBRCUTINE CHNGTR

Purpose: Subroutine CHNGTR allows the user a choice between five trans-

formations: the Probit, the Logistic, Log-Log, Arc Sin and

Weibull.

Procedure:

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
3		Display variable DV1 is established.
. 4-7		FORMAT statement 1 is displayed on the screen.
8	2	Procedure is detained until the user has chosen
		the transformation.
9		If an interrupt has been given by the user from
		any device except the programmed function key-
		board (J is not equal to 1) return to detain
		statement 2.
10		If programmed function key (PFK) 31 has been
		depressed (NDET(4) equals 31), indicating the
		user wishes to terminate the program, proceed
		to FORTRAN statement 750 (exit).
11		If PFK 30 has been depressed (NDET(4) equals
		30), indicating the user wishes to restart the
		program, proceed to FORTRAN statement 67.
12		If PFK 6 has been depressed (NDET( $\zeta$ ) equals 6),
		indicating the user desires the Probit transfor-
		mation, ITRAN is set equal to 1.

### SUBROUTINE CHNGTR (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
13		If PFK 7 has been depressed (NDET(4) equals 7),
	-	indicating the user desires the Logit transfor-
		mation, ITRAN is set equal to 2.
14		If PFK 8 has been depressed (NDET(4) equals 8),
		indicating the user desires the Log-Log transfor-
	•	mation, ITRAN is set equal to 3.
15		If PFK 9 has been depressed (NDET(4) equals 9),
		indicating the user desires the Arc Sin transfor-
		mation, ITRAN is set equal to 4.
16		If PFK 10 has been depressed (NDET(4) equals 10),
		indicating the user desires the Weibull transfor-
		mation, ITRAN is set equal to 5.
17		If any other programmed function key has been
		depressed, return to detain statement 2.
19	750	KEY is set equal to 50
21	67	KEY is set equal to 1.
22	99	Display variable DV1 is re-initialized.
23		The screen is cleared of all existing displays.

52

· .

#### SUBROUTINE CALC

<u>Purpose</u>: This is a conventional maximum-likelihood routine for the quantal analysis.

Output:

Ρ

- a single-dimensioned field, in floating point, which contains the observed proportion of successes for each batch
- PCAP a single-dimensioned field, in floating point, containing the predicted proportion of successes for each batch
- YPR a single-dimensioned field, in floating point, containing the predicted y-scores for each batch
- Y a single-dimensioned field, in floating point containing the observed y-scores for each batch
- YWORK a single-dimensioned field, in floating point, containing the "working" quartities of each batch
- W a single-dimensioned field, in floating point, containing the weights of each batch
- ER a single-dimensioned field, in floating point, containing the error of prediction of the y-scores in each batch
- SSR a floating point number which is the sum-of-squares for regression
- SSE a floating point number which is the sum-of-squares for
  error
- ALF a floating point number which estimates  $\alpha$

BETA - a floating point number which estimates  $\beta$ 

The output variables are stored on a direct access disk, logical unit 28.

Procedure:

STATEMENT . NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
5		KMAX is set equal to 0, indicating termination
		when alpha or beta converge*.
6		K, the number of the cycle, is initialized
		equal to 0.
7-8		ALFO and BETO, the initial estimates of ALF and
		BETA are initialized equal to 0.
9	101	K, the number of the cycle is tested. If $K$
		is negative, go out; if K is equal to zero, pro-
		ceed to start; and if K is positive, proceed to
		FORTRAN statement 21 (iteration).
10-11	3	Loop 58 - The number of successes are translated
		into proportion of successes in each class.
12-19		Loop 5 - To avoid singularities, if a class has
		no successes, it will be translated as though
		it had $\frac{1}{2}$ successes. If <u>all</u> individuals in some
		class show success, $(n - \frac{1}{2})$ successes will be
· •		recorded.
20-32	77	Loop 11 - Y(Observed) is calculated according
		to the chosen transformation: for the Probit
		transformation, function YORMP is called; for
		the Logit - DFP; for the Log-Log - DFP3; for

*This subroutine was adopted from a batch-mode program which permitted other modes of termination.

.

#### SUBROUTINE CALC (Continued)

TATEMENT
UMBER

33

FORTRAN STATEMENT

NUMBER

#### COMMENT

the Arc Sine transformation - DFP4; and for the Weibull transformation, DFP2 is called. K, the number of cycles is tested. If K is negative, go out; if K is equal to zero, proceed to FORTRAN statement 10; and if K is positive, proceed to FORTRAN statement 21. Loop 12 - Initially the working y-scores are set equal to the observed y-scores and the weights are set equal to the n. Bypass recalculation if this is initial loop. Loop 23 - The Z-field is calculated according to the chosen transformation: for the Probit transformation, function YORMZ is used; for the Logit transformation, DFZ is used; for the Log-Log transformation, DFZ3 is used; for the Arc-Sin transformation, DFZ4 is used; and for the Weibull transformation, DFZ2 is used. No function here (came from batch program). If the cycle number is negative (error), go out; otherwise, proceed to FORTRAN statement 84. The weighted regression subroutine, WREG, is called to estimate the predicted y-scores, alpha, and beta.

34-36 10
37
38-52 21

53-54 55 38

41

84

56

### SUBROUTINE CALC (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
57	•	The number of the cycle is increased by one.
58.		If ALF is relatively close to ALFO or BETA is
		relatively close to BETO, proceed to the next
		statement. Otherwise, proceed to FORTRAN state-
		ment 60.
60	60	ALFO is re-initialized equal to ALF.
61		BETO is re-initialized equal to BETA.
62		If K, the cycle number is less than 5, proceed
•		to FORTRAN statement 141; otherwise, proceed to
	•	FORTRAN statement 99.
63-75	141	Loop 65 - PCAP, the predicted proportion of
	·	successes is calculated for each batch according
		to the chosen transformation: for the Probit
		transformation, YORMX is used; for the Logit
	•	transformation, DFX is used; for the Log-Log,
		DFX3 is used; for the Arc Sin, DRX4 is used; and

Make another iteration.

76

78-86

99

2001

P, PCAP, YPR, Y, YWORK, W, ER, SSR, SSE, ALF, and BETA are written onto direct access disk 22 Control is returned to the calling program.

for the Weibull transformation, DFX2 is used.

87

56

Ę

•

PROBIT FUNCTIONS: YORMZ(Y) YORMX(Y)

YORMP(P)

Definitions:

Z = YORMZ(Y)

$$Z = [1/(2\pi)^{\frac{1}{2}}] e^{-\frac{1}{2}y^2}$$

P =  $[1/(2\pi)^{\frac{1}{2}}] \int_{-\infty}^{y} e^{-\frac{1}{2}t^{2}} dt$ 

P = YORMX(Y)

Y = YORMP(P)

obtains Y from P as defined in YORMX

Procedure:

YORMZ: trivial

YORMX: If  $|Y| \leq 3.0$ , YORMX is evaluated by the continued fraction

expansion  
$$\frac{1}{2} + [1/(2\pi)^{\frac{1}{2}}] e^{-\frac{1}{2}y^2} \{ \frac{y}{1-} \frac{y^2}{3+} \frac{2y^2}{5-} \frac{3y^2}{7+} \dots \}$$

which is continued until the terms begin declining and the relative error is less than  $10^{-14}$ .

If  $|\dot{Y}| > 3.0$ , the continued fraction

$$1 - [1/(2\pi)^{\frac{1}{2}}] e^{-\frac{1}{2}y^2} \{ \frac{1}{y^+}, \frac{1}{y^+}, \frac{2}{y^+}, \frac{3}{y^+}, \dots \}$$

is employed.

YORMP:

As a first guess, the Hastings form for inverting the erfcfunction is employed. This is improved by a Newton iteration, until the relative error (P calculated from YORMX -P input)/(P input) is less than  $10^{-6}$ .

### PROBIT FUNCTIONS: (Continued)

Limitations:

If  $P \le 0$ , -DOMEG is returned; if  $P \ge 1$ , +DOMEG is returned, where DOMEG = .999999999 × 10³⁸.

....

	•		59	,
LOGIT FUNCTIONS: DF	?Z(Y)			
DF	FX(Y)			
DI				
Definitions:	•		· ·	·
Z = DFZ(Y)		$Z = e^{y}/(1 + e^{y})^{2}$		• • • •
				•
P = DFX(Y)		$P = e^{y}/(1 + e^{y})$		•
				•
Y = DFP(P)		$Y = \log (P/(1 - P))$		·•.
			•	
LOG - LOG FUNCTIONS	: DFZ3(Y)		•	
	DFX3(Y)			
	DFP3(P)			÷
Definitions:		٠Y		
Z = DFZ3(Y)		$Z = -P \log(P)$ , where $P = e^{-e^{-1}}$		
		-e-Y		
P = DFX3(Y)		h = 6		
Y = DFP3(P)		$Y = -\log(-\log(P))$		•
				2 4 4
ARC SIN FUNCTIONS:	DFZ4(Y)		<b>.</b>	
	DFX4(Y)			۰.
	DFP4(P)			•
Definitions:				•
Z = DFZ4(Y)		$Z = \frac{1}{2} \cos(Y)$		
P = DFX4(Y)		$P = \frac{1}{2} (1 + \sin(Y))$		
Y = DFP4(P)		Y = arsin(2P - 1)		

•

WEIBULL FUNCTIONS:	DRZ2(Y)	
	DFX2(Y)	• •
	DFP2(P)	
Definitions:	•	
$Z = DFZ2(\dot{Y})$		$Z = Y^{r-1} e^{-Y^r/r}$
$P \approx DFX2(Y)$		$P = 1 - e^{-Y^{T}/r}$
Y = DFP2(P)		$Y = [-r \log(1 - P)]^{1/r}$

SUBROUTINE WREG:

This is a conventional weighted regression routine to obtain SSR, the sum-of-squares for regression; SSE, the sum-of-squares for error; VSE, the mean squares for error; ALF; BETA; and  $R^2$ , which is SS Reg/SS Total. The weighted regression routine is applied to the "working" quantities while the determination of error uses the observed quantities as input.

### SUBROUTINE GRACDF

<u>Purpose</u>: The purpose of this subroutine is to display a graph of the observed and predicted proportion of successes for each batch (class).

Input:

P - a single-dimensioned field, read from direct access disk, containing the observed proportion of successes for each batch.

PCAP - a single-dimensioned field, read from direct access disk, containing the predicted proportion of successes for each

batch

#### Procedure:

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
5		Display variable DVD is established.
6-7		P and PCAP are read from direct access disk 28.
8		Display variable DVD is re-initialized.
9		The scope is cleared of all existing displays.
10-14		Loop 10 stores the integers 1 to NCL in the
		single-dimensioned field IS, field X into
		single-dimensioned field XS, field () into
		single-dimensioned field PS, and field PCAP
		into single-dimensioned field PCAPS.
15-32		Loop 500 sorts XS into ascending order, rearrang-
		ing the number of the batch (IS), the observed

proportion of successes (PS) and the redicted

### SUBROUTINE GRACDF (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
		proportion of successes (PCAPS) in corresponding
•		order.
33		XMIN, the minimum of the x-dosages is set equal
		to XS(1).
34		XMAX, the maximum of the x-values is set equal
		to XS(NCL).
35-36		XUP and XLOW are calculated for the upper and
		lower coordinates of the horizontal axis of
-		the graph.
37-40		FORMAT statement 1000, an explanation of the
		graph, is plotted on the screen.
41		The coordinates of the lower left corner of
		the screen (XLOW,2) and the upper right cor-
		ner (XUP, 2.) are established by the UCORD com-
		mand.
42-43		The vertical axis is positioned on the screen.
44-45		The horizontal axis is positioned on the screen.
46-47		A message in FORMAT statement 110 is written for
		systems programming use.

48-55

Loop 200 constructs a step function of the predicted proportion of successes for each x-dosage arranged in ascending order.

`62

### SUBROUTINE GRACDF (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
56-62		Loop 201 places asterisks on the diagram to
		denote the observed proportion of successes for
	•	each dosage.
63-69		Loop 16 constructs the markings on the vertical
		scale and writes the proportion of successes in
		tenths below this axis.
70-82		Loop 17 constructs the markings on the horizon-
		tal axis and writes the number of the batch for
		each x-dosage below this axis.
83-90		The minimum and maximum dosage-values are posi-
	-	tioned on the lower portion of the screen.
91		The size routine is employed to determine whether
		or not the orders of display variable DVD will
		fit into the space that is available in the Buffer
	· .	Table.
92		If the orders of display variable DVD will not
		fit into the available space in the BT, proceed
		to FORTRAN Statement 50.
93		Display variable DVD is plotted on the screen.
94	75	Procedure is detained until the user wishes to
		continue.

If an interrupt has been given by the user from

any device except the programmed function ke; -

95

### SUBROUTINE GRACDF (Continued)

•	STATEMENT NUMBER	FORTRAN STAT <i>E</i> MENT NUMBER	COMMENT
		•	board (K is not equal to 1), proceed to detain
			statement 75.
	96	•	If programmed function key (PFK) 31 has been
			depressed (NDET(4) equals 31), indicating the
			user wishes to terminate the program, proceed
			to FORTRAN statement 750 (exit).
	97		· If PFK 30 has been depressed (NDET(4) equals
			30), indicating the user wishes to restart the
			program, proceed to FORTRAN statement 67.
	98		If PFK 1 has been depressed (NDET(4) equals 1),
			indicating the user wishes to proceed in the
			program, proceed to FORTRAN statement 74.
	[•] 99		Return to detain statement 75.
	100	750	KEY is set equal to 50.
	101		Proceed (branch around Restart).
	102	67	Restart.
	103-104	50	II, the size of space neccessary to display the
			display variable DVD is written for the program-
			mer's use.
	105	74	The screen is cleared of all existing displays.
	106		Display variable DVD is re-init alized.

A CONTRACTOR OF A CONTRACTOR OF

#### SUBROUTINE OUTPUA

Purpose:

The purpose of the OUTPUA subroutine is to display detailed numerical results including the size of each batch, the observed proportion of successes, the predicted proportion of success under the quantal model, the predicted y-scores (Probits, etc.), the observed y-scores, the "working" quantities, the weights, the observed x-dosages, and the error of prediction of the y-scores for each class. A maximum of ten classes is presented on the screen at a time -- five classes on the upper portion of the screen and five more classes on the bottom half of the screen. This section has been divided into "pages" so that the user may return to the first page of the output at any time by depressing programmed function key 4.

Input:

Y

- P a single-dimensioned field, in floating point, containing the observed proportion of successes of each batch
   PCAP - a single-dimensioned field, in floating point, containing the predicted proportion of successes in each batch
   YPR - a single-dimensioned field, in floating point, containing the predicted y-scores for each batch
  - a single-dimensioned field, in floating point, containing the observed y-scores for each batch
- YWORK a single-dimensioned field, in floating point, containing the "working" quantities of each batch

- a single-dimensioned field, in floating point, containing the weights in each batch

ER - a single-dimensioned field, in floating point, containing the error of prediction of the y-scores in each batch The above input variables are stored on direct access disk 28.

A - a single-dimensioned field, containing the names of the five transformations available to the user- defined in the DATA statement.

### **Procedure:**

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
5		Display variable DVA is established.
6-12		P, PCAP, YPR, Y, YWORK, W, ER are read from the
	•	direct access disk 28.
13-14	-	IXII and IXI are calculated, to be employed
		later in data field A.
15	102	NL, indicating the number of classes to be
		displayed, is set equal to NCL.
16		JKEY is set equal to zero. JKEY = 1 indicates
		a completed page of the calibration chart.
17		JEY is set equal to zero. JEY = 1 indicates
		that this is the last page of the output.
18		I, indicating the page number, is initialized
		equal to one.
19		K is set equal to zero. K is an even number
		indicating the top portion of the screen.
20		Ní, indicating the increment of the classes to
•		be displayed, is set equal to one.
STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
---------------------	--------------------------------	---------------------------------------------------
21	.94	If NL is less than 10, JEY is set equal to 1.
		NL is the number of classes left to be displayed.
22	1.	If NL, the number of classes left to be display-
		ed, is greater than 5, proceed to FORTRAN state-
		ment 2.
23		JKEY = 1 indicates a completed page of output.
24-26		NN controls the amount displayed in each section
		(two sections per page).
27-29	3	Decision whether one or two sections are needed
	•	on the page.
30-59	6	Output via display variable DVA.
61-63	11	Sequencing of pages to be displayed.
64		If JKEY is equal to 1, indicating completed
		page of calibration chart, proceed to FORTRAN
		statement 74; otherwise, proceed to FORTRAN
		statement 94.
65	9	Display variable DVA is plotted on the screen.
66	100	Procedure is detained to permit the user to
		change pages.
67		Display variable DVA is re-initialized.
68		If an interrupt has been given by the user from
		any device except the programmed function key-
		board (J is not equal to 1), return to detain
· · · ·	·	statement 100.

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
69		If programmed function key (PFK) 31 has been
		depressed (NDET(4) equals 31), indicating
	•	the user wishes to terminate the program,
		proceed to FORTRAN statement 750 (exit).
70		If PFK 30 has been depressed (NDET(4) equals
		30), indicating the user wishes to restart
		the program, proceed to FORTRAN statement 67.
71		If PFK 1 has been depressed (NDET(4) equals
		1), indicating the user wishes to continue to
		the next page of the output, proceed to
	·	FORTRAN statement 101.
72		If PFK 4 has been depressed (NDET(4) equals
•		4), indicating the user wishes to return to
		page 1 of the output, proceed to FORTRAN
		statement 102.
74	101	The scope is cleared of all existing displays.
76	4	I2 - the next page - is equal to I + 1.
77		The scope is cleared of all existing displays.
78-80		The title message, in FORMAT statement 5, is
	· · · ·	plotted on the screen.
81		If JEY equals 1, indicating the last page of
		the output, proceed to FORTRAN statement 12.
82-84		The sub-title message, in FORMAT statement 60
· .		is written onto display variable DVA.

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
85	•	I, the page number, is incremented by one.
87-89	12	The sub-title message, in FORMAT statement
	•	65 is written onto display variable DVA.
91	750	KEY is set equal to 50.
93	67	KEY is set equal to 1.
94	74	The scope is cleared of all existing displaye
95		· Display variable DVA is re-initialized

### SUBROUTINE OUTPUT

Purpose: The purpose of the OUTPUT subroutine is two-fold:

- (1) display an analysis of variance table and
- (2) display the graph of the straight line  $Y = \alpha + \beta x$ where  $\alpha$  and  $\beta$  have been estimated in the analysis.

ALF - a floating point number obtained from the analysis, which estimates  $\alpha$ 

- BETA a floating point number obtained from the analysis, which estimates  $\beta$
- SSR a floating point number obtained from the analysis which is the sum-of-squares for regression
- SSE a floating point number obtained from the analysis which is the sum-of-squares for error
- Y a single-dimensioned field, in floating point containing the y-scores for each class

The above input variables are obtained from a direct access disk.

A - a single-dimensioned field, containing the names of the five transformations available to the user defined in the DATA statement

#### Procedure:

Input:

5 Display variable DVB is established. 6 The value of KEY is tested to determine if	
6 The value of KEY is tested to determine if	
	the
user is returning to the QUANTAL program a	fter
calling the CALCG program (KEY = 25). If	
the value of KEY is 25, even these values	

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
•		which were in COMMON need to be re-read:
7-10	•	The values of X, N, NR, NCL and ITRAN are
		read from direct access disk 28.
12	1000	The field Y is read from direct access disk 28.
13-14	2000-	Variables ALF, BETA, SSR, and SSE are read
	2001	into core.
15-16		IXI and IXII are calculated to obtain the
		' correct subscript for field A.
17		JR, the degrees of freedom for regression, is
		set equal to 1.
18	•	JE, the degrees of freedom for error, is set
		equal to NCL-2.
19		JTOT, the total degrees of freedom is calcu-
•		lated.
20	· .	On return from dosage-transformation routine,
		the analysis of variance display is skipped.
21		VSE, the mean squares for error is calculated.
22		STOT, the sum-of-squares total is calculated.
23		The F-statistic is calculated.
24-30		FORMAT statements 71 and 72, displaying the
	•	Analysis of Variance table, are plotted on
		the screen.
31	73	Procedure is detained until user has read the
•		analysis of Variance table.

· •

STATEMENT	FORTRAN STATEMENT	COMMENT
NUMBER	NUMBER	

If an interrupt has been given by the user from any other device than the programmed function keyboard (I is not equal to 1), return to detain statement 73.

If programmed function key (PFK) 31 has been depressed by the user (NDET(4) equals 31), indicating the user wishes to terminate the program, proceed to FORTRAN statement 750 (exit).

If PFK 30 has been depressed (NDET(4) equals 30), indicating the user wishes to restart the program, proceed to FORTRAN 67.

If PFK 11 has been depressed (NDET(4) equals 11), indicating the user wishes to leave the QUANTAL program, proceed to FORTRAN statement 80.

If any PFK other than key 1 or those previously mentioned, has been depressed (NDET(4) is not equal to 1), return to detain statement 73. The scope is cleared of all existing displays. Display variable DVB is re-initialized. FORMAT statement 400, a title message, is written onto display variable DVB.

36

 37
 491

 38
 39-41

33

32

34

.

.

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
42-44	· 2002	The message in FORMAT statement 2004 is writ-
		ten onto display variable DVB.
45-52	•	Loop 4 - The maximum of the x-values and the
		maximum of the y-values are determined.
53-60		In loop 8, the minimum of the x-values and the
		minimum of the y-values are determined.
61-71		XLGTH, XINC, YLGTH, YINC, Y2MIN, Y2MAX and
		X2MAX are calculated to determine the coordi-
		nates of the screen.
72		The coordinates of the lower left corner of
		the screen (XMIN, Y2MIN) and the upper right
		corner (X2MAX, Y2MAX) are established by the
•		UCORD statement.
73-74		The vertical axis is positioned on the screen.
75-76		The horizontal axis is positioned on the screen.
77	13	Display variable DVB is plotted on the screen.
78-79		Diagnostic.
80	14	The length of the x-axis is divided into 200
		- equal lengths (XLGTH).
81		If KEY equals 6, indicating the x-dosages have
		been altered by one of the functions, proceed
		to FORTRAN statement 270 and skip loop 15.

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
82~88	•	In loop 15, the points on the straight line
•		$Y = \alpha + \beta x$ are calculated and positioned onto
	•	display variable DVB.
89-92	270	Loop 16 positions an asterisk onto display
		variable DVB at each observed y-value.
93-94		XX and XNUM are calculated to determine ten
		equally spaced x-values on the horizontal axis.
97-98	36	XX and XNUM are calculated to determine ten
		equally spaced y-values on the vertical axis.
99-136	26	Loop 24 positions the markings on the horizon-
		tal scale when JEY equals 1 and the markings
		on the vertical scale when JEY equals 2 at
•		ten equally spaced values. The x- and y-
		values are aligned by these markings by the
		five different FORMAT statements.
137		If JEY is not equal to 1, indicating both axes
		have been marked, proceed to FORTRAN statement
		22.
138		JEY is set equal to 2, to initiate y-axis.
140	22	The size routine is employed to determine
		whether or not the orders of display variable
		DVB will fit into the space that is available
		in the BT

100

A DESCRIPTION OF

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
141 -		If the orders of display variable DVB will
		not fit into the available space in the BT,
	•	proceed to FORTRAN statement 50.
142		Display variable DVB is plotted on the screen.
143-144	50	Diagnostic.
145	75	Procedure is detained until the user has read
		the display.
146		If an interrupt has been given by the user
		from any other device except the programmed
		function keyboard (K is not equal to 1),
		return to detain statement 75.
147		If PFK 31 has been depressed (NDET(4) equals
•		31), indicating the user wishes to terminate
	· · · ·	the program, proceed to FORTRAN statement 750
		(exit).
148		If PFK 30 has been depressed (NDET(4) equals
		30), indicating the user wishes to restart the
	•	program, proceed to FORTRAN statement 67.
149		If PFK 1 has been depressed (NDET(4) equals
``		1), indicating the user wishes to proceed in
		the program, exit from the subroutine.
151-154	80	X, N, NR, NCL and ITRAN are written onto
		direct access disk 28.

75

į

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER -	COMMENT
155		KEY = 50 to leave QUANTAL in order to do
		calculations.
157	750	Prepare for termination.
159	67	KEY is set equal to 1 (user wants to restart).
160	99	The screen is blanked of all existing displays.
161	•	Display variable DVB is re-initialized.

76

### SUBROUTINE CHNGEN

Purpose: The purpose of the CHNGFN subroutine is to make various func-

tions available for possible transformations of the x-dosages.

Procedure:

Z

STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
3		The display variables DVA, DVB, and DVE are
	•	established.
· 4		Display variable DVB is re-initialized.
5		The scope is cleared of all existing displays.
6-9		FORMAT statement 5 is plotted on the screen.
10	. 1	Procedure is detained until the user decides
		whether or not he wishes to change the x-dos-
		ages.
11		If an interrupt has been given by the user
		from any device except the programmed function
		keyboard (J is not equal to 1), return to
		detain statement 1.
12		If programmed function key (PFK) 31 has been
		depressed (NDET(4) equals 31), indicating
		the user wishes to terminate the program, pro-
		ceed to FORTRAN statement 750.
13		If PFK 30 has been depressed (NDET(4) equals 30)
		indicating the user wishes to restart the

(exit).

ŀ

program, proceed to FORTRAN statement 99

### SUBROUTINE CHNGFN (Continued)

	STATEMENT NUMBER	FORTRAN STATEMENT NUMBER	COMMENT
	14		If PFK 1 has been depressed (NDET(4) equals
			1), indicating the user wishes no alteration
			to be made on the x-dosages, proceed to
			FORTRAN statement 50.
	15	•	If PFK 3 has been depressed (NDET(4) equals
			3), indicating the user desires to alter the
			x-dosages by one of the functions, proceed to
	•		FORTRAN statement 10.
	17-20	10	The statement to obtain which function the
			user wishes (FORMAT 2) is plotted on the screen.
	21		A cursor is placed in the first unprotected
			position of FORMAT statement 2 so that the
			user can type in the function desired.
	22	3	Procedure is detained until the user types in
			the appropriate function.
	23		If PFK 31 has been depressed, (NDET(4) equals
•			31), indicating the user wishes to terminate
			the program, proceed to FORTRAN statement
			750 (exit).
	24		If PFK 30 has been depressed (NDET(4) equals
			30), indicating the user wishes to restart
			the program, proceed to BORTRAN statement 99.

78

ц.

### SUBROUTINE CHNGFN (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT – NUMBER	COMMENT
25	•	If an interrupt has been given by the user
		from any device except the alphameric type-
		writer (J is not equal to 2), return to de-
		tain statement 3
26-28		XFUN, the real value for IFUN is read.
. 29	•	The pointers for dummy unit 4 are reset.
30		IFUN = XFUN.
31		If the number of the function desired to
·		alter the x-dosages is less than zero or
	·	greater than 12, proceed to FORTRAN state-
		ment 20 to write an error message.
32		When IFUN has the value 8, 9, or 10 proceed
		to FORTRAN statement 1050 to ascertain that
		all x-dosages are non-negative real-numbers.
		If IFUN has any other value (less than 12),
		proceed to FORTRAN statement 53.
' 33	53	KEY is set equal to 6, indicating subroutine
		FNS should be called.
35	20	Incorrectly answered FORMAT statement 2 is
		cleared from the screen.
36		Display variable DVA is re-initialized.
37-40		The error message in FORMAT 6 is plotted on
		the screen.

79

.

3

÷

ŝ

ř

.

ι,

### SUBROUTINE CHNGFN (Continued)

STATEMENT NUMBER	FORTRAN STATEMENT_ NUMBER	COMMENT
41		Display variable DVE is re-initialized.
43-45	1050	Loop 55 tests all x-values to ascertain they
		are non-negative real numbers. If any x-value
		is negative, proceed to write an error message.
47	52	Display variable DVA is re-initialized.
48		The current instance of DVA is removed from
		the Buffer Table.
49-52		The message in FORMAT statement 51 which states
		that the chosen function cannot be employed
		is plotted on the screen.
53		Display variable DVA is re-initialized.
55	750	KEY is set equal to 50.
57	99	KEY is set equal to 1.
59	50	KEY is set equal to 5.
60	100	The scope is cleared of all existing displays.
61		Display variables DVA, DVB, and DVE are re-ini-
		tialized

80

### SUBROUTINE FNS .

<u>Purpose</u>: The purpose of subroutine FNS is to transform the x-dosages by one of twelve mathematical functions made available to the user in CHNGFN.

<u>Procedure</u>: Loop 4 is executed for each x-dosage. The function employed is determined by the value of IFUN (obtained in subroutine CHNGFN) in the computed GO TO statement.

### FIGURE 4.1

### PROGRAM CONTROL CARDS

//QUANTAL JOB(!ACCOUNT#',10,4), 'PROGRAMMER', MSGLEVEL=1

//STEP1 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(ROOT),SPACE=(TRK,(150,10,5)),

// UNIT=SYSDA, DISP=(NEW, PASS)

//FORT.SYSIN DD *

(source deck for MAIN)

/*

.

//STEP2 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKA),DISP=(MOD,PASS),UNIT=SYSDA

//FORT.SYSIN DD *

(source deck for DATA)

/*

//STEP3 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKD),DISP=(MOD,PASS),UNIT=SYSDA

//FORT.SYSIN DD *

(source deck for INPUTA)

/*

 $\dot{v}_{0}$ 

//STEP4 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKE),DISP=(MOD,PASS),UNIT=SYSDA

//FORT.SYSIN DD *

(source deck for INPUTB)

/*

//STEP5 EXEC FOR GC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKI),DISP=(MOD,PASS),UNIT=SYSDA

//FORT.SYSIN DD *

(source deck for CHNGTR)

/*

//STEP6 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKB),DISP=(MOD,PASS),UNIT=SYSDA

//FORT.SYSIN DD *

(source deck for CALC)

/*

//STEP7 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKJ),DISP=(MOD,PASS),UNIT=SYSDA

//FORT.SYSIN DD *

(source deck for GRACDF)

/*

//STEP8 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKF),DISP=(MOD,PASS),UNIT=SYSDA
//FORT.SYSIN DD *

(source deck for OUTPUA)

/*

//STEP9 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKC),DISP=(MOD,PASS),UNIT=SYSDA

//FORT.SYSIN DD *

(source deck for OUTPUT)

/*

//STEP10 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKG),DISP=(MOD,PASS),UNIT=SYSDA

//FORT.SYSIN DD *

(source deck for CHNGFN)

/*

//STEP11 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKH),DISP=(MOD,PASS),UNIT=SYSDA

//FORT.SYSIN DD *

(source deck for F'S)

/*

//STEP12 EXEC LKED, PARM=(LET, LIST, OVLY, XREF)

//LKED.SYSLMOD DD DSN=SYS1.GRAPHLIB(QUANTAL),DISP=SHR,

// SPACE=(TRK,(0,0))

(GRAPHLIB(QUANTAL) is to receive the load module)

//LKED.SYSLIB DD DSN=SYS1.GRAFLIB,DISP=SHR

(GRAFLIB contains graphics routines)

//DD DSN=SYS1.FORTLIB,DISP=SHR

//DD DSN=SYS1.GRAPHLIB,DISP=SHR

//DD DSN=SYS1.UGALIB,DISP=SHR

//DD DSN=SYS1.LINKLIB,DISP=SHR

(utility routines at the University of Georgia system)

//LKED.MODULE DD DSN=&&CHAIN, DISP=OLD

(&&CHAIN contains the object modules, as prepared in the FORT step; they are referred to under the DD name MODULE)

//LKED.SYSIN DD *

INCLUDE MODULE(ROOT) (contains MAIN program)

INCLUDE SYSLIB(IBCOM#)

INCLUDE SYSLIB(ARITH#)

INCLUDE SYSLIB(FIOCS#)

INCLUDE SYSLIB(ADCON#)

INCLUDE SYSLIB(IHCUATBL)

INCLUDE SYSLIB(IHCUOPT)

INCLUDE SYSLIB(ERRMON)

INCLUDE SYSLIB(IHCTRCH)

INCLUDE SYSLIB(GAFERR)

(contains SUBROUTINE CALC)

(contains SUBROUTINE FNS)

OVERLAY ONE

INCLUDE SYSLIB(ARCOS)

INCLUDE SYSLIB(ATAN2) INCLUDE SYSLIB(COS)

INCLUDE SYSLIB(DCOS)

INCLUDE SYSLIB(COTAN)

INCLUDE SYSLIB(DARCOS)

INCLUDE SYSLIB(DEXP)

INCLUDE SYSLIB(DLOG10)

INCLUDE SYSLIB(DSQRT)

INCLUDE SYSLIB(SQRT)

INCLUDE SYSLIB(ARSIN)

INCLUDE SYSLIB(ATAN)

INCLUDE SYSLIB(SIN)

INCLUDE SYSLIB(DSIN)

INCLUDE SYSLIB(TAN)

INCLUDE SYSLIB(DARSIN)

INCLUDE SYSLIB(DLOG)

OVERLAY TWOA

INCLUDE MODULE(LINKB)

OVERLAY TWOA

INCLUDE MODULE(LINKH)

OVERLAY ONE

INCLUDE SYSLIB(DISPLA)

INCLUDE SYSLIB(PLOT)

ý.

INCLUDE SYSLIB(DETAIN) INCLUDE SYSLIB(BUFRS) INCLUDE SYSLIB(CUR\$\$) INCLUDE SYSLIB(LIGHTS) INCLUDE SYSLIB(SCTDV) INCLUDE SYSLIB(ERASE) INCLUDE SYSLIB(RCUR\$) INCLUDE SYSLIB(RESET) INCLUDE SYSLIB(\$\$\$BT) INCLUDE SYSLIB(CHAR) INCLUDE SYSLIB(DETEKT) INCLUDE SYSLIB(READSC) INCLUDE SYSLIB(CLOSE) INCLUDE SYSLIB(\$VOVER) INCLUDE SYSLIB(\$\$OVER) INCLUDE SYSLIB(DUMMY\$) INCLUDE SYSLIB(UNPLOT) INCLUDE SYSLIB(PLACE\$) INCLUDE SYSLIB(BLANK) INCLUDE SYSLIB(\$ADD\$) INCLUDE SYSLIB(\$\$INIT) INCLUDE SYSLIB (SCNDVDK) INCLUDE SYSLIB(WRFMT\$) OVERLAY TWO INCLUDE MODULE(LINKA)

(contains SUBROUTINE DATA)

OVERLAY TWO INCLUDE MODULE(LINKD) (contains SUBPOUTINE INPUTA) OVERLAY TWO INCLUDE MODULE(LINKE) (contains SUBROUTINE INPUTB) OVERLAY TWO INCLUDE MODULE(LINKF) (contains SUBROUTINE OUTPUA) OVERLAY TWO INCLUDE MODULE(LINKG) (contains SUBROUTINE CHNGFN) OVERLAY TWO INCLUDE SYSLIB(CORDCALL) INCLUDE SYSLIB(LINE\$\$) INCLUDE SYSLIB(SIZE) INCLUDE SYSLIB(\$CORD\$) INCLUDE SYSLIB(POINT\$) **OVERLAY THREE** INCLUDE MODULE(LINKC) (contains SUBROUTINE OUTPUT) **OVERLAY THREE** INCLUDE MODULE(LINKI) (contains SUBROUTINE CHNGTR) **OVERLAY THREE** INCLUDE MODULE(LINKJ) (contains SUBROUTINE GRACDF)

//



89

 $\dot{\alpha}$ 

#### REFERENCES

- [1] Bargmann, R. E., <u>Association in a Class of Growth Functions</u>, University of Illinois, 1966.
- [2] Dixon, W. J., "Use of Displays with Packaged Statistical Programs," Proceedings, AFIPS 1967 Fall Joint Computer Conference, MDI Publications, Wayne, Pa., pp. 481-484.
- [3] Finney, D. J., <u>Probit Analysis</u>, Cambridge: Cambridge University Press (2nd edition), 1952.
- [4] _____, <u>Statistical Method in Biological Assay</u>, New York: Hafner, 1952.
- [5] Fisher, R. A., and Yates, F., <u>Statistical Tables for Biological</u>, <u>Agricultural</u>, and <u>Medical Research</u>, (3rd edition), New York: Hafner, 1948.
- [6] Hilsenrath, J.; Guy C. Ziegler; C. G. Messiwa; P. J. Walsh; and R. J. Herbold. OMNITAB, a Computer Program for Statistical and Numerical Analysis. National Bureau of Standards, Handbook 101, 1966.
- Hurwitz, A.; Joseph Yeaton; and Roberta Schaffer. <u>Graphics Addi-</u> <u>tion to FORTRAN</u>, 360 D-03,8.010. Los Angeles Scientific <u>Center:</u> IBM Corporation, 1968.
- [8] IBM, System/360 Scientific Subroutine Package (360A CM 03X) Version III, Programmers' Manual, (4th edition), 1968.
- [9] Nelder, J. A., "General Statistical Program (GENSTAT Version IV)." <u>User's Guide</u>, Biometry Section, Waite Institute, Glen Osmond, South Australia, 1966.
- [10] Penn, L. W., An On-Line Statistical Computer System for Lay Usage, University of Georgia, 1971.

2.1

# APPENDIX A FORTRAN IV LISTING NOT REPRODUCIBLE

91

FCRTRAN IV G LEVEL 19

1000

13/17/12 DATE - 71056 NI M

COMMIN MATTS),XC100),MC100),MRC100),DV1,DV2,DV3,DV5,DV6,AV7, 10V0,DV6,CV4,DV6,MCL,KFY,KK,1FUN,ITRAN,1AFC 06F146 File 20(13,400,U,1AFC) KCY = 0

CALL INPUTA IFIKEY.EC.5016C TO 99 IFIKEY.EC.2516C TO 9 5 CALL DATA

IF 144 T.C.5016C TO 99 IF 144 T.C.5016C TO 9 IF 144 T.C.5016C TO 1 IF 144 T.C.2016C TO 3 IF 144 T.F.2.1016C TO 3 IF [KEV.EC.50)CC TG 99 2 IF (KEV.EC.11CG TG 1 Call Invutb

CALL CFAGTR 1F1KFY.FC.5016C TO 99 1F1KFY.FC.1)CO TO 1 CALL CLCSES

4100 6100 6100 6100

50.21

CALL CALC CALL CALC IF 147-46-50166 TO 99 IF 1467-66-2160 TO 1 CALL 001PUA IF 1467-66-2166 TO 99 IF 1467-66-2160 TO 1

50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 5005 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 50055 5005 5005 50055 5005 5005 5005 5005 5005 5005 5005 5005 5005 5005 5

9 CALL UUTPUT 15 (KEY-FC-50)5C TD 99 15 (KEY-FC-1)5C TD 19 4 CALL CFACEN 15 (KEY-EC-50)5C TO 99 5C TO (1,2,3,4,2,6),KEY

5

CALL CLCSES

63 TO 99 STOP

QK 3

PAGE 0001

وبه:

13/17/31 400 FURNATION TO THE FIRST THE POLANTAL POTAR 1 AN FUR THE FIRST THE. ''P DEPRESS, PHUGRAM FUNCTION KEY 1. ''PO 2 IF YOU ARE FETURNING FROM THE "CLLGG" PROGRAM AND MISH TG PROCE 3EU''P TG THE POINT OF YOUR OB PARTURE, OF PRESS PRECRAM FUNCTION WE 4Y 2.''PTO THE PROGRAM FUNCTION KFYBUARD IS LOCATED TO THE LEFT 5 OF THE ''P TYFEWRITER KEYBUARD.'' IT ASSIST YOU''P IN CONSTRUCTING A PODEL OF THE DESIGN TO RE STUDI SEC. THIS MOLEL WILL''P OF CONSTRUCTED AY YOUR ANSWRING CUSTION 35 AND FILLINC IN BLANKS.''POD GENERAL INSTRUCTIONS OF THE PRO-4PARTY'P I. AI ANY POINT IN THE PHICAMA YOU MAY RESTART BY DEPRES 55106 PROCRAM''PP FUNCTION KEY 3C OR TEANINATE AY DEPRESSING PRICEAS 64 FULCTION KEY 31.') D FIRMATI 'P 2. YOUR ANSWERS SHOULD AF TYPED FROM THE TYPE 7.4KITE REFUELYPED DIRECTLYPE IN FROMT OF YOU UNLESS YOU AFE ASKE 5.4KITE REFUELYPE 3. ALL NUMBERS ARE TO BE TYPED AS REAL NUMBER 55-OFCIPAL PCIAT MUST 'PP FOLLOW THE NUMBER.'PP 4. AFTER EACH S ITATEMENT, YOU SHOULD CAUSE AN "END" STATEMENT RY FIRST'PP E CPRISS STOC THE WALLA CODING" KEY AND. WHILE IT IS HELD DOWW. OFPRESS THE 3.PP TYPE AFTER CODING" KEY AND. WHILE IT IS HELD DOWW. OFPRESS THE 3.PP TYPE OF DEPRESS THE "JUMP" KEY LOCATED ON THE LFT STOF OF 41V A LINE.'PP DEPRESS THE "JUMP" KEY LOCATED ON THE LFT STOF OF 5104 'PP TYPE MITTER KEYBOARD TO PROCEED FAND PLANK TO DEANK.'PPOD SUBRDUTINE INPLTA COMMON NCET(5).X(100).N(100).NR(100).DV1.DV2.DV3.DV4.DV5.DV6.DV7. LDVU.DV6.CVA.CV2.NCL.KEY.KK.JFUN.ITRAN.IRFC Call DISPLATCV1.DV2.DV3.DV4.DV6] M1+ LIGHTS(1.1.2.3.4.6.7.8.9.10.30.31.5.11) WIFN YOU ARE READY TO PROCEED. DEPRESS PROCRAM FUNCTION KEY 1. CALL MAFFISCEVI) 100 FOAMAIL PL'/ PC THIS SECTION OF THE CUANTAL PRAGRAM DATE = 71056 Call Blank Call Rous Call Resettent.cv2.cv3.dv4.dve) Heitet4.600 INPUTA IF (NUET(4).EC.21)60 TO 750 IF (NUE T (4). EC. 2) CO TO 401 IF (NUE T (4). EC. 1) CO TO 66 IFAL-WF-1)GU TC 201 Call blank 25 wait[(4,101) r CALL WPFXISICVI) IBUF - PLUT (CV1) CALL BLANK Call Resetturij MPTTE(4.100) CALL WRFMTS(CVI) - DETAIN(NCEY) CALL WHEFTS(CV2) LOI FJRMAT(+PI N UUF + PLCT(CV1) 2LESS THAN 10C. * DFIAININCET) GU TO 402 10CO FURMAT -FCRTRAN IV G LEVEL 402 5 9 107 00.03 CC02 0001 CC 13 CC 15 0020 2233 2023 100 0016 6100 CC 13 C018 

PAGE OUDI

ķ

93

FORMATI'S THE NUMBER OF CLASSES (BATCHES) MUST BE GREATER TWAN O A (NU-LESS THAN 100.1) DATE = 71056 1 .ANC. NDET(4) .EQ.31)60 TD 750 1 .ANC. NDET(4) .EQ.30)60 TO 67 CALL NUPPS K = UNPLOT(DV2) CALL RUPS CALL SCURS INUF = FLCT(CV2) ICL = XNUM ICL = XNUM ICL = KAUS ICL = EASE(DVE) C T 21 COL BLANK CO TO 21 75C KEY = 50 21 Call Reseftov1, DV2, DV3, DV4, DVE) keturn CND **INPUTA** IF (1.16.2)CO IC 200 CUR \$ \$ ( D V 2 . 64 ) ALL SKFPTSICVED - PLCT (CV2) - DETAININCET) PE AU(4,300)XNLP FORMAT(/65.0) CALL DVTCM(DV2) CALL SC DV(DV2) - PLCT (CV CALL RESETIDV2 Call Resetiove - UNPLCT (UV #RITE(4,114) 01 00 19 UF CALL 1201 FCRTRAN IV G LEVEL 19 000 ŝ 114 1 200 5 20 2730 100

PAGE 0002

12/11/51

13/17/21 13/17/ 13/17/ 10VC,UVE,CVA,CVE,KEV,KK,1FUN,1TRAN,1REC CALL DISPLA(CV2,CV4,DVE) CALL DISPLA(CV2,CV4,DVE) 16.4KE,4EC,10)GC TO 75 NI = NCL JEY = C WHERE THE CONCOMITANT VARIABLE (DOSA HERE NFRE FCHATTOPI AEXT CUMPLETE THE FCLLOWING STATEMENT FCR EACH 146°,15/°P hatches. An Example 15, in Match 12. Where the CCNC 244f Vahiable'/°P (DOSAGE) 6.4. WAS GIVFN TO 30. SUBJEC CALL WRFFISCOVE) 21 FORMATTOPTYPECTS 50 TO 22 11 APITE(44117) 21 APITE(44117) 21 APITE(44117) 21 APITE(44117) 21 APITE(44117) 21 APITE(24E) 31 FOPMATTOPTAE 30 ABJECTS MUST BE GREATER THAN 2+) 30 ABJECTS MUST BE GREATER THAN 2+) BATCH MUST BE GR RE SPONDF .1 .4AC. NDE F(4).E0.31)GD TO 750 .1 .AAC. NDE F(4).FQ.30)GD TO 67 .2)GO TC 201 THA BIHERE WERE BC. SUBJECTS'/'P TH 44E NUMPER OF SLBJECTS IN EACH 19 [F(KFY.FG.10)GC T0 20 22 [F(1/(MK).LE.2)CO T0 11 12 [F(1/(KK)113.15,15 15 [F(1/(KK).GT *)5)G0 45 RE 4U(4, 3C1)X(KK),XX,XY F0HMAT (/C14,7//G5,C//G5,0) IF HNL.CT. 81CO TO 2 JEY = 1 AN = NCL 50 TO 3 2 44 = NI + 7 2 45 Y = C 24 KFY = C CALL CUR15(CV4,60) I = DETALN(NCE1) NI = 1 + MRITF(4,102) NCL Call WRFMTS(CV2) 2 FCWMAT(*PL NE) HRITE (4. 103)KK Call KRFPTS(CV4) PLCT (CV3) CALL DVTDP(DV4) CALL SCTEVIDVA) = UNPLCT (UV4) CU 17 501 20 WP11414.211 × CALL BLFHS 52 (XX) = 15 (1.EC. 1 - 05 T N( XX) =X IBUF = FCHTRAN IV G LEVEL 19 ¥ 102 201 4 301  $\begin{array}{c} \alpha \neq 0 \\ \alpha \neq 0 \\$ 1000 

PAGE NOOI

12/11/61 CALL WRFFTSCVE) CALL WRFFTSCVE) 118 FUHMATT'P THE AUMBER OF SUBJECTS THIT RESPONDED (SUCCESSES) MUST B 15 CHEATER THAN 0') 16 CHEATER THAN 0') 18 - HOPLCTTOVA) CALL PESETTCVE) DATE - 71056 DATA 67 KEY = 1 99 Call Resertova.cv4.dve) 94 keTurn 600 AESETICVE, DV4) - PLCT (CV4) PESET (OV4) CALL MAFPTS(CV3) 192 FORMAT( P11) 194 - PLOT(CV3) . EPASE(DVE) ....... ..... WR [TE (4, 192) KEY = 50 CO TO 39 75 ¹11 = KL 75 ¹11 = KK GU TO 24 5 750 KEY -* * 5 CALL CALL FCRTRAN IV G LEVEL 19 CALL 572 ī 500 × 0032 CC 84 CL 76

PAGE 0-07

4.7

13/17/40 MY CORRECTION TO YOUR DATA. DEPRESS PR F YCU WISH TO ADD ANNTHER CLASS (BATCH ON KEY 5. IF YOU WISH TC CONTINUE. DE WHICH CLASS (RATCH) DO YOU WISH TO CORRECT? "/"U.", 502 CALL BLANK 522 CALL BLANK 523 CALL BLANK DOSAGE .4./.51.. DATE = 71056 YOUR DATA NOW 15:"/ "P NATCH NUMBER NUMBER OF SUCCESSES") ., F10.5,/'P. IF ([.EQ.1 .AND. NDET(4).FQ.31)GC TO 750 2) CEPHESS PREGRAMITIP FUNCTION KEY 3PRESS PROGRAM FUNCTIONITIP REV 1.1) IS ANY FINDETICAL CC.311GN TO 750 FINDETICAL EC.311GN TO 67 FINDETICAL EC.300GO TO 67 FINDETICAL EC.31GO TO 68 FINDETICAL EC.31GO TO 80 FUNDETICAL EC.31GO TO 300 IF THERE >u× UNITE(4,1C4) Call WRFMT8(CV5) LO4 FDRMAT(*P1*/*PC*/*PO (J.NF.1)GO 1C 202 - ERASFLOVE) 1866 - PLOT(CV5) Call Reset(CV5) F 1K. NE. 25160 10 21 FURMATI .PC IF I ING.AM FUNCTION ./ .P IALF = PLCTIEVA) Call CURSSIDVA,50) 1 = DETAIN(NEET) UNHER OF SURJECTS CALL NPFPTS(CVA) 203 FOHMATI'PL M MAITE14,104) Call MafmTs(CVS) Cuntinue WRITE(4.106) Call HRFMTS(EV7) - DFIAIN(NCEI) - PLCT (CV7 CALL RESETIDVA) WRITE(4,203) CALL BLANK LL BLAAK • × • CALL PLAN GN TO 262 ייני 24 KEY = 1 CO TO 7 15 (1.0F1 1112 1541 FCATRAN IV G LEVEL 19 ~ 206 106 202 21 300 ; \$ \$ 5 5 5 5 6003 6005 6005 6005 0001

PAGE OUNI

Z

FURMATI'P THE CURRECTED CLASS (BATCH) NUMBER MUST BE GREATER THAN (0 and less than '.[5] 04TE = 71056 GU TO 74 67 KEY = 1 74 CALL BLANK CALL RESETICVL.DV2.DV3.DV4.DV5.CV6.CV7.DVD.DVE1 RETURN ENC .AND. NDET(4).EQ.30)CC TO 67 )Co TC 206 07 FORMAT(/C5.0) CALL BUFRS CALL BUFRS CALL BUFRS IF (KK.LT.0 .CR. KK.GT.NCL) GO TO 209 KK = VITPLGT(FUVA) CALL KCURA IBUF = PL(T1CYA) KFV = 10 KFV = 10 CALL WFFTS(CVE) CALL WFFTS(CVE) CALL WFFTS(CVE) **INPUTS** 10 AND LESS THAN THUF = PLCTIDVE) IF(1.E0.1 .AND. IF(1.NE.2)GO TC Call Sctcv(dva) Call Dvtdm(dva) CALL RESE  $X = U_{x}PL$ 750 KEV = 76 KEY FCPTRAN IV G LEVEL 19 207 209 211 

PAGE 0002

13/17/40

15/81/61 CALL WRFFISTOVI CALL WRFFISTOVI I FURMATIPPINE I DESIRE AND DEPRESS THE'NP CORRESPONDING PROGRAM FUNCTION KFY'N'P 20''PO'IO'IOX, PROBIT TRANSFORMATION - PROGRAM FUNCTION KFY 7'/P' 3 'IOX, LUC-LIC TRANSFORMATICN - PROGRAM FUNCTION KFY 7'/P''IO 4X, LUC-LIC TRANSFORMATICN - PROGRAM FUNCTION KEY 9'/P''IOX, 5'ALC SIN TRANSFORMATICN - PROGRAM FUNCTION KEY 9'/P''IOX, 6ULL TRANSFORMATICN - PROGRAM FUNCTION KEY 9'/P' 'IOX, 10UF = PLOTICN - PROGRAM FUNCTION KEY 9'/P'''IOX, WFIN SUBRDUTIME CFMGTR COMMON NDETTS:X1001,M11001,MR1001,NV1,DV2,DV3,DV4,DV5,DV6,DV7, IDV0.0V4,DV4,DV2,MCL,MEY,MK,IFUN,ITTAN,IREC CALL DISPLATEV11 MRITET4,1 0ATE = 71056 4).4.1.4.0R.NDET(4).61.10)60 TO IF (J. NF. 1)GU TC 2 IF (UNET(4).EC.21160 TO 750 IF (NDET(4).EC.20160 TO 750 IF (NDET(4).EC.6)ITKAN=1 IF (UDET(4).EC.6)ITKAN=2 IF (UDET(4).EC.2)ITRAN=3 IF (KDET(4).EC.2)ITRAN=3 IF (KDET(4).EC.2)ITRAN=3 CHNGTR 41.EC. 101 ITRAN=5 = DETAIN(NCET) IF (NDET IT (NOET FCRTRAN IV G LEVEL 19 ٦ N CC01 CC02 5353 5555 5555 

PAGE 0001

13/17/47 SUBROUTINE CALC DOUBLE PRECISICN DE1,DFX,DFF,DF2,VORMX,VORMP,VORP2,DFX3,DFP3, 100 12,015 X4,015 P4,D5 X2,0FP2,0F22 10F 23,015 X4,015 0,05 Z4,05 X2,0FP2,0F22 01#E:4510N U110C, 2211001, PC1001, PCAPC1001, VP11001, VV10AXC100 LI, WILDOI, ERTIOC) COMMAN ADETISI, XILOOI, MILOOI, MAILOOI, DVI, DV2, DV3, DV4, DV5, DV4, DV7, LDVL, UVE, DVA, CVE, MCL, KEY, MK, IFUM, LTAAN, LAEC DATE - 71056 HII) = FLOAT(KII))=211)=22/1PCAP11)=11.-PCAP11)) HUKK(13 = YPR11) + [P11)-PCAP(1))/2(1) FK(HAX) 99,41.42 LCAT (NP( I))/FLDAT (N( I)) TO (54,55,54,57,78),178M TO (50,51,52,53,76), ITRAN 1 - YCRMP(DF1) (P(1) - 0.995991 5.8.8 CALC ) 6.6.7 9.5/FLCAT(N(1)) 0F 24 ( CY 1) OFP3(CP1) OFP41CP13 DFP21CP11 OFZJICYLI DFZZ(CY1) DFP(DPI) DO 12 1-1-NCL DF2(DVI) 59.10.21 -1.401 -1-NCI .21 L NCL **K(1)** C3 T0 II 76 Y(1) = DF 11 CUNTINUE 10 59 FO 59 **JUE** 10 34 1 21 I I N L 5 01 . 5 . c 2 S 51 Y(1) 52 Y(1) 53 Y(1) 53 Y(1) AL FO 51433 78 211) 59 CONT 2 200 579 55 2110 56 2113 57 2111 FCPTRAN IV G LEVEL 19 3 3 3 8 ã 3 Σ 101 ŝ 2 28 2 C003 CC01 \$000 0000 CC 53 10.20 6200 *~ ) ) 5 C 23 5 2010 510 C 26 212 3 3 ž 300 200 3 5 1 5 3 2 3

PAGE DONI

PAG

IFIK - KMAX1 41,99,99 Call MPEG(X,YKCRK,Y,M,NCL,YPR,ER,SSX,SSY,SPXY,SSR,SSF,VSE,R,ALF,BE Call MPEG(X,YKCRK,Y,M,NCL,YPR,ER,SSX,SSY,SPXY,SSR,SSF,VSE,R,ALF,BE ITA,SW,SUMX,SUMY,XBAR,YBAR) K = K + 1 IF(abstiale-alf0)/alf).GT.1.E-4 .DR. ABS(IAETA-BET0)/BETA).GT.1.E-If(amax11006,1CC6.6C If(max11006,1CC6.6C Alf0 = Alf Alf0 = Alf Alf0 = Alf Alf0 = Alf 13/17/47 DATE = 71056 HE TO = BETA HE TO = BETA 141 D5 05 1=1.55,99 UT 1 = YPR(1) UT 1 = YPR(1) T 50.011) = YDRPY(DY1) T 50.011) = YDRPY(DY1) CO T7 05 T 20.011 = DFX(TY1) CO T7 05 T 20.011 = DFX(DY1) CO T0 05 T 20.011 = DFX2(DY1) CO T0 05 T 20.011 = DFX2(DY1) CO T0 05 T 20.011 = DFX2(DY1) CO T0 101 HETE(29:1)PP WAITE(29:1)PP WAITE(29:1)PP WAITE(29:1)PP WAITE(29:1)PP WAITE(29:1)PP WAITE(29:1)PP WAITE(29:1)PP WAITE(29:1)PP WAITE(29:1)PP CALC RITE (24.9) ALF. BETA 28.81558 SSE (28.7) TE 124% 2001 HE TURN FCRTRAN IV G LEVEL 19 4 ç ž 378 CC55 CC55 CC55 CC 78 2C 73 3**1115**5 CC57 CC58 51 CC 75 CC 75 66.00 CC 73 C C 9 2 1.0

PAGE 0002

13/17/47 SUURDUTINE WREGLX.Y.YDATA.W.NCL.YCAL.ER.SSX.SSY.SPXY.SSR.SSE.VSE.R 1.ALF.BETA.SV.SLWX.XBAR.YBAR. 21.FNSION X(1).YC11.W(1).YCAL(1).ER(1).YDATA(1) 20.MX = 0. MFIGHTED REGRESSION SUBRDUTINE. THE ARRAY Y IS TAKEN AS THE WOKKING ARRAY. IF IT IS DIFFERENT FROM THE DATA. THE ARRAY YCATA SHCULD BE THE ORIGINAL DATA. IN SIMPLE WEIGHTED REGRESSION BUTH Y AND YCATA SHCULO CONTAIN THF SAME LISTS DATE - 71056 ([]A+(])X+(])4 + AX. , BETA) * YHAR + BETAVX(1) NA IN VDATA(1) - YCAL(1) • 4(1)•X(1)••2 • 4(1)•Y(1)••2 1)X+(1)4 + SY - SSP SE/FLCAT(NCL-2) .CR 1 ( 55R/55Y) - EETA+XBAF - 284R X(I) + >BAR Y(I) + YBAR X2215++7×4 PXY/SSA 13 / X F D HS / Avi 23 1-NCL UNC. • ACL 1 - SIGA(S SUPY й • RE TURN VCAL ( YHAR SP XY XHAR 22 C X 33 FCRTRAN IV C LEVEL 19 ( 1 ) H SSY 3 4 2 00 61 16 551 š Ξ 2 11 5 υu CCCI CC150 CC150 CC150 CC150 CC19 CC19 CC19 0000 CC 22 C 2 2 3 \$7.33 CC 25 6626 CC 77 C C 28

PAGE 0001
DATE = 71056 -EC-0.CO) GD TO 20 Si(CFB-CFA)/DFB).LE.1.0-14) GD TD 20 .1.D-14) GO TO 20 PRECISION FUNCTION YORMX(DZ) CP1+CF2+DEXP(-DX+DX/2.D0) - 1.00) +DX+DX улянх C.0. COJ GO TO 20 (DF8-DFA)/DFA).LE 11+04L + DAL+0AH CN YORMX .398942260401433 + CAI+DA 551 

 DOUGLE
 PRECISIC

 TMPLICIT
 RECISIC

 DOUGLE
 FRECISIC

 DOUGLE
 - 3989422

 DOUGLE
 - 3989422

 DIL
 - 3989422

 DIL
 - 3989422

 DIL
 - 100

 DIL
 - 100

 DIL
 - 100

 DAL
 - 2.00

 DAL
 - 0.00

 DAL
 <t IF (DX .LE . 3.0C) IF (D2 .GT .0.00) AE TURN END • 0 • 1 NC/CB F LDABS 1F (CF B C0 70 0FA = VORMX DAN FCATAAN IV G LEVEL 19 ()F A 2 5 20 6500 1100 CC11 1F00 CC 36 CC 36 CC 37 50.50 CC 25 CC 27 CC 33 CC 34 50.32 0400 6433 5000 CC 16 CC17 CC18 C C 2 6 C 32 550 5 5000 000 2000 2122 100 5 5.03 20 5 22 3 3 3 3

13/17/47

PAGE 0001

13/17/47 0XN = DET-((.01032800*DET+.#0285300)*DET+2.51551700)/(((.CC130800 1+0EF+.189269D03*DET*1.432788D03*DET + 1.003 1F/Y-.500312*12*13 COUBLE PRECISICN MORMAL DISTRIBUTION--ARGUMENT P. RFSLLT X. Yompp mequires function subroutines yorm? And yormx Upusle precisicn function yormp(DP) implicit Reale(0,Y) Vouble Precisicn Yorm2 Y=OP DATE = 71056 DPA - YCRYKEXA) DEA - 52A - Y DEA - 52A - Y FF(DABS(5ER/Y - 1.5-6)14.14.15 15 Y - 2 SCYL - 12 15 Y - 10117.17.14 DJVEG = ,639999999999938 1 F I Y J L, 1 ,2 Y UNH P - - ОШМЕС CO TO 99 DSCRT(-2-D0+DL0G(DQ)) HAIN' - YOKH2(D3P) ( C2) 27,27,28 - C3P/2,C0 TERT-SEOIS.6.7 VURMP = C.90 GO TO 99 CXA CER/EZ 15 (Y-1.CO)3,4,4 YORMP = CCMEG 60 10 99 5 62 * 7 60 10 10 7 UC = 1,00-Y NCYL=0 NX O 12 DXN = -DXN 13 DPN = YCRYX 60 TO 13 14 YONAP = 0 99 RETURN END TO 99 20 1 30 DE 15 1.01 FCATAAN IN G LEVEL 19 17 UXP 29 DZ 28 DXN 27 DxP 3 8 υv 

•

PAGE DON

CRIRAN IV G	LEVEL		VORME	DATE = 71056	13/17/47
1000	,	DOUBLE PRECISICN FU	NCT ICN YORMZ (X)		
2003 2003	J	NURMAL DRDINATE Cousle Precision X, V=X	Y, YORM2, EY		
CCC4		FY = "Yav/2 DO			
cco5		IF (EY+AD, COIL L.>			
(())	-	YORM2 = 0.00			
CCC7	•	60 TU 99			
6008	N	YURNZ = JORGESSENA			
ccc5	9	REJURN			
CC 10		ENC			

PAGE OCAI

				• '				
				·				
ដ								
CE CO			•					
2							•	
	•					•		
~	·							
4/17/	••••					• .		
61		•			·			
				•				
11056								
- -		•					•	
PA								
â			· .					
A DFPL				•				
0110 1010 1010 100	5							
				•				
TECI SI		•			•			
							•	
LEVEI			-					
2							•	•
PTAN COL	5 4 5 C C C C C C C C C C C C C C C C C C C							
					·			
				•				

106

 $\mathbf{R}_{i}$ 

 FCRTRAN IV G LEVEL
 19
 DF2

 COOI
 DOUBLE PRECISICN FUNCTION DF2(DY)

 CCC3
 DE = DEXP(DY)

 CCC3
 DE = DEXP(DY)

 CCC3
 EF = EF/((1..CC+DE)+*2)

 CCC4
 KEUNN

 CCC4
 KEUNN

13/17/47

DATE = 71056

PAGE PON

			•						
									108
								•	
					•				
			•						
				•				•	
-							•		
ouo		•			•				
AGE			•			•			
6			•				•		
					•				
								•	
						•			·
3			•						
1/17									
2	•								
							•		•
056									•
<b>F</b>			·						
E.			· .						
ð									
	<u>ě</u>	•							
	or.	•			•				
×	4.DE				•				
JC JC	X.0				۰.				•
		•	•	•					
	* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					•			
	1000 1000 1000 1000 1000 1000 1000 100								
<u>ب</u>	000020								
1 EVI									•
0					•			•	
2 2						•			
IR A	506508								
ЯŬ									
							· ·		
			•					•	

£

:

DFP3	PRECISICN FUNCTION DFP3(DP) Precisicn //fp3,dp -dlogi-clog(dP))
19	00084 F VOUB4 F VOUB4 E VOUB4 E VOUB4 E VOUB4 E
G LEVEL	
FCRTRAN IV	1000 2000 2000 2000 2000

DATE = 71056 13/17/47

PAGE CONT

 FCRTRAN IV G LEVEL
 19
 DF 23

 CC01
 DUUALE
 PRECISICN FUNCTION DF 23(DVI)

 CCC2
 DUUALE
 PRECISICN FUNCTION DF 23(DVI)

 CCC2
 DOUBLE
 PRECISICN DF 23, DP 011)

 CCC3
 DP 4DEXPI-DEXPI-DVI)
 DA 00(DE 010)

 CCC3
 DP 4DEXPI-DEXPI-DVI)
 DC 00(DE 010)

 CCC3
 DP 4DEXPI-DEXPI-DVI)
 DC 00(DE 0100)

 CCC3
 DP 4DEXPI-DEXPI-DVI)
 DC 00(DE 01000)

 CCC3
 DF 20 END
 END
 END

;

13/17/47

DATE - 71056

PAGE COOL

110

-

DFX3 FCRTRAN IV G LEVEL 19 000 000 0003 0003 0003 0003

DOUALE PRECISICN FUNCTION DFX3(DY) Double Precisicn DFX3, Dy DFX3 = DEXP[-DEXP[-DY]] Return End

PAGE 0001

13/17/47

DATE - 71056

DF P4 FCPTRAN IV G LEVEL 19 CC02 CC02 CCC3 CCC3 CCC3

MOUBLE PRECISICN FUNCTION DFP4(DP) Couble Precisicn dfP4,DP DfP4 = 01451n(2.00 + DP - 1.00) Return Enc

į

PAGE 0001

13/17/47 .

DATE = 71056

DF24 DOUBLE PRECISION FUNCTION DF24(CY) DOUBLE PRECISION DF24,0Y DF24 * • • 500 * CCOS(DY) ReTURN END FCRTRAN IV C LEVEL 19 CCC32 CCC32 CCC32 CCC32 CCC32

.

DATE = 71056

72/71/61

PAGE DON

DF X4	PRECISICN FUNCTION DFX4(D) Precision dfx4,DV .500 + (1.00 + dsin(dV))
61	DOUBLE DOUBLE DDUSLE DFX4 = KETURN END
V G LEVEL	
FCRTRAN I	2000 2000 2000 2000 2000 2000 2000 200

;

JEX4 DATE = 71056 TICN DFX41DY)

13/17/47

PAGE ONOI

DOUBLE PRECISION FUNCTION DFP2(DP) 0001 DOUBLE PRECISION DFP2, DP, DOMEG, DRR, DEX, DLOG 0002 COMMON NDET(5), X(100), N(100), NR(100), DV1, DV2, DV3, 0003 1DV4, DV5, DV6, DV7, DVD, DVE, DVA, DVB, NCL, KEY, 2KK, IFUN, ITRAN, IREC DOMEG = 0.9999999990580004 0005 DFP2 = DOMEG0006 IF(DP.GE.1.D0) GO TO 99 DFP2 = -DOMEG0007 IF(DP.LE.O.DO) GO TO 99 0008 0009 DRR = NR(100)0010 DEX = 1.DO/DRRDFP2 = (-DRR*DLOG(1.D0-DP))**DEX0011 99 RETURN 0012 0013 END DOUBLE PRECISION FUNCTION DFZ2(DY) 0001 DOUBLE PRECISION DFZ2, DY, DR, DEXP 0002 COMMON NDET(5), X(100), N(100), NR(100), DV1, DV2, DV3, 0003 1DV4, DV5, DV6, DV7, DVD, DVE, DVA, DVB, NCL, KEY, 2KK, IFUN, ITRAN, IREC LR = NR(100)0004 0005 DR = LR $DFZ2 = DY^{**}(LR-1)^{*}DEXP(-DY^{**}LR/DR)$ 0006 0007 RETURN END 0008 DOUBLE PRECISION FUNCTION DFX2(DY) 0001 DOUBLE PRECISION DFX2, DY, DRR, DEXP 0002 0003 COMMON NDET(5), X(100), N(100), NR(100), DV1, DV2, 1DV3, DV4, DV5, DV6, DV7, DVD, DVE, DVA, DVB, NCL, 2KEY, KK, IFUN, ITPAN, IREC 0004 DRR = NR(100)0005  $DFX2 = 1.D0 - DEXP(-DY^{*}NR(100)/DRR)$ RETURN 0006

END

0007

13/18/47 -CUFNUM "AGET(5),X1100),N1100),NR1100),DV1,DV2,DV3,DV4,DV5,DV6,DV7, 10V0,DVE,CV4,DV2,NCL,KEY,KK,1FUN,1R4C 10412,2/14/1,X12H,1,2H,2,2H,3,2H,4,2H,5,2H,6,2H,7,2H,8,2H,9,2H1./.5 1/14-7,51R42L+6/ Call Displatevt) SUBROUTIME CRACOF D1 PE4SICN PCAP(LU01, PS(1001, PCAPS(100), XS(100), 15(10C), R(10), P(100 BELOW DISPLAYS THE DUSERVED AND CCFSS FIR EACH BATCH (CLASS).'' He X-dnsage of Each ratch (Arrangf Batch Number for Each chrefspondin 2.0 THE FCHIZONTAL AXIS IS THE X-DOSAGE OF EACH BATCH (ARRA) 20 119-10 ASCENLING DRDER). THE BATCH NUMBER FOR EACH CARRESPON 36 ORTCH ISY-0P DRFCTLY UNDER THE AXIS AND THE THO LCWER FICURE 494 THE MINHUG AND'I OF PAXIHUM X-DOSAGE.''PP THE THO LCWER FICUL 515 IS THE PROPERTICN OF SUCCESSES AXIS. THE LINED ''PP GRAPH RI 700 PROCEEDIE OF OPERATION OF SUCCESSES AXIS. THE LINED ''PP GRAPH RI 910 PROCEEDIE OF OPERATION OF SUCCESSES AVID THE ASTERICKS''PP DENDI 910 PROCEEDIE OF OPERATION OF SUCCESSES''PIDE DATE = 71056 THE GRAPH ŝ ХНАХ = Х5[ЧС[] ХUP = Х9[N + ].]•[ХМАХ+ХМ[N] ХLC# = Х^IN - .[.]•[ХМАХ-ХМ]N] - 11.ACL .LT. XS(L))GG TO 500 CALL UCCRDIXIC+.-.2,XUP.2.1 **GRACDF** PREDICTED PROFURTION DF . CALL PLACEIDVC,XLCW,0.) CALL LINEIDVC,XUP,0.) CALL PLACEIDVD,XMIN,--2) 04.1.24.1.14.1 PCAPS(1) = PCAP(1) I-NCLPI IBUF - PLETIEVE) SCCVCS CALL RESETIOVDI PC AP 5(1) = 15TORE יייני. ARTE 4. 1030) CALL WHENTS (C 11 1 V41N * X5415 ĉ P.E. AU( 28' 1)P PE AC129.2 (LISAR) CONTINUE 1 X S I 1 3 500 5:10 A P S C 1 TORE 5 1000 FURMA 3 ISC U IN 102 4 1 S S CALL FCRTAAN IN G LEVEL 19 5 g 2 u 2 2 500 CC+22 CC+23 1000 C003 000 CC22 CC23 CC24

PAGE NON

PAGE 0002

13/18/47

DATE = 71056 CALL LINE(DVC, MIN.1.) WRITE(6,110) 19LF ULO FORMATLLUX, EUEFER SPACE REMAINENG IS.,14) CALL PLACE(DVD,XMIN,0.) DU 2.00 1=1,NCLM1 J = 1 4 1 CALL LINE(DVC,XS(1),PCAPS(1)) CALL LINE(DVC,XS(1),PCAPS(1)) 200 CUNTINE CALL LINF (EVC, XS (NCL), PCAPS(MCL)) CALL LINE (DVC, NUP, PCAPS(MCL)) CALL LINE (DVC, XUP, PCAPS(MCL)) CALL CHAR[0VC, SS (NCL), PS(NCL)) CALL CHAR[0VC, SS AR, 1, 0A]) J = N(L - I CALL PLACE(DVC, XS(J), PS(J)) CALL CHAR(UVC, SS AR, 1, 0A) FOKMATT*P.*.1PE12.43 XSLIM = XSLUCL) - .10(XMAX - XMIN) Call PlacFIDVC,XSLIM--.2) HHITE14,42)XSLA-.2) GRACDF IF (K.NF.1)G0 TC 75 IF (NOET (4).EC.21)G0 T0 750 IF (NOET (4).EC.20)G0 T0 67 IF (NOET (4).EC.10G0 T0 74 I CGNTINUS DO 16 J=1.10 XJ = F(DAT(J)e.1 Call Platf(UVC,XLOM,XJ) Call CHAREUVC,R[J],2,68) Call CHAREUVC,RMIN,XJ) Call CHAREUVC,S11,681 Call CHAREUVC,S11,681 6 CONTINUE DO 17 J=1,41C Call PLACE(UV0,XS(1),-.2) WRITF(4,42)XS(1) CALL PLACEIUVC.XS(J).0.) CALL CMAMINVC.C.1.68) CALL PLACEIUVD.XS(J).-.1 IF(T)(J).LT.10)G0 T0 20 . IBUFICE 10 50 CALL MAFFISICYES 41 FORMATI P. .. 11) 17 CUN INUE PLCT (CVC) (1)1111. ARTE 4.401513 CALL ARFMIS(EVE) CALL RPFPTS(CVC) FU44A1('P.',12) [ 2 F ( D V C ) - DETAININCE CO 19 17 20 ALTE14 la LF CRIRAN IV G LEVEL 19 201 4 16 ç 5 0000 CC 74 5633 SPUD CC ES 0.637 1500 1500 CCEE 5600 0600 \$600 5.5

117

CO TO 75 750 KEY = 50

		-	<b>.</b>				
PAGE DOC3							
				. •		•	•
13/10/47	•						
ATE = 71056				. •		•	
4							
GRACOF	. [5]		· ·				•
EVEL 19	CD TD T4 67 KEY = 1 50 MRITE(6.5C1)II 5C1 FJRMAT(:CX*'II = 74 CALL RLANK CALL RCSET(DVC) METURN END				· .	· · · ·	
AAN IV G L	まですちゅうかりの					• •	
FCRT							

FCRTHAN IV G LEVEL 19

SUBRUTIAE DUTPUA DIFEYSTON PEIGCI.PCAPELOOJ,YPAELOOJ,YWDRKELOOJ,YELJONJ,WELOOJ,ERELO DIA A/44 PR,4HDBIT,4H L,4HCGIT,4H LOG,4H-LOG,4H BRC,4H SIN, DATA A/4+ BR,4+BULL/ 14H ME:4+BULL/ CCMPON NGET(5),XELOOJ,NELOOJ,0VELOUZ,0V3,DV4,DV5,DV6,DV7, 12UL,0VF;EV4,DVF,NCL,KEY,KK,IFUN,ITRAN,IRFC ALL DISPLAECV2) READ(28'1)P READ(28'1)P CC01

CCC3

4000

RE AD( 2814) Y P[ AU( 2615) YHCRK 46 AU(24+3)7PR

PFAC(28'61W

Z + 17RAN RE ADI 28º 71ER * 11×1

> C12 013 :

- 11 × 1 2 102 NL

CC 15

116 5 0

JAEY

2

94 IF (NL-LT-10) JEY = 1 1 IF (NL-CT-5)60 10 2

---* יאכר JXEY Ş

CO 10

\$205 270

= FLDAT(K) + .5 * * II. * 2:

1+ 1 KK.EU.KIGE 10 4 ~ * * ž

6 WKITE(4,1C)(JX,JX=NI,NN) Call WRFMTS(CV#)

20.30

CC 12 50.53 103 0035 5036 C C 38

C 31

10 FIDHMAT("PC"/"P CLASS" 19.41121 #HIFF(4,15)[NIJX],JX=NI,14N]

FULLATION SIZE . 19.4112) CALL HHFMISICVA) 15 FUHMATIOP SIZE

CALL WAFFIS(CV) 20 FOMMAT("P P(CFS )", [P5E12.4] MRITE(4,25)(PC/P(JX), JX=NI, MN)

6 î î î

1400 2422

CC 37

25 F:JP4ATI'P P[PHLD]', 1P5EI2.4) 5311514, 331(YPP(JX), JX=NI, NN) CALL WHEPTS(CV)

CALL HKFMIS(EVP)

3 4400 ŝ 3400 6500

30 5.14MAT (*P V(PAFD) *, 195E 12.4) ALITE (4, 35) (Y( X), JXEN [, 4N) (ALL WRFPTS(CV2)

35 FUH4AT("P YIDES "", 1P5E12.4) WRITE (4,40)(THCRK(JX), JX=N1, NN) (FMTS(CVA) 190

40 FOH 41 (*P Y (#CRK1*, LPSE12.4) h41 TF (4,45) (h(JX), JX=h1, NN)

00000 00000 00000 00000

3

REMISICVA) CALL

45 FURMATI'P WEICHTS' . 1P5E12.41

PAGE OOUL

13/11/04

DATE = 71056

DUTPUA

13/18/04 12 WATTER (1.45) CALL WAFFTS(CVP) CALL WAFFTS(CVP) 65 FORMATTEP THIS IS THE LAST PAGE (F THIS SECTION OF YOUR OUTPU 11.1.1.P IF YOU MISH TO REVIEW THIS SECTION, DEPRESS PROGRAM FUNCTIO 21. KEY 4.1"P CTHERMISE, DEPRESS PROGRAM FUNCTION KEY 1.") CALL WEMTSICVA) CO FORMATI'P TO SEE PAGE ",13." DEPLESS PROGRAM FUNCTION KEY 1") CALL WRFWTS(CVA) 5 FGWMATI'P1'/PC',20X,244," ANALYSIS',23X,"PAGE ",13) 1F1 JTY-CQ-196C TO 12 DATE = 71056 ø 55 FCKYATTYP Y-EFRON', 1P5E12.4) IF IKA.NE.K .CR. JKEY-EQ.1360 TO 11 NI=NI + 5 CALL WAFWISTEVE) 50 FORMAT("PO XCCSAGE", LPSEL2.4) WATE (4,55) (FR(JX), JX=NI,NN) IF1J...F.1160 TC 100 IFF(N)E1(4).EC.1160 TO 750 IFF(N)E1(4).EC.1160 TO 67 IFF(N)E1(4).FC.1160 TO 101 IFF(N)E1(4).FC.1160 TO 101 IFF(N)E1(4).EC.4160 TO 102 GO TO 100 IOL CALL RIANK CO TO 101 4 T2 = 1 • 1 HR ITE (4, 50) ( X( JX) . JX=N I . NN) DUTPUA 24111 (4,5) A( [x1), A( [X11), I >cr = 50
cg tr 74
cg tr 74
cg tr 14
74 call blank
keturn
keturn
end CALL ARFMISICVA) FLINEY154,94,14 FLUF = PLUT(EVA) \$ 10. - 01 IAIN(FLET) CALL RESFIIDVAI MR 1 1 E 14, 601 12 CALL HLANK + × = × -14 -14 60 TO 6 -FCRTRAN IV G LEVEL 19 2233 200 0000 

1

PAGE 0002

۰.

FORTRAN	t۷	G	LEVEL	15		· OU	TPUT		DAT	'E =	7118	<b>P</b>	10/48/21
0001				SUBROUTI	E OUTPU	T							
0002				DIFENSION	A(10),	Y(1001							
0003		•		COMMON NI	DET (5) .X	(100)+	N( 100)	+NR (10	01+DV1	DV2	•DV3•	DV4 +DV5+0	V6 + DV7 +
0004				DATA STAF	/1H+/.0	/1H1/	5/1H~/	,A/4H	PR.4HC	DRIT	•4H	L+4HOGIT	4H LOG.
000F				141-106141	1 #KL:****	214+4	L MET	ANDULL	/				
0005			٠	LALL DIST	LALUVEJ	** ***	•						•
0006				1F (F. EY+N)		10 100	0						
0007				RE #U128*1									
0008				- KEADU28."									
0005				REAU(251)	2108	70444							
0010				NE A1) ( 25" )	A INCLAI	IKAN			·				
0011				RET # 0									
CC12			16.06	#LA112514		• •						•	
C013			2000	WEND (2814	7] NL F, ME						· ·	•	
0014			5001	REAUTZET	31228+22	е.							
0015					TINAN	- 1							•
0016				$1\times11 = 1$	(1 + 1)				÷				
C017				JK = 1	•								
0718				JE = NCL	-2								
6014				JI (1 = JI	R + JE								
0020			•	IF IKEY.EC	. 6) CU T	<b>F</b> 491							
0721				VSE = SSE	E / FLCA	TUJEI						-	
0022				STOT = SS	SR + SSF								
0023				F = SSR /	VSE								-
0024				WRITEL4.	13411×1	) • • • • I ×	111.55	R, JR, S	SRISSE	JE,	VSE+S	τατ.μτητ.	F
0025				CALL WALL	4T\${[VP]			•					
6059			71	FORMAT ( • F	01 4/ 4PC+	+27X+2	A4," A	NALYSI	51/1001	,23	X. TAN	ALYSIS OF	VAPIANC
				SF TARLE"	/*P>*+71	X. SUM	OF 1	1X, "DE	GREES (	F.	12×+*	MEAN'/"P	SOURCE
				6 <b>* ,</b> 12 X , * SC	DUARES!,	12X, F	PEECC	+ ,13×,	SQUARE	• / •	PCREG	RESSION +	5X.F1A.e
				7,10X,15,5	5×.E18.8	/ POFR	RU 6. 1	2X+E16	• <b>8</b> •10ו	15+	7X.F10	6.8/*POTO	TAL #10X
				8.F18.8.19	)X+15/*P	<u>א 21 א איס</u>	, CALC	ULATED	F * '	E16	.8)		
C027				WRITE(4)	721JF								
0058				CALL WRFN	4T\${(VB)								
0029			72	FORMATE	PU 1/ 1PU	1 F	YOUW	ISH TO	LEAVE	THE	CUAN	TAL PROGR	AN TO DE
				<b>LTERMINE</b>	=(1+',[2	1) 8Y	171P (	ALL ING	THE "C	ALC	G" PR	OGRAM, DE	PRESS PR
				20GRAM FUR	ACTION K	EY 11.	TE Y	'NU'/'P	WISH 1	0 C	ONT IN	UE, DEPRF	SS PROGR
				3 AM FUNCT	ON KEY	1.*)							
0030				TRUF = PI	LOTIOVES								
0031			73	I = CETAI	IN(NCET)								•
0032				IF(I+NE+)	1160 î.C.	73							
6613				IF INDET (4	1.EC.31	ICC TC	750				• •		•
0014				IF (NDET (	41.EC.30	100 10	67						
0035				IF (NDET (4	++.EC.11	ICC TO	RC .						
0036				IF (NOET (4	().NF.1)	GO TO	73						
0037			491	CALL BLAM	łK	•							
0038				CALL RESE	ET(DVB)							•	
0039				WRITE(4.4	STDALOCA	1),A(I	XII).A	LF, RET	A				
0640				CALL WRF!	TSECVAL								•
0041			400	FORMATE	P1 1/ 1P0	TH	E FCLL	OWING	ts THE	GR A	PH OF	THE STRA	IGHT LIN
				1E Y = ALF	PHA + BF	TA + X	1/1P 6	IHERE A	LPHA AN	08	ETA H	AVE BEEN	ESTIMATE
	•			20 IN THE	1,224,	. ANAL	YS I S. '	I'P HE	RE THE	EQU	ATION	15 Y + *	+F16.6,
				3' + ',E1(	5.6.1 *	X, 1/1P	THE H	IORIZON	TAL AXI	S 1	S THE	DOSAGE-A	KTS AND
				ATHE VERT	ICAL AXI	S 15 T	HE Y-A	×15+/+	P THE V	ALU	ES DE	NOTED BY	***** AR
				SE THE OBS	SERVED Y	-VALUE	5-1						
0042			2002	WRITE(4,2	20041								

FCRTRAN	IV G LEVEL	.10	DUTPUT		DATE = 7	1188	10/48/21
<b>6</b> 0/2 ¹			10 CHT ## CUD 1				
0043		CALL		C BEADY TO		***	OPOCRAM EUNC
1044	• 2004	1111 1111	AT (FPR WHEN THU PR	E REAUT IU	PROCEEU1	<b>C</b> ERKEDD	FAUSKAM FUNG
00/5	1		KET 14 TJ	•			
0045						•	
0048		1 M A A	# 111)				
11(197		CII 4	ITZANIL ATL WARKER A		•		· .
1048	×.	11-12	111~ ATAX 171710	•			
00149		1010					
0051		1.1.1.1					
0071		- T-A-	1			•	
0052	-	- 1. JULI - 1. Mai 1.					
0054		Vid 15					
0055		<b>CO</b> 6	1=3_NCI				
6054		1019	111-YHIN10-10-10				
6457	o	VM TA					
6059	10	7511	(1) - WINNN	•			•
0050	11	VH IN	) = V(1)				
0040		CONT	INUE				•
0041		¥1.61	W . THAT THIN				
0042		¥160			. *		
2043		VI 61	H W YNAX W YNIN				
0044		VIN	05 + VIGTH				-
0045		16()	NIN-GT-C-JUNIN + HINC				
0005		IFO	PAX-IT-C-JXHAX=C.				
0067		151	MIN.GT.O. LYMIN . VINC				
0068		IFO	MAX.IT.O.IYMAX=0.				
2005	85	¥2#1	N = 1.2 + YFIN				
0070		Y2H	X = 7.8 = YMAX				
0071		X2M	X = XMAX - XINC	•			
0072		CAL	UCORDIXMIN. Y2MIN. X2MI	X, V2MAX)			
0073		CAL	PLACE(DVB+0++YMIN)	• - •			
0074		CAL	LINE(DVR.O., YMAX)				• * ·
0075		CAL	PLACE(DVB.XHIN.C.)				•
0076		CAL	LINE(OVE, XMAX, 0, )				•
0077	13	TRU	= = PLOT(DVR)		•		·
0078		- WR 11	F16,2701 IBUF				
0079	200	FOR	AT(10X, BUFFER SPACE	REMAINING I	(\$1+14)		
00 80	14	XL G	(H = ([X2MAX-XMIN)/200	) -			•
0081		[F ()	(EV. FQ. 6100 TO 270				
0082		<b>CO</b> :	15 IP=1+201				· · · ·
. 0083		XPH	L = FLOAT(JP-1)			e	• •
0084		XPL	DT = XMEN + XPHL = XLG	th in the second se			
- 0085		YPL	TT = ALF + BETA + XPLC	f		_	
0085		1F ('	PLOTALT. YZHIN .OR. YP	LCT.GT.Y2MA	(X)60 TO 1	5	
0087		CAL	POINT (DVB + XPLOT + YPLO	T),		•	
C058	15	CON	FINUE		•		
C085	270	DU	L6 I=1,NCL				•
0090		CAL	L PLACEIDVB.X(I),Y(I))				
0091		CAL	L CMAREDVE, STAR, 1,691			•	
0092	16	<u>, co</u> n	TINUE		•		
0093		XX	* XM[N]			•	
0094		XNU	¬ = ξ⊼ΠΑΧ ← ΧΡΣΝΕ Ψ •Ι			•	
0095		JEY	- 1				
0096	<b>.</b>	50					
0097	.30	N X X	- 1010	•			
			•				

FORTRAN	IV G LEVEL 19	OUTPUT
0198		· · · · · · · · · · · · · · · · · · ·
0099	26 CO 24 1=1.10	- AHENS + *1
0100	XX = XX + AM	
0101	GO TO (27.28)	- 16 V .
0102	27 CALL PLACELDY	8.11.0.1
0103	GALL CHARIDVE	.0.1.691
0105	CALL PLACEIDY	B-XX-YINCI
0106	GO TO 29	
0107	28 CALL PLACEIDV	R+0++XX)
01/18	CALL CHAR(CVE	5+1+691
0109	29 1E/YY LE 100	B+XINC,XX)
0110	IF (XX. + F 100)	0.100 TO 30
6111	IF (2X+1E++10-1	
C112	1F (X . LT. 0. 100	10 37
0113	IF (XX.LT.10.)G	
0114	IFIXX.LT.100.)	GO YO 33
0116	IF (XX.LT. 10.00.	IGC TO 32
0117	IF (XX.LT.10000	.1GO TO 31
0118	517 WK 11 E (4,35) XX	
C119	35 FORMATING A	8)
0120	GO TO 24	•2)
0121	31 WRITE(4.401XX	
0122	CALL WRENTELCY	81
0124	40 FORMAT(+P.+.F7	2)
6125	GN TO 24	
0126	32 WRITE(4,45)XX	•
0127	LALL WREMISTOVE	31
0128		.2)
0129	33 WRITE(4.551Y)	
0130	CALL WRENTSILVA	•
0131	55 HURMAT (+P. + + F5.	21
0132	GO TO 24	
0134	34 WRITE(4,60)XX	
0135	ALL WREMTS(CVR	1
0136	24 CONTINUE	2 F
0137	IF (JEY-NE-1) co	TO 22
0138	JEY = 2	10 22
0139	GO TO 36	
0140	22 II = SIZE(CVB)	
6142	FILI.GT.IBUFIG	TO 50
C143	TRUE + PLOTICVA	l .
0144	300 ECONATION	
0145	75 K = 05741040000	• • • 15)
0146	IF (K_NE_11CO TO	78
0147	IF INDETIAL FO. 31	100 TO 750
VI48 0140	IF (NOET (4) . EQ. 30	160 TO A7
0149	IF(NDET(4).EQ.1)	GO TO 99
0151	GO TO 75	
0152	80 WRITE(28+10) X	
0153	WK11E[28+11]N	
-	F71/61287121AR	

.

Service and

•

.

C148 0149 C150 C151 0152 0153

ž.

DATE . 71188 10/48/21

.

 FORTRAN IV G LEV^CI
 10
 NUTPUT
 NATE = 71188
 10/48/21

 0154
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</

.

**13/18/23** TYPE IN THE NUMBER CORRESPONDING TO THE FUNCTION YO (X)NI IF (IF UN.LT.0 .CR. IFUN.GT.12)GO TO 20 GO TO(53,53,53,53,53,53,53,53,1050,1050,53,53,53),IFUN DATE = 71056 ARCO ÷. CALL MEFTS(CVF) Formativeothe Number must de between 1 and 12*) fourmativeothe Number must de between 1 and 12*) four = Plotiove) THN. / PD 4.1.3UJAV 1F(J.EU.1 .ANC. NOET(4).FO.311GG TO 750 1F(J.EU.1 .ANC. NDET(4).EQ.301GG TO 99 1F(J.NC.2)GD TC 3 R001 . IF (MALT (4). EC. 11) 50 TO 750 IF (MALT (4). EC. 30) 50 TO 99 IF (MALT (4). EC. 10 CO TO 90 IF (MALT (4). EC. 11) 50 IF (MALT (4). EQ. 31) 50 TO 10 CHNGFN COT9 10 0 CU 55 1=1,MCL 1, 11,11.0.CJGU TC 52 1. Chilibut 5 CO T0 53 CALL WPFPTS(CV2) 2 FORMAT(*PC TYPE IN 14 DESIPF. */*L.**3X1 18LF = PLCT(CVE) CALL CUMSSIDVA,68) J = DETAININEFT) [84F = PLOT(CVP) * DETAINTNEETI 20 K = UNPLGT(DVA) Call PESFT(DVA) TF ( J. NF. 1) GO TC CALL RESETEDVED CALL SCIOPIDVA IS FORMATE/G3.0 41 401 4, 151 XF IFUN = XFUN 10 WP ITE [4.2] CALL BUFRS GU TU 100 53 KEY = 6 IF LJ.NF 50 10 FCRTRAN IV G LEVEL 19 1050 \$ 55 CC13 CC14 CC13 CC13 CC13 CC13 000 CC 09 2122 CC 33 CC 34 vc 35 CC 30 C 3 8 20 CC37 30 553 0.04 30

PAGE DOOI

FCRTPAN IV C LEVEL19CHNJENDATE = 7105613/18/23CG4752CALL REFETOVA)CG4452CALL REFETOVA)CG4954CG4452CALL REFETOVA)CG44CG4954CG44CG44CG44CG44CG4954CG44CG44CG44CG44CG4954CG44CG44CG44CG44CG49CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG44CG54CG44CG44CG44CG44CG44CG55CG44CG54CG44CG54CG44CG55CG44CG44CG44CG44CG55CG55CG44CG44CG44CG44CG44CG55CG44CG44CG44CG44CG55CG44CG44CG44CG44CG55CG44CG44CG44CG44CG55CG44CG44CG44CG55CG44CG44CG44CG55CG44CG44CG44CG55CG44CG44CG44CG55CG44CG44CG44CG55CG44CG44CG44CG55CG44CG44CG44CG55CG44CG44CG44CG55CG44CG44CG44CG55<td

PAGE 0002

·				•	
FCRTHAN IV G	LEVEL	19	FNS	DATE - 71056	13/18/3
2001		SUBROUTINE FKS			
CCC2		COMMON NDET(5) *X(1)	)0),N(100),NR(100), .kev.kk.1600,172AA	,0V1,0V2,0V3,0V4,0V5,C	0V6,DV7,
6003		DO 4 1=1 ACL			
1000		GU TO(21,22,23,24,	25,26,27,28,29,30,3	11.32), IFUN	•
CC05	21	x(1) = SIN(X(1))			
0000		G0 10 4			
CCC7	22	x(1) = CCS(x(1))			•
<b>C</b> C38		60 73 4			
6000	23	$x(1) = : \Delta x(x(1))$			
0110		CO 10 4			
CC 1 1	24	X(1) = ARSIN(X(1))			
CC12		GO 70 4			
CC13	25	XEI) + ARCOS(XEI):			
C C 1 4		Gn To 4			
CC15	26	x!!> = ATAN(X(I))			
CC 16		4 UI C3			
(1))	27	x(1) = ExP(x(1))			
CC 13		G0 T0 4			
6133	28	X(1) = ALCG(X11)			
66.20		6D TO 4			
CC21	29	XIJJ = ALCGIC(X(I)			
CC 22		CO TO 4			
CC23	С Е	X([] = SCRT(X(]))			
CC24		CO TO 4			
CC25	le	x(1) = AES(X(1))			
C26		6.0 TO 4			
6627	32	x([] = { x([) ++2			
CC 28	4	CONTINUE			
6625		RETURN			
CC 30		FNC			

13/18/34 PAGE 0001